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??? INLEIDING. Â§ 1. Onder den titel â€žSur une esp?¨ce particuli?¨re de fonctions 1 "" enti?¨res n?Šes du d?Šveloppement de la fonction -^ e i - suivant les puissances de v" komen in de nagelaten papierenvan Abel functi??n voor, waarvan enkele opgegeven eigen-schappen doen vermoeden, dat ze de moeite van een onder-zoek ruimschoots zullen loonen. Alleen het feit, dat een Abel de studie van een onderwerponderneemt, zou al voldoende de belangstelling van anderenkunnen motiveeren. Toch komen deze (jp-functi??n slechts, voorzoover mij bekend is, in drie verhandelingen voor. Tohebychepgaat van een vraagstuk uit de waarschijnlijkheidsrekeninguit, en komt tot een soort van functi??n, die trigonometrische,bolfuncti??n of (j:-functi??n zijn, naar gelang aan de gewichten,die in het oorspronkelijke vraagstuk een rol spelen, verschil-lende waarden worden toegekend. Laguerre bewijst behalvede door Abel gegeven eigenschappen nog verscheiden andereen brengt een functie, die zeer nauw met 9,, (x) samenhangt,in innig verband met den integraal-logarithmus. Halpii?Šnkomt bij de studie van

een bepaalde soort van reeksontwik-keling\'naar tot zeer vreemde resultaten. De overeenkomst der (^-functi??n met de bolfuncti??n is welhun meest op den voorgrond tredende eigenschap. In hoofd-stuk V wordt deze overeenkomst nader toegelicht. Ik konhet boekje van Todhunter \'), om zoo te zeggen, op den voet \') An elementary treatise on Laplace\'s, Lam?Š\'s and Bessel\'s functions.



??? volgen, en voor de meeste eigenschappen der bolfuncti??n met?Š?Šn variabele analoga bij de (jp-functi??n vinden. Ongelukkig heb ik de overeenkomst met de bolfuncti??n nog niet kunnen uitbreiden op de ontwikkeling van een wille- 00 keurige functie in den vorm ^ (x), waarin aâ€ž constanten 0 voorstellen. , Er bestaan m. i. geen voldoende redenen om aan te nemen,dat de ontwikkeling onmogelijk is, maar ik ben tot nog toeniet in staat geweest, de mogelijkheid of de onmogelijklieid. te bewijzen, \'t Spreekt wel van zelf, dat vooral op dit gebiedmijn taak alles behalve als voltooid beschouwd kan worden;ik meende echter met dit proefschrift niet langer te mogenwachten, vooral omdat niet te voorzien is, hoeveel tijd mijde oplossing van de vraag: mag een willekeurige functie naarqi\'a ontmkkeld worden, nog kosten kan. Het onderzoek van de eigenschappen der ij.-functie was hetonderwerp eener Utrechtsche prijsvraag van 1888, waaropgeen antwoorden zijn ingekomen.



??? HOOFDSTUK 1. (1)ver- (1 â€” V)" De Functie (x). Â§ 2. Abel\'s definitie \') luidt:1 - e i-f = ^ (X) V". 1 - Â?j Wanneer men na ontwikkeling der e-functie ^ (Â? 1) (w 2)... (w m â€” 1) , .vangt door i: â– â€”!â€”â€”â€”^â€”^--v\'\\ dan vindt men : (pâ€ž (x)= 1 â€” nx ^ _2} 2! (2) n! waarm k!{n-k)! een binominaalcoefflcient voorstelt. De ontwikkeling is geldigvoor alle eindige waarden van x, onder de voorwaarde v < 1.Wordt (fn {oc) gedefinieerd door de vergelijking (2), dan kanmen ?i ook negatief of gebroken nemen, in welk geval <jpâ€ž {x)geen polynomimn is, maar een reeks, absoluut convergentvoor alle eindige waarden van x en n.Als nl. alle teekens positief genomen worden, is n Ucj = ( x" en dus < 1. Um. = Um ^^^ Â?) OeTivres Corapl. Ed. Svr-ow et LiE. 1881. T. II p. 284.



??? 6 Â§ 3. De functie q:,, {oc) kan zeer verschillende vormen aan-nemen. Drie daarvan laat ik hier volgen; een paar anderevinden in Â§Â§ 15 en 17 een plaats. a. Vooreerst is cpnix) te schrijven als residu in den vormâ€” ^^ p g 1 â€” < 00 ft\'"\' zooals onmiddellijk uit de definitie (1) volgt. Op verschillendewijzen kan men den algemeenen term van (x), oc^ kr i = {- 1)^ tl UJ in twee factoren splitsen, en den eenen factor met denanderen met t-^ vermenigvuldigen.\' Zijn dan deze factorenalgemeene termen van twee reeksen in t, dan is deco??ffici??nt van P in het product dier reeksen, en dus in residu-vorm te schrijven. Stelt men (- 1)^\'of n UJ x\'^t\', kit\' p e~ ^ {1 T t)"dan is qpâ€ž te schrijven als ^-1 (4) Stelt men (- 1)^of w U X ?„.\' ^ u x" li= k 1 n UJ t" \' = D" dan volgt hieruit voor qp,, (x) de vorm ^ e~ ^ {1 t xf : (5) t n x^ Splitst men *t"Â?^ 1 = â€?( â€” factoren, \\ rC J fc! dan vindt men de residu-vormen



??? ,,.(.)= .....(6) en \'n (OC) = (7) b. Halphen schrijft (pâ€ž(Â?c) in den vorm d (8) n! jdx. De contr?´le door de verg. (2) ligt voor de hand. \'tis meniet duidelijk, hoe Halphen tot deze uitdrukking gekomenis. Wellicht door de differentiaalvergelijking van Â§ 22, waarde vorm (8) van zelf voor den dag komt.In symbolische schrijfwijze kan (8) vervangen worden door (9) d - 1 dx De beide residu-vormen (6) en (7) leveren deze nieuweformules : d" (10)(11)(12)(13) dt\'d" t - O en dt" A. dt t = O of, symbolisch. -j je^^ {t X)" j (1 O" t â€” a en Â? X i = 0 c. In Gauss\' notatie voor de hypergeometrische reeks is = .....(14) V. P 7(3= ?“ O C. R. xcv p. 629. Men zie bv. FORSYTII, Diff. Equations bl. 44.



??? De algemeene term dier reeks, Â?(Â? 1)....(Â? 1).... A;) wordt nl. en dus, voor (5 = oo, t 1 k-^l) conform met (2).Â§ 4. Uit (2) volgt deze diff.-verg. i) voor <f^{x): - X) (p\'â€ž(x}-}-ncf,â€ž(x) = 0, . . (15)ook te schrijven in den vormd . dx . . (16) en een bijzonder geval van de diff.-verg. der hypergeome-trische reeks Worden nl. Â?, / en a? vervangen door â€”n, 1 en dangaat deze diff.-verg, over in ^ - I -(1 1? j = of, voor = 00, re -j- (1 - X) -{-n^ = 0.De diff.-verg., waaraan een hypergeometrische reeks F (Â?,(?,voldoet, heeftin \'t algemeen een tweede oplossing van den vorm Voor q)n (oc) is echter 7 = 1, zoodat de beide oplossingensamenvallen. Hieruit is op te maken dat slechts ?Š?Šn poly-nomium of reeks aan de . verg. (15) voldoet. Een direct onder-zoek bevestigt dit vermoeden. De diff.-verg. (15) laat zjchop de volgende wijze symbolisch schrijven: - â™? 1) In hetgeen volgt, zullen difFerentiaalquotienten zoo veel mogelijk dooraccenten worden aangegeven. X\'



??? , 9 X d waarin & den operator x ^ voorstelt. Stelt men hierin tj = a,n icâ„? aâ„? 1 ojâ„? 1 2 icâ„? ÂŽ ....,dan volgt uit de resulteerende, identiek te vervullen verge-lijking het stel voorwaarden m^ a,â€ž = O , (m 2)2 Â?,â€ž4.3 = {n-m-l) , Daar a,â€ž niet nul kan zijn, is w\'^ = O te stellen. De vierkants-vergelijking in m, die ook in analoge gevallen optreedt, heefthier twee gelijke wortels. De dif??.-verg. (15) heeft dus slechts?Š?Šn oplossing in reeksvorm. De reeks wordt bovendien poly-nomium, doordat alle a\'s na den factor nul hebben. Het-zelfde resultaat wordt bereikt, als men aan (15) tracht tevoldoen door een polynomium van den vorm y = apXP-{- ttp^ixP-\'^ -----[-aix ??q. Substitutie in (15) geeft de voorwaarde p=^n. Â§ 5. Met behulp van (15) en (2) zijn nu zeer gemakkelijkde volgende eigenschappen te contr??leeren, die de analogiemet de bolfuncti??n al zeer duidelijk in het hcht stellen: X (X) (a?) w qpâ€ž _ 1 (ar) == Od (17) of d f , (X) nqjâ€ž^l(x) = O, <IPâ€ž {X) = (x) â€” Cfj\'n 1 (a;), . (18) (19) (20)(21) X (f\'n (so) = cpn {X) - (1Pâ€ž_1 {X),. 71 (tl 4- 1) (jpâ€ž 1 {X) -{n-\\-l-x) (x) = x (x),n (x)-\\-(x- q>\\ ix) = ncpâ€ž(x) , .



??? 10 n _ 1 (a?) (a; - n) qp\'Â? 1 (a?) = {2n - x) (x) , (22)(a?)-(jpâ€ž_i(a;) =?’(][â€ž_ 1 . . . (28) O (n 1) i (X) - (2w 1 -x)(pu(x) %qfâ€ž_i(x) = 0. (24)Deze eigenschappen hangen natuurlijk onderling op velewijzen samen. Ze zijn alle als afgeleiden te beschouwen vantwee grondformules , de difif.-verg. (15) en de recurrente be-trekking (24). Tweevoudige differentiatie van (24) geeft nl.een betrekking tusschen (x), {x) en cp\'n(oc); driemalige toepassing van (15) levert dan de formule (19);waaruit de overige gemakkelijk volgen. Grootendeels kunnenze ook op eenvoudige wijze uit (8) worden afgeleid; zoo ont-staat (18) bijna onmiddellijk door differentiatie van (8); zoovindt men (19) op deze wijze: K â€” 1 A . dx. dx .n-l. dx ^ \'\\dx. dx] (as\' ydx (rrÂ? -1 e - \'A dx {x" e-^)d X X W = Y ^^^ 1 Differentiatie der formules (15) tot (24) zou tal van nieuwebetrekkingen opleveren; ik geef er hier twee, afgeleid door(15) en (24) A;-maal te differentieeren: {x) {k-\\-l- X) ix) in - k) <pf(x) = O (25) en 1) Cf\',, ?Ž1 (ic) - (2w 1 - (X) 4- (W 1 (X)=0. (26)Â§ 6. De functie tf,, (x) heeft dergelijke integraal-eigenschap-pen als de trigonometrische, de

Besselsche en de bolfuncti??n.Vermenigvuldigt men het produkt van de beide absoluutconvergente reeksen d. i.



??? 11 en 1 --- e 1 -Â?= 2"\' (p,â€ž {X) W" i -U O met 6!-^, dan vindt men door integratie tusschen O en oo 00 00^ /* _X ^ â€” 00 00 r nâ€”7V7?•-^ / ^ (l-r) (i-Â?0 â€” (?¤-)(fâ€ž{X) dx. (J-â€”\'V) â€”U) J 0 0 J O O Het eerste lid laat zich schrijven als â€”-â€”, waaruit deze 1 â€” uv^ eigenschappen volgen: \') 00 (??\'Â? dx = 0, voor min, . . . (27)Â? 1.......(28) Deze eigenschappen komen reeds in de papieren van Abelvoor; ze leeren een functie naar (^â€ž\'s ontwikkelen, als menweet, dat deze ontioikkeling mogelijk is. Zoo moet b.v. xf^geschreven kunnen worden in den vorm x^ = ^^ Aii" cpi (x),.....(29) O omdat {x) een polynomium is. Dan worden echter decoef??cienten Aj." gemakkelijk door (27) en (28) bepaald: 00 xy-e-^cpi (X) dx={- 1)\' r â€? â€? O zooals in Â§ 38 nader wordt uitgewerkt.Uit (29) volgt nu o??k _ XV CO 1â€”v ?’ e Â?13" dx = O voor n^m . . . . (31) \') Waar geen verwarring ontstaan kan, zal ik voortaan dikwijls do functie<(jn {x) zonder argument schrijven.



