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??? HOOFDSTUK I.Historische inleiding;. De toepassing van complexe functies, althans van imaginaire groot-heden, in de theoretische natuurkunde, is thans ongeveer een eeuwoud. In een publicatie van 1823, waarin Fresnel de wetten van detotale reflectie ontdekte, werkte hij reeds met imaginaire grootheden.(Fresnel, â€žOeuvres compl?¨tes", Tome I, blz. 753. Extrait d\'unem?Šmoire sur la loi des modifications imprim?Šes ?  la lumi?¨re polaris?Šepar sa r?Šflexion totale dans l\'int?Šrieur des corps transparents). Dezewerd gepubliceerd in â€žBulletin de la soci?Št?Š philomatique 29 Juni 1825,blz. 175". Eveneens gebruikt hij in 1831 Imaginaire grootheden in:Â?M?Šmoire sur la modification que la r?Šflexion imprime ?  la lumi?¨repolaris?Še" (Oeuvres compl?¨tes : Tome I, blz. 767 ; M?Šmoire de l\'Academiedes sciences 11, blz. 393; Annales de chimie et de physique 46, Maart1831, blz. 225). Daarna schijnt men, voor zoover ik heb kunnennagaan, voor 1858 geen imaginaire grootheden te hebben gebruikt inde physica. Eerst in dit jaar paste Seebeck ze weer toe in eencinematische verhandeling

â€žUeber die graphische Darstellung imagin?¤rerf-unctionen" (Crelle\'s Journal 55, blz. 221). Daarna neemt het aantalverhandelingen, dat hier genoemd moet worden, sneller toe. Als een van de belangrijkste voorloopers van het gebruik dermethoden, die in deze dissertatie vermeld worden, moet beschouwdworden: j. N. Naton de la Groupilli?¨re met can verhandelingvan 1861. In de eerste plaats publiceert deze een â€žM?Šmoire sur unenouvelle th?Šorie des lignes isothermes et du potentiel cylindrique"(Journal de l\'?Šcole imp?Šriale polytechnique 22, cahier 38, blz. 15).â€?erin behandelt hij met behulp van functies van complexe verander-J en het warmte-evenwicht, speciaal bij cylindrische lichamen, als 1



??? vraagstukken op een plat vlak. De functies, die wij spoedig onderden naam â€žtoegevoegde functies" zullen leeren kennen, treden hierinreeds op. Hij brengt in zijn verhandeling het warmte-evenwicht inverband met den cylindrischen potentiaal. Hiermede bedoelt hij hetvolgende: men onderstelt een punt onderhevig aan een stelsel krachten,die omgekeerd evenredig zijn met de kwadraten van de afstanden toteen zeker aantal vaste punten; wanneer nu dit stelsel bestaat uithomogene evenwijdige krachten, noemt hij de daarbij optredende poten-tialen cylindrisch. De schrijver ziet zelf het belang van zijn verhandelingin, juist ook, waar het betreft het werken met imaginaire grootheden,hetgeen blijkt uit zijn opmerking in een noot: â€žOn me pardonnera d\'insisterainsi sur une th?Šorie qui n\'est qu\'un cas particulier du probl?¨me de lachaleur, quand on l\'envisage par rapport aux trois dimensions del\'espace. Son ?Štude me para?Žt avoir une v?Šritable importance et ??treappel?Še jusqu\'?  un certain point ?  jouer pour l\'?Štude des fonctionsimaginaires la m??me r?´le que la g?Šom?Štrie des courbes

pour cellesdes fonctions r?Šelles. Cauchy a en effet montr?Š le premier que lesseules fonctions de variables imaginaires, qui m?Šritent vraiment cenom en ce qu\'elles ont une d?Šriv?Še et qu\'il appelle monog?¨nes, sontaussi les seules qui puissent repr?Šsenter l\'?Šquilibre dfe temp?Šraturedans un plan." Nu volgen eenige verhandelingen, die voor ons onderwerp vanminder belang zijn, die ik echter volledigheidshalve moet vermelden.In 1863 publiceert P. Alph. Laurent een â€žM?Šmoire sur la th?Šoriedes imaginaires sur 1\'?Šquilibre des temp?Šratures et sur 1\'?Šquilibre del\'?Šlasticit?Š." Oournal de 1\'?Šcole polytechnique 23, cahier 40, blz. 75).I. h. a. grootendeels gewijd aan de zuivere theorie van imaginairegrootheden, geeft hij enkele algemeene voorbeelden van evenwichtvan temperatuur en elasticiteit. In hetzelfde jaar geeft H. Dur?¨oe enkele eenvoudige dynamische toepassingen in â€žUeber eine Anwendung der Imagin?¤ren Gr??szen" (Archiv der Mathematik und Physik 40,blz. 1). LiPSCHiTZ stelt in hetzelfde jaar bolspiegeling voor met com-plexe getallen in: â€žZur Theorie der

Elektricit?¤tsverteilung" (Journal de Grelle 61, blz. 1). Van grooter beteekenis is echter een in 1865 gepubliceerde ver-handeling van Christoffel: â€žZur Theorie der einwertigen Potentiale"(Journal de Grelle, blz. 321). Deze werkt in de potentiaal-theorie



??? met de conforme afbeelding, welke met het gebruik van complexefuncties hand in hand gaat. Daarna volgt weer de verhandeling vangroot belang van 1867 van J. N. Haton de la Goupilli?¨re : â€žM?Šthodesde transformations en g?Šom?Štrie et en physique math?Šmatique". Dezestaat uitvoerig stil bij de conforme afbeelding, werkt met algemeenecoordinaten en geeft, zooals de titel aangeeft het verband met demathematische physica aan. Met de laatste kan Helmholtz de grond-legger van onze methode genoemd worden in â€žUeber discontinuierlicheFl??ssigkeitsbewegungen." (Wissenschaftliche Abhandlungen, Bd. I,blz. 157; Monatsberichte der Akademie der Wissenschaften in Berlin 13,April 1868). In deze verhandeling van 1868 gebruikt hij functies vancomplexe veranderlijken, waarbij hij toegevoegde functies toepast.(Deze naam noemt hij daarbij echter niet). De beteekenis van dezeverhandelingen wordt geschetst door H. Weber in â€žDie partiellenDifferentialgleichungen, Bd. I, blz. 368", naar aanleiding van een vraag-stuk over electrische inductie met de woorden: â€žSchwieriger,

aberauch interessanter, ist das folgende Beispiel, an dem Helmholtzzuerst den Nutzen der Abbildungsthcorie f??r diese Art electrostatischeProbleme nachgewiesen hat." Terstond neemt G. Kirchhoff in 1869de methode over in: â€žZur Theorie freier Fl??ssigkeitsstrahlen" (Crelle\'sJournal 70, 1869, blz. 289), waarin hij een groot aantal gevallen metbehulp van complexe functies bewerkt. Daarna wordt het aantal toepassingen, belangrijke en onbelangrijke,te groot, om hier te vermelden. In het eerste gedeelte van dit proefschriftwordt de methode zelf met de resp. uitbreidingen gerefereerd. Detoepassingen zijn samengesteld in een aan het slot toegevoegde tabel. In het bijzonder zij alleen nog gewezen op de methode van Sommer-feld. Waar toch andere onderzoekers de methode uitbreiden, opentde methode van Sommerfeld geheel nieuwe verschieten. Ik meen,dat enkele historische gegevens daaromtrent derhalve hier niet mogenontbreken. Deze zijn voor een groot deel ontleend aan een artikelvan James Mc. Mahon, getiteld: â€žOn the use of the n-fold Riemann-spaces in applied

mathematics" (Bulletin of the American MathematicalSociety, 16, 1908). Het eerste concrete voorbeeld van een meerwaardigepotentiaal in drie afmetingen bevindt zich in een brief van P. Appellaan F. Klein (Math. Ann. 1887). In 1891 spreekt Pockels in zijnverhandeling over de vergelijking van de â€žgolfpotentiaal" de wensche-



??? lijkheid uit, de meerwaardige oplossingen van deze vergelijking vanmathematisch en physisch standpunt te bestudeeren. De eerste toe-passingen op concrete physische vraagstukken zijn gegeven door A.Sommerfeld in artikelen van de Math. Ann. van 1894 en 1896 overwarmtegeleiding en diffractie, en in 1897 in de â€žProceedings of theLondon Math. Soc." over â€žMultiform potentials in space". Voor dehierin uitgewerkte methoden en toepassingen verwijs ik naar dedissertatie en de tabel. Het artikel van Sommerfeld gaf aanleidingtot een groot aantal publicaties, waarvan ik hier slechts vermeld eenartikel van H. S. Carslaw: â€žOn multiform solutions of differential equations of physical mathematics" (Proc. of the London Math. Soc. 30, 1898), waarin Carslaw de methode van Sommerfeld consequentuitbreidt.



??? HOOFDSTUK II. Korte uiteenzetting van de toepassing der complexefuncties in de Natuurkunde. Â§ 1. Inleiding. Wanneer w = u-\\-iv een functie is van de complexe veranderlijkedan wordt het functie-begrip beperkt door te eischen, dat bx ?¨y\' dy Sx\' Bovendien moeten Â? en v continu zijn en continue partieele diff. quot.naar x en 3/ hebben. Een dergelijke functie u noemt men een monogencfunctie van de complexe veranderlijke z, terwijl we u en v toege-voegde functies noemen. Voortaan spreken we slechts van een functievan een complexe veranderlijke, daarmede bedoelende een monogenefunctie. Zooals bekend voldoen u en v dan aan de vergelijkingvan Laplace: O- ^4-^ = 0 Meetkundig ge??nterpreteerd geeftw=/(^) een conforme afbeeldingvan het ^-vIak op het w-vIak. Daar Â? en v voldoen aan de verg. van Laplace, kan elk dezerJuncties een potentiaal in het platte vlak voorstellen. Stelt v = const.een stelsel aequipot. krommen voor, dan zullen de lijnen u = const.de krachtlijnen voorstellen. De functies van complexe veranderlijkengeven derhalve aanleiding tot physische

toepassingen, die steunen opzuiver mathematische methoden. Â§ 2. Electrische potentiaal en lading. Daar w=zf{z) meetkundig een conforme afbeelding voorstelt, wordt



??? elk lijntje in het w-vlak gevonden door het overeenkomstige lijntje inhet z-vlak te vermenigvuldigen met De modulus daarvan wordt: Is V de electrische potentiaal, dan is p de electrische intensiteit R. Men kan thans problemen op cylindrische geleiders oplossen, waar-bij ons werkvlak moet worden beschouwd als loodrechte doorsnedevan de geleiders. Daar R = o- (ladingsdichtheid), kan men eenvoudigde oppervlakte-dichtheid in een willekeurig punt van den geleidervinden. De totale lading tusschen twee punten A en B over een strookter breedte van de lengte-eenheid wordt: P Sa ?’B ds = ??x â€” Â?B. Ss Â§ 3. Achtereenvolgende transformaties. Het geval van achtereenvolgende transformaties kan aanleidinggeven tot belangrijke toepassingen. Immers twee achtereenvolgendetransformaties kunnen aanleiding geven tot een derde, welke hetresultaat is van de eerste twee. Â§ 4. Lading en aequipotentiaalkrommen bij transformatie. Indien F een functie is van w, terwijl w een functie is van z, danvolgt uit vrij gecompliceerde berekeningen, dat waarbij men tusschen overeenkomstige grenzen moet

integreeren.Indien nu F de potentiaal voorstelt, dan is volgens de vergelijkingvan poisson: ffpdxdy = ff/dudv, als p en / de dichtheden der lading voorstellen. Dc hoeveelheidelectriciteit in overeenkomstige deelen van het oorspronkelijke en hetgetransformeerde stelsel zijn derhalve dezelfde. Uit genoemde berekeningen volgt nog deze belangrijke conclusie,dat ieder stelsel aequipotentiaalkrommen getransformeerd wordt toteen ander stelsel aequipotentiaalkrommen.



