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VOORWOORD.

In dit proefschrift stel ik mij voor een /nleiding te
geven tot de toepassingen, die Maxwern in de Electro-
dynamica en in de leer der Inductie van de Vector-
potentiaal maakt.

In het eerste hoofdstuk wordt nagegaan, op welke wijze
zich dit begrip bij Maxwere, blijkens zijn verhandelingen ,
heeft ontwikkeld. In § 7 is het mij, naar ik meen,
gelukt een duidelijke voorstelling te geven van hetgeen
Maxwern bedoelt met eene mechanische analogie, waaraan
hij Dblijkbaar veel waarde hecht en die door hem toch
slechts vrij onbepaald wordt aangeduid.

In !](‘.t tweede hoofdstuk wordt de Vector-potentiaal
uit een meer algemeen oogpunt beschouwd, dan door
MaxweLL is gedaan. Die grootheid wordt beschouwd in
verband met een oppervlakte-integraal, op soortgelijke
wijze als men de gewone potentiaal kan laten afhangen
van een lijn-integraal. De eigenlijke beteekenis echter
van de \.".=(t;:;y'-]mtvnliil;l] voor de theorie van de \\'.-rking
Op afstand wordt aangegeven in § 23 en § 24.

Het derde hoofdstuk kan in hoofdzaak beschouwd




worden als een commentaar op Art. 405—400 van
Maxwerl's Zreafise.

In het vierde hoofdstuk heb ik mij bepaald tot het
Electromagnetisme. In verband met het in het tw ede
hoofdstuk behandelde worden de hoofdvergelijkingen op

eene van de gewone eenigszins afwijkende wijze atgeleid.

Een paragraaf over het Electromagnetische Moment is

1

slechts toegevoegd, om te doen zien in welke betrekking

deze grootheid staat tot de Vector-potentiaal




HOOFDSTUK I

FARADAY'S ELECTROTONISCHE TOESTAND.

§ 1. De mnaam Veclor-polentiaal 1s ingevoerd door
Maxwerr en men behoeft het 2d¢ deel van zijn 7reatise
on FElectricity and Magnetism slechts te doorbladeren, om
te zien welk eene belangrijke rol deze grootheid in zijne
theorie speelt, Toch is zij voor die theorie slechts een
hulpgrootheid en het zou misschien moeilijk te verklaren
zijn, hoe MaxwrLn er toe gekomen is die grootheid zoo
op den voorgrond te stellen, als men geen rekening
hield met den invloed van IFaArapay,

Het is bekend, dat Maxwern, bij het opstellen zijner
theorie, zich.in hooge mate door IFarapay heeft laten
inspireeren.  Voor alle begrippen en voorstellingen,
waarmede de laatste werkte, vindt men bij MaxweLl de
gepaste wiskundige uitdrukking.

In de eerste plaats denkt men hier aan FArRADAY'S
theorie van de krachtlijnen, niet alleen als lijnen, die in
ieder punt van het veld de richting en de intensiteit van
de kracht aangeven, maar ook als lijnen, die den physi-

schen toestand van het medium kenmerken.




Minder in het oog vallend, maar toch zeer wezenlijk, is

de invloed, dien een andere conceptie van Farapay — het

bestaan van een electrolonischen toestand — gehad heeft op
de wijze, waarop MaxweLL zijn theorie heeft opgebouwd.

Volgens Maxwerr is de geheele geschiedenis van de
wijze, waarop zich deze conceptie in Farapay's geest
heeft ontwikkeld, de studie zeer waard. Enkele hoofd-
trekken uit die geschiedenis willen wij hier laten volgen.

§ 2. In de 1stc Serie van zijn Expertmental Researches
in [Flectricity beschrijft FFarapay de ontdekking van de
volta-electrische en de magneto-electrische inductie. Ter
verklaring ‘van de waargenomen verschijnselen neemt hij
nu aan, dat een gesloten geleider, onder den invioed
van een electrischen stroom of van een magneet, dus in
een magnetisch veld, in een bijzonderen toestand ver-
keert. Zoolang die toestand onveranderd blijft, gebeurt
er niets; zoodra echter die toestand verandert, ontstaan
er electromotorische krachten, die zoowel wat intensiteit
als richting betreft, van de veranderingen in dien toestand
afhangen. Aan dezen hypothetischen toestand der materie,
van welks bestaan op geen andere wijze blijkt, geeft hij
den naam van ZFlectrolonic Stale. Deze toestand schijnt
dan te bestaan in een soort van sp;nming. De opgewekte
inductie-stroom houdt op, zoodra die spanning is tot stand
gekomen en als de invloed, waardoor de spanning ont-
staat, ophoudt te werken, geeft de ontspanning een
inductie-stroom in tegengestelden zin.

In de 2d9¢ Serie der /Zx. Res. heeft Farapay in de

verandering van het aantal en de richting der magnetische
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krachtlijnen, die door een geleider omsloten worden, een
minder hypothetisch middel gevonden om de inductie-
verschijnselen samen te vatten — dus te verklaren. De
redenen, die hij had om het bestaan van een electroto-
nischen toestand aan te nemen, bestaan dus niet meer.
Hij voegt er echter bij, dat het hem in hooge mate
onwaarschijnlijk voorkomt. dat een geleider geheel indif-
ferent zou zijn tegenover een krachtigen eclectrischen
stroom, die zich in de nabijheid bevindt. Alleen het
gemis van feiten, die het aannemen van een electroto-
nischen toestand wettigen, noopt hem die hypothese op
te geven. !

Toch dringt zich die hypothese telkens wetler aan hem
op en in de volgende Serieén der Zx. Res. kKomt hij er
herhaaldelijk op terug. Zoo b. v. (Zx. Res. 1729):

,Het schijnt mij mogelijk en zelfs waarschijnlijk
dat de magnetische werking op afstand wordt over-
gebracht door de werking van tusschengelegen deeltjes
op een wijze, die overeenkomst heeft met de wijze,
waarop de inductie-krachten van statische electriciteit op
afstand worden overgebracht, waarbij dan die tusschen-
gelegen deeltjes tijdelijk in een meer of minder bijzonderen
toestand verkeeren, die ik herhaalde malen met den
naam van electrotonischen toestand heb aangeduid.”

Als hij later tot de overtuiging komt, dat ponderabele
materie voor de voortplanting der magnetische kracht
niet noodzakelijk is, helt hij er toe over om den electro-
tonischen toestand te beschouwen als den toestand,
waarin de aether onder den invleed van magnetische

krachten verkeert, ofschoon nog niet kan gezegd worden,
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waarin die toestand bestaat: in een trilling, in een span-
ning of mogelijk in iets, dat overeenkomst heeft met
een electrischen stroom (On the Phystcal Lines of Mag-
nette Force. fLix. Res. 111, p. 443). In ieder geval zou
die toestand samenvallen met hetgeen het wezen der

magnetische krachtlijnen uitmaakt.

§ 3. De wetenschappelijke waarde van deze conceptie
bestaat volgens MaxwrrL hierin, dat de aandacht geves-
tigd wordt op een grootheid, die niet door haar absolute
waarde, maar door haar veranderingen de verschijnselen
in het electromagnetische veld bepaalt. Hij zegt (7reatise,
Art. 540): ,Door een reeks van experimenten, geinspireerd
en geleid door ingespannen denken, werd Farapavy,
zonder behulp van wiskundige berekeningen, er toe ge-
bracht het bestaan te erkennen van iets, waarvan wij nu
weten, dat het een mathematische gprootheid is, die men
zelfs de fundamenteele grootheid in de theorie van het
Clcctrmu:lgnr_'LiHmf* zou kunnen noemen. Daar hij echter
op zuiver experimenteelen weg tot deze conceptie was
gekomen, schreef hij er een physisch bestaan aan toe en
veronderstelde, dat zij bestond in een bijzonderen toestand
der materie.” En verder: ,Veel later .hebben andere
onderzoekingen op zuiver mathematischen weg tot het-

oeleid: maar niemand heeft, zoover 1k weet,

zelfde begrip g
in de mathematische conceptie van de potentiaal van
twee stroomgeleiders Farapay's stoute hypothese van een
electrotonischen toestand herkend.”

Het is misschien niet geheel van belang ontbloot na

te gaan op welke wijze dit begrip door MaxweLL is



2

verwerkt. In al zijne verhandelingen over Electriciteit
houdt hij er zich mede bezig en ook in zijn geest heeft
het een geschiedenis doorloopen, voordat hij er toe komt

het als een zuiver mathematische grootheid te beschouwen.

§ 4. In zijn eerste verhandeling over Electriciteit:
wOn [Faraday's Lines of lForce” (1855. Sctentific Papers,
Vol. I, p. 155—220) stelde MaxwerL zich tot taak aan
te toonen, dat de denkbeelden, die FFarapay bij zijne
onderzoekingen geleid hadden, niet onbestaanbaar zijn
met den mathematischen vorm, waarin Poissoxn en anderen
de wetten der electriciteit hadden gegoten. Zijn doel is
een physische analogie te vinden, waardoor men in staat
vesteld wordt de resultaten van vroegere onderzoekingen
samen te vatten, zonder dat men daardoor oebonden
wordt aan eenige theorie. Op deze wijze, meent MAXWELL,
is men er voor gevrijwaard, zijn onderwerp uit het oog
te verlieczen door analytische subtiliteiten, of ook de
waarheid voorbij te streven door het volgen eener gelief-
koosde hypothese.

In het eerste gedeelte der verhandeling worden de
wetten der electriciteit vergeleken met de eigenschappen
eener onsamendrukbare vloeistof, wier beweging wordt
vertraagd door een kracht evenredig met de snelheid.
De vioeistof wordt verondersteld geen inertie te bezitten.
Door de overeenkomst, die de stroomlijnen van zulk een
vloeistof zouden hebben met de electrische krachtlijnen, is
men dan in staat gesteld niet alleen om de wetten der
statische electriciteit in een enkel medium af te leiden,

maar ook om aan te toonen, wat er moet plaats hebben,




als de werking van het eene diélectricum in het andere
overgaat.

Het tweede gedeelte van de verhandeling is gewijd
aan het electromagnetisme en heeft tot opschrift: , Oz
Faraday's Electrotonic Stale” Er wordt in aangetoond, dat
de wetten, die door Aampire zijn ontdekt, tot resultaten
leiden, die in overeenstemming zijn met die van Farapav.
Dit tweede gedeelte verschilt in wijze van behandeling
geheel van het eerste. MaxwerL erkent, dat het hem nog
niet is gelukt zich van den electrotonischen toestand een
mechanische voorstelling te vormen, die hem in staat zou
stellen, van het wezen van dien toestand en van zijn
eigenschappen zonder mathematische symbolen een duide-
lijke verklaring te geven. Door een nauwgezette studie
van de verschillende betrekkingen, die door de verge-
lijkingen worden uitgedrukt, in verband met de studie van
de wetten, die de bewegingen van elastische lichamen en
van taaie vloeistoffen beheerschen, hoopt hij echter er in
te zullen slagen zulk een mechanische voorstelling te
vinden.

Voorloopig voert hij drie uitdrukkingen in, waaraan
hij den naam geeft van electrotonische functies of compo-
nenten wvan de electrotonische wnlenstlerf.  De electromo-
torische krachten, die door magneten of door electrische
stroomen in een bepaald punt worden opgewekt zijn de
afgeleiden naar den tijd van die functies en er wordt
aangetoond op welke wijze de magnetische kracht van
die functies athangt.

Volgens deze beschouwingen heeft men zich dan den

electrotonischen toestand in eenig punt van de ruimte
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voor te stellen als een grootheid, die in grootte en
richting is bepaald, dus als een vector Neemt men
de componente van dien vector volgens de raaklijn in
jeder punt van een gesloten kromme, dan vindt men
door integratie wat men kan noemen de folale electro-
tonische intensiteit woor die kromme en deze laatste
grootheid is een maat voor de magnetische inductie
door een willekeurig oppervlak, dat door de kromme
begrensd wordt, of, wat hetzelfde is, voor het aantal
magnetische krachtlijnen, die door dat oppervlak gaan.

In de electrotonische functies heeft men dus het
middel om de beschouwing van de magnetische inductie,
die door een oppervlak gaat, te vermijden en in de
plaats daarvan den electrischen stroom te beschouwen
als afhankelijk van grootheden, die bestaan op dezelfde
plaats, waar de stroom waordt np;_:‘c‘\\‘t'kt.

et verdient nu zeker opmerking, dat MaxweLc hier
deze laatste methode als de nafuuriypke stelt tegenover
de cerste als de Aunstmatize (Sc. Pap. 1, p. 203). Vol
vens Maxwerl's volledige theorie, die geen werking op
afstand toelaat, maar waarin de krachten in ieder punt
alleen afhangen van toestandsveranderingen in de onmid-
dellijke nabijheid van dat punt, is deze onderscheiding
wel niet vol te houden. De methode van de electro-
tonische intensiteit zou toch in die theorie alleen dan
de natuurlijke mogen heeten, als door die grootheid
werkelijk de physische toestand van het medium in ieder
punt op een bepaald tijdstip werd aangegeven; zooals

wij zullen zien, is dit niet het geval.




§ 5. Nadat MaxwerL dus in zijn eerste verhandeling de
geometrische beteekenis van den electrotonischen toestand
had gevonden, gaat hij er in zijn tweede verhandeling , On
Physical Lines of Force” (1861. Sc. Pap. 1, p. 451—513)
toe over om de magnetische en de electrische verschijn-
selen uit een mechanisch oogpunt te beschouwen en hij
ontwerpt zijn merkwaardige theorie, volgens welke het
magnetische veld zou gevuld zijn met moleculaire vor-
tices, wier assen samenvallen met de magnetische kracht-
lijnen. De cellen, waarin die vortices roteeren, zijn
gescheiden door lagen van deeltjes, die een dubbele
rol te vervullen hebben: zij brengen de beweging van
de eene cel op de andere over en in hun voortgaande
beweging bestaat de electrische stroom. De geheele
theorie is met de grootste uitvoerigheid uitgewerkt en
niet alleen de magnetische en de electromagnetische,
maar ook de electrostatische werkingen worden er door
verklaard. Volgens Maxwert's eigen verklaring (Zrealise
[, Art. 831) moet echter deze theorie voor niet meer
gehouden worden dan zij werkelijk is. Men heeft er
slechts het bewijs in te zien, dat een mechanisme denk-
baar is, welks bewegingen door dezelfde wetten beheerscht
worden als de verschijnselen in het electromagnetische
veld. Maar ofschoon Maxwern in zijn volgende verhan-
deling en in zijn Zreafise een veel meer algemeene
mechanische theorie van het electromagnetische veld
heeft ontworpen, wordt toch door sommige hoofdzaken
van de oudere theorie zijn blijvende overtuiging uitge-
drukt, zeer zeker b.v. door de onderstelling, dat molecu-

laire rotaties om de magnetische krachtlijnen plaats grijpen.
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In deze theorie dan wordt de magnetische kracht
veroorzaakt door de centrifugaal kracht van de vortices
en een, electromotorische kracht ontstaat door de tangen-
tidele drukkingen, die optreden tusschen de vortices en
de daartusschen geplaatste deeltjes, telkens wanneer de
rotatie-snelheid ergens in het veld verandert. Deze
electromotorische kracht kan vergeleken worden met de
drukking op de krukas van een wiel in een machine,
als de snelheid van het vliegwiel vermeerdert of ver-
mindert.

De electrotonische toestand is dan datgene, wat de
electromotorische kracht zou zijn, als de stroomen of
magneten, waardoor de krachtlijnen veroorzaakt worden,
in plaats van trapsgewijze hun volle sterkte te krijgen,
plotseling” waren ontstaan. Die toestand komt overeen
met de impulsie, die op de krukas van een wiel in een
machine zou werken, als het vliegwiel plotseling zijn
volle snelheid verkreeg. Deze impulsie kan voor ieder
punt van een machine berekend worden. Zij wordt door
Maxwerr het herleide moment van de machine voor dit
punt genoemd, Is nu de beweging van de machine
veranderlijk, dan kan de kracht, die in een bepaald
punt door de verandering  van de snelheid  ontstaat,
gevonden worden door dat moment ten opzichte van
den tijd te differenti¢eren, op dezelfde wijze, als de
electromotorische kracht door differentiatie van den elec-

trotonischen toestand kan worden afgeleid. In § 7 zullen

i/
wij deze beschouwingen door een eenvoudig voorbeeld
trachten toe te lichten.

Volgens deze voorstelling is dus de electrotonische
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toestand in een punt niet de uitdrukking voor iets, dat
physisch in dat punt aanwezig is. Hij hangt af van den
toestand van het geheele magnetische veld en is in
zekeren zin een summatie van de werkingen,. die in een
bepaald leﬁt door verstoringen in het geheele veld ont-
staan. Ondanks de mechanische wijze van voorstelling
is dus hier de electrotonische toestand een zuiver mathe-
matisch begrip geworden. Een integraal-vorm zal dan

ook de gepaste wiskundige uitdrukking er voor zijn.