??? 12 zoo wn (cc) een polynomium van graad n, en weder n < m is. Â§ 7. De formules (27) en (28) volgen ook zeer eenvoudiguit de dif??.-verg. (16). 00 co I=je-^ (pâ€ž,(fndx= - cp,n (x cp\'n) dx = O O 00 = â€”\\xe-^ (fdx--e - ^ X/^en polynomium ^ J 71/ Derhalvemaar ook 1 r I = â€” lxe- dx, O CD O Voor w ^ w moet dus 1=0 zijn. Verder is dan vol-gens (32) 00 ?’ (fn qp\'Â? dx=0, O of, na partieele integratie, / UaU-U*^ (32) en ?’ ix)dx = 0, GD ?’ e-" (f,^â€ždx=l I- e ÂŽ qpÂ? <fn Nog een derde bewijs kan ged everd worden: ^ coâ€ž ix}f e-^dx = a}\\Je-dx-\\-wâ€že-^ q,^, 00 dus X = I O)\',, Fidx-\\- j\'coâ€ž qpâ€ž, dx,0 O O X waann dx.



??? 13 mm De integraal in het eerste lid is te schrijven als A A .dx. A dx f ./ â€”, J. m! m! {X\'" e - een m! ?Š;-^; hij verdwijnt dus m â€” l {x\'" e-\'\')dx = . dx. 1 â€” 1 Bij uitwerking wordt de vorm polynomiun^ vermenigvuldigd metvoor de grenzen O en oo, zoodat 00 GC 00 ?’ e-^ (fâ€ž, dx = â€” ?’ (??\'n Pi dx = ?’ Ps c??ic =.... O 0 0 00 = Vâ€ž,dX is. O Hierin is nu een m-voudige integraal, tusschen de grenzen d V" ^J (x\'"e-^), welke inte- 1 Oena?, vane-^cp,Â?(re), d.i. van m! QQlIl ?Ÿ -X graal de waarde ^ heeft. Is nu w < m, dan is O, co dus ook ?’ coâ€ž (x) e -ÂŽ(f(x) dx â€”O, O waaruit (27) volgt, door voor toâ€ž (x) achtereenvolgens x", .... te nemen. .Â? â€”1 X Is n = m dan is w = k, een constante, dus00 jiom = 1)â„? k. \' O co stelt men (a?) = o;\'",dan isk=m!en je-\'\'x"\'qâ€ž,dx={-l)""m!, O CO terwijl voor wâ€ž, = k=(â€” 1)"\' wordt en ?’ e qp,Â?ÂŽ da? = 1. O Â§ 8. De functie qpÂ? (x) is het eenige polynomium van graad 00 w, dat den integraal / x^\'q.\'^dx voor m < wdoet verdwijnen. jl U Zij ?? nl. een polynomium, dat deze eigenschap ook bezitten zou.



??? u co X 00 = Q2, c ?’ stel zoodat dus d Y (e-^QÂ?). .dx. 00 Nu gaat je-^ Q x\'"- dx, na partieele integratie, over in X co X\'"  m je^^ ic\'Â?-^ dx = "x = X\'" Qi m Q2 ____ m/ e-ÂŽ 1. Voor alle waarden m = O m = 1 .... m â€” n â€” 1 moetdeze vorm nul zijn, als = O gesteld is. Dus moeten, voor x = 0, alle vormen Qi, Q^, .....QÂ? nul worden. Het is gemakkelijk in te zien, dat alle Q\'s tegelijk met Q van graadn zijn. Bevatte een term x\'^ {k <n), dan zou deze term,na /i;-voudiga differentiatie, in Qâ€ž _ ^ een\' term van graad nulgeven, die _ ^ verhinderen zou, voor Â?c = O nul te worden.Derhalve is Qâ€ž = C x", waarin C een constante. Dus is e-ÂŽ Qâ€ž = C X" d en of Q = C\' Q C" {X). f^ Het bewijs kan ook aldus geleverd worden \'). Als cpâ€ž (x) en?’! Q beide den integraal ?’ e-ÂŽ co,Â? dx nul maken, dan doet dat ook de som qpâ€ž ?„ Q. Nu is ?„ altijd zoo te kiezen, dat \') Cf. JOKDAN, Cours d\'analyso. 1883. Tomo II p. 248.



??? 15 cpn-\\-kQ van graad n â€” 1 wordt. Kiest men = oc [m = nâ€” 1), dan zou dus ?’ dx nul moeten zijn. O Daar nu e-^ nergens van teeken verandert, moet overaltusschen de grenzen O en oo ??j^m = O zijn, d. i. (Om = O of Q = C\'^ <,.â€ž. Â§ 9. De wortels van (x) zijn alle re??el, positief en onder-hng verschillend. Had een\' negatieven of een stel imaginaire wortels, danwas q)â€ž voor te stellen door M N, waarin W = x c of= {x â€” af ?Ÿ"- en dus N van graad < n. Ifu is (x â€” af f-altijd positief, terwijl x-\\-c positief is, als x tusschen degrenzen O en co blijft. M verandert derhalve tusschen deze gren-zen niet van teeken. Kiest men nu w (a?) = N, dan wordt (32) ?’ dx = % een ongerijmdheid, omdat geen der integraal-elementen vanteeken verandert. Een tweede bewijs is aldus te geven. Als bijzonder gevalvan (32) is ?’ (pâ€ž dx â€” Q, waaruit volgt, dat qp,, van teeken verandert voor een waardex=a^ liggende tusschen O en oo. Men mag derhalve stellen: (]Pâ€ž {x) = {x â€” a) {x).Echter is, ook volgens (32), of <JU ?’ e-^ {x â€” a) {x) dx â€” 0 O 00 e-^ [xâ€”af (pâ€ž (x) dx = 0 ,



??? 16 uit welke verg, nu volgt, dat ook {x) voor een re??elepositieve waarde x = b van teeken verandert. Ten slotte is{x) = G [x â€” a){x â€” h) .... {x â€” l), waarin a, b, .... l allere??el en positief zijn. De functie (x) kan ook geen veelvoudige wortels hebben.Was a er een, dan golden de betrekkingen qpâ€ž (a) ^ O en q>\\ {a) = 0. Volgens de diff.-verg. (15) zou dan ook (a), dus ook(a), dus ten slotte (^w (a) O moeten zijn, een ongerijmd-heid , daar (a) = (^w {x) = { â€” 1)Â? is.De recurrente betrekldng (24) leert,, dat de functi??n tebeschouwen zijn als Sturmsche functi??n: geen twee opeen-volgende cp\'s kunnen tegelijkertijd nul worden; en, verdwijntcpâ€ž (x), dan zijn (x) enqp^ i (x) van tegengesteld teeken.Nu zijn voor x = O alle c^\'s positief; voor x= 00 zijn zebeurtelings positief en negatief. Derhalve vertoont de rij derSturmsche functi??n (f^ {x), q>n-i{x),----cps (x), qpi (x), qo (x) voor = O en voor x = 00 resp. nul en n variaties, waaruitweder volgt, dat q)â€ž (x) n re??ele, positieve wortels heeft. Â§ 10.\' Beschouwt men X = qpâ€ž [x) als eerste, Xi = {x)als tweede Sturmsche functie, dan leert de verg. (21) datX2=

â€” de derde wordt. Stelt men in de verg. (26) ^ = 1 en vervangt men w 1 door n,n â€” 1, &c, dan blijkt uit n(x)-{-(x ~2n-\\- l)qp\'â€ž_i (Â?c)  (a;) = 0, (W-1) cp\'n-l (X) {x-2n-l) qp\'â€ž_2 (X) (W-1) = O, dat cp n â€” X3 r= _ 2 (a?),Xi = â€” cfj\'â€ž-z(x) , X. = de verdere Sturmsche functi??n van qpÂ? (x) zijn. Te beginnen



??? 17 bij X2 komen zij echter alle, behoudens het teeken, ook bijqiâ€ž-i voor, die tot Sturmsche reeks heeft: <jpâ€ž_i (x), qp\'â€ž_i (x), - (jp\'â€ž_2 (oc), (fj\\,-s(x), - (x), etc. vind ik, na vermenigvuldiging met Voor n = 2, 3, 4, 5den factor n/, X - 4 x 2 Xi= - 6x - 6 X - 2 2 X.2 = X2 = x-}-2- 2 X 16 -t- 72 _ 96 4- 24 Xi - 12 x\'- 36x - 24 X3 = x" - 6x 6 X3 == X - 2 2 X =-x\' 2??x^ - 200x^ 600^^2 _ 600a; 120Xi = - 20 x^ ~ 120 x^ -i- 240x - 120 Xg = - ar\' 12 - 36 4- 24 X3= 6 a;- 6 X _ 2 X5 = - 2. De beteekenis van deze nauwe overeenstemming wordtduidelijker, zoo men niet qpâ€ž_i met cp,, maar met qp\'â€ž vergelijkt. en (]p\'â€ž hebben beide- een serie van n â€” 1 Sturmschefuncti??n, die behoudens het teeken, en te beginnen bij Xi,volkomen identisch zijn. Bepaalt men het aantal variatiesvoor X = a en x=b, dan kan dit aantal voor (p\'â€ž enalleen door toedoen van X verschillen, d. i. hoogstens ?Š?Šnverschillen: Indien tusschen twee grenzen a en ?? wortelsvan liggen en q van cpn-ij dan verschillen de getallenP en q hoogstens 1. Uit de vergelijking (19) volgt echter een belangrijker eigen- 2



??? 18 schap omtrent de wortels van (x) = 0. Zijn a en b opeen-volgende wortels van q)â€ž (x) â€” O, dan is Â? qp\'Â? (Â?) ^ <fn-i (a) = O en b (b) (b) = 0. Daar a, b en n positief zijn, en volgens het theorema vanRolle (a) en cp\',, (b) van teeken verschillen, hebben ook(a) en (&) verschillend teeken, zoodat de verge-lijking g)â€ž_i (x) = o;een oneven aantal wortels heeft tusschenelk paar opeenvolgende wortels van g)â€ž (x) = O, Daar qpâ€ž (x)n â€” 1 paren opeenvolgende wortels heeft, kan dit onevenaantal niet anders dan ?Š?Šn zijn: Tusschen twee opeenvolgende wortels der vergelijking(x) â€” O Ugt ?Š?Šn wortel der verg. (jpâ€ž_i (ic) = 0. En dusook, vice versa: tusschen twee opeenvolgende wortels vanq)â€ž (x) = O ligt ?Š?Šn wortel van 9,, (a;) = O, waarvan der-halve voor n â€” 2 wortels grenzen gevonden zijn. De grootste wortel^ van (x) = O mist de bovengrens,de kleinste ligt tusschen O en 1. Dit laatste volgt uit hetfeit, dat alle wortels positief zijn, in verband met de waardex=l die aan 91 {x) = O voldoet. Ik laat hier voor w = 1, 2, 3, 4 de wortels van 9,, {x) = Ovolgen. Som Door differentiatie verkrijgt men uit de verg. (19) de

analogevergelijkingen n = 1 n = 2 n = 3 % = 4 0.323 0.416 0.586 1.746 1.000 2.294 3.414 4.536 6.290 9.395 . 22 33 42



??? 19 X (x) = (71-1) qp\'â€ž {x) - 71 qp\'â€ž_i {x) en X {x) = {71-2) (x) - 71 -i(x), waaruit, geheel als boven voor q>â€ž (x) werd gedaan, bewezenwordt, dat steeds ?Š?Šn wortel van (p\'â€ž_i en ^\'\'â€ž-i gelegenis tusschen twee opeenvolgende wortels van qp\'â€ž, resp.Daar bovendien qp\'s den wortel x = 2 en qp"s den wortelX = 3 heeft, is men gerechtigd tot dit besluit: Tusschen twee opeenvolgende wortels\', maxima en inflexie-punten van y = (f>â€ž (x) ligt resp. ?Š?Šn wortel, ?Š?Šn maximum,?Š?Šn inflexiepunt van ?/= (jpâ€ž _ i (aj). â€žMaximum" is hier opte vatten als â€žmaximum of minimum". En: qpâ€ž (x) heeftstellig ?Š?Šn wortel, ?Š?Šn maximum, ?Š?Šn inflexiepunt resp. voorX <1, X <2, X <S. Â§ 11. In deze paragraaf voeg ik nog enkele eigenschappender (^-functie bijeen.a. Uit de formule (18) volgt = <pi Â?f\'s(jp\'a = <P3 Â???\'\'Â? (p\'n = (jptt qp\'Â? -f 1 ) Â? zoodat dus cf/j â€” is: i of, daar = â€” 1 = â€” qpo is,qi(x) = -(p\\ ,{x).....\' (33) O b. Uit (17) volgt i (fi-i = â€” X â€” (jp\'i, ft Â? u dus 2: i (fi_i= â€” X 2: qj\'U â€” i: qp\'i. 1 1 1 Formule (83) maakt van het tweede lid x cp\'"Â? 1 -f- 1,terwijl

men ten slotte, door (17) te differentieeren, deze be-trekking vindt: 1 i f i _ 1 (Â?c) = - i(x)- (n 1) q>\\ (x). . (34)



??? 20 Xu is Â? â€”nq>n-\\ {nâ€” l)()pâ€ž_2-|- .... 2g)i 90 =^ l)(jPâ€ž_i4- (w-2)qpâ€ž_2 .... qpi _ 1  ()Pâ€ž _ 3 . . . . (jpi (jpo = \' n â€” 1 n â€” 1 n â€” 1 = ^ i (fi ^ (fi = ^ i Cfi â€”1 0 1 zoodat. (34) 00k aldus kan geschreven worden: Kâ€”1 ^ i (fi (x) = - i (x) - n (x). . . (35) c. Herhaalde toepassing van (19) geeft cpn â€” qjo = X 2, -7-,1 I\' of .....(36) 1 00 d.i. =   . . (37) lij X O u J waarin 0 â€” 2" 1 ^ cl. De recurrente betrekking (24), (n 1) 1 (x) - (2n -f 1 - x) (x) n qpâ€ž-i (a;) = O , is voor het argument ^ natuurlijk (w4-1) i (z) - {2n 1- z)  n (z) = 0. Trekt men de tweede verg., vermenigvuldigd met (x),af van de eerste, vermenigvuldigd met rpâ€ž (z), dan vindt men {n -f 1) 1 (x) cp^ (z) - qpâ€ž (x) (p^ i (0)] =(z-x) (pâ€ž (x) (p,, (s) n [cpn {oc) q,n -1 - (fn - l (x) (f â€ž (z)] , (38) (pâ€ž 1 (x) <P)i (z) qj,i zoodat u * {z - x)2: cpâ€ž (x) (Pn (z} = (n-lrl) O is.