??? Â§ 5. Continue stroomen. Voor continue stroomen geldt de continu??teitsvergelijking: , Jv , dnÂ? n Hierin stellen w, v en w de componenten van den stroom in een puntvoor. Tusschen de electrische potentiaal V en de componenten vande electrische stroom bestaat dan de betrekking: t sx t sj\' t sz waarin t de soortelijke weerstand voorstelt. Door substitutie in decontinu??teitsvergelijking, gaat deze over in: a V = 0. De voorwaarden van overgang van ?Š?Šn geleider naar een andere luiden: 1 SV 1Â°. De strooming loodrecht op de grenzen voorgesteld door â€” t otl moet continu zijn.Hierbij stelt â€” differentiatie langs de loodlijn op de grensover- otl gang voor. SV s 2"- ~ moet continu zijn. Met bedoelt men differentiatie langs oS gs een willekeurige lijn, in de grens gelegen. Vindt de strooming plaats in een vlakke metalen plaat, die overaldezelfde dikte en samenstelling heeft, dan wordt het vraagstuk vantwee-dimensionalen aard cn kan men werken met de vergelijking vanLaplace. Strekt de geleidende stof zich tot het oneindige uit of wordtze begrensd door twee electroden op constante

potentiaal, terwijl in de grenzen van het veld = o is, dan kan men de electroden trans- ??ormeeren in lijnen V = const. cn de andere grenzen in lijnen U = const.,zoodat de geheele middenstof getransformeerd wordt In het inwendigevan bijv. een rechthoek in \'t H,v-vlak. Dc lijnen V = const. stellen"jnen van const.potentiaal, dc lijnen U = const. dc loodrecht daaropstaande stroomlijnen voor. In een willekeurig punt is dc richting vande stroom loodrecht op de aequipot. lijn en van een bedrag: I LIX"t SX\'



??? SV SU Daar Sa Ss\' wordt: H Jds == T - ^ ds =1 (Uq - Up). J p J p r dS T Â§ 6. Toepassing in de hydrodynamica. De complexe functies vinden ook toepassing in de hydrodynamica.De zgn. stroomfunctie voldoet n.1. in twee-dimensionale gevallenaan de vergelijking: Hierbij stelt \\f/ de strooming voor door een lijn AP bijv. van rechtsnaar links, als de waarnemer van een vast punt A naar een veranderlijkpunt B kijkt. Zijn nu ?? en v de componenten van de sneldheid, dan is: SO/ SJ/u = â€”v = Sy Sx Voor deze beweging bestaat een snelheidspotentiaal xp zoodanig, dat Sx\' By Deze functie voldoet aan de vergelijking: (p en ip zijn dus toegevoegde functies; datgene, wat in verband metde electriciteitsleer is gezegd, laat zich derhalve op de hydrodynamicaoverdragen. Â§ 7. Toepassing op de elasticiteits-theorie. Ook op de elasticiteits-theorie kan men de complexe functies toe-passen. Stel, dat men te doen heeft met een cylindrische staaf, waarvande loodrechte doorsneden om een as gedraaid worden zoodanig, datde draaiingshoek evenredig is aan den afstand tot een vaste door-snede. Verder

heeft een verschuiving plaats evenwijdig aan de staafas.Kiest men deze tot z-as, dan worden de deformatie-componentengegeven door: u â€” â€” wzy, v^wzx, w = w(p(x,y).



??? <p voldoet aan de verg. (blijkens de vergelijkingen der elastischemedia voor het statische geval): De grensconditie wordt: II cos (n,x) ^ cos (n,y)â€”y cos (n,x)-l-x cos (n,>\') = 0.Noemt men (p het re??ele deel van waarbij ^ b.v. een functie is van ^ = x 4- iy, dan kan men uit degrensconditie afleiden, dat cp en toegevoegde functies worden. Â§ 8. Toelichting. Ter toelichting beschouwen wij de transformatie: W = l0g2, of: a /v = logr-|-/??. Hierbij zijn de vlakken ?? = const. aequipotentiaalvlakken, terwijl dekrachtlijnen gevormd worden door r = const. of omgekeerd. Electro-statisch kan men hierbij uitgaan van een lijnlading. Is e de ladingper lengte-eenheid, dan vindt men: Â? = C â€” 2 e log r. Heeft men een dergelijke lading in z = a, dan past de transformatie: w = log (z â€” a), terwijl: w = iogÂ?ipÂ? z-j-a de superpositie geeft van twee velden met gelijke tegengestelde Iljn-ladingen in z = a en â€”a of een lijnlading in z â€” a geplaatsttegenover het vlak y=\'0. Â§ 9. Mechanisch beeld van de conforme afbeelding. Lord Rayleiqh heeft een mechanisch beeld ontworpen van deconforme afbeeldingen. Bij

de transformatie: ontstaan uit een stelsel vierkantjes in het x,y-vlak twee stelsels



??? krommen in het a,v-vlak, die elkaar loodrecht snijden. Deze krommenkan men nu voorstellen door stalen draden, terwijl men in de snij-punten koperen schijfjes bevestigt. De krommen moeten elkaar zooveelmogelijk loodrecht snijden. Om dit duidelijker te doen uitkomen, kanmen een derde serie draden aanbrengen, die de eerste onder hoekenvan 45Â° snijdt. Men kan nu deze figuren met een middenstof aan-gevuld denken, die deformaties toelaat. We kunnen dit aldus schrijven: u iv=/(f.x4-/Â?, 0) waarbij t den tijd voorstelt. De snelheidscomponenten van een deeltjeworden gegeven door: -jj ff\' zoodat: = (2) Uit beide laatste vergelijkingen volgt: cp4-z> = F(f,a-}-/v). (3) Verg. (1) leert ons de beweging van elk deeltje afzonderlijk kennen,verg. (3) de snelheden op een willekeurig tijdstip. Houdt men f constant,dan voldoen (p en \\p weer aan de vergelijking van LAPLACE. Is de beweging, die aan verg. (3) beantwoordt, standvastig, danmoet ^-i-i^P onafhankelijk zijn van den tijd, zoodat de eliminatievan X -f iy tusschen (1) en (2) moet leiden tot de eliminatie van t.Uit eenige beschouwingen blijkt, dat de

verg. (1) den volgendenvorm moet hebben: Een andere vorm hiervoor is: Als voorbeeld het volgende: u-f/vÂ?=c sin (//-}-X 4-ly).Hier wordt de verg. van een zgn. stroomlijn: ___v ^ ^ c^sin\'x c^cos^x*â„? Opgemerkt kan worden, dat bij onsamendrukbare vloeistoffen de be-weging snel is op een plaats, waar naburige stroomlijnen dicht bijelkaar liggen, terwijl hier de beweging op zulk een plaats zeer lang-



??? zaam is. Hiermede heeft echter Lord Rayleigh zelf het bezwaar tegende bruikbaarheid van zijn model tot toelichting van de physischeverschijnselen gegeven. Â§ 10. Transformatie bij een kromme van het geslacht nul. Van een kromme van het geslacht nul worden de co??rdinatenvoorgesteld door: x=^f{p),y = P{p). De transformatie: zal de potentiaal v = 0 maken over den geleider, welke voorgesteldwordt door genoemde kromme. Â§ 11. Afbeelding door lineaire gebroken functies.Bij de afbeelding door lineaire gebroken functies: z â€” x waarin u, x, /3, re??eie of imaginaire constanten voorstellen, stemt metiedere cirkel in het v-vlak een cirkel in het z-vlak overeen en om-gekeerd. (Rechte lijnen kunnen als grensgeval van cirkels optreden).Dit geeft aanleiding tot de transformatie van een cirkel met eenstraal r in het z-vlak met een halfvlak van den kant van de negatievew\'s in het w-vlak.De substitutie wordt dan: z â€” r w = a z r- Omgekeerd zal de transformatie: a 4- w het halfvlak afbeelden op den cirkel. Met deze transformatie, die een uitbreiding is van dc nog te be-schrijven transformatie van

schwarz, worden physische vraagstuk-ken opgelost. Â§ 12. Inductie van cylindrische geleiders. Een uitbreiding van het voorgaande geeft Weber voor het vraag-stuk van de inductie van cylindrische geleiders. Men kan dit terug-



??? brengen tot een afbeelding op een cirkelvormigen ring. Het eenvoudigstevoorbeeld is dat, waar een gebied begrensd wordt door twee cirkels,die elkaar uitsluiten. Men krijgt dan een transformatie met lineairgebroken functies, waarbij cirkels van het eene vlak overgaan incirkels van het andere vlak. Â§ 13. Verdeeling van de electriciteit op cylindrische vialdten. Ook het vraagstuk van de verdeeling van de electriciteit op cylindri-sche vlakken, behandelt Weber met conforme afbeelding. De ge-dachtengang sluit aan bij de vergelijking: Hierbij is cp zoodanig, dat er een functie bestaat, zoodanig, dat: een volledige differentiaal is. Als we derhalve stellen, dan zijn 0 en tp toegevoegde functies. De functie = -j-is dan een functie van de complexe veranderlijke z. Noem nu de doorsnede van de geleidende cylinders met het z-vlaksen het gebied tusschen deze krommen S. Denk het gebied afgebeeldop een cirkel in een w-vlak, zoodanig, dat met de omgeving in hetW-vlak het oneindige in het z-vlak overeenstemt. Dan wordt w eenfunctie van z zoodanig, dat: 1Â°. w in het geheele gebied S eenwaardig, eindig

en continu isen afgezien van de grenskromme, een eindig van nul verschillenddiff. quot. heeft. 2Â?. dat de absolute waarde van w op de kromme t gelijk 1 wordt.30. dat w voor 2 = 00 verdwijnt en een reeksontwikkeling van wde vorm heeft: 4Â?. voor iedere eindige waarde van z verschilt w van nul.Kent men de functie w, dan kan men x definieeren door de betrekking: a; â€”cw â€” e .



??? waarin c en w re??ele const. voorstellen. Derhalve: = c -j- m log uÂ?. Het re??ele deel cp van % wordt dan: (}) = c-j-mlog y V\'. cp voldoet nu aan onze oorspronkelijke diff. verg. Daar de absolutewaarde V??t^ v^ van iv op de kromme s gelijk 1 is,krijgtcJ) op dezekromme de constante waarde c. Verder is z w en dus Vx^-^-y^ Vai-j-v*in \'t oneindige eindig. Stel Vx^-^-y^ = R, dan is 0 m log R in\'t oneindige eindig. Verder is 0 (zie 4".) met zijn diff. quot. in \'t geheele gebied S eindig,continu en eenwaardig. Â§ 14. Transformatie van Schwarz. Tot belangrijke toepassingen geeft aanleiding de transformatie vanhet gebied binnen een veelhoek in het z-vlak, waarvan de begrenzingovereen moet stemmen met de lijn v = 0 in het w-vlak. Men kandan het gebied binnen den veelhoek overeen laten stemmen met hethalfvlak aan den kant van de pos. u-as. Men kan dan bij een hoekvan den veelhoek, kleine elementen niet gelijkvormig transformeeren.Laat men de hoekpunten correspondeeren met Â? = uâ€ž Â? = u, enz.,dan wordt de transformatie: "^\'â– ^Ciw-uy ...... dw Hier zijn a,, .......enz. de

binnenhoeken van den veelhoek positief gerekend, als de veelhoek concaaf is naar de x-as. Â§ 15. Uitbreiding op figuren, welke gedeeltelijk krom ??ijn. Page heeft de transformatie van schwarz uitgebreid ten behoeve vanverschillende twee-dimensonale vraagstukken in electro-statica enelectro-dymanica. Daarvoor moest een transformatie uitgevoerd worden,welke figuren in het z-vlak, die gedeeltelijk uit kromme deelen be-staan, transformeert naar de re??ele as van het w-vIak. De krommewordt daarvoor beschouwd als limiet van een gelijkhoekigen veelhoek.Beschouw daarvoor in de eerste plaats een cylindrisch krom uitsteeksel



??? op een oneindig vlak. Beschouw de kromme als de limiet van eengelijkhoekigen n-hoek (zie fig. 1). wiuÂ?/ w= u,wÂ?â€”_ivvi-i w= i i_wroo Fig. 1. Neemt men Â?, = cosfl:, Uz = cos3x, â–  â–  - â–  Un = cos{2nâ€”\\)x,waarbij 2na = 7r, dan kan men een halven cirkel in het z-vlak ver-wachten. De transformatie wordt dan na eenige limietbeschouwingen(voor het geval derhalve, dat de kromme halfcirkelvormig is metstraal C): dw KIVÂ? â€” \' \' Â§ 16. Uitbreiding van het voorgaande. Krommefactoren. Op zijn beurt heeft Leathem het voorgaande weer uitgebreid. Hijnam als uitgangspunt de volgende transformatie: dz = C?(w)n(wâ€”Ur)^ dw. Hierbij stellen u^ re??ele const. voor, Â?j,____ eveneens. Onderstel F zoodanig, dat bovenstaande transformatie een conformeafbeelding geeft op een w-halfvlak van een gebied in het z-vlak, begrensd door een veelhoek met buitenhoek Â?j, Â?â€ž____Denk verder, dat alle zijden op ?Š?Šn na recht zijn. Denk, dat voor de kromme zijdeM\'r<H\'<Wr i. Nocm nu de passende functie F een krommefactor.Naar het aantal zijden, dat in krommen overgaat, kan men

onder-scheiden enkelvoudige, dubbele, drievoudige krommefactoren enz.F moet voldoen aan de volgende eischen, waarvan de drie eerstenoodig zijn voor enkelvoudigheid. 1Â°. Het argument van F moet const. zijn voor iv>u"- i en voorw<wr. Voor u\'r<u\'<u"- Â? moct het argument van F continumet u veranderen. 2Â°. F moet niet O of oo zijn voor eenige w, die overeenstemt met eenpunt van de positieve zijde van de re??ele w-as, behalve voor ^Â?=00.Dit is noodig voor het conforme karakter van de transformatie. 30. F mag geen enkel bepaald vertakkingspunt hebben aan depos. zijde van de re??ele iv-as, wel op de re??ele w-as zelf.