L.

§ 6. In zijn derde groote verhandeling . Dynamcal
Theory of the Electromagnetic Field” (1864. Sec. Pap. 1,
p. 526—597) laat Maxwerr de bijzondere veronderstel-
lingen van de vorige verhandeling varen. In de Inleiding
worden eerst eenige verschijnselen besproken — magneti-
sche draaiing der polarisatie-vlakken van het licht, inductie-
stroomen, diélectrische polarisatie, geleiding — die er
toe kunnen leiden om in het algemeen de verklaring der
electrische en magnetische verschijnselen niet te zoeken
in een werking op afstand, uitgaande van de lichamen,
die wij geélectriseerd of gemagnetiseerd noemen, maar in
bewegingen en spanningen van het omringende medium,
Verder wordt aangegeven welke redenen er kunnen zijn
om aan te nemen dat dit medium dezelfde aether is, die
in de theorie van het licht ter verklaring van de optische
verschijnselen wordt te hulp geroepen.

Op deze wijze tracht Maxwerr de hypothese aanne-
melijk te maken, dat het electromagnetische veld een
samengesteld mechanisme is, waarin een groote ver-

scheidenheid van bewegingen kan plaats hebben, maar
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altijd zoo. dat de beweging van het eene deel volgens
vaste betrekkingen afhangt van bewegingen in andere
deelen. Door op zulk een mechanisme dynamische
grondstellingen toe te passen, komt hij tot ecenige alge-
meene stellingen, die vergeleken worden met de wetten
van inductie-stroomen. Hierdoor is hij dan in staat sommige
eigenschappen van het mechanisme te identificeren met
eigenschappen van electrische stroomen. In plaats van,
so0als von Hrrmuortz en Tuomsox gedaan hadden, de
wetten der inductie-stroomen door middel van de wet van
het behoud van arbeidsvermogen af te leiden uit de
I)i)Hi,l(‘l'ﬂlnl)l()l'i!—-l‘hi‘ werkingen, volgt Maxwern den omge-
keerden weg. Eerst worden de wetten der inductie
vastgesteld en daaruit worden de ponderomotorische
werkingen afgeleid.
Het electromagnelische moment.

8 2. De eigenlijke verhandeling begint met beschou-
wingen over het electromag nelische moment van stroomen,
onder welken naam hier de electrotonische toestand
wordt aangeduid. Nergens blijkt zoo duidelijk als hier,
hoezeer dit begrip door Maxwern op den voorgrond
wordt gesteld, In zijn Zreatise ontwikkelt hij later een
meer strenge en vooral meer algemeene mechanische
theorie der inductie, maar de hoofdgedachte, waarvan
hij uitgaat, vindt men hier in al haar eenvoud. Wij
willen er daarom wat uitvoeriger bij stilstaan.

Joschouwen wij het veld in de omgeving van een

electrischen stroom. De magnetische krachten in dat




veld hangen in grootte en richting volgens bekende
wetten van den vorm van den stroomgeleider al. Wanneer
de stroomsterkte verandert, dan veranderen ook de mag-
netische krachten in dezelfde verhouding. Als men aan-
neemt, dat de magnetische toestand van het veld bepaald
wordt door bewegingen van het medium, dan moet men
ook aannemen, dat een zekere kracht wordt aangewend
om die bewegingen te vermeerderen of te verminderen,
en als die bewegingen zijn opgewekt, blijven zij voort-
duren, ,so that the effect of the connection between the
current and the electromagnetic field surrounding it, is
to endow the current with a kind of momentum, just as
the connection between the driving-point of a machine
and a fly-wheel endows the driving-point with an addi-
tional momentum, which may be called the momentum
of the fly-wheel reduced to the driving-point. The unba-
lanced force acting on the driving-point increases this
momentum, and is measured by the rate of its increase,
In the® case of electric currents, the resistance to sudden
increase or diminution of strength produces effects exactly
like those of momentum, but the amount of this momen-
tum depends on the shape of the conductor and the
relative position of its different parts” (Se. Pap. p. 536).

enige toelichting is hier misschien niet geheel over-
bodig. (Gemakshalve noemen wij het aangrijpingspunt
van de uitwendige kracht op het wiel, het punt dus,
waar in een machine het uiteinde van de krukstang op de
kruk wvan het wiel werkt. het drijfpunt (driving-point ,
Antriebspunct).  'Wij zullen hier echter aannemen, dat de

kracht in het drijfpunt altijd loodrecht op den krukarm



werkt. De uitwendige kracht kan men zich op ieder
oogenblik ontbonden denken in twee componenten, waar-
ran de eerste dient om den weerstand te overwinnen,
terwijl door de tweede de snelheid van het wiel ver-
meerderd wordt. Die tweede componente, die wij .\
zullen noemen, kan berekend worden uit de massa. de
afmetingen en de versnelling van het wiel. ~ Zij namelijk
¢ de massa, o de traagheidsstraal, ¢ de hoeksnelheid
van het wiel en » de lengte van den krukarm, dan is

:/q- Ay ;

l’/n; . (' o a8

dus, als 0 - f‘f’ 1S,

l/l]. .f

Iy !
(i f/r"

b (67 ¢ (Cp*u),
waarin # de lineaire snelheid van het drijfpunt voorstelt.
De grootheid ('/\'1_ die wij door Z zullen voorstellen, kan
men noemen de massa en Z # het moment (hoeveelheid
van beweging) van het wiel herleid op het drijfpunt.

Om de analogi¢ met hetgeen men bij electrische
stroomen  waarneemt, meer volkomen te maken, zullen
wij aannemen, dat de weerstand, dien de uitwendige
kracht te overwinnen heeft, op ieder oogenblik evenredig
is met de snelheid van het drijfpunt. Dan 1s, als & de
totale uitwendige kracht en A een cotfhicient van weer-
stand voorstelt,

74

3 R - WH'H' IR S ()

Als de beweging eenparig is, dan maakt de uitwendige

kracht & evenwicht met de weerstand biedende kracht & .
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Bij veranderlijke beweging wordt de kracht & — Ru

(the unbalanced force) gebruikt om de snelheid van het
vliegwiel, dus ook het herleide moment te vergrooten
en de grootte van die kracht wordt gevonden door dat
moment naar den tijd te differentieeren. Voor de veran-
derlijke snelheid van het drijfpunt vindt men door inte-

gratie van (1), in de veronderstelling dat & constant is,

r £
w—const. e L'+ —.
R

Nu stelt ;\} de snelheid voor, als de beweging een-

parig is geworden. Noemen wij die snelheid 4 en de
initiale snelheid @, dan is de constante in bovenstaande

uitdrukking gelijk @ — 4, dus
-

=664 (@a—86e  L°. . . . . (2)
Stond de machine aanvankelijk stil, dan zou onder de
werking van de constante nitwendige kracht & de snel-
heid van e tot ¢ toenemen volgens de vergelijking
- :
w=10\1 camlali | Al R (3)
Nemen wij 7 zoo groot, dat wij mogen aannemen,
dat de eindsnelheid & bereikt is, dan is de arbeid, die
gedurende dien tijd door de uitwendige kracht verricht
wordt,
't [ B
¢ [ wdi=Ro*| (1 —e= 0 |dt=0*(RE—L). (4)
v 0 S0
De arbeid, die in denzelfden tijd gebruikt is om_den
weerstand te overwinnen, is

Y& 1.!?{“'4 f=—wiciha ;”(1 — 1 ‘ |1 df b= (./\' I~ ‘ ‘[')-"3‘

« 0
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y ! : . 1 4
Het verschil van deze beide uitdrukkingen 5104

stelt de levende kracht voor, die het vliegwiel heeft
verkregen.

Hield nu op een oogenblik, dat de snelheid ¢ is, de
uitwendige kracht op te werken, dan zou door de energie
van het vliegwiel de beweging nog eenigen tijd voort-
duren met een snelheid, die afneemt volgens de ver-
gelijking

I Il
it AR B e T . (6)

Voor den weerstandsarbeid, die dan verricht wordt,

totdat de machine stil staat, vindt men
= o » :

/\’f u? dt /Hf-'/ e~ dy Lo+ (\7)

« 0 {

cen bedrag gelijk aan dat van de levende kracht, die
in het vliegwiel was opgehoopt op het oogenblik, dat
de uitwendige kracht ophield te werken.

Al de verschijnselen nu, die een electrische stroom
aanbiedt extra-stroomen bij opening en bij sluiting,
verwarming van den geleider, enz, kunnen op een-
voudige wijze heschreven worden, als men aanneemt,
dat tusschen den stroom en het omringende medium een
verbinding bestaat, die het mechanisme, waardoor zij
tot stand komt, geheel buiten beschouwing gelaten
wat de uitwerking betreft, overeenkomt met de ver-
binding, die er bestaat tusschen het drijfpunt en het
vliiegwiel van onze denkbeeldige machine.

Zij & de electromotorische kracht, # de stroomsterkte

(snelheid van de electriciteit), /A de weerstand van den
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geleider en L de coéfficient van zelf-inductie, een groot-
heid die afhangt van den vorm en de afmetingen van
den geleider, dan wordt het verband tusschen deze
grootheden aangegeven door de vergelijking (1).

Door (2) wordt de veranderlijke stroomsterkte op ieder
oogenblik aangegeven, als de stroomsterkte verandert
van a tot 0.

Bij sluiting van den stroom gaat volgens (3) door den
geleider in een tijd Z, waarin de stroomsterkte constant

is geworden, de hoeveelheid electriciteit

L
/ wudt—=bot— b—.
« () /\
e L 7k 4
Hierin stelt — & 7o den totalen negatieven extra-stroom
\ T

voor. De arbeid, dien de electromotorische kracht in
den tijd / verricht, wordt volgens (4) en (5) slechts voor
een deel gebruikt om den weerstand te overwinnen. Dit

gredeelte wordt in warmte omgezet;- het overblijvende
1 - 3 e L
cedeelte L b* wordt als kinetische energie in het

medium opgeborgen.

Deze energie blijft onveranderd, zoolang de stroom-

sterkte dezelfde blijft, dat is, zoolang & K2 nul is.
De energie vermeerdert, als & R w positief i1s. Wordt
3 R negatief, dan wordt die energie gebruikt om

de vermindering van de stroomsterkte te vertragen. Neemt
men b. v. het galvanische element, dat den stroom levert,
weg en vervangt men dit door een draad van gelijken
weerstand ,. dan ontstaat een positieve extra-stroom, waar-
van de sterkte op ieder oogenblik wordt aangegeven

door (6). De arbeid, die hiervoor noodig is, wordt
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volgens (7) geheel geleverd door de energie van het

medium. De electromotorische kracht van dien extra-

: ; . : d \
stroom is volgens (1) op ieder oogenblik — 7 (Lu); de

4
totale impulsie van de electromotorische kracht is dus
gelijk L .

Deze grootheid 2L z gebruikt Maxwerr als kenmerkend,
in zekeren zin als maat, voor den electrotonischen toe
stand en hij noemt deze grootheid, naar mechanische
analogie, het eleclromagnefischie moment van den stroom,
y2using the word momentum merely to express that which
is generated by a force acting during a time, that is,
a velocity existing in a body.” En wat hierbij in beweging
is, 1s niet alleen de electriciteit in den geleider, maar

ook iets buiten den geleider.

y 8. Tot dusverre hebben wij alleen de betrekking
beschouwd, die er bestaat tusschen een stroom en het
magmnetische veld, dat door den stroom zelf ontstaat. In
dat geval hangt het electromagnetische moment van den
stroom, zooals wij gezien hebben, alleen van den stroom
zelf af. Anders wordt het, wanneer er verschillende
stroomen in het veld zijn,

Beschouwen wij het geval, dat er twee stroomen zijn.
De magnetische kracht in ieder punt van het veld is de
resultante van de krachten, die de beide stroomen afzon-
derlijk in dat punt te voorschijn zouden roepen. Beide
stroomen staan met ieder punt van het veld in verbinding
en daardoor staan zij met elkander in verbinding, zoodat
een verandering van stroomsterkte in een van de ge-
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leiders, in het algemeen, ook een verandering van stroom-
sterkte in den anderen zal ten gevolge hebben.

Om deze wisselwerking toe te lichten gebruikt Maxwerr
de volgende mechanische analogie. Veronderstellen wij,
dat ecen stoffelijk punt met de massa C zoodanig ver-
bonden is met twee onafhankelijke drijfpunten A en 7,
dat altijd voldaan wordt aan de vergelijjking

w=pu-+qgv, . « . - » (1)
waarin #. @ en @ de snelheden van 4, B en C, peny
getallen voorstellen. -

Werken nuin A en B de uitwendige krachten X en Y
dan is

(, (/’.'t'
~dt

als 9 2, dy en 0z de gelijktijdige verplaatsingen van A,

dz=Xdx+ Fdy, . . « « (2)

£ en C voorstellen.
Volgens (1) 1s

(i

dt /’ dl 5 ? rn"r’r‘

/70 du | a7
en dz=pdx 4 ¢gdy.

Door deze waarden in (2) te substitueeren verkrijgt
men, in aanmerking nemende dat d 2 en 0 9 van elkander

onafhankelijk zijn,

{ Yy s
X = (Cp*u 4 ChHgo),
XY= — (CP7u+ CPg7),|
(3)
§ 7 .
: (4 - ‘gt
) 44 Cpqu C g7 7). \

Men kan nu Cp*# 4 Cp g2 het moment van C her-
leid op 4 en Cpgu - Cg¢*v het moment van C herleid

op /7 noemen.
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Staan er meer stoffelijke punten op dergelijke wijze,
maar met verschillende waarden voor p en ¢, met 4 en /&
in verbinding, dan vindt men op overeenkomstige wijze,
als men stelt

L, == 22 (;/’?"'. e (/" g en A= 2 {{ 9’2.

voor het moment van A: Lu -+ Mo,
en voor dat van 5 Mu 4 Nv.

Nemen wij weder aan, om de analogie met electrische
stroomen vollediger te maken, dat de beweging van
A en B wordt tegengewerkt door krachten, evenredig
met de snelheden van die punten, dan is, als Au en So
die krachten voorstellen en als & en 5 de uitwendige

krachten in A en /' zijn,

d
= - L1t = M),
: V7 4 (/ , ) '
Y R ()
: 4 T A TEA ‘
=37 - o7 (M u - No). \

Neemt op een bepaald oogenblik de snelheid van
toe, dan zal dientengevolge ook de snelheid van /5

veranderen., Om  die verandering te voorkomen, zou

d
men op /A een kracht - (47#) moeten laten werken,

(i
Deze werking op /7, veroorzaakt door een vermeerdering
van de snelheid van 4, komt overcen met de electro-
motorische kracht, die in een geleider ontstaat door een
vermeerdering van stroomsterkte in een naburigen ge-
leider.
Men verkrijgt namelijk weder, evenals in het eenvou-

diger geval van de vorige paragraaf, een bevredigende
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verklaring van de verschijnselen, die twee stroomen
aanbieden, als men aanneemt, dat tusschen die stroomen
en het omringende medium een verbinding bestaat, die,
wat de uitwerking betreft, overeenkomt met de ver-
binding van de drijfpunten 4 en 5 met de stoffelijke
punten C in het mechanisme, dat boven werd aangeduid.
Met andere woorden: die verschijnselen worden be-
schreven door de vergelijkingen (4), als & en 7 de elec-
tromotorische krachten, # en # de stroomsterkten, X en .Y
de weerstanden van de twee stroomen A en /7 voorstellen.

Het electromagnetische moment van A is dan Lz« - 1/
en dat van B, Mu -+ No. Hierin zijn L, 4 en N groot-
heden, die afhangen van den vorm en van den betrekke-
lijken stand der geleiders. 2 hangt af van den vorm
van A, N van dien van /' en A/ van den betrekkelijken
stand van A en /5.

Beschouwen wij tot toelichting het geval, dat de ge-
leiders onveranderlijk zijn in vorm en stand; Z, 47 en NV
zijn «dan constanten. Laat verder in 4 de constante
electromotorische kracht & en in /7 geen electromotorische
kracht werkzaam zijn. De vergelijkingen (4) gaan dan

over in

a v
5 R } A ]
R u / B / J7"
y ; ¢ {5
” Ry @i 1N ( -_.'
/u’/ A dt \

Uit deze vergelijkingen vindt men voor de totale
hoeveelheid electriciteit, die in den tijd 7 door beide

geleiders stroomt,




|t I ‘ “ . '
/” wdl= R 'Ef _}. L (g — HI) 1F ~][{7"|\ — ) | ?
. (6)
/.r‘fr dr — ] lA]f(';( N J\_?(,-. — ‘}’,
Jo S 0 1 “0 | l s

waarin #,, 7, en #,, v, de stroomsterkten bij het begin
en bij het einde van den tijd 7 voorstellen.

