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INLEIDING.

1. De Euler Mac-Laurinsche sommatie-formule is:

1— a - ph ]
h & fla-+rh) :f : [ (@) de — -g— V(a—ph) — fa)| -

1
r=0

waar de B’s de Bernoulliaansche getallen voorstellen, n.l.
.h[:% SR o — ?1() - B:":l:j enz.
Bloyy stelt de restterm voor, die verschillende vormen
kan krijgen (zie Noot I).
Wanneer nu in formule (1), die voor elke waarde van
n geldt:
EMERoasy = TS S A ()

Ne=

wordt, dan gaat 't tweede lid voor limn=cw over in een
convergente reeksontwikkeling, wier som volkomen over-
censtemt met de waarde van het eerste lid. Dit is echter
in den regel niet het geval.

2. Soms bezit Re,yq de eigenschap, met toenemende
waarden van n eerst af te nemen en voor een bepaalde
marde n, van n eene (betrekkelijk zeer kleine) minimum-
waarde te krijgen, zoodat dan de reeks:

n ) v
:i,(—l)" 1 Iztl.%:ﬂ)‘ V== (@+ph) — 77 (@)| + Ropsr ... (3)
bij toenemende waarde van n tot ny toe, ook met toene-
mende nauwkeurigheid de waarde van het ecerste lid
aangeeft.
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Wordt n grooter genomen dan n;, dan wordt Rs,+1 weer
agrooter en reeks (3) geeft dan de waarde van het eerste
lid met des te minder nauwkeurigheid aan, naarmate men
n laat toenemen.

3. LeceExDRE noemde deze reeksen semi-convergent (de
semi-convergentie werd 't eerst ontdekt door EuLner) en
Stienties heeft dezen naam bebouden voor de door hem
onderzochte ontwikkelingen.

Semi-convergente reeksen zijn dus zulke divergente
reeksen, waarbij de som van een behoorlijk (eindig) aantal
termen de waarde van een gegeven uitdrukking, met be-
trekkelijk groote benadering, aangeeft. Deze benadering is
niet, zooals bij convergente reeksen, zoo nauwkeurig als
men wil, doch is door den aard van de reeks beperkt.

Voor rekenkundige berekening is de theoretisch wille-
keurig groote benadering door convergente reeksen niet
van zooveel belang als de betreklelijk groote benadering
door semi-convergente reeksen.

4. Zeer belangrijke semi-convergente reeksen worden
uit (1) gevonden, zooals b. v.b. de voorstelling van:

p—1

2log (T =t=2h)a . oo Sranil el (4)
V=0
die nit (1) te verkrijgen is door f(z) te vervangen door
log . Deze reeks werd reeds door StiruiNg behandeld,
voordat formule (1) bekend was,
Gewoonlijk noemt men de semi-convergente uitdruk-
king voor
Jl
= log r
re=1l
of wel die, voor de meer algemeene vorm:
log I' (v 1)
de formule van STIRLING.



HOOFDSTUK 1.

OUDSTE ONDERZOEKINGEN.

I. LAPLACE.

. Larnace maakt in zijn ,Théorie analytique des proba-
bilités” (1812) gebruik van eenige reeksen, die in hunne
eerste termen zeer snel convergeeren, wier convergentie
vermindert en eindigt met over te gaan in divergentie,
Dit is echter geen beletsel voor 't gebruik van die reeksen,
want, wanneer de eerste termen genomen worden, waarbij
de convergentie snel is, krijgb men een rest, die verwaar-
loosd mag worden. Deze rest toch is de ontwikkeling van
een algebraische functie of van een integraal, waarvan de
waarde zeer Klein is in betrekking tot 't geen voorafeaat.

2. Als voorbeeld beschouwen we de ontwikkeling in
een reeks van de integraal :

[o=ra

waarvan Larnace de afleiding niet geeft.
fr' “"dt kan op verschillende wijzen ontwikkeld worden.

Om tot den vorm van Larpace te komen gaan we op de
volgende wijze te werk:
Stel

) {
= dus di= !—~ oy = n:l e’rig P

)

2 pVlogp



Er komt dan:

fp_,. da‘—i ".f pdp 1 ; _dp
. =2 )pvgp 2 W lgp

Lol L e A i [ dp
2 LV logp & JUogpyt—
i

:_J_L_'f-_ DA ot b (R 0D SR EE
2 Vlogp 4 (log p)’n’- 2 (log p)’l: ==
:..f._ P E i p 30 p e "]‘S'S'i”—p—f de =
2 (log p)t ' 22 (lwu:)’ 23 (log )’ ' 2% (log pyk
et 1.8.5 |
T '1 + 2 f! 05 i—...! ...... (1)

Voor de grenzen T' en o« komt er dus:

s gl 1 , 1.3 1.8.5
[rta="5g 1= gt e e T on. | 2

Deze reeks is divergent, hoe groot ook de waarde is,
die men aan 7 toekent; men kan ec hto , zonder merkbare
fout de eerste termen gebruiken.

Nemen we de eerste vier termen, dan zal de rest van
de reeks zijn:

1.8.5.7 [Pe—tdt -
- __;)_.1__ — —_ e T TR Y TNT DS T R TR (-))

r 18
Nu is deze grootheid, afgezien van het teeken, kleiner
dan de term
1,8.be=1"
T

die onmiddellijk voorafgaat; d. w.z men heeft:

t2

want:

vg-rai_ ("eta _ 1 reep_ L, n
r 13 r 2 =~ o Jr = 9m9



dus:

T (Pe—* di 7 1 -
R | S =TS
2 fT B 1 1o

maar deze laatste uitdrukking is kleiner dan:

als we slechts 472>7 of T>177 Kkiezen.
Hieruit blijkt de waarheid van (4) voor een betrekkelijk
kleine waarde van 7 zoodat voor groote waarden van 7T
de eerste termen van de gevonden reeks genomen kunnen
worden, zonder merkbare fout te maken.

[I. Cavony.

3. Cavcny toonde op elementaire wijze aan, 1) dat
sommige divergente machtreeksen, steeds tot die soort
behooren, welke PoiNcari later asymptotische noemde.
Bij de reeks van Stmuing en bij een menigte andere
reeksen vond Cavcny, dat de eerste der verwaarloosde
termen juist een bovenste grens is voor de correctie.

4. Deze eigenschap is evident voor een meetkundige
reeks met redele termen, want, nemen we een positieve
variabele @ en een positief getal &, dan is:

il 1 &

pn=1 . i

s | . e + - T e e ‘
k ‘|‘ T ]i'. I{: { Y kn i .fn'" (]. "{- _i') (1)
on _'.fl_‘i.__.. < l_“ T R L e O (2)

]-l._’_’ (,I: - { r .f') fentl

Wanneer we dus een meetkundige reeks met redele

1) Comptes Rendus, 1843. 1. XVIL
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termen en afwisselende teekens bij een zekeren term af-
breken, zal de eerste verwaarloosde term een bovenste
grens zijn voor de begane fout en de overeenkomstige
correctie zal 't zelfde teeken hebben als die term.

Dezelfde eigenschap geldt voor elke reeks, die gerang-
schikt is naar opklimmende machten van de variabele en
voortgebracht wordt door de ontwikkeling van een ratio-
neele of een transcendente functie, die ontleed kunnen
worden in enkelvoudige breuken van den vorm:

i
k-+x

waar /o en k positief zijn, of in breuken van den vorm:

h

k2o

-

L

waar i positief en £ reéel is.

Er wordt dus gedéischt, dat de vergelijking, die men
krijgt door 't omgekeerde van de gegeven functie gelijk
nul te stellen, slechts recele negatieve wortels heeft Of
imaginaire wortels, zonder reéel deel.

Dezelfde eigenschap komt dok toe aan de ontwikkeling
van bepaalde integralen, genomen van den oorsprong uit-
gaande en waarin dergelijke functies onder het integraal-
teeken voorkomen al of niet vermenigvuldigd met factoren,
die binnen de integratiegrenzen altijd positief blijven.

5. De reeks van Srtirning is de ontwikkeling van zulk
een integraal. Wanneer men bij die ontwikkeling alle
termen verwaarloost, waarin de getallen van BERNOULLI
voorkomen, dus reeds bij den eersten term ophoudt, dan
komt er een resultaat, dat door LiouviLne gevonden is.

Hetzelfde geldt voor de ontwikkeling van f(x) wanneer
[(z) een eenwaardige analytische functie voorstelt, maar
z00 dat:



: f 1
~ ((7(2)) - z
)= ) Wostdhs JbdF o o ss i
& x—z ' C(1—z2)((2)
wanneer we veronderstellen, dat de residus in den eer-
sten term van het tweede lid genomen worden voor alle
wortels der vergelijking:

(3)

en wel in bepaalde volgorde. (Zie hierover Noot II.)
Nemen we aan, dat deze wortels alleen negatief redel
of zuiver imaginair zijn en ontwikkelt men nu in 't tweede

.

lid van (3) in een reeks. volgens opklimmende

x— 2
machten van @, waarbij elk der partiéele residus van f(z)
positief is, dan zal men eene ontwikkeling van f(x) ver-
krijgen, die weer dezelfde eigenschap heeft.

Ook heeft de ontwikkeling van een integraal van den
VOrm:

(L

f B () S o e e e s R e L VR O)
deze eigenschap, als de factor » tusschen de grenzen o en
a positief is.

6. Een eenvoudig voorbeeld wordt gevonden door te
stellen:

of

Vergelijking (4) gaat dan over in:

A - S—

¢ =

en deze heeft tot wortels de refele tn imaginaire loga.
rithmen van de eenheid, d. w. z.:



e

O e T (=0 1Okt e Ly — 2R s
(3) geeft dan de ontwikkeling:
e 1 = 1 L 1 it

F—1 1—e—=* x '2 ' z—2uwi  z—471

1 1
il ;
Ao .1:—]-2-rr'é+:u—]—4fri i e

en dus:
13| Lo _ 1o 1 1 )
G li—es 7 2| EtEe  ErEm

Hier hebben we nu te doen met een ontbinding in breu-

ken van den vorm:
2
e i= ke
Door de getallen van Brryournr in te voeren vindt men
voor alle waarden van z:

1({_ 1 _1_1)_B_ B Bt
z|l—e= =z 2| 21 4] 6! i
By 2252 By1 2" (0581 ) e (7)

eml ' '@nEol

(Zie hierover Noot III).
Stellen we nu door « een reéele functie van x voor, die,

tusschen de grenzen « en b van z, niet van teeken ver-
andert, dan krijgen we uit (7)

b u l 1 1 1 | By J‘h Bs (v .
e e T W e ik — =4 2 -
f“ P B e il dz — 7 !L e da-f
B 0 ,B”,;-] ;

.

)il Ja a
waar 0 < 1.
7. Hierdoor zijn we in staat log I'(2) in een reeks te

ontwikkelen.
De formule van Bixgr is:

];‘3 l ’” 17 I
gl st uct de — ...+ - f Ux™—=dr x 0 — f " d .
' 6] = (2n)! T @nt2)d,



— 1) =

S
-

: 1 1 ,
log I' (2) = (: — 7) logz —z+ 5 log 2m) + @(2) . . (9)

waarin:

D2} = m‘ 1 _I__l"-—:.r(i"t
CP(H)*L l—e—* x 2 !r, O Oy (10)
In 't algemeen is:
S o ez g (M) |
[B T o= i — “'_'i?!‘-i-_l
Formule (8) geeft dan:
]),]_ A]'}“J j;:{ ]))“
3;,: e ‘-'” = = — n e et
P (2) 1.2z 38.4.2% " b.62b =0 (2n—1)2nz>n-1

b)u—%l

— (—1)+1p - o
D G S 1) @n+ 9

L0<1). ... (11)

8. Stellen we in (11) n=1, dan krijgen we de formule
die LiouvviLe reeds gevonden heeft, nl.:

IJ
PE=DB.5L i b (12)

waardoor voor @(2) als bovenste grens gevonden wordt:

il
(D(S]< _h_‘"‘_" ........... (13)

9. Wordt in formule (8) a=0 en b=« genomen en
stellen we:

-

w=ua",. e

waar /£ een positief getal is, maar overigens willekeurig,
dan kombt er:

[ESEEEO S PR € (oI B
o [1 — =% @ 21 T 9 gkl 41 gk
- By L(k4-2n—1) Buyr  T(k==2n 4 1) 3 ‘
e (”3”), s U (3”';_ 2}!' ko v (0<71)...(14)

10. Door in (14) te substitueeren:



S =

IT—L(’-": l4+e*4e 24 . ..
komt er, als we & > 1 veronderstellen
1 1 el 1 By I'(k+ 1)
s T e T I TS
B F(l:—i—3)+ i B, I'(k+2n—1) = Byt I(k+2n-+1)
g FTE e o Shi+2n—1 +7 @a1)! SErentl

Als % tusschen 1 en 2 ligt en 2z groot genomen wordt,
geeft (15) 't middel om met groote benadering de som te
bepalen van:

5o

o (2 n)F

i

... (15)



HOOFDSTUK II.

ONTWIKKELING IN REEKSEN.

1. METHODE VAN STIELTJES.

1. Stierraes ') onderzocht eenige ontwikkelingen van
den vorm:

F(a)=m, -+ ”—I_—l- - ﬂ,‘f'—}— b RN e (1)
u (1
die men niet onbepaald mag voortzetten, zoodra het getal-
berekening geldt, wanneer ze divergent zijn.

Zulk eene divergente ontwikkeling heelt echter eene
bepaalde beteekenis, als men haar beschouwt als een sym-
bolische wijze van uitdrukken, waarmede men wil aan-
geven, dat:

lim F (a) = m,

1= a0

h:“f i | ]" (”) e "Nn'

— ny
= ' ‘

! i Ny
lim a* :I*' (@) — m, — T: = Ma
(

ad=a

. . . . . . . . . . . .

3 Pl Ny = | e
lim a* | I (a) — m, — —_ — — == My,
U i ans |

GNZ.

1) Recherches sur quelques séries semi-convergentes, (These de
doctorat) Annales de 'éeole normale supcrieure 1856,
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9. Als toepassing van de handelwijze van STIELTJES moge
het volgende dienen:

Wordt een functie F (@) uitgedrukt door een reeks, die
voor groote waarden van «, €r een asymptotische voor-
stelling van geeft, dan is:

lim F' (a) = ni,

ad=x
een eerste benadering voor F'(z). Zoo is dan:

lim a { F (@) — my | = 1

=@
een betere benadering en de volgende uitdrukkingen geven
telkens wéer een betere benadering.
Kiezen we als voorbeeld:

1 el — 1
F(a):c'"“f - dz. ... e ot )
0 zZ
dan is:
1 pttz 1 1
(7}
f]L’ pos ”l;
lim F (a) = lim ~——- —=lim——=
a=w a=® C =
I:Un:J 1 e =
i L ( ’ (1
= lim = lm =0
ik il
== o0 Y d=w [

zoodat we volgens 't bovenstaande krijgen:
Ma—ilJs
Eveneens vinden we nu:

1 pa8 ]
( .
f gl rie
( (L

lima { F(a) — m, | = lim a F(a) = lim - =

a=w =0 = (f':['
(0]
et — 1
: (l oa(e* —1)
— m — TN e e ]
a=u I 1 a=w e (“‘ = ])
! f_l’l o E“



— n =

zoodat dan gevonden wordt:
N—.11
Op gelijke wijze worden gevonden:
lima ja ') — 1] =1

A=
lima|a*F(a) —a— 1] =2
=mw
enz.
Hieruit volgt dan de ontwikkeling:
gtz — | 1 1 2! | 3!
}"(H')_P'_”f —dz=— 3P T A =y _{_—l -+ ... (S)
0 =7 a (= a2 45

3. Om nu door zulk een recks de waarde van [F(a) te
vinden, moet de complementaire term bepaald worden,
d.i. de term, die men bij een bepaald aantal hegintermen
van de reeks moet voegen om de werkelijke waarde van
F'(a) te krijgen. Die bepaling biedt in 't algemeen groote
moeilijkheden, als men een behoorlijke benadering  wil
hebben: slechts in enkele gevallen gehoorzamen de cotffi-
cienten m aan een zdo eenvoudige wet, dat die bepaling
op vrij gemakkelijke wijze geschieden kan. In verschillende
govallen, waar de teekens der cobfficienten afwisselen,is de
nauwkeurige waarde van F(a) gelegen tusschen de »° en
(n -1y term. Om deze reden werden de reeksen semi-
convergent genoemd, welke uitdrukking door STIELTIES
echter meer algemeen werd opgevat, die ze n.l ook ge-
bruikt om reeksen te benoemen, waar de teekens alle
gelijk zijn.

700 komt hij dan tot de onderscheiding van reckson
van de eerste en van de tweede soort.

4. Bij reeksen van de tweede soort, b.v.b.:

1 1,2 ,8, (=11,
R R e

redeneert Srienmies op de volgende wijze:



N

Zii F(a) een bepaalde functie van «, symbolisch uit-
gedrukt door:

10
a 12

21
F(a) = +7lz;+

dan is, voor een bepaalde waarde van a:

! M — !
F(u):-i__a_ _L+ 2l JI_(_“__ILL L Rae.. (4

I ([2 “.': A7 an
Fay=T14+T+T+...+Twi+Bu . .. (B

waar dus R, de rest voorstelt, die aan de eerste n termen
van de reeks moet toegevoegd worden om F («) te Krijgen.
Is nu a vast en dus I (¢) bepaald, dan zal R, bij toe-
nemende waarden van n eerst positief zijn; daar echter de
reeks meer en meer tot oo nadert bij toenemende waarden
van n zal R, stellig eindigen met — o te worden.

Er is dus een waarde n waarbij R, overgaat van positief
tot negatief, dus nul is. Beschouwt men nu R, als een
continue functie van » en kan men een geheel getal als
waarde voor # bepalen, waarvoor

R 000 11 e el e d ook, (6)

is, dan geeft deze n 't rangnummer van die ferm van de
recks, waarachter géen restterm meer behoeft gevoegd te
worden d.w.z. die term, waarbij men moet ophouden om
de nauwkeurige waarde van F(z) door middel van de
reeks te verkrijgen.

De gevonden waarde voor n zal echter in 't algemeen
niet een geheel getal zijn. Neemt men nu het naastgelegen
kleinere en ook het naastgelegen grootere geheele getal,
dan verkrijgt men twee grenzen voor de rest, die gewoonlijk
niet ver uiteen liggen, daar de overgang van teeken meestal
in de nabijheid van den kleinsten term plaats heeft.

Wanneer men als oplossing van

=)



e

de waarde N heeft gevonden, dan is deze waarde te
schrijven als
N=n-+14
waar » het grootste geheele getal voorstelt, dat bevatis in N.
De beste benadering zal dan zijn:

Tyt Tot-Tat s 1+ T+ A Tuiq

H. De benaderde oplossing van (6) is altijd van den vorm:

14 ({5] -
n=—uwa-+ a, + —: - -l% S PP ()
( a=“

't Is echter dikwijls geschikter a als onbekende te be-
schouwen en eerst de coéfficienten 7 te bepalen van de
ontwikkeling

Q9
2

= s R (3)

a=fn -3, + o - -3

De reeksen (7) en (8) hebben gelijken vorm en karakter
als de oorspronkelijke

F(a)=m, + I -} 1’-173 +..
i a a*

Enkele der coéfficienten worden berekend; verdere be-
rekening is zeer lastig, daar ze geen eenvoudige web volgen.
't Onderzoek van de oorspronkelijke reeks is zoo terug-
gebracht tot dat van (7) 't welk veel ingewikkelder is.
Men vraagt echter den wortel van (6) slechts met zekere
benadering te bepalen en daar de nauwkeurigheid van (S)
toencemt naarmate n grooter is, is 't slechts noodig (7)
en (8) te benaderen door a en a veel kleiner waarden te
goven, dan die, waarvan men zich moet bedienen bij de
oorspronkelijke reeks. De verkregen benadering zal altijd
meer dan voldoende zijn.

6 De behandeling van de reeksen van de eerste soort
kan, tot op zekere hoogte, in overeenstemming gebracht
worden met die van reeksen van de tweede soort. Zij zulk
een reeks:



— i) =

T = TR R = AL SR R ST (9)

waarbij Ty, T> .... T, en R, positief zijn en waar:
R < aNOn R Bt T R R e R s (10)
is. Dit laatste volgt uit het positief zijn van Rn terwijl:
I e i L ARSI ST e (11}

Men ziet dus dat R,_; en R, elk afzonderlijk kleiner
zijn dan 7, zoodat dus ook:

—Rn < Tn-l,-}

Inplaats dat de kleinste term opgezocht wordt, zoekt men
het minimum van R, door oplossing van de transcendente
vergelijking:

dR, 7

Q
o e (L)

De waarde van 7, hiernit gevonden, verschilt zeer wei-
nig met het rangcijffer van den kleinsten term, waardoor
de volgende opmerking, die bij verschillende gevallen ge-
maakt kan worden, te verklaren is:

Stellen we, dat de wortel van (12) tusschen »n en z# —1
valt, dan zal bij benadering:

Rn-—i = Rn

zijn (zooals uit een figunur gemakkelijk te zien is) en de
begane fout zal een klein breukdeel van £, zijn: hieruit
volgt dan weer dat £, ten naastenbij de helft van T, is,
zoodat de fout van:
]
T —To+Ts — T4 o N Ty + — 14

L)

een klein deel van 7, is en wel kleiner naarmate » groo-
ter is.

Voegen we hierbij dat in 't onderhavige geval i, in een
semi-convergente reeks te ontwikkelen is volgens afdalende
machten van n, dan laat de eerste term van deze ontwik-
keling zien dat:



i R, 1
Lt . ‘7—,: - B

1S VOO n=— 0

1I. TOEPASSING OP LI-FUNCTIE.
7. De integraallogarithme geeft een voorbeeld van de
tweede soort:

R [ L
i) (H)— ) ,HW

Deze integraal is onbepaald als @ > 1 is: daarom neemb

men de principale waarde, die volkomen bepaald is
Voor ¢ >1 is dus:

=7 du a du |
— i Al e Al 5k
A f_}_"', | f /()r} " [, ve log ) (13)

Vervangt men hierin @ door e* en stelt men verder:

DL — ’.ﬂ(l — 1)
dan komt er:

‘ 18 p=ap ) "__”'. ‘f
it (e") = e lim lf — - [ — dy

oo AREY
=0 ) =R ]_, g ( )
Substitueer hierin:
] i
Ealil o [ S e 3 SRS ) D) B B
l—» | ' ' J 1—1
en:
x 2!
hm ‘f ar dy -} [ r"r-"""rh" —
0 AP | ar+l
dan wordt de uitdrukking:
. |1 1 A (n—1)! )
/!(f‘“):‘?f!f‘-\ e T - '!'/1',.'.... (15)
[« (= (» (l f



— 1l ==

waarin :
1—& ,n p—ar s o= ]
il ™ ¢ ;
Rn———f{?!?‘f —————— dr ——J- ————fh"-... (16)
£=0 / 1+¢ 1= ‘

d.i. de principale waarde van de integraal:

6 gl p— Oy
p b2
f - — (v
0 1'_'1

De vorm, die R, hier aanneemt, doet zien, dat de waarde
'an R, afneemt, naarmate n grooter wordt.

De eerste term van de uitdrukking voor R, bepaalt de
orde van R,; daarin is » altijd kleiner dan 1, zoodat die
term kleiner is, naarmate n grooter genomen wordt.

