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KAPITEL I,

DIE TRANSFORMATIONSEIGENSCHAFTEN DER
WELLENFUNKTIONEN.

§ 1. Einfiithrung der Spinvektoren.

Die Transformationseigenschaften der Losungen der Wellen-
gleichung mit Hinsicht auf Drehungen des Koordinatensystems
spielen bei vielen physikalischen Anwendungen eine wichtige Rolle.
In diesem Kapitel wollen wir diese Transformationen untersuchen.

Wir definieren im euklidischen dreidimensionalen Raum ein
Koordinatensystem mit x, y, und z-Achsen. In diesem Koordinaten-
System sei ein Vektor A der Linge Null gegeben mit den
Komponenten a, b und c¢. Es besteht also die Relation:

a4+ b2+ cT=0 . . . . . . . (1)

Diese Forderung besagt, dass mindestens eine der Zahlen a, b, ¢
nicht reell ist. Die Relation (1) zerfillt in zwei Teile: reeller Teil
von a? + b2 4 ¢ gleich Null (la) und imaginirer Teil von
a® + b2+ 2 gleich Null (1b). Dieser Vektor A definiert ein
orthogonales Achsenkreuz d. h. drei gleichlange zueinander senk-
rechte Vektoren X, Y und Z von denen die zwei reellen Vektoren
X und Y durch:

Xy = N(a) Yy = N(ia) = — Ja)
X, = R(b) Yy=WR@ib)=—30b) . . . (2
X. = Nc) Yz = Nic) = — J(c)

gegeben sind.
Hier bedeutet Ji(a) reeller Teil von a, \(a) imaginirer Teil von a.
Die Bedingungen (1a) und (16) lassen sich jetzt schreiben als:

X{’-}—X{’—{—sz Ye + Y+ V=72 (1a’)
Xa Yot Xy Yy + X Ye=0. . v . . . (1D)
Die Vektoren X und Y sind also tatsichlich zueinander senk-
recht und haben die gleiche Linge r. Wir definieren den Vektor
Z senkrecht zu X und Y und mit der gleichen Linge r.
Ein neuer Vektor A’ der Linge Null entsteht aus A, indem
1
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man die Komponenten mit einem Phasenfaktor e® multipliziert:
A’ — i A. Aus der Bemerkung dass B = 9t Ae?™f einer gleich-
missigen Kreisbewegung mit der Frequenz e des Punktes B in der
x, y-Ebene entspricht, erkennt man unmittelbar, dass Multipli-
kation der Komponenten von A mit einem Phasenfaktor e'® einer
Drehung des Achsenkreuzes um den Winkel a um die z-Achse
herum entspricht.

Wir konnen die Komponenten der Vektoren X und Y in den
Eulerschen Winkeln ¥, @, y zwischen Achsenkreuz und Koordinaten-
system ausdriicken:

X, =r{cos @ siny — sin ¢ siny cos ¥}
X, = r {cos p siny -+ sinp cos y cos ?}

=

X:=r {sin @ sin 7}, 3)
Yy=r{— sing cosy — cos ¢ siny cos ¥}
Y, = r {cos ¢ sin y + cos ¢ cos y cos ¥V}

Y: =r {cos ¢ sin 9}.

Fiir a und b findet man sodann:
a+4ib=Xe— iYx + i(X, — i¥,) = r(cos ¥ 4+ 1)e
—atib=— X+ iVt i(X,—i¥y) =r(cos ¥ — 1)efl#—¥)
Wir ordnen dem Vektor A im x, y, z-Raum einen Vektor
(£, 77) mit zwei komplexen Komponenten £ und 7 in einer &, 7 -Ebene
zu in folgender Weise:

i(pty)

(4)

2
E=Va+ib 0 ;
= , (o) 24+ . . (5b
n = V— a+ib b= F )
c=—§&

Wir nennen einen Vektor dieser Art einen Spinvektor. Durch
die Formeln (5a) ist der Spinvektor (%, ) vierdeutig definiert. Die

letzte Relation (5b) legt aber, nach der Wahl von & aus zwei
moglichen Werten, den Wert von 7 fest. Der Vektor (£, #) ist
hierdurch nur noch zweideutig. Seine Komponenten sind bis auf
einen Faktor & 1 definiert. Es ist also dem im vorigen Paragrafen
besprochenen Achsenkreuz ein Vektor (& #) zugeordnet. Eine
Drehung des Achsenkreuzes um einen Winkel a entspricht offenbar
einer Multiplikation der Komponenten mit e'/2ta,
Es wird nach (4): A
£=V2r. cos 2 : 7@+ ¥)
2
7 =V2r.i. sin"g_ ekl

4]

(4
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Wenn das Achsenkreuz mit dem Koordinatensystem zusammen-
féllt, also wenn ¥ = ¢ = v = 0, wird & = V2r und 7=10i

§ 2. Die unitiren Transformationen.

. Wir fragen nun wie & und 5 sich transformieren beij einem
Ubergang vom x, y, z-Koordinatensystem zu einem gedrehten
orthogonalen Koordinatensystem x', ', 2’. Die Komponenten a, b, ¢
des Vektors A gehen bei dieser Transformation iiber in a’, biscy
und es gilt:

a' = apja + appb + agac

b" = agja + agb + age law | =1. . . . (7)

cC = fzgla + fl:'l.-lb + ”3:":(:

Da die ay reell sind, werden auch N(a), N(b) und N(c) sowie
J(a), J(b) und J(c) sich wie die Komponenten eines Vektors trans-
formieren. Damit ist die Definition des Achsenkreuzes in § 1 ge-
rechtfertigt. Weiter folgt hieraus, dass auch a*, b* c* 1) die
Komponenten eines Nullvektors sind und dass nicht nur a® + b2 + ¢2
sondern auch |a|2+ | b 2+ | c 2 eine Invariante dieser Trans-
formation ist.

Es ist leicht zu sehen, dass der betrachteten Raumdrehung eine
lineare Transformation der Komponenten des Vektors (&, 5) ent-

9
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u insetzt, siel dass &, 5% und &) sich linear trans-

-S.W. einsetzt, sieht man, dass &2, 4% un &1 sich linear trans

formieren:

= e
2 E
. (=

spricht. Indem man in (7) fiir a = *2—; us.w. und a’ =

&-IB = f)‘]l[.:,:z + {}[2)12 —!_ ;}ISE,] . . . . . (Sa)
0% = P&+ Pon® + Pusin . . . . (8) (8b)
§0° = L&+ Peam?+Puén . . . . . (80)

Da das Produkt der linken Glieder von (8a) und (8b) gleich dem
Quadrat des linken Gliedes von (8¢) ist, so muss dies auch fiir die
rechten Glieder der Formeln (8) gelten. Hieraus folgt aber, da
&% und 92 nicht gleich sind, dass die rechten Glieder von (8a)
und (8b6) beide Quadrate sind, und es gilt:

&' =af+ By
N =&+ dy

Bezeichnen wir die zum Vektor — a*, — b¥ — c* gehorigen
& und 4 mit & und 7 so gilt:
£2 = — a* — jb* = (— a + ib)* = + 5*2
a* —ib*=(a+ib)*=+& . . . (10)

) = c* = — iy

(9)

[ Ve |
[ £~

i

Iy
~

) Mit * bezeichnen wir immer den komplex-konjugierten Wert einer Grésse.



Es gilt also:

£ =T g* =Rt st st s el (11)
Es transformieren sich also — #* und & genau so wie & und 7.
Das Transformationsschema der letztern ist also identisch mit dem
Schema:
= — R — §*p*
g = 4 et pEpe (12)
Hieraus folgt: a = 6%, f=—p" und das Transformationsschema
vereinfacht sich zum Transformationsschema der unitdren Trans-
formationen:
E=at+f
e T (13)
) = — B +ay
Aus (5b) findet man leicht:
lal2+| b2+ | c|]2=1/(88* + m*)2=22 . . (14)

Es ist also (£* + un*) eine Invariante bei den Transforma-
tionen des Vektors (£, ), ihrer Bedeutung nach ist sie gleich 2r.
Aus der Invarianz von (££* + #n*) folgt, dass im Transformations-
schema (13) ad® + ff* =1 ist.

Um die 2 und f auszudriicken in den Eulerschen Winkeln &, ¢, y
welche das gedrehte Koordinatensystem in Bezug auf das alte
definieren, wihlen wir die Drehung so, dass das durch & 7 defi-
nierte Achsenkreuz mit dem neuen Koordinatensystem zusammen-
fillt; sodann gilt nach (6): & = V2r o =0.

Es folgt also:

VZ; = af + By

Sl (15)
oder:
“szr:f A O (16)
FV2r =9y
und mit Hilfe von (6):
5 gty
a=cos, .e
" (17)
p = —isin Z eif*’_l‘rr_w
5 -

Diese Formeln zeigen, dass nach einer Drehung 2z um die z-
Achse & und # nicht, wie a, b, ¢, zu ihrem Ausgangswert zuriick

kehren, sondern dass: & = — & und 7" = -— 1.



§ 3. Invarianten.

Betrachten wir zwei willkiirliche Spinvektoren (£, ;) und (&, 72),
so ist (— 7o& + 7€) eine Invariante bei unitiren Transforma-
tionen. Wir bilden ein homogenes Polynom vom Grad g in den
Komponenten von n Spinvektoren (&, 1) . . . . (£, 75) und nehmen
an es sei invariant.

Die unitire Transformation:

37 = i
t = Ee'?

(18)

n =ne '?

ldsst im besondren dieses Polynom invariant. Dies ist aber nur
moglich wenn jeder Term in sich selbst iiber geht. Da & mit e
und % mit e '” multipliziert erscheint, muss der gesamte Grad
eines Terms in den & gleich dem gesamten Grad in den 7 sein.
Der Grad g des Polynoms ist also gerade. Wir schreiben g=2v
und beweisen, dass dieses invariante Polynom P(&, 7) immer als
ein Polynom in den Grundinvarianten (— & -+ &) geschrieben
werden kann. Dazu schreiben wir:

(k) = — bf; + any
SR e L S S R (10}

Wo a und b die Komponenten eines Spinvektors sind und be-
trachten das Polynom P((k)*, (k)), wo an Stelle von &, bezw. 0k
die Invarianten (k)*, bzw. (k) geschrieben sind. Nach einer Trans-
formation, so dass b’ = b'* = O wird, findet man:

P((k)*, (k) = (a’a™*)* P&k, n%) . . . . (20)

Die beiden in dieser Gleichung auftretenden Polynome P sind
invariant.

Nach einer Transformation von a’, b, &, ni zuriick nach a, b,
&k ny findet man:

P((k)*, (k) = (aa* + bb*)® P(éx,mx) . . . (21)

Da a* und b* algebraisch unabhiingig sind von a und b, darf
man a, b, a*, b* bei allen analytischen Prozessen als unabhingige
Variabeln betrachten. Wir fiihren sodann den Operator

o= 0 o

3ada® | 3bObY) (22)
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ein, der auf a, b, a*, b* wirkt. Die Anwendung dieses Operators
auf (k)*. (k') liefert:

0? Oz SR\ c : .

(aaaa* +Bbab*) (@*Ex + b*nx) (— bk + ane) = (— medrr + Nirki)
A =0 « o o L 2 os s (k)

Aus dem Polynom P((k)*, (k)) wird also nach v-maliger Anwen-
dung des Operators ein Polynom in (— %4k = nwék), wo k und
k=115 2 s I n;

Da, wie man leicht nachrechnet:

Gk 02
(6m3a* + 3005
wird aus (21), durch v-malige Anwendung des Operators £2:
= 1) w! P(&, k) = Pol ((— nrér + niker))

KR iciE=21W2 S r R (25)
Hiermit ist der Beweis geliefert. 1)

) (aa® + bb%)? = v(v + 1) (aa* + bb¥) ' . . (24)

. -

(v

Ein inhomogenes invariantes Polynom zerlegen wir in seine
homogenen Teile. Da die Transformation linear ist, so muss jeder
dieser Teile invariant bleiben.

Wenn man neben den Spinvektoren (&, ;) . . . . (4 %) auch ihre
komplex-konjugierten (£,%, 5,*) betrachtet, so treten die folgenden
Grundinvarianten auf:

(— ki + nikr) (Ex&r™ -+ i) (26)
(— ™ 6™ + i) (Exw™ + qege™)
denn es transformieren sich ja & und #* wie # und — &.

Der Beweis, dass ein invariantes Polynom in den (&, #;) und
(£*, %) ein Polynom in den Grundinvarianten ist, ist vom oben-
gegebenen Beweise nicht wesentlich verschieden.

§ 4. Darstellungen einer Gruppe.

Bekanntlich bilden die Raumdrehungen eine Gruppe. Man spricht
von einer eindeutigen Darstellung vom Grad g einer Gruppe,
wenn jedem Element R eine lineare Transformation von g Vari-
abeln V;....V, zugeordnet werden kann:

Vi=SafV,. . . . . . .. (@)

derart dass:

Rl aR2 — R
%al\:rlnar;j—ak‘il coe e e e (28)

1) Ein Beweis dieses Satzes fiir mehr-dimensionale komplexe Vektoren ist von
Turnbull gegeben (Vgl. Proc. Akad. Amst. XXXIV, 413.).
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gilt, wenn das Produkt R;R, der Gruppenelemente R; und R,
das Element R; liefert. Dieses besagt, dass das Resultat der auf-
einander folgenden Transformationen:

V,= SaRV, N
i \ P 'l . . - - (29)
V=2 aRV,
eben:
V=X ai"; Vol S SR (30)
heisst.

Das System der af, bildet die zu R gehérige Transformations-
matrix. Das linke Glied in (28) gibt die Elemente der Matrix,
die durch Multiplikation der Matrizen a” und a® entsteht; in
der Schreibweise der Matrixtheorie heisst es also einfach:

It

L — ﬂ'r‘)“ . . . . . . . (31)

Die einfachste eindeutige Darstellung der Raumdrehungsgruppe
ist eben das Transformationsgesetz (7). Jeder Transformation (7)
und also auch jeder Raumdrehung lassen sich zwei unitire Trans-
formationen der (& #) zuordnen. Diese Transformationen bilden
also eine zweideutige Darstellung der Raumdrehungsgruppe.

Wenn man statt der Variabeln V; mittels einer festen Matrix S
(mit nicht verschwindender Determinante) irgendwelche lineare
Kombinationen:

Ni=SuVi . . « . . . . (32

als neue Variabeln einfiihrt, so entspricht jeder Transformation
der V' eine Transformation der N; die N geben also auch Anlass
zu einer Darstellung der Gruppe, oder wie man sagt, sie indu-
zieren eine Darstellung. Die den Gruppenelementen zugeordneten
linearen Transformationen sind in diesem Falle gegeben durch

o : . . R =
I'ransformationsmatrizen a«”", die die Form haben:

B A= ISR a S (SESSI=A1) R3]

kol

Die zwei Darstellungen durch die @™ und die «"* bezeichnet
man als aequivalent.

Es kann vorkommen, dass die Darstellung (V) so beschaffen
ist, dass die g Variabeln V' in Gruppen von g;, go. .. ..gs Vari-
abeln zerfallen in solcher Weise, dass die Variabeln der einzelnen
Gruppen sich jeweils (d.h. fiir jedes Element der Gruppe) nur
untereinander transformieren:

M, =X af, M, o b=1,2....9) . . (39)

ky I kil i
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Unsere Darstellung reduziert sich in diesem Fall auf s Darstel-
Jungen niedrigeren Grades, und die Elementen der Transforma-
tionsmatrixen af, sind immer Null, ausser wenn sie sich innerhalb
gewisser Quadrate befinden, deren Hauptdiagonalen mit der Haupt-
diagonale des ganzen Matrix zusammenfallen. Wenn die Dar-
stellung af zwar nicht diese Form hat, wenn es aber eine ihr
aequivalente Darstellung (N) gibt, bei der die Transformation als
reduziert erscheint, so nennt man die urspriingliche Darstellung
reduzibel.

Es ist leicht einzusehen, dass die Darstellungen (7, 13) der
Raumdrehungsgruppe irreduzibel sind.

Eine irreduzibele Darstellung vom Grad 2j 4+ 1 wird induziert

von den 2j -+ 1 Monomen:

M=t mp e (mi e = | B e — == | =y ) IS (35)

wo j ganz- oder halbzahlig ist. Im ersten Fall nennt man die
Darstellung ungerade, im zweiten Fall gerade.
Diese Darstellungen und die ihr aequivalenten sind die einzigen
irreduzibeln Darstellungen der Raumdrehungsgruppe !). Der Fall
j =1/, ergibt die oben besprochenen Transformationen der & und
. Die Darstellung durch die Transformationen (7) ist aequivalent
mit der Darstellung induziert durch die Monome &%, %% und &,
(Vgl. (8)). Es ist hier j = 1 und die Darstellung ist vom Grad 3.
Offenbar sind die ungeraden Darstellungen eindeutig, die geraden
dagegen zweideutig.

§ 5. Die Wellenfunktionen eines Atoms mit einem Elektron.

Eine erste Anwendung ist das Problem des sich in einem
zentralsymmetrischen Felde befindenden Elektrons ohne Spin.
Die Schrédingergleichung fiir diesen Fall lautet:

(E— V)y = S (0 )
|

Hierin ist E die Energie und V die Potentialfunktion. Nur
fiir bestimmte Werte von E hat die Gleichung eine iiberall end-
liche Losung. Die Losungen lassen sich als das Produkt zweier
gegen Raumdrehungen invarianten Faktoren anschreiben:

Y = F(r}(ax + by + cz)’ . . . . . (37)
WO
2 = x‘.! -+ y:! :2

1) Vgl. H. Weyl, Gruppentheorie und Quantenmechanik, Kap. III, § 30.
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und a, b, ¢ die Komponenten eines Vektors A der Liinge Null sind.
Es ist:
IE=i(ax ibyiti-icz) R TREEE R S (38)

eine Losung der Gleichung Ap = 0 und also ein harmonisches
Polynom. Die Funktion F(r) muss, wie man leicht nachrechnet,
eine (iiberall endlichbleibende) Losung der Gleichung:

d*F | 2l dF |, 82’m
;:iir';"—'_r'dr—%_ B (B VA P HE=1() B (3G
sein.

Wir zerlegen nun das invariante Polynom T in nicht invariante
Teile. Dazu fiihren wir nach den Formeln (5) anstatt a, b, cdie
£ und 7 ein:

2 \iI

JEC BN i i ‘
" x ny——:n:) oo (R

L EE=E oy a5
1¥ ( 5 X 5
Dieser Ausdruck ist ein in & und 3 homogenes Polynom vom
Grade 21 Die 2! + 1 Koeffizienten dieses Polynoms sind Polynome
vom Grad [ in x, y, z und geniigen offenbar je fiir sich der
Gleichung d¢ = 0.
Einfiihrung von Polarkoordinaten fiir x, y, z nach:
X + iy = r sin Je TP

X—ig=rsinde™" . ., . . . . (41)
Z =r cos U
ergibt:
; f S( . fr{.‘-'__! ( " 17 |-1_Q:)
T'= (L (\fe 2)sin ¢ — 2\&e 2 . pe 2 Jeos 1) —
] _
2 (42)
‘},f'f‘)'-’ )
—(r;c 2/ sin )
Nach Substitution von:
_1”}‘
Xi=teli2 X _
Ly y=7 o e e e (43)
Y=z 2

findet man:

{ r I ] & . { { . { r" rFo \ 12 = l )[
= (2) Y2 {yZgin ¥ — 2y cos # — sin ¥} = (2) ) —‘2-—751,“'1,} 5 (44)
worin
t = cos ¥} — y sin ¥,
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Die Taylorentwicklung nach y ergibt:

= +£ _'t' l Tl—m VI +m[ai =l __ecin 'x'—ms d J_m’ 2 .’) -
O [ I

= z=cos? |
\Il—m 7 (45]

')i [((Elrzn%l El=m pl+m oim? (gin )=m (dﬁgs {}) (1 — cos? 0‘)1J

Hiatten wir 7 nach Potenzen von e anstatt 7}, entwickelt, so
L

\

+1
-,
= >

m=—1

—
~

hitten wir bekommen:

d
d cos i,

o+ 1
Tt — (rj T I:( sle-m ?]l +m olmp (smﬁ) ( (1 — cos? {})l} (‘46|

21‘”!'_ l"—mJ'H

Es gilt also:

s l'm ) e
Criitofis U eime gin ) "‘( d-() (1 — cos? )l =
(Il —— m)! d cos 1),
1 Cd A\l (47)
(H‘m)!e (sin #) (d o 1.}) (1 — cos? &)

Diese Funktionen von # und ¢, die wir laut dem ersten Gliede
in (47) mit Q" bezeichnet haben, sind eben bis auf einen Zahlen-
faktor die tesseralen Laplaceschen Kugelfunktionen.

Gemiss (37) entspricht jeder Zahl [ eine Reihe von 2/ 1

Wellenfunktionen:
yir=FE 1) Q'@ ¢ . . . . . (48)
Da nun:
+
£ £ - (2[J| > s e
t-‘: + Tﬂ? JJ = ”17 ([+ m)’ 1_ m)l ! m }}{ +m :-.-!—m u.rl+ m (49)

invariant ist, wie auch T/ so transformieren sich (vgl. 45, 47)

bei einer Anderung des Systems von Polarkoordinaten die Qr
genau so wie die Grossen:

@
(I + m)! (I — m)!

oder (vgl. 11) wie die Grossen:
e l—~m lem l—m
1) (1+ rn) 7 ;

§ 6. Die Wellenfunktionen im allgemeinen Falle eines freien
Atoms.
Auch im Falle eines freien Atoms mit vielen Elektronen, deren

E! m )‘, #l+m
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Spins mitberiicksichtigt werden, kann man eine Aussage dariiber
machen, wie die Losungen der zeitfreien Schrédingergleichung:

Hpy=Ew . . . . . . . . (50

die zu einem bestimmten Eigenwert E gehéren, sich bei Raum-
drehungen transformieren. H ist der Hamiltonsche Operator, worin
auch die Wechselwirkung zwischen den Elektronen und die Spin-
storung aufgenommen sind. Der Eigenwert E ist die Energie. v ist
eine Funktion der Raumkoordinaten der Elektronen und der
Spinkoordinaten.

Zu einem Eigenwert gehoren im allgemeinen mehrere Eigen-
funktionen der Schrédingergleichung. Es mégen die y*(k = 1,2...)
ein System von linear unabhingigen Funktionen bezeichnen, aus
denen jede Eigenfunktion aufgebaut werden kann. Der Hamil-
tonsche Operator H ist, seiner Form nach, invariant gegen Dre-
hungen des Koordinatensystems. Hieraus ergibt sich, dass die
Funktion ', die aus einer L&sung v der Schrédingergleichung
durch eine Drehung des Koordinatensystems hervorgeht, auch eine
Losung ist. Diese Funktion ' muss sodann aber notwendig eine
lineare Kombination der vorhergesuchten Losungen w* sein. Die
zum Eigenwert E gehérigen Losungen y* der Schrodingergleichung
transformieren sich also linear bei Drehungen des Koordinaten-
systems. Ihre Transformationen bilden eine Darstellung der Raum-
drehungsgruppe. Diese Darstellung lisst sich nach dem in § 4
besprochenen in irreduzibele Darstellungen zerlegen, wenn sie
nicht schon irreduzibel ist. Wir betrachten einen solchen Bestand-
teil, der vom Grade 2j+ 1 sei. Das bedeutet aber, dass dieser
irreduzibele Teil der Darstelling von 2/ + 1 Wellenfunktionen
1{]}" induziert wird, die so gewiihlt werden kénnen, dass sie sich
transformieren wie die 2j + 1 Monome &+ yi-M,

Wenn wir jetzt in den Hamiltonschen Operator ein Storungs-
glied aufnehmen, dass invariant ist gegeniiber Raumdrehungen, so
ist es moglich dass Wellenfunktionen, die vor der Einfiihrung der
Stérung zum selben Eigenwert E gehérten, iibergehen in Wellen-
funktionen, die zu mehreren verschiedenen Eigenwerten E,, E,,
----- E,: gehéren. Man sagt, dass der Eigenwert sich gespaltet
hat. Wenn wir nachher die Stérung wieder riickgingig machen,
d.h. sie nach Null konvergieren lassen, so miissen die neuen
Wellenfunktionen schliesslich iibergehen in Linear-Kombinationen
der ungestérten. Fiir jeden Eigenwert Ej transformieren sich diese
zugehorigen Linear-Kombinationen untereinander bei einer Raum-
drehung: die Maglichkeit der Aufspaltung bedeutet also, dass die
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durch die ungestorten Wellenfunktionen induzierte Darstellung
reduzibel war. Die Energieniveaus bei denen die zugehorige Dar-
stellung irreduzibel ist, konnen sich also bei einer Stérung des
besprochenen Typus nicht mehr aufspalten (im entgegengesetzten
Fall spricht man von zufélliger. Entartung). In der Spektroskopie
nennt man j die innere Quantenzahl des entsprechenden stationéren
Zustandes, wenn 2j + 1 sein Entartungsgrad ist. Threr Bedeutung
nach ist j die Quantenzahl des totalen Impulsmoments des Atoms
im betreffende stationdren Zustand. Mittels der quantenmechani-
schen Definition der Operatoren, die den Komponenten des totalen
Impulsmoments entsprechen und die eng mit dem Resultat infini-
tesimaler Drehungen zusammenhingt, ldsst sich diese Behauptung
beweisen !). An dieser Stelle gehen wir darauf jedoch nicht niher
ein. Die Einfiihrung eines homogenen Magnetfeldes hebt die in
Rede stehende Invarianz des Hamiltonschen Operators auf, und
die 2j + 1—fache Entartung wird aufgehoben, d.h. man hat jetzt
2j + 1 Wellenfunktionen, die sich durch den Wert einer ,mag-
netischen Quantenzahl” unterscheiden und die zu verschiedenen
Energieniveaus gehoren.

Da M der Komponente des totalen Impulsmoments der Z-Achse
entlang entspricht, was sich mittels infinitesimaler Drehungen be-
weisen ldsst, so bilden die ungestorten Eigenfunktionen /' eine
nullte Nidherung der gestérten Eigenfunktionen im Fall eines
homogenen, léngs der Z-Achse gerichteten, schwachen Magnetfeldes.

Da j sowohl ganz-, wie halbzahlig sein kann, treten auch zwei-
deutige Darstellungen (n.l. die von geradem Grad) auf. Fiir die
physikalischen Anwendungen bildet dies aber keine Schwierigkeit.

§ 7. Die Spin-Bahnkoppelung.

In diesem Paragrafen wollen wir die Transformationseigen-
schaften der Wellenfunktionen etwas ndher untersuchen und auch
ein Beispiel der im vorige Paragrafen besprochenen Reduktion
geben. Die Terme in der Schrédingergleichung (50), die sich auf
die Wechselwirkung zwischen Spin und Bahn beziehen, kénnen
oft als eine kleine Storung aufgefasst werden. Wir vernachlissigen
siec und ldsen sodann die Schrédingergleichung, die nur noch die
Raumkoordinaten aber nicht mehr die Spinkoordinaten enthiilt.
Da auch nach oben genannter Vernachlissigung der Hamiltonsche
Operator der Form nach invariant ist gegeniiber Raumdrehungen,
so induzieren die zu einem bestimmten nicht zufillig entarteten
Eigenwert gehorigen nur von den Raumkoordinaten abhingigen

1) Vgl. H Weyl, loc. cit. Kap. IV, § 35.
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Losungen w7 eine irreduzibele Darstellung der Raumdrehungs-
gruppe. Die 2/ +1 zu dieser Darstellung gehorigen Wellenfunkti-
onen lassen sich so wiihlen, dass sie sich transformieren wie die

2l 1 Monome (Vgl. § 6):
F g (=Ll =—=S T e — )

Die »7 sind eindeutige Funktionen und transformieren sich auch
eindeutig. Der Grad der Darstellung ist also ungerade und die
Quantenzahl [ des totalen Impulsmoments ist immer ganzzahlig.
In § 5 haben wir beim Ein-Elektronenproblem ein Beispiel einer
solchen eindeutigen Darstellung gefunden. Die y]" waren in diesem
Fall bis auf einen vom Radius unabhiingigen Faktor einfach
identisch mit den (eindeutigen) tesseralen Kugelfunktionen.

Wir kénnnen die Loésungen y7* mit jeder willkiirlichen Funktion
der Spinkoordinaten multiplizieren, das Produkt wird noch immer
eine Losung der Schrédingergleichung unter Vernachlissigung der
Spinterme sein.

Als Spinkoordinate fiihrt man am besten die Komponente des
Spinimpulsmoments s. eines Elektrons lings einer festen Achse
(wir wiihlen die Z-Achse des Koordinatensystems) ein. Die Wellen-
funktion ist sodann eine Funktion der raumlichen Koordinaten der

n Elektronen und der Spinkoordinaten s . .. .. s, Die Spin-

koordinate eines Elektrons kann nur zwei Werte annehmen und zwar:
1 h 1 h

s: = -+ oder s; = — = 51

22 2 27 ( )

Die zwei Zustinde des Elektrons, wo die Komponente des
Spins den ersten bzw. den zweiten dieser zwei Werte hat, kenn-
zeichnen wir durch zwei Symbole S, und S_. Sie konnen aufge-
fasst werden als , Funktionen' der Spinkoordinaten: S.(s:) und
S_(s:) und zwar so, dass:

| h 1k
S.*+----)=1 QbEE G =

= N R
S*(“ :2'2.1) = S'(“ 2 2) =it

Andre Werte von s, gibt es ja nicht. Im allgemeinen wird der
Zustand des Elektrons, aus einer Superposition dieser zwei durch
S. und S_ angegeben Zustinde bestehen; d.h. es wird eine
Messung der Spinkomponente mit einer gewissen Wahrscheinlich-

keit den Wert + 1 h 1 h

= — bzw. — = iefern. Die ents
3 9m bzw 3 9 liefern. Die entsprechende
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Spinfunktion schreiben wir in der Form pS. = qS- wo | p 2 und
' q ? die zwei erwahnten Wahrscheinlichkeiten vorstellen.

Die Wellenfunktion eines Elektrons %(x, y, z, sz t), die von
den Raumkoordinaten, den Spinkoordinaten und der Zeit abhéngt,
lasst sich schreiben als eine Summe:

yw(x, YikZoSzail)i— lpa(x, Y, Z, !) SJS:) A i/,'f;(JC. Yy, z, f) S—(Sz) (53)

Es lassen sich S. und S_ formal als Eigenfunktionen der

Z-Komponente des Spins auffassen, die den zwei moglichen Eigen-
1 h ]

werten + 2 2 und — 594

formal eine Entwicklung der Wellenfunktion (X, y, z, sz t) nach

diesen Eigenfunktionen mit den Entwicklungskoeffizienten v, und

g st die Wellenfunktion normiert, d.h. ist:

angehéren. Die Formel (53) ist sodann

[lwal2+lupBdV=1 . . . . . (59

so sind |y, 2dVbzw. [yg 2 dV die Wahrscheinlichkeiten dafiir,
dass das Elektron sich im Raumelement dV befindet und das

h 1 A

Impulsmoment + ;Ebzxv. — - der Z-Achse entlang hat.

22n
Nach einer Drehung des Koordinatensystems hat man zwei
Funktionen S, und S, die die Zustinde des Elektrons angeben, wo
1 h
22n
ist. Da diese zwei Zustinde als eine Superposition der durch S,
und S_ gekennzeichneten Zustinde aufgefasst werden konnen, so
miissen S. und S’ sich linear ausdriicken in S. und S-

S =1aS 2= 0S

SL = S+ + 05—

Diesist eine Darstellung vom Grade zwei der Raumdrehungsgruppe.
Es lassen sich also zwei lineare Kombinationen von S, und S-
wiihlen, die sich transformieren wie & und 7. Nach dem auf S. 14 ge-
sagten (Definition der Impulsmoment-Operatoren mit Hilfe von infini-

die Spinkomponente lings der neuen Z-Achse + ézhr resp. —

(55)

tesimalen Drehungen), miissen diese Kombinationen eben Zustinde

mit Impulsmoment g tnd e
22 22n
daher festsetzen dass S, und S_ selber sich wie & und 7 trans-
formieren. Die in § 1 eingefiihrte Bezeichnung Spinvektor wird

hierdurch erklirt. ) Die hier betrachtete Darstellung ist zweideutig.

entsprechen; wir diirfen

1) Vgl. W. Pauli, Zs. f. Phys. 43, 601, 1227.
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Die allgemeinste Funktion der Spinkoordinaten .S, - YpS—
ist invariant gegeniiber Drehungen des Koordinatensystems, worauf
sich §. und S_ beziehen. Es transformieren sich also 1, und g
wie & und »*. In jedem Raumzeitpunkt lassen sich drei Koordi-
natenrichtungen so wihlen, dass v, und y; in Bezug auf dieses
X, Y, Z-System reell, bzw. Null werden. Aus § 1 entnimmt man,
das diese Richtungen mit dem Achsenkreuz zusammenfallen, das
gemdss den Formeln (6) mit Hilfe von &=y * 5 = y4* kon-
struiert werden kann. Die Z-richtung dieses Achsenkreuzes gibt
die Richtung des Spins im betrachteten Raum-Zeitpunkt.

Bei n Elektronen konnen die Zustéinde, was ihre Spins anbe-
langt durch Produkte von den Spinfunktionen der einzelnen Elek-
tronen gekenn:zeichnet werden:

T h h\
|]\) e o
IS0 (=t =2 ... 66)

wo Si.’:_] sich auf das k' Elektron bezieht. Es gibt 2" solcher Pro-

dukte: sie transformieren sich bei einer Raumdrehung gemiiss einer
Darstellung der Raumdrehungsgruppe vom Grade 2% Denken wir
uns diese Darstellung ausreduziert, so erhiilt man jeweils eine
Anzahl von linearen Kombinationen von Produkten der Form (56)
die sich untereinander irreduzibel transformieren. Diese linearen
Kombinationen " kann man so wihlen, dass sie sich transfor-
mieren, wie:

ARSI B T s G kYA

Analog an § 6 deuten wir s als die Quantenzahl des resultie-
renden Spins der Elektronen, n als die Quantenzahl der Kompo-
nente lings der Z-Achse.

Wir wihlen nun als Losungen der Schrddingergleichung mit
Vernachlissigung der Spinbahnkoppelung die Funktionen /" y". Sie
h

5 und einem Spinmoment
7T

gehoren zu einem Bahnimpulsmoment 1.

h
s. P Es transformieren sich die y"y" gemdss einer im allge-

meinen reduzibelen Darstellung, wie:
L:‘_-.Mm),]l'—m Sis+n J}""_" I (58)

Die Einfiihrung der Spinbahnkoppelung hat Aufspaltung der
Energieniveaus zur Folge, und die Losungen der Schrédinger-
gleichung sind nicht allein durch das Bahn- und Spinimpulsmoment
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charakterisiert, sondern auch noch durch das totale Impulsmoment
];; des Atoms. Die 2j + 1 zu einem bestimmten Eigenwerte
gehorigen Losungen q)j-‘.” der Schrédingergleichung in diesem Fall
haben wir im vorigen Paragrafen besprochen. lhre Transforma-
tionen werden dargestellt durch die Transformationen der 2j + 1
Monome a/*Mbi—M, wenn (a, b) ein Spinvektor ist. Wir nennen
diesen Vektor (a, b) um Verwechslung mit den in diesem Para-
grafen eingefiihrten Spinvektoren (&, ) und (&, %'), zu verhindern.
Wenn man die Spin-Bahnkoppelung nach Null gehen lédsst, so
werden die 2j + 1 Funktionen /' gleich lineare Kombinationen
w'M der Funktionen u['y01!), deren Transformationen eine irre-
duzibele Darstellung vom Grad 2j + 1 der Raumdrehungsgruppe
bilden sollen, da die Invarianz des Hamiltonschen Operators nicht
vernichtet ist. Diese linearen Kombinationen "}
sind eine nullte Naherung fiir die Losungen " der vollstindigen
Schrédingergleichung. Dazu bilden wir lineare Kombinationen der
Monome &+myl-mg's=ny's=n dije sich transformieren wie a/*# b/~
Dies bedeutet eine Reduktion der Darstellung durch die Trans-

[—mE'S+n,./5—n
ARG

suchen wir, sie

formationen der &*"y
Wir fithren die Invariante ein:

Dy, 5 1= (—nEtnE )5 (—bE T+ an)i+i=s(— bt +an’)its=t  (59)

wo: | +s=j=|l—s| sein muss, damit @ ein Polynom ist.
Dieses Polynom lisst sich zerlegen in Terme, welche die Form
haben: a/~Mpbi+M mal eine lineare Kombination von Produkten
derd Horm it Znis B E S e s

Analog dem am Schluss von § 5 gesagten werden diese lineare
Kombinationen sich transformieren wie:

2)! (— )i

(j_M)!(j.i_’M)!'ajL”bj””' L. (60)

und also eine irreduzibele Darstellung vom Grad 2j -+ 1 indu-
zieren 2).

1) Von der Entartung, die den Permutationen der verschiedenen Elektronen
entspricht, sehen wir vorldufig ab.

2) Das hier benutzte Verfahren ldsst sich ganz allgemein gebrauchen zur
Ausreduktion von ,Produkten” zweier irreduzibeln Darstellungen der Raum-
drehungsgruppe. Es ist ein Beweis des Satzes:

D;.D;=Dy ot ......D g
(Vgl. H. Weyl, Gruppentheorie und Quantenmechanik, Kap. III, § 30.)

l+5
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Damit ist unser Zweck erreicht; wenn wir in den eben genannten
linearen Kombinationen die &*7y/-7&"s*7y's-n ersetzen durch die
sich gleich transformierenden 7" . ", so sind diese linearen Kom-
binationen gleich den Funktionen # ', die sich ergeben, wenn die
Spin- Bahnkoppelung nach Null geht

Bis jetzt haben wir von jener Entartung der Energieeigenwerte
abgesehen, welche auf der Aequivalenz der Elektronen beruht.
Wenn man in einer Wellenfunktion y} die Koordinaten eines
Elektrons vertauscht mit den Koordinaten eines andren, so ist die
neue Funktion ¢ noch immer eine Losung der Schrodinger-
gleichung, da ja der Hamiltonsche Operator symmetrisch in allen
Elektronen ist. Diese Funktion gehijrt also zum selben Eigenwert.
Der durch diese neue Funktion " gekennzeichnete Zustand des
Atoms wird von dem durch r/'” definierten Zustand aber physi-
kalisch nicht verschieden sein, da wir eine stattgefundene Vertau-
schung von zwei Elektronen nicht beobachten konnen. Die allge-
meinste Losung der Wellengleichung fiir einen bestimmten Zustand
wird also aus irgendeiner linearen Kombination der Funktion ‘r,r'j.”
und der aus ihr durch Vertauschung der Elektronen hervorge-
gangenen Funktionen bestehen. Die quantenmechanische Fassung
des Pauli'schen Ausschliessungsprinzips besagt, dass nur solche
stationiire Zustinde in der Natur vorkommen, deren zugehdrigen
Wellenfunktionen antisymmetrisch sind in den Koordinaten der
Elektronen; d.h. der Wert der Wellenfunktion wird mit — 1
multipliziert, wenn man die Werte der Raum- und Spinkoordinaten
zweier Elektronen mit einander vertauscht. Die Wellenfunktioncn

4 P
werden also dargestellt durch solche Linearkombinationen ‘:, i Ij’

der erwiihnten Art, welche antisymmetrisch in allen Elektronen
sind !). Thre Transformationseigenschaften bei Raumdrehungen sind
aber offenbar dieselben wie die der Funktion y"}”. von der wir
ausgingen.

§ 8. Berechnung von Matrixelementen.
In der Quantenmechanik treten vielfach Integrale auf der Form:

..(..).g‘-,':jllfl)‘*!._)i,l{dt T s (0 1)

Y
1) X 4 bedeutet Summation iiber alle Permutationen, und zwar so, dass bei

P
geraden Permutationen das 4+ Zeichen, bei ungeraden das — Zeichen gewiihlt
wird. Bei gegebener Wahl der Zahl s in (57! miissen die ' den Symmetrie-
charakter [1/,N + s] + [1/aN — s] aufweisen, damit die in Rede stehende Summe

nicht identisch verschwindet.
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Es sind yx und y; Losungen der zeitfreien Schrodingergleichung,
die im allgemeinen verschiedenen Eigenwerten entsprechen; 2 ist
irgendein Operator, der auf y; wirkt, [ dr bedeutet Integration
iber alle Raumkoordinaten samt Summation iiber die Werte
aller Spinkoordinaten. Es wird £2;; das Matrixelement des Opera-
tors £2 in Bezug auf die Eigenfunktionen vy und w; genannt.

Man interessiert sich oft nur fiir die Verhiltnisse von zu ver-
schiedenen Paaren von Eigenfunktionen gehorigen Matrixelementen
Q4 und Q4. Wir wollen hier speziell den Fall betrachten eines
freien Atoms und fragen nach allen Matrixelementen eines Operators
in Bezug auf diejenige Eigenfunktionen, die sich auf dasselbe
Anfangs- bzw. Endniveau beziehen, und die sich nur durch die
Werte der Quantenzahl M unterscheiden. In diesem Fall sind die
obengenannten Verhiiltnisse oft vollkommen durch die Transfor-
mationseigenschaften der Wellenfunktionen und des Operators bei
Raumdrehungen bestimmt, und es ist von Kramers !) gezeigt worden
wie diese Verhiltnisse mittels der in den vorigen Paragrafen be-
handelten Darstellungsweise dieser Transformationseigenschaften
leicht berechnet werden kénnen. Wir werden in diesem Paragrafen
einige Beispiele fiir die Berechnung von solchen Matrixelementen
und im dritten Kapittel einige physikalische Anwendungen geben.

Als erstes Beispiel behandeln wir das Integral (61) fiir den Fall
eines bei Raumdrehungen invarianten Operators £, In § 6 haben
wir nachgewiesen, dass die 2/ + 1 Wellenfunktionen, die zu einem
stationdren Zustand mit der Quantenzahl j gehoren, sich so wiihlen
lassen, dass sie sich transformieren wie &*# »/-M  Wir bilden mit
Hilfe eines beliebigen konstanten Spinvektors (a, b) die Invariante:

Q¥ =(—bsran)’ , . . . . . (62

und bemerken, dass diese Invariante die 2j + 1 Monome MM =
= &M yi-M zusammenfasst. Nach Ausschreiben des rechten Gliedes
in (62) erscheint das Monom M}" multipliziert mit dem Faktor
(; A al=MpieM(—1)i+M Wenn wir uns die Monome M}" durch
die Wellenfunktionen 1;?}” ersetzt denken, so sind diese also in
einer Invariante zusammengefasst.

Das Integral:

[ Q¥'Q QUdr = [ (— b*&* + a*n*)¥'Q(— bt + an)idr . (63)

bedeutet sodann ein Polynom in a, b, a*, b*, dessen Koeffizienten
Integrale der Form (61) sind, wo an Stelle der Wellenfunktionen

1) H. A. Kramers, Proc. Kon. Akad. Amst. XXXIII 953, XXXIV 965.
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i aber &+Myi= geschrieben ist. Dies gibt an, dass die explizite
Form der Wellenfunktionen uns nicht interessiert, sondern nur
ihre durch &+ »/~M gekennzeichneten Transformationseigenschaften,
Jedes Integral (61) erscheint multipliziert mit einem Faktor der
Form (— 1)i'+" (— 1)i+a (250 (; 2,) @i=M b+ ¥/ pijis M!, Da
wir die Wellenfunktionen und den Operator nicht kennen, kénnen
wir die Integration nicht ausfiihren. Die Form (62), in der wir alle
diese Integrale zusammen gefasst haben, erméglicht uns aber un-
mittelbar etwas iiber das Resultat der Integration aus zu sagen.
Der Integrand in (63) ist eine Invariante gegeniiber Raumdrehungen
und wird iiber einen invarianten Bereich integriert. Das Resultat
der Integration muss also offenbar eine Invariante sein, und zwar
ein Polynom in a, b, a* und b*

Nach dem Resultat von § 4 muss also a im selben Grad wie
a*, b im selben Grad wie b* vorkommen, wenn die Invariante
nicht identisch Null ist. Fiir j/ = j, wird das Resultat der Inte-
gration nach § 4 die einzig mogliche Invariante:

JQ¥WRQ¥dr = Cj(aa*+ bb*%, . . . . (64)

wéhrend fiir den Fall j'#j das Integrationsresultat von (63)
gleich Null ist. Schreiben wir das rechte Glied von (64) aus als
eine Summe von Termen, welche die Form Ci(;7y) (aa*)="
(bb¥)"+ M haben, so diicfen wir, da (a, b) ein konstanter Spinvektor
ist, diese Terme je fiir sich denjenigen Termen des Integrals (63)
gleich setzen, welche dieselben Potenzen von a, b, a*, und b*
enthalten.
Dies fiihrt uns zum Resultat:

f L"._.:{:ju M/ ?)*j'_-_-'\‘lﬂ!_) &ja M Jjj_‘“({f = Cj (,_-':’j:”)—l fjjjr(s;'l!."!; ; (65)

8, - L fr j =7 s _ o Lt M'=M
JJ] —\) Oflll' j-t :#:j MM ~ Ofu[' M’:FM

Eine wirkliche Integration mit bekannten Wellenfunktionen und
bekanntem Operator wiirde notwendig dasselbe Resultat liefern.
Der Wert der Konstante C; ist von der besonderen Form der
Wellenfunktionen und des Operators abhiingig, nicht aber von M.

Wir geben jetzt noch ein Beispiel der Berechnung der Matrix-
elemente yon Operatoren die sich transformieren wie X% Y75,
Wwo (X, Y) ein Spinvektor ist. Diese 2r + 1 Operatoren:

Qi(s=+r,+r—1,....,—1) . . . . (66)

sind in den physikalischen Anwendungen eindeutig definiert; es
muss in diesem Fall also offenbar r ganzzahlig sein.
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Indem wir uns wieder fiir ihre Transformationseigenschaften
interessieren, schreiben wir, wie wir vorher an Stelle der
Wellenfunktionen w}" die &M »i-M schrieben, fiir die 2r + 1
Operatoren die Monome X"*° Y und fassen sie zusammen in
der Invariante:

OIS (B X ALY i (7

wo (A, B) ein Spinvektor ist, der bei spiteren Integrationen als
eine Konstante aufgefasst wird, wie vorher der Spinvektor (a, b).
Das Integral:

fgj':j.-Q:;:gerngdr :[(—b5*+ a:.-':}]:é.)gj’ (_ BX+A Y)Qr"ﬁ_ b.‘?’{*alj)ijd?' (68)

ist wieder ein Polynom in den Variabeln a, b, a* b% A und B,
dessen Koeffizienten Integrale der Form (61) sind, wo an Stelle
der Wellenfunktionen und Operatoren die betreffenden Monome
geschrieben sind, die ihre Transformationseigenschaften kennzeichnen.

Auch hier wird das Resultat ein invariantes Polynom in a, b,
a* b* A, B sein, das wir sofort hinschreiben kénnen. Das Polynom
muss ganz rational aufgebaut sein aus den Grundinvarianten
(aa* + bb™), (— bA + aB) und (a*A + b*B) (Vgl. § 4). Eine
zweite Forderung ist, dass a, a* b, b*, A und B im selben Grad
vorkommen miissen, wie im Integrand, da sie ja bei der Integration
als konstante Faktoren auftreten. Diese Forderungen beschriinken
die moglichen Wertpaare fiir j und j'. Die zwei letzteren Grund-
invarianten ermoglichen es, dass bei einer von Null verschiedener
Invariante die Summe 2;° der Exponenten von a* und b" sich
héchstens um 2r von der Summe 2j der Exponenten von a und b
unterscheidet, denn es kommen A und B im Integrand homogen
vom Grad 2r vor. Dies bedeutet, dass j'=j+r,j+r—1,... | j—r|
sein kann und dass das Resultat der Integration wird:

Q" =C}" "(aa* + bb*)% (a*A + b*B)¥
Qj* = Cj: * " aa* + bb*)%- (a*A + b*B)*~' (— bA + aB)

Q}j-—ri ~ ij—rl (aazs: T bb:i:)‘.’jmm’(_ bA _,_ aB)?r

Fir |j/—j|>r oder j+j<r ist das Resultat der Inte-
gration gleich Null. Der Wert der Konstanten Cj in einem vor-
gegebenen Fall ist von der besonderen Form der Wellenfunktionen
und der Operatoren abhiéngig, und auch im besondren von j, nicht
aber von M. Wir zerlegen nun das Resultat in Terme, die je fiir sich
mit A7~ B’*S multipliziert erscheinen; diese Terme beziehen sich
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je fiir sich auf einen bestimmten der 2r + 1 Operatoren. Sodann
konnen wir alle diese Terme wieder, wie im vorigen Beispiel,
zerlegen nach Potenzen des Spinvektors (a, ). Die Koeffizienten,
womit a®' —M' i=M pE+M" pi+ M myltipliziert erscheinen liefern
uns sodann die gesuchten Integrale der Form (61). Wir werden
dies im dritten Kapittel fiir einen Sonderfall ausfiihren.

Die Resultate (69) waren ganz unabhdngig von der besondren
Wahl der Operatoren {2; bei spiteren Anwendungen ist es oft
niitzlich eine spezielle Form fiir sie zu wéhlen. Bei einer solchen
Wahl soll man darauf achten, dass das Resultat der Integration
nicht identisch gleich Null wird.

Im besondren ersetzen wir X”'* Y7 ¢ durch einen Operator,

. ) 0 0 . F.0 o\ .
der ein Polynom in &, %, 1, und ist. Da (: = 7}) eine In-
0& 0n 0 0y
: : : oA Q' drvbiy
variante ist, so transformieren sich SE und 3, Wie & und %*; und
b ]

wir konnen mittels dem konstanten Spinvektor (A, B) die Grund-

: ; i) 0
invarianten (— Bf 4+ Azy) und (+A5:+B(;J!) aufbauen. Der in-
variante Operator (67) ersetzen wir sodann durch einen Operator
Do 0 0
in &, 7, _(‘ und von der Form:

0 0y

. . g i) NGl
0~BX+u4HJ=t—B:+Am”q@%F+B%) (70)

Das rechte Glied ist wieder ein Polynom in A und B, das
homogen ist vom Grade 2r, die Koeffizienten von A7~ B™** sind
also die gesuchten Operatoren. Vorliufig ist der Wert von g
noch willkiirlich; er wird aber durch die Forderung, dass das
Resultat der Integration nicht Null sein darf, bestimmt.

Wir bemerken noch, dass die Reihenfolge der Faktoren in (70)
willkiirlich ist, da ja gilt:

S S OO
(~— B& + A?;).(A()E ‘ BOJ,
Setzen wir jetzt den Operator (70) in (68) ein, so wird der
Integrand ein Polynom, das homogen vom Grad 2r in A und B,
homogen vom Grad 2j -+ 2q in & und 5, und homogen von Grad
2j’ in & und iy ist. Aus (65) folgt, dass die Integration nur dann
nicht identisch Null liefert, wenn der Integrand homogen vom
selben Grade in & und i, wie in &% und #* ist. Hieraus folgt, dass
gelten muss:

)"‘ (A§5+B£;) . ( BE—i—Au) (71)

’

f=j+tq . . . . . . .. (72
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Hierdurch ist der Operator (70) bestimmt.
Es ist:
q=r fich & — /=T
qi= SN S =T E Tt
. + . - (72)

g=—7r fic ji=\j—c¢|
Die Form des Operators ist in diesem Fall also fiir jedes be-
sondre Integral verschieden.

Eine andre Methode die Monome in X" und Y} durch spezielle
Operatoren zu ersetzen, besteht darin, dass man setzt:

X=t—y* Y=g+&. .. . . (73)
(— BX + AY)” = ([— Bs + Ay] + [A& + By*])¥ . (74)

Iy

Das Integral (68) wird dadurch sofort zuriickgefiihrt auf Integrale
der Form (65) und man bekommt immer ein von Null verschiedenes
Resultat wenn die Zahlen j/, j. r die Seiten eines Dreiecks bilden
kénnen (j+j == |j—Jj =1).

Bei den Anwendungen der symbolischen Methode, die wir im
dritten Kapitel auf die Berechnung der Multipolintensitdten machen,
haben wir nicht den Ansatz (73) sondren (70) benutzt, weil die
notwendigen Rechnungen sich dabei einfacher gestalten.



KAPITEL IL
DIE MULTIPOLSTRAHLUNG.

§ 1. Der Hertzsche Vektor.

In diesem Kapitel wollen wir, ausgehend von den Gleichungen
der Elektronentheorie, das Strahlungsfeld eines Atoms oder Mole-
kiils zerlegen in verschiedene Arten von Strahlung, die man mit
Dipol-, Quadrupol-, Octopol-, und zusammen mit dem Namen
Multipolstrahlung bezeichnet. Es wird sich zeigen, dass diese
Zerlegung sich mit den im ersten Kapitel gegebenen gruppen-
theoretischen Uberlegungen einfach machen lidsst. Die Behandlung
der Ausstrahlung von im Raume bewegten Punktladungen gestaltet
sich am einfachsten durch Einfiihrung des Hertzschen Vektors.

Wir gehen aus von den bekannten Gleichungen der Elektronen-
theorie:

Dq*w—‘;n(_) E:—loft-——gradry

EA:*" :rQV c Of (”

lt)rp S H = rot A '
+divA =0

c Of

Hierin ist: ¢ das skalare Potential.
A das Vektorpotential.
o die Ladungsdichte.
V die Geschwindigkeit der Ladung.
E der elektrische Vektor.
H der magnetische Vektor.
¢ die Lichtgeschwindigkeit.

= 02 0? 0? 1 02
=3ty toz2 2o

Wir fiihren nun einen Vektor o und einen Vektor Z (den
Hertzschen Vektor) ein in folgender Weise:
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%%ng dive =—op
10Z @)
A=—— p=—divZ
c Ot
Sodann gilt:
ElZ=—4a0. .5 = + .. ()
und: -
1 )
ST R (4)

E = rot rot Z — 4a0c

Im ladungsfreien Raum ausserhalb des strahlenden Systems ver-
einfacht sich die letzte Formel zu:

E = rot rot Z.

Eine Losung der Gleichung (3) ist:

zp=f%§dv.. e 5)

Es ist R der Abstand vom Integrationselement dV zum Auf-
punkt P, wo Z bestimmt werden soll. Die Integration ist iiber
den ganzen Raum zu erstrecken. Die Bedeutung der Klammer {}
ist die folgende: Wenn man den Wert von Z zur Zeit T in P
bestimmen will, so hat man bei der Integration in jedem Raum-

element dV den Wert von o zur Zeit t = T — R zu nehmen.
L

Es ist T — t:‘lj gleich der Zeit, welche das Licht braucht um

von dV nach P zu kommen.
Wir betrachten nun speziell den Fall der Ausstrahlung eines
Atoms oder Molekiils und suchen die Werte von E und H

in grossem Abstand. Nur Terme in E und H, die wiell? nach

Null gehen, liefern einen Beitrag zur Ausstrahlung, denn nur diese
liefern bei der Berechnung des Energiestroms durch eine Kugel-
fliche mit grossem Radius einen von diesem Radius unabhingigen
Betrag.

Wir kénnen sodann fiir Z schreiben:

" pledv @

Es ist R2= OP = X2+ Y2+ 22 wo X, Y, Z die Koordina-
ten vom Aufpunkt P sind und O der Nullpunkt des Koordina-
tensystems ist.

Zp =
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Da wir es immer mit positiven und negativen Punktladungen
zu tun haben, so vereinfacht sich das Integral zu einer Summe:

2112-1'1?%61\'{1'/,-} S R (7))

wo die Summation iiber alle Teilchen zu erstrecken ist. Es ist
rr ein Vektor, dessen Komponenten xy, yi, zx die Koordinaten
des kt» Teilchens sind; ey ist die Ladung des k'**® Teilchens.

i o, . Ry )
Man hat r; immer zur Zeit ¢t = 1 — = zu nehmen, wo:

Re=V{(X — x2 + (Y — y1)* + (£ — 20)%}

Zur Berechnung von E und H ist es von Wichtigkeit eine
Formel fiir Zp zu geben, wo ry in allen Termen sich auf die
selbe Zeit bezieht.

Dazu betrachten wir das komplexe Integral:

dt',l\'(r‘ﬁ
C

: Ir
1 dr
I—Zm'fj (9. (8)
C

Dies ist ein Integral lings einer geschlossenen Kurve C in einer
R

komplexen r— Ebene, wo £ = T — " ist und rx(r) als eine Funk-
C

tion der Integrationsvariabele t aufgefasst wird. Der Nenner

T —f— (r,;l::).d). wo 0 der Einheidsvektor in der Richtung

OP ist, hat eine Nullstelle fiir v =¢ und es soll die Inte-
grationskurve so gewiihlt werden, dass ¢ innerhalb dieser
Kurve liegt. Die Vektor-Schreibweise (8) bedeutet offenbar drei

Integrale, wo fiir dru(z) zu schreiben ist dka, bzw. dq—}‘(r—) bzw.
J dr dr dt
;;fj) Es ist I gleich dem Residuum des Integranden und dieses
ist gleich:
dr(z) 1IN
[§=| BT (drk(r) 5) s g s e (D)
1 — .
dt i

r

T={
Da: ¢ ¢ (t) . 9)
C

de dri(t) 8
dt,—l—(dt, .C). L. . .. (10

= 0, und also:
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SO ist:

= (drk\ dt' _ dryt)
= dr/,_py " dt —  dr

Hierin bedeutet ri(t) offenbar rs zur Zeit ¢ — £+ (rk_(t).__ér)i.
c
Wir beachten nun dass:

() ={ce) . . . . . . . 11

In der Tat gilt:

(12)

Hierin ist f die Zeit, welche das Licht braucht um von O nach
P, und, wenn K die St.elle des k" Elektrons und Q die Projektion
von K auf OP bedeutet, {r;{fc}.ﬁl die Zeit um von O nach Q zu

kommen und also ¢ — T die Zeit welche das Licht fiir den Weg
QP braucht, oder auch naherungsweise fiir den Weg KP = R,
da ja QP und KP wenig verschieden sind. Diese Approximation
bedeutet offenbar Vernachlissigung von Termen in Z, die

schneller als II{, nach Null gehen.

Das Integral I in (8) lisst sich entwickeln. FEs gilt:

dr(z)

] ;" dr ) I =,

S o= M e S
X c(r —t) SR (1)
dry

= b il Ef’)-(rktr).a)"
=\ : / = dT

s o1 Dy (t__,”nol

n=0

Dies ergibt fiir d”('],t(r) :
drfe) ~o 1| (47,
Yl (L PR (o 3 |
dt :-:_-Jc" n! dr) 3t )
dl';;(l‘) ;

WO ) = ist, und im rechten Glied iiberall ry zur Zeit fzu

df
nehmen ist. Durch Integration nach ¢ findet man:
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f ot \ S 1 Id\n_l : n
I'kf_f) = {fk} — I'.r.-(f) + E ﬁ(df) I‘;\-(l‘;ﬁ) S (15)

n=1

Dieses Resultat ist vollkommen analog zum Lagrangeschen
Entwicklungssatz (Vgl. z.B.: Watson and Whittaker, Modern
Analysis, S. 133; an Stelle der dort vorkommenden f{z) und ¢(z)
treten bei uns jeweils drei Funktionen auf). Wir haben nun {r;}

und also auch Z, als eine Funktion von ¢t = T — }5 gefunden.

Wir gehen sodann zur Berechnung von E und H iiber. Bei

einer Differentiation von Z nach den Koordinaten X, Y, Z (die
. 1

ja in den Formeln (4) fiir E und H vorkommt), braucht nicht

R

differenziert zu werden, da dies zu Termen Anlass geben wiirde,
die nicht zum Energiestrom beitragen. Es hiéingt {r;} nicht explizit
von X, Y, Z ab. wohl aber gilt:

diry} _O{re} Of {r} X
dX — of ‘oXN YR
und also:
07 - X
(L\'M_ZCR o W e @ e T 16)
Hieraus folgt:
rotZ-u(I:[Z.JJ ... .an
Es folgt jetzt fiir E und H:
1 0Z 1 [0*Z
=k = 8
= c Lok 07 2 LotoT J
‘ DA
und da 3T = 1:
= 1,,{"?,5}:‘,,[2.61 C L .. (18)
c? L of* c?
und:
1 Ve
E::rotrotZ——'C._, [[Z210] R0 | Euet S e (110 )

Aus diesen Formeln ergibt sich, dass E und H gleich gross sind
und sowohl senkrecht auf einander wie auf & stehen.
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§ 2. Die Dipol- und die Quadrupolstrahlung.

Wir haben im vorigen Paragrafen fiir Z die Entwicklung gefunden:

2= g ¥lenffnt Dt w o ] o

wo {{r:}} die Bedeutung: r; zur Zeit ¢ — T—I—j hat.

Wir werden im folgenden die doppelten Klammer fortlassen,
was nicht zu Missverstindnissen fiihren kangn.
Schreiben wir:

LZ=ZO+ZO4+ZO+ . .. . . . (21)

wo Z'® den Term in (20) bezeichnet in dem die Komponenten
von 6 in der (k — 1) Potenz vorkommen, so finden wir:

Z{'):;{,%ekrk:é-.A it a8

Dieser Term ergibt die wohlbekannte elektrische Dipolstrahlung.
Aus diesem Term ergibt sich fir E und H:

T
HE= Re? [A . 6]
. (23)
TR
E —-m_,[[A.ﬁ],d]
Der zweite Term in der Summe (21) wird:
ZO = jéc ; esta(ts.8) . . . . . | (24)

Die Komponenten von Z® werden nach dieser Formel, wenn
fir xi, yx zi geschrieben wird ry, Tk2, T3

= 1 :
ZP=pTawy (=123 . . . . (@25
WO.
k

Wir zerlegen nun den Tensor ajj in einen antisymmetrischen
Teil, einen symmetrischen Teil, wo die Summe der Hauptdiagonale

= :O(f*j)‘).

Null ist, und ein Multiplum des Einheitstensors a:,-j( — Sl

ay=agtbytey .. . . . . (2
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WO
a = Xajej = an + an T an
bij = bji (Xbijeij = b -+ by + by = 0)
Cifi="—"Cjj
Sodann ist:
ai= S‘ER('&‘I‘/;' S )-—*vﬂ d (z’z)
ey AN ' ..1—; 2 df K
k :
bij = V 2 (r'mrr; + r;j rii) — s agy = V‘ 2 it (l"kil';.-j — 15r &)
f‘
ij - \ (rf\lr}._'l — rLjrA[) . . . . . . . . . . . (27)
k

Der erste Term dieser Zerlegung:

1 Z() = é?é o
gibt sofort (vgl. (18) und (19)) Null fiir E und H und gibt also
keine Strahlung; wir bezeichnen diesen Term aus Griinden, die im
nidchsten Paragrafen besprochen werden, als den Term der elek-
trischen Unipolstrahlung.

Der zweite Term gibt die elektrische Quadrupolstrahlung, diese
Strahlung wird wesentlich von 5 Funktionen bestimmt: es gibt ja
6 Funktionen bj; und eine Relation zwischen diesen Grossen.

Der dritte Teil dieser Zerlegung, d.h. der antisymmetrische
Teil des Herztschen Vektors ist:

VAVEZ DY G e o G o 6 4]
/ ]
oder:
37 = — Budz -+ Byd;
12( = -+ B.d, —Bds . . . . . (29
']lel = — B, + B4

Wo: By = ¢y, By = cp3. By = ¢y st

Es transformieren sich B;, B, B; wie die Komponenten eines
Vektors und man kann die Formeln (29) in Vektorschreibweise
schreiben:

S 7\ 3T PO | e e i (40))
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Es sind vy und y; Losungen der zeitfreien Schrédingergleichung,
die im allgemeinen verschiedenen Eigenwerten entsprechen; 2 ist
irgendein Operator, der auf y; wirkt, [ dr bedeutet Integration
iber alle Raumkoordinaten samt Summation iiber die Werte
aller Spinkoordinaten. Es wird 2;; das Matrixelement des Opera-
tors {2 in Bezug auf die Eigenfunktionen v und y; genannt.

Man interessiert sich oft nur fiir die Verhdltnisse von zu ver-
schiedenen Paaren von Eigenfunktionen gehorigen Matrixelementen
2y und 2. Wir wollen hier speziell den Fall betrachten eines
freien Atoms und fragen nach allen Matrixelementen eines Operators
in Bezug auf diejenige Eigenfunktionen, die sich auf dasselbe
Anfangs- bzw. Endniveau beziehen, und die sich nur durch die
Werte der Quantenzahl M unterscheiden. In diesem Fall sind die
obengenannten Verhiltnisse oft vollkommen durch die Transfor-
mationseigenschaften der Wellenfunktionen und des Operators bei
Raumdrehungen bestimmt, und es ist von Kramers!) gezeigt worden
wie diese Verhiltnisse mittels der in den vorigen Paragrafen be-
handelten Darstellungsweise dieser Transformationseigenschaften
leicht berechnet werden konnen. Wir werden in diesem Paragrafen
einige Beispiele fiir die Berechnung von solchen Matrixelementen
und im dritten Kapittel einige physikalische Anwendungen geben.

Als erstes Beispiel behandeln wir das Integral (61) fiir den Fall
eines bei Raumdrehungen invarianten Operators {2. In § 6 haben
wir nachgewiesen, dass die 2j + 1 Wellenfunktionen, die zu einem
stationdren Zustand mit der Quantenzahl j gehoren, sich so wihlen
lassen, dass sie sich transformieren wie &*# »/~M Wir bilden mit
Hilfe eines beliebigen konstanten Spinvektors (a, b) die Invariante:

QUi=(—bEtan , . . ... (62

und bemerken, dass diese Invariante die 2j + 1 Monome MM =
= &+ M ypi-M zusammenfasst. Nach Ausschreiben des rechten Gliedes
in (62) erscheint das Monom MJ'.” multipliziert mit dem Faktor
(; J)al~Mpi+M(— 1)+ M Wenn wir uns die Monome M;.” durch
die Wellenfunktionen 1;!}'.” ersetzt denken, so sind diese also in
einer Invariante zusammengefasst.

Das Integral:
JQ¥'Q QYdr = [ (— b*&* -+ a*™n™)Y' 2 (— bt + an)¥dr . (63)

bedeutet sodann ein Polynom in a, b, a*, b*, dessen Koeffizienten
Integrale der Form (61) sind, wo an Stelle der Wellenfunktionen

1) H. A. Kramers, Proc. Kon. Akad. Amst. XXXIII 953, XXXIV 965.
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it aber &+M yi-M geschrieben ist. Dies gibt an, dass die explizite
Form der Wellenfunktionen uns nicht interessiert, sondern nur
ihre durch &+ /=M gekennzeichneten Transformationseigenschaften.
Jedes Integral (61) erscheint multipliziert mit einem Faktor der
Form (— 1)i"+M’ (— 1)/+M (20 (; 2,)) ai=M biv M g¥i'= pjis Mt Dy
wir die Wellenfunktionen und den Operator nicht kennen, kénnen
wir die Integration nicht ausfithren. Die Form (62), in der wir alle
diese Integrale zusammen gefasst haben, ermoglicht uns aber un-
mittelbar etwas iiber das Resultat der Integration aus zu sagen.
Der Integrand in (63) ist eine Invariante gegeniiber Raumdrehungen
und wird iiber einen invarianten Bereich integriert. Das Resultat
der Integration muss also offenbar eine Invariante sein, und zwar
ein Polynom in a, b, a* und b*.

Nach dem Resultat von § 4 muss also a im selben Grad wie
a*, b im selben Grad wie b* vorkommen, wenn die Invariante
nicht identisch Null ist. Fiir ;' = j, wird das Resultat der Inte-
gration nach § 4 die einzig mogliche Invariante:

[Q¥Q QY%dr = Cj (aa™ -+ bb*)%, . . . . (64)

wihrend fiir den Fall j <=, das Integrationsresultat von (63)
gleich Null ist. Schreiben wir das rechte Glied von (64) aus als
eine Summe von Termen, welche die Form Ci(; 70 (aa*)="
(bb¥)i*M haben, so diirfen wir, da (a, b) ein konstanter Spinvektor
ist, diese Terme je fiir sich denjenigen Termen des Integrals (63)
gleich setzen, welche dieselben Potenzen von a, b, a*, und b*
enthalten.

Dies fiithrt uns zum Resultat:
f. E:E:jl + M7 _,J*j'r,,“!!) EJ+'1" Uj*«"dt —_ Cj (J‘ f_{‘r)"l aj‘,d:",“; . (65)

5 _ o 1fic j' = s _ o Lfie M'=M
TS0 fiie o g MM S0 fiie MY %= M

Eine wirkliche Integration mit bekannten Wellenfunktionen und
bekanntem Operator wiirde notwendig dasselbe Resultat liefern,
Der Wert der Konstante C; ist von der besonderen Form der
Wellenfunktionen und des Operators abhingig, nicht aber von M.

Wir geben jetzt noch ein Beispiel der Berechnung der Matrix-
elemente von Operatoren die sich transformieren wie X7*5 Y75,
wo (X, Y) ein Spinvektor ist. Diese 2r -+ 1 Operatoren:

Q(s=+r+ec—1,....,—1) . . . . (66

sind in den physikalischen Anwendungen eindeutig definiert; es
Muss in diesem Fall also offenbar r ganzzahlig sein.
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Wir suchen nun die irreduzibelen Darstellungen welche enthalten
sind in der Darstellung der Raumdrehungsgruppe durch die Trans-
formationen der a’”.

Wir kennzeichnen die Transformationseigenschaften der aj' durch
vorldufig unbekannte nicht homogene Polynome 7% in den Kom-
ponenten eines Spinvektors (£, ). Die bekannten Transformations.-
eigenschaften von #Z2+1, dh. von A2 B2 und — AB, miissen
auch gegeben werden durch lineare Kombinationen von Produkten
VonFeat Ty aimit Tm(& n')

e R T}”(f’, 778) BT S (35)

m

Die Formel (35) erhilt man, indem man in (34) P durch
gkempk=m und aJ durch T (£, 9') ersetzt. Diese lineare Kombi-
nationen findet man nach der Methode von Kap. I, § 6 (Vgl.
Fussnote S. 16). Man bilde eine Invariante in (& n). (&, n)
und (A, B); welche homogen vom zweiten Grade in A und B
und homogen vom 2k Grade in & und 7 ist. Es ergeben sich
drei Méglichkeiten und im allgemeinen eine lineare Kombination

der drei Fille:

(— 7’6 4 &) (— BE + Ay')? (a)
(—n'&+ En*-! (— BE + Ay') (— BE+ An) (b) . (36)
=15 ar R (= B&E+ An) (o)

Die Koeffizienten von B2, AB, A2 transformieren sich wie A2,
— 2AB und B? und geben die verlangten linearen Kombinationen
(35). Diese Koeffizienten sind im Fall (a) eine lineare Kombination
von Termen der Form Eitmpi=m Likylemtyikrl=mt SDyiat Monome
Fhrlemip'k=1=m" induzieren eine irreduzibele Darstellung der Raum-
drehungsgruppe vom Grade 2k + 3. Im Fall (b) und (c) enthalten
die Faktoren von B2, AB und A? die Monome Ektm! plh=m' By,
§hotem!yh=1=m’ Diese induzieren Darstellungen vom Grade 2k + 1,
resp. 2k — 1. Die Darstellung der Raumdrehungsgruppe durch
die Transformationen der ay' zerfallt also im allgemeinen in drei
irreduzibele Darstellungen, die wir nach dieser Methode gefunden
haben, und wir kénnen die aj’ in drei sich irreduzibel transfor-
mierende Teile zerlegen. Sodann gilt:

kZi ) :”%il (6.2 S b T LD | D7 SN (3 7)
wo die b, sich irreduzibel vom Grad 2k — 1 transformieren, die
b7 irreduzibel vom Grad 2k + 1, und die by | irreduzibel vom
Grad 2k + 3.
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Zur Berechnung von H muss das vektorielle Product %ﬂ, [Z . 6]

gebildet werden. Nach den oben gegebenen Uberlegungen wiirde
man erwarten, dass durch die Produktbildung von P}* mit den
Komponenten des Vektors 8 eine lineare Kombination von P;:’_”],
P und P}, entstehen wiirde. Es ist aber P] entweder eine
gerade oder eine ungerade Funktion beziiglich Spiegelungen am
Nullpunkt des Koordinatensystems. Durch Multiplikation mit den
Komponenten eines Vektors (eine ungerade Funktion) entsteht
also im ersten Fall eine ungerade im zweiten eine gerade Funktion.

Da nun P} und P} ungerade sind wenn Pj" gerade ist und

umgekehrt, so fillt im Produkt P7"" fort und es bleibt eine lineare

Kombination von P und PP, iibrig. Dazu muss beachtet wer-

den, dass H ein Vektor ist. Dies beschrinkt die Zahl der Mog-

lichkeiten noch weiter, denn es kann sich ¥ b7 P/ nur wie

m',m'
die Komponente eines Vektors transformieren, wenn | X' — k | =< 1.
Die Differentiation nach der Zeit wirkt nur auf b und #ndert die
Transformationseigenschaften von b nicht.
Zur Berechnung von E muss das vektorielle Produkt [H . d] ge-
bildet werden und es gelten #hnliche Uberlegungen.

Es folgt aus diesen Uberlequngen das nachstehende Schema
fir Z, H und E, das die Transformationseigenschaften vom nur
von den ry und r; abhingigen Teil b und vom nur von der
Richtung des Aufpunktes abhingigen Teil P kennzeichnet. Wit
haben die Summenzeichen und die Buchstaben m und m’ fort-
gelassen.

Z H | E
J//v bkflpk—z
b P——— b1 P <+ a) el. 2¢-1 Pol
/ ‘ > by Py

/}‘ - by Pk-l ‘“--.__‘__i

kzgn“) T‘-r by Py \fi = \: brPy b) magn. 2k Pol
“‘rﬂ by Pi.1 ,ff’
A l ’I//Y br+1 Py
bkdpk'*;!_—ibk.,]pk*;<\ s c) el. 28+1 Pol
1

| ‘*bknpmz
|
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Wir haben hier die drei Fille a, b und ¢, die wir schon in
Formel (36) unterschieden. In den Fillen a und c treten in den
Komponenten von E jeweils zwei Kugelfunktionen verschiedener
Ordnung auf, in den Komponenten von H tritt jedoch nur eine
Kugelfunktion auf. Im Fall b ist es gerade umgekehrt. Wir nennen
den Fall a eine elektrische 2k=1_Polstrahlung, den Fall b eine
magnetische 2%-Polstrahlung und den Fall ¢ eine elektrische 2%+ 1.
Polstrahlung. Man bedenke, dass diese Bezeichnungen nur einen
Sinn haben, wenn die Exponenten positiv sind, da ja Kugelfunk-
tionen negativer Ordnung keinen Sinn haben und die betreffenden
Terme nicht vorkommen. Im besondren erhilt man fiir k = 0 eine
elektrische Dipolstrahlung, und eine magnetische Einpolstrahlung.
Fir den Fall k = 1 erhilt man eine elektrische Quadrupolstrahlung.
eine magnetische Dipolstrahlung und eine elektrische Einpolstrah-
lung. Die Einpolstrahlungen haben offenbar die Intensitit Null.
Diese Resultate stimmen genau mit den speziellen Resultaten des
vorigen Paragrafen.

Wenn im ausgestrahlten Lichte zeitlich harmonische Komponenten
vorkommen die einer Wellenlinge entsprechen, die von derselben
Ordnung oder kleiner wie die Dimensionen des strahlenden Sys-
tems ist, so konvergiert fiir diese Komponenten die Reihenentwick-
lung langsam und es hat die Zerlegung in Multipolstrahlungen
wenig Sinn.

§ 4. Der Hertzsche Vektor unter Beriicksichtigung des Elek-
fronenspins.

Es besteht die Méglichkeit im ladungsfreien Raum dem in § 1
definierten Hertzschen Vektor Z einen Vektor Z zur Seite zu
stellen, woraus — E durch eine Formel der Form (18) und H
durch eine Formel der Form (19) bestimmt wird.

Wir definieren:

1
o

Aus dieser Definition des Vektors Z ergeben sich fiir B und H

die Formeln

Z=rtotZ . . . . . . . (3)

E:rotrotZ=~—ElrotZ. SRR (30 3)

1

H :-rotZz——l Z
c

= Z = rot rot Z—graddivZ+ (1 Z. (39b)
Die beiden letzten Terme in (396) sind zeitunabhingig und
liefern keinen Beitrag zur Ausstrahlung. Die Formeln (39)
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liefern dasselbe Strahlungsfeld wie die Formeln (18) und (19):

Hi= 1th
c
E = rot rot Z.

In der Niherung, die wir immer betrachtet haben, ergibt sich
aus (38):

[ c| R (4 (a)
Z=[Z.8]+(Z&5. . . . . . (400)
und:
E:—;iﬁ].......mm
R :Z200 | 10d | 17 |

o2

Man sicht aus diesen letzten Formeln, dass der letzte Term in
(40b) keinen Beitrag zur Ausstrahlung liefert. Wir hétten bei den
Uberlegungen dieses Kapitels also auch ausgehen kénnen von einem

Vektor Z der Form:

7z = R_, erl (k0] St T (42)

Der Umstand, dass ein Elektron nicht nur ein elektrisches
. €

Moment e .r: sondern auch ein magnetisches Moment =% Sk
m;c

hat, worin S das Elektronenimpulsmoment bedeutet (Vgl. § 2),
filhrt uns dazu den durch (42) definierten Vektor Z noch mit
einem Term der Form:

G T R (43

k MkC

zu erginzen. Der totale Vektor Z ergibt sich sodann nach Formel
(40b) zu:

7 — }?H(ek (et

Hieraus kénnen E und H mittels den Formeln (18) und (19) bestimmt

werden. Es ist fraglich ob der Term " [{SA} d] nach Entwick-

“[mym....(m

mprgc

lung von {S:} (Vgl. § 1) auch in hoherer als erster Niherung
noch richtig ist. Eine Rechtfertigung der Formel (44) wiirde sich
vielleicht auf Grund der Diracschen Theorie des Elektronenspins geben
lassen. Wir wollen das aber in dieser Arbeit nicht versuchen.



KAPITEL IIL

DIE QUANTENMECHANISCHEN
INTENSITATSFORMELN.

§ 1. Die quantenmechanische Umdeutung der klassischen
Formeln.

Wir gehen in diesem Kapitel iiber zur quantenmechanischen
Umdeutung der im zweiten Kapitel behandelten klassischen Formeln
fir Z, E und H. .

Man kann eine Grésse f (z.B. eine Komponente von Z), die
durch irgendeine Formel der klassischen Theorie bestimmt ist,
entwickeln nach in der Zeit harmonischen Komponenten:

[ =2;_7(ake2”"'k‘+a*ke <2 IR 1)

oder:
[=2R T ae? it
k

Die Quantenmechanik besagt nun, ) dass die Gréssen ay ersetzt
werden miissen durch Gréssen au, welche bestimmt sind durch
die Formel:

ag = [ @i fpuide, ., , , ., (2)

worin ¢ bzw. ¢; die normierten Wellenfunktionen des k" bzw.
l‘* stationdren Zustandes sind, und £ die als Operator umgedeutete
klassische Grosse bedeutet. Die zu ay gehérige Frequenz »; wird
ersetzt durch die Frequenz v, welche gegeben wird durch die
Bohrsche Formel:

1
=, Ec—E) . . . . ... (@

worin E, bzw. E;, die Energie des k" bzw. I'" stationiren Zu-
standes bedeuten.. Im Falle der Ausstrahlung eines Atoms, darf
man sagen, dass die quantenmechanisch umgedeuteten Terme

1) Vgl. O. Klein, Zs. fir Phys. 41, 407, 1927.
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einer harmonischen Entwicklung von Z, E und H, welche sich
auf die stationiren Zustinde k und [ beziehen, die Ausstrahlung
eines Atoms beschreiben, das sich im Zustand k befindet und von
da nach einem Zustand [/ iibergeht, vorausgesetzt, dass Ey > E; gilt.

§ 2. Zeemaneffekt der Dipolstrahlung.
Mit Hilfe der Resultate von Kap. I § 8, werden wir in diesem
Paragrafen die Intensitéits- und Auswahlregeln vom Zeemanetfekt

der Dipolstrahlung herleiten 1).
Nach der Formel (22, II), wird Z gegeben durch die Formel:

1
7= A e R ER i (4)
R (4,
Wir berechnen nun nach der Kramers'schen Methode (Vgl. Kap.
I § 8) die Matrixelemente von den Komponenten Ay, Ay, A: von
A. Dazu benutzen wir Formel (69, I), worin wir r = 1 setzen.
Der symbolische Operator (67, I) wird sodann gleich:

Q=(—BX+AY2 . . . ... (5

und es transformieren sich X2, Y2 und — XY wie A: +iA,,
— Ax +iAy und A..

Das Resultat (69, I) vereinfacht sich sodann zu:

Cf” (aa* + bb* )% (a*A +b*B)2 . . . . . (6a)
.(’f - Cf (da Sr felab et (a*A + b*B) (— bA + aB) . (6b)
”f ’ —C’ I (aa™ + bb*)¥-? (— bA + aB)? . (6¢)

Wir betrachten den Fall j — 1 — j. Durch eine Zerlegung von
Formel (6a) in der in Kap. I, § 8 beschriebenen Weise werden
wir zu den folgenden Formeln fiir die einzelnen Matrixelemente
gefiihrt:
(5. (o) [ V73 (A i) i = 1 (7,
(j-,’ll+]) (;411’) ?/‘ _;'”*I(A:) i,f' CI'](J+m) 3 ) : (7)
(j"j-et#) (JJ{ M) Y _,r“ ll ( Ax + IAJ’) !1” CJ+] (me)

oder mit leicht verstindlicher Bezeichnung der Matrixelemente:

(Ax + 1A, ]“] = C“] (}}{Twrgw)_l e (1)
(— Ax+ :A )f*’ M G (17 S e (7D)
A;j ' u Cf” (j+4}‘.;1+1)_1- L TR I e (7 )

1) S. Goudsmit und R. de L. Kronig, Naturwiss. 13, 90, 1924. H. Hoénl,. Zs.
f. Phys. 31, 340, 1925.
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Wir haben AL, Aj, A, geschrieben, weil diese Matrixelemente
noch nicht normiert sind. Wir miissen also noch die relativen
Werte der Normierungsintegrale fy;*}‘” pi'dr untersuchen. Dieses

Integral wird gegeben durch Formel (65, I). Dort wurden die
Matrixelemente eines invarianten Operators gefunden, und das ist
es, was wir hier gerade brauchen. Aus (64, I) und (65, I) finden
wir fiir die Normierungsintegrale:

[Q* Q%de=Cj(aa* +6%)% . . . . . (8)
und: _
N',M =/ ‘!’:::J'?' 1.”;” dr = C; (;":f; MR (0)

J

Um die normierten Matrixelemente (A: -+ iA,), (— A, + iAy)
und A:) von A zu finden, haben wir die rechten Glieder von (7)
noch durch einen Faktor;VNj,MN;;E;zu dividieren wo M'= M1,
oder M oder M — 1 ist.

Diese Matrixelemente, eingesetzt in Formel (1) an Stelle der
Grossen ay, liefern die allgemeinen quantenmechanischen Formeln
fiir die harmonischen Komponenten von (A, + iA,), (— Ay +iA),
A; von A. '

Die in der Zeit harmonische Z-Komponente von A wird im
besondren gegeben durch 2R A}, eZ; sie entspricht einer linearen
Schwingung ldngs der Z-Achse und einem Ubergang M -+ M. Es
geben 2N (Ax + iA)e?™ ynd 2R (— A, + iA ) e eine rechts-,
bzw. linkszirkulare Schwingung in der X, Y-Ebene. Sie treten
auf bei den Ubergingen M + 1 » M, bezw. M — 1 > M.

Der Vektor H ist nach (18, II):

HZLMJ].......(M

Im Fall des Ubergangs M -~ M ist H parallel der X-Achse
gerichtet, wenn 6 in der Y, Z-Ebene liegt.
Der Absolutwert von H ist:

e - 1 ; o J+ Tiv
H = Cl'z Z sin a = 2 = (2miv)2 A j ‘:ﬁ’; e?™t sina, | (11)

R

wo a der Winkel zwischen d (d.h. der Beobachtungsrichtung) und
der Z-Achse ist.

Der Energiesttom in der d-Richtung ist gleich dem absoluten
Betrag des Poyntingschen Vektors:

S:ih’?. o A e F({0)
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Hieraus folgt der iiber die Zeit gemittelte Energiestrom zu:

— N4 _ .
S= ; (_[2;;}?)3 .sin? a . "Azj'-”:‘}\j] 2—
: SR (1] 5
@t . G+MEDG Mt (CF 2
__2}TC3R2 s 5 (2_}'"“ 1) (2j+ 2) A CJ : CJ-*l

Fiir den Fall der rechtszirkularen Schwingung von Au:
R(A: + iAy)jf-”,‘ﬁ}” _e2™t die dem Ubergang M + 1 > M ent-
spricht, zerlegen wir die zirkulare Schwingung in zwei lineare
Schwingungen gleicher Amplitude A parallel der X und der

Y-Achse, die einen Phasenunterschied von i; haben. Fiir jede dieser

Schwingungen konnen wir sodann die eben gegebenen Uber-
legungen anwenden und es folgt fiir den mittleren Energiestrom
in der d-Richtung:

(27zr)*
ZJTC:;RZ 3
wo f bzw. y die Winkel von & mit der X- bzw. der Y-Achse
bezeichnen, und wo gilt:

S= (sin2 g +sin2y). A% . . . . (14)

A2V (At AR . . . . . . (15)
Daher finden wir fiir S:
2‘ /)4 0 - i 0
S= 2T (1 + cost a) (At iy [ 1) = p
L@ 4 e GEMED G MY O
87O @ TN @+ C-Cr

Fiic den Fall eines Ubergangs M — 1 — M, d.h. einer links-
zirkularen Schwingung findet man in &hnlicher Weise fiir die
ausgestrahlte Energie:

(2t or —M+2)(j—M+1) C) 2
S =grap: LT cos)=mmn g 27k 2) Cl.Ca

Im Falle eines Zeemaneffekts wird die 2j -+ 1 — fache Entartung
der Energieniveaus, die einer inneren Quantenzahl j entspricht,
aufgehoben. Man kann aber die den verschiedenen Werten von
M entsprechenden Wellenfunktionen, die alle zum ungespalteten
Niveau gehoren, als nullte Néherung fiir die gestorten Wellen-
funktionen nehmen, wenn das storende homogene Magnetfeld
lings der Z-Achse gerichtet und schwach ist (Vgl. Kap. I, § 6).
Sodann geben die Formeln (13, 16, 17) die Intensititen der Zee-
mankomponenten fiir den Fall j + 1 — .

(17)
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Fir den Fall j = und j— 1 — j findet man mit Hilfe der
Formeln (6b) und (6¢) in ganz analoger Weise fiir die Quadrate
der Matrixelemente

o UM+ 0G—0) ()2

{(Ax+ AN @Ecr

i- AT M1 (__I.*M_P‘I)Lf_ﬁlt M) |Ci2
{( A-\'+1AJ')J--"T } .— ‘_[QJ)J == . EJ?
. : Tl
(A0 EgC (18)

@ "

gty bt
(Actidy i+t G=M—1)G—M) [C]]|

e =0 G
- Ayt GEM—=1)G+M) |Cj7
{(—Ax+iA)} "n ')2 = LZj‘{‘Zj =S NG

{AF71 02 — (+ M)j— M) CEIH

2i(2j — 1) G (s

Hieraus folgen sofort die relativen Intensititen der Zeeman-
komponenten in beliebiger Richting durch Multiplikation mit sinZa

(M — M) oder LA Glert (M=1- M)

Die totale Intensitit der nicht durch einen Zeemaneffekt gespal-
teten Linie erhilt man, indem man die totale Ausstrahlung fiir eine
Zeemankomponente berechnet durch eine Integration von & {iber
alle Raumrichtungen und sodann die gefundenen Intensititen aller
Zeemankomponenten addiert. Die Summation der durch (13), (16)
und (17) gegebenen Intensititen ergibt die totale Intensitiit I
aller Zeemankomponenten der Linie j 4 1 - /» die zum Endniveau j,
M gehoren. Wie es die Summenregeln fordern ist diese Intensitit von
M unabhingig und wir definieren die totale Intensitit L+t der
ungespalteten Linie als die Summe aller Zeemankomponenten, d.h.

gleich dem 2j + 1-fachen von I':

2 (2t

j+1]2
AHEA) i Ry P = G
I.\‘,i,,j "(J+ )fs,;,j'm 3

cd

Wegen der spiteren Anwendung haben wir uns in Formel (19a)
im besondren einen Ubergang ', 7, J+ 1— 5,1 j gedacht, die
sich auf eine Multiplettlinie bei Russell- Saunderscher Koppelung be-
zieht. Die in (19a) auftretenden Konstanten C héngen nicht nur
von j, sondern auch noch von s/, ', s und [ ab.

Abnliche Formeln gelten fiir die Ubergéinge j — 1 ; und j -»j:
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20200 (2j+ 1 (j+1 [CF

B= S 5 - (195)
j—1lio
o= 2800 g5 1), CCC L (19)

§ 3. Eine Formel fiir die Summe aller Zeemankomponenten
einer Multiplettlinie im Fall der Multipolstrahlung.

In § 2 haben wir die Summe der Intensititen aller Zeeman-
komponenten einer Multiplettlinie im Fall der Dipolstrahlung
berechnet. In diesem Paragrafen wollen wir eine Formel fiir
diese Summe im Fall der Multipolstrahlung geben, wovon die
Formeln (19a, b, ¢) einen Sonderfall bilden.

In Kapitel II, § 3 haben wir bewiesen, dass die Transforma-
tionseigenschaften des Vektors H im Falle einer elektrischen
2r-Polstrahlung dargestellt werden konnen durch:

R O D I TR B (20 )

m’ mn
wo die b7 sich bis auf konstanten Faktoren transformieren wie:
X#rm'yk-m' wenn (X, Y) ein Spinvektor ist und P eine Kugel-
funktion von der Beobachtungsrichtung & ist, deren Transforma-
tionseigenschaften dargestellt werden kénnen durch die Transfor-
mationen von & 7yi " wenn (& %) ein Spinvektor ist. Wir
fassen nun die drei Komponenten des Vektors H mittels des
konstanten Spinvektors (a, b) in bekannter Weise zusammen in
der Invariante:

(—bHgtaH,)?=(—nX+EY)* ' (— Ya+ Xb)(—ya+&b) . (21)
Die drei ,, Komponenten' von H (nl. H, + iH,, — H -+ iH, und

H) transformieren sich wie die Koeffizienten von b° a? und — ab.

Zur Berechnung der totalen Ausstrahlung brauchen wir den
Poyntingschen Vektor. Dieser ist proportional mit |H 2. Die
Weise worauf | H |? aufgebaut ist wird symbolisch dargestellt durch;

4| H|2= H H el dil }—“—I—Xr; + YEPR-U(— Xt + YrE) k=1,
[( 5) . (X*E) + '/)(X?i YE) . (Xp* 4 YU + (V) . (YH9Y)] =
Vo(— Xy %Y 2=l (— Xt Y21 [ [(XX* Y Y *)(E5* + ) +-
+ EXS S Vs Y (CCE Rt V) 5) | TSRS 00 |

Wit mitteln jetzt | H|? iiber alle Raumrichtungen. Da die b7 in
Formel (20) nicht von der Richtung der Ausstrahlung abhiingen
(Vgl. Kap. II, § 3), so wird in Formel (22) nur iiber (£, #), nicht
aber iiber (X, Y) ,integriert”.
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Das Resultat der Integration iiber alle Raumrichtungen ergibt
fiir die totale pro Zeiteinheit ausgestrahlte Energie, welche pro-
portional zu | H  ist, die einzigmdgliche Invariante:

S =K (XX* + VY*)%=
= K ; (E_J.;m) )l-"-u-:}.wm Ir"-':h'e—mA’kv mn }Tk—;;x’ o T (23)
wo K eine Konstante ist,

Wenn wir jetzt zur Quantenmechanik iibergehen, so haben wir
bei der Beschreibung der Ausstrahlung, die einem bestimmten
Ubergang entspricht, in (21) und (23) die durch die Symbole
XkemYyk=m hezeichneten Ausdriicke durch ihre Matrixelemente zu
ersetzen. Diese Matrixelemente sind bestimmt durch:

{;\'F; + 1 )’k—m}i’,‘;}” . j“ qj" T { k+m Y k—m @j, udzr, . . (24)

wo die @;um die normierten Wellenfunktionen sind, die in sym-
bolischer Schreibweise:
1 A NgieM, ji-M
@u = ~— (f ) e Mpi-1 (25)
VcC,

heissen (Vgl. (9)). Da wir die Summe aller Zeemankomponenten
berechnen wollen, miissen wir iiber M und M’ summieren. Die
stotale” Intensitit ergibt sich sodann zu:
=KX > [ @ T (XX + YY" ) ke mpi'ydr de’ . (26)
J T AT JoMr M ;
wo K nicht von j abhéngt. Dies ist eine Summe von Produkten
von zwei Integralen; das Integral [ dr liefert die Matrixelemente
{Arrmyromil, das Integral [ di’ ihre komplex-konjugierten. Wir
haben die Gréssen, auf welche sich diese letzte Integration bezieht,
durch Striche angedeutet. Wir finden nach (26) fiir

- e ’ - 3%
2 @i @ g me und % P M Pim
M*

Sefn g = ¥ Esg]um,’?*ﬂﬂ%“’)m ‘ SUH‘.w""ui__m(.y: m)" =
My AF VC*J,, Ver
) A e 5 7)
C/
2 Piw P = (—E’—’ “E
M i j

und es folgt das Integral:

ﬁ=c%”N@E+ﬁﬂwmﬂ”+YWW.
I 1!

(E*E 4 i g)idv e,

(28)
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Die Integration [dr’ lisst sich einfach ausfiibren. Sie ist der
Integration (69, 1) vollkommen analog, indem wir in (69, I) — B, A,
— b,a, &7 X, Y durch X, Y, & 5, &% 5% X' Y'* ersetzen.
Es folgt sodann das Integral:
Ij;:'_ 7k _C_f:lj’(_{_/‘(.?];y;ﬂ)klj’ j(/\'i;:i: '{‘Y-)}:":)k+jff"(§§:‘::+?])]:i")j*f"kdl (29)
Cj.er /
dessen Berechnung wir im Anhang geben. Das Resultat der Inte-
gration wird nach Formel (24) des Anhangs: )

kit + D i —k) ki =)k +i—i)!
P_ i ( 1 .f_ | J J ~ 1Y L JJ* | far ) ol . (30
S 2R 2! )] <A
i
wo: L = CTC?.

Fiir den Fall der Dipolstrahlung (k= 1) finden wir aus (30)
die Formeln (19a, b, ¢):

165 = I (P A )

jj:L,(LJfL{%’il-). U s ST (3 1)
2j

7' =L.@2j+1)

Fiir die Quadrupolstrahlung (k = 2) ergibt sich:

o

I =L.@2+5)

j+1 _ (_]'+>2]|2j =83}

) i R

D@1 2+3)

i — \ Al ~2 A\

=05 6j.(2j — 1) 62
o1 o GEDGIED

LR B =

F=2 ="L. (2] 1)

§ 4. Die Kronig-Honlschen Formeln.

Die Formeln (13, 16, 17, 18) ermdglichen es uns die relativen
Werte der Zeemankomponenten einer bestimmten Multiplettlinie
zu berechnen, d.h. fiir einen bestimmten Ubergang j'— j.

Wir fragen jetzt nach den relativen Intensitdten der verschie-
denen Linien eines Multipletts fiir den Fall von Russell-Saunders-
Koppelung, d.h. fiic den von uns immer betrachteten Fall schwa-
cher Spin-Bahnkoppelung. Wir suchen also die relativen Inten-
sititen von Linien, bei denen das Anfangs- bzw. das Endniveau
zwar zu den selben I’ und s” bzw. [ und s-Werten, aber zu ver-
schiedenen j-Werten gehoren. Es kommt also darauf an, die rela-
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tiven Werte der Konstanten (AL O/ C/ und C; zu finden.
Dies wird méglich, wenn wir Ausdriicke fiir die Wellenfunktionen
benutzen, die zwar dieselben Transformationseigenschaften auf-
weisen, wie die in der Invariante Q¥ zusammengefassten Funkti-
onen, die aber dazu noch die Angabe enthalten, wie die Wellen-
funktionen aus den Funktionen der Bahn- und Spinkoordinaten
aufgebaut sind, Das bedeutet: wir brauchen die in Kap. I, § 7
eingefiihrte Invariante @; ;; (Formel (59, I)):

Puoj='é—n) (— bE+an)f (—b& +apy = . . . (33)
=P% QF.RY
WO
GE=tcise M Al L yi=gicks —

Dieses Verfahren gilt nur bei kleiner Spin-Bahnkoppelung.
Wenn wir jetzt mit dem Operator (5) das Integral:

RU5) =1 P00, (—BX+AY? &yo;ds . . . (34) |

berechnen, so stossen wir wieder auf die Formeln (6) und wir
konnen iiber die Konstanten C/*!, C/-! ynd C/ noch nichts aus-
sagen, weil wir den Operator ganz allgemein gelassen haben. Die
Natur des Problems bringt aber mit sich, dass fiir diesen Operater
eine spezielle Wahl getroffen werden darf. Erstens bemerken wir
dass der Operator A, den wir im vorigen Paragrafen fir die
Dipolstrahlung benutzten, sich nur auf die Raumkoordinaten der
Elektronen bezieht, d.h. die Dipolstrahlung ist nur durch die
zeitliche Varation der Raumkoordinaten des Elektrons bedingt.
Dies kénnen wir in unserer Schreibweise so zum Ausdruck
bringen, dass wir die spezielle Form (70, I) fiir unsern Operator;
0 )1 7

o (33)

(0} = ((— J3): —J"Aa;)‘“?(/l;, + B
wihlen mit r = 1. In diesem Operator kommen sodann nur Spin-
vektoren (&, 7) vor, die sich auf die Bahnfunktionen beziehen, und
nicht Spinvektoren (£, #’), die sich auf die Spinkoordinaten be-
ziehen. Wir denken uns im Integral [ &%, , ;. Q Dy 1 dr zuerst
nur iiber die Spinkoordinaten integriert. Dabei erscheint das Inte-
gral additiv zerlegt in mit konstanten Faktoren multiplizierten

Integralen der Form :
IEI:-::.S-:.,,HI ?‘_"fzi."cf nt 5'.5‘1-.1 TF'S—H dr’ . S : (36)

wo [ dr' Summation iiber die Spinkoordinaten bedeutet, Diese In-
tegrale sind nur dann von Null verschieden wenn s” — sund n’ = n
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ist. Bei einem Ubergang muss also der durch s gegebene totale
Spin konstant bleiden. Die Bedingung n’ = n hat fiir freie Atome
keine physikalische Bedeutung da in einer zu den Quantenzahlen
j» [ und s gehdrigen Wellenfunktion mehrere Werte von n auf-
treten diirfen.

Die Berechnung der Intensititen erleichtert sich, wenn fiir A
und B im Operator (35) geschrieben wird:

A=a—b*
BE=UbEa

Damit wird erreicht, dass sozusagen die Besonderkeiten betref-
fend der einzelnen Zeemankomponenten der Multiplettlinien, die
uns ja nicht interessieren, aus der Rechnung verschwinden, wéhrend
zugleich die in Rede stehenden Integrale nicht identisch Null
werden.

Die Integrale (6) vereinfachen sich sodann zu:

ol =C}™! (aa* + bb¥)H+2
(o :}’ C} (aXetiibbl) e . - .. (38
Q' 37'=Cl7 (aa® + bb)Y
Im Kap. L. § 7 fanden wir, dass fiir verschiedene Matrixelemente
passende Werte von q im Operator (21) gewihlt werden miissen,
damit das Resultat der Integration nicht identisch Null wird. So
gilt fiir:

(37)

I+1-1 gi=il
[ -1 ai=0 SO R S ( 73 )
l—1-1 q=—1

Im besondren wird der Operator fiir den Fall [+ 1~ [gleich:
Q={—(b+a)E+(@a—b2=(Q—Q2. . (40)

wWo!: a = (a*¢ + b*n).
Sodann wird unser Integral (23) gleich:

!);'J- 11 ;};" = jvpiw.rxf Q:i:ﬁ" R:g}a’(Q .- ’é]g Pr‘! Qﬁ R‘,\f dt . (41)

Dieses Integral lidsst sich schreiben als eine Summe von drei
Integralen:

QNET = [P QY Ry Pr QP2 Ry -
[P Q' R PrQF Q? R — Vo 1ER)]
— 2/ P’ Q' R pr QFFIQRY = I + I + 111,
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Die Berechnung dieser Integrale, welche im Anhang gegeben
ist, ergibt nun, dass fiir einen bestimmten Ubergang j'~ Jj jedesmal
nur eines dieser Integrale von Null verschieden ist. Fiir den Fall
j'=j 11 gilt nédmlich: o' =a, f'=f + 2, ' = ¥ und es ist nur
das Integral I von Null verschieden, fiir den Fall j'=j gilt:
a’=ec+1, f'=p+1, ¥ =y —1 und es ist nur das Integral III
nicht Null, wé&hrend schliesslich fiir den Fall j=;— 1 gilt:
« =a+2, f'=§ y =y —2 und nur II ungleich Null ist.

Aus den Formeln (11, 16) des Anhangs folgt sodann, dass fiir
die verschiedenen Ubergénge j' =j+ 1, j =], j'=j—1 die
Matrixelemente @;""'347!, Q1S Jund 2,734 durch nachstehende

Formeln bestimmt smd

Qs+l _ el (@t+p+y+3)! al (B+2)!
v, 7 1 '(ﬁ { }r——f—3)!(a }’JI((I | G 2
=C} ' (aa* + bp¥)FEYE2 L, . . (43a)

,(da + bb*)fErE? =

(a+ﬁ+y+2'\l(a_+1) (B+1)1 7!
By +2)!(aty)! (a+p+2)!

=C;’,:(aa*—i—bb*)ﬂ+}’”- S R R S (43 5 )

Qr ‘f}’r-——ZCf_[. ( a¥ - ppH)ftr+l —

(@+pt+y+1)l(a+2)8] 7!
(Bty+ DLl (@a+yp)!(atp+2)!

T aa* + 6008 . . . . . . . . . . (43)

Q= (aa* 4 bb*)P*7 =

WO Cf” nur von [ und s abhingt, nicht aber von j. Wir
haben jetzt noch die Konstanten C; in (19) zu bestimmen, die mit
der Normierung unserer Wellenfunktionen @, ; zusammenhiingen.
Diese sind gegeben durch das Integral (vgl. (11) des Anhangs):

*\a % B *\Y gy — (a +;ﬁ'+y~L1)|a|p],.!
A IO A S i ey s L (2

C: . (aa* + bb*)B+r = Cjlaa* + bb*)f+y

wo C; nur von [ und s und nicht von j abhingt.

Die in dieser Weise bestimmten Konstanten, eingesetzt in die
Formeln (19a, b, c) liefern uns die relativen , totalen” Intensititen
der Multiplettlinien fiir den Fall I + 1 - I:

1+1,57+1 " o
I TR = %/s

(271 3).

@+p+rt3)a+p+y+2B+2)3+1) [C''
By +3)pty+2(atpF+2)@t+p+1) Cii.Cr . (45)

(277)
o3
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Telis (27av)? (2}*1)(]‘!‘1)
I} S_J;—%/S' = - 21
@tp+r+2@t)@E+Dr |cit'P
Bty +2P@rp+2) (@t p+—1 Co.C
If”:;"f-_] — (2“0 (2 1). (45)

(a #2)(a+1);(>f—1» Gl

Btr+H)B+ne+p+2)(@rp+1)Cn.C

oder unter Benutzung der Bedeutung von a, # und y (vgl. (33)):

Il i = Ty ettt y+3)(atp+y+2)(B+2)(3+1).Ki' ' (46a)
s = 2+ @+p+y+2)(@+1) @+ y. K+
i Y j(j+1)( ) ) ) (] y . K'Y (46b)
f:“],'f,'}q _ Jl (fa+2)(et+1).y.(r—1).K* | . . . (460
AY
JC!‘I e (2;:3)
wo: Kitl= eine Konstante ist, welche nicht

(2(+2) (21+1)Ci.1.C
von j abhingt, und die (Vgl. (19a)) gleich der totalen Intensitét
I1+1 des Ubergangs [ = 1- [ (bei Vernachlassigung des Spins)
ist, multipliziert mit:
, e Ul ]
221+ 1) (21 + 2) (21 + 3)

Nach der Summenregel, auf dessen allgemeinen Beweis wir hier
nicht eingehen, soll die Summe von (46a, b, ¢) gleich dem Pro-

duki von ;l i 1 und I;*' sein. In der Tat ergibt die Summierung
von (46a, b, ¢):
. 747 = 1]
At il s aTrel
2(2j + 1) (21 + 2) (21 + 3)K] = 5 11’ :

Wir gehen jetzt {iber zur Berechnung der Intensititsformeln fiir
den Fall I’ = [. Dazu brauchen wir den Wert der Konstanten
Cl, Ci+! und C/'! in diesem Fall. Zur Berechnung brauchen wir
nach (39) den Operator:

=S—(b4 a*) &+ (a— b* )ng -P-(b-{—a*)a + (a — b* )aa.:g
0¢
0&)

(47)

=l(a1—"b%)

gQ ﬂésﬁ‘ (b+a!‘)a



=[P Q¥ R* P*~1 Q1 R (Q—Q).(a[R— R] QP (aa*+ bb¥)).
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Die Anwendung dieses Operators auf die Ausdriicke P, Q und

R liefert, wenn wir die Bezeichnung ﬁ (a®&" 4 b*n') einfiihren:

OP=(Q—Q)(R—R); 2Q=(Q— Q) (aa*+ bb*; 2 R =0 (48)
Sodann berechnen wir das Integral:

Qs =[P Q¥ R Qp* QF R =

Auch hier kénnen wir das Integral wieder in drei Teile zerlegen,
welche je fiir sich nur in einem der drei Félle j'=j, j'=j+ 1, j =
= j — 1 von Null verschieden sind. Man findet in dieser Weise:

Qi+l = [ (P*p)a1 Qb+l QF-1 R+l pr. (e Q’R) (50a)

w=lsf

oli=P** P*~1 Q QP! (RR*)7 . (—a[QR-+RQ] Q+pPQlaa’+bb*)).

=2 [s5f

obi-1 _f p#a+l po—l {Q*Q)Pf’—l R:E::'—l R?".(-f—uQﬁa—ﬁPﬁQJ(aaH—bb*))

S=iST

Die Berechnung dieser Integrale mittels der im Anhang gegebenen
Formeln liefert fiir die , totalen” Intensititen unter Benutzung der
Normierungsintegrale (44):

fyy‘:Uéﬂ.m+ﬁ+y+muﬁ+nu+4yK§(m@
Sl 27

Qu=%¢; (B2+fy +af — ay + 262 . Ki . . (51B)
QH”:i-(*ﬂ+?+Um+ﬁ)ﬁ> K . . (10

wo K] eine Konstante ist, welche gegeben ist durch: 2/(21+ 1).
(21 2)K:—- I} wenn I} die ,.totale” Intensitit des Ubergangs -1,
bei Vernachldssigung des Spins ist.

Die Intensititen fiir den Fall /— 1 - [ ergeben sich aus den
Formeln (46a, b, ¢) durch Vertauschung von Anfangs- und End-
zustand. Wenn man in den Formeln (46, 51) die a, 8, y mittels
(33) durch die s, [, j ersetzt, bekommt man genau die Kronig-
Hénlschen Formeln 1),

1) R. de L. Kronig, Zs. f. Phys. 31, 885, 33, 261, 1925; A, Sommerfeld und
H. Honl, Preuss. Akad. IX, 141, 1925.

(49)

(506)

. (50¢)
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§ 5. Die Quadrupolstrahlung.

Rubinowicz hat die Quantenmechanik der Quadrupolstrahlung
ausfiihrlich behandelt und die Intensititen sowohl der Zeeman-
komponenten, wie der Multiplettlinien im Fall von Russell-Saunders-
koppelung bestimmt 1).

Die Berechnung der Matrixelemente, welche die Ausstrahlung im
Fall der Quadrupolstrahlung bestimmen, erfordert gar keine neu-
artigen Uberlegungen, sie ist von der bei der Dipolstrahlung be-
nutzten Methode nicht wesentlich verschieden.

Nach § 2 des zweiten Kapitels ist die Quadrupolstrahlung be-
stimmt durch einen symmetrischen Tensor zweiten Ranges mit
Diagonalsumme Null. Thre Komponenten waren durch die b; in
(27, 1I) gegeben. Es lassen sich Linearkombinationen dieser Kompo-
nenten so wdihlen, dass sie sich transformieren wie die aus dem
Spinvektor (X, V) gebildeten 5 Monome X?'7 V! (f=2, 1,
0, — 1, — 2). Wir fassen die 5 Monome zusammen in der Inva-
riante:

Q=(—BX+AY) . . . . . . (52

Mittels (69, I), wo r = 2 gesetzt ist, sicht man, dass die
Matrixelemente dieser Monome je fiir einen bestimmten Wert von
M — M’ von Null verschieden sind, und zwar kommen [M — M'] =
= 0, = 1, * 2 vor. Sie entsprechen deshalb eben den verschiedenen
Komponenten des Zeemaneffekts, wenn ein magnetisches Feld

parallel der Z-Achse angelegt ist. Weiter ergibt sich sofort, dass
nur chrgange vorkommen, wo | j — j' | = 2, wihrend zudem
noch die Uberginge j—j, wenn j=1/, und j + 1 - J, wenn
j = 0, verboten sind. Anders gesagt: Es sind nur Uberginge ge-
gestattet, wobei die Zahlen ;', j und 2 die Seitenlingen eines
Dreiecks bilden kénnen.

Unter Benutzung der Formeln (69, I) und unter Beriicksichtigung
der Normierungsfaktoren (44), ergeben “sich die Quadrate der nor-
mierten Matrixelemente fiir den Fall j 4+ 2 - j zu:

Jﬂ/] r‘l){;-}M—P—?) (j+M+2)(j+M+1) Cfr\

)1:1').4"!]1- AT . i

~HE (2/+4) (2+3) 12/-+21 (2j+1) G2 G
oi-2ma (=M1 G+ M= 3) (j-M+2) (j+M+1) G2
i (2j+4) (2/+3) (2j 7 2) (2j+1) R EN (G
QiraM (j+M+ 2)(}‘—M 2)(I*M_f4“1 (j—M-+1) icf«:*”
il \2jF4) (2j+3) (2j+2) (2j+1) GENG)

1) A. Rubinowicz, Zs. f. Phys. 53, 267; 61, 338; 65, 662,
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9

o1 _ (M) (G—M+3)(—M+2)(j—M+1) }9’3”

gL | -
et (27 +4) (2 +3) 2/ +2) (2j+ 1) G2 G
enmo_ (=M =4)(j—M+3)(j -M+2)(j—M+1) |G

e~/ I (2j+4) (2j+3) (2/+2) (2j+ 1) G2 G

Die Konstanten C in diesen Formeln sind von j, nicht von M
abhingig. Fiir die andren erlaubten Ubergénge j'—+ j ergeben sich
dhnliche Formeln. Fiir die Berechnung der rdumlichen Verteilung
der Ausstrahlung im Falle des Zeemaneffekts verweisen wir nach
der zweiten Arbeit von Rubinowicz, die auf S 49 zitiert wurde.
Diese Berechnung ist von der von uns bei der Dipolstrahlung
angewandten Methode nicht wesentlich verschieden und nur etwas
komplizierter. Was die Berechnung der Strahlung betrifft, so hat
Rubinowicz sich sofort auf die Ausstrahlung einer in der Zeit
harmonischen Strom- und Ladungsdichte spezialisiert und diese
unter der Annahme einer Superposition von Anfangs- und End-
zustand quantenmechanisch berechnet, wéhrend wir zuerst unsere
klassische Rechnung ganz allgemein gehalten haben und sodann
unsere Formeln quantenmechanisch umgedeutet haben.

Rubinowicz zeigt, dass die Intensititen der Quadrupollinien sich
berechnen lassen, indem man , Zwischenniveaus” aufsucht, welche,
mit dem End-, sowie mit dem Anfangsniveau kombiniert, von
Null verschiedene Matrixelemente der Dipolstrahlung liefern. Das
Produkt dieser Matrixelemente, summiert iiber alle ,, Zwischen-
niveaus’, ergibt die Matrixelemente der Quadrupolstrahlung. Zu
dieser Berechnung braucht Rubinowicz gewisse Summenregeln
beziiglich der in den Matrixelementen der Dipolstrahlung auftre-
tenden, von M unabhiingigen Konstanten. Diese Summenregeln
ergeben sich aus dem Umstand, dass bei verschiedener Wahl der
Reihenfolge der Faktoren bei der Matrixmultiplikation sich die-
selben Matrixelemente der Quadrupolstrahlung ergeben miissen.
Wir berechnen dagegen alle Matrixelemente nach einer direk-
ten Methode, ohne die Matrixelemente der Dipolstrahlung zu
benutzen, und erhalten sofort die Endresultate von Rubinowicz
in einer Form, die sich kaum mehr vereinfachen lisst.

Jetzt betrachten wir die Intensititen der Komponenten eines
Multipletts (bei Russell-Saunderskoppelung), das einer reinen
Quadrupolstrahlung entspricht. Wir definieren die totale Intensitét
einer Multiplettlinie als die Summe ihrer Zeemankomponenten.
Die Formeln (32) geben an wie diese Intensititen mit den Grossen
C;, CJ zusammenhiingen. Es handelt sich also nur noch darum,
diese Grossen als Funktionen von [, s, j zu berechnen.

(53)
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Wir ersetzen den Operator (52) nach Formel (70, I) durch
einen Operator in & und #. Fir die 5 erlaubten Ubergiinge
[+2-1 I+1->1 ..... [ —2-1[ hat dieser Operator nach
Formel (72, I) jedesmal eine verschiedene Form. Nachdem wir
die Substitution (37) fir A und B gemacht haben, wird unser
Operator fiir den Fall [ + 2 - [ gleich:

0= (QE=Q) N TR (54

und wir berechnen das Integral:

j‘p:-:r:'Q—t:ﬁ'R:-::y' {0)— 6)1 perp’R;,r de . . . (55)

Dieses Integral lisst sich in 5 Integrale zerlegen, von welchen
bei jedem der 5 erlaubten Uberginge j+2- 4, ... .. j—=2—j
nur eines von Null verschieden ist.

Im besondren erhalten wir fiic den Fall j'=;+ 2: d' =gq,
f'=f-+4, y =y und es wird und es wird das Integral gleich:

[ PreQPHRYP'QPR . Q' dr . . . . (56)
Unter Benutzung des Normierungsintegrals (44) finden wir fiir
}:1'_‘9
die in den Formeln (32) auftretenden Konstante <
CrahCy
C,;w:
GG

_(atpiytS)(atfytd)(atpiyt3)atpiyt2) () E3) )P prar o7
- (2j+5) (2j+4) (2j+3) (2j+2) F

Die Berechnung der Quadrupolintensitiiten lauft also parallel
der bei der Dipolstrahlung gefolgten Methode.

Fiir den Fall [ + 1 + [ werden die Formeln verwickelter (analog
an [— | verglichen mit /41 - [ bei der Dipolstrahlung). Dies
gilt in noch hoherem Masse fiir den Fall [ [ Da haben wir
das Integral:

0

a’ 1iff i M2 il i b 0
[P Q' R* (Q—Q) KJOE‘} i

0¢
— [P QW R* (Q— Q)2 P 2QF 2R . [(a +B) (R—R)PQS +
+{a(R—R)Q+pPS}.{(a—1)(R—RQ+(F—1)PS)], . (58)

wo S = (aa* + bb*) ist, zu berechnen. Alle vorkommende Inte-
grale kénnen mit Hilfe der Formel (16) im Anhang berechnet
werden. Unsere Methode ergibt sofort Ausdriicke, welche sich

N {1 I \12 amBro
,Du)+(;b* +a* (;W‘)J P*QPRY dr =
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kaum unterscheiden von den Rubinowiczschen Endformeln, die
unter Aufwand mithsamer Rechnungsarbeit erhalten sind.

Hiétten wir bei den Berechnungen in diesem und im vorigen
Paragrafen den Ansatz (73, I)benutzt, der scheinbar einfacher ist
als (70, I), so wiren die Ausdriicke der Matrixelemente zuriick.
geftibrt auf Integrale der Form:

= fpu‘:aff(k"):s:ﬂajethf:y-%t _pa-s Qﬁa)'s R/*5dq.

Der Wert dieses Integrals lisst sich aber nicht wie die Integrale
(11, 16) vom Anhang als ein Quotient von Produkten von Fakul-
tdten schreiben.

§ 6. Die magnetische Dipolstrahlung.

Im zweiten Kapitel haben wir gezeigt, dass die magnetische
Dipolstrahlung bestimmt ist durch das magnetische Moment des
Atoms:

e

e
S R = T

M=_°"L+

2mc mc

wo L das Bahn-, S das Spin-, und P das totale Impulsmoment
bedeutet. Die zu den zwei Wellenfunktionen @u, s, und ¢y ; ge-
horigen Matrixelemente sind offenbar nur dann von Null ver.
schieden, wenn I’ = lund s’ = s ist, daja | L | und | S | in Russell-
Saunderskoppelung zeitlich konstant sind. Es kommen also bej der
magnetischen Dipolstrahlung eines freien Atoms nur Uberginge
vor, bei denen allein j seinen Wert éndert. Ausserdem ist der
Fall j* = j noch auszuschliessen, da dieser Fall keinem Ubergang
entspricht, sondern das magnetische Moment des Atoms im statio-
niren Zustand [, s, j liefert. Da wir es mit einer Dipolstrahlung
zu tun haben, konnen wir sofort feststellen, dass |’ =il
wihrend die Matrixelemente des Zeemaneffekts dieselben wie bei
der elektrischen Dipolstrahlung sind. Bei der Beschreibung des
Strahlungsfeldes sind aber die E und H bei der elektrischen Dipol-
strahlung durch H und — E zu ersetzen.

Zur Berechnung der S. 40 definierten totalen Intensitit der
nicht durch einen Zeemaneffekt gespalteten Linie, beachten wir,
dass die Matrixelemente P'f” und P} Null sind. Die Matrix-
elemente von L sind durch (51a) und (51¢) gegeben. Die Matrix-
elemente von S gehen aus diesen Formeln hervor durch Ver.
tauschung von [ und s. Sowohl die Matrixelemente von L, wie
die Matrixelemente von S liefern nach (59) die Intensititen der
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magnetischen Dipolstrahlung. Dieser scheinbare Widerspruch wird
aufgehoben, indem wir bemerken, dass die Formeln (51a) und
(51¢) durch eine Vertauschung von ! und s nicht geéindert werden 1).
Da wir es hier mit einem magnetischen Moment zu tun haben,
so kénnen wir in diesem Fall die absoluten Intensitéiten berechnen.

Sie ergeben sich zu:

it e (LC

3¢3 "\2mc
[ k-l (2700)* ( e )“)
sy = 5
% foi 2mc,

Man rechnet leicht

1)
i

i

L (B2, (D). () o
@t ptr ). @t 1)y

(60)

nach, dass im Grenzfall grosser Quanten-

zahlen diese Formeln genau iibereinstimmen mit was sich aus dem
klassischen Vektorschema ergeben wiirde.

1) Die Anwendung von (51b) fithrt leicht zur Ermittelung des Landéschen

g-Faktors.



ANHANG.
DIE BERECHNUNG EINIGER INTEGRALFORMELN.

Wir wollen hier die Berechnung des Integrals:
[ (PP#*)™ (QQ&J/ﬁ ) (RRN)’ dr = f(&-a,:}ju:: — "E’*?}*)a (& — &-:?])a |
] (_ pes |- asznm}ﬂ J (_ bt + 3"‘})'8  (— bEE a*]]’ﬂ.:)}’
N (= DS 7)) Ol T S S (1)
geben. Dazu betrachten wir das Integral:
j. (_ b;,&,* _I_ a:e‘:n:,::)ﬁ—f-a ] (_ bE __|__. a_)})f?+ﬂ y (_ bl:i:gl:;: + al:_—’:?}f:i:)}"*'a .
=06 e G e = (OIBHIEE [@RtGs, . (@)
worin T' = (— b'§’ +a'y’) und (a’, ') ein von (a, b) unabhiin-
diger Spinvektor ist. Dieses Integral ldsst sich berechen, indem

man bemerkt, dass es sich als ein Produkt zweier Integrale schreiben
ldsst:

/ (Q-szQ)ﬂ+a ) (T:.-':T)}’-i-ﬂ dv = [ (G)#:Q)ﬂ+fl dv' . [ (T*Ty+e dy (3)

Hierin bedeutet [ di’ Integration iiber die Bahnkoordinaten und
[ dr” Summierung iiber die Spinkoordinaten. Es ist das Integral

nach (64, I) gleich:
J(@ Bl (GG dri= Cﬂ—l-a . (aa* + bp¥)fte,
Cpya- o+ BB L

Wir wenden sodann den Operator:
: 0 0? )a (02 (R
(6) o - (o S I el o N
k=) e S570a") )

an. Ausiibung dieses Operators auf die linke Seite der Gleichung
(4) ergibt;

a-+ a )
3( f“ﬂ) ( +}) £ j(ts (HIE 4 =:} (&-}] )a.(QQ*)p.(TT*)de. (6)

Zur Ausiibung des Operators (5) auf die rechte Seite von (4)
wenden wir zuerst 2%® an. Das Resultat ergibt sich sofort zu:
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_Q;:{‘.a : Ca»i-ﬁ- Ca-}-;,- : (aai: _|_ bb*)ﬁ'+a : (afahk + babr:s:):x—l-(: e
=Cysp-Casy- (+ba—ba)*.(aa* + bb") . ('a™ +b'b7Y .
(p+a)l (y+a)l

(B+a)! (y +a)! e
AP = Copg Gy UP S STy

Die Ausiibung von 2 auf (7) liefert:

QiGN C RN GRS (RRE S hby it (aa s b bR A=

- (7)

a+f -
{ﬂ—*—u)'{y—F Ct)' - Uﬂ =1 . S’g_l . S,J,f] '

= CtH—ﬁ'Cnf%}-- 'p-! = !
{+aS.S +ala—1)b".a. [I-1.5.S +yab’.b"™*. S+
~+pfaa.a*.S' + pya*. b . U+ aS.S'—a(a—1Da’.b.U1.S.5+
+ yaa'.a’ .S+ pab.b*.S' — pyra”b*'U} =
¢ } | f o
— Ca.|.ﬂ-ca+? (ﬁ‘;}"l)[ (:V:a)- . {a(a_i_‘“.__l_r + I)Urlfl Sﬁ S; =N
H 7
—By(—atbtatbt IEUSASLIS YL LRI (8)

Hieraus ergibt sich das Resultat der Anwendung des Operators
(5) auf die rechte Seite von (4) zu:

(@tpllatl Byl et ppe,

CarpeCary- =51 51 "% Frpr 1)
. (a’a’ + b'b™) + Terme, welche (a*b™ —a™b") enthalten. . (9)

Die Gleichsetzung der beiden Resultate (6) und (9) ergibt die

Gleichung
+ S B '
r nar )k Vel K\ Y — (G:l"_/f_ {H} i_l)!_a!,,ﬁ,!l_}_‘_. .
JPPYNQUVATTY: = (5 1 £ 1) () (1)}
. Casp - Coayy - (aa” + bb*)f . (ala™ + b'b™Y +
+ Terme in (a*p™ — a”b%). . . . . (10)

Indem wir die unabhiingigen Spinvektoren (a’, b') und (a, b)
gleich setzen erhalten wir das erwiinschte Resultat:

[ (PP . (QQ%F . (RRYY dr =

(@a+p+y+ Dlalplyl v

= als .L.,.c"h’fbb‘\ﬁi}.
FF 7D (@ Al )l et Caby oo 6505 D
Die beiden Konstanten Cg,i4 und Cy+, héngen von der beson-
dren Form der Wellenfunktionen und im besondren von a + i ( = 2I)
und a + y (= 2s) ab; nicht aber von g + » (= 2j), da ja im Integral
(4) diese Zahl nicht auftritt. Die hier benutzte Methode der
Anwendung von Operatoren fiihrt leichter zum Resultat (11) als
das von Kramers angewandte Verfahren (Vgl. H. A. Kramers,
loc. cit.) Er hatte zur Berechnung von (11) eine Reihe von Pro-
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dukten von Binomialfaktoren zu summieren, was wir hier ver-
mieden haben.
Zur Berechnung des Integrals:

f p%aQ:;:ﬁRﬁz;-pq—s—t(;))ﬁ-i-r?ésR;'ﬁ\‘ﬁ! dr . . . (]2)

WO ?;j — (a:::-i: 2f b*I‘l) und ﬁ _— (a:iz;’:’ "F_ bAJ]’) iSt,
wenden wir den Operator:
0 L 0\s 0 0\
@) = =i == * e LA | Pe3es
2=(-a 3% T 0"s) (ATt b 5) -
( 02 02 >‘1 ( 02 g2 "]aus—r

0b 0a*  0b"0a* "\0b'da  0bda (13)

an auf beide Seiten der Gleichung (4). Hieraus ergibt sich fiir
die linke Seite von (4):

(B + a)l (y+a)! (f+a)l(y+a)
f! 7! Byl
fp:-::rz ) (2:5:,‘3 ST eSS =t . Qﬂ+t ?:)s ) T;*-i-.\‘ ) Tf dr . (14)

wo: T = (a™& + b'™*&) ist.

Man sieht sehr leicht durch Vergleich mit (8) dass die Anwen-
dung des Operators (13) auf die rechte Seite von (4) ein Resul-
tat ergibt, dass sich nur darin von (9) unterscheidet, dass (B+y+1)!
durch (f +y + s+ ¢+ 1)! ersetzt werden muss, wéihrend zudem
noch die Faktoren (a'a® 4+ b'6%)* und (— aa’* —— bb™ )t auftreten.
Hieraus ergibt sich die Gleichung:

(F+a)! (y+a)! , (’? tal(y+ a__J_]_ [P QF TRy | pa=s—tf+t s
gl 7! B+l (y+s! : <
e A (a+p)! (a+_@!r al(atp+y+1)!

e Car Cay o e e e T
. (aa*+bb*)P (a'a™ + b'b™*)" . (a'a* + b'b*)* . (— a*a — b*b,t +
-+ Terme, welche (b*a* — b*a*) und (ba” — b’a) enthalten . (15)

oder nach Gleichsetzung von (a’, &) und (a, b):

f p*a(g*ﬂpru-—s—t Qﬂ+t?"js[\)y+s"[‘)"tdr___ Ca+/j‘ ) C,-,H, (= 1)1‘ '
(@tp+y+D)lal (846! (y+3)!
Bty tste+D)! (@t p)l (aty)
Bei der Dipolstrahlung brauchen wir dieses Integral mit s, ¢

gleich 0,1; 1,0; 2,0; 1,1; 0,2. Bei der Quadrupolstrahlung haben
s, t die Werte 4,0; u.s.w.

[ (aa™ + bb¥)f+rtste (16)
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Schliesslich geben wir noch die Berechnung des in Kap. III,
§ 3 gebrauchten Integrals:

[(— Y&+ Xn)? (X¢ + Yu*)f (8% + p*9)°de . . (17)

Wir gehen aus vom Integral (69, I), wo fiir 2, bzw. 2j,
bzw. 2r, hier a + 8, bzw. a + y, bzw. f + 7 geschrieben ist:

f(_ bHE# -+ a:;:}]#=)a+ﬁ (— BX -+ AY_'J’&;-HV (__ bE‘f‘*’”})u oY =

— ngf, (aa® +bb")*.(— Ba + Ab)’ . (a*A +b*BY (18)
und wenden den Operator:
2 d% \a& / 02 02 \A / 02 o2 \r
) = L = s | ik | Qe
_(aaaa Obdb J (oa DA T abJOB) '(\, BBAa+OA()b,)
=0, 0f 01 . (19)

an. Aus der linken Seite von (18) ergibt sich nach der Anwen-
dung dieses Operators:

(Cl __|#f) a_'_?,)! P y ‘ {( E+X,])F' - (‘\'&“:5’+ }r'}]:-::)ﬂ X (E{E‘I"?]“)} I}.dT. (20)

Der Operator 27 angewandt auf die rechte Seite von (18) liefert;

il
cﬁﬁ'(ﬁﬁiﬁ_nl .(— Ba+ Ab)f . (a*A + *BY . (21)

Sodann ergibt Anwendung des Operators Qf auf (21):

Crwﬁ al(f@a+p+ y ll‘ gl g+ y+ 1)
e S I T

Schliesslich folgt nach Anwendung des Operators £} auf (22):

alla+ gty 1) BlL(f+p+ 1)1
GEEZEE R ()
Nach der Gleichsetzung von (23) und (20) erhalten wir das

Endresultat:

[(— Y&+ Xy) . (X + Yy . (6 + n*n)? dr =
_ CE, (a+ 8+ y 1)l el Blyl
w7 B+ )l (@t Pl (@t 7!

Man sieht, dass die Berechnung aller dieser Integrale einfache
Formeln ergibt, worin Fakultiten auftreten. Diese Integrale hén-
gen unmittelbar mit den physikalischen Anwendungen zusammen.
Der Vorzug der Kramers'schen Methode besteht darin, dass um-
stindliche Rechnungen vermieden werden.

. (a*A + b*BY. (22)

yl(y+ 1)1 CHA . (23)

a-+y

(24)



ZUSAMMENFASSUNG.

Viele physikalischen Eigenschaften eines freien Atoms werden
durch die Matrixelemente gewisser quantenmechanischer Opera-
toren festgelegt. Die relativen Werte dieser Matrixelemente sind
oft schon vollkommen bestimmt durch die Transformationseigen-
schaften, welche die Wellenfunktionen und die Operatoren bei
Drehungen des Koordinatensystems aufweisen.

Im ersten Kapitel werden die Transformationseigenschaften der
Wellenfunktionen bei Drehungen des rdumlichen Koordinaten.
systems behandelt. Zuerst wird der Zusammenhang der unitiiren
zweidimensionalen und der reellen orthogonalen dreidimensionalen
Transformationen nachgewiesen. Sodann wird besprochen, wie die
Wellenfunktionen eines freien Atoms eine Darstellung der Raum-
drehungsgruppe induzieren. Es wird im Falle von Russell-Saunders-
koppelung gezeigt, wie man mittels eines von Kramers gegebenen
Verfahrens die Wellenfunktionen in nullter Néherung als lineare
Kombinationen von Produkten von jeweils einer Funktion der
Bahn- und einer Funktion der Spinkoordinaten bestimmen kann.

Sodann wird die, auf Weyl fussende, Kramers'sche Methode zur
Berechnung der relativen Werte von Matrixelementen behandelt,
Es werden die Wellenfunktionen des Atoms und die betreffenden
Operatoren in symbolische Invarianten zusammengefasst, Aus der
Bemerkung, dass eine Integration solcher Invarianten wieder eine
Invariante liefern muss, folgen sodann in vielen Fillen unmittelbar
die relativen Werte der Matrixelemente.

Im zweiten Kapitel wird die Ausstrahlung eines freien Atoms
nach der klassischen Elektronentheorie behandelr. Ausgegangen
wird vom Hertzschen Vektor, der sich zur Bestimmung des
Strahlungsfeldes eines Atoms oder Molekiils sehr eignet. Es wird
eine Entwicklung des Hertzschen Vektors nach negativen Potenzen
der Lichtgeschindigkeit gegeben. Es zeigt sich, dass eine Analyse
der Transformationseigenschaften der Terme dieser Entwicklung
eine Einteilung des Strahlungsfeldes ergibt in verschiedene Arten
von Multipolstrahlung. Im allgemeinen liefert der (k — 1)/ Term
dieser Entwicklung des Hertzschen Vektors Dipol- bis 2-Pol-
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strahlung. Diese Strahlungen lassen sich einteilen in elektrische
und magnetische Strahlungen. Man erhélt eine magnetische
2% Polstrahlung indem man in den Formeln einer elektrischen
2k_Polstrahlung den magnetischen Vektor H durch den elektrischen
Vektor E, und H durch — B ersetzt.

Im dritten Kapitel werden die im zweiten Kapitel abgeleiteten
Transformationseigenschaften der Bestimmungsstiicke des Strah-
lungsfeldes zur Berechnung von Matrixelementen benutzt. Die
klassischen Formeln werden quantenmechanisch umgedeutet. Sodann
werden nach der Kramers'schen Methode die Matrixelemente be-
rechnet, welche den Zeemaneffekt und die Intensititen der Multi-
plettlinien bei Russell-Saunderskoppelung im Falle elektrischer Dipol-
und Quadrupol- und magnetischer Dipolstrahlung beschreiben. Es
zeigt sich, dass diese Behandlungsweise keine miithsamen Zwischen-
rechnungen fordert und fast sofort zu den Endresultaten in ihrer
einfachsten Form fiihrt.
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STELLINGEN.

I3

Er zijn in de spektra van vrije atomen overgangen te verwachten,
waarbij alleen j springt met + 1 en de andere guantumgetallen
niet veranderen. Deze overgangen zijn misschien in het Rontgen-
gebied experimenteel te vinden.

I1.

De regel, dat bij dipoolstraling slechts overgangen toegestaan
zijn, waarvoor |j/— j| =1 is, terwijl bovendien nog j = j ver-
boden is als j =0, is een biezonder geval van de regel, dat bij
27-poolstraling de overgangen, waarvoor |j' — j|>rof (j'+j)<r
is, verboden zijn. Bij een toegestane overgang moeten dus de

getallen j', j en r een driechoek kunnen vormen.

I11.

Het verdient aanbeveling bij de ontwikkeling van een golffunktie
naar eigenfunkties gebruik te maken van de theorie der Stieltjes-
integralen.

IV.

In de kinetiese theorie van de vloeistofreakties gaat men vaak
uit van de theorie van de Brownse beweging. Hoewel dit tot
goede resultaten leiden kan, is het maken van een ,Stossansatz”
in deze theorie onjuist. Zo zijn de theoretiese resultaten van
Olander, die een formule voor de reaktiesnelheid bij vloeistof-
reakties afleidt, niet juist (vgl. A. Olander Zs. f. phys. Chem. A
144, 118, 1929).

V.

5. De door Oppenheimer gegeven quantummechaniese theorie
van de invanging van elektronen door a-deeltjes geelt voor grote
snelheden van het a-deeltje (vergeleken met het elektron in zijn
baan) een goede benadering. Zijn berekening van de werkzame
doorsnede van atomaire waterstof is echter onjuist. (Vgl. J. R.
Oppenheimer, Phys. Rev. 31, 66, 349. 1928; H. C. Brinkman en
H. A. Kramers, Proc. Kon. Akad. Amst. XXXIII 973, 1930).



VI

Het bewijs in dit proefschrift, dat een bij unitaire transformaties
invariant polynoom in &), #, .... %, 3. een polynoom is in de
grondinvarianten (— nxp + & %) (vgl. pag. 5 en 6 van dit
proefschrift), kan iets verkort worden. Het verliest dan echter aan
overzichtelikheid.

VIIL.
De ontwikkeling van een holomorfe funktie volgens Lagrange:
S \aal
sl e e = 4 (2)1n
feo)=rfa+ £ 5 (0 @) (wa)y,

waar: { = a -+ tp(), (vgl. Whittaker and Watson. Modern Ana-
lysis, pag. 133) kan worden uitgebreid tot een ontwikkeling van
een rij van holomorfe funkties. Deze uitbreiding vindt een toe-
passing in de theorie van de geretardeerde potentialen (vgl. pag.
27, (15) van dit proefschrift).

VIIIL

In tegenstelling met het resultaat van Heisenberg, is de
formule van Kramers voor de cos®-koppeling gelijk aan de qua-
drupoolintensiteitsformule 175/ van Rubinowicz, nadat in deze
laatste formule j en s verwisseld zijn. Dit pleit voor de juistheid
van de formule van Kramers. (vgl. H. A. Kramers, Proc. Kon.
Akad. Amst. XXXIV 965, 1931; W. Heisenberg, Zs. f. Phys. 39,
499, 1926).

XI.

Bij de toepassingen van de kansrekening bewijst het verschil,
dat Talma maakt tussen kans en waarschijnlikheid, goede diensten.
(vgl. P. Talma, diss. Utrecht 1921).

X.

De intensiteitswisseling van het geluid, die men waarneemt,
als men een trillende stemvork ronddraait, berust op het feit, dat
een stemvork quadrupoolstraling uitzendt. De verklaring, die in
veel leerboeken der natuurkunde voor deze intensiteitswisseling
gegeven wordt, is onjuist. (vgl. Gerrits, Leerboek der Natuur-
kunde; Reindersma en van Lohuizen, Nieuw Leerboek der
Natuurkunde),
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