??? 21 Â§ 12. De functie qp met ander argument.Uit de verg. (2) volgt cpâ€ž(rx) = 2:(- ly O dus, volgens (29), i â€” u C11 \\ ^ =\' C i \\ Â? = 0 ^- = 0 \\ jNu geldt* algemeen de betrekking i = ti t = i lc = n i=:H Un = 2: 2: Uii = Um Â?30 Â?31 Â?23 wâ€žo Â?Â?1 ... Â?Â?Â?â€? Â?SC aa Cf. dx f 3 dij = dy / z dx. Zoodat {rx) = - 1)^ g^i {x) - 1)\' A- = O i-=k waann n i â–  i kv J r\' â€” \' i\' i = v. = r^ = r^- [lyi- ry-^ . (39) Ten slotte wordt dus H /" ??) ,fâ€ž(rx) = 2: I . . . (40) O J In de keus van r is men geheel vrij. a. r=:2. cf.(2x) = {-\\y . in symbolische notatie (2 (f) - 1)Â?,........(41) waarin dan (j)^ te vervangen is door cp^ (x). n f symbohsch (2 - (f,)Â? . . . Â°..........(42) \'nâ€”ki â€” k T\' â€”\' â€”



??? (43) 22 (PH 0 V. 2\'>â€ž (T = (1 f )" â€? qpÂ? (44) ik â€”i IV\' 1 - -J n \'f ] - - 1 â–  . , \\. Q J 2" t sx -u 1\' = (1 (45) (5 1)" n Q" fu s lj 1 of ^ De laatste twee formules hadden in den vorm c. r = -3.of Q of i e. r = (e - ly (s - ly {oc) = SÂ? 0 nk s â€” j;o v. en in Â§ 11 opgenomen kunnen worden. Â§ 13. Eigenschappen der coefficienten B?.Voor r â€” \\ verdwijnen natuurlijk alle B\'s, behalve B", die= 1 is. Ligt r tusschen O en 1, dan zijn ?Š^lle B\'s positief;voor r < O of > 1 hebben ze afwisselende teekens. Verder gelden, zooals licht na te gaan is, deze eigenschappen: K = rÂ? (1 - B\'o\' = (1 - r)Â? B: = rÂ? â€? (46) n â€” \'ii l-r ric (1 _ _ y ^ ^ 1. (47) Eindelijk is Kn r = Kn r-l.......(48) TT X u- X. ^rn r â–  i i-m r (tl â€” m â€” T-j- 1) , Het quoti??nt ^ is nl. gelijk aan li_r){rn r) \' Hierin wordt ondersteld rn-]-r in 1 of r < 1. 2B\'^ = 2 O O



??? 23 Voor r > 1 geldt de formule (48) echter ook. Dan toch zijnBlr r en beide = 0. Â§ 14. Additie-theorema.Uit de definitie voor (fâ€ž (x) volgt: ^ vÂ? (x ij) ^ _ (a 4- y) " 1 â€”! 1-V 1 g 1-v e â–  \\-v = (1 - -y) i VÂ? qpâ€ž {x) i (y). o o Derhalve is (JPÂ? (a? 2/) = [<]pÂ? (Â?) (Pn-i {x) qpi {]/) ()Pâ€ž_ 2 {x) (p?§i {y)-\\-....-----hfjPlCx) (Pu-l(??/) (fn{y)] - - _1 {x) H- qpâ€ž_2 {x) 91 (2/) ... qpi {x) qpâ€ž_2 {V) qpÂ?-l (2/)]. (49)Deze formule moet voor 71 = 1 gewijzigd worden tot (x-\\-ij) = q>i (x) qpi (y) - 1.Uit (49) is nog af te leiden: n 2 q>i(x-\\-y) = cpn (x) H- qpâ€ž _ 1 (x) cpi (y) ---- .... qpi (a?) <pâ€ž_i (y) qpâ€ž (y). . . . (50)Â§ 15. Ik geef tot besluit van dit hoofdstuk nog een paarvormen voor 9,, (x), nl. een\' bepaalden integraal en een\'determinant-vorm. In het tweede deel van Cauchy\'s â€žExercices de Math?Šma-tiques" (1827) komen op p. 146 deze integralen voor: 1 - jla-ir)-\'" -\\-{a-\\-ir) â–  f hin , r" cos \\ â€” rx dr = 2n nn , y^ rx \\ 2 Vim) (51) en ?’ dr = 2 i A" dx. = â€”f2 r (m) l



??? 24 waarin w, a en m geheele getallen voorstellen, a en m posi-tief, terwijl ook positief is, en i = Stelt men a = lenm = w-[-l, dan gaat, in verband met(8), (51) over in 00 {x)= ?’ j (1 Â?>)-Â?-! (1 - I r" Wtt dr ne en cos CD O waaruit door optelling volgt: 2n e-" qjâ€ž (x) = / (1 4- r" e\' s eÂ?Â?-^ -f 0 / (1 â€” 3 . . . (52) COS" ?Ÿ d?Ÿ (54) 2 TT e- en Vervangt men in den tweeden integraal r door â€” r, danwordt (52) met behulp der formule n<Jt .â€? â–  2:r ix) = ^^ r\' dr. . . (53) â€” w Scheidt men hierin na substitutie van r â€” cot ?Ÿ het re??elevan het imaginaire deel, dan vindt men . . ^ Jsin{x cot ?Ÿ{n ^ 1)} ?Ÿ^ J sin ?Ÿ _ Jcos {X cot ?Ÿ (n 1)} ?Ÿ i cos" ?Ÿ d?Ÿ. O sin ?Ÿ Â§ 16. Aan den integraalvorm (54) zijn gemakkelijk deeigenschappen van Â§ 5 te toetsen.



??? 25 Differentiatie van (.) ^  /"  (65) O \' naar geeft nl. O fcos \\xcotÂ§ P cosÂ? 3(3 = SlTf Â§ rcos lx cot B 4-(n-{-1) (i\\ ^ /c-x e^j -. â€? (56) De integraal in het tweede lid treedt ook op bij de differen-tiatie naar x van (54), zoodat 271 (p\',, 1 (x) = 2n e (e-^ (jp\'â€ž {x) - qpâ€ž (a?)) ot <f\'n l{x)= (p\'n{x)-^q>n{x). .... (18) Uit de formule (54) volgt verder, zoo men onder het integraal- teeken den factor sin^ [i cosÂŽ (3 = 1 invoert:it 2n e-^ (x)=^ â€” j sin x cot ^ {n l) ^ j cos"(3 dcos^ O â€?sin [x cotÂ§ (w 1) sin [S of, na partieele integratie van den eersten der twee integralen J Sm Ij O 7f j cos \\xcot ^^ (n 1) I cosÂ? i d/3 - O _ J{cosxcot^f(n l)Â§} n ij sm^ p \' \'



??? 26 Telt men in het tweede lid de eerste twee integralen op,en vervangt men den derden door X - 2 TT e {(p\'n â€” cpÂ?) , n-\\-l dan komt er, met weglating van den gemeenschappelijkenfactor 2n e-% (n-}- 1 -X)cpn = (n l)cpn l - Oe (p\'n. . . (20) Bij dit bewijs zij opgemerkt, dat men het recht heeft, denbij de partieele integratie van â€??Št.?’ j X cot ^ {n l) cosl ^ d cos ^ optredenden term COS" ^ ^ sin cot /3 (w 1) (5 gelijk aan nul te stellen omdat de uit cos" ^ voortvloeiendefactor (â€” !)" ! opgeheven wordt door een\' factor (â€” 1)" ^ ,ontstaande uit sin \\x cot ^ {n 1) ^ \\ ,terwijl de functie xcotjS een periode TT heeft en dus (x cot = (x cot (3)^ = Ois, ook al worden de beide leden dezer vergelijking oo. De beide formules.(18) en (20) zijn voldoende, om allebetrekkingen van Â§ 5 op te leveren. Nog volgt uit vergelijking van (55) met (56): Herhaaldedifferentiatie van (55) brengt steeds een\' factor sin (3 in dennoemer van de breuk onder het integraalteeken; in den tellertreden beurtelings sinussen en cosinussen op van een argu-ment, dat voortdurend met Â§ afneemt. Naarmate n dusoneven of even is, wordt (^c), afgezien van constante,factoren, gelijk aan n ./r rsinCxcotS) â™? , â– , ^

^ r cos (x cot 3) .. \' I / sil 4 ^^ ^ sin



??? 27 welke integralen, geschreven in den vorm n O en 7t ~ (ft 2) 4  ^ O zuivere functi??n van cot (3 zijn, functi??n derhalve met deperiode n. De beide integralen, en daarmede {x) zijn nu nul, waaruit volgt, dat de functie (pâ€ž i(x), bepaald door(55), een polynomium van graad w 1 in Â?c is. Â§ 17. De determinantvorm volgt uit de formule (31): 00 ?’ qpÂ? (x) x\'" dx â€” O voor m < w. O Schrijft men q>â€ž (x) als Ao X" Al x"-^ .... A,._ 1 Â?C 4- Aâ€žen neemt men voor m resp. O, 1,2, ____n â€” 1, dan treden er steeds integralen van den vorm ?’ e-" x" dx op, waarvan O de waarde r! is. Derhalve geldt het stel vergelijkingen:cfâ€ž{x)=A,x" -f-Ai-a;Â?-! ..-}-Aâ€ž_i Aâ€ž,O = A,n! Ai(w-1)! .. Aâ€ž_i 1! A,.,O =Aâ€ž(w 1)! 4-AiW.\' .. A,._i2!-l-Aâ€žl!, N waaruit volgt Aq = (x) M en dus <,,.(a:) = Ao|- = (-l)Â?i.....(57)



??? 28 Hierin is M de determinant X\'\' rr" -1 .. . . X 1 nl .. 1! 1 1)! nl . . 2! 1! (2w- 1)! {2n - 2)\' n! (n-l)! en N de sub-determinant van Omgekeerd volgt uit (57)weer de eigenschap (31). De noemer N is nl. een constante,terwijl M bij substitutie in den integraal00 ?’ e-\'\' cpn(x) x"\' dx O een determinant wordt, die voor min twee gelijke rijen heeft.



