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??? VOORWOORD. In dit proefschrift stel ik mij voor een Inleiding tegeven tot de toepassingen, die Maxwell in de Electro-dynamica en in de leer der Inductie van de Vector-potentiaal maakt. In het eerste hoofdstuk wordt nagegaan, op welke wijzezich dit begrip bij Maxwjcll, blijkens zijn verhandelingen,heeft ontwikkeld. In Â§ 7 is het mij, naar ik meen,gehikt een duidelijke voorstelling te geven van hetgeenMaxwell bedoelt met eene mechanische analogie, waaraanhij blijkbaar veel waarde hecht en die door hem tochslechts vrij onbepaald wordt aangeduid. In het tweede hoofdstuk wordt de Vector-potentiaaluit een meer algemeen oogpunt beschouwd, dan doorMaxwell is gedaan. Die grootheid wordt beschouwd inverband met een oppervlakte-integraal, op soortgelijkewijze als men de gewone potentiaal kan laten afhangenvan een lijn-integraal. De eigenlijke beteekenis echtervan de Vector-potentiaal voor de theorie van de werkingop afstand wordt aangegeven in Â§ 23 en Â§ 24. Het derde hoofdstuk kan in hoofdzaak beschouwd



??? worden als een commentaar op Art. 405â€”406 vanMaxavell\'s Treatise. In het vierde hoofdstuk heb ik mij bepaald tot hetElectromag-netisme. In verband met het in het tweedehoofdstuk behandelde worden de hoofdvergelijkingen opeene van de gewone eenigszins afwijkende wijze afgeleid.Een paragraaf over het Electromagnetische ^Moment isslechts toegevoegd, om te doen zien in welke betrekkingdeze grootheid staat tot de Vector-potentiaal



??? HOOFDSTUK I.Faraday\'s electrotonische toestand. Â§ i. De naam Vcctor-potentiaal is ingevoerd doorMaxwell en men behoeft het deel van zijn Treatise011 Electricity and Magnetism slechts te doorbladeren, omte zien welk eene belangrijke rol deze grootheid in zijnetheorie speelt. Toch is zij voor die theorie slechts eenhulpgrootheid en het zou misschien moeilijk te verklarenzijn, hoe Maxwell er toe gekomen is die grootheid zooop den voorgrond te stollen, als men geen rekeninghield met den invloed van Farauay. Het is bekend, dat Maxwell, bij het opstellen zijnertheorie, zich â€? in hooge mate door Faraday heeft lateninspireeren. Voor alle begrippen en voorstellingen,waarmede de laatste werkte, vindt men bij Maxwell degepaste wiskundige uitdrukking. In de eerste plaats denkt men hier aan Faraday\'stheorie van de krachtlijnen, niet iilleen als lijnen, die inieder punt van het veld de richting en de intensiteit vande kracht iiangeven, maar ook als lijnen, die den physi-schen toestand van het medium kenmerken.



??? Minder in het oog vallend, maar toch zeer wezenlijk, isde invloed, dien een andere conceptie van Faraday â€” hetbestaan van een electrotonischen toestand â€” gehad heeft opde wijze, waarop Maxwell zijn theorie heeft opgebouwd. Volgens Maxwell is de geheele geschiedenis van dewijze, waarop zich deze conceptie in Faraday\'s geestheeft ontwikkeld, de studie zeer waard. Enkele hoofd-trekken uit die geschiedenis willen wij hier laten volgen. Â§ 2. In de Serie van z\\]n Experiinental Researchesm Electricity beschrijft Faraday de ontdekking van devolta-electrische en de magneto-electrische inductie. Terverklaring\'van de waargenomen verschijnselen neemt hijnu aan, dat een gesloten geleider, onder den invloedvan een electrischen stroom of van een magneet, dus ineen magnetisch veld, in een bijzonderen toestand ver-keert. Zoolang die toestand onveranderd blijft, gebeurter niets; zoodra echter die toestand verandert, ontstaaner electromotorische krachten, die zoowel wat intensiteitals richting betreft, van de veranderingen in dien toestandafhangen. Aan dezen

hypothetischen toestand der materie,van welks bestaan op geen andere wijze blijkt, geeft hijden naam van Electrotonic State. Deze toestand schijntdan te bestaan in een soort van spanning. De opgewekteinductie-stroom houdt op, zoodra die spanning is tot standgekomen en als de invloed, waardoor de spanning ont-staat, ophoudt te werken, geeft de ontspanning eeninductie-stroom in tegengestelden zin. In de Serie der Ex. Res. heeft Faraday in deverandering van het aantal en de richting der magnetische



??? krachtlijnen, die door een geleider omsloten worden, eenminder hypothetisch middel gevonden om de inductie-verschijnselen samen te vatten â€” dus te verklaren. Deredenen, die hij had om het bestaan van een electroto-nischen toestand aan te nemen, bestaan dus niet meer.Hij voegt er echter bij, dat het hem in hooge mateonwaarschijnlijk voorkomt, dat een geleider geheel indif-ferent zou zijn tegenover een krachtigen electrischenstroom, die zich in de nabijheid bevindt. Alleen hetgemis van feiten, die het aannemen van een electroto-nischen toestand wettigen, noopt hem die hypothese opte geven. Toch dringt zich die hypothese telkens weUer aan hemop en in de volgende Serie??n der Ex. Res. komt hij erherhaaldelijk op terug. Zoo b. v. {Ex. Res. 172g): â€žHet schijnt mij mogelijk en zelfs waarschijnlijk,dat do magnetische werking op afstand wordt over-gebracht door de werking van tusschengelegen deeltjesop oen wijze, die overeenkomst heeft met de wijze,waarop do inductie-krachten van statische electricitoit opafstand worden overgebracht, waarbij dan die

tusschen-gelegen deeltjes tijdelijk in een meer of minder bijzonderentoestand verkeeren, die ik herhaalde malen met dennaam van electrotonischen toestand heb aangeduid." Als hij later tot do overtuiging komt, dat ponderabelematerie voor de voortplanting der magnetische krachtniet noodzakelijk is, helt hij er toe over om den electro-tonischen toestand te beschouwen als den toestand,waarin de aether onder den invloed van magnetische,krachten verkeert, ofschoon nog niet kan gezegd worden,



??? waarin die toestand bestaat: in een trilling, in een span-ning of mogelijk in iets, dat overeenkomst heeft meteen electrischen stroom {On the Physical Lines of Mag-netic Force. Ex. Res. III, p. 443). In ieder geval zoudie toestand samenvallen met hetgeen het wezen dermagnetische krachtliinen uitmaakt. Â§ 3. De wetenschappelijke waarde van deze conceptiebestaat volgens Maxwell hierin, dat de aandacht geves-tigd wordt op een grootheid, die niet door haar absolutewaarde, maar door haar veranderingen de verschijnselenin het electromagnetische veld bepaaft. Hij zegt [Treatise,Art. 540): â€žDoor een reeks van experimenten, ge??nspireerden geleid door ingespannen denken, werd Faraday ,zonder behulp van Aviskundige berekeningen, er toe ge-bracht het bestaan te erkennen van iets, waarvan wij nuweten, dat het een mathematische grootheid is, die menzelfs de fundamenteele grootheid in de theorie van hetelectromagnetisme zou kunnen noemen. Daar hij echterop zuiver experimenteelen weg tot deze conceptie wasgekomen, schreef hij er een physisch bestaan

aan toe enveronderstelde, dat zij bestond in een bijzonderen toestandder materie." En verder: â€žVeel later .hebben andereonderzoekingen op zuiver mathematischen weg tot het-zelfde begrip geleid; maar niemand heeft, zoover ik weet,in de mathematische conceptie van de potentiaal vantwee stroomgeleiders Faraday\'s stoute hypothese van eenelectrotonischen toestand herkend." . Het is ipisschien niet geheel van belang ontbloot nate gaan op welke wijze dit begrip door Maxwell is



??? verwerkt. In al zijne verhandelingen over Electriciteithoudt hij er zich mede bezig en ook in zijn geest heefthet een geschiedenis doorloopen, voordat hij er toe komthet als een zuiver mathematische grootheid te beschouwen. Â§ 4. In zijn eerste verhandeling over Electriciteit:â€žOu Faradays Lines of Force" (1855. Scientific Papers,Vol. I, p. 155â€”229) stelde Maxwell zich tot taak aante toonen, dat de denkbeelden, die Faraday bij zijneonderzoekingen geleid hadden, niet onbestaanbaar zijnmet den mathematischen vorm, waarin Poisson en anderende wetten der electriciteit hadden gegoten. Zijn doel iseen physische analogie te vinden, waardoor men in staatgesteld wordt de resultaten van vroegere onderzoekingensamen te vatten, zonder dat men daardoor gebondenwordt aan eenige theorie. Op deze wijze, meent Maxwell,is men er voor gevrijwaard, zijn onderwerp uit het oogte verliezen door analytische subtiliteiten, of ook dewaarheid voorbij te streven door het volgen eener gelief-koosde hypothese. In het eerste gedeelte der verhandeling worden dewetten der

electriciteit vergeleken met de eigenschappeneener onsamendrukbare vloeistof, wier beweging wordtvertraagd door een kracht evenredig met de snelheid.De vloeistof wordt verondersteld geen inertie te bezitten.Door de overeenkomst, die de stroomlijnen van zulk eenvloeistof zouden hebben met de electrische krachtlijnen, ismen dan in staat gesteld niet alleen om de wetten derstatische electriciteit in een enkel medium af te leiden,maar ook om aan te toonen, wat er moet plaats hebben,



??? als de werking van het eene di??lectricum in het andereovergaat. Het tweede gedeelte van de verhandeling is gewijdaan het electromagnetisme en heeft tot opschrift: â€ž0?iFaradafs Electrotonic State!\' Er wordt in aangetoond, datde wetten, die door Amp?¨re zijn ontdekt, tot resultatenleiden, die in overeenstemming zijn met die van Fakadav.Dit tweede gedeelte verschilt in wijze van behandelinggeheel van het eerste. Maxwell erkent, dat het hem nogniet is gelukt zich van den electrotonischen toestand eenmechanische voorstelling te vormen, die hem in staat zoustellen, van het wezen van dien toestand en van zijneigenschappen zonder mathematische symbolen een duide-lijke verklaring te geven. Door een nauwgezette studievan de verschillende betrekkingen, die door de verge-lijkingen worden uitgedrukt, in verband met de studie vande wetten, die de bewegingen van elastische lichamen envan taaie vloeistoffen beheer.schen, hoopt hij echter er inte zullen slagen zulk een mechani.sche voorstelling tevinden. Voorloopig voert hij drie uitdrukkingen in, waaraanhij den naam

geeft van clectroloniscJie fiinciies of compo-nenten van de electrotonisclie intensiteit. De electromo-lorische krachten, die door magneten of door electrischestroomen in een bepaald punt worden opgewekt zijn deafgeleiden naar den tijd van die functies en er wordtaangetoond op welke wijze de magnetische kracht vandie functie^ afhangt. Volgens deze beschouwingen heeft men zich dan denelectrotonischen toestand in eenig punt van de ruimte



??? voor te stellen als een grootheid, die in grootte enrichting is bepaald, dus als een vector. Neemt mende componente van dien vector volgens de raaklijn inieder punt van een gesloten kromme, dan vindt mendoor integratie wat men kan noemen de totale electro-tonische intensiteit voor die krojnme en deze laatstegrootheid is een maat voor de magnetische inductiedoor een willekeurig oppervlak, dat door de krommebegrensd wordt, of, wat hetzelfde is, voor het aantalmagnetische krachtlijnen, die door dat oppervlak gaan. In de electrotonische functies heeft men dus hetmiddel om de beschouwing van de magnetische inductie,die door een oppervlak gaat, te vermijden en in deplaats daarvan den electrischen stroom te beschouwenals afhankelijk van grootheden, die bestaan op dezelfdeplaats, waar de stroom wordt opgewekt. Ilet verdient nu zeker opmerking, dat Maxwell hierdeze laatste methode als de natmirlijke stelt tegenoverde eerste als de kunstmatige {Sc, Pap. I, p. 203). Vol-gens Maxwell\'s volledige theorie, die geen werking opafstand toelaat, maar waarin de

krachten in ieder puntalleen afhangen van toestandsveranderingen in de onmid-dellijke nabijheid van dat punt, is deze onderscheidingwel niet vol te houden. Do methode van de electro-tonische intensiteit zou toch in die theorie alleen dande natuurlijke mogen heeten, als door die grootheidwerkelijk de physische toestand van het medium in iederpunt op een bepaald tijdstip werd aangegeven; zooalswij zullen zien, is dit niet het geval.



??? Â§ 5- Nadat Maxwell dus in zijn eerste verhandeling degeometrische beteekenis van den electrotonischen toestandhad gevonden, gaat hij er in zijn tweede verhandeling â€ž OnPhysical Lines of Force" (1861. Sc. Pap. I, p. 451â€”513)toe over om de magnetische en de electrische verschijn-selen uit een mechanisch oogpunt te beschouwen en hijontwerpt zijn merkwaardige theorie, volgens welke hetmagnetische veld zou gevuld zijn met moleculaire vor-tices, wier assen samenvallen met de magnetische kracht-lijnen. De cellen, Avaarin die vortices roteeren, zijngescheiden door lagen van deeltjes, die een dubbelerol te vervullen hebben: zij brengen de beweging vande eene cel op de andere over en in hun voortgaandebeweging bestaat de electrische stroom. De geheeletheorie is met de grootste uitvoerigheid uitgewerkt enniet alleen de magnetische en de electromagnetische,maar ook de electrostatische werkingen worden er doorverklaard. Volgens AIaxwell\'s eigen verklaring (2realiseII, Art.\' 831) moet echter deze theorie voor niet meergehouden worden dan zij werkelijk is.

Men heeft erslechts het bewijs in te zien, dat een mechanisme denk-baar is, welks bewegingen door dezelfde wetten beheerschtworden als de verschijnselen in het electromagnetischeveld. Maar ofschoon Maxwell in zijn volgende verhan- .deling en in zijn Treatise een veel meer algemeenemechanische theorie van het electromagnetisclie veldheeft ontworpen, wordt toch door sommige hoofdzakenvan de oudere theorie zijn blijvende overtuiging uitge-drukt, zeer zeker b. v. door de onderstelling, dat molecu-laire rotaties om de magnetische krachtlijnen plaats grijpen.



