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HOOFDSTUK I

De integraal van Poisson.

Van historisch standpunt beschouwd, kunnen we de studie
van de integraal van Porsson als volgt samenvatten:

A.') Zij gegeven de eenheidscirkel C en noemen we de
pooleoirdinaten van een inwendig punt P: (g, 0), de pool-
coordinaten van een randpunt A van C: (1, ¢).

Zi] binnen ' gegeven een harmonische functie f(p, 4), die
continu is op de rand van C.

Noemen we de randwaarden van de functie / (1, ¢) en de
afstand van P(p,4) tot A (1, ¢):»r, dan wordt de functie
f(p,0) in elk inwendig punt van € voorgesteld door de
integraal van Poisson:

2 =

—e [ fLolde

A H_1_, P
J (,J,Q)_ 27 4 22

B.") Op de omtrek € is gegeven een conlinue functie
I'(¢). Dan bestaat er binnen € een harmonische functie
J(p,0), die de randwaarden F(¢) heeft; deze functie f(p, )
wordt voorgesteld door de integraal van Poisson:

i (,3, = o 'J_"j ,E\(‘f’) d P

-~

‘ ‘J )'2
C.?) Op de omtrek €' is gegeven een functie F(p), die

) Zie: Oscoon: Lehrbuch der Funktionentheorie, blz. 598 en vlg.
Bocner: Bull. Amer. Math., Soe., 2 Reihe, Bd 4.
) Zie: P. Farou: Séries trigonométriques et séries de Taylor, Acta
Mathematica. Band 30.
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sommeerbaar (L) is. Bij deze onderstelling is het probleem
zoo algemeen mogelijk gesteld; ook in dit geval bepaalt de
integraal van Poissox binnen € een harmonische functie f (g, 0).
Het is echter niet noodzakelijk, dat de functie f (o, ) nadert
tot een bepaalde limiet, als het punt (p, 4) nadert tot een
punt (1, ¢); verschillende mogelijkheden, die =zich hierbij
kunnen voordoen, indien F(g) discontinu is of oneindig
wordl in een punt (I, @), zijn bestudeerd door Farou.

In verband met toepassingen van het onderzoek van
Fatou, die in ‘de volgende hoofdstukken worden behandeld,
worden in dit hoofdstuk enkele resultaten van Fatou mee-
cgedeeld; verschillende stellingen zijn echter op cen andere
manier bewezen.

2. Stelling 1.

Indien op de eenheidscirkel gegeven s een functie I (),
die sommeerbaar (L) is, dan is de functie f(p,0), voorgesteld
door de integraal van Poisson:

2
1] — ) (o) d
7o) =—- j @) de

2‘?.' 0 7

harmonisch binnen C.

Bewijs. Bij het bepalen van de afgeleiden naar ; en 0
van de functie

-2

1 (1—p®) F (p)d
Aulimas || St e
- U y

merken we op, dat zoo vaak als men wil onder het inte-
graalteeken mag worden gedifferentieerd naar p en 0, daar

2
s : : .
z - en al haar partieele afgeleiden naar ; en 4 continue

functies zijn van p en 4 voor o<1 en I sommeerbaar is.
2

£ is Y :
Er blijft dus slechts te bewijzen, dal i aan de
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differentiaalvergelijking van [Laprace voldoel, m.a.w. dat

1 — p? : ! : -
-~ een harmonische functic van ¢ en 0 is bij vaste ¢.

7

n

dus: 2 ]

Zij & My het rechthoekig cotrdinatenstelsel met de oor-
sprong in M, terwijl de &-as samenvalt met de lijn M O en
de y-as samenvalt met de raaklijn in M aan de eenheids-

cirkel.
Trekken we P B | &as, dan zijn de coirdinaten van het
punt P (o, J) ten opzichte van dit stelsel:
E=BM=rcosy

y=PB =rsiny



Hieruit volgt:
1_—T)p“=_1+2??‘28y 5

72

2
§4+ne

= het reéele deel van — 1

= het reéele deel van — 1 -} % (=& 4 52).

Daar de functie —1 _I—Z% holomorf is binnen C, volgt

hieruit dat het reéele deel van deze functie harmonisch is
binnen C.

Aangezien de dilferentiaalvergelijking van LarLAcE invariant
i1s tegenover verschuiving en draaiing van het coordinaten-

. 1 — o2 .
stelsel, vinden we ten slotte, dat ﬁﬁ.,ﬁ als functie van p
3

en 0§ voldoet aan de differentiaalvergelijking van LAPLACE.
Hiermee is de stelling bewezen.

3. Bij het onderzoek van de waarde, die de functie
S (P)=f(p, 0) krijgt, als P nadert tot een punt A (1, ®) van
C, moeten we opmerken, dat deze waarde alleen afhankelijk
is van de waarden van ¥ (p) in een vaste buurt van A,

Kiezen we op de eenheidscirkel een interval B 4 Cenis 4’
ecn willekeurig punt van de cirkelomtrek buiten dit interval
gelegen, dan is:

: (TR (D) de
o de
£, O)_Eﬂ Z 3N T
- [ Flde 1—p [ Flpdy
e J C2r 72
BAC CA'B

De laatste integraal is in absolute waarde kleiner dan

1—P2 1 ----- '[-27:‘ > ‘
25 X (minim. afstand van Ptot boog CA 'B)? J | F(9)|de
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en daar de minimumafstand van P tot boog CA’'B grooter
blijft dan een vast positief getal als P tot A nadert, volgt
hieruit:
=k
27

7

ue

= ( -0 als P— 4.

CA'B

4. Stelling 2.

Indien op C gegeven is een functie F(p), die sommeerbaar
(L) is en F'(p) > -+ © als ¢ - gy,
dan volgt hieruit:

FR)=F(,0~ o als P (5,00~ A (1, po).

Bewijs. Zonder de algemeenheid van de stelling te schaden,
mogen we stellen: ¢y =0.

Daar F'(p) > 4 o als ¢ - 0, bestaat er op C een interval
—h=<@<h, waar F'(p) positiel is.

Zij —d=@<2J een interval binnen het eerste gelegen,
z00 gekozen, dat daarop F'(p) > (¢ is, waarin (G een wille-
keurig gegeven positief getal is.

Verder is:

1l—p P F(pde  1—p (Y Fp)d
) — — 275 = =
= [ AT 42 ! g

?,

De laatste integraal - 0 voor P— A.

— & J G d
De eerste integraal > 1‘@ -F-f f‘:.??z
T )

1= (T Gde 1—p [ Gag

; < L -
; 4 )
2 4 ) 27 .

=G — (= 0), voor P— A.
Hieruit volgt:
S(P)> G —1, als P dicht genoeg bij A is.

Hiermede is de stelling bewezen.



5. Stelling 3.
Onderstelde: F () is sommeerbaar (L) op C:
' () is eindig in het punt A (1, ¢o).
P (3,0) is een ufa'Zlcﬁ*em'z'(,rpmaa‘ binnen Cop straal 0.

1- 27 F(p) do
F(B)= 2z [ ¥
0
e
Bewering: - '/;(5” -+ F' (po) als P radiaal nadert tot het

punt A (1, ¢o).

Bewijs. Zonder de algemeenheid van de stelling te schaden,
mogen we stellen: ¢y =0,
Op C is dus gegeven:

. F(p) — F(0) S >
lim ({) — gindige waarde = K,
@0 ‘P
welke betrekking we mogen vervangen door:
. Flp)—I'(0)
i T s S
@0 sin ¢
Op C is dus: I (p) = F(0) + K sin ¢ - ¢ (¢), waarin g ()
een sommeerbare functie is en waarvan geldt:

—INE

lim g (q)
@0 SINQ

Substitutie van deze uitdrukking voor F(¢) in de inte-
graal van Poisson geeflt:

Al i /* [ £(0) + Ksing+ g(p)idp__
9 - 1.‘.5

l =i g./‘j" F( ff dy /3" _{\__t,_m P - fgf _(jf('?”)f[ @ %
_’.2 ?.2
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ol aF(0)_
O oY

Hieruit volgt: 0.