Laat men den tijd 7 beginnen op het oogenblik, dat
de geleider A gesloten wordt en neemt men / zoo groot,

dat een stationnaire toestand is ingetreden, dan is,

!.lf“ 0O g'{j ;\J - ‘l'ln 05 ﬂ-ll ot
Dus
' TEN
2w d b7 ‘/ ' ,
.fn 1 v /\’»
) (79

g p _

, vdil = ", \./. ‘

De totale negatieve extra-stroom in A is dus onaf-
hankelijk van /4., De totale inductie-stroom in /Z hangt
alleen af van den cotfliciént van wederkeerige inductie 47,
van den weerstand van /' en van de eind-stroomsterkte in A,

Wil men ook den arbeid berekenen, die door de elec-
tromotorische Kkracht wordt verricht en die gedeeltelijk
in warmte wordt omgezet, gedeeltelijk als kinetische
energie in het medium wordt opgehoopt, dan moeten de
\'l‘l"L{'l'lijl{illf.:'t‘ll (5) volledigr geintegreerd worden, \\'ij zul-
len hier niet verder bij stilstaan. Het was er ons slechts
om te doen duidelijk te maken, wat Maxwern onder

het electromagnetische moment van stroomen verstaat,




§ 9. Het voorafgaande moge voldoende zijn om de

volgende definitie toe te lichten.

Laten /. G en / de componenten voorstellen van het
electromagnetische moment in een punt van het veld, dat
door een stelsel van stroomen of magneten ontstaat.

/* is dan de totale impulsie van de electromotorische
kracht in de x-richting, die in dat punt zou ontstaan,
als deze stroomen en magneten uit het veld verwijderd
werden. Dus., als 2 die electromotorische kracht op
ieder oogenblik gedurende de verwijdering van het stelsel
voorstelt,

“p

F=| Pdi,

waarin 7" den tijd beteekent, waarop P de waarde nul
heeft gekregen,

Het gedeelte dus der electromotorische kracht (72, O, &)
dat afhangt van een verandering in de intensiteit van
het magnetische veld, is

P r//" 7] r/"(.; /\, Ar///‘
(f/’ 7 - f/ul" ' "”‘/

[Laat s de lengte van een lineairen stroomgeleider in

het veld voorstellen. De lijn integraal

\ .(r".\ ‘ dy , =
/ ‘/ - (r —— H s
: s s ds
stelt dan het electromagnetische moment van den stroom
VOOr.
i s ‘in u"./'
[n de vorige verhandeling schrijft MaxweLL / , enZ,
) 4//
in overeenstemming met de daar gegeven definitie van

den electrotonischen toestand (zie p. 9)
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§ 10. In zijn 7reatise gebruikt Maxwern in de leer
van het Magnetisme voor het eerst de benaming Fecfor-
potentiaal van de magnelische inductie en hij identificert
dan later deze grootheid met het electromagnetische
moment of, zooals hij deze grootheid ook noemt, het

electrofinelisclie montent.
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Her BeGrir VECTOR-POTENTIAAL.

Integratie by gedeelten toegepast op een veelvoudige

inltegraal.

§ 11. Laten # en 7 twee eindige, . doorloopende.
éénwaardige functién van x, 4 en z zijn en laten ook
de afgeleiden dier functién eindig zijn. Als niet uitdruk-
kelijk het tegendeel gezegd wordt, zullen wij in het
vervolg steeds veronderstellen, dat de functién, die wij
beschouwen, aan die voorwaarden voldoen.

Beschouwen wij de integraal
(i dv
f " dr,

;/ .'/.\'

genomen over een enkelvoudig-samenhangend volume r.
dat begrensd wordt door een oppervlak q.

Integreeren wij eerst bij gedeelten met betrekking tot a
en onderstellen wij eenvoudigheidshalve, dat een reéchte,

evenwijdig aan de x-as, het oppervlak slechts in twee

punten met de abscissen x; en x,

(x; { &,) ontmoet, dan




[$¥]
n

gaat de integraal over in
Hrz’_r dz : (2 v), — (# 2), : %/ f /:, 0 i
waarin de indices 1 en 2 aanwijzen, dat men in het
produkt #7 de abscis x te vervangen heeft door a; en x,.
De dubbele integraal in deze uitdrukking moet genomen
worden over de projectie van het oppervlak ¢ op het
yz-vlak; maar deze integraal is niets anders dan de

oppervlakte-integraal
/ ’ w v cos [ do,

genomen over het oppervlak o, waarin / de hoek is, dien
de uitwendige normaal op het oppervlak met de x-as
maakt; voor ieder punt (x,, v, 2) is namelijk die hoek
stomp en voor ieder punt (x,, », 2) scherp.

Men verkrijgt dus de bekende formule
/./‘;,N r?-l' adr : /1/.15' 2 cos { doa /,I"-r H:HA d 1 | (1)

Snijdt een lijn, evenwijdig aan de a-as, het oppervlak
in meer dan twee punten, dan is het aantal snijpunten
altijd even en het blijkt gemakkelijk dat de formule blijft
doorgaan.

Zijn op oneindigen afstand # en o gelijk nul, dan is,
als men de integratie over de geheele ruimte uitstrekt,
de eerste term van het tweede lid van (1) nul en men

heeft eenvoudig
/”’ d:rj dr = /”’ :;?:_ dr. « < o (2)

Zal deze wijze van integreeren mogelijk zijn, dan moeten




de functién # en 7 in de geheele ruimte als doorloopend

o
beschouwd kunnen worden. Bij een bepaalde toepassing

).

~~J

van de formule komen wij hierop terug (§ 2
§ 12. Wij willen nu een soortgelijke herleiding toe-

passen op de dubbele integraal

L i du !
/ f 7 cos m — U — cos n | da,

]

(744 ay

uitgestrekt over een niet-gesloten oppervlak s, dat
begrensd wordt door een Kromme s; # en ¢ zijn functién
van x, ¥ en z; 7 en n zijn de hoeken, die de positieve
normaal op het oppervlak met de y- en de z-as maakt.

Het is noodig, dat wij nauwkeurig vaststellen, wat wij
zullen verstaan door een beweging in positieven zin langs
de grenskromme 5. Denken wij ons om een punt /2 op
het oppervlak een oneindig kleine gesloten kromme /
getrokken. Door een waarnemer, die met de voeten in
P en met het hoofd in de richting van de positieve
normaal staat, zal een beweging in positieven zin langs /

gezien worden als een beweging tegengesteld aan den

5

zin, waarin zich de wijzers van een uurwerk bewegen,
Stellen wij ons nu voor, dat /2 in de nabijheid van s ligt
en dat een gedeelte van / met s samenvalt. Hierdoor
wordt de positieve zin langs s bepaald; het is namelijk
duidelijk, dat die zin altijd dezelfde zal zijn, tot welk
gedeelte van & men /7 ook laat naderen.

Drie onderling loodrechte assen zullen altijd zoo worden
aangenomen, dat een wenteling van het positieve gedeelte
der x-asenaar het positieve gedeelte der y-as, over een

hoek van ¢o”, uit een punt van het positieve gedeelte
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der z-as als positieve draaiing gezien wordt. Dit is het
rechtsche systeem, dat door Maxwerr meer algemeen in
gebruik is gekomen

Projecteeren wij de kromme s op het xy- en op het
xz-vlak, Laten § en s die projecties zijn. Wij kunnen
stellen: do cos n = dx dy en da cos m = dx dz, als wij
eenvoudigheidshalve aannemen, dat de hoeken, die de
normaal met de y-as en met de z-as maakt, overal scherp
zijn. Integreert men den tweeden term van de gegeven
uitdrukking bij gedeelten ten opzichte van y, dan ver-
krijgt men

v ' o 4
dit dit ,
/ fr' cos 1 do / /-:' — dx dy
JJ ay JJ ay .

[ (4% ax ay,

L | r
x IRTAR (v2t) (
/ t I (), (¥ 7t ), t dy

|

i

als men aanneemt, dat een rechte in het ay-vlak, even-
wijdig aan de y-as, de kromme s° slechts in twee punten
met de ordinaten 3, en v, (¥, < ,) snijdt. Door (v#), en

o). worden de waarden voorgesteld, die het produkt

22 heeft in de punten van o, die zich in (¥, y) en (x,1,)
projecteeren, terwijl @ en @' de kleinste en de grootste
abscis voorstellen van de ordinaten, die met de kromme §*
een punt gemeen hebben.

Beschouwen wij nu ook de lijn-integraal
i ’ i u',.\
] v dx ff' % —— ds,

/
as

‘.I]

waarin s/ de lengte van s, gemeten van een vast punt

af . voorstelt De waarde van deze integraal, in positieven




zin genomen, is

[} Gy — @), | 2.

v a
Dus, als men weder dx 4y door do cos 7 vervangt,

" du i
{ﬂ— —cosndo——| VU

W (fil: ds’ — / ? d’: cosnda. (1)

o=
t.{f /) (/‘.

Op dezelfde wijze vindt men

[ du e o dv
/ f:.' cosm do— - f VU —r A5 — / /H cosm do. (2)
JJEdz : as I ke

Men kan x beschouwen als een functie van de onderling

/ i

onafhankelijke veranderlijken s§° en §°, terwijl zoowel

s* als s een functie is van s; men kan dus stellen
dx - dx 4 dx 47
ds = — ds’ 4 = as’.
as as as

Door (_:r) van (2) af te trekken verkrijgt men dus

[ du du '
/ f o cos o cos 12| do
Jola\ e dy |

4 dx ([ an d7
= , v i as / / {H - COS N A ) H‘ da, (3)

. o a4z ay
waarin de enkelvoudige integraal langs de Kkromme
moet genomen worden,

Bij dit bewijs werd stilzwijgend aangenomen, dat de
grenskromme der projectic van het oppervlak op het
xy-vlak, die wij # zullen noemen, samenvalt met de
projectie §° der grenskromme van het oppervlak. Zoo
ook ten opzichte van het az-vlak. Het is echter niet
moeilijk te® bewijzen, dat de formule (3) blijft doorgaan,

als dit niet het geval is.
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De kromme / op het oppervlak, wier projectie 7 is,
verdeelt het oppervlak in twee deelen. Nemen wij
gemakshalve aan, dat de hoek, dien de normaal op het
bovenste gedeelte met de z-as maakt, overal scherp en
op het onderste gedeelte, dat de grenskromme s moge
bevatten, overal stomp is. Duiden wij de punten, waarin
een rechte in het xy-vlak evenwijdig aan de y-as de
projectie # snijdt, door de indices 3 en 4 en de punten,
waarin die rechte de projectie s* snijdt. door 1 en 2 aan.
Laten verder # en & de kleinste en de grootste abscis
voorstellen van de ordinaten, die met # een punt gemeen
hebben, terwijl « en @’ dezelfde beteekenis hebben voor 35
Voor het bovenste gedeelte van het oppervlak, dat wij
i’ noemen, is dan

f/ 7 i:::‘{ cos 1 do //' ] (:,-f:' ] dx dvy

-»‘fll dx : (vu), — (vu), : ff (/! :;F\l dx dy.

",

Voor het onderste gedeelte o
il 1 [ duw) |,
/ / ’."( == COS 11 @i / ; (?' ) ax dy
o oo (g ”']' J o (f_]' o

il edl (R o ‘[ dv) ,
| da \@u), — @u); | f dx)(@u),—(@u) H (.'/ 7 ;-),..‘“"”"

o b
Door deze vergelijkingen op te tellen, vindt men voor

het g‘l'ht‘l‘]t' UI)]N‘I'\'];I](

5

/.f‘f‘ f:}:’; cos 1 do ./”” ax : (@ ",]__ (o), : - //H :j.’" cos 7 do.

De vergelijking (1) Dblijft dus doorgaan. Op dezelfde

wijze bewijst men, dat (2) en dus ook (3) geldig blijft.
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7 B
Bij een gesloten oppervlak verdwijnt de lijn-integraal

in (3) en men heeft dan

"f‘( (j < 7 ‘fﬁ S 72 ] f ,/‘ (.{7' /Y 2 H’:' ) .7"\ 7 {
Y —— COSH—TU - cos 7 A 1 —— COS T — U —— COSTL|@0. \4)
7 , : i E Az dy j \4

(Z ay

De laatste formule kan ook zeer eenvoudig rechtstreeks

op de volgende manier worden bewezen. In plaats van

de identiteit

;‘ / !‘(({2 (nv) d* (f’”"-) :

— dt =0
JlJ) \dzdy dz dvy .
kan men, zooals gemakkelijk uit (1) § 11 blijkt, schrijven

, ’ d(1v)

T
Z

> ]
cos o ao — f f cos 12 r?’n — 0,

Voert men hierin de differentiatie uit, dan verkrijgt

men (4).
Verandering van eci oppe rolakle-intcoraal 1 een

. y
T'ti/f'." .",'rr‘—f'.".-’/.r L rial.

¢ i3. Laten X, 1 en Z drie functién van de coor-
dinaten zijn; /, m en n de hoeken, die de uitwendige

p een gesloten oppervlak ¢ met de assen maakt.

li
Stelt men in de vergelijking (1) van S11u=16env 2y

normaal o

dan gaat zij over in
s . i ‘n';.\. -
xr,\(f,,x/‘rr’ﬁ ;]{ — aT.
700 heeft men ook

’/ Y cos m do /I’.”’h)_'.fr.

f
. = LE S i =
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Door optelling dezer vergelijkingen verkrijgt men
I g geljking it

/‘/IL\— cos L4~ Y cosnm -+ Z cos 72) d ///“:il\ 7,17, {:;i ! ‘i;‘f dr. (1)

Deze formule wordt toegeschreven aan OSTROGRADSKY
zij kan ook beschouwd worden als een bijzonder geval
van de bekende formule van (GRreex.

deschouwt men X', } en Z als de componenten van een
vector §, die in een punt van het oppervlak met de
normaal in dat punt een hoek 3 vormt, dan is, als /~de

numerieke waarde van dien vector voorstelt,

/< cos g Xcos ! - Y cosm - Z cos n,

i

dus

1T ‘ (2

.flj{'/"(f-',\' 7] o /{{""’\ | ay | IXX‘,'

! JoJl ax .':"7\' a2

De uitdrukking in het eerste lid van deze vergelijking
noemt men de oppervlakte-integraal van § over a.
Stelt de vector § de snelheid van een vloeistof voor.
dan geeft de uitdrukking
adX aly L
A ‘ r.""l i i !
de hoeveelheid vloeistof aan, die in de eenheid van ti_i!]
uit de eenheid van volume stroomt,
Wij zullen deze uitdrukking met Heavisioe de divergentie
van den vector § noemen, De negatieve divergenti
wordt door MaxwerL de conzergentie van § genoemd.

Voor (2) kunnen wij dus schrijven

{' ; [ cos l d o ! /lfra.".-‘rf' R‘ ar . . . ) (3)




Of: de oppervlakte-integraal van een vector over een
gesloten oppervlak is gelijk aan de volume-integraal van
de divergentie van den vector over het volume, dat door
het oppervlak begrensd wordt.

Is in een bepaald gebied overal &iz § = o, dan noemt

b

W. Trousox de verdeeling van dien vector een solonoidale.

Als overal binnen een gesloten oppervlak 7w § 0
is, dan is volgens (3) de oppervlakte-integraal van %
over dat oppervlak gelijk nul. Denkt men zich dus dat
oppervlak door een gesloten kromme in twee deelen
verdeeld, dan i1s de oppervlakte-integraal over het eene
deel in absolute waarde gelijk aan, maar in teeken ver-
schillend van die over het andere deel. Hieruit volgt,
dat voor een gebied, waarin diz § o is, de oppervlakte-
integraal van § over een willekeurig niet-gesloten opper-
vlak ¢ alleen afhangt van de grenskromme s, Het moet
dus mogelijk zijn de oppervlakte-integraal over ¢ uit te
drukken door een lijn-integraal langs s.

Om deze vervorming tot stand te brengen zullen wij
eerst aantoonen, dat de lijn-integraal van een willekeurigen
vector langs een gesloten kromme altijd kan veranderd

worden in een oppervlakte-integraal.

Verandering van cen lyn-integraal in een

opperviakle-integraal.

§ 14. Laten /7, (G en /7 drie functién van de coordi-
naten zijn. Stelt men in (3) § 12 ¢ 1 en u /7, dan
gaat die vergelijking over in

/. /.(-',/ F oS dr . H' e

: dx
L .r.".'_i .f/_‘.' /

fih 2 (/.\'.




s
L

Op overeenkomstige wijze vindt men ook

e {, 8 52— (AN
r.”_'t' (/,f

[(dG iG ) [ . dy
f / {(/ ; /) e / (r {;j as .
1l

| / ( — o5 [ — 7 608 m) d f 11 as.