??? HOOFDSTUK II. De Functie ip,, (x). Â§ 18. De difFerentiaalverg. voor cp,, {x) heeft nog een tweedeparticuliere oplossing, die ik i//â€ž {x) zal noemen, en die dooreen bekende methode uit qpâ€ž (x) wordt afgeleid.Voor qpâ€ž (x) geldt re (1 - a?) 71 = 0.Evenzoo voor (x): X xp"â€ž (1 - ic) v/â€ž n xpâ€ž = 0.Elimineert men n uit deze twee vergelijkingen, dan vindt men: log. (yj,, <jj\'â€ž â€” (jpâ€ž v^\'Â?) = 1 â€” ^ dx ^ ^ ^ ^ g-r dus !//â€ž q/Â? â€” q>â€ž iff\'â€ž =C\' â€” , X A dx En derhalve is = C ^ q\'nj X rPn (X) = q>n f dx.....(58) -GD een tweede particuliere oplossing der diff.-verg (15). Deze integraal kan herleid worden tot den integraal-logarithmus. {x) heeft 71 enkelvoudige, positieve wortels Â?i Â?2... . Â?â€ž.Dus IS _op deze wijze in breuken te ontbinden: X qn 1 ^ I V I x" ~ \'T^ TZ--To X (jPâ€ž2 X \\ {X â€” Â?;)- 1 X â€” a; â– 



??? 30 Hierin is Ai =en Bi = (x - ft;)\'dx \' X cp\\ zoo q)â€ž (x) = Ri(x â€” cci) gesteld wordt.Door partieele integratie vindt men: (X - aifXcf,Â?^ Rr ic X = UiX â€” ai X = UiR; -f 2 g; R^ X = oci X X f Ai ^ ^ dx = - Ai  f dx, J (X- a,y X - Ui ^ J X - Ui \' - 00 zoodat XX X â–  J Xq>â€ž^ J X ^x - Ui ^ ij X - Ui - 00 â€? - 00 - 00 wordt. Stelt men qpâ€ž = Ri(x - Â?;)in de diff.-verg. (15), dan blijktR; te voldoen aan xix - Ai) R"i (1 - X) (x - Â?O R\'i 2Â?c R\'i (1 - a;) R; â€”Â?0 Ri = 0, welke verg. voor x = ui overgaat in: = 0, d. i. We hebben nu: 2 R\'; R; â€” a; R;. X = Ui A; Bi 0. f^ax = f^dx-e^I^\'J X cp/ J X \\ X â€” Ui en ten slotte ^n (x) = (JTV ?’ dx = dx-i- e\' (x),. (59) â€” 00 â€” oo waarin \'/â€ž (x) een pplynomium in x van graad n â€” 1 is, be-paald door I .......(60) 9Â? 1 ^^^ â€” Â?i ^ ^



??? 31 Daar uit deze formule voor A; de waarde - volgt, en ool^ X = Ui . Â?i 9\',, (Â?;) <jp\'â€ž (cci) is, moet voor -/n (x) deze relatie gelden : XÂ? (Â?0 = ...... Â§ 19. De formule (58) definieert de functie (x) vooralle negatieve waarden van x; voor alle positieve ook, zoomen dan de principale waarde van den integraal neemt. Voor= 0 is !/;â€ž (Â?c) onbepaald, terwijl op de volgende wijze be-wezen kan worden, dat t/;â€ž(â€” 00) = O is. â€? t//â€ž(- 00)= Urn (- A) = Daar nu en dus a = - a a_ ^ X y A T.. (- iÂ?) > (- A)1_ 1 is T/^â€ž(-oo)< â€”giâ€” fe-^dx, A = 00 J\\. (fn \\â€” -^J J CD ,dus, in absolute waarde. 1 00) < lim A = 00 A(]pâ€ž(-A) <??.i. ,/,â€ž(- 00) = O.......(62) Â§ 20. Het resultaat (58) is ook aldus te bereiken. De formule(25) geeft voor k = n, en als door y vervangen wordt,X 2/(Â? 3) (w -I- 1 _ Â?C) ?/(Â? 1) = 0, of, als particuliere oplossing. (63) y{,l 1) â€”



??? 32 dusen - X X .....(64) - 00 X X ?’ 6\' ??\' C â€” dz=--)- ) 2 X J Z" - 00 stelt in staat, eiken term van (64), na ontwikkeling vanhet hinomium (^ â€” x)" terug te voeren tot den int.-log. Naherleiding zal men vinden: â€” 00 _oo waarin 2Iâ€ž een polynomium van den nÂ?^ÂŽÂ? graad voorstelt, datjuist (jpâ€ž (x) blijkt te zijn, en 7râ€ž een polynomium van dengraad nâ€”1. Daar qpÂ? en aan de diff.-verg. (15) voldoen,volgt uit (59)\' een diff.-verg. voor , die na substitutie van X v\'Â? = y/n XÂ?  f" X en X J Jj X en na eenige herleiding de volgende gedaante aanneemt:   = . (65) \') Cf. St??kji, Cours d\'Analyse, 1884. Tome II p. 91.



??? X 38 Natuurlijk vindt men uit ^ = qp,. ?’-00 dat 7râ€ž ook aan deze diff.-verg. moet voldoen. Gemakkelijkovertuigt men zich echter, dat de verg. (65) slechts ?Š?Šn op-lossing in den vorm van een polynomium van graad n â€” 1\\ieett. Hieruit volgt de identiteit van 7r,i en De loeidefuncti??n mogen, doordat de vergelijking (65) een tweede lidheeft, zelfs niet in een\' constanten factor verschillen.Uit een en ander volgt nu deze derde vorm voor : = ......(64, VÂ? (pc) Â§ 21. In Â§ 18 heb ik den vorm (59) uit (58) afgeleid. Menkan het proces ook omkeeren.De oplossingen ijx = en r G\' dx van de diff.-verg. (15) zijn gebonden door de relatie waarin C een constante. Dus, na substitutie van yx en 2/3, (<fn tn - qp\'. XÂ? 1PÂ? X") = C = 1, . . (66)zooals uit het geval x = 0 blijkt. Of ook dx xcpj X \' waarin P = qpÂ? Deze vergelijking komt eigenlijk reeds op bl. 29 voor inden vorm J:â€ž _ 1 1 X (pj X ^ i {X â€” Uif X â€” ai\' 3



??? 34 â€ž Â? A â€? 9Â? 1 07 â€” Â?i Ai dV = 2 \\{X â€” Â?if \' De algemeene oplossing is, zoo k een willekeurige constantevoorstelt: Immers isen dus J \\_X X ] - go V\'Â? = ^ qpÂ? 4- 9Â? I dx. J ^.qpÂ? dx, waaruit\' volgt Daar nu xp^ (â€” oo) = O moet zijn, is k = 0. Eindelijk kan de oplossing (59) gevonden worden door eenmethode, die van algemeene toepassing is op die diff.-verge-lijkingen der tweede orde, waarbij de vierkantsvergelijkingin m â€” Vergelijk Â§ 4, bl. 9 â€” geen twee verschillende wortelsheeft, dus geen twee verschillende reeksen of polynomia levert.Men vergelijke Forsyth\'s Diff. Equations, Ex. 2 van bl. 137.Zij y=.U(pâ€ž-\\-io de tweede oplossing der diff.-verg. (15),waarin u en w twee nader te bepalen functi??n van x.Substitutie van en y" in (15) geeft een lange diff-verg., die men vereenvoudigt door de opmerking, dat ook op-lossing is, zoodat de termen met u wegvallen, en door determen met (p^ ook gelijk aan nul te stellen, d. i. u te latenvoldoen aan de verg. xu" -X) u\' = 0.De oplossing hiervan is w = Ci C / â€” dx,\' J X waarin C en Ci willekeurige constanten. Er blijft nu\'een

diff.-verg. der 2Â? orde in w over, die. men door de substitutie\' w = over doet gaan in = . . (67)



??? 35 Is uit deze verg. als polynomium of reeks gevonden â€”natuurlijk zoekt men slechts een particuliere oplossing â€” danis de gevraagde algemeene oplossing der verg. (15) y = Cl (pâ€ž-\\-G cpâ€ž dx-\\-Ce\' xn,J X of, in de hier gebruikte notatie, ?/ = Cl (jpâ€ž C Ipn.Â§ 22. In de tweede editie van Forsyth\'s DifferentialEquations komen twee vergelijkingen voor, waarvan (15) eenbijzonder geval is. De eerste (F. bl. 184), X y" -[- (w ax-\\- [5Â?c) y\' (m/5 c??(3 Â?c) ^ = O, heeft tot particuliere oplossingen d en _ ?Ÿ-?Ÿx^ Â?1 â€” 1 yi = e- .dx . A\' dx. dx 2/2 Daar Â?, ?Ÿ, m en n hier resp. O, - 1, â€”n en 1 ofâ€” 1, 0, 1 -h en â€”n zijn, worden de beide particuliereoplossingen en d 2/3 = waarvoor men, bij behoorlijke bepaling der constanten â€” zieverg. (63) â€” , i}iâ€ž (a?) mag schrijven.De tweede (F. bl. 236), (Â?3 -f h X) y" (Â?1 ??i a?) y\' -f- (Â?o h x) ?/ = O,heeft onder de voorwaarde ai bi â€” a^bi = b^^een particuhere oplossing van den vorm y =j du, p



??? 36 , /ttttn f Â?2 Â?1 w Â?o t waann log (VU) = / ^^â€”^^^â€”" du en u MÂŽ ?–1 W &0, terwijl en g bepaald worden door de conditie, dat voorii = p Qwu â€” q eÂ?^VU â€”O moet zijn.In verg. (15) hebben Â?o, ??o, Â?i, Â?3 en ?–3 de waardenw, 0, 1, â€” 1, O en 1, zoodat aan de voorwaarde Â?1 â€” CLihi = voldaan is! U is hier u^ â€” u, en dus iszoodat de oplossing dezen vorm aanneemt: welke vorm door de substitutie iix â€” z onmiddellijk in (64)overgaat. Â§ 23. De formule (64) mag gedifferentieerd worden, zoomen slechts rekening houdt met de discontinu??teit der functieonder het integraalteeken voor z = {) qiv x positief, en methet feit, dat ?Š?Šn der grenzen 00 is. Wat het laatste betreft,gemakkelijk is aan te toonen â€” vergelijk Jordan, Coursd\'analyse II, p. 160 - dat lim p = CD dz = O is. Het eerste lid dezer vergelijking toch wordt, daar zypis, grooter, als men er voor in de plaats stelt â€” P 1 fe-iz-xT-^^^ ^ p J tâ€”00 Urn p~ai = Urn vÂ?-i {-P)^ Â? = 00 p en dat ip (â€” 00) = O is, is reeds op bl. 31 bewezen. \') Zie Spitzer, Studien ??ber lineare Differentialgl. Wien 1860.



??? 37 Wat nu de discontinuiteit aangaat, voor positieve waardenvan X is ipâ€ž (x) door de principale waarde van den integraalgedefinieerd: =[ ?’   ?? ci.; â€” 00  s Deze beide stukken bevatten geen discontinu??teiten; zij zelfen dus ook hun som mogen gedifferentieerd worden. Yoertmen de differentiatie van (64) uit, dan vindt men er n V\'Â? (x) = X J Z\' ^ {z-xy-^ {z-{z-x)] dz^ â€” -^n-l {X) â€” v^Â? (a) X of a; xp\'n = n (i/;,. - .......(68) Deze eigenschap is analoog met de formule (19). Voor 9,, engeldt bovendien dezelfde diff.-verg., zoodat het st?Šl formules{15) tot (24) ook op i//â€ž va7i toepassing is.In \'t bijzonder releveer ik de recurrente betrekking (% l)t/;â€ž i-(2Â? l-a?)r/,â€ž-f â€? (69) die nu, met behulp van (59), ook voor j(â€ž dezelfde recurrentebetrekking oplevert: (n-\\-l)xn i-{2n-^l-x)xn nxn_i = 0. . (70)Het polynomium jj,. is van graad w â€” 1; 3(1 is dus een constante,die krachtens de formule (65) de waarde 1 moet hebben.Met behulp van (70) vindt men nu: 1 (71) enz., JJ, = ^ (50 - 58 -I- 15 - iCÂ?)



??? 38 terwijl door middel der formule (65) voor de coefficien-ten van gevonden wordt: â€” 1)! n (72) (w-3)! n{2n-2) / _ / i y. _ -t - n^ - ^n^ 3n 18 enz. Â§ 24. De diif.-verg. (65) en de recurrente betrekking (70)eindelijk geven voor jj,, een dergelijk stel eigenschappen, alsin Â§ 5 voor (pâ€ž gevonden zijn , en die ik hier zonder bewijsnederschrijf: . 1 ,\'/Â?=XÂ?-1-XÂ?- - f n > n Xn-\\ n x\'n -\\-(oc- n) 9 â€ž =0 , ) (73) CPn = {n l){Xn l - 7.n)> X â€” 2n â€” 1 l\'n <Fâ€ž) = {n -f 1) (xâ€ž 1 W -1). X â€”71 De coefficienten van jfâ€ž, k(j, ki, .... kn _ 1, zijn afwisselend positief en negatief; h is steeds positief.Het bewijs dezer stelling wordt, door de sluitrede van n opÂ? 1, getrokken uit de vierde formule van (73), â€” I ^ / , 1 3Câ€ž i â€” XÂ? -h ^ ^ X Â? -t- ^^ 1 TÂ?: in verband met den vorm van , en van b.v. xa en Gevolger van is, dat de rij der Sturmsche functi??nXÂ?) XÂ?-ij â€?â€?â€?â€? Xo



??? 39 geen variaties vertoont voor x = 0, en w â€” 1 voor a? = oo.Alle wortels van zijn derhalve re??el en positief. Â§ 25. De functie is .op de volgende wijze in (pâ€ž uit tedrukken: O Immers levert. qpâ€ž â€” (pn{x) bij deeling door een poly-nomium op, dat zoowel in x als in z van graad w â€” 1 is.Daar 00 z^ dz z= k! ?’ O is, wordt een polynomium in x van graad nâ€”1.De formule (74) is dus bewezen â€” vergelijk het geval vanTTn in Â§ 20 â€” zoo het tweede lid blijkt te voldoen aan de diff.-verg. (65). Ik schrijf deze in den vorm ^ (a? yfn) {n 1) y,, 2 e^ = O. . (75) Stelt men in (74) x = z-\\-t, dan is itMr x^^ Kâ€”\'t X /Qt â€” [rpn (OC) - (Pn (X - f)] dt -GD dus X f e\' xe\'x\\= e\'-e^<pn(oo) -j- [qpâ€ž(^)-qPH(a?-<) - (p\'n {x) 9\'â€ž(a?-0] dt â€” 00 en, na eenige herleiding, ^ %\'n) {n 1) xÂ? 2 q>\'â€ž = X f e\' ^ - ne\' J â€” [-n(pâ€ž{x) n(fâ€žix-t)-cp\'â€ž{x) (p\\,{x-t) -00 X cp\'â€ž (x) â€” X (xâ€”t)â€”x (x) 4- X {X â€” dt = X = - w 4-Je\' (x-t)- cp\\ (x-t)] dt = -ne^-}-ne\' = 0.