??? In deze theorie dan wordt de magnetische krachtveroorzaakt door de centrifugaal kracht van de vorticesen een. electromotorische kracht ontstaat door de tangen-ti??ele drukkingen, die optreden tusschen de vortices ende daartusschen geplaatste deeltjes, telkens wanneer derotatie-snelheid ergens in het veld verandert. Dezeelectromotorische kracht kan vergeleken worden met dedrukking op de krukas van een wiel in een machine,als de snelheid van het vliegwiel vermeerdert of ver-mindert. De electrotonische toestand is dan datgene, wat deelectromotorische kracht zou zijn, als de stroomen ofmagneten, waardoor de krachtlijnen veroorzaakt worden,in plaats van trapsgewijze hun volle .sterkte te krijgen,plotseling" waren ontstaan. Die toestand komt overeenmet de impulsie, die op de krukas van een wiel in eenmachine zou werken, als het vliegwiel plotseling zijnvolle snelheid verkreeg. Deze impulsie kan voor iederpunt van een machine berekend worden. Zij wordt doorMaxwell het herleide moment van de machine voor ditpunt genoemd. Is nu de beweging van de

machineveranderlijk, dan kan do kracht, die in een bepaaldpunt door de verandering van de snelheid ontstaat,gevonden worden door dat moment ten opzichte vanden tijd te difFcrenti??eren, op dezelfde wijze, als deelectromotorische kracht door differentititie van den elec-trotonischen toestand kan worden afgeleid. In Â§ 7 zullenwij deze beschouwingen door een eenvoudig voorbeeldtrachten toe te lichten. Volgens deze voorstelling is dus de electrotonische



??? lO toestand in een punt niet de uitdrukking voor iets, datphysisch in dat punt aanwezig is. Hij hangt af van dentoestand van het geheele magnetische veld en is inzekeren zin een summatie van de werkingen, die in eenbepaald punt door verstoringen in het geheele veld ont-5: staan. Ondanks de mechanische wijze van voorstelling i is dus hier de electrotonische toestand een zuiver mathe- matisch begrip geworden. Een integraal-vorm zal danook de gepa.ste wiskundige uitdrukking er voor zijn. Â§ 6. In zijn derde groote verhandeling â€žA DynaviicalTheory of the Electroviagnetic Fteld" (1864. Sc. Pap. I,p. 526â€”597) laat jMaxwell de bijzondere veronderstel-lingen van de vorige verhandeling varen. In de Inleidingworden eerst eenige verschijnselen besproken â€” magneti-sche draaiing der polarisatie-vlakken van het licht, inductie-stroomen, di??lectrische polarisatie, geleiding â€” die ertoe kunnen leiden om in het algemeen de verklaring derelectrische en magnetische venschijnselen niet te zoekenin een werking op afstand, uitgaande van de lichamen,die wij ge??lectriseerd of

gemagneti.seerd noemen, mÂ?iar inbewegingen en spanningen van het omringende medium.Verder wordt aangegeven welke redenen er kunnen zijnom aan te nemen dat dit medium dezelfde aether is, diein de theorie van het licht ter verklaring van de optischeverschijnselen wordt te hulp geroepen. Op deze wijze tracht Maxwull de hypothese aanne-melijk te ^maken, dat het electromagnetische veld eensamengesteld mechanisme is, waarin een groote ver-scheidenheid van bewegingen kan plaats hebben, maar



??? 11 altijd zoo. dat de beweging van het eene deel volgensvaste betrekkingen afhangt van bewegingen in anderedeelen. Door op zulk een mechanisme dynamischegrondstellingen toe te passen, komt hij tot eenige alge-meene stellingen, die vergeleken worden met de wettenvan inductie-stroomen. Hierdoor is hij dan in staat sommigeeigenschappen van het mechanisme te identificeren meteigenschappen van electrische stroomen. In plaats van,zooals von Helmholtz en Thomson gedaan hadden, dewetten der inductie-stroomen door middel van de wet vanhet behoud van arbeidsvermogen af te leiden uit deponderomotorische werkingen, volgt Maxwell den omge-keerden weg. Eerst worden de wetten der inductievastgesteld en daaruit worden de ponderomotorischewerkingen afgeleid. Het electromagnetische moment, Â§ 7. De eigenlijke verhandeling begint met beschou-wingen over het electromagnetische moment van stroomen,onder welken naam hier de electrotonische toestandwordt aangeduid. Nergens blijkt zoo duidelijk als hier,hoezeer dit begrip door Maxwixl op

den voorgrondwordt gesteld. In zijn Treatise ontwikkelt liij later oenmeer strenge en vooral meer algemeene mechanischetheorie der inductie, maar de hoofdgedachte, waarvanhij uitgaat, vindt men hier in al haar eenvoud. Wijwillen er daarom wat uitvoeriger bij stilstaan. Beschouwen wij l\\et veld in de omgeving van eenelectrischen stroom. De magnetische krachten in dat



??? i 2 veld hangen in grootte en richting volgens bekendewetten van den vorm van den stroomgeleider af. Wanneerde stroomsterkte verandert, dan veranderen ook de mag-netische krachten in dezelfde verhouding. Als men aan-neemt, dat de magnetische toestand van het veld bepaaldwordt door bewegingen van het medium, dan moet menook aannemen, dat een zekere kracht wordt aangewendom die bewegingen te vermeerderen of te verminderen,en als die bewegingen zijn opgewekt, blijven zij voort-duren , â€žso that the effect of the connection between thecurrent and the electromagnetic field surrounding it, isto endow the current with a kind of momentum, just asthe connection between the driving-point of a machineand a fly-wheel endows the driving-point with an addi-tional momentum, which may be called the momentumof the fly-wheel reduced to the driving-point. The unba-lanced force acting on the driving-point increases thismomentum, and is measured by the rate of its increase.In the* case of electric currents, the resistance to suddenincrease or diminution of

strength produces effects exactlylike those of momentum, but the amount of this momen-tum depends on the shape of the conductor and therelative position of its different parts" {Sc. Pap. p. 536). Eenige toelichting is hier misschien niet geheel over-bodig. Gemakshalve noemen wij het aangrijpingspuntvan de uitwendige kracht op het wiel, het punt dus,waar in een machine het uiteinde van de krukstang op dekruk van het wiel werkt, het drijfpunt (driving-point,Antriebspunct). Wij zullen hier echter aannemen, dat dekracht in het drijfpunt altijd loodrecht op den krukarni



??? 13 werkt. De uitwendige kracht kan men zich op iederoogenblik ontbonden denken in twee componenten, waar-van de eerste dient om den weerstand te overwinnen,terwijl door de tweede de snelheid van het wiel ver-meerderd wordt. Die tweede componente, die wij A\'zullen noemen, kan berekend worden uit de massa, deafmetingen en de versnelling van het wiel. Zij namelijkC de massa, p de traagheidsstraal, rp de hoeksnelheidvan het wiel en r de lengte van den krukarm, dan is dt}> Xr Cn 2 \' dt dus, als n = pr is, x = -cp\' ^(Cfu), dep _ waarin n de lineaire snelheid van het drijfpunt voorstelt.De grootheid die wij door L zullen voorstellen, kan men noemen de massa en L u het moment (hoeveelheidvan beweging) van het wiel herleid op het drijfpunt. Om de analogie met hetgeen men bij electrischestroomen waarneemt, meer volkomen te maken, zullenwij aarmemen, dat de weerstand, dien de uitwendigekracht te overwinnen heeft, op ieder oogenblik evenredigis met do snelheid van het drijfpunt. Dan is, als | detotale uitwendige kracht en R een co??fficient van weer-stand

voorstelt, d (O Als de beweging eenparig is, dan maakt de uitwendigekracht $ evenwicht met do weerstand biedende kracht R u.



??? Bij veranderlijke beweging wordt de kracht ^ â€” R71(the unbalanced force) gebruikt om de snelheid van hetvliegwiel, dus ook het herleide moment te vergrootenen de grootte van die kracht wordt gevonden door datmoment naar den tijd te differentieeren. Voor de veran-derlijke snelheid van het drijfpunt vindt men door inte-gratie van (1), in de veronderstelling dat | constant is, â€” Su = const. ^ ~ \' â€? Nu stelt -J^ de snelheid voor, als de beweging een-parig is geworden. Noemen wij die snelheid b en deinitiale snelheid a, dan is de constante in bovenstaandeuitdrukking gelijk a â€” b, dus u = b -\\-{a â€” b) c-\'t\'.....â–  (2) Stond de machine aanvankelijk stil, dan zou onder dewerking van de constante uitwendige kracht | de snel-heid van 0 tot b toenemen volgens de vergelijking \'-^-"\'j.....(3) Nemen wij / zoo groot, dat wij mogen aannemen,dat de eindsnelheid b bereikt is, dan is de arbeid, diegedurende dien tijd door de uitwendige kracht verrichtwordt, ^ â€”c--^\'\' dt=b^Rtâ€”L). (4) De arbeid, die in denzelfden tijd gebruikt is om.denweerstand te overwinnen, is A\' [J Â? V/ = /e [J [ I â€” ^ - -r\'

J\' rt\'/ = [A\' / â€” Z]. (5) 71 â– =â–  b



??? 1-5 Het verschil van deze beide uitdrukkingen â€” L b\'^ stelt de levende kracht voor, die het vliegwiel heeftverkregen. Hield nu op een oogenblik, dat de snelheid b is, deuitwendige kracht op te werken, dan zou door de energievan het vliegwiel de beweging nog eenigen tijd voort-duren met een snelheid, die afneemt volgens de ver-gelijking 11 u = bc~ L \'......(6) Voor den weerstandsarbeid, die dan verricht wordt,totdat de machine stil staat, vindt men R J^ df = R b"" /J c---L\'dt=\\Lb\\ . (7) een bedrag gelijk aan dat van de levende kracht, diein het vliegwiel was opgehoopt op het oogenblik, datde uitwendige kracht ophield te werken. Al de verschijnselen nu, die een electrische stroomaanbiedt â€” extra-stroomen bij opening en bij sluiting,verwarming van den geleider, enz. â€” kunnen op een-voudige wijze beschreven worden, als men aanneemt,dat tusschen den stroom en het omringende medium eenverbinding bestaat, die â€” het mechanisme, waardoor zijtot stand komt, geheel buiten beschouwing gelaten â€”wat de uitwerking betreft, overeenkomt met de ver-binding, die

er bestaat tusschen het drijfpunt en helvliegwiel van onze denkbeeldige machine. Zij ^ de electromotorische kracht, n de stroomsterkte(snelheid van de electriciteit), R de weerstand van den



??? geleider en L de co??ffici??nt van zelf-inductie, een groot-heid die afhangt van den vorm en de afmetingen vanden geleider, dan wordt het verband tusschen dezegrootheden aangegeven door de vergelijking (i). Door (2) wordt de veranderlijke stroomsterkte op iederoogenblik aangegeven, als de stroomsterkte verandertvan a tot b. Bij sluiting van den stroom gaat volgens (3) door dengeleider in een tijd t, waarin de stroomsterkte constantis geworden, de hoeveelheid electriciteit 1 t u d t = b t â€” b â€”jj.0 R Hierin stelt â€” b ^ den totalen negatieven extra-stroom voor. De arbeid, dien de electromotorische kracht inden tijd t verricht, wordt volgens (4) en (5) slechts vooreen deel gebruikt om den weerstand te overwinnen. Ditgedeelte wordt in warmte omgezet;- het overblijvende gedeelte Lb"^ wordt als kinetische energie in het medium opgeborgen. Deze energie blijft onveranderd, zoolang de stroom-sterkte dezelfde blijft, dat is, zoolang | â€” Ru nul is.De energie vermeerdert, als f â€” R u positief is. Wordt$ â€” R u negatief, dan wordt die energie gebruikt omde vermindering van de

stroomsterkte te vertragen. Neemtmen b. v. het galvanische element, dat den stroom levert,weg en vervangt men dit door een draad van gelijkenweerstand,.dan ontstaat een positieve extra-stroom, waar-van de stprkte op ieder oogenblik wordt aangegevendoor (6). De arbeid, die hiervoor noodig is, wordt



??? 17 volgens (7) geheel geleverd door de energie van hetmedium. De electromotorische kracht van dien extra- stroom is volgens (i) op ieder oogenblik â€”^ (Zw); de totale impulsie van de electromotorische kracht is dusgelijk L u. Deze grootheid Z ??l gebruikt Maxwell als kenmerkend,in zekei*en zin als maat, voor den electrotonischen toe-stand en hij noemt deze grootheid, naar mechanischeanalogie, het electromagnetiscJie moment van den stroom,â€žusing the word momentum merely to express that whichis generated by a force acting during a time, that is,a velocity existing in a body." En wat hierbij in bewegingis, is niet alleen de electriciteit in den geleider, maarook iets buiten den geleider. Â§ 8, Tot dusverre hebben wij alleen de betrekkingbeschouwd, die cr bestaat tusschen een stroom en hetmagnetische veld, dat door den stroom zelf ontstaat. Inilat geval hangt het electromagnetische moment van denstroom, zooals wij gezien hebben, alleen van den stroomzelf af. Anders wordt het, wanneer er verschillendestroomen in het veld zijn. Beschouwen wij het geval,

dat er twee stroomen zijn.De magnetische kracht in ieder punt van het veld is deresultante van de krachten, die de beide stroomen afzon-derlijk in dat punt te voorschijn zouden roepen. Beidestroomen staan met ieder punt van het veld in verbindingen daardoor staan zij met elkander in verbinding, zoodateen verandering van stroomsterkte in een van do ge-



??? leiders, in het algemeen, ook een verandering van stroom-sterkte in den anderen zal ten gevolge hebben. Om deze wisselwerking toe te lichten gebruikt Maxwellde volgende mechanische analogie. Veronderstellen wij,dat een stoffelijk punt met de massa C zoodanig ver-bonden is met twee onafhankelijke drijfpunten A en B,dat altijd voldaan wordt aan de vergelijking w = pu qv.......(i) waarin m, en ic; de snelheden van A, B en C, p en qgetallen voorstellen. Werken nu in A en B de uitwendige krachten X en V,dan is d7?? (2) C^ ?–z = X?–x F?–j, . als dx, en ?? z de gelijktijdige verplaatsingen vanB en C voorstellen.Volgens (i) is d7o du dv en p^ X q^ y. Door deze waarden in (2) te substitueeren verkrijgtmen, in aanmerking nemende dat 8 x en van elkanderonafhankelijk zijn. (3) Cpqv),jL^Cpqu -f Cq\'^v). Men kan nu Cp"^ 71 -f Cp q v het moment van C her-leid op *A en Cpqu Cq\'^v het moment van Cherleidop B noemen.



??? 19 Staan er meer stoffelijke punten op dergelijke wijze,maar met verschillende waarden voor / en q, met A en Bin verbinding, dan vindt men op overeenkomstige wijze,als men stelt Z = M= 2: Cpq en N~ Cq"", voor het moment van A\\ Lu Mv,en voor dat van B: M n -[- Nv, Nemen wij weder aan, om de analogie met electrischestroomen vollediger te maken, dat de beweging vanA en B wordt tegengewerkt door krachten, evenredigmet de snelheden van die punten, dan is, als Ru endie krachten voorstellen en als | en ij de uitwendigekrachten in A en B zijn, d (4) 71 = Sv .{. -^{J/U Nv). Neemt op een bepaald oogenblik de snelheid van Atoe, dan zal dientengevolge ook de snelheid van Bveranderen. Om die verandering te voorkomen, zou men op B een kracht {M u) moeten laten werken. Deze werking op B, veroorzaakt door een vermeerderingvan de snelheid van A, k??mt overeen met do electro-motorische kracht, die in een geleider ontstaat door eenvermeerdering van stroomsterkte in een naburigen ge-leider. Alen verkrijgt namelijk weder, evenals in het eenvou-diger geval

van de vorige paragraaf, een bevredigende



??? 20 verklaring van de verschijnselen, die twee stroomenaanbieden, als men aanneemt, dat tusschen die stroomenen het omringende medium een verbinding bestaat, die,wat de uitwerking betreft, overeenkomt met de ver-binding van de drijfpunten A en B met de stoffelijkepunten C in het mechanisme, dat boven werd aangeduid.Met andere woorden: die verschijnselen worden be-schreven door de vergelijkingen (4), als | en ?/ de elec-tromotorische krachten, zt en v de stroomsterkten, R en ^S\'de weerstanden van de twee stroomen A en B voorstellen. Het electromagnetische moment van A is dan Lu-\\-Mven dat van B, Mn Nv. Hierin zijn Z, M en iV groot-heden , die afhangen van den vorm en van den betrekke-lijken stand der geleiders. L hangt af van den vormvan A, N van dien van B en M van den betrekkelijkenstand van A en B. Beschouwen wij tot toelichting het geval, dat de ge-leiders onveranderlijk zijn in vorm en stand; Z, J/eniVzijn xlan constanten. Laat verder in A de constanteelectromotorische kracht ^en\'xnB geen electromotorischekracht werkzaam zijn. De vergelijkingen (4)

gaan danover in 7> , T du . .,dv â–  â€? (5) dt\' Uit deze vergelijkingen vindt men voor de totalehoeveelheid electriciteit, die in den tijd t door beidegeleiders stroomt.