I‘g:

] —p% [9” Ksingdp
27 T

0

=K 18 isch ictie in P, die op € gelijk is aan

=— K X de harmonische functie P, die C gelijk is a

singp =y, dus I. = Ky.

In de bijgaande figuur zij I’Py L 0 4.

S0 Y d
(.)p Sl,lﬂﬂl () _;1 1S . _Dd—— 1, dl]b (_-—~
Hieruit volgt: i TReRY =

K

e
dus S K voor p— 1.
(

(1
0Iy 1 — g% (27 AT
0 R
0

d
Y () d @

(el e o
~ T 27 f s

0
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Uit de figuur volgt onmiddellijk, dat
oy . ;
3y — —esine, waarin @ =2 MPA.

Zij nu gegeven een willekeurig getal ¢ >0, dan is op C
een interval 5 A (' zoo te kiezen, dal op B A C:
(@) | <elsinp] is
Ten slotte zij M I | O A; M FE=sin g = rsin «.
Door toepassing van bovenstaande afleidingen vinden we:

o1 o (1 :-2) q (f]’) sin e d @ }.-22) jﬂg(q') hlnﬁffi?

I
J“S

LU= [s@pae

ik

P (1

T

BAC i 0A'B

De eerste integraal is in absolute waarde kleiner dan

] s Y
T ?

p(1—¢% [elsing| |sina|dg = ep(l — 0% / d

‘e

pAC Bdc

25 [_,_}2 2 7 ”1(].
=% (c e g
27 ’

0

— e

Daar voor I’— A de tweede integraal tot nul nadert, is
de stelling bewezen.

Opmerking. Met behulp van bovenstaande afleiding is op
een eenvoudige manier aan te toonen, dat de stelling blijft
doorgaan als I’ angulair nadert tot 4. In verband met de
afleiding van een analoge stelling voor begrensde holomorfe
functies in een volgend hoofdstuk, zullen we hierop niet
verder ingaan. ‘

6. Stelling 4.
Iudien op C gegeven is cen sommeerbare begrensde functie
P (p), dan kriggt de functie
0 27 1
_ 1= Flpde

j (;:1 0) — '72?‘__6 }.f

by radiale nadering van  het punt (p,0) tot C voor een ver-
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zameling q@-waarden, waarvan de complementaire verzameling
de maat nul heeft, de randwaarde F ().

Bewijs.  Volgens een stelling van Lesrscur is de begrensde
sommeerbare functie I7(p) op volle g-maat de afgeleide van
haar onbepaalde integraal G (9)[G (9) is een periodieke

2
functie, indien de constante ao:;[ F(p)de van de
0
functie F'(¢) wordt afgetrokken; in het volgende wordt dit
verondersteld].
Parlieel inlegreeren is geoorloofd, dus is:

=g (" F@dp_ 1 /2 1
0

I

= o -
(5 1P A
T 1 27

1— f LTI
= 0 5 G (@) d .

Beschouwen we ook de functie:

P g=1=¢ [T Gy

Qx o i

w \i
dan is: S (p, 0)= _‘_IL,('J’ _02~

Toepassing van slelling 3 geeft: voor elke waarde van ¢,
waarvoor ( (p) de afgeleide I7(p) heefl, is bij radiale nadering
van een punt (p, 0) tot het punt (1, ¢):

o (.
01" (o, 0)

Y G (p) = I ().

=

Daar G (9) op volle p-maat de afgeleide F(g) heeft, zal
dus f (s, 0) op volle ¢-maat radiaal naderen tot Fyp). .
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In verband met de toepassing in de volgende hoofdstukken,
vermelden we nog de stelling, die als een omgekeerde van
stelling 4 kan worden beschouwd.

Stelling 5. Gegeven s binnen C een begrensde harmonische
Sfunctie f(p,0); bij radiale nadering van een punt (p, 0) tot C
krijgt f (o, 0) op wvolle gp-maat cen limiet f(1, ).

Dan wordt de functie binnen C voorgesteld door de integraal
van Potsson:

0 0)___ [ 7 (1, f}”)(lw

Bewijs: Zij p <R <1, dan is:
1 7 (RR—)f,0)de
== [ - 9 ’
£ (e, 0) 2?%/ R*+ p2— 2 Rpcos (p —0)

Nemen we p en § vast en laten we R naderen tot 1, dan
blijft de functie onder het integraalteeken begrensd en nadert
11— (L, 9)

Nu is volgens een stelling van Lesescur geoorloofd, de

op volle ¢-maat tot

teekens lim en f te verwisselen, waaruit volgt:

1— ¢ [“ fU,9)de
: e

S, 0)= e

4
7. In § 2 is aangetoond, dat I—'J het recele deel is

1
van de holomorfe functice

2(&—mnq)
wtvis—1t e =— 1+
dus V= — 5 g_lr "
Daar E=1—pcos(p—0)
en y = psin (p —0),
.o ut 2 psin (p—10)
vinden we: T .

9
32
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De harmonische geconjugeerde functie ¢ (2, 0) van de inte-
graal van Poisson:

f(pad)'—'— [ E( wdq’

is dus, op een willekeurige add:tleve constante na, bepaald
door de volgende betrekking:

2 . nl v
g (o, 0) = — £ / sin (¢ — 0) F (T)JE
=) T, re
0
Stelling 6. Indien op de eenheidseivkel gegeven is een
begrensde  sommeerbare  functie  F (@), waarvoor geldt dat
lim F(p)=0 [6f lim | F'(p) — F(— ¢) | =0,

w0 @0

dan is noodig en voldoende, opdat g (o, 0) nadert tot cen eindige
lemiet voor p— 1, dat de integraal

/' TIF @) —F(—q)lde
tg 'z @

»/
£

nadert tot cen eindige limiet voor ¢ 0.

Bewijs. Zij A het punt (1,0) en I’ een veranderlijk punt
van de straal O 4.

Dan is:
; » [*7 sin eI (p)dy
y(-l):_f]fﬂ, 0):_'7&:[ _____)-‘3 —
A 7P f “sing [F(p) — I (—g)ldy
e == 22
Zij > 0.

We verdeelen het interval (0,7) in twee deelen (0, ¢) en
¢,7) en we stellen: e =1 — p.
Dan is:
“sing | Fp) —F (— o)l do
!I(P):—if @ | F'( (—9) P L

2
) s

p f’ sing | F(g) — F (—g¢)| do
).2

&
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De eerste integraal is in absolute waarde kleiner dan

1 ¢ sin ¢

=0 (1 — o)* X

X imaximum van | £ (¢) — F(— ¢) | op het interval (0, ¢)|

cn daar ¢=1-—p en lim ¥ () =0 nadert deze integraal
p—=0

tot nul als P A,

Zij M een willekeurig punt op het interval (g #), dan is:

rP=14p"—2pcosp=1-4p* —2,(1 —2sin® Yy p) =
=(1— )+ 4¢sin® Uy .

Hieruit volgt:

T r
sin® s p=-

4 p f._l-,:l
Dus:
psing __ 2 psin'fs p cos Yo tg Y2 _ 2 p(g:*_:ﬂ:
1.2 ?..‘itg 1/2(;0 4P?2tg I!z(r)
1 3

oe Qtg 20 292 tg e q)l
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Substitutie van deze waarde in de tweede integraal geeft:
,of sing | F(p) = F(—¢)lde__

.?.2

tg 'z @ :

i e_‘!f'” F(p) — F(—g)lcotg o pd
27

.).2

' (p) —F(—g)|de
_27"'/ s

We verdeelen het interval (s, 7) in de deelen (e, ¢)
en ("¢, z) en we schrijven:
| _”fr (@) — F(— ) cotg fag dop _
2

. 77

__52_'[‘/‘_ V' (p) — F(— )i cotg Ve d g g,
T 27 T

<
re

j IF(‘?’) —F (—- P) | y cotg s [2 @ d P __
2 e

=I5+ I.