??? 40 Immers is Â? X ?’e\' {x-t)dt= ~ (0) f Je\' (x -1) dt. â€” 00 _03 Ook is nu anders voor te stellen. X Daar nl. de integraal j-^ dz zeer gemakkelijk wordt getrans-â€” 00 00 formeerd in ^ / ~â€” dz, geeft de substitutie van (74) in (59): j CC 2 O 00 ,pâ€ž(x) = e^ f^ cpA^)dz.....(76) J 00 â€” z O De formule (74) geeft, by directe integratie voor het gevalX = O\' Zoo vindt men, door (74) te differentieeren naar x, en ver-volgens het geval x â€” O over ^ te integreeren: 2.3 71 l3j 1 \'7l\' _ 1 f71] 1 ^ 2.3 .3. 2.3.4 u. \' 3.4.51 - ... = ki, 8.4 vervolgens1 Een aanvulling van (72). Deze waarden kunnen gemakkelijk geverifieerd worden doorde vierde formule van (73), die na differentiatie voor x = 0de betrekkingen geeft 1) Z Â?-M (0) = (n 1) X Â?(0) 9 â€ž (0)(71 1) i (0) - 2) (0) q>\\(0)(71 -I- 1) i (0) = (71 3) y-,, (0) (0) (77) n A Â? A â€? Eindelijk geeft\'(60) de relatie (107)



??? 41 Â§ 26. Het polynomium ^n moet op deze wijze geschrevenkunnen worden: Â?â€”1 Xn = ao a{(pi......(79) Differentieert men tweemaal, en substitueert men , ^\'n enin de diff.-verg. (65), dan vindt men (W 1) Oo {(W 1) (Pi (1 -f X) cp\'i Â?C 2 = O, of, met behulp van (33), (n l)ao ^^ aA{n 1) 1 O x is door de diff.-verg. (15) hieruit te elimineeren, terwijl de formule (19) de verg. ten slotte doet overgaan in de identiek te vervullen voorwaarde11â€”1 waaruit men vindt: (?i 1) Â?0 = 2 4- 2 ??i(n ?? -t- 1) Â?i = 2 2 (e 1) Â?i i1 (80) zoodat 2\' 3w-4 Â?Â?-3 = n {n â€” 1) n{n-l) _ 5 n^ - 25 w 32n{n-l) (w-2) _ 2 (3 n^ - 19 w 32)n{n-l){n-2) \' enz., en b. v. 2 2 1 1JJ4 (a?) -f 91 {x) -}- ^ 92 {x) ^ 93 {x)



??? 42 is. Daar in (80) aâ€ž i, w en i positieve grootheden zijn, heb-ben alle a\'s positieve waarden.Uit (79) en (32) volgt nog ?’ e-ÂŽ Xm q)ndx= O voor m ^ n,uit (80) " â€? l . . (81) O ( 00 Â§ 27. De int.-log. in verg. (59) heeft een oneindig elementvoor ^ = O, zoo X positief is. Ik heb daarom x door â€” xvervangen en ook de integraalvariabelen van teeken ver-anderd: (82) J 2 f\'Â?(-Â?C) (pâ€ž(-x)J l De beide integralen worden nu niet meer, voor x positief,oneindig. De functie q)â€ži-~z) heeft slechts positieve termen,die ik alle kleiner maak, door de binomiaal-coefflcienten wegte laten. Dan is dus <pA-oc) y .... ^ of I (pn i-x) |â€ž=oo > , derhalve 1 9Â? (- X) d. i. eindig. Verder is x , x a zoo A voldoet^ aan < A < oo. Uit < A (in den eerstenintegraal)is) volgt ^ _ QQ _^ integraal) of.-< â€”^â€” (men herinnere zich, dat x positief Z .A. / ^ / 3 > ^



??? 43 a a Aâ€”a?V\' f , dz. A J J z ?’& â€”" (zâ€”icV\' â€”I dz kan door den factor X (J^_^ zoo klein gemaakt worden, als men wil; de factordz nl, het verschil van twee integraal-logarithmen, blijft a e-\' < 1 en ^ > A, ?Ÿ eindig. In den tweeden integraal is zâ€”x dus ^ e-\'{z-xf , , â€”^r^dzia < AeA \' in absolute waarde. Ook deze term kan dus willekeurigdicht tot nul naderen, \') zoodat ten slotte \'e-\' (z-x)" dz limÂ? = 00 = O Lqp,. i-X)J is. Do breuk â€”^ heeft dus voor Â?=00 den int.-log. (pn i-x) ÂŽ 00 /Q â€” S â€” dz tot limiet. X Aan den anderen kant voldoen xÂ? en cpâ€ž aan dezelfde recur- 1) Dit bewijs is ontleend aan een verhandeling van Laouerre over denint.-log. (Buil. do la Soe. Math, do Franco, T. VII p. 76). \'t Komt mij voor, dat hij zich van den factor â€”--- wat al te gemakkelijk afmaakt, <Pn (â€” door eenvoudig te zeggen: â€žJo forai observer d\'abord quo lo facteur_i_ tend vers z?Šro."



??? 44 rente betrekking, zoodat â€”^ als n^ naderingsbreuk be-schouwd kan worden van een kettingbreukao - h Â?1 aÂ? enz. waarin dan 2% -I-1 -4- X , n Uit de waarden voor yi (â€”x) en cpiiâ€”x) volgt bovendienOp Â?1 _ 1ai 1 aj\' zoodat Â?O = O en &i = 1 is. â€”^ is dus naderingsbreuk van de kettingbreuk (pn iâ€”x) 1 1 3 9 6-\\-x â€” 16 7 x , . (83)9 â€” enz. welke kettingbreuk nu in nauw verband moet staan metden int.-log. Â§ 28. Dit verband komt in deze paragraaf nog duidelijkeraan het Licht. GO C?Ÿ-Z Herhaalde partieele integratie van den int.-log. j ~ ds geeft: X % CO  j\'-^. (84) X X M is van graad m, S van graad wâ€”1. In het verschil



??? 45 S T van ^ met de rv^\' naderingshreuk = mogen geen termen met ... x-" voorkomen. Uit dezen eisch volgt het stel voorwaarden Co -C1?œ C32! -CsS! ..=0 Col! _CI2! C33! -C34! .. 4.(_i)Â?Câ€ž(w 1)! = 0 (85) Co (w -1)! - Cl w.\' C3 (w -f 1)! - C3 (w 2) ! .. ( -1 )Â? Câ€ž (2Â? -1)! = O,welke vergelijkingen door de formule 0 ?’ e:\'x\'dx = {- 1)^ r! â€” 00 overgaan in e^ N rfa; = O ?’ 0 f^xNdx = 0 l ^ r = 0 voor /c<n. â€” 00 â–  I J S de reeks ^ heeft dus cpâ€ž(-x) tot noemer, op een\' constan- ?’ Uit Â§ 8 volgt nu N = C(pâ€ž(â€”a;). De naderingsbreuk van_SM S ten factor na. Daar de teller, blijkens den vorm van graad (wâ€”1) is, en overigens teller en noemer van een nad.breuk aan dezelfde recurrente betrekking moeten voldoen,moet j(â€ž(â€”x), behoudens een\' constanten factor, die teller zijn, zoodat tot nad. breuk k heeft; een bijzon- der geval leert, dat k=l gesteld moet worden.Â§ 29. Het resultaat kan nu aldus worden samengevat:



??? 46 , n^ nad. breuk der kettingbreuk tn {-X) q>n {-oc)1 1 x 3 iÂ? 5 Â?c â€” enz. is tevens nad. breuk van welke reeks blijkens (84) nauw met den int.-log. in verbandstaat. Ofschoon nu deze reeks divergeert, convergeer en de nad. breuken , en wel tot / ^ dz, zoodat men (fni-x)\' J z \' is nad. breuk van recht heeft tot het besluit: e cpn(-x)den int.-log, Tn de boven aangehaalde verhandeling (p. 72) gaat Laguekre van den int.-log. uit, definieert XÂ? als nad. breuk q>â€ž(-x) S van leidt dan door de eigenschappen der nad. breuken een vergelijking af, overeenkomende met (66) en vindt daaruitde diff. -verg. (15), waaraan cpn en xpn voldoeij moeten.Voor iiiâ€ž wordt vervolgens ook de vorm (64) gevonden, endaaruit de recurrente betrekking (70), die nu ook voor (pâ€ž enyâ€ž gelden moet; ook de integraal-eigenschap wordt genoemd.Van ondergeschikt belang is, dat Lagueiire voortdurend meteen f(x) = x!q)â€ž (â€”x) werkt. Voor x=l worden de nad. breuken van e c / UJ Afe-\'J z dz i- Â? 7940 78040 859580 2 \' 7 \' 34\' 209\' 1546\' 18327 \' 130922 \' 1441729 Im k



??? 47 of 0.5000 0.5714 0.5882 0.5933 0.5951 , 0.5958 0.5961 0.5962 enz. De werkelijke waarde is 0,5963



??? HOOFDSTUK IH. Aanverwante Functi??n. Â§ 30. De definitie van cpâ€ž (x) in Â§ 2 vereischte de voor- 1 waarde v < 1. Is > 1, dan kan men j-- e - i -Â? ontwik-kelen naar opklimmende machten van Ik definieer nuden negatieven co??ffici??nt van als qp_â€ž(a;): XV X 1-1 1â€”I (86) V De ontwikkeling van 1 Xi X V v VJ l. VJ die nu voor v > 1 geldig is, wat ook x zij, geeftx^n{n l) . x^ n{n-^l){n-\\-2) f ..,adinf. (87) 1 â€”-- Noemt men den term dezer reeks Uk, dan is x{n-\\-h) u, - {k^lf^ * zoodat de reeks voor alle eindige waarden van x en nconvergeert. Â§ 31. Stelt menâ€”dan is (86) ook aldus te schrijven:



??? 49 e^ 1 (p_â€ž {-x) t"-^ = ^^e i (x) waaruit deze relatie volgt: (jP_â€ž (-a?) = (jpâ€ž_i (a?) d. i. (p-â€ž {x) = e\' (jpâ€ž_i (-ic)..... Zoo wordt uit (87) gevonden (a;) - 1 3  .... = == (1 4- a?) = qp,. (-aj).Het resultaat (88) is ook te trekken uit de verg. (8): (88) gx gl-i of (e-\'x")== CPn (x) = nJ .dx. e nl1 1! i! 2 2! 2! â€” n â€” l^x^3! 1 = e zoodat Substitueert men (]Pâ€ž_i {-x) = e-\'= (aj) in do diff.-verg. (15), hier natuurlijk gewijzigd tot -a; 9"â€ž_i(-aj)H- (a3 1) qp\'â€ž_i(-a;) (n-l) (-a?) = 0, dan blijkt (p-â€žix) aan deze diff.-verg. te voldoen: (l-a?)9\'_â€ž-wqp_â€ž = 0 . . . (89)Men had (pâ€ž kunnen definieeren als het polynomium of dereeks, oplossing van de diff.-verg. (15), waarbij dan omtrentn geen enkele onderstelling behoefde gemaakt te worden.Tot nog toe had echter, krachtens de in Â§ 2 gegeven definitie 4 != ??\' qp_â€ž_i {-x),cp-n (x) = e\'\'cpâ€ž-i (-x).



