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N ESS I HBHENHE]:

& 1, Onder den titel ,Sur une espece particuliere de fonctions
1 i
entieres nées du développement de la fonetion i _—” e 1—v
snivant les puissances de » komen in de nagelaten papieren
van Aser functién voor, waarvan enkele opgegeven eigen-
schappen doen vermoeden, dat ze de moeite van een onder-
zoek ruimschoots zullen loonen,

Alleen het feit, dat een ABeL de studie van een onderwerp
onderneemt, zou al voldoende de belangstelling van anderen
kunnen motiveeren. Toch komen deze g-functién slechts, voor
zoover mij bekend is, in drie verhandelingen voor. TOHEBYCHER
paat van een vraagstuk uit de waarschijnlijkheidsrekening
nit, en komt tot een soort van functién, die trigonometrische,
holfunctién of g-functién zijn, naar gelang aan de gewichten,
die in het oorspronkelijke vraagstuk een rol spelen, verschil-
lende waarden worden toegekend. Lacuerre bewijst behalve
de door Aprn gegeven eigenschappen nog verscheiden andere
en brengt een functie, die zeer nauw met ¢, () samenhangt,
in innig verband met den integraal-logarithmus, HALPHEN
komt bij de studie van een bepaalde soort van reeksontwik-
keling” naar g, tot zeer vreemde resultaten.

De overeenkomst der g-functién met de bolfunctién is wel
hun meest op den voorgrond (redende eigenschap. In hoofd-
stuk 'V wordt deze overeenkomst nader toegelicht. Ik kon
het boekje van TopHunTER '), om zoo te zeggen, op den voet

) An elementary treatise on LAPLACE'S, LaMI’S and BrsseL's funetions.
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volgen, en voor de meeste eigenschappen der boltuncticn met
één variabele analoga bij de g-functién vinden.

Ongelukkig heb ik de overcenkomst met de bolfunctién nog
niet kuannen uitbreiden op de ontwikkeling van een wille-

oo
keurige functic in den vorm X a, ¢, (%), waarin «, constanten

0
voorstellen.

Er bestaan m.i. geen voldoende redenen om aan te nemen,
dat de ontwikkeling onmogelijk is, maar ik ben tot nog toe
niet in staat geweest, de mogelijkheid of de onmogelijkheid
te bewijzen. ’t Spreekt wel van zelf, dat vooral op dit gebied
mijn taak alles behalve als voltooid beschouwd kan worden;
ik meende echter met dit proefschrift niet langer te mogen
wachten, vooral omdat niet te voorzien is, hoeveel tijd mij
de oplossing van de vraag: mag een willekeurige functie naar
¢'s ontwikkeld worden, nog kosten kan.

Het onderzoek van de eigenschappen der g-functie was het
onderwerp eener Utrechtsche prijsvraag van 1888, waarop
geen antwoorden zijn ingekomen.



HIOICHIED SR TSRS

De Fuxerie g, ().

§ 2. Aprr’s definitie ) luidt:

L oan = :i‘q,, () R T S (1]

l_if (% 0

Wanneer men na ontwikkeling der e-functie ver-

I
(I — o)™

- m-+Dmn4+2)...n4+m—1)

rangt door v*, dan vindtmen:

5 (m — 1! .
_ n\ ax* n\ " .
p@=1—no+ (3} 5y = (3) 5+ F e @

waarin [H] — i
e k) kl(n—Fk)!

een binominaalcoefficient, voorstelt. De ontwikkeling is geldig
voor alle eindige waarden van , onder de voorwaarde » ¢ 1.
Wordt ¢, (x) gedefinieerd door de vergelijking (2), dan kan
men # ook negatief of gebroken nemen, in welk geval ¢, ()
geen polynomium is, maar een reeks, absoluut convergent
voor alle eindige waarden van x en #.

Als nl. alle teekens positief genomen worden, is

T n\
L= k f:_" !
WUy 41

M ——— = UMM ————=
[“J k= m (]“ JV 1‘]_

en dus

x(n—k) ik

k= 'k

) Oeuvres Compl. Ed. Syrow et Lig, 1881. T. 11 p. 284,

1-l1- "') vV ‘i ||

‘;_;l}‘_ (+
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§ 8. De functie ¢, (x) kan zeer verschillende vormen aan-
nemen. Drie daarvan laat ik hier volgen; een paar andere
vinden in §§ 15 en 17 een plaats.

a. Vooreerst is g, (z) te schrijven als residu in den vorn

at

~ (o 1 —¢ . ;" (’,,‘. J-\ l’uu 5
é’ a—g@Erty - Gl (C a0, 4 1B

zooals onmiddellijk uit de definitie (1) volgt. Op verschillende
wijzen kan men den algemeenen term van g, (),

_ I )4 n\ ack
Crl = A H’

in twee factoren splitsen, en den eenen factor met £+, den
anderen met /- * vermenigvuldigen.  Zijn dan deze factoren
alcemeene termen van twee reeksen in ¢, dan is g, de
coefficient van # in het produch dier reeksen, en dus in residu-
vorm te schrijven.

, A\ | e, \ .
Stelt men  (— 1)* (};] ;’ — (— 1)“‘{,.,“., Pt [:,’] ahtky

s L7 ffasl\ s
0f “ = 1)* (!,5) IRA
ST (L e

dan is ¢, te schrijven als d/ z ; =y (+)
: )\ x* i n ) xk

stelt men (= 1) ) 7 = (= 1t X )5

- n\ xt
ot f//‘_l)[]]]ﬁ’

L
~ ,” 2 -- v\

dan volgt hieruit, voor ¢, (z) de vo ‘ “ #il (5)

t¥ {» —#in twee factoren,

Splitst men ‘#2541 —=(— 1) [ "”’]

k) k!

dan vindt men de residu-vormen




=t |

> UT_ zt 1 j_. If);é <
{1 (5’}) — (i/ .—QEL'L{—H— ST S : ({)"
Il
o oty
Qe ) = =t

(7)

b. Havruex ') schrijft ¢, (x) in den vorm
T »

.;-,,(1;)::—6? {({%) Gl e e oA ()
De controle door de verg. (2) ligh voor de hand. 'tIs me
niet duidelijk, hoe Harrmiy tot deze uitdrukking gekomen
is.  Wellicht door de differentinalvergelijking van § 22, waar
de vorm (8) van zelf voor den dag komt.
In symbolische schrijfwijze 2) kan (8) vervangen worden door

el nEs -

De  beide residu-vormen (6) en (7) leveren deze nieuwe
formules:

R TR (e |
Du () = — | —1{ e =% (1 T i) P (1
P () milr ( (L ¥10) o (10)
1 I
et L8 e e () 11
I‘fd. (}) i N ’ I’IE--'J;H'. €= (f l ‘L) s [ =gt} : i . (1] ]

of, symbolisch,

1

(l W _ ,
q‘” (‘}:) = JE! { ({t_ --l: {{‘ ) (] :l‘ tJ“ ) t=o0 : i (ll_)’

Nen 1_‘ &\ i

¢. In Gauss’ notatie voor de hypergeometrische reeks is

g, (@) =1F (— n, 3, 1,1;] SRS e (11 )
- l':": oo

l

€1l

=0

) C. R. xov p. 629.
2) Men zie byv. Forsyri, Diff. Equations bl 44.
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De algemeene term dier reeks,

o 1). ['O‘.'—I—t?ﬁ] (2 -~ Y ﬁ—‘—k pk+1
(fs+1)f (H—) S O

wordt nl.
(— 1)i-+1'n m—1)...(n—k)p ((3—}—1.) {5’—|—ZL i1
4+ D! B+ D! pr+1
en dus, voor f = o,
, 7 il 5 4
= 1)“1(1 4 1)(?c—!— o1
conform met (2).
§ 4, Uit (‘»’) volgt deze diff.-verg. ') voor g, (x):
e’ @)+ (1 —x) ¢, (@ ng,()=0, . . (15)
ook te schrijven in den vorm
%(1 Eas ,)]—-|—’HP S (U O (11 1 |

en een bijzonder geval van de diff-verg. der hypergeome-
trische reeks

x(l—ax)y”’ 4 | (S (cEISBE ) m$ y'—of y— 0.

a

Worden nl. «, » en & vervangen door —#n, 1 en - dan
Y/ -] 7 f‘j ?

)

gaat deze diff.-verg., over in

x (B — a)y’ + ) B—(+p—maly +ugy=0,
Wi, islE [ = il
Yy + (l—2)y 4 ny =0.
De diff.-verg., waaraan een hypergeometrische reeks F («,3,, a)
voldoet, heeft in ’t algemeen een tweede oplr)ssinfr van den vorm

2! =" Fle+1—y,p+1—y,2—y, )

Voor ¢, (x) is echter y = 1, zoodat (10 beide oplossingen
samenvallen. Hieruit is op te maken dat slechts één poly-
nomium of reeks aan de verg. (15) voldoet. Een direct onder-
zoek bevestigt dit vermoeden, De diff-verg. (15) laat zich
op de volgende wijze symbolisch schrijven:

) In hetgeen volgt, zullen differentiaalquotienten zoo veel mogelijk door
accenten worden aangegeven.



= ik :
(=) + — 0" () =0,
. i LT d e
waarin & den operator x i voorstelt.
Stelt men hierin
= , o _Iu ar +1 o +1 ] a. 4+ o -+ 2 + o
dan volgt uit de resulteerende, identick te vervullen verge-
lijking het stel voorwaarden
i ey == ]
('?H‘ —I_ HJ €, +1— (w’ .— W?‘) (479 »
4+ 20, o= m—m—1)a, 1,
Daar a, niet nul kan zijn, is m* = 0 te stellen. De vierkants-
vergelijking in #z, die ook in analoge gevallen optreedt, heeft
hier twee gelijke wortels. De diff.-verg. (15) heeft dus slechts
¢én oplossing in reeksvorm. De reeks wordt bovendien poly-
nomium, doordat alle ¢’s na a, den factor nul hebben., Het-
zelfde resultaat wordt bereikt, als men aan (15) tracht te
voldoen door een polynomium van den vorm
Y=yt 0y 12— ..., 01 %1 do.
Substitutie in (15) geeft de voorwaarde p=—n.

§ 5. Met behulp van (15) en (2) zijn nu zeer gemakkelijk
de volgende eigenschappen te controleeren, die de analogic
met de bolfunctién al zeer duidelijk in het licht stellen :

| T g (@) 4 ¢/ @ Fngu1@=0 . . . (17)
of

d , .
T (:1; P a (;1:)] + N, (@) =0,

Pu ) == s ()i — @ (]SSR (1] 5)
€6
—';l-— ‘«I'I.}z (3?) — @y (:H) — Pp—1 (:};): : . ¢ A (1()}
Bt Dgipr1@— 41— ¢, () =2¢%(),. (20

ne, 1@ +@x—e.@=ng. (@), . . (21)
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Hgs—1 () (@ — 1) glag1 (@) =Cn—x) g, @), (22)

z
Pa (X)) — Qu—1(X) = / Pt 1U(2) 2 PR B (2 5)

o
m+1) gupr ) —@Cn+1—x)g, (@) +ng.—1(x)=0. (24)
Deze eigenschappen hangen natuurlijk onderling op vele
wijzen samen, Ze zijn alle als afgeleiden te beschouwen van
twee grondformules , de diff.-verg. (15) en de recurrente be-
trekking (24). Tweevoudige differentiatic van (24) geeft nl.
een betrekking tusschen ¢, 11 (), ¢” (), ¢”u—1 (@) en ¢/, ()3
driemalige toepassing van (15) levert dan de formule (19),
waaruit de overige gemakkelijk volgen. Grootendeels kunnen
ze 00k op eenvoudige wijze uit (8) worden afgeleid; zoo ont-
staat (18) bijna onmiddellijk door differentiatic van (8); zoo

vindt men (19) op deze wijze :

) T e d ye—1 d el ] j__.,-] o

((EL) Walimdl= (dr] [f T (. e—*% e
e e | ) : =1 |

s I“"[m} @=1i9 |+ 3(Z) " @ ten =

J it i w—1
=144 (i] (r=te—%) 4 n( “7) (S Rea )%

i L
L Ay
(. 1. u (XY= = ¢"u (&) T gu—1 ().

Differentiatie der formules (15) tot (24) zou tal van nieuwe
betrekkingen opleveren; ik geef er hier twee, afgeleid door
(15) en (24) A-maal te differentieeren:

2t @) 12" T @)+ 1 — 8 P (@)=0 25)
€11 .
(1) ¢ +1 x)—@2n-+1—x) ¢p (.’E +(“’"|‘7)‘;'¢41(**) 0. (26)
§ 6. De functie ¢, (x) heeft dergelijke integraal-cigenschap-
pen als de trigonometrische, de Besselsche en de bolfunctién.
Vermenigvuldigt men het produkt van de beide absoluut
convergente reeksen
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1 = Ay o
— @ =i —=n 3 i, (3’:) "
1 — u F
€1l
1 L oo
—— ¢ l—z— 3 q,(x)u"
1 — U 0 '

met e — <, dan vindt men door integratie tusschen 0 en oo

1 e A% 1 — vu ® @ 7 g
—_— | e {1—=)1l—af)f])'— S 2ty { Cait (2l L (9524
a=na=u) s e (@)

0O ﬂ

Het eerste lid laat zich schrijven als waaruit deze

- 3 7

eigenschappen volgen: 1)

f e~ * g, g.dx =10, voor m 2 N e 2(27)

/t’“'*'.;.u,ﬂfln‘,—]l,.. s o e

Deze eigenschappen komen reeds in de papieren van ABEL
voor; ze leeren een functie naar ¢,’s ontwikkelen, als men
weel, dat deze ontwikkeling mogelijk is. Zoo moet b.v, a*
geschreven kunnen worden in den vorm

s} i‘.\.,‘i" i ()7, g6 = o ool ox '“])
0
omdat g, () een polynomium is. Dan worden echter de
coeffleienten A* gemakkelijk door (27) en (28) bepaald:
o0
#=[a () d DL (30)
A= xre *q; (1) ox = (— %ﬁi——. 1o 048
! I'f l ?f(‘“' iy ”
. 4]
zooals in § 38 nader wordt uitgewerkt.
Uit (29) volgt nu ook

o

v

f G R e DRV DDLU 7 S e (5 ))
0

) Waar geen verwarring ontstaan kan, zal ik voortaan dikwijls de functie
¢n () zonder argument schrijven.




A=ov

f=

[itfot

ez

0

en [6_"' g Wx L) 0= O S8 SN (82
0
Z00 w, () een polynomium van graad n, en weder n ¢ m is.
§ 7. De formules (27) en (28) volgen ook zeer eenvoudig
uit de diff.-verg. (16).