Door deze vergelijkingen op te tellen verkrijgt men

- | i d |
COS Wt — cosS 72 |

[V [dH dG | Ll
[ ( ) cos 2 | pram
_t/‘_l H’{'ll

| \dy dz \ 2 dx

. Jdx L an 2z ]
3 ! {I : L @S \
I ( : s s //u’\' ZEE R (1)

Deze belangrijke stelling wordt meestal toegeschreven
aan STOKES,

Stelt men

. = /) (2)
174 A :
4 {.’ a .t

; «
@A aA

en beschouwt men /7, 7 en /7 als de componenten van
een vecltor ¥, die met de raaklijn aan de kromme s een
hoek & en a, & en ¢ als de componenten van een vector 9 .
die met de positieve normaal op het oppervlak ¢ een hoek

vormt. dan kan men. daar
A cos 'a J'-_ b (5= L A

is, in plaats van (1) schrijven

’ / B cos n da {l’ cos e ds . . ’ ‘ (3)




Of: de f:‘:p-p-:;rvlaktc—integr;.u:1 van B over o is geljk
aan de lijn-integraal van 9 langs de grenskromme.

In deze vergelijking kan de vector 9 geheel willekeurig
genomen worden, mits eindig en continu, maar met den
vector B is dit niet het _g(:val, Differentieert men name-
lijk de vergelijkingen (2) respectievelijk naar x. y en
en telt men de verkregen vergelijkingen op, dan vindt
men voor de voorwaarde, waaraan B moet voldoen,

div B = o.

Deze voorwaarde is dus noodig; dat zij voldoende is
om de formule (3) te kunnen toepassen, zullen wij in § 17
aantoonen.

Stelt de vector 9 de snelheid van een viloeistof voor,
dan is 9B, zooals uit (2) blijkt, een vector, waarvan de
grootte gelijk s aan tweemaal de rotatie-snelheid van
de vloeistof in de onmiddellijke nabijheid van het punt,
waarop U betrekking heeft en waarvan de richting samen-
valt met de as van rotatie (KKIRCHHOFF, Mechantke, 3. Aufl
p. 107)

Fen vector B (a, &, ¢), die volgens de vergelijkingen (2)
van een vector ¥ (F, G, H) wordt afeeleid, wordt door
MaxweLn de curl van 9 genoemd.

Voor (3) kunnen wij dus schrijven
{ / T curl Y cos y d / Acoseds,. (4)
als 7" curl 2 de numerieke waarde van curl 8 voorstelt,
[s in een bepaald gebied overal curl N o, dan
wordt zulk een verdeeling van den vector 81 een fwer-
velvrye oenoemd, daar in de vlioeistof dan geen wervel

bewegingen voorkomen.



o
n

[s de richting van 9 overal dezelfde, dan kan men één
der assen, b. v. de z-as, met die richting laten samenvallen;
men vindt dan voor cur/ 9 de twee componenten

4
[ty

dH
t!’_\'

staat dus cur/ W loodrecht op 9. In het algemeen is

volgens de x-as en volgens de y-as. [n dat geval

dit echter niet het geval.
De scalaire polentiaal.

§ 15. Laat gegeven zijn een vector §, in de geheele
ruimte eindig en continu en op oneindigen afstand gelijk
nul. Zij verder cur/ w o, dan is volgens (4) § 14 de
lijn-integraal van § langs een gesloten kromme gelijk
nul en voor een niet-gesloten kromme hangt de waarde
van die integraal niet af van den vorm der kromme,
maar alleen van de eindpunten.

Als curl '§ o is, dan is, als X, } en Z de compo-

nenten van 5 voorstellen, de uitdrukking
Xax -+ Yady+ Zda:
cen exacte differentiaal.  Stellen wij

Xdx 4 Ydy+ Zdz —d V.

De integraal dezer grootheid, die voldoet aan de voor-
waarde, dat zij op oneindigen afstand tot nul nadert,
noemen wij in overeenstemming met Maxwerl ( Zrealise,
Art. 70) de potentiaal-functie, of, ter onderscheiding van
de vector-potentiaal, ook wel de scalatre polentiaal.

Voor de lijn-integraal van § tusschen twee punten




A en /5 langs een willekeurige kromme heeft men dan
(B ;
[ Feoseds—= V4 — Vhs « o . (1)
voA

als Iy en Iy de waarden van in 4 en in /& voorstellen.

Ligt het punt 5 op oneindigen afstand, dan is

¢ X

f Fcoseds — VAT S o = o i2)

A

De componenten van § worden van 7 afgeleid volgens

de vergelijkingen

a7 J7 ar 7 d 1l )
"f.l' i ’3"]' . : fﬁ{r“ ' [ (‘1)

Xs

Stelt men nu
A N i A ,
o ar > 1= L TED S . : ; e (4)
waarin de factor 4 = alleen dient om bij de toepassingen
in overeenstemming te blijven met de gebruikelijke een-
heden, dan kan men voor die vergelijking ook schrijven

rn

dx* dy* dz? TR, VG,
of, volgens de gebruikelijke notatie,
I =SACTE 0 BN SR TR ()]}

[s nu ,\\ of IV gegeven, dan kan 0 uit de “"'r."-i"‘”_}.‘
kingen (3) of (5) berekend worden. Men kan echter ook
yragen § of I te bepalen, als o voor ieder punt van
de ruimte gegeven is. Dit komt neer op de oplossing
van (5) in verband met de voorwaarde, dat 7 Op onein-

digen afstand nul moet zijn.




De oplossing is
S M S e o 1(7)

waarin 7 den afstand voorstelt van ieder punt, waarop p

betrekking heeft, tot het punt, waarvoor I” bepaald moet

worden, terwijl de integratie moet uitgestrekt worden over

ieder deel van de ruimte, waarin p een eindige waarde

heeft (Zie b. v. Picarp, 7raité d' Analyse, 1. § 8, p. 172).
Volgens (4) kan men voor (7) ook schrijven

=L ([ . .. ®

A% r

Beteekent 7 de potentiaal van massa's, die een aan-
trekkende of afstootende werking uitoefenen, omgekeerd
evenredig met het kwadraat van den afstand, dan stelt
o de massa-dichtheid voor.

Hier is echter het woord potentiaal in meer uitgebreide
beteekenis gebruikt, In het algemeen zal men dan de
functie p alleen door de vergelijking (4) gedefinicerd

moeten beschouwen

Voor de componenten van & vindt men uit (7
: PLL |
A / / / =5 COS a &7, €Nz, . (Q)

waarin « de hoek is, dien » met de a-as maakt,

Is dus gegeven een vector &, die van een scalaire
potentiaal kan worden afeeleid en denkt men zich. dat
van ijeder volume-element & een werking uitgaat,
evenredig met o dr, waarin ¢ = |lr div §, en omgekeerd

evenredipg met het kwadraat van den afstand, dan zal de




resultante van die fictieve krachten in leder punt een
vector zijn, die identiek is met den oorspronkelijk in dat
punt gegeven vector .

[n het begin van deze paragraaf werd ondersteld, dat
de vector § in de geheele ruimte doorloopend is. De
verdere beschouwingen blijven echter geldig, als de
normale componente van § op sommige oppervlakken
sprongsgewijze van (/,); tot (/5), overgaat. Men kan
aannemen, dat § in een oneindig dunne overgangslaag
continu verandert. Voor de ruimte-dichtheid p in die
laag kan men dan stellen, daar de verandering der
tangentieele componente van & oneindig klein is in ver-
gelijking met die der normale componente:

1 dr,
4 n an '

Wil men de ruimte-lading als een oppervlakte-lading

beschouwen, dan vindt men hieruit, door integratie over de

dikte van de overgangslaag, voor de dichtheid dier lading :

De vergelijking (7) gaat dan over in

vaarin de tweede integraal moet genomen worden over

alle oppervlakken s, waarop & discontinu verandert,

6. De functie 7, die in de vorige paragraal werd
hesproken, is een éénwaardige functie van de coordinaten.
Het kin echter voorkomen, dat een vector § volgens

de vergelijkingen (3) § 15 van een functie ¥ kan worden
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afgeleid en dat die functie meerwaardig is. Er zijn namelijk

gevallen, dat in een bepaald gebied cur/ {§ — o is en
"B

dat toch de lyn-integraal / /" cos ¢ ds tusschen twee
1

punten A4 en 7Z verschillende waarden heeft voor twee
krommen, die geheel in dat gebied liggen. Dit zal plaats
hebben, als het niet mogelijk is de eene kromme door
een doorloopende beweging in de andere te doen over-
gaan zonder buiten het gebied te komen, waarin aan de
vergelijking cur/ § =— o voldaan is. Het beschouwde
gebied is dan een twee- of meervoudig samenhangende
ruimte, (Zie b. v. MaxweLL, 7reafise, Art. 18—20 en
Kircunorr, Mechanik, 3. Aufl. p. 172 en p. 192). Len
voorbeeld hiervan zullen wij aantreffen in § j3s.

Noemt men dus, zooals dikwijls gedaan wordt, ook in
dit geval de functie V' een potentiaal, dan kan de poten-
tinal een meerwaardige functie zijn. Als niet het tegendeel
vezegd wordt, zullen wij in het vervolg onder den term
scalatre polentiaal de éénwaardige functie van de vorige

paragraaf verstaan.
Oplossing van de vergelyking curl U 4

§ 17. Zooals wij in § 14 gezien hebben, voldoet een
vector 9B, waarvan de oppervlakte-integraal over een
willekeurig oppervlak gelijk is aan de lijn-integraal van
een anderen vector Y langs de grenskromme, aan de
voorwaarde @i B = o, Wij zullen nu bewijzen, dat die
voorwaarde voldoende is om de formule (3) § 14 te
Kunnen toepassen. Wij willen dus % bepalen, als Y

regeven is.
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Daartoe zullen wij hebben aan te toonen, dat, als a,
4 en ¢ gegeven functién van x, ¥ en z zijn, die voldoen

aan de voorwaarde

(."rf a // (f('

| |
: 4 = = = — [a)- ‘ : . (1)
ax ay 2
altijd drie andere functién /&, G en A kunnen bepaald

worden, die voldoen aan de vergelijkingen

r/]f__ a (7 .

(17_1' a2z e ’

ad L’ d \ o
R ==iny L B R X k20
az rf.\‘

dG  dF

(/.\' (/A‘.' == g

Deze drie vergelijkingen zijn echter niet voldoende om
/7, G en / volledig te bepalen. Stelt namelijk het stel
waarden /7, (', ./’ een particuliere oplossing van (2) voor,
dan wordt de meest algemeene oplossing gegeven door

de vergelijkingen

3 . r/f
/ rf.l'. ’
~ - r// \
(7 (G '
(f",‘ L] : \3)

e |
H= H g

waarin y een willekeurige functie van %, y en = voorstelt.

Dat deze waarden' /7, ;, / aan (2) voldoen, blijkt
bij substitutie onmiddellijk. Dat zij de meest algemeene
oplossing vormen, kan op de volgende wijze worden

aangetoond.
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Laat Z

1y Gy, H, en F,, G,, H, twee particuliere

oplossingen voorstellen, dan heeft men

(2"1'/'l a (;]
ay dz
= a ‘//-_, 4 (:': "
ay dz &
Dus

n/(//l - /f:) tf'({l‘; (1.._l

ay az
A ) d (1] Io ]
7200 ook L . =L
@z .‘f.l
a(G,— G,) d(F, —F)
en - - =
ax (fAI'
Maar dit zijn juist de voorwaarden, dat /7, — /7, G, — (,
en /7, H, de afgeleiden zijn, respectievelijk naar a, )

en z, van een zelfde functie y.

Om /£, G en [/ volledig te bepalen, moeten wij dus
die grootheden nog aan een voorwaarde laten voldoen.
Om tot een voor ons doel geschikte particuliere oplos-
sing te geraken, kiezen wij de voorwaarde

O Cr N ]

1‘1"‘\ | f”r]l “ i/. o l . : ll}
terwijl wij tevens zullen aannemen, dat a, & en ¢ op
oneindigen afstand de waarde nul hebben.

Differenticert men de derde der vergelijkingen (2) naar

v en de tweede naar z, dan vindt men door aftrekking

de  db PG dF dF | d*H

ay @z dxdy dy’ dz* ' dxd:
d (dF & (G 4t ’ (”J: F i a* I’ | I AV
dx\da : a a (A ada? dz?




Dus, als aan (4) voldaan is,

zoo ook ’

d ri’
en
77 7
1/ (L 1l
F | ).
|'! X u') V]
Stellen wij nu
oA ’,{(',j
7 A / peTEC s ’
7 7 1
5 1RIT T (6H)
/ 7
- ; T TL). ]
a2 @

Door deze vergelijkingen resp. naar x, ¥ en z te diffe-
rentieeren en op te tellen, vindt men, dat =, 2 en w
voldoen aan de voorwaarde

'/ff ff"‘-‘ u”:-l'
3 i » | ; ) {7:)
ax ay @ ’

S

elijkingen (5) gaan nu over in

” .

De functien /7, & en /7 kunnen dus beschouwd wor-
den als potentialen van massa’s met de dichtheden z, v !
en { en ‘\\'ij ‘\':Htii n tll' '\'u]-kj'a'nti'- (.1.]uak.1!|{f van de ver-

gelijkingen (2):




6=[[[Zas ) .

§ 18. Wij willen nu aantoonen, dat door de gevonden
oplossing aan (4) en (2) van de vorige paragraaf voldaan
wordt.

r oL s “rr By
Vormen wij = Bij deze differentiatie blijft # constant,
T ax ’

daar de verandering van / alleen betrekking heeft op

een verplaatsing van het punt (x, ¥, z). Dus

3
A a
a .t / 7 "
. J K
i { | (’1"] (l
dx / / dx
Hierin is »* = (a ) 4 (y — ) 4 (2 —2)? als

de coordinaten van ieder punt, waarin # een eindig

waarde heeft, worden aangegeven door af, 9 en

Daar
1 . 1
@ @
=
I A i.""l
is, kan men ook schrijven ’
P
e (2
7/ (f )
, f / /, da’ dy dz
a X N f/l

Deze integraal moet genomen worden over het volume
waarin # een eindige waarde heeft. Daar buiten dat

volume o is. kunnen wij ook over de geheele ruimte
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7p

integreeren. Wij vinden dan door toepassing (2)

/

ad R 7 ) ) ’
dx / f / )L (;,_T ax’ ay’ dz'.

dG _dH

Soortgelijke uitdrukkingen vindt men voor kit
= ay az

dus

1F  dG @ dH I [{z"ﬁ - du Vi) T
e E Ix’ dv' dz'. (1)
ax dy dz ” / - \dx" ' dy r!':’_( v &y az. A\l

7
De elementen van deze integraal zijn alle nul volgens
(7); dus wordt aan (4) voldaan.

Evenzoo vindt men

ald @ (7 ([ 1 [dw dv)
dy . dz ”—’,/ /] (f/_w dz’)

I N v d \(r/f! ; @b 1 de d*a d*a r[""r-’]l ¥ i
' 1:/” » dx' |\dx~ ay L u’:’} .(d’.‘.'” ‘ :f_\"'"'” adz? |“{'1 a2y a:

ia' dv dz
= g

I /N
f / / : dx' dy dz
By s A r
Zoo ook voor de andere componenten; dus wordt aan (2)

voldaan.
Definilie en «'{gfrf.’.\"r/?u/‘f-f'/.f van de vector-polentiaal.

§ 19. Een vector, die, zooals de vector Y van § 17,
de eigenschap heeft, dat zijn divergentie nul is en waar-
van de componenten Z, G en // voldoen aan de verge-
lijkingen (2) § 17 noemen wij een veclor-polentiaal.
Volgens definitie voldoet dus een vector-potentiaal aan
de vergelijkingen
dro Y O . ISR 1)

en curl Y W o i ey v (2)

waarin B een eindige, doorloopende vector voorstelt,
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die op oneindigen afstand nul is en die voldoet aan de
voorwaarde div B = o.

Wij zeggen, dat een vector 8 (a, &, ¢) van een vector-
potentiaal U (/, &, /) wordt afgeleid, als de betrekking
tusschen die vectoren wordt aangegeven door de verge-
lijking (2), of, wat hetzelfde is, door de vergelijkingen
(2) § 17.

Een vector 8, die van een vector-potentiaal is afgeleid,
voldoet steeds aan de voorwaarde

QL e R R T )
en dit is waar, onafhankelijk van de beperkende voor-
waarde, @i 9 = o, die wij bij definitie aan de vector-
potentiaal hebben opgelegd.

Omgekeerd kan een vector, die aan de voorwaarde
(3) voldoet, altijd van een vector-potentiaal worden afge-

leid (§ 17).

3y 20. De componenten van een vector-potentiaal wor-
den volgens de vergelijkingen (g) van § 17 afgeleid van
functién 2, # en w, die bepaald worden door de verge-
lijkingen (6) § 17.

De componenten van de vector-potentiaal bezitten dus,
als functién der codrdinaten beschouwd, de eigenschappen
der potentiaal-functie.

Beschouwt men #, ¢ en w als de componenten van een

vector (8, dan kan men in plaats van (g) § 17 ook schrijven
(G
Y - / / f @1 i . . i 9 w Al
of, \'n]_-‘p-nk (0) § 17

Byl
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4

in welke vergelijkingen de integratie als een vector-
summatie moet worden opgevat.