??? 4ÂŽ. F moet voor iv = oo beantwoorden aan voorwaarden, die af-hangen van den aard van het bepaalde probleem. Leathem noemt nu het gebied op de re??ele iv-as, dat correspondeertmet waarden van w, waarvoor het argument van F veranderlijk is,het lineaire gebied van den kromme-factor. Het verschil tusschen deargumenten in de uiteinden van het lineaire gebied noemt hij hetboekgebied van den krommefactor. Indien F een kromme-factor is, is F" dit evenzeer en wel methetzelfde lineaire gebied als F, maar het boekgebied is n-maal zoogroot. Het is van beteekenis, dat de vorm van de kromme zijde van denveelhoek, die behoort bij een bepaalden kromme-factor niet alleenvan den analytischen vorm van de laatste afhangt, maar ook van deandere factoren, die in de transformatie optreden. Dezelfde kromme-factor kan dus tot verschillende krommen aanleiding geven, welkeechter wel gemeenschappelijke takken kunnen hebben. Zooals we gezien hebben, heeft Page een kromme-factor gegeven,welke uit den aard der zaak weer aanleiding kan geven tot anderekromme-factoren. Ze

kan genoemd worden de kromme-factor vanhet halfcirkelvormige type en heeft de gedaante: Deze heeft een lineair gebied van -f 1 tot â€” 1 en een boekgebied t.l^at F, aan den eisch voldoet, geen nulpunt^ te hebben, ziet mengemakkelijk. Stel G, = iv-(Â?vÂ?-l)i. Daar nu F,G, = 1 is, is F,nergens nul. Tracht men andere kromme-factoren te construeeren van het typevan een rationeele functie plus een vierkantswortel, dan blijkt, datvoor een enkelvoudigen kromme-factor onder het wortelteeken slechtseen in w-quadratischen vorm met re??ele factoren mag staan. Het typemoet dus zijn: Waarbij ?’ en rationeele functies zijn. Voor het vermijden van nul-punten is het noodzakelijk, dat: I ?’ (Â?v) â€” ) ^ (w) p (w\' â€” c>) = const.Indien ^(h;) van den eersten graad is, dan is voor de rationaliteit



??? van ?’ (w) noodig, dat g (w) eenvoudig w is. De kromme-factorwordt dan: = â€”^cÂ? iv(ivÂ? â€”cÂ?)i. Deze heeft tot boekgebied 2-^. Dit resultaat is echter niet nieuw, want Fi = Vi FiÂ?.Indien ^(w) van den tweeden graad is, leidt de rationaliteit van f(w) tot den vorm: F3 = ivÂŽ â€” I c\'w (w^ â€” I cÂ?) (wÂ? â€”Ook dit is geen nieuw resultaat, want: I F,". Â§ 17. Algemeen bewijs dat = Men kan verwachten, dat een kromme-factor van het type: waarbij ?’ en ^^ rationeele functies zijn, de 1Â? van de n^e, de 2de vande (n â€” l)ste graad, zich laat schrijven als: P__L_ F," Hier is Leathem in gebreke, zoodat ik gemeend heb, hieraan eenigebeschouwingen te moeten vastknoopen. Om dit in te zien, maken wegebrnik van den eisch voor de rationaliteit: I ?’ (h;)|i = (iv)inw\' - c\') const. Dit leert ons het volgende: (IV"-f PiW" -Â?  - 2 .... pâ€ž)Â?= (goW" - > g.w" - 2 const. (1) Stel hierin: w = -f c, dan krijgt men: (C-f-piC- \'4-PiCn-2-}-........= Voor = â€” c wordt: (C -/Â?iC-H PiC" - 2 â€”- 3 ....)Â? = 0. Trek de laatste twee vergelijkingen van elkaar af, dan krijgt men:4 (cn PjC" - 2 -I-p.C - " ....) (PiC - > - 3 -j-p.C - 5 ....)

= 0.



??? De Ie factor = O heeft voor ons vraagstuk geen zin, daar dan c = 0moet worden. De tweede factor geeft: Pi = 0, P3 = 0, = enz- Daardoor wordt ons uitgangspunt reeds eenvoudiger:(w"  -f p^u;"-\'Â? -I- ....)Â? = = iQoW" - > giW - 2 g-iiv" -3 -f.... _ i) (iv^ â€” cÂ?) -f const. Nu blijkt bij uitwerking, dat elke q2n i = 0, daar er in het eerste lidalleen even machten voorkomen. Verder krijgt men: 2P6 2piP4 = 2 2 q^q, â€” 2g^cÂ? â€” enz./ Dat nu inderdaad FÂ? = ^^ Fi" Â?s, kan op de volgende manier blijken. Onderstellende, dat dit zoo is, kan men de p\'s en g\'s opzoeken enlaten zien, dat deze voldoen aan het laatste stelsel vergelijkingen.Aan vormen van lageren graad kan men laten zien, dat dit ook heteenige stelsel waarden van de p\'s en q\'s is, dat voldoet.We onderstellen dus, dat onze kromme-factor de waarde: B (uÂ? -f- Vw^ â€” c^)"heeft. Dan moet derhalve: (W /JiW" - > PiW-2 . .. .pâ€ž _2 pâ€ž _ 1 IV pÂ?) (^aW" - \' giW" -2 ....qn-3W\'\'-^qn-2W-\\-qâ€ž-iW) Vw^ â€” C^ = == B (w VuÂ?Â? â€” cÂ?)Â?.De co??ff. van iv" in het 2Â? lid wordt: n(n-l) nin-\\)(n-2){n-3) B(l â€”4?•  ........)â€? Door een

eenvoudige kunstgreep blijkt, dat de vorm tusschen haakjes2"-\' is. De coJiff. van w" in het 2Â?= lid van verg. (2) wordt dus: 2\'\'-Â?XB; in het 1Â?: lid wordt deze 1, dus B = We gaan thans de co??ff. verder opzoeken met een methode, die overeenstemmingvertoont met de volledige inductie. Ga uit van den vorm: (W PjIV - 2-f-p,jv" - â– Â?-f .... pâ€ž)-f We mochten p,, p^_____ Qu Qt____gerust weglaten, omdat we gezien hebben, dat deze in ieder geval nul moeten zijn, wil men met een 2



??? kromme-factor te doen hebben. Volgens de redeneering van volledigeinductie moeten de volgende kromme-factoren gevonden worden doorde vermenigvuldiging met i (w V^iv^\' â€” c^). Deze vermenigvuldi-ging levert: i {Pn - C-^qn-2) W -I- iw i {p^ g,) ... i (Pn -2 4- gn -2) 4- ipn\\ â€” C\\Noemt men de co??ff. van de volgende kromme-factor: P\'??Â? P\'4........................ dan krijgt men de volgende betrekkingen: P\'i = i (Pi â€” c\'); (Pa â€” c\'Qi); P\'6 = i(PG 9G â€”c\'gj enz.;= i (Pi Qi); = i (P4 94); 9\'g = i (Pe ^s) enz.De eenvoudigste methode om regelmaat te ontdekken, is gelegen inhet opstellen van een tabel voor de verschillende /i\'s. Dit is nietmoeilijk, daar we van n = 2 of zelfs n = 1 kunnen uitgaan. Die tabel heb ik voortgezet voor de p\'s en de q\'s tot en met n = 8.Bekijkt men den vorm, die men voor de p\'s en de q\'s krijgt, danblijkt dat: Dat dit inderdaad algemeen juist is, volgt door volledige inductie: P\'i = i(Pi 9,-cÂ?) = --J-c> (n-f 1),= = (n-1). De p^ en q^ blijken termen te vormen van reeksen van hoogere orde.De algemeene p^ wordt dan: n ^ ?? 2! ^ n(n-3) ,P4 =-??6-cÂ? = cÂ?. 1 I g , (n-5)(n-6)

n 1 41 (n-3)(n-4) - ?•6--=-2^^-â€? Door volledige inductie blijkt weer, dat dit algemeen juist is. Op eendergelijke manier blijkt, dat: n(n-4)(n-5) (n-4) (n-5) (n-6) Pc â€” 3 27 C I Ve â€”--J-^--c .



??? Substitueert men deze uitdrukkingen in de vergelijkingen (2), dan blijktinderdaad, dat deze aan genoemde vergelijkingen voldoen, zoodat menmet deze co??ff. inderdaad kromme-factoren krijgt, welke aan deneisch der rationaliteit Voldoen. Â§ 18. Betrekkingen voor sommen van binomiaalco??fficlenten. Let men op (w ^w^ â€” c^)", dan kan men uit het voorgaandeinteressante betrekkingen vinden voor sommen van binomiaal co??ff.De waarde voor B hebben we gevonden door de co??ff. van w" gelijkte stellen: n(n-l) n(n-l)(n-2)(n-3) 2! 41 ........= ^ â€? Voor vinden we: ^ /2(n-l)(n-2) n(n-l)(n-2)(n-3)(n-4) ^ 31 "T" 9Â? 8=1. 5! De vorm tusschen accolades heeft dus de waarde 2"-\'.Pi==0, g, =0 levert niets op, daar die ook hier vanzelf verdwijnen. = - BcÂ? = â€” ^ nc\\ n(n-l) (/??-l)(n-2)(n-3)2! 4! â–  3/i(n-l)(n-2)....(/i-5) ,Derhalve wordt de vorm tusschen accolades: nX^"-^- n (n â€”1) (n-2) , ,n(n-??)(n-2)(n-3)(n-4) <7, = _ 2 5! 3! , 3^(77-1)....(/??-6) De uitdrukking tusschen accolades krijgt thans de waarde: (n â€” 2)2Â?-3.Pj Â?= O, O leveren niets op. Pk n(/t~l)(n-2)(n-3) ,/i(/t-l)........(n-5) 41 61 ^en(n-l)..

(n-7) 81 4.101^1)........(/I-9) 10! n(n-3) Bc* c*. T^hans wordt de vorm tusschen de accolades: /i(/j-3)2\'\'-6



??? n(n-l)....(n-4) n (n - 1). â– . â–  (n-6)94= -5! t-"^ 7l n(n-l)(/2-2)....(n-8) 6-gj  De vorm tusschen accolades wordt nu: (n â€”3)(n â€”4)2\'Â?-6. Opgemerkt kan worden, dat in p^ en de co??ff.: 1, 3, 6, 10, ..een reeks van hoogere orde vormen. n(n-l)(n-2)....(n-5) , , n (n - 1).... (n-7)P6 =--6i 81 -?•?•?•l--121 ^ (72-13)__n(n-4)(n-5) 35-J4J BC - 327 De waarde van den vorm tusschen accolades wordt nu:in(/2-4)(n-5)2n-8. 96= - n(/z-l)(n-2)....(n-6) . , n (n - 1)... .(n-8) -7?• 91 .,n(n-l)....(n-10) n(n-l)....(/i-12) 10-Y?œ 13! n(n-l)....(n-14) ^ (n-4)(n-5)(n-6)^. 15! 35 3.2\' De vorm tusschen accolades wordt dus: i(/i â€”4)(n â€”5)(n â€”6)2\'\'-8. (Opm. De co??ff. 1, 4, 10, 20, 35, .... die in p^ en q^ voorkomen,vormen een reeks van hoogere orde.) Opgemerkt kan worden, dat enkele van deze binominaaluitdrukkingenook zelfstandig kunnen worden gevonden. Door de bewerking inder-daad hiervoor uit te voeren, kan men zien, hoeveel moeizamer dezezelfstandige weg is. De weg is een generaliseering van de hiervorenbeschreven kunstgreep voor het vinden van B. Â§ 19. Eenduidigheid der gevonden F. Enlceie Icromme-

foctoren. We hebben gezien, dat de gevonden pi, voldoen aan ons stelsel (2)van blz. 17. Dat dit het eenige stel is, blijkt door voor n â€” 2,3, â€”uit deze verg. de p\'s en q\'s op te lossen. Er blijkt dan slechts ?Š?Šn stelwortels te voldoen en wel hetzelfde stelsel, als we hier gevonden hebben,zoodat we mogen aannemen, dat dit het eenige stelsel wortels is.