@« o

i 190 d o
HE— / €% P i = — — f P = @ e~ = ¢fy) dx —
: nJ ™" dx
o 0
it T Lo [ R & il
= [ %€ ¢n g, da — oo | €77 X/een polynomium
71 ) (A ¢ &
0 | 0
1
Derhalve = ﬁ e N A
.!J
maar ook
x
1 /
= — |z % g o dx.
N J feds
Voor m 2 n moet dus I = 0 zijn. Verder is dan vol-

cens (32)

oo

/e“-" Py q»"..,, Qe— “:

O
of, na partieele integratie,
.m. | o
/c—"' rfn(i'-::: :} ET T Pu@p| = 1.
‘0 0
Nog een derde bkus kan geleverd worden :
4 1)
( ; _
da| @ (sc) et i 02 | = 0] ie= S, dr - o, e =% T
O 1]
dus
| T o on - s
ay, () f &% on dax = / w’, Pl dax —- f W, € g, dax ,
~U l 0 "“ ;}
waarin x

—% q, d2,
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De integraal in het eerste lid is te schrijven als

/"é et [ d ]“*r / 1 =2

¢ *— || @e)de=—/|-— (" e "),
ml\dx) ) m !\ da ( )
o

o = w, el
Bij wtwerking wordt de vorm }—(‘-![ ?} (x™ e —% een
) mi\ ax i

polynomiwmy/ vermenigvuldigd met e—=: hij verdwijnt dus
voor de grenzen 0 en oo, zoodat

L

[ e

® ® @

fw 6% pp A — — /u;’,,, Py dx :f e dBihe—
‘u ‘n‘n .u
.'IJ
’ - (m) 3
v = (—=1)" f w , P, dr is.
o

Hierin is nu P, een m-voudige integraal, tusschen de grenzen
Oenzx, vane—* ¢, (x), d.i. van %r[f;%] (™ e—%), welke inte-
xre—=
graal de waarde = heeft. Is nu »n<m, danis ™= 0,
dus ook / oy (X) e % g, (X) dx =20,
-‘i)
waaruit (27) volgt, door voor w, (#) achtereenvolgens x,
AR ey sl aeie e
[s w = m dan is "’

x
~

/ & =%y A = (— 1) K.

— £k, een constante, dus

(s &

Stelt men: w, () = 2, dan isk=m!en /a_-“‘m"" P dx=(—1y"m/,

-0
terwijl voor w,, =g, k=(— 1)" wordt en / gadipitdr =11
§ 8. De functie g, (%) is het eenige polynomium van graad

0
o

i, dat den integraal / e—" x g, dx voor m { ndoet verdwijnen., 7
.fL Zd A

Zij Q nl. een polynomium, dat deze eigenschap ook bezitten zou.
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Stel / e E OO0 — e 07
/f:-‘_": G de —=e—%Q,,

I Elaet ) S s BN ()

(ST

zoodat dus 2

an\s
o1 f‘_)’ ;= {{ i e 32—z, () |
%y _pi—(— 1) ({;:L_} (=50,

Nu gaat | e—= Q 2" dx, na particele integratie, over in
L ¥ te ?

o

T
0

xme—= QO + m / e an—1 dpr —

—gme=tOr-tamar—le=2 01 5. o--mlest Q.
Voor alle waarden m =0 m =1 .... m — n — 1 moet
deze vorm nul zijn, als x — 0 gesteld is. Dus moeten, voor
x =0, alle vormen Q;, Q,, .... Q, nul worden. Het is
gemakkelijk in te zien, dat alle Qs tegelijk met Q@ van graad
n zijn. Bevatte Q, een term af (k ¢ »), dan zou deze term,
na k-voudige differentiatie, in Q,__; een’ term van graad nul
geven, die Q,__; verhinderen zou, voor z = 0 nul te worden,
Derhalve is Q, = C z*, waarin C een constante.

Dus is gas F OR=—1 (}ip s i

i 1

i }' \n
o o~ Q) — (:'[ ‘ ) (67 0,)

i'_l[' £2 — B LI O (‘f‘r-:)' /["
Het bewijs kan ook aldus geleverd worden ). Als ¢, (®) en

©Q beide den integraal f =% w, o, dx nul maken, dan doet dat

ook de som ¢, - £ Q. Nu is £ altijd zoo te kiezen, dat

') Cf. Jorpax, Cours d’analyse. 1883. Tome II p. 248,
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.k Q van graad n — 1 wordt. Kiest menw,=—qg, + % Q

13‘-
(m =mn — 1), dan zou dus / e~ *w,” dx nul moeten zin.
Daar nu e—% w*,, nergens van teeken verandert, moet overal
tusschen de grenzen 0 en oo
gas it a—a ) 71 1
d. i g — U
of Q = C/ g,
§ 9. De wortels van g, (%) ziju alle reéel, positief en onder-
ling verschillend.
Had ¢, een” negatieven of een stel imaginaire wortels, dan

was ¢, voor te stellen door M N, waarin M = & 4 ¢ of

— (@ —af +#* en dus N van graad <»#. Nuis (x — «)® |- g
altijd positief, terwijl a:-- ¢ positief is, als x tusschen de
arenzen 0 en oz blijft. M verandert derhalve tusschen deze gren-
zen niet van teeken. Kiest men nu w (x) = N, dan wordf (32)
f e—*MN? dx =0,
‘ﬂ
cen ongerijmdheid, omdat geen der integraal-elementen van
teeken verandert.
en tweede bewijs is aldus te geven. Als bijzonder geval
van (32) is

s

{ ex Lm0 — 0,

-Ill
waaruit volgt, dat ¢, van teeken verandert voor een waarde
x —a, liggende tusschen 0 en oo, Men mag derhalve stellen :

g () = (& — @) ¢, ().
Echter is, ook volgens (32), '

/ e—%(x —a) g, (x)de =10
of
/ e—% (x—a) P (Z)dx =08

0
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uit welke verg. nu volgt, dat ook . (x) voor een redole
positieve waarde z — b van teeken verandert, Ten slotte is
9:(X) =C @ —a)(@—10) .... (x—1), waarin @, b, .... 1 alle
regel en positief zijn.

De functie ¢, (x) kan ook geen veelvoudige wortels hebben,
Was @ er een, dan golden de betrekkingen

¢ (@) = 0 en o, (@) = 0.

Volgens de diff.-verg., (15) zou dan ook ¢ (@), dus ook
¢ (@), dus ten slotte ¢@ (@) = 0 mosten zijn, een ongerijmd-
heid, daar ¢ (a) — g% () = (— 1) is.
De recurrente betrekking (24) leert, dat de functicn ¢ te
beschouwen zijn als Sturmsche functién: geen twee opeen-
volgende ¢’s kunnen tegelijkertijd nul worden; en, verdwijnt
¢ (), dan zijn ¢, (z) en ¢u 11 () van tegengesteld teeken,
Nu zijn voor & — 0 alle ¢’s positief; voor x — o Zin ze
beurtelings positief en negatict. Derhalve vertoont de rij der
sSturmsche functién

P ({L), Pn—1 (L), .... 2 (”): {1 ("T’)! o (Q)
Voor @ = 0 en voor x — co resp. nul en # varia fies, waaruit
weder volgt, dab ¢, (x) n reéele, positieve wortels heeft.

§ 10" Beschouwt men X — ¢a (z) als eerste, Xy = ¢/, ()
als tweede Sturmsche functie, dan leert de verg, (21) dat
Xo=—q¢" 01 () de derde wordt. Stelt men in de verg. (26)
k= 1en vervangt men » - 1 door n,n—1, &ec, dan blijkt uit.

W' (%) + (@ — 20+ 1) ¢ 1 (2) -+ 20 ¢ s () — 0,
(n—1) ¢'s—1 () + (@—21n—1) ¢/, _q () + (n—1) ¢/n_s(x) =0,

dq‘.l;t X;; e (’f” —9 ({)_f) P
X‘I = = ‘Pfu —_3 (:T) 3
R = G (),

de verdere Sturmsche functién van g, (z) zijn. Te beginnen
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bij Xs komen zij echter alle, behoudens het teeken, ook hij
@u—1 VOOr, die tot Sturmsche reeks heeft:

Fu—1 (%), ¢ 1 (), — ¢ s (@), + ¢’ —s (@) — ¢4 (), ete.

Voor n=2, 3, 4, 5 vind ik, na vermenigvuldiging met
den factor n!, :
Xl ¥ — ip 110 X =—284-92% — 18246
X, — X — 2 D — — g B —'8
N + 2 Xy = ~ x - 2
Xy = — 2

X =x— 16 a3 + 72 2* — 96 + 24

Ky = 2 — 12 Y4382 — 924
Xy = x — 6xl 6
Xy = g
PRt - 2

X = — 2+ 252 — 200 &® + 600 22 — 600 2 4 120
T e — xt 4+ 2023 — 1202 4 2402 — 120

Xg = — 2L 12a% — 36a4- 24
N = — ¥+ Bx— 6
X — x4 2
N — — 2,

De beteekenis van deze nanwe overeenstemming  wordt
duidelijker, zoo men niet, Pa—1 MEL ¢, maar met ¢, vergelijkt,

¢.—1 €10 ¢, hebben beide een serie van n— 1 Sturmsche
functién, die behoudens het teeken, en te beginnen bij X,
volkomen identisch zijn, Bepaalt men het aantal variaties
VOor & —= @ en # =b, dan kan dit aantal voor @'s O @,_;
alleen door toedoen van X verschillen, d. i. hoogstens één
verschillen: Indien tusschen twee grenzen « en b p wortels
van ¢, liggen en ¢ van ¢,_;, dan verschillen de getallen
P en g hoogstens 1.

Uit de vergelijking ( 19) volgt echter een belangrijker eigen-

9
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schap omtrent de wortels van ¢, (x) = 0. Zijn @ en b opeen-
volgende wortels van ¢, () = 0, dan is

a q;"“' ((0 + i Pu — 1 (U«) r— 0

b o', (:ZJ) 4+ N @u -1 (!7)) == i}

Daar «, b en n positief zijn, en volgens het theorema van
RoLue ¢/, (¢) en ¢, (b) van teeken verschillen, hebben ook
g1 (@) en g,—1 (D) verschillend teeken, zoodab de verge-
lijking ¢, 1 () = 0leen oneven aantal wortels heeft tusschen
elk paar opeenvolgende wortels van g, () = 0. Daar ¢, (%)
n— 1 paren opeenvolgende wortels heeft, kan dit oneven

€11

aantal niet anders dan één zijn:

Tusschen twee opeenvolgende wortels der vergelijking
g, () = 0 ligt éen wortel der verg, ¢,—1 () = 0. En dus
ook, viee versa: tusschen twee opeenvolgende wortels van
gu—1 () = 0 ligh €én wortel van g, () = 0, waarvan der-
halve voor n — 2 wortels grenzen gevonden zijn,

De grootste T.-VO]"[-(%l' van ¢, () = 0 mist de bovengrens,
de kleinste ligt tusschen O en 1. Dit laatste volgt uit het
feit, dat alle wortels positief zijn, in verband met de waarde
x = 1 die aan ¢ () = 0 voldoet.

[k laat hier voor » = 1, 2, 3, 4 de wortels van g, (x) = 0
volgen,

T 22 Tt n—+4
0.828
0.416
0.586 ' 1.746
1.000 2.294
3.414 4.536
6.290
9.395
Som i 22 g 42

Door differentiatie verkrijgt men uit de verg. (19) de analoge
vergelijkingen
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2 o) = (n— 1) gl () — 1ot —1 (L)
1

z ¢ (2) = (0 —2) ¢ (@) — 1 ¢"—1 (%),
waaruit, geheel als boven voor g, (@) werd gedaan, bewezen
wordt, dat steeds één wortel van ¢’,- ;1 en ¢”,—1 gelegen
is tusschen twee opeenvolgende wortels van ¢’,, resp. ¢”,.
Daar bovendien g¢’x den wortel & = 2 en ¢”; den wortel
x — 3 heeft, is men gerechtigd tot dit besluit:

Tusschen twee opeenvolgende wortels, maxima en inflexie-
punten van y = g, (2) ligh resp. één wortel, één maximum
één inflexiecpunt van ¥y = ¢, 1 (). ,Maximum” is hier op
te vatten als ,maximum of minimum”. En: g, () heeft
stellig één wortel, één maximum, ¢én inflexiepunt resp. voor
LIS 2R T 5

§ 11. In deze paragraaf voeg ik nog enkele eigenschappen
der g-functie bijeen.

a. Uit de formule (18) volgt
¢'1=p + ¢’

¢'a = g2 + ¢'s

'l".« — [ —[* q’,u 413

zoodat dus ¢h = 2 q; + ¢ 41 Of, daar ¢y = — 1= — g, 18,
1

SR () == a0 S R (55 )

()]
0. Uit (17) volgt
) Pi—1 — — & rp”,' — cp",- )

n il "
dus 2ip_1= —a g — g
1 1 1

Formule (33) maakt van het tweede lid & ¢ 14 ¢ 41,
terwijl men ten slotte, door (17) te differentieeren, deze be-
trekking vindt:

#

.? t i () = — ¢4 (’]5‘) — (4 1) ¢'u (T) SRI(B L)




Nu is

llr i1 =N 1+ O —Dga_o+ .... + 21+ qo=
— (\u.ﬁ 1) 17RO 1 S () 7, S A s (I

|- g —1 - Pa sl s b g gy ==

—1 iw—1 n—1

e 1 5 MILTE e a
= = by = P = = Ly (1 T

1 0

zoodat, (34) ook aldus kan geschreven worden:
n—1

209 (%) = = g1 (@) =1 (@) . . (3D)

¢. Herhaalde toepassing van (19) geeft

b y /
y y 7} 'f\"1 (P i
P — Qo — L = —,
TR

of > qi.f- — T-L(l”—_ . (536)
1 4 HH
" i '! » ]
. i o L /‘I;(l) da 4 C (37)
1 ¢ L] (¥
; : = 1l
waarin == -

d. De recurrente betrekking (24),
@+ Dgapr(@x) —En+1—-a) g, () + ng.—1 (x) = 0,
18 voor het argument z natuurlijk

M1 gar1(®)—En +1—2) gu (&) + % pu—1(2) = 0.
Trekt men de tweede verg., vermenigvuldigd met ¢, (),
af van de eerste, vermenigvuldigd met ¢, (2), dan vindt men

(17 4+ 1) [@n 41 (’L‘) P (2) — o () o 41 (_,)] — (2 — @) ¢, (:) P (2)

—-|— 1 [l[”_ (L«) Pn—1 (,:) e 1(.7!}) i, (J)I.

zoodat
E=0)3 4@ 0@ =041 [ 0 1 D0 — @1 @) | 39)

=
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§ 12. De functic ¢ met ander argument.
Uit de verg. (2) volgt

)= 5 (= 2y (1) Zo,
dus, volgens (39).
b= o= 1
:\(_])(J)a\"(_l (]]q;()
t—=0 £=0

Nu geldt algemeen de betrekking

i=nik=i k=ni=n
2 A Uit — A -y Uy — Upo "%*
=0 k=0 k=0id=xk
( ! + o 4 un +
- Uz0 + g1 - Uz |-
+ ...
“="Unp = Ul =+ o oo = Ui
- _r! £ [ - i =
[ Uj'./ da {u dy = / dy /: da. J
0 o .'n o
= : Iflf ,[' ¥
Zoodat G4, (J’}) .‘”(— 1) (p;,({,) ~ (— 1)( )(L_]I’:
T J,‘_.H
) — -:‘ ):{’. [II){. (,"l_.')’.
waarin k={

i “”, n L ...:.Z‘,'J L — ]. =0
BSEE T J[;.‘]*:"‘;;H) (R)i=r) =

=yt [}fr)”_"(—l)[ J'r":’r’-'["z,)(l — Y=k L (39)

Ten slotte wordt dus

Pu (72) = “i) rE(l—ry—fq () . . . (40)

In de keus van » is men geheel vrij.