De vector-potentiaal wordt dus afgeleid van den vector
¢ door integratie, op soortgelijke wijze als de scalaire
potentiaal wordt afgeleid van de grootheid, die wij in
§ 15 door p voorstelden.

Volgens (7) § 17 voldoet een vector ¢, waarvan een
vector-potentiaal kan worden afgeleid, aan de voorwaarde
div G : 0.

Men zou een meer algemeene theorie van de vector-
potentiaal verkrijgen, als men die grootheid definieerde
door de vergelijking (1), waarin € ecen willekeurigen
vector zou voorstellen.

Volgens (1) § 18 zou dan diz ¥ gelijk zijn aan de
scalaire potentiaal van div 8. De vergelijkingen (5) § 17

zouden overgaan in

.y 7
- . ac d b @ y
e ( ] 5 div VN, enz.

.d'l/‘\. "l/ “"_l
De theorie zou hierdoor minder eenvoudig worden en
zooals wij in § 24 zullen zien, zou die meer algemeene
theorie voor de toepassingen van weinig belang zijn.
21. De groote overeenkomst, die er bestaat tusschen
de scalaire potentiaal en de vector-potentiaal komt ook
zeer duidelijk uit, als men gebruik maakt van HaMmILTON'S
~n[)('l‘[|1c|r
. u" - u/ rff
: dx R t/_\‘ L
De betrekking tusschen een vector § — ¢ X + 7V 44 Z

en de, scalaire potentiaal 17, waarvan hij kan worden
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afgeleid, wordt aangegeven door

| /4 : o [T

(o

| Past men denzelfden operator toe op een vector
‘ | U= iF4 7G4+ kH,
dan is het resultaat in het algemeen een quaternion. Men
heeft namelijk
Y = _' i_f'f“ -1 _/.(.'. )
dF dG B df (dH dG (dF dH), ,[dG dF
b o) el e |

|
=t 1 !
dx ' dy ' dz dy az d:

r.'f,l an
dro '{"'l ar curd 9.
[s 9 een vector-potentiaal, dan is het scalaire gedeelt
van dit quaternion nul en men heeft eenvoudip
A = curl ¥,

dus volgens (2) § 19

R

B = b (:
De overecenkomst wordt alleen gestoord, doordien in (1
een minus-teeken voorkomt, dat in (2) ontbreekt

2, Volgens het behandelde in § 14 1s de opper-

vlakte-integraal van een vector, die van een Vvectol
potentiaal kan worden afgeleid, over een willekeurig
oppervliak gelijk aan de lijn-integraal van de vector-
potentiaal langs de grenskromme van het opperviak, Wij
zouaen dit de hoofdeigenschap van de \'t'(‘lul'—]n‘uerli:l.’l]

kunnen noemen.

Evenals men de krachten, die van een scalaire

Y 23,
{ potentinal worden afoeleid, kan terugbhrengen tot do

Werking van centra, omgekeerd evenredigs met het kwa-
draat van den afstand, zoo kan men ook de krachten, die
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van een vector-potentiaal worden afgeleid, terugbrengen
tot werkingen op afstand, uitgaande van den vector
€ (%, 7, w) waarvan die potentiaal is afgeleid.

a

Denken wij ons de integraal f//
: T

dr gesplitst in

O % ’
elementen — dr.en veronderstellen wij, dat ieder element
=
gelijk is aan een overeenkomstig element van 9, dat wij
W (£, ', H’) noemen. Wij stellen dus
y 2 . ] W
/’ = rxr, r’ == (/J', //’:?

"4 7

17

De componenten van de Kkracht @’ (2, &', ¢), die
nitgaat van het element € &7, worden dan gevonden
door deze waarden te substitueeren in

7 d H d '
! , s BIZ,
: !:’.‘h‘ "/.ﬁ

Natuurlijk is deze splitsing geheel kunstmatig; zij kan
ons niets leeren omtrent de werkelijke oorzaak der voor-
handen krachten. Blijkbaar zal echter door de resultante
der aldus verkregen fictieve krachten de werking in
ieder punt kunnen worden verklaard.

Noemen wij de richtings-cosinussen
van @§: e e
van 7: LSRRt
dan is, als € de numerieke waarde van § voorstelt,

/'m] y

/’/I 1 Ff’f. (1“’




of, daar

@7 ar
= s en = = /
@9 = as -
15
: Cdr
il (2872 —— 777 ", )
> 3} 2
" Cdr
700 ook b —— (%4 /. 92, -’rl k- \\,‘ A . e T
73 9 2
Cdr
en G — (4, my, — I, m,).
22 2 1

Uit deze vergelijkingen volgt
; | L7 p
a b 4+ & m + ¢ n = o,

a' ly 4+ & my ¢ ny =o

9 staat dus loodrecht op het vlak, dat door @ en »
gaat. Noemen wij de richtings-cosinussen van de normaal
op die zijde van het vlak, waar een wenteling van @
naar » over een hoek { 180° als positieve draaiing gezien
wordt, l. m en 7. f1J verder O de hoek tusschen (§ €1 7,

dan kan men in plaats van (1) schrijven

.ll"l,‘ .
a’ G =={5tn O
>
J
2 BT
{ { = M St i,
»3
‘n”! .
C — n sin-d.
r3
Voor de grootte van %’ vindt men dus
J
& 1L e o/ s
V41 | (@’ =01 ¢ ") ( = Sin i,
"

en de richting van 9’ valt samen met die van boven-

genoemde normaal.
van het vector-element
4

De fictieve werking op afstand
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G Zr heeft dus plaats volgens de wet, die door L.APLACE

uit het experiment van BroT en SAVART is afgeleid voor

de werking van een stroomelement Op €en magneetpool.

7ij gegeven een kracht (of meer algemeen een vector) ¥,

die van een vector-potentiaal kan worden afgeleid. Denkt

men zich nu, dat van ieder vector-element € &r, waarin

1 . :
6= curl B, een werking uitgaat volgens de wet
4 T 2
van Larrace, dan zal de resultante van deze fictieve
krachten in ieder punt van het veld een vector zijn, die
:dentiek is met den oorspronkelijk in dat punt gegeven

vector .
3ij de ontwikkeling van de theorie der scalaire potentiaal

gaat men doorgaans uit van massa’s 2, die werken vol-

gens de wet der algemeene gravitatie en men definieert
",
/n:l(l Zou

dan de potentiaal door de uitdrukking
”

men ook de theorie van de \'l‘t‘lt’l'-]l“ll“llli;l.‘l] lkunnen

afleiden door uit te gaan van, watl Inen kan noemen,
vector-massa’s 6, die op afstand werken volgens de wet
zou dan die potentiaal kunnen

¢

van LAPLACE en men

definiceren door de uitdrukking 2

.\"/}‘I'J.’/,\.’Hf\" van een vVecior in lwee ('l«/,‘a‘/;'r'ﬁ.’r niten

24. Een willekeurige vector kan in het algemeen

noch van een scalaire ]nralf-nti.‘a;ll. noch van een vector-

potentiaal worden afgeleid. Zulk een vector kan echter,

mits hij in de geheele ruimte eindig en doorloopend en

op oneindigen afstand nul is, altijd gesplitst worden 1n

twee componenten, waarvan de eene van een scalaire
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potentiaal, de andere van een vector-potentiaal wordt
afgeleid.

Zij § (X, V, Z) een gegeven vector.

Kiezen wij een vector g, (X|, V. Z) zoodanig dat

curl %, oo PR s i (G)

on diw §, BOF o . R

Volgens § 15 1s de vector ?\'[ door deze vergelijkingen
volkomen bepaald en kan hij van een scalaire potentiaal
worden afgeleid. Volgens (8) § 15 en (1) § 21 is

¥ - I[:,r /,/r J.’)" N Jr.

Kiezen wij een tweeden vector §, (X,, V., Z.) zoo-

danig dat

h"/‘:” ;\': % . ] ' N (j‘
en curl R curle . . . . (4)

De vector §, is volgens § 17 door deze vergelijkingen
volkomen bepaald. Hij kan van een vector-potentiaal

S > ]

worden afgeleid en men heeft volgens (2) § 20 en (2) § :
- U o [ [eurl$ ,
AL ' / // : ar
- W e fuf L) ?
Stelt men nu, dat & de resultante 1s van f\". N, en
een derden vector §° (A7, Y/, Z7), dan 1s
X X, + X, 4 a7
Uit de vergelijkingen (1) tot (4) volgt dan, als men
2¢ voluit schrijft, onmiddellijk
CUr LT —0,:15 : (5)

en [,",“'- R{ ) - d . (U)




Uit (3) volgt

¥ =——V ||| =4

/

— o. dus is § zelf nul.

maar volgens (6) is dw §
Hiermede is de stelling, in het begin van deze paragraaf

vermeld. bewezen.

S Brengt men deze stelling in verband met hetgeen

3 25

bewezen is in § 15 en 3 23, dan komt men tot een

stelling, die op andere wijze 18 afeeleid door Vascmy

(Comptes Rendus, t. 110, P. 1244 et 1355) en die wi

als volgt kunnen formuleeren:
De verdeeling van een kracht (of meer algemeen van

een vector) & in de verschillende punten van een kracht-

(vector-) veld 1s identiek met de verdeeling van de resul-

ok | ~ ~ -
tante van twee hctieve krachten 5y en 8., die op de

volgende wijze gedefinieerd worden: &, zou ontstaan door

sen stelsel massa’s, werkende op afstand volgens de wet

van de algemeene oravitatie; &, zou ontstaan door een

stelsel \'l'l'llr'i'-'llh!\'m!‘\. werkende op afstand volgens de wet

van Laprack. De dichtheid o der eerste massa's en de

dichtheid @ der vector-massa’s worden gegeven door de
vergelijkingen 4 7 o die 5 en 4o Q CUurt \N.

Natuurlijk heeft men hier aan het woord massa in het

alcemeen niet de gewone beteekenms te hechten, Om toe

te lichten hoe men het in een algemeen geval kan inter-

teeren, kiezen wij met Vascuy het volgende voorbeeld.

pre

Veronderstellen wij, dat in een lichaam een trillende
beweging plaats heeft.. De kracht, die op een tijdstip
op de ecenheid van massa van het lichaam in een punt




M (x, y, z) werkt, is gelijk aan de versnelling van dat
punt. Als dus /, ¢ en / de verplaatsingen van het punt
A7 voorstellen, gerekend van den evenwichtsstand, dan

zullen de componenten van de kracht zijn

v a* f % “'?‘.'I‘,‘, T a* /i
i ”7[;2 ' ‘.'{'f": ' ’ @l

Volgens de voorgaande stelling is deze kracht identiek
met de resultante van de krachten, die in ./ zouden
ontstaan door:

1% Een stelsel massa’s, werkende op afstand volgens
de wet van de algemeene gravitatie en waarvan de
dichtheid ¢ in de verschillende punten gedefinicerd zou
worden door de \'t'l“.y'li_ﬂ{irlu
. dX - ady A a* [d/ "”.QI adh @
VT ] dy ' dz dt*\dx " dy ' dz di*’

2%, Een stelsel vector-massa's, werkende op afstand
volgens de wet van Laprace en waarvan de componenten
w, v en 7w der dichtheid G gedefinieerd zouden worden door

a7 aly a* (,/f: J"
} U dy o L /e |

en overeenkomstige uitdrukkingen voor 4 « @ en 4 m @@

n’:l' (l

Afgezien van den factor 4 o, kunnen nu de dichtheden
e en ( als volgt geinterpreteerd worden: ¢ zou zijn de
versnelling der kubieke dilatatie & van het lichaam in
ziin verschillende punten en € zou ziin de hoekversnelling

der rotatie.
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D VECTOR-POTENTIAAL VAN MAGNETEN.

De weclor-potentiaal van een magnetisch element.

{ 26. De potentiaal van een magnetisch element in

3

een punt /2 is

- md s {
| gt 08 EN o e e iy LR (R

33
waarin 7 de poolsterkte, &s de lengte van het element,
» den voerstraal van het element naar het punt /2 en
den hoek tusschen 4§ en » voorstelt ( ’/‘.""‘J/!:W', Art. 363).
Plaatsen wij gemakshalve het element in den oorsprong

en noemen wij de coordinaten van P: x. 4 en z, dan 1is

rii=—2t = Yo =25
de richtings-cosinussen van 7 zijn
X
o e Py K
Stellen wij het magnetische moment van het element
nods A/ en noemen wij de richtings-cosinussen van

ds: A, u en p, dan is



74 ‘ ; )| 2 }
I = | A =it 1
L /! '
( ad ; I7A : d : ) )
: > ; :
M\ | Er (2
A dx H (/‘1' = @z

Dus, als wij de componenten van de magnetische
kracht «, § en y noemen,
1 1 AL

AV _ ”(}d‘ = a* 7 a- = ) (3)
ax i s = K dx tf'.l' ‘r{'.l' dz

Hiervoor kunnen wij schrijven, ten gevolge van de

bekende betrekking

L SR
! ' 7
O,
dx? ay* adz?
/( 4 : d : ] {( 4 )l r/’}l )
{ 7 {
‘ | ; 1
‘ /(/ V If\ : n’."'.' /1/ (i : f/l
. r/ ;‘l o r/ ( )
) (L .i/’“rr-‘. ( )“,: e
{ T e / A 9y nx ,
200 ook .‘; — i/ r f (, — VA A7 {;_1 ' j ] ‘ 1\1]
(24 ¥y Aa 4] g d f L F 1)
Stelt men nu
.'.:" : £!’ ;
u Y /!
/ i ? ]/( £ @y f 74
y 1 p 1
f/ 14
)
A / 2 7 5
{r '/ “ ,/( A d J {[’\
( r!’ : n” :
F o 1A
W/ Al s dA '




dan gaan de vergelijkingen (4) over in

oy e tf_f,_?' d
s dy dz '’ /
adr :/ff

1] — — - 3 (6)
: az adx 4
u/ (1- e‘[; / ‘
S (f’_’t‘ f/_l ‘
Door de vergelijkingen (5) resp. naar x, v en z te

differentieeren en vervolgens op te tellen, vindt men
A A
dx dy Ty

Wij kunnen dus /) & en /7 beschouwen als de com-
ponenten van een vector-potentiaal 9, waarvan de magne-
tische kracht & («, #, y) volgens de vergelijkingen (6)
wordt afgeleid.

Om de richting en de grootte van 9 te vinden, denken
\'x'ij ons een vlak door s en 7 en richten een l-nn'l]ijn
op die zijde van het vlak op, waar een wenteling van
d s naar r over een hoek ¢ als positieve draaiing gezien
wortlt. Noemen wij de hoeken, die de loodlijn met de

assen maakt, /., m en 2. dan is

(A / s . CIlZ
ST @

Voor de vergelijkingen (5) kan men dus schrijven
o ~ v | ]

/e ” s171 ¢ cos [, /

22

A

9

ot

(z

SL & COS Ly, ) . . . \7)

_] |
I / S & COS 7.

—




D/

De numericke waarde van de vector-potentiaal van
een magnetisch element, in een gegeven punt, is dus
gelijk aan het magnetische moment van het element
cedeeld door het vierkant van den voerstraal van het
element naar het punt en vermenigvuldigd met den sinus
van den hoek tusschen de as van het element en den
voerstraal. De richting van de vector-potentiaal is die.
waarin een gewone schroef, die loodrecht staat op het
vlak door het element en den voerstraal, zich zou bewegen,
als z1) gedraaid werd van de positieve richting van het
element naar de positieve richting van den voerstraal
over een hoek kleiner dan 180", Of anders gezegd
Voor een oog, dat in de luwii'll'\'l' 1‘5:“}l1it1‘4' van het
element ziet, is de vector-potentiaal getrokken in nega-
tieven zin, dat is in den zin, waarin zich de wijzers van
een uurwerk bewegen,

De vector-potentiaal is nul in ieder punt van het ver-
lengde der as van het magnetische element. Stellen
vij ons een bol voor, waarvan het middelpunt samenvalt
met dat van het element en noemen wij de punten, waarin
het verlengde van de as den bol snijdt, de polen van den
bol, dan is de \1‘1‘1111"]"’“'”Li"i"ll nul in de ])”]"” en ’l‘
heeft gelilke numerieke waarde in alle punten van twec

&~

overcenkomstige parallellen, terwijl die waarde haar

maximum bereikt in den aequator. Dus juist tegengesteld
aan de scalaire ]"‘Ir'Hli-l.‘l;. De richting van de vector-

potentiaal in ieder punt van den bol valt samen met de

i'.‘lilkli]n van den ]h’l]'il”i'] door dat ]1111|l.

Voor een cenvoudig geval kunnen wij ons hier gemak-

T . g by A [ o deigenschap
kelijk overtuigen van de waarheid van de hoofdeige I




der vector-potentiaal (§ 22). Voor ieder punt van een
parallel, waarvan de sferische afstand tot één der polen

¢ is, is de numerieke waarde van de vector-potentiaal

M . S 5
constant — — sz &.  De lijn-integraal van 9 langs den
P

parallel is dus
A - : 2qa M . .,
SINE.2 TV SIN & — sin* &,
2 =
De magnetische kracht in de richting van den straal is
dV 2 M
dr r?
De oppervlakte-integraal van de magnetische kracht
over het bolsegment, dat door den parallel begrensd

wordt, 1s dus

’ 2 M ol 2 w M
' — COS & . 27" SINL & E
v 7

st €,

De waarde van de lijn-integraal is derhalve gelijk aan

die van de oppervlakte-integraal.