8. We willen nu een benaderde oplossing zoeken voor
de vergelijking:
R)i : O . . . - . . . . . . . . . (1 ?)

Stellen we @ —n-}-# dan Krijgen we:

1—a =1\ 2 p=1n
oa— hm ‘[ (el e dy -+ J‘ ) e= ('h", .. (18)
14-8

e 1 —»

R, moet ontwikkeld worden in een semi-convergente
reeks volgens afdalende machten van n.

Het stellen van a = n -+ 5 beteekent, dat de rest van een
term 7T, beschouwd wordt, in de buurt van de kleinste
term, want 5 is een eindig getal.

I)ur het om eene benadering te doen is, mogen we die
stukken verwaarloozen, welke ten opzichte van de andere,
aneller afnemen dan eenige negatieve macht van .

We verwaarloozen daarom:

1-4 = VYN o =Y
f eV v gy f We) v gy L. (19)
( 1

) 1—» ti 1=
en behouden :

=t 7,., bk [ pp=—TN
i, :t?mf lf e Gt [ i CRUG : et
1 1

I—» e L—
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waarin /2 en £k eindig en positief, maar overigens wille-
keurig zijn.

Beschouwen we eerst:

I—E ’v‘ff—j' n ;
f (S - ) (4“?’ (])! A

—h 1—»

1

re~" wordt maximum voor »=—1. Stel:
pe—? — e—1—*
en =T
dan s
(1f=if) et =gty e R s tala L)
Voor kleine waarden van x is ¢ te ontwikkelen in een
reeks van den vorm:
=g et+ataed+ ... fa2?+ ... (22)
waarvan we nu de coéfficienten « willen bepalen.
Uit (21) vinden we:

t4log (1— t)= — 22
of:
{ 1= gL
F | "ng — e s e =

Verwaarloozen we hoogere machten van ¢, dan Krijgen
we als eerste benadering:
t=axl”2
zoodat : =2
ig. Om de andere coéfficienten te bepalen, merken we op dat
uit (21) onmiddellijk volgt:
U7 S Tt e PR (93)

dr =i

{

Door (23) #n malen: te differenticeren en daarna @ =0 en
{ =0 te stellen, krijgen we de recurrente betrekKing:

nay iy -t (n—1) s -y -t (0 — 2)ag a, at+-ka,m=-2aq, HH;E’L’)



SO ()

Gaan we nu uit van ¢y =12, dan worden de andere
coifficienten gevonden.

Hetzelfde resultaat is nog wat gemakkelijker te bereiken
door in (28) de veronderstelde reeks (22) te substitueeren
on dan de waarden van a, enz. door toepassing van 't theo-
rema der onbepaalde coéfficienten te berekenen. Kr komt

dan :
(ay x4 ar a2+ az >+ . . )(ap+2asxt8agx®—+. ...) =
—9x(l — a3 & — g T* — a3 a3 — L)
of:
a2 ay aza?+ ay as a3+ a ay At amaza®+ .. ...
L9 gy aea2 -+ 202 @ -+ 2 apagwt - 20204+ - L . -
1 8ayazad -+ Basazxt+3 ag? P+ . . ...
L4 gayat-+dasas b+ ...
L bayaz®4 . . ... =
— 9 —%mat— 2aad — 2agxt — 2 a4 ab— ...

waaruit onmiddellijk gevonden wordt:

o 1 £ 2 1 =
e el 1 O oA L oy Py S e SN An
a=1"3: aa= = — 2 = oy (5 3 enz.
Sl oy =l P LIS e s TR
zoodatb:
— i - 2 1 ~
| —p— =13 . 0— =22} =1 2. a3} 2t = 172 . 2° .
’ V20— 522+ V2. @ g @ agp V24

Hieruit volgt:

—dv=dt=Jday +2as x+ B az x* +4aquadt .. lde=
i - '1’ | 1 e Bl 8 o 1 P~ '

e DR i | Ve by et - o . de
k g e 357 Tagh 2V T

Verder vinden we hieruit:

r da | | - 1 | g {f
— :'—-‘l — — 2. — = X — | D, % 1 —- ..,
] —» T | 3 9 270 405
Schrijven we:
£ " . : ne . LA
eril— =i el Il-}-- y i o7 bt | ,':,’f»l :



— =

en substitueeren we hierin de gevonden recks voor ¢, dan
krijgen we, na rangschikking:

B — = 1 o el 2 .1 oo (] 2 g L 3\ 548
' — |1 NV 2.0+ oY Ui/ Kl 18 == FAr T 'i")l/ 2.7
. . o) .
2)
a | - l

2 1 2 | 30
"{'(ﬁg ?I ‘I" .T}’ ’f"_ — ‘ﬁ "f"’_t_ 3 i" ).I'l _}_. Tl b ‘ PR tj‘l)

Substitueerende krijgen we ten slotte:

1—¢ (ypo="\N
f o)’ AT —

1=h ]"-' s

- g %A = PR 2 e W ) |
— 4_[ (fJ‘ -1 )H_,'—-,ll_i-—;f-l, 2_,:'-{-(— 3 ele !','--),t‘.--—l-—_..l

; L= 1 lv _—
>\;] = 2. x— 5k;::- '“—— . .+ (26)

(De bepaling van ¢ en p wordt hierachter besproken).

of':

1=& (yp=7\n b i i x 1
f CeT) gmrr gy = ¢ "'f gt | 1-|-x11-”'|"‘-Jg.!"'“l-.Iu.r-"'...I{ e
1 &' "

— M l —r g

waarin de cotfficienten 4 alle polynomia in # zijn, b.v.b.:

1 -
2l :("' - :;)/ -
4 1

Y — —

enz.

De waarde p van de bovenste grens in (26) hangt af
van de positieve grootheid . Nu wordt 2 z00 gokozen,
dat de reeks:

14+ Ay o+ dg a2 Agad+4 . .00
convergent blijft in 't geheele integratie interval, zoodat /%
dus een eindige grootheid is, onafhankelijk van »n. Ook 1s
J onafhankelijk van », want de straal van de convergentie-
cirkel van de reeks:

(26)



e TR

eMt=1-4+91"2 -
is onafhankelijk van 7. 1)
Dus 7 is een numerieke constante. —

Om de integraal:

Ltk (pp= 70 )
[ i) e~ dy
Higss - == 2

op analoge wijze fe behandelen, kiezen we:

=

en: y — 1 — ‘f
zoodat (1P het=ec=*

is. Nu ontwikkelen we ¢ als:
l—=a1 & — as 2+ aga® — ag w4 . ...

waarin a, , s, enz. dezelfde waarden hebben als zooeven.
Er komt dan:

L+k (po=" ) |

f ( i e~ dy =

150 | —»

|

o7
|z e

— — NN f gl : 1 — Ay Ao a2 — Ag 3+~ ...
waar de coéfficienten A dezelfde beteekenis hebben als
in (26).

Dit zullen we nu eerst aantoonen.

Uit:

p— 1l=l=ayx—as a2+ as @ — ag 4= .. . (25)

volgt:

dv=di=|aq — 2 x+8a3x* — 4ty B4.... ) do
en uit:

1) Immers de grootste waarde van 4 is 1. Is de convergentiestraal

nu z66 gekozen, dat de reeks eindig is voor 4 = 1, dan is die straal
vanzelf convergentiestraal voor gebroken waarden van 7.
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(I=hg) et i s (29)

volgt:
— t+log (14 )= — x>
of:
i 12 /5 - .,
- H—T - ‘EJ'_V:{ — i —

Hoogere machten van ¢ verwaarloozende, krijgen we:

{a ="

of : L1t 2
zoodat : 0y =79

Door (29) te differenticeren komtb er:
ot

dw

te— =2 (1 1)
Substitueeren we (28) hierin, dan komb er:

(@ & — ap 22+ ag x® — .. J( — 2 d c+3agat — ...)=
—=22(l+max—aattaad—...)

Door gelijkstelling van coéfficienten en door gebruik te
maken van a; =}~ 2, komt er dan:

: 2 Ll 2
=) 2; a— — gt g — 18 V25 iy — 195
1 T
DR A9 eng.
b 1080 :

en dit zijn dezelfde waarden als bij de vorige berekening,

Dus is:

. 3 ] i) "y z !
y— L=t=)/ Tt g+l 200 gpat o+
1

Hieruit volgt weer:



— 94

Q‘ -
:1:_(?t_"|,/2+_ ,+ -1 3 s
1 -
—}-ml/z. i | da
en verder:
4 e B
ol = g = 02— —— a3
dy = V2 3" l’ S e TaE dx
1—2 R 3_"ﬁ =S e e
D 3 .-":'_’_,_ _‘t’:-;—l>...
L8255 ’+1b‘/ A
Voeren we de deeling uit dan komt er:
dyil 1 4 |dw
&=t gy Ba— gt Tt G
Verder is:
e—1 — G—’,(l-{-]l — (3_"" c—ql‘ —_

eI B
— il — 9yt f-_.;—!(u_é! f"'r.....l
el
(Yast)t= (e =l=x "
zoodat de integraal wordt:
p : ( i
[ ey [1i— ek e i g B — gt

& e} l T

Voeren we de vermenigvuldiging uit, substitueeren we
de reeks voor f en rangschikken we naar @, dan komb er:

14+ I (J'{;' — ) )n
[ ar=
1—8 | — ¥

waaruit de overeenkomst van de coéfficienten A in beide
gevallen blijkt.



Uit:

volgt:
—rtlogr=—1—2a2

Voor de grens »=1-4¢ komt in de plaats de grens &;

log(l1+¢ —1—e=—1—¢2
« l'.‘: c":" 1h
-}- g —1——3 —_—ei—l—=—1—c¢

Verwaarloozen we hoogere machten van & dan volgt dus
hieruit:

g

ol ¢ = e 2
als onderste grens.

We kiezen nu % z6o, dat de bovenste grens in 't tweede
lid van (27) ook weer p wordt. Voegen we (26) en (27)
samen, dan vallen de stukken weg, die « worden voor ¢
(of &¢)=0.

Nemen we dus «¢=0, dan krijgen we:

1-—-8& y = 14k I "
' - e !
f ( ! e~ " (!’I'-|-f ( 4,’_’!' =
." l .

f}
— ir"""’f e~y Ay Ag a2+ At ... doe. .. (30)
Nu zal: s
f e ax da (2 =0)

voor n=— o sneller tot nul naderen, dan eenige negatieve
macht van n: een benaderde waarde voor (30) zal dus
govonden worden als:

O )

:3( n_r‘!J y=—nat 11 f{l e -'Ii r'i 7 I//

i

n



of voor 5-Fn in de plaats stellend « en A; vervangend
door de gevonden waarde, vinden we:

(’/— ..1>c“" l// 2
5 1

De verwaarloosde stukken:

1—1h 1".L,~JV n o l".c —p\1t
f ) o= @y en { i) e~

0 =0 Jigy 1—#

hebben geen invloed op de ontwikkeling van R, volgens
afdalende machten van n. In de eerste integraal toch is
de grootste waarde van

ye—v — U ¢ 1

waarin 6 een positieve echte breuk is, zoodat we vinden:

1=l (pp—2\N n +1
e , v ‘ ‘
[l f ¢—10-1) Q=

Jo 1—» /

(]

fjn 41
e et '-,:/11 f/fﬂ

]f Jh

waar de breuk 6" sneller afneemb dan eenige negatieve
macht van n.
In de tweede integraal stellen we

y=1-u

en zien dan, dat®de absolute waarde er van kleiner is dan:
o= £
f (Lwyre—me e du
;IT |5
Kiezen we een grootheid » —~--1 die aan:

I
y T

voldoet, dan is:

en dus is:
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i e=¢ ” —nu (1= ! nit
"f (1)t e " e—4% di< = f ¢ ( r )“1 tlut
1 k v %

Nu zien we, dab:

I e ( 2 .!_)_
f e nw 1 - ju dut
k

k

sneller afneemt, dan eenige negatieve macht van n; de
tweede integraal mag dus ook verwaarloosd worden.

Formule (30) levert dus de gevraagde ontwikkeling in
den vorm:

e | I bk |
.]] n — (_l l// - l ‘[1 k} = ) _‘-1:", _|_ 09 .4:1.'. . &) 'l' . s 0w l
of wel:

(] - " Sedd n=
 JIE—= ) / jl| ] | I o 1 o 1 ] 1 0
}l” — l/" " "J = :; | ( & /i O Y l 12 7,.‘ [ 5!”) n *
! |
‘..

o ) A ;
-~!-(1 0 ,tk}fj" iy — : 32 - : n -+ 20 4. (8
T\407 24" 79 247 " 2887 " 6048 /n® e
Uit den vorm van (31) maakt men op, dat de waarde
van z, die

_H” — ]

maakt, ontwikkeld kan worden als:

L (ol

waarvan de codéfficienten g bepaald worden, door substi-
tutie van deze reeks in de gelijk nul gestelde vorm tus-
schen accolades van (81), door middel van onbepaalde coéf-
ficienten.
Zoodoende vinden we:
1 5 154

. — . - ] . 1"
§ L5134 lemmimn = O Zy

‘1405 - 9nh15

J J—
)

o T 3 : |
Daar we = n--» gesteld hebben, vinden we:
1 S ] 184 1

| |
a=n- o e =, L, (82
8 406 n 2560156 n- )



of ook door omkeering:
1 8§ 1

16 1
n—a— :

=, = s — i (38
3 405  a ' 25515 a2 (85)

9. Wanneer we dus de benaderde waarde van de wor-
tel van

5 7405 a 25515 a

IRy, =0
N noemen, dan wordt 't resultaat:
e Lol P a0 o, |
li(et)—¢ ' +a‘-’ S Fonn: e B | /
: (34)
N—g_ L _ 8 1 1610 1 \

met een orde van nauwkeurigheid, die gegeven wordt door:
- .)7.7
Eatt I/E_._.r
@

10. Door een getallen voorbeeld springt 't voordeel van
't gebruik van de ontwikkeling van STIELTJES boven dat
van andere reeksen direct in 't 0og.

Willen we b.v.b. de waarde van Zi (1019) bepalen, dan is:

et — 1019
dus: ; a = 23,0256851
en : N = 22,692

We moeten dus 22 termen van (34) nemen en de 23ste
0,692 maal. Op deze wijze wordt dan gevonden :

li (1010) = 455055614, 2227 -+ 0,692 X 0,246 =
— 4HH0H5H614, 58H :

Als nauwkeurige waarde is berekend:
1i (1010) = 455065614, HBGE

door middel van de reeks:



e

| Gl Nz el
y o e e J_
li(ety= C 4 log a + " 591~ 331

1T + enz. 1)...(35)

maar dan moeten veel meer termen gebruikt worden.
10. Om te zien welke term van (35) van directen in-
vloed op de tweede decimaal is stellen we:

a?l
n.n!

— 0,01 en nemen n.n!=1I (n—2)

Nemen we logarithmen en maken we gebruik van de
reeks voor log I'(n-2), dan Krijgen we:

W ¢ : 1 ‘ ]j,l |
n. 1 a—(n-+%e) L (n+-2)-+n—+-2 —=L {2;:‘)—5(” ,,_!:‘_3,_)__._:[_ 0.01
of:
n log a— (n %) log (n -+ 2) + 0,4343 (n 4 2) —
— s log (2a) = — 2

Daar verwacht kan worden, dat n vrij groot is, is:
I e

St
zoodatb:
1,362 (1 |- 2) — 2.7244 — (n - 3a) log (n -+ 2) -+
-+ 0,4348 (n - 2) — ‘I) log (2n) =—2

of':
1.7965 (n = 2) — (n = 30) log (n - 2) = 0,8225

Bij beide leden —1s log (n -t 2) optellende, komt er:
1,7965 (n -} 2) — (n - 2) log (n - 2) = 0,8225 —1)s log (n -}- 2)
1y waarin C = 0 577215666490156328606065 . . . = constante van Evnenr

volgens Sonpyer. Théorie et tables d'une nouvelle fonction transcen-
dente. Minchen 1809,
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waaruit:

- 295 —145 [ 9
= R ) S og (n+2)

n-+ 2

De teller van de breuk in 't tweede lid is veel kleiner
dan de noemer, dus is bij benadering:

log (n -+ 2)=1,7965

of n—+2—=62,46
Nauwkeuriger: log (n -+ 2)=1,7955
waaruit : n-+2=62,44

zoodat er ruim 60 termen gebruikt dienen te worden.
Op dezelfde wijze vinden we, dat » =62 genomen moet
worden om directen invloed op de derde decimaal te hebben.

11. De integraallogarithme levert voor een argument
kleiner dan de eenheid een reeks van de eerste soort.

li (¢) moet voor dit geval dan geschreven worden in den
vorm /i (e~®). Nu is:

p vk LD p—ar )
li (ff““):—-f — du = — r“"f O dr . . . . (36)
1 0

(14

i

Door hierin te stellen:

1 :
if—}*;:‘_l-_’ L2 — 4L ... 0
N 1 s Y " ) pht
fJI. '?J;'—-]—l' "I"——‘J"%'...J‘. I":"!*]
komt er:
i (%) —=— r"‘f e=0" {1 —p422—. . £ F L |dy...(87)

nu is:

o ] s 7 I,
f e ar ’_;/_ ”f‘. — [,'/.' P ar ‘ [ ’,}{) | i it flll' -
o L doa a Jy
Vs
— % =1 -
— — p*= gm0 (ly
a Jo
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Deze bewerking voortzettend, zien

a0
f e—& . pxdy—
0

zoodat dan:

L
[

) volgt dan:

0
R = [
0

Door weder

lio-t—=— ¢—a

Uit (37
d o p—Q
finat dy—nle="

14+»

a=n-+1
te stellen, kunnen
volgens afdalende
bij i (e%).
Fr komt dan:

g o—

/ O e s |
Moo a9 l/ — -s—f— |- (f 72— 1
‘ n |2 1 {
1 7 1 '
Wi (S € LR e B SO P Sl I
7~ T T
Nemen we nu:
“,h:i' =
dn
dan zien we, dat de waarde voor y,

te ontwikkelen is als:
3 i
Y = |'”k‘| . |l ..-n !
n n=
waaruit dan weer volgt:
-’.l ;
(71 .}_ il;" LA _! i :-' >
1 n=
of door omkeering :
fq
n — =1 &, !

we .

x|
(*t

ool
/{r!

e—% du

Hn-%-_l" '

die hieraan

we [, weer in een reeks ontwikkelen
machten van u, evenals dat gedaan is

‘| .. (40)

voldoet,



Bij uitvoering wordt gevonden :

1
a=n-+—-4....enz. . (41)
(§¥7]
; — 1, 5
of : N= — e O o (42)
12. Door partieele integratie vinden we direct:
5]
A 1 21 oonl
du=el— — —1.—,+—......{— il ‘_{_
g [« = ik antl |
+
e~ du
A e n !
(— 1)" 5 f i
dus:
e | 1 | 21 3! n!
Zl[(’_”):—- (_._4{1"_,__7 L - — + (— 1) g |__
; (7 e n’ a? antl |

Non—t
(Ll [ s
o ”n+]

Hierunit vinden we:
| D=

! — _]_ ST e " | = lan r____rfit

ol ”n‘i 1 \ ~ s L " “_H-E-]

ot
mod | k(e ietat = ,
[ | (=) " a2’

= ([.” 1 1 oo
<nl— — |==
U lla

of : § o =
zoodatb :

I" =0 »— ] — 1 15 \nt H! ‘ ~ 1 1

?uudl:u*lfz(r_ )4~ o (=1 s i]mﬁ(n—]).rT

waaruit afgeleid wordt:

'n‘ F o p—a y— (1 1 - 1 n ”! f -
[” MG il (=t e Gl s ) L ] [

modd
: il (=

linn

=

Hiernit volgt (zie Hoofdst. I1I) dat de gevonden reeks
werkelijk de asymptotische ontwikkeling van li (e=9) is.
13. Als voorbeeld van berekening van /i (¢~“) nemen we:

1i 0,00000454 = 1i (¢ 10),
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Uit:
N=—a — L

B

volgt, dat we 10 — d. w. z. (daar 't ons om benade-

1
60
J . H9 i
ring te doen is) ¥ termen moeten nemen en Go van de tiende.
)
ST 1 L ) |
10+ 102 103 '
— — 0,00000454 X 0,09154563 =
— — 0,000000415617 . .. ......
Voor negen termen wordt gevonden :
— 0,000000415782 . ..
Volgens opgave van HouiiLn is:
li (e=10) = — 0,000000416

li(e=19) = — ¢

14. Nemen we /i(e~%) = {i(10-1?)
dan is hier:
a=23,02685 . ... en dus
N=280150 1 e
zoodat we moeten nemen 23 termen en 0,01861 maal de
24ste,
Er wordt gevonden:
1i (10-10) = — 0,000 000 000 041 68 . . . . ..
waarbij verwaarloosd is.
De 24ste term toch is:
0,000 000 000 000 975 13 .. ...
Om zekere benadering te krijgen, behoeven woe de he-
rekening niet zdo ver voort te zetten,

De uitdrukking:
. l
N=ua — |
(817}
geeft alléen aan, hoever de recks voortgezet moet worden

a
v
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om de hoogst mogelijk bereikbare nauwkeurigheid, volgens
deze methode, te verkrijgen.

14. Ten slotte zullen we nog drie berekeningen uit-
voeren, waar « kleine waarden heeft.

a. Voor 1i (0,5) = li (e~)
is a=—0,69312
1
N—a— — = 04527
« a5 0,45271

Daardoor vinden we:
o 046271

Hin = y— OB0B1 Az e (| Q07
li (0,9) ( 5 70,69312 ),327

Door gebrunik te maken van drie termen van de reeks
van BRETSCHNEIDER

S e e SRR
b —— | Tatrl | (Go-+ (2 +4ila+2|
2191
Qe Lia - 1O ' 1
+’i_".4.‘, : o1\ ST [ o '4—,—'{' )
(a2 44la+2] ) (1.2)"+ (L x2+181Lx+ 6] |
vinden we: li (0,6) = — 0,324,
De werkelijke waarde is
li (0.5) = — 0,37867 .

[én term van de reeks van STIELTIES geeft dus grooter
nauwkeurigheid dan drie van die van BRETSCHNEIDER,

i W7dl ;
L. Ter bepaling van /i substitueeren we ¢ =1 en
] e

krijgen dan:
I T S
1 A LSRR S |
1) Theoriae logarithmi integralis lineamento nova. (relle. Bd, X VII.
2y Deze zelfde reeks, ontstaat door in de recks van BRETSCHNEIDER
Crelle. Bd, XVII):
Ll L 1! 21 3! |
i =— e = T T Gy

te substitueeren x = e



Nu is dus-

I

N=g— ——1—-

0,33

zoodat een benadering is:

1 0,83
| =)= — 55500 — = — 0,305
. (f) SIBIRIATE

Nl "
li (—) = — (0,21938.
% .

c. Nemen we nog

life)=e!l+14214814«Fnlt |,

Werkelijk is:

zoodat

N=1— =——-. .. =0,6478.

dan vinden we:
li(e)=1,7740.
De werkelijke waarde is:
i (e)=— 18951 . .

De laatste drie voorbeelden bevatten kleine waarden
voor a, hoewel de reeks bedoeld is voor groote waarden.
Toch vinden we uitkomsten die betrekkelijk weinig van
de ware waarden verschillen; waaruit, in verband met
de geringe moeite om de gevonden uitkomsten te ver-
krijgen, wel de bruikbaarheid van de aangewende reeksen
blijkt. (Zie Noot IV.)



HOOFDSTUK III.

DEFINITIE VAN POINCARE. BEWERKINGEN.
TOEPASSINGEN.

I. DEFINITIE VAN POINCARE.

1. Poincart geeft de definitie in den volgenden vorm 1):

Ren functie F (a) heeft tot asymptotische ontwikkeling
een divergente reeks van de gedaante:
| 1 i ?”--J *Ji—' ”’i,; I

Ut AR 3 |

(2THE m, .o
i U 2 S R S
r)f S | ',-N'H opnt2

wanneer de uitdrokking:
ar | F'(a) — Syl
voor iedere positieve geheele waarde van n tot nul nadert,
als a (steeds recel positief) onbepaald toeneemt.
Dus moet dan:
ar | F(a) — Su| = ¢
of
lima® | F(a) — Syl = lime=0

= o [ 7.

S stelt dus de som der eerste n-}-1 termen van de
reeks voor.
We schrijven dan:

F(a) o> Sy

1) Aeta mathematica 5.
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2. Wanneer een functie eene asymptotische ontwikkeling
heeft, dan is deze ook de cenige; want stellen we eens,
dat de functie twee zulke verschillende ontwikkelingen
toelaat, dan is dus:

Al m 1o My - &
Fla)—="m, -t 22 .. L 20 TR
o (L= an
en ook:
1 = 13 Pl P2 n JT “
F ) —=pet+=—4 S+ - ’
. (r = an

dan moet:

(g — pa) +0m — m);lﬂ oo (M — Pt — ) ”_1 -
of Mo = Po
nmy = M
enz.

My — !"l'n — ¢y = 0
waaruit volgt, dat beide ontwikkelingen volkomen gelijk
zijn.

3. Het omgekeerde is echter niet waar, d.w.z. een ge-
goven asymptotische reeks kan verschillende functies asymp-
totisch voorstellen.

Beschouwen we de funtie ¢~ dan zien we:

me=*=0=m,
ag=w

limale=* — m,) = 0=y

(]

; ? " =
lim a® (4' e My — ) =0 i
e (

enz.

waarnit blijkt, dat de asymptotische ontwikkeling van e—¢
identiek nul is.
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Is dus gegeven de asymptotische ontwikkeling:

p my , M M
It_a))—ru.,,—{—.?-r ALy,

> a

en tellen we daarbij ¢ of
A.eme=0-+ 0+ 04 enz.
dan zien we, dat ook:

i m
l*(u)—l—Ae*“:mo—%—F(—;—"—---—t——"—!—. Qe

(U
is. Br bestaan dus functies M () zéodanig dab:
lim a* M (1) =0

it = @
voor elke (positieve geheele) waarde van . De asymptoti-
sche ontwikkeling van F'(a) is dan tevens die van

F(a)-+ A. M(a).

Willen we dus hebben, dat een gegeven reeks de asymp-
totische voorstelling is van een bepaalde functie, dan die-
nen we nog voorwaarden te stellen h.v.h. dat de bedoelde
functie de integraal moet zijn van een gegeven differen-
taal vergelijking.

1. BEWERKINGEN OP ASYMPTOTISCHE ONTWIKKELINGEN.

4. Wanneer eenige functies asymptotisch voorgesteld
kunnen worden, dan blijft, bii 't toepassen van hewerkin-
gen op die functies, de asymptotische voorstelling hestaan,
d.w.z de asymptotische voorstelling van som, verschil,
product en quotient van twee of meer functies wordt ge-
vonden uit som, verschil, product en quotient van de
asymptotische voorstellingen dier functies.

Dit is analoog met 't geen bij convergeerende reeksen
geschiedt.
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5. Optelling en aftrekking.

In:
\ nt 1 : My - &
) e R RS e S e
a (1= "
en

¢ [

ez, 'y mn's m' &
(”)f“fn' ’ ‘1— ”'_, ...‘:"“——”(E"—!

zijn & en ¢, kleine grootheden, die bij 't aangroeien van
@ meer en meer tot nul naderen; dus zal in:

I (N) + ]‘1 (ﬂ,) - ()H,, + i “) ﬂl_t ’”_1 -

”I 3 _lA ]“ 11" _i‘ Ny MI— ’“'u. 7!7 o _5_ LT
G '

. s

(¢n -+ ¢,) aan dezelfde eigensclmp voldoen, zoodat de som
der asymptotische voorstellingen van de gegeven functies
de asymptotische voorstelling van de som dier functies is.

Men zegt dan kortweg, dat 't geoorloofd is asymptoti-
sche ontwikkelingen op te tellen en af te trekken.

6. Vermenigvuldiging.

Nemen we weer dezelfde functies met hunne asympto-
tische ontwikkelingen als zooeven, dan zien we bij ver-
menigvuldiging:

’
. M, My = na n
F(a) X K (@)=m, M's - —— LT e

a
Comg s =y my =g 'y :
= — - — —— e e y AL
(-
| Mo Min + My Mp—1t= - 00as | My ot mo &
et = i — i

Ly (o En) E e M1t oo (@) i
T gt S n Sar
= (L"_: '“) (”’ n + ¢'n)

> ] B




e, ENGY =

of':

m, My - iy Nty

Fa) X Fy (@)=m, m'y + — T L P ey e

+ Mo M~ M1 Mp—1 < o = W5 Ny ) }

'-!J‘L 1 n

waar 7, bij onbepaalde aangroeiing van o, onbepaald afneemt,
want 5 is van dezelfde orde als & en &n.

Wanneer dus twee of meer functies voorgesteld kunnen
worden door asymptotische reeksen, dan kan hun product
voorgesteld worden door 't product van hunne asymptoti-
sche voorstellingen.

7. Hiernit volgt onmiddellijk, dat een macht meb geheele
exponent van een asymptotisch ontwikkelbare functie voor-
gesteld kan worden door de gelijknamige macht van de
asymptotische ontwikkeling van die functie.

Als tweede gevolg verkrijgen we hieruit, dat een poly-
nomium, waarvan de termen machten zijn van een functie,
die asymptotisch onvwikkelbaar is, asymptotisch te ont-
wikkelen is, als we voor de termen van 't polynomium
hunne asymptotische ontwikkelingen in de plaats zetten.

fI=A4,+ A1 F+ As F2+ -+ 4, F?
is dus asymptotisch te ontwikkelen, als men weet:

ny o e My - ¢
F=m,+— +=—=+ =+ — 1
(t - ”"H

8. Deeling.
Wanneer we nemen:

1 e ¢ Wy Hia g
o) o AL BT ML

( o o ar
Frrubt, o - 1 .
) 't Product eindigt bij den term met S deze toch geeft den
[

graad van nauwkeurigheid van de ontwikkeling aan.




dan is:

T 1
F@) | I Mn =+ & |
Mo | 14 I ey e e
| Wie (0 Wi, (° m, a® |

Stellen we hierin:

! -+ ¢
pla)=-T0 4 M M =

Myt M, 1, ("

dan is-

1 . 1 . 1 o | k ) . |
F@) m TFg@ e L~ f@Fe@ =@ .. |

Deze reeks zal convergeeren als

| g(a) | < 1;
als a aangroeit tot «o . nadert ¢ tot nul.

155 U (”) _}‘ i (ﬂ)f — ([():7 _I_ .

is dus als een polynomium te beschouwen.
Wanneer dus m, = 0 krijgb men hier als quotient de
¢ r : 1
asymptotische ontwikkeling van - — -
F(a)

De deeling van twee asymptotische ontwikkelingen is
zoodoende teruggebracht tot vermenigvuldiging, onder voor-
waarde echter, dat de term m, van den deeler niet O is.

Hebben we de asymptotische ontwikkelingen:

1 g '

Flaeom,+ —+ —w+=8
1 a*
I“

on M (@oomty + — 4 — + =5
dan is de asymptotische ontwikkeling van 't quotient dezer
functies:
R I ’ S L
- J., (Mg — S) | BN (i, — S)= =

I.*! (N) - h‘l_
Fa) =~ m, N2 Mg
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9. Door directe deeling, van de asymptotische ontwikke-
lingen van twee functies op elkaar, vinden we:

Iy (a) _ m’, m me — M’y My i i
Fla)  m, iy 2 t

My M E — N Mg My — Hg Mg e + M= 1
| ~ - =
My e

v s Mo > — ila 1y 211 — ML T, 2 Mo~ 101 MMy ™ — 11 1,2 mg—2m, My My s —1 g iy ? 1

Myt ’
-+ enz.
De (n- 1)%* term is:
Min Me™ — 20 - me™ ety — mly M, 1
Mo H Can
M™ &y — Mg M1 ¢

Stel nu: L L Sy

?N.-,RJ‘_I

waar 7 dus een grootheid voorstelt, die evenals & en &,
bij aangroeiende waarde van a, oneindig klein wordt.
Er komt dan:

Iy (a) Ao
fl)

e ISR e

( a” ar

A
LN e

F( ‘
d.1. dus de asymptotische ontwikkeling van 't quotient
van de gegeven functies. Ook hier zien we dat m, niet
nul mag zijn.

10. Worteltrekking.

Ook zal een zekere machtswortel van een funciie, die
asymptotisch ontwikkeld kan worden, asymptotisch voor-
gesteld worden door de wortel van de ontwikkeling van
de functie.

is gegeven:

m o Myt ¢
F (a) = mg -+ D B =
n
(il (o (l

dan zal:




my , ma U

[F ()] = m,"r [1_. AL G AL e i

s | I =
Mo Ny A7 m, "

moeten zijn. Het tweede lid toch mag, volgens 't binomium
ontwikkeld worden, want door @ groot genoeg te nemen,
kan men de waarde van de reeks, die op 1 volgt zoo klein
maken als men wil, dus:

| T ]|lm-_» | 1(1 1) NS LN
pmea ' pm,  p\p 20m, 2las

LF(@)] T = i, [1 1

—

waaruit blijkt:
[ 1, 1, .
tim. | [E(@)] 2 = o P | = lime =0
=@ | RA=a0

: ' ! p - 1 m
lim af [F(@)]"" —my* — = — o [—o
= ' pomt Iy

enz.

. 15 . :
m. a. w. [F(a)] b i asymptotisch te ontwikkelen en wel
volgens de wortel uit de ontwikkeling van /' (a).

11. Uit het voorgaande volgt nu, dat een algebraische
functie van eenige functies, die elk voor zich asymptotisch
ontwikkeld kunnen worden, 6ok voor zulk eene ontwik-
keling vatbaar is.

Wanneer dus £ een algebraische functie voorstelt en
verder:

. 1y Wi My = ¢
Fl@)=me+—+—+....+——
(t (o 4 a”

nt' ' My~ &

B (0) = et s TR O T
i (3= L

- iy o LRt

Y S [} | - | | L r
Fs (a)=m", = ar o R & -
on2.

asymptotisch ontwikkelde functies zijn, dan is ook 't tweede
lid van:



i

Ah

|
A-H T Wn

all

S A0 1, Hasets) —A, =2 4 ...+
=

een asymptotische reeks.

12. Integratie.
Nemen we een fanctie F(z) die asymptotisch ontwik-
kelbaar is b.v.b.:
i e "
]()__}H”—J—__l__'—____'___—{—-_f_”ii
& ik

dan is:

gl " M\ s 1
o | | 1ita ny o o

j F(x) —m, — — Atz _‘_f 2L de-
. T al | i |

. T )

in het eerste

(Wij brengen hier de termen unt,
M

lid om integralen te vermijden, die geen zin hebben).
Nu laten we a; onbepaald aangroeien en onderzoeken
dan, wat er van het tweede lid wordt.

[ l F(x) — m, — L™ azi=
[ ' £ |

Mo N 1 my } | I, £n (1)
—_— = B T L - . (e
a 9 a2 '8 b n—1 an-! a1

We zien

r x
; 7 s dx
nod., f” —'_-’.“f— - y, I:, —Fr
mar u, de grootste waarde voorstelt, die &, kan krijgen
als z 't interval @ tot oo doorloopt. Dus is:

mod, ¢ n M |

“n
Vi — pl— ki’ -
mor. =2 —1 . { g1

u . .
zoodab ¢, =0 — 1 waar mod. o<1 18,
n
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Hieruit volgt, dat &, tot nul nadert. Bijgevolg is 't tweede
lid van («) werkelijk de asymptotische ontwikkeling van
't eerste lid.

Schrijf de integraal in den vorm:

20 - "
| ¢ nmy 1)+ m
{ Fae)—m, — — ’Q’.r' — l | Fx) —m, — s JH'.r‘
a, ‘ X | Ja [ o

waar «, een bepaald getal is, dan zien we, dat de eerste
van deze twee integralen een constante is.

Noemen we deze C; dan is:

o o

D’}" }]', ' (i
f F(x) — m, — A= = F (z) dx -
R ‘ £ t iy
, . 7
= m, (@ — a,) +m log —
‘ (ly
waaruit volgt:
it ; Mo
f Feyde=m,a +nw loga+ C - —— —
iy i
1 g 1 m, ¢
2 ° a2 -1 agnl

Door a een bepaalde waarde te geven kan € bepaald
worden.

13. Hebben we de asymptotische gelijkheid :
g8 fo+EAFE2AHF. . FEf,

waar /., , /1 enz. functies zijn van @« ailéen of van x en &
beide en veronderstellen we, dat de uitdrukking:

P =y
il
&

waar ¢, de som van de eerste (n - 1) termen van de reeks
voorstelt, uniform tot nul nadert (wat ook « zij) als & tot
0 nadert, dan is er dus een getal « te vinden, onafhanke-
lijk van « en alliéen afhankelijk van & dat tegelijkertijd
0 wordt met & zdodanig, dat:

e
~ i

ol (g — qgp) <. 5" ¢



B
Integreeren we nu:

5,:1 ry
mod { (¢ — @) do< 5" { edx
o I

~ Lo o

Daar ¢ onafhankelijk is van x, wordt dit:

X3
?HO{I j ('J _— q-'”) (l-l'- < -j.':” & (.]E:l —_ _f'“J

.ivl
mod. { (¢ — @n) de< 8"y

Lo

waar [lim.y =0 1is.
i=0

Hieruit volgt de asymptotische gelijkheid:

fl; (z, &) dx [/}, de + & [/1 da - -+ 4 & [/;, e

die we wilden bewijzen.

14, Differentiatie mag op asymptotische ontwikkelingen,
in 't algemeen, niet toegepast worden. Uit de integratie
n.l. volgt dab, wanneer een funclie /'(a) een asymptotische
ontwikkeling heeft, de afgeleide (a) tot asymptotische ont-
wikkeling zal moeten hebben de afgeleide van de asympto-
tische ontwikkeling van /'(a).

Dit gaat dus slechts door voor 't geval, dat F(a) voor
asymptotische ontwikkeling vatbaar is.

Nemen we b.v.h. een functie #'(x) zdodanig, dat voor
alle waarden van »

lim}|a* F(a)| =0

i =
is, dan is zijn asymptotische ontwikkeling identiek nul. De
afgeleide van de functie behoeft echter deze eigenschap niet
te vertoonen, terwijl de afgeleide van de asymptotische
ontwikkeling weél nul moet zijn. () is dus niet asymp-
totisch voor te stellen.




Beschouwen we h.v.b. :
F (a) = e~"“sin (e*) -
Hier is:
lim |a" e—%sin ()} =0
=
voor alle waarden van .
De afgeleide van de functie is:

g, ,,«.1‘_ 2{!. 08 ((;(F) g =0 -,*‘H.H (,;u:)

waarvan de eerste term voor lim a — e niet tot nul na-
dert; dus kan die afgeleide niet asymptotischi worden voor-
gesteld.

15, Geval waar differentiatie geoorloofd is.

Als een functie en zijn afeeleide beide door asymptoti-
sche reeksen voorgesteld kunnen worden, krijgen we de
reeks van de afgeleide functie door de reeks van de functie
term voor term te differentieeren.

Hebben we n.l. de asymptotische voorstellingen:

iy Hio Hiy

Fla)=my + ——+ —5 + — . (1)
It a* (1

211
ol . 1 P2 18
—=F(a)=p, + — -+ +—5 T+, ; . (2)
et ) = Do A | a
dan is bij definitie :

UM B Q) = a e i, A ST T e 3 ()
1 == of

R A == S ek ) e e R R R e )
d=ad

: o | T 1y -
hmm‘ Fla) — m;, — — :im: P e e vy T o P 1)
e | (o

v ; . Ny VO | ) .
lima! F () — m, — —— — Mg e ee s eee (6)

[ i [T

=

ez,



iy

e my e M1 | i
limar ! F(a)—m, — —— — e —
a=» | (@) = a a* a1 Hesa )
én evenzoo :

llimF’((r,):po............. ..... M (B
f=a0

Im @ F(@) — Dol =P1 « o o o iale e e (9)
=P

: o P

lim a'—’: Fo(a)y— P — iul— ::]f-_v ........ e (10))
a=wm 4

S [ U -

lim a> I e h e e L S e
uz:wf ']. (a) — p = ol 13 (11)

o ) Pn—1| _

Tim rﬂ’}l«f (@) — ps — ]u, e -‘l:]‘_l : (1)

(1=

Wanneer de limiet van een functie van zekere variabele
tot een eindige bepaalde waarde, of tot nul nadert, wan-
neer de variabele tot oneindig nadert, dan zal de limiet
aan de afgeleide van die functie niet van nul kunnen
verschillen.

Zij toch:

lim F (a) =m,
=
dan is dok:
lim I (a - &) =m,
a=®
wat ook ¢ zij. Dus:

|[Flato—F@) _,

Lin

(= &

of als men & oneindig klein laat worden:

lim I () =0

=%

Dit, in verband gebracht met (8), levert ons:
T =00 s A 2 Gl e ek o v 40R))]




]l.),u

fle=qop

A O

waardoor (9) overgaat in:

MO R0 =11 e e e (14)

=
Door (4) te differentieeren krijgen we:
lim fa F' (a) + (F(a) — m,)| =0 .. ... (15)

=0
Uit (3) en (14) volgt echter, dat 't eerste lid van (15)
1 is. Dus:

e U T (16)
Daardoor gaat (10) over in:
o | (e ie=0a R s s e . (17)
d=uon
Door (5) te differenticeren krijgen we:
i it m
lim | a* (1"' (a) 4 *1*3— | ~+2a ' Frla) — m, — Mll—0
a=m= L ' = |\ | il '
of :
lim [a2 F' (a) - my |- 2 {a (F (@) — mg) —my{]=0 . . (18)
=0

Volgens (4) en (17) is 't eerste lid van (18) pa - my dus
moet :
20+ my =0

zijn of

e T T g o (19)
en daardoor gaat (11) over in:
Af= in
lim ab ! 1 (@) - —— | — T e R (20)
= o3 l (lu ‘

Door (6) te differentieeren krijgen we:
i 2me | | == - . :
lim [u“g " (a) + — L - 2| :-%u-l Fa) —my — —— — —; ] et

== o0 a~ o ! ' (l il ‘

O

o 5 2| ey . Iy ~bai b] e
a 1 (a) =my a 4= 2my - 3 1% F (@) — m, — - ) — M2 |=0.



S

Volgens (5) en (20) is 't eerste lid van (21) ps -+ 2mag,
zoodat dan

of : Pa= —2ma . - s ... LB s L)

Gaan we op deze wijze door, dan vinden we in 't alge-
meen:

pr=—(r —-—1DmM—1 ...--.. . (28)
Substitueeren we dit in (2) dan krijgt deze den vorm:
iy 201s 3ms
gy = — e = = o e
(@) - s at

die ook verkregen wordt door de termen van de asymp-
{otische reeks van (1) stuk voor stuk te differentieeren.

16. 'T'weede geval waar differentiatie geoorloofd is,
Zij
P (2, £)
de oplossing van een differentiaalvergelijking:
dy - B
——=1F {-‘"". Yy 5)
e
met parameter & en zij:
S=f+Ea+8L+.. .
cen divergente réeks, die formeel aan de vergelijking vol-
doet, terwijl die reeks zéodanig is dat de asymptotische
gelijkheid

bestaat d.i. dat:

(O ) s __E'_...__En'l )
lim €2 [o -;-li = £ =lim.e¢=0

voor £=20
De functies / zijn functies van & en &1
Zij nu S de reeks, die men verkrijgt door S term voor




— 5l =

term te differentieeren, dan zal S formeel aan die diffe-
rentiaalvergelijking voldoen, die men verkrijgt door de
oorspronkelijke differentiaalvergelijking naar x te differen-
tieeren.

Om dit te bewijzen behoeft men slechts op te merken,

dat:
d*y _ (dF | dF dy
dx® (t‘f.l‘ " dy  dr

deelbaar is door &1, wanneer men weet dat

il 1 g
I = } ("I' ”1 ‘:)
o

deelbaar is door &+l

[IT. TOEPASSINGEN.

17. We gaan nu van eenige functies de asymptotische
ontwikkelingen zoeken.
Zij gevraagd
xI
' () = f e =1 (]t

« (l
te ontwikkelen, waar a positief recel en de integratieweg
ook redel gesteld wordt.

XL - . ]
I (a) = I‘ e =t = — ’ 5/ (A= ==
f.rl-'--f‘ u n g 1
[ "2!_‘_’“ [ e
. [ el o T b
| IFIS1 S 1, 4 1.8.56 _”,,_1.3...(‘;3214’.) _
el 925 1 98 b o a’ i o gan—l )



Jt

o

De som van de eerste (n-1-1) termen noemen we O s
hier gebruiken we (n—- 1) termen, waarvan de eerste 01s.
Dus:

3.5 ... (2n— © gt
ar | F(a) — S, | =+ 1—'3—'%)—,; Lt u”] T

o : 1.83.5..(2n-1) 2 dt
mod. a® | F(a) — Sal < — ‘ ) a,af
L

1.8.5..(2n-3) a"
Qn i dﬂu—l

<5

1.8.5...(2n-3) 1
= O " gn—1

&

Zoodat dus:

1.3.5... (2n-3)
: - 1.7 T a1 il TR e . e — dan e
](”l “’N ! f (”) -5“ | -‘]17}) L");, ””"1 — ]f“! _ U

{l —= o0 n=mxn = = o

18. Zij gegeven:

(v o] (.}f
Elay== |
! n=10 "N

waar ¢ een positieve constante <71 is.

De verhouding van de #° term tot de (n — 1)¥ term is
kleiner dan 1 als n groot is (behalve wanneer ¢ een negi-
tief geheel getal is) zoodat de reeks convergeert voor alle
waarden van «, behalve negatieve ceheele waarden,

We nemen voor « positieve waarden grooter dan n;
nu is:

_14 1 Al__ s 1) | " i n2 )?”L,_ |
a-t+n-_ a 1L _::_M | a '« o
(

Doen we dit voor alle waarden van n en bouwen we
daarna de oorspronkelijke reeks hieruit op, dan wordt deze:

4 Ag - As |

A
R AN Z e b n(a)

— -4~

17 (- ' ot




(v 4] ]
waar: A S et 5 = o S B .
n=1 n=1

Reeks («) divergeert. We kunnen echter aantoonen dab
(«) een asymptotische ontwikkeling is van F'(a) zoodat
F(a) dan berekend kan worden voor groote waarden van .

Zij:

:Il Ao A 141
‘5‘ — s = _'_ ...... + e 1 P I
4 I ? (=1 ar+1
dan is:
q el [Ret ne | nct (=1)2ne "] _
Moyt e, _— — = —— T . . — | =
& ( az ' b artl

n=1

LB ey (- b\l "’i_]_
] [ll ( u) | a-n

Dus is:
: ; 2 n o\ P+l en
Fa—S=2—-— =
i1 ( -+ n

(___ 1);1{4 ":‘ ”pl‘].(.u

a? | F(a) — Sy = *~ = e
| = ( ne=l Q1N
. @ nptlen . "
Nuiig: = eindig, zoodat:
nm=1 Q@M

; (= 1) Pl e el on
lima? | F'(a) — S,| = lim (- )" L — = 0.
(1= ot (e=a0 [t ne=] (l 7i-”

19. Gaan we uit van:

dan krijgen we door partitele integratie:

it
f P ]r“-—_—_:ukl,‘ :.}‘(” - l}:(r—‘.ln ~:,{ﬁ

+(a=1)(a—2)2* e~ (rr—gl)(rl—“’) (a—n--1)z¢-"e—*-|
+(a-1)(n—-2)...(a H)f pi=n=1



waaruit:
o0 = - 3 L))
2.7*_1 r,:f Uf_r’ ‘.j,'-l_l -1 d.!_- = _l _}_ (_{_7‘;_} .._;_ (,(J — _'I_..? ‘(L H) -‘i— el
- z 2 z3
(a-1)(a-2)..(a- %
_}_{f )(f_jn(_“‘,liﬂ +(a-1)(a-2).. (c'zfit).:“%':f e—Zpa—n—ldy

De eerste term i, van de ontwikkeling is 0, dus:

s 2

;-n.—l} F(Z) nﬁl ’__(”_ ])(H— ,)) ) .Ja—a+lc: I-,_,‘ -.:'.,.,Hn—l“rl—,-.

Wanneer deze uitdrukking nul tot limiet heeft voor
z— oo, dan is de recksontwikkeling asymptotisch; @ be-
weegt zich tusschen z en oo, zoodat altijd:

i

Er volgt uit: _

=1 F (2) — Sp1] <{a—1) (@—2)..(a—n)z2 "“““I =1y

mod 21 I (z2) — Sp—1 | <(a — 1)...(a —n—1) Zn—o-1za-n

<(a—1)...(a—n—1). é
Letten. we niet op het teeken, dan is dus:
iy e N e S G L)L S )
2= z=m (”‘—‘ff—"-’-)! <

is 2 weder retel positief en de integratieweg is de recele
as in 't t-vlak. :
Door partidele integratie wordt gevonden:

L}] n1
=Lt L2t 5
i s s il gk




Noemen we de som van (n--1) termen weer S,, dan is:

= o B
ot t

F@) =S+ et [ 5 ae

L ar—1

(ﬁ (”.

mod |f(@)— Suf = +1)1 [ %

Omdat ¢ zich beweegt tusschen x en oo, is altijd:

pr—t< 1
zoodat dan:

; . 2ot !
mod | f(x) — Sp| < (n-+1) If_'_ {,f. bt :Ef“ -

Hieruit volgt, als we niet op 't teeken letten:
. . f g el
limat | f(x) — S| < tim —- =0.

HH

= L=
21. Bij 't zoeken van de asymptotische ontwikkeling van:
0
di -
i ':-f [log w — log (1 —e¢~")| — e=™
0 U
maken we gebruik van de eigenschap, dat een asymptoti-

sche reeks geintegreerd mag worden.
Differenteeren we beide leden naar x, dan komt er:

f!!»’ e ,,l f 1{””' W — !“!’ (l — ”‘)l“’“ - e
f”.f‘ . o :

”
S 2
— ]- e~} logu — log (1 —e™") | l - {r""'”( S )thf
& ' ' a8 Plo w ev—=1
Nu is:
1 ="
— =ty *® T —_— =
lim [hw 4 fU{J‘(l : )J = lim - 771 = —
U=o (ak U= (G G38

want:
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JL i R e - (L1 11, T
" et—1 u2 U 5 i
il ‘1* 5—1 “‘ 1 _’1_ 9—' ‘-:" b

verder is:

11— (1+u)ev

*hz

w(l —e ")

/ j _ p—u
lim [,og iw—log (1l —¢ )

UL
U=10 [

want:
1 — (14 w) (1 — -+ ;_; ........
.en: w(l —e )= u(l — 1w
zoodat:

[e=™ [ logu — log (1 — ¢ :]L:

Hieruit volgt:
iy

Door invoering van de getallen

we volgens Noot IIT:

dyiss L ‘]JJ'” 1 B B
iz 222 wl, GO ML |

) 2n—1
Bariss

_|_ e & -

— 1 _1r1 1 Bils Bs 8l
T 2 x|l 2 T T A S
(2. : }_')',,(Qw.~-])!
(2n)! =
ORI NS s Tl 2 S -
et ey e R

T 1

1 lfi’—'m (
de 2.:'3 xJo "

ran BErNoULLL Krijgen

L
(2n)! —

By 5!

[\J‘

1

9

])rhf

15‘1 o

ud — ud -1

6!

On-1

[}“ +1 M
)” |'u .

J o

6! ab +

y Bpi1(2n-4-1)! ]

()” L ﬂ) ,..N

a !)lll]

!._nlﬁ

f
(2n-2).




Of bij integratie:
1 _Bl Bg I‘E:‘,

— P e e e flles s
H=l r 22x? " 43.xt 62af
v Bu + 0 Bu+l
(Cn)2a®n —  (2n+4-2)2 g2
of’:
B,

. 1
L b e - ‘ -
oo ( i e s ( ()j});:.‘.;jp

22. Asymptotische ontwikkeling van flog I"(2). 1)

Evenals bij de methode Cavcny gaan we hier uit van
de formule van Bixer: we beschouwen de functie voor

positieve recele waarden van z.

log I' (z) = ( ) log = —+- —Ji— log (27)+ O

waar
v by tg ( )rh
e = S\ U
i () I,.‘.!rr = 1

v v 1 o o 1 af
. = e el e |
L z =z 8 28 ' b 20 If 71l ;
}{___ ])n--l.,-'._‘n—l ] (,ﬁ, 1) 0 12n (H
@n—T)2n-T ' =1 J, 7:-1' 22
dan komt er:
"W S0 .{‘:; e ls _.un"
— (L 5 = v 5 — dx
- —9 = P T e . b S Laim
() Jo e _ 3 Jo ez — 1 ’ 5] Jo ez |
v vp ren—1
) ~7 . »J( . ])n— 1 ES da
s £ | | : I
?. o p2Nx : on — 1 Wig. eenasl__

- T f2n oy | d:r
-‘1" _l)j E'_‘.H Ilf {l'-'—_if:"',!.-’r'-—-]

1 Wiirraxker, Modern Analysis.



SRR

Nu is:

J‘T' 2=l 1 .
() = )}b
it B ) — 4n

door dit te substitueeren krijgen we:

g B 2 B 2 Ba 2 B,
P =1, 8 19z 5 4.3z 74427
. 2 B, EO N o S RN T ﬂ’f l
b —i| n—1. T ey R AR s Sl
) on—1 4.pz2n1 " (=1 zn-1 ) | g f,.i 2|

Omdat 7= positief is, zien we:

o0 Jn ”1): ]_ el \ ((. o R r *
.__/ = : (2 (ol f
[’, [ g2 — 1] - g2 T 22 | g2 — ] J S

o

want :

lim (1 aF f:_,): 1=tE

-

Voor de laatste uitdrukking kunnen we schrijven :
1 e (i
(2n-+-1) 22 _",, enr —

“n{]
4 (n+ 1) (2n—+ 1)2°

of :

Maken we hiervan gebruik, dan zien we dat:

; By 2 B | 2 0.
“ 4z 3 4.2 28 B 4.3.20
h) 1; 9]
..lg(_ l = 4__.‘_.." ,,—l--(,A 1\”..,:,4. (c
)" ..,n —1 4.moz2nl ] ) Zen—=1
waarin :
b
o '_/‘ n+1 .

T(n+F1)E2nt1)22
Voor groote waarden van z is dus altijd :

@< &
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waar lim e =10
E=w
sSchrijf de ontwikkeling in den vorm:
: : 2
Q) =Sm1T (=)'«

~

dan is:
221D (2) — Son—1] =2«
als we niet op 't teeken letten.
Overgaande tot de limiet zien we dan:

lim 2221 19 (2) — Sou—1} < 2. limae=0

De asymptotische ontwikkeling van log I"(z) is dus:
log 1" (2) o0 (, — i ) log 2 — z |- 1) log (2m) -
" (: l‘)rrr—] j—"“ 1

SR S
g E 5
s 20 (20— 1) gn=d

23. De asymptotische ontwikkeling van /7(z) 1) krijgen
we uit die van log I"(z).

S . _“_‘_. — .“’._. iy
f‘(.:‘) — A ) (f}.:)f‘" plodz S.d2
1 1 |, C- ¢ '
— e T\ | 2
— '.{_.3.1}" ] 4+ — '__._.'} |
waarin :
B By®
i =m=—13 (b= —— ! enz.
ST

Door de getalwaarden van de getallen van Berxournnr te
substitueeren krijgen weo:
Lok | 139
122 ' 9(122)2  B0(12z)p
o7l |
120(FW'|" '

L (@)~ o= 25 (2m)'s | 1 +

als asymptotische ontwikkeling van de " functie.

Wirrrnaker, Modern Analysis,
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94. Willen we de asymptotische ontwikkeling bepalen

Van:

(waar & positief is.)
dan gaan we uit van de formule van CAvcHY :

0 (Lr 3l g

T | e — ¢ | dx

Fofla:f e (de—il) e ==
g ( ) - ‘ = ( ) ‘ T

Vervangen wo hierin ¢ door a - dan komt er:

] | (-[(l”l‘]:.}-" — 'n-"

s f e By L :'r'f_r'_,,l
pr— (2T s 1)e ' 7

tog T(a-+5=|

=

Door middel van:

1 T plat+E)x __ po
f I:{L!’—*——Tf_ — ((i“I—-E —- 1)(7"'] tHE—

\ 1 (L “:l ’
= e | ot £
= |= e e 1 — — 1YEet — £2 pr| =
, 'Vf,l' e l £% — ] (” ) € 9] : : \U
S— c'f.‘l‘ (' L 1
T F—1 (L_—'_-l)
vinden we dan:
1 '] LK ~ : F v
f log ' (a—45)d& :f 1 _ e (a—1p) (i
% it bt et —1 o
Uit deze formule en:
(E—1)5) log rr:f (5§ —1[g) (e** — &%) {-‘f
leiden we af:
log I' (-} &) —a log a -+ a—log 21— (§=10) log =
- "w ‘ p-'.:'.l‘ _— 1 e 1 l s —-]77 k[ 1 , e f.'].i?
A—__r'l_fv'"-v-l =3 %1 | l‘r—l T | 2\ -;'-.

Door hierin £ =0 te stellen komt er:
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log I' (a)—alog a - a—log V" 2a - e log a =

] » ( 1 1 1 da
—_— =T o b oot
i ’.,_)- — 1 _I' i :2 ) v . J.

(d.i. formule (9) van Hoofdstuk I waar @ veranderd is in
—a, zoodat oo verandert in —eo, terwijl tevens de gren-
zen verwisseld zijn en daarna 't teeken veranderd is.)

Door aftrekking vinden we nu:

. 0 ,,E.r ~1 .| ed
—:,?0{;(‘{:[ | ——ﬁ:' — da.

o 6T =10 I

I(a-}-)
I" ()
De functie onder 't integraalteeken is eindig voor £-<71

en wordt nul voor a=c; zoodat voor a=c dadelijk de

ra+

asymptotische waarde: /log @ s Zloga wordt ge-
\ 7 _

log

vonden.

We bepalen de ontwikkeling alleen voor 1 == 2 = 0. Voe-
ren we nu de polynomia van BERNOULLI in, waarvoor we
de definitie van Wrirraker ') nemen. Het polynominm van
de n¢ orde wordt gedefinieerd als de coéfficient van

f”
!
in de ontwikkeling van:
el
et —1
L
et — 1
zoodat we hier dan krijgen:
"E" -] v T'n (‘-.‘)-"“
o —_— et MRS
¢ —1 n=1 nl
r.?: e 1 i -\i liu (;‘:)“””1
('-" — ] ne=1 i ! i

on dus is:
"517 — 1 '-) 1 = _\r I'n ‘E) a—a E |
= .-— - N7 -
er — | ' & [n=1 9! |

1) Modern Analysis, p. 938



AT

Dit substitueerende komt er:

I (e %) n (£) 2
0f ——r— 2 log 4= ) sssih 2
log @ off f_}r ‘"_l “, - !d
of:
B o (Y R (e g (G ) e R g (G ) s
_l L e d —i~J L5 el —]I oy S b e b

;J"J 1y {-’:) 72 p8% o -
) iy

Uit de definitie der polynomia van BERNOULLL vinden we:

i1 (:’)—'S

g2 (2) —2° — 2
3
g3 (2) =28 — - 22 +3DB12

In ’t algemeen is voor n > 2:

7 Cn(n-1) o nn-1)n=2)n-38), .
Il,l(“:’):z”# _2_ i1 b _L”_ B‘l =2 4‘ : ]_)_2;- 4
(n—1)(n—2 (n—5)

De eerste der integralen van 't tweede lid verdwijnt
omdat ¢ (£) —E=0 is; de tweede wordt door de inte-

: |
gratiegrenzen — =
(
Letten we nu op:

0 _ !
f I’.,"g f,;l_l ”’.r e (_ . ])?R . —

= 1

dan krijgen we ten slotte:

I'a -+ &) g2 () g3 (® g (® 95’
log I'(a) = 1.2a 234 ' 34a® 45a i

Dit is een asymptotische ontwikkeling.

95. Asymptotische ontwikkeling van de Besselsche
functie I, (r).



R =

We nemen de uitdrukking:

\ 1 2v—1 |[” 1
T — i = =t gV — 5 N
y ) Ve j'{,mpl) [_m“. 4 T " et PX
i/ -—E
X :(1 o= £ﬁ> e (l — ; ) F Eu’u -

A0 1 - 1
- Ir—1 N ot ,_,—_Ti il i\ r— 9~ 1\ — | .
— 0S8 '.l = 1 "'l,'., e "U ~ ' | T.?t —| 1— -E"— | H]?(-] l)

en beschouwen de functie alléen voor positieve redele
waarden van ..
Zoeken we nu eerst de asymptotische ontwikkeling van:

x*r ]‘o » L.
/‘(uj):f o= (1 L ;’:) du

waar k>0 is.

Door:

(I LE m) — g Sz: AL i (/.:Ji.. 1) (éif)df

o I % (L__ ] ) (/n' = ;.2) g (;I-,_ n +]) _(i”)ﬂ 3 ill.-.(/f' H){-“,( ”{

n! () n! 2

— ) (1t

"

te substitueeren, vinden we:

P o k(k—1)..(k—r-1
[ () ;;] gt el ( ( iair )( ) “Uuktr du -

1—1
4 k&= '(fl—H)f | =gk ""(”’ 2. ;) tye=n=t qg |
n. n' l
. “ !l e'_] =
=1t 1| 1 S EEED ST G e —1).. () |

waarin :
ol T SN n+1 ) A% k—n-1
I .Tf!_(l. ])" - ”)( ) f l p— fﬂ H—f) (I .:! ) dt‘;u'u,
n. &

1) Wirraggr. Modern Analysis, p. 200 (gewijzigd).




= e

Wanneer #—o wordt en n eindig is, nadert « tot een
limiet, n.L:

_k(k-1).. (];—-H)!( i )
o———— s =1} ==
7! 2 1t Jo
—, J/ 1 - i RS T_. 1
= S ERa (f) f’ paiSS

£ k! 1-f('i-.:+u—l—2) (r' i+l
—(k—n=-DN!" @m+D! :_) ‘

Hieruit volgt nu dat:

?!'%*i I" " '
[ g%tk '- (w—z)*dv diu=
.

limat.a=20

1
is, d.w.z. de reeks vertoont het kenmerk van een asympto-
tische ontwikkeling.
De asymptotische ontwikkeling van f(u) is dus:

fluy =T (k+ 1)} 1 = (E)! (-f,".’)r:

r1?1(k—1)! |

-l

Bij de ontwikkeling van:

P : 1
flf?f)zj et qk (l_ = ;H ) du
o i

verandert i alleén en wel in — i, zoodat we daarvoor
vinden :
e n (k+mn)! — 1\
fi(wy=1(k-+1) ‘ 1+ & - —L——I -L ( . i
' I o1l k=711 \ 2% |
Gaan we nu “substitueeren in de voor [, (x) gevonden
vorm, dan krijgen we:



of :

(,._ i___o,.)1
|5 il S e 2/
| ‘ | .

o) (00) (23) (22) (-8) (=5) (+-2) (-
41 (,.
- 2
..................... SUN I 1
cOSs H

WL 2
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\‘< 7

(B=

% (—1)y  (422—1) (422=9).... (b2—(4r—1)?)
U= ; @nt (8)™
gﬂ.n_l
~ (—1y+t  (492-1) (42-9). .. (412 — (4r--1)7) :
Wn = Y et (27— 1)! (8x)2r—1 e L

1) Pp en OQu zijn de reeksen, waarvan N. NIELSEN gebruik maakt
,Sur une intégrale définie”. Math. Ann. Bd. 59. 1904.
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BEPALING VAN SOMMIGE ASYMPTOTISCHE
ONTWIKKELINGEN DOOR MIDDEL VAN EEN DIFFE-
RENTIAAL YERGELIJKING.

1. De meest algemeene vorm van een differentiaal-ver-
gelijking is:
dy %y o
Flae,y,——,—=,..— =0 ..... (1
Yo 'da ' da ¥ e (7

fg“
Hieruit is —
“['.rul
grootheden. Differentieeren we naar wx, dan krijcen we

dntly | . . 7 :
/ :f"i’ in diezelfde grootheden uitgedrukt, daar de nieuw
f A pidinr

op te lossen in functie van de overige

oy , ,
optredende { ‘Idnm' de eerstgevonden waarde vervangen
i At i

wordf.
Geven we nu 2 een bepaalde waarde « en veronderstel-
len we, dat we voor @ ==« substitueerend, krijgen:

iy d=y
W, — U, H A p—/ ' 4 Aadih —
‘,/n 1 .”. =
Ky —1
dahs ').,

dan volgen hieruit en de gevonden uitdrukkingen voor:

o 0 LR 1 i
—e y enz.
((K,r"' ( (L o A/

waarden voor deze differentinalquotienten.



— =

Stellen we
y = y(x)
dan krijeen we de uitdrukking:
y — @ (xr) = g Ve (x—«) ] =

@, | a=a

=1 (_t-:) (r—a)q’ ((x)ﬂ— b (¢ ) n! '“""(_u)—l—...(?)

g Y . P .
waarin ¢™ («) de waarde van ——- T ~is, als @ daarin door « 18
vervangen.
De reeks is dus te schrijven als:
(x—«)? ()"
Yy =, (T—a) ey 57 % +...4- e “+....(8)

welke formeel aan vergelijking (1) voldoen zal.

De coéfficienten e, , «,+1 , enz. zijn volgens het boven
gezegde te bepalen, wanneer we slechts @, , @1 ... ap_1 ,
kennen.

9. Nemen we als voorbeeld de vergelijking:

T j }: o8 o et £ Sy 14 W, S (4)

dan willen we een reeks voor y vinden, die formeel aan
de vergelijking voldoet. Stel dat voor x—

dy\ .
(;z 1), 70

Y, = tg=—0

is, dan moet

zijn, Uit de gegeven vergelijking volgt:

dy ax-by ‘ -
e . . e e et 1 e (H)

il 48 €Tre

“dly ax—+by 35 :1.;'
( = S == s R D)
d LS o o b= o={) 2 €T m=0

=0

of



— 69 —

dit geeft:

of

Uit (5) vinden we door differentiatie:

Ly\
P y_ ((( =D r—{—?) 2 (!( v -| )

u’ = a3

‘ i” dy
(d« " ( (T}u— (” i fr_;)) i

Door hierin (6) te gebruiken, komt er:
>y dy

(r:’ Y ( o u’ a)

ol ox? 3% 0

:/~ iy ff-' VG l‘/..'[

ff r—) (n' .:"—' h‘r{.i: 0

(n’: ;;) _ 2a
d a2 0" n e

Zoo doorgaande krijgen we als oplossing:

waaruit volgt:

of

_{fr e ()5

die formeel aan (4) voldoet,

3. Nemen we nu weer de vergelijking (1):

u

t A = I (i -
12 g a1.2— a4, . +n 1)!—7.1'”-|--.i.



F (@, sy Yy - Yy =0

en berekenen we de afgeleiden van y voor x =0 door
naar « totaal te differenteeren en voorwaarden te stellen,
dan krijgen we een vorm:
Yo Y
ap—=ap. A9 e S o e
Y =14+ ©+ Gy
Is deze reeks convergent in zeker gebied, dan stelt ze
in dit gebied een. integraal voor.
Immers, als we # door deze nitdrukking vervangen in F'
dan zal men een functie van x verkrijgen, n.l.:

F= A4, -+ Ay v+ A 22 -

Bij hypothese zijn » en zijne afzeleiden zdo gekozen, datb
I en zijne afgeleiden nul zijn voor x—= 0. Deze afzeleiden
zijn voor x=0 4,, 41, da..... dus is de ontwikkeling
van F identiek nul, waaruit volgt, dat de aldus bepaalde
waarde voor y een integraal van de vergelijking is.

4. Stel nu, dat de gegeven differentiaalvergelijking een
integraal heeft, die asymptotisch ontwikkeld kan worden
b.v.b.:

niy n v
Y o My — 4+ = (8)

Hebben bovendien de afgeleiden van y tot de n® toe,

elk eene asymptotische ontwikkeling, dan zal (8) formeel aan

=0
voldoen. Drukken we n.l
Yy Yy Yyonve Yy

nit op de wijze, zooals we dit veronderstellen en substi-
tueeren we deze ontwikkelingen in /' dan zal men, door
de bewerkingen uit te voeren, die door I’ worden voorge-
steld, de asymptotische ontwikkeling van I krijgen: deze
is echter identiek nul, want (8) is een integraal.
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Hieruit blijkt dan, dat de asymptotische ontwikkeling

van y formeel voldoet aan
I =={u}

Janneer er dus integralen bestaan, die door asymptoti-
sche reeksen kunnen worden voorgesteld, dan voldoen deze
reeksen formeel aan de differentiaalvergelijking.

De asymptotische ontwikkelingen van de integralen moe-
ten dus gezocht worden onder de asymptotische reeksen,
die formeel aan de vergelijking voldoen.

Wanneer echter een asymptotische ontwikkeling en de
afgeleiden er van de functie #' niet identiek nul maken,
maar er een ontwikkeling aan geven, die asymptotisch nul
is, dan zal de gegeven ontwikkeling niet formeel aan de
vergelijking voldoen en dus ook géen asymptotische ont-
wikkeling van een integraal van de vergelijking kunnen zijn.

5. Door middel van het voorgaande zijn we somtijds in
staat de asymptotische ontwikkeling eener functie, die zulk
eene ontwikkeling bezit, te vinden, wanneer een differen-
tiaalvergelijking bepaald kan worden, waarvan de functie

pen integraal is.
1 atz
o= — ]

Zij b.v.b.:

Deze functie bezit een asymptotische ontwikkeling, zoo-
als we vroeger (Hoofdst. II. 2) zagen. Door differentiatie
vinden we:

1 i - 1
.'{y e r"-"[ f_ﬁwjr dz - r"“f % dz
rf,lf Jo o 0

dus:

of':
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De asymptotische ontwikkeling van de gegeven functie
moet nu gezocht worden onder de asymptotische ontwik-
kelingen, die formeel aan deze differentiaal-vergelijking
voldoen.

Zal nu de asymptotische ontwikkeling:

iy

Mo m,
Yoo, +— +— + ... —
Z

9 Ly grte s o
Tl L

bestaan, die aan de gevonden vergelijking voldoet, dan
moet :

iy 1y 2o
N — — — e LT VP
i a2 e
en dus:
07— Loy Ma—imy Mg — 20l
—= T Y =M T S
. i XA 152!

De asymptotische ontwikkeling van het tweede lid moet

1 . Dit eischt:

herleid worden tot —
ol

me—03 mi=—1; me=my; MmM3—2ms ; enz. zoodat de

eenige asymptotische ontwikkeling, die voor y gevonden

wordt is:

Yo bt
' 4 5] r=

welke overeenkomt met de vroeger gevondene.

6. Eveneens vinden we de ontwikkeling van:

s

F () Tf eRE L=
Differentieeren we, dan wordt:

iy = . {f 9y e=2 =1 (f
(o )

waaruit
5 rli -

a .’If —_ 'ﬁ{-[r‘ ——



Stel nu:

Hiy Hia
Yoo iy - o Akl
Hh &T=

dan vinden we bij substitutie :

2m, =0

2m =1 enz.
waaruit dan volgt:

Mo— Oismt—" i ma=—0 s — =) eNnz.

%

zoodat de ontwikkeling wordt :

ey 1 1.3 1.8.5
F(z)eo —— — 1 L SGH AL
; 2 9243 193 45 2 T :

evenals in Hoofdstuk III. 14, gevonden is.

7. 0ok nog:

0 t._l‘-f
F (.:')'_“f = dt =y

'i.',l I J 0 (:.l—-f
s e

waaruit de differentiaal vergelijking volgt :

ol 1
Y — - Y ——
: . i
Stel weer :
1y o s
I oo g ‘{' : "}I‘ o “!‘ Al
RE = o

dan krijgen we bij substitutie :

Me—03 Mu=1; Mm=—1;ms=2!; my=— — 8!:

zoodat de ontwikkeling wordt :
g 1 1 1 g1 3!
F () o Sy -+ — - -+

= o al

zooals ook vroeger in Hoofdst. 11 17 gevonden is.

enz.



HOOFDSTUK V.

TOEPASSINGEN 0P DIFFERENTIAAL
YERGELIJKINGEN.

1. Fucns heeft bewezen, dat de noodzakelijke en vol-
doende voorwaarde, opdat de integralen van de vergelijking:

Jm y ‘fm-——lf
a1y ( ,n’f_ _:__ _.L o T— O by H)

d.l"”‘ j}l f!_.,-mél

voor #— o niet onbepaald zijn, daarin bestaat, dat in de
nabijheid van = de coéfficienten ontwikkeld kunnen
“worden in convergente reeksen van den vorm:

M s (ly

Pt o= 4 =y i e
M) 4 2
{)n ])A; (J| 1

—ae - . |

/‘:f'j'wl'—_,;f'{’ Fp A O A © 5]
¥ a o ¥ \ ...... {....)

) o Jm e !m-l-l ~{_ 7’5”‘3 ik

P — i I 4{:;ll+] .‘,’-UJZ{-'_'

waar a, b, ¢,... constante getallen zijn.

In dit geval zal iedere integraal de eigenschap bezitten,
dat ze niet oneindig wordt, wanneer ze met een bepaalde
macht (afhangende van den aard der vergelijking) van
vermenigvuldigd wordt.

Deze integralen hebben gewoonlijk den vorm:



| (4] Co | | ",
L& KT = — R . ‘
1"z " a? l (3)

waarin de waarde van » bepaald wordt door de vergelijking:
r(r+=1)@r+2)-rt+m—1) —-ayr@r41)--
e (rtEm=2)+bsr(r+1) r+m—-8)—-+ £1,=0.

Zijn er. onder de wortels van deze vergelijking eenige,
wier verschillen geheele getallen zijn, dan correspondeeren
met deze groep wortels, integralen van den vorm:

1
a'a '_q 1 (1) 4o ( ) log x -t 'J'-r--l( 'l" )f'uy = .f':l = (4)
L @ 1 1 :
I

waarin g (-_r-) convergente reeksen zijn van den vorm:

l'l fj.") -
e N DRI

De integralen heeten dan alle regulier in de nabijheid
AN — <oj;

2. Stellen we nu, dat nabij x = w:

y tho
It L1 Al i, Ak :;__‘.'
o o 1 T | 2 i

h] ?-’
— Al b 2 b
= by 4 - | R /

i e e LR \

Rtk
— T e
Pm — lo " I 72 I .

dan kunnen de integralen nief alle regulier zijn.
Substitueeren we dan in (1):

!I'._ir.r“'.” ____...---'(?)

dan komt er:
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s m . du  omm—1) . a2 1
[ u—:-—lu’ l;ﬂ—l— 37 == If"
mm — 1) (m—2) . du
h+ 31 < dw r
la {1
+- (”” II_. _@L L (l: _I_) kum 14 + ]_H i— ‘lr'_ U +
T i 1' da
L {m —=1)(m — 2) ”_J{fi Al
1 2 (= |
r b 2 /
+ (bu o j, + h:__.:_.... ‘ @t —2 kl_ 1= am—8 au }_
t a2 | dz
(m — 2)(m — 3) d>u
T oE T
B T, +
l‘ 9] ]-' 3 .
(;‘n e ]———i—i—'H‘ ")‘u it %—t—m!"}“ lo 2 Yu=0-(8)
aome | ) e

De coéfficient van u, voor zoover die niet afhangt van

w, is dus:

PPl kl__ (lou’”#l __{_ h”“m—‘l

_"_..-f

]i.u «

_%— lu () (S))

Bepalen we nu de waarde van « zdéodanig, dab dit stuk
nul wordt, dan vinden we s waarden

Stellen we dan:

o) «o

Y=

5] . Uy

Pt

.U

dan krijet de vergelijking bij substitutie den vorm:

"oy
da™

+(

.+ ( __

|

-y

(-1

dm=1y 1



_I_

e i

Trachten we aan deze vergelijking formeel te voldoen
door een reeks van den vorm:

' A4 A
U— 1t ‘,-'1,7 + L 22 !
| @ e |

waar 4, ==0 is en waarin o; zdéo bepaald wordt dat do
coéfficient van den term, waarin de hoogste macht van z
voorkomt (d.i. dus m—1) nul wordt. Bedoelde cofficient is:

,.‘1,-, (]l'”[ 01 *'L ]] I)
zoodat :
Ly’
Kol
gekozen moet worden, terwijl 4, willekeurig is.

Nu worden de :u‘,lltmomw olgende codfficienten Ay, 4o,
enz. bepaald.

Hh= —

01 -3

" . A (Tt CT=El s,
De coéfficienten van x¥ =, x y 2% en %= zijn:

Ao [l' 4 Er o1 480" 01 (o0 = D)1 Ay ko’ (01 = 1) (s -2)

A

Ao jls' 4= ko' or 81" 01 (o0 = 1)+ 4" 01 (01 — 1) (01 — 2) -+
+ Arl! + Fa/ (o1 = 1)+ 8" (01 —1) (1 —2) | -+
S ol Ll e g (D= ) TR O e ey (241-%)

A kst oy 482701 (00— 1)+ 1i7 01 (01 — 1) (0 — 2) -
-- ro' oy (0r —1) (0 —2) (g‘r[ —3) |
Ay ' ko' (g —1)- f 81’ (“l —1) (01 —=2) b’ (01 —1) (01 —2) (01 — 8) | -

+ da |l Iy’ (01 —2) + 80’ (01— 2) (o1 = B) |-

.fﬁ

_{_
.}-

Ag | I3+ Fa! (01 —2) 81" (01 — (ut —
Ag |l = ka’ (o1 —8) + 8

= AL e R (o — A Wt o oLt e S St oo (@t1-5)

Aa (=T (0= 8) s e+ et e e N (U]

Aol bRy orF8a7 01 (00— 1) -+’ (01 — 1) (01 —2)

o’

(0 - -3) {0 - i)l ’

3) 4t (01 —2) (01 —3) (01 —4) |

rifon(or —1) (o1 = 2) (01 = 3) ' 01 ("1 -1)(e1 —2) (01 —3) (01 —4)| -+
Ayl Ry (o0 — 1) =82 (01 — 1) (“1 =2)-+h'(er—1) (01— 2) (01 — 3) -
01—1) (¢1 —2) (01 —=3) (1 = 4)| -
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n .

In ’t algemeen is de coéfficient van x*'~

-‘51«.‘4 i"n’ ‘G" ‘ZC,HH]. 0 _E_ e + hol 01 ('Jl - 1) O (1’1 — 7 + 1” —E—
Al ”’-;afl _'_ Jf’n—‘j ((’1 — 1) + §'n—3 (i’l — 1) (!31 = 2) L .. ‘| _
21‘3 | z’n—ﬂ":‘" ]t.’-n—ﬂ ({'1 _2) ‘{— 8'n—4 (‘.'.’1 _2) ({’] —'3) + .. ~; 7f7

|
+ Ay o'+ (o — 1 + 2) 4 8,7 (o1 — 7 —+ 2) (0y — n "F])i

+ rin——l &]1,_}_ ]"w, (f.‘l — N —E— ])2

Men vindt dus een reeks:

’ g — et pll \.-1,, -+ = = ;1.? S oA '
- | e xr- |

en m—1 analoge ontwikkelingen, die correspondeeren met
de wortels «o, a3, .... &n

3. Deze ontwikkelingen zijn in 't algemeen divergent;
ze voldoen formeel aan de differentiaal vergelijking, maar
zijn geen integralen.

Dat ze echter niet zonder beteekenis zijn en voor de
bepaling der waarden der integralen, voor groote waarden
van «, gebruikt kunnen worden, heeft Porncars aangetoond.
De belangrijkheid van dit resultaat blijkt daaruit, dat vele
recksen, die in de theoretische sterrekunde oebezigd wor-
den, divergent zijn.

4, Nemen wel) een differentiaalvergelijking vian den
VOrm :
dmy

il ar=2y d 1
“dam

41— T Pm— + . y=0..0
, f‘ 1 ['I'.l'm"l | | !Hi l(’,f: }_./ ., ( J
waarin de coéfficiénten p polynomia van den 2" graad zijn

en beschouwen we 't eenvoudigste geval, n.l.:n = 1. We
trachten # uit te drukken door middel van een integraal

_f;ifilr(:) 280 ] ot R e s sl

1y Prearp. Traité d'Analyse. 111
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waar de grenzen £, en & onafhankelijk van x zijn (deze
worden later bepaald) en waar » (2) een functie van z is.
Differentieeren we telkens naar @, dan vinden we:

(?f ';1 3 -
vy — [_ Y (2) 2 e=0z

dzo
F]i'?: - f" v (2) 22 e (lz !
da? 13 Sanmaarane (1)

.........

_]'m' 7 ;‘
Y, — [ﬁ_] y (2) 2 e=* (2

dam
Nu berekenen we de producten

dy o d"y

00 U IR oy
A (hay (lam

Door partiéele integratie wordt gevonden:

£ ¢ & dr (2)
%y = fu] y (2) @ e dz=[r (2) ¢*] — f-| ( 1].( ) ez s
So L1 S0 L=

a :—;—? :‘:—rI v (2) &z e dx = [»(2). z¢** :;‘J - fi'i d (';!(::)' :),.;,;- (lz

Ji, 'L _ 7 k1 Hz).2m
Y —, ' (o). :”’4*”’:!.:':[!'(‘.").’.‘”'“(‘:"']._l ’ 1) ),-1*' iz

44
(’.f"“ {r 3 1) % iz
De functie »(z) en de constanten £, en & denken we
ons nu zoo gekozen, dat

9 1 : ¢
[r (z) 05 ] () [» (2) 26> ]_l =0 ; enz. [» (z) 2 ex ,l‘.' —{b}

Zetten we de coéfficienten van de gegoeven vergelijking
in den vorm:
}U(,:_JH,)J"][ hn v M :"fl;’.']'!'l Y LT f} hm

dan wordt de vergelijking, door gebruik te maken van
(12) en (15):



- .., T sim—1
f,; [_Uur?(r 2)2 ) S Gy d» @27, i e
S0 dz ; (z

De uitdrukking onder 't integraalteeken nul stellend,

komt er:
, r?r
(Ao +ar12m 1+ . ...+ p_12+ am) — p
—[b, 2 —(u, m —b) 21 — (aq (m—1)—bg) 224 . .-} by ] =0

of:

i» (2 .
P (z) Q#(;} — QR)» (=0
oz
waaruit volgt:
_l dy (z) __ (_)( ) = L ey e I fiase
v (z) iz ])(v Y z—wy T :_“m.

. - hr}
Hierin is « = — en stellen «; « .. . «, de wortels voor
s

van
123 =)
(aannemende, dat P (z) géen dubbele wortels heeft).
Integreerende komt er:

log (v (2))=uz-+4Fy log (z— ay )+l log (2 — )1 -+ km log (z— @)
of:
p (2)=¢"® (z—ay)" (z— w2, . . (z—ay)km,

5. We nemen aan, dat er geen enkele betrekking be-
staat tusschen de coéfficienten van (10).

Beschouw éen der punten e« b.v.b. « en trek door dit
punt in de richting van de nogatiw “as een lijn even-
wijdig aan de (reéele) Z-as na z=—:Z-}-iy gesteld te hebben.

B Alsintegratieweg nemen

g.d a we een lus beginnende in

Z ~ " 't punt — o op de Zas;
het punt £, beteekent nu
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in de figuur het punt — o op de Zas. De lus geeft dan
als integratieweg: Jp » -} cirkel C, met straal » om « als
middelpunt, + » £;.

Het punt ; valt in 't oneindige met £, op de Z-as samen.

Veronderstellen we verder, dat 't recele deel van x groo-
ter is dan dat van —u d.w.z. de correspondeerende inte-
graal :

f?l e"* (z— ) (2 —aw)ke o, (z— w0, )m g7t (2
=0

zal dan een zin hebben (omdat = -} «<Z0 is) en de voor-
waarden :

[ () ]‘ —0; [»(2) ;,,:.--];" =0....[r(@) 2mex ]‘ =

zullen vervuld zijn. Zdo krijgen we dan m integralen van
de gegeven vergelijking.

6. Gaan we nu na, hoe die integralen zich gedragen
voor groote positieve waarden van .

Aan de algemeenheid wordt niets te kort gedaan door
« =0 te veronderstellen en x te vervangen door @ — i,
daar w eindig is en @z zeer groot genomen wordt; d. w. z
we stellen =0 ten opzichte van .

We krijgen dan de integraal :

f:f“t (: = ”-_-)k‘_‘ Vi et (: i “u.’)k’” e=r “I:.

Deze bestaat uit drie deelen, n.l.:

I' :_f -1 :"-'1 (:__“:)I.-: S (:“'*“m);""‘ et ”1:.



I, nadert tot nul, wanneer z, positief zijnde, onbepaald
toeneemt. Voor z negatief en kleiner dan —# ziet men:

| zks (3-——(1-3)}"‘“. .. (z—ay ) im I <8 cafid

waar ¢ een positieve grootheid is.
De integraal zal dus een absolute waarde hebben, die
kleiner is dan:
—® ~(r—g
f 0 qz

en nadert dus tot nul voor limxz =ow.

Evenzoo nadert het product van de integraal met xv , waar
7 een willekeurige constante is, tot nul, voor lim & — .

Hetzelfde geldt voor I, zoodat I, nog te onderzoeken
overblijft.

Beschouwen we hiertoe eerst de integraal :

f 2k g% (fz
5

en zoeken we de limiet van 't product:
kit f zk e*% (2
0
VOOr &Z=—00.

Stel zz = — y; op een getal factor na komf er dan:

fy"‘l e~ dy

langs een cirkel K met straal 7z, nitgaande van een punt
rx in 't vlak van de complexe variabele . We vinden dan:

[ yh =¥ dy = f e~y yhdy -+ f ik oYyl dy =
K e (

— (2" I‘)f. e=Y oy Tdy
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voor &= o, wordt dit: .
(e — 1). I' (ly -+ 1)

Dit product is niet nul, behalve wanneer ky een positief

geheel of nul is, want in dit geval is
(r,‘lm'i.-l . 1) —0

en I'(ky + 1)=£0.

Is %y een negatief geheel dan wordt: Pk +1)=owen
dus 't product niet nul.

Gaan we nu terug tot de oorspronkelijke integraal.
Voor voldoend kleine modulus van z. zullen we:

-
:i.‘, (: — ).f;‘-. — (‘:, . ”m)f.'m
ontwikkelen in een reeks van den vorm:

Ao 2 Ay 2t b Ay 2hat2 L e,

Alleen de eerste term van deze reeks geeft voor &= =
een limiet die van nul verschilt, als de reeks vermenig-
vuldigd is met ('t geval &y = positief geheel of nul
wordt uitgesloten).

Nemen we de straal » van de cirkel € voldoende klein
en beschouwen we weer:

.,'f-mfs Ao 24 Ay Zhtl - oo e g
2

We breken de reeks
Ay + A1z~ Ao . . . .
af bij 4,2" zoodat de rest dan R, is.
Nu zijn er altijd twee getallen « en ¢ zdodanig te be-
palen, dat:
| 4 | < pop®

Dan kunnen we opschrijven:

w antl l -1
AN

| [l'?r

S — ".'.;l

Z0o hebben we dan te onderzoeken de som:



VL

ghatl f Ay e= da 4 ++ + xhtl f A, 2Bt gzt (dz | pfatl f R,zMe=dz. . (14)
G ¢ (#
Door zz—-y te stellen gaat de laatste integraal over in:
Ru y.’.'; ey (?U
K

waar K een lus is in 't vlak van de variabele y, uitgaande
van 't punt #z en er in terugkeerend, na om de 00orsprong
gegaan te zijn. De modulus is dus, op een getalfactor na,
die onafhankelijk is van % kleiner dan de modulus van

“ (_]- !‘J)n—}-l

1l —7ro
Omdat verondersteld kan worden dat
ro<_1
is, kan men dus n groot genoeg kiezen, opdat de rest van
de som (14) kleiner is, dan welk getal men ook wil, on-
verschillig welke waarde @ heeft.
De moduli van de eerste termen gaan over in die van:

: 1 : 1 e
f;—i,,_'r;"'(_z—-’f(l‘a/; -[ Ayyhtle=v dy; -f Agy’at? e=¥ dy; enz.
K LJK LK

't Aantal is eindig; elk is zeer klein (want {i is zoo klein
men wil = z=17) behalve de eerste, zoodat de limiet der
som gelijk te stellen is aan de limiet van de eerste term,
welke niet nul is. Dus heeft 't product van de integraal
met zft! (behalve in 't uitgesloten geval van /iy = pos.
aeheel of nul) voor =0 een eindige limiet, die van nul
verschilt.

Geven we « echter en willekeurige waarde en nemen
we u 6ok weer aan, dan krijgen we de integraal :

i :f{;n“:(: — Y (z — aa)e, .. (2 — ap)medz

cenomen langs de lus, die met « overeenstemt,
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Om tot «; — 0 teruggebracht te worden, moet z dan ver-
vangen worden door z -+« en daarna moet 't zooeven ge-
vonden resultaat toegepast worden op:

LT iRk
Zoo0 is dus gevonden:
lim [4y e—e, ahtl | =2 0 en << oo
= @®

als #y de integraal is, die overeenstemt met «
n =] 1 1

7. Uit het voorgaande is nu een asymptotische voorstel-
ling af te leiden voor

yp e~ phatl 1)

Schrijven we n.l.:
i ,,—rr,.,-'f.f.-ﬁ—l f— ‘,.I.‘. 1 ! .1” N !f RSP
. e

| gkt I A, Fotness de L it { Baztie®dz . .. .. . (1)
47 JL
waar de integralen genomen worden langs de lus, die de
uiteinden in 't oo heeft in de vroeger aangewezen richting
en die om z=0 gaat, dan zien we, dat elke integraal it
twee rechte stukken en éen cirkelvormig bestaat. Van de
rechte stukken weten we, dat 't product van de integraal
met een willekeurige macht van @ tot 0 nadert als z on-
hepaald toeneemt. We hebben dus slechts te beschouwen:

pati { A, ¥ e= dz - - 4 ah *"'] Ay 2latn gst gy Lo
Jo C
ko] [ !: wky pzi o
- & in 2 €% (2
J O

Nu is:

1) Porscani, Acta mathematica 8.
Precarp, Traité d'Analyse 111
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. . . A
plifl f Ay Zatl o= dz — it : [f yhatle=¥ dy |-
G ol e

rr
-+ g2k f yk1tl g—v (Zy:’ =

— z'lf {(,J'n[l = 1)[ ,),:’l Hop—y (h.f—"

— 411 (e2nik1 — 1) [f' (k1 +141)— f yki1+l o=y dy ]
rT

Verder is:

L
lim I:,--;;} f yki+l g=¥ dy J — 0. (y willekeurig)
T = ' A

en ook de limiet van 't product van de laatste term van
de reeks van (15) met een willekeurige macht van @ is
nul, als # onbepaald toeneemf, want:

gkitntl [ R, 2k e dz
(#

op een getalfactor na.
Schrijven we:
y{leEtiE gl

> ‘1’ (@it — 1) 7 (11 — [ gt ev ay |+
1
1=0 .l. ' L l
+ aftl h zk1 g=1 rl"]

dan vinden we volgens 't bovenstaande:

lim aryy e™1® ghtl =

Tr=um

) N‘ 1 ) x
= lim 3 @ ZLgmin 1) [1'(1.~1+/-|-1)_ f YRt g m:[-f-

T=0Q I:O

~+ lim kel | R 2k e (2
by

T = w

A ;
=3 ’j (e — ) (k414 1) lim &

l=0 £ X =



Zoodat:
; o CITH T - :
,h_ni [r’/w“‘” ki +1 _;..i,,_:ﬁr(c-mh_l)! (],-1—{—f—i—1)] .lf”‘={.f_il;«'-

waar ¢ een waarde is, die voor = o verdwijnt.
Dus is:

x i N

o= gkt (@i 1) [, gy 1)L BED) A ’("*‘liﬁl)]
een asymptotische voorstelling.
We kunnen dus schrijven:

= 1x k=12 _ 1) ['(fey |- 1) {1! A (i"'.i_l? + ...

A

L An(lr+=1) (B 4-2). .. (Bi4-n) | &
alp 2= n ' ' ‘I_ n
1} 1

waar lim & =0

L=

't welk ook in den vorm te brengen is:

e O 4 0 e i e ‘ jJ. I)-‘ .l) c"“
S R S i S
of:
. = P 1ok Al
o LI a2 ky l.‘j), < i} <l ha SRS i
.“rl ) { i | v I "3 { i .;'”!

Onderzoekt men op gelijke wijze de uitdrukking:

dy, :f 2 ¥ (2) ez
r[.a' T

dan vindt men:

] ) !
dy, — g% p-ki-1|R |L S By - 1
il [ X o L e |
waar tim. {.I m——

r=a
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De termen, met uitzondering van die, welke # bevat,
komen voort uit de differentiatie der gevonden reeks van
Yy, (overeenkomende met 't geen in Hoofdstuk III gezegd is.)

Ten slotte wordt gevon(‘len:

"
d"y,
rj[m

1
Tn | m
Jin I el

= L"*l*ltT ~|—

- R

waar mete—;

A — B

8. Substitueert men nu deze waarden voor:

e dy, d*y, o dmy,
Yo o w0 qmr V7 dam !

in de gegeven differentiaalvergelijking, dan stelt men de
s b 1
coéfficienten van de opvolgende machten van = alle nul,

omdat »n een getal is, dat zoo groot genomen kan worden
als men wil. Hierdoor worden dan de coéfficienten P ge-
vonden.

Door (9) worden m waarden voor « gevonden en met elk
dezer waarden komt eene ontwikkeling van de hier ge-
vonden vorm overeen.

De uitdrukking, zooeven voor iy, gevonden, valt dus sa-
men met een dier ontwikkelingen, welke in 't algemeen
divergent zijn.

Hierdoor krijgen wij de stelling van PoINCARE:

De m divergente ontwikkelingen van den vorm:

I J
waﬁwﬁ(ﬂ+fwl§+“)
HA £

zijn de asymptotische voorstellingen van m integralen, van
de differentiaal vergelijking, wanneer w positief’ blijft en
onbepaald toeneemt. 1)

1) Porncar¥. Acta Math. 8.



= (eley

9. Dit theorema van PoiNcarg blijft onveranderd, wan-
neer men, inplaats van te veronderstellen, dat alle codf-
ficienten van de vergelijking

, dm?, i (?JH—I” I
Do (ﬁ,} gl (I.!—’”:_ e _{_ Pmy = 0.

van den eersten graad zijn, aanneemt, dat ze van wille-
keurigen graad zijn. We zullen dit niet uitvoerig nag: an,
maar willen liever deze algemeene stelling toepassen op
de Besselsche differentiaal vergelijking:

2 /. 2
ig_klliﬂ4-(1—f,)ﬂ—:&
o €

T da 2
Stel nu:

Y =6, u

dan komt er bij substitutie:

= x ) de 2 &=

Stel

on verder:

dan wordt gevonden:

20+1=0 of ¢==— 5

(0*—1%) d,+ Ro—1)ed =0
}(g—— I)" — p2 | ;]1 *l" (.3 y—-."'{) 14 ]J: ()

;(9- ‘_:)': — 2 i ,'f-_}‘ll' (2 g= 5) ((;l;::'—_”

waaruit:



: 1
{ g e 1—__1 1
<17 (2”_1) t 4L0 2(‘ « ALl
(.2_ _E)_ (_7_ 1 2 Y
= —(2_0—3) T da i 2. 4. « ki
(»-2) (DD (=-2
lm_({‘—z)g—i'z 1_—_44_ {r= 4 1 1 ;
s (20—5)e ~ o Be =i 9.4 .6 e
enz.

Deze substitueerend komt er:

E oo (}.__,_ 1
ST 1
2,

(-9

) N 1
== e P = | B == —— . e . — L
Y : ‘ 9.4, « =

2(( T

Stelt men hierin « =17 en «= — ¢, dan komen er twee
reeksontwikkelingen :

21 1 (WP-1)(E-9) 1 1

i 2w 1.4 9T @in)?
f]::/},‘ﬂ'i“";f'_)fﬂ[]_ _Lij— ] = 1 ] “!V{}r‘h - l.’ ("1'"1' _g) 71‘“. . 1 S
' 4 (—2ix) 4 4 21 (—24x)?

Volgens PoixcarE zijn deze beide ontwikkelingen asymp-
totische voorstellingen van de integralen van de BESSEL-
scHE vergelijking. Om hieruit de asymptotische ontwikke-
lingen der integralen I, (x) en Y, (x) te vinden, heeft men
dus slechts lineaire functies van #; en ye te nemen en de
constanten behoorlijk te bepalen.

We nemen dus:

I, (®) = Ay + By

Om A4 en B te bepalen maken we gebruik van:

' 2 ] d \
Iy oy (1) = (—2)" l/”;:_ ( r  dx COS &



waaruit :

: IR\ §2
g (@) =( —) sinz
/2 T

, 2 \Nh (sinx
1“/-: (,:r) = (-——) ( — 08, .:')
e A
. 2 \'k f8—a2 | 3 cos
Iy, (1) = (“—) (—,ﬁ ST - — ™ )
T A= b

enZ.

= 1 3 5} -
Stellen we nu: » = 53 g1 oo enz. in ypoen y.
dan komt er:
‘;f.!' ¢ -1x
Y1 TN 9,1)s — 2k

R, pir ] ) A, {.-—f.r l
SV = 2 (1_ i ) I — (H_ i ) :
G 3 3\ N 3 3
I = ?ﬁ::(' T & ) Yo = o 1+ = ';,.;-):

LN(z) == Ay, y, -+ By, y

-

(3=

Uit:

volgt:

Uit:



volgt:

P —————— O T] B
iV 9x B iV 9

zoodat in 't algemeen uit:

S (%) — A Y B R (16)
volgt:
= 2';1 Ti 2';_1 i
¢ : e
..;1 — —_:—— cn ,bJ e
iV or iV o
of':
g =t vt
Iy (&) =7 5= - ' gy

We hadden de vrije beschikking over de waarden van
A4 en B, die willekeurig genomen kunnen worden; we
hebben nu die waarden gekozen, welke de hier voorge-
stelde uitdrukking voor I, in overcenstemming brengen
met de unitdrukking voor I,, die op andere wijze gevon-
den wordt.

Schrijf 71 en ys als:
. 42—1 1 1 @P-D@2-9) 1 1 1

1Y — e* 2= -' 1 — i T{ af o — —ﬁ———-—i_—— 2—-' T =g -t
g @r-D@2-9@e—2) 1 1 1, |
T LT R T T T TR
S O Vs U U W (s 1 s R SO SO U
Ya=¢ il —r—" 55 4 ‘91" T 2B
L@@ @25 11 1 |
FABAE R e B S Th il k|
Ky
Stel : T — ’4 Le=1t;

we zien dan:



1 . 2 4,2 —1 1 1 .
Yy — —= o p—il NC S N 7Y =1t 1} —
I"(")_"a'yf’z?i [L : 4 O FRE)
(4r2—1) (422—-9) 1 1 1 : i
= B R g A A
(472 —1)(4r2—9) (422 —25) | 1 1 (Umn ol
i i BT et ] =
= _'__}__ (el — -—.f) = (42 ”,I,),,_(-‘Jﬁi_;_,,,s,)_) ) L i _11, . LV}_ I
i 2nx 4= 21— 2 el |
I i pmte=l 11 @Eo9eo9s) 1 1 1 |
-'l/ Ina 4 i8] 42 3! 82 a2 |
_ V2 Ll (2=1)(422-9) 1 1 |
l//-'r“’i‘h“z { ‘] = E ’2! ‘_T_? | |
1 2 () )
DAt 1('0.9 f-‘] H(_‘i_}, ) =

H—-,——._
"-‘ 2N
H:J
=
o

[ S 4w |

I 2R | (av2=1) (492 =9) S 1 IR e/ =1
V‘r"—; 'I — —k—_.{.:-]‘ — L 2' . 2’2‘;,_, | s 1k i St (.l —_H‘li‘ﬁ Jf) }‘
P T ety L Ly 9
s G “1 1 C o1 9 ..‘fJ.‘\ .rHr—il 1)

Hier vinden we dus weder:

Oy Qar
I, (x)n I/ Pu Sin (.a‘—':’-l l ;r) -+ @, cos (.:'uh‘li -;r):

evenals in Hoofdstuk ITI, 23.
Voor oneindige waarde van 't argument werd vroeger
reeds gevonden:

B AL 2y —1
I, (v) = l// — S (.r.— : o ;r)

dit is de eerste term van de zooeven gevonden ontwikke-
ling voor lim x== d.i. voor zeer groote waarden van .

10. Om I_, (v) te ontwikkelen gebruiken we:

Iy, (@)= ( (—1)": l/ ( = rh) sin @ .



waaruit voor »—=1, 2, 3 enz. volgen:

bO|

3 0SS @&
T ) — —]/— x="l (x sin &+ cos x)
~ T
i 123 c0S &
:—l/—--(sm:—{— )
T

jsmr 3 —ax?
- 08

. enz.
Stel nu: r—=— ' ; —3, ; —3, in 7, en ys dan komt er:
{,J'.r' e %
== o ' Y2 —

t.f,r 1 : _“
.”’I‘.*:;\-I: EW 1 — T;_ 3 o, - —

,,h‘ g—iz 9
Y1,—8— s l—ﬁﬁ—ﬂ> ;;._.,__ (1 ..__7)

Uit: lr_ljl,: () — A 1,1y -"— ”H'g’_l;_.,
1

. 1
volgt: A=7ees A le/q_r

[

Uit: l’ s, kl) p— ./1?,1 a, *}‘ I‘J,UJ‘ Al

Ll s a8
volgt: sk == Yra en B=—i o
Uit: [ﬁ-"}‘._. (-’.) = .‘["ll. "5;: W{ﬁ 1:.’!—:. r'J'
] 5 S p JE— ]
volgt: A=— T en b= — o=
Uit: Iz, () = Ayy,—y, -+ Bye,—,
] 5.k, Tohil
volgh: A=—1 l:"'/‘_!‘:” en B=—z Yo :

In 't algemeen zal uit:



= B =

I, (2) = 4d1y1 -+ By
volgen:

r—1

T "E%l"’
f} =—=— en B,=- 17
41~—-l/,, en 1 [//i)-_r ..... (a’)
2y — =1
£ 7 1 ‘ %—17r| i i
O . —_y (.’t’)— l/2;r \)l" ,?/I —I—f' "/.3 \

waaruit gevonden wordt:

2 | (41-—1)(4:-—~‘J) T 1 RRE] | Oy 1
I (z)= I/T”;_ . 37 g g b | eos (,,-_{_._1__”,)_
- 2 b2—1{1 (H2-9@4”2-25 1 1 1 |z u:_1
l/r_a TR T T e 31 0T 4 AF ot lam( -+ )

11.  Als » geheel is vinden we:

T ST @=1)@2—9) 1 1 1 _ 0
b=y l// r%}] - 42 ) 21 22 22 . :W“('Tw ":4—_" .r) St
| 311 @2-9)d2-25) 1 1 1 | Op—1
e [ e i e DS Y e s e Veniis'y - VYO M P
! I/TI Sz (11 42 3T e "‘1’“’“(" [ ")

Hieruit vinden we dok, dat voor geheele waarden van »:
I, (@)= (—=1)" I_, (x)
Voor »==0 zijn I, (x) en I_, (x) gelijk. 1)

1) Door » te veranderen in —» blijft de diﬂ’eruﬁti:l:xl\'urgeliiking
onveranderd; dan is er nog cen oplossing n.l.:
o0 ]
e 2 —1) (402 —0) 1 1 1 I .y 2r1
Iy (2) = l// T l = flf'f g1 " 22 1 Ap ik 5””(" ar A Hps

il 4 —9)(dr2—25) 1 1 Oy -
4b l/ h ] Lty :Ig i 20) —r CTO ;r'ux (‘_*_ :__i__‘i{:_! - )

. -1) (4»*—9) 1 1 D —
Wiy I p ) = I’ /T ' 1— ‘“' « 37 ‘912 =t=ise : o8 (J'w{»— -{.I l':r i =
/2 i1 (=9 (42 —20) 1 1 iyl
— l// e ‘]-—-, 1 ._.1:'7‘}——!-... { sin (J-{- T .:)

Dit is dezelfde als de zooeven gevondene,



12. Stel oAl =
dan is in (16) en (17):

SR e e
T i 2 T | Zoa s o s S (e =
De gevonden particuliere oplossingen #; en 7 komen

overeen met die, welke uit 7, () en [I_, (x) afgeleid

worden op de volgende wijze:
Zijn:

..
[

g — A I, (x) +B'I_, (x)
ya —AL 1, (x)+B11_,(x)
dan vinden we, omdat we:

I, (w) = 41 + By

en I_, (@)= 41 41 + B1 ye
hebben aangenomen, dat:
% a3 i} 2 T il 2w
4 = — % V. —E— R
1 -+ «! . 1 - e
. wl : w9
Ll e
1 4 e 1 - ot

genomen moeten worden, om de gevonden particuliere
oplossingen #; en . te verkrijgen uit de bekende functies
I () en I_, (x).

13. Bewezen is: 1)

f/],(fC)_z | ‘ = . . | ,
=2 L @— (42 L )+ DT ) — |

ot | =t

i

[

't Tweede lid kan volgens de stellingen uit Hoofdstuk 111
asymptotisch ontwikkeld worden, zoodat I, () een functie

1) Forsyra. Differential equations, p. 161.
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is, die,

asymptotisch voorgesteld,
worden.

cedifferentieerd

14. Uitgaande van:

el @=(—1"T T

vinden we op geheel analoge wijze

- yar e 42— 2
(,-):_l/,, "l =1 (42—9) 1

mag

‘ R | e r—1 ; f

-l-- :j} S |fu.s XT— —1 .r‘ aF

,] yan 4;~—1.1 42—9)(4»2—25) 1 1 , | .7  2¥—]

TV az 8z |11 42 g1 922 S\t g
Eveneens vinden we:

» A _' '/_/" '2*- | (4}.:.:.'% ‘] ) (‘j_ P2 g) 1
)__,,{.:J_l/ =1 o .9

] 2 Ari—L(1 ($r2—9) (422
o rd ——

bS]
i

. SISO ST O S
! 42 g1 gEpa (P
15, 1

Door in de bekende betrekkine
; 1
V,—m —— |f()s: o dl, —T_
b!H (8
te substitueeren :

Iy = p sin « -
en 1 7,,:?/:.&1”(«-!-}.:)-

: /9
wWaarin l/ = Pr=p
T

O — 1
on

Ir’ (OS¢

=g cos (e r)

79
" . —
1 I e (tJ” =

gesteld zijn, komt e
}':-‘."" s!; ’ﬁ, [HJS! l(}”‘yf”ff [ quu) —-,utt.u.'muw 1 { LOSUSI )

— (€08 « cos vt — sin « sin ri)]

= — ) cos « |- q sin «



@ |/

TR 2N [N
(@)oo |/ — — DPacos | x— :
T2 | 4

3 &Y

98

of

}'E:l e

Door in:

Oy—

—_—

z| 1

|

— P,co8 (,I".-—-

Y_,—=sinvw I, cosrm .Y, ()
evenzoo te handelen komt er:
o

— —— p 08 (« -+ va) -+ q sin (e 4 17)

_ S gy—=1aa el I ,’
—NC08 | - -A_;-—f.'r"'*v;):.l =8N | T —

_ i 2r—1 |
J) St | T e - 7

4

rz)}

Resumeerende krijgen we dus:

o 991 I
SN\ &— i ) == () COS

Dy —
"f'f'“ (5 (,:'~--H"1 ]—

9 — 1

of:
= ] yar ' sin  2r—1
7p) / - o 8 AT —
_— Vi .T_{f‘ " ~_1

16.

@ |

() cOSs

2v

o 1’1_,
' n

0

)
“

.r) - l (l)“

17.
tinalvergelijking:

/ a1 ) “I‘_’H
+ (ba?+-ax®)

L

1) = (Fra?

] (e - /

s

ol

'T) + (211_ -‘1‘[‘“(.’“{7—-—*

2r—1

4

,r) — G sin (a

g

2

_1.7\ |
)

= 8in v (p sin « - cos «) = cos v (— peosa -+ Sin«) =

Nemen we verder nog als voorbeeld de differen-

)y =20



sy i a2y ( X r?r; : 17 i i
da ( }ﬂ Ta:‘-’kly (T _}_ ) (h (]" o 2 r ‘4.::) yi—u

Door hierin y =e’*. u te stellen, krijzen we een derde-
machts vergelijking op fe lossen ter bepaling van drie
waarden voor A.

) 7 1
Kiezen we nu Y = 3 en k= =
b )

dan vinden we:
B d2u f . 7 ) due [ .. 7. ol : :
et Dttt iy R SR YT -(:’,/.‘—’ = ity T /_ mn

A N e 0 r " du 3 f 1 P2
(et [y s i o AfF ]
Ll s M el B e ) /! -",-g-f’ — 0.
(¥ T G s G = s
Nu stellen we:
R G 22 - : =) \
i B g v e (18)
waaruit volgt
|
f1:l ’ /_':':‘— s "‘:_—‘I
b 3

De vergelijking gaat dan over in:

S : {i b\ d*u ; 7 '
d a4 (::/. = L A SN (fg 19 L .1-2}_,1' 10 L\ du
da 5] ) das gy r ' o a2 ) dx

stellen we nu:

(1-» R AL 2 )

dan krijgen we ter bepaling van o en van de coifficienten A :
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A, t”{“ -1 H“_ : ] Z'”{”‘—I) I /”_]!, = 1'{]' ( 3. — —) H——l (U—Q)- ( }——(){n-—‘ Ll/ | (f =

5 ¥l —
,.1_,(

A1 {(e—1)(e—2) (e — 8)+ble—1)(e—2)+/le—1)+h] +
+ A"(3’ ——) 0—2) (0 —3) - @b} 0) (o—2)+ 1/ g+

,‘L
—l—41 l(%f ——-rr—> u—_;]——lh-l" :I-—()

,l_ ](u_—‘))(n—- 1){0-—4)----“{.'1__‘) (“_,) = /(”_‘. E h Jg
bk :( = ){9 —3) (0 — 4+ (2r~+c)(o — 3)+ At .r;{ -
2 ]

—}—:‘1-41'(.‘3}. — : )(n—-kﬁ)ﬂ - |r: At

De recurrente betrekking tusschen drie opeenvolgende
coéfficienten is hierdoor bekend.
Uit de eerste dezer vergelijkingen vinden we:

M-+

) e —

7—‘3/

NG

) u—f’)—I—/ b-ff‘i ={)

A, is arbitrair. We krijgen dus drie particuliere inte-
oralen: is elk met een arbitraire constante vermenigvul-
digd, dan vindeh we door optelling de algemeene integraal.



HOOFDSTUK VI.

VERVOLG.

1. In de hoofdstukken III en V is een kort overzicht
van de methode van PoiNcarE gegeven; daarbij is vooral
gelet op het toepassen in de praktijk.

Latere schrijvers zooals Kxgeser, HorN, JAcoBsTHAL en
Weser hebben differentinalvergelijkingen van de eerste
en tweede orde onderzocht.

De methoden van de drie eerstgenoemden zullen we in
't kort vermelden, zooveel mogelijk echter weder het oog
houdend op de praktische toepassingen.

[. MgerHopr vAN KNESER.

2, Kxpser onderzocht de reéele integralen van de diffe-
rentiaalvergelijking :

d*u | il | s _
e = o U=
dzZ " A g TR cerea e ()

waalr :
— | ”l | ”'H’ |
M — Oy =t = ™ = = =S
j 1 | v o 1
!)[ f.ﬁ..
Py = b, -+ - -1 — R
N o

asymptotische ontwikkelingen met recele codfficienten zijn -



o T

De gezochte integralen kunnen allen door asymptotische
reeksen voorgesteld worden 1),

3. Aan het eigenlijk onderzoek gaat een algemeene
beschouwing vooraf over differentiaalvergelijkingen van
den vorm:

9
Z—’g:f(’a )

waar f, binnen een zeker interval « <" x<C"h, voor wille-
keurige waarden van y eindig en continu ig en steeds 't
zelfde teeken heeft als #.

Verder geldt de voorwaarde, dat een reéele continue
integraal van de vergelijking voor het geheele gebied
binnen 't interval ondubbelzinnig bepaald is door voorge-

=The dy
schreven waarden van y en 77

Nu worden de volgende resultaten gevonden:

1°. Van de functies y en S’: kan er binnen het inter-
val niet meer dan ¢éen nul worden en deze niet meer dan
¢en maal.

2°. Wordt verder nog geéischt, dat / tegelijk met y
toe- of afneemt, als = een bepaalden weg doorloopt, terwijl
't interval zich -aan den positieven kant tot in 't oneindige
nitstrekt, dan bezit de vergelijking twee soorten integralen,
maar ook niet meer dan twee.

De eerste soort omvat die integralen, welke steeds aan-
aroeiend of afnemend + o« tot grens hebben. De verhouding
van twee zulke integralen heeft de eenheid tot limiet,

Tot de tweede soort behooren die integralen, waarbij 7 en

1) Untersuchungen und asymptotische Darstellung der Integrale
gewisser Difl. gl. bei grossen reellen Werthe des Arguments. Crelle's
Journal (1896 - 99). Bd. 116—117—120.
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dy
Lhy
ander steeds afneemt. Twee integralen van de tweede
soort zijn identiek, zoodra ze in éen punt van ’t interval
gelijk zijn,

tot nul naderen, terwijl de cen steeds aangroeit, de

4. Onder de beschouwde vergelijkingen ressorteert:
=y "
== (@24 P@)) e« v i (2)
(l
waarin
lim g =0
r=ao
en ¢f een positief getal is, terwijl bovendien wordt aan-
genomen datb:
I ¢ (x) de = eindig is.
De integralen van (2) zijn tot de twee zooeven vermoldo
groepen te brengen, n.l.:

i ],’l UL (I 'l""‘l) el e e (:;u)
die steeds aangroeien en voor w == tot 't oneindige
naderen en

Yya=DBae=*(l+e&)......... (89

waarbij 7e en tot nul naderen, terwijl de ecen steeds

s
.
aangroeit en de ander steeds afneemt.

De codfficienten By en Bs zijn constanten: voor @ — w
gelden

limeyg =limeg=Ilimey = limts =0,

b, Vergelijking (2) wordt nit (1) afgeleid, door in deze
te substitueeren:

Uu—yec- l[._‘J ih dr,

In de daardoor verkregen vergelijking:



d* ’/ Z =

is de coéfficient van y een asymptotische reeks, als de
coifficienten van (1) asymptotische reeksen zijn (volgens
de stellingen van Hfdst. I1L.)

De vorm (2) wordt nu verkregen door:

15 o, 5
€y — by— VT "= —

te stellen, terwijl verder voldaan moet worden aan de eisch:

1
C1 — Z)l-— ) (L, tly — )

-

6. De resultaten in art. 4 vermeld, vinden een gewich-
tige toepassing op de asymptotische voorstelling van de
integraal van een lineaire differentiaalvergelijking door een
divergente reeks, die formeel aan de vergelijking voldoet.

In 't bijzonder toont Kxeser nu aan, dat elke integraal
van de differentiaalvergelijking:

js'l‘?/(—ft“—r + 5+ '-):”

waar de codéfficient van y een reéele machtreeks is, waar-
van het convergentiegebied niet verdwijnt, asymptotisch
kan worden voorgesteld door een reeks:

!f [ ¢ % _l_ = ar 'l_:‘;'“|" T _}_ meegl

7. Analoge onderzoekingen stelde Kygser in omtrent
differentiaalvergelijkingen, wier retele integralen oscilla-
torisch zijn d.w.z. integralen, die voor groote re¢ele waar-
den van 't argument on(.-mdl;; veel malen verdwijnen. In
't bijzonder wordt de vergelijking:
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=y ' )
Iig‘st(u—% e R L S .):U
(I ol | 4

_ : 3 1
onderzocht. Ook hier ontbreekt de term met — .
€T

Nadat vooraf aangetoond is, dat alle integralen van deze
vergelijking voor groote waarden van  voorgesteld kunnen
worden door:

Y= Cy cos ax—+ Cs sin ax -+ ¢

waarin C; en Cs constanten zijn en

lime=1lime =0

r=a | T=m
wordt de asymptotische voorstelling van deze integraal
gegeven, n.l. als:
3 | Py
S S P U .

(3] «y,

EIER:

| A
of B - Y 4 B4 4 (B wdes =
2 Y L

W COs . ‘ «, -Jﬁ

! |

waarin «, en 3, willekeurige (C; en (% van de vorige
nitdrukking) constanten zijn.

8. De Besspn'sche vergelijking:
I 77"y
oyl du L 70

dx? ! 4 din —.‘_(' g

wordt door de substitutie:

= U—— on pe = !— — b
|z y
herleid tot:
GY 2y =0
2 -

Daardoor wordt als algemeene integraal gevonden:
Y (e, cO8 X+ 3, 8inx) Py, — («, 8in it — o cos ) O,

waaruit duas:

1o == (ttg CO8 2=+ 3, 8IN &) Pyy— —= (u, 8inw — 7, cos 1) (),

V x V @
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(die gemakkelijk te herleiden is tot den vorm, gevonden in
Hoofdstuk IIL art. 25).

9. 0ok voor ’t geval, dat de bepaalde integraal:

J’_l q () d

niet eindig is, worden uitdrukkingen voor y afgeleid. Daar-
door wordt dan de asymptotische voorstelling van de
integralen van de vergelijking:

=y 5 1 Cy
P ey s ay
o= it e

met reéele coéfficienten, voor recele oneindig groote waarde
van x, afgeleid.
Deze voorstelling is:

€1

s 1 o
< ] | e
i i | = e )

. T
H o

waarin «, willekeurig is. De coéfficienten e« , «, enz.
zijn z6o bepaald, dat de reeks formeel aan de vergelijking
voldoet.

Voor negatieve waarden van a krijgen we dus integra-
len, die nul worden voor x= w0 ; al deze integralen zijn
dus alleen van elkaar onderscheiden door constante fac-
toren n.l. «,.

Is a positief, dan hebben we door dezelfde formule de
asymptotische voorstelling van alle integralen, die oneindig
worden voor x==o ; de limiet hunner verhouding is in
dit geval de eenheid.

10. De gevonden resultaten worden door KNEeser ten
slotte gegeneraliseerd voor de vergelijking:

__..:'. E1 At =11
gz Y O=0

waarin:
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/' ('(.‘) —qs + }.— lCl _{_' q (') i

Kunnen nu een positieve echte breuk ; en twee posi-
tieve constante getallen g en g gevonden worden, zdo dat
voor & =g

|2l g’ (@) | <<g1 en |g@) | <o
zijn en dat verder

f-‘ -—-—‘ 7 () | da
T o

een eindige grootheid is, terwijl de functies ¢ (x) en ¢ (x)
continu en @ en ¢ redele constanten zijn, dan is:

(RS TSR |
kleiner dan zekere vaste grens, zoodra x> g is, terwijl
dan ook de integralen van de vergelijking, evenals hunne
afgeleiden voor groote waarden van wx, tusschen eindige
grenzen liggen.
Die integralen hebben dan den vorm:
[

| o |
I'ur o g (4
[ 2 g f

Y | il s
y= C1 cos 5 log w—+ax I - Cs 8in
‘ | 2 |

waar C;  en Uy constanten zijng terwijl
. . (e
lime = lim —=0

€Tr=w = .

De algemeene recele integraal van de vergelijking:

2y (T ' o |
it e { A f B e ﬁf_.l‘..'. :(!
dat Y ! Lt R B |

waarin de codéfficient van y, voor groote waarden van .
convergent is en de constanten « en ¢ redel zijn, wordt
dan voorgesteld door de reeksontwikkelingen :

4] 438} 1
b= (u,, k;w — ‘!* 0 : . ) COS (--)-— ."H_(/ i »;'- u,r') l
r i 2a
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« en [ zijn reéele constanten, die te bepalen zijn; «, en
g, zijn arbitrair,
11. De oorspronkelijke vergelijking:

dPu ) du
AR IS
dz P G

heeft dus, voor 't geval dat

d=p2 =20

b e
(‘O — br) r E_ (fr)"{ U

is, integralen, die asymptotisch voorgesteld worden door:

€1

1 . 1
gt I —n — it o o Lo
5 ) oy | 1.l 2
( a =1 Ca ey e ey ek

e wanneer.

¢, = 0 i3 door:

1
-.r’— Ill
e = S

o LT

1I. Meraope vAN HogN,

12. Vooreerst houdt Horx 1) zich bezig met de verge-
lijking van de eerste orde:

{1 :
k-l (:f—:{::',r;/(.t',;ij). St gL 1]

waarin % een geheel positief getal voorstelt en / een con-
vergente machtreeks voor kleine waarden van | 2| en
| # | voorstelt.

De integralen van deze vergelijking worden \'()Ol"(mtvhl
door reeksen, welker termen te bepalen zijn. Deze recksen
zijn, zooals aangetoond wordt, convergent voor voldoend
kleine reéele positieve waarden van @, wanneer het recele
deel van f (0, 0) positief is.

1y CreLLe's Journal Bd. 119 en vig.
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13. Vervolgens onderwerpt Horx de gevonden integraal-
uitdrukkingen, die voldoen aan:

ST ! ! ;
a1 &Yy (@t x~as = ) y=b, 4 by &~} ba 224 . (2)

4

(waarin de machtreeksen voor voldoend kleine waarden
van @ convergeeren) aan een nader onderzoek en wel:

1% met betrekking tot hun gedrag bij nadering van =
tot het onbepaalde punt =0

20 ten opzichte van hun gedrag bij omloop om dit punt.

Eindelijk nog worden die waarden van x, in de omge-
ving van x=0 bepaald, waarvoor de integralen gegeven
waarden Kkrijgen, in 't bijzonder bij de nulplaatsen der
integralen.

Het onderzoek onder 19 vermeld, geschiedt door in (2)
te stellen :

’ T

v
zNf
1 -kt

e Y e
Y—U Ca 2

waardoor de vorm van de vergelijking dezelfde blijft, maar
de coéfficient van @ den vorm krijet:
Ly ‘," ({1 ¢ '|" (o e “l" e + (), ak,

Zonder aan de algemeenheid te kort te doen, kan a, = 1
genomen worden.
Wordt nu:

‘(_', S 0 e vy 'fii:_l.)
e Jech =1y 2h =1 v O Y L (3)
aangenomen, dan wordt als algemeene integraal van (2)

covonden :
f ~ 1'., " | - hl Wy
y=0. ¢ ¢ [ 2o

J o o

.]-i—---f—'—'-frl.l‘.. PSR (3

De integratieweg begint bij #=0 in zulk een richting
dat: lim t=0 is,

x =1

14, De algemeene vergelijking:



— 110 —

;’;j;"-"}“l (j’l
dix

+(A+aye+as a2+ ... Fapx?)y=b, by z-}- . (5)

wordt formeel voldaan door:
J I I P e 2 o e e ey
waarvan de coéfficienten te bepalen zijn.
Nu voert Hor~ % integralen van (5) in, n.L:

Thy +byx4....
Yo = -1 f danliizn tde

k1

(Uit (4) door C=0 te nemen). De integratieweg gaat
uit van x£ =0, z6odanig, dat:

(4m—1)m 4m-+1)=

g . v / .,
5 < arg.r< . ————
9 [ /) 57

Verder blijft & alléen in deze sector en in de beide aan-
grenzende, d. w. z. arg.x blijft in 't gebied:

4m—3 4m-+3
2k ROt - 2k

Wordt nu een functie aangenomen, waarbij dezelfde
integratieweg gebruikt wordt als voor v, n.l.:

I = i1 [ il

dan komt er door particele integratie:

ir

f A+ xtas 22+ ... ap2k)er—*-1 Irf.:‘--.r"'!——rf =11 de

(7]

of':

]‘.‘}‘ L8] l‘. 1 1[ ¢ e 'l" il ]‘..!_;‘_.[ == ! J") lrl-wrI =lypl

Hierdoor wordt dan gevonden:
n

= """.'-:hn lf.t_!_ hi ll 7!7""{7!"'] l,," T l’,l lu-l ey e I',.'.' lni.j.

y = {}

of:
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oD
et S, 1 o . oy : =
I ) [Tt S L s U0 s G R )

=)

—Ontilnt1E enzi ...

Stelt men:

Ym— = C -'f'l _%_ &p "
=10
dan wordt bewezen : | & | <e
wanneer: 72 ] < 0,

waarin ¢, een positieve grootheid voorstelt en wrg. x in
de aangegeven drie sectoren blijft.
Zoo wordt dan gevonden:

n
U O = f-') .’I'l
At:ll g
. dm—38)m 4 11—~ ) 1
voor: limax=0 en ,.(_J_H_E___i)_.’___/m.(,_.“'_/ (4m--3) w
3k e Iy P 2%

15, De algemeene integraal van (5) is:

¥ =C.t"1 4y
Beweegt @ zich naar 0, zoodat:
om0 1

< A < ——

2k 2%
terwijl C=<0 , dan is:
limt='=ow en dus ook limy=w. Voor deze erenzen
van toargument is dus g, de integraal, die asymptotisch
door de reeks wordt voorgesteld,
Verder vindt Hory, dat voor:
4dm-1
2k

d$m- 3

< (rg. <= Al
2k

T

elke integraal van (5) (uitgezonderd als (=« wordt)

asymptotisch voorgesteld wordt door:



Yyoo 2 ¢ T

Het gedrag van de integraal in 't geval onder 2% ver-
meld wordt bepaald door convergente reeksen.

16. Wanneer in de vergelijjking:

i

kA1

e +(l+tmaetact...a)y=b+ha+t...
=7 PIF

a; géen geheel getal is, dan heeft de vergelijking een, in
de omgeving van z =0, eenwaardige integraal, die voor-

gesteld wordt door:

welke in de verschillende deelen van de omgeving van
2—0 verschillende asymptotische voorstellingen toelaat van
den vorm:

an__
1 . — L] _‘_'_!_," 1
A (k--1)akl &

ez -
Yy =coteraxt...—dme St e

waar:
Co et ..
cen reeks is, die formeel aan de vergelijking voldoet en
in 't algemeen divergent is.
Voor m =15 is:

A —"A4 2348

Nu wordt aangetoond, dat de coéfficienten p; uit te
drukken zijn door 4,, 4, ... 41 en ¢, ¢, ... Dit geldt 60k
als «a; een geheel getal is, voor de functie P, die voor-
komt in de integraal:

1 i k-1
L e——— 1!.. 4 —

Y = 72 (:{?) -+ B !T'ﬁ T ke=na” l i ek fr)_’/ e

De functie P (z) is in de omgeving van = 0 eenwaardig.
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De asymptotische voorstellingen worden gebruikt om 't ge-
drag van de integralen in de omgeving van z =0 te
onderzoeken.

17. Verder beschouwt Hory nog de vergelijking:

(?"r; It ?/

S ’P()

_|_ 2k Q()yy=0..... (6)

waar & een geheel positief getal (6ok 0) voorstelt en P en
() rationeele functies van @ zijn, die in de omgeving van
x= o voorgesteld kunnen worden, door:

(0 (la
P=a+2+2 4 .
HH b
( »
e LR S
v SLs

Als de wortels « en « van de vergelijking:
a4, «--b, =0

verschillen, wordt de gegeven vergelijking formeel voldaan
door twee normale reeksen van TaoMmEg, n.l.:

iy, ab oy, 4 p=1

SSEpie b E e T A /
) i e AR p—1 L " Ay Yy - L, .. .r
[ ‘e = |
waar =1 of 2 is.
Ay, is van de orde: ¥ ! (p=1Fk-41)

Voor k=0 voert een passende omzetting van de som-
matie van divergente reeksen volgens Boren!) van de
reeksen S, tot de transformatie van Lapnace, waarvan
PoiNcari ) gebruik heeft gemaakt om 't gedrag van irre-
guliere integralen van lineaire differentiaalvergelijkingen
te onderzoeken, %)

1) Ann. de I'deole normale sup. 18499,
) American Journal. 7. Acta Math. 8.
) Prearp, Traité d’Analyse t. 111, Ch. X1V,
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Het geval waarvoor &> 0 is, is op dat, waar &£ = 0 is, terug
te voeren door verhooging van de orde van de differentiaal-
vergelijking.

Horn bepaalt nu het gedrag van de integralen van (6)
in de nabijheid van ’t onbepaalde punt x=ow.1)

18. Aan de algemeenheid wordt niet te kort gedaan
door 't geval te nemen, waarvoor:

=1 en a3 — —1{
is. Vergelijking (6) bezit 2p integralen

7 @ en 5, ©

waar 0 =0,1,2...p—1, van zdoédanigen vorm, dat in de
nabijheid van £ =ow voor:

y, W asymptotisch voorgesteld wordt door de reeks Sy en
VOOr:
20— 2 2011
__:_’_ T < arg @« -< _#_. T

~

p p
y, ¥ asymptotisch wordt voorgesteld door de reeks S,.
De algemeene integraal wordt (afgezien van constante
factoren) voor:
dom 2o+ 1)
_‘_./\”;-!’ T < — i i
'y P
asymptotisch voorgesteld door Ss en voor:
(2o—1)m

— g < —

P D

door Sj.
Om een willekeurige integraal » van (6) in de nabijheid
van arg =0 te onderzoeken, zet men:

—_—n o (0) dep 4 (0)
.“f_'r|’f‘| } Cy Uy

1) Math. Annalen 49 en 50.
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Men vindt dan door formeele oplossing van de vergelijking:

Al _[_ - u -
CRS T2 0 h,‘,_(_)

2
een asymptotische reeksontwikkeling voor de nulplaatsen
van 7 in de nabijheid van &= w met arg x=0.

19. De vermelding van verdere beschouwingen en ont-
wikkelingen van Iorn, zullen we hier (evenals geschied is
met die van PoINCARE, waarop ze een vervolg zijn) ach-
terwege laten.

III. MeTHoDpE JACOBSTHAL.
20. De vergelijking:

:-j—! S b ~f*:~:;--{ =B Bietit=0
r

~

met {weeledige recurrente betrekking en éen onbepaald
punt in 't oneindige, brengt JacosstHAL ) tot den normaal-
vorm :

_d YT e e dy

- — i
da® u’ +ay )

Om tot een asymptotische voorstelling van den integraal
in de omgeving van @ = te komen, bepaalt JAacopsTuaL
de divergente reeks, die formeel voldoet:

] '(’_ H(e-r —1) ]

V= 2 IB—r ~D () (= gz

en splitst daarna die reeks in twee deelen S, - R,, waar
S, de som der termen tot en met de a® voorstelt, terwijl
R, in den vorm van een bepaalde integraal wordt gezot.
Daartoe wordt:

\_’f i)

il

1). Asymptotische Darstellung v. Losungen lin. Difl. gln. Math. Ann,
Bd, B6 (1899),
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in den normaalvorm gesubstitueerd, waardoor het eerste
lid ¢ () den vorm krijgt:
i I« +n— 1)
p)— (= 1" %
prtn H(J—H—l)”()l)

I, krijgt dan de gedaante:

uer

R— f q (£)es . BB [y () y2(5) — ya(w) 11 (D)) d

i
waarin #; en i» twee particuliere integralen van den nor-
maalvorm zijn.

Om nu een schatting van de grootte van R, te kunnen
maken, wordt de normale vergelijking door twee bepaalde
integralen geintegreerd, die x als parameter bevatten.

Als een dezer particuliere integralen wordt gevonden:

1 st ﬁ"
ff[:[I()——](f(}I) I!(J _1] f‘f "'_.“ (1 —7)

De tweede wordt gevonden door in den normaalvorm
te substitueeren:
) = g

waardoor deze wordb:

B : oy
(? s/ 1A {Bta—a] = — =0
Y dx2 = dx

d. i. dezelfde, als men « en  verwisselt en @ vervangt
door — .

Ya—e-* Io ()= e *U(f}, «y— @) —

e 2" . l (] ) -1 g
[ {ee—1) ,:',‘f g

De integraties zijn oorspronkelijk als rechtlijnig aange-
nomen; bij den omloop van & om 't nulpunt wordt de in-
tegratieweg veranderd en 't gedrag van [y (z) en [z (x) bij
deze omloop onderzocht.

Om de functies I; en I» in 't geheele vlak denwaardig
te maken, moet er een doorsnede gomaakt worden van 't
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nulpunt uit, tot in 't oneindige in zekere richting. Om ze
tevens eindig en continu te maken moet die doorsnede
aangebracht worden langs de negatieve imaginaire as. Bij
't overschrijden door @ van deze snede treedt discontinui-
teit op, zoodat we 't vlak waarin x zich beweegt door deze
snede begrensd moeten denken.

Hierdoor wordt een schatting van R, mogelijk en krijgt
men een bovenste grens van de fout; zijn n.d. % en 7 de
grootste geheele getallen, die in « en  bevat zijn, zoodat:

a—Fk-t¢een g=I[0-4¢C

dan vindt JAcopsTHAL voor bovenste grens:

voor (=0 nlh, e—n
=1l n'la, e—n
>1 p—ttta, g—n

die nog zeer ruim genomen zijn.
Als asymptotische voorstelling van de integralen y, en
#o wordt dan gevonden:
=" (x) ~ S50
r=e=* Iy () » e~ S0

waar S,M =S, is en S, uit S, volgt als men g, « en —x
in de plaats stelt voor «, 3 en .

Deze voorstelling geldt nu voor de geheele omgeving van
't oneindige punt.

In de omgeving van het nulpunt krijgt Jacossrinan de
convergente ontwikkelingen :

e S H(p -+ «—1) .
1= oo (I (v+ a4 — 1)(-”)
: Iy —p
o= ai-n-g 3 il b

) =0 1 (I‘) ’I{i'i—-— 0 = l} { I)

Deze convergeeren slecht voor groote waarde van 't ar-
cument; voor dit geval worden ze vervangen door de
asymptotische uitdrukkingen:
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Yy oo f"1 '{"'um‘i‘("—'r er‘_‘ Snle}

qn”' == eHJ (.1,‘1 AS)Jl 2

1V. VOORBEELDEN.

21. Nemen we als voorbeeld de vergelijking:

=y L{+1)ﬂ"-’{+_{_ y=0......(
(!7(- 71 i S

waarin ¢ redel en positief is.
Stellen we dat:

i Hf 2
Y= My + 1 —}—

formeel aan (1) voldoet voor & — oo.
Nu is dus:

o= M, dy % nm, Ay . n(nt=1)m, (3)
Yy = 2 — 5 === 2 — Qe A () T AR
Y TRt o ) du s .13”+1 H a2 niy oh +2
Bij substitutie wordt dan gevonden:
1y @, 41— @) nty (rz — 1)m,
t,' + —“1 2 xn F1 =AU (II)
. n=
: My = 2 {n~—r:)m,,m1 M :
of: S (] et T =0 LD
T - n=2 2
zoodat m, =0 en m; = arbitraire constante.
Voor de coéfficienten geldt dan de betrekking:
Mup-1(n—a) — m, =10 (n=>2). . (4)

Uit (4) volgt, dat (2) divergent is. Schrijven we nu (4)
in den vorm:

A (a—
My = (—1)"" pel)

I'(ak G MY e Tt s ohaleh (4f)
Uit (47) en (3

) volgt dan de formeele ontwikkeling:
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o I'(a—1) |
= X (=1l — oy . —.
& ?L:!( ) I' (a—mn) BT

. (D)

Is @ een geheel getal, dan is y een rationeele functie
van x: de reeks heeft een eindig aantal termen. [s « niet
geheel, dan is (5) oneindig doorloopend.

We nemen in het laatste geval een eindig aantal (p—1)
termen, zoodat:

p=d I'ia—1)

b Al hife o 1 -
S __n_; (=1t ]Y(.“_;N). MLoTgy v (9)
waaruit volgt:
Yy=>S,+ Ity.
Bij invoering hiervan, wordt (1):
p-1

2 mp-1(n-a) —mu| — ak
n=1 A ¥ n=p

o l
2 e (n=a) —ny | — F(S,)
als we de waarde van 't 1¢ lid van (1) voorstellen door I (y).
Door S, te vervangen door S, stellen we eigenlijk:

My = Mg fl = s — Mg = 0

Zoo komt er dan:
p—1 1 1

I'(Sp) = _"l [y —1 (0 —a) — iy, | = ~+ iy (p—a) =
n= B .

Het eerste deel van 't tweede lid is nul wegens de
betrekking tusschen de coéfficienten, uitgedrukt door (4):
dus krijgen we:

- _ 1 g
F(Sp)=my-1 (p—a) Tt () P Tar s (6)
Deze niet-homogeene vergelijking kan geintegreerd worden

met behulp van twee lineair onafhankelijke integralen
Y, en ¥, van de homogeene vergelijking (1)

J

Als integraal van (6) vinden we dan eene uitdrukking:
S =t Rt T e e et ()

waar 4 en B funecties van @ zijn, die bepaald worden uit:



— 120 —

( dY, . dY,N\ d4d Y0
Ty e 1 r' el

*de  * dx / dx ‘ — /
s - (7)
( ] dy, Y (HZ) B v \
e o A s
Verder volgt uit (1):
dy, a.Y, ‘ |
Vi —el VeSS i L L (8)

i de

De waarde van O hangt af van de keuze der coéfficienten
van Y, en Y,; deze kiezen we nu zo0, dat C= —1 is.

.Y S Y

* dx ode

oty B (49)

Door invoering van de integratievariabele ¢, krijgen we
uit (7) en (9):

= _f wb).c.4n Y, (t)dt + O
x

B= [ W (l).et 15 Y, (Gt Co

De integraal van (6) is dus volgens (6'):

e G; y;, '+— (l_» Y,—_ —

j yp (et Y, (@) Y, () — Y;(@).Y, (t))dt... (10)

Sy 18 een particuliere integraal van (6), dus gaat bij ge-
paste keuze van de constanten €, en Cy, S over in S,.
Ook is:
G Y+ G Y=y
een particuliere integraal van (1) voor de zooeven aange-
duide keuze van ) en Cs.
."I — ‘qja + [f )
of 3 T AR R e (11)



=l
verandert nu in de uitdrukking:
R, :f (et il Y, () Y;(0)— V(@) Y, (O dt. .. (111

De restterm van de divergente reeks, die aan (1) formeel
voldoet, is hiermede uitgedrukt als een bepaalde integraal.
Om een schatting van de waarde van I, te krijgen moeten
Y, en 15 behoorlijk gekozen worden. Daartoe moet (1)
door een bepaalde integraal voldaan worden,

Vergelijking (1) wordt verkregen uit de vergelijking
van de hypergeometrische reeks:

(=

oy
— S e ) e (] 12
g ey (12)

2y (1 — @) ?:;‘1

+ [ — (4D @]

door daarin te nemen:

H )
=1 : 2 =— als:

m

. TNy T oy Y
! (l B _m) du® i [” USRIEE) m._] dx ty=0.

Wordt hierin m == o gesteld, dan krijgen we, na door
x gedeeld te hebben:

=y 7 iy 1
- i Sl —— | s —p— — ) !
da | ( &P | ]) i ! R :

Aan (12) wordt voldaan door:

& — R g s

|
i

Stk y—ef =1
g (@) = j =1 A=t —B=1 (] V=t

Door hier dezelfde substituties, enz., toe te passen als
zooeven, wordt 't tweede lid:

1 3 ¢ f‘l,- m
(‘] (1 — ¢)@ "-(l ) (i
0 Hi

welke uitdrukking van m = o overgaat in (als we tegelijk

<}
t = — nemen):
£



:}fz:c?f ! (1 . i) et ds

o L T
 rx e N\ a—2

)"Zzﬁ'—f (1 - ——5~> Car ds i i, .. (13)
X 0 €T

Dit is nu een particuliere oplossing van (1). De bovenste
grens is nog variabel; om deze vast te leggen, substituee-
ren we (13) met grenzen O en p in (1) (doch schrijven die
grenzen niet) en krijgen dan:

=1 4 a—3 |
1‘1(1";): =1 C((L _“-)f ('-Z- .r“ss (1 -~ 'é ) ' e

3 ds|” T ,

Om deze uitdrukking nul te doen zijn, zooals gedischt
wordt, is 't noodig twee grenzen te kiezen, zoodat

] =33
l_‘-—s.-S‘(l— b) =0
iy

is; dit is 't geval voor s =0 en s = waardoor nu de
bovenste grens bepaald is. We nemen dus:

.Yx:(;'fd : (1 — —i){—“(:"”(z‘s a3 ey e o re (0]
0 €T M

Een tweede particuliere integraal van (1) vinden we
door te nemen:
Yy =e*.2

Dit geeft dan: .

-z ( z =
soies Whlo fF A2l L e S R
rf,r_."-' l ( i 1) ff,): o )

Veranderen we hierin @ in — x, dan komt er:

d=z " \ dz a — 1 <
4 = b -k e el R e B o RN
f (.r? ' 1) i L (10)

f;’.l':"

o
die denzelfden vorm heeft als (1). De coéfficient van :

is @ — 1 inplaats van 1. Trachten we aan (15) te voldoen
door een integraal van den vorm (13) d. w.z.:



;:of‘“’;’; ( )ﬁm
0 l:

waarin «, p en y nog bepaald moeten worden, dan vinden we
bij substitutie:

( s\f-+ [w (-—1) ax | a—| ..
o 1 - L8l e e = - — - X
ql! l‘) | ‘,{-_ .l'l"' .‘. a |

s 5-3‘) (et 2)(@ — ’)
>\(1 a) +@ He =l i e

2) o . 2 _ 9V (R —8) -
_.+_ . ..: _| _a'( l .—l_ S ) 8 k}_ ([) -J)_E.l) )) ,5‘-’J r"“-“ “!H :“

: =

De grenzen zijn reeds gekozen; het nul worden moef
dus alléen afhankelijk gesteld worden van de keuze van
« en p, zoodat 't polynomium onder 't integraaltecken nul
moet zijn, d. w. z.:

o~

(et _TJ) e e a fgl P 20
a2 e T 4y
«B=2)  («FE-2)  «(B-2) 4 (F-2)_
= A Jais T s — 0 L (16)
A £ A €Ze
.r Sy - .
)(r{ : 3) =]
!

De eerste van deze, in den vorm geschreven:
1 =

1 — a) | a—1 — «_q

' a= & .
doet zien dat: «=a — 1 gekozen moet worden, Aan de
beide andere wordt voldaan door te nemen §=2. De
tweede particuliere oplossing van (1) wordt dan:

Y= (X [ (l ) e~ ds

et [ _
8! 6=% ds
_(," 1 J

L]

— 7,

Om een waarde voor y te krijgen, merken we op datin
Y, en ), de exponenten juist verwisseld ziin; in 't eerste
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als coéfficient van y; in 't tweede

T

geval toch hadden we

Aot IR :
geval ; in 't le geval was 0 d.i. 1 — 1 de expo-
&

nent van s, nud zal y dus =a — 2 zijn.

Zoodat:
U:_',- P ._- (.4*,!'
)i o= Uf"‘_]'.l' i (?5—(,' : / (a—1)=2C, gorras i (17)

Uit formule (11/) gaan we nu een benadering voor de
rest zoeken en vinden dan:

R, = CC ffm}-,_[ (p — a) —117 ¢t fo [ ff:% (1- l)—zs: X
X ;;-— :_1 ff 1 (1 5 ?)a_gw—wh-] i

Sy RREE T B (=) Ty : =
== ”::I fm.l' (1 -— ; )d—:r_f*“' r.?-b'] e

B f 1 (l ) ':cwwi,«] it

t guat langs de reéle as van @ tot oo; . nadert tot w; x
en ¢ verschillen dus zoo weinig men wil, dus de vorm
onder 't integraalteeken is zoo klein men wil. Zoodat nu :

]

7 |
[l‘ji: CG oy (p—a). .r"f’r./_r s

. v ’r
Iim B, = lim | ——
! .,n}]#!
== re=o A

Door gebruik te maken van formule (11) zien we, dat:

lim (y —S,) = lim ( )
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of:

lim xP-1|ly—S,| =9

JT=a0
waaruit volgt dat reeks (5) werkelijk een asymptotische
ontwikkeling is:

p=1 I' (a—1) 1 '
) I e et A0 S e S e S
) m":l( 1) Fla=h) Ly (18)

De algemeene integraal van de gegeven vergelijking wordt
dan voorgesteld door:

=, I'(a—1) 1 g%
F a3 (= +1 . i,
C”:l( ])n 3 I (a —H} iy o + Cl g

De hier gebruikte methode is eene navolging van de
door JAcopsTHAL aangewende.

22, Nemen we de vergelijking_r van de derde orde :

x= :5,U =n (-‘?“-"fi-?‘-l-?'-*f'-’ l- (a-t-b) 5{ +cy=0
en stellen we dat:
y=moF—+ 2+ 2.
H s H
formeel voldoet; dan is:
= o Ma dy _ = .y
U ——";” ;_".“. ) (f' '—“‘:1 7.'!'“ Hl
d?y @ n(n-Dm,  dy 7 _ n(nf1) (n--2) )ity
dn2 ,,-.1 ante Cdat u———l ont .:

De eerste schrijven we liever in den vorm:
iy

— \
y=my+2 —
1 4

Bij substitutie blijkt:
m, = 0 & my = arbitrair en ¢—=04+2r=>0

als eisch voor de getalcodfficienten,
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De betrekkingen der coéfficienten m zijn:
—1.2.3m+1.2q. i +2.3 r me — ainy — 2 mo—-cme =0
—2.34 ma+2sm+2.8 gmia+ 3.4 rmy—2 ama—3 bimg+cmy =0
—3.4.5 mg+2.88ms+3.4 gms+4.5rmy—-3amg—4 bmy+emy=—10

of in 't algemeen:

—(p—=Dp(pF+mpt-(p—2)(p—1)smy o (p—1)p g iy, 1
“+p (p1)rm, —(p—1)am, _+pbm,—cm, =0,

Als recurrente betrekking vinden we dus:
Vetp (ptD) r=pblmy-Hp —1)| —p(p+1)+pg—almy, .+
+Hp—2)(p—1)sm,_o—0.
(p=2).

23. Door s=0 te nemen wordt de vergelijking:

,,,f_'{_l(,/ - ra2) ‘;-———( —‘—In)—-—!—c/:(i

Voor deze is dan ook:
m, =0 ; my arbitrair en ¢—0-}-2r—=20 eisch, waaraan
de getalcotfficienten voldoen moeten.
De recurrente betrekking wordt eenvoudiger, n.l.:
LeHp( p+=r—pblmA-(p—1) ) —p(p4-1)+pg—alnm, =0 (p=2)
of:
(2.3+a-2¢)(3.4+a- 39)(4.5+a-4q).. |(p+1)pra-(p-1)7] ,;J(/JH)H: pat(p-1)!

My= A PR -y >y

(2.8r+c- ’l))(i 4r+c-3b)(4.5r+c-4b)... ](/» Wpr+e-(p-1)by | p(p+r+e hnh!

24, Voor r=1 , a=¢ en ¢=0b wordtde vergelijking:

2 T 4 (b t-a2) DYt (@ + b 2 ay =0
Jh r:’.:.'H da
met eisch: a—b=—2

terwijl de recurrente betrekking der coéfficenten m dan is:
my=—=(p — 1) m,.
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[8)

Zoo krijgen we dan de vergelijking:

- d'u 2y
b e ~+ (a {—_..v 2 rf_)—h -I (@ 4 a - ‘)4)—-— + ay =0. (1)

waaraan formeel voldaan wordt door:
— — —— — 3 )
Y e —|— ,‘-i* S BNz i (2)

Deze reeks is in 't algeemeen divergent.
=) =)

We vinden als integraal van (1) echter:

et — g% =
y:f ST e 5 o e e sy & (2)

voor x recel en positief.

Volgens Hoofdstuk III is te vinden, dat (2) de asympto-
tische ontwikkeling van (3) is. Volgens Hoofdstuk IV is
(2) dus een integraal van de vergelijking (1).

Door nu in (1) te stellen:

y=e"z

gaat deze over in:

o (152 d“z B T 2
a= (:l.: +(a+2x - r~) @t -at-2a4 a) :;‘_:”...(-1}
Iz
of 5= =1t stellende:
(v
NET: ~ s i % : 5
at o -+ (a2 2 — 22%) e F (22 —a+4-224-a)t=0 ., . ()

Aan deze vergelijking wordt voldaan door de particuliere
integraal

Door middel van deze particuliere integraal vinden we
een tweede, n.l.:

dus:



iz i P"’L By
da =4 ! b =N 4
of:
g (IR e e S| i
S S T Ay s
B 1 e’fq' a! | (a+1)! | (a+2)! |
S RS L) o N TR TR LY 4L
+1—(( (a—1)!" (el x ' 2 T x5 i

Zoodat een integraal van (1) wordt voorgesteld dooi

a1
s;:e—ﬂ'.z:fi‘i+—1;+:-.;-+...‘+
| « il R {
] b, !
B L Ll e e 6

_l_]—a) (a—1)! 27|

Daardoor vinden we de particuliere integralen
31 ~
-+ (7)

! _+_ L s s

Y, —
I T e a

(dezelfdo als (2)) en

= 1 (rr-}—
= e |6 S S+ ®
i van een be-

Is a een geheel positief getal, dan is (8)
paalden term af, gelijk loopend met (7).

24, Door te stellen:
.‘/ — J—.v (4/111 -'l'- Jlilr —.}‘_ l.:!, 7!7 “ 8 )
T e

Krijgen we:
o,——1¢en ¢, = —a

terwijl voor ¢, = —a:

A=A
blijkt te zijn; op deze wijze krijgen we dezelfde reeksen
als zooeven.
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95. Trachten we een vergelijking van de tweede orde
te vinden, die na differentiatie (1) oplevert en stellen we
die voor door:

D)
P %"f_ wi % 1 oy=C
dan zien we, dat gekozen moet worden:
U—ax; P— 221 00
De gezochte vergelijking is dus:
2, p
a2 E;—?—f, + (22 -+ ax) ~:—5;—] -+ axy=C

Schrijven we deze als:

o A%y dy y .
2 ST SR Vol | S e ¥ 4 1
(Gt )t es (G +)

en stellen we hierin:

dan gaat de vergelijking over in:

o 02
22—+ axz=20C
da

waarvan de integraal is:

ey (f' 0 _G '
T (a-1)z (i
zoodat:
e 0 g
dx (a—1)a a

waarvan de algemeene integraal is:

i e ’ . s f.f‘
) — 6 : J‘-‘ (L} CCe -"{ : ';r - - "t
' a—1 1 ] x

De derde particuliere integraal, die hier optreedt is ook
te vinden uit (4).
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Neem ¢ en [ als functies van de variabele a z6o dat:

it :ffr?(r :

Volgens TaAavrLor is:

0@+ W=0 @+ @)+ 2+ B @t 0
of’: |

p (1) — g (@) =11 (a)+ <,.f(()+ B @t e |
o (21— (I =hf (a-HI /a+m+g,/m+m /

pla+-30) —qg(a+2N) = hf(u-i—‘)h—r- / u-{—‘)h-!— /((!—}—‘)h)+ (2)

C)'l

---------------------------------

g (a+-ph) — gla-+p —10)=nf(a+tp—1h) I—'{”f (a-Fp—10)+-.

Tellen we de eerste en tweede leden van deze verge-
lijkingen bij elkaar op, dan komt er:
¢ (a—+ph) — g (@) =
hif@+fla+hm-+fla+-2n)+—+flatp - 11|+
l; ([ ()41 (a1 (a+4-2h) +—f"(a+p—1R) |+

~+ enz. /

(3)
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't EBerste lid van de nu verkregen vergelijking is niets

anders dan:
a-ph
f [ () da
{

b
de vergelijking is dus te schrijven:

p—1 }._

a--ph
f : f{(l flrl"l-——h\ / (I—Llh)— ‘)‘3 /(({ 1—;],') } onz. |“

r=o Y =0

Door in (3) ¢ te vervangen door f, daarna / door /7,
{7 door f” enz., krijgen we achtereenvolgens:

y=1 g
-- TN
fa-t-phy— Ry =13 flatoi)+ o7 Y [ (a+vh)+enz. (5)

L)l
y=0 ffn
n=1 ] p—1
e (A
s v J <] u ]
[at-pl)—fa) ./r\} [“(a-+rh)-- ‘”\ [ (at-rh) -+ enz. (6)
y=0 V=0
eNnz.

Vermenigvuldigen we nu beide leden van (4) met 1,
van (b) met 4y /; van (6) met Ao I enz,, waar de coif(-
cienten A later bepaald zullen worden en tellen we de
overeenkomstige leden op, dan Krijgen we:

sl 2
’ ’ [la)da~=Ah Vfa=ph) — fa)! -+ Ah2 | (a -+ ph) —

1

p=1
— (@) As3 | [ (at-ph) — (@] +=h }:/'(rf trh)

p—1 \ ~

s

Ni? (I]" ! .h):f"tﬂ'lﬂ'/“ -
L " o
] ]
N A A {;\ w1

Y e=0
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De codéfficienten A worden nu zdéo gekozen, dat alle
termen van 't 2e lid, behalve de eerste natuurlijk, nul
worden (daardoor wordt tevens de voorwaarde ingevoerd,
dat géen der functies f, /7, /7, enz. «o mag worden).

De vergelijking gaat dan, als we de leden ver wisselen,

over in:

_ p2l
h 2 f(rr—:—r-'h):f

V=0 a

— @) A3 B3 (a+ph) — [ (@) + A 7 (a+ph)y— @i+ - - - (8

a4

f(n)dﬂ + A1 S f(at+ph) — f(a){+ A2 B2 L f (a-ph)—

waarin nu nog de coéfficienten 4 door hunne waarden
vervangen dienen te worden. Deze vinden we door f(a)
speciale waarden te geven. Stellen we n.l:

[(a)= "
en substitueeren we dit in (8) dan krijgen we:

I | eot-gath ... gat(p=Dh{—(eatpPh — ) (1 S A htAoli? . . ... )

1 p il "
.65 t],_.,p_h e T ‘_,h! — po (ﬂph = 1) “ + A 1 l _}_ A-_g ];_ b%# ..... . )

deelende door: e (e?*—1) komt er:

] 1 i )
=gt At deht Rt ARt )

Door hierin te nemen h—2iz vinden we dat 41=— 5

wordt, maar de overige cosfficienten met oneven index
alle nul worden. Dus (8) gaat over in:

n—1 1-+ph
& flatrh) ff [(@)du -3 ‘fm Lol — fa) b Al [ (at-phy — [ (@)} -+

V=0
A M (aphy) = 7)) L AehS fo(a-tph) =)l enz. .. ... ... (10)
Vergelijken we vergelijking () met de bekende betrekking:
] | 1 by Ra ..
T e L L T A AT



dan zien we:

| HBi | ( J).'—; N { B‘.
As = 51 . ‘4———'——4—!‘ ’ .n'l'.—E-T,e-I]A.

Door dit in (10) te substitueeren krijgen we den alge-
meenen vorm:

a+tph 17
_\ flat» h)__f f@)de — 5 | fa+ph)—F(a)] +

. By
4 3 (=1)- e ) 2 (et p ) - 21 (@) |+ Rans
._1 ...l
ALy e L 1y ne A R
]‘;1 — G ) j):] —_ T;(T . j)):; — “1‘2 . enZz.

(Zie hierover o.a. ScuLomiLen. Handbuch der Diff, und
Integr. Rechnung 1847, pag. 255. MacravriN. Treatise of
fluxions 1742, pag 672, of de fransche vertaling hiervan
1749, Ile partie pag. 146 en vlg.)
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Formule (3) van Hoofdstuk II wordt op de volgende
wijze gevonden:

Onder de totale residu van een functie & (z) wordt ver-
staan de integraal:

1 f 2 dz

2mq |

cenomen langs den omtrek van een cirkel ¢ met oneindi-
gen straal R
Men heeft dus:

S ol ol * |
J/ (@ (2) = TETE ) P (2) dz.

Vervangt men nu @(z) door:

f(2)

en schrijft tevens:

in de integraal, dan komt er:
]
1 / (‘?

< (2)
| ( —-/-—— ) —— - L LR
C ( xr—2z ) 21 i, ]‘ t(1-tx)

waarin nu de integraal in negatieven zin genomen wordt



langs den omtrek van een cirkel meft zeer kleinen straal

1 : : :
— . Men kan dit tweede lid dus in den vorm brengen:

| 0

~C @) (=)

Vervangt men 't eerste lid nog door:

EE - )

1
o plre)  r "\E
f(x) _d’ r—2z { C((2) (1—2z2)

dan vindt men:

/() moet eene eenwaardige analytische functie zijn in 't
geheele oneindige gebied. Zijn de residus oneindig in aan-
tal, dan moet op hunne volgorde gelet worden. Ze worden
gerangschikt naar de toenemende moduli van de oneindig-
heidspunten.
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We maken gebruik van de definitie:

[*2] oo i
AN ___.__l-r., —_— ___1_..... 3 i == _éfj.,,
L (4n2a2)p " 22-1q%p | p?p (2p)!

Nemen we:

r .
L [ ! : hit ol
—iT3T : s = -—-bg ct
9 r x r J }J )r
= (doy =5 ¢
en verder:
& 22
nelgmz — —— & ———y
4 g A=t

o i
o
__,1 — S 1 — _]_- —— 2 ):‘ - m
1l —e™ x 2 w122+ 4n? w2

zoodat dan:

( 1 il e ab s ok
l—e* o 92) a =122+ 4n?nt

voeren we nu de B’s in dan komen we tot:

—————1 l l ]' ];] ]f_! .'J'.': f)'” :U'l
(1 —¢* @ —'3).?- =50 W e

y ST |
By xeh=«__
- n

(2n)!

5
—9 3 [ Co
ne=1 4“"‘5 ZTI'E {4”2 172)2 :

B "l".",“,
(2n-2)!
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1. Sorpner gaf in ,Théorie et tables d'une nouvelle
fonction transcendente” (1809) de volgende formules ter
herekening van /i-functies voor verschillende waarden van @:

-+ 1 {. )2 1. )3
g =Ctllaxtla- (;:)1 i (‘; .'3), 4+ ... Q)
. T I‘ & ud 2' 4 "
lifa+x)=lia+ e bl ALY ]'-_.:."f""l' ad

e —— Qi 5]
La 2l(la) 81 (1 ) iy i 2)

waar y =1 (1 -} 5) ; de coéfficienten A4 worden bepaald
door:d =aisnd= =1 45—l a5 A" =23, A% == (. a)?

J'iV: 3. ‘_tmr — (,. (l-):; ‘ enz.

h(l+a)=C4lxx A0z — 1)~ A 2 + I—; AO g3 -, (3)
waarin:
1 | 1 1
(n) — ] (G B = A®— enz... (8'
1 n-+1 n 1 n—1 I n—2 1 S8z (%)

In (1) en (3) stelt € de Eulersche constante voor. Door
gobruik te maken van deze formules stelde SonpNer tafels
op voor [i0,01 met 0,01 opklimmend tot 1; voor /i 1 met
0,1 opklimmend tot Z2; voor /i2 met 1 opklimmend tot
1i10: voor li 10 tot & 20; voor i 20 met 2 opklimmend tot
[i40: voor /i 40 met 5 opklimmend tot i 100; voor /i 100
met 10 opklimmend tot Zi 160; voor /(i 160 met 20 op-
klimmend tot /i 320; voor /i 320 met 40 opklimmend tot
i 640 voor /i 640 met 80 opklimmend tot i 1280,
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De i functies van de tusschengelegen getallen kunnen
bepaald worden door de interpolatieformule:

100z (1 —100) , ,
2! AT

100z (1 — 100 ) (2 — 100 )
31

lifa+z) — lia+100x/\"=

-+ A" + enz.
waar /\' 't eerste verschil is; /A" 't tweede verschil, enz.
@ is het getal, in de tafel voorkomend, dat 't dichtst ge-
legen is bij 't gegeven getal en x is 't geen 't gegeven
getal grooter is.

Op deze wijze li te bepalen is zeer tijdroovend. Dat-
zelfde nadeel heeft de berekening door de reeksen van
BrerscaNeiper (zie Hoofdstuk II, art. 14).

Na het afdrukken, bleek op blz. 104 nog een fout te schuilen, In
het tweede lid van de asymptotische gelijkheid, aan 't einde van
art. 6, is de factor ¢ =™ per ongeluk uitgevallen.



STELLINGEN.






De oplossingswijze, die Forsyth geeft van

ady <
daxt }

waar } een functie van y voorstelt, is onvolledig.

Het is wenschelijk een bepaalde notatie voor de gelallen

van Bernoulli algemeen aan te nemen.

1.

Wanneer 't doel is een benaderde oplossing van een
differentinalvergelijking te verkrijgen, dan is 't geoorloofd
die vergelijking te vereenvoudigen, door termen van som-
men, die er in optreden, te vervangen door benaderde
waarden (dus soms zelfs weg te laten) wanneer, binnen de
grenzen, waarvoor de oplossing beschouwd wordt, 't ver-
schil tusschen de vervaagen termen en die benaderde
waarden klein i8, ten opzichte van de sommen waarvan

ze termen zijn.
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V.

De oplossing van de vergelijking
dy
SR D,
dr 4 ¢

waar P en @ functies van x zijn is eenvoudiger te vinden

door te stellen y —=e*s, dan door y —ur.

De onderverdeeling der reeksen, voorkomende onder D 2
in den ,Index du répertoire bibliographique des sciences

mathématiques” is onvolledig.
|

VI.
Het eenvoudigste elementaire bewijs voor de stelling der
onbepaalde coéfficienten is dat, waarbij gebruik gemaakt

. . 0
wordt van de onbepaalde uitdrukking 0"

Op 't onderscheid tusschen ,fout™ en ,correctie” wordt

niet altijd voldoende gelet.

Sin*e beduidt volgens den vorm eigenlijk Sin (Sin x).

Men behoorde daarom te schrijven (Sin x).

Jiger komt ten onrechte tot de conclusie:
,Es sind daher die zwischen die Gasmolekeln wirkende
Krifte, Abstossungskrifte”.

(Winkelmann, Handbuch der Phys. Bd II 2. blz. 546).
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Drukvermeerdering bij condensatie is een waardevol
controlemiddel Dbi) 't onderzoek naar de zuiverheid van

een gas.

Van 't beginsel der virtueele verplaatsingen is, bij 't
onderwijs in de elementaire Mechanica, veel nut te ver-

wachten.
Het zou wenschelijk zijn de Beschrijvende Meetkunde
als vak van onderwijs op H. B. Scholen te vervangen door

de Boldriehoeksmeting.
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