5t ‘[0
a r=2 g.@2) =131 (-9n@,
in symbolische notatie (29 — 1)” o it SRR (1)
waarin dan ¢f te vervangen is door g (@)
7

h" ?~:_—’—'1. tpn(_ L)—-[il)(_ l .‘)”_A q": (q)’
BYIINONSChE@erpysh .t o 0 L L S R0




»+ . [ )(sil ¥+(%) |
of (8 + 1) ¢, (’.,_}_ ]—(1+>u) .« s (4D)

De laatste twee formules hadden in den vorm

v [H] g () ( 0 ]”‘ [ 17 ]

= e Fn |-

0 (ﬂ = 1)" s 1 0
en s(3)e-n@ =2t e)

in § 11 opgenomen kunnen worden.

§ 13. Eigenschappen der coefficienten Bg.
Voor » = 1 verdwijnen natuurlijk alle B’s, behalve B;, die
— 1 is. Ligt » tusschen 0 en 1, dan zijn alle B’s positief;
voor » <0 of > 1 hebben ze afwisselende teekens.

Verder gelden, zooals licht na te gaan is, deze eigenschappen:

BiB.Li=r (L—rp(g)  Bi=(-ry

B;j (1 — J"__.’r. N g . (“1'{_‘:‘\)
— e I)d i
}j)-u - k r /
IB=2 [‘;] rE (1 —ry—F = (1 —p 4 = 1. (47)
Eindelijk is WL S e g oo b oo a{ERY)
_ . Bravee h (z,~m—?—|—])
Het quotient —=" ig nl. gelijk aan —1l;
(uoti T S gell) . ’)(' “_‘_ )

Hierin wordt ondersteld rn - r < n 4+ 1 of . r.¢ 1,
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Voor r > 1 geldt de formule (48) echter ook. Dan toch zijn
Boreni Birr Saibeides—0.

§ 14. Additie-theorema.
Uit de definitie voor ¢, (w) volgt:

® @+ 9)7
= o P (J’ + .?j) — 1 » t 1= —
(1] = L
1 1 P 1 e A
== 10 = - =i 1—72 . e j R —
( ) 1= 1=

— (1 —19) S ¢u () S g @ (U).
0 0
Derhalve is
pu @+ =19 (@) + g1 (@) @1 () + g2 (@) g2 (¥) + .- .
oo 01 (@) o1 () + 9 ()] —
— [pu—1 (/L) + Pu—sz ({L') ¥1 #)~+...+ ¢ ((‘U) Pn—2 W) + Pu—1 (U)] (4'”)
Deze formule moet voor »n = 1 gewijzigd worden tot
@@+ Y)=mn @)+ pn@— L
Uit (49) is nog af te leiden:
d 52 (2 1) = 00 (@) + 9u—1(@) 91 @) + - -+ -
; s o {1 —I- 1 (ac) Pn—1 (y) —|— Pa (j/). o (5())
§ 15. Ik geef tot besluit van dit hoofdstuk nog een paar
vormen voor g, (), nl. een’ bepaalden integraal en een’
determinant-vorm.
In het tweede deel van Cavcny’s ,Exercices de Mathéma-
tiques™” (1827) komen op p. 146 deze integralen voor:

o0, : y .
la—ir)=m 4 (atiry=" , (nm Yoo
f 5 P R O =

-

_L d }ra ‘it — 1 p—ox
o (uz)[d.x' 2 =)

* ({_,?:.,. — it e b Zf — it 1 i
/ ( ) l‘;) ( * ) ?.n SN (T‘)T_r + J’:L‘) d}. —

al

T i ]” 2l
iy | | B s AT pm s as
2 [ (m)[d-’v ( );

€11

o

(1]
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waarin 7, @ en m geheele getallen voorstellen, « en m posi-
tief, ter W’lJl ook z positiefis, en ¢ = 1" —1.
Stelb men ¢ —=1 en m = n 4+ 1, dan gaat, in verband met
(8), (51) over in
/‘I -
. e "N 2 o
T CER R () — / ; (L4 ér)y=»—1 L (1 —ir)—n—1 [ 7 (;'05( Etrw )dr

0 "

en

*4]

e, (x)=1 / {(Al, +-tr)—n =l —(1—tr)—=—1 }-}'" Stn [%F-T - ;%) ar .

0
waaruit door optelling volgt:

nrx

Zn’-e*—-i P (x / (1_}_,;)—-:;——1 g fn (',!!.‘J"L' ({)-_
0
_I_ /(‘1 et "}'?-,}7“-—] )-d 8‘" B
Vervangt men in den tweeden integraal » door — », dan
wordt (52) met be hulp der formule

Cam i T (77 S (1"}

wr
e P — L
- o ]
> . o 1 r gLra L)
2ipie =g, (L) I— /(’ ,,,, S O dr. . . (b3)

Scheidt men hierin na substitutie van » = cot g het redele
van het imaginaire deel, dan vindt men

f Fsin{z oot f+ (nt 1)} g cos* B dp (54)
sin 3 { '

Zhmicai a1 i=
(1]

e11

Y {(‘On 1 x cot B+ (n -+ 1)”9 cos* B .

sin 53 ~

‘o -
§ 16. Aan den integraalvorm (54) zijn gemakkelijk de
eigenschappen van § 5 te toetsen,




Lo
Ot

Differentiatie van

d ; il
c St | oz cot B n42)rp . el
27 Put1 () = € { —~ IS!?J_LI_[?( T2 B gt B dp (5D)

Q

naar a geeft nl
“sin | @ cot 8 4+ (n 4 2) ,")’ |

21 2L ("T,‘) = & ’ -

cos" 18 dpg +-

J sin 3
O
“cos {a cot § 4 (n+2) 6 VA
+ [i-i‘( g f o _(, )IJ cost 2 l} Eg!’f ——
4 Stn? 3
0

- .
— e [ {a cot g 4+ (n 4 1) g

—— cos*+1 B df.. . (b6)
sin® 3 ‘

l‘III
De integraal in het tweede lid treedt ook op bij de differen-
tiatie naar @ van (54), zoodat

;;l)ﬂ, q’,a.’—ﬁ—] (:C) — 27’!’ é* (Cf'" z q’,)n (:If‘) — fof==s P (QJ))
of
q3’,,+1 (’1) — :p’,, (.’L'.) — @y (.’_IJ-). vaTe L TRs: (18)
Uit de formule (54) volgt verder, zoo men onder het integraal-
teeken den factor sin® g 4 cos* § = 1 invoert:
T

ne—® g, () = — / SN { xceot B m4+1)p }cob" 3 dcos -

0

7r .
_| rsin {@ cot § +- (n 1) p-f
I st

.
(4]

of, na partieele integratie van den eersten der twee integralen

2 e—1 gy (%) = / é"‘j“[{-‘f,’-?{;!g +m+1)p }

-cos"TE B dg,

cos* T2 8dp+

i stn 3
% ;
=T / cos {a: cot p 4 (n -+ 1) p'! cos*t1 3 djf —
0
: a
n ;]l— | / {— e (055’:};I p’(n L) :-)-} cos" 1 g dp.

0




Telt men in het tweede lid de eerste twee integralen op,
en vervangt men den derden door

— 2

L o— (o )
7 STay] & (9" ‘I’u):

dan komt er, met weglating van den gemeenschappelijken
factor 2m e—=,

n-+1— o— 4+ 1) g1 — il i (20)
Bij dit bewijs zij opgemerkt, dat men het recht heeft, den
bij de partieele integratie van

T

/ Sin % x cot B 4 (n - 1) (Si cost 3 d cos 3
.'O i
optredenden term

k

gelijk aan nul te stellen omdat de uit cos* +1 g voortvloeiende

factor (— 1)+ 1 opgeheven wordt door een’ factor (— 1)1
ontstaande uit

I’ cos"+1 3 sin ,fr cot g 4 (n -4 1) p’f

sin |z cot g (n+1) g},
terwijl de functie x cof 3 een periode = heeft en dus
(oot B)g = = (x cot Bla=o
I8, ook al worden de beide leden dezer vergelijking oo,

De beide formules ; (18) en (20) zijn voldoende, om alle
betrekkingen van § 5 op te leveren.

Nog volgt uit vergelijking van (55) met (56): Herhaalde
differentiatie van (55) brengt steeds een’ factor sin ¢ in den
noemer van de breuk onder het integraalteeken; in den teller
treden beurtelings sinussen en cosinussen Op van een argu-
ment, dat voortdurend met g afneemt. Naarmate n dus
oneven of even is, wordt [F(z-;-;] (@), afgezien van constante
factoren, gelijk aan

7w
o [ sin (@ cot 3)

) g iy a.aii+11 g aan ot
st g oS g dp of aan e [

b4 ~f
¢0s (z cot 3) iy
sint+3 3 ‘

18,

(5]

i
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welke integralen, geschreven in den vorm

T
B CED Tk / sin (¢ cot §) d (¢ cot By +2
g “a
en
i3

1
- F2) xR

zuivere functién van @ cof 3 zijn, funectién derhalve met de

] cos (2 cot B) d (wcot 3y +2,

periode . De beide integralen, en daarmede ¢ 7 () zijn
nu nul, waaruit volgt, dat de functie ¢, 1, (x), bepaald door
(55), een polynomium van graad » 41 in 2 is.

§ 17. De determinantvorm volgt uit de formule (31):

o

/ e—*q, (x) 2" dx =0 voor m { n.

(1]

Schrijft men ¢, (x) als
,&\” b i "l— i\q = —I" S + -"\.a—] w -|-— ..'.\u,,_

en neemt men voor m resp. 0, 1,2, .... n—1, dan treden

er steeds integralen van den vorm / e—*x" dx op, waarvan
ll]
de waarde r!is. Derhalve geldt het stel vergelijkingen :
s (3.) = -‘\u @ + At = 1 +" o —|" .A,, —1 '1'_ ixu ?
0 = 1\.&,, n! -{— ;'\] (it— l)‘ -f‘ . + A.g_l 1! —!— J-\,, ’

(,' — _r\n (}3. —I— l.)’ + i&.] It.’ + "e +I\,,_l 3! “}4 l\n 11)
0 =A,2n — D4+ A @n—204.. +A, 10+ A, (n—1)!

: N
waaruit volgt A — R ()

1

en dus
M ) W - M i
L (-1) — i\o ’N = ("— ]) m . = . . ('){)




Hierin is M de determinant

| " =t e 1 1
. ! (m—1)! ... 1! 1 J <
| (n+4 1)! n! oo, ) 1!

i En—1)! @rn—2)!.... n! (n—1)! !
en N de sub-determinant van -, Omgekeerd volgt uit (57)
weer de eigenschap (31). De noemer N is nl cen constante ,
terwijl M bij substitutie in den integraal
o
[ e—* @, () z" dx
v

een determinant words, die voor m {n twee gelijke rijen heeft.
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De Fuxore y, ().

§ 18. De differentiaalverg. voor ¢, (x) heeft nog een tweede
particuliere oplossing, die ik y, (x) zal noemen, en die door
een bekende methode uit ¢, () wordt afgeleid.

Voor ¢, (x) geldt
x o, + (] — .’f.:) g+ n - == 4],
livenzoo voor , (x):
sy’ + (1 —x)y, +ny, =0,
Elimineert men » uit deze twee vergelijkingen, dan vindt men:
1

ol ; 7
b (O M P = (P ! g i L
dx g (¥n g faliris r

) (e
dus Y, q-’,, — Py '.U‘ln — (' _ ,
&L

d |-'P;.-) —C ot
dw AP @< q‘,ﬁ ;
En derhalve is

R

.
3L

P () = @, / /t:'[;;—.ﬂ L SR M (D 3 )

—_—
cen tweede particuliere oplossing der diff.-verg (15).
Deze integraal kan herleid worden tot den integraal-
logarithmus.

. () heeft n enkelvoudige, positieve wortels a) «s ... . «,.
: 1 o : : :
Dus is —— op deze wijze in breuken te onthinden:
o (e
T iy 1 (T — o;)? 1L — a;




Hierinis A; =

(& — o)?

R x

L A=t b ==l

‘ 1

Je=a ol (e Ao

en B;=—

dx T q‘;ﬁ,z | €T =u; | Hﬁ; x-

| ¥ — «i

200 ¢, () = R; (z — «;) gesteld wordt.
Door partieele integratie vindt men:

ek

£
(o Z H o Al
AR ooy L A [ i,
[ f (="} S + A= T

zoodat

& X x

rooer : REA Wor AT LB,

/ - :/— dr — e 3 : .2/ 4:,"’,,,,1 et da
o J 4 1 & — & 1 r — o

—_ o — o —_o

wordt.
Stelt men ¢, = R; (¢ — «;) in de diff.-verg. (15), dan blijkt
R; te voldoen aan
xx—a)R4+1 —2)( —a) R;+-22R; (1 — )R, 4
4 n(r—a)R; =0,
welke verg., voor & = «; overgaat in:

2x RI; + H, — & HJ A — )

X = «;
ik, ik A; 4+ B; =0.
We hebben nu:

X -

. g;- Il pr i ;: j\"

f BT — / de — et 2 L
J Loy A 1 X o
— D — 0

en ten slotte

s x
roet

L i (22 -
Y, () = o, /:WH: dx = @q / de 4 ey, (x),. (59)

waarin y, (x) een polynomium in x van graad » — 1 is, be-
paald door

.

;x no_ e 4:\ i

(60)
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Daar uit deze formule voor A; de waarde — J’{’_(ff') volgt ,
(1 (a,’)
en 0ok
A 10} 1
o ‘P-;ﬂ T|x=o0 . % (0-';) qp’». (ﬂi)
i, moet voor g, (x) deze relatie gelden:
== A
in (ai) — St el Al e U)l)

ai ¢/n ()

§ 19. De formule (58) definieert de functie , (2) voor
alle negatieve waarden van a; VOOr alle positieve ook, z0o
men dan de principale waarde van den integraal neemt, Voor
x—0 is w, (&) onbepaald, terwijl op de volgende wijze be-
wezen kan worden, dat w, (— o) = 0 is.