??? 50 van qpâ€ž, alleen het geval n = een positief, geheel getal rechtvan bestaan, terwijl voortaan n ook negatief zijn kan; aan dediff.-verg. (89) voldoet dan een reeks, die beschouwd kan worden als de negatieve coefficient van ^ in de ontwikkeling van 1 _ e i-v voor het geval v > 1. 1-v Uit (88) volgt nog, dat in de ad inf. voortloopende reekse-ÂŽ qp_â€ž (a?) de coefflcienten van xp {p ^n) alle nul moetenworden, welke voorwaarde tot tal van betrekkingen aanlei-ding geeft. \' Â§ 32. Daar de reeks (2) en de diff.-verg. (15) vroeger npositief onderstelden, maar nu ook negatieve waarden vann toelaten, zijn alle eigenschappen van cfâ€ž die uit (2) en (15)volgden, onmiddellijk in eigenschappen voor 9 _ â€ž om te zetten,eenvoudig door n van teeken te veranderen. Overigens kunnendeze eigenschappen steeds gemakkelijk gecontroleerd wordendoor de formule (88). Zoo geldt (38) (Â§ 11) en alle relatiesvan Â§ 5. De recurrente betrekking (1-W) (jP_â€ž l (2w iÂ?J-l)qp_â€ž-W9_â€ž_i = O . (90)is daarvan de belangrijkste. Ze volgt natuurlijk ook uit (24)door daarin (88) te substitueeren. Analoog met

Â§ 3 c. verder is = F w, 1, X . . . . (91) ?Ÿ J?Ÿ = , Enkele andere in die paragraaf voorkomende vormen ver-eischen echter een wijziging. Zoo vindt men gemakkelijk deformules â€? (92) e i-t p e \' > . ^ r ---,



??? 51 n â€” l qpâ€ž_l i â€” X) = {x" e"), en (n-iy. _dx, d y-i. 1 dus . . . (93) Het additie-theorema (49) wordt door toepassing van (88): {x-{-7j) = <p-n{x) (f-iiv) (p_â€ž4-i {x) qp_3 .... .... â€” K -j- 1 [x] qp_i [y) qp_â€ž 2(\'Â?) (p-2 iy) .... .....(94) Eindelek leert de formule (42): nâ€”l _ Y Â§ 33. Integraaleigenschappen voor de functie qi _â€ž worden,steeds met behulp van (88), gemakkelijk afgeleid uit de for-mules (27) en (28). Men vindt: O je-" ()p_â€ž, (53) [x) dx = 0 voor m In, ^ _ ^gg^ = 1 voorm=7i. )Analoog met Â§ 6 zijn deze eigenschappen ook af te leidenuit de definitie (86). De reeksenen qp_â€ž ix) t\'^ = -1 J- tx (fe^-t t t 2: (p_â€ž, (X) = -j1 i M e 1â€”Â? â– U geven na vermenigvuldiging6-== S 2 cp^^ {x) g._â€ž (x) tl\'" t" = l-ut ut of ut ^ 2: e-\'\' ?§p(x) (x) u\'" t" dx = .-7 = ut U\' f- l?? t^ 1 i â€” ut



??? 52 O d. i. ?’ e-" {x) qp _â€ž (Â?c) dx = 0 of 1, (97) m^n of m = n. naarmateOok volgt uit (27), (28) en (88): O ?’ (f\' (x) q>â€ž-i (â€”x) dx = 0 voor m ) w,â€” 00 = lvoorm=w. dx = O En ten slotte: y Jcp-n {X) voor m < 71â€”1. (98) en O jf-n (x) (X) dx = O Uit de laatste formule volgt, geheel als in Â§ 9, dat dewortels van alle re??el en negatief zijn. Ook dit resultaatis weer uit (88) te trekken, daar slechts nul wordt voor X=- 00. Eindelijk: overtuigt men zich, analoog met Â§ 10, gemakkelijkvan de waarheid van deze stellingen: Tusschen twee opeen-volgende wortels der vergelijking (a?) â€” O ligt ?Š?Šn wortelvan qp_â€ž4-i (a?) = 0; de verg. cp_â€ž (x) = O heeft ?Š?Šn\' worteltusschen nul en â€”1. Â§ 34. De formules (29) en (88) geven recht tot de ont-wikkeling . . (99) X\' r\' a;." (f =2 2: A^. (p^i (x), waarin dan A^. door de zooeven gevonden integraaleigen-schappen bepaald wordt. En wel zal men in Â§ 41 vin\'den: . = (-!)\'â€? -(.^J,,/. . . . (100) Met behulp van deze formule krijgt (- 1)\' i! â€” ni



??? 53 den vorm r^i kâ€”X ff)\' i = o k- 00 \'â€” 71 t rr 00v 71 â€” k\' k. i = 0 i k â€” o zooals door vergelijking met Â§ 12 gemakkelijk blijkt.Of ook, onder de voorwaarde r < 1, ÂŽ vk f_ Aj" Aan den anderen kant kan men qp _ â€ž (rx) vervangen doore" qpâ€ž_i (â€” rx), zoodat â€” ni rk Â?â€”1 ) n- (x) n â€” 1k (102) (1 \' i is. Voor r = â€” worden deze formules . O â€” 11k qP/t (- (103) en <)P\' Â§ 85. Het resultaat (58) is onafhankelijk van het teekenvan n, welke grootheid immers uit de diff.-verg. ge??limi-neerd is. Dus is ook X xp^n (x) = qp_â€ž (x) / dx,. . . (104) waarin de grens â€” oo in oo veranderd moest worden.Stelt men de formule (88) in (58) dan komt er VÂ?â€ž_i (- X) = qpâ€ž_i (- x) / dx, (X) zoodat yj-n (x) = & xijâ€ž-i (â€” x) . . . . (105) is. De diff.-verg, voor (jp_â€ž,



??? 54 heeft volgens Â§ 22 de beide oplossingen ?‰L .dx d.dx. ix â€” Â? O-X y\\ = en Â? â€”1 Vi Het blijkt, cf. (93), dat y^, op een\' constanten factor na,= cp_â€ž(x) is, terwijl de formules (63) en (105) de identiteitvan yi en aantoonen. Daar ?§.Â? en aan hetzelfde stel formules voldoen (Â§ 23),moet krachtens de vergelijkingen (88) en (105) het gewij-zigde stel, dat voor geldt, ook op van toepassingzijn. Uit de relatie ipn-i = e^ f Â? -1 f\' & (59) dz is gemakkelijk af te leiden : {x) = /â€ž_i {-x) dz, . (106) â– UaÂ?-^ waaruit blijkt, dat ^^ ^ ^ ^^^ naderingsbreuk van ?’ ^ dz CP beschouwd kan worden. Nu is echter de noemer geen poly-nomium meer, waardoor het karakter van naderingsbreukwel eenigerihate verloren gaat. Ik heb daarom de veleeigenschappen van 9_â€žen (en van een eventueel in tevoeren functie x-Â?)? die nog uit de eerste twee hoofdstuk-ken af te leiden zijn, niet verder nagegaan. Â§ 36. De diff.-verg. der hypergeometrische reeks (zi\'e b.v.Forsyth\'s Diff. Equations p. 192) laat 24 particuliere oplos- 00 singen toe, welk aantal zich in ons geval, waar x door â€” vervangen moet worden, en = oo, /

= 1 te stellen is, be-perkt tot deze vier:



??? 55 Â?C ^ r J De oplossingen 1 en 4 zijn beide = q)â€ž (x). Daar F -m,]3,1, 3 F 1.2. 3. 4. (-f) -(3 X "J) F F X T -/3 1 - = e\' 13= = is, zijn de oplossingen 2 en 3 te schrijven als 1 2! 2! 3! = e" (jp_(â€ž i) {-x)= (fn (x).Alle 24 oplossingen zijn hier dus teruggebracht tot ?Š?Šn enkele,iets, dat geen verwondering kan baren, als men nagaat, datalle oplossingen combinaties zijn van de twee hoofdoplossingen en F (a -{- 1 â€” y, ^ 1 - y, 2 - y, X), en dat deze beide voor y = 1 samenvallen.â€? Â§37. De functie Â? = qpW (a;), verwante functie dereerste soort. ^ ^ (n 1) (n 2) ^^ (^ 2) {n-\\-S)x\' ^ ^^\' 1 Differentieert men de verg. (19) herhaaldelijk, dan vindt menna eenige herleidingX^ = n {71 - 1) (qp,. - 2 qpâ€ž_a (]pâ€ž_3),x\'^ (f"\\ = 71 {71- 1) (W - 2) ((]Pâ€ž - 3 (jpâ€ž_i 3 qpâ€ž_ 2 - (fn-i) , â€” 71k k! iq-lf 3! dus, in symbolische schrijfwijze.Zoo wordt (107)



??? 56 en Daar de functie Â?/Â?â€ž ook aan de verg. (19) voldoet, wordt eenverwante functie der tweede soort in dezen vorm verkregen: (108) (ip-lf â€” nk k! xp ,M i " Terwijl de functi??n en i/jW aan de verg. (25) voldoen,zijn Â? en [3 oplossingen van y" - (k-^x - l)xy\' {xtl - 2k)y = 0 . (109)Elimineert men xn â€” 2k uit de vergelijkingen x"- a" - {k x - l)xa\' {xn - 2k)a = 0en x^ - {k x -  {xn - 2k)^ = Q, dan komt er, geheel als in Â§ 18, - qX en -dx. dus X dx, (110) â€” 1 (3= - aC Dergelijke betrekkingen zijn ook voor en te vinden.



??? HOOFDSTUK IV. Reeksontwikiceling naar cpâ€ž (x). Â§ 38. Daar (ic) een polynomium is, kan x^ naar qp\'sontwikkeld worden, terwijl dan de hoogste index wordt: xf^ = Aif* cpi{x)......(29) 0 De integraal-eigenschappen van Â§ 6 bepalen de coefficientenAi^* in den vorm Ai^ = ?’ x^\'e-" qji(x)dx = . (111) Echter ook, met behulp der formule (8): oo 00 (ZV. . , , 1 /â€? Af = = {cc\'e-). O O Bij partieele integratie verdwijnt de term d dx i-i (x\'e-^), een polynomium X voor de grenzen O en 00. Herhaalde partieele integratie geeft dus dx xl" (x\'e-\') dx = 00



??? 58 Of = .......... Van deze formule is al in de paragrafen 6 en 12 gebruikgemaakt. Mag men aannemen, dat arf* ook voor u = een gebrokennaar (pâ€ž (x) ontwikkeld kan worden, dan wordt De vergelijking der beide waarden voor Ky-, waarin twee para-meters , i en fi, voorkomen, die slechts aan de voorwaardei-^fi gebonden zijn, geeft tot zeer veel getallen-eigenschappenaanleiding; ik zal hier ?Š?Šn er van opnemen. Voor i = /tvindt men: Nemen we b. v. ^w = 10, dan wordt â€? 11 ! 12!___13! 20! _ 9! 8!2!2! 7! 8! 3!  10! 10! "" = 1 - 110 2970 - 34320 210210 - 756756 -f 1681680 â€”- 2333760 1969110 - 923780 -f 184756 = 1 = {-1^.Â§ 39. De vergelijldng (30), geschreven. in den vorm .....(113) doet zien, dat de coefflcienten in nauw verband staanmet de binomiaal-coefflcienten, een verband, waaruit natuur-lijk de overeenkomst van veel eigenschappen volgt. Zoo ligtonmiddellijk deze eigenschap voor de hand: At = {-lfAuti......(114) Zoo volgt uit (18) Aif =jxf e-^ q,idx=jx!^ (9\'i â€” Â?p\'i i) dx.



??? 59 Bij partieele integratie valt de term (f\'i 1) x!^ voor de beide grenzen weg, ?;oodat GO Aif" = - ?’ i^i X - xl") ((f\'i - 9\'i i) dx ^Derhalve = - Afri\'),.....(115) een resultaat, dat natuurlijk ook uit (113) dadelijk af te leidenis. Stelt men in (115) achtereenvolgens i z= O, 1, 2,... m: Aof^ = f^! A.^^MAf-^-Ar^) dan komt er door optelling = ......(116) O waarin voor m = ^ het tweede lid nul wordt: een bekende??igenschap der binomiaal-coefficienten, welker pendant dezerelatie levert: ?ˆ i-iy AT = 21^ ^i!......(117) O Â§ 40. Als uitbreiding van een Vraagstuk van het (genoot-schap â€žEen onvermoeide arbeid komt alles te boven" (DeelV, p. 339), geef ik hier deze curieuse eigenschap der binomiaal-coefficienten : , .(118) 1 w (n 1) Â? ^ .... ?€ = O, naarmate het aantal der factoren (i â€? Â?) ... (i



??? 60 n-j- 1, n of kleiner dan w is. De grootheden (3,.... P. zijnvolmaakt willekeurig. Neemt men b. v. dan vindt men O O 6000 - 72800 249480 - 828400 141440== 720 = (- 1)8 6! Voor het speciale geval Â? = 1, ?Ÿ = 2,____l = gaat (118) na deeling door nl over in\'n %  jn i)! _ n ) [ij 7 Ui! (n â€” i)! ^ ^ \' ^ ^een relatie, die ook in Â§ 38 gevonden is. Zijn er n lfactoren, dan is l = n -\\-l, zoodat of O V. = (- lyn! d. i. " v\' IV  _ /_ iv-i nÂ? O (119) \'nâ€” 11i N. -\'S, Voor n = 1: 7 _ 336 4- 3780 - 16800 34650 - 33?64 12012 == 49 = (- 1)8 73.Het aantal dezer formules is natuurlijk gemakkelijk uit tebreiden. Analoge eigenschappen gelden steeds voor de coeffi-cienten Aif^. Zoo blijkt uit (118) onmiddellijk: (i Â?) (z (3) . ... (i A) = . (120) â–  =0, naarmate het aantal factoren ^it 1, ^ of kleiner dan n is.



