
Zur Quantenmechanik der Multipolstrahlung

https://hdl.handle.net/1874/308458

https://hdl.handle.net/1874/308458


??? .. a___ ----- :â–  ......â€” - - - ZUR QUANTENMECHANIKDER MULTIPOLSTRAHLUNG f_ H. C BRINKMAN 8IBLI0THSEK DERRiJKSUNIVERSITEITUTRECHT.



??? â–  l--'quot;-' .r ...... '-A ; v-' iv-: â€”V if'. â– nbsp;' y â–  ' â–  t' â– nbsp;V r : - -V â–  t ; â–  , â€? - â€? . . â–  ........ â–  .^PÂ?.



??? vv. SJfr-SÂ?''Â??;:-. m . Krquot; ' â– â€?â– â€?.â€?n'-AV ,' - lt;.. ' .....â€?..' r-k'.V-.V â€?OÂ?- j;. r^if-'-li



??? â€?TJt... 'Mt;' ) I i'i 'v ; - A



??? ZUR QUANTENMECHANIKDER MULTIPOLSTRAHLUNG



??? RIJKSUNIVERSITEIT TE UTRECHT '7 2492 663 O



??? ZUR QUANTENMECHANIKDER MULTIPOLSTRAHLUNG PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAAD VAN DOCTORIN DE WIS- EN NATUURKUNDE AAN DE RIJKS-UNIVERSITEIT TE UTRECHT. OP GEZAG VAN DENRECTOR-MAGNIFICUS Dr. L. S. ORNSTEIN, HOOG-LEERAAR IN DE FACULTEIT DER WIS- EN NATUUR-KUNDE. VOLGENS BESLUIT VAN DEN SENAAT DERUNIVERSITEIT TEGEN DE BEDENKINGEN VANDE FACULTEIT DER WIS- EN NATUURKUNDE TEVERDEDIGEN OP MAANDAG 18 APRIL 1932, DESNAMIDDAGS TE 4 UUR door HENRI COENRAAD BRINKMAN geboren te amsterdam P. NOORDHOFF N.V. -- 1932 - GRONINGEN-BATAVIA BIBLIOTHEEK DERRIJKSUNIVERSITEITUTRECHT.



???



??? AAN MIJN OUDERS



???



??? Het beeindigen van dit proefschrift geeft mij een welkome ge-legenheid U, Hoogleraren in de Fakulteiten der Wis- en Natuur-kunde aan de Universiteiten te Utrecht en Leiden, voor Uwlessen te bedanken. Hooggeleerde Kramers, door Uw voorbeeld leert Gij Uw leer-lingen niet alleen theoretiese Natuurkunde, maar ook volhardingen liefde tot Uw vak. Mijn Utrechtse jaren zijn de mooiste vanmijn studietijd geweest. Hooggeleerde Wolff, door Uw boeiende uiteenzettingen van dedenkmethoden der wiskunde hebt Gij mij doen inzien, dat dewiskunde niet uitsluitend een moeilik, maar bovenal een mooivak is. De Nederlands- Amerikaanse Fundatie dank ik ten zeerste, datzij mij in staat stelde in de zomermaanden van 1931 de kolleges in detheoretiese Natuurkunde te volgen aan de University of Michigante Ann Arbor, waar ik met de studie van het in dit proefschriftbehandelde onderwerp een aanvang maakte.



??? .j



??? KAPITEL I. DIE TRANSFORMATIONSEIGENSCHAFTEN DERWELLENFUNKTIONEN. Â§ 1. Einf?¤hrung der Spinvektoren, Die Transformationseigenschaften der L??sungen der Wellen-gleichung mit Hinsicht auf Drehungen des Koordinatensystemsspielen bei vielen physikalischen Anwendungen eine wichtige Rolle.In diesem Kapitel wollen wir diese Transformationen untersuchen. Wir definieren im euklidischen dreidimensionalen Raum einKoordinatensystem mit x, y. und z-Achsen. In diesem Koordinaten-^stem sei ein Vektor A der L?¤nge Null gegeben mit denKomponenten a, b und c. Es besteht also die Relation: a2 62-|-c2 = 0.......(1) Diese Forderung besagt, dass mindestens eine der Zahlen a, b. cnicht reell ist. Die Relation (1) zerf?¤llt in zwei Teile: reeller Teilvon a2 c2 gleich Null (la) und imagin?¤rer Teil vona -t-62-{-c2 gleich Null (16). Dieser Vektor a definiert einorthogonales Achsenkreuz d. h. drei gleichlange zueinander senk-^chte Vektoren x, y und z von denen die zwei reellen Vektorenx und y durch: ^x = 9t(a)nbsp;F;, = 9i(/a) = - = = = - 3(6) ... (2)^^ = 9i(c)nbsp;Y, = dl[ic) = - 3(c) gegeben

sind. Hier bedeutet Â?^a) reeller Teil von a. 3(a) imagin?¤rer Teil von a. Die Bedingungen (la) und (16) lassen sich jetzt schreiben als: X'; = 4- y^ -f yj = r2 (la')X.Y, XyYy X,Y, = 0......(160 Die Vektoren x und y sind also tats?¤chlich zueinander senk-^cht und haben die gleiche L?¤nge r. Wir definieren den Vektorz senkrecht zu x und y und mit der gleichen L?¤nge r. Ein neuer Vektor a' der L?¤nge Null entsteht aus a, indem 1



??? man die Komponenten mit einem Phasenfaktor e'quot; multipliziert:A' = e'quot; A. Aus der Bemerkung dass B = 91 Ae^'quot;quot;ÂŽ^ einer gleich-m?¤ssigen Kreisbewegung mit der Frequenz co des Punktes B in derX, i/-Ebene entspricht, erkennt man unmittelbar, dass Multipli-kation der Komponenten von A mit einem Phasenfaktor e'quot; einerDrehung des Achsenkreuzes um den Winkel a um die 2:-Achseherum entspricht. Wir k??nnen die Komponenten der Vektoren X und Y in denEulerschen Winkeln cp, %p zwischen Achsenkreuz und Koordinaten-system ausdr??cken: Xx = r {cos cp sin t/; â€” sin (p sin rp cosXy = r {cos (p sin y) sin (p cos cosXz= r (sin q} sinnbsp;_ ^^ Yx = r {- sin qgt; cos ip cos (p sin y^ cos 'Yy = r {cos lt;p sin cos 93 cos ip cos 1?}Yz = r (cos (p sin 1?}.F??r a und b findet man sodann: a ib = x.- iY. i{Xy - iYy) = r(cos 1 V')- a = - /y. - = Kcos ^ - l)e'(^-V') Wir ordnen dem Vektor A im y, z-Raum einen Vektor(f, rj) mit zwei komplexen Komponenten f und jj in einer f, rj -Ebenezu in folgender Weise: â€” rj- 2 . . (5a)nbsp;. . . (5t) r, = V-a ib c = â€” ^r] Wir nennen

einen Vektor dieser Art einen Spinvektor. Durchdie Formeln (5a) ist der Spinvektor (f. vierdeutig definiert. Dieletzte Relation {5b) legt aber, nach der Wahl von f aus zweim??glichen Werten, den Wert von 1] fest. Der Vektor (f. Â?;) isthierdurch nur noch zweideutig. Seine Komponenten sind bis aufeinen Faktor Â? I definiert. Es ist also dem im vorigen Paragrafenbesprochenen Achsenkreuz ein Vektornbsp;zugeordnet. Eine Drehung des Achsenkreuzes um einen Winkel^ a entspricht offenbareiner Multiplikation der Komponenten mit eEs wird nach (4): f = Vir . cos _ . e^ , .....(6) r] = K 2r.i. sm^ . e^



??? Wenn das Achsenkreuz mit dem Koordina^nsystem zusammen-f?¤llt. also wenn ^ = = = 0, wird f = Vir und = 0. Â§ 2. Die unif?¤ren Transformationen. Wir fragen nun wie f und t] sich transformieren bei einemUbergang vom jc, y, z-KoordinatensyStem zu einem gedrehtenorthogonalen Koordinatensystem y', z'. Die Komponenten a. b, cdes Vektors a gehen bei dieser Transformation ??ber in a'. b', cund es gilt: a = a^a a^^b Â?isC = agia 0226 0230 I I = 1. . . . (7) c = agia 0326 agsc ^ Da die aik reell sind, werden auch 9i(a), dl{b) und 9i(c) sowie3(a). ^{b) und sich wie die Komponenten eines Vektors trans-formieren. Damit ist die Definition des Achsenkreuzes in Â§ I ge-rechtfertigt. Weiter folgt hieraus, dass auch a*. b*. c* i) dieKomponenten eines Nulivektors sind und dass nicht nur c^sondern auch | a [2 | 6 ,2 | c ,2 eine Invariante dieser Trans-formation ist. Es ist leicht zu sehen, dass der betrachteten Raumdrehung einelineare Transformation der Komponenten des Vektors Â?;) ent-spricht. Indem man in (7) f??r a = ~ u.s.w. und a' = 2 2 u.s.w. einsetzt, sieht man, dass j;2 ^nd fj/ sich linear trans-formieren :

= nbsp;.....(8a) = . . . . (8) (86)rv' = ?Ÿsi^' ?Ÿ32V^ nbsp;.....(8c) Da das Produkt der linken Glieder von {8a) und (86) gleich demQuadrat des linken Gliedes von (8c) ist, so muss dies auch f??r dierechten Glieder der Formeln (8) gelten. Hieraus folgt aber, daund j/2 nicht gleich sind, dass die rechten Glieder von i8a) und (amp;b) beide Quadrate sind, und es gilt: = ........^^^ Bezeichnen_ wir ^e zum Vektor â€” a*. â€” b*, â€” c* geh??rigenf und 1] mit f und r] so gilt: |2 = _ a* _nbsp;= (_ a ib)* = rf^ = a*-ib* = {a ib)* = ^*^- .... (10) ^ 7] = C* = - Mit * bezeichnen wir immer den komplex-konjugicrten Wert einer Gr??sse.