Y, (— )= lim ., (— AN E—
A— o

— A A
o | ._ f o2
— iim g, (— A)| —= dx = lim g, (— ,-'\)f s da,
Bl= t ( )-/ o ‘I',." (-’1:’) A= e 4-‘1‘ &L ‘Pw‘ﬂ(_ "}")
Daar nu x> A
en P (__ .”L’) > P (— AI)
dus — .l_‘_ — ¢ ;3_1_,, .
i (G=r ) A g (— Ay’
.,'\
18 y, (— o) ¢ lim qu(— A) _1_, / IR
A— A g (— A)_.

dus. in absolute waarde,
1 ]

Yo (— ) < ;:’.u:n,m e (e
Sy 1[!,,(— Oo):U. LR i " o (132)

§ 20. Het resultaat (58) is ook aldus te bereiken. De formule
(25) geeft voor k=mn, en als ¢, door y vervangen wordt,

eyt 4 (1 —2)yrtH=0,
of, als particuliere oplossing,
o5

2!""”*’1’-—“)&;;1+1a S R SR (65)

d




dus ST
en
"e (2 — x) . o
e _ﬁ_—(m;._-_l Y ge. e e (64)
o &0
L [ e e [ e
De vergelijking ] U= ekl } — 03—

r

1 1 2 (n —1)! e
—c(( L U a2 as
R e | +nef 2,
stelt in staat, elken term van (64), na ontmkl\x ling van
het binomium (& — x)* terug te voeren tot den int. -log. Na
herleiding zal men vinde 11 :

2

e ( &(z—x) o

il L
2t

= p%n

! )

—

waarin II, een polynomium van den n“”‘ graad voorstelt, dat,
Juist ¢, () blijkt te zZijn, en =, een polynomium van den
graad n — 1. Daar ¢, Oy, aan de diff.-verg, (15) voldoen,
volgt uit: (59) een diff.-ve 2. voor y,, die na substitutie van

o0

o
7 [_f..l.' (j,r
Va =yt ptol [ —do t g, <
en =
£
" <3 bl i | [N . STy (e
WER—C L n + 4 e L + A o ux —|* Sap, f-,.vT —!—
— oo
t«;,i‘ (;.ﬂ:
L|/ P _fL— g qrr-_'j

€n na eenige herleiding de volgende gedaante aanneemt:

:wn+a+m¢4wwﬁnawwﬁﬂt-(m)

') Cf. STurM, Cours d’Analyse, 1884, Tome IT p. 91.




o
Qo

Natuurlijk vindt men uit
z
r 6: »
Y =6C m, —i— 1 % / —’C’—([S,
dat =, ook aan deze diff.-verg. moet voldoen. Gemakkelijk
overtuiet men zich echter, dat de verg. (65) slechts één op-
lossing in den vorm van een polynomium van graad n — 1
heett, Hiernit volgt de identiteit van mr, en y,. De bheide
functién mogen, doordat de vergelijking (65) een tweede lid
heeft, zelfs niet in een’ constanten factor verschillen,
Uit een en ander volgt nu deze derde vorm voor w, :
X

‘et (2 — )"

TP..(-‘-’]:(f =T dgi i o e o (64)

X

§ 21. In § 18 heb ik den vorm (59) uit (58) afgeleid. Men
kan het proces ook omkeeren.

De oplossingen Y1 = @Pu
€11
»
5 — O 1 CHV ?"
Yo — €% Yu ols 'f'n‘_ .'L'- ax
—_—

van de diff.-verg. (15) zijn gebonden door de relatie
7/ P | (J‘
Yath—yr1e=C—,

waarin C een constante. Dus, na substitutie van i, en #,,

2 (g, x’,ﬁ — q:’” L ~+ x”) -+ tp,,": — =N L T (GU)
zooals uit het geval a= 0 blijkt. Of ook
P : 1 1
] L) _ — — s

da 2Py~ T
waarin — A
'
Deze vergelijking komt eigenlijk reeds op bl. 29 voor in
den vorm

i n N i e
L T e i
& I o - ] s
&L oqn” Z = “",)d L g — (1




Immers is

en dus

De algemeene oplossing is, zoo A een willukeurige—; constante
voorstelt:

o

HiE il 1 :
Per=1Fk 4 / [ = — — | et dx,
. €T g, ax
waaruit volgt
I

—; da.

T T

Daar nu y, (— o) =0 moet zijn, is £=0.

Eindelijk kan de oplossing (-ﬁl) gevonden worden door een
methode, die van algemeene toepassing is op die diff.-verge-
lijkingen der tweede nrr'[u;- waarbij de vierkantsvergelijking
in m — Vergelijk § 4, bl. 9 — geen twee verschillende wortels
heeft, dus geen twee versce ]ll“l-"]'l(!(l recksen of polynomia levert.
Men vergelijke Forsvra’s Diff. Equations, lx. 2 van bl. 137.
7Zij y—=wuqg,-+w de tweede oplossing der diff.-verg. (15),
waarin % en w twee nader te bepalen functién van .
wubstitutie van %, ¥ en ¥ in (15) geeft een lange diff-verg. ,
die men vereenvoudigt door de opmerking, dat ¢, ook op-
lossing 1s, zoodat de ftermen met » wegvallen, en door de
termen meb ¢, ook gelijk aan nul te stellen, d. 1. u te laten
voldoen aan de verg.

zu’ 41—z uw =0.
De oplossing hiervan is
u=—==0C, 4+ C /—— dac,
waarin C en C, willekeurige (:(’:ust;tnLc}.u.
Er blijft nu®een diff.-verg., der 2¢ orde in w over, die men
door de substitutic w = Ce* 4, over doet gaan in

xyat+ A+ s+ @+ Dp+2¢%=0. . . (67)
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Is 4, uit deze verg. als polynomium of reeks gevonden —
natuurlijk zoekt men slechts een particuliere oplossing — dan
is de gevraagde algemeene oplossing der verg. (15)

) 1 ¥ (,3'" : }
Yy=—0Ciq,+ Cq, /T, dae+4Ce* y,,

, in de hier gebruikte notatie,
Y = C1 ¢u + C .

of

§ 22, In de tweede editie van Forsyri’s Differential

Equations komen twee vergelijkingen voor, waarvan (15) een
bijzonder geval is. De eerste (I. bl. 184),

Yy F+mA4n—+ax 4 )y +mp 4 nae +apfx)y=20,
heeft tot particuliere oplossingen

i (E'_ Y —1 . o
Wy — s [ p—n pr(%—p)]
S ' [rfr};.‘ ] L /

(; n—1 )
")!1 — = ﬁ.l' = {I""—“-t-’ '.r.‘!'(ﬁ—xll , ’
0 o /

Daar «, #, m en n hier resp. 0, — 1, —=n en 147n of
—1, 0, I 4+#n en —n zin, worden de beide particuliere
oplossingen

d ] o
i e il an p— 2y — nl m a) e 8
1h = ¢ ({MJ (zte—*) =n! ¢, (X) [Cf. (8)]

1 ( : ] T 1) o
Wy — : i) g
Ya \a%. ( EN

waarvoor men, bij behoorlijke bepaling der constanten — zie
verg. (68) —, a, () mag schrijven.
De tweede (I. bl 236),
(e b )y 4+ (- by )y’ + (a0 + box) ¥y =10,

heeft onder de voorwaarde

t by — ag by = by?
een particuliere oplossing van den vorm

N

— f e« N du,

P




a6

.

LAy ) et (s 'U-:l - (ly +fﬁ()
waarin log (VU) = f e T du
=/
€N

U = by 1? by % - by
7
terwijl p en g bepaald worden door de conditie, dat voor

w—p en u—q ¢“ VU = 0 moet zijn. 1)
In verg. (15) hebben ay, by, @1, b1, ¢s en by de waarden
n, 0, 1, —1, 0 en 1, zoodat aan de voorwaarde

) bg — (Ip II}]_ s bﬂ_.ﬁ’
voldaan is. U is hier #* — u, en dus is

(0= 5 g,
of (;{ g ]m)“'!
V= w0

zoodat de oplossing dezen vorm aanneemt -
1

(w — 1)
Y= / s dit,

welke vorm door de 51111;i’itutic ux = z onmiddellijk in (64)
overgaat.

§ 23. De formule (64) mag gedifferentieerd worden , zoo
men slechts rekening houdt met de discontinuiteit der functie
onder het integraalteeken voor z=—=0 en 2 positief, en met
het feit, dat één der grenzen oo is. Wat het laatste betreft,

gemakkelijk is aan te toonen - vergelijk Jorpan, Cours
d’analyse I, p. 160 — dat
= 7_’-”
: ez —ap—1
i?»“!- l /- — ) rp",'_-','.] — 1§,
i - 1
P=owm L. ~ d

— 0
is. Hetv eerste lid dezer vergelijking toch wordt, daar z)p
18, grooter, als men er voor in de plaats stelt

1

' 1 fe(—a)r—1, T . 1 )
lim | - - ——dz | = lim — o1 (=)
S / &5 Sespdt =ik

en dat w (— o) =0 is, is reeds op bl. 31 bewezen.

) Zie SpirzeEr , Studien iiber lineare Differentialel. Wien 1860,




)
-

Wat nu de discontinuiteit aangaat, voor positieve waarden
van x is g, (@) door de principale waarde van den integraal
gedefinieerd :

=5 &

W, () = lim | f 2 Ao ) dz -} f % (N‘:_:T) dz ]

-:511—1—1

2 o

=1,

Deze beide stukken bevatten geen discontinuiteiten; zij zelf

en dus ook hun som mogen gedifferentieerd worden. Voert
men de differentiatie van (64) uit, dan vindt men
\ n e’
Y (X) = — 7 / a1 @—x) ! [e—(r—ax)| dz=
7 ." o0
n 7
= — — Yu—1 (@) +— . (@)

7 et % z ¥t

of Y =N (P — YPn—1). (68)

Deze eigenschap is analoog met de formule (19). Voor ¢, en
y, geldt bovendien dezelfde diff.-verg., zoodat het stel formules
(1) tot (24) ook op wy, van tocpassing is.
In ’t bijzonder releveer ik de recurrente betrekking

(‘13— -+ 1) W1l — (“JH +1—-2)y, +ny,—1 =0,
die nu, met behulp van (59), ook voor y, dezelfde recurrente
betrekking oplevert :

(I'l- -1~ [) Y= 1 (A?’l_l)

Het polynomium y, is van graad # — 1; 4, is dus een constante,
die krachtens de formule (65) de waarde 1 moet hebben.
Met behulp van (70) vindt men nu:

(69)

- (Vﬁn- 41— .’1':) L —+ n Y —1= 0.

=1

1P
N " LOs= 'T)

|

= (Al —8ax - 2%) Solo s

Y4 = ‘)1_1_ (H0 Hb8ax -+ 15 — :1}:!‘)

&l

enz.,

f}"fkd.. Limast =~
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terwijl door middel der formule (65) voor de coefficien-
ten van

=k 12"~V k_sar—24 K, _gar—3 s e e
gevonden wordt:

. 1 \
L 1= Yr—1-_ s
S A (n—1)!'n
s e el
l’n,g,—ﬂ-—(‘_"].') m
fon g = (—1)*—3 e =t \ (72

20° — bnt - n® — T 4-8n L 18

/’I"—':,_ k‘t_l‘. + : C— 7
- =13 (m—4)!n@n—3)(2n—2)(n— )

6Nz, /

§ 24, De diff.-verg, (65) en de recurrente betrekking (70)
eindelijk geven voor y, een dergelijk stel eigensch 1appen, als
n § 5 voor ¢, gevonden zijn , en die ik hier zonder be Wijs
nederschrijf':

(& —n) g+ 2 yu_r-+x 2w+ . =0, \

I
n

W1+ Mg (B —=1) g1 b 1 =0, ) (78)

L ylnt gu= ("3‘ = 1) (a1 — ow)s

y =)

X - - _HH_I_ (¢ / 2+ q,,‘i — (u + | (; 417 g 1)
De coefficienten van Yny

/"u; e Rk AT
zijn afwisselend positief en negatief; % is steeds positief,
Het bewijs dezer stelling wordt, door de sluitrede van n op
71, getrokken uit de vierde formule van (73),
] .

T Yt TES AL
in verband met den vorm van g,, en van b.v. ysen g, Gevolg
er van is, dat de rij der Sturmsche functién
Yro fn—1, 10

/ ; W,
In =Y n—1—%'n- s

An 41 = Yu —|~
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geen variaties vertoont voor 2 =0, en # — 1 voor & = + .
Alle wortels van ¢, zijn derhalve reéel en positief.

§ 25. De functie g, is op de volgende wijze in ¢, uit te
drukken :

~ =

e ()= /r_f——' LE’{*'?:;__-T" (&) @z.. . . . (74)

Immers levert g, (2) — ¢, (x) bij deeling door & — 2z een poly-
nomium op, dat zoowel in @ als in 2 van graad n — 1 is,
Daar

/ A=kl
(-)
is, wordt y, een polynomium in @ van graad »n — 1,
De formule (74) is dus bewezen — vergelilk het geval van
a, 1§ 20 — zoo het tweede lid blijkt te voldoen aan de diff.-
verg, (65). Ik schrijf deze in den vorm
A . s e ‘ oy
o e )+ 4 ey, +2€9,=0. . (7D)
Stelt men in (74) x = 2+ ¢, dan is ity e e

¥

1 (,_r 7 :
eF 241 =t / f [% {J‘] Pa (':]': B ’]k (H

— O

dus

r

'l f’
Tl

WEE Yy — €7 —E% 0y (1) - ff/ -rf [ () — o (@—1) — ¢y (@) + ¢ (x—1)] di

— )

en, na eenige herleiding,

(l ) : ot
E{Ej_' {f.b' [ x/,,} —!— (Hs—’l— l) & x” == _)4 e Py —

et
= — ne -+ { o [— 2 gu (@) 1 g, (@—0)—¢/n (@) + ¢w(@—1) +-

+xo.(@)—xgh(@—18) — 2o’ (@) F 29" (@—1)]di=

= — ne | /r:’ [ (@ —8) — ¢’ (@—0)] dt =—net 4 net =0,

—m




Immers is

Z

.
[et oy w—1) dt = — o, (0) = - | ¢ o/, (o —t) di.
Ook y, is nu anders voor te stellen,

&£

. e*
Daar nl. de 1I1tegr'z1ul/ - d= zeer gemakkelijk wordt getrans-
=
o

- " e—=
formeerd in ef/ — ——dz, geeft de substitutie van (74) in (59):
A e B

P (T) = e* /({ﬁ_q G dEE, o o . (76)

De formule (74) geeft, bij rlnmtv mlu- ratic voor het geval
()

1 (n) 1 (n 1 (n 1
BUSSTES 5 (2J+'.‘;5'(:4)" 4(~L]+“""‘ SRS Ly

Z00 vindt men, door (74) te differenticeren naar

volgens het geval 2 —0 over # te integreeren :