??? 61 Zoo gaan (112) en (119) na eenige herleiding over in M A .Â? A n -f- Â? \\ V ^ n f O (n-^i)! en .... (121) Â? â€” 1 A .Â? â€” 1 A Â? Â? 1 2 i-ir i^.â€”= â€”(n z)! Â§ 41. Vermenigvuldigt men de vergelijking (29) met e-\',en maakt men gebruik van de betrekking(p-i (x) = e^ (-cc),dan vindt men deze ontwikkeling: (122)(123) i-1 O of waarm nu is. Natuurlijk zijn, analoog met Â§ 38, de coefficienten Ai^;, numen eenmaal weet, dat de ontwikkeling van x^" naar q)_i (x)mogelijk is, ook door de integraal-eigenschappen van Â§ 33te vinden: O O iâ€”1 (/t-i 1)! (2-1)1 â€”1 i-1 Â§ 42. In de beide volgende paragrafen voeg ik nog enkeleontwikkelingen bijeen, waarvan men de mogeli?Ÿklieid v^r^Qi, Het x\'olynomium kan naar 9\'s ontwikkeld worden. Hierwordt: >-X) 00 00 Ai= je-" (jfij dx= e-" <pâ€ž (fi â€”?’ e--" dx e-" 9,, dx.



??? 62 qp\'i is te vervangen door een reeks, geordend naar cpâ€ž, waarini â€” 1 de hoogste index is. Daar i^nâ€”1, volgt uit (27),dat de beide integralen verdwijnen. Derhalve Ai = I (jpj 1Â° = â€” 1, zoodat (x) ^ -"2: cp,, (x)......(33) 0 is, een resultaat, dat Â§ 11 reeds opgeleverd had.Â§ 43. De definitie 1 co -â€”-e = 2; cpâ€žix)v".....(1) ^ 0 . sluit in zich, dat ook voor functi??n als de ontwikkeling V naar qpâ€ž mogelijk is. Stelt men nl. t = ^â€”-, dan is ^ rp (Tttp^^ ahf â€? â€?\' ^^^^^ onder de voorwaarde tnod. v < 1, of mod. Y^t < . i -f- c Stelt men t = p {cos O- f^) dan gaat deze conditie na eenige herleiding over in __<1 1 (,2 2 p cos ^ . Het punt t mag derhalve overal genomen worden in het ge-/f H\\ed, dat rechts ligt van de lijn i = 0. Re??elc waarden van t moeten dus >--J- zijn. Ontleent men aan de definitie (1) alleen de wetenschap, datde ontwikkeling mogelijk is, dan kunnen natuurlijk de int.-eigenschappen van Â§ 6 de reeks (124) ook opleveren: CD 00 â€? ^ 2 /67c 



??? 63 Daar O O is, onder de â€” hier vervulde â€” voorwaarde â€?. t 1 â€” positief,heeft men Aâ€” J-fl- ( ly 1 V- ^^ , I) -1-^1 Voor t = 1 wordt de reeks (124) = -^qpi{X) ^^ (po (a?) ....= qp-i (â€” a;), zooals ook uit (95) blijkt. Is n nl. niet een geheel getal, grooter dan 1, dan is hettweede hd van (95) geen polynomium, maar een reeks: r (x) = e^{ (fo (oo) 2Â?-i â€” (M â€” 1) ()pi (x) 2\'\'-2 - -h of (x) = (-X) = 2â€”1 - (n - 1) cfi (x) 2"-3 2\'-\'-.... d.i., voor n = O, 44. De definitie van Â§ 31, 00 l X ^ qp_â€ž {x) it" =-- e 1- < {mod. ^ < 1), 1 i t levert, onder de voorwaarde uy^, de reeks a \') Dczo ontwikkeling komt ook bij Laguerre (Buil. de la Soc. math, deFrance, Tome VII, p. 79) voor.



??? 64 .....(125) De formules (124) en (125), met de voorwaarden ty â€”^ en M > i, vullen elkander juist aan, zoodat voor elke waardevan t de functie e*\'\' naar cpÂ? (x) of q)_â€ž (x) ontwikkeld kanworden. Het geval f = A maakt een uitzondering; echter is 1 1 1 91 (a^) 93 (x) 93 (a?) â€? â– . dus, volgens (124),1 9 r Uit (125) volgt nog = 9-1 (x), cf. Â§ 31, dus ook 6Â?^== (ux).Voor Â?O geldt derhalve de verg. 9_i (ux) = ^ 9_i (x) <)P-3 (a;) .... u De ontwikkeling (125) kan ook uit de integraal-eigenschappenvan Â§ 33 afgeleid worden. Wil dan echter een stuk als Q?Ÿk -dat bij de partieele integratie optreedt, nul ti - i . Â? worden, dan moet w > 1 zijn, zoodat dan de formules (124) en(125) niet meer aansluiten, maar voor-|-^??i<l twijfel zou-den overlaten. Daarom prefereer ik de afleiding van (125)uit de definitie 9_â€ž {x). 1 Overigens kan men waarin-^ < m < 1 is, in den vorm gx Qx(u-i) (Jqq^ middel van (124) behandelen. Â§ 45. De vergelijkingen (2) en (29) vertoonen een eigen-aardige reciprociteit, die nog beter aan den dag treedt, doori! 9j (x) symbolisch te vervangen door (P\\



??? x\' 65 (2) wordt dan: en (29): . . . . (126) Â? vil n ^ ^ li ni Hieruit volgt deze stelling \'): Als een naar opklinnnendemachten van x gerangschikte functie naar ontwikkeld kanworden, zoodat symbolisch is, dan is ook = F (x). is hierin steeds te vervangen door k l (pt (x).Zoo volgt uit de definitie van (x): 1 d)" , â€”-e â€” 2â€”,- = e\'\'J\'lâ€”i n nl of 1 Jf-i -f- t Nu moet omgekeerd ook ^^.....] = ^ .....]\' 1 ^ ?? 2! (1 ^) zijn, dus 1 1 ?? t de vergelijking (124). Â§ 46. Halphkn tracht een functie te ontwikkelen indezen vorm: [k?Ÿ]- f(x) = 2 C, 1) Laouekue, t. a. p. bl. 81. C. R. xcv p. 629, en Buil. de la Soc. math, do Franco, Toino X p. G7. 5



??? 66 In de onderstelling, dat de ontwikkeling mogelijk is, vindt hij : d O Ik weet niet, hoe Halph?Šn tot deze uitdrukking gekomenis. Waarschijnlijk niet langs den weg, dien ik hier inslaanzal, gebruik makende van de formules van Â§ 12. Ik integreerde beide leden der vergelijking k . . . (128) tusschen de grenzen O en oo, na vermenigvuldiging met denfactor {x) - Daar nu Â? â€”1 d {x" e-"). .dx. (Pi- .... (40) is, verdwijnen alle termen van (128), die k<n hebben. Determ met k = n, Â?y- Câ€ž [g)â€ž_i (qpâ€ž_i â€” q)â€ž) dx , O reduceert zich tot Câ€ž / cpâ€ž-i dx = Câ€ž. O \' Immers is voor k = 7i (Â§ 13) Â? â€” 1 nIF TiÂ? â€”1 _ Ai -1 = = 1. Bij de termen, waarvoor k>ti is, komen van de formule(40) slechts in aanmerking de beide stukken die dus na integratie geven: oc O = O, volgens (48).



??? 67 Câ€ž (<PÂ?-1 â€” (pn) f {n ?Ÿ x) da: O C30 Halph?Šn tracht nu omgekeerd de reekste sommeeren. Hij bewijst, dat deze reeks convergeert, maa?- tot een andere limiet dan f (x), tenzij het mogelijk is, getallen a te vinden, die den vorm m(cc) oneindig klein maken voor m = 00. Als a willekeurig groot genomen kan worden, dan is de keus van ^ aan geen voorwaarden gebonden; anders ligt tusschen bepaalde grenzen. De reeksontwikkeling geldt in beide gevallen voor alle waarde van x. . De getallen Â? zijn alleen te vindeii, als/"{x) een polynomium is. In alle andere gevallen is dus de ontwikkeling foutief. Zoo geeft de formule (128) voor e--": Van het tweedeCâ€ž over: lid van (128) blijft dus alleen de term 1 2tF [Xi) = 7?•-T-A3 n I O AS \'iPi X2 (1 ... (1 nty^^"^"-^ X een convergente reeks, die echter niet tot e-^\' convergeert. Â§ 47. Halph?Šns curieus resultaat bewijst nog niets tegende ontwikkeling eener functie naar (fâ€ž (x). Terwijl b.v. deontwikkeling van e-^\' volgens Halph?Šns methode spaak CO loopt, levert ze, zoo x en niet â€” als argument der functie qpâ€ž genomen

wordt, niet de minste bezwaren op (Â§43). Ik hebechter de kwestie van de algemeene ontwikkeling naar qp,, nogniet tot klaarheid kunnen brengen. Verschillende wegen benik ingeslagen, zonder evenwel het doel te bereiken. Het meest u



??? 68 voor de hand lag de methode, die bij Besselsche, bol- en anderefuncti??n zulke goede resultaten geeft, nl. de substitutie van een convergente reeks voor ^ ^ _ in de formule van Cauchy, zâ€”x in welke formule de integraalweg een gebied moet omsluiten,waarbinnen f (z) steeds holomorf is. Nu wijst de in Â§ 25gevonden uitdrukking 00 e- (76) cpn dz . !?’/â€ž (x) = e X â€” z naar qp-functi??n. Het is alsof 1 op een ontwikkeling van X men 1 â€” ^^ 03i (x) cpi (z) . x â€” z gesteld heeft, en toen door de integraal-eigenschappen vanÂ§ 6 de coefflcienten w; (x) heeft bepaald in den vormwâ€ž (x) = 6-\'\' !//â€ž (x). Is nu 1 -â€”i = xpiix) q\'i(z), X â€” 2 O dan is men geheel op den weg, die bij andere functi??n tot het doel voert. Ongelukkig geeft de ont-jvikkeling van de z ^ verg. (129) naar â€”, bij vervanging van zi^ door 2 A;\'^ qi (z), 00 O volgens (29), een reeks, = e-^vÂ? ( â€” 1)"t \\ 1 ^â€ž 3 4- 2\'2 die voor alle eindige waarden van x divergeert, en dus mette gebruiken is. Ik heb nu op verschillende wijzen getracht,de reeks (129) n! ,(nÂ?l)\\ J q>i (z) xpi (x) = I q^i co; (x) (m 2)!



??? 69 zonder van de divergente reeks X â€” z voor coi [x) gebruik te maken. Vervangt men qp; {z) en xpi (x)resp. door een\' bepaalden integraal en door den residuvorm(3), dan is de sommatie wel uitvoerbaar, binnen zeker gebiedvan convergentie, maar de daarop volgende integratie biedtte groote zwarigheden. Gebruikt men de formule (122) in plaats van (29), dan wordt 1 Â?> _= e-^ (jp_â€ž (x) {z), n! (w 1)! 1 (0) = - - -â€”irr??- X â€” z waarin nu \'w l\' (Â?4-2)! Â? 2\' I j-r 3 2 een reeks is, die evenzeer voor alle waarden van divergeert. Â§ 48. Ook dit divergeeren van reeksen, die bij analogefuncti??n convergeeren, bewijst nog niet de onmogelijkheideener ontwikkeling volgens qp,,. Een ontwikkeling volgens (pâ€ž is slechts op ?Š?Šn wijze mogelijk.Gesteld nl. f (x) = Â?0 Â?1 n {x) ao (p2 (aj) ... â€? en f{x) = bo-^bi [x) bi (p2 (x) .... dus O = (ao-??o) {ai~bi) qpi {x) (Â?a-^\'a) qpÂ? (a?) â€? â€? â–  â€?;dan geven de integraal-eigenschappen van Â§ 6 onmiddellijkcii = bi. Dit bewijs geldt natuurlijk voor de functie qp even-zeer als b.v. voor de bolfuncti??n. Bij deze laatste nu komtmen schijnbaar tot twee ontwikkelingen.