De scalawre polentiaal van cen magneel.

27 Door de intensiteit der lll‘t;:nl'lih;ttit' van een
magnetisch element verstaat men de verhouding van het
magnetische moment van het element tot zijn volume

3y, haar rechthoekige compo

~

Noemen wij die intensiteit
nenten 4, /7 en € en haar richtings-cosinussen 4, u en »,
dan is, als / de numeriecke waarde van } voorstelt,

A= T, Be—Tu; .C—=Iy

Het magnetische moment van een volume-element

dx" dy dz’ van een magneet is [dx'dy dz en de
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potentiaal van dat element in een punt (x, ¥, z) is

volgens (2) § 26.

( i d— d—
d ="\ — e | e &
A adx H rf_]‘ i az & (/-‘ 72
( d ; o [‘ o :
- e T A 1)
dx } i H,)_ el 7% dx (f_\ dz

Voor de potentiaal van den geheelen magneet in het

punt (x, ¥, z) heeft men dus, in aanmerking nemende dat

d — =
L ' enz
d 2 Bl
s,
s d— k-
[ ’/ }f,f, e /", - ( /!, dx'dy' dz’, (1)
A ( (

waarin de integratie over het volume van den magneet
moet uitgestrekt }\'urtlun.

Door de uitdrukking in het tweede lid bij gedeelten
te integreeren volgens formule (1) § 11, verkrijgt men

ff/), | rf(‘

f,jl o 5 - H('f/.\' ,//: '(r;"i g_'f‘l.’ - dx' dy' de!, (

,,
waarin /. m en 2 de richtings-cosinussen van de uitwendige
normaal op het u]n[n-r\'i;lk S van den magneet voorstellen
en de eerste integraal over het oppervlak, de tweede

over het volume van den magneet moet genomen

\\'H]‘[l(-”_
Wij kunnen echter de integraal wmt (1) ook over de

- . : ralrlra 10T ite den magneet
geheele ruimte uitstrekken, daar buiten d ag

‘\l




bo

A, B en C nul zijn. Door dan bij gedeelten te integreeren,

r

heeft men volgens (2) § 11

1 {}u L dB  dC

7= =\t e (x:')"’ atdy ds . (3)

De waarde van deze integraal is natuurlijk niet dezelfde
als die van de overeenkomstigc uitdrukking in (2). Zal
deze wijze van integreeren geoorloofd zijn, dan mag de
intensiteit 3 aan de oppervlakte van den magneet niet
discontinu veranderen. Wij moeten dus aannemen, dat
er een dunne overgangslaag bestaat, waarin de waarde
van % wel zeer snel, maar continu van / tot nul overgaat.
Of dit in werkelijkheid het geval is of niet, doet niet
ter zake; men kan de dikte van de overgangslaag altijd
zoo klein kiezen, dat men niet in strijd komt met eenig
experimenteel vastgesteld feit. Die overgangslaag zal, in
het algemeen, een eindige bijdrage geven tot de integraal
in (3) en deze bijdrage is gelijk aan de oppervlakte-
integraal in (2).

Het voordeel van deze integratie bij gedeelten over
de geheele ruimte bestaat hierin, dat de herleidingen
er zeer door vereenvoudigd worden, zooals wij in § 30
zullen zien.

Voor de x-componente van de magnetische kracht
vindt men, als de integratie over de geheele ruimte

uitgestrekt wordt,

I
S ok
al’ - P 'rff a bl acC
{ - ! : ax' dyv dz
. ax [ / / dx \dx an’ adz 224 4
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De veclor-potentiaal van cen magneet,

§ 28. Voor de x-componente van de vector-potentiaal
van het element dx’ dy &z’ in het punt (x, y, 2) heeft

men volgens (5) § 26

= | I
[ @ .'./
‘i ' ] PX Ry
/ ( » - 4 — dx’ dy dz
dy < 144 :
1 I
74 d
’ ¥ ] 4 y ’
( - I8, = ax ay a
! (1487
| -0
( v, (44
' . 2y 3 ) 4
(/” = G ),m dy' d:
@z !r’"‘n' ’

De componenten van de vector-potentiaal voor den

geheelen magneet zijn dus

] I
v o il [
73 4 / ’ 2
/ //I /5 ( ~ ldx"ay dz',
i o )
1 1
R 74 (24 \ (
- r r . oy : [)
(7 ,/} C— A———|da"dy ds,|
voe e a A (14 / :
| 1
. pop 17 d
‘ }J. 4 " 4 / 4 /
ol / f il = B——dx ay dg', |
A ay a2 -

waarin de integralen over het volume van den magneet
moeten worden genomen.
Blijkens de afleiding in § 20 zijn de componenten van

de magnetische kracht &




dH 4G

oK —

B d’__r dz '’
. al’ dH \ !
> = — — P A : . 3 . (2)
: @z dx
d (7 al’

" dx  dy’

§ 2g. De laatste formules gelden echter alleen voor
punten buiten den magneet. Ligt het punt (x, 7, 2
binnen den magneet, dan gaat bovenstaande afleiding
niet meer door. Bij de vervorming der uitdrukkingen
voor de magnetische kracht van een magnetisch element

is namelijk in § 26 gebruik gemaakt van de betrekking

1 e <4
.'.'" .r/" rf‘
» r 7
o | ; 1 ) O,
adx* ay* az*

en dit is voor oneindig dicht bij het punt (x, », 2) gelegen
elementen van den magneet niet geoorloofd.

Het is trouwens a priori duidelijk, dat de magnetische
kracht in een magneet niet van een vector-potentiaal
kan worden afgeleid, daar die kracht, voor inwendige
punten, niet voldoet aan de voorwaarde dw H =0

De gedachtengang van MaxwerL ((7reafise, Art. 400)
schijnt nu de volgende te zijn. Men kan de vector-

potentiaal gedefinieerd blijven beschouwen door de ver-

]

dH d (7
f/_]' dz :

de componenten van de magnetische kracht aan.

gelijkingen (1) § 28, ook voor inwendige punten; de

grootheden enz. geven dan echter niet meer

Maxwerr noemt nu die grootheden @, ¢ en ¢ en hij




(}.."

geeft de volgende herleiding:

B tf.f’f Z G
& ay a:
oo h d* }l a* ; a* ;‘ a- I |
,// /1[ / Bl ey , 4] S - —— : dx’ dy’
Sainixl dy dy  dz’ dz dx’ dy dx' dz) :
], A f'f j rz] : rl’ /l‘
{ 5 / : =
.'/\/f,,("af'l’ /) r/]r : as )J‘ rl‘l 2
PRI AT
[[[a ot 4t o) o dy 2
iy A el ay'- a@:

Verder heet het dan: de eerste term van het laatste

alV T
lide is blijkbaar of «. De grootheid onder het
: I/,\
integraal-teeken in - den tweeden term is nul voor alle

volume-elementen,

het element, dat
Als (A) de waarde

‘lll‘]l.l]\‘l‘ Vvoor

het
punt (a

s ¥y 2) bevat.

\'()n]'_\[('h Vel
A in het punt

(X5 s dan is de waarde van den
tweeden term 4 o ().

Dus a a -+ 4 7 (A).

Poincart merkt op (Llectricitd et Opligue 11, p. 21), dat
deze vergelijking door MaxwrLL niet hewezen 1s.  Wij
doen misschien beter

met te zeggen, dat het bewijs
slechts is aangeduid.

Beschouwen wij één der voorkomende integralen b

en de door differentiatie onder het integraal-teeken daar-
uit afgeleide integraal




Gl s

Het is gemakkelijk te bewijzen, dat de eerste integraal

eindig en bepaald blijft, ook wanneer het punt (¥, ¥, 2)

(e}

W ‘ I Worl
binnen den magneet ligt en dus oneindig groot wordt
v '

voor oneindig dichtbij gelegen elementen ¢ ¢, maar dat
dit met de tweede integraal niet het geval is.
Voert men pool-cogrdinaten in en stelt men
X = x4 7 sindcos g,
y =y +rsimd sy,
S CoShrs
dan gaan beide integralen over in (zie b. v. RiEmanx,

Schwere ., Electr. und Magn. § 0)

[ - y 7 "
f , / ,”J’ THTAY s stn O aJa {J tr

cos™ sin 0 d O do dr

n het blijkt, dat de tweede integraal wegens de oneindig
oroote elementen, die onder het integraal-tecken voor-
i lL:l“}"'.ll".Hj]i !,..-\iﬁn.]-, u'.-‘[<-(-1i('lij1-; H"l:w.lit'i
zijn, onbepaald is.

[Lette men hierop niet, dan zou men gemakkelijk
'in-\\'ijﬂf‘il. dat, als I7 de ]Jal!.f'lili{l.li van een massa VODIs
stelt, /A V o is. ook wvoor een inwendig punt, wat
niet waar 1s.

Er zou dus nog moeten bewezen worden, dat de uit

drukkingen, die in de herleiding van MAXWELL VO rkomen,

.




een bepaalde waarde hebben. De grensbepalingen, die
hiervoor zouden noodig zijn, zullen wij vermijden door,
in navolging van Poincari, de herleidingen zoo in te
: : : 1

richten, dat de tweede afgeleiden van — onder het

integraal-teeken niet voorkomen,

§ 30. Als men de integralen in de vergelijkingen (1)
§ 28 over de geheele ruimte uitgestrekt denkt en bij
cedeelten integreert, dan gaan die vergelijkingen over in

. gl 7C a5
4 H/ | ':r dz’ Caz

el T f s a A
H 152 — 55 ar.
/,/ r (XA n"_]'
Men heeft dus
/ I yilLl
. A ik A g ===
,‘r‘ / ; / / ,‘n’( 4 r? - ( I , u/ /1 7 ‘I'r
t J s "' A
ax JJ ay A L) dat da
i ! .
{{ { .
F-’f; !’;,l ! 7 “”! ;//f:"(' / “’..r. (_}
r/] il ’ z/.]' 4 G ".,1'
sind
. 8 4 I A D f” )
d I ab 7 y / / | 1 7 i,
f,# Pl 7 I | ',,“ r"
1 4 ) @A o e W { &«
- ) ad )
en soortgelijke uitdrukkingen voor -, =, €nz.
Voor de integraal
1
“p sy a
/ / / - v ,, r(’!
1] dy da

bij cedeelten ten opzichte

l»{.[n men '-"i]]'ii‘-“”- .i;,ur cerst




li)ll

van &’ en vervolgens bij guriuf;lten ten opzichte van )

te integreeren

I 4 i

f '(!Cd G oy /'”'(/C({ PR, ’ ‘ TENE e,

/ ,{v/-m'_’ A7 s dy dx’ e / ay dx’ r &
78 79

'r?'(f{ 7 ThdG T F
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Deze integraal blijft, zooals boven reeds werd opgemerkt
bepaald, ook voor een inwendig punt. Zoo ook voor de
andere integralen.

Men heeft dus:

4'!, //_ r_/ l":'

& “J). n l[’f.
| .
- { (74
el xf /_.‘ !/i 7 4 I (/'(' 7
I / ’ (:f.".'f (/_1") ay l ’ / , az adx 4 o
] 1 i
< r/ v A d e
W (5 ? [((dA 1 ad A
d i d
J / ‘r/l'( a da ' /’f IK.]" 1 i‘ ( ’ , a a -
i’ ]
/ l I (u’ ] afs a \ a 7
T
dx’ ay’ 12 ) da
_ / 1 5. ] L
/l(-’.(rf'l" 7 ' u‘f..!'” 7 1.".I'I 4 :
y ' - { 7 - (¢ 4 o
‘ rf’."_' dAa r/ V ¢/| (1 az
De eerste term van het laatste lid dezer vergelijking
# / . . |'n"I ’ g
is volgens (4) § 27 niets anders dan of «.
1/.\

Om de beteekenis van den tweeden term te bepalen

stellen wij



dan 1s

P g m.A
en
1 1
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Dus
1
5 S 7l
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adx* J S J @X d A :
Soortgelijke uitdrukkingen vindt men voor
!/'.f /) ”J,! /)
— en =
(f_'l" deg?
De tweede term is dus gelijk aan P of g md
Men vindt dus ten slotte
d .l d s ‘,
1 - (¢4 1 T ALl
( @y a: l
A 1/ \
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Hiermede is

E'H][l' t]l'

bhewezen

_'.‘"l'\lLllhl'(]"” .f",

vergelijkingen (2) op te tellen, vindt men

n'! ti'.

dG | dlid
— 4 — DF e 15 s )
:/71' (1 &

inwendig

dat. ook voor een

(; en /1 uit de vergelijkingen

(1) van § 28 als de componenten van een \'t‘L‘llH'-])()ll‘l]llilil]

kunnen worden beschouwd.

De betrekking (4)

Z00als MaxweLl

aangeeft,

wordt ook gevonden, als men,

q )
N 26

de vergelijkingen (1) 3
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respectievelijk naar x, 3 en z differentieert en dan optelt.
Wel moet men dan onder het integraal-teeken differen-
tieeren; dit heeft echter hier geen bezwaar, daar de
termen twee aan twee tegen elkander wegvallen. Wijj
moeten namelijk aannemen, dat die termen, al blijft
de waarde onbepaald., ook bij de limiet aan elkander

gelijk blijven.

§ 31. De kracht 8§, waarvan a, 6 en ¢ de componenten
zijn, is het eerst beschouwd door W. Tromsox en door
hem genoemd de magnelische kracht volgens de electro-
magnetische definitie (§ 39). De kracht §), die van een
scalaire potentiaal kan worden afgeleid, wordt door hem
genoemd de magnelische kracht volgens de polaire definitie.
Door Maxwert wordt B de magnetische tnductie en £ de
magnetische kracht? genoemd.

De vettoren B, £ en I hangen van elkander af volgens
de vector-vergelijking

N 8 4 47 X.

Denkt men zich in een magneet een nauwe spleet en
in die spleet een magneetpool van de eenheid van sterkte
geplaatst, dan zal de kracht, waarmede de magneet op
die -pool werkt, gelijk zijn aan &), als de spleet valt in
de richting van de magnetisatie en gelijk 8, als de spleet
loodrecht is op die richting ( Zrealfise, Art, 308 300).

Ontstaat het magnetisme geheel door influentie, dan
1s u 9 ( Zrealise, Art. 128). Deze coéfficient . wordt
door MaxwerL de ;’f.fr{;“'m'/.fv\': he tnductieve capai 1tert, of ook
de cocficient der magnetische inductie; door Tromsox di

permeabililert van de stof genoemd.




De componenten van de magnetische inductie voldoen
altijd aan de voorwaarde
i} / -
A |- d,'z’* —- X = 0 ( Treatise, Art, 403 ).
dx ay 2z ) Lo
Voor punten buiten een magneet of liever voor punten,
waar de magnetische polarisatie nul is, is er geen ver-
schil tusschen de magnetische kracht en de magnetische
inductie. De vergelijkingen (3) van § 30 gelden dus
algemeen, zoowel voor in- als uitwendige punten.
De vector Y wordt daarom door Maxwern de peclor

polentiaal van de magnelische nductie genoemd.

§ 32. Wij zullen nu door een eenvoudig voorbeeld

laten zien. hoe men de formules (1) van § 28 kan toe-
passen om de vector-potentiaal van een magneet te bepalen.

Beschouwen wij één der voorkomende integralen, b v.

Laat nu 2 de potentiaal voorstellen van een massa,
die met de dichtheid & over het volume van den mag-
neet is verbreid, dan gaat de laatste nitdrukking over
ad P
1!]'_1‘

Kent men dus

n

de intensiteit van de magnetisatie
3 (A, B. C) voor ieder punt van cen magneet 1n grootte
en richting en kent men 00K de potentialen van massa-
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verdeelingen over het volume van den magneet met de
dichtheden 4, 72, C. dan kan de vector-potentiaal van
den magneet door differentiatie gevonden worden.

Zij geven een bol, zoodanig gemagnetiseerd, dat de
magnetisatie in grootte en richting constant is.

Nemen wij het middelpunt van den bol als oorsprong
van het coordinatenstelsel en de x-as in de richting van
de magnetisatie, dan is

A LA O Ca——a )t

[Dus
/" O,
d —
; d /
(7 /;/ { ’/,;, d1 r/’,,/ ’/ : ar
' . o Il - e
H _/.” A ’/‘1’_, dr r;"l.‘/.;.f f s

De potentiaal van een homogenen bol met de dichtheid
[/ is, als wij den straal 2 noemen. voor een ultwendig

punt op een afstand » van het middelpunt

- ] a’
| —ax [/
3 74

en voor een inwendig punt

V. —x [ (3 a* )
3
(Zie b, v. KiemMann, L. c. p. 17).

Dus 1s voor een uitwendig punt

&




P

De numerieke waarde van de vector-potentiaal is dus

a ‘ 4 a° 3 M .
Y fi 1 (B +yh = w ] —Sint— — SN &,
3 rd : 3 r3 =

als wij den hoek, dien 7 met de x-as maakt, ¢ en het
magnetische moment van den bol J7 noemen.