1 (n 1 (n 1 (n
¥ (0)= ‘1_3(:_)]*%3 :-3(:5)‘ :;.-i[” s

vervolgens

, €Nl VOI-

Een aanvulling van (72).
Deze waarden kunnen gemalkkeli ijk geverificerd worden door
de vierde formule van (73), die na differentiatie voor z— 0
de betrekkingen geeft
= 1)y 51 (0) = (4= 1)y ("l) R (U
(4= 1) 3" ns1(0) = ( + 2) y, (0) + ¢, (0) ‘ 7

(77)
(7= 1) 4" 11 (0) = (n + 8) 47, ”) + ¢ "{”) ‘
Findelijk geeft (60) de relatie
" ‘\ & o ¥y !
. “- — (..}. 7,!77: N7 '_.‘(,I
1 (0) (02— (75)
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§ 26. Het polynomiwm y, moet op deze wijze geschreven
kunnen worden:

n—1

In—_—(lo—l";“f"q’f 32l e te o (D)

Differenticert. men tweemaal , en substitueert men Yny P'n €N

i

¢ w0 de diff.-verg. (65), dan vindt men
i'-"_'l

(n-++1) a 4 % t {(-1) @i+ (1 4 ) ¢/ - ¢} + 2 ¢/, =0,

of, met behulp van (33),
?&—1 w1

(4 Do+ T a{in+1) g+ (1 +a)gi+a¢’}=2 3 g

x ¢’ is door rln diff.-verg. (15) hieruit te elimineeren, terwijl
de formule (19) de verg. ten slotte doet overgaan in de identiek
te vervullen voorwaarde

T |
(n—+1)a, -+ ,_: [ (71 e — 2; @i — 2 a4 =
waaruit men vindt:
(n- 4+ 1) ay=2 4 R
n-+i-+ = I (e i, _
@ri41)a= I# Ct+Deiga | (80)
= \
; 0 ;
zoodat
j
L gt
s 71
. Sn—4
( oo § — = e
n((n—1)
4 (n—2
'.r{” § — ( — )
nn—1)
o __ 5n*—25n 4 32
f—=b — ’“,(”’ )(” u))
; 2 (Bn*—19 n 4 32)
Uy — ¢ — e

n(n—1) (n—2) ”’
enz., en b, v.
3 9
1 () = 3

———f%fn(?)‘lf ’I”(")‘{“——‘T(')
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i3, Daar in (80) «, —1, n en ¢ positieve grootheden zijn, heb-
ben alle a’s positieve waarden.
Uit (79) en (32) volgt nog
/ 6= ym @q dx — 0 vVOOr Mm=1n,
uit (80) (5 1)

LY

fﬁ_‘r Yu--1 P G —1-.
' o e | |

§ 27. De int.-log. in verg. (59) heeft een oneindig element
voor z =0, zoo wx positief is. Ik heb daarom z door — =
vervangen en ook de integraalvariabelen van teeken ver-
anderd:

& dz=¢—+ L (SX) L /i_'_(*'g_‘)_ dz. (82)
Pu(—%)  @u(—2). Z

z
De heide integralen worden nu niet meer, voor az positief,
oneindig, De functie p, (—2) heeft slechts positieve termen,
die ik alle kleiner maak, door de binomiaal-coefficienten weg
te laten. Dan is dus

e a

e Wik
g (—2) > 1 - ;I F o =
of
] Pu (—) | =
derhalve
‘ ]
. e
|5 0= 2 i
d. i. eindig. Verder is
@ A x
‘a—2 (p__ )t ‘o— & (o )i =& (& __ )
/(, ,,.{:_1’{) dz = /J ,_,Ejrl 2 dz A : ;'firq— dz,

¢ \

zo0o A voldoet: aan x ¢ A < . Uit 2¢ A (in den eersten
; z2—x  A—ax . . ] Rl
mtegraal) of - Yy (men herinnere zich, dat & positief

& L

i8) volgt
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A . A

(e (z—ax)" A—g\tfe ¢
j ——:”{._*_1 dz < [ w ] / F dz.
T A E

e—c(e—a)
/ (T—l—-—' dz kan door den factor

Hoe groot dus A ook is, -

~

&£

A—z) . : .
( — | zoo klein gemaakt worden, als men wil; de factor

A

(e~ ; o ;
/ —— dz nl., het verschil van twee integraal-logarithmen, blijft
£ '.

eindig, In den ftweeden integraal is

~¢ 18 en. 23 A,
dus @ -

b, il

{

T Aed’
in absolute waarde. Ook deze term kan dus willekeurig
dicht tot nul naderen, ') zoodat ten slotte

7

oA 1 (e—* (z—m)* ..
lim l . 2 / { ; v) dz | =0
n= o L Py “*”'.J.' ‘:“’-I_ |
: W (— : .

is, De breuk x {( )' heeft dus voor #n = <« den int.-log.
P (— L) 3

g /i-,—-u dz tot limiet.

~

&

Aan den anderen kant voldoen y, en g, aan dezelfde recur-

H

) Dit bewijs is ontleend aan cen verhandeling van LAGUERRE over den
int.-log. (Bull. de la Soe. Math. de France, T. VIL p. 76). 't Komt mij

voor, dat hij zich van den factor —— wat al te gemakkelijk afmaakt

P (— JT) L

1

door eenvoudig te zeggen: yJde feral observer d'abord que lo facteur ( )
B Pul— X

tend vers zéro.”
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%n (—2)

rente betrekking, zoodat ST, 3 als n? paderingsbreuk he-
. P (— X

schouwd kan worden van een kettingbreuk

DI
(ly e i —

| a; —{)7“’----—=
(y +  enz.
waarin dan
Qar 1. : -
sy Jlﬂ!_ﬁ ﬁ_‘r{ul] Dy g == ~ _’i’ 7
Uit de waarden voor y; (—) en ¢ (—a) volgt bovendien
(o thy - Iy 1
e ey
zoodat @y =0 ¢en b, = 1 is.
in (— &)
P (—T)

is dus naderingsbreuk van de kettinghbreuk

b4+ o ——
S e
(f i = , . (83)
9 @ enz.

welke kettingbreuk nu in nauw verband moet staan met
den int.-log,

§ 28. Dit verband komt in deze paragraaf nog duidelijker
aan het licht.

o
. . , ! o (e—* :
Herhaalde partieele integratie van den int.-log, / — (z geeft:
e—* , 1 a1 it 111
Fo e
I 5 L2 i x* '
xr
%= d S e—* d
(&% gz o [FeE o2 ‘
e i o m a3 | AN —_— @ 0 FTRE S AM ! e AN
—| ( 1) ! / E:.':Afl — 6= ° 'I\] I ( 1] m: .-‘/ am -1 (‘S l)

graad m, S van graad m—1. In het verschil




4h

van 2 met de »' naderingsbreuk 4 i

an —— 0 Ae 7°° 1 ErINgSOreul — — ——— —

M : "N Co+Cixt.. +C, "
mogen geen termen met xz—1!, x—2*, ... &—" voorkomen.
Uit dezen eisch volgt het stel voorwaarden

Cr. = (,1] 1! - (.:3 2! = (J;; 31l —" d +(* ].)”' C,, n! —— 1} ’

Cp1! —C 21 4 G, 31 -Cy 4! + oo (—1)C,(n+ D=0 o
’ ) (59)

Con—DI—=Cymn! 4 Coy(n + D) —Can42)! .. 4 (=11 C,2n— 1)1 = 0, ’

welke vercelijkingen door de formule
o) i )

4]
/ et de—(—1yr!
- x
overgaan in
1 Nde=0
— 0
0
~ 0
Z ] =1 oAy [ il . i
f cxNde=0\ 4 / e x* N dx — 0 voor % < n.
S5 JoO
--------------- =o0
f grn = Nidz—=0
: XL

Uit § 8§ volgt nu N=0C ¢,(—x). De naderingsbreuk wvan

D , - 2
de reeks o heeft dus ¢, (—2) tot noemer, op een’ constan-

-l

; 3 P
ten factor na. Daar de teller, blijkens den vorm A Van

graad (n—1) is, en overigens teller en noemer van een nad,
breuk aan dezelfde recurrente betrekking moeten voldoen,
moct y, (—a), behoudens een’ constanten factor, die teller

o ) 7 x ] .
zijn, zoodat - tot nad, breuk % 1'(. : ) heeft; een bijzon-
M @Pu (— ) -

der geval leert, dat £=—1 gesteld moet worden.
§ 29. Het resultaat kan nu aldus worden samengevat:
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o (=) , n* nad, breuk der kettingbreuk
gu (— )
1
L |
14+ —— 4
] —I— Xr — — =
H -+ @ eny,

; 1 921 ,
18 fevens nad. breuk van e—~ (T —|— = ..J,

welke reeks blijkens (84) nauw met den int.-log, in verband
staat. Ofschoon nu deze reeks divergeert, convergeeren de

-+

Yo (—2) ) fle=—=
nad. breuken t’( -, en wel tot e | —  dz, zoodat men
P (— X 2

. ‘ - ve (—2) .
recht heeft tot het besluit: r_-!—""—(g?..) 18 nad. breuk van

den int.-log.
In de boven aangehaalde verhandeling (p. 72) saat LAGURRRE

. . ARGl
van den int.-log, uit, d sfinicert * U :)

~¢ als n% nad. breuk
q n ( '{“.,)

Y

S e :
van s leidt: dan door de eigenschappen der nad. breuken

een vergelijking af', overeenkomende met (66) en vindt daaruit
de diff.-verg. (15), waaraan ¢, en w, voldoen moeten,

Voor , wordt vervolzens ook de vorm (64) gevonden, en
daaruit de recurrente betrekking (70), die nu ook voor P €1
1o gelden moet; ook de integraal-cigenschap wordt genoemd,
Van ondergeschikt belang is, dat LAGUERRE voortdurend met
een f(x) = x! g, (—x) wer kt.

\" :

Afe—*
de nad. breuken van e f — (2

Voor x—

1
) 78040 859580
33277 1309227 1441799 " **

1 4 20 124 9920 T794(
277 2347 209" 1546 183
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of
0.5000 ..
0.5714 ..
0.5882 ..
0.6933 ..
0.56951 . .
0.5958 . .
0.5961 ..
0,6962 | .

enz.

De werkelijke waarde is 0.5963 .
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§ 30. De definitic van ¢, (x) in § 2 vereigchte de voor-
v

1 retads :
waarde » ¢ 1. Is »> 1, dan kan men T, ¢ 1—v ontwik-

: 1 s
kelen naar opklimmende machten van ——. Ik definieer nu
v

den negatieven coefficient van o= als ¢_, ():

xy -
N s R TR BN
b L l_]_}_kr f— ;.jﬁj ] ¢ —_— -—?—)v- o = - 2 liT - . (SU)
- ' 1=

De ontwikkeling van

1 1 € b9

g = e S f+ ?
Al - [1—]) z![1—1-}
v _ ) v

-
die nu voor » > 1 geldig is, wat ook @ zij, geett
2amtl)  zamntl)(nd2) .
qj —_— (9“‘) -— I _“i_ ""/)371 ;)(’- —rvi_)—j_—: ..1,, ._%7‘7 - (.; 1 ——I"_"' ’_ll" . .,QLII .I[l[. (h()

Noemt men den A% term dezer reeks u, dan is
Up1 x4k
w . G DY
zoodat de reeks voor alle eindige waarden van x en %

convergeert.

[

§ 31. Stelt men —=¢, dan 1s (86) ook aldus te schrijven:

3y

s



= a te
‘1 il t:! — e, 7] 1— ¢ - = or ;l*—-.‘!
P\ Lt Pgg s
of
. J. V'I‘.F_ 3
g n(—x)rl=——-p 1—t=23¢g ()",
> g—u (—%) — > g, (%)

waaruit deze relatie volgt:
g, (—x) = ga—1 ()
d. 1. (RSN ) It py o (@) TS O (58)
Zoo wordt uib (87) gevonden
S

sl (q,) =1-+x+ ﬁ_i_f + ... =€,

.3 3

: _ L@ xd
e—s (@) =1+ 22 55+ 4 gy T e =

(I—F])—ﬂq”\ a€).
Het resultaat (88) is ook te trekken uit de verg. (8):

l{).F‘ I
Pa (%) = m((h) (6= 2") =,
v I 1. 1 ; SOV i
A PRSP I,

RTINSO

TN ,
I = pesllier —n—1)2? -n—1] 2
"""I_“F[ | }[!‘( 2 ]:! "*‘[ 3 _}:_H‘*"]:

— Ry ( = :X.‘),

zoodat
‘ P—n (L) =€ Pu—1(—)
Substitueert men
Pn—1 (—— .}.') = (= ()

in de diff.-verg. (15), hier natuurlijk gewijzigd tot

L@ w1 (— ) (241 g/ 1(—2)+ —1) pu—1 (—) =0,
dan blijkt ¢, (x) aan deze difl.-verg. te voldoen:

X l';[‘,/—r,.! + (1 - :v] ‘p/—r.' — q"——— n — (} . . . (S"]J
Men had ¢, kunnen definieeren als het polynomium of de
reeks, oplossing van de diff.-verg. (15), waarbij dan omtrent
n geen enkele onderstelling behoefde gemaakt te worden.
Tot nog toe had echter, krachtens de in § 2 gegeven definitie
1




H0)

van g,, alleen het geval n = een positief, geheel getal recht
van bestaan, terwijl voortaan » ook negatief zijn kan; aan de
diff.-verg. (89) voldoet dan een reeks, die besechouwd kan worden

als de negaticve coefficient van A de ontwikkeling van

1 _ re
l__e T—» voor het geval »> 1.
—

Uit (88) volgt nog, dat in de ad inf. voortloopende reeks
e—* @ _, (x) de coefflcienten van x# (p = n) alle nul moeten
worden, welke voorwaarde tob tal van betrekkingen aanlei-
ding geeft.