Op het 1nlerv11 (e, 17 ¢) is:
¢ cotg 'fs ¢ < vast positief getal M (onafhankelijk van e).
Hieruit volgt:

e M [V | F(p) — F(—g)|d g

e

111|<

£

b —
< [—(-1——’)—]— X | maximum van | 7' (¢) — F (— ¢) | op interval
27 (1 —pY

2 — Wk
&V o X f “_Q_‘?’
) i
M _ : ] _
= TR X | maximum van |F(p) — F(— ¢)| op interval
P
(5! V oe) (

Hieruit volgt wegens lim /' (p) =0:
-0

| |- 0 als e 0, d. w.z als (P~ A).
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Op het interval (¢, 7) is:
"¢ cotg '2 ¢ < vast positief getal G (onafhankelijk van ).

Hieruit volgt:

| &'/ T Vecotg Yo IF((;J)—F — )| do
|1z | < 7[ gl 2 (— )| dyg
Ve
&'ls (
S oS ; X | maximum van | F(p) — F(—¢)| op
27
_— 1o
interval (V' ¢, 7) Xf 1, Pz)f g
r
G | _
<} X '—_|_—— X | maximum van |F(¢) — F(—¢) op

interval (V" ¢ 7).
Dus wegens de begrensdheid van F'(¢):
| I |+ 0 als e~ 0, d.w.z. als P~ A.
Ten slotte is dus het resultaat:

Indienf 1 Flo)—F(—9)ide

= -+ eindige limiet als ¢ = 0,
to s

dan nadert ¢ (p, 0) tot een eindige limiet voor p— 1;
en als ¢g(p, 0)— 2, dan is:
}IT (P s I.' (}’J)zrz—(;ﬂ

)"—llm——— -
e=0 0!]”

Opmerking. De voorwaarde: f |F@)—F(-¢)lde |
y tg [ P
eindige limiet als e¢— 0, kan worden vervangen door de
volgende :
[ ED=Tpld

2 - eindige limiet als ¢~ O.

o B .
De functie =T cotg !/2 ¢ is begrensd voor 0 < ¢ <z, het

verschil der beide integralen heeft dus een eindige limiet
voor ¢— 0.




HOOFDSTUK 1I.

Begrensde holomorfe functies.

1. Zij gegeven een functie f(z)=u - v, die holomorf
is binnen C:|z|=1 en continu op C.

Dan zijn u en v functies, die harmonisch zijn binnen € en
continu op €. Noemen we de randwaarden van f(z), u en
v respectievelijk F (¢), U(g) en V (p), dan is:

1—92[ b(‘f’)r’(f’_\t_'l_"_f’f TV () de

[ =u+vi= P - = J e —
s /‘"”]U(q’)—i—eV(q tde
9 - 22 PE

1-—-;/' I ( q irp

Farou heeft aangetoond, dat bovenstaande integraal haar
beteekenis blijft houden, indien slechts wordt verondersteld,
dat de functie /(z) binnen C begrensd is, zonder eenig ge-
geven aangaande de rand van C.

In verband hiermee zullen we in dit hoofdstuk enkele
randwaardestellingen mededeelen voor begrensde holomorfe
functies (stelling van Farou, stelling van Riess).

2. Stelling 1.
Als de functie [(2) voor |z| <1 holomorf en begrensd s,
rle

en als lim f(x) =0,

x =1
dan heeft 'f (2) voor z— 1 nul tot angulaire limiet.
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Bewijs: We beschrijven met het punt A (z = 1) tot middel-
punt de cirkelbogen
BC, By 0t ,wBaCay vian y Ballayiioiy

met stralen respectievelijk

1 1
UL By i B G0u T, Gadat

Noemen we de gebieden
BCC,BiB, B Cy Qo B:By, ..., BaCo Coxt Bny1Ba,.
respectievelijk
Go , Gi1 o ot o RO T
dan ontstaan de gehieden
Gr s frsrod C il b O

door vermenigvuldiging van Go uit 4 met
1 1 1

= =g e oas g y
2 ! Q.! ’ ﬂn
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Zij voor een punt z van (y:{=2z—1, dan correspon-
deeren met dit punt in de gebieden
G G s T8y Gran ghga

de punten
< < 4
1-{—2, 1—]—22 TR 5 s eit] =i R R

We beschouwen in Go de functierij:

bO=F1+0
0 () —f(1+ )

----------------

De funetierij ¢n () is in Go gelijkmatig begrensd,
| u () | < DL
Op segment O P geldt:
Un () =+ O voor n— 0.
Volgens de stelling van Vrrarnt kunnen we hieruit besluiten :
Yn ()= 0 in hel gebied (g,
dus: f(z)= 0 voor z-+ 1 in iedere hoek

larg (1 —2) | < <

3. De stelling van Fatou.

Stelling 2.
Als de functie f(2) in het gebied |z|<Z1 holomorf en

begrensd s, f(2) | < M,
dan nadert f(2) op wvolle @-maat tol een eindige limiet, als
z radiaal nadert tot C:|z|=1.

Bewijs. Binnen C zij:

Q=a+tazt+a+...... +anz+......
S
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We beschouwen ook de functie

b e ((LP m,. a2
ru)_of =S e e oI
: c
A

B8

Zijn « en 3 twee willekeurige punten binnen €, dan is:

| F@)—F@|=|[ 7)dt|<M|3—x].
4
De functie F'(z) is dus begrensd binnen C, bovendien ge-
lijkmatig continu binnen en op C.
Laten we 2= 4 en 38—+ B, dan vinden we

|F(A)—F(B)|<M|B—A|

Noemen we de limietwaarden van F(z) op C: F(p), dan
volgt uit de bovenstaande betrekking, dat de functic ¥ (¢)
begrensde differentiequotiénten heeft; F'(¢) heeft dus een
afgeleide voor een verzameling @-waarden, waarvan de com-
plementaire verzameling de maat nul heeft en

d I (WIS.M.
d @ ‘

De functie F'(z) wordt voorgesteld door de integraal van
Poisson

1 H Ay ((,rz) d P

T 72

I'l(/,)._




19

; 0 I7'(2)
\' CH ) =——"",
erder i 12 Y
Toepassing van stelling 3, hoofdstuk I, geeft:
o0F (2 d F(p !
—.Q nadert op volle ¢-maat tot (:ﬁ(q_), als z radiaal nadert
200 td @
tot C.

Hieruit volgt dus:
S(2) nadert op volle @-maat tot een eindige limiet, als z
radiaal nadert tot C.

In verband met stelling 1 van dit hoofdstuk, merken we
nog op, dat f(z) op volle -maat een angulaire limiet heefl.

4. Stelling 3.

Onderstelde: Gegeven is een Jordansche kromme ["en een
funetie f(z), holomorf en begrensd binnen I';
op de boog a van I' zij: f(2)» K voor
z=> A, op de boog B van I zij: f(z)=> L
voor z— A. (Zie onderstaande figuur).

Bewering: L = K.

Bewijs: We beelden I' en het gebied binnen I’ af op de
cirkelschijf [z|=1. (de correspondeerende bogen en punten
zijn in de onderstaande figuur aangegeven door accenten).

De functie f(z) gaat over in een functie F (), holomorf
en begrensd binnen C, dus voor |z <1 is: | F(2) | < M.

I'(z) is een begrensde complexe harmonische functie en
wordt dus voorgesteld door de integraal van Porssox.

Op straal O A" geldt: F'(z) = /o (K + L) voor z— A,
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Als L ==K is, heeft F(z) op twee verschillende koorden
naar A" verschillende limieten, volgens de elementaire eigen-
schappen van de inlegraal van Poissox.

Dit is in tegenspraak met stelling I van dit hoofdstuk.
Hieruit volgt: L —= K.

5. Zij op de eenheidscirkel C gegeven een perfecte punt-
verzameling /5 van de maat nul. Dan is het mogelijk op
C een positieve sommeerbare functie () te construeeren,
die in de punten van /5 oneindig wordt. ")

De integraal van Porsson:

—

2 | T E@ady

27 J r

0

bepaalt dan binnen C een harmonische functie, die in alle
punten van £ de waarde - oo krijgt (zie stelling 2, hoofd-
stuk 1); bovendien is f(o, ) binnen C positief.

Zi) de functie /() verder zoo geconstrueerd, dat op elk
segment binnen een complementair interval van F gelegen,
F(p) begrensde differentiequotienten heeft. Dan krijgt de
geconjugeerde harmonische functie g (2, J) van £ (p, 0) bepaalde

') Zie FAToU: Acta Math., Band 30, blz. 342.
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-

waarden op (), behalve in de punten van # (zie stelling 6,
hoofdstuk 1).

De functie ¢ (2) =/£(5,0) 42 ¢ (2, 0) is holomorf binnen
en krijgt een oneindige waarde in alle punten van I7; daar
S, 0) positief is, krijgt ¢ (2) nooit de waarde nul binnen C.

De functie is dus holomorf binnen O, continu op C

P (2)
en nul in alle punten van J2.

Met behulp van het principe van de verdichting van singu-
lariteiten is het mogelijk binnen ' een begrensde holomorfe
functie te construeeren, die de waarde nul krijgt in een
puntverzameling £ van (), zoodat I’ niet aftelbaar en overal
dicht is; maar steeds blijft volgens deze methode £’ van
de maat nul. !)

De vraag, door Farou gesteld, of er een holomorfe functie
binnen € bestaat, die bij radiale nadering tot € in alle
punten van € de waarde nul krijgt, terwijl /() niet identiek
nul is, moet ontkennend worden beantwoord.

Stelling 4.
Onderstelde: f(z) s holomorf binnen de eenheidscirlel C,
ab is een boog van C, waarvan alle punten
P de eigenschap hebben  dat f(z2) > 0 als 2
radiaal - P,
Bewering: f(2) = 0.
Bewijs: We beweren, dat «b een deelboog cd bevat,
zoodanig dat de functie /(2) in sector Oc¢d begrensd is,
Ontkenning beteekent n.l., dat | /£(2)| in iedere deelsector
(O c¢d van sector Oab onbegrensd is.
Er bestaat dan binnen deelsector Ocd een punt 2y, waar
£(2) > 1 is.
In verband met de continuiteit van f(2) bestaat er dan
een cirkelboog pi ¢i met straal | 2; |, bevattende het punt 2z,
en binnen Ocd gelegen, waarop overal geldt:

fR)|>1.

1) Zie FaTou: Acta Math., Band 30, blz. 393.
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7

We projecteeren deze cirkelboog py g1 uit O op C en we
noemen de projectie p’ ¢’
In de deelsector Op' ¢  is dan |f(2)| onbegrensd.

G

In het gebied p:iqgiq’ p' bestaat dus een punt ze, waar
|f(2)| > 2 is.

Er bestaat een cirkelboog p2 g2 met straal | z: |, bevattende
het punt z: en binnen het gebied piqi ¢’ p' gelegen, waarop
overal geldt:

| fa)| > 2.

We projecteeren deze cirkelboog ps g2 uit O op C en we
noemen de projectie p® g%

In de deelsector O p*q® is dan |f(z)| onbegrensd.

In het gebied p2q2¢®p* bestaal dus een punt zs, waar
| f(2)| >3 is.

Er bestaat een cirkelboog ps ¢s met straal | zs |, bevattende
het punt 23 en binnen het gebied ps q2 ¢* p* gelegen, waarop
overal geldl:

|f(2)|>3.

Wordt de constructie op deze manier voortgezet, dan
vinden we:
Het gebied pa—1qa—1¢*—1p" ! bevat een punt z,, waar

|f(2)| >n is.
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Er bestaat een cirkelboog pu gn met straal |z, |, bevattende
het punt 2. en binnen het gebied pn—1qn—1g"~1p"~1 ge-
legen, waarop overal geldt:

| £ ()| > n.
De projecties van de cirkelbogen
P11 P2z, ..., Ay s w6

op C, hebben op C een gemeenschappelijk punt P. De ver-
bindingslijn O P snijdt alle cirkelbogen pn qa en op straal O P
is dus lim sup | f(2)| =+ =.

lz| —»1

7 (2) kan dus in iedere deelsector van O ab niet onbegrensd zijn.

Zij Ocd een deelsector van O ab, waar |f(2)| begrensd
is en zij ¢’ d’ een cirkelboog met middelpunt O en met straal
e <1, terwijl ¢" ligt op Oc en d' op Od.

Dan geldt voor elk punt 2, binnen Oc¢’ d" gelegen:

. ) dt
2xaf(z)= [ A
vy f -_—
Oc' d 0
Daar de funclie onder het integraalteeken begrensd is en

daar boog ¢d een volle maat van punten heeft waar 2 radiaal
tot nul nadert, mogen we loepassen:

lim ; — [ lim,
dus:

orif(n=[LWDdt_[f@Dat

L= t — 2z
e od

De functie, voorgesteld door het verschil van deze integralen
is echter holomorf in elk punt z binnen £ C O D gelegen,
waarin €' ligt op het verlengde van O¢' en D op het ver-
lengde van Od',

Derhalve is f(z) voortzetbaar over ¢d en de uitgebreide
functie is nul op ¢d, dus

f(2) =0.

5. In de vorige §§ is aangetoond, dat een functie £ (2),
die holomorf en begrensd is binnen de eenheidscirkel C, op
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volle o-maat nadert tot een eindige limiet /' (¢) als 2 radiaal
nadert tot € en dat F'(p) op volle ¢ -maat niet constant kan
zijn, tenzij f(z) constant is. In aansluiting hiermee geven
we nog een bewijs van de stelling van Rigss, die inhoudt,
dat I (¢) slechts op een ¢-maat nul eenzelfde radiale rand-
waarde kan hebben.

Voordat we overgaan tot het bewijs van deze stelling, be-
wijzen we eerst de volgende hulpstelling.

Hulpstelling.
Onderstelde:  f(2) =wu -+ v is holomorf voor |z|<1;
J(0)=|=0;
» i8 een cirkel met straal <71.
Bewering: 2xlog!|f(0) < }P log | f(2) d .

Bewijs. Zij p de straal van cirkel » en
I () :_[Iog | f(2) ]| d .
7

Dan is:
I(p)="/2 [log |f () Pdp=1, /]t)g (u® -+ v d .
! t

¥

f(2) heeft binnen iedere cirkel met straal o<1 slechts een
eindig aantal nulpunten, wanl indien een oneindig aantal
nulpunten aanwezig waren, dan hadden deze een ver-
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dichtingspunt en dan was f(2) overal nul. De stelling is
dan triviaal.

Zij o' een cirkel, waarop een nulpunt P van f(2) ligt en
zij @ PR ecen interval op o' (boog @ PR - 0 wil zeggen:
Q-+ 1 en R— D).

Dan bestaat volgens het kenmerk van Goursat:

lim f log | f(2) | d ¢

boog @ PR~ 0 .*, "—hoog g PR

en in verband met de continuiteit van f(2) mogen we hieruit

besluiten:
bij elke ¢ (0 <Te<C1) bestaat een getal d, zoodanig dat

/lo“|fta ldop— f‘log f@RIdy | <& is,

W
/

¥
als de stralen p" en p" van »' en o'’ voldoen aan
— A=
I(p) is dus een continue functie van p.
Zij I' (5) de afgeleide van I (p) naar p, dan is:
3 du o v
2\t=——+ v=
, ' 2P ¢ :
I'(p)="Y2 | —— T d ¢, voor iedere o waarop f(z)
u® -+ v*

nr

nergens nul is.
Volgens de differentiaalvergelijkingen van Cavcny-RiEMANy is:

du__ v
2% " pdg
oy AR ’
a !J =T IA-:_ () (J?
dus:
dp O u ;
— —
j dep dp ., 1 Judv—vdu
(=] —— P —— v s —
X (s o PO =SS
” Y

1
— ~ (loename van By tr; ]HJ rondgang over o)
P

1| mln ) T

= — (wijziging bij rondgang over y van arg. f(2))
p .