Deze uitdrukking is dezelfde als die, welke wij in
§ 26 vonden voor de vector-potentiaal wvan een magne-
tisch element en het is gemakkelijk in te zien, dat ook
de richting van 9 door den daar gegeven regel wordt
bepaald.

Voor de componenten van de magnetische kracht

vindt .men

d H d (7 | R r:
I . - T f’u' .
ay @z 3 7
r."// . o
" < I T /r:.'l .
> ax ’
7 (r y XL
— =g mwla’ =y
ax r
Voor een inwendig punt 15
LV,
{f' : 7 - l L / 2,
a2z )
dV; |
f I /9
'/,]‘ 3
De numerieke waarde van Y is dus
| 9 | 7 st
t ' /l ‘ - V) | VN XA

y . le aonetische | 'tie
Voor de componenten van de magnetische nducti

vindt men




_ ad d G _ _ i
e dy dz -3 3 R
' il
H — — =
dx
= l’nj(f‘
= T

De totale magnetische inductie ( flux of wnduction), die
door den grooten cirkel van den bol, loodrecht op de

richting van de magnetisatie, gaat, is dus

3 5 8 T
LT T a” /.
3 3
Voor de lijn-integraal van de vector-potentiaal langs
den omtrek van dien cirkel vindt men, zooals behoort
dezelfde waarde.
Wij merken nog op, dat de gevonden waarden voor
de vector-potentiaal voor in- en uitwendige punten aan

de oppervlakte van den bol continu in elkander overgaan

De wvector-polentiaal van een magnelische schaal,
33, Een dun vlak of gebogen plaatje, gemagnetiseerd
in een richting loodrecht op de oppervlakte, zoodanig dat
het produkt van de intensiteit der magnetisatie en van
de dikte van het plaatje overal constant 1s, noemt men
een magnetische schaal. De constante g / /i, waarin /
de dikte van het plaatje en / de intensiteit der magneti-
satie voorstelt, wordt de magnelische sterkte van de schaal
genoemd.

Fen magneet, die kan verdeeld worden in schalen

(lamellen), die Of gesloten zijn, Of haar grenskrommen
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)

op het oppervlak van den magneet hebben, noemt men
een lamellairen magneet.

De intensiteit der magnetisatie van een lamellairen
magneet voldoet aan de voorwaarde curl 3 = o.

Stellen wij ons namelijk voor, dat uit een vast punt
cen kromme wordt getrokken naar een punt (x', 3%, 2°)
binnen den magneet. De som van de sterkten der schalen,
die door de kromme doorsneden worden, noemen wij q.
Brengen wij hierby de sterkte van een schaal als positief
of negatief in rekening, naargelang de schaal door de
kromme van de negatieve naar de positieve zijde of in de
tegenovergestelde richting doorsneden wordt, dan is het
duidelijk dat deze grootheid g onafhankelijk is van den
vorm der kromme tusschen de beide punten. Zij heeft
een constante waarde op de oppervlakte van een zelfde
schaal, maar verandert van de eene schaal tot de andere.
De - richting der magnetisatie 1s overal loodrecht op de
oppervlakte der schalen en de intensiteit der magmnetisatic
is in ieder punt omgekeerd evenredig met den normalen

afstand &z van twee opeenvolgende schalen, dus 1s

fff"‘
/ —
an
Hieruit volgt: y
r/il dq ' aq
” /- ’ - ( vy . » . ‘ 1)
4 } “g‘_l / : H.ll u/.‘_

Substitueert men deze waarden voor A, Sen Cin de ver-

R TII o ) ' \ 7 - de y-componente
74"11}1;11|L:'1-11 (1) § 28, dan vindt men vouol de x-comj
van de \'m'lul'-lmh-nli.ml van een lamellairen magneet

« AP y rfr p f, r/ .
- ( Al / {‘, . i 2
e[\ =T ) e - o @

n'_\




74

Deze volume-integraal kan veranderd worden in een opper-

vlakte-integraal over het opper

vlak & van den magneet.

Door partieel naar z’ te integreeren, vindt men voor

de eerste integraal van (2)

1

A r o
[ ae=[[ L 90 cos

J )L dy' dz r dy

Evenzoo voor de tweede integraal door integratie naar )’

NieeZrg o e,

dz N"j" Al et e 5
/.l // : (i/{,.l, cos

1

il fr”
) r
/' / { {q ( o coS
el 2

Voor een magnetische schaal

I

(d

A i //( '/f; cos M

Ay //f ]‘ _,”:-Ii L.

A ‘ .
(, j, coS ml AR D)
az

1

r'f/

7 ;

—— COS N ’r!’.'\ . (4)
c‘f.‘, )

is i constant, dus

Deze oppervlakte-integraal kan veranderd worden in

een lijn-integraal langs de grenskromme s van de schaal,

Stelt men in (3) § 12: ¢ L.

x’, 2. 2 door x, ¥, 2z, dan vint

/', : / | .'/

ook

200

r d

I
en vervangt men
It men

1

,
as,
A}



Ji

[n plaats van deze vergelijkingen kan men schrijven
W =g /-('f 28
ey

Uit deze vergelijking volgt de volgende eenvoudige
constructie voor de vector-potentiaal van een magnetische
schaal van de eenheid van sterkte in een punt /2.

[aat een punt Z) zich bewegen langs de grenskromme
van de schaal met een snelheid, waarvan de numerieke
waarde in ieder punt gelijk is aan den afstand van dat
punt tot /. Laat een tweede punt £ uit 2 vertrekken
en zich bewegen met een snelheid, waarvan de richting
op ieder oogenblik evenwijdig is aan die van /) en waar-
van de grootte voortdurend gelijk is aan de cenheid.
lLaat Z in R gekomen zijn, als £ de grenskromme van
de schaal éénmaal doorloopen heeft. De liijn 22 R stelt
dan in richting en grootte de vector-potentiaal van de

schaal voor (Zreafise, Art. 422).




HOOEFEDSTUK IV.

DE VECTOR-POTENTIAAL VAN ELECTRISCHE STROOMEN.

Hetl ele '4':-”/’(-‘!.’1‘.'.?..‘\' neLishie,

34. De bekende onderzoekingen van Bior en SAavari,
betreffende het magnetische veld in de nabijheid van een
unvimli;:‘lungw-n rechtlijnigen stroomgeleider, zijn door
J[ouniy uitgebreid voor het magnetische veld binnen den
geleider (Comples Rendus, t. 110, p. 231).

[Len constante stroom werd geleid door een langen
wijden glazen cylinder, gevuld met een oplossing van
kopersulfaat. LEen zeer kleine magneet, van een spiegel
voorzien en aan een cocondraad in de vloeistof opge-
hangen, veroorloofde de magnetische kracht ook binnen
den stroomgeleider te bepalen.

Dit onderzoek leidde tot de volgende resultaten

1Y, Zoowel binnen als buiten den geleider zijn de
krachtlijnen cirkels, wier as samenvalt met de as van
den cylinder. De richting van de magnetische kracht
wordt verder door den regel van Ampire bepaald,

Binnen den cylinder neemt de magnetische kracht
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die in de as nul is, toe, naarmate men zich van de as
verwijdert en wel evenredig met den afstand tot de as.

3% De magnetische kracht verandert continu, als men

de oppervlakte van den stroomgeleider passeert.

1", Buiten den cylinder neemt de magnetische kracht
af omgekeerd evenredig met den afstand tot de as. Die
kracht is dezelfde, alsof de geheele stroom in de as van
den cylinder geconcentreerd 1S,

Daar verder de magnetische kracht evenredig is met

19, voldaan, als men

Sy

de stroomsterkte, wordt aan 27 en

voor de grootte van die kracht stelt, binnen den geleider:

buiten den geleider:

In deze uitdrukkingen is ¢ de straal van den geleider

» de afstand van het punt, waar de magnetische kracht

bepaald wordt, tot de as, " de stroomdichtheid, 7 Tati

de stroomsterkte en 4 een constante, die alleen van de
eenheid van stroomsterkte afhangt.

Door deze waarden wordt ook aan 20, voldaan. ()],

een afstand & van de oppervlakte van den geleider is
namelijk de magnetische kracht
I””H"H, ;'3 T ‘_Hr ')}'

buiten £ 1
uiten ; — 5
en deze uitdrukkingen naderen tot dezelfde limiet, als 0

tot nul nadert.




Voor de componenten der magnetische kracht vindt
men volgens 1%, als men de z-as laat samenvallen met

de as van den cylinder, binnen den geleider

e -kt mr .= . a1y I
= :
7 / 1 '/ { ] ‘
) 21 1?7 T T
() f \
ar 0
[ 4
buiten den geleider:
L ! 4 ¥
o K1 =
T / T
2z \ - (2)
3 o2 " 9
7 7 gad \

p

Al deze resultaten zijn ook af te leiden uit het eenvou-
dige experiment van Bior en Savart, als men den stroom
in  oneindig dunne evenwijdige stroomdraden gesplitst
denkt en als men dan aanneemt., dat de magnetische
werking van die stroomdraden binnen en buiten den
coeleider volgens dezelfde wet plaats heett (Zie Jounix, l.c.).
Wij geven er de voorkeur aan, de vergelijkingen (1) en (2)
rechtstrecks als het resultaat van het experiment voor
te stellen,

§ 35. Door op het krachtveld, dat boven werd be-
schreven, de stelling van § 25 toe te passen, kan men dq
geheele theorie van het electromagnetisme op zeer een-
voudige wijze afleiden. Het denkbeeld om het electro-
magnetisme op deze wijze te behandelen ontleenen wij

1an VASCHY tf‘f"’f-,":’rx Rendus, t. 116, p. 1437)

td) f




Volgens die stelling kan men de magnetische kracht D
ontbinden in een componente &), die zou ontstaan door
een stelsel massa’s, werkende op afstand volgens de wet
van de algemeene gravitatie en in een componente AR
die zou ontstaan door een stelsel vector-massa’s, werkende
op afstand volgens de wet van LaprLace. De eerste com-
ponente kan afgeleid worden van de éénwaardige scalaire

potentiaal

I f ’ ’ Lk dr;

} T J r

de tweede componente van de \'uvlur-[n.[[-m].m]

| ’-/l/'(‘!!i'/ -\:‘l A

K1 2 B A r
Uit (1) en (2) § 34 vindt men, binnen den geleider :
r‘f”t( r/' i, (c’”i‘
T A pT ) 0,
\'<'{‘. ay ;I"‘ l
] ) L1
..,t’;. .f' 3 d o 4// b (‘J;.'l d et 5 i ‘}}- \
! 0 T , _ : 2 ’ .
day iz ' ds A d A a
buiten den g['h-id.‘r:
dou | 1."')' u’"
! | O
rr‘l\ ay (f' L !
1 f 12)
as ap e h".; () o o - (
L . o% 0, e 3
dy d d: d A dAa )

[I! ’Hl'[ ~"|'h<‘n'1|' \"'llf 15 dus rfr!.?' '\‘_\ O €l dus 1s ook

‘ ische Krac Vi ( erhalve samen
AP 0. De magnelist he kracht 4 Ut der
met 1||- f‘lllﬂlhll]l‘]llt‘ -\J.‘..

Hieruit volgt, dat de magnetische kracht, zoowel

den oeleider, van een vector-potentiaal

binnen als buiten

kan worden afgeleid
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Buiten den geleider is cur/ § = o. Voor uitwendige
punten kan dus de magnetische kracht ook van een
scalaire potentiaal worden afgeleid. Daar echter dw AR
overal nul is, kan die potentiaal niet eénwaardig zijn.
Er is dus ook geen verdeeling van magnetische massa’s
denkbaar, die, wat de magnetische werking betreft,
volkomen identiek zou zijn met den electrischen stroom.

Dat de potentiaal meerwaardig is, hangt hiermede
samen, dat de ruimte buiten den geleider voor de mag-
netische kracht tweevoudig samenhangend 1is.

De lijn-integraal van & langs een Kromme, die den

-~

E]
5

A1, Denkt

N

=]

LS
9

geleider omsluit, 1s &
~

men zich die kromme in twee takken verdeeld, dan is
het niet mogelijk, de beide takken door een doorloopende
beweging in elkander te laten overgaan, zonder buiten
het gebied te komen, waarin aan de voorwaarde curi D 0
voldaan is. Binnen den geleider is namelijk curl 5 niet
nul. De magnetische kracht heeft daar geen potentiaal.
Buiten den geleider is de potentiaal, zooals uit (2)

§ 34 blijkt,

) /J’_""‘ /:\’ 4 - const.
X

36, De grootheden, die in § 25 ¢ en € (#, 7, @)
genoemd zijn, hebben hier volgens (1) en (2) § 35 de

volgende waarden, binnen den geleider:

buiten den geleider:
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B¥ een minder eenvoudige keuze der codrdinaat-assen
in_§ 34 zouden wij blijkbaar in plaats van (1) gevonden
hebben

by e ; .
DE== T —— Kl iy U= - /“(",, W= fady K )
5 = . 2 g

¥

waarin 2/, 7/, en 2z, de componenten van 7’ voorstellen.

Stelt men £ = 2, wat neerkomt op het aannemen van
de electromagnetische eenheid van stroomsterkte (§ 38),
dan heeft de vector § hier een zeer eenvoudige beteekenis :
hij is in richting en grootte gelijk aan de stroomdichtheid /7,
wanneer wij de stroomdichtheid als een vector beschouwen,

De stelling van § 25 stelt ons nu in staat om het
magnetische veld van een constanten stroom van wille-
keurigen vorm te berekenen.

Noemen wij de stroomdichtheid € (#, z, w), dan geven
de vergelijkingen (6) van § 17 onmiddellijk de betrekking
aan, die er tusschen de magnetische kracht en de stroom-

dichtheid bestaat. Dus

iy f/’;;
} T ¥ - y
@y (l
tl".n'( w ;
r 7 — )
l a trX (‘)
't : H’i’
{ T 70 . .
@A t/"l'
Of, wat hetzelfde is,
curd -\:" } 7 U. . s : x ; . (4)

Dit is een van de hoofdvergelijkingen van Maxwei's
theorie. In die theorie hebben echter de svmbolen cen
uitgebreidere beteekenis dan er hier aan werd toegekend

(f7eafise, Art. 608—611). Het is intusschen niet moeiliik

¢
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in te zien, dat de vergelijkingen (3) ook in die uitgebreidere
beteekenis geldig blijven, als men van dezelfde veronder-
stellingen uitgaat als MaxweLL.

Bij Maxwerr heet G de ware stroom en deze wordt
beschouwd als de resultante van den geleidingsstroom,

de wij ons hier alleen hebben beziggehouden, en

waarme
van den stroom, die ontstaat door verandering met den
tijd van de ditlectrische polarisatie van het medium.

Deze laatste stroomen ontstaan volgens MAXWELL niet
alleen in het diélectricum, maar ook in den vrijen aether
en ook in geleiders bij veranderlijke toestanden. MAXWELI

neemt nu aan, dat ook deze zoogenaamde verplaatsings-

stroomen gesloten zijn, of liever, dat zij altijd met d

oeleidingsstroomen gesloten stroomen vormen €n dat zij

dezelfde magnetische werking nitoefenen als geleidings-

In deze veronderstelling kunnen wij aan de

stroomen.

grootheden #, v en W in (3) dezelfde beteekenis hechten,

die er door Maxwerr aan wordt toegekend.

¢ 3=, Om de componenten van de \'l-f'iﬂn'—lmt--mi;;.::
van een electrischen stroom of van een stelsel van

bepalen, kunnen wij weder rechtstreelks

StrooIien te

gebruik maken van de vergelijkingen (9) van 8§ 17. Dus

arT,
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waarin de integratie over al de geleiders, of, als wij het
begrip stroom in den zin van MaxwerL opvatten, over de
gcheele ruimte moet worden uitgestrekt.

De betrekking tusschen de magnetische kracht en de
vector-potentiaal wordt dan volgens (2) § 17 aangegeven

door de vergelijkingen

o dF dH
P d:  da? |
1 d - 7 e//’f.
4 f/.l' (-""l'

(2)

Passen wij de vergelijkingen (1) toe op den stroom

van § 34, dan is # =0, 7 0, =14 Dus fi=|G=0!

Om // te bepalen in een punt 2 (x, », 0), welks afstand
tot de as wij p noemen, denken wij ons den cylinder

begrensd door twee vlakken b en z = - &, waarin

5 oneindig groot is ten opzichte van 2.