??? Es gilt also: J=q:rj* ^ = Â? f*......(11) Es transformieren sich also â€” V* und genau so wie $ und rj.Das Transformationsschema der letztern ist also identisch mit demSchema: . (12) f*'= a*f* /5V ' ' Hieraus folgt: a = d*, ?Ÿ = â€” y* und das Transformationsschemavereinfacht sich zum Transformationsschema der unit?¤ren Trans-formationen: = (13)rj'= - ?Ÿ*^a*r]...... Aus {5b) findet man leicht: |aj2 |^,|2 |cj2 = i/2(ff* ^,?*)2=2r2 . . (14) Es ist also (1^* ??Â?/*) eine Invariante bei den Transforma-tionen des Vektors (f. t]). ihrer Bedeutung nach ist sie gleich 2r.Aus der Invarianz von (ff* rjV*) folgt' ^ass im Transformations-schema (13)nbsp;1 ist. Um die a und ?Ÿ auszudr??cken in den Eulerschen Winkeln (p, tpwelche das gedrehte Koordinatensystem in Bezug auf das altedefinieren, w?¤hlen wir die Drehung so, dass das durch f, rj defi-nierte Achsenkreuz mit dem neuen Koordinatensystem zusammen-f?¤llt; sodann gilt nach (6): f = K2r n = 0-Es folgt also: = ,15)0 = ....... oder: = f ....... ?Ÿ*V2r = t] und mit Hilfe von (6): ^ -{(Â?p v) a = cos â€” . e ^ 2nbsp;, .....(17) ^ = â€” I sm ^ . e Diese

Formeln zeigen, dass nach einer Drehung In um die z-Achse f und r] nicht, wie a, b, c, zu ihrem Ausgangswert zur??ckkehren, sondern dass: f' = â€” f und rj' = â€” rj.



??? Â§ 3. Invarianten. Betrachten wir zwei willk??rliche Spinvektoren (fi, und {^2.so ist (â€” jjg^i J/il^j) eine Invariante bei unit?¤ren Transforma-tionen. Wir bilden ein homogenes Polynom vom Grad g in denKomponenten von n Spinvektoren (^i, rj{) ... . rjn) und nehmenan es sei invariant. Die unit?¤re Transformation: r = lequot;'' T]' = rje = ........ l?¤sst im besondren dieses Polynom invariant. Dies ist aber nurm??glich wenn jeder Term in sich selbst ??ber geht. Da | mit e^fund rj mit equot;''' multipliziert erscheint, muss der gesamte Gradeines Terms in den f gleich dem gesamten Grad in den j; sein.Der Grad g des Polynoms ist also gerade. Wir schreiben g = 2vund beweisen, dass dieses invariante Polynomnbsp;Vk) immer als ein Polynom in den Grundinvarianten (â€” rjk'^ic -f rjkh') geschriebenwerden kann. Dazu schreiben wir: {k) = â€” bh-i-a7]k = .......^^^^ wo a und b die Komponenten eines Spinvektors sind und be-trachten das Polynom P{{kf. {k)). wo an Stelle von h. bezw. t]^die Invarianten (kf. bzw. {k) geschrieben sind. Nach einer Trans-formation, so dass b' = b'* = 0 wird, findet man: Pm*gt; (k)) = {a'a'*r

PiSl yf,) .... (20) Die beiden in dieser Gleichung auftretenden Polynome P sindinvariant. Nach einer Transformation von a. b', rj'^ zur??ck nach a, b.findet man: Pm*.{k)) = (aa*-\-bb*rP{h.Vk) . . . (21) Da a* und b* algebraisch unabh?¤ngig sind von a und b, darfman a, b, a*, b* bei allen analytischen Prozessen als unabh?¤ngigeVariabein betrachten. Wir f??hren sodann den Operator Q = / 02nbsp;52 ^ [dada*^ dbdb*)......^^^^



??? ein, der auf a, b, a*, b* wirkt. Die Anwendung dieses Operatorsauf {k)*,{k') liefert: Q{kY.{k) = Q.......(23) Aus dem Polynom P{{k)*, (k)) wird also nach y-maliger Anwen-dung des Operators ein Polynom in (â€” Vk'h). wo k und A:' = 1. 2.....n. Da, wie man leicht nachrechnet: wird aus (21), durch y-malige Anwendung des Operators Q: {v 4- 1)! y! r]k) = Pol ((- Â?M'ffc VkSk')) k. k' = \,2 . . . .n. . . (25) Hiermit ist der Beweis geliefert. Ein inhomogenes invariantes Polynom zerlegen wir in seinehomogenen Teile. Da die Transformation linear ist, so muss jederdieser Teile invariant bleiben. Wenn man neben den Spinvektoren (l^, j;i) .... {^n, Vn) auch ihrekomplex-konjugierten (fk*. 7]k*) betrachtet, so treten die folgendenGrundinvarianten auf: (â€” Vk'h Vkh')nbsp;(hh* Vk^kquot;''}nbsp;(2?Ÿ) {-Vk'* Vk*hn ihh'quot;' VkVk'l ' ' ^ ' denn es transformieren sich ja i* und wie y] und â€” f. Der Beweis, dass ein invariantes Polynom in den (hgt; Vk) und{h*, VÂ?*) ein Polynom in den Grundinvarianten ist, ist vom oben-gegebenen Beweise nicht wesentlich verschieden. Â§ 4. Darstellungen einer Gruppe.

Bekanntlich bilden die Raumdrehungen eine Gruppe. Man sprichtvon einer eindeutigen Darstellung vom Grad g einer Gruppe,wenn jedem Element R eine lineare Transformation von g Vari-abein Vi ... .Vg zugeordnet werden kann: ........(27) derart dass: .......(28) m 1) Ein Beweis dieses Satzes f??r mehr-dimensionale komplexe Vektoren ist vonTurnbull gegeben (Vgl. Proc. Akad. Amst. XXXIV, 413.).



??? gilt, wenn das Produktnbsp;Gruppenelemente jRi und I^o das Element R^ liefert. Dieses besagt, dass das Resultat der auf-einander folgenden Transformationen: .......^^^^ ^ k ^ ^ l eben; =nbsp;.......(30) heisst. Das System der a^i bildet die zu R geh??rige Transformations-matrix. Das linke Glied in (28) gibt die Elemente der Matrix,die durch Multiplikation der Matrizen a'?! und entsteht; inder Schreibweise der Matrixtheorie heisst es also einfach: a'?' . =nbsp;.......(31) Die einfachste eindeutige Darstellung der Raumdrehungsgruppeist eben das Transformationsgesetz (7). Jeder Transformation (7)und also auch jeder Raumdrehung lassen sich zwei unit?¤re Trans-formationen der (f, j/) zuordnen. Diese Transformationen bildenalso eine zweideutige Darstellung der Raumdrehungsgruppe. Wenn man statt der Variabein V/ mittels einer festen Matrix 5(mit nicht verschwindender Determinante) irgendwelche lineareKombinationen: =nbsp;.......(32) k als neue Variabein einf??hrt, so entspricht jeder Transformationder V eine Transformation der N; die N geben also auch Anlasszu einer Darstellung der Gruppe,

oder wie man sagt, sie indu-zieren eine Darstellung. Die den Gruppenelementen zugeordnetenlinearen Transformationen sind in diesem Falle gegeben durchTransformationsmatrizen a'^quot;, die die Form haben: -fr =nbsp;s, (5-'. 5=1) . . . (33) Die zwei Darstellungen durch die a'^quot; und die a^quot; bezeichnetman als aequivalent. Es kann vorkommen, dass die Darstellung (V) so beschaffenist, dass die g Variabein V in Gruppen von gi, g2lt; - â€? â€? - gs Vari-abein zerfallen in solcher Weise, dass die Variabein der einzelnenGruppen sich jeweils (d.h. f??r jedes Element der Gruppe) nuruntereinander transformieren: =nbsp;{k,l,= \.2.....p,) . . (34)



??? Unsere Darstellung reduziert sich in diesem Fall auf s Darstel-lungen niedrigeren Grades, und die Elementen der Transforma-tionsmatrixen a^^ sind immer Null, ausser wenn sie sich innerhalbgewisser Quadrate befinden, deren Hauptdiagonalen mit der Haupt-diagonale des ganzen Matrix zusammenfallen. Wenn die Dar-stellung a^i zwar nicht diese Form hat, wenn es aber eine ihraequivalente Darstellung (N) gibt, bei der die Transformation alsreduziert erscheint, so nennt man die urspr??ngliche Darstellungreduzibel. Es ist leicht einzusehen, dass die Darstellungen (7, 13) derRaumdrehungsgruppe irreduzibel sind. Eine irreduzibele Darstellung vom Grad 2j 1 wird induziertvon den 2j 1 Monomen: Mm =nbsp;(m = y, 7 â€” 1.....â€”7 1. â€”j) . (35) wo j ganz- oder halbzahlig ist. Im ersten Fall nennt man dieDarstellung ungerade, im zweiten Fall gerade.Diese Darstellungen und die ihr aequivalenten sind die einzigenirreduzibeln Darstellungen der Raumdrehungsgruppe Der Fallj = 1/2 ergibt die oben besprochenen Transformationen der f undrj. Die Darstellung durch die

Transformationen (7) ist aequivalentmit der Darstellung induziert durch die Monome t]^ und ^rj.(Vgl. (8)). Es ist hier j = 1 und die Darstellung ist vom Grad 3.Offenbar sind die ungeraden Darstellungen eindeutig, die geradendagegen zweideutig. Â§ 5, Die Wellenfanktionen eines Atoms mit einem Elektron. Eine erste Anwendung ist das Problem des sich in einemzentralsymmetrischen Felde befindenden Elektrons ohne Spin.Die Schr??dingergleichung f??r diesen Fall lautet: ^V^ iE-V)rf = 0.....(36) Hierin ist E die Energie und V die Potentialfunktion. Nurf??r bestimmte Werte von E hat die Gleichung eine ??berall end-liche L??sung. Die L??sungen lassen sich als das Produkt zweiergegen Raumdrehungen invarianten Faktoren anschreiben: W = F{r){ax bycz)'.....(37) wo: __r2 = Ar2 y2 4- ^2 1) Vgl. H. Wey], Gruppentheorie und Quantenmechanik, Kap. III, Â§ 30.