??? Enkele kromme-factoren voor n = l, 2 â€” 5, volgen hier:n = \\ : w Vw\' â€” c\\n = 2 : {w-\'â€”^c^ w Viv^ â€”c^. n = 3 : (w^ â€” I c^w) (w^ â€” ^ c^) VwÂ? â€” c\'. n = 4 : (w*â€” c\'ivÂ? (wÂ? â€” y c^w) Vw^ â€” c\\ n = 5 : â€” â€”jc\'-w-i- ^ c^) Vw^â€”c\\ In deze gevallen is gemakkelijk de waarde van de const. van blz. 17op te geven. Drie waarden worden resp. van af n = 2: -^c*, -jg cÂŽ, ^cÂ?, enz. Men kan nog deze opmerking maken. Substitueert men in verg. (1)voor IV de waarde c, dan wordt: j/(c)|Â? = const. Die const. is derhalve steeds positief. Â§ 20. Algemeene uitdrukkingen voor de co??ffici??nten p en q. Beschouwen we pâ€ž q^ enz., dan laat zich de verwachting uit-spreken, dat: fc\\{n-2i??r[\'2) \' Door volledige inductie blijkt, dat dit inderdaad juist is, als men ge-bruik maakt van de verg.: Ook de binominaaluitdrukkingen laten zich generaliseeren. Lettendeop (w-l-l/ivi.ci)/, kan nien schrijven: = (-!)*-------- â–  k \\ n(n-\\)....(n-2kâ€”\\)II (2;tH-2)l



??? ,  n(n-\\)....{n-2k-3) 2l (2?„: â€”4)! , (/^-f-l)(A- 2)(A: 3) n(n-l)....(n-2k-5) H--3l (2?„ 6)! De vorm tusschen accolades wordt thans op grond van de gevondenp2it â€?(-1) k\\in-2k)\\ Evenzoo wordt: -(2/t l)! ,1 1 n(n-l)....(n â€”2/i: â€”2) 1! (2/t 3)! --2l (2A: 5)! (^k^\\)(k 2)(k 3) n(n-\\)(n~ 2)....(n-2k-d)) -31 (2^ 7)1 â€? De vorm tusschen accolades wordt nu: ^ /t!(/2-2 /t-l)!"^ Â§ 21. Kromme-factor van halfelliptisch type. We komen thans op de beschouwingen van Leathem terug. Uithet voorgaande is gebleken, dat het halfcirkelvormig type zich nietlaat generaliseeren. Als volgende voorbeeld geeft Leathem een kromme-factor van halfelliptisch type: FÂ? = w sin ?„ Â?-f (wÂ? â€” cÂ?)\'^ cos h x.Deze heeft tot boekgebied r. Op eenvoudige manier blijkt, dat FÂ?geen nulpunten heeft. Leathem geeft in zijn verhandeling een rijkdom van mathematischeuitbreidingen met physische toepassingen. Voor de laatste verwijs iknaar de tabel. Â§ 22. Kromme opgevat als limiet van den veelhoek. Het ligt voor de hand, het voorgaande in verband te brengen metde gewone transformatie van SCHWARZ door de kromme op te

vattenals de limiet van een door rechte lijnen begrensden veelhoek (zieook Â§ 15). Laat (p de hoek zijn tusschen de re??ele z-as en de raaklijn



??? in een willekeurig punt van de kromme. Laat verder de buitenhoekvan den veelhoek, waarvan de limiet de kromme wordt, zijn dep en?? de waarde van w voor het hoekpunt, dan wordt de kromme-factor: lim. n(w â€” 6)^ ,welke verkregen kan worden door: p^^JIog (w-?„)\'" . Deze uitdrukking is onbepaald door het ontbreken van ieder functioneelverband tusschen ?? en <p. Men kan derhalve een functioneel ver-band aannemen: waarbij ?’ afhangt van de figuur, waarmee we ons bezig houden, zoo-wel wat afmeting als voorgeschreven begrenzing betreft. Voor eenwillekeurige kromme wordt de transformatie: dz â€” e^ Â§ 23. Transformatie: f (z) dz = F (w) dw.In zijn slotbeschouwingen vermeldt Leathem, dat de transformatie:f{z)dz^?{w)dw"og grooter moeilijkheden oplevert, dan de tot nog toe beschouwde.Toch lukt het hem, ook in enkele speciale gevallen met deze trans-formatie te werken. Â§ 24. Algemeene co??rdinaten. Van geheel anderen aard zijn de uitbreidingen, die Webster inz>jn werk over â€žElectricity and Magnetism" geeft. Deze werkt n.1."iet algemeene co??rdinaten. Laat V b.v.

een potentiaal voorstellen,d\'e in een punt P continu is, en daar de waarde V heeft. Indien Veen functie is van een co??rdinaat q, dan worden haar aequipotentiaal-vlakken verkregen, door q constant te stellen. De electrische kracht is dan: D IX 11 IR ^hll Sn ^^q 5/1 ^ in\' Hierbij hebben we db|^ = /i gesteld. Het positieve teeken moet menO n



??? nemen, als V en g in dezelfde richting toenemen, anders het nega-tieve teeken. Laat V nu een functie zijn van drie algemeene orthogonale co??rdi-naten. Noem dni de loodrechte afstand tusschen naburige oppervlakkenQi en Qi dg, evenzoo dn^^ tusschen q^ en q^ -f- dq^ en dn, tusschen en q^ dq,. Noem verder /z, = -/z, = -^^ Noem verder Ri, R^, Rj de componenten volgens de normalen op devlakken g, = const., q^ = const., q, = const. van de electrische krachtin een punt met algemeene co??rdinaten g,, q^, dan is: JV . dV JV_ f^SJ. ^= = - ^^ = ^ - - ??q,\' - ^n, - Voor een krachtlijn geldt: dril: d/ij: dn^ = R,: Rj: Rj, of dqi: dq^: dq^ = AiRi: /ijR,: h^^z-De diff. verg. van de krachtlijn zijn dus: . .. ^ .2JV .iJV hl -O -O Hier heeft men gesteld: hl iV De driedimensionale vergelijking van Laplace wordt dan: Indien we nu een integraal gevonden hebben van de verg. van dekrachtlijnen: ^ (9b 9a, <73) = const., dan is: SK , SA , SA en daar:is:



??? Meetkundig beteekent dit, dat de kracht Q loodrecht staat op denormaal op het opp. A = const., d. w. z. raakt aan dit opp.Een andere integraal wordt nu terstond gevonden in den vorm: ^ = (Qi dqi â€” Q, dgi) = const. ^ / Webster toont dit in een voor deze dissertatie te uitvoerig be-toog aan. Om het voorgaande te verduidelijken, kan men twee toepassingengeven. Laten g,, q^, q^ de rechthoekige co??rdinaten x, y, z voor-stellen; beschouw V als onafhankelijk van z. Men heeft dan te doenmet een vraagstuk in een plat vlak. De eene integraal is dan:A = 2 = const. en de andere: Dan wordt: Sp SY Sp_ SV sx ^y\' ^y Jx"en V zijn dus toegevoegde functies. Stellen <7,, <7,, g, de cyl. co??rd. p, u, z voor en denkt men V on-afhankelijk van w, dan is een oppervlak: A = Â? = const. en het andere: We komen op onze algemeene beschouwingen terug. Liggen dekrachtlijnen In ?Š?Šn van de co??rdinaatsvlakken, dan is ?Š?Šn integraal: X = = const. Derhalve:Hieruit volgt: â€” lY IjlH Door differentiatie en optelling blijkt nu, dat men de volgende ver-gelijkingen kan opstellen:



??? ^^iV h^ ^qi/\'^^qA hl ^qj Is nu Aj onafhankelijk van g, en hetgeen het geval is, als tweeopp. 93 dq^ overal denzelfden afstand rfnj = ^ hebben, dan vol-doen V en fi aan dezelfde differentiaalverg. Door verwisseling vanV en fi kan men dus gelijktijdig twee vraagstukken oplossen, evenalsin het begin vermeld werd met toegevoegde functies. De analogie met het vroeger behandelde strekt zich echter nogverder uit. De lengte van een boog wordt gevonden door: Kan men nu twee functies q^) en gO zoodanig vinden,dat (day-{-(dvy = N[ds\\ waarbij M een functie is van de plaats vanhet punt, welke echter de differentialen dqt en dq^ niet bevat, danblijkt uit een vrij ingewikkelde becijfering, dat u en v beide voldoenaan de volgende overeenkomstige diff. verg.: l.(lb. . ?œWo^qi/"^ ^QJ qx\\fi, SqJ\'^Sq.Kht iqj-\'\'- S,J Â? en V voldoen aan dezelfde diff. verg. als V en f^. Twee zulkefuncties u en v mag men dus kiezen In plaats van V en /??.Heeft men een tweede stel functies u\', v\' zoodanig, dat dan blijkt, dat u\'-\\-iv\' een monogene functie Is van u iv. Hieruitziet men, dat uit de oplossing van ?Š?Šn vraagstuk

voor het opp. q^,de oplossingen van een willekeurig aantal andere vraagstukken voorhetzelfde opp. kunnen worden afgeleid. Indien de grootheden u,v rechthoekige co??rd. in een plat vlak voor-stellen, dan wordt de lengte van een boog: Met een will. punt u,v op het platte vlak correspondeert een anderpunt met dezelfde waarde voor u,v op het opp. q^. Tengevolge van



??? de betrekking = heeft men conforme afbeelding. Trans-formeert men het u,v-vlak weer conform op een x,3;-vlak, dan weetmen, dat a / v een monogene functie is van x iy, waarbij menÂ? en V intensiteit en potentiaal van het x,}\'-vlak kan laten voorstellen. Als eenvoudige toepassing van het voorgaande en een uitbreidingvan Â§ 4, kan men gemakkelijk aantoonen, dat ook hier weer: fjpdxdy^fjp^dqidq^. Men ziet dan weer, dat gebieden, die door transformatie uit elkaarontstaan, bij verschillende dichtheden dezelfde ladingen hebben. Verderbewijst men gemakkelijk, dat de totale lading tusschen twee puntengemeten wordt door het verschil van de waarden van de functie, dieaan de potentiaal is toegevoegd, tusschen die punten. Â§ 25. Conforme afbeelding In de ruimte met 4 afmetingen. H. Bateman heeft de conforme afbeelding uitgebreid tot een ruimtemet 4 afmetingen. Hij geeft van zijn methode physische toepassingen,waarvoor wij naar de tabel verwijzen. Hier geven wij een kort over-zicht van zijn methode. De overgang naar de driedimensionale ruimtewerd verkregen door de vierde

co??rdinaat te vervangen door iet,waarbij t de tijd en c de snelheid van het licht voorstelt.Voer de volgende 6 homogene co??rdinaten in: l=zx-\\-iy, m = z-\\-iw, /i =  wÂ?, ^ = x â€”/>, fjt,=^z â€” iw, v = â€”1 Deze zijn verbonden door de identieke betrekking: l\\-\\-mp-\\-nv = 0.Elke functie F(x,3;,z, w) kan met behulp hiervan uitgedrukt worden alseen homogene functie van willekeurige graad. We mogen b.v. schrijven: V = F(X.y,z,u;) = F (--- -j]^,--fT\' ~ \'fh\')- ??n de eerste voorstelling is V een homogene functie van de nuldegraad, in de tweede is U van de graad â€”1. Omgekeerd zal Iederehomogene functie van de 6 veranderlijken /, m, n, A, fi, v uitgedruktkunnen worden als een functie van x, y, z, w.



??? Bij de volgende eenvoudige becijferingen maakt Bateman gebruikvan de hexaspherische co??rdinaten: Â?1 iS, = y, Â?3 = Â?4 = w, Â?5 = â€”2â€”. Â?e = 2i \'waarbij: = Dan wordt: /=Â?, -f/aSj, m = n = A = <*1 â€”/Â?i, = â€” v = Â?5 â€”1Â?6. Het doel van deze becijfering is te doen zien, dat een homogenefunctie van de nulde graad, die een oplossing is van: J A J/n S/j, Sn Sv d.i. van: ook een oplossing is van: Evenzoo toont men aan, dat indien U een oplossing is van: > O > #- Sl SK ~ SmSfi ^ Sn Std.i. van: U ook een oplossing is van: , iiu , illL , iiu _ 2) Beschouwen we Â?â€ž <Â?1, â€” Â?o als de co??rd. van een punt in eenzesdimensionale ruimte, dan blijven de uitdrukkingen: onveranderd van vorm bij verandering van rechthoekige assen, als deoorsprong dezelfde blijft. Elke dergelijke verandering levert een trans-formatie in de ruimte (x,y,z,w), welke ons in staat stelt uit een



??? oplossing van verg. (2) een andere te verkrijgen. Een dergelijke op-merking geldt voor verg. (1). Als toelichting van het voorgaande gaan we n en â€” v verwisselen.Uit de oplossing V = F(x,y,z,w) van verg. (1) leiden we nu eentweede oplossing af: / X y _z_ Uit de oplossing U =f(x,y,z,w) van (2), vinden we een tweedeoplossing 1 JL ?? = ra- stellen we nu: w = /cf, dan nemen de verg. (1) en (2) den bekendenvorm aan: . - i- â€” (4) De transformatie laat zich nu aldus schrijven: X y rj__^ rp__ waarbij: Een tweede voorbeeld krijgt men door /n cn n en met v te ver-wisselen. Dan blijkt eenvoudig, dat als: V = F(x,y,z,0. een oplossingÂ?s van: (3), dan is ook F(X,Y,Z,T) een oplossing, waarbij: Hierbij is: En indien \\J =f(x,y,z,t) een oplossing is van (4), dan is: 1 X ^ y r\' _Â?lÂ?l_\\ z â€” ct^\\z â€” cr z â€” cr z â€” cr 2c{z â€” ct)J eveneens een oplossing.