§ 32. Daar de reeks (2) en de diff.-verg. (15) vroeger n
positief onderstelden, maar nu ook negatieve waarden van
n toelaten, zijn alle eigenschappen van ¢, die uit (2) en (15)
volgden, onmiddellijk in eigenschappen voor ¢ ., om te zetten,
eenvoudig door 7 van teeken te veranderen. Overigens kunnen
deze eigenschappen steeds gemakkelijk gecontroleerd worden
door de formule (88). Zoo geldt (38) (§ 11) en alle relaties
van § 5. De recurrente betrekking

(l—n) g—nt1+ entx—Do_,—nep_,_1=0 . (90
is daarvan de belangrijkste. Ze volgt natuurlijk ook uit (24)
door daarin (88) te substitueeren. Analoog met § 3 ¢. verder is

¥

P — F (H--, ﬁ-, 1,'7"-‘ )9 AL o (5)1]
i

4 —_—

Enkele andere in die paragraaf voorkomende vormen ver-
eischen echter een wijziging. Zoo vindt men gemakkelijk de
formules

.
j" e 1—1

C T’

P —an (X)) =

e = ::‘] = f]”’ Ly ()
i (D= (J./ = f e ol ( )

1
e (i

P —n () = C / ! ]
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) g—*x ({7 In—1 .
(G111 (I.l,,, —t] ( = -:B) — (” ] I’)E ( t?] | (}m 1 {fl) s
1 d Y1 )
( 1 Py — i — 1 pxy —
dus P—u (@) = (n—1)! [ri’.:u ] ) ‘ e
L (93)

— (-ﬁh_l])! (Y{fi— =2 =t \

Het additie-theorema (49) wordt door toepassing van (88):
Pn @+ =0 @ g 1)t w1 (@) g2 ...
vt e @o—ur )+ (®) 9. )
a1 @ ) Fp_ngra@) g_a @)+ ...
S () (P L) T ()
Bindelijk leert de formule (42):
G @)= ¢ g (D)= (n i ]']t.- 1)t 9n—#—1 g ().(95)
§ 33. Integraaleigenschappen voor de functie ¢, worden,
steeds met behulp van (88), gemakkelijk afgeleid uit de for-
mules (27) en (28). Men vindt:

[t

I N A SR Tl
/ i T (@) S e () dax =0 voor ¢ n ,t .. (96)

=), ‘
= ISV ODBRI=—="T")
Analoog met § 6 zijn deze eigenschappen ook af te leiden
uit de definitie (86).
™ ‘ iz
De reeksen Lo (0 T -t gl—t¢
: ' 1 —1
en
*4] ',[ wr
Sy (U" = ———— " e l—n
R 1 —u

geven na vermenigvuldiging

1 — ut

c—¢3 ¥ () () w" i i eld—na—n*

R e (L) [P (S i (= S e =08
A P / (1—u) (1—1)

of

w @ _ ‘ 1l S 3 13
>3 /ff—"' pm () =y (2) U™ " de — — =t uwr w4 ..
it

1 —af

—t

oo
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d. i /.f,a—-" g () sy (2 ) d —"0F Ot N1S
naarmate 5 i) n of m — n.
Ook wvolgt uit (27), (28) en (88):
0 - g
/ G —w () @u—1 (—) dx =0 voor m n, (97)
= — [ SVOOT 7 =1
En ten slotte:
0
/ .q-__,, () ™ doe — 0
e v 'v.m"n' m<cn—1. . . (98)

/ P—n (&) 0, (@) de =0

e '
Uit de laatste formule volgt, geheel als in § 9, dat de
wortels van ¢, alle reéel en negatief zijn. Ook dit resultaat
is weer uit (88) te trekken, daar e® slechts nul wordt voor

L= — 0.
Eindelijk overtuigt men zich, analoog met § 10, gemakkelijk
van de waarheid van deze stellingen: Tusschen twee opeen-

volgende wortels der vergelijking ¢_, () == 0 ligh één wortel
van ¢—,+1 (x) = 0; de verg. p_, () = 0 heeft één’ wortel
tusschen nul en — 1. ;

§ 34. De formules (29) en (88) geven recht tot de ont-

wikkeling
LR g
Bt — .:, AR 5)) S S R (U9

waarin dan A i door de zooeven gevonden integraaleigen-
schappen bepaald wordt, En wel zal men in § 41 vinden:
7 : TR Pl
A (‘—- l)' : [f f 1)}{ AT LT (‘IUU)

Met behulp van deze formule krijgt

= | —n)atr
P—n (FT) = SR 1)! ( .vf] P!

= 0



den vorm

@ (rz) = t_l (—1)e [_-};]:_—}YE"(—[).:—I—I\‘ H[;) Pie ()=
i n\t=sl—n =k,
== (= Dty @) () 307 ),

zooals door vergelijking met § 12 gemakkelijk blijkt.
Of ook, onder de voorwaarde » ¢ 1,
P rt — : =E)
it ("q) — = (7 1) (l + J) Ty ( l’z) M (SSF ) (101)
Aan den dudcu‘u kant kan men g¢_, (ra) vervangen door
e gu—1 (— 7x), Zoodat

rw) — e+ X (1)t [’“ ) 1) ) s 102)
Ji=n ( L) P T ( e Pk ( (1 _}_ ,.‘)A-—.f+1 ¥ ( B
is. Voor r = — 5 worden deze formules
1 on o= :
P (= 5 .’I‘) — ) AR (= @) a
en

(103)

s I: ] ‘_’“—"'”‘(u 1 () ~
) n — — L S az (20).
’ 2 Pt et

§ 35. Het resultaat (58) is onafhankelijk van het teeken
van s, welke grootheid immers uit de diff-verg, geélimi-
neerd 1s.  Dus is ook

&

T <
waarin de grens — o in - o veranderd moest worden.
Stelt men de formule (88) in (A8) dan komt e
; o, -k ( {r f"" i
Yn—1 (— X)) = g, =1 (— x) o i3 (.), f.x,

zoodat ‘ . ‘
Yy_u(@)=¢€y,—1(—x) . . .. . (105)
is. De diff.-verg. voor ¢_,,

Yy +1—x)y —ny=0,
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o4

heeft volgens § 22 de beide oplossingen

ﬂ? —n
n=c|—| (@—re—?
th Ao /

] w—1
2 ﬁ_( a ] (r:_t"'—l Gl

dx

en

Het blijkt, cf. (93), dat #3, op cen’ constanten factor na,
— ¢_, (x) ig, terwijl de formules (63) en (109) de identiteit
van i en w_, aantoonen.
Daar ¢, en , aan hetzelfde stel formules voldoen (§ 23),
moet krachtens de vergelijkingen (88) en (105) het gewij-
zigde stel, dat voor ¢, geldb, ook op Y, van toepassing
zijn. Uit de relatie
xr
. [ f-‘f: oy {

tp,u—l = ¢ x”" -1 '—l_ Fn—1 / e (i": . . ' (‘.'}'l]

is gemakkelijk af te leiden :

“—__Q' dz, . (106)

=

V7 {T) = Yu—1 ( :I.‘.) |- Q—n (}) /
: T Yoee(=iL) i e ‘:l'
waaruit blijkt, dat * 7 als naderingsbreuk van { — dz

P_n (L

~
0

heschouwd kan worden. Nu is echter de noemer geen poly-
nomium meer, waardoor het karakter van naderingsbrenk
wel eenigermate verloren gaat. Ik heb daarom de vele
eisenschappen van ¢, en y_, (en van een eventueel in te

yoeren functie 4 ), die nog uit de eerste twee hoofdstuk-
ken af te leiden zijn, niet verder nagegaan.

g 86. De diff-verg. der hypergeometrische reeks (zie b.v.
Forsyr's Diff. Equations p. 192) laat 24 particuliere oplos-
« . . &L
singen toe, welk aantal zich in ons geval, waar door —-

P
vervangen moct worden, en g = o, y = 1 te stellen is, be-
perkt tot deze vier:




1. F[m-m,(i,l,—'tif—),
(1- I; ]gﬁ J*‘(ﬁ, L4 m, 1,—%-],
) (1_%]_‘3 l+*[1-|-m,_f;,1,"f’—;),

n
4, I [_M _ .g, | — _V) ;
! | ? r}

De oplossingen 1 en 4 zijn beide = ¢, (x). Daar

i 2 |—F
| [ 1— = } ==
P g==

15, zijn de oplossingen 2 en 3 te schrijven als
a

{1’[1 ?a—H 1) (n4-2) 2 (n4- )(‘H‘ (”%V)Cg%—..']'__

Bo

(n+-1 ;
L T 31 g1

= 5 P 1y (— ) ="y ()
Alle 24 oplossingen zijn hier dus teruggebracht tot één enkele ,
iets, dat geen verwondering kan baren, als men nagaat, dat
alle oplossingen combinaties zijn van de twee hoofdoplossingen
B (e, 857, @)

on =T Fat+1—y,B4+1—y,2—y, 2,
en dat deze beide voor ; = 1 samenvallen,

§ 37. De functie « = x*¢® (x), verwante functie der
eerste soort.
Differenticert men de verg, (19) herhaaldelijk, dan vindt men
na eenige herleiding

Lo =7 (1 — D (gu — 2 gy pu_s),

Py P n = T (‘i?f —_— ) ()J —_ _.) (1}, - 3 P —1 ,I, a9 Pr=Sii= l)“,;-:&) N

. . . . . . . . . . . . .

dus, In qymhn!w !If' HL]Ill]i\VI]/J(‘

«=atyt @ =7 G Y

Zoo wordt fu
— — 1kt

ot 9. o) = (1 ) ) |

(107)

TR
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Daar de functie y, ook aan de verg. (19) voldoet, wordt een
verwante functie der tweede soort in dezen vorm verkregen:

;.__.—'-,(—(’U'](u(‘;)"*( :)]( {‘J_]) r' ?7:'

en L. (108)

wt y @ () = (— 1)k [ ,L) /’(2117) \

Terwijl de functiétn @@ en % aan de verg. (25) voldoen,

Zijn « en ﬁ nplmsinf-ron van

x*y' —(k+x— Dy +(xn—28y=0 . (109)
Eliminoe]t men xn — 2k uit de vergelijkingen

o’ — k+x—Dxae’+(@n— 28 a=0

en 2B —ktx—Dxp +@xn—28p=0,
dan komt er, geheel als in § 18,
E—)- log (' — «f)=1-4 Tl
(I/f)‘*"((i‘)” — [ e? 1t ’1,
dus
- r —1
e*
G —AY / S (
; ¥ J i
en Rt e (111
- ot ok —1
= A / —3 -—-rr';.‘

Dergelijke betrekkingen zijn ook voor xfg ® en xty @ te
vinden,
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§ 38. Daar ¢, (x) een polynomium is, kan a* naar ¢'s
ontwikkeld worden, terwijl dan . de hoogste index wordt:
I P ‘ Y 4 3

=20 (@)« . o (29)

De integraal-eigenschappen van § 6 bepalen de coefficienten
A;#* in den vorm

N = / rte—=g; (@) dr—
J P 1Nk xt ) \ 1\ o] [+ ]!:]
_/ 2t e _E, {(—2L) i (f’.] Qi— 1 - 1) (/}] ( I . (111

€

Fehter ook, met behulp der formule (8):

AREL 3 e 5 — g & { : i p - 1 ‘.J.r W[4 ‘i) s piop— 2
IV — / at e [(? ] (@ e—*) dx = j!‘/.u d. = (xtesE)

",
0 0

Bij partieele integratie verdwijnt de term

b d )" ‘i g — 2
i (r(;}?) \Hckagil)-

een polynomium > a*+! e—+, voor de grenzen 0 en co.

7

Herhaalde particele integratie geeft dus

-
7 i—1
u st | L ; N T
DA | B = - ate—) dop =
‘ il / [r(:u ( )

(]

— 1 e\
:(__ )‘H(N—{‘.! )/ Jt,u.._ [{]l)r} ('lc-——. {! —
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/ =il e—* dx

o
0

pe=1....(p—t+1)

of
A.-_f‘:(f1)f,#\-. N (30)

Van deze formule is al in de paragrafen 6 en 12 gebruik
gemaakst.

Mag men aannemen, dat a#* ook voor u = een gehroken
naar ¢, (z) ontwikkeld kan worden, dan wordt

At = (— 1) (}:) [ (u 4+ 1).

De vergelijking der beide waarden voor A, waarin twee para-
meters, ¢ en g, voorkomen , die slechts aan de voorwaarde
¢ = p gebonden zijn, geeft Lui zeer veel getallen-eigenschappen
aanleiding; ik zal hier één er van opnemen. Voor &= u
vindt men:

"z (e —]—7 ly!

: f_jl_:_ (U- /('-).' N .— )!L' " » (1 ] :2}
Nemen we b, v. ¢ = 10, dan wordt
11! 121 13! 20!

i 7rsis1 T T oo

= 1 — ] 10 -+ 2970 — 34320 4 210210 — 756756 - 1681680 —
— 2333760 - 1969110 — 923780 -+ 184766 = 1 = (— 1)*.
§ :-“.). De vergelijking (30), geschreven in den vorm

A = (—1) u! (:‘) B 115

doet zien, dat de coefficienten A in nauw verband staan
met de binomiaal-coefficienten, een verband, waaruit natuur-
lijk de overeenkomst van \ul eigenschappen volgt. Zoo ligh
onmiddellijk deze eigenschap voor de hand:

A Y A e R S (111
Z00 volgt uit (18)

oo X

'l ~

i\.L,‘F' :f rha==% @i de — / xte—* ((p"; - 1_0{; i 1) d.

-

O 1]




59

Bij partieele integratic valt de term

(i — git1) & e~
voor de beide grenzen weg, zoodat
.'}:
AT / (wax —t—ak)e—*(p— git1) A —
‘o
— 4& —}— 122 J\i,+1 l ;\.;‘u = ;X;_':;.

Derhalve
A=A~ — AfT, .. . .. 1B .
een resultaat, dat natuurlijk ook uit (113) dadelijk af te leiden
is. Stelt men in (115) achtereenvolgens 2 = 0, 1, 2, ... m:
4\0?‘ =) !
_"\l‘ — [J\[j__] = \{;L 7])

| A B—1 p—111
1\-31.1 ——3t (b (4\ m ke 1\ m— 1)
dan komt er door optelling
n
: LL L - o
S AN SN l_. T o e oo ARk
QO

waarin voor m = p het tweede lid nul wordt: een bekende
digenschap der hinomiaal-coefficienten, welker pendant deze
relatie levert:

S(—DAF=20u. . . . . . (117)

§ 40, Als uithreiding van een Vraagstuk van het Genoot-
schap ,Een onvermoeide arbeid komt alles te boven™ (Deel
V, p. 339), geef ik hier deze curieuse eigenschap der binomiaal-
coefficienten :

(et oG G+ =

= (—1y n![-]— w1 Fe+pg+....0]0)0118)

= (—1yn!,
= 0,
naarmate het aantal der factoren (i) (E-p5) ... (1 44)
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n - 1, n of kleiner dan # is. De grootheden &, #,.... 4 zijn
volmaakt willekeurig, Neemt men b. v.
1 , 1

n=6, a=2, f=—7y=10, I=5, =0, t=—1,

dan vindt men
0 4+ 0 4 6000 — 72800 4 249480 — 323400 4 141440=
— 720 = (— 1)*6!