[fen punt () binnen den cylinder worde in ()° gepro-
jecteerd op het ay-vlak. Het punt () is dan bepaald
door de coordinaten O ()" = o, Q' OP=0en Q)

en men heeft.-als @ den straal van den cylinder voorstelt,

‘a 3w L4 0 4 0 d0d:

Z _/'_!:/""'.' de=a'| | | 5

Integreeren wij eerst met betrekking tot z, dan is, als
wij (' P =1 stellen, daar b oneindig groot is ten

opzichte van /Z,




de oppervlakte van den

Ligt het punt 7 buiten of op

cylinder, dan is
’ ) | ) 7 (i s
A b = 2ppcosT --0) = 217 |1 2 ——cos = '

0

waarin — = 1, dus
h -
/
o fl[: 0 LR D
/ ~ —— ({l[’:” 2 ./.‘ — f{f;" /1) I,"{J‘:‘y- ( 0 1 ~*I cos - .‘,\‘_‘, ]
p E7 7 ;
Dus
) 7 i P 7 v i ] ks ' 0 ops g
H 21 'i"ﬁ’(‘" 2 - fr'{i‘"f"‘J/ [:r/‘f_i} @i ! ’ y_uu”? f ,Ir.-.:g' 1 2 .‘. cos i) *( :‘“, e
v () v 0 4 0 o 0 / f‘
Nu 18
/ z’ru"j‘ (1—2 ¢ €O§ 1) -i- e d 0. VOOr Fodedl® 1.

« 0
(Zie Brerexs pe Haax, Noup. Tab. d'tnl. déf. T, 332, 1).
De formule gaat door voor ¢ 1.
Dus
H 2t a*(log 20 log p) = 2 ¢ (log p— i
Voor de magnetische kracht vindt men

f\;//‘ .
(t - - 2 1 'L; .

|f_’|’ 7
d 1, -y
1 '/1 & 4 /\ 71

in overcenstemming met (2) § 34.
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Ligt het punt 2 binnen den cylinder, dan kan men stellen

= ,,,_lv

v0JQO - A 7 p v 0 o) Ve
— H’% + Hf.
Uit (3) volgt onmiddellijk
H,=2nt p*(log 20 —logp). . . . (4)
Ter bepaling van /7’ heeft men te stellen

4 b /"

t=1/(p*—2pocos0+te)=el” [1 2 gl {

:Tx""utfur}"}r?’ / /.2_'/':‘"';‘“(4}0(1‘"] tr"

waarin “4— == 1 is. Op overcenkomstige wijze als boven

vindt men dan

AR ")

H;,=21"log 20 / | odo / dir—21 {' o logodyp ; d

oop « 0 o p

/

2 7% Ir."‘I /’:) /r'{.g" 2 o — 4 .".' / 0 /{J:.' 0 rf 0.
Nu is
‘i ”'3 2 i
[“otogodo=(% togo—" )
2 p

”l‘ (2 loca—1)- ‘f;_ (2 log p 1).
Dus

Hi—= 271 (a? /’"’l/r!"'..‘ﬁ' ni a*(2 logr a - 1) 4= Tl f

Door (4) en (5) op te tellen verkrijgt men na herleiding

"
o B

: I
/1 - 21 f > Aoz 26 4 loga — — ) . (0
- { <
De waarde. die men hieruit vindt voor de magnetische
kracht. komt weder overeen met (1) § 34.
De waarden voor /7 uit (3) en (6) gaan, zooals behoort,
aan de oppervlakte van den geleider continu in elkander

over, s

2log p—1). (5)
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De grootheid /7% uit (5) stelt de vector-potentiaal voor
van een stroom, die begrensd wordt door twee coaxiale
cylindervlakken met de stralen p en a in een punt 7~ van
het binnenste grensvlak. Blijkens de afleiding vindt men
voor dezen stroom volkomen dezelfde waarde voor /7 in
een willekeurig punt /2 binnen de ruimte, die door den
kleinsten cylinder begrensd wordt. In die ruimte is dus
de vector-potentiaal constant en de magnetische kracht

derhalve nul. Dit feit is experimenteel aangetoond door

Jourin (L. ¢.).

§ 38. Passen wij de vergelijkingen (1) van de vorige
paragraaf toe op een constantén Stroom, die door een
oeleider s met zeer Kleine doorsnede & o gaat, een zooge-
naamden lineairen stroom. Zij de constante stroomsterkte 2,
dan is de stroomdichtheid G ,i :

 m
De richting van @ wordt aangegeven door de raaklijn
in de richting van den stroom; de richtings-cosi-

aan §

nussen zijn
dx :/_\’ dz
r/‘\‘ ! u/.\' i r/.\' T

Dus
! 4/,1
T . , enz.
h/"J {'?J.\'
Verder is dr —= dw ds; dus
y L gede
2 - ’ s .

”
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Deze uitdrukkingen zijn dezelfde als die, welke wij
in § 33 vonden voor de componenten van de vector-
potentiaal van een magnetische schaal, als men stelt
¢ = ¢. Als een magnetische schaal en een electrische
stroom dezelfde vector-potentiaal hebben, dan is ook de
magnetische kracht, die van beide uitgaat, gelijk. Men
komt dus zoo op eenvoudige wijze tot de beroemde
stelling van AMPERE:

De magnetische werking van een constanten lineairen
stroom is gelijk aan die van een magnetische schaal, die
door den geleider begrensd wordt en waarvan de sterkte
gelijk is aan de sterkte van den stroom.

-De constante £ van § 34 wordt dus gelijk 2 gesteld,
om de numericke waarde van de stroomsterkte gelijk te
kunnen stellen aan de sterkte van de equivalente mag-
netische schaal.

Bovenvermelde overeenkomst tusschen een elec-

3 30,
trischen stroom en een magnetische schaal geldt alleen
voor punten buiten de schaal, daar voor inwendige punten
de magnetische kracht niet van de vector-potentiaal kan
worden afgeleid.

Grooter wordt de analogie tusschen beide systemen,
als men niet de magnetische Kracht, maar de magnetische
inductie beschouwt. Deze laatste wordt voor punten
binnen en buiten de schaal op dezelfde wijze uit de
vector-potentiaal van de schaal gevonden (§ 31).

De magnetische inductie (kracht) van een stroom in een

willekeurig punt is dus gelijk aan de magnetische inductie

in dat punt van de equivalente magmnetische schaal.
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Blijkbaar geldt hetzelfde voor een stelsel constante
stroomen en het equivalente magnetische stelsel.

Dit mag wel de reden zijn, waarom de magnetische
inductie door ‘Tnomson genoemd wordt: de magnetische \

kracht volgens de electromagnetische definitie.

§ 40. Tot dusverre hebben wij de stroomen alleen
beschouwd in een medium, dat magnetisch niet polari-
seerbaar is, een medium dus welks permeabiliteit u = 1 is.
Bij benadering geldt dit voor de lucht. Heeft echter u
een andere waarde en wil men, dat de kracht, die van
de vector-potentiaal wordt afgeleid, altijd de magnetische

inductie zal zijn, dan kan men stellen
[ % \
| [ [ = ax,
a0 I
(,'--_I”///‘_--;/r, SRR s ffoms (1)

7

et T

”
€n
ff’ // , t‘/{; )
‘ e 7 u’ril' «ff, 1
AP dH =
24 - dz dx’
dG dF
¢ T

Pl S dy’

Dit zijn de vergelijkingen, zooals zij door MaxweLl
worden gebruikt. IHierbij heeft men echter in het oog
te houden, dat zij alleen geldig zijn, als w« in de geheele
ruimte constant is. In dat geval kan men ter berekening
van de magnetische kracht even goed van de vergelijkingen

(1) en (2) van § 37 gebruik maken.
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[s echter u veranderlijk, dan® is dit niet het geval.
Wel kan men zich dan nog, daar altijd aan de voorwaarde
a (1 (».’\) n ({_(ul_;') i Q‘ff_?

dx " dy ' ds

voldaan is, @, & en ¢ door vergelijkingen van den vorm (2)

=0 ()

bepaald denken. De waarden van /', G en /1 zouden
dan echter niet meer door de vergelijkingen (1) worden
aangegeven.

Eenvoudiger wordt het, als men zich in dit geval de
magnetische kracht volgens de stelling van § 25 gesplitst
denkt in twee componenten.

De componente -\:\l ontstaat door de schijnbare werking

~ 3 . . I _— T
op afstand van massa’s met de dichtheid dro ). Vol-

|1
wens (3) 18
e d ap 0y I i du . dp
dio ALt A i et sl A )
rf.l‘ (l'_}' dz L dx : rl’_‘.' r/:_

Deze werking gaat dus uit van die deelen der ruimte,

waarin g veranderlijk is. Grenzen twee homogene medién
met verschillende permeabiliteit g, en w, aan elkander,

dan wordt het gedeelte der ruimte , waarin @ veranderlijk

is, oneindig dun,
Daar « alleen verandert in de richting van de normaal
op de grensvlakte, vindt men uit (4) voor de ruimte-dicht-

heid in de overgangslaag:

1
- B O
I I al r/;v | d | "
. . . - ~ v 0l .
1T M dn dn g ' dn dn

waarin 17 de totale potentiaal in een punt van de over-

gangslaag voorstelt, terwijl verondersteld wordt, dat 1n

die laag geen stroomen aanwezig zijn.
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Wil men de ruimte-lading als een opperviakte-lading
> o

beschouwen, dan volgt hieruit, door integratie over de

: ( T ;
dikte der overgangslaag, daar u i constant is ( 7realise
= ) ' L an : ;

Art. 428), voor de dichtheid dier lading:

oy d I', [ I I ] Hqg — Iy a f'_
! )

4 T (z-lii.., My y 4 7T Uy g an, {
als wij de normaal in de richting van het medium 1

naar het medium 2 nemen.

De componente £, ontstaat door de schijnbare werking \
; : e e
op afstand van vector-massa’s met de dichtheld — cur/ A, :
4.7 .
Daar de vergelijkingen (3) van § 30 geldig blijven
( Treatise, Art. 499, 607) wordt £, door de vergelijkingen

(1) en (2) § 37 bepaald. Deze componente stelt dus de

magnetische kracht voor, die van de stroomen zou uitgaan, |
als het medium homogeen was.

Hel electromagnetische moment van stroomen.
1. Laten in een veld twee gesloten lineaire stroomen

4 2

s, en s, met de stroomsterkten z en 1, aanwezig zijn,

Denkt men zich twee willekeurige oppervlakken g, en a,, |
:]in' (]r:n]' 5 en ‘.'J })‘.“‘_:'I't'll‘-‘] ‘.\'Hl'l]wil, 1].11] ]\._11 lii' u}l]nr‘i-
vlakte-integraal der magnetische inductie over ieder van
die oppervlakken in Farapay’s taal, het aantal kracht-
lijnen, dat door den ;j_'-'lu-h]n-r omsloten wordt veranderd
worden in een lijn-integraal door middel van de yector- f'

potentiaal van het veld.

Noemen wij die oppervlakte-integralen ¢/, en (/,,




Ol
1s met de notatie van (3) § 14:

= f / 5 cos y r!’-?l —— / A cos ¢ ds

of, daar Y =¥, 4+ A, 1s, waarin [, de vector-potentiaal
van 5, en ¥, die van s, voorstelt,

= / ;II COS &, (./_\‘1 - / .I.ﬁ, cos &, s
Nu is - |
Hierin kunnen wij, als wij u 1 stellen, voor 7,, G,, H,
de waarden uit (1) § 38 substitueeren, dus
/

bt 7 - s | 4/_1_: 7 _K'l : <‘f:.1'_, “"-,V| ‘ lf’__': 24 ‘.‘ . 7 y .
<1, €OS £, 25 [ . 1 - ¥ : a8, a3,
- - . = u/.\',. il .\'l 3 \] -

7 1/‘\" @ 8 8, .
S s,
: 7/ @s,
N J; 1 A AN |\‘
»
als 0 den hoek tusschen twee elementen ds; en s,
voorstelt,

Op dezelfde wijze vindt men

. A 214}
‘ (as,; a3
Y 5 1 Ann
, y Jl coS "I (.',.\" 1'| / , ! coSs ) it
W d r

waarin s, en ds, twee elementen van denzelfden
stroomgeleider voorstellen en waarin iedere combinatie
1/.\.'| u"\ll

oraal iedere combinatie &s, &5, slechts éénmaal voorkomt,

twee malen voorkomt, terwijl in de vorige inte-

Stelt men

2= [ [ELE5 cosd,

’
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De grootheid L noemt men de coéfficient van zeli-
inductie van s,, J7 de coéfficient der wederkeerige inductie

van 8 e 355

Evenzoo vindt men

O =t M2,V

(ds, ds’,

/ (-{‘I. ('E"' cos h.
7

waarin N— /
De electromotorische krachten der inductie, die bij
veranderlijke toestanden in s en §, ontstaan, worden
volgens de wet van Farapay (Zreaftse, Art. 541) op
ieder oogenblik gegeven door de vergelijkingen
(),
dt’

(‘”-)I

/L‘I .’t"l" 2 /‘;—'

De grootheden (J; en (), zijn dus dezelfde als die,
welke wij in § 8 hebben leeren kennen onder den naam
van de electromagnetische momenten der beide stroomen,

Wat Maxwerr dus noemt het electromagnetische moment
van een stroom is hetzelfde, wat door IFArApAY genoemd
wordt het aantal krachtlijnen, dat door den geleider

omsloten wordt
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[1 est toujours intéressant de suivre la marche des

auteurs.
[LAPLACE.

De grootheden I¥, G en H., die MaxweLL in zijn

theorie van het licht gebruikt, kunnen niet als de com-
iike vector-potentiaal beschouwd

ponenten van een eigenl

worden.

[11.

Ook in zijn Zreatise geeft Maxwenn eeen mechanische
verklaring van de olectrische en de magnetische ver-
schijnselen, Hij maakt het alleen waarschijnlijk, dat
een dergelijke verklaring kan gegeven worden en wel

op oneindig veel manieren,
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IV.

Dat electrische en magnetische massa’s een werking
vitoefenen, omgekeerd evenredig met het kwadraat van

den afstand. is niet de uitdrukking van een natuurwet,

s

maar van een mathematische identiteit.

De di¢lectrische polarisatie van den vrijen aether heeft

in Maxwerr's theorie eigenlijk geen physischen zin.

VI.

Van de Veclor-Analyse is voor de Physica meer nut

te verwachten dan van de Qualernions.

VI
[en onrechte beweert Tair, dat HaxmiLron gencodzaakl
was tot de methoden van Newrox terug te keeren, ten
einde de eigenaardige moeilijkheden ~der quaternion-
differentiatie te’ overwinnen.

(Tarr, Quaternions, 2™ ed. § 33).
VIII.

De toepassing der waarschijnlijkheidsrekening op het

beoordeelen van de geloofwaardigheid van getuigen en
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de juistheid van rechterlijke beslissingen wordt door
Stuart Mmr terecht gebrandmerkt als ,the opprobrium

of mathematics”.
X,

Het bewijs van de formule ¢ (x) = e—"2 uit de

leer der kleinste kwadraten moet gezocht worden in de

overeenstemming van de uitkomsten met de ervaring.

Ten onrechte beweert Larrace: ,On doit regarder Frr-
MAT comme le véritable inventeur du calcul différentiel”,

(LAPLACE. Théorie anal. des Prob. [ntroduction, p. 42).

Al

Uit het feit dat er een mechanisch aequivalent der

warmte is

’

volet nog niet, dat de warmte een vorm van

beweging 1s.
X11L

Vele belangrijke wetten zijn te danken aan het onnauw-
keurige of onvolledige der waarnemingen, waarop 2i

ooeorondvest.

Zijn goegw




XIIL

Voor eene meer algemeene verbreiding van de theorie ‘=
der Quaternions is de woorfreffelykhierd van Haxirron's
learboek eerder een na- dan een voordeel geweest.
XIV.
De X-stralen zijn transversale aether-golven van zeer
kleine golflengte.
XV.
De verandering in weerstand, die sommige coeleiders
onder den invloed van electrische golven vertoonen,
heeft een mechanische oorzaak.
X VI.
et zonlicht wordt voortgebracht door electrische
ontladingen.
X VII.
De veranderlijkheid der sterren van het Algol-type )

wordt voldoende verklaard door het aannemen van een

donkeren begeleider.
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X VIII.

Bij het onderwijs in de Mechanica aan de hoogere
burgerscholen kan het beginsel der virtuéele snelheden

uitstekende diensten bewijzen.
XIX.

Het verdient geen aanbeveling, bij het elementaire
onderwijs in de wiskunde de begrippen Zmiel en oneln-
dig kleine zooveel mogelijk te vermijden. Dat onderwijs
biedt een uitstekende gelegenheid aan om die begrippen

\'I'l)(‘_’,_;'lij(’lif,"' in te voeren.

XX.

Het s \\'l'll‘wt'ilt‘liiIQ in ons land niet den Midden-
Europeeschen tijd in te voeren, maar den Amsterdam-

schen tijd voor het burgerlijk leven te behouden.




b, staat: solonoidale, moet zijn:
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