??? Voor het verband tusschen de verschillende oplossingen verdienthet aanbeveling poolco??rdinaten te gebruiken. Stel:X = rcos??cosj; = rcos??sin2 = /\'sin??cos^p, iv =/cf = rsin??sini|^,X=Rcos0cos(i), Y=Rcos0sin$, Z=R sine cos % W=/cT=R sine sin %dan krijgen we de betrekkingen: r>= â€”R2 = â€”sine = cosec??, =Er bestaat een dergelijke transformatie voor de vergelijking van Laplace. De resultaten van de combinatie der verschillende transformaties,die behooren tot de groep van conforme afbeeldingen, wordt hetgemakkelijkst vertolkt door asverandering in een ruimte met spherischeco??rdinaten. De hoek tusschen twee grootheden in deze ruimte iseven groot als de hoek tusschen de overeenkomstige grootheden,waarop de conforme afbeeldingen zijn toegepast. Bij een ruimte van vier afmetingen hebben we inderdaad: k=\\ 6 S ^xklx]^ = dx dx\' -f dy dy\' dz dz\' dw dw\'. Hieruit volgt de belangrijke stelling gemakkelijk. Een verandering in het teeken van Â?e levert een inversie. Gaat dezegepaard met een teekenverandering van dan krijgt men de anderegenoemde transformatie. In \'t

algemeen stemt een spiegeling vanlineaire grootheden in de Â?ruimte overeen met een inversie ten opzichtevan den overeenkomstigen cirkel, bol of hypersfeer in de vier-dimensionale ruimte. Â§ 26. Meerwaardige potentialen. Heeft men de potentiaal van een beperkt gebied van een plat vlakte bestudeeren, dan kan men dit vraagstuk door analytische uitbreidingtot een probleem voor het onbeperkte vlak maken. Wordt het oor-spronkelijke gebied begrensd door rechte lijnen of cirkels, dan kanmen de uitbreiding tothetgeheele vlak bewerkstelligen door spiegeling.Heeft men een puntlading voor een geleidend vlak, dan kan men,zooals bekend is, het desbetreffende potentiaal-vraagstuk oplossendoor een tegengestelde puntlading te plaatsen in het spiegelbeeld vanhet punt, waar de oorspronkelijke lading zich bevindt. Bij een punt-



??? lading binnen een hoek, gevormd door twee loodrechte vlakken, kanmen ladingen plaatsen in 4 symmetrisch ten opzichte van de vlakkenliggende punten. Maken de vlakken een hoek van 60Â°, dan krijgt men,als men het oorspronkelijke punt meetelt, zes beelden. Is de hoek ^ radialen, dan krijgt men 2 m beelden. Bevat de hoek daarentegen ^ radialen, dan moeten we, willen we door spiegeling in ons uitgangs-punt terugkeeren, n keer het platte vlak om het hoekpunt van denhoek rondgaan. We kunnen dan met succes gebruik maken vanRiemannsche oppervlakken. Men kan nu n.1. de 2 m spiegelbeelden plaatsen op een Riemannschoppervlak, dat op de bekende wijze uit n bladen wordt samengesteld.Gaat men in het Riemannsche oppervlak een keer rond, om het hoek-punt, zoodat men in het uitgangspunt is teruggekeerd, dan stemt ditovereen met bovenbedoelden rondgang om het hoekpunt in het plattevlak, welke men n keer had uit te voeren, voordat men in het uit-gangspunt was teruggekeerd. Heeft men nu de oplossing van hetpotentiaalvraagstuk voor het Riemannsche oppervlak

gevonden, dansluit deze de oplossing in zich van het vraagstuk voor het oorspronke-lijke deel van het platte vlak. Maar ook in andere gevallen kan men met vrucht gebruik makenvan Riemannsche oppervlakken. Het komt n.1. voor, dat men in eenof ander vraagstuk voor de potentiaal een meerwaardige functie vindt.(Voorloopig beperken we ons weer tot het platte vlak). Hoewel danslechts een enkele waarde aan de grens-voorwaarden zal voldoen,kan het toch van belang zijn, de beteekenis van de andere waardente onderzoeken. Dergelijke zgn. meerwaardige potentialen treden b.v.op bij de transformaties met toegevoegde functies: ^ = (^>(2), waarbijgeen eenwaardige functie van z is. Men kan ook thans cp(z) opeen Riemannsch oppervlak voorstellen als een ?Š?Šnwaardlge functie. punt op dit Riemannsch oppervlak stemt nu overeen met ?Š?Šnwaarde van w, derhalve met ?Š?Šn punt in het w-vlak. Dus wordt metbehulp van bovenstaande vergelijking het geheele w-vlak getrans-formeerd tot een volledig Riemannsch oppervlak. Bij een zekere waardevan z kunnen nu meerdere waarden van

den potentiaal behooren,"laar elke waarde heeft betrekking op een bepaald blad. Indien men"" een zeker gebied op dit oppervlak kiest, dat geen vcrtakkingspunten



??? of lijnen bevat, kunnen wij dit gebied als een re??el tweedimensionaalgebied beschouwen en de bijbehoorende waarde van de potentiaal,zooals onze vergelijking die geeft, levert ons de oplossing van eenelectrostatisch vraagstuk. Â§ 27. Toelichting. Beschouw als toelichting de functie: Men krijgt dan een Riemannsch oppervlak (het w-vlak) bestaande uittwee bladen. Bij ?Š?Šn waarde van 2 behooren 2 waarden van w, elkop ?Š?Šn blad van het R-oppervlak. Een cirkelvormige weg in het ?Š?Šneoppervlak wordt een dubbele cirkel in het andere. Een lijn, evenwijdigaan de re??ele as wordt een parabool in de andere. Men krijgt dusdoor transformatie problemen over gebieden door parabolen begrensd. Een combinatie van de methode der spiegeling met die der meer-waardige potentialen vindt men in het volgende voorbeeld. In het^â– -vlak ligt een lijnlading e in een punt P geplaatst tegenover eengeleidend vlak, voor te stellen door de re??ele as. De oplossing wordtgevonden door een lijnlading â€” e in het spiegelbeeld. Men krijgtdan de verg.: Dit kan men transformeeren met Het geleidend vlak

wordt dan een halfvlak, waarvan men de doorsnede met het z-vlak kankiezen als vertakkingslijn in het Riemannsch oppervlak. De potentiaalIV wordt dan gevonden uit: Vz â€” Va Hierbij stelt z = fl het punt (a, x) op de bovenlaag, z = â€” a hetbeeldpunt op de benedenlaag voor. Voor een enkele lijnlading (a, x)in de bovenlaag, wordt de potentiaal na eenige herleiding: ?? = c-|-yAlog r â€”2 Ar cosy(?? â€”. Door vergelijking met vroeger ziet men in, dat A = â€” 2c moetzijn, zoodat J u==c â€”elog r â€”2 cosy (?? â€”Â?)i/ar-t-a



??? Â§ 28. Riemannsche ruimten. Bij het voorgaande sluiten zich nauw aan de beschouwingen vanSommerfeld betreffende de oplossing van vraagstukken in de drie-dimensionale ruimte. Sommerfeld gaat daarbij weer uit van eenuitbreiding van de methode der spiegeling, welke verkregen wordtdoor een vraagstuk voor een begrensd gebied uit te breiden tot deonbeperkte ruimte. Men kan nu beginnen tweedimensionale algebra??schepotentialen, dit zijn de potentialen, die re??ele deelen van gewonealgebra??sche functies zijn, uit te breiden tot z.g. ruimtelijke algebra??schepotentialen, d.w.z. dat ze in de geheele ruimte gedefinieerd zijn, slechtseen eindig aantal polen en willekeurige vertakkingen van eindigeveelvuldigheid bezitten. In de ruimte krijgt men dan natuurlijk in plaatsvan vertakkingspunten, vertakkingslijnen. Hiervan veronderstellen wij,dat ze continue krommen voorstellen. Als uitbreiding van ons Rie-mannsch oppervlak treedt thans op een z.g. Riemannsche ruimte, welke\'t ons mogelijk maakt, de functie ?Š?Šnwaardig te houden. Wij denkenons, dat een Riemannsche ruimte aldus

ontstaat. Onderstel, dat in deruimte onze potentiaal n-waardig is, dan beschouwen we n-exemplarenvan onze gewone ruimte en teekenen daarin de vertakkingslijnen aan.Tusschen de vertakkingslijnen spant men dan membranen van wille-keurige gedaante, waarna men elke ruimte langs deze membranenopensnijdt. Daarna voegt men de ontstane rechter- en linkerzijde vande vlakken van doorsnede zoodanig samen, als op grond van dewaarde-verdeeling van de potentiaal wordt ge??ischt. Iedere vlakkedoorsnede door een Riemannsche ruimte levert nu een gewoon Rie-mannsch oppervlak, waarin de snijpunten met de vertakkingslijnen devertakkingspunten opleveren, terwijl de snijlijnen met de membranende vertakkingslijnen van ons gewone Riemannsche oppervlak opleveren. Zooals gezegd kan men met behulp van deze beschouwingen despiegelmethode aanmerkelijk uitbreiden. Heeft men n.1. een gebied ineen gewone ruimte, dat door platte vlakken of bolvlakken begrensdwordt, dan kan men door symmetrische herhaling een Riemannscheruimte doen ontstaan. Deze ruimte moet aldus

samenhangen met hetgebied der gewone ruimte, dat de op elkaar volgende spiegelbeelden\'angs de vertakkingslijnen in de Riemannsche ruimte aan elkaar sluiten.We beperken ons bij de potentiaalvraagstukken tot de z.g. Grcenschefunctie (d.i. een functie die in het beschouwde gebied slechts ?Š?Šn 3



??? enkelvoudige pool bezit). Kent men nu de Greensche functie voor deRiemannsche ruimte, dan kan men daaruit synthetisch een oplossingvinden voor het gebied van de gewone ruimte.Als eenvoudigste voorbeeld kan men nu een door twee vlakken nr begrensd gebied beschouwen, die elkaar snijden, onder een hoekâ€”. De Greensche functie van dit gebied levert een Riemannsche ruimtevan n exemplaren met een enkele rechte vertakkingslijn en met 2 m-polen. Immers Â? ^ = Â? X Neemt men het geval m = i, n = 1 dan verandert dit gebied in de oneindige ruimte, de begrenzing in eenvlak door een rechte lijn begrensd oneindig dun scherm. Heeft men met een vlak oneindig dun scherm te doen, begrensddoor een willekeurige rand, dan zal in de eerste plaats gevraagdworden naar de Greensche functie van een dubbele ruimte, die derand van het scherm tot enkelvoudige vertakkingslijn heeft. Het opper-vlak van het scherm kan daarbij de rol van bovengenoemd membraanvervullen, dat beide exemplaren van de ruimte scheidt. Tot dezeRiemannsche ruimte wordt men geleid door onze gewone

oneindigeruimte aan het vlak van het scherm te spiegelen. De Greensche functievoor het geheele gebied buiten het scherm met de pool P wordt danopgeleverd door het verschil van twee Greensche functies onzerRiemannsche ruimte, waarvan de eene in het oorspronkelijke punt Peen enkelvoudige pool bezit, terwijl de tweede functie een enkelvoudigepool bezit in een punt P\', dat in het tweede ruimte-exemplaar ligten het spiegelbeeld van P is ten opzichte van het scherm. Om in de Riemannsche ruimte de meerwaardige potentialen een-waardig te maken, definieert Sommerfeld als Greensche functiein de Riemannsche ruimte een functie u, welke aan de volgendeeischen voldoet:1Â°. u moet een oplossing zijn van de vergelijking A " = 0.2ÂŽ. u moet een continue en eenwaardige functie zijn op de Rie-mannsche ruimte, behalve:3". u moet oneindig worden in een zeker punt P van dezelfde orde als p waarbij R den afstand van een willekeurig punt tot P aanwijst. In dit punt en in de vertakkingslijnen behoeft u niet te voldoen aande vergelijking: A"\'=0.



??? 4". u moet in het oneindige O worden. Sommerfeld toont uitvoerig aan, dat bovenstaande eischen voldoendezijn om de eenwaardigheid van de Greensche functie vast te leggen. De Greensche functie van onze ruimte is de potentiaalfunctie De Greensche functie van een willekeurige Riemannsche ruimte is hiervanhet analogon. Sommerfeld bewijst, dat verschillende stellingen, als de stellingvan Green, de reprociteitsstelling enz. zich gemakkelijk en met dedaarvoor bekende methoden laten uitbreiden tot een willekeurigeRiemannsche ruimte. Â§ 29. Meerwaardige potentialen in verband met speciale Rie-mannsche ruimten. Gaan we thans over tot de toepassing van meerwaardige potentialen door speciale Riemannsche ruimten, dan gaan we uit van waarbij R den afstand van een vaste Pool P {x\',y\',z\') tot het veranderlijke puntQ ix,y,z) voorstelt. Een oplossing van de potentiaal-vergelijkingIs dan ook: I^e integratie moet langs een willekeurigen weg in het a-vlak worden uitgevoerd. Een analogon hiervan is de uitbreiding van j tot j^. Door ?’(Â?) geschikt te kiezen, wordt het mogelijk,

meerwaardigepotentialen te vormen. Laat ons denken, dat men met een Riemannsche ruimte te doenheeft, uit n exemplaren bestaande, die zich om een enkele rechterangschikken. Neem deze vertakkingslijn tot z-as aan en voer in hetvlak z^o poolco??rdinaten In, door te stellen: Dan wordt: ^^^^ = 2 r I cos / 0) - - cos ((p - (z - z\')Â?. Pot^^H^ "" complexe veranderlijke waardoor met de drukt ^^^ Identieke transformatie plaats vindt, dan gaat de ult-Â?Â?<ing voor R, die we door R\' vervangen, over in:



??? R\'i = 2 r Icos i (p â€” p\') â€” cos icp â€” x)\\ â€”Men kieze het teeken voor R\' zoodanig, dat R\' voor re??ele Â? positiefwordt. Vermenigvuldig ^ nu met een funtie /W, die in x = van de orde oneindig wordt met het residu 1. Integratie naar Â? vol- 27ri gens een weg, die dit punt in positieven zin omsluit, geeft dan Verder kiest men ?’ (a) zoodanig, dat ze in Â? en cp\' de periode 27rheeft, dan is de eenvoudigste functie: â€? l a De identieke transformatie wordt dan: 1__l_ fj e\'^^dx R-27r J R\' Deformeert men nog den integratieweg, dan moet men letten op desinguliere punten in het Â?-vlak. De vertakkingspunten zijn gegeven door: R\'i = 0, R\'Â? = oo. Deze waarden geven voor x: X = cc en x = (p 2kT:^ix^. Hierbij is: cos/??:i = cos z(/j â€”p)-|-â€”277^-â€” 2rr\' De polen van den integrant worden bepaald door: In het vlak heeft men dus oneindig veel polen, die op gelijken afstandvan elkaar liggen, en oneindig veel vertakkingspunten. Als we deze punten hebben aangegeven, snijden we het Â?-vlak openlangs de aan de imaginaire as evenwijdige rechte van(p-f-2A:7rtot Trek nu om het punt x = (p\' den

integratieweg tot aan de vertakkingssnede, zoodat deze bestaat uit twee gleuvenlangs de beide deelen van de vertakkingsdoorsnede en voor de restuit den omtrek van een rechthoek van de breedte 2 7r en van wille-keurige hoogte. Door de periodiciteit van den integrant vernietigende integraties langs de vertikale rechthoekzijden elkaar, terwijl de



??? integralen langs de horizontale rechthoekszijden verdwijnen, als de hoogte van den rechthoek oneindig wordt, daar voorÂ? = oo nul wordt. Den integratieweg kan men dus tot de beide gleuven langs tweevertakkingsdoorsneden van het is-vlak reduceeren. We gaan nu overtot den potentiaal van onze genoemde Riemannsche ruimte. Daarvoorbepaalt men ?’(Â?) zoodanig, dat zij in Â? en <p\' de periode 27rn heeften op de plaats a = cp\' van de eerste orde met het residu 1 oneindigwordt. Zulk een functie is: ia i e" ix i(p" e" -e" t X ~n Vorm nu weer: W W/ 1 r 1 " = j = W -Tx-T^ e " -6 ^ waarbij de integratie langs den zoo juist genoemden weg moet wordenuitgevoerd. De vertakkingen van den integrant zijn dezelfde als straks,daarentegen liggen de polen slechts nog op de plaatsen: Van deze functie kan worden aangetoond, dat ze de Greensche functievan onze Riemannsche ruimte is, doordat ze aan de eischen voldoet,die daaraan zijn gesteld. Indien men in de uitdrukking voor u de grootheid n steeds grooterlaat worden, dan krijgt men de Greensche functie van een Riemannscheruimte met

oneindig veel exemplaren. Men krijgt dan voor u: __/â€?_!_ dx "â€”2xiJ R\' x-(p" Deze functie wordt slechts oneindig in het punt (r\', z\', cp\'). Daaren-tegen blijft ze eindig in alle punten (r\', z\', (p\'2 k7r voor /r 0). Uit laatstgenoemden potentiaal kunnen wij omgekeerd den vroegerenterugvinden door in de Greensche ruimte, die uit oneindig veel exem-plaren bestaat, een functie te vormen, die op alle plaatsen rÂ?=r\',^ = z\', (p = cp\'^2knrcen enkelvoudige pool bezit.



??? In de uitdrukking voor u op de vorige bladzijde behoeft n geengeheel getal te zijn. Voor het voor de toepassingen belangrijkste geval, n.1. n â€” 2 kanmen de functie u gemakkelijk tot elementaire functies herleiden. Â§ 30. Riemannsche ruimte met twee evenwijdige vertakkings-lijnen. Wij gaan thans over tot de Greensche functie van een Riemannscheruimte met twee rechte evenwijdige vertakkingslijnen. Denk, dat wen exemplaren van onze ruimte hebben, die cyclisch samenhangenlangs de strook, die begrensd wordt door de beide vertakkingslijnen,zoodat genoemde strook als membraan dienst doet. Snijdt men dealdus ontstane Riemannsche ruimte door een vlak loodrecht op devertakkingslijnen, dan krijgt men als doorsnede een Riemannsch opper-vlak, dat in de snijpunten met de vertakkingslijnen (/i â€” 1) voudigevertakkingspunten heeft. De geschiktste keus van co??rdinaten wordt verkregen door de lijn,die midden tusschen de belde vertakkingslijnen daaraan evenwijdigloopt, als z-as aan te nemen en in het vlak z = 0 aldus bipolaireco??rdinaten in te voeren: laat ^ een complexe

veranderlijke in vlakz = 0 voorstellen, zoodanig, dat de waarden O, -f-1 en â€” 1 de liggingvan de snijpunten van dit vlak met de z-as en de beide vertakkings-lijnen aangeven, terwijl de projecties van de punten P en Q op hetC-vIak worden aangegeven door: Stel nu: dan kan men p, cp, p\', cp\' de bipolaire co??rdinaten noemen van deprojecties van P en Q op het vlak z = 0. Hierbij zijn (p cn (p\' alsbepaald te beschouwen met de modulus 2 t. Men voert nu een dergelijke transformatie uit als het vorige geval.Noemt men PQ weer R, dan is: _ cos / (p - p\') - cos ((p-(p\') \' (COS/p â€”coscp) (cos//Â?\' â€”coscp\')"^^ Vervangt men hierin cp\' weer door een complexe veranderlijke a, dankunnen we schrijven:



??? R\'2 = 2cos/(p-p\')-cos ((p-x) (cos i p â€” cos (p) (cos i /J\' â€” cos ?¤) ~ ^\' Nu is weer: waarbij f(x) aan dergelijke voorwaarden als in het vorige vraag-stuk voldoet.Voor ?’(Â?) kan men hier schrijven: , /g\'^ 1 A cos ip\'â€” cos (p\' De polen van den integrant zijn: cc = (p\'-i-2kT. De vertakkingspunten treden op voor R\'Â? = O en R\'Â? = oo. Dezeworden voor z â€”z\' = 0: x = (p 2k7r-j-i(p-p\').Voor andere gevallen worden ze: x = a-\\-2kTÂ?ib,waarbij a en 6 re??ele getallen voorstellen, die afhankelijk zijn van(p, p, p\' en z â€” z!. De integratieweg wordt weer op een dergelijke wijze gedeformeerdals in het vorige geval. Om nu tot meerwaardige potentialen over te kunnen gaan kiestmen voor: ix COS/p\' â€” COS0\' COS/Cp\'â€” COSÂ?\' e" -e" De Greensche functie van onze Riemannsche ruimte wordt nu: /?„ ??--L r \' l/"cos//-cose" . bewezen kan weer worden, dat deze uitdrukking aan alle eischen voldoet. belangrijke toepassingen op vraagstukken van de gewone ruimte



??? treden op in het geval n = 2. Door een voortgezette spiegelmethodevan de Greensche functie voor onze dubbele ruimte verkrijgen wij n.l.terstond de Greensche functie voor de ruimte buiten een rfoor/wee ?Ÿv?Ÿ?Ÿ-wijdige rechten begrensd vlak en oneindig dun scherm. Denken wij onsn.1. bij het ruimte-exemplaar, waarvoor het vraagstuk is opgesteld,een tweede, waarmede het oorspronkelijke een Riemansche ruimte van2 exemplaren vormt, waarvoor dus het scherm het vertakkingsmembraanvormt. Kiest men de .lengte-eenheid gelijk aan de halve breedte vanhet scherm, dan kunnen wij terstond de co??rdinaten z, p en(p ge-bruiken. Het eerste ruimte-exemplaar behoort dan bij â€” tt < Â?p < -1- tt,het tweede bij 7r<4)<3jr. Construeer verder bij de pool P in\'t eerste ruimte-exemplaar het spiegelbeeld (P\') ten opzichte van hetscherm, dat in het tweede ruimte-exemplaar valt. Als P de co??rdinatenz\', p\', TT â€” cp\' heeft, dan krijgt P\' de co??rdinaten z\', p\', 7r-\\-cp\'.Verstaat men nu onder Up de Greensche functie van de dubbelruimtemet de pool P, dan vormt men: v = Â?p â€” Up\'. Deze

functie moet op gronden van symmetrie voor cp = Â?7r ver-dwijnen. Geheel analoog ontstaat de Greensche functie voor het reciproquegebied, waarbij het scherm uit een oneindig vlak bestaat, waarin eenoneindig lange spleet met evenwijdige rechte randen is uitgesneden.Dit scherm dient weer als membraan, waarvan beide kanten behoorenbij cj) = 0 en cp = d=2n-. Om de vroegere co??rdinaten terstond te kunnen toepassen, kiestmen de breedte van de spleet = 2. Het eerste exemplaar behoort danbij O het tweede bij â€” 2 7r<cp<0. Heeft de oorspronkelijke poort P tot co??rdinaten z\', p\\ (p\', dan heeft het spiegelbeeld P\' totco??rdinaten z!, /, â€”cp\', waarbij thans P\' in het tweede ruimte-exemplaar valt. Evenals boven geeft dan V = Up â€” Up\' de Greensche functie van ons gebied aan. Â§ 31. Toepassing op het gebied van geluld. Door Sommerfeld is in zijn â€žMathematische Theorie der Diffraction"(Math. Ann. Bnd. 47), het probleem opgelost van de diffractie vanelectro-magnetische of optische vlakke golven, die vallen op een



??? geleidend, resp. ondoorschijnend halfvlak, begrensd door een rechterand. carslaw denkt in zijn artikel â€žSome multiform solutions of thepartial differential equations of physical mathematics and their appli-cations" (Proceedings of the London Math. Society, Vol. 30) meeraan een dergelijk vraagstuk voor het geluid. De methode door Sommer-feld aangegeven en door Carslaw gevolgd, sluit onmiddellijk aanbij de in het voorgaande beschreven methode.Carslaw gaat uit van de vergelijking: waarbij (p de snelheidspotentiaal, v de snelheid van het geluid voor-stelt. .Heeft men met periodieke beweging te doen, dan mag men (p het re??ele deel van iz.e^t â€”f stellen. De vergelijking in a wordt dan: dx^ ar ^^ u- , 4 TTÂ? waarbij = Dit is ook de vorm van de vergelijking, die Sommerfeld neemtals uitgangspunt voor zijn oplossing. Heeft men te doen met vlakkegolven, waarvan de voortplantingsrichting met het vlak 6 een hoek 6\'vormt, dan is een oplossing: //trees (??-??O Vorm nu, als Â? een complexe veranderlijke en ?’(Â?) een willekeurigefunctie van Â? voorstelt, de volgende integraal: cos waarbij

de integratie moet worden uitgestrekt over een willekeurigenweg In het Â?-vlak met uitsluiting van punten in het oneindige. Dezeintegraal is dan ook een oplossing van onze vergelijking. Dan zalde integraal: de integratie uitgestrekt over een willekeurigen gesloten weg om hetpunt Â? = (zonder andere singuliere punten van den integrant inte sluiten), volgens de stelling van Cauchy dezelfde zijn als Ho, zoodat^Jj een identieke transformatie hebben gekregen. De integratieweg



??? mogen wij wijzigen, mits wij geen singuliere punten overschrijden.Daar, = bi is, cos â€” ??) = cos (Â? â€” ??) cos hb â€” i sin (Â? â€” ?Š) sin hb,zien we, dat we den weg kunnen wijzigen, zoodanig, dat de weg deimaginaire as volgt, er op lettende, dat: voor ?? = -f-oo, sin(Â? â€” ??) negatiefen voor ?? = â€”oo, sin(??! â€”??) positief is. Het re??ele deel van den exponenti??elen vorm is nl.: gfcrsin(Â? â€”??) sin/i?? en voor ?? = -f oo is sinft?? = oo, terwijl voor ?? = â€”co, sin^?? = â€”oo. Beschouwen we in de eerste plaats het deel der ruimte, waarbij deco??rdinaat & aldus ligt: 1 In bovenstaande figuur geven de gearceerde gedeelten het gedeeltevan het vlak aan, waarbij de weg naar het oneindige loopt. De aan-gegeven kromme is een mogelijke omvorming van den oorspronkelijkenweg om Â? = fl\'. De breedte van de strooken is r, terwijl de deelen



??? van den weg, aangegeven door de stippellijnen op een afstand 2 5rliggen, zoodat we deze, als we letten op de periode 2 tt van denintegrant, buiten beschouwing mogen laten, daar de overeenkomstigedeelen in tegengestelde richting loopen. De kromme deelen raken dezelijnen asymptotisch. Noemen we de twee kromme takken samen denwegA, dan is bewezen, dat: _L [Jkr cos (Â?-6) tf^ ge??ntegreerd over den weg A overeenstemt met: .ikr cos (0 â€”fl\')t- > welke oplossing eenwaardig is. We kunnen thans overgaan tot de meervoudige oplossing doorte nemen: lx u__L fe??A^r cos (x-d) e" -e" Dan ziet men gemakkelijk in, dat deze functie aan alle eischen voldoet.Deze veelwaardige functie met periode 2Tn is eenwaardig op eenn-bladig Riemannsch oppervlak. Hoewel hiermede de wiskundige methode in hoofdtrekken is gegeven,en ik voor de toepassing naar de tabel kan verwijzen, wil ik ookhier vermelden, dat de diffractie van vlakke golven, vallende op eenhalfvlak, begrensd door een rechten rand, door Sommerfeld is opgelost. Â§ 32. Oplossing a u u = 0. Aansluitend aan

laatstgenoemd tweedimensionaal probleem, behoortmen in logische volgorde thans het vraagstuk van een willekeurigetrillingsbron, waarvan de golven op een star halfvlak, begrensd dooreen rechten rand vallen, te behandelen. Van wiskundig standpunt isechter het driedimensionale vraagstuk eenvoudiger. Ik kan echter inhet volgende kort zijn, daar Carslaw voortdurend in wezen dezelfde methode toepast.Overgaande tot de vergelijking met 3 co??rdinaten a u A:Â?Â? = 0, wenscht men een oplossing, die voldoet aan de volgende eischen:



??? 1". In een n-voudige Riemannsche ruimte met de z-as tot vertak-kingslijn en het vlak fl = 0 tot vertakkingsmembraam moet de oplossingeenwaardig zijn, m. a. w. ze moet periodiek in fl zijn en de periode2x11 hebben. gâ€” ikR 2Â°. Ze moet oneindig worden als â€”pâ€” voor R = 0 in het punt (r\', ??\', z\') in het le ruimte-exemplaar; hierbij stelt R den afstand van(r\', fl\', z*) tot een naburig punt voor. 3". Ze moet eindig en continu zijn voor alle re??ele eindige waar-den van r in alle ruimte-exemplaren, behalve in laatstgenoemd punt. 4Â°. Ze moet O zijn in \'t oneindige. De methode voor het vinden van zulk een oplossing stemt weervolmaakt overeen met die in de vorige gevallen. We gaan uit van de oplossing: g â€” ik â€” cos (??-??\') Vr^ 4- r\'\' (z - z\'y ^^^f cos (?? - 6\')\'en gaan over naar den integraal: , [pâ€”ik V2r/^|cos hxx â€” cos (Â? â€”??)) g/<* I â€”. â€”â€”â€”â€”â€”â€”^ ^ = T/2r/^|cos/z;tt-cos(Â?-??)| ^e^o^-e^^\' Men kan dan den integratie-weg in het ??s-vlak wijzigen, zonder dewaarde van den integraal aan te tasten, als we zorgen, daarbij geensinguliere punten of vertakkingspunten van

den integraal te passeeren.Wil men nu overgaan tot de meerwaardige oplossing, dan kan menbeschouwen de functie: â€” ikV2 rf |cos /ijÂ?, â€” cos {ct. â€” a)j JJt n c j??rdx, V2rr\'\\coshxi â€” cos(Â? â€” ??) ^ waarbij de integratie over een bepaalden weg moet worden uitge-voerd. Deze functie, welke aan de diff. verg. voldoet, is eenwaardigop het Riemannsche oppervlak en voldoet aan de verdere eischenvan het vraagstuk. Carslaw schrijft nu nagenoeg terstond de oplossing op voor hetvraagstuk van een geluidsbron in een oneindig medium, dat een vaststijf halfvlak, begrensd door een rechten rand, bevat.



??? Â§ 33. Toepassing op de warmtegeleiding. Thans gaan we over tot de vergelijking, die den grondslag vormtvan de wiskundige theorie van de warmtegeleiding in twee afmetingen: Hier gaan we uit van de verdeeling van de temperatuur in een oneindiglichaam, dat overal hetzelfde geleidingsvermogen bezit. Deze ver-deeling denken we veroorzaakt door de eenheid van warmte, die opden tijd / = 0 in het punt (x\', z\') wordt geplaatst en zich vandaarkan verspreiden. De temperatuur in een punt (x, y, z) op den tijd twordt dan aangegeven door: l^irkt)^ Beginnen we nu met het tweedimensionale vraagstuk, waarbij weuitgaan van: "o - f ^ die, afgezien van een constanten factor overeenstemt met de temperatuur,veroorzaakt door een warmtebron met de eenheid van warmte. Voerthans de complexe veranderlijke Â? in en pas toe de identieke trans-formatie: â€ž.jr?? r\'Â? â€”2rr\'cos(Â? â€”fl)|:4A:f ^tn dx, waarbij de integratie moet worden uitgevoerd over een weg In\'t Â?-vlak, die behalve Â?-??\' geen andere singulariteit van den integrant omvat. Bij de verandering van den integratieweg moet men

natuurlijk weerop de singularlteiten letten. De meerwaardige oplossing laat zich danterstond schrijven: ^ c" -c" waarbij de integratie weer over een bepaalden weg moet worden



??? uitgevoerd. Deze u, welke eenwaardig is op een Riemannsch opper-vlak, voldoet verder aan alle eischen van het vraagstuk. Carslaw geeft nu onmiddellijk de oplossing van het vraagstuk vaneen lijnvormige bron in een oneindig geleidend lichaam met homogeengeleidingsvermogen, waarin een halfvlak, begrensd door een rechtenrand, aanwezig is. Het vlak wordt altijd op constante temperatuurgehouden of wordt op zoodanige wijze beschermd, dat warmte-uitwisseling door het vlak uitgesloten is. Â§ 34. Gaan we thans over tot het driedimensionale geval van: du dt = k AU, dan volgen we in hoofdzaak denzelfden weg.Ga uit van de bijzondere oplossing: of in cylindrische co??rdinaten: â€ž__  â€” cos(fl-??\')j :4kt We krijgen dan de identieke transformatie:1 â€” ^ix e gV I .^fvjy^-uavÂ? â€” g â€? J J^râ€”jv\'^\' Â?n = n y9 1_   ( Ar r^:2kt) cos . waarbij de integratie moet worden uitgestrekt over een kringloop inhet Â?-vlak om het punt Â? = 6\', terwijl geen andere singulariteit vanden integrant mag worden ingesloten. Hierdoor wordt de weg herleidtot den weg A van Â§ 31. Om de meerwaardige

oplossing te verkrijgen, is het slechts nood-zakelijk, de volgende integraal te beschouwen: ix



??? waarbij de integratieweg moet worden uitgestrekt over den weg Ain overeenstemming met de waarde van 9. Deze meerwaardige op-lossing heeft een pool in r\', 6\', z\' in het gebied â€” (t â€” 9\') < ^ <{2n â€” \\)\'!r-\\-?¨\'. Derhalve bestaat het eenige onderscheid met hettweedimensionale geval in de invoering van de factoren^-iz-z\'y.Akt



??? HOOFDSTUK III. Tabellarische samenvattingen van de toepassingen dercomplexe functies uit de physische litteratuur. Geraadpleegd werd in de eerste plaats de â€žEnzyklop?¤die der mathema-tischen Wissenschaften mit Einschlusz ihrer Anwendungen", Daaruit moetgenoemd worden, uit Bd II 3 Heft 3, bladz. 177, een artikel van L. Lichten-stein: â€žNeuere Entwicklung der Potentialtheorie, Konforme Abbildung".In dit artikel, dat een groot gebied der conforme afbeelding met de algemeengehouden problemen bevat, bevindt zich bovendien een litteratuurlijst. Het-zelfde is het geval in Bd IV 3, blz. 84, In een artikel van A. E. H. Love:â€žHydrodynamic. Theoretische Ausf??hrungen". Bewerkt werden verder een groot aantal tijdschriften en enkele hand-boeken. Geen enkele toepassing heb ik gevonden in de volgende tijdschriften:â€žAbhandlungen der Akademie der Wissenschaften zu Berlin", â€žWissenschaft-liche Abhandlungen der physikalischen technischen Reichsanstall, Berlin,"â€žAbhandlungen der k??niglichen s?¤chsischen Gesellschaften, Leipzig," Â?Mathe-matisch-physische

Classe", Â?Berichte der k??n. s?¤ch. Gesellschaft der Wis-senschaften. Math. Phys. Kl.", â€žAbhandlungen der k??niglichen bayerischenAkademie der Wissenschaften, M??nchen, Mathematisch-physische Classe",â€žJournal de l\'Ecole polytechnique, Parijs."Belangrijke artikelen komen voor in de volgende werken en tijdschriften: 1. H. Helmholtz: Geiammelte Abhandlungen. 2. Q, Kirchhoff: Gesammelte Abhandlungen. 3. J. H. Jeans: Electricity and Magnetism, 1908. 4. H. Lamb: Lehrbuch der Hydrodynamik, 1907. 5. j. C. Maxwell: A treatise on electricity and magnetism, 1873. 6. A. Webster: The theory of electricity and magnetism, 1897. 7. H. Weber: Die partiellen Dlfferenzialglelchungen der Math. Physik,I 1910, II 1912. 8. J. J. Thomson: Recent researches In electricity and magnetism, 1893. 9. A. E. H. Love: A treatise on the mathematical theory of elasticity, 1906.



??? 10. Philosophical transactions. 11. Sitzungsberichte der Wiener Akademie der Wissenschaften, Math. Nat. Kl. 12. Monatshefte der Math, und Physik. 13. Proceedings of the Royal Society of London. 14. Zeitschrift f??r Math, und Physik. 15. Philosophical Magazine. 16. Journal f??r die reine und angewandte Mathematik. 17. Mathematische Annalen. 18. Jahresberichte der deutschen Mathematischen Vereinigung. 19. Journal de math?Šmatiques pures et appliqu?Šes. 20. Nieuw archief voor wiskunde. 21. Sitzungsberichte der Akad. der Wissenschaften zu Berlin. 22. Nachrichten von der k. Gesellschaft der Wissenschaften zu G??ttingen.Math, Phys. Klasse. 23. Annales de l\'enseignement sup?Šrieur de Grenoble. 24. Proceedings of the royal Irish Academy. 25. American Journal of Mathematics. 26. Mathematische Zeltschrift. 27. Annales scientifiques de l\'?Šcole normale sup?Šrieure. 28. Proceedings of the London Math. Society. 29. Bulletin International de l\'acad?Šmie des sciences de Cracovie. ^ Ter toelichting van dc eerste cn laatste kolom dlenc, dat dc eerste cijfers^^ ??ii. die

overeenstemmen met dc nummers van bovengenoemde tijdschriftenwerken, door mij verleend, terwijl de laatste kolom de paragrafen derarti\'k^Â?angeeft, die dc methoden bevatten, welke In dc desbetreffende\'KcIcn In hoofdzaak worden toegepast.



??? OJ j; <U nli (U y \'H T3 s Jaartal ennummer. Schrijver. INHOUD. H. Lamb.J. J. Thomson. Z â€” C cos /iw............ Two infinite plane strips of finite and equalwidths in one plane placed so that theirsides are parallel to each other . . . . Capacity of a pile of plates...... Capacity of a system of 2 n plates arrangedradially and making equal angles with eachother, the alternate plates being at the samepotential, the extremeties of the plates lyingon two coaxial right circular cylinders .The section of the conductors over whichthe distribution of electricity is given bythis transformation is similar to that re-presented in fig. 102........ 89237 239241 243 A pile of semi-infinite parallel plates at equalintervals ^d apart, maintained al potentialzero when in presence of another pile ofsemi-infinite parallel plates at the samedistance apart maintained at potential K,the planes of the second set of plates beingmidway between those of the first . . . 244 Solution of the case represented in fig. 104,where the 2//outer planes at potential zeroare supposed to extend to infinity, the2ninner planes at potential K biscct the

anglesbetween the outer planes....... 246 Solution of the case, in which a finite plateis placed in the space between two semi-infinite plates ...........



??? Â?4-Â? O) S S b?Ÿ b rt CU k. ai a ai Ou Jaartal ennummer. <u"p \'nâ€?an 5 Schrijver. INHOUD. liO The equipotential surfaces, for which <$>vanishes, are a pile of parallel semi-infiniteplates stretching from the axis of y toinfinite along the positive direction of x,the equipotential surfaces for which = Kare a pile of parallel semi-infinite platesstretching from â€” oo to a distance x, fromthe previous set of plates. The planes ofthe plates in this set are the continuationsof those of the plates in the set at potential zero............... 248 J. J. Thomson. 249 The case shown in fig. 107, when the potentialof the outer radial plates is zero and thatof the inner K. The 2n outer plates makeequal angles with each other and extendto infinity............. \\ // \\ 1911-59 1912-60 1921-1, 250 225 355268 14 143 2655 10523212331 H. Blasius. J. H. Jeans. Ph. Frank.J. C. Maxwell. Distribution of clectrlcity in the importantcase of a condenser formed by two paralleland equal plates of finite breadth . . .Stromfunktionen symmetrischer und asym-metrischer Fl??gel in zwei dimenslonaler Str??mung............. Stromfunktionen f??r

die Str??mung durch Turbinenschaufeln......... Conductor influenced by line change (u\' = log|^, terwljl ?‡=/(z)) .... Ein Satz ??ber Potentialstr??mungen.... Inversion in two dimensions...... Electric Images in two dimensions.... 4* 1 I, 21, 2 3 2, 42, 4



??? Jaartal IU 3. â€?ts ?Šs 2 co C en \'n"O Schrijver. INHOUD. tuO ^Â? <U Ua C/3 e -?? Â° nummer. rtn C^ CO a,Q 5 2341 J. C. Maxwell. Neumann\'s transformation of this case. (ZieCrelle\'s Journal 1861)........ 2, 4 5 2361 n Distribution of electricity near an edge ofa conductor formed by two plane faces . 2, 4 5 2391 Â? Indefinitely long strip of metal with a non-conducting division extending from theorigin indefinitely in the positive direction. (Geleidend halfvlak geplaatst tusschentwee evenwijdige geleidende vlakken, aanelke zijde op gelijken afstand daarvan ver-wijderd; condensator van dezen vorm;Thomson\'s guard-ring.) 1, 2, - 5 2481 n Theory of a grating of parallel wires. . . 1, 4 4 625 H. Lamb. St??rung, die in einem Zuge ebener Wellendurch einen d??nnen Schirm hervorgebrachtwird, welcher von einer Reihe parallellen,gleichen und ?¤quidlstanten Schlitzen unter-brochen ist............ 1,4 4 630 Â? Gitter aus parallellen Dr?¤hten in gleichenAbst?¤nden............ 1,4 12 1890â€”1 247 J. Haubner. Ueber Strombrechung in fl?¤chenf??rmigenLeitern.............. 1,5 12 1890-1 252 Â? Ebene, die aus zwei

Halbebenen von ver-schiedenem Leitungsverm??gen besteht,welche l?¤ngs einer geraden Linie zusam-h?¤ngen ............. 1,5 12 1890-1 260 Â? Vier Quadranten einer Ebene besitzen ver- 1,5 schiedene Leitungsverm??gen..... 12 1890-1 261 Â? Ein von zwei Halbebenen begrenzter Streifen,an dem zwei Halbebenen angesetzt sind . 1,5 12 1890-1 357 H Str??mungsproblem f??r eine Ebene, welcheaus einer Ellipse vom Leitungsverm??genf^i und ihrem ganzen Auszenraum mit demLeitungsverm??gen [it besteht..... 1,5 12 1890-1 360 Â? Ueber Strombrechung in fl?¤chenf??rmigen Leitern. Anhang. 1,5 12 1890-1 360 0 A. Allgemeine Probleme.



??? (U \'nT3 CQ Jaartal ennummer. 2 S bo i- Â? OJ cn rt w INHOUD. Schrijver. J. Haubner. n v. Lichtenfels.H. Helmholtz. 1890-11890â€”11890-1 3613643671461 416420 423 425 8590 G. Kirchhoff. 91 95 97 H. Lamb. B. Die Grenzen der Spiegelungsmethode. C. Berechnung des Widerstandes . . .Bemerkung zur vorstehenden Abhandlung .Ueber discontinuierliche Fl??ssigkeitsbewe-gungen ............. Zur Theorie freier Fl??ssigkeitsstrahlen . .f(w) = k e-^........... Vjv........... = .......... w = Azn.............. (Beweging vloeistof uit een openruimte in een kanaal door twee evenwijdige wanden begrensd) ......... /(i) = Ao A,z A22Â? .... B,z-\' Bj2-\' ....(Voorbeeld: Een oneindig lange clrkel-cyllnder, die zich met zekere snelheid lood-recht op zijn lengterichting beweegt In eenoneindige vloeistofmassa, welke in het on-eindige In rust Is.)?’ (2) = A log 2 Ao A, z Aj 2Â? .... B,2-\' B2 2-Â? ....(Continue vloelstofbeweglng zonder ro-tatie in het gebied tusschen twee concen-trische cirkels.) (Uitbreiding vorige geval op een gebiedmet cirkelvormige begrenzingen, waarvaneen het geheel omsluit. Voorbeelden: grensvan dc

vloeistof Is een stijf cylindrischoppervlak, dat zich met zekere snelheidIn de richting loodrecht op zijn lengte-asbeweegt. Grens van de vloeistof bestaatuit een cylindrisch oppervlak, dat met hoek-snelheld Â? wentelt om een as evenwijdigaan zijn lengte-richting.) 1, 51, 5 1, 61, 61,61, 6 1. 61, 6 1,6 6



??? M-. <?š O Jaartal ??y i2 ?œ il en \'N T3 schrijver. I N H 0 U D. W 2 g 1 Â° nummer. CQ ??q Â? cu q 14 1910 â€” 58 90 H. Blasius. Funktionentheoretische Methoden in der Hy-drodynamik ............ 6 14 1910 â€” 58 90 Â? Kraft auf starre K??rper in zwei dimensionalerungleichf??rmiger station?¤rer Potential-str??mung ............. 6 14 1910-58 96 n Der Ueberfall ??ber ein Wehr...... 6 14 1911â€”59 43 n Mitteilung zu meiner Abhandlung ??ber funk-tionentheoretische Methoden in der Hydro-dynamik ............. 6 22 1891 37 W. Voigt. Beitr?¤ge zur Hydro-dynamik...... 1,6 22 1891 46 n Stehende Wellen in einem Strome als Beispielf??r die Kirchhoffsche Theorie der Fl??ssig-keitsstrahlen ........... 1,6 22 1892 490 Â? Bewegung eines Fl??ssigkeits-stromes ??bereinem gewellten Grunde....... 1,6 29 1896 269 M. P. Rudzki. Contribution ?  la th?Šorie des ondes liquidesirrotationnelles........... 1,6 25 1887 â€” 9 62 A. G. Greenhill. Wave motion in hydrodynamics..... 1,6 25 1887 â€” 9 89 n Standing waves across a rectangular channel. 1,6 25 1887 â€” 9 92 n Standing waves across a channel of 120Â° . 1,0 25

1887 -9 102 n General wave motion across a channel withplane sides sloping at any angle. . . . 1,6 25 1887 â€” 9 104 Â? Waves against a uniformely sloping shore. 1,6 25 1887-9 108 B Algebraical solution of waves against asloping beach........... 1,6 11 1912- 12111 A 1 745 0. Turmlltz Eine Modifikation der Kirchhoffschen Methodeder Bestimmung f??r Flussigkeitsstrahlen . 1,6 11 1912- 121II A 1 7T0 n AusQuszproblem........... 1,6



??? O Â? t, mli O) \'nâ€?O s Jaartal ennummer. S 5 hi) Wi 2 Si ea .S2Q- Q INHOUD. Schrijver. Ausfluszproblem O. Turmlitz. 776 1912-121II A 1 In einem unendlich groszem parallel zurX, y Ebene vor sich gehenden Strome, inwelchem ??berall urspr??nglich die Ge-schwindigkeit dieselbe Gr??sze Uo und die-selbe Richtung und ferner der Druck die-selbe Gr??sze Po hatte, ist eine ebene Plattesenkrecht sur x, y Ebene fixiert . . . .Einem unendlich ausgedehnten Strom seienzwei Platten KB und KD von gleicherBreite w gegen??ber gestellt, dasz diePlatten In K zusammenstoszen und dieHalbierungslinie ihres Winkels in die Stromrichtung f?¤llt......... 1912-121II A 1 779 1912-121IIA1,I912 790 >912-12111 A I Stromungsproblem.......... 805 1157 Zur Theorie freier Flussigkeitsstralen-Str??-mungsproblem, dessen vollst?¤ndige L??sungdie Theorie des hydraulischen Strahldrucksbei senkrechter Strahlrichtung f??r die zwei-dimensionale Str??mung und f??r reibungs-lose Fl??ssigkeiten ohne rotierende Teilchenbildet..............



??? u SZ Jaartal (U (li 2 43 s s e s en "NT3 Schrijver. 1 N H 0 U D. 2 % e ^1Â° nummer. r3 5 Â? ,22a, Q 11 1915-12411 A 391 0. Turmlltz. Zur Theorie freier Fl??ssigkeitsstrahlen.Strahldruck bei senkrechter Strahlrichtung 11 Mitteilung........... (Twee halfvlakken in hetzelfde vlak meteen gleuf ertusschen, waardoor de stroo-ming plaats vindt.) 1,6 28 1881-12 81 E. J. Routh. Motion of a fluid.......... (Algemeene beschouwingen over bren-nen en draaikolken.) 1.6 28 1881 â€” 12 84 n Motion in a corner.......... 1.6 28 1881-86 86 n Motion, when the boundaries are parallel tothe axes ............. 1,6 28 1881-12 87 Â? Motion round an obstacle of any form withan application to the case of an ellipticobstacle............. 1,6 18 1913 â€” 22 113 E. Pfeiffer. Theorien des Fl??ssigkeitwiderstandes . . . 1.6 18 1913 â€” 22 116 n Problem, um eine ruhende, unendlich langeebene Platte von der Breite / eine ebenestationn?¤reFl??sslgkeitsstr??mungzu suchen,deren Geschwindigkeit im Unendlichenkonstant gleich u und senkrecht zur Plattegerichtet ist, und die begrenzt wird vonder Platte und zwei von den Kanten der-

selben ausgehenden Discontinuit?¤tsflachen,welche die bewegte gegen die ruhendeFl??ssigkeit abgrenzen........ 1.6 18 1916-25 16 R. Grammel. ?œber ebene Zirkulationsstr??mung und die vonihnen erzeugten Kr?¤fte........ 1,6 13 1915SerieA,91 503 Lord Rayleigh. Hydrodynamical problems suggested byPilot\'s tubes........... 1.6 15 1919, ??deSerie, 38 434 A. R. Richardson. Streamline flow from a disturbed area . . 1.6 15 1919, 6dcSerie, 38 434 n Flow past a corner.......... 1,6 15 1919, ??deSerie, 38 438 Â? 15 1919, 6<leSerie, 38 449 n Flow through a semi-infinite pipe .... 1.6
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??? STELLINGEN. Door de tot heden met vloeibare kristallen genomen proeven is nogniet bewezen, dat kristallen geen â€žRaumgitter"-structuur hebben. II. De electrische ovens voor spectroscopisch onderzoek van A. S. Kinggeven geen zuiver thermische straling. (MT. Wilson, Solar Observatory, vol. I en volgende deelen). HI. Dc door R. Rinkel voorgestelde wijzigingen in de dimensies der electrische eenheden moeten niet worden overgenomen. (Zeitschr. f. Physik, Bd. 8, 1921). IV. Men kan goede resultaten verwachten voor de kennis van de electro-magnetische stralingsverschijnselen van de zon door spectro-helio-grammen te maken, die rekening houden met het feit, dat de H^^ lijn een doublette is. (H. Deslandres, Comptes rendus vanaf 1910. F. R. Merton, Proc. Roy. Soc. 97 A, 1920. F. R. Merton en J. W. Nicholson, Phil. Transactions A 217,1917).



??? De straling der sterren kan niet in de eerste plaats veroorzaaktworden door samentrekking. Waarschijnlijk is zij in hoofdzaak oprekening te stellen van een omzetting der scheikundige elementen. (H. Shapley, Popul?¤r Astronomy, Vol. 31, 1923). VI. De voorwaarden, die er bestaan tusschen de verschillende dimensiesvan de grootheden in het probleem der afwijking van de lichtstralendoor het zwaarteveld der zon sluiten noodzakelijk overeenstemmingin tusschen de uitkomsten der verschillende theorie??n. (E. Gehrke, Astronomische Nachrichten, Bd. 219, 1923). VII. J. D. v. d. Waals Jr. beweert, dat ons voorstellingsvermogen be-trekking heeft op een niet-euclidische ruimte (J. D. v. d. Waals Jr.: â€žDeRelativiteits-theorie", bladz. 17). Van deze bewering kan het bewijsniet worden geleverd. VIII. De methode der cyclographie kan met vrucht worden toegepastbij het onderzoek van ruimte-krommen. iX. P.J. H.Baudet heeft de stelling opgeworpen: â€žAls men de natuur-lijke getallen splitst in twee verzamelingen D en D\', dan bevat D ofD\' voor ieder natuurlijk getal k een gewone rekenkundige

reeks vank termen." (Prijsvraag 3, Wisk. Genootsch. 1923). Indien deze stellingjuist is voor een verdeeling in twee verzamelingen, dan geldt zij ook,als men de natuurlijke getallen verdeelt in p verzamelingen.



??? Ten onrechte beweert J. du Saar in zijn proefschrift, dat conti-nu??teit, onbeperi<te differentieerbaarheid en integreerbaarheid beslistevoorwaarden zijn, waaraan alle biometrische functies moeten voldoen.(J. du Saar: â€žOver sterfte-formules en lijfrenten", bladz. 5). XI. R. Hoppe beweert, dat een wiskundig bewijs van het bestaan derwilsvrijheid gegeven kan worden. Deze bewering is onjuist. Het bewijs,dat Hoppe zelf geeft, is dan ook niet exact. (Archiv der Math. u. Physik, 2e Reihe, Bd. 11, 1892). XII. Bij het onderwijs in de natuurkunde aan de scholen voor middelbaaren voorbereidend hooger onderwijs moet vooral en steeds de nadrukgelegd worden op het verband tusschen de verschillende onderdedenvan deze wetenschap.
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