Voor het speciale geval « = 1, # =2,.... A =n, gaat (118)
na deeling door n! over in

G An L0 (n oo — 1)E(n = 2)! : 3 gl

3 (~ 1_)-.[ - ]({J > [u 2 E“im:(‘_”u? . (112)
een relatie, die ook in § 38 gevonden is. Zijn er n 4- 1
factoren, dan is 2 = n 4+ 1, zoodat

S (- 1y (';] GAD G2 ... i+ nt1)=

= (= gt D @ E D e2) |, |

d. i
n=l (DR (=) SR |
S iy e G

of : ' ' s (119)

”E,l ( e 1‘)1 [“» ’;!* -tJ (H ';:7 l) — (— l)“ =1 1. $

Voor n — 7:
7 — 886 - 8780 — 16800 - 84650 — 88264 |- 12012 =
AL O I (=] ) 7
Het aantal dezer formules is natuurlijk gemakkelijk uit te |
breiden. Analoge eigenschappen gelden steeds voor de coeffi- ‘
cienten A#.  Zoo blijkt uit (118) onmiddellijk: ,

EAPGt )Gt B (b= R

= (i)l |:£lu, (w+1) 4 a-p—4.... /.], y . (120)
— (— l\)i"" wlul,

— (1}, )
naarmate het aantal factoren p 4= 1, w of kleiner dan p is.
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Z00 gaan (112) en (119) na eenige herleiding over in
:, A;" J.\.,,"l et

= 70;??)7 — nl J

€1l )
n—1 _i\;;f—l;\ i ‘
4 L 1 j} ’

(121)
o e
§ 41. Vermenigvuldigt men de vergelijking (29) met e—=,
en maakt men gebruik van de betrekking
P—i {?) — € qi—1 (— lj‘r':)r
dan vindt men deze ontwikkeling:

L

(=i .’I,'l"" — .‘Al_;lu' JI=ias { —_ ;]']
of
Pl |
e A i P_; (."U) A% y A= g (l .3.3]

waarin nu
AL =(—1)" A5 = (=1t ] ,u.r‘,."'l] . (1923

is. Natuurlijk zijn, analoog met § 38, de coefficienten A “;, nu
men eenmaal weet, dat de ontwikkeling van e 2 naar ¢ _; ()
mogelijk is, ook door de integraal-eigenschappen van § 33
te vinden, :

IR ‘,.- AT e 1 .”.'. d " 1..;.._ 43
A 4, egtace Qi () dn— “ = )Il/.llj ((ff} (o gty ==

0

! ’ .
—(— 1)i—=1 - Sl e iy, L
e (1 ft—%—-]')[(.i ”l{r o de = ( 1) 1(',‘ _]J‘rr!.

§ 42. In de beide volgende paragrafen voeg ik nog enkele
ontwikkelingen bijeen, waarvan men de mogelijhheid weet,

Het polynomiwm ¢, kan naar ¢’s ontwikkeld worden, Hier
wordt

) 1 ¥ o

I oo
A== 1 (it .}_’M o = |e=% Ep i / (= qr’; dx -+ f ETF (P @i da,
o 0 . o

0 0 0
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g’; is te vervangen door een reeks, geordend naar g,, waarin
i —1 de hoogste index is. Daar i =mn—1, volgt wit (27),
dat de beide integralen verdwijnen. Derhalve

A, = | e~ % . p; ‘“ = —1,
zoodat 3
n—1
Pl (00) = — = g () i SEEE (65)
is, een resultaat, dat § 11 reeds opgeleverd had.
§ 43. De definitie
1 Tv o
; g l—r=3 g, ()2 . . . . . ({1
1—v X Pu () (1)

~

sluit in zich, dat ook voor functién als e de ontwikkeling

i eI v ;
naar ¢, mogelijk is. Stelt men nl. ¢ = =T dan 1s
l—72
‘l 2

; £
et = (®) + g 92 (@) oy (124)

t
NIEN (141

onder de voorwaarde mod. v ¢ 1,

of modl. 1.

gL
Tefata:
Stelt men t— o (cos & - 1 sin &)
dan gaat deze conditie na eenige herleiding over in

0" &
1+ 0*°4+20c088 "
Het punt ¢ mag derhalve overal genomen worden in het ge-

/{- - }}LU:] , dat rechts lighb van de lijn /—]— — = 0. Reéele waarden

Z A LR
van ¢ moeten dus > — - Zljn.

Ontleent men aan de definitie (1) alleen de wetenschap, dat
de ontwikkeling mogelijk is, dan kunnen natuurlijk de int.-
eizenschappen van § 6 de reeks (124) ook opleveren :

> o0

. ) 15 -
A; :.—:-l{{'"'” @i () e—* doxr = f g—2 U+ ”( 1—ix - [;) ) a1 4 (— 1)

0 0
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Daar
1 mh Wi 1 ke .T_ 12 pk—1 1
/l . /C U ) x»(/ (l.).r —_— 6 ‘l, ; f) ({ F ) L ({1 p— Il[__]__-l_)"tTl

18, nmlm de — hier vervulde — voorwaarde: ¢ 4 1 = positief,
heeft men

1 i ) 1 ) 1
Ai::z|I(l"i4—1'*[2}ufPTPﬁ'““")ufs1r)::

1 1 Ll it ]
= [1 H'—_l"] (1)L )

Voor =1 wordt de reeks (124)
1 1 1
e =5+t a@+re@t...=pa—a),
zooals ook uit (95) blijkt.
Is n nl. niet een geheel getal, grooter dan 1, dan is het
tweede lid van (95) geen polynomium, maar een reeks:

p—n () = & { qu (@) 21 — (0 — 1) gu (&) 2~ +

(n—1) (n—2) :
el RO R
of
P —n (’IC) — Pu—1 (— ,‘1.‘) — On = (H — I) 1 (‘»;_3') ‘___J‘::—:E- +
n I) (n nilk -
+ B R g, (o) o
d¥iG Voo E=—ius

- 1 ] (.17\) g2 (;]7‘)
g1 (!):—2— 53 + 7/}{_}_ /23
§ 44. De definitie van § 31,

J" S [{ ’ ; 4
e ()t — e1—t (mod.t < 1),
1 : ] = /
l
levert, onder de voorwaarde » > -, de reeks

1) Deze ontwikkeling komt ook bij LaGueErrE (Bull. de la Soe. math. de
I'rance, Tome VII, p. 79) voor.
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(u — 1)1

'

pri

g_n(z). . . . . (125)

)

S,

T e
1

; s 5 1
De formules (124) en (125), met de voorwaarden ¢ » ——- en

1 gy
% » ——, vullen elkander juist aan, zoodat voor elke waarde

=l

van # de functie e* naar ¢, () of ¢_, (2) ontwikkeld kan

1 . : o
worden. Het geval { = —-maakt een uitzondering; echter is
,], . ,1,
giSil=— g=ipan it

dus, volgens (124), wewny, L. *
’ .
B, Albws 1 s T e 1 5. ]
e =14 g5 71 () + 01 ¥2 (%) + g3 P8 (@) + ...
) L B 'S ‘

Uit (125) volgt nog A
gse—= T (L)
cf. § 31, dus ook
Pe— 1 = (l'f'};)
: 1
Voor u » — geldt derhalve de verg.

s 5]
o

; 1 w— 1 :
P—1 ‘(‘?f,.L-‘) — Lf?‘ 1) | (’L) + ”_-— P—2 (:‘tf) + S -] .

De ontwikkeling (125) kan ook uit de integraal-eigenschappen

van § 33 afeeleid worden. Wil dan echter een stuk als
ke
oA

; —]r*-*’["'*”, dat bij de partieele integratie optreedt, nul
" — ' 2

worden, dan moet # > 1 zijn, zoodat dan de formules (124) en

. R ; | |4 e
(125) niet meer aansluiten, maar voor -=wu< 1 twijfel zou-

den overlaten. Daarom prefereer ik de afleiding van (125)
ut de definitie @ _, ().

i S ] . ATl 1 1 s s 3 & T ) 2
Overigens kan men e™, waarin —- <% ¢ 1 18, in den vorm

ef e =1 door middel van (124) behandelen.

§ 45. De vergelijkingen (2) en (29) vertoonen een eigen-
aardige reciprociteit, die nog beter aan den dag treedt, door
il g; () symbolisch te vervangen door o,
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(2) wordt dan:

en (29): (126)

Hieruit volgt deze stelling '): Als een naar opklimmende
machten van @ gerangschikte functie naar g, ontwikkeld kan
worden, zoodat symbolisch
_ [ ()= E(b)
15, dan is ook
[(®) =F ().
@ is hierin steeds te vervangen door k! g (x).
Z00 volgt nit de definitie van ¢, (x):

[ (43 - {.: (IJ..’
= Tt — 3 - et d
1'— f( = nl! 5
of
| tr
-F TR - p—1th
[ - !f_ t ( ]
Nu moet omgekeerd ook
l L) =
I _%_ / Cl--1t { /
zijn, dus .
s oo (LR ( I L # @
] L |- ¢ 1 ¢ + 21 (1--1)° L oL ) '

D

L] { % ‘
e z[ T Ly e ®) ""u o P2 &) + e ],

de vergelijking (124).
§ 46, Hawpuin *) tracht een functie te ontwikkelen in
dezen vorm :

r@ =30 (5)

) LAGuEgRE, t. a. p. DL 81.
2) C. R, xev p. 629, en Bull. de la Soe. math. de France, Tome X p. 67.

o
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In de onderstelling, dat de ontwikkeling mogelijk is, vindt hij:

1 ol

(0 = —/ (kB -

: kl. AEEZ) da

Ik weet niet, hoe Haremix tot deze uitdrukking gekomen

18.  Waarschijnlijk niet langs den weg, dien ik hier inslaan

zal, gebruik makende van de formules van § 12. Ik integreer
de beide leden der vergelijking

k—1
] (e =) e (127)

o, - O ey e e,
/ (‘”, :)' {;"}_) = (/'1_ "Ji— 2 (,, Pr—1 [—}‘—- ] F: . - (].3'5)
% 2 Ly
tusschen de grenzen O en o, na vermenigvuldiging met den
factor .
) s | o (Y L — 1 (( e Al p— &
e~ 1 Pa—1 (X) — o () | = L\ (" e—").
Daar nu
i el .
P —1 (—;_—]-— 2D A L {1 ) R (40)

is, verdwijnen alle termen van (128), die /& ¢ n hebben. De
term met & = n,

(,",, { [o il (]““ g (\l]'.i i (!-“} n’l,‘l_' -
reduceert zich tot
('?h' /(‘“-J 'i['--’ w' ”{j‘ —_ ('u'

Immers is voor & = n (§ 13)

G —1
Bl (” = )

Bij de termen, waarvoor % > nis, komen van de formule
(40) slechts in aanmerking de beide stukken
F—1 \ o & —1
B, "1 gu—1 (%) + B, " g, (),
die dus na integratic geven:

vk —1 1).”\ -1

[e=*(gu—1— g)(BiZY gu—1 + BL ™ ' g)dw=Bi 1 —

= 0, volgens (48).
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Van het tweede lid van (128) blijfft dus alleen de term
C, over:

Ci= ft-*"' (po—1—qu) [ (n B ) dz
A T R
— ! /f b [rf_r) e )10

Havpain tracht nu omgekeerd de reeks

\” (‘ ( J" J

= U Or 5

| FPr—1 /‘l.l)
e somimeeren,

Hij bewijst, dat deze reeks convergeert, maar tol een andere
limiel dan f¢x), tenzij het mogelijk is, getallen « te vinden.
die den vorm m! «" 0 (2) oneindig klein maken voor
m — . Als « willekeurig groot genomen kan worden, dan
is de keus van f aan geen voorwaarden gebonden: anders
ligt  tusschen bepaalde grenzen. De reeksontwikkeling geldt
in beide gevallen voor alle waarde van .
De getallen « zijn alleen te vinden, als /(&) een polynomium
18, In alle andere gevallen is dus de ontwikkeling foutief.
Zoo geeft de formule (128) voor e—«:

<y | 21 a2

M= (1 f{'z)f‘k (1 = 28y ‘“( 9 J‘-!

S (= { 4_} o
"1+ MLV e | ks

een convergente reeks, die echter niet tof e—** convergeert,
§ 47. Harpnins curieus resultaat bewijst nog niets tegen
de ontwikkeling eener functie naar aq (). Terwijl b.v. de

ontwikkeling van e—* volgens Hanemins methode spaak
ek

Z . y
8 als argument der functie g,
i

:
genomen wordt, niet de minste bezwaren op (§ 43). Ik heb
echter de kwestie van de algemeene ontwikkeling naar ¢, NOZ
niet tot klaarheid kunnen brengen. Verschillende wegen ben
ik ingeslagen, zonder evenwel het doel te bereiken. Het meest

loopt, levert ze, zoo @ en niet
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voor de hand lag de methode, die bij Besselsche, bol-en andere
functien zulke goede resultaten geeft, nl. de subst-it-ut-ie van

T ,
een convergente reeks voor —— in de formule van CAUCHY,
—

i (
T(0)=— / f— dz,
' o = e
in welke f’nrmulr" de integraalweg een gebied moet omsluiten ,
waarbinnen [ (2) steeds holomorf is. Nu wijst de In § 25

gevonden uitdr U]\]\.i]]%

:J'.
oy

¢ , —_
iy (21) — & f ~—— oni(2) (LR T (11:0)

(8]

op een ontwikkeling van —— mnaar g-functien. Het is alsof

R
1ernl
1 . y ( ;- .
’1_' — = 2wy (&) i (C) i Lo wrdl] (\135\‘)

gesteld heeft, en toen door de integraal-eigenschappen van
§ 6 de coefficienten w; () heelt bepaald in den vorm

w, () = e~ P, (X).
[s nu
1 = 7 N .
— — & * 2 Y (x) qi (=),
x— 2 .

dan is men geheel op den weg, die bij andere functicén tot

het doel voert, ifﬁlr'lgeﬁelu}d{ig oeeft, de ontwikkeling van de
'fJ.

, bij vervanging van z* door 2 A ¢i (2),

0

verg. (129) naar ——
volgens (29), een rmzsks,

‘ : ; i - 1)! 1
o, (:x;) — e~ =y, () = (—1) l e L_!i (i 15~1+— ( # ] -+

(u—|r’)' n -+ 2 !
+ — AR 9 = - ;

die voor alle (-.imh;xue waarden van z divergeert, en dus niet
te gebruiken is. Ik heb nu op verschillende wijzen getracht,

de reeks

(;‘} 1{'5 (‘;1") — _}l, (i : (,), (:1‘)

0
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1 !
te somimeeren tot ey zonder van de divergente reeks

voOr w; (x) gebruik te maken. Vervangt men g; (2) en y; (x)

resp. door een’ bepaalden integraal en door den residuvorm

(8), dan is de sommatie wel uitvoerbaar, binnen zeker gebied

van convergentie, maar de daarop volgende integratie biedt

te groote zwarigheden.