De vergelijkingvan Cauciiy geeft nl. coefficienten met de functie der 2" soort,Qâ€ž, onder het integraalteeken, terwijl de gewone integraal-eigenschappenÂ? der functie 1ÂŽ soort, Pâ€ž, een ontwikkelinggeven met Pâ€ž onder het integraalteeken. Men moet kunnenbewijzen, dat deze beide integraalvormen voor de coefficientenidentiek zijn. Het is nu zeer goed denkbaar, dat voor defunctie qpâ€ž, waarbij de vergelijking van Cauchy ons in densteek laat, deze gelijkheid ophoudt te bestaan, zonder dat te sommeeren tot



??? 70 daarom de ontwikkeling volgens waarbij de coefficientendoor de integraal-eigenschappen gevonden worden, vervalt.Deze ontwikkeling zou nu te bewijzen zijn, door de reeks co Iqâ€ž(x)le-\'r(2:)cp,{z)dz . . . . (130) O rechtstreeks te sommeeren. Wel is waar leert de formule u (38) een uitdrukking voor qâ€ž (x) cfÂ? (z) vinden, maar het O is mij nog niet gelukt, de limiet van het tweede lid te vinden.Evenmin heb ik de convergentie der reeks J q>â€ž (x) gv. O kunnen bewijzen, d. i. de convergentie der reeks (130). Wasdit bewijs geleverd, dan zou men gemakkelijk kunnen aan-toonen, dat de som f(x) moet zijn. Stelt men nl. dan is i (fu (x)l e-\'f [z) cpâ€ž {z) dz = F (x),() 00 oo Je-\'\'F (x) qpÂ? (x) dx == j e-\'f{z) cf.,, [z) dz ?’ e-" qrâ€ž (a;) qpâ€ž (x) dx O 0 0 of ao J e-^ [F (X)- fix)] q,, {X) dx = O, O . , dus ook, daar x"- door qp\'s te vervangen is, cc j e-\'[F (x) - f(x)] Tl dx = O, O waarin n een geheel willekeurig polynomium; kiest men nudit polynomium zoo, dat het tegelijk met F {x) â€” f {x) -vanteeken verandert, dan moet, daar steeds positief blijft,overal tussch?Šn O en oo F (x) = f{x) zijn. \') â€?) Lio??villE, Journal de

Math. Vol. II. (1837) p. 1.



??? HOOFDSTUK V. Â§ 49. Ik wil nog ^enkele paragrafen wijden aan een over-zicht van de punten van overeenkomst tusschen cpâ€ž (x) enBesselsche, trigonometrische en bolfuncti??n, alle leden vandezelfde familie. Ik zal me hoofdzakelijk met bolfuncti??nbezighouden, waarvan de verwantschap met de Besselschefuncti??n gemakkelijk is na te gaan. Men zie o. a. het boekjevan C. Neumann: â€žTheorie der Besserschen Funktionen. EinAnalogon zur Theorie der Kugelfunktionen."Er zijn functi??n van de eerste en van de tweede soort, qpâ€žen tpÂ?, zooals er bolfuncti??n Pâ€ž en Qâ€ž zijn. Het zijn de beideoplossingen van een differentiaalvergelijking der tweedeorde, die een speciaal geval is van de diff.-vergelijking derhypergeometrische reeks. Noemt men en Pâ€ž van de orden, dan is er iets voor te zeggen, om yt,, en Qâ€ž tot de ordeâ€” nâ€”1 te rekenen. Zie b.v. Â§ 22, waarin een vorm vooren Â?//â€ž optreedt, dien men als formule van Rodkigues bij debolfuncti??n terugvindt. De vormen en Pâ€ž zijn polynomia,if/â€ž en Qâ€ž reeksen. Beide hebben hun verwante functi??n en (^a;-â€”1)2

PjP. Van beide functi??n zijn alle wortels re??el, engelegen binnen bepaald aan te wijzen grenzen. Zoowel cp,,als Pâ€ž zijn als Sturmsche functi??n te beschouwen. De poly-nomia (pâ€ž en Pâ€ž hebben integraal-eigenschappen, die tot in \') De analogie mot de Besselsche functi??n is liier alleen duidelijk voor hem,die niet Neumanus, maar Lommkls behandeling van het onderwerp volgt.



??? 72 bijzonderheden onderling overeenkomen. Voor Pâ€ž geldt eendergelijk stel eigenschappen, als voor qpâ€ž in Â§ 5 gevonden is,terwijl ten slotte zoowel Pâ€ž als qpâ€ž in determinantvorm ge-schreven kan worden. Â§ 50. Nadere bespreking verdient het verband, dat tusschen(jpâ€ž en bestaat. Dat de formule (58) ook bij de bolfuncti??noptreedt, spreekt van zelf. Meer verrassend is het, dat degedeeltelijke integratie van deze formule leidt tot een betrek-king tusschen en X (x) e\' XÂ? (x) 9Â? (x) -00 die volkomen analoog is met qâ€ž(Â?c)=-Râ€ž {X) . Râ€ž {x) en (x) zijn polynomia van den graad wâ€”1, die aaneen diff.-verg. der tweede orde voldoen. Ook de formule 00 0 komt geheel overeen met een relatie uit de leer der bol-functi??n : -1 R (x) y (_X^ . en ^^-zijn respectievelijk naderingsbreuken van r,j (a?) (fn {â€”x) X _ [ \' A X 1 ?Šn^u^uA^ ^J ^^^ V xâ€”i\' transcendente func- 00 ti??n beide in een kettingbreuk kunnen worden ontwikkeld.Deze eigenschappen vooral zijn het, die er op wijzen, datde functi??n 9,, en Pâ€ž tot een grootere familie behooren. Menzie de algemeene behandeling van dit punt in het

reeds aange-haalde werk van Jobdan (p. 248).



??? 73 Daar wordt de integraal h ^^^^ dz J xâ€”z â– z a ontwikkeld in een reeks Â?1 I Â?3 I waarin h ^ ?’ f{z) dz. Zoo deze reeks in den vorm eener kettingbreuk geschrevenwordt, die het polynomium Sâ€ž tot noemer der iv^\' naderings-breuk heeft, moet Sâ€ž voldoen aan de voorwaarde h lo.{z)S,J{z)dz.....(131) a waarin w (z) een polynomium van graad < w voorstelt. Aandeze voorwaarde voldoet slechts ?Š?Šn polynomium Sâ€ž; de verge-lijking Sâ€ž = O heeft slechts re??ele wortels, alle gelegentusschen a en b. In elk bijzonder geval moet onderzocht worden, in hoever dereeksontwikkeling volgens Sâ€ž, waarvoor (131) de coefficientenlevert, geldig is. Ongelukkig zag ik op dit gebied de functi??nqp,, en Pâ€ž verschillende wegen bewandelen, en weet ik nogniet, of deze ten slotte toch nog naar hetzelfde punt voeren.Â§ 51. Evenals Pâ€ž (x) uit de ontwikkeling van??=i-= 1 naar t volgt, wordt (fâ€ž {x) gedefinieerd door 1 00u = Yzrt ^ = - 9Â? {oi^) t". Beide moederfuncti??n, om ze zoo te betitelen, voldoen aan een diff.-verg. der tweede orde, U = aan



??? 74 (1-2 xt t^) {x~t) U\' U = O, j u aan (1-2^ -1- t^) u" 4- (ic \'?¨t-\'?¨) u\' = . (132)I waarin x als constante beschouwd wordt. Uit i l I u = i ; r en ^ ,, _ l-t-x , . l-t-2x - (1-^)3  (1-^)3 \'\'\' met welke waarden gemakkelijk de diff.-verg. (1 -ty u" -f {x 4- 3^- 3)\' u\' = Qte verifieeren is. Deze diff.-verg. volgt ook, volgens eenmethode , â–  aangegeven door Poinoae?Š uit de recurrentebetrekking (24), geschreven in den vormn q)â€ž (x) - 2 (Â? -1) (ir) (a; -1) ()pâ€ž_i (x) (Â?-!) (pâ€ž_3 (a;) = O,door vermenigvuldiging met en sommatie van 1 tot 00. Uit de waarden U = i t" (x) = It"-^ (x), 0 1 u\' = ?ˆ nt"-\'^ (pâ€ž (x) = I\' (n-1) t"-^ (x) en = 3n(n-l)t"-^(pâ€ž(x) = I (n-1) (n-2) t"-^ (pâ€ž_i (x)1 . 1 \'leidt men nl. af: I n (n-1) (x) t"-^- = u", ix-l) 1 (n-l) = , 1 - 2lin-1)3(f,,_ 1 (a;) -2 = -2(x)u" u\')1 1en * i (n -1 g â€ž _ 3 [x) = I n^ _ 1 {x) -1 = u" J^Uu\'A-u,1 1 1) C. R. xcvi, p. 637.



??? 75 zoodat de verg. 1 1 1overgaat in {l-2t{x-3 . (132) of\' in ^^ 3r) ^ Â? = O , . . . (133) waarin r = 1. Het eenige kritieke punt der coefficientenvan u\' en na deeling door 1 â€”2^ ^^ is ^ = 1. De oplossingu is derhalve holomorf binnen het gebied, waarvoor mod til.Aan de diff.-verg. (133) voldoet nog een tweede functie JJ = uv,die op de bekende wijze uit de oplossing u wordt afgeleid.Ik vind: \' /II \' â€”- \' â–  U zoodat 1 Â? V = -??â€”3 1 .LÂ?I n =--e T r een particuliere oplossing is. Substitutie vangeeft dan U = uJ\'^ dz; ...... (134) 00 ook hier komt dus weef de int.-log. te voorschijn. Â§ 52. In deze laatste paragrafen wil ik een overzichtgeven van een verhande??ng van Tgh?Šbyghef \') waarin zeerduidelijk de verwantschap van de ^-functi??n met trigonome-trische, Besselsche en bolfuncti??n aan den dag komt. 1) Bulletin do l\'Ac. Imp. de St. P??t. 1860, T. I, p. 193, en Journal doLiouvillo, 2de S?Šrie, T. III, p. 289.



??? 76 F (X) kan, onderstelt men, door een polynomium van dengraad m met voldoende nauwkeurigheid worden weergegeven.Door waarneming zijn de 1 waarden (n ^ m)F (.cco), F {xi), .... F {x,) bekend, met de gewichten ??-o, ??-i____gn- Gevraagd wordt, F (X) zoo goed mogelijk, volgens het principe van de methode n der kleinste kwadraten, te schrijven als 2 liY {xi). Tch?Š- 0 BYCHEP vindt: p (X) = ( irT ^^^ ^ -^m i (X) jxi) ^ ^^^^ ^i = o OCi X waarin (/Â?â€ž, de noemer is van denaderingsbreuk, die op- f\' ix) treedt bij de ontwikkeling van q \' ^ ^ in een kettingbreuk, / {X) terwijl f {X) =^{x- Xo) ix-xi)----[x- aâ€ž) is. Daar de wijzergetallen der kettingbreuk den vorm A;Â?c4-B;hebben, kan men ook schryven: m i = H F (X) = (-1)Â? 1 (X) ^^ t//,â€ž (Xi) Qi F (Xi), . (136) â€? O i â– = O â–  uit welke formule nu, duidelijker dan uit (135), blijkt, datF (X) door een polynomium van den graad m is voorgesteld.Door voor F (X) t/;,â€ž (X) te nemen, vindt Toei?Šbychep: (135) A,â€ž i = (-1)" \\ 2 gi ipj (Xi) of n / _ 1 yÂ? 2gi ipJiXi)^\'\'-^ , O -^m 1 (137) terwijl ^^ gi Vm [Xi] !//â€ž/ (iCi) = 0 * O is. Â§ 53. Hij behandelt nu verschillende onderstellingen om-

trent de verdeeling der waarden xi en omtrent de gewich-ten gi.



??? 77 1Neemt men w = oo, en laat men xi ~ u varieeren tus-schen â€”1 en 4- 1, terAvijl / , du is, dan wordt -f 1 ^ r{x) ^ ^ g (te) _ f 1_ â€? du f{x) x-u J x-uyi â€” u"- \\/x^~l\'-1 De noemers van de naderingsbreuken der kettingbreuk 71 TT - 2x â€” enz. zijn cos q), cos 2 q), cos 3 cp enz., waarin cos q = x. De formule(136) geeft nu Fouriers ontwikkeling naar cosinussen, echterzonder de mogelijkheid dier reeksontwikkeling streng te be-wijzen. De integraal-eigenschappen (137) leveren de coeffi-cienten der ontwikkeling. 2". In dezelfde hypothese omtrent Xi, en zoo g(u) = eenconstante is, vindt Tcii?Šbychep: X â€” Xi J X â€”u X â€” 1 â€” 1 een functie, die bij ontwikkeling in een kettingbreuk, totnoemers der nad. breuken de bolfuncti??n blijkt te bezitten.Formule (136) geeft nu een reeksontwikkeling naar bolfuncti??n,welker coefficienten door (137) gevonden worden. 3". Laat men Xi = u tusschen de grenzen O en oo variee-ren, terwijl g {u) = e-" du is, dan wordt 00 â€”?• V - fdu = dz. X â€” Xi Jx â€” u J z O 00 Volgens Â§ 27 is deze integraal te schrijven als een ketting-breuk met



??? X" 78 (Pu (x) = d \\dx. 71! tot noemer der naderingsbreuk.Nu is . 00 ?’ {x) e-^ dx=l, O \' zoodat de reeksontwil^keling (136) wordt: CD F (X) = i (X) ifâ€ž [X) F {x) dx. O J O Echter levert Tch?Šbychef geen schijn van bewijs voor demogelijkheid der reeksontwikkeling; hij spreekt zelfs niet overde convergentie der*gevonden reeksen, maar draagt eenvoudig,wat hij voor w= eindig, d. i. voor een polynomium gevondenheeft, over op het geval 7% = oneindig.
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