= == 3 het aantal wortels van f(z) binnen .

[
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Hieruit volgt:
I' (p) = 0, behalve voor geisoleerde p-waarden.
I(¢) is dus een groeiende functie van p.
In verband met de continuiteit kan I(p) dus als volgt
graphisch worden voorgesteld:

Jte)

e T —
- - e . - .- cw =

By
]
N

Ten slotte vinden we:
I(0)< 1),

en daar /(p) in de buurt van p =0 constant is, volgt:

2 7 log | £(0) | Sflog\f(z) |d .
7

Stelling 5 (Stelling van Riess).

Onderstelde: Binnen C:|z|=1 is f(2) cen begrensde niet
constante holomorfe functie,

| f(2) | < D

a s een complex getal, || < M.
Bewering:  De verzameling van de punten @, waar
lim f(pe?) =«
g1
s van de maal nul.

Bewijs: We nemen cerst aan dat f(0) == «.
Passen we de voorgaande hulpstelling toe op de functie
f(2) — «, dan is:

2 x
2.-rlog|f(0)_a|£f log | f(pe?) —a|dap.
0

Zij ¢ een vast getal, 0 <Te<1.
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We noemen [f () de verzameling der argumenten ¢,

waarvoor:
) __1) :% o
‘f e 1 - e o

en zij ¢ I () de hoekmaat van de verzameling Z, (¢).

< ¢ 18

Dan is:
27zlog |f(0) —a|<p E, (9loge+ 27 log (2 M).
Hieruit volgt:
—u L ()]loge<2xlog (2 M) —2xlogl|f(0) —«
< constante = ¢,

dus: w s () —— =

De argumenten der stralen, waarop f(2) + « voor |z |- 1
vormen een verzameling, die een deel is van
lim inf, E, ().

n-y oo

I -

Bijgevolg is de maat daarvan hoogstens —
log

rqll—i

Daar ¢ een willekeurig positiel getal is, is die maat nul.

Is f(0)=«, dan brengt men dit geval door middel van
een lineaire transformatie op het voorafgaande terug, daar
f(z) == in de onderstelling uitgesloten is.



HOOFDSTUK III.

Begrensde machtreeksen.

1. Binnen C:|z =1 zij gegeven een holomorfe functie
J (), met
fl)<1;
binnen O is:
f@=atazt az1..... +an2"4.....
oo <
— X (mer
n—>0

In deze paragraaf zullen we eerst wijzen op enkele bekende
eigenschappen van de coéfficienten an.

A |lan| 1.
Zij » een cirkel met straal p <1, dan is:
1 [f()dz=

TTEE

(n — :
272 2z
e

Volgens stelling 2, hoofdstuk 1I, nadert f(ze”) op volle
maat tot een limiet f () voor »— 1,

FAGIE=S?

S pis e

en daax i begrensd is voor p< |2/ <1, mogen we schrijven:
. 1 fWide| 1 f% :
n [ . - o 4\ i: g < .
| aa | ‘2‘:1‘ ) 2x if@lat=<1
0 0
n

B.sn=act+arz+..... 1L anz = ¥ a 2 is voor alle

y=={
functies f(2) met bovengenoemde eigenschappen een begrensde
functie voor elke vaste .
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Uit 'an | <1 volgt onmiddellijk:

|¢o | < a0 |+ |ea|+....... + |an|<n-1.
w

C. > |an|?® is convergent.
v 1]

Bewijs: Zij f(2) =« +-v¢, dan is voor p<1:

a

fﬁ | f(ee?) [*d g :j" o) d =
0 0

] (w+vd) (w—vi)do=

0
i o OO
-l 1 - At mi
}.f (In lon Cn i X .\_( (fm r-im Cma il d P —
0 n—=0 m=—0

o b A

E n dm E:,n 4+ m [ C,_In— m) i ({ .
(n,m)=0 :

0

(¢ beteekent het toegevoegd complex getal van q).

2
Verder is: f el —m@ig e
0
2
f tcos(n—m)p +isin(n—m)e|de.
0
2
f cosimh—m)pde=2x, als n=m
0
=0+ als n==m
2
/ sin(n — m) @ d g = 0.
0
o o
Hieruit V(ﬂgt.‘ '/ ,f(r, et ")‘2 o =27 E E tn |2 ;"E“'
0 n=e
2
Verder is: / floe")Pdp<2n.

0
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Hieruit kunnen we besluiten:

w0

lim 27 X |aa|*p®*" <27,
r—>1 n—~>0
(v}
dus: il Sk
n—~0
n
D. sa—avt+a+........ 4 an= > a, is voor alle

PE—11]
functies f (z), die aan bovengenoemde eischen voldoen, geen
begrensde functie van #», d.w.z. er bestaan functies f(z),
waarvoor s, == 0 (1).

In verband hiermee verwijzen we naar de functie van
Feser '). Door Lanpau?®) is aangetoond, dat voor de ver-
zameling van alle functies f(z) met genoemde eigenschappen,
de bovenste grens van

& |=| 0+ a1 ...+ an|

voor elke vaste n de waarde (n heeft, waarin

1><3X5..><(2;—1))2,

T
8 !
Dus: sa = 0 (log »), d. w. z. leéi is begrensd voor alle
n
waarden van n.
Ten slotte verwijzen we nog naar de functie van Bour, %)

waarmee is aangetoond, dat de betrekking:
=10 (log n)

niet mag worden vervangen door de scherpere betrekking:
sn = 0 (log n).

' 2) Zie LANDAU: Darstellung und Begriinding einiger neuerer Ergebnisse
der Funktionentheorie.

3) Zie: H. Bour: Uber die Koeffizientensumme eciner beschrinkten
Potenzreihe. Nachrichten von der Koniglichen Ges. der Wiss. zu Gittingen,
Jahrgang 1916, Jahrgang 1917.
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2. Stelling 1.
Binnen C:|z|=1 is f(2) holomorf en | f(2)| < 1.
Binnen C 1s:

=
f@= 2 an2.

n=~0

n
Verder zij: = 2 a.
v=10

Dan s voor elke waarde van n:
1
| 8a | < = 101T n 4+ o (log n),

dus: sa = O (log »).

Bewijs: Zij T' een cirkel met straal p<1 en 4 B C een
cirkelboog met straal -.:: en middelpunt 2 =,

Dan is:
1 T fR)dz
an— — =

2712 2L
ABCDA

De contour 4 B C D A noemen we I,

Dan is:
fz)dz (z](h f@)dz) __
_1 20+ 1 & o
1 /‘(z““ — 1D fE)dz
T 271, (2 — 1) 2ntd
l'\!
Door splitsing van de integrant volgt:
1 f(2)dz et f@@)dz

g L (1—2) et 97s J 11—z
I’ I'

De laatste integraal heeft de waarde nul, daar lf(—_z)—ébinnen
en op I'" holomorf is.

Zij Ay By Oy een cirkelboog met straal )—11 en middelpunt

=l



De contour 4y Bi €1 D1 41 noemen we I'".

f(2)

De functie ; - is begrensd in het gebied tusschen

(1 e 2’) zu+1

a _fglzn—_ﬁ op volle maat van '’ nadert

tot een eindige limiet, mogen we schrijven:

et
2;51. (1—¢t) 1

' en T'"; daar

Sn —

7

! _f@ds , 1 [ _fde .
27;‘]1_}[(.' (l_t)tu+i+2:_!- (I—t)fnll_l
o ed |

0, Dy A,
: ik
Op boog Ay By Cy is: t =1+ o ev

dus: dt— A e @
7
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\1—t]:]—
1
lfn+1|2(1_‘i>n+l

(is dus naar onderen begrensd).
Hieruit volgt:

1 /‘ f(dt
9 (I_Hf)t"'H

/‘ |f(f)‘.1l?r[q.=

T 2 _<-‘ - 1 1 n+ 1
CID 4 C, DIA 1 S5
1 7 1 1 :
<-—XZ XX —ari < —/—————— =0 (log ).
- n 1 } 1 n+1
T
1 n

Op boog Ci Dy Ay is: | f()] <1
|1 —¢|=2sin!/s

I {1 | — 1
Hieruit volgt:
p=2r—g
’ zi / il {(2)(? + f = 21;.- 2 m(f ?,? =
C; ‘(1 -
=

= 2sin Y2 ¢

< if " q*_k <2 j dq‘p- 2 (log 7 + log #) = O(logn).
i l /

1
n

Stellen we s ¢ = ¢, dun krijgen we schcl'per'

107 do i V) 1] Tdy
7,-_[ 9 sin 1y qJ j 2 sin ¢ 1,[) smx,b
I

n
1

RO |
1logu s l,b’ =—logty ’/4:-——%logz‘g(il_—n)

I

wl e
B

1 1
= (4- n)'



Voor n—» @0 1s:

1 1 1
— — log ffl(,—) GO lﬂg( L) o0 1105;417 ~ log n.
T 4n n =

/

Hieruit volgt:

. 1
| sa | < 0 (logn) + = log n.
B = a9

3. Stelling 2.

Onderstelde: Binnen C:|z| =1 is f(2) holomorf met
Wi =5

de Fatow'sche limiet van [(z) op C:f (1), is approximatief
continu in z=1.

Bewering : sa (1) =0 (log n).
Bewijs: In de vorige paragraaf is aangetoond:
| / fit)dt

—9r;) (1 —¢f)nt!
AT

Sn

b ) =B
/ T omi(l :?)“"‘%— 7(1).

22:':3' J
[

Wegens de begrensdheid (onafhankelijk van #) van de
bijdrage van de integraal geleverd door de cirkelboog 41510y
(straal i) blijft nog te bewijzen:

AR — 7)) | de
/ Q) —ri)ide o (log n).
J st
.l,
5 rT
We stellen: / | f(O—7A) | de=F (p).
‘0

Daar f(#) — (1) approximatief nadert tot nul voor t-+ 1,
d. i. voor ®= 0, heeft volgens een bekende stelling I (¢)
voor ¢ =0 de afgeleide nul, dus:

. Flyp
lim -13)20.
»

=0
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Zi) ¢ een willekeurig positiel gelal; dan bestaat er een
gelal 3, zoodat voor 0 <@ <2, geldt:

Flp)<ceo.

Voor deze vaste 4 is:

PO =F W) 1dy oo (Tde _ 51
{ 7 <.4j % = 2log ¢

- d

L)

2 (log # — log 9) = constante == o (log n).

lf-—rMlde 1
1) PR A — 11 () =
P J oo F\P)

4
1 A -
—_— = I‘ ((‘p) —-I— { Ir (f_],r)
Y 1 4

n -

Verder is: f

iy
P*

v (3) ' (1 ) _
= 5 n b (“) -}—f P d o
L
n

dp

<o (1) ‘E“Ef =

1

d
=0 (1)+ ¢llog s 4 logn) < 2¢logn voor n voldoend groot.

Hieruit volgt: s, = o (log n).
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4. Stelling 3.
Binnen C:|z| =1 4s gegeven een holomorfe functie f(2)
met | f(2) | < 1.

Dan s op volle p-maat:

sn () = o (log n).

Bewijs: Volgens stelling 2, hoofdstuk II, nadert /() op
volle @-maat tot een limiet F(¢), als 2 radiaal nadert tot
een punt van C.

F'(g) is een sommeerbare functie, dus /' (¢) is approximatief
continu op volle ¢-maat.

Uit stelling 2 van dit hoofdstuk volgt:
op volle g-maat is s (¢) = o (log n).



HOOFDSTUK 1V,

Een kenmerk voor ,,conformiteit op oneindig®.

1. In het gebied | 2| <1 zij gegeven een begrensde
holomorfe functie [ (2) =wu - v 7.

Daar » de geconjugeerde harmonische funetie is van u
volgt uit stelling 6, hoofdstuk I:

1

v (p,0) nadert tot een eindige limiel voor = 1, indien de
integraal

gt AP

f* w(p) — u(— @)
L3

nadert tot nul voor - 0.

We onderwerpen het gebied | 2 | <1 aan een lineaire
transformatie = L (2) mel dekpunlen (4-7) en (— ¢), zoo-
danig dat het punt (— 1) in de oorsprong komt.

De lineaire transformatie is dan:

142
=
Door deze lineaire transformatie wordt het gebied | 2 | < 1
afgebeeld op het rechter halfvlak D (x> 0); de cirkelomtrek
wordt afgebeeld op de Y-as, zoodanig dat de boog van (- 1)
over (-4 naar (4 1) correspondeert met de Y-as van 0
tot -} oo.

Door de lineaire transformatie gaat de functie f(2) = u - v ¢
over in een functie I (w)= U + Vi, die in het rechter
halfvlak (@ > 0) aan dezelfde voorwaarden voldoet als /(z)
in het gebied | 2 | < 1.
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Onderwerpen we een punt van de een 1e1d&url\el aan de
lineaire transformatie :
142
— 2

(] R—— 3

—

dan is:
1+ cosep+ising
1 —cosp —¢sing

Yi—

_ (U +cosp + 7sing) (1 —cosg +7sing)
2 — 9 cos @ >

__2¢sing 2
dsin®'la g g 'z g

We vinden achtereenvolgens:

v
"ty
d (tg /= ¢) 1
et 2\7) SRR S
ay tg* 1/9 @ 2 sin® 1/2 ']f-“( i
dp=—2sin*pdy
cosec® oo =14cot? o =1+ ¥

sin? lfs @ = 1——_:_ "
de
=4 — 4114
w'le U A -[— A —I—

Door de lineaire transformatie caat dus de integraal
g g

"lul@—ul=9de
f tg 2

ch

1
over in de integraal
2y

f Uy — U= )| s dv.

Hieruit kunnen we besluiten:
V () nadert tot cen eindige limict voor «— o, indien de

integraal
f i [ U@)— U(—n | — 2 Y d y convergent zs en omgekeerd ;
) ' 1=y
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deze noodige en voldoende voorwaarde kunnen we nog ver-
rangen door

U Y
VU y)— U (—y) | g convergent.
>0 3

2. In verband met een toepassing van het resultaat, in
de vorige paragraaf verkregen, op het gebied van de conforme
afbeelding, vermelden we eerst enkele stellingen uit de theorie
van de conforme afbeelding.

Stelling 1.
Onderstelde: f(z) is een holomorfe functie in het gebied:

|2l <aal’
wAGHI=TL
7(0)=
Bewering: Ifi)<|z|

Bewijs: De functie Hj) is holomorf voor |z| < 1.
Zij 0<0<1 en |2|<<0.

2 . . .
Daar f._;- in het gebied |2|=<0 de maximumwaarde

krijgt op de rand, is:

f(2) ‘

voor |z|=10; <

I @)
<~

S

|
< maximum van % ‘

01 geeft: } Uf)
z

{Sl voor iedere 2z, waarvan |z| <1 is.

Stelling 1.
Onderstelde: De functie w=wu -+ vi=f(x + y¢) is holo-
morf voor x> 0;
u >0,

P 1 e,
Bewering: = heeft voor y=0 een limiet A als & - oc,

terwijl 0= A< @ is;
steeds is u > A .
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Bewijs: Zij f (1) = 1.

- oy = w— P
We stellen: {—=—— en w— =

/

" Y
=i w— P’

- ! ~ ! - . .e _ ',,
waarin «1 en 3; de spiegelbeelden zijn van z; en 3¢ ten
opzichte van de imaginaire as.

Dan voldoet @ als funectie van ¢ aan de onderstellingen
van stelling I, n.l.:
= avoortc=—0,
)
w— {31

en w=— o — B, is in absolute waarde kleiner dan 1.
W — 21

Hieruit volet: |w|< ¢

b

7y r

| w — Bi w — B

dus: e e
\ z — a1 2 — o

recele deel van (5

zroy geeft w=pBen | (a)| < . ;
& f 7 (o) | recele deel van a«

5 ; 0
dus overal is | () | S‘;"
Voor y =0 krijgen we:
] U A
d—  2=——1u v
o Y m A ( " i 7
a UE 9% n U
—_——— < —L*);gi:o
d > 2 @2

g " s
Hieruit volgt, dat 5 monotoon daalt en een limiet A heeft

.
en steeds is — > A

Stelling 111
Onderstelde: De functie w=wu - vi=[(z -y 7) is holo-
morf voor z >0,
w >0,
=0}
i
@

’j < ML .

Bewering: —-=>0 voor z- o, uniform in iedere hoek
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Bewijs: Zij x een reéel getal >0 en 21 =ux + y 4.
Zij f(@)=w en f(z1) = w.
Dan is volgens stelling II:

\

W1 — W a—a|_,
wy — w' z214a|
Z;
0 = =

waarin w’ het spiegelbeeld is van w ten opzichte van de
imaginaire as.
Hieruit volgt, dat . ligt binnen of op een cirkel met
maximum abscis:
1520

1 — .

Lo

1 .
Stellen we '{-:-m, dan is:

el

_—] — e = —
ata| Pyt ddat VA 4

en we krijgen:

e _u 1+0_£[/1F3_—-{:_'{~—|—m:

@ Tw 1 —0 @Vt gy

=i VAT (A
4 &

!

U1 : i
dus: > 0 voor z- o, uniform als m begrensd i

[77]



B=N
[8=]

Stelling 1V.

Onderstelde: w=wu -+ vi=7(z 4 y7) is holomorf voor
>0,
w >0,
A>0.

- u g kg
Bewering: 7 & voor 2~ @, uniform in iedere hoek

Y

< M < o,

Bewijs: Volgens stelling Il is > 2 2.

Zij 1> 0.

De functie f(2) — A2z voldoet aan de onderstellingen
van stelling III, dus:
w—he—p

>0 voor z— ®, uniform in iedere hoek

s<u<es,

"
— = A,

s

dus ook

Stelling V.
Onderstelde: w=—=wu -4+ vi= /(2 -+ y¢) is holomorf voor
e 0,
w >0,
K=}
Lo
Bewering: /' (2) = 0 uniform in iedere hoek 1 ?r’ | < ML

voor z—> oo;

7(2)

hetzelfde geldt voor - 2

Bewijs: De eerste bewering volgt uit |/ (z)lifé en uit
stelling III.
Het tweede gedeelte bewijzen we als volgt.
We nemen een willekeurige halfrechte i’?:c, zoodat
x>0 en ¢< M is.
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Zijn 2z en 2z twee veranderlijke punten van deze rechte,

|21 | <l 2],

dan is:

f(2)="f(z1) + fz 1 () dt.

Daar /' ()= 0 voor z— o, is 2 zoodanig te kiezen, dat
op de verbindingslijn van 2; en 2 geldt:

| " (t) | <& waarin ¢ een willekeurig positief getal is.

Hieruit volgt:

‘f(z] f(zl)l

w ‘

=g

_.1

€

&

Daar

f(z) |

l—*O voor z >, is de stelling bewezen.

Stelling VI
Onderstelde: w=wu-}-vi=/(¢r--y7) is holomorf voor
()]
u >0,
42> 0.
/(2)

Bewering: /" (2)>4 en =>4 voor z- ¢, uniform in

iedere hoek } < ML w,

Bewijs: Zij © > 0.
De functie /(2) — 42 - » voldoet aan de onderstellingen
van stelling V, dus:

f'(z) —4->0 en

= G R e AL o e

<~

! (2) : 7
z

Hieruit volgt:

’ filz) e . Som
/' (z)> 4 en -+ A voor z- o uniform in iedere hoek

(o]

<M m.
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3. We veronderstellen, dat het rechter halfvlak D (« > 0O)
door een functie

w=FfE@R=ut+ve
conform (1, 1) wordt afgebeeld op een deelgebied A van D,
bijvoorbeeld met grens I.
Uit de vorige paragraaf volgt:

w ; e
;-;-A voor z- 00, uniform in iedere hoek

el

'-%‘<M<m.

Definatie: de afbeelding s ,,conform op oneindig”, als 2 > 0
is (# is daar de ,schaal’).

Stelling: Indien de functie w=f(z) het rechter halfviak
D (x> 0) conform (1,1) afbeeldt op een deelgebied A van D,
dan s noodig en voldoende voor ,conformiteit op oneindiy’,
dat de integraal

v o]

f | 7 —arg w(y) + arg w(— y) |

2 >0

dy
Y

convergent is.

Bewijs: Noodig en voldoende voor conformiteit op oneindig
is de eindigheid van log 2,
w
z

of: log - eindige limiet op O X voor @ -+ o,

w » v e
Daar arg — een geconjugeerde harmonische functlie is van
2

log

e

w ; ;
{, volgt door toepassing van § 1 van dit hoofdstuk:
z

w Tt A { .
logl— - eindige limiet op O X voor «- o din en dan
2
alleen, indien de integraal

m 9 / I R
: %l,d wly) L w(=nldy
c oy s —y )y
x>0

convergent is.
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Daar argy = = en arg — y = — 7;, als ¥ >0 is, kan de

(Y

o | A
|

laatste integraal worden vervangen door de integraal

s d
’ {7 —argw(y) -+ argw (— ) | ir/ 1)

« >0

4. In het rechter halfvlak D (x>0) zij gegeven een
kromme [’ met de volgende eigenschappen:

1°. het deel van I' boven de X-as heeft een poolverge-
lijking p=p (0 [0 zij de hoek van de voerstraal met de

“-as, 0<(J<

2. op het deel van I' boven de X-as draait de raaklin
voor 4 -0 continu linksom en - vertikaal;
3° I is symmetrisch ten opzichte van de X-as.

We noemen het gebied rechts van I't A en we beelden
D op A af door een functie

w=u-+vi=7f(2),
zoodat v=0 voor y=0
en dat w-> 0 voor - 0C,

De afbeelding is conform op oneindig indien de 4 van f (2)
positief Is.

Daar I' symmetrisch is ten opzichte van de X-as, is de
noodige en voldoende voorwaarde voor conformiteit op on-
eindig, dat de integraal

‘J),'

o) — arg w (y)

sy
.I y
convergent is.
Onze bedoeling is deze voorwaarde zoo te veranderen, dal
in het kriterium alleen de vorm van I’ voorkomt.
Y llc LA]{*- Avurors : Untersuchungen zur Theorie der Konf, Abb.

und der ganzen Funktionen. Acta Societatis Scientiarum, Fennigae
(Helsingfors) 1930.
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DBewering: Er bestaat een positief getal O, zoodat voor
log \ w(y)| . . Al
y > C geldt, dat B 24 ligl tusschen twee positieve con-
stanten A en B.
Bewijs: We stellen {=£& -} yi=1logz
en w—= U+ Vi=logw
Uit het onderstelde volgt, dat met @ van het z-vlak corres-
pondeert het oneindig ver naar rechts liggend punt van de

vy

strook | 7| < %. We noemen deze strook .

3
-

Voor { op de rechte :4:;}i geldl
dw av d arg w
arg""‘——affh—-ﬁ’r' — i - — e
a7 rg d w I = bty f!lwr[;r
l
———Bij’” 8
d,.J

Uit de eigenschappen van I' volgt:
pdl

; -0 voor 60, dus de binnen de strook S (4 <‘.2) bhe-
ap

' ; d w = :
agrensde harmonische functie arg q¢ ‘an ¢ nadert op beide

randen van S voor &- o ot nul
Derhalve geldt tweedimensionaal (stelling 1, hoofdstuk 1I):

i w -
arg =+ 0 voor & .
d ¢
Hieruit kunnen we besluilen:
de beelden van genoegzaam ver naar rechts gelegen verticale
lijnen {¢{ van S worden krommen, waarop de schommeling

van U zoo klein is als men wil. . . . . . . . (1)
Op O X geldt:
| 0| | w |

is afnemend en

| ] | ]
Dus op de diameter van S geldt:
U — & is afnemend als & toeneemt.
Als dus op die diameter & met 1 toencemt, neemt U op
den duur met hoogstens 1 toe.
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Hieruit kunnen we onmiddellijk besluiten:

U b
=< 4d’, 4" vast voor £ >¢>0, y=0. . (2
[

Nu bevat H een strook | V' |<h, h>0.
Deze strook beeldt zich af als een gebied G, gedefinieerd door

|7 | <FE) met 0<fEO)<h, —ox<ELm,
f E)=>0 en f(&)~>h voor £ mw,

Onderwerpen we het gebied | V| < aan de gelijkvormig-
heidstransformalie

V' N = |V a
| 7 =7 l><2h

dan is het gedrag van het gebied ' ten opzichte van de

strook | 'V'Isi% analoog met het gedrag van het gebied H

len opzichte van de strook | SQ

Hieruit volgt:

‘z " - U
%, < B, B" vast voor £ >¢c: >0, y=0.

Dus ook: -§<B', B’ vast voor £>¢ >0, y=0 .. (8)
Door combinatie van (1), (2) en (3) vinden we:
0<B'”<%<A”', B en A" vast voor £ >¢ >0

en voor alle #,
dus:
0 log | w(y) | 7
0<TB ' <<————— A yoor'y > >0,
log y
Hetgeen te bewijzen was.
Maar in verband met de vorm van I' kunnen we hieruit

besluiten:
log

0 B" <L 10_:{;1) LA™ voor y>e¢>0.



fN ?_(-"/.)__d Y > BON) o
Y

B

49

Ten slotte is dus het resultaat:
Er bestaan positieve getallen C, 4 en B, zoodat voor
y > C geldt:
Blogwv(y) <logy << Aloguv(y).
Met behulp van dit resultaat gaan we de voorwaarde voor
conformiteit op oneindig wijzigen.

-

We stellen: — arg w (y) =0 ().

w‘

Er beslaat een positief getal €, zoodat voor y > O geldt:
Blog v <logy < A log v.
Er bestaal een positief getal 1), zoodat voor y > D geldt:
r( 0 () .

= 1s negatief.
dy

Dus bestaat er een positief getal %, zoodat voor 2> (!
en I* > 1) aan beide voorwaarden wordt voldaan,
Noodig en voldoende voor conformiteit op oneindig is, dat

[ “o(dy
y

convergent is.

:I;'

Zij N> F, dan is:
o
f ARG — (\)IOO'N—(JU‘)I(WI*——, log y (M(”)
Y L dy
E E
N

<A 6(N)logv(N)— A0 (F)logv(E) — A f logvdd(y) -
:’:’

+ 1 A0 (E)log v () — 0 (F) log I |

- (constante, die onafhankelijk is van N) .

") () d v
=i

v (E)

B

+ 1 BO(E)logv (K) — 0 (E)log B | =

v(N)
-‘-"—]3’{ i) dv -~ (constante, die onafhankelijk is van N).

()
v (&)

(1)

Al
gv(N)— Bo(E) logv(E)— B [ log v d 0 (y) +

(2)
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Conelusie: Als de aftbeelding conform op oneindig is (2 > 0),

. No(y)da
dan is J. —(-"!-L 4 begrensd voor alle X, dus ook wegens (2):

f

v (E)

M convergent.

“0(v)dov !
Als f _() convergeert, dan is volgens (1) ook

v
v (E)
C0(y)da
f L convergent, dus de afbeelding conform op on-
v

E
eindig (4> 0).
Noodig en voldoende voor conformiteit op oneindig is
dus, dat
“owdo ;

f ———— convergent 1s.

d ()
Maar 0 (v) = B tg ': a ;

Ten slotte vinden we dus:
Noodig en voldoende voor conformiteit op oneindig (2> 0)
ts, dat de integraal
i) :
o d v convergent is.
1

We geven ten slotte nog enkele voorbeelden van krommen,
waarbij de afbeelding conform op oneindig is.
Zij de vergelijking van het deel van I" boven de X-us
y = xP
en zij I' symmetrisch ten opzichte van de X-as, dan is de

integraal
s 00 1

P d g
! J—;/—.; Y convergent voor p > 1,

dus 2>0 voor p > 1.
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Zoo vinden we:

Yy y
logy logylog:

A=0 bij z=

y y
(log )™ log y (logs ) **

waarin o >0 is. 1)

A>0 bij =

1) Zie Variron: Bulletin des Sciences mathématiques, 53, 1929 (Sur
un théorime de M. JULIA, élendant le lenvne de Schwarx, § 4.
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STELLINGEN,

1%

De vraag, door P. Farou gesteld, of er een holomorfe
functie f(2) binnen de eenheidscirkel bestaat, die bij radiale
nadering tot de cirkelomirek in alle punten van de cirkel-
omtrek de waarde nul krijgl, terwijl f(z) niet identiek nul
18, moet ontkennend worden beantwoord.

P. Fatou: Acta mathematica, Band 30, blz, 393.

2

o

De moderne theorie van de integraal van [Porsson is van
veel belang voor de conforme afbeelding.

3.
De theorie van de begrensde machtreeksen vertoont groote
overeenkomst met de theorie van de mod. 2 = periodicke
meetbare begrensde functies bij de reeksen van Fourikr.

4.

De stelling van P. Farou over de randwaarde van de
geconjugeerde harmonische functic van de integraal van
Porssox blijft gelden, indien wordt verondersteld, dat de op
de eenheidscirkel gegeven begrensde sommeerbare funclie
F(p) in een interval (¢ 4+ 4, ¢ — J) de eigenschap heeft,
dat lim ' (p £ 0) =0.

=0
P. FAtou, Acta Mathematica, Band 30.
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9.

Het is gewenscht de melingen van Bexer BECKMAN over
de groote weerstandstoename van kwik in een magnetisch
veld boven het sprongpunt bij femperatuursdaling van
T=20°3 K tot T'—14°5 K te herhalen en uit te breiden
voor andere suprageleiders.

Comm. van Leiden, 132a, § 17,

6.

De chemische binding, opgevat als electrostatisch ver-
schijnsel, verklaart op bevredigende wijze de verschillen in
vluchtigheid der halogeenverbindingen van vele elementen.

/s

Tegen de opvatting, dat een WorLr-Raver ster als eind-
product van een nova moet worden beschouwd, zijn bezwaren
aan te voeren.

8.

De zoogenaamde logische hewijzen voor de eindigheid van
ruimte en tijd zijn onjuist.

Ta. MorEux: Les confing de la science et de la foi.
P. Arevn: Die Uberwinding des Materialismus.

9.

De schijnbare paradoxole moeilijkheden,die zich in de pro-
jectieve analytische meetkunde voordoen bij het bepalen van
het aantal figuren die aan gestelde eischen voldoen, worden
verklaard doordat men een stelsel vergelijkingen, tezamen
met een stelsel ongelijkheden moet oplossen.

10.

Het gebruik van de aflinileitsas sy, geeft bij verschillende
constructies in de Beschrijvende Meetkunde geen voordeel.
WiipENES: Euclides, 7e jaargang 1930—1931, n® 3.
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