Gebruikt men de formule (122) in plaats van (29), dan wordt
1 5

—— =X e~ p—_, () w, (S) 3

W2

waarin nu
= n! (n+ H' n-+1 (n+4-2)! u—i-
W18 = ey — e 1 )4‘ e | ’ -

cen reeks is, die evenzeer voor alle waarden van 2 lll‘.'l'l':_’,t"t‘li-.
§ 48, Ook dit divergeeren van reeksen, die bij analoge
functién convergeeren , bewijst nog niet l|1‘ onmogelijkheid
eener ontwikkeling volgens g,
Ben ontwikkeling volgens g, is slechts op één wijze mogelijk.
Gesteld nl.
/(1) e R —|— (M l\l) —if ta 2 (f) 4*

/(I) b |- 0 1 (;r!) - 03 pa ( () -}

(18]

dus
0 = (ttg—bg) - (1 —="01) @1 () -+ (@2 —b2) g () - -+,

dan geven de l}'ll'.!,‘;,fl'ilill-ulj_'t'llHt']!:l]l]ll‘.ll van § 6 onmiddellijk
a; = b, Dit bewijs geldt natuurlijk voor de functie ¢ even-
zoer als h.v. voor de bolfunctién. Bij deze laatste nu komt
men schijnbaar tot twee ontwikkelingen. De vergelijking
van Cavony geeft nl. coefficienten met de functie der 2¢ soort,
Q),, onder het integraalteeken, terwijl de gewone integraal-
eigenschappen - der functie 1¢ soort, P,, een ontwikkeling
coven met P, onder het integraaltecken. Men moet kunnen
bewijzen, dat deze beide integraalvormen voor de coefficienten
identick zijn. Het is nu zeer goed denkbaar, dat voor de
functie ¢,, waarbij de vergelijking van Cavcay ons in den
steek laat, deze gelijkheid ophoudt te bestaan, zonder dat
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daarom de ontwikkeling volgens q,, waarbij de coefficienten
door de integraal-eigenschappen gevonden worden, vervalt.
Deze ontwikkeling zou nu te bewijzen zijn, door de reeks

b G (::,f)/w—*/"(_z‘) ge (2).d2 . . . . (180)

0

rechtstreeks te sommeeren. Wel is waar leert de formule

(38) een uitdrukking voor X g, () ¢, (2) vinden, maar het
a

is mij nog niet gelukt, de limiet van het tweede lid te vinden.

Evenmin heb ik de convergentie der reeks X g, (:1:) g ()

kunnen bewijzen, d.i. de convergentie der reeks (130). Was
dit bewijs geleverd, dan zou men gemakkelijk kunnen aan-
toonen, dat de som f(x) moet zijn. Stelt men nl.

S qa () / | .r’ =57 (2) g (8) a2 = E(Z);
dan is i
/' el (@) g, (@) di = f e—*f(2) q. (2) dz f‘f'_‘” @ (@) @a () da
‘:',f‘ | o 0
/-r—f [F (2) — f(@)] ¢. (x) dz = O,
dus ook, duzlﬂr a" door ¢’s te vervangen is.j

[¢== (1 () — [(a)] 11 da = 0,
waarin 17 een geheel willekeurig polynomium; kiest men nu
dit polynomium zoo, dat het tegelijk met F (x) — f(x) van
teeken verandert, dan moet, daar e—* steeds positief DIijft,
overal tusschén 0 en e F (x) = f(x) zijn. ')

") LiovvinLe, Journal de Math. Vol IL. (1837) p. 1.
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§ 49, Ik wil nog-enkele paragrafen wijden aan een over-
zicht van de punten van overeenkomst tusschen g, () en
Besselsche, trigonometrische en bolfunctién, alle leden van
dezelfde familie. Ik zal me hoofdzakelijk met bolfunctién
bezighouden, waarvan de verwantschap met de Besselsche
functién gemakkelijk is na te gaan. Men zie o. a. het boekje
van O, NeuMasn: ,Theorie der Bessel'schen Funktionen. Ein
Analogon zur Theorie der Kugelfunktionen.”

Er zijn functién van de eerste en van de tweede soort, g,
en a,, zooals er bolfunctién P, en Q, zijn. Het zijn de beide
oplossingen van een differentinalvergelijking ') der tweede
orde, die een speciaal geval is van de diff-vergelijking der
hypergeometrische reeks, Noemt men ¢, en P, van de orde
n, dan is er iets voor te zeggen, om w, en Q, tot de orde
-n—1 te rekenen, Zie b, v, § 22, waarin een vorm voor
¢ €N, optreedt, dien men als formule van Ropricues bij de
bolfunctién terugvindt. De vormen g, en P, zijn polynomia,
w, en Q, recksen. Beide hebben hun verwante functién af ¢ en

b
(@ —1)* P™. Van beide functicn zijn alle wortels reéel, en
gelegen binnen bepaald aan te wijzen grenzen. Zoowel g,
als P, zijn als Sturmsche functién te beschouwen. De poly-
nomia ¢, en P, hebben integraal-eigenschappen, die tot in

1) De analogie met de Besselsche funetién is hier alleen dnidelijk voor hem
die niet NEUMANNS, maar LoyMyirs behandeling van het onderwerp volgt.




<
m tpfen !
/

bijzonderheden onderling overeenkomen. Voor P, geldt een
dergelijk stel eigenschappen, als voor ¢, in § 5 gevonden is,
terwijl ten slotte zoowel P, als ¢, in determinantvorm ge-
schreven kan worden.

§ B0. Nadere bespreking verdient het verband, dat tusschen
¢, 0w, bestaat. Dat de formule (58) ook bij de bolfunctién
aptreedt, spreekt van zelf. Meer verrassend is het, dat de
cedeeltelijke integratie van deze formule leidt tot een betrek-
king tusschen ¢, en a,:

-
T
3k

Y () = € 4, () + @, (%) / — dx,

L

die volkomen analoog is met
. L . /.—r - 1
Q.(x)=R, (x) + P, (x)log \/ - -
xXr —
R, () en 4, (x) zijn polynomia van den graad n—1, die aan
cen diff.-verg. der tweede orde voldoen. Ook de formule

.J.
e—F

'tlff,, (!} = ’ - _~ (1 (,.., ) (K;\f

1)
komt geheel overeen met een relatic uit de leer der hol-
functién:

|
LS 1 rP,(2)
Q, (&) = - /::;' -~ de.
7 =5
R (2 1o (—2) _.. : 5 : :
;’ 7(;——) en A ) zijn respectievelijk naderingsbreuken van
P, (z) ga (—x) :

o~
e—= z -+ 1 v
r/ — dz en van log \/ 2 [ welke transcendente func-
& P e AL
&

tien beide in een kettingbreuk kunnen worden ontwikkeld.
Deze eigenschappen vooral zijn het, die er op wijzen, dat
de functién ¢, en P, tot een grootere familie behooren. Men
zie de algemecne behandeling van dit punt in het reeds aange-
haalde werk van Jorpawx (p. 248).



Daar wordt de integraal

. I —
ontwikkeld in een reeks
o LTI
e =t o
waarin
/]

o, f =1 f(2) dz.
Zoo deze reeks in den vorm ecener kettingbreuk geschreven
wordt, die het polynomium S, tot noemer der 2/ naderings-
breuk heeft, moet S, voldoen aan de voorwaarde

'i.

o' (@S, fle)ds . .0 5 0 (181)
waarin o (".:*') een polynomium van graad ¢ o voorstelt. Aan
deze voorwaarde voldoet slechts één polynomiwm S,: de verge-
lijking S, = 0 heeft slechts recele wortels, alle  gelegen
tusschen a en b.

[n elk bijzonder geval moet onderzocht worden, in hoever de
recksontwikkeling volgens S,, waarvoor (131) de coefficienten
levert, eeldig is. Ongelukkig zag ik op dit gebied de funetién
¢, en P, verschillende wegen bewandelen, en weet ik nog
niet, of deze ten slotte toch nog naar hetzelfde punt voeren.
§ 61, Evenals P, (x) uit de ontwikkeling van

I |

TV 1-0at + P
naar £ volgt, wordt ¢, (x) gedefinieerd door

1 e

o
= enl—t=—"23 8 m, ey (L

1t :

Beide moederfunctién, om ze zoo te betitelen, voldoen aan

. 1
een diff.-verg, der tweede orde, U — — aan
=
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(1—2 «t + ) U”"—3 (;:.r;-—f') Us 4 U =0,
i aan 7

(12t )yw +(x+3t—5)u +u=0,. (132)
waarin z als constante beschouwd wordt. Uit

e L =

volgt nl.

€n ‘
e AEia S 1—-t—2x

= e oany I S S
(1—0) (=2 )3
met welke waarden gemakkelijk de diff.-verg.
(L=t uw” + (v 4+-3t—3)yw +u =0

te verifieeren is. Deze diff.-verg. volgt ook, volgens een
methode, aangegeven door PomNvcars '), uil de recurrente
betrekking (24), geschreven in den vorm
g () —2m—D g, @)+ @ Dg, a@)+0—1)p, 2(@)=0,
door vermenigvuldiging met (z—1)#—? en sommatie -van
1 tot w. Uit de waarden

",

U= (12 )= 3! u—1 (),
0 1
W= S mit=t g () = (n—1) it=2 gy (1)
1 1
el
.!/ - {". = ] II;;—;) ) ’\ﬂ‘ (A ] _ 9 f'n- -3 e
' =Znn—1)t b =1 W= 215 (P e Ti L)
1 1 :

leidt men nl. af:

2’.' n (11— l.;) i (22) £ =
| :

@—12 n—1)g.1(@t" *=@— 1w,
|

2ZM—1y g, 1(x) " —*= —2 It gyt 1 =—2{uw’ 4 u)
!

€11

1
x
o

Sm—1P g,—2 (@)t —* = Sn Pu—1 (@) O~ =0+ 8tu' +u,
1

LFCEREXavT p 687




zoodat de verg.
“_: 5\ a Ui \ a :S 3] [3) ~
Inmn—Dg. b+ @+ 1-2n)n—1)g, 10"+ ZH—1F g, " —"=0
1 1 1
overgaat in
(12t )y w +(@x—3 +3h)u +u=0 . (132)

of In
NOLZTU R o L du .
T —5 + (& »47 O == Ur— (13:3)
dr* ' T

waarin ¢ =— £— 1. Het eenige kritieke punt der coefficienten
van «’ en u, na deeling door 1 —2¢ 4 #*is ¢t = 1. De oplossing
u is derhalve holomorf binnen het gebied , waarvoor mod ¢ ¢ 1.
Aan de diff.-verg. (133) voldoet nog een tweede functie U = uw,
die op de bekende wijze uit de oplossing w wordt afgeleid.
[k vind:

3 i - 51
/ _1 -~ : _l_ a ()
v (1 I
zoodat
3 1
e o e
1 fa i

1 kel 1
= - T
2
opeft dan
U=u|—dz . . . . . . (139

ook hier komt dus weer de int.-log. te voorschijn.

§ b2, In deze laatste paragrafen wil ik een overzicht
ceven van een verhandeling van Tengsycaer ') waarin zeer
duidelijk de verwantschap van de g-functién met trigonome-
trische, Besselsche en bolfunctién aan den dag komt.

) Bulletin de 1I"Ae. Imp. de St. Pét. 1860, T. 1, p. 193, en Journal de
Liouville, 2de 8érie, T. I1I, p. 289.




F (X) kan,

Door waarneming zijn

F ‘(l
bekend,

der kleinste kv
vindt:
E l)m. E’

=0

waarin

BY CHEF
T (XY

de noemer

Tk

terwijl

of

2 G pa

1]
terwijl
2 i Wy,
is.

§ 93, Hij

ten g;.

onderstelt men,
graad m met voldoende

met de gnm[:htvu Jos h
F (X)) zoo goed mogelijk

radraten ,

'U.v[\) U"f-r-i-lrrlf)

is van de

treedt bij de ontwikkeling van g - @

‘;\ Al =

(@) o (23) = 0

_ hehandelt
trent. de verdeeling der
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door een polynomium van den

nauwkeurigheid worden weergegeven,

de » 4 1 waarden (n = m)
AR <o 10 ()
.. 0 Gevraacd wordt,

, volgens het principe van de methode

te schrijven als > 4; F («;). ToHE-

]

LI 4 \-) l}’..; ‘Ttw

AL (&),
i’t‘-j o .k ){r )
m* naderingsbreuk,

[ ()

- In een kettingbreuk,

die op-

@)= (@—a0) (@ — 1) v s - (T—2y)
is. Daar de \\’I_llf.i‘-l',tl'!'[&l len der kettingbreuk den vorm A;x - B;
hebben, kan men ook schrijven:
FX)=2(—1"A, 1y, (X)2 g, (@) F (x), . (136)
uit welke formule nu, duidelijker dan uit (135), blijkt, dat

[' (X) door een polynomium van den graad i is voorgesteld.
Door voor I (X) y, (X) te nemen,

vindt TCcHEBYCHEF:

{ __- ] :,m‘ \

"

2 gyt (@)

(e = (7 ]"l . ; S S (13 7))
*'\'rz —‘r-l |

nu verschillende onderstellingen om-

waarden a; en omtrent de gewich-

(135)




19, Neemt men n — oo, en laat men a; — w varieeren tus-
schen —1 en -+ 1, terwijl

- u
=9 U) = —F/——
Y |/ 1i— u?
18, dan wordt
2 +1
y /:j_('?_‘) — g,(}i — I I .’;-{hf,'ﬁ‘ o = JT .
[ (x) x— U x—ul/1—u |/ a*—1
—1

De noemers van de naderingsbreuken der kettingbreuk

9T T
l/“.'"C:B —1 - 1
x —
9 [
& - 1
22 — enz.
ziin cos g, cos 2 ¢, cos 3 @ €nZ., waarin cos ¢ =— a. De formule

(156) geeft nu Fouriers ontwikkeling naar cosinussen, echter
zonder de mogelijkheid dier reeksontwikkeling streng te be-
wijzen. De integraal-eigenschappen (157) leveren de coeffi-
cienten der ontwikkeling.
2% In dezelfde hypothese omtrent a;, en zoo g (u) — een
constante is, vindt TeHEsyoHer:
i 4 lr?n -1
= [l T

M H
— (0 —
' b

cen functie, die bij ontwikkeling in een kettingbreuk, tot
noemers der nad., breuken de bolfunctién blijkt te bezitten,
Formule (136) geeft nu een reeksontwikkeling naar bolfuncticn
welker coefficienten door (157) gevonden worden,
3%  Laat men a; = w tusschen de grenzen 0 en o varice-
ren, terwijl g (u) = e—" du is, dan wordt
- —z

© gt rp—=

( .
> gi — ’ qii—"2: -"}
Jx—u ]
0 X
Volgens § 27 is deze integraal te schrijven als een Ketting-
breuk met
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o R :
Pu (2) = - [ ] (e ")

n!\ dz
tot noemer der »%* naderingsbreuk.
Nu is

f Pul () 8= Edae—"1%
zoodat de reeksontwikkeling (136) wordt:
F(X) = 3 ¢, (X) f e—= gu () B () dix.
] o

Kchter levert Teumisycuer geen schijn van bewijs voor de
mogelijkheid der reeksontwikkeling; hij spreekt zelfs niet over
de convergentie der'gevonden recksen, maar draagt eenvoudig,
wat hij voor n = ¢indig, d.i. voor een polynomium gevonden
heeit, over op het geval n = oneindig.
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