??? und a, b, c die Komponenten eines Vektors a der L?¤nge Null sind.Es ist: V iax by czY......(38) eine L??sung der Gleichung Acp = 0 und also ein harmonischesPolynom. Die Funktion F(r) muss. wie man leicht nachrechnet,eine (??berall endlichbleibende) L??sung der Gleichung: d^F ,21 dF , 87r2m ,,, ^ nbsp;â€? â€? â€? (39) sein. Wir zerlegen nun das invariante Polynom T' in nicht invarianteTeile. Dazu f??hren wir nach den Formeln (5) anstatt a, b, c dief und rj ein: ^nbsp;.... (40) Dieser Ausdruck ist ein in $ und tj homogenes Polynom vomGrade 21. Die 2/ 1 Koeffizienten dieses Polynoms sind Polynomevom Grad / in x, y, z und gen??gen offenbar je f??r sich derGleichung A(p = 0. Einf??hrung von Polarkoordinaten f??r a:, y, z nach:X /y = r sin X â€”iy = r sinnbsp;......(41) 2 = r cos ergibt: i(p sin â€” 2\fe ^ . tje ^ kos â€” ( -^--if i'â€” Ue Sintis Ol -ie V = 2) (42) Nach Substitution von:^ = 2Y = rie 2 findet man:worin: T = cos â€” y sin X (43) = y



??? Die Taylorentwicklung nach y ergibt: T = COS1? m = -l = S 19/m = ~l\2J d V-' (--) -iiâ€”, I'-'quot; â€ž'-'Â?e'Â?'^ (sinnbsp;J (1 â€” cos2 ??y A2/l(/â€”m)!nbsp;\dcosifJ Fnbsp;X H?¤tten wir T' nach Potenzen von anstatt y entwickelt, soh?¤tten wir bekommen: (46) Es gilt also: (_ 1 / d -P) = (l-^,, e'-quot;nbsp;(1 - = =___^____einiT fsin (47) )l m (1 - C0S2 d cos Diese Funktionen von d' und rp, die wir laut dem ersten Gliedein (47) mit QT bezeichnet haben, sind eben bis auf einen Zahlen-faktor die tesseralen Laplaceschen Kugelfunktionen, Gem?¤ss (37) entspricht jeder Zahl l eine Reihe von 21 1Wellenfunktionen: rpT = F{E, l) cp)(2/)! (48) Da nun: / ^l-m m ^t-l-m m invariant ist, wie auch T', so transformieren sich (vgl. 45. 47)bei einer ?„nderung des Systems von Polarkoordinaten die Qigenau so wie die Gr??ssen: __(^0-____t*l-m m {l m)\ {lâ€”my.nbsp;' oder (vgl. 11) wie die Gr??ssen: Â§ 6. Die Wellenfunktionen im allgemeinen Falle eines freienAtoms. Auch im Falle eines freien Atoms mit vielen Elektronen, deren



??? Spins mitber??cksichtigt werden, kann man eine Aussage dar??bermachen, wie die L??sungen der zeitfreien Schr??dingergleichung: Hxp = Eyj........(50) die zu einem bestimmten Eigenwert E geh??ren, sich bei Raum-drehungen transformieren. H ist der Hamiltonsche Operator, worinauch die Wechselwirkung zwischen den Elektronen und die Spin-st??rung aufgenommen sind. Der Eigenwert E ist die Energie, ip isteine Funktion der Raumkoordinaten der Elektronen und derSpinkoordinaten. Zu einem Eigenwert geh??ren im allgemeinen mehrere Eigen-funktionen der Schr??dingergleichung. Es m??gen die tp'^ik = 1,2...)ein System von linear unabh?¤ngigen Funktionen bezeichnen, ausdenen jede Eigenfunktion aufgebaut werden kann. Der Hamil-tonsche Operator H ist, seiner Form nach, invariant gegen Dre-hungen des Koordinatensystems. Hieraus ergibt sich, dass dieFunktion xp', die aus einer L??sung rp der Schr??dingergleichungdurch eine Drehung des Koordinatensystems hervorgeht, auch eineL??sung ist. Diese Funktion yj' muss sodann aber notwendig einelineare Kombination der

vorhergesuchten L??sungen yj'' sein. Diezum Eigenwert E geh??rigen L??sungen y)'' der Schr??dingergleichungtransformieren sich also linear bei Drehungen des Koordinaten-systems. Ihre Transformationen bilden eine Darstellung der Raum-drehungsgruppe. Diese Darstellung l?¤sst sich nach dem in Â§ 4besprochenen in irreduzibele Darstellungen zerlegen, wenn sienicht schon irreduzibel ist. Wir betrachten einen solchen Bestand-teil, der vom Grade 2j 1 sei. Das bedeutet aber, dass dieserirreduzibele Teil der Darstelling von 2j 1 Wellenfunktioneninduziert wird, die so gew?¤hlt werden k??nnen, dass sie sichtransformieren wie die 2j 1 Monome ^i^^^rji-^K Wenn wir jetzt in den Hamiltonschen Operator ein St??rungs-glied aufnehmen, dass invariant ist gegen??ber Raumdrehungen, soist es m??glich dass Wellenfunktionen, die vor der Einf??hrung derSt??rung zum selben Eigenwert E geh??rten, ??bergehen in Wellen-funktionen, die zu mehreren verschiedenen Eigenwerten Ei, E2, .....E/, geh??ren. Man sagt, dass der Eigenwert sich gespaltet hat. Wenn wir nachher die St??rung wieder r??ckg?¤ngig

machen,d.h. sie nach Null konvergieren lassen, so m??ssen die neuenWellenfunktionen schliesslich ??bergehen in Linear-Kombinationender ungest??rten. F??r jeden Eigenwert Ea- transformieren sich diesezugeh??rigen Linear-Kombinationen untereinander bei einer Raum-drehung: die M??glichkeit der Aufspaltung bedeutet also, dass die



??? durch die ungest??rten Wellenfunktionen induzierte Darstellungreduzibel war. Die Energieniveaus bei denen die zugeh??rige Dar-stellung irreduzibel ist, k??nnen sich also bei einer St??rung desbesprochenen Typus nicht mehr aufspalten (im entgegengesetztenFall spricht man von zuf?¤lliger. Entartung). In der Spektroskopienennt man / die innere Quantenzahl des entsprechenden station?¤renZustandes, wenn 2j 1 sein Entartungsgrad ist. Ihrer Bedeutungnach ist j die Quantenzahl des totalen Impulsmoments des Atomsim betreffende station?¤ren Zustand, Mittels der quantenmechani-schen Definition der Operatoren, die den Komponenten des totalenImpulsmoments entsprechen und die eng mit dem Resultat infini-tesimaler Drehungen zusammenh?¤ngt, l?¤sst sich diese Behauptungbeweisen An dieser Stelle gehen wir darauf jedoch nicht n?¤herein. Die Einf??hrung eines homogenen Magnetfeldes hebt die inRede stehende Invarianz des Hamiltonschen Operators auf, unddie 2j 1â€”fache Entartung wird aufgehoben, d.h. man hat jetzt2j 1 Wellenfunktionen, die sich durch

den Wert einer â€žmag-netischen Quantenzahlquot; unterscheiden und die zu verschiedenenEnergieniveaus geh??ren. Da M der Komponente des totalen Impulsmoments der Z-Achseendang entspricht, was sich mittels infinitesimaler Drehungen be-weisen l?¤sst, so bilden die ungest??rten Eigenfunktionen tpj^ einenullte N?¤herung der gest??rten Eigenfunktionen im Fall eineshomogenen, l?¤ngs der Z-Achse gerichteten, schwachen Magnetfeldes. Da j sowohl ganz-, wie halbzahlig sein kann, treten auch zwei-deutige Darstellungen (n.l. die von geradem Grad) auf. F??r diephysikalischen Anwendungen bildet dies aber keine Schwierigkeit. Â§ 7. Die Spin-Bahnkoppelung. In diesem Paragrafen wollen wir die Transformationseigen-schaften der Wellenfunktionen etwas n?¤her untersuchen und auchein Beispiel der im vorige Paragrafen besprochenen Reduktiongeben. Die Terme in der Schr??dingergleichung (50). die sich aufdie Wechselwirkung zwischen Spin und Bahn beziehen, k??nnenoft als eine kleine St??rung aufgefasst werden. Wir vernachl?¤ssigensie und l??sen sodann die

Schr??dingergleichung, die nur noch dieRaumkoordinaten aber nicht mehr die Spinkoordinaten enth?¤lt.Da auch nach oben genannter Vernachl?¤ssigung der HamiltonscheOperator der Form nach invariant ist gegen??ber Raumdrehungen,so induzieren die zu einem bestimmten nicht zuf?¤llig entartetenEigenwert geh??rigen nur von den Raumkoordinaten abh?¤ngigen ') Vgl. H. Wey), loc. cit. Kap. IV. Â§ 35.



??? L??sungen yj^quot; eine irreduzibele Darstellung der Raumdrehungs-gruppe. Die 2/ 1 zu dieser Darstellung geh??rigen Wellenfunkti-onen lassen sich so w?¤hlen, dass sie sich transformieren wie die21 1 Monome (Vgl. Â§ 6): ^Um^l-mnbsp;{m = l,lâ€”\......â€” /) Die rp'^ sind eindeutige Funktionen und transformieren sich aucheindeutig. Der Grad der Darstellung ist also ungerade und dieQuantenzahl l des totalen Impulsmoments ist immer ganzzahlig.In Â§ 5 haben wir beim Ein-Elektronenproblem ein Beispiel einersolchen eindeutigen Darstellung gefunden. Die xp'p waren in diesemFall bis auf einen vom Radius unabh?¤ngigen Faktor einfachidentisch mit den (eindeutigen) tesseralen Kugelfunktionen. Wir k??nnnen die L??sungen mit jeder willk??rlichen Funktionder Spinkoordinaten multiplizieren, das Produkt wird noch immereine L??sung der Schr??dingergleichung unter Vernachl?¤ssigung derSpinterme sein. Als Spinkoordinate f??hrt man am besten die Komponente desSpinimpulsmoments s^ eines Elektrons l?¤ngs einer festen Achse(wir w?¤hlen die Z-Achse des Koordinatensystems) ein. Die

Wellen-funktion ist sodann eine Funktion der raumlichen Koordinaten dern Elektronen und der Spinkoordinaten sj,').....s^quot;). Die Spin-koordinate eines Elektrons kann nur zwei Werte annehmen und zwar: _J_ 1nbsp;Jnbsp;1 ^nbsp;/CIN Die zwei Zust?¤nde des Elektrons, wo die Komponente desSpins den ersten bzw. den zweiten dieser zwei Werte hat, kenn-zeichnen wir durch zwei Symbole 5 und 5-. Sie k??nnen aufge-fasst werden als â€žFunktionenquot; der Spinkoordinaten: S (sz) und'S-(5z) und zwar so, dass: 'nbsp;(52) 2 2nJ Andre Werte von Sz gibt es ja nicht. Im allgemeinen wird derZustand des Elektrons, aus einer Superposition dieser zwei durchâ€?5 und 5- angegeben Zust?¤nde bestehen; d.h. es wird eineMessung der Spinkomponente mit einer gewissen Wahrscheinlich-keit den Wert ^ hzw. â€” ^ liefern. Die entsprechende



??? Spinfunktion schreiben wir in der Form qS- wo | p p undi q |2 die zwei erw?¤hnten Wahrscheinlichkeiten vorstellen. Die Wellenfunktion eines Elektrons yj{x. y. z, Sz, t), die vonden Raumkoordinaten, den Spinkoordinaten und der Zeit abh?¤ngt,l?¤sst sich schreiben als eine Summe: xp{x, y, z, Sz, t) = rPaix.y, z. t) SAsz) ip?Ÿ{x. y. z. t) S-(sz) (53) Es lassen sich und 5_ formal als Eigen funktionen derZ-Komponente des Spins auffassen, die den zwei m??glichen Eigen-werten - â€” und â€” ^ angeh??ren. Die Formel (53) ist sodann2 2JZnbsp;2/71 formal eine Entwicklung der Wellenfunktionnbsp;y, z, s^, t) nach diesen Eigenfunktionen mit den Entwicklungskoeffizienten xp^ undyj?Ÿ. 1st die Wellenfunktion normiert, d.h. ist: .....(54) so sindnbsp;\xp?Ÿ ^'dV die Wahrscheinlichkeiten daf??r, dass das Elektron sich im Raumelement dV befindet und das Impulsmoment bzw. â€” ^^ Z-Achse entlang hat. Nach einer Drehung des Koordinatensystems hat man zweiFunktionen und 51, die die Zust?¤nde des Elektrons angeben, wo l hnbsp;III die Spinkomponente l?¤ngs der neuen Z-Achse Y2n

~~ 22n ist. Da diese zwei Zust?¤nde als eine Superposition der durch 5 und S- gekennzeichneten Zust?¤nde aufgefasst werden k??nnen, som??ssen S\ und S'- sich linear ausdr??cken in und 5_ 5' = a5 ?ŸS- /ccx51 = yS. lt;55- ......^ ^ Dies ist eine Darstellung vom Grade zwei der Raumdrehungsgruppe.Es lassen sich also zwei lineare Kombinationen von 5 und 5_w?¤hlen, die sich transformieren wie ^ und rj. Nach dem auf 5. 14 ge-sagten (Definition der Impulsmoment-Operatoren mit Hilfe von infini-tesimalen Drehungen), m??ssen diese Kombinationen eben Zust?¤nde mit Impulsmomentnbsp;quot;l?¨nbsp;=nbsp;^^^^^^ daher festsetzen dass 5. und 5- selber sich wie f und rj trans-formieren. Die in Â§ I eingef??hrte Bezeichnung Spinvektor wirdhierdurch erkl?¤rt, i) Die hier betrachtete Darstellung ist zweideutig, 1) Vgl. W. Pauli. Zs. f. Phys. 43, 601, 1227.



??? Die allgemeinste Funktion der Spinkoordinatennbsp; ip?ŸS- ist invariant gegen??ber Drehungen des Koordinatensystems, woraufsich 5 und beziehen. Es transformieren sich also ip^ und tp?Ÿwie und t]*. In jedem Raumzeitpunkt lassen sich drei Koordi-natenrichtungen so w?¤hlen, dass tp^ und ip?Ÿ in Bezug auf diesesX, Y, Z-System reell, bzw. Null werden. Aus Â§ 1 entnimmt man,das diese Richtungen mit dem Achsenkreuz zusammenfallen, dasgem?¤ss den Formeln (6) mit Hilfe von f = ip^*, = tp?Ÿ* kon-struiert werden kann. Die Z-richtung dieses Achsenkreuzes gibtdie Richtung des Spins im betrachteten Raum-Zeitpunkt. Bei n Elektronen k??nnen die Zust?¤nde, was ihre Spins anbe-langt durch Produkte von den Spinfunktionen der einzelnen Elek-tronen gekennzeichnet werden: ..... wo sf^ sich auf das k^' Elektron bezieht. Es gibt 2quot; solcher Pro-dukte: sie transformieren sich bei einer Raumdrehung gem?¤ss einerDarstellung der Raumdrehungsgruppe vom Grade 2quot;. Denken wiruns diese Darstellung ausreduziert, so erh?¤lt man jeweils eineAnzahl von linearen Kombinationen von

Produkten der Form (56)die sich untereinander irreduzibel transformieren. Diese linearenKombinationen rp'^ kann man so w?¤hlen, dass sie sich transfor-mieren, wie: ........(57) Analog an Â§ 6 deuten wir s als die Quantenzahl des resultie-renden Spins der Elektronen, n als die Quantenzahl der Kompo-nente l?¤ngs der Z-Achse. Wir w?¤hlen nun als L??sungen der Schr??dingergleichung mitVernachl?¤ssigung der Spinbahnkoppelung die Funktionen y)'/' rp'^. Sie geh??ren zu einem Bahnimpulsmoment /. _ und einem Spinmoment Zn h _ ^ â€? Es transformieren sich die y)quot; y'J gem?¤ss einer im allge-meinen reduzibelen Darstellung, wie: ...... Die Einf??hrung der Spinbahnkoppelung hat Aufspaltung derEnergieniveaus zur Folge, und die L??sungen der Schr??dinger-gleichung sind nicht allein durch das Bahn- und Spinimpulsmoment



??? charakterisiert, sondern auch noch durch das totale Impulsmoment j . ^ des Atoms. Die 2j 1 zu einem bestimmten Eigenwerte geh??rigen L??sungen tp'J^ der Schr??dingergleichung in diesem Fallhaben wir im vorigen Paragrafen besprochen. Ihre Transforma-tionen werden dargestellt durch die Transformationen der 2j 1Monomenbsp;wenn (a, b) ein Spinvektor ist. Wir nennen diesen Vektor (a, b) um Verwechslung mit den in diesem Para-grafen eingef??hrten Spinvektoren (f, i]) und (f', tj'), zu verhindern.Wenn man die Spin-Bahnkoppelung nach Null gehen l?¤sst, sowerden die 2j 1 Funktionen gleich lineare Kombinationenxp'^ der Funktionen i/^^V'quot; deren Transformationen eine irre-duzibele Darstellung vom Grad 2j 1 der Raumdrehungsgruppebilden sollen, da die Invarianz des Hamiltonschen Operators nichtvernichtet ist. Diese linearen Kombinationen yj'f suchen wir, siesind eine nullte N?¤herung f??r die L??sungen tpf der vollst?¤ndigenSchr??dingergleichung. Dazu bilden wir lineare Kombinationen derMonomenbsp;die sich transformieren wie Dies bedeutet eine

Reduktion der Darstellung durch die Trans-formationen der ^l-mrjl-m^'s.n^'s-n^Wir f??hren die Invariante ein: wo: / s ^y ^ ! / â€” 5| sein muss, damit ein Polynom ist.Dieses Polynom l?¤sst sich zerlegen in Terme, welche die Formhaben: a^'^^b^*^ mal eine lineare Kombination von Produktender Form ^l^nt^l-m^'s^n^j's-n^ Analog dem am Schluss von Â§ 5 gesagten werden diese lineareKombinationen sich transformieren wie: (;-M)!(; M)!^ ^ .....^^^^ und also eine irreduzibele Darstellung vom Grad 2j 1 indu-zieren 2). 1)nbsp;Von der Entartung, die den Permutationen der verschiedenen Elektronenentspricht, sehen wir vorl?¤ufig ab. 2)nbsp;Das hier benutzte Verfahren l?¤sst sich ganz allgemein gebrauchen zurAusreduktion von â€žProduktenquot; zweier irreduzibeln Darstellungen der Raum-drehungsgruppe. Es ist ein Beweis des Satzes: = ...... (Vgl. H. Weyl, Gruppentheorie und Quantenmechanik. Kap. III. Â§ 30.)



??? Damit ist unser Zweck erreicht; wenn wir in den eben genanntenlinearen Kombinationen dienbsp;ersetzen durch die sich gleich transformierenden xpf . xpl. so sind diese linearen Kom-binationen gleich den Funktionen ip'j^, die sich ergeben, wenn dieSpin-Bahnkoppelung nach Null geht. Bis jetzt haben wir von jener Entartung der Energieeigenwerteabgesehen, welche auf der Aequivalenz der Elektronen beruht.Wenn man in einer Wellenfunktion die Koordinaten einesElektrons vertauscht mit den Koordinaten eines andren, so ist dieneue Funktion rjjj^ noch immer eine L??sung der Schr??dinger-gleichung, da ja der Hamiltonsche Operator symmetrisch in allenElektronen ist. Diese Funktion geh??rt also zum selben Eigenwert.Der durch diese neue Funktion yjj^ gekennzeichnete Zustand desAtoms wird von dem durch yj^^ definierten Zustand aber physi-kalisch nicht verschieden sein, da wir eine stattgefundene Vertau-schung von zwei Elektronen nicht beobachten k??nnen. Die allge-meinste L??sung der Wellengleichung f??r einen bestimmten Zustandwird also aus irgendeiner linearen Kombination der

Funktion ly-'y'und der aus ihr durch Vertauschung der Elektronen hervorge-gangenen Funktionen bestehen. Die quantenmechanische Fassungdes Pauli'schen Ausschliessungsprinzips besagt, dass nur solchestation?¤re Zust?¤nde in der Natur vorkommen, deren zugeh??rigenWellenfunktionen antisymmetrisch sind in den Koordinaten derElektronen; d.h. der Wert der Wellenfunktion wird mit â€” 1multipliziert, wenn man die Werte der Raum- und Spinkoordinatenzweier Elektronen mit einander vertauscht. Die Wellenfunktionenwerden also dargestellt durch solche Linearkombinationen E Â? ^Hf der erw?¤hnten Art, welche antisymmetrisch in allen Elektronensind 1). Ihre Transformationseigenschaften bei Raumdrehungen sindaber offenbar dieselben wie die der Funktion tpf, von der wirausgingen. Â§ 8. Berechnung von Matrixelementen. In der Quantenmechanik treten vielfach Integrale auf der Form:??^i = f yâ€ž*?Ÿy,,dt.......(61) Â? - Â? bedeutet Summation ??ber alle Permutationen, und zwar so, dass beip geraden Permutationen das Zeichen, bei ungeraden das â€” Zeichen gew?¤hltwird. Bei gegebener

Wahl der Zahl s in (57) m??ssen die vquot;' den Symmetric-charakter ['/jN^ s] [^/^N â€” s] aufweisen, damit die in Rede stehende Summenicht identisch verschwindet.



??? Es sind ipk und ipi L??sungen der zeitfreien Schr??dingergleichung,die im allgemeinen verschiedenen Eigenwerten entsprechen; ?? istirgendein Operator, der auf ipi wirkt, ?’ dt bedeutet Integration??ber alle Raumkoordinaten samt Summation ??ber die Wertealler Spinkoordinaten. Es wird Qki das Matrixelement des Opera-tors ?? in Bezug auf die Eigenfunktionen ipk und ipi genannt. Man interessiert sich oft nur f??r die Verh?¤ltnisse von zu ver-schiedenen Paaren von Eigenfunktionen geh??rigen Matrixelementen??ki und ??k'i'. Wir wollen hier speziell den Fall betrachten einesfreien Atoms und fragen nach allen Matrixelementen eines Operatorsin Bezug auf diejenige Eigenfunktionen, die sich auf dasselbeAnfangs- bzw. Endniveau beziehen, und die sich nur durch dieWerte der Quantenzahl M unterscheiden. In diesem Fall sind dieobengenannten Verh?¤ltnisse oft vollkommen durch die Transfor-mationseigenschaften der Wellenfunktionen und des Operators beiRaumdrehungen bestimmt, und es ist von Kramers i) gezeigt wordenwie diese Verh?¤ltnisse mittels der in den

vorigen Paragrafen be-handelten Darstellungsweise dieser Transformationseigenschaftenleicht berechnet werden k??nnen. Wir werden in diesem Paragrafeneinige Beispiele f??r die Berechnung von solchen Matrixelementenund im dritten Kapittel einige physikalische Anwendungen geben. Als erstes Beispiel behandeln wir das Integral (61) f??r den Falleines bei Raumdrehungen invarianten Operators ?Ÿ. In Â§ 6 habenwir nachgewiesen, dass die 2j 1 Wellenfunktionen, die zu einemstation?¤ren Zustand mit der Quantenzahl j geh??ren, sich so w?¤hlenlassen, dass sie sich transformieren wienbsp;Wir bilden mit Hilfe eines behebigen konstanten Spinvektors (a, b) die Invariante: QV = (- b^ af])y......(62) und bemerken, dass diese Invariante die 2j -}- 1 Monome M'j^ == T]^-'^ zusammenfasst. Nach Ausschreiben des rechten Gliedesin (62) erscheint das Monom M^ multipliziert mit dem Faktor Wenn wir uns die Monome Mf durchdie Wellenfunktionen ersetzt denken, so sind diese also ineiner Invariante zusammengefasst. Das Integral: ?’ Q'^VQ QVdz = ?’ (- b*^* aY-W^i- b^ arifidr . (63)

bedeutet sodann ein Polynom in a, b, a*, b*, dessen KoeffizientenIntegrale der Form (61) sind, wo an Stelle der Wellenfunktionen 1) H. A. Kramers, Proc. Kon. Akad. Amst. XXXIII 953, XXXIV 965.



??? rpf abernbsp;geschrieben ist. Dies gibt an. dass die explizite Form der Wellenfunktionen uns nicht interessiert, sondern nurihre durchnbsp;gekennzeichneten Transformationseigenschaften. Jedes Integral (61) erscheint multipliziert mit einem Faktor derForm (-nbsp;{.l^Jai-^^ y^^^nbsp;Da wir die Wellenfunktionen und den Operator nicht kennen, k??nnenwir die Integration nicht ausf??hren. Die Form (62), in der wir allediese Integrale zusammen gefasst haben, erm??glicht uns aber un-mittelbar etwas ??ber das Resultat der Integration aus zu sagen.Der Integrand in (63) ist eine Invariante gegen??ber Raumdrehungenund wird ??ber einen invarianten Bereich integriert. Das Resultatder Integration muss also offenbar eine Invariante sein, und zwarein Polynom in a, b, a* und b*. Nach dem Resultat von Â§ 4 muss also a im selben Grad wiea*, b im selben Grad wie b* vorkommen, wenn die Invariantenicht identisch Null ist. F??r / = j, wird das Resultat der Inte-gration nach Â§ 4 die einzig m??gliche Invariante: ?’ Q*yQ Qydx = Cj {aa* bb*fJ.....(64) w?¤hrend f??r den Fall ?’ 4=; das Integrationsresultat von

(63)gleich Null ist. Schreiben wir das rechte GHed von (64) aus alseine Summe von Termen, welche die Form C/y^y^,) (aa*y~^(bb*)''^' haben, so d??rfen wir, da (a, b) ein konstanter Spinvektorist, diese Terme je f??r sich denjenigen Termen des Integrals (63)gleich setzen, welche dieselben Potenzen von a, b, a*, und b*enthalten. Dies f??hrt uns zum Resultat: ^^ ^ ^ 1 f??r y = /nbsp;_ ^ 1 f??r M' = M ^ 0 f??r ?’ 4= jnbsp;~ 0 f??r M' 4= M Eine wirkliche Integration mit bekannten Wellenfunktionen undbekanntem Operator w??rde notwendig dasselbe Resultat liefern.Der Wert der Konstante Q ist von der besonderen Form derWellenfunktio nen und des Operators abh?¤ngig, nicht aber von M. Wir geben jetzt noch ein Beispiel der Berechnung der Matrix-elemente von Operatoren die sich transformieren wie X''*^wo {X, Y) ein Spinvektor ist. Diese 2r 1 Operatoren: (s = -fr. râ€” 1......- r) . . . . (66) sind in den physikalischen Anwendungen eindeutig definiert: esmuss in diesem Fall also offenbar r ganzzahlig sein.



??? Indem wir uns wieder f??r ihre Transformationseigenschafteninteressieren, schreiben wir, wie wir vorher an Stelle derWellenfunktionen dienbsp;schrieben, f??r die 2r 1 Operatoren die Monome X''^^ Y''^^ und fassen sie zusammen inder Invariante: ?? = {-BX^AYr.......(67) wo (A, B) ein Spinvektor ist, der bei sp?¤teren Integrationen alseine Konstante aufgefasst wird, wie vorher der Spinvektor (a, b). Das Integral: ??f=fQ*2J'?œQydT = ?’(- b*t a*r]*)y' (- BX A b^ anfidt (68) ist wieder ein Polynom in den Variabein a, b, a*. 6*. A und B,dessen Koeffizienten Integrale der Form (61) sind, wo an Stelleder Wellenfunktionen und Operatoren die betreffenden Monomegeschrieben sind, die ihre Transformationseigenschaften kennzeichnen. Auch hier wird das Resultat ein invariantes Polynom in a, b,a*. b*. A, B sein, das wir sofort hinschreiben k??nnen. Das Polynommuss ganz rational aufgebaut sein aus den Grundinvarianten{aa* bbquot;-), (â€” bA a?Ÿ) und (a'-A b*B) (Vgl. Â§ 4). Einezweite Forderung ist, dass a, a*. b, b*. A und B im selben Gradvorkommen m??ssen, wie im Integrand, da sie

ja bei der Integrationals konstante Faktoren auftreten. Diese Forderungen beschr?¤nkendie m??glichen Wertpaare f??r j und /, Die zwei letzteren Grund-invarianten erm??glichen es, dass bei einer von Null verschiedenerInvariante die Summe 2/ der Exponenten von a* und b* sichh??chstens um 2r von der Summe 2j der Exponenten von a und bunterscheidet, denn es kommen A und B im Integrand homogenvom Grad 2r vor. Dies bedeutet, dass f =j r,j r â€” 1, . . . | j â€” r |sein kann und dass das Resultat der Integration wird: '(aa* bbyj {a*A = bbyj-' ia*A (- 6A aB)......................(69) = cy-'^ (aa* bbyj-^' (- bA F??r 1 ?’'â€” y I gt; r oder j jquot;lt; r ist das Resultat der Inte-gration gleich Null. Der Wert der Konstanten Cf in einem vor-gegebenen Fall ist von der besonderen Form der Wellenfunktionenund der Operatoren abh?¤ngig, und auch im besondren von j, nichtaber von M. Wir zerlegen nun das Resultat in Terme, die je f??r sichmitnbsp;B'quot;^'^ multipliziert erscheinen; diese Terme beziehen sich



??? je f??r sich auf einen bestimmten der 2r 1 Operatoren. Sodannk??nnen wir alle diese Terme wieder, wie im vorigen Beispiel,zerlegen nach Potenzen des Spinvektors (a, b). Die Koeffizienten,womitnbsp;a'-^ yy^M'nbsp;multipliziert erscheinen liefern uns sodann die gesuchten Integrale der Form (61). Wir werdendies im dritten Kapittel f??r einen Sonderfall ausf??hren. Die Resultate (69) waren ganz unabh?¤ngig von der besondrenWahl der Operatoren ??; bei sp?¤teren Anwendungen ist es oftn??tzlich eine spezielle Form f??r sie zu w?¤hlen. Bei einer solchenWahl soll man darauf achten, dass das Resultat der Integrationnicht identisch gleich Null wird. Im besondren ersetzen wir X''^^nbsp;durch einen Operator, der ein Polynom in f, j], ^ und Sâ€” ist. Da (f^nbsp;eine In- ??f----dt]nbsp;V ??f 'dl]) Variante ist, so transformieren sich ^^ und P wie f* und und ??fnbsp;?–J?nbsp;' ' wir k??nnen mittels dem konstanten Spinvektor (A, B) die Grund-invarianten {â€”B^ Arj)nbsp;aufbauen. Der in-variante Operator (67) ersetzen wir sodann durch einen Operator in f. t], ~ und ^^ von der

Form:??f dl] (- BX AVr = (- ?Ÿf Ai]Y - nbsp;(70) Das rechte Glied ist wieder ein Polynom in A und B, dashomogen ist vom Grade 2r, die Koeffizienten von A'quot;quot; '^ ^ sindalso die gesuchten Operatoren. Vorl?¤ufig ist der Wert von qnoch willk??rlich; er wird aber durch die Forderung, dass dasResultat der Integration nicht Null sein darf, bestimmt. Wir bemerken noch, dass die Reihenfolge der Faktoren in (70)willk??rlich ist, da ja gilt: (- ?Ÿf A,). {a B^^) = . (- Bf A,) (7.) Setzen wir jetzt den Operator (70) in (68) ein, so wird derIntegrand ein Polynom, das homogen vom Grad 2r in A und B.homogen vom Grad 2j 2q in f und i], und homogen von GradV in f* und gt;/* ist. Aus (65) folgt, dass die Integration nur dannnicht identisch Null liefert, wenn der Integrand homogen vomselben Grade in f und wie in f* und tj* ist. Hieraus folgt, dassgelten muss: q........(72)



??? Hierdurch ist der Operator (70) bestimmt.Es ist: q = r f??r ?’ = y rq = r â€” 1 â€ž / = y r â€” 1 ........... .... (72) q = â€” r f??r f â€” !y â€” r | Die Form des Operators ist in diesem Fall also f??r jedes be-sondre Integral verschieden. Eine andre Methode die Monome in X und Y durch spezielleOperatoren zu ersetzen, besteht darin, dass man setzt: x =nbsp;Y=v i*.....(73) i-BXi-A Yf' = ([- ?Ÿf An] [AS* nbsp;. (74) Das Integral (68) wird dadurch sofort zur??ckgef??hrt auf Integraleder Form (65) und man bekommt immer ein von Null verschiedenesResultat wenn die Zahlen f, j, r die Seiten eines Dreiecks bildenk??nnen (j f ^ r, | y â€” y' | ^ r). Bei den Anwendungen der symbolischen Methode, die wir imdritten Kapitel auf die Berechnung der Multipolintensit?¤ten machen,haben wir nicht den Ansatz (73) sondren (70) benutzt, weil dienotwendigen Rechnungen sich dabei einfacher gestalten.



??? KAPITEL ILDIE MULTIPOLSTRAHLUNG. Â§ 1. Der Hevtzsche Vektor. In diesem Kapitel wollen wir, ausgehend von den Gleichungender Elektronentheorie, das Strahlungsfeld eines Atoms oder Mole-k??ls zerlegen in verschiedene Arten von Strahlung, die man mitDipol-, Quadrupol-, Octopol-, und zusammen mit dem NamenMultipolstrahlung bezeichnet. Es wird sich zeigen, dass dieseZerlegung sich mit den im ersten Kapitel gegebenen gruppen-theoretischen ?œberlegungen einfach machen l?¤sst. Die Behandlungder Ausstrahlung von im R?¤ume bewegten Punktladungen gestaltetsich am einfachsten durch Einf??hrung des Hertzschen Vektors.Wir gehen aus von den bekannten Gleichungen der Elektronen-theorie: (Tj 93 = â€” 47r()nbsp;â€ž 1 ?–A , ^^nbsp;E=---^ â€” grad qgt; fâ€”I *nbsp;^^ TTnbsp;c dt ^nbsp;H = rot Anbsp;' ' i^7 divA = 0c ??f Hierin ist: (p das skalare Potential. A das Vektorpotential. Q die Ladungsdichte. V die Geschwindigkeit der Ladung. E der elektrische Vektor. H der magnetische Vektor. c die Lichtgeschwindigkeit. dX^^ dY'^'^ ?–Z2 c2 072* Wir

f??hren nun einen Vektor a und einen Vektor Z (denHertzschen Vektor) ein in folgender Weise:



??? ^ = ^Vnbsp;div lt;y = â€” Q â–? Z = -47I(T........(3) â€ž 1 ?–Z H = â€” rot c dtnbsp;......(4) E = rot rot Z â€” Im ladungsfreien Raum ausserhalb des strahlenden Systems ver-einfacht sich die letzte Formel zu: E = rot rot Z.Eine L??sung der Gleichung (3) ist: =nbsp;....... (5) Es ist jR der Abstand vom Integrationselement dV zum Auf-punkt P, wo Z bestimmt werden soll. Die Integration ist ??berden ganzen Raum zu erstrecken. Die Bedeutung der Klammer {}ist die folgende: Wenn man den Wert von Z zur Zeit T in Pbestimmen will, so hat man bei der Integration in jedem Raum- D dement dV den Wert von c zur Zeit t â€” T â€” zu nehmen. c Es ist T â€” t = â€” gleich der Zeit, welche das Licht braucht umc von dV nach P zu kommen. Wir betrachten nun speziell den Fall der Ausstrahlung einesAtoms oder Molek??ls und suchen die Werte von E und H in grossem Abstand. Nur Terme in E und H, die wie nach R Null gehen, liefern einen Beitrag zur Ausstrahlung, denn nur dieseliefern bei der Berechnung des Energiestroms durch eine Kugel-fl?¤che mit grossem Radius einen von diesem

Radius unabh?¤ngigenBetrag. Wir k??nnen sodann f??r Z schreiben: (7) Es ist R2=OPnbsp;V^ Z-'. wo r, Zdie Koordina- ten vom Aufpunkt P sind und O der Nullpunkt des Koordina-tensystems ist. 1 ?–Z A = Sodann gilt: A =---^nbsp;9? = â€” div Z c ??f und:



??? Da wir es immer mit positiven und negativen Punktladungenzu tun haben, so vereinfacht sich das Integral zu einer Summe: =nbsp;....... (7) k wo die Summation ??ber alle Teilchen zu erstrecken ist. Es istTk ein Vektor, dessen Komponenten Xk, yk, Zk die Koordinatendes Teilchens sind; Ck ist die Ladung des k^'quot; Teilchens. Man hat r^ immer zur Zeit t'k = Tâ€” ^ zu nehmen, wo: c R, = V{{X - Xkf iY-ykf (Z - z,)2} Zur Berechnung von E und H ist es von Wichtigkeit eineFormel f??r Zp zu geben, wo Tk in allen Termen sich auf dieselbe Zeit bezieht. Dazu betrachten wir das komplexe Integral: drkjr) ^ ^ .....^^^ c Dies ist ein Integral l?¤ngs einer geschlossenen Kurve C in einer n komplexen tâ€” Ebene, wo t = T--ist und tk{r) als eine Funk- c tion der Integrationsvariabele r aufgefasst wird. Der Nennerâ€” t â€” â€? ^ ^Q 5 jjgp Einheidsvektor in der Richtung (9) I = dt ' (dtk^) S^ [ dt ' c Da: t'~t- Ml^ = 0, und also: dt'^ { dt' â€? c'...... OP ist, hat eine Nullstelle f??r t = t' und es soll die Inte-grationskurve so gew?¤hlt werden, dass t' innerhalb dieserKurve liegt. Die Vektor-Schreibweise (8)

bedeutet offenbar drei Integrale, wo f??r zu schreiben istnbsp;bzw.nbsp;bzw. dxnbsp;dtnbsp;dl Es ist I gleich dem Residuum des Integranden und diesesist gleich: quot;c/r,(T)nbsp;1



??? so ist: [drj^^f'' dt dtHierin bedeutet Vk{t') offenbar Tk zur Zeit t' = t ^A?œi^ Q Wir beachten nun dass: .......(11) In der Tat gilt: cnbsp;Cnbsp;c â€? ' Hierin ist ^^ die Zeit, welche das Licht braucht um von O nach P. und. wenn K die Stelle des /c^^Â? Elektrons und Q die Projektion von K auf OP bedeutet.nbsp;die Zeit um von O nach Q zu kommen und also t'- T die Zeit welche das Licht f??r den WegQP braucht, oder auch n?¤herungsweise f??r den Weg KP =da ja QP und KP wenig verschieden sind. Diese Approximationbedeutet offenbar Vernachl?¤ssigung von Termen in z. die schneller als ^ nach Null gehen.Das Integral I in (8) l?¤sst sich entwickeln. Es gilt: I = f dr .__ 2mJ(r-t) ^ (r,(T) c{r-t) cquot; â€? 2ni / rrirTiTTTT Dies ergibt f??r dt dTk(t')nbsp;I [dY. /7=Â?0 dn{t) ^^ ^^ ~ ~drnbsp;rechten Glied ??berall r^ zur Zeit t zu nehmen ist. Durch Integration nach t findet man: (13)



??? =nbsp;. (15) n=l Dieses Resultat ist vollkommen analog zum Lagrangeschen Entwicklungssatz (Vgl. z.B.: Watson and Whittaker, Modern Analysis, S. 133; an Stelle der dort vorkommenden f(z) und (p{z) treten bei uns jeweils drei Funktionen auf). Wir haben nun (r/t) n und also auch Z, als eine Funktion von t = T--â€” gefunden. Wir gehen sodann zur Berechnung von E und H ??ber. Beieiner Differentiation von Z nach den Koordinaten X, Y, Z (die ja in den Formeln (4) f??r E und H vorkommt), braucht nicht differenziert zu werden, da dies zu Termen Anlass geben w??rde,die nicht zum Energiestrom beitragen. Es h?¤ngt {r^} nicht explizitvon X, Y, Z ab. wohl aber gilt: dt 'dX~ ^quot;^'^'cR (16) dX und also: ?–Z dX ~ ^cR (17) Hieraus folgt: rot Z = ^ [Z . 8] Es'folgt jetzt f??r E und H: TT 1 ??Z 1 11= â€” rot = â€”c dl c- ?–2Z . 8 dtdT und da = 1: r??-z . (18) H = c- und: E = rotrotZ = 4gt; [[Z.Â?5] . lt;5]c- (19) Aus diesen Formeln ergibt sich, dass E und H gleich gross sindund sowohl senkrecht auf einander wie auf 6 stehen.



??? Â§ 2. Die Dipol- und die Quadrupolstrahlung. Wir haben im vorigen Paragrafen f??r Z die Entwicklung gefunden: â– inbsp;rnbsp;! rnbsp;Â°Â° 1 â€ž ,nbsp;. â– Â?r^ 1nbsp;1 - 'nbsp;Nfi UT (20) . / \ Tk r^ . lt;5 ..... wo {{r^}} die Bedeutung: Tu zur Zeit t=T â€” ^ hat. c Wir werden im folgenden die doppelten Klammer fortlassenwas nicht zu Missverst?¤ndnissen f??hren kann.Schreiben wir: Z = ZC) Z(2) Z(3) .........(21) wo zw den Term in (20) bezeichnet in dem die Komponentenvon ?? in der {k - Potenz vorkommen, so finden wir: = = .....(22) Dieser Term ergibt die wohlbekannte elektrische Dipolstrahlung.Aus diesem Term ergibt sich f??r E und H: H= 1 [A . ,nbsp;.......(23) Der zweite Term in der Summe (21) wird: ^ Rc^nbsp;......(24) Die Komponenten von Z(2) werden nach dieser Formel, wennf??r Xk. yk, Zk geschrieben wird rk\. tut, tkz'. =nbsp;(;=1. 2, 3) .... (25) wo: ^ij = ^ eki-kiTk]nbsp;{k=\,2.....) k ' Wir zerlegen nun den Tensor in einen antisymmetrischenle??, emen symmetrischen Teil, wo die Summe der Hauptdiagonale Null ist, und ein Multiplum des Einheitstensors eJ = ^ 0' ^j)]. =

1 (i=j)/' aij = asij bij ........(26)



??? a = ^ciijSij = an a22 a33 igt;ij = bji {ZbijEij = fcn 622 ^33 = 0) Cy = Cy,' Sodann ist: a = .....Â?^Staf-i) k k bij = 2 y (^â– ^'â€?'â– Ay ^kj . r*:/) â€” Vs aey = 2 y ^ (rfc'-ry â€” Vs^^ ^/v)â€” Ckjrki)............(27) k Der erste Term dieser Zerlegung: 'ZP = ^ gibt sofort (vgl. (18) und (19)) Null f??r E und H und gibt alsokeine Strahlung; wir bezeichnen diesen Term aus Gr??nden, die imn?¤chsten Paragrafen besprochen werden, als den Term der elek-trischen Unipolstrahlung. Der zweite Term gibt die elektrische Quadrupolstrahlung, dieseStrahlung wird wesentlich von 5 Funktionen bestimmt: es gibt ja6 Funktionen und eine Relation zwischen diesen Gr??ssen. Der dritte Teil dieser Zerlegung, d.h. der antisymmetrischeTeil des Herztschen Vektors ist: 'Zf = Xcijdj.......(28) oder: = - 8,02 B2S3 -?Ÿ,(53 .....(29) 3Z(2) = - B2?–1 8162 wo: = C32. 80 = C13, 83 = C21 ist.Es transformieren sich 8^, 80, wie die Komponenten einesVektors und man kann die Formeln (29) in Vektorschreibweiseschreiben: 3Z(2) = [B.?–].......(30)



??? Es sind xpk und rpi L??sungen der zeitfreien Schr??dingergleichung,die im allgemeinen verschiedenen Eigenwerten entsprechen; ?? istirgendein Operator, der auf yn wirkt, ?’ dr bedeutet Integration??ber alle Raumkoordinaten samt Summation ??ber die Wertealler Spinkoordinaten. Es wird Qki das Matrixelement des Opera-tors Q in Bezug auf die Eigenfunktionen xpk und tpi genannt. Man interessiert sich oft nur f??r die Verh?¤ltnisse von zu ver-schiedenen Paaren von Eigenfunktionen geh??rigen MatrixelementenQki und ??k'i'. Wir wollen hier speziell den Fall betrachten einesfreien Atoms und fragen nach allen Matrixelementen eines Operatorsin Bezug auf diejenige Eigenfunktionen, die sich auf dasselbeAnfangs- bzw. Endniveau beziehen, und die sich nur durch dieWerte der Quantenzahl M unterscheiden. In diesem Fall sind dieobengenannten Verh?¤ltnisse oft vollkommen durch die Transfor-mationseigenschaften der Wellenfunktionen und des Operators beiRaumdrehungen bestimmt, und es ist von Kramers gezeigt wordenwie diese Verh?¤ltnisse mittels der in den vorigen

Paragrafen be-handelten Darstellungsweise dieser Transformationseigenschaftenleicht berechnet werden k??nnen. Wir werden in diesem Paragrafeneinige Beispiele f??r die Berechnung von solchen Matrixelementenund im dritten Kapittel einige physikalische Anwendungen geben. Als erstes Beispiel behandeln wir das Integral (61) f??r den Falleines bei Raumdrehungen invarianten Operators ?Ÿ. In Â§ 6 habenwir nachgewiesen, dass die 2j 1 Wellenfunktionen, die zu einemstation?¤ren Zustand mit der Quantenzahl j geh??ren, sich so w?¤hlenlassen, dass sie sich transformieren wienbsp;Wir bilden mit Hilfe eines beliebigen konstanten Spinvektors (a, b) die Invariante: Qy = {-b^ atjfi......(62) und bemerken, dass diese Invariante die 2j -f 1 Monome Mj^ == ^j M ^j-M 2usammenfasst. Nach Ausschreiben des rechten Gliedesin (62) erscheint das Monom Mj^ multipliziert mit dem Faktor Wenn wir uns die Monome Mf durchdie Wellenfunktionen rp^ ersetzt denken, so sind diese also ineiner Invariante zusammengefasst. Das Integral: ?’ Q*y'Q Q^dx = Ii- bH* nbsp;b^ arifJdt . (63) bedeutet

sodann ein Polynom in a, b, a*, b*. dessen KoeffizientenIntegrale der Form (61) sind, wo an Stelle der Wellenfunktionen 1) H. A. Kramers, Proc. Kon. Akad. Amst. XXXIII 953, XXXIV 965.



??? V^f abernbsp;geschrieben ist. Dies gibt an, dass die explizite Form der Wellenfunktionen uns nicht interessiert, sondern nurihre durch j;/-^ gekennzeichneten Transformationseigenschaften.Jedes Integral (61) erscheint multipliziert mit einem Faktor derForm (â€”nbsp;(^^yj^j-M y.M wir die Wellenfunktionen und den Operator nicht kennen, k??nnenwir die Integration nicht ausf??hren. Die Form (62), in der wir allediese Integrale zusammen gefasst haben, erm??glicht uns aber un-mittelbar etwas ??ber das Resultat der Integration aus zu sagen.Der Integrand in (63) ist eine Invariante gegen??ber Raumdrehungenund wird ??ber einen invarianten Bereich integriert. Das Resultatder Integration muss also offenbar eine Invariante sein, und zwarein Polynom in a, b, a* und b*. Nach dem Resultat von Â§ 4 muss also a im selben Grad wiea*, b im selben Grad wie b* vorkommen, wenn die Invariantenicht identisch Null ist. F??r ?’ = j, wird das Resultat der Inte-gration nach Â§ 4 die einzig m??gliche Invariante: ?’ Q*yQ Q^dx = Cj (aa* bb*)^.....(64) w?¤hrend f??r den Fall ?’ 4= j das

Integrationsresultat von (63)gleich Null ist. Schreiben wir das rechte Glied von (64) aus alseine Summe von Termen. welche die Formnbsp;(aa*)^quot;^ haben, so d??rfen wir, da (a, b) ein konstanter Spinvektorist, diese Terme je f??r sich denjenigen Termen des Integrals (63)gleich setzen, welche dieselben Potenzen von a, b, a*. und b*enthalten. Dies f??hrt uns zum Resultat: ?’nbsp;^j.mnbsp;= cj (, V^,)-' ?–jj.?–mM, â€? (65) ^ ^ 1 f??r ?’ = /nbsp;_ ^ l f??r M' = M ^ 0 f??r f =}= jnbsp;0 f??r M' =j= M Eine wirkliche Integration mit bekannten Wellenfunktionen undbekanntem Operator w??rde notwendig dasselbe Resultat liefern.Der Wert der Konstante Cj ist von der besonderen Form derWellenfunktionen und des Operators abh?¤ngig, nicht aber von M. Wir geben jetzt noch ein Beispiel der Berechnung der Matrix-elemente von Operatoren die sich transformieren wie X'*^ Y'-',wo {X, Y) ein Spinvektor ist. Diese 2r 1 Operatoren: ^5(s = r, râ€” 1......- r) . . . . (66) sind in den physikalischen Anwendungen eindeutig definiert: esmuss in diesem Fall also offenbar r ganzzahlig sein.



??? Wir suchen nun die irreduzibelen Darstellungen welche enthaltensind in der Darstellung der Raumdrehungsgruppe durch die Trans-formationen der aâ„?, k Wir kennzeichnen die Transformationseigenschaften der a^ durchvorl?¤ufig unbekannte nicht homogene Polynome Tquot;^ in den Kom-ponenten eines Spinvektors rj'). Die bekannten Transformations-eigenschaften vonnbsp;d.h. von A^, B^ und â€” AB. m??ssen auch gegeben werden durch lineare Kombinationen von Produktenvon ^k^m^k-m jj^jj. V).....(35) m Die Formel (35) erh?¤lt man, indem man in (34) P^' durch^k.m^k-m und a- durch {^'.rj') ersetzt. Diese lineare'Kombi-nationen findet man nach der Methode von Kap. I, Â§ 6 (Vgl.Fussnote S. 16). Man bilde eine Invariante in (f, rj), (f', rj')und (A, B); welche homogen vom zweiten Grade in A und Bund homogen vom Ikquot;quot; Grade in ^ und r] ist. Es ergeben sichdrei M??glichkeiten und im allgemeinen eine lineare Kombinationder drei F?¤lle: {-n'^ ^'vYH-B^' Ar^'fnbsp;(a) nbsp; nbsp; {b) . (36) {-n^^-^'nf-'nbsp;{~B^ ArjY (c) Die Koeffizienten von B^, AB, Aquot;^

transformieren sich wie A^,â€” 2A?Ÿ und und geben die verlangten linearen Kombinationen(35). Diese Koeffizienten sind im Fall (a) eine lineare Kombinationvon Termen der Formnbsp; nbsp;^ qj^ Monome ^'k^i^m'^'k^i-m' induzieren eine irreduzibele Darstellung der Raum-drehungsgruppe vom Grade 2k 3. Im Fall (b) und (c) enthaltendie Faktoren von B^. AB und A^ die Monome ^'k m'^'k-m' Diggg induzieren Darstellungen vom Grade 2k-V 1,resp. 2A: â€” 1. Die Darstellung der Raumdrehungsgruppe durchdie Transformationen der aâ„? zerf?¤llt also im allgemeinen in dreiirreduzibele Darstellungen, die wir nach dieser Methode gefundenhaben, und wir k??nnen die a^ in drei sich irreduzibel transfor-mierende Teile zerlegen. Sodann gilt: nbsp;. . . (37) m,m' wo die sich irreduzibel vom Grad 2k â€” 1 transformieren, die irreduzibel vom Grad 2/c 1, und die irreduzibel vomGrad 2/c 3.



??? Zur Berechnung von H muss das vektorielle Product [Z . lt;5] gebildet werden. Nach den oben gegebenen ?œberlegungen w??rdeman erwarten, dass durch die Produktbildung von P'j^ mit denKomponenten des Vektors 8 eine lineare Kombination von entstehen w??rde. Es ist aber P^ entweder eine Dm' und p-;, gerade oder eine ungerade Funktion bez??glich Spiegelungen amNullpunkt des Koordinatensystems. Durch Multiplikation mit denKomponenten eines Vektors (eine ungerade Funktion) entstehtalso im ersten Fall eine ungerade im zweiten eine gerade Funktion.Da nunnbsp;und P^quot;, ungerade sind wenn P^quot; gerade ist und umgekehrt, so f?¤llt im Produkt Pâ„?quot; fort und es bleibt eine lineareKombination von Pj^quot;quot;, und Pj^quot;, ??brig. Dazu muss beachtet wer-den, dass H ein Vektor ist. Dies beschr?¤nkt die Zahl der M??g-quot;lichkeiten noch weiter, denn es kann sich ^ bf' Pf,quot; nur wie m'.mquot; * * die Komponente eines Vektors transformieren, wenn | A;' â€” A: | ^ 1.Die Differentiation nach der Zeit wirkt nur auf b und ?¤ndert

dieTransformationseigenschaften von b nicht. Zur Berechnung von E muss das vektorielle Produkt [H . ??] ge-bildet werden und es gelten ?¤hnliche ?œberlegungen. Es folgt aus diesen ?œberlegungen das nachstehende Schemaf??r Z, H und E, das die Transformationseigenschaften vom nurvon den Tk und Tk abh?¤ngigen Teil b und vom nur von derRichtung des Aufpunktes abh?¤ngigen Teil P kennzeichnet. Wirhaben die Summenzeichen und die Buchstaben m und m' fort-gelassen. z H E bk-xPk-- --ybk-\Pk-\ ^bk-\Pk-2 a) el. 2^-1 Pol ^bkPkc:^ bk Pk-\ quot;-â€?^bk Pa 1 ---- ^ZbkPk b) magn. 2*^ Pol bk 1 Pfc â–  ^^ bk iPk c) el. Pol



??? Wir haben hier die drei F?¤lle a, b und c. die wir schon inFormel (36) unterschieden. In den F?¤llen a und c treten in denKomponenten von E jeweils zwei Kugelfunktionen verschiedenerOrdnung auf, in den Komponenten von H tritt jedoch nur eineKugelfunktion auf. Im Fall b ist es gerade umgekehrt. Wir nennenden Fall a eine elektrische -Polstrahlung, den Fall b einemagnetische 2*-Polstrahlung und den Fall c eine elektrische 2^ '-Polstrahlung. Man bedenke, dass diese Bezeichnungen nur einenSinn haben, wenn die Exponenten positiv sind, da ja Kugelfunk-tionen negativer Ordnung keinen Sinn haben und die betreffendenTerme nicht vorkommen. Im besondren erh?¤lt man f??r ?¤: = 0 eineelektrische Dipolstrahlung, und eine magnetische Einpolstrahlung.F??r den Fall k = 1 erh?¤lt man eine elektrische Quadrupolstrahlung,eine magnetische Dipolstrahlung und eine elektrische Einpolstrah-lung. Die Einpolstrahlungen haben offenbar die Intensit?¤t Null.Diese Resultate stimmen genau mit den speziellen Resultaten desvorigen Paragrafen. Wenn im ausgestrahlten Lichte zeitlich

harmonische Komponentenvorkommen die einer Wellenl?¤nge entsprechen, die von derselbenOrdnung oder kleiner wie die Dimensionen des strahlenden Sys-tems ist, so konvergiert f??r diese Komponenten die Reihenentwick-lung langsam und es hat die Zerlegung in Multipolstrahlungenwenig Sinn. Â§ 4. Der Hertzsche Vektor unter Ber??cksichtigung des Elek-tronenspins. Es besteht die M??glichkeit im /adungsfrefen Raum dem in Â§ Idefinierten Hertzschen Vektor Z einen Vektor Z zur Seite zustellen, woraus â€” E durch eine Formel der Form (18) und Hdurch eine Formel der Form (19) bestimmt wird. Wir definieren; â€” Z = rot Z.......(38) Aus dieser Definition des Vektors Z ergeben sich f??r E und Hdie Formeln E = rot rot Z = â€” ^ rot Z.....(39a) H = I rot Z = â€” ^ Z = rot rot Z â€”grad div Z â–? Z. (39b} Die beiden letzten Terme in (39b) sind zeitunabh?¤ngig undliefern keinen Beitrag zur Ausstrahlung. Die Formeln (39)



??? Hefern dasselbe Strahlungsfeld wie die Formeln (18) und (19): H = rot Zc E = rot rot Z. In der N?¤herung, die wir immer betrachtet haben, ergibt sichaus (38): und: Z = -[Z.5] . . . ... (40a)Z = [Z.?”] (Z??)??......(406) E = -^,[Z.?”].......(41a) H=nbsp;......(416) Man sieht aus diesen letzten Formeln, dass der letzte Term in(406) keinen Beitrag zur Ausstrahlung liefert. Wir h?¤tten bei den?œberlegungen dieses Kapitels also auch ausgehen k??nnen von einemVektor Z der Form: Z =nbsp;.......(42) Der Umstand, dass ein Elektron nicht nur ein elektrisches Moment eu . r* sondern auch ein magnetisches Moment-. S^t m HC liat, worin S?¤ das Elektronenimpulsmoment bedeutet (Vgl. Â§ 2),f??hrt uns dazu den durch (42) definierten Vektor Z noch miteinem Term der Form: .......(43) k k t?Žlkc zu erg?¤nzen. Der totale Vektor Z ergibt sich sodann nach Formel(406) zu: Hieraus k??nnen E und H mittels den Formeln (18) und (19) bestimmt werden. Es ist fraglich ob der Term --[{S^j . ??l nach Entwick- rtikC lung von {S^} (Vgl. Â§ 1) auch in h??herer als erster N?¤herungnoch richtig

ist. Eine Rechtfertigung der Formel (44) w??rde sichvielleicht auf Grund der Diracschen Theorie des Elektronenspins gebenlassen. Wir wollen das aber in dieser Arbeit nicht versuchen.



??? KAPITEL IIL DIE QUANTENMECHANISCHENINTENSIT?„TSFORMELN. Â§ L Die quantenmechanische Umdeutