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HOOFDSTUK 1.

Historische inleiding.

De toepassing van complexe functies, althans van imaginaire groot-
heden, in de theoretische natuurkunde, is thans ongeveer een eeuw
oud. In een publicatie van 1823, waarin FRESNEL de wetten van de
totale reflectie ontdekte, werkte hij reeds met imaginaire grootheden.
(FRESNEL, ,Oecuvres completes”, Tome I, blz. 753. Extrait d'une
mémoire sur la loi des modifications imprimées & la lumiére polarisée
par sa réilexion totale dans l'intérieur des corps transparents). Deze
werd gepubliceerd in ,Bulletin de la société philomatique 29 Juni 1825,
blz. 175”. Eveneens gebruikt hij in 1831 imaginaire grootheden in:
»Mémoire sur la modification que la réflexion imprime a la lumitre
polarisée™ (Oeuvres complétes: Tome I, blz. 767 ; Mémoire de I’Academie
des sciences 11, blz. 393; Annales de chimie et de physique 46, Maart
1831, blz. 225). Daarna schijnt men, voor zoover ik heb kunnen
Nagaan, voor 1858 geen imaginaire grootheden te hebben gebruikt in
de physica. Eerst in dit jaar paste SEEBECK ze weer toe in een
Cinematische verhandeling ,Ueber die graphische Darstellung imaginiirer
Functionen” (CRELLE'S Journal 55, blz. 221). Daarna neemt het aantal
Verhandelingen, dat hier genoemd moet worden, sneller toe.

Als een van de belangrijkste voorloopers van het gebruik der
methoden, die in deze dissertatie vermeld worden, moet beschouwd
worden: J. N. HaTON DE LA GROUPILLIERE met een verhandeling
van 1861. In de eerste plaats publiceert deze een ,Mémoire sur une
nouvelle théorie des lignes isothermes et du potentiel cylindrique”
(ournal de pécole impériale polytechnique 22, cahier 38, blz. 15).
Hierin behandelt hij met behulp van functies van complexe verander-

liiken het warmte-evenwicht, speciaal bij cylindrische lichamen, als
1
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vraagstukken op een plat vlak. De functies, die wij spoedig onder
den naam ,toegevoegde functies” zullen leeren kennen, treden hierin
reeds op. Hij brengt in zijn verhandeling het warmte-evenwicht in
verband met den cylindrischen potentiaal. Hiermede bedoelt hij het
volgende: men onderstelt een punt onderhevig aan een stelsel krachten,
die omgekeerd evenredig zijn met de kwadraten van de afstanden tot
een zeker aantal vaste punten; wanneer nu dit stelsel bestaat uit
homogene evenwijdige krachten, noemt hij de daarbij optredende poten-
tialen cylindrisch. De schrijver ziet zelf het belang var zijn verhandeling
in, juist ook, waar het betreft het werken met imaginaire grootheden,
hetgeen blijkt uit zijn opmerkingin een noot: ,Onme pardonnera d’insister
ainsi sur une théorie qui n'est qu'un cas particulier du probleme de la
chaleur, quand on T'envisage par rapport aux trois dimensions de
Pespace. Son étude me parait avoir une véritable importance et étre
appelée jusqua un certain point a jouer pour [’étude des fonctions
imaginaires la méme role que la géomcétrie des courbes pour celles
des fonctions réelles. Cauchy a en effet montré le premier que les
seules fonctions de variables imaginaires, qui méritent vraiment ce
nom en ce quelles ont une dérivée et qu'il appelle monogénes, sont
aussi les seules qui puissent représenter I'équilibre de température
dans un plan.”

Nu volgen eenige verhandelingen, die voor ons onderwerp van
minder belang zijn, die ik echter volledigheidshalve moet vermelden.
In 1863 publiceert P. ALPH. LAURENT een ,Mémoire sur la théorie
des imaginaires sur I'équilibre des températures et sur I'équilibre de
I'élasticité.” (Journal de Iécole polytechnique 23, cahier 40, blz. 75).
I. h. a. grootendeels gewijd aan de zuivere theorie van imaginaire
grootheden, geeft hij enkele algemeene voorbeelden van evenwicht
van temperatuur en elasticiteit. In hetzelfde jaar geeft H. DUREGE
enkele eenvoudige dynamische toepassingen in ,Ueber eine Anwendung
der imagindren Groszen” (Archiv der Mathematik und Physik 40,
blz. 1). LipscHITZ stelt in hetzelide jaar bolspiegeling voor met com-
plexe getallen in: ,Zur Theorie der Elektricititsverteilung” (Journal
de CRELLE 61, blz. I).

Van grooter beteekenis is echter een in 1865 gepubliceerde ver-
handeling van CHRISTOFFEL: ,Zur Theorie der einwertigen Potentiale”
(Journal de CRELLE, blz. 321). Deze werkt in de potentiaal-theorie
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met de conforme afbeelding, welke met het gebruik van complexe
functies hand in hand gaat. Daarna volgt weer de verhandeling van
groot belang van 1867 van]J. N. HATON DE LA GOUPILLIERE : ,Méthodes
de transformations en géométrie et en physique mathématique”. Deze
staat uitvoerig stil bij de conforme afbeelding, werkt met algemeene
Coordinaten en geeft, zooals de titel aangeeft het verband met de
mathematische physica aan. Met de laatste kan HELMHOLTZ de grond-
legger van onze methode genoemd worden in ,Ueber discontinuierliche
Fliissigkeitsbewegungen.” (Wissenschaftliche Abhandlungen, Bd. I,
blz. 157; Monatsberichte der Akademie der Wissenschaften in Berlin 13,
April 1868). In deze verhandeling van 1868 gebruikt hij functies van
complexe veranderlijken, waarbij hij toegevoegde functies toepast.
(Deze naam noemt hij daarbij echter niet). De beteekenis van deze
verhandelingen wordt geschetst door H. WEBER in »Die partiellen
DiHerentiaIgleichungcn, Bd. I, blz. 368", naar aanleiding van een vraag-
Stuk over electrische inductie met de woorden: yochwieriger, aber
auch interessanter, ist das folgende Beispiel, an dem HELMHOLTZ
zuerst den Nutzen der Abbildungstheorie fiir diese Art electrostatische
Probleme nachgewiesen hat.” Terstond neemt G. KIRCHHOFF in 1869
de methode overin: ,Zur Theorie freier Fliissigkeitsstrahlen” (CRELLE’S
Journal 70, 1869, blz. 289), waarin hij een groot aantal gevallen met
behulp van complexe functies bewerkt.

Daarna wordt het aantal toepassingen, belangrijke en onbelangrijke,
te groot, om hier te vermelden. In het eerste gedeelte van dit proefschrift
wordt de methode zelf met de resp. uitbreidingen gerefereerd. De
toepassingen zijn samengesteld in een aan het slot toegevoegde tabel.

In het bijzonder zij alleen nog gewezen op de methode van SOMMER-
FELD. Waar toch andere onderzoekers de methode uitbreiden, opent
de methode van SOMMERFELD geheel nicuwe verschieten. Ik meen,
dat enkele historische gegevens daaromtrent derhalve hier niet mogen
ontbreken. Deze zijn voor een groot deel ontleend aan een artikel
van JAMES Mc. MAHON, getiteld: ,On the use of the n-fold RIEMANN-
spaces in applied mathematics™ (Bulletin of the American Mathematical
Society, 16, 1908). Het eerste concrete voorbeeld van een meerwaardige
Potentiaal in drie afmetingen bevindt zich in een brief van P. APPELL
aan F. KLEIN (Math. Ann. 1887). In 1891 spreekt POCKELS in zijn
Verhandeling over de vergelijking van de »golfpotentiaal” de wensche-
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lijkheid uit, de meerwaardige oplossingen van deze vergelijking van
mathematisch en physisch standpunt te bestudeeren. De eerste toe-
passingen op concrete physische vraagstukken zijn gegeven door A.
SOMMERFELD in artikelen van de Math. Ann. van 1894 en 1396 over
warmtegeleiding en diffractie, en in 1897 in de ,Proceedings of the
London Math. Soc.” over ,Multiform potentials in space”. Voor de
hierin uitgewerkte methoden en toepassingen verwijs ik naar de
dissertatie en de tabel. Het artikel van SOMMERFELD gaf aanleiding
tot een groot aantal publicaties, waarvan ik hier slechts vermeld een
artikel van H. S. CARSLAW: ,On multiform solutions of differential
equations of physical mathematics” (Proc. of the London Math. Soc. 30,
1898), waarin CARSLAW de methode van SOMMERFELD consequent
uitbreidt.



HOOFDSTUK IL

Korte uiteenzetting van de toepassing der complexe
functies in de Natuurkunde.

§ 1. Inleiding.

Wanneer w=u-iv een functie is van de complexe veranderlijke
2 =x-}- iy, dan wordt het functie-begrip beperkt door te eischen, dat

ou _ov, ou __ oV

ox oy’ x|

Bovendien moeten @ en v continu zijn en continue partieele diff. quot.
naar x en y hebben. Een dergelijke functie # noemt men een monogene
functie van de complexe veranderlijke z, terwijl we u en v toege-
voegde functies noemen. Voortaan spreken we slechts van een functie
van een complexe veranderlijke, daarmede bedoelende een monogene
functie. Zooals bekend voldoen u en v dan aan de vergelijking
van LAPLACE:

r”l! 0:_!_1 Y rY"_l' e l)’_l’ ok
ax2 ' ayr 7 axr o4y

Meetkundig geinterpreteerd geeft w= f(2) een conforme afbeelding

van het z-vlak op het w-vlak.

Daar # en v voldoen aan de verg. van LAPLACE, kan elk dezer
functies een potentiaal in het platte vlak voorstellen. Stelt v = const.
€en stelsel aequipot. krommen voor, dan zullen de lijnen u == const.
de krachtlijnen voorstellen. De functies van complexe veranderlijken
geven derhalve aanleiding tot physische toepassingen, die steunen op
zuiver mathematische methoden.

§ 2. Electrische potentiaal en lading.

Daar W= f(z) meetkundig een conforme afbeelding voorstelt, wordt
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elk lijntje in het w-vlak gevonden door het overeenkomstige lijntje in

het z-vlak te vermenigvuldigen met % De modulus daarvan wordt:

ou'\* ou'\? ov\? 0v\?

=V G+ G =V G +(E)
Is v de electrische potentiaal, dan is o de electrische intensiteit R.
Men kan thans problemen op cylindrische geleiders oplossen, waar-
bij ons werkvlak moet worden beschouwd als loodrechte doorsnede
van de geleiders. Daar R = (ladingsdichtheid), kan men eenvoudig
de oppervlakte-dichtheid in een willekeurig punt van den geleider
vinden. De totale lading tusschen twee punten A en B over een strook

ter breedte van de lengte-eenheid wordt:

ds_f -—-ds_uA—uB

§ 3. Achtereenvolgende transformaties.

Het geval van achtereenvolgende transformaties kan aanleiding
geven tot belangrijke toepassingen. Immers twee achtereenvolgende
transformaties kunnen aanleiding geven tot een derde, welke het
resultaat is van de eerste twee.

§ 4. Lading en aequipotentiaalkrommen bij transformatie.

Indien F een functie is van w, terwijl w een functie is van 2z, dan
volgt uit vrij gecompliceerde berekeningen, dat

G+ 31 = [ 54 35) o

waarbij men tusschen overeenkomstige grenzen moet integreeren.
Indien nu F de potentiaal voorstelt, dan is volgens de vergelijking
van POISSON:

[ pdxdy = [[ ¢’ dudy,

als p en ¢’ de dichtheden der lading voorstellen. De hoeveelheid
electriciteit in overeenkomstige deelen van het oorspronkelijke en het
getransformeerde stelsel zijn derhalve dezelide.

Uit genoemde berekeningen volgt nog deze belangrijke conclusie,
dat ieder stelsel aequipotentiaalkrommen getransformeerd wordt tot
een ander stelsel aequipotentiaalkrommen.



§ 5. Continue stroomen.

Voor continue stroomen geldt de continuiteitsvergelijking:
o, v . dw
T35 T3 ="
Hierin stellen u, v en w de componenten van den stroom in een punt
voor. Tusschen de electrische potentiaal V en de componenten van
de electrische stroom bestaat dan de betrekking:

= —— 0 V) =——— Nl W= —

waarin = de soortelijke weerstand voorstelt. Door substitutie in de
continuiteitsvergelijking, gaat deze over in:

AV =0

De voorwaarden van overgang van één geleider naar een andere luiden:

1% De strooming loodrecht op de grenzen voorgesteld door :_— %%’

moet continu zijn.

Hierbij stelt ';ﬁ' differentiatie langs de loodlijn op de grensover-

gang voor.

20, 5Ty moet continu zijn. Met ;s bedoelt men differentiatie langs

€en willekeurige lijn, in de grens gelegen.

Vindt de strooming plaats in een vlakke metalen plaat, die overal
dezelfde dikte en samenstelling heeft, dan wordt het vraagstuk van
twee-dimensionalen aard en kan men werken met de vergelijking van
LAPLACE. Strekt de geleidende stof zich tot het oneindige uit of wordt
Z¢ begrensd door twee electroden op constante potentiaal, terwijl in

r
de grenzen van het veld ’?\ =0 is, dan kan men de electroden trans-

oll

formeeren in lijnen V = const. en de andere grenzen in lijnen U = const.,
z0odat de geheele middenstof getransformeerd wordt in het inwendige
vVan bijv. een rechthoek in 't u,v-vlak. De lijnen V == const. stellen
lijnen van const.potentiaal, de lijnen U==const. de loodrecht daarop
staande stroomlijnen voor. In een willekeurig punt is de richting van
de stroom loodrecht op de aequipot. lijn en van een bedrag:
)
T 3X



3V 3U
Daar BT = 'gsﬂ
wordt: f Jds _[° 1 BUd __(U U5}

§ 6. Toepassing in de hydrodynamica.

De complexe functies vinden ook toepassing in de hydrodynamica.

De zgn. stroomfunctie ¢ voldoet n.l. in twee-dimensionale gevallen
aan de vergelijking:

3, 3
5x? ar 32
Hierbij stelt ¢ de strooming voor door een lijn AP bijv. van rechts

naar links, als de waarnemer van een vast punt A naar een veranderlijk
punt B kijkt. Zijn nu z en v de componenten van de sneldheid, dan is:

3‘# v=;_“b.
Bk ax

Voor deze beweging bestaat een snelheidspotentiaal & zoodanig, dat

u=_§,c,p U—B(p

ax’ 3y
Deze functie voldoet aan de vergelijking:
3'Q | 3'Q
sxi T 5yt 0

@ en ¥ zijn dus toegevoegde functies; datgene, wat in verband met

de electriciteitsleer is gezegd, laat zich derhalve op de hydrodynamica
overdragen.

§ 7. Toepassing op de elasticiteits-theorie,

Ook op de elasticiteits-theorie kan men de complexe functies toe-
passen. Stel, dat men te doen heeft met een cylindrische staaf, waarvan
de loodrechte doorsneden om een as gedraaid worden zoodanig, dat
de draaiingshoek evenredig is aan den afstand tot een vaste door-
snede. Verder heeft een verschuiving plaats evenwijdig aan de staafas.
Kiest men deze tot 2-as, dan worden de deformatie-componenten
gegeven door:

U= —wzy, v=wzx, w=wo/(x,y).
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@ voldoet aan de verg. (blijkens de vergelijkingen der elastische
media voor het statische geval):

52@ 310
Bxl + Byl
De grensconditie wordt:
Bcp cos (n, x)—|~ CP cos (ny)—y cos (n,x) -+ x cos (n,y)=0.

Noemt men @ het l'CLClE deel van

b= qD _%- i\b,
waarbij x b.v. een functie is van {=x - iy, dan kan men uit de
grensconditie afleiden, dat @ en ¢ toegevoegde functies worden.

§ 8. Toelichting.
Ter toelichting beschouwen wij de transformatie:
w=log 2,
of : u--iv=Ilogr-id.
Hierbij zijn de vlakken 4 = const. aequipotentiaalvlakken, terwijl de
krachtlijnen gevormd worden door r==const. of omgekeerd. Electro-

statisch kan men hierbij uitgaan van een lijnlading. Is e de lading
per lengte-eenheid, dan vindt men:

u=C—2elogr.
Heeft men een dergelijke lading in 2= a, dan past de transformatie:
w = log (2 — a),

terwijl : w=log Z—2

2-a
de superpositie geeft van twee velden met gelijke tegengestelde lijn-
ladingen in z=a en z=—a of cen lijnlading in z==a geplaatst

tegenover het viak y = o.

§ 9. Mechanisch beeld van de conforme afbeelding.

Lord RAYLEIGH heeft een mechanisch beeld ontworpen van de
conforme afbeeldingen. Bij de transformatie:

u-Aiv=[f(x-+41y)

ontstaan it een stelsel vierkantjes in het x,y-vlak twee stelsels
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krommen in het uv-vlak, die elkaar loodrecht snijdén. Deze krommen
kan men nu voorstellen door stalen draden, terwijl men in de snij-
punten koperen schijfjes bevestigt. De krommen moeten elkaar zooveel
mogelijk loodrecht snijden. Om dit duidelijker te doen uitkomen, kan
men een derde serie draden aanbrengen, die de eerste onder hoeken
van 45° snijdt. Men kan nu deze figuren met een middenstof aan-
gevuld denken, die deformaties toelaat. We kunnen dit aldus schrijven:

u-iv=f(tx+1iy), (1)

waarbij £ den tijd voorstelt. De snelheidscomponenten van een deeltje

worden gegeven door: —33-% en 3—1;, zoodat :
; d :
O+ iy = f(tx+iy). )
Uit beide laatste vergelijkingen volgt:
O+ iy=F(tu+iv). (3)

Verg. (1) leert ons de beweging van elk deeltje afzonderlijk kennen,
verg. (3) de snelheden op een willekeurig tijdstip. Houdt men ¢ constant,
dan voldoen @ en ¢ weer aan de vergelijking van LAPLACE.

Is de beweging, die aan verg. (3) beantwoordt, standvastig, dan
moet @ -} iy onafhankelijk zijn van den tijd, zoodat de eliminatie
van x -+ iy tusschen (1) en (2) moet leiden tot de eliminatie van £
Uit eenige beschouwingen blijkt, dat de verg. (1) den volgenden
vorm moet hebben:

u-t-iv=F | t4+F,(x-+iyl
Een andere vorm hiervoor is:

F,(ud-iv)=1t+4F, (x4 1y).
Als voorbeeld het volgende:

u—iv=c sin ({t-}-x41y).
Hier wordt de verg. van een zgn. stroomlijn:

u* y2
Gsinix T cicosix

Opgemerkt kan worden, dat bij onsamendrukbare vloeistoffen de be-

weging snel is op een plaats, waar naburige stroomlijnen dicht bij
elkaar liggen, terwijl hier de beweging op zulk een plaats zeer lang-
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zaam is. Hiermede heeft echter Lord RAYLEIGH zelf het bezwaar tegen
de bruikbaarheid van zijn model tot toelichting van de physische
verschijnselen gegeven.

§ 10. Transformatie bij een kromme van het geslacht nul.

Van een kromme van het geslacht nul worden de codrdinaten
voorgesteld door:

x=f(p), y=F(p).
De transformatie:

z2=f(w)+iF(w),
zal de potentiaal v =0 maken over den geleider, welke voorgesteld
wordt door genoemde kromme.

§ 11. Afbeelding door lineaire gebroken functies.

Bij de afbeelding door lineaire gebroken functies:

L —-—
W=a_,—5
E Bd ]

waarin u, «, (3, retele of imaginaire constanten voorstellen, stemt met
iedere cirkel in het v-vlak een cirkel in het z-vlak overeen en om-
gekeerd. (Rechte lijnen kunnen als grensgeval van cirkels optreden).
Dit geeft aanleiding tot de transformatie van een cirkel met een
straal r in het z-vlak met een halfvlak van den kant van de negatieve
u's in het w-vlak.
De substitutie wordt dan:
2—r
Ww=aqa z
Omgekeerd zal de transformatie:
a-w
A=W
het halfviak afbeelden op den cirkel.
Met deze transformatie, die een uitbreiding is van de nog te be-

schrijven transformatie van ScHWARZ, worden physische vraagstuk-
ken opgelost.,

§ 12. Inductie van cylindrische geleiders.

Een uitbreiding van het voorgaande geeft WEBER voor het vraag-
s : ; b . ;
tuk van de inductie van cylindrische geleiders. Men kan dit terug-
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brengen tot een afbeelding op een cirkelvormigen ring. Het eenvoudigste
voorbeeld is dat, waar een gebied begrensd wordt door twee cirkels,
die elkaar uitsluiten. Men krijgt dan een transformatie met lineair

gebroken functies, waarbij cirkels van het eene vlak overgaan in
cirkels van het andere viak.

§ 13. Verdeeling van de electriciteit op cylindrische vlakken.

Ook het vraagstuk van de verdeeling van de electriciteit op cylindri-
sche vlakken, behandelt WEBER met conforme afbeelding. De ge-
dachtengang sluit aan bij de vergelijking :

3’Q | 3?9
xi 151 =0

Hierbij is @ zoodanig, dat er een functie ¢ bestaat, zoodanig, dat:
_ 9 59
i f—
dy —5y dx 5x dy
een volledige differentiaal is. Als we derhalve

_ 3¢ 0P )
"”—_](By ax —3x Y

stellen, dan zijn @ en ¢ toegevoegde functies. De functie y =@+ iy
is dan een functie van de complexe veranderlijke z.

Noem nu de doorsnede van de geleidende cylinders met het z-vlak s
en het gebied tusschen deze krommen S. Denk het gebied afgebeeld
op een cirkel in een w-vlak, zoodanig, dat met de omgeving in het
w-vlak het oneindige in het z-vlak overeenstemt. Dan wordt w een
functie van z zoodanig, dat:

1° w in het geheele gebied S eenwaardig, eindig en continu is
en afgezien van de grenskromme, een eindig van nul verschillend
diff. quot. heeft.

2°. dat de absolute waarde van w op de kromme f gelijk 1 wordt.

3% dat w voor z=w verdwijnt en een reeksontwikkeling van w
de vorm heeft:
a, a,

We= -
2z T

a,
EERS
4°. voor iedere eindige waarde van z verschilt w van nul.
Kent men de functie w, dan kan men % definieeren door de betrekking:
% —C
w=e M

-.‘_ —
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waarin ¢ en w reéele const. voorstellen. Derhalve:
% =c-} mlog w.
Het reéele deel @ van x wordt dan:
@ =c-+mlog V u*-4-vi

® voldoet nu aan onze oorspronkelijke diff. verg. Daar de absolute
waarde V u?*-v* van w op de kromme s gelijk 1 is, krijgt @ op deze
kromme de constante waarde ¢. Verderis zw en dus V' x2-yV u? -2
in ’t oneindige eindig. Stel V' x*--y*=R, dan is @+ mlogR in
't oneindige eindig.

Verder is @ (zie 4°) met zijn diff. quot. in’t geheele gebied S eindig,
continu en eenwaardig.

§ 14, Transformatie van Schwarz.

Tot belangrijke toepassingen geeft aanleiding de transformatie van
het gebied binnen een veelhoek in het z-vlak, waarvan de begrenzing
overeen moet stemmen met de lijn v=0 in het w-vlak. Men kan
dan het gebied binnen den veelhoek overeen laten stemmen met het
halfvlak aan den kant van de pos. u-as. Men kan dan bij een hoek
van den veelhoek, kleine elementen niet gelijkvormig transformeeren.
Laat men de hoekpunten correspondeeren met u = u,, u= u, enz.,
dan wordt de transformatie:

&y | %q

=21
dz T T
dw=Cw—u) (w—u,) GG O

Hier zijn «,, «,,....enz de binnenhoeken van den veelhoek

positief gerekend, als de veelhoek concaaf is naar de x-as.

§ 15. Uitbreiding op figuren, welke gedeeltelijk krom zijn.

PAGE heeft de transformatie van SCHWARZ uitgebreid ten behoeve van
verschillende twee-dimensonale vraagstukken in electro-statica en
clectro-dynmnicn. Daarvoor moest een transformatie uitgevoerd worden,
welke figuren in het z-vlak, die gedeeltelijk uit kromme deelen be-
Staan, ftransformeert naar de retele as van het w-vlak. De kromme
Wordt daarvoor beschouwd als limiet van een gelijkhoekigen veelhoek.
Beschouw daarvoor in de eerste plaats een cylindrisch krom uitsteeksel
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op een oneindig vlak. Beschouw de kromme als de limiet van een
gelijkhoekigen n-hoek (zie fig. 1).

W=l
Wallw W= Uy
e W=-1 W= Wsoo

Fig. 1.

Neemt men u; =cosz, #,=0¢c053 %, .... Un=cCcos(2n—1)z,
waarbij 2nz ==, dan kan men een halven cirkel in het z-vlak ver-
wachten. De transformatie wordt dan na eenige limietbeschouwingen
(voor het geval derhalve, dat de kromme halicirkelvormig is met
straal C):

dz C LTS,
EL;-:V——lv:_zi——]‘(w—i-Vlvl—])-

§ 16. Uitbreiding van het voorgaande. Krommefactoren.

Op zijn beurt heeft LEATHEM het voorgaande weer uitgebreid. Hij
nam als uitgangspunt de volgende transformatie:
&r

dz = CF (w) IT (w — ur)"-”‘:'ﬁ dw.

Hierbij stellen u,, u, refele const. voor, z,, 2,,.... eveneens.
Onderstel F zoodanig, dat bovenstaande transformatie een conforme
afbeelding geeft op een w-halfvlak van een gebied in het z-vlak,
begrensd door een veelhoek met buitenhoek &, 2,,.... Denk verder,
dat alle zijden op één na recht zijn. Denk, dat voor de kromme zijde
wr << W<_Wr+1. Noem nu de passende functie F een krommefactor.
Naar het aantal zijden, dat in krommen overgaat, kan men onder-
scheiden enkelvoudige, dubbele, drievoudige krommefactoren enz.
F moet voldoen aan de volgende eischen, waarvan de drie eerste
noodig zijn voor enkelvoudigheid.

1°. Het argument van F moet const. zijn voor w > wr+1 en voor
w<wr. Voor wr<<w<wr*! moet het argument van F continu
met u veranderen.

2°, F moet niet 0 of o zijn voor eenige w, die overeenstemt met een
punt van de positieve zijde van de reéele w-as, behalve voor w = oo,
Dit is noodig voor het conforme karakter van de transformatie.

3°. F mag geen enkel bepaald vertakkingspunt hebben aan de
pos. zijde van de reéele w-as, wel op de retele w-as zelf.
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40, F moet voor w==o0 beantwoorden aan voorwaarden, die af-
hangen van den aard van het bepaalde probleem.

LEATHEM noemt nu het gebied op de reéele w-as, dat correspondeert
met waarden van w, waarvoor het argument van F veranderlijk is,
het lineaire gebied van den kromme-factor. Het verschil tusschen de
argumenten in de uiteinden van het lineaire gebied noemt hij het
hoekgebied van den krommefactor.

Indien F een kromme-factor is, is F" dit evenzeer en wel met
hetzelfde lineaire gebied als F, maar het hoekgebied is n-maal zoo
groot.

Het is van beteekenis, dat de vorm van de kromme zijde van den
veelhoek, die behoort bij een bepaalden kromme-factor niet alleen
van den analytischen vorm van de laatste afhangt, maar ook van de
andere factoren, die in de transformatie optreden. Dezelide kromme-
factor kan dus tot verschillende krommen aanleiding geven, welke
echter wel gemeenschappelijke takken kunnen hebben.

Zooals we gezien hebben, heeft PAGE een kromme-factor gegeven,
welke uit den aard der zaak weer aanleiding kan geven tot andere
kromme-factoren. Ze kan genoemd worden de kromme-factor van
het halfcirkelvormige type en heeft de gedaante:

Fye=w4 (w2— )i,

Deze heeft een lineair gebied van - 1 tot — 1 en een hoekgebied .
Dat F, aan den eisch voldoet, geen nulpunt te hebben, ziet men
gemakkelijk. Stel G, = w—(w?*— 1)}, Daar nu F,G,=1 is, is F,
nergens nul.

Tracht men andere kromme-factoren te construeeren van het type
van een rationeele functie plus een vierkantswortel, dan blijkt, dat
voor een enkelvoudigen kromme-factor onder het wortelteeken slechts

€N in w-quadratischen vorm met retele factoren mag staan, Het type
moet dus zijn:

I (W) g (w) (w2 — c?) ¥,

waarbii f e : o2 o
aarbij f en g rationeele functies zijn. Voor het vermijden van nul-
punten is het noodzakelijk, dat:

P2 — ) g (w) |* (w? — ¢?) = const.

Indien o : A Tyt
N g(W) van den eersten graad is, dan is voor de rationaliteit
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van f (w) noodig, dat g (w) eenvoudig w is. De kromme-factor
wordt dan:

F2=w2—%c1 4w (wr— )t

Deze heeft tot hoekgebied 2. Dit resultaat is echter niet nieuw,
want F, =1/, F;%

Indien g(w) van den tweeden graad is, leidt de rationaliteit van
f(w) tot den vorm:

Fs=w*— %c*w—i—(uﬂ— }Icﬂ) (w2 — ).
Ook dit is geen nieuw resultaat, want:

1
F3 = EFIJ‘

Fo.

§ 17. Algemeen bewijs dat Fn=2n__|

Men kan verwachten, dat een kromme-factor van het type:

Fo=f W)+ g (w) (w? — c)¥
waarbij f en g rationeele functies zijn, de 1¢ van de nde, de 2d¢ van
de (n — 1)ste graad, zich laat schrijven als:

1 Fyn

Fn=on=1

Hier is LEATHEM in gebreke, zoodat ik gemeend heb, hieraan eenige
beschouwingen te moeten vastknoopen. Om dit in te zien, maken we
gebruik van den eisch voor de rationaliteit:

Lf (12 = | g (W)} (w? — c?) +- const.
Dit leert ons het volgende:
(W4 pywn =1+ pwn =24 ... pa )= (oW~ !+ @ W =2+

gwn—=3-4.... qu—1)*(W? — ¢*) -}~ const. (1)
Stel hierin: w = - ¢, dan krijgt men:
(en4pen=14-pycn =24 ..o ouns -+ pa )t =0.
Voor w=—c¢ wordt:

(cn— pyen—14-p,en—2—pyen—3+....)*=0.
Trek de laatste twee vergelijkingen van elkaar af, dan krijgt men:
4(cn 4 pacn =24 pyen =4+ ) (pret — 1 Pac” =3 pct =5 -...) =0.
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De 1¢ factor = 0 heeft voor ons vraagstuk geen zin, daar dan ¢=0
moet worden. De tweede factor geeft:
p1=0, p;=0, p;,=0, enz.
Daardoor wordt ons uitgangspunt reeds eenvoudiger:
(wr—-p,wn—2+-pwn—i4 ... ) =
= (gown—14-qwn—2-F quwn—3+4....¢n —1) (W* — c?) - const.

Nu blijkt bij uitwerking, dat elke g2n.+1=0, daar er in het eerste lid
alleen even machten voorkomen. Verder krijgt men:

2p,=2q,—c* 2P\+P22:2‘h+‘h2_2%51;}

(2)
2p; +2p,ps =2qs + 2 q.q9, — 2 q,¢* — q,%c?; enz.

Dat nu inderdaad Fp= 2,71_-7 F,n is, kan op de volgende manier blijken.

Onderstellende, dat dit zoo is, kan men de p's en ¢’s opzocken en
laten zien, dat deze voldoen aan het laatste stelsel vergelijkingen.
Aan vormen van lageren graad kan men laten zien, dat dit ook het
eenige stelsel waarden van de p's en ¢'s is, dat voldoet.
We onderstellen dus, dat onze kromme-factor de waarde:
B(w- Vw:—ch)n

heeft. Dan moet derhalve:

(wn - pywn—1--pwn—24 ... Prn—2Wr-pp w4 pa) -
+ (gown =14~ q W1 =24 ... qn—3 W+ Gu—2WtGn W) VW2 — 1=

=B (w4 Vwr—c)n.
De cotff. van wn in het 2¢ lid wordt:
nn—1 nin—1)(n—2)(n—3

B(1 —1——~( 51 2. - LUTES i )—(—-—--———)-—[- ........ ).
Door een eenvoudige kunstgreep blijkt, dat de vorm tusschen haakjes
2n=1js De cotff. van wr in het 2¢ lid van verg. (2) wordt dus:

v : 1
27=1% Bs in het 1¢ lid wordt deze 1, dus B =5, —. We gaan thans

de coiff. verder opzoeken met een methode, die overeenstemming
vertoont met de volledige inductie. Ga uit van den vorm:

(W pywi =24 pwn =44~ ... pn)+
- (wn=14-gwn—34 ... .qn—2w) VW —c,
We mochten Piy Ps «+vn Qi G5 ... gerust weglaten, omdat we gezien

hebben, dat deze in ieder geval nul moeten zijn, wil men met een
2



18

kromme-factor te doen hebben. Volgens de redeneering van volledige
inductie moeten de volgende kromme-factoren gevonden worden door
de vermenigvuldiging met 4 (w - V'w? —c¢?). Deze vermenigvuldi-
ging levert:

w1 4 (py g — € W1 4 (py o gy — %) W13 ...

F(Pn—Cqn_2) W W4 (P + @) W24,

$(Pn—2-+qn—2) W+ 4 pal VW2 —c2
Noemt men de coéff. van de volgende kromme-factor:
fE e T8 0 ooy o S T aota oo 2 g

dan krijgt men de volgende betrekkingen:

Pr=5(pa+q—); pPla=1(ps+q.—Cq);

P's =1+ (ps +qs —C?qy) enz.;
gy =4%(P2+q); ¢s=41(Ps+q); e =1 (P + qs) enz.

De eenvoudigste methode om regelmaat te ontdekken, is gelegen in
het opstellen van een tabel voor de verschillende n's. Dit is niet
moeilijk, daar we van n=2 of zelfs n=1 kunnen uitgaan.

Die tabel heb ik voortgezet voor de p's en de ¢'s tot en met n = 8.
Bekijkt men den vorm, die men voor de p's en de g's krijgt, dan
blijkt dat:

pPr=—nX1%tc} go=—(n—2)}c.
Dat dit inderdaad algemeen juist is, volgt door volledige inductie:
Pa=%(P+qh—c)=—1c(n4-1),
Fr=% (Pt q@)=—1ecr (n—1).
De p, en g, blijken termen te vormen van reeksen van hoogere orde.
De algemeene p, wordt dan:

—4) (n — 5)
2 —— e .
= S iy =3
IG 2.-.
-5, (n—=5)(n—6)
B Ef i ot a (=3 (a—4)
4 = A T T Ch = — A ch

Door volledige inductie blijkt weer, dat dit algemeen juist is. Op een
dergelijke manier blijkt, dat:

n(n—4)(n—>5) - (n—4)(n—-5)(n—6)

pG: 32" Cl s 327
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Substitueert men deze uitdrukkingen in de vergelijkingen (2), dan blijkt
inderdaad, dat deze aan genoemde vergelijkingen voldoen, zoodat men
met deze cotff. inderdaad kromme-factoren krijgt, welke aan den
eisch der rationaliteit Voldoen.

§ 18. Betrekkingen voor sommen van binomiaalcoéfficienten.

Let men op (w-+Vw2—c?7, dan kan men uit het voorgaande
interessante betrekkingen vinden voor sommen van binomiaal coéff.
De waarde voor B hebben we gevonden door de coéff. van wn gelijk
te stellen:

nn—1) nn—1)(n—2)(n—3) o
]"l"_z—!_' Yy "—'—_"'4"_“__‘—_+ -------- _2 l

Voor ¢, vinden we:

n (n— 1)(;;—__2) =1 =2 @=3) (-4

o=t 51

De vorm tusschen accolades heeft dus de waarde 2721,
P1=:0, q, =0 levert niets op, daar die ook hier vanzelf verdwijnen.

: n(n—l)(n—2)(n—3)
B ST i 41 +

n(n—1)(n—2)....(n—5)
3 6! Wy

Derhalve wordt de vorm tusschen accolades: n X 213,

e : Ber= — ‘]4 ne.

[Ze=1 =2 ;na=Na—2E_SE—4),

+3n(n Hkl)'” _(__T‘_(_‘))_{_“”} Bed = — (n—Z);— o,

De uitdrukking tusschen accolades krijgt thans de waarde: (n — 2) 27 =3,
Ps =0, g, =0 leveren niets op.

q12

p‘::if_!k(jr_r—r'__l}(n—‘.l)(nﬁB) nn—1).... s (n—5)
| T 6l +
LI T e
,|_10_f!(f!:—-l)_.._i(.”....(n—‘_))_*“ ........ !Bc‘ 1(_!;2:-3) .

Th .
ans wordt de vorm tusschen de accolades: n(n—3)2n—6,
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(n(n—1)....(n—4) nin—1)....(n—6)

Qi 51 s 7! +
—1D(n—2)....(n—38
_|_6n(n )(n 92!) (n )+
nin—1)....(n—10) ik (n——3)(n—4)
-+ 10 111 +....{Bet= 75

De vorm tusschen accolades wordt nu: (7 — 3)(n —4)27—F6.
Opgemerkt kan worden, dat in p, en g, de coéff.: 1, SO (s
een reeks van hoogere orde vormen.

nin—1)....(n—T)

) (= 2) e (.
——| 61 2 t4 ST ar
nn—1)....(n—9) nn—1)....(n—11)
7L o et 121 ir
nn—1).. (rz——13)) _n(n—4) (n—5)
135 141 |B 327

De waarde van den vorm tusschen accolades wordt nu:
+n(n—4)(n—>5)2n—8
(n(n—1)(n—2)....(n — 6) nn—1)....(n—8)

G = T A0 g
nn—1).... —10) nn—1)....(n—12)
+10=— 111 120 131 1
n—1)....a= 19| 5 (=4 (@—5(n—6) ,
SRt i51 S A

De vorm tusschen accolades wordt dus: 4 (n —4) (n — 5) (n — 6) 228,

(Opm. De cotif. 1, 4, 10, 20, 35, .... die in p; en g, voorkomen,
vormen een reeks van hoogere orde.)

Opgemerkt kan worden, dat enkele van deze binominaaluitdrukkingen
ook zelfstandig kunnen worden gevonden. Door de bewerking inder-
daad hiervoor uit te voeren, kan men zien, hoeveel moeizamer deze
zelfstandige weg is. De weg is een generaliseering van de hiervoren
beschreven kunstgreep voor het vinden van B.

§ 19. Eenduidigheid der gevonden F. Enkele kromme-factoren.

We hebben gezien, dat de gevonden p,, g,, voldoen aan ons stelsel (2)
van blz. 17. Dat dit het eenige stel is, blijkt door voor n=2,3, ...
uit deze verg. de p's en g¢’s op te lossen. Er blijkt dan slechts één stel
wortels te voldoen en wel hetzelide stelsel, als we hier gevonden hebben,
zoodat we mogen aannemen, dat dit het eenige stelsel wortels is.
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Enkele kromme-factoren voor n=1, 2 .... 5, volgen hier:
n=1:w-+Vw—c

n=2: (W’——%c’)—}-wl/m_
3 1 ——
n=3: (W3 — IC’W)—I"(WZ *—:1" (','2) Vw: _— 2,
n=a: (w—cwt 4 "‘) +(w — 3 ) Vi — ¢
3 1 s
g (w5 = % SRS % c‘w) il (w-a — TPl I 16 Ci) Vwi— 2,

In deze gevallen is gemakkelijk de waarde van de const. van blz. 17
op te geven. Drie waarden worden resp. van af n=2:

1 1

1
7 6 64 ¢ 5ppC'" enz.

Men kan nog deze opmerking maken. Substitueert men in verg. (1)
voor w de waarde ¢, dan wordt:

| f(c) |* = const.
Die const. is derhalve steeds positief.

§ 20. Algemeene uitdrukkingen voor de coéfficienten p en q.

Beschouwen we p,, ¢, enz, dan laat zich de verwachting uit-
spreken, dat:
n(n—k—1)1 [ c\*
p'-’k:(—”*'k[(n---zk)l('>) '

St (R=km]) e\ S
Gax=(—1! k!(n—zkwl)’(i’) '

Door volledige inductie blijkt, dat dit inderdaad juist is, als men ge-
bruik maakt van de verg.:

1 1
f ——
p2k'_" 2 (ng ""‘ q:'.'k "““C]q;,k_z); qr:!k — 2'(.0:_'k—i_ ‘I,;zk)-
Ook de binominanluitdrukkingcn laten zich generaliseeren. Lettende
0 . : T
P W Vwr_—ciyn kan men schrijven:

Yerro(n—2k+4-1)

nin—1
Pax=(—1p| ™ 2k1 +

1 k4+1nn—1....(n—2k—1)
T T 2kF2)1 +
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(k+1)(k—|-2)n(n—-1) (n—2k—3)

- Ck—%)] ar
G 1)(k+2)(k+3) n(—D)....0=2k=5)| p oy
2 k +6)!
De vorm tusschen accolades wordt thans op grond van de gevonden p, . :
nn—k—1)!

22n—2k—1,

(— D Frm—2n!
Evenzoo wordt:
—1D(n—2)....(n—2k)

Qk:(—l)k}n(n (2k+1)! +
k+1nn—1)....(n—2k—2)
T Ck+3)1 r
(k+1)(k+2) n(a—1)....(n —2k—4)
+ 21 2k-+5)1 T
(k+1)(k+2)(k+3)n(n—l)(n—z) (H_M'B:k
i (2k——7)!

De vorm tusschen accolades wordt nu:

(n—k—-l)!

G =i

§ 21. Kromme-factor van halfelliptisch type.

We komen thans op de beschouwingen van LEATHEM terug. Uit
het voorgaande is gebleken, dat het halicirkelvormig type zich niet
laat generaliseeren. Als volgende voorbeeld geeft LEATHEM een kromme-
factor van halfelliptisch type:

F,=wsinha -4 (w?— c’)'l‘ cos h .
Deze heeit tot hoekgebied =. Op eenvoudige manier blijkt, dat F,
geen nuipunten heeft.

LEATHEM geeft in zijn verhandeling een rijkdom van mathematische

uitbreidingen met physische toepassingen. Voor de laatste verwijs ik
naar de tabel.

§ 22. Kromme opgevat als limiet van den veelhoek,

Het ligt voor de hand, het voorgaande in verband te brengen met
de gewone transformatie van SCHWARZ door de kromme op te vatten
als de limiet van een door rechte lijnen begrensden veelhoek (zie
ook § 15). Laat @ de hoek zijn tusschen de reéele 2-as en de raaklijn
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in een willekeurig punt van de kromme. Laat verder de buitenhoek
van den veelhoek, waarvan de limiet de kromme wordt, zijn d @ en
¢ de waarde van w voor het hoekpunt, dan wordt de kromme-factor:
o
lim. IT(w—9)"7* ,
welke verkregen kan worden door:
de
F_,_=ef10g w—67 .

Deze uitdrukking is onbepaald door het ontbreken van ieder functioneel
verband tusschen ¢ en @. Men kan derhalve een functioneel ver-
band aannemen:

P == f(0),
waarbij f afhangt van de figuur, waarmee we ons bezig houden, zoo-
wel wat afmeting als voorgeschreven begrenzing betreft. Voor een
willekeurige kromme wordt de transformatie:

j_]—flog (w—0)do
dz=e?®

§ 23. Transformatie: f(z)dz=F (w) dw.
In zijn slotbeschouwingen vermeldt LEATHEM, dat de transformatie:
f(2)dz =F (w)dw
nog grooter moeilijkheden oplevert, dan de tot nog toe beschouwde.

Toch lukt het hem, ook in enkele speciale gevallen met deze trans-
formatie te werken.

§ 24, Algemeene codrdinaten.

.‘Van geheel anderen aard zijn de uitbreidingen, die WEBSTER in
“in werk over ,FElectricity and Magnetism” geeft. Deze werkt n.l.
"‘_Qt algemeene codrdinaten. Laat V b.v. een potentiaal voorstellen,
die in een punt P continu is, en daar de waarde V heeft. Indien V
€en functie is van een codrdinaat g, dan worden haar aequipotentiaal-
viakken verkregen,door g constant te stellen. De electrische kracht isdan:

REZA\_’:BV ,;w::izhé—v,
an oq an sn

Hierbij hebben we =+ ;gzh gesteld. Het positieve teeken moet men



24

nemen, als V en ¢ in dezelfide richting toenemen, anders het nega-
tieve teeken.

Laat V nu een functie zijn van drie algemeene orthogonale codrdi-
naten. Noem dn, deloodrechte afstand tusschen naburige oppervlakken
g, en g, -+ dg, evenzoo dn, tusschen g, en ¢, dq, en dn., tusschen
=y lz,:—g—gz en h;:%%.
Noem verder R,, R,, R, de componenten volgens de normalen op de
vlakken g, = const., g, = const., g, = const. van de electrische kracht
in een punt met algemeene codrdinaten gy, q,, s, dan is:

g, en g, + dg,. Noem verder /1, =

3V dVv sV 3V 3V 3V
R1 nl_—hlgd—l’ R2$5111=—h15—%’R3=ﬁE_h$ﬁ;'

Voor een krachtlijn geldt:
dn,:dn,:dn, =R :R, : R,
of
dq, : dq, : dg, = iRy : IR, : IR,
De diff. verg. van de krachtlijn zijn dus:

23V 290V 23V

dq,:dq,:dq,=h g :h

13 q, q; Jq 33 q3
hy 3V_h, oV h 3V __
=5 3, Rk gk ag,— Qi Qs
Hier heeft men gesteld:
hy 3V
Q: — ’Zh; ':‘E CNnz.

De driedimensionale vergelijking van LAPLACE wordt dan:

JQI ')Qn :JQ':

> — == (),

')fh+'3fh+'3fh

Indien we nu een integraal gevonden hebben van de verg. van de
krachtlijnen:
2 (qy, q4, q,) = const,,

dan is:
3 A 3 A
50, dq,+ 3T, a'q,—{—J dq:_—_O
en daar:
dq,:dg,:dq, =Q,:Q,:Q,,
is:

3 A 3 A 37
Q Y } b 1 'y 20.
5+ Quy Qg
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Meetkundig beteekent dit, dat de kracht Q loodrecht staat op de
normaal op het opp. » = const., d. w.z. raakt aan dit opp.
Een andere integraal wordt nu terstond gevonden in den vorm:

v = [ 55 (Q dag, — Q, dgx) = const.
3 Qs

WEBSTER toont dit in een voor deze dissertatie te uitvoerig be-
toog aan.

Om het voorgaande te verduidelijken, kan men twee toepassingen
geven. Laten ¢, ¢., g, de rechthoekige codrdinaten x, y, z voor-
stellen; beschouw V als onafhankelijk van z. Men heeft dan te doen
met een vraagstuk in een plat vlak. De eene integraal is dan:
A=z =const. en de andere:

] G ) =

sp 3V 3p 3V

3x oy’ dy  ax’

Dan wordt:

 en V zijn dus toegevoegde functies.
Stellen qy, s, g, de cyl. codrd. p, @,  voor en denkt men V on-
afhankelijk van o, dan is een oppervlak:

2 = @ == const.
en het andere:

3V
‘“'"[ (3‘: —-j:/d)_const.

We komen op onze algemeene beschouwingen terug. Liggen de
kmchilijnen in één van de cobrdinaatsvlakken, dan is ¢én integraal:

A == g, == CONSst.
Derhalve :

sz(h, A f JV! ) const
h, h, aq,”" ~ hyhy 3q, St o '

Hieruit volgt:

duy _ hy 3V 3u _ h 3V
3qy hyhy 3qy) 3qy,  hohy 3qy

D
00r differentiatic en optelling blijkt nu, dat men de volgende ver-

gelijkingen kan opstellen:
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/BN aV) ) ( h, aV)

— - = =4

3‘?1(“1.-.‘h'.' 3QI +JQ2. hshl a‘h

3 [hh 5;4) J (}z2 h, B‘p.)

— A\ =5 > — - =0,

EQI(ha 34, +3‘h hy o4,

Is nu A, onafhankelijk van g, en g,, hetgeen het geval is, als twee

opp. G-, gs + dq, overal denzelfden afstand dn; = ghi“ hebben, dan vol-
3

doen V en g aan dezelfde differentiaalverg. Door verwisseling van
V en 2 kan men dus gelijktijdig twee vraagstukken oplossen, evenals
in het begin vermeld werd met toegevoegde functies.

De analogie met het vroeger behandelde strekt zich echier nog
verder uit. De lengte van een boog wordt gevonden door:

Kan men nu twee functies u«(qy, q.) en v(q,, q,) zoodanig vinden,
dat (du)* - (dv)* = Mds?, waarbij M een functie is van de plaats van
het punt, welke echter de differentialen dg, en dg, niet bevat, dan
blijkt uit een vrij ingewikkelde becijfering, dat # en v beide voldoen
aan de volgende overeenkomstige diff. verg.:

3 (h, au) 3 (h, r)u)
== = = — =0,
dqi\h, 2q + Sq, \ Iy 34,

3 [ hy av) 3 (n, au)
CoP] oy e s |+ s—=—)=0.
aql(m GQI_+OQ2 hy 3q,

u en v voldoen aan dezelfde diff. verg. als V en w. Twee zulke
functies u en v mag men dus kiezen in plaats van V en .
Heeft men een tweede stel functies «, v zoodanig, dat

(du')? 4 (dv')? = M'ds?,
dan blijkt, dat u’+-iv’ een monogene functie is van u--iv. Hieruit
ziet men, dat uit de oplossing van één vraagstuk voor het opp. g,

de oplossingen van een willekeurig aantal andere vraagstukken voor
hetzelfde opp. kunnen worden afgeleid.

Indien de grootheden u,v rechthoekige cobrd. in een plat vlak voor-
stellen, dan wordt de lengte van een boog:
de? = du? - dv?.

Met een will. punt a,v op het platte vlak correspondeert een ander
punt met dezelide waarde voor uy op het opp. ¢;. Tengevolge van
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de betrekking de?=Mds? heeft men conforme afbeelding. Trans-
formeert men het u,y-vlak weer conform op een x,y-vlak, dan weet
men, dat uz-+iv een monogene functie is van x--7y, waarbij men
# en v intensiteit en potentiaal van het x,y-vlak kan laten voorstellen.

Als eenvoudige toepassing van het voorgaande en een uitbreiding
van § 4, kan men gemakkelijk aantoonen, dat ook hier weer:

[[ ¢ dxdy =[] ¢'dg, dg,.
Men ziet dan weer, dat gebieden, die door transformatie uit elkaar
ontstaan, bij verschillende dichtheden dezelide ladingen hebben. Verder
bewijst men gemakkelijk, dat de totale lading tusschen twee punten

gemeten wordt door het verschil van de waarden van de functie, die
aan de potentiaal is toegevoegd, tusschen die punten.

§ 25. Conforme afbeelding in de ruimte met 4 afmetingen.

H. BATEMAN heeft de conforme afbeelding uitgebreid tot een ruimte
met 4 afmetingen. Hij geeft van zijn methode physische toepassingen,
waarvoor wij naar de tabel verwijzen. Hier geven wij een Kort over-
zicht van zijn methode. De overgang naar de driedimensionale ruimte
werd verkregen door de vierde codrdinaat te vervangen door i 0
Waarbij ¢ de tijd en ¢ de snelheid van het licht voorstelt.

Voer de volgende 6 homogene codrdinaten in:

l=x-4iy, m=z-4iw, n=x*-4-y*-+-22+w},
A=x—iy, p=2—iw, v=—1

Deze zijn verbonden door de identiecke betrekking:

Ia-mp - nv=0,
Elke functie F (x,y,z,w) kan met behulp hiervan uitgedrukt worden als

€en homogene functie van willekeurige graad. We mogen b.v. schrijven:

[4 A [—A m-}- m—
2y ' 2@y'" 2v ' 21y

U= 1 [ A [— A m--w m-— &
Fx,p,2,w) =— vf(ﬁ“ 2y '~ 2iv’'_ 2v ' 2iv /)

V=F(x,y,2w)=F (“

In de eerste voorstelling is V een homogene functie van de nulde
Braad, in de tweede is U van de graad — 1. Omgekeerd zal iedere
homom‘-nc functie van de 6 veranderlijken I, m, n, A, &, v uitgedrukt
kunnen worden als een functie van x, y, 2, w.
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Bij de volgende eenvoudige becijferingen maakt BATEMAN gebruik
van de hexaspherische codrdinaten:

r:—1 241
Gy =X, g =), &y =2, & =W, as-_=-—2~—, Ry = 27
waarbij :
rt=x2-4y*- 22w
Dan wordt:

=iz, m=a;+ia, n=a;+ iz,
g — I g.

hz‘xi_"i‘xh pb=.%3—l.-?$4, V=

Het doel van deze becijfering is te doen zien, dat een homogene
functie van de nulde graad, die een oplossing is van:

3Vav 23V aVJV
3 Bl—l'am +an SV =ty

2V \?
2, (=) =o
ook een oplossing is van:
7 V\? 3 V\2 3 V\? 3 V\2
GG e )= M

Evenzoo toont men aan, dai indien U een oplossing is van:
32U 32U 31U

d.i. van:

| Rk=z

5T3% tamog Tinat—
d.i. van:
3 SUSE
k=1 0 &K’ '
U ook een oplossing is van:
02U aU | a2U 32U
uri_;c?-%_ 3y r - 3 22 -I_“f}'wi =0. @)
Beschouwen we &, &, .... &, als de cobrd. van een punt in een

zesdimensionale ruimte, dan blijven de uitdrukkingen:

sU\2 g 32 U\2
P \dax) T o \J 2k

onveranderd van vorm bij verandering van rechthoekige assen, als de
oorsprong dezelfde blijft. Elke dergelijke verandering levert een trans-
formatie in de ruimte (x,y,z,w), welke ons in staat stelt uit een

&k,

6
5
=] k

| M=

k
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oplossing van verg. (2) een andere te verkrijgen. Een dergelijke op-
merking geldt voor verg. (1).

Als toelichting van het voorgaande gaan we n en — p verwisselen.
Uit de oplossing V=F(x,),2, w) van verg. (1) leiden we nu een
tweede oplossing af:

X y 2 W
=2 =)
Uit de oplossing U=f(x,y,z, W) van (2), vinden we een tweede
oplossing
1 X y z W
u=75 G o )
Stellen we nu: w==icf, dan nemen de verg. (1) en (2) den bekenden
vorm aan:
aV\? 3 V\? 3 V\? 1 /3V)\?
G +G) + 62 ==Ga) - €

U . 22U |, 172U 1 22U

sxt Tay Toz =@ on ®)
De transformatie laat zich nu aldus schrijven:
X y - F4 {
K= r— e Y= rr — cifa’ L= rr — ¢y’ T= rn— o
waarbij:

ri=x? _i_y! ._I_. 22,

Een tweede voorbeeld krijgt men door m en n en px met v te ver-
wisselen. Dan blijkt eenvoudig, datals: V=F(x,y,2, f), een oplossing
IS van: (3), dan is ook F(X,Y,Z, T) een oplossing, waarbij:

B C RSt Y sy T3 =2 4l
z—ct' \‘::#ct’ /‘_2(:—6!)' CT—Z(/:FHC{)'

Hierbij is;
3 =x3--y14- 22—
En indien U = f(x, 9,2, 1) een oplossing is van (4), dan is:

R f( X y r? r+1 )
Z—Cf z—ct' z—ct' z2—ct’ 2¢c(z2—cl)

tveneens een oplossing.
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Voor het verband tusschen de verschillende oplossingen verdient
het aanbeveling poolcodrdinaten te gebruiken. Stel:

x=rcosbtcos®, y=rcosdsin®, z=rsinbcosy, w=ict=rsinésiny,
X=Rcos®cos ®, Y=R cos @ sin ¢, Z=Rsin © cos ¥, W=1icT=Rsin@ sin ¥,

dan krijgen we de betrekkingen:

= _6—21"\1", Ri=—e 2""!’, sin ® =cosecd, ®=29.

Er bestaat een dergelijke transformatie voor de vergelijking van LAPLACE.

De resultaten van de combinatie der verschillende transformaties,
die behooren tot de groep van conforme afbeeldingen, wordt het
gemakkelijkst vertolkt door asverandering in een ruimte met spherische
coordinaten. De hoek tusschen twee grootheden in deze ruimte is
even groot als de hoek tusschen de overeenkomstige grootheden,
waarop de conforme afbeeldingen zijn toegepast.

Bij een ruimte van vier afmetingen hebben we inderdaad:

6
E 0 axt =dx?4-dy* - dz* - dw?,

k=1

kg lsxk yar = dx dx' - dy dy' + dz dz' 4 dw dw'.
Hieruit volgt de belangrijke stelling gemakkelijk.

Een verandering in het teeken van zg levert een inversie. Gaat deze
gepaard met een teekenverandering van z,, dan krijgt men de andere
genoemde transformatie. In ’t algemeen stemt een spiegeling van
lineaire grootheden inde « ruimte overeen met een inversie ten opzichte
van den overeenkomstigen cirkel, bol of hypersfeer in de vier-
dimensionale ruimte.

§ 26. Meerwaardige potentialen,

Heeft men de potentiaal van een beperkt gebied van een plat vlak
te bestudeeren, dan kan men dit vraagstuk door analytische uitbreiding
tot een probleem voor het onbeperkte vlak maken. Wordt het oor-
spronkelijke gebied begrensd door rechte lijnen of cirkels, dan kan
men de uitbreiding tot het geheele vlak bewerkstelligen door spiegeling.
Heeft men een puntlading voor een geleidend vlak, dan kan men,
zooals bekend is, het desbetreffende potentiaal-vraagstuk oplossen
door een tegengestelde puntlading te plaatsen in het spiegelbeeld van
het punt, waar de oorspronkelijke lading zich bevindt. Bij een punt-
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lading binnen een hoek, gevormd door twee loodrechte vlakken, kan
men ladingen plaatsen in 4 symmetrisch ten opzichte van de vlakken
liggende punten. Maken de vlakken een hoek van 60° dan krijgt men,
als men het oorspronkelijke punt meetelt, zes beelden. Is de hoek

% radialen, dan krijgt men 2 m beelden. Bevat de hoek daarentegen %

radialen, dan moeten we, willen we door spiegeling in ons uitgangs-
punt terugkeeren, nkeer het platte vlak om het hoekpunt van den
hoek rondgaan. We kunnen dan met succes gebruik maken van
Riemannsche opperviakken.

Men kan nu n.l. de 2 m spiegelbeelden plaatsen op een Riemannsch
oppervlak, dat op de bekende wijze uit n bladen wordt samengesteld.
Gaat men in het Riemannsche oppervlak een keer rond, om het hoek-
punt, zoodat men in het uitgangspunt is teruggekeerd, dan stemt dit
overeen met bovenbedoelden rondgang om het hoekpunt in het platte
vlak, welke men nkeer had uit te voeren, voordat men in het uit-
gangspunt was teruggekeerd. Heeft men nu de oplossing van het
potentiaalvraagstuk voor het Riemannsche oppervlak gevonden, dan
sluit deze de oplossing in zich van het vraagstuk voor het oorspronke-
lijke deel van het platte vlak.

Maar ook in andere gevallen kan men met vrucht gebruik maken
van Riemannsche oppervlakken. Het komt n.l. voor, dat men in een
of ander vraagstuk voor de potentiaal een meerwaardige functie vindt.
(Voorloopig beperken we ons weer tot het platte vlak). Hoewel dan
slechts een enkele waarde aan de grens-voorwaarden zal voldoen,
kan het toch van belang zijn, de beteekenis van de andere waarden
te onderzoeken. Dergelijke zgn. meerwaardige potentialen treden b.v.
Op bij de transformaties met foegevoegde functies: w = @ (z), waarbij
?(2) geen eenwaardige functie van z is. Men kan ook thans @ (2) op
ten Riemannsch oppervlak voorstellen als een éénwaardige functie.
Eén punt op dit Riemannsch opperviak stemt nu overeen met ¢én
Waarde van w, derhalve met ¢én punt in het w-vlak. Dus wordt met
bchulp van bovenstaande vergelijking het geheele w-vlak getrans-
formeerd tot een volledig Riemannsch oppervlak. Bij een zekere waarde
Yan 2 kunnen nu meerdere waarden van den potentiaal behooren,
:]:ac’e::‘ke wanrdc‘ heeft betrekking op een bepaald blad. Indien men

zeker gebied op dit oppervlak kiest, dat geen vertakkingspunten
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of lijnen bevat, kunnen wij dit gebied als een reéel tweedimensionaal
gebied beschouwen en de bijbehoorende waarde van de potentiaal,
zooals onze vergelijking die geeit, levert ons de oplossing van een
electrostatisch vraagstuk.

§ 27. Toelichting.

Beschouw als toelichting de functie:
-
Men krijgt dan een Riemannsch oppervlak (het w-vlak) bestaande uit
twee bladen. Bij één waarde van z behooren 2 waarden van w, elk
op één blad van het R-oppervlak. Een cirkelvormige weg in het ééne
opperviak wordt een dubbele cirkel in hetandere. Een lijn, evenwijdig
aan de redele as wordt een parabool in de andere. Men krijgt dus
door transformatie problemen over gebieden door parabolen begrensd.
Een combinatie van de methode der spiegeling met die der meer-
waardige potentialen vindt men in het volgende voorbeeld. In het
Z-vlak ligt een lijnlading —-e in een punt P geplaatst tegenover een
geleidend vlak, voor te stellen door de reéele as. De oplossing wordt
gevonden door cen lijnlading —e in het spiegelbeeld. Men krijgt
dan de verg.:

s

u-iv=Alog —zv

=)
— S./I,I =

Dit kan men transformeeren met f,’:-—z*'*'. Het geleidend vlak wordt
dan een halfvlak, waarvan men de doorsnede met het z-vlak kan
kiezen als vertakkingslijn in het Riemannsch oppervlak. De potentiaal

w wordt dan gevonden uit:
; Vz—Va
II—-'—IV—AIOg'Vz — V(;fﬁ)
Hierbij stelt z==a het punt (a, ) op de bovenlaag, z=—a het
beeldpunt op de benedenlaag voor. Voor een enkele lijnlading (a, )
in de bovenlaag, wordt de potentiaal na eenige herleiding:

u—_-c—|—-;-- A log{r—ZAr cos ;—(G—m)—{—a:.

Door vergelijking met vroeger ziet men in, dat A = — 2e moet

zijn, zoodat:
1
U=c—e log}r—z €OS o (6 —az)Var-a,.
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§ 28. Riemannsche ruimten.

Bij het voorgaande sluiten zich nauw aan de beschouwingen van
SOMMERFELD betreffende de oplossing van vraagstukken in de drie-
dimensionale ruimte. SOMMERFELD gaat daarbij weer uit van een
uitbreiding van de methode der spiegeling, welke verkregen wordt
door een vraagstuk voor een begrensd gebied uit te breiden tot de
onbeperkte ruimte. Men kan nu beginnen tweedimensionale algebraische
potentialen, dit zijn de potentialen, die retele deelen van gewone
algebraische functies zijn, uit te breiden tof z.g. ruimtelijke algebraische
potentialen, d.w.z. dat ze in de geheele ruimte gedefinieerd zijn, slechts
een eindig aantal polen en willekeurige vertakkingen van eindige
veelvuldigheid bezitten. In de ruimte krijgt men dan natuurlijk in plaats
van vertakkingspunten, vertakkingslijnen. Hiervan veronderstellen wij,
dat ze continue krommen voorstellen. Als uitbreiding van ons Rie-
mannsch oppervlak treedt thans op een z.g Riemannsche ruimte, welke
't ons mogelijk maakt, de functie éénwaardig te houden. Wij denken
ons, dat een Riemannsche ruimte aldus ontstaat. Onderstel, dat in de
ruimte onze potentiaal n-waardig is, dan beschouwen we n-exemplaren
van onze gewone ruimte en teekenen daarin de vertakkingslijnen aan.
Tusschen de vertakkingslijnen spant men dan membranen van wille-
keurige gedaante, waarna men elke ruimte langs deze membranen
opensnijdt. Daarna voegt men de ontstane rechter- en linkerzijde van
de vlakken van doorsnede zoodanig samen, als op grond van de
waarde-verdeeling van de potentiaal wordt getischt. ledere vlakke
doorsnede door een Riemannsche ruimte levert nu een gewoon Rie-
mannsch oppervlak, waarin de snijpunten met de vertakkingslijnen de
vertakkingspunten opleveren, terwijl de snijlijnen met de membranen
de vertakkingslijnen van ons gewone Riemannsche oppervlak opleveren.

Zooals gezegd kan men met behulp van deze beschouwingen de
Spiegelmethode aanmerkelijk uitbreiden. Heeft men n.l. een gebied in
een gewone ruimte, dat door platte vliakken of bolvlakken begrensd
wordt, dan kan men door symmetrische herhaling een Riemannsche
ruimte doen ontstaan. Deze ruimte moet aldus samenhangen met het
gebied der gewone ruimte, dat de op elkaar volgende spiegelbeelden
langs de vertakkingslijnen in de Riemannsche ruimte aan elkaar sluiten.
We beperken ons bij de potentiaalvraagstukken tot de z.g. Greensche

Junctie (di. een functie die in het beschouwde gebied slechts één
3
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enkelvoudige pool bezit). Kent men nu de Greensche functie voor de
Riemannsche ruimte, dan kan men daaruit synthetisch een oplossing
vinden voor het gebied van de gewone ruimte.

Als eenvoudigste voorbeeld kan men nu een door twee viakken

begrensd gebied beschouwen, die elkaar snijden, onder een hoek %

De Greensche functie van dit gebied levert een Riemannsche ruimte
van n exemplaren met een enkele rechte vertakkingslijn en met 2

27 ;
L Neemt men het gevalm=1,n=1

dan verandert dit gebied in de oneindige ruimte, de begrenzing in een
vlak door een rechte lijn begrensd oneindig dun scherm.

Heeft men met een vlak oneindig dun scherm te doen, begrensd
door een willekeurige rand, dan zal in de eerste plaats gevraagd
worden naar de Greensche functie van een dubbele ruimte, die de
rand van het scherm tot enkelvoudige vertakkingslijn heeit. Het opper-
vlak van het scherm kan daarbij de rol van bovengenoemd membraan
vervullen, dat beide exemplaren van de ruimte scheidt. Tot deze
Riemannsche ruimte wordt men geleid door onze gewone oneindige
ruimte aan het vlak van het scherm te spiegelen. De Greensche functie
voor het geheele gebied buiten het scherm met de pool P wordtdan
opgeleverd door het verschil van twee Greensche functies onzer
Riemannsche ruimte, waarvan de eene in het oorspronkelijke punt P
een enkelvoudige pool bezit, terwijl de tweede functie een enkelvoudige
pool bezit in een punt P’, dat in het tweede ruimte-exemplaar ligt
en het spiegelbeeld van P is ten opzichte van het scherm.

Om in de Riemannsche ruimte de meerwaardige potentialen een-
waardig te maken, definicert SOMMERFELD als Greensche functie
in de Riemannsche ruimte een functie u, welke aan de volgende
eischen voldoet:

w
m-polen. Immers n L A

1°. u moet een oplossing zijn van de vergelijking A u==0.

2%, u moet een continue en eenwaardige functie zijn op de Rie-
mannsche ruimte, behalve:

3%, u moet oneindig worden in een zeker punt P van dezelfde orde
1 -
als waarbij R den afstand van een willekeurig punt tot P aanwijst.

In dit punt en in de vertakkingslijnen behoeft u niet te voldoen aan
de vergelijking: A u=0.
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4% u moet in het oneindige 0 worden.
SOMMERFELD toont uitvoerig aan, dat bovenstaande eischen voldoende
zijn om de eenwaardigheid van de Greensche functie vast te leggen.

De Greensche functie van onze ruimte is de potentiaalfunctie }12
Greensche functie van een willekeurige Riemannsche ruimte is hiervan
het analogon.

SOMMERFELD bewijst, dat verschillende stellingen, als de stelling
van GREEN, de reprociteitsstelling enz. zich gemakkelijk en met de
daarvoor bekende methoden laten uitbreiden tot een willekeurige

Riemannsche ruimte.

De

§ 20. Meerwaardige potentialen in verband met speciale Rie-
mannsche ruimten.

Gaan we thans over tot de toepassing van meerwaardige potentialen
: ! y : 1 T
door speciale Riemannsche ruimten, dan gaan we uit van --R-,waarbu R

den afstand van een vaste Pool P (x,y',2) tot het veranderlijke punt

Q (x,y,2) voorstelt. Een oplossing van de potentiaal-vergelijking
is dan ook:

1
u=[Efqu

De integratie moet langs een willekeurigen weg in het a-vlak worden
pdr
r
Door £ () geschikt te kiezen, wordt het mogelijk, meerwaardige

Potentialen te vormen.

i . . : (e e [
uitgevoerd. Een analogon hiervan is de uitbreiding van - ot '

Laat ons denken, dat men met een Riemannsche ruimte te doen
heeft, yit n exemplaren bestaande, die zich om een enkele rechte
fangschikken. Neem deze vertakkingslijn tot z-as aan en voer in het
Viak z = ( poolcotrdinaten in, door te stellen:

Xtiy=ef TP e P x tiy=ef TP _pet?
Dan wordt.
RY=2rr)cosi(p—p')— cos (@ — @' 4 (z — 2.
Vervang ny,

POtentiaa] o
drukking vo

®" door een complexe veranderlijke =, waardoor met de
en identieke transformatie plaats vindt, dan gaat de uit-
or R, die we door R’ vervangen, over in:
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R”:er’)cosi(p—-p’)——cos(@——x)t-[»-(z—-z’)‘.
Men kieze het teeken voor R’ zoodanig, dat R’ voor reéele « positief
wordt. Vermenigvuldig % nu met een funtie f (), die in z=@" van
de 1¢ orde oneindig wordt met het residu 1. Integratie naar « vol-
271

gens een weg, die dit punt in positieven zin omsluit, geeft dan —-.

Verder kiest men f (a) zoodanig, dat ze in x en @’ de periode 27
heeft, dan is de eenvoudigste functie:

i

f@)=—

gl gi?"

De identieke transformatie wordt dan:
Lyl _elda

Rime2we] Bt eiz__ei{l"‘

Deformeert men nog den integratieweg, dan moet men letten op de
singuliere punten in het x-vlak. De vertakkingspunten zijn gegeven door:
R2=0, R*=o.

Deze waarden geven voor z:
p=o00 en a=0Q+42kw Eix.
Hierbij is:

: . / z_z"i r? r’? z__z'i
cos iy =Ccosi(p—p )—|~(——27’J-)— = 2l z'l}:?(,__)

De polen van den integrant worden bepaald door:

a=0Q 4+ 2kz.
In het vlak heeft men dus oneindig veel polen, die op gelijken afstand
van elkaar liggen, en oneindig veel vertakkingspunten.

Als we deze punten hebben aangegeven, snijden we het z-vlak open
langs de aan de imaginaire as evenwijdige rechte van @ 42 k7 == i
tot @4 2kxEico. Trek nu om het punt == @' den integratieweg
tot aan de vertakkingssnede, zoodat deze bestaat uit twee gleuven
langs de beide deelen van de vertakkingsdoorsnede en voor de rest
uit den omtrek van een rechthoek van de breedte 27 en van wille-
keurige hoogte. Door de periodiciteit van den integrant vernietigen
de integraties langs de vertikale rechthoekzijden elkaar, terwijl de
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integralen langs de horizontale rechthoekszijden verdwijnen, als de
hoogte van den rechthoek oneindig wordt, daar 'l%’" voor z = co nul

wordt. Den integratieweg kan men dus tot de beide gleuven langs twee
vertakkingsdoorsneden van het z-vlak reduceeren. We gaan nu over
tot den potentiaal van onze genoemde Riemannsche ruimte. Daarvoor
bepaalt men f(z) zoodanig, dat zij in  en @' de periode 27 n heeft
en op de plaats z =@’ van de eerste orde met het residu 1 oneindig
wordt. Zulk een functie is:

ia
g n
i e
e T
el _el
Vorm nu weer:
_.f_f
M da

”H_,.sz’f(“)d‘x_2 nf R iz iQ”
aallitaint

waarbij de integratie langs den zoo juist genoemden weg moet worden
uitgevoerd. De vertakkingen van den integrant zijn dezelfde als straks,
daarentegen liggen de polen slechts nog op de plaatsen:

a=Q' 4+ 2knm=.
Van deze functie kan worden aangetoond, dat ze de Greensche functie
van onze Riemannsche ruimte is, doordat ze aan de eischen voldoet,
die daaraan zijn gesteld.

Indien men in de uitdrukking voor u de grootheid n steeds grooter
laat worden, dan krijgt men de Greensche functie van een Riemannsche
ruimte met oneindig veel exemplaren. Men krijgt dan voor u:

1 [ 1 da

U= 17>
2x71] R a— @

Deze functie wordt slechts oneindig in het punt (7', 2’, @’). Daaren-
tegen blijft ze eindig in alle punten (7, 2/, @' 42k 7 voor k = 0).

Uit laatstgenoemden potentiaal kunnen wij omgekeerd den vroegeren
terugvinden door in de Greensche ruimte, die uit oneindig veel exem-
Plaren bestaat, een functie te vormen, die op alle plaatsen r=r,
R==2' @=0"42kn=een enkelvoudige pool bezit.
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In de uitdrukking voor u op de vorige bladzijde behoeit n geen
geheel getal te zijn.

Voor het voor de toepassingen belangrijkste geval, n.l. n=2 kan
men de functie u# gemakkelijk tot elementaire functies herleiden.

§ 30. Riemannsche ruimte met twee evenwijdige vertakkings-

lijnen,

Wij gaan thans over tot de Greensche functie van een Riemannsche
ruimte met {wee rechte evenwijdige vertakkingslijnen. Denk, dat we
n exemplaren van onze ruimte hebben, die cyclisch samenhangen
langs de strook, die begrensd wordt door de beide vertakkingslijnen,
zoodat genoemde strook als membraan dienst doet. Snijdt men de
aldus ontstane Riemannsche ruimte door een vlak loodrecht op de
vertakkingslijnen, dan krijgt men als doorsnede een Riemannsch opper-
vlak, dat in de snijpunten met de vertakkingslijnen (n — 1) voudige
vertakkingspunten heeft.

De geschiktste keus van codrdinaten wordt verkregen door de lijn,
die midden tusschen de beide vertakkingslijnen daaraan evenwijdig
loopt, als z-as aan te nemen en in het vlak 2=0 aldus bipolaire
coordinaten in te voeren: laat ¢ een complexe veranderlijke in vlak
z =0 voorstellen, zoodanig, dat de waarden 0, 4- 1 en — 1 de ligging
van de snijpunten van dit vlak met de z-as en de beide vertakkings-
lijnen aangeven, terwijl de projecties van de punten P en Q op het
{-vlak worden aangegeven door:

(=x-+1iy, {'=x"41y.
Stel nu:
—= 3 y by f $ ok
g{'ip_l:"'p+l¢' g"—H:eP +i¢
dan kan men p, @, p/, @ de bipolaire codrdinaten noemen van de
projecties van P en Q op het vlak z==0. Hierbij zijn @ en @' als
bepaald te beschouwen met de modulus 2 .

Men voert nu een dergelijke transformatie uit als het vorige geval.
Noemt men PQ weer R, dan is:

5 COSI(p—p')—cos(P—Q
IS “J'(cos ip— coqu’)J) (cos !'F; - cos) @,)~-{-(z-~ z)

Vervangt men hierin @' weer door een complexe veranderlijke «, dan
kunnen we schrijven:
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2 cos i(p—p') — cos (@ —

e —
R ~ (cos fp —cos @) (cos i — cos «

)+(Z_3)1

Nu is weer:
1

1 1
1T = mfﬁf(x)dm
waarbij f(x) aan dergelijke voorwaarden als in het vorige vraag-
stuk voldoet.
Voor f(«) kan men hier schrijven:

zx
cosip — cos@
Q3= :x ch VCOSI@—COSx
De polen van den integrant zijn:
=Q' 42k

De vertakkingspunten treden op voor R? = 0 en R’ = . Deze
worden voor 2 — 2’ = 0:

a=Q+2kx-i(p—p').
Voor andere gevallen worden ze:
a=a-+2kxxib,

waarbij a en b retele getallen voorstellen, die afhankelijk zijn van
®, p, ¢ en 2—2'.

De integratieweg wordt weer op een dergelijke wijze gedeformeerd
als in het vorige geval.

Om nu tot meerwaardige potentialen over te kunnen gaan kiest
men voor:

i

&
F(a) i ]/ cosup——coqcb’
o)== - -
n o ia :O CoSIQ — cosa’
el e

De Greensche functie van onze Riemannsche ruimte wordt nu:
[&

f 'I/C()wa — COS @ e d
= .' : Y &
2xn) R cosi@ —cosa Ia 1@

g l_gh
Bewezen kan

weer worden, dat deze uitdrukking aan alle eischen
Voldoet,

Belangriike : ,
langrijke toepassingen op vraagstukken van de gewone ruimte



40

treden op in het geval n=2. Door een voortgezette spiegelmethode
van de Greensche functie voor onze dubbele ruimte verkrijgen wij n.L
terstond de Greensche functie voor de ruimte buiten een door twee even-
wijdige rechten begrensd vlak en oneindig dun scherm. Denken wij ons
nl. bij het ruimte-exemplaar, waarvoor het vraagstuk is opgesteld,
een tweede, waarmede het oorspronkelijke een Riemansche ruimte van
2 exemplaren vormt, waarvoor dus het scherm het vertakkingsmembraan
vormt. Kiest men de lengte-eenheid gelijk aan de halve breedte van
het scherm, dan kunnen wij terstond de codrdinaten z, p en @ ge-
bruiken. Het eerste ruimte-exemplaar behoort dan bij — = < oL+,
het tweede bij -7 < @< 3#. Construeer verder bij de pool P in
't eerste ruimte-exemplaar het spiegelbeeld (P") ten opzichte van het
scherm, dat in het tweede ruimte-exemplaar valt. Als P de cobrdinaten
2, ¢/, = — @ heeft, dan krijgt P’ de coordinaten 2/, ¢, 7+ @',
Verstaat men nu onder up de Greensche functie van de dubbelruimte
met de pool P, dan vormt men:
v=up — uyp'.

Deze functie moet op gronden van symmetrie voor § =zt 7 ver-
dwijnen.

Geheel analoog ontstaat de Greensche functie voor het reciproque
gebied, waarbij het scherm uit een oneindig vliak bestaat, waarin een
oneindig lange spleet met evenwijdige rechte randen is uifgesneden.
Dit scherm dient weer als membraan, waarvan beide kanten behooren
bij =0 en Q=x27.

Om de vroegere codrdinaten terstond te kunnen toepassen, kiest
men de breedte van de spleet = 2. Het eerste exemplaar behoort dan
bij 0< @ < =, het tweede bij — 27 < @ <0. Heeft de oorspronkelijke
poort P tot codrdinaten 2/, ¢/, @', dan heeft het spiegelbeeld P’ tot
coordinaten 2, o, — @', waarbij thans P’ in het tweede ruimte-
exemplaar valt. Evenals boven geeft dan

V== lp — Uy
de Greensche functie van ons gebied aan,

§ 31. Toepassing op het gebied van geluid.

Door SOMMERFELD is in zijn , Mathematische Theorie der Diffraction”
(Math. Ann. Bnd. 47), het probleem opgelost van de diffractie van
electro-magnetische of optische vlakke golven, die vallen op een



41

geleidend, resp. ondoorschijnend halivlak, begrensd door een rechte
rand. CARSLAW denkt in zijn artikel ,Some multiform solutions of the
partial differential equations of physical mathematics and their appli-
cations” (Proceedings of the London Math. Society, Vol. 30) meer
aan een dergelijk vraagstuk voor het geluid. De methode door SOMMER-
FELD aangegeven en door CARSLAW gevolgd, sluit onmiddellijk aan
bij de in het voorgaande beschreven methode.
CARSLAW gaat uit van de vergelijking:
9’9
o
waarbij @ de snelheidspotentiaal, v de snelheid van het geluid voor-
stelt. Heeft men met periodieke beweging te doen, dan mag men @ het

=V*AQ,

—

reéele deel van u.c“% t stellen. De vergelijking in u wordt dan:

) u doru
ox T+ 3k s Lo

—1

waarbij k = ;,—"v—,-.

Dit is ook de vorm van de vergelijking, die SOMMERFELD neemt
als uitgangspunt voor zijn oplossing. Heeft men te doen met vlakke
golven, waarvan de voortplantingsrichting met het vlak ¢ een hoek ¢’

vormt, dan is een oplossing:

”n=clkr cos (0 —06')

Vorm nu, als « een complexe veranderlijke en f(x) een willekeurige
functie van « voorstelt, de volgende integraal:

-“Pikr COoS (x—g)f(-t)dl,

Waarbij de integratie moet worden uitgestrekt over een willekeurigen
weg in het z-vlak met uitsluiting van punten in het oneindige. Deze

integraal is dan ook een oplossing van onze vergelijking. Dan zal
de integraal ;
. e 1

1 . ikrcos(a—20)__¢

Tk Ta .10

&~ 0 {1 & e e
de integratie uitgestrekt over een willekeurigen gesloten weg om het
Punt « =4 (zonder andere singuliere punten van den integrant in
te sluiten), volgens de stelling van CAUCHY dezelfde zijn als e, zoodat

Wij een identicke transformatie hebben gekregen. De integratieweg
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mogen wij wijzigen, mits wij geen singuliere punten overschrijden.

Daar, als . =a -} bi is,

cos (z — 4) = cos (z — 4) cos hb — i sin (¢ — 4) sin b,
zien we, dat we den weg kunnen wijzigen, zoodanig, dat de weg de
imaginaire as volgt, er op lettende, dat:
voor b=- oo, sin(z— §) negatief
en voor b = — o, sin(z — §) positief is.
Het reéele deel van den exponentigelen vorm is nl.:
l,z!cr sin (& — ¢) sin hb

en voor =4 is sinhb=-4 o,
terwijl voor b=—w, sinhb=—oo.

Beschouwen we in de eerste plaats het deel der ruimte, waarbij de

coordinaat ¢ aldus ligt:
—(r—)<<i<7x+10.

7

W)

7
%

Y
7
Fd

Y

7/
Z

% j,;';'//ff

'/

7

7
i

7

A,
v
o
7

/s
a’/”f

/,

7
7

Fig. 2.

In bovenstaande figuur geven de gearceerde gedeelten het gedeelte
van het vlak aan, waarbij de weg naar het oneindige loopt. De aan-
gegeven kromme is een mogelijke omvorming van den oorspronkelijken
weg om z=4¢" De breedte van de strooken is =, terwijl de deelen
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van den weg, aangegeven door de stippelliinen op een afstand 2
liggen, zoodat we deze, als we letten op de periode 27 van den
integrant, buiten beschouwing mogen laten, daar de overeenkomstige
deelen in tegengestelde richting loopen. De kromme deelen raken deze
lijnen asymptotisch. Noemen we de twee kromme takken samen den
weg A, dan is bewezen, dat:

1 ikr cos (x—0) e

e
rl :

ezm_ezﬂ

de,

geintegreerd over den weg A overeenstemt met:
pLkr cos (6—10")
b

welke oplossing eenwaardig is.
We kunnen thans overgaan tot de meervoudige oplossing door
te nemen: _
iz

: n
ikr cos (x—0) __¢

U=7znle Ta ¥

el — o0

Dan ziet men gemakkelijk in, dat deze functie aan alle eischen voldoet.
Deze veelwaardige functie met periode 27 n is eenwaardig op een
n-bladig Riemannsch oppervlak.

Hoewel hiermede de wiskundige methode in hoofdtrekken is gegeven,
en ik voor de toepassing naar de tabel kan verwijzen, wil ik ook
hier vermelden, dat de diffractie van vlakke golven, vallende op een
halfvlak, begrensd door een rechten rand, door SOMMERFELD is opgelost.

de.

§ 32. Oplossing A u-k*u=0.

Aansluitend aan laatstgenoemd tweedimensionaal probleem, behoort
men in logische volgorde thans het vraagstuk van cen willekeurige
trillingsbron, waarvan de golven op een star halfvlak, begrensd door
een rechten rand vallen, te behandelen. Van wiskundig standpunt is
echter het driedimensionale vraagstuk eenvoudiger. 1k kan echter in
het volgende kort zijn, daar CARSLAW voortdurend in wezen dezelfde
methode toepast.

Overgaande tot de vergelijking met 3 codrdinaten

A u-4k*u=0,
wenscht men een oplossing, die voldoet aan de volgende eischen:
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1°. In een n-voudige Riemannsche ruimte met de z-as tot vertak-
kingslijn en het vlak 6 =0 tot vertakkingsmembraam moet de oplossing
eenwaardig zijn, m.a.w. ze moet periodiek in 4 zijn en de periode
2 7 n hebben.

— [kR

29, Ze moet oneindig worden als —px voor R=0 in het punt
(7', %, 2') in het 1¢ ruimte-exemplaar; hierbij stelt R den afstand van
(r’, ¢, 2) tot een naburig punt voor.

30, Ze moet eindig en continu zijn voor alle retele eindige waar-
den van r in afle ruimte-exemplaren, behalve in laatstgenoemd punt.

49, Ze moet O zijn in ’t oneindige.

De methode voor het vinden van zulk een oplossing stemt weer
volmaakt overeen met die in de vorige gevallen.

We gaan uit van de oplossing:

LK Vifri4(z—2)*—2rr cos (6—1')
Vr1+r‘2+(z—z’)=:— 2rr cos (6 — 6’)’

UQ =

en gaan over naar den integraal:

2y o e

e e e e e e . Y d .
V2rricoshz —cos(z—10)| Xem_elﬁ &

| e— ik VZrr{cos ha— cos (z—0)] i
H0=i-?.:f

Men kan dan den integratie-weg in het z-vlak wijzigen, zonder de
waarde van den integraal aan te tasten, als we zorgen, daarbij geen
singuliere punten of vertakkingspunten van den integraal te passeeren.
Wil men nu overgaan tot de meerwaardige oplossing, dan kan men
beschouwen de functie:

U=
Le=2an

1 f gLk V2rr ycos hay, — cos (z — 6)] n
waarbij de integratie over een bepaalden weg moet worden uitge-
voerd. Deze functie, welke aan de diff. verg. voldoet, is eenwaardig
op het Riemannsche opperviak en voldoet aan de verdere eischen
van het vraagstuk.

CARSLAW schrijft nu nagenoeg terstond de oplossing op voor het
vraagstuk van een geluidsbron in een oneindig medium, dat een vast
stijf halivlak, begrensd door een rechten rand, bevat.
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§ 33. Toepassing op de warmtegeleiding.

Thans gaan we over tot de vergelijking, die den grondslag vormt
van de wiskundige theorie van de warmtegeleiding in twee afmetingen:

ou
3—{=k(3u.

Hier gaan we uit van de verdeeling van de temperatuur in een oneindig
lichaam, dat overal hetzelfde geleidingsvermogen bezit. Deze ver-
deeling denken we veroorzaakt door de eenheid van warmte, die op
den tijd £=0 in het punt (x', )/, 2’) wordt geplaatst en zich vandaar

kan verspreiden. De temperatuur in een punt (x, y, z) op den tijd ¢
wordt dan aangegeven door:

e [ ) (C
23 (wkt)?
Beginnen we nu met het tweedimensionale vraagstuk, waarbij we
uitgaan van:

gl e R YA

1__6_1r1+f=.._2rr’cos(6—-0’)[: 4kt

die, afgezien van een constanten factor overeenstemt met de temperatuur,
veroorzaakt door een warmtebron met de eenheid van warmte. Voer
thans de complexe veranderlijke « in en pas toe de identieke trans-
formatie:

—rr4-rr—2rrcos(a—0)|:4kt '
1 (e €
110:-2—_f e =

t P

iﬁT d.z,

waarbij de integratie moet worden uitgevoerd over een weg in 't z-vlak,
die behalve « = 6’ geen andere singulariteit van den integrant omvat.

Bij de verandering van den integratieweg moet men natuurlijk weer
op de singulariteiten letten. De meerwaardige oplossing laat zich dan

terstond schrijven:
1a
| 2y
e g B (r :}_j_) A err‘:2ktcos(.x—6) ,___‘—’n d
27n t e 10 !

e —e

waarbij de integratie weer over een bepaalden weg moet worden
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uitgevoerd. Deze u, welke eenwaardig is op een Riemannsch opper-
vlak, voldoet verder aan alle eischen van het vraagstuk.

CARSLAW geeft nu onmiddellijk de oplossing van het vraagstuk van
een lijnvormige bron in een oneindig geleidend lichaam met homogeen
geleidingsvermogen, waarin een halfvlak, begrensd door een rechten
rand, aanwezig is. Het vlak wordt altijd op constante temperatuur
gehouden of wordt op zoodanige wijze beschermd, dat warmte-
uitwisseling door het vlak uitgesloten is.

§ 34.
Gaan we thans over tot het driedimensionale geval van:

ou
W=k'& u,

dan volgen we in hoofdzaak denzeliden weg.
Ga uit van de bijzondere oplossing:

ty = e — |G =X+ (y—y)+ (@ —2)) : 4kt
ti

of in cylindrische codrdinaten:

; =HL31r‘—f—r’¢—i—(z—Z’)’-—-2rﬂ cos (8—6)| : 4kt
th

We krijgen dan de identicke transformatie:

1 e— I+ +(@—2) 4kt o (rr:2kf)cos(x—0) ,ia
=37 / Ta_ 10 4%
- e " —e
waarbij de integratie moet worden uitgestrekt over een kringloop in
het «-vlak om het punt =20/, terwijl geen andere singulariteit van
den integrant mag worden ingesloten, Hierdoor wordt de weg herleid

tot den weg A van § 31.
Om de meerwaardige oplossing te verkrijgen, is het slechts nood-
zakelijk, de volgende integraal te beschouwen:
1z
—|rdrr(z—2) 4kt o . n
gl Lice , _f (rr':2kt)cos(@—0) €~ ;.
277” tT [ _6_
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waarbij de integratieweg moet worden uitgestrekt over den weg A
in overeenstemming met de waarde van 6. Deze meerwaardige op-
lossing heeft een pool in r, &, 2’ in het gebied — (7 —¥§) <4<
(2n—1)7-¢'. Derhalve bestaat het eenige onderscheid met het
tweedimensionale geval in de invoering van de factoren

g—@—2):4kt en%_

&
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Tabellarische samenvattingen van de toepassingen der
complexe functies wit de physische litteratuur.

Geraadpleegd werd in de eerste plaats de ,Enzyklopidie der mathema-
tischen Wissenschaften mit Einschlusz ihrer Anwendungen”. Daaruit moet
genoemd worden, uit Bd Il 3 Heft 3, bladz. 177, een artikel van L. LICHTEN-
STEIN: ,Neuere Entwicklung der Potentialtheorie, Konforme Abbildung”.
In dit artikel, dat een groot gebied der conforme afbeelding met de algemeen
gehouden problemen bevat, bevindt zich bovendien een litteratuurlijst. Het-
zelfde is het geval in Bd IV 3, blz. 84, in een artikel van A. E, H. LOVE:
,2Hydrodynamic. Theoretische Ausfiihrungen”.

Bewerkt werden verder een groot aantal tijdschriften en enkele hand-
boeken. Geen enkele toepassing heb ik gevonden in de volgende tijdschriften:
,Abhandlungen der Akademie der Wissenschaften zu Berlin”, ,Wissenschaft-
liche Abhandlungen der physikalischen technischen Reichsanstall, Berlin,"”
,Abhandlungen der kéniglichen sdchsischen Gesellschaften, Leipzig,” ,Mathe-
matisch-physische Classe”, ,Berichte der kin. séich. Gesellschaft der Wis-
senschaften. Math, Phys. KL.”, ,Abhandlungen der kniglichen bayerischen
Akademie der Wissenschaften, Miinchen, Mathematisch-physische Classe”,
,Journal de I'Ecole polytechnique, Parijs.”

Belangrijke artikelen komen voor in de volgende werken en tijdschriften:

1. H. HELMHOLTZ: Gesammelte Abhandlungen.

2. G. KircHHOFF: Gesammelte Abhandlungen.

3. J. H. JeANS: Electricity and Magnetism, 1908.

4. H. LamB: Lehrbuch der Hydrodynamik, 1907,

5. J. C. MAXWELL: A treatise on electricity and magnetism, 1873,

6. A. WEBSTER: The theory of electricity and magnetism, 1897,

7. H. WEBER: Die partiellen Differenzialgleichungen der Math. Physik,
1 1910, II 1912.

8. J. J. THOMSON: Recent researches in electricity and magnetism, 1893.

9, A. E. H. LOVE: A treatise on the mathematical theory of elasticity, 1900.
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11.
12.
13.
14.
15.
16.
L1
18.
19.
20,
21.
22,

23.
24,
25.
26.
27.
28.
29,
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Philosophical transactions.

Sitzungsberichte der Wiener Akademie der Wissenschaften, Math, Nat. K1
Monatshefte der Math. und Physik,

Proceedings of the Royal Society of London.

Zeitschrift fiir Math. und Physik.

Philosophical Magazine.

Journal fiir die reine und angewandte Mathematik.
Mathematische Annalen.

Jahresberichte der deutschen Mathematischen Vereinigung.
Journal de mathématiques pures et appliquées.

Nieuw archief voor wiskunde.

Sitzungsberichte der Akad. der Wissenschaften zu Berlin.
Nachrichten von der k. Gesellschaft der Wissenschaften zu Gattingen.
Math. Phys. Klasse,

Annales de 'enseignement supérieur de Grenoble.
Proceedings of the royal Irish Academy.

American Journal of Mathematics.

Mathematische Zeitschrift.

Annales scientifiques de I'école normale supérieure.
Proceedings of the London Math. Society.

Bulletin international de l'académie des sciences de Cracovie.

T‘ nllin ? e 1]
¢r toelichting van de cerste en laatste kolom diene, dat de eerste cijfers

bcv‘“, die overe
N werken,
dissertatje

artike

enstemmen met de nummers van bovengenoemde tijdschriften

door mij verleend, terwijl de laatste kolom de paragrafen der
aangeeft, die de methoden bevatten, welke in de desbetreffende
len in hoofdzaak worden toegepast,
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agi H. Lamb.

237! J. J. Thomson.

239
241

243

244 .

246 »

246 »

Z=¢C COS fow . . . . .

Two infinite plane strips of flmle and equaI
widths in one plane placed so that their
sides are parallel to each other

Capacity of a pile of plates . . . .

Capacity of a system of 2n plates arranged
radially and making equal angles with each
other, the alternate plates being at the same
potential, the extremeties of the plates lying
on two coaxial right circular cylinders

The section of the conductors over which
the distribution of electricity is given by
this transformation is similar to that re-
presented in fig, 102

A pile of semi-infinite parallel plates at equal
intervals @ & apart, maintained at potential
zero when in presence of another pile of
semi-infinite parallel plates at the same
distance apart maintained at potential K,
the planes of the second set of plates being
midway between those of the first .

Solution of the case represented in fig. 104,
where the 2 nouter planes at potential zero
are supposed to extend to infinity, the2n
inner planes at potential K bisect the angles
between the outer planes. . . . . .

Solution of the case, in which a finite plate
is placed in the space between two semi-
infinite plates . . . . .
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oo

14

14

26

249

250
1911 — 59/ 225

1912 — 60 355

268

1921 — 11/ 105
2321

2331

248

J. J. Thomson.

H. Blasius.

J. H. Jeans.

Ph. Frank.

J. C. Maxwell.

The equipotential surfaces, for which @
vanishes, are a pile of parallel semi-infinite
plates stretching from the axis of y to
infinite along the positive direction of x,
the equipotential surfaces for which @ =K
are a pile of parallel semi-infinite plates
stretching from — e to a distance x, from
the previous set of plates. The planes of
the plates in this set are the continuations
of those of the plates in the set at potential
Zero. 5 . - -

The case shown in fng 107 when thc potentml
of the outer radial plates is zero and that
of the inner K. The 21 outer plates make
equal angles with each other and extend
to infinity.

Distribution of electricity in the important
case of a condenser formed by two parallel
and equal plates of finite breadth

Stromfunktionen symmetrischer und asym-
metrischer Fliigel in zwei dimensionaler
Stromung. " A e

Stromfunktionen fiir die btromung durch
Turbinenschaufeln . »

Conductor mﬂucnud by line ch:mgc

(w= log-:: = ﬁ' terwijl £=f(z)) .

Ein Satz iiber PotentialstrOmungen .
Inversion in two dimensions .

Electric images in two dimensions . :
4#

N
—_—
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!
5 | 2341| ]. C. Maxwell. |Neumann’s transformation of this case. (Zie
Crelle's Journal 1861) . oy i L
5 2361 ,, Distribution of electricity near an edge of
a conductor formed by two plane faces .| 2, 4
5 2391 > Indefinitely long strip of metal with a non-
conducting division extending from the
origin indefinitely in the positive direction. |1, 2, 4
(Geleidend halfvlak geplaatst tusschen
twee evenwijdige geleidende vlakken, aan
elke zijde op gelijken afstand daarvan ver-
wijderd; condensator van dezen vorm;
Thomson’s guard-ring.)
5 2481 - Theory of a grating of parallel wires. 1, 4
4 625 H. Lamb. Storung, die in einem Zuge ebener Wellen
durch einen diinnen Schirm hervorgebracht
wird, welcher von einer Reihe parallellen,
gleichen und dquidistanten Schlitzen unter-
brochen ist . S | 1
4 630 » Gitter aus parallellen Drihten in gleichen
Abstinden o : : 1, 4
12 | 1890 — 1| 247 J. Haubner. Ueber Strombrechung in fliichenfGrmigen
Leitern. el s T et 1,5
12 (1890 —1 | 252 ca Ebene, die aus zwei Halbebenen von ver-
schiedenem Leitungsvermdgen besteht,
welche lings einer geraden Linie zusam-
hdngen rt S e R, 1,5
12 | 1890 — 11260 - Vier Quadranten einer Ebenc besitzen ver-
schiedene Leitungsvermdgen . |28
12 | 1890 —1 | 261 = Ein von zwei Halbebenen begrenzter Streifen,
an dem zwei Halbebenen angesetzt sind .| 1 5
12 | 1890 —1 357 > Strdmungsproblem fiir eine Ebene, welche
aus einer Ellipse vom Leitungsvermdgen
£y und ihrem ganzen Auszenraum mit dem
Leitungsvermdgen 2, besteht . 1,9
12 | 1890 —1 ;36{) - Ueber Strombrechung in fl-ichenfbrm:gcn
1 Leitern. Anhang.
12 11800 — 1360 2 A. Allgemeine Probleme. 1,5
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12 11890 — 1 (361 J. Haubner. B. Die Grenzen der Spiegelungsmethode.
12 | 1890 — 1 {364 % C. Berechnung des Widerstandes 1,5
12 {1800 — 11367 v. Lichtenfels. |Bemerkung zur vorstehenden Abhandlung .| 1, 5
1 1461 H. Helmholtz. |Ueber discontinuierliche Fliissigkeitsbewe-
TR S i T o L B o 1, 6
2 416| Q. Kirchhoff. | Zur Theorie freier Fliissigkeitsstrahlen 1, 6
2 420 X fw)=k+e-w 1, 6
423 9 f(w): k+ vll‘; 1, 6
B 425 » f(ll’) = Vl-—_]ie':__:; 1, 6
4 85 H. Lamb. W A s o e | 1S O
4 00 » z=w+ev (Beweging vloeistof uit een open
ruimte in een kanaal door twee evenwijdige
wanden begrensd) : I, 6
4 01 g f(Z)=Ag+ A z+ A2 +....
+ Bz '+ Bz ?+....| 6
(Voorbeeld: Een oneindig lange cirkel-
cylinder, die zich met zekere snelheid lood-
recht op zijn lengterichting beweegt in een
oneindige vloeistofmassa, welke in het on-
cindige in rust is.)
3 05 > f(2)=Alogz+Ag+A z+ A2 +....
+Bz'+B;z*+....| 6
(Continue vloeistofbeweging zonder ro-
fatie in het gebied tusschen twee concen-
trische cirkels.)
2 07 f(z) =Alog(z—0) -i—zA'— 2 6

= (é__-c),+....
(Uitbreiding vorige geval op een gebied
met cirkelvormige begrenzingen, waarvan
cen het geheel omsluit. Voorbeelden: grens
van de vloeistof is e¢en stijf cylindrisch
oppervlak, dat zich met zekere snelheid
in de richting loodrecht op zijn lengte-as
beweegt. Grens van de vloeistof bestaat
uit een cylindrisch oppervlak, dat met hoek-
snelheid @ wentelt om een as evenwijdig
aan zijn lengte-richting.)
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14 |1910 — 58 H. Blasius. Funktionentheoretische Methoden in der Hy-
drodynamik . : F el B
14 |1910— 58| 90 3 Kraft auf starre Korperin zwei dlmensmnaler
ungleichformiger stationdrer Potential-
stromung . - . 6
14 (1910 — 58] 96 . Der Ueberfall uber ein Wehr .| 6
14 (1911 — 59| 43 ~ Mitteilung zu meiner Abhandlung iiber funk-
tionentheoretische Methoden in der Hydro-
dynamik . . . 6
22 1891 37 W. Voigt. Beitrige zur Hydro- dynamlk 1, 6
22 1891 46 - Stehende Wellen in einem Strome als BEISple]
fiir die Kirchhoffsche Theorie der Fliissig-
keitsstrahlen v 753 13 ey 1, 6
22 1892 | 400 ~ Bewegung eines Fluss:gkcus -stromes {iber
einem gewellten Grunde . : 1, 6
29 1896 |260| M. P. Rudzki. |Contribution & la théorie des ondcsllquidLs
irrotationnelles . N 1, 6
25 | 1887 —9| 2| A. G. Greenhill. | Wave motion in hydrodynanucs 1,6
25 |1887—9| 89 - Standing waves across a rectangular channel. | 1, 6
25 |1887T—9| 02 . Standing waves across a channel of 120° .| 1, 6
25 |1887—9 102 " General wave motion across a channel with
plane sides sloping at any angle. 1, 6
25 | 1887 —9|104 - Waves against a uniformely sloping shore.| 1, 6
25 |[1887T—9|108 ~ Algebraical solution of waves against a
sloping beach . 1, 6
11 1912~ 121 745 0. Turmlitz Eine Modifikation dCI’KlI’C!IhDﬁbChCH Methodc
IIA1 der Bestimmung fiir Flussigkeitsstrahlen .| 1, 6
11 1912-121770 : Ausfluszproblem . 1, 6
1Al
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11 11912-121{776| O. Turmlitz. | Ausfluszproblem . 1, 6
IIA1
11 11912 -121{779 . In einem unendlich groszem parallel zur
ITA1 x, ¥ Ebene vor sich gehenden Strome, in
welchem {iberall urspriinglich die Ge-
schwindigkeit dieselbe Grosze uy und die-
selbe Richtung und ferner der Druck die-
selbe Grisze p, hatte, ist eine ebene Platte
senkrecht sur x, y Ebene fixiert . 6
n 1912 - 121 790 . Einem unendlich ausgedehnten Strom seien
ITA1,1012 zwei Platten KB und KD von gleicher
Breite w gepgeniiber gestellt, dasz die
Platten in K zusammenstoszen und die
Halbierungslinie ihres Winkels in die
1 Stromrichtung fillt . 6
1912 - 121/ 805 » Stromungsproblem . 6
I A1 .
|
I
I
I
S
1! 1919 - 1231157 » Zur Theorie freier Flussigkeitsstralen-Strd-
1A mungsproblem, dessen vollstindige Lisung

die Theorie des hydraulischen Strahldrucks
bei senkrechter Strahlrichtung fiir die zwei-
dimensionale Stromung und fiir reibungs-
lose Fliissigkeiten ohne rotierende Teilchen
bildet

1, 6
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11 [1915 - 124|391 0. Turmlitz. Zur Theorie freier Fliissigkeitsstrahlen.
1A Strahldruck bei senkrechter Strahlrichtung
II Mitteilung - 1, 6
(Twee halfvlakken in hetzelfde vlak met
cen gleuf ertusschen, waardoor de stroo-
ming plaats vindt.)
28 |1881 — 12| 81 E. ]J. Routh. Motion of a fluid T S R
(Algemeene beschouwmgen over bron-
nen en draaikolken.)
28 (1881 —12| 84 ~ Motion in a corner . 1, 6
28 [1881 — 86| 86 s Motion, when the boundarles are parallel to
the axes . 1, 6
28 |1881 — 12| 87 - Motion round an obstaclc of any form thh
an application to the case of an elliptic
. obstacle . 1, 6
18 11013 — 22/ 113 E. Pfeiffer. Theorien des Flusmgkmtwldcrstandcs 1, 6
18 (1013 —22(116 | . Problem, um eine ruhende, unendlich lange
ebene Platte von der Breite [ eine ebene
stationnére Fliissigkeitsstromung zu suchen,
deren Geschwindigkeit im Unendlichen
konstant gleich & und senkrecht zur Platte
gerichtet ist, und die begrenzt wird von
der Platte und zwei von den Kanten der-
selben ausgehenden Discontinuititsflachen,
welche die bewegte gegen die ruhende
Fliissigkeit abgrenzen . - e 11 G
18 (1916 —25 16| R. Grammel. Uber ebene Zirkulationsstromung und die von
ihnen erzeugten Kriifte, S b 11
13 1015 |503| Lord Rayleigh, |Hydrodynamical problems suggested by
SerieA,91 Pitot’s tubes 1, 6
15 | 1919, 6de | 434 | A, R. Richardson. | Streamline flow from a dlsturbcd area 1, 6
Serie, 38
15 | 1919, 6de | 434 . Flow past a corner. 1, 6
Serie, 38
15 |1919, 6de | 438 2 Flow past a plate 1, 6
Serie, 38
15 | 1919, 6de | 449 = Flow through a semi-infinite pipe . 1, 6

Serie, 38
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23 |1804—6/| 1| C. Sautreaux. |Sur une question d’hydro-dynamique . 1, 6
(Nous essayerons dans ce travail, de
traiter le cas ou le fluide étant incom-
pressible et le mouvement étant plan, des
forces extérieures agissent sur le liquide.)
19 1901, 5de [ 125 - Mouvement d'un liquide parfait soumis a
Serie, 7 la pesanteur ; 1, 6
14 11911 — 59| 137 | Umberto Cissotti.|Sopra la derivazione dei camh . 6
21 | 1911, 3de | 203 H. Villat. Sur la résistance des fluides 1, 6
Serie, 28
27 11011, 3de | 208 : Premiére partie. Sur la résistance des fluides
Serie, 28 limités par une paroi fixe indéfinie . 1, 6
27 1011, 3de | 256 - Deuxi¢me partie. Sur le mouvement d'un fluide
Serie, 28 indéfini autour d'un obstacle deformedonnée | 1, 6
21 11911, 3de | 286 ~ Quelques exemples . 1, 6
Serie, 28
27 1911, 3de | 300 g Sur l'extension de la méthode précédente au
Serie, 28 | cas du fluide limité par une paroi fixe 1, 6
21 1911, 3de | 309 - 'Sur le probléme indéfini considéré comme
Serie, 28 cas limite du fluide avec paroi 1, 6
a 1912, 3de | 127 - Sur le mouvement discontinu d'un fluide 1,3,6
Serie, 29
27 1012, 3de | 177 . Sur I'écoulement des fluides pesants . 1, 6
Serie, 32
21 1014, 3de | 455 | - Sur la détermination des prnhluquhydro-
Serie, 31 dynamique : o 18
2 1921, 3de | 229 René Thiry. Sur les solutions multlplc dc‘. pmblcmnb
Serie, 38 d'hydrodynamique ca iy Ay 1,0
2T 11921, 3de | 233 - Premitre partie. 1 Etude d'un cas simple de
Serie, 38 mouvement glissant indéterminé . Atk
27 1921, 3de | 241 - Il Etude du cas d'indétermination signalé par
Serie, 38 M. H. Villat. o : ¢ o 1, 6
a 1921, 3de | 266 - 11l Considérations générales sur lt.s mstLr-
Serie, 38| minations. Sy T ot o B g
2 1921, 3de | 272 ~ Deuxi¢me partie. | l:tudc du mouvcmtnl du
Serie, 38 fluide avec deux obstacles plans normaux
au courant dans hypothése de deux sil-
lages illimités a l'arritre . 1, 6
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27 |1921, 3de | 303 René Thiry. II Etude du mouvement avec deux plans
Serie, 38 normaux au courant dans I'hypothése ot
des lignes de jet de I'un des plans se
raccordent avec l'autre. 1, 6
27 11921, 3de | 315 = III Etude du mouvement avec deux plans
Serie, 38 normaux au courant, dans I'’hypothése ou
I'un des sillages est fermé & l'arriére . 1, 6
28 |1915Sec.| 89| |]. Proudman. |Diffraction of tidal waves on flat rotating
Serie 14| sheets of water 1, 6
28 |1915 Sec.| 90 F Diffraction of a plane wave by a circular
Serie 14 island . 1, 6
1915 Sec.| 93 - Diffraction by an elliptic island . 1, 6
Serie 14
1915 Sec.! 96 - Coast lines with projecting corners. 1, 6
Serie 14
28 1915 Sec.| 101 " Passage between two seas . 1, 6
Serie 14
29 1907 1 |M. Smoluchowski.| Contribution & la théorie du mouvement des
liquides visqueux, en particulier des pro-
blémes en deux dimensions. 10110
26 | 1019—3| 78| Ph. Frank und |Eine Anwendung des Koebeschen Verzer-
K. Lowner. rungssatzes auf ein Problem der Hydro-
dynomik . i o Tl 1, 6
9 3011 A. E. H. Love. |Method of solution of the torsion prob]cm 7
21 1908 | 935 Fritz Kotter. Ueber die Torsion des Winkeleisens . 7
4 87 H. Lamb. w=u log z 1,6,8
4 87 = W= — u log i—;—z : 1,6,8
3 261 J. H. Jeans. Special transformations (w=27; w=1logz).| 1, 8
28 |1881 — 12| 73 E. J. Routh. ﬁSomc applications of conjugate functions 1,6,9
28 [1881 — 12| 73 " ' Motion of membranes. : 11,8
(Algemeene bmchoumngcn over dc be-
weging van membranen met toegevoegde
functies. Verschillende voorbeelden van
door cirkels begrensde membranen.)
28 |1886 — 15| 231 ,, Motion of a network of particles with some
analogies to conjugate functions . 1,6,9
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3 264 J. H. Jeans. Unicursal curves: oo = .'s o e o o o} 10
[»* =4a (x + a). Parabool als aequipot.vl.
transformatie wordt: z—=a (w—1i)%
2 2
ii +JL., = 1. Ellips als aequipot.vl. Trans-
a b
formatie wordt: z=c¢ cos hw].
2371] J. C. Maxwell. |Ellipses and hyperbolas . 1, 10
2461 » Electrified plate of finite size placed parallel
to an infinite plane surface connected with
the earth . 11,2, 10
16 1875 —179] 1 E. Heine. Constante elektrische Strémung in ebenen
Platten. 11
16 1875 —179 4 Elektrische Potential der elliptischen Platte.| 11
16 (1875 —179 . Elektrische Potential eines Rechtecks . 11
16 |1875 — 79 - Zweiter Abschnitt. (Uitbreiding voorafgaande
beschouwingen) 11
27 1893, 3de| 96| C. Sautreaux. |Sur une question d’hydrodynamique 11,6, 11
Serie, 10
27 1893, 3de | 06 - Le cas oft le fluide restant incompressible
Serie, 10 et le mouvement restant plan, des forces
extérieurs agissent sur le liguide. 1L 6,11
7 3541  H. Weber.  |Die Flichendichtigkeit. 13
7 3551 - Elektrizitiitsverteilung auf einem Prisma. 13
7 48311 * Zweidimensionale Bewegungen 11, 13
3 269 J. H. Jeans. Parallelplate condensor 14
3 272 » Bend of a Leyden jar. 14
8 212| J.]. Thomson. |Plate bounded by a straight edge and at a
potential V is placed above and parallel
to an infinite plate at zero potential 14
8 216 o Semi-infinite conducting plane placed midway
between two parallel infinite conducting
planes, maintained at zero potential. 14
8 222 - Condensers are sometimes made by placing
one cube inside another . 14
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14

13

13

13

13

10

1015
Serie A,91

1915
Serie A,91

1015

Serie A,01

1915

1890

A, 181

1915 — 63|

Serie A, 91

225

227

232
355
i

|

40|

441

443

| 446
|
1389

J. J. Thomson.

G. A. Strook.

Ch. H. Lees.

J. H. Michell,

Infinite plane AB at potential V in presence
of a conductor at zero potential bounded
by two semi-infinite planes CD, DE at
right angles to each other .

E

G
A D B

A problem, which enables us to estimate the
effect produced by the slit between the
guardring and the plate of a condenser
on the capacity of the condenser

The other extreme case of the guard ring,
in which the depth of the slit is infinite .

Ueber die Randkorrektion des Dreiplatten-
kondensators . - 5

On the shape of the cqumo:cn!ml surfnccq
in the air near long walls or buildings
and on their effect on the measurement of
atmospheric potential gradients

Case I. A long thin wvertical wall projects
from a horizontal surface above which at
a considerable distance from the wall, the
potential gradient is constant .

Case Il. A long vertical retaining wall se-
parates from each other two horizontal
plan surfaces over which the potential
gradient at a considerable distance from
the wall is the same and independant of
the hight above the planes . .

Case III. Two long thin vertical walls p:l-
rallel to each other rise to the same height
above a horizontal plane .

On the theory of free stream lines .

14

14
14

14

1, 14

14

14

14
6, 14
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10 | 1800 |303| J. H. Michell. |Problem I. Special case: Suppose the poly-
A, 181 gon to consist of a series of straightlines
infinite in one direction 6, 14
10 | 1800 |395 ; Problem II. Any number of infinite long
A, 181 plane conductors, all in the same plane
and with parallel edges. It is required to
find the potential at any point, when the
conductors are raised to given potentials.| 1, 14
10 1890 | 398 - On the theory of non-reentrant free stream
A, 181 lines (algemeene beschouwingen) 6, 14
10 1890 | 402 - Example I. A rectangular vessel ot given
A, 181 width has an aperture in the bottom . 6, 14
10 1890 | 406 v Example 1. Tube projecting far into the
A, 181 bottom of a vessel of given breadth 6, 14
101 1800 |408 - Example 11I. Tube projecting into a vessel
A, 18] of great breadth . 6, 14
0 1890 | 411 | - Example 1V. Flow from an aperture in a
A, 181 E pipe in which the water is at rest . 6, 14
i 1890 | 414 . Case II. Impact of a stream againsta vessel.| 6, 14
A, 181
2 1890 | 416 - Case I1I. Flow of a broad stream past a
A, 181 plane wall in which there is an aperture.| 6, 14
o 1890 | 421 4 Case 1V. Jet from a pipe along which liquid
: A, 181 is flowing 6, 14
9 1890 | 427 < Part 11. The region of (x, y) is not simply
A, 181 connected and consequently Schwarz's
10 transformation does not apply . .15,6,14
1800 | 427 - Problem 1ll. To find the potential due to
A, 181 a polygonal prismatic conductor, which
we may take to be zero, the field at infinity
10 being at an infinite potential .15,6, 14
’\1890 428i = Problem 1V. Suppose now, there are two
y 181

polygonal prismatic conductors, one at
potential Y = — k, the other aty =k, and
at first A. suppose that one of the con-
ductors is within the other .

. 15,6, 14
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ot
o

10
10

28

28

1800 | 429
A, 181

1890, A 181{ 430
1890 | 431

A, 181
1898 — 19| 142
1898 — 19| 152

1898 — 19 155

1898 — 19| 161

110

112

113

J. H. Michell.

B. Hopkinson.

H. Lamb.

B. Suppose now, that one conductor is out-
side the other and that the potential at
infinite is zero, that of the conductors
being —k and +k .

Hollow vortices . 5 T oG e

Example: Hollow vortices between parallel
planes . . - :

On discontinous ﬂmd motlons mvolvmg
sources and vortices dec

Boundary consists of a free stream line and
a straight wall. The only singularity is a
vortex, the circulation round which is 2m=.

Motion produced by a vortex and doublet
at the same point. s

A stream escapes from between parallcl waIls
and proceeds to infinity, which are ulti-
mately straight and parallel. The stream
is disturbed by a doublet at any point
in its path

Fliissigkeit, die aus einem groszen Gefisze
durch ecine geradeinige Kanal ausflieszt,
welche nach innen hineinragt, (Helmholiz:
Ueber die kontinuierliche Fliissigkeitsbe-
wegungen, Ges. Hbh. Bd I, blz. 146)

Fliissigkeit, die aus einem grossen Gefasze
durch eine ebene Oiinung in eine ebene
Wand ausflieszt

Strom von unbegrenzter Brcttc lnfll d:rekt
auf eine feste ebene Lamelle und spaltet
sich alsdann in zwei Teile, welche nach
Innen zu von freien Oberfliichen begrenzt
sind. (Lord Rayleigh. Phil. Mag. Dec. 1876.
Notes on hydrodynamics) -

Stromung, die in einem Zuge ebener Wellen
durch einen diinnen Schirm hervorgebracht
wird, welcher von einer Reihe paralleller,
gleicher und dquidistanter Schlitze unter-
brochen ist .

- 15,6, 14
. 15,6, 14

. 15,6, 14

14

14

14

14

14
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28 |1905Sec.|104| H. Fletcher— Current flow in rectangular conductors . 5, 14
Ser. 3 Moulton.
25 11880 — 11/158| A. E. H. Love. | Vortex motion in certain triangles . 14
15 |1921, 6de|801| W. B. Morton. |On the discontinious flow of liquid past a
Serie, 41 wedge . . 6, 14
13 1015 [356| G. H. Bryan en |The theory of dlacontmuous mohon apphcd
Serie A,91 R. Jones. to a bent plane T Loy D 1, 14
20 1012 [212 W. A. Wijthoff. |Een geval van vloeistofbeweging zonder
2¢ reeks 5 werveling in twee afmetingen (zie fig.) 14
L
13 1915 |354| G. H. Bryan en | Discontinious fluid motion past a bent plane,
Serie A,91 R. Jones. with special reference to aeroplane pro-
blems . - : " 45 1 1,6, 14
13 1915 | 360 - A further applico lo thc case of a plane
Serie A,91 with more than one bend . 1, 14
28 11913 Sec.|316 W. M. Page. |Cylindrical conductor, whose section consists
Series 11 of two parallel lines joined by curves. 15
28 |1913Sec.| 321 - Cylindrical conductor of square section with
Series 11 round edges A e e R T 15
1913 Sec.| 323 * Cylinder, whose cross section reaches to in-
Series 11 finity, the finite end being rounded . 15
1913 Sec.| 324 - Infinite wedge formed by two semi-infinite,
Series 11 perpendicular planes with the edge rounded
ol LB B ok e e Debesnienty |INTD
28 11913 Sec. | 326 - Grating constructed of conducting cylinders
Series 11 of oval sections ) o s |10
10 11915A215/448 | J. G. Leathem. |Flow round a semi-infinite barmru‘. thc form
of a wedge with smoothly rounded apex. 16
10 11915A 215! 450 - Longitudinal motion of a ship with curved
sides terminating in a pointed bow and stern
10 1915A 215|455 - Motion of a ship with pointed bow and flat
stern 16
10 11915 A215| 467 = Liquid motions mth free stream lines. 16
10 11915A 215/ 470 - Free stream lines when the fixed boundary
includes curves 16
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24 1916 — 17, 35| J. G. Leathem. |On periodic conformal curve-factors and
A 33 corner factors . 16
28 1916 — 15| xxxv s Theorems on conformal transformation (ab-
stract) . 16
15 | 1918, 6de | 119 = On the two-dimensial motion of infinite liquid
Serie, 35| produced by the translation or rotation of
a contained solid. 16
6 311 A. Webster. Excentric cylinders . ~ 24
(w=1log z met uitbreiding).
6 322 | ~ Logarithmic transformation of last case . 24
‘ (Verloop krachtlijnen en aequipot. vl
w—=1log cos hz) . 24
6 315 " Elliptic and hyperbolic cylinders. .24
(Verloop krachtlijnen en aequipot. vl
w=cos fiz; w=sin hz; w=co0s 2;
w=sin 2).
28 |1909 Sec.| 87 H. Bateman. Applications to geometrical optics . w120
Series T (Toepassing op een symm. optisch in-
strument).
28 | 1909 Sec.| 87 - Applications to geometrical optics - 25
| Series 7 (Serie lichtgolven door heterogeen medium)
28 |1910Sec.|223 - The transformation of the electrodynamical
Series 8 equations. 25
22 1919 1 Paul Koebe. Ueber die Stromungspotentiale und die zuge-
horigen Abbildungen Riemannscher Fliche.| 26
22 1919 4 . Erster Teil. Einfache Dipolstrémung und
zugehtrende Abbildung geschlossener Rie-
mannsche Fldchen 26
22 1919 11 - Zweiter Teil. Niihere Diskussion und Cha-
rakterisierung der Schlitzbereiche Gl? 26
22 1919 25 - Dritter Teil. Dipolstrdmung und zugehdrende
konforme Abbildung berandeter Riemann-
scher Fldchen . W, o 26
22 1919 32 - Vierter Teil. Logarithmische und polare Un-
stetigkeiten beliebiger Ordnung und in
beliebiger Anzahl Unstetigkeiten am Rande. | 26
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17 |1887—28| 14 W. Voigt. Spezieller Fall, dasz zwei Strahlen derselben
! Fliiszigkeit, welche im Unendlichen die
gleiche Geschwindigkeiten haben, zusam-
menstossen . S ryesne S W 6, 26
17 11887 — 28| 15 - Zur Theorie freier Flusngkeltsstnmen 6, 26
14 {1915 — 63 381 M. Jaeger. Zur Dynamik ebener Fliiszigkeitsbewegungen. | 6, 26
(Vrij algemeene beschouwingen).
14 [1001 — 46/ 11| A. Sommerfeld. Theoretischers iiber Beugung der Rintgen-
sirahlen e e s Pe e e | U DLy
17 [1894 — 45| 263 - Zur analytischen Theorie der Wirmeleitung.| 26
28 |1897 — 28 414 . Anwendung der Greenschen Funktionen des
Windungraumes auf Problemen der ge-
wihnlichen Potentialtheorie . 3 29
22 1894 |338 = Zur mathematischen Theorie der Beugungs-
erscheinungen . . |28, 29
28 [1900 — 31| 151 J. H. Jeans. | On finite current sheets . 20
28 11900 — 31| 156 - Semi-infinite plane current sheets 29
28 '1900—-31‘ 168 i Boundary of the current sheet consists of
two parallel and infinite straight lines. 30
28 11897 — 28/ 419| A. Sommerfeld. |Die Greensche Funktion eines Riemannschen
| Raumes mit zwei gradlinigen parallellen
Verzwcigungscurvcn und ihre Anwen-
dungen 30
28 11899 — 30/ 133| H. S. Carslaw. | Application to the problcm oi thc dlifracllon
of plane waves of sound incident on a
thin semi-infinite rigid plane bounded by
a straight edge R o3t
28 1899 — 30 144 T The problem of a source of sound in an
' infinite medium containing a fixed thin
rigid semi-infinite plane bounded by a
straight edge A Ta L O T 32
28 11899 — 30| 150 N The problem in two dimensions of a source
outside a semi-infinite thin rigid plane
bounded by a straight edge 32
28 |1015Sec. 450 F. ]. Bromwich. Diffraction of waves by a wedge . |20, 32
Series MI
28 |1015Sec. 452 7 Solution of the wave equation, corresponding
Series 14 \ to a source outside a wedge . .29, 32
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28 |1915Sec.| 458 | F. ]. Bromwich. | The diffraction problem for sound waves from
Series 14 a source, impinging on a wedge. . 129, 32
28 1915 Sec.| 400 e The diffraction problem for waves from a
Series 14| Hertzian oscillator impinging on a wedge. |29, 32
28 | 1915 Sec.| 450 o+ Diffraction of waves by a wedge. A general
Series 14 integral of the wave equation . .| 29, 32
28 | 1916/17 | 94|F. J. W. Whipple. | Diffraction by a wedge and kindred problems. | 29, 32
Sec. Ser. 16
28 | 1916/17 | 105 .+ Plane waves with the direction of propagation
Sec. Ser. 16 al right angles to the edge of the wedge. | 29, 32
28 | 1916/17 | 106 T Diffraction of a plane wave of arbitrary type
Sec. Ser. 16 for the case of a straight edge .| 29, 32
28 | 1916/17 | 107 . An electrostatic point-charge in the neigh-
Sec. Ser. 16 bourhood of a conducting wedge .| 29, 32
28 (1809 — 30|158| H. S. Carslaw. | The problem of an instantaneous line source
in an infinite body of uniform conductivity
k in which there is a semi-infinite plane,
bounded by a straight edge: the plane
either 1¢ kept always at zero-temperature,
or 2nd coated in such a way that no
transference of heat is possible across it.| 33
28 | 1910 Sec. | 365 T The Green’s function for a wedge of any
Series 8 angle, and other problems in the conduction
of heat 33
28 (1910 Sec.| 366 r Multiform solution of period 2B 33
Series 8
28 |19108Sec. | 370 v The Green's function for a solid bounded
Series 8 by the planes =0 and §=§ . 33
28 | 1910 Sec.| 372 T The Green’s function for a solid bounded
Series 8 by axial planes, concentric cylinders, or
| planes perpendicular to the axis . 33
28 11910 Sec.| 372 A I. Line source in the portion of an infinite
Series 8 cyl. r=a, cut off by the two axial planes
g=0and =0 . 33
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28 |1010Sec. 372| H. S. Carslaw. |II. Line source in asolid bounded internally
Series 8 { by the cylinder r=a and the two planes
g=0 and § =7 33
28 |1910Sec. 373 % III. Line source in a solid bounded by the
Series 8 cylinders r =a, r =20 and the two planes
=0 and 4 =7 33
28 |1910Sec.| 373

Series 8|

IV. Line source in a solid bounded by the
cylinders r=a and r =0

33
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STELLINGEN.

L.

Door de tot heden met vloeibare kristallen genomen proeven is nog
niet bewezen, dat kristallen geen ,Raumgitter”-structuur hebben.

I1.

De electrische ovens voor spectroscopisch onderzoek van A. S. KING

geven geen zuiver thermische straling.
(MT. WILSON, Solar Observatory, vol. 1 en volgende deelen).

1.

De door R. RINKEL voorgestelde wijzigingen in de dimensies der
electrische eenheden moeten niet worden overgenomen.
(Zeitschr, f. Physik, Bd. 8, 1921).

IV.

Men kan goede resultaten verwachten voor de kennis van de electro-
magnetische stralingsverschijnselen van de zon door spectro-helio-
grammen te maken, die rekening houden met het feit, dat de H, lijn

een doublette is.

(H. DESLANDRES, Comptes rendus vanaf 1910.
F. R. MERTON, Proc. Roy. Soc. 97 A, 1920.

F.R. MERTON en ]. W. NICHOLSON, Phil. Transactions A 217, 1917).



I

V.

De straling der sterren kan niet in de eerste plaats veroorzaakt
worden door samentrekking. Waarschijnlijk is zij in hoofdzaak op
rekening te stellen van een omzetting der scheikundige elementen.

(H. SHAPLEY, Popular Astronomy, Vol. 31, 1923).

VL

De voorwaarden, die er bestaan tusschen de verschillende dimensies
van de grootheden in het probleem der afwijking van de lichtstralen
door het zwaarteveld der zon sluiten noodzakelijk overeenstemming
in tusschen de uitkomsten der verschillende theorieén.

(E. GEHRKE, Astronomische Nachrichten, Bd. 219, 1923).

VIL

J. D. v. D. WAALS Jr. beweert, dat ons voorstellingsvermogen be-
trekking heeft op een niet-euclidische ruimte (J. D. v. D. WAALS Jr.: ,De
Relativiteits-theorie”, bladz. 17). Van deze bewering kan het bewijs

niet worden geleverd.

VIIL

De methode der cyclographie kan met vrucht worden toegepast
bij het onderzoek van ruimte-krommen,

IX.

P.]J. H. BAUDET heeft de stelling opgeworpen: ,Als men de natuur-
lijke getallen splitst in twee verzamelingen D en D’, dan bevat D of
D’ voor ieder natuurlijk getal £ een gewone rekenkundige reeks van
k termen.” (Prijsvraag 3, Wisk. Genootsch. 1923). Indien deze stelling
juist is voor een verdeeling in twee verzamelingen, dan geldt zij ook,

als men de natuurlijke getallen verdeelt in p verzamelingen.



It

X.

Ten onrechte beweert ]. DU SAAR in zijn proefschrift, dat conti-
nuiteit, onbeperkte differentieerbaarheid en integreerbaarheid besliste
voorwaarden zijn, waaraan alle biometrische functies moeten voldoen.

(J. bu SAAR: ,Over sterfte-formules en lijfrenten”, bladz. 5).

XI.

R. HopPE beweert, dat een wiskundig bewijs van het bestaan der
wilsvrijheid gegeven kan worden. Deze bewering is onjuist. Het bewijs,
dat HOPPE zelf geeit, is dan ook niet exact.

(Archiv der Math. u. Physik, 2¢ Reihe, Bd. 11, 1892).

X1

Bij het onderwijs in de natuurkunde aan de scholen voor middelbaar
en voorbereidend hooger onderwijs moet vooral en steeds de nadruk
gelegd worden op het verband tusschen de verschillende onderdeelen

van deze wetenschap.
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