??? . (6) 2 i (Â?O - n,) J/K - t;,)} r\' I 1 waarin u^, en Uj , v^ de stroomsterkten bij het beginen bij het einde van den tijd t voorstellen. Laat men den tijd t beginnen op het oogenblik, datde geleider A gesloten wordt en neemt men t zoo groot,dat een stationnaire toestand is ingetreden, dan is, = O â€? = ^. = O > = O\' Dus . . . . (7) De totale negatieve extra-stroom in A is dus onaf-hankelijk van B. De totale inductie-stroom in B hangtalleen af van den co??ffici??nt van wederkeerige inductie J/,van den weerstand van B en van de eind-stroomsterkto in A. Wil men ook den arbeid berekenen, die door de elec-tromotorische kracht wordt verricht en die gedeeltelijkin warmte wordt omgezet, gedeeltelijk als kinetischeenergie in het medium wordt opgehoopt, dan moeten devergelijkingen (5) volledig ge??ntegreerd worden. Wij zul-len hier niet verder bij stilstaan. liet was er ons slechtsom te doen duidelijk te maken, wat Maxwell onderhet electromagnetische moment van stroomen verstaat.



??? 22 Â§ g. Het voorafgaande moge voldoende zijn om devolgende definitie toe te lichten. Laten F, G en H de componenten voorstellen van hetelectromagnetische moment in een punt van het veld, datdoor een stelsel van stroomen of magneten ontstaat. F is dan de totale impulsie van de electromotorischekracht in de .^-richting, die in dat punt zou ontstaan,als deze stroomen en magneten uit het veld verwijderdwerden. Dus, als P die electromotorische kracht opieder oogenblik gedurende de verwijdering van het stelselvoorstelt, Fr= f^Pdt, waarin T den tijd beteekent, waarop P de waarde nulheeft gekregen. Het gedeelte dus der electromotorische kracht {I^, Q, K)dat afhangt van een verandering in de intensiteit vanhet magnetische veld, is p- dF dG Laat s de lengte van een lineairen stroomgeleider inhet veld voorstellen. De lijn integraal j^dx dy \'dz F r Ar G -j- tlds ds ds f ds stelt dan het electromagnetische moment van den stroomvoor. (/F In de vorige verhandeling schrijft Maxwkll Pâ€” enz. in ovei;eenstemming met de daar gegeven definitie

vanden electrotonischen toestand (zie p. g).



??? 23 Â§ i o. In zijn Treatise gebruikt Maxwell in de leervan het Magnetisme voor het eerst de benaming Vector-potentiaal van de magnetische inductie en hij identifieertdan later deze grootheid met het electromagnetischemoment of, zooals hij deze grootheid ook noemt, hetelectrokinetische moment.



??? HOOFDSTUK 11.Het begrip Vector-potentiaal. hitegraiie bij gedeelten toegepast op een veelvoudigeintegraal. Â§ ii. Laten u oxv v twee eindige, . doorloopende,?Š?Šnwaardige functi??n van x, y en 2 zijn en laten ookde afgeleiden dier functi??n eindig zijn. Als niet uitdruk-kelijk het tegendeel gezegd wordt, zullen wij in hetvervoeg steeds veronderstellen, dat de functi??n, die wijbeschouwen, aan die voorwaarden voldoen. Beschouwen wij de integraal dv , III genomen over een enkelvoudig-samenhangend volume r.dat begrensd wordt door een oppervlak a. Integreeren wij eerst bij gedeelten met betrekking tot xen onderstellen wij eenvoudigheidshalve, dat een rtfchte,evenwijdig aan de .ar-as, het oppervlak slechts in tweepunten met de abscissen x^ en x^ (x^ i x^) ontmoet, dan



??? 25 gaat de integraal over in ffdydz v), â€” (u â€” ?’?’j ^^dr, waarin de indices i en 2 aanwijzen, dat men in hetprodukt uv de abscis x te vervangen heeft door Xj en x.^. De dubbele integraal in deze uitdrukking moet genomenworden over de projectie van het oppervlak a op hetj)\'2-vlak; maar deze integraal is niets anders dan deoppervlakte-integraal ?’?’ u V cos l da, genomen over het oppervlak a, waarin / de hoek is, diende uitwendige normaal op het oppervlak met de ;i\'-asmaakt; voor ieder punt {x^ , y, 2) is namelijk die hoekstomp en voor ieder punt (aTj, y, s) scherp. Men verkrijgt dus de bekende formule Snijdt een lijn, evenwijdig aan de , het oppervlakin meer dan twee punten, dan is het aantal snijpuntenaltijd even en het blijkt gemakkelijk dat de formule blijftdoorgaan. Zijn op oneindigen afstand u en v gelijk nul, dan is,als men de integratie over de geheele ruimte uitstrekt,de eerste term van het tweede lid van (i) nul en menheeft eenvoudig = â€? â€? â€? Zal deze wijze van integreeren mogelijk zijn, dan moeten



??? 26 de functi??n u en v m de geheele ruimte als doorloopendbeschouwd kunnen worden. Bij een bepaalde toepassingvan de formule komen wij hierop terug (Â§ 27). Â§ 12. Wij willen nu een soortgelijke herleiding toe-passen op de dubbele integraal da, du du V â€”r cos m â€” v -y- cos ndz dy J uitgestrekt over een niet-gesloten oppervlak (T , datbegrensd wordt door een kromme s; u en v zijn functi??nvan X, y en 2; in en n zijn de hoeken, die de positievenormaal op het oppervlak met. de y- en de z-as maakt. Het is noodig, dat wij nauwkeurig vaststellen, wat wijzullen verstaan door een beweging in positieven zin langsde grenskromme s. Denken wij ons om een punt P ophet oppervlak een oneindig kleine gesloten kromme tgetrokken. Door een waarnemer, die met de voeten inP en met het hoofd in de richting van de positievenormaal staat, zal een beweging in positieven zin langs tgezien worden als een beweging tegengesteld aan denzin, waarin zich de wijzers van een uurwerk bewegen.Stellen wij ons nu voor, dat P in do nabijheid van s ligten dat een

gedeelte van t met j samenvalt. Hierdoorwordt de positieve zin langs j bepaald; het is namelijkduidelijk, dat die zin altijd dezelfde zal zijn, tot welkgedeelte van s men P ook laat naderen. Drie onderling lo9drechte assen zullen altijd zoo wordenaangenomen, dat een wenteling van het positieve gedeelteder ;t:-as/naar het positieve gedeelte der ^\'-as, over eenhoek van goÂ°, uit een punt van het positieve gedeelte



??? 27 der 2-as als positieve draaiing gezien wordt. Dit is hetrechtsche systeem. dat door Maxwell meer algemeen ingebr.iik is gekomen Projecteeren wij de kromme s op het xy- en op hetjt\'z-vlak. Laten s\' en die projecties zijn. Wij kunnenstellen: da cos n = dx dy en da cos vi = dx dz, als wijeenvoudigheidshalve aannemen, dat de hoeken, die denormaal met de j)\'-as en met de s-as maakt, overal scherpzijn. Integreert men den tweeden term van de gegevenuitdrukking bij gedeelten ten opzichte van y, dan ver-krijgt men \'â€” cos nda= j ?’ ^ ^ dx dy â€” = I dx (vu)^ â€” {vu\\ als men aanneemt, dat een rechte in het .rj)\'-vlak, even-wijdig aan de j)\'-as, de kromme j\' slechts in twee puntenmet de ordinaten j)\'j enj)\'j < jj\'j) snijdt. Door(z\'?/), cn{vu\\ worden de waarden voorgesteld, die het produktvu heeft in de punten van a, die zich in (at, y^) en {x,y^)projecteeren, terwijl a cn a\' do kleinste cn do grootsteabscis voorstellen van do ordinaten, die mot do kromme s\'een punt gemeen hebben. Beschouwen wij nu ook do lijn-intograal waarin s\' de lengte van s\', gemeten van een

vast puntaf, voorstelt De waarde van deze integraal, in positieven



??? 28 zin genomen, is /â€?Â?\' ( I J^ j j Dus, als men weder dx dy door da cos n vervangt, j l^v^cos n d(j = â€”?’ vu ds\' â€” ?’?’ic ^ cos n da. (i) Op dezelfde wijze vindt men \\\\^ ^ ^^^ w ??^ff = -[- ?’ u ds" â€” jju ^ cos m da. (2) Men kan x beschouwen als een functie van de onderlingonafhankelijke veranderlijken j\' en terwijl zoowelals j" een functie is van s; men kan dus stellendx j â–  \' dx , , ^ dx , â€ž Door (i) van (2) af te trekken verkrijgt men dus da â– = II dti du V -j- cos in â€” V -7â€” cos 11d z dy ^j^u\'^ds-jj dv 71 -5â€” cos maz dvu -7- cos 11dy da, (3) waarin de enkelvoudige integraal langs de kromme jmoet genomen worden. Bij dit bewijs werd stilzwijgend aangenomen, dat degrenskromme der projectie van het oppervlak op hetATjy-vlak, die wij zullen noemen, samenvalt met deprojectie s\' der grenskromme van het oppervlak. Zooook ten opzichte van het xz-v\\cik. Het is echter nietmoeilijk te*bewijzen, dat de formule (3) blijft doorgaan,als dit niet het geval is.



??? 29 De kromme t op het oppervlak, wier projectie t\' is,verdeelt het oppervlak in twee deelen. Nemen wijgemakshalve aan, dat de hook, dien de normaal op hetbovenste gedeelte met de z-as maakt, overal scherp enop het onderste gedeelte, dat de grenskromme s mogebevatten, overal stomp is. Duiden wij de punten, waarineen rechte in het :Â?;j>\'-vlak evenwijdig aan de j)\'-as deprojectie t\' snijdt, door de indices 3 en 4 en de punten,waarin die rechte de projectie s\' snijdt, door i en 2 aan.Laten verder b en b\' de kleinste en de grootste abscisvoorstellen van de ordinaten, die met tf een punt gemeenhebben, terwijl a cn a\' dezelfde beteekenis hebben voor s\'.Voor het bovenste gedeelte van het oppervlak, dat wij(t\' noemen, is dan I f \'O^j - cos n da = f IJJir\') dy JJ I I = / dx ia\' dy] dx dy â€” dv dx dy. l\' dy\\ Voor het onderste gedeelte <t": II cos n da = â€”11 v dy JJ dy Ifv\'^J^cosnda dx {v â€” {v u\\ I â€” I ?’ (^os n da. De vergelijking (i) blijft dus doorgaan. Op dezelfdewijze bewijst men, dat (2) en dus ook (3) geldig blijft. = â€”dx [v â€” {v u)^ Â? dx j {v - {V j j / (Â? dx dy.

Door deze vergelijkingen op te tollen, vindt men voorhet geheele oppervlak dx dy =



??? 30 Bij een gesloten oppervlak verdwijnt de lijn-integraalin (3) en men heeft dan du du -II II dr, V -r- COS m â€”V-r- COS 11 dz dy f dv dv \' (4) u -r- cos m â€” u -7â€” cos 11 dz dy De laatste formule kan ook zeer eenvoudig rechtstreeksop de volgende manier worden bewezen. In plaats vande identiteit \'d"^ {u v) d"^ {icv) <^d (uv) d {iixi) ?’?’ cos in d(?? â€” dv â€” O . dz dy dz dykan men, zooals gemakkelijk uit (i) Â§ ii blijkt, schrijven cos 11 dn = o. dz j .1 dy Voert men hierin de differentiatie uit, dan verkrijgtmen (4). Verandering van een oppervlakte-integraal in eenvolume-integraal. Â§ 13. Laten A\', Y en Z drie functi??n van de co??r-dinaten zijn; /, in en n de hoeken, die de uitwendigenormaal op een gesloten oppervlak (t met de assen maakt.Stelt men in de vergelijking (i) van Â§ 11 = i en 7/ = A\',dan gaat zij over in Zoo heeft men ook i f idY dr.dr. J\'cos m da =I j Z cos n da â€” II .fJJ dy\' i dz en



??? 31 Door optelling dez??r vergelijkingen verkrijgt men J j (Xcos l -f Ycos in -1- Z cos n) da = jjj dx dy dz. Deze formule wordt toegeschreven aan Ostrogradsky ;zij kan ook beschouwd worden als een bijzonder gevalvan de bekende formule van Green. dX dr. (i) Beschouwt men A\'\', Yen >^als de componenten van eenvector die in een punt van het oppervlak met denormaal in dat punt een hoek y vormt, dan is, als /\'"denumerieke waarde van dien vector voorstelt, F cos Ij = X cos l -j- Y cos in -j- Z cos n, dus â€? dX dY dj^dx dy dz] ?’?’ F cos 11 da â– =â–  dx (2) De uitdrukking in het eerste lid van deze vergelijkingnoemt men de oppervlakte-integraal van \'S* over it. Stelt de vector de snelheid van een vloeistof voor.dan geeft do uitdrukking dX d Y dZdx Ty dz de hoeveelheid vloeistof aan, die in\' do eenheid van tijduit do eenheid van volume stroomt. Wij zullen deze uitdrukking mot IIkaviside do divergentievan don vector noemen. De negatieve divergentiewordt door Maxwell de convergentie van genoemd.Voor (2) kunnen wij dus schrijven (3) F cos 71 da = / div ^ dr .



??? 32 Of: de oppervlakte-integraal van een vector over eengesloten oppervlak is gelijk aan de volume-integraal vande divergentie van den vector over het volume, dat doorhet oppervlak begrensd wordt. Is in een bepaald gebied overal div Â§ = o, dan noemtW. Thomson de verdeeling van dien vector een solono??dale. Als overal binnen een gesloten oppervlak div ^ = ois, dan is volgens (3) de oppervlakte-integraal van %over dat oppervlak gelijk nul. Denkt men zich dus datoppervlak door een gesloten kromme in twee deelenverdeeld, dan is de oppervlakte-integraal over het eenedeel in absolute waarde gelijk aan, maar in teeken ver-schillend van die over het andere deel. Hieruit volgt,dat voor een gebied, waarin div ^ = o is, de oppervlakte-integraal van Â§ over een willekeurig niet-gesloten opper-vlak tr alleen afhangt van de grenskromme s. Het moetdus mogelijk zijn de oppervlakte-integraal over a uit tedrukken door een lijn-integraal langs s. Om, deze vervorming tot stand te brengen zullen wijeerst aantoonen, dat de lijn-integraal van een willekeurigenvector langs een

gesloten kromme altijd kan veranderdworden in een oppervlakte-integraal. Verandering van ecu lijn-integraal in eenoppervlakte-integraal. Â§ 14. Laten F, G en //drie functi??n van de co??rdi-naten zijn. Stelt men in (3) Â§ iz v â€” \\ en u = F.^ dangaat die vergelijking over in d<f dF dF j â€” cos VI--jâ€” cos n dz dy i Ii



??? 33 Op overeenkomstig-e wijze vindt men ook ffi: I I (dG dG , -yâ€” COS 11--y- COS l Vdx d% d.-ir.-\'y en dH , dH cos l--râ€” COS m Hâ€”ds.ds dy """ \' dxDoor deze vergelijkingen op te tellen verkrijgt men(C\\{dH dG\\ , , {dF dm \' (dG dF\\ i j) - Tsr ^^ ^ te - J ^^^ te - ^ J \'\' =i ^ ^^ , .-O . (l^ ds ds ds} \' \' \' \\ i Deze belangrijke stelling wordt meestal toegeschrevenaan Stokes. ds ds] Stelt men dll dG _ dy dzdG dF dll = b. dxdF \'dx dy ~ cn beschouwt men F, G en H als de componenten vaneen vector die met de raaklijn aan de kromme j eenhoek f en Â?, b c als de componenten van een vector .die met de positieve normaal op het oppervlak a een hoek tjvormt, dan kan men, daar Acos i â€” F -j- ^r Cr- f H-r- ds \' ds dsis, in plaats van (i) schrijven I I B cos t] dn = j A cos f ds . . . . (3) ] ??fff = /



??? 34 Of: de oppervlakte-integraal van S3 over ff is gelijkaan de lijn-integraal van St langs de grenskromme. In deze vergelijking kan de vector Â§1 geheel willekeuriggenomen worden, mits eindig en continu, maar met denvector 53 is dit niet het geval. Differentieert men name-lijk de vergelijkingen (2) respectievelijk naar x, y en 2en telt men de verkregen vergelijkingen op, dan vindtmen voor de voorwaarde, waaraan S3 moet voldoen, div 33 = o. Deze voorwaarde is dus noodig; dat zij voldoende isom de formule (3) te kunnen toepassen, zullen wij in Â§ 17aantoonen. Stelt de vector $l de snelheid van een vloeistof voor,dan is 93, zooals uit (2) blijkt, een vector, waarvan degrootte gelijk is aan tweemaal de rotatie-snelheid vande vloeistof in de onmiddellijke nabijheid van het punt,waarop SI betrekking heeft en waarvan de richting samen-valt met \'de as van rotatie (Kirchhoff, Mcchanik, 3. Aufl.p. 167). Een vector S3 (Â?, c), die volgens de vergelijkingen (2)van een vector SI {F, G, H) wordt afgeleid, wordt doorMaxwell de curl van SI genoemd. Voor (3) kunnen wij dus schrijven ?’?’

Tcurl cos 1] dn = j A cos t ds. . (4) als T ctirl SI de numerieke waarde van ctirl SI voorstelt. Is in een bepaald gebied overal curl SI = o, danwordt zulk een verdeeling van den vector SI een ivcr-velvrije g^enoemd, daar in de vloeistof dan geen wervel-bewegingen voorkomen.



??? 35 Is de richting van 91 overal dezelfde, dan kan men ?Š?Šnder assen, b. v. de s-as, met die richting laten samenvallen; men vindt dan voor curl de twee componenten ^^ dy volgens de ^r-as en â€” ^^ volgens de ^\'-as. In dat geval staat dus curl 91 loodrecht op 91. In het algemeen isdit echter niet het geval. Dc scalaire potentiaal. Â§ 15. Laat gegeven zijn een vector in de geheeleruimte eindig en continu en op oneindigen afstand gelijknul. Zij verder curl Â§ = o, dan is volgens (4) Â§ 14 delijn-integraal van ^ langs een gesloten kromme gelijknul en voor een niet-gesloten kromme hangt de waardevan die integraal niet af van den vorm der kromme,maar alleen van dc eindpunten. Als curl % = O is, dan is, als A\'\', V en Z de compo-nenten van Jv voorstellen, de uitdrukking Xdx -I- Vdy -f- Zdz een exacte differentiaal. Stellen wij Xdx -f Vdy Zdz = â€” d V. De integraal dezer grootheid, die voldoet aan de voor-waarde , dat zij op oneindigen afstand tot nul nadert,noemen wij in overeenstemming met Maxwell {Treatise,Art. 70) de potentiaal-functie, of, ter onderscheiding van<lc

vector-potentiaal, ook wel dc scalaire potentiaal.Voor dc lijn-integraal van g tusschen twee punten



??? 36 A en B langs een willekeurige kromme heeft men dan rB (O J^ F cos ^ds= Va â€” Vb. als Va en Vg de waarden van Vin A en in B voorstellen.Ligt het punt B op oneindigen afstand, dan is F cos i ds = Va De componenten van ^ worden van afgeleid volgensde vergelijkingen iZ 7 â€” d.y \' " ~ dz \' (3) dx\' .Stelt men nu dX , dV . dZ (4) dx dy waarin de. factor 4 tt alleen dient om bij de toepassingenin overeenstemming te blijven met de gebruikelijke een-heden , dan kan men voor die vergelijking ook schrijven d\'^V . d\'^V . d^V i -TT?? = â€” 4 tt (), . dx^ dy^\' ^ dz^of, volgens de gebruikelijke notatie, ^ F= â€”4n-p . \'.....(6) Is nu 5 of V gegeven, dan kan o uit de vergelij-kingen (4) of {5) berekend worden. Men kan echter ookvragen tf of V te bepalen, als q voor ieder punt vande ruimte gegeven is. Dit komt neer op de oplossingvan (5) in^ verband met de voorwaarde, dat F op onein-digen afstand nul moet zijn. -I- (5)



??? .......-(7) 37 De oplossing is waarin r den afstand voorstelt van ieder punt, waarop (>betrekking heeft, tot het punt, waarvoor F bepaald moetworden, terwijl de integratie moet uitgestrekt worden overieder deel van de ruimte, waarin f> een eindige waardeheeft (Zie b. v. Picard, Tra/\'/if d. Analyse, I. Â§ 8, p. 172). Volgens (4) kan men voor (7) ook schrijven .....w Beteekent V de potentiaal van massa\'s, die een aan-trekkende of afstootende werking uitoefenen, omgekeerdevenredig met het kwadraat van den afstand, dan steltO de massa-dichtheid voor. Hier is echter het woord potentiaal in meer uitgebreidebeteekenis gebruikt. In het algemeen zal men dan defunctie p alleen door de vergelijking (4) gedefinieerdmoeten beschouwen Voor de componenten van Jv vindt men uit (7) A\' = I j?’ cos f( dr, enz.....(9) waarin Â? de hoek is, dien r met de A\'-as maakt. . Is dus gegeven een vector die van een scalairepotentiaal kan worden afgeleid en denkt men zich, datvan ieder volume-element d r een werking uitgaat, evenredig met n dr, waarin Â? = div en omgekeerd evenredig met

het kwadraat van den afstand, dan zal de



??? 38 resultante van die fictieve krachten in ieder punt eenvector zijn, die identiek is met den oorspronkelijk in datpunt gegeven vector In het begin van deze paragraaf werd ondersteld, datde vector ^ in de geheele ruimte doorloopend is. Deverdere beschouwingen blijven echter geldig, als denormale componente van ^ op sommige oppervlakkensprongsgewijze van tot overgaat. Men kan aannemen, dat ^ in een oneindig dunne overgangslaagcontinu verandert. Voor de ruimte-dichtheid q in dielaag kan men dan stellen, daar de verandering dertangentieele componente van Â§ oneindig klein is in ver-gelijking met die der normale componente: 4 iT d n Wil men de ruimte-lading als een oppervlakte-ladingbeschouwen, dan vindt men hieruit, door integratie over dedikte van de overgangslaag, voor de dichtheid dier lading: \'/= f (^nX - â€? 4 TT l De vergelijking (7) gaat dan over in ?? waarin de tweede integraal moet genomen worden overalle oppervlakken a, waarop discontinu verandert. Â§ 16. De functie V, die in de vorige paragraaf werdbesproken, is een ?Š?Šnwaardige functie van de

co??rdinaten. Het k&n echter voorkomen, dat een vector volgensde vergelijkingen (3) Â§ 15 van een functie F" kan worden



??? 39 afgeleid en dat die functie meerwaardig is. Er zijn namelijkgevallen, dat in een bepaald gebied curl ^ = o is en ca dat toch de lijn-integraal / F cos t ds tusschen twee Ja punten A en B verschillende waarden heeft voor tweekrommen, die geheel in dat gebied liggen. Dit zal plaatshebben, als het niet mogelijk is de eene kromme dooreen doorloopende beweging in de andere te doen over-gaan zonder buiten het gebied te komen, waarin aan devergelijking curl ^ = o voldaan is. Het beschouwdegebied is dan een twee- of meervoudig samenhangenderuimte. (Zie b. v. Maxwell, Treatise, Art. i8â€”20 enKirchhoff, Mechanik, 3. Aull. p. 172 en p. 192). Eenvoorbeeld hiervan zullen wij aantreffen in Â§ 35. Noemt men dus, zooals dikwijls gedaan wordt, ook indit geval de functie V een potentiaal, dan kan de poten-tiaal een meerwaardige functie zijn. Als niet het tegendeelgezegd wordt, zullen wij in het vervolg onder den tennscalaire potentiaal de ?Š?Šnwaardige functie van de vorigeparagraaf verstaan. Oplossing van de vergelijking curl ?l = Â§ 17. Zooals wij in Â§ 14 gezien

hebben, voldoet eenvector waarvan de oppervlakte-integraal over eenwillekeurig oppervlak gelijk is aan de lijn-integraal vaneen anderen vector SI langs de grenskromme, aan devoorwaarde div S3 â€” o. Wij zullen nu bewijzen, dat dievoorwaarde voldoende is om de formule (3) Â§ 14 tckunnen toepassen. VVij willen dus SI bepalen, alsgegeven is.



??? 40 Daartoe zullen wij hebben aan te toonen, dat, als a,b en c gegeven functi??n van x, y en z zijn, die voldoenaan de voorwaarde dc _ dy ^ da ^ ab (O dx altijd drie andere functi??n F, G en H kunnen bepaaldworden, die voldoen aan de vergelijkingen dH dG (2) (3) dydl G ^G\' waarin f een willekeurige functie van en c voorstelt. Dat deze waarden /\', G, H aan (2) voldoen, blijktbij substitutie onmiddellijk. Dat zij de meest algemeeneoplossing ^vormen, kan op de volgende wijze wordenaangetoond. â€” -TT = dy dz dF dH dz dx dG dF dx dy Deze drie vergelijkingen zijn echter niet voldoende omF, G en H volledig te bepalen. Stelt namelijk het stelwaarden F\\ G\', H\' een particuliere oplossing van (2) voor,dan wordt de meest algemeene oplossing gegeven doorde vergelijkingen



??? 41 Laat jpj , Gj, //, en F^, G^, H^ twee particuliereoplossing-en voorstellen, dan heeft mendll, dG^ __ dy dH^dy dG^ _ en a. dz Dus dydz dzdx zoo ook en dx dy Maar dit zijn juist de voorwaarden, dat F^ â€”F^, G^ â€”en H^ â€” H^ de afgeleiden zijn, respectievelijk naar Xyyen 2, van een zelfde functie y. Om F, G en H volledig te bepalen, moeten wij dusdie grootheden nog aan een voorwaarde laten voldoen.Om tot een voor ons doel geschikte particuliere oplos-sing te geraken, kiezen wij de voorwaarde (4) dF ^ dG . dll dx ^ dy dzterwijl wij tevens zullen aannemen, dat a, h en c oponeindigen afstand de waarde nul hebben. Differentieert men dc derde\'der vergelijkingen (2) naary en de tweede naar z, dan vindt men door aftrekking dc dh d^G d^F d^F d^H _ Hl dz dy^ dxdz d^F . d^F . d\'^F dF ^ ^ IHF dx dy dy jL ^ dx dx"" dy dx dz



??? 42 Dus, als aan (4) voldaan is, fdc db\\ ^ zoo ook \'da dc (5) dzdb en (6) dxda dx dy Stellen wij nu dc db --- â€” = 4 TT M, dy -dzda dc -7---T- â€” a, n V, dzdx db da_ dx dy 4 l?œf \'i f Door deze vergelijkingen resp. naar x, y en s te diffe-rentieeren en op te tellen, vindt men, dat u, v en wvoldoen aan de voorwaarde du , dv , dw -I- â€” ^ = 0 dx dy dDe vergelijkingen (5) gaan nu over in /S ^ â€” 4 ......W H - 4 TT ????. De functi??n F, G en II kunnen dus beschouwd wor-den als potentialen van massa\'s met de dichthedenven w en ^ wij vinden de volgende oplossing van de ver-gelijkingen (2): (7)



??? 43 GH Â§ i8. Wij willen nu aantoonen, dat door de gevondenoplossing aan (4) en (2) van de vorige paragraaf voldaanwordt. d F Vormen wij Bij deze differentiatie blijft u constant, daar de verandering van F alleen betrekking heeft opeen verplaatsing van het punt (x, y, 2). Dus (9) , 1 \'If dx Hierin is = (x â€” x^ -f (y â€”/y (s â€” 2\')^ alsde co??rdinaten van ieder punt, waarin u een eindigewaarde heeft, worden aangegeven door y\' en z\'.Daar d^ dÂ?- dx\' dx " is, kan men ook schrijven Deze integraal moet genomen worden over het volume,waarin u een eindige waarde heeft. Daar buiten datvolume Tf = O is, kunnen wij ook over de geheele ruimte



??? 44 integreeren. Wij vinden dan door toepassing (2) Â§ 11dF dx Soortgelijke uitdrukkingen vindt men voor ^^ en ^^ dz \' dus dx dy dz }}} r \\dx\' \' dy \' dz\'y De elementen van deze integraal zijn alle nul volgens(7); dus wordt aan (4) voldaan.Evenzoo vindt men dy d\'\'-a , d\'^a , d\'^a\' dyd =rJiH da db dc 1/ I "iJTy I dx\'dy\'dz\' r dx\' \\dx\' \' dy\'^dz\') ydx\'""^dy\'""^dz\'""] Zoo ook voor de andere componenten; dus wordt aan (2)voldaan. Definitie en eigenschappen van dc vector-potcntiaaL Â§ 19. Een vector, die, zooals de vector van Â§ 17,de eigenschap heeft, dat zijn divergentie nul is en waar-van de componenten F, G en II voldoen aan de verge-lijkingen (2) Â§ 17 noemen wij een vector-potentiaal. Volgens definitie voldoet dus een vector-potentiaal aande vergelijkingen rZ/z\' Â?I = o.......: (i) en , ciirl = Â?B........(2) waarin ÂŠ een eindige, doorloopende vector voorstelt,



??? 45 die op oneindigen afstand nul is en die voldoet aan devoorwaarde div S3 = o. Wij zeggen, dat een vector S {a, b, c) van een vector-potentiaal 91 (is G, H) wordt afgeleid, als de betrekkingtusschen die vectoren wordt aangegeven door de verge-lijking (2), of, wat hetzelfde is, door de vergelijkingen (2) Â§ >7- Een vector Â?3, die van een vector-potentiaal is afgeleid,voldoet steeds aan de voorwaarde div ^ = 0 . :.....(3) en dit is waar, onafhankelijk van de beperkende voor-waarde , div Si = O, die wij bij definitie aan de vector-potentiaal hebben opgelegd. Omgekeerd kan een vector, die aan de voorwaarde (3) voldoet, altijd van een vector-potentiaal worden afge-leid (Â§ 17). Â§ 20. De componenten van een vector-potentiaal wor-den volgens de vergelijkingen (g) van Â§ 17 afgeleid vanfunctiOn u, v en t??, die bepaald worden door de verge-lijkingen (6) Â§ 17. De componenten van de vector-potentiaal bezitten dus,als functi??n der co??rdinaten beschouwd, de eigenschappender potentiaal-functie. Beschouwt men n, v en w als de componenten van eenv?¨ctor 6, dan kan

men in plaats van (9) Â§ 17 ook schrijven ^^ .......O of, volgens (6) Â§ 17



??? 46 in welke vergelijkingen de integratie als een vector-summatie moet worden opgevat. De vector-potentiaal wordt dus afgeleid van den vector(S door integratie, op soortgelijke wijze als de scalairepotentiaal wordt afgeleid van de grootheid, die wij inÂ§ 15 door Q voorstelden. Volgens (7) Â§ 17 voldoet een vector 6, waarvan eenvector-potentiaal kan worden afgeleid, aan de voorwaarde div (Â? = o. Men zou een meer algemeene theorie van de vector-potentiaal verkrijgen, als men die grootheid definieerdedoor de vergelijking (i), waarin ii een willekeurigenvector zou voorstellen. Volgens (i) Â§ 18 zou dan div SI gelijk zijn aan descalaire potentiaal van div S. De vergelijkingen (5) Â§ 17zouden overgaan in \'dc \' db div Â§1, enz. dx dy dz. Der theorie zou hierdoor minder eenvoudig worden enzooals wij in Â§ 24 zullen zien, zou die meer algemeenetheorie voor de toepassingen van weinig behing zijn. Â§21. De groote overeenkomst, die -er bestaat tusschende scalaire potentiaal en de vector-potentiaal komt ookzeer duidelijk uit, als men gebruik maakt van

IIa.milton\'soperator r-7 . d . . d . . d De betrekking tusschen een vector Jv = \' ?’ kZen de. scalaire potentiaal V, waarvan liij kan worden



??? 47 afgeleid, wordt aangegeven door % = -V V.......(i) Past men denzelfden operator toe op een vectorSI = iF jG 4- kH,dan is het resultaat in het algemeen een quaternion. j\\Ienheeft namelijk V $1 = V jG -f ^B) dFdy) dF d_G_ dH\\ I j.. r [dx \' dy \' dzJ\'^\'Uy ^J ^\'te" = â€” div -f cur/ 91. Is 91 een vector-potentiaal, dan is het scalaire gedeeltevan dit quaternion nul en men heeft eenvoudig V = dus v??lgens (2) Â§ 19 Si = V .......(2) De overeenkomst wordt alleen gestoord, doordien in (i)een minus-teeken voorkomt, dat in (2) ontbreekt. Â§ 22. Volgens het behandelde in Â§ 14 is de opper-vlakte-integraal van een vector, die van een vector-potentiaal kan worden afgeleid, over een willekeurigoppervlak gelijk aan de lijn-integraal van de vector-potentiaal langs de grenskromme van het oppervlak. Wijzouden dit de hoofdeigenschap van de vector-potentiaalkunnen noemen. Â§ 23. Evenals men dc krachten, die van een scalaircpotentiaal worden afgeleid, kan terugbrengen tot de^verking van centra, omgekeerd evenredig met het kwa-draat van den afstand, zoo kan men ook de krachten, die



??? 48 * van een vector-potentiaal worden afgeleid, terugbrengentot werkingen op afstand, uitgaande van den vector6 (zi, V, 7v) waarvan die potentiaal is afgeleid. Denken wij ons de integraal j j j dr gesplitst in elementen dr.en veronderstellen wij, dat ieder element gelijk is aan een overeenkomstig element van Â?l, dat wijSr {F\', G\\ H\') noemen. Wij stellen dus F\' = ~ dr, = â€” dx, H\' = â€” dx.r r r De componenten van de kracht 93\' b\', c\'), dieuitgaat van het element (S dx, worden dan gevondendoor deze waarden te substitueeren in , dH\' dG\' a = â€”i---Tâ€”, enz. dy dz Natuurlijk is deze splitsing geheel kunstpiatig; zij kanons niets leeren omtrent de werkelijke oorzaak der voor-handen krachten. Blijkbaar zal echter door de resultanteder aldus verkregen fictieve krachten de werking inieder punt kunnen worden verklaard. Noemen wij de richtings-cosinussenvan (S: /p w,; van r\'. /j, Wj, Â?j; dan is, als C de numerieke waarde van 6 voorstelt, dus â™? , d Cn, , d Cm. ,a\' =-,--L ^r â€”â€?-T- dx, dy r dz r



??? 49 of, daar dr dr = en ^ = 71.dy ^ dz ^ is, , Cdv,a = {m^ n^ â€” n,), ,, Cdx b = â€”^ (;/i 4 â€” /j), zoo ook (I) , Cdx ,, , . t = â€” (A Â?h â€” ). Uit deze vergelijkingen volgt a\' /, 4* b\' ;;/, c\' = o, rt\' /j -f // ///j Wj =0. S.V staat dus loodrecht op liet vlak, dat door g en rgaat. Noemen wij de richtings-cosinussen van de normaalop die zijde van hdt vlak, waar een wenteling van (Snaar r over een hoek < 180Â° als positieve draaiing gezienwordt, /, m en n. Zij verder de hoek tusschen 6 en r,dan kan men in plaats van (i) schrijven a\' â€” C â€”f l sm i>,dr b â€” C â€”V m sin (f,c\' â€” L â€”rr n Sin O-,Voor do grootte van ????\' vindt men dus ir = -I- c"\') = sin {>, cn dc richting van S3\' valt samen met die van boven-genoemde normaal. fictieve werking op afstand van het vector-element en en



??? 50 g ??fr heeft dus plaats volgens de wet, die door Laplaceuit het experiment van Biox en Savart is afgeleid voorde werking van een stroomelement op een magneetpool. Zij gegeven een kracht (of meer algemeen een vector) S3,die van een vector-potentiaal kan worden afgeleid. Denkt I men zich nu, dat van ieder vector-element (Sdr, waarinQ = â€” curl S3, een werking uitgaat volgens de wet 4 TT van Laplace, dan zal de resultante van deze fictievekrachten in ieder punt van het veld een vector zijn, dieidentiek is met den oorspronkelijk in dat punt gegevenvector S3. Bij de ontwikkeling van de theorie der scalaire potentiaalgaat men doorgaans uit van massa\'s w, die werken vol-gens de wet der algemeene gravitatie en men definieert 7/1 dan de potentiaal door de uitdrukking â€”. Zoo zou men ook de theorie van de vector-potentiaal kunnenafleiden door uit te gaan van, wat men kan noemen,vector-massa\'s (5, die op afstand werken volgens de wetvan Laplace en men zou dan die potentiaal kunnen definieeren door de uitdrukking ^ . Splitsing van een vector in

tmcc componcntcn. Â§ 24. Een willekeurige vector kan in het algemeennoch van een scalaire potentiaal, noch van een vector-potentiaal worden afgeleid. Zulk een vector kan echter,mits hij in de geheele ruimte eindig en doorloopend cnop onoindigen afstand nul is, altijd gesplitst worden intwee componenten, waarvan de eene van een scalain!



??? 51 potentiaal, de andere van een vector-potentiaal wordtafgeleid. Zij g (X, Y, Z) een gegeven vector. Kiezen wij een vector (AT, , F,, Z,) zoodanig dat ....... â€? (O en div = div ......(2) Volgens Â§ 15 is de vector door deze vergelijkingenvolkomen bepaald en kan hij van een scalaire potentiaalworden afgeleid. Volgens (8) Â§ 15 en (i) Â§ 21 is 4 Kiezen wij een tweeden vector ^^ (-^Aj, Y^, Z^) zoo-danig dat div O........(3) en cttri JVj = ......(4) De vector is volgens Â§ 17 door deze vergelijkingenvolkomen bepaald. Hij kan van een vector-potentiaalworden afgeleid en men heeft volgens (2) Â§ 20 cn (2) Â§ 21 Stelt men nu, dat Jv de resultante is van ??y,, ^^ eneen derden vector (X\\ Y\\ Z\'), dan is A\'=.V, -f-A\'j -j-A", enz. Uit do vergelijkingen (i) tot (4) volgt dan, als men20 voluit schrijft, onmiddellijk cur/ jv\' = "........(5) en div = O.......(6)



??? \' f div maar volgens (6) is div = o, dus is rt*\' zelf nul. Hiermede is de stelling, in het begin van deze paragraafvermeld, bewezen. Â§ 25. Brengt men deze stelling in verband met hetgeenbewezen is in Â§ 15 en Â§ 23, dan komt men tot eenstelling, die op andere wijze is afgeleid door Vaschv{Coinptes Rendus, t. 116, p. 1244 et .1355) en die wijals volgt kunnen formuleeren: De verdeeling van een kracht (of meer algemeen vaneen vector) $ in de verschillende punten van een kracht-(vector-) veld is identiek met de verdeeling van de resul-tante van twee fictieve krachten en Jj, die op dcvolgende wijze gedefinieerd worden: zou ontstaan dooreen stelsel massa\'s, werkende op afstand volgens de wetvan de algemeene gravitatie; ^^ zou ontstaan door eenstelsel vector-massa\'s, werkende op afstand volgens de wetvan Laplace. De dichtheid o der eerste massa\'s en dcdichtheid (5 der vector-massa\'s worden gegeven door devergelijkingen 4 tt p = div Jv en- 4 n\'(S. = cur/ Natuurlijk heeft men hier aan het woord massa in hetalgemeen niet de gewone beteekenis te

hechten. Om toete lichten hoe men het in een algemeen geval kan inter-preteeren, kiezen wij met Vaschv het volgende voorbeeld. Veronderstellen wij, dat in een lichaam een trillendebeweging plaats heeft. De kracht, die op oen tijdstip /op de eenheid van massa van het lichaam in een punt dr; 52 Uit (5) volg-t



??? 53 AI {x, y, z) werkt, is gelijk aan de versnelling van datpunt. Als dus /, g en h de verplaatsingen van het puntM voorstellen, gerekend van den even wichtsstand, danzullen de componenten van de kracht zijn x-^ v-\'^ de\' ~ df\' df \' Volgens de voorgaande stelling is deze kracht identiekmet de resultante van de krachten, die in M zoudenontstaan door: IEen stelsel massa\'s, werkende op afstand volgensde wet van de algemeene gravitatie en waarvan dedichtheid n in de verschillende punten gedefinieerd zouworden door de vergelijking 4 TT () dx dy dz 4 Y _ d"" [dh __ dgdz ~\'dP\\dy dz dX . dV. dZ If??\' dx dy dz ~ dP2". . Een stelsel vector-massa\'s, werkende op afstandvolgens de wet van Laplace en waarvan de componentenu. V en 7V der dichtheid G gedefinieerd zouden worden doordZ d 4 17 7/ = â€”j--, ^ dy di en overeenkomstige uitdrukkingen voor 4 n v en 4 tt 7v. Afgezien van den factor 4 7r, kunnen nu de dichthedenV en G als volgt ge??nterpreteerd worden: q zou zijn deversnelling der kubieke dilatatie van het lichaam inzijn verschillende punten en G

zou zijn de hoekversnellingder rotatie.



??? HOOFDSTUK DLDe Vector-potentiaal van magneten. De vector-potentiaal van een magnetisch element. Â§ 26. De potentiaal van een magnetisch element ineen punt P is . mds .y = -p-cosf,......(i) waarin ni de poolsterkte, ds de lengte van het element,r den voerstraal van het element naar het punt P en fden hoek tusschen ds en r voorstelt (^Treatise, Art, 383). Plaatsen wij gemakshalve het element in den oorsprongen noemen wij de co??rdinaten van P\\ x, y en z, dan is = -f jV^ 4-de richtings-co.sinussen van r zijn X y z T\' T\' - Â? Stellen wij het magnetische moment van het elementm ds ^ M en noemen wij de richtings-cosinussen vands\\ u en r, dan is



??? 55 rÂŽ I r \' \' r \' ( d-\'- 2 I \'\' dx dy dz Dus, als wij de componenten van de magnetischekracht Â?, j^J en noemen,/ = â€” M dV .. Â? =--yâ€” â€” iM dx ,_â€? (3) . dx"^ \' dxdy dx dz) Hiervoor kunnen wij schrijven, ten gevolge van debekende betrekking d^- d"- d^ r . r . r "dY d^ u = M X - P. 2 dl-\' dâ€”\\ ( d~ dâ€”\\dx dv / dz\\ dz dx / dy dy ly â€” li X-Tl- of dz a = il/ dy (4) \'v X â€” X. Stelt men nu /-df^\'^dz vX â€” As , dl-]r " \'dx d- (5) dz / \'\'\'-r\'l 1 //



??? 56 dan gaan de vergelijkingen (4) over in dH dG dy dz dF dH dz dx dG dF ^ = }.....(6) ^ dx dy\'Door de vergelijkingen (5) resp. naar x, y en 2 tedifFerentieeren en vervolgens op te tellen, vindt men dx dy dzWij kunnen dus F, G en H beschouwen als de com-ponenten van een vector-potentiaal waarvan de magne-tische kracht (Â?Â? /) volgens de vergelijkingen (6)wordt afgeleid. Om de richting en de grootte van te vinden, denkenwij ons een vlak door d s en r en richten een loodlijnop die zijde van het vlak op, waar een wenteling vands naar r over een hoek t als positieve draaiing gezienwortlt. Noemen wij de hoeken, die de loodlijn met deassen maakt, /, vi en 7/, dan is 2 y fl--V , r r cos l =-^-, enz. sin t Voor de vergelijkingen (5) kan men dus schrijven â€ž M . , A = â€”j sm f cos /, i ^ Af .G = sm f cos m, â€ž M . // = -y Sin t cos n. | (7)



??? 57 De numerieke waarde van de vector-potentiaal vaneen magnetisch element, in een gegeven punt, is dusgelijk aan het magnetische moment van het element,gedeeld door het vierkant van den voerstraal van hetelement naar het punt en vermenigvuldigd met den sinusvan den hoek tusschen de as van het element en denvoerstraal. De richting van de vector-potentiaal is die.waarin een gewone schroef, die loodrecht staat op hetvlak door het element en den voerstraal, zich zou bewegen,als zij gedraaid werd van de positieve richting van hetelement naar de positieve richting van den voerstraalover een hoek kleiner dan i8oÂ°. Of anders gezegd:Voor een oog, dat in de positieve richting van hetelement ziet, is de vector-potentiaal getrokken in nega-tieven zin, dat is in den zin, waarin zich de wijzers vaneen uurwerk bewegen. D?Š vector-potentiaal is nul in ieder punt van het ver-lengde der as van het magnetische element. Stellenwij ons een bol voor, waarvan het middelpunt samenvaltmet dat van het element en noemen wij de punten, waarinhet verlengde van

de as den bol snijdt, de polen van denbol, dan is de vector-potentiaal nul in de polen en zijhoeft gelijke numerieke waarde in alle punten van tweeovereenkomstige parallellen, terwijl die waarde haarmaximum bereikt in den aequator. Dus juist tegengesteldÂ?â– lan de scalairc potentiaal. De richting van de vector-potentiaal in ieder punt van den bol valt .samen met deraaklijn van den parallel door dat punt. Voor een eenvoudig geval kunnen wij ons hier gemak-kelijk overtuigen van de waarheid van de hoofdeigenschap



??? der vector-potentiaal (Â§ 22). Voor ieder punt van eenparallel, waarvan de sferische afstand tot ?Š?Šn der polenf is, is de numerieke waarde van de vector-potentiaal constant = ~ sin t. De lijn-integraal van 91 langs den parallel is dus M . . 2 TT M r sin t . 2 n r sin t = sin\'\'- (. De magnetische kracht in de richting van den straal is dV 2 M --- = , cos t. dr r^ De oppervlakte-integraal van de magnetische krachtover het bolsegment, dat door den parallel begrensdwordt, is dus L 2 M , . , 2 TT ?’ . , â€”COS t . 2 n r^ sm f a f = snr t, 0 ^ r De waarde van de lijn-integraal is derhalve gelijk aandie van de oppervlakte-integraal. De scalairc potentiaal van een magneet. Â§ 27. Door de intensiteit der magnetisatie van een-magnetisch element verstaat men de verhouding van hetmagnetische moment van het demerit tot zijn volume.Noemen wij die intensiteit 3. li^var rechthoekige compo-nenten yl, B en C en haar richtings-cosinusscn P., /t en r,dan is, als / de numerieke waarde van 3 voorstelt,A = /.Â?, Iv. Het magnetische moment van een volume-elementdx\' dy\'

az\' van een magneet is I dx\' dy\' dz\' en de



??? 59 potentiaal van dat element in een punt (x, y, z) ivolgens (2) Â§ 26. d dy ^ " dz J (iV= â€” I dx\' dy\' d2\' dx I d d d^ dx\'dy\'dz\'. \' A dx dy \'^dz Voor de potentiaal van den geheelen magneet in hetpunt {x, y, 2) heeft men dus, in aanmerking nemende dat d "TP \' dx IS, d^ . rf-i-VC d~\\ A dydz\', (i) dy\' waarin de integratie over het volume van den magneetmoet uitgestrekt worden. Door de uitdrukking in het tweede lid bij gedeeltente integreeren volgens formule (i) Â§ n, verkrijgt men \'dA . dli , dC\\, . , , ,, , Hl IA in B-\\-nC \'^H?•?•t Waarin /, m en n de richtings-cosinussen van de uitwendigenormaal op het oppervlak S van den magneet voorstellencn de eerste integraal over het oppervlak, de tweedeover het volume van den magneet moet genomenWorden. Wij kunnen echter de integraal uit (i) ook over doffeheelo ruimte uitstrekken, daar buiten den magneet



??? 6o A, B en C nul zijn. Door dan bij gedeelten te integreeren,h??eft men volgens (2) Â§ 11 De waarde van deze integraal is natuurlijk niet dezelfdeals die van de overeenkomstige uitdrukking in (2). Zaldeze wijze van integreeren geoorloofd zijn, dan mag deintensiteit 3 aan de oppervlakte van den magneet nietdiscontinu veranderen. Wij moeten dus aannemen, dater een dunne overgangslaag bestaat, waarin de waardevan 3 wel zeer snel, maar continu van / tot nul overgaat.Of dit in werkelijkheid het geval is of niet, doet nietter zake; men kan de dikte van de overgangslaag altijdzoo klein kiezen, dat men niet in strijd komt met eenigexperimenteel vastgesteld feit. Die overgangslaag zal, inhet algemeen, een eindige bijdrage geven tot de integraalin (3) en deze bijdrage is gelijk aan de oppervlakte-integraal in (2). Het voordeel van deze integratie bij gedeelten overde geheele ruimte bestaat hierin, dat de herleidingener zeer door vereenvoudigd worden, zooals wij in Â§ 30zullen zien. Voor de ^r-componente van de magnetische krachtvindt men, als de

integratie over de geheele ruimteuitgestrekt wordt, I \\ ffr\'^TliiA , , tiC\\. ,,



??? ?–I De vector-potentiaal van een magneet. Â§ 28. Voor de ;Â?;-componente van de vector-potentiaalvan het element dx\' dy\' dz\' in het punt {x, y, 2) heeftmen volgens (5) Â§ 26 d- dx\' dy\' dz\'. f dâ€” d- d- dz\' dy De componenten van de vector-potentiaal voor dengehcelen magneet zijn dus d \' d \' \\ B r â€” c r dz\' dy\' / d\' d \' A C r â€” A r dx\' dz\' _/ d^ d\' A r â€” B r dy dx\' dx\' dy\' dz\',dr\' dy\' dz\',dx\' dy\' dz\', (O G â€” II = waarin dc integralen over het volume van den magneetmoeten worden genomen. Blijkens dc afleiding in Â§ 26 zijn de componenten vande magnetische kracht



??? 62 _ dH dG " dy dz \' dF dH dz dx \' _ dG dF dx dy\' Â§ 29. De laatste formules gelden echter alleen voorpunten buiten den magneet. Ligt het punt (x, y, z)binnen den magneet, dan gaat bovenstaande afleidingniet meer door. Bij de vervorming der uitdrukkingenvoor de magnetische kracht van een magnetisch elementis namelijk in Â§ 26 gebruik gemaakt van de betrekking H} -L d-" - r en dit is voor oneindig dicht bij het punt {x, y, z) gelegenelementen van den magneet niet geoorloofd. Het is trouwens a priori duidelijk, dat de magnetischekracht in een magneet niet van een vector-potentiaalkan worden afgeleid, daar die kracht, voor inwendigepunten, niet voldoet aan de voorwaarde div = o. De gedachtengang van Maxwell {.Trcafisc, Art. 406)schijnt nu de volgende te zijn. Men kan de vector-potentiaal gedefinieerd blijven beschouwen door de ver-gelijkingen (i) Â§ 28, ook voor inwendige punten; de ^ ^ dH dG , u â€? grootheden â€” , enz, geven dan echter niet meer de componenten van de magnetische kracht aan. Maxwell noemt nu die grootheden n,

b en en hij (2)



??? geeft de volgende herleiding:dy d z d^ - ir \' inrry"-"y dx^ dy d\'J / . dx\' dy\' dz\'. A dx\'^ dy^ \' dz\'"" /Verder heet het dan: de eerste term van het laatste lidÂ? is blijkbaar â€” of Â?. De grootheid onder het integraal-teeken in â€? den tweeden term is nul voor allevolume-elementen, behalve voor het element, dat hetpunt {x, y, z) bevat. Als (A) de waarde voorstelt vanA in het punt (x, y, z), dan is de waarde van dentweeden term 4 n (A). Dus = Â? -f 4 TT (A). PoiNcAK?‰ merkt op {?‰kctnciW ct Optiquc II, p. 21), dat<leze vergelijking door Maxwki.l niet bewezen is. Wijdoen misschien beter met te zeggen, dat het bewijsslechts is aangeduid. Beschouwen wij ?Š??n der voorkomende integralen b. v. a = ( d"- d^ d^ A\\ ^ -U ^ â€” B dx\' dy d- d- B r c dy\'d^ dz\' i \\ d^ - cC^ â– \' â– ?’?’?’ I dx B dz\' d- /?’?’ cn dl\' door differentiatie onder het integraal-teeken daar-uit afgeleide integraal



??? ?“4 jljB^dr. Het is gemakkelijk te bewijzen, dat de eerste integraaleindig en bepaald blijft, ook wanneer het punt {x, y, z). binnen den magneet ligt en dus â€” oneindig groot wordt voor oneindig dichtbij gelegen elementen maar datdit met de tweede integraal niet het geval is.Voert men pool-co??rdinaten in en stelt men x\' X r sin (?? cos (f,y\' Z=1 y ^ r Sin O siu <p ,z^ = z -j- r cos O-, dan gaan beide integralen over in (zie b. v. Riemann,Schwere, Electr. und A/agji.\'^ 6) â€” j j j B COS /> sin O- d O d ij> dr en _ ?’?’?’ B - \' (ydf^d^dr en het blijkt, dat de tweede integraal wegens de oneindiggroote elementen, die onder het integraal-teeken voor-komen en die gedeeltelijk positief, gedeeltelijk negatiefzijn, onbepaald is. Lette men hierop niet, dan zou men gemakkelijkbewijzen, dat, als V dc potentiaal van een massa voor-stelt, A ^â€”o is, ook voor een inwendig punt, watniet waar is. Er zou dus nog moeten bewezen worden, dat de uit-drukkingen, die in de herleiding van Ma.vwell voorkomen, r d^z\' dz



??? 65 een bepaalde waarde hebben. De grensbepalingen, diehiervoor zouden noodig zijn, zullen wij vermijden door,in navolging van Poincar?Š, de herleidingen zoo in te richten, dat de tweede afgeleiden van ~ onder het integraal-teeken niet voorkomen. Â§ 30. Als men de integralen in de vergelijkingen (i)Â§ 28 over de geheele ruimte uitgestrekt denkt en bijgedeelten integreert, dan gaan die vergelijkingen over in dC _ dB]dy\' di ^ \'dA __dCdx\', dA] HLfv \'Hin dz,dr, [dz\'dB dr. "^T , fffdB\'^T . I I dC r ,-7â€”, ar, dx\' dy dy-JJJdz\' dydll [{(dB\'\' r in= \\\\dx^iT\'^\' jJjdy dz Men heeft dus \'UL d.x^ â€?d_C_ _ dy dd (2) en soortgelijke uitdrukkingen voor ,Voor de integraal d dr dy dx kan men schrijven, door eerst bij gedeelten ten opzichte enz. â€? l\'i\'dC LIJ



??? 66 van x\' en vervolgens bij gedeelten ten opzichte van y\'te integreeren d"" C dy\' dx r. dC r, _ JJJdydx\' r \'dy ^ dy\' J J J dx\' dy Deze integraal blijft, zooals boven reeds werd opgemerkt,bepaald, ook voor een inwendig punt. Zoo ook voor deandere integralen.;Men heeft dus:dH dG dz dy =?’?’?’â€? =/(/â– dB dA dx\' dy\' dB dCuy d z\' -flJ d â€” dC\' dx\' dAdz\' â– dx dy dA r dx "^\'-l.ljd?Ÿ dyi â–  d, dz dr JjJ dz\' dz dA dB dCdx\' dy\' \'dz d â€”r "7F dr dr. dA ^ r .dA ^ r dA r Dc eerste term van het laatste lid dezer vergelijking dV of Â?. dx is volgens (4) Â§ 27 niets anders dan Om de beteekenis van den tweeden term te bepalen,stellen wij:



??? 67 dan isendP dxDus d-^ d\'^P m dx"" ~JJJ dx\' dx Soortgelijke uitdrukkingen vindt men voor d"" P d^ Pdy- "" -d^ â–  De tweede term is dus gelijk aan â€” ^ P of 4 tt A.Men vindt dus ten slottedll dG a â€” â€”j----7â€” = n 4 TT A, dy dz \' dv. zoo ook ?¨ ~ ^ â€” =[} 4 TT B, dzdG (3) dxdF r = -T-----r = y 4 TT C. dx dy \' ^ IDoor de vergelijkingen (2) op te tellen, vindt men dHd-z dF d_G^d x dy (4) Hiermede is bewezen dat, ook voor een inwendigpunt, de grootheden F, G en // uit de vergelijkingen(\') van Â§ 28 als de componenten van een vector-potentiaalkunnen worden beschouwd. I^e betrekking (4) wordt ook gevonden, als men,zooals Maxwku. aangeeft, de vergelijkingen (i) Â§ 28 en



??? 68 respectievelijk naar x, y en z differentieert en dan optelt.Wel moet men dan onder het integraal-teeken differen-tieeren; dit heeft echter hier geen bezwaar, daar determen twee aan twee tegen elkander wegvallen. Wijmoeten namelijk aannemen, dat die termen, al blijftde waarde onbepaald, ook bij de limiet aan elkandergelijk blijven. Â§ 31. De kracht S, waarvan a, ?¨ en c de componentenzijn, is het eerst beschouwd door W. Thomson en doorhem genoemd de magnetische kracht volgens de electro-magnetische definitie (Â§ 39). De kracht die van eenscalaire potentiaal kan worden afgeleid, wordt doorhemgenoemd de magnetische kracht volgens de polaire definitie.Door Maxwell wordt S3 de magnetische inductie en -?? demagnetische kracht genoemd. De vectoren ?? 1 -O en 3 hangen van elkander af volgensde vector-vergelijking Si = -?– 4- 4 n Denkt men zich in een magneet een nauwe spleet enin die spleet een magneetpool van de eenheid van sterktegeplaatst, dan zal de kracht, waarmede dc magneet opdie pool werkt, gelijk zijn aan -O, als de spleet valt inde

richting van de magnetisatie en gelijk S, als de spleetloodrecht is op die richting {Treatise, Art. 398â€”399). Ontstaat het magnetisme geheel door influentie, danis â€”â€?.\'Â? -CÂ? {Treatise, Art. 428). Deze co??ffici??nt u wordtdoor Maxwell de magnetische inductieve capaciteit, of ookde co??ffici??nt der magnetische inductie-, door Thomson depermeabiliteit van de stof genoemd. Il â– â– ..



??? 6q De componenten van de magnetische inductie voldoenaltijd aan de voorwaarde da . db . dc (Zm?/^, Art. 403). dx dy Voor punten buiten een magneet of liever voor punten,waar de magnetische polarisatie nul is, is er geen ver-schil tusschen de magnetische kracht en de magnetischeinductie. De vergelijkingen (3) van Â§ 30 gelden dusalgemeen, zoowel voor in- als uitwendige punten. De vector 91 wordt daarom door Maxwell de vector-potentiaal van de magnetische inductie genoemd. ddz Â§ 32. Wij zullen nu door een eenvoudig voorbeeldlaten zien, hoe men de formules (i) van Â§ 28 kan toe-passen om de vector-potentiaal van een magneet te bepalen.Beschouwen wij ?Š?Šn der voorkomende integralen, b v. dx\' dy\' dz\'. Voor deze integraal kunnen wij schrijven â–  B - dx\' dy\' dz\'. Laat nu P de potentiaal voorstellen van een massa,(Ho met de dichtheid B over liet volume van den mag-neet is verbreid, dan gaat de laatste uitdrukking over dz\' Kent men dus de intensiteit van de magnetisatie3 {A, C) voor ieder punt van een magneet in grootte^\'n richting en kent

men ook de potentialen van massa-



??? 70 â€? verdeelingen over het volume van den magneet met dedichtheden A, B, C, dan kan de vector-potentiaal vanden magneet door differentiatie gevonden worden. Zij geven een bol, zoodanig gemagnetiseerd, dat demagnetisatie in grootte en richting constant is. Nemen wij het middelpunt van den bol als oorsprongvan het co??rdinatenstelsel en de x-as in de richting vande magnetisatie, dan is , A = /, B = O, C= O. Dus F=o, y rn- / r . . (I f / i De potentiaal van een homogenen bol met de dichtheid/ is, als wij den .straal a noemen. voor een uitwendig punt op een afstand r van het middelpuntâ–  = en voor een inwendig punt (Zie b. v. Rii-mann, 1. c. p. 17).Dus is voor een uitwendig punt ?Š TT d Vâ€ž 4 , a"^ * H =---. " = ^ tt / ^ y. dy 3 r



??? 71 De numerieke waarde van de vector-potentiaal is dus M TT / ^ K (z\' -r = ^ 7r / sin t = ^ sin t, als wij den hoek, dien r met de x-as maakt, t en hetmagnetische moment van den bol jM noemen. Deze uitdrukking is dezelfde als die, welke wij in,Â§26 vonden voor de vector-potentiaal -van een magne-tisch element en het is gemakkelijk in te zien, dat ookde richting van door den daar gegeven regel wordtbepaald. Voor de componenten van de magnetische krachtvindt men dH dG 4 â€” Â? = --= . tt la^ ^-5-, dy dz i r^ \' dH j 3 xy dG r â– 71 I z, Voor een inwendig punt isdz De numerieke waarde van 91 is dus 3 ^ Voor de componenten van do magnetische inductie vindt men



??? dH dG 8 , a = -7----j- â€” â€” n 1 dy dz 3 dH b = â€” -jâ€” = o, O dx â€” O. dG,dx De totale magnetische inductie {fiiix of inductioti). diedoor den grooten cirkel van den bol, loodrecht op derichting van de magnetisatie, gaat, is dus 8 / 2 S ^â€” n J . Tt a â€” â€” n a 3 3 Voor de lijn-integraal van de vector-potentiaal , langsden omtrek van dien cirkel vindt men, zooals behoort,dezelfde waarde. Wij merken nog op, dat de gevonden waarden voorde vector-potentiaal voor in- en uitwendige punten aande oppervlakte van den bol continu in elkander overgaan. De veclor-poientiaal van een magnetische schaal. Â§ 33. Een dun vlak of gebogen plaatje, gemagnetiseerdin een richting loodrecht op de oppervlakte, zoodanig dathet produkt van de intensiteit der magnetisatie en vande dikte van het plaatje overal constant is, noemt meneen magnetische schaal. De constante â€” waarin//de dikte van het plaatje en I de intensiteit der magneti-satie voorstelt, wordt de magnetische sterkte van de schaalgenoemd. Een magneet, die kan verdeeld worden in schalen{lamellen), die ??f gesloten

zijn, ??f haar grenskrommen 1 â€ž"i- j



??? 73 op het oppervlak van den magneet hebben, noemt meneen lamellaireii magneet. De intensiteit der magnetisatie van een lamellairenmagneet voldoet aan de voorwaarde curl ^ = o. Stellen wij ons namelijk voor, dat uit een vast punteen kromme wordt getrokken naar een punt (x\\ y, s\')binnen den magneet. De som van de sterkten der schalen,die door de kromme doorsneden worden, noemen wij .Brengen wij hierbij de sterkte van een schaal als positiefof negatief in rekening, naargelang de schaal door dekromme van de negatieve naar de positieve zijde of in detegenovergestelde richting doorsneden wordt, dan is hetduidelijk dat deze grootheid 9 onafhankelijk is vim denvorm der kromme tusschen de beide punten. Zij heefteen constante waarde op de oppervlakte van een zelfdeschaal, maar verandert van de eene schaal tot de andere.De richting der magnetisatie is overal loodrecht op deoppervlakte der schalen cn de intensiteit der magnetisatieis in ieder punt omgekeerd evenredig met den normalenafstand du van twee opeenvolgende .schalen, dus is (l(]i / = dn\'

Hieruit volgt: dx\'^ dtf Substitueert men deze waarden voor A, /Â?\'en Cm de ver-\'gelijkingcn (i) Â§ 28, dan vindt men voor de .v-componentevan de vector-potentiaal van een lamellairen magneet tlq) r d-^r F â€” dz\' dz\' dy



??? 74 Deze volume-integraal kan veranderd worden in een opper-vlakte-integraal over het oppervlak S van den magneet. Door partieel naar s\' te integreeren, vindt men voorde eerste integraal van (2) -J??fi fff -Ut dq> \'iP d"- COS 11 d S dy\' dz\' r dy\'\'^"" JJJ r dy\'dz\' Evenzoo voor de tweede integraal door integratie naar jy\' Dus (d(ii d(b , V cos 11--cos m dyfdS . dS (3) F = dy d z (4) cos 11 Of, volgens (4) Â§ 12..ld\' cos in â€” dy\' Voor een magnetische schaal is ip constant, dus \'d â€”r ~ , - cos in---J-; d z dy\' (5) dS cos n Deze oppervlakte-integraal kan veranderd worden inoen lijn-integraal langs de grenskromme s van de schaal. Stelt men in (3) Â§ 12: t/ = i , w = en vervangt men x\', y\', z\' door x, y, z, dan vindt men ds. zoo ook G = I ds, J r ds I dxds _ /â–  I (^y (6) I dz ds ds. en



??? 75 In plaats van deze vergelijkingen kan men schrijven Uit deze vergelijking volgt de volgende eenvoudigeconstructie voor de vector-potentiaal van een magnetischeschaal van de eenheid van sterkte in een punt P. Laat een punt D zich bewegen langs de grenskrommevan de schaal met een snelheid, waarvan de numeriekewaarde in ieder punt gelijk is aan den afstand van datpunt tot P. Laat een tweede punt E uit P vertrekkenen zich bewegen met een snelheid, waarvan de richtingop ieder oogenblik evenwijdig is aan die van D cn waar-van de grootte voortdurend gelijk is aan do eenheid.I.aat E in R gekomen zijn, als D do grenskromme vando schaal ?Š?Šnmaal doorloopon heeft. De lijn PR steltdan in richting en grootte de vector-potentiaal van doschaal voor {Trca/isc, Art. 422).



??? HOOFDSTUK IV. De Vector-potentiaal van electrische stroomen. Het electromagnctisme. Â§ 34. De bekende onderzoekingen van Biot en Savart,betreffende het magnetische veld in de nabijheid van eenoneindig langen rechtlijnigen stroomgeleider, zijn doorJouniN uitgebreid voor het magnetische veld binnen dengeleider {Comptes Rendus, t. 110, p. 231). Een constante stroom werd geleid door een langenwijden glazen cylinder, gevuld met een oplossing vankoporsulfaat. Een zeer kleine magneet, van een spiegelvoorzien en aan een cocondraad in de vloeistof opge-hangen, veroorloofde de magnetische kracht ook binnenden stroomgeleider te bepalen. Dit onderzoek leidde tot de volgende resultaten:i". Zoowel binnen als buiten den geleider zijn dekrachtlijnen cirkels, wier as samenvalt met de as vanden cylinder. De richting van de magnetische krachtwordt verder door den regel van Amp????re bepaald, 2". Binnen den cylinder neemt de magnetische kracht.



??? 77 die in de as nul is, toe, naarmate men zich van de asverwijdert en wel evenredig met den afstand tot de as. 3Â°. De magnetische kracht verandert continu, als mende oppervlakte van den stroomgeleider passeert. 4Â°. Buiten den cylinder neemt de magnetische krachtaf omgekeerd evenredig met den afstand tot de as. Diekracht is dezelfde, alsof de geheele stroom in de as vanden cylinder geconcentreerd is. Daar verder de magnetische kracht evenredig is metde stroomsterkte, wordt aan 2". en 4". voldaan, als menvoor de grootte van die kracht stelt, binnen den geleider: â–  /t /â– \' â€” = i\' TT ki buiten den geleider: Tra\' ki\' In deze uitdrukkingen is a de straal van den geleider,r de afstand van het punt, waar de magnetische krachtbepaald wordt, tot de as, i\' de stroomdichtheid, i=na^ i\'de stroomsterkte en k een constante, die alleen van doeenheid van stroomsterkte afhangt. Door deze waarden wordt ook aan 3". voldaan. Opeen afstand (?? van de oppervlakte van den geleider isnamelijk de magnetische kracht binnen: k i\'n (a â€” ??), buiten: TT a ki\' a^ i) ^^n

deze uitdrukkingen naderen tot dezelfde limiet, als ??t\'^t nul nadert.



??? 78 Voor de componenten der magnetische kracht vindtmen volgens als men de 2-as laat samenvallen metde as van den cylinder, binnen den geleider: u â€” â€” ki\' TT r . â€” = â€” kit i\' y.r i = ki\' Tt r . â€” = kni\' X,r V O; buiten den geleider: â€? (O U\') /i = ktr y _ r â€” k.i y kir xr ki .X . 0. Al deze resultaten zijn ook af te leiden uit het eenvou-dige experiment van Biot en Savart, als men den stroomin oneindig dunne evenwijdige stroomdraden gesplitstdenkt en als men dan aanneemt, dat de magnetischewerking van die stroomdraden binnen en buiten dengeleider volgens dezelfde wet plaats heeft (Zie Jouiun, 1. c.).Wij geven er de voorkeur aan, de vergelijkingen (i) en (2)rechtstreeks als het resultaat van het experiment voorte stellen. Â§ 35. Door op het krachtveld, dat boven werd be-schreven, de stelling van Â§ 25 toe te passen, kan men degeheele theorie van het electromagnetisme op zeer een-voudige wijze afleiden. Het denkbeeld om het electro-magnetisme op deze wijze te behandelen ontleenen wijaan Vas^hv {Coviptcs Reudus, t. 116, p. 1437)- 1



??? 79 Volgens die stelling kan men de magnetische krachtontbinden in een componente die zou ontstaan dooreen stelsel massa\'s, werkende op afstand volgens de wetvan de algemeene gravitatie en in een componentedie zou ontstaan door een stelsel vector-massa\'s, werkendeop afstand volgens de wet van Laplace. De eerste com-ponente kan afgeleid worden van de ?Š?Šnwaardige scalairepotentiaal I fi\'fdiv.^ â–  (\') dv, 4 TT ./ r de tweede componente van de vector-potentiaal Uit (i) en (2) Â§ 34 vindt men, binnen den geleider: ~ O 1 dx^ dy^ dz-^\' \' dy dz~~ \' dz dx \' dx dy A \'iL-Odx dy dz - \'buiten den geleider:d u dy-dz-""\' dz dx \' dx dy In het geheele veld is dus dh -O = o en dus is ookt??, = o. De magnetische kracht valt derhalve samen met de componente \'C^\' Hieruit volgt, dat de magnetische kracht, zoowelbinnen als buiten den geleider, van een vector-potentiaalkan worden afgeleid.



??? 8d Buiten den geleider is curl ^ = o. Voor uitwendigepunten kan dus de magnetische kracht ook van eenscalaire potentiaal worden afgeleid. Daar echter divoveral nul is, kan die potentiaal niet ?Š?Šnwaardig zijn.Er is dus ook geen verdeeling van magnetische massa\'sdenkbaar, die, wat de magnetische werking betreft,volkomen identiek zou zijn met den electrischen stroom. Dat de potentiaal meerwaardig is, hangt hiermedesamen, dat de ruimte buiten den geleider voor de mag-netische kracht tweevoudig samenhangend is. De lijn-integraal van <0 langs een kromme, die den k i geleider omsluit, Â? -y . z tv r = Â? z k n i. Denkt men zich die kromme in twee takken verdeeld, dan ishet niet mogelijk, de beide takken door een doorloopendebeweging in elkander te laten overgaan, zonder buitenhet gebied te komen, waarin aan de voorwaarde ciirl <0 = ovoldaan is. Binnen den geleider is namelijk curl .fj nietnul. De magnetische kracht heeft daar geen potentiaal. â€?Buiten den geleider is de potentiaal, zooals uit (2)Â§ 34 blijkt, â€” k i B g t g ~

-j- consl. Â§ 36. De grootheden, die in Â§ 25 p en (S (w, f, rv)genoemd zijn, hebben hier volgens (i) en (2) 35 dovolgende waarden, binnen don geleider: O = o, = 0, 7; = o, rt; = â€” -t; \'; . . (i) 2 Â? buiten den geleider: Q = O , u = O, V = O , 70 = O. . . . (2)



??? Bg een minder eenvoudige keuze der co??rdinaat-assenin Â§ 34 zouden wij blijkbaar in plaats van (i) gevondenhebben 1 7 v i 7 â€?/ i 7 v O = O, u = â€” kt\\, V â€”ki\\, w =â€” kt\\ , 2 2 2 * waarin , i\\ en de componenten van i\' voorstellen. Stelt men k â€” 2, wat neerkomt "op het aannemen vande electromagnetische eenheid van stroomsterkte (Â§ 38),dan heeft de vector (S hier een zeer eenvoudige beteekenis:hij is in richting en grootte gelijk aan de stroomdichtheid t\',wanneer wij de stroomdichtheid als een vector beschouwen. De stelling van Â§ 25 stelt ons nu in staat om hetmagnetische veld van een constanten stroom van wille-keurigen vonn te berekenen. Noemen wij de stroomdichtheid (S {u,v, 10), dan gevende vergelijkingen (6) van Â§ 17 onmiddellijk dc betrekkingaan, die er tusschen de magnetische kracht en de stroom-dichtheid bestaat. Dus (3) . 4 ;r 7/ = dy dz\' du dy dz dx\' d;} dn dx -dy- 4 rr Of, wat hetzelfde is, cnrl .0) == 4 TT (S.......(4) Dit is een van de hoofdvergelijkingen van Maxweli/s theorie. In die theorie hebben echter de

symbolen een uitgebreidere beteekenis dan er hier aan werd toegekend {Trcaiisc, Art. 608â€”611). Het is intusschen niet moeilijk 6



??? 82 in te zien, dat de vergelijkingen (3) ook in die uitgebreiderebeteekenis geldig blijven, als men van dezelfde veronder-stellingen uitgaat als Maxwell. Bij Maxwell heet 6 de ware stroom en deze wordtbeschouwd als de resultante van den geleidingsstroom,waarmede wij ons hier alleen hebben beziggehouden, envan den stroom, die ontstaat door verandering met dentijd van de di??lectrische polarisatie van het medium.Deze laatste stroomen ontstaan volgens IMaxwell nietalleen in het di??lectricum, maar ook in den vrijen aetheren ook in geleiders bij veranderlijke toestanden. Maxwellneemt nu aan, dat ook deze zoogenaamde verplaatsings-stroomen gesloten zijn, of liever, dat zij altijd met degeleidingsstroomen gesloten stroomen vormen en dat zijdezelfde magnetische werking uitoefenen als geleidings-stroomen. In deze veronderstelling kunnen wij aan degrootheden u, v en xo in (3) dezelfde beteekenis hechten,die er door Maxwell aan wordt toegekend. Â§ 37. Om de componenten van de vector-potentiaalvan een electrischen stroom of vaji een

stelsel vanstroomen tc bepalen, kunnen wij weder rechtstreeksgebruik maken van dc vergelijkingen (9) van Â§ 17. Dus FG// = dv, .. â€? (O dr, dr.



??? 83 waarin de integratie over al de geleiders, of, als wij hetbegrip stroom in den zin van Maxwell opvatten, over degeheele ruimte moet worden uitgestrekt. De betrekking tusschen de magnetische kracht en devector-potentiaal wordt dan volgens (2) Â§ 17 aangegevendoor de vergelijkingen Y = dll dG dy dz \' dF dll â€” dz dx\' dG dF dx dy Passen wij de vergelijkingen (i) toe op den stroomvan Â§34, dan is 11 = 0, z/= o, 7v â€” t\'. Dus Fâ€”G = o.Om // te bepalen in een punt P {x, y^ o), welks afstandtot de as wij p noemen, denken wij ons den cylinderbegrensd door twee vlakken c = â€” en c =.-)- waarinb oneindig groot is ten opzichte van Een punt Q binnen den cylinder worde in gepro-jecteerd op het .ar^\'-vlak. Het punt is dan bepaalddoor de co??rdinaten O Q\' = O P ^ Oon Q Q\'= z cn men heeft,-als a den straal van den cylinder voorstelt, Integreeren wij eerst met betrekking tot s, dan is, alswij Q\' P â€” f stellen, daar b oneindig groot is tenopzichte van



??? 84 * dz _ J K  2 = log I â€”-TT â€? â€? â€? 2 = 2 2 b - log t). Ligt het punt P buiten of op de oppervlakte van dencylinder, dan is iâ€”2-^cosn waarin 4- < i, dus P ~ 2 ^ I e 2 b \'^=2 {log 2 b - logp) - log [l- 2-^ COS !?? Dus H,,= 2i\'{log2b-logp)\\\\dn\\ ijdof log vO *\'0 v O i - 2 p p-] Nu isâ€? ff \' log â€” 2 c cos ^ c\'^) d a = o, voor < i ; H (Zie Bierexs de Haan, Nouv. Tab. d\'ini. di\'f. T. 332, i).De formule gaat door voor câ€”\\.Dus //â€ž = 2 71 a"" {log 2b â€” logp) = â€”2 iilogp â€” log 2 b). (3)Voor de magnetische kracht vindt men dn,, \' . Xin overeenstemming met (2) Â§ 34.



??? 85 Ligt het punt P binnen den cylinder, dan kan men stellenH, = r f \' \'^\'^\'Jd^dz /â€?Â? odc,dadz JoJo Jâ€”i r JpJo J â€” b r = H\\, H\\. Uit (3) volgt onmiddellijk H\'â€ž = 2 ni\' p-" {log 2 b â€”log p). . . . (4)Ter bepaling van H\'i heeft men te stellen t=z\\X{p\'^ â€” 2pQ cosiy-{-Q^) = Q\\y^i â€”2 ^cosir-]-^ , waarin â€” < i is. Op overeenkomstige wijze als bovenQ ~ vindt men dan fa rirr fa r2 tr H\'i = 2 log zbj da â€”2 t\'J Q log Q^qJ^ d = 2 71 {a^ â€”p^) log2b â€” \\n i\' / log (> d o. JÂ? \'M" v Xu is L> log C = log (. â€” = ^{2loga-x)-i^{2logp-x). (6) Dus H\'i = 2 n i\' {a ^ â€”Z"^) log2b â€” m\' a\'{2logaâ€”\\)^ii i\' (2 logpâ€” 1). (5)Door (4) en (5) op te tellen verkrijgt men na herleiding Hi = â€”2 i ,De waarde, die men hieruit vindt voor de magnetischekracht, komt weder overeen met (i) Â§ 34. De waarden voor // uit (3) en (6) gaan, zooals behoort,aan de oppervlakte van den geleider continu in elkanderover.



??? 86 De grootheid H\'i uit (5) stelt de vector-potentiaal voorvan een stroom, die begrensd wordt door twee coaxialecylindervlakken met de stralen / en a in een punt P vanhet binnenste grensvlak. Blijkens de afleiding vindt menvoor de-zen stroom volkomen dezelfde waarde voor H ineen willekeurig punt P binnen de ruimte, die door denkleinsten cylinder begrensd wordt. In die ruimte is dusde vector-potentiaal constant en de magnetische krachtderhalve nul. Dit feit is experimenteel aangetoond doorJOUBIN (/. c). Â§ 38. Passen wij de vergelijkingen (i) van de vorigeparagraaf toe op een constanten stroom, die door eengeleider s met zeer kleine doorsnede d w gaat, een zooge-naamden lineairen stroom. Zij de constante stroomsterkte dan is de stroomdichtheid (?? = co d De richting van (S wordt aangegeven door de raaklijnaan s in de richting van den stroom; de richtings-cosi-nussen zijn dx dy dz Dus ds\' ds\' ds\'dx u = du^\' ds\'Verder is dr = doj ds; dus dx (O ds ds .1 r ds \' H ds. r ds dzJs enz.



??? 87 Deze uitdrukkingen zijn dezelfde als die, welke wijin Â§ 33 vonden voor de componenten van de vector-potentiaal van een magnetische schaal, als men stelt<jc = ?? Als een magnetische schaal en een electrischestroom dezelfde vector-potentiaal hebben, dan is ook demagnetische kracht, die van beide uitgaat, gelijk. Alenkomt dus zoo op eenvoudige wijze tot de beroemdestelHng van Amp?¨re: De magnetische werking van een constanten lineairenstroom is gelijk aan die van een magnetische schaal, diedoor den geleider begrensd wordt en waarvan de sterktegelijk is aan de sterkte van den stroom. â€?De constante k van Â§ 34 wordt dus gelijk 2 gesteld,om de numerieke waarde van de stroomsterkte gelijk tekunnen stellen aan de sterkte van de equivalente mag-netische schaal. Â§ 39. Bovenvermelde overeenkomst tusschen een elec-trischen stroom en een magnetische schaal geldt alleenvoor punten buiten de schaal, daar voor inwendige puntende magnetische kracht niet van de vector-potentiaal kanworden afgeleid. Grooter wordt dc

analogie tusschen beide systemen,als men niet de magnetische kracht, maar de magnetischeinductie beschouwt. Deze laatste wordt voor puntenbinnen en buiten de schaal op dezelfde wijze uit devector-potentiaal van de schaal gevonden (Â§ 31). De magnetische inductie (kracht) van een stroom in eenwillekeurig punt is dus gelijk aan de magnetische inductiein dat punt van de equivalente magnetische schaal.



??? Blijkbaar geldt hetzelfde voor een stelsel constantestroomen en het equivalente magnetische stelsel. Dit mag wel de reden zijn, waarom de magnetischeinductie door Thomson genoemd wordt: de magnetischekracht volgens de electromagnetische definitie. Â§ 40, Tot dusverre hebben wij de stroomen alleenbeschouwd in een medium, dat magnetisch niet polari-seerbaar is, een medium dus welks permeabiliteit ^t = i is.Bij benadering geldt dit voor de lucht. Heeft echter /teen andere waarde en wil men, dat de kracht, die vande vector-potentiaal wordt afgeleid, altijd de magnetischeinductie zal zijn, dan kan men stellen F=z m â–  dv, G = â€? dr, // = "///t â– dr. _ dii dG = /tÂ? dy dz \' dF dll ~~ dz dx^ dG dF (O en (2) Dit zijn de vergelijkingen, zooals zij door Maxwellworden gebruikt. Hierbij heeft men echter in het oogte houden, dat zij alleen geldig zijn, als /t in de geheeleruimte constant is. In dat geval kan men ter berekeningvan de magnetische kracht even goed van de vergelijkingen(i) en (a) van Â§ 37 gebruik maken.



??? 89 Is echter /t veranderlijk, dan\' is dit niet het geval.Wel kan men zich dan nog, daar altijd aan de voorwaarde d Â?) , d (.u d (fi y) _  â€? â€? â€? (3) voldaan is, a, ?¨ en c door vergelijkingen van den vorm (2)bepaald denken. De waarden van F, G en H zoudendan echter niet meer door de vergelijkingen (1) wordenaangegeven. Eenvoudiger wordt het, als men zich in dit geval demagnetische kracht volgens de stelling van Â§ 25 gesplitstdenkt in twee componenten. De componente ontstaat door de schijnbare werking op afstand van massa\'s met de dichtheid â€” div .C"). Vol-gens (3) is 4 7rd^i \' 1 dy^\'^dl]\' div .0 (4) du . d(i I /_ Deze werking gaat dus uit van dio deelen der ruimte,waarin <Â? veranderlijk is. Grenzen twee homogene medi??nmet verschillende permeabiliteit //, en /t.^ aan elkander,dan wordt het gedeelte der ruimte, waarin veranderlijkis, oneindig dun. Daar /t alleen verandert in do richting van do normaalop do grensvlakto, vindt men uit (4) voor do ruimte-dicht-heid in do ovorgangslaag: d-^ft dn. dV dV djidn 4 TT ,u dn \' dn 4 ^ \'

waarin V do totale potentiaal in oen punt van de over-gangslaag voorstelt, terwijl verondersteld wordt, dat indie laag geen stroomen aanwezig zijn.



??? go Wil men de ruimte-lading als een oppervlakte-ladingbeschouwen, dan volgt hieruit, door integratie over de dikte der overgangslaag, daar jw ^^ constant is {Treatise, cc iz ^ Art. 428), voor de dichtheid dier lading: \'j___i_] = â€” i- .a, ,Â?2 J 4 7r.Â?i dV, diu 4 n dn^ als wij de normaal in de richting van het medium inaar het medium 2 nemen. De componente -C^j ontstaat door de schijnbare werking op afstand van vector-massa\'s met de dichtheid â€” curlS;^. 47r Daar de vergelijkingen (3) van Â§ 36 geldig blijven{Treatise, Art. 499, 607) wordt door de vergelijkingen \'(i) en (2) Â§ 37 bepaald. Deze componente stelt dus demagnetische kracht voor, die van de stroomen zou uitgaan,als het medium homogeen was. en Het electromagnetisc/ie moment van stroomen.\' Â§ 41. Laten in een veld twee gesloten lineaire stroomen met de stroomsterkten /\', en ^ aanwezig zijn. Denkt men zich twee willekeurige oppervlakken a, en dj,die door .y, en s^ begrensd worden,\' dan kan de opper-vlakte-integraal der magnetische inductie over ieder vandie oppervlakken â€” in

Faraday\'s taal, het aantal kracht-lijnen , dat door den geleider omsloten wordt â€” veranderdworden in een lijn-integraal door middel van dc yector-potentiaal van het veld. Xoem?;n wij die oppervlakte-integralen (), en dan



??? 91 is met de notatie van (3) Â§ 14: Qt = l^j B cos y da^ = J A cos f ds^ of, daar = is, waarin de vector-potentiaalvan s^ en ^Â?Ij die van s^ voorstelt, Qi = A^ cos ds^ -}- I A^ cos f^ ds^. Nu is Hierin kunnen wij, als wij 11 = i stellen, voor G^, H^ de waarden uit (i) Â§ 38 substitueeren, dus â€?â– lis () den hoek tusschen twee elementen dsj en ds.,voorstelt.Op dezelfde wijze vindt men I A, cos f, ds, = j ?’ \'â–  cos ??, waarin ds, en ds\', twee elementen van denzelfdenstroomgeleider voorstellen en waarin iedere combinatieds, ds\', twee malen voorkomt, terwijl in de vorige inte-.graal iedere combinatie ds, ds^ slechts ????nmaal voorkomt.Stelt men M^jj\'llL^cosIS,<lan is Q, â€” i, L M.



??? 92 De grootheid L noemt men de co??ffici??nt van zelf-inductie van s^, M de co??ffici??nt der wederkeerige inductie Evenzoo vindt men Q, = 7\\ M iV, =?’?’ ds^ ds\'. iV - cos waann De electromotorische krachten der inductie, die bijveranderlijke toestanden in j, en s^ ontstaan, wordenvolgens de wet van Faraday {Trcaiise, Art. 541) opieder oogenblik gegeven door de vergelijkingenp _ dQ _ dQ, De grootheden (2, en (^j zijn dus dezelfde als die.welke wij in Â§ 8 hebben loeren kennen onder den naamvan do electromagnetische momenten der beide stroomen. Wat Maxwell dus noemt het electromagnetische momentvan oen stroom is hetzelfde, wat door Faraday genoemdwqrdt het aantal krachtlijnen, dat door den geleideromsloten wordt.



??? STELLINGEN.



???



??? STELLINGEN, I. Il est toujours int?Šressant de suivre la marche desauteurs. la place. II. De grootheden F, G en H, die Maxwell in zijntheorie van het licht gebruikt, kunnen niet als de com-ponenten van een eigenlijke vector-potentiaal beschouwdworden. IIL Ook in zijn Trcatisc geeft Maxwell geen mechanischeverklaring van de electrische cn dc magnetische ver-schijnselen. Hij maakt het alleen waarschijnlijk, dateen dergelijke verklaring kan gegeven worden en welop oneindig veel manieren.



??? 96 IV. Dat electrische en mag-netische massa\'s een werkinguitoefenen, omgekeerd evenredig met het kwadraat vanden afstand, is niet de uitdrukking van een natuurwet,maar van een mathematische identiteit. V. De di??lectrische polarisatie van den vrijen aether heeftin Maxwell\'s theorie eigenlijk geen physischen zin. VI. Van de Vector-Analyse is voor de Physica meer nutte verwachten dan van de Quaternions. VII. Ten onrechte beweert Tait, dat Ws.yiii.io\'A genoodzaaktwas tot de methoden van Newton terug tc kecren, teneinde dc eigenaardige moeilijkheden der quaternion-differentiatic tc\'overwinnen. (Tait, Quaterjiions, ed. Â§ 33). VIII. De toepassing der waarschijnlijkheidsrekening op hetbeoordeelen van de geloofwaardigheid van getuigen en



??? 97 de juistheid van rechterlijke beslissingen wordt doorStuart IMill terecht gebrandmerkt als â€žthe opprobriumol mathematics". IX. Het bewijs van de formule ij) {x) = // .-h^x* uit de Ktt leer der kleinste kwadraten moet gezocht worden in deovereenstemming van de uitkomsten met de ervaring. X. Ten onrechte beweert larlace: â€žOn doit regarder Fer-mat comme le v?Šritable inventeur du calcul diff?Šrentiel".(Lai\'i.ace, Th?Šorie anal, des Prob. Introduction, p. 42). XI. Uit het feit dat er een mechanisch aequivalent derwarmte is, volgt nog niet, dat de warmte een vorm vanbeweging is. XII. Vele belangrijke wetten zijn te danken aan het onnauw-keurige of onvolledige der waarnemingen, waarop zi;zijn gegrondvest.



??? XIII. 98 Voor eene meer algemeene verbreiding van de theorieder Quaternions is de voortreffelijkheid van Hamilton\'sleerboek eerder een na- dan een voordeel geweest. XIV. De X-stralen zijn transversale aether-golven van zeerkleine golflengte. XV. De verandering in weerstand, die sommige geleidersonder den invloed van electrische golven vertoonen,heeft een mechanische oorzaak. XVI. Het zonlicht wordt voortgebracht door electrischeontladingen. XVII. De veranderlijkheid der sterren van het Algol-type wordt voldoende verklaard door het aannemen van een* donkeren begeleider.



??? 99 XVIIL Bij het onderwijs in de Mechanica aan de hoogereburgerscholen kan het beginsel der virtu??ele snelhedenuitstekende diensten bewijzen. XIX. Het verdient geen aanbeveling, bij het elementaireonderwijs in de wiskunde de begrippen Innict en onc??n-dig kleine zooveel mogelijk te vermijden. Dat onderwijsbiedt een uitstekende gelegenheid aan om die begrippenvroegtijdig in te voeren. XX. Het is wcnschelijk in ons land niet don Middon-Europeeschen tijd in te voeren, maar den Amsterdam-schon tijd voor het burgerlijk leven te behouden.



??? r: ERRATUM. Bladz. 32, regel 6 v. b. staat: solonoidalc, moet zijn;soleno\'idalc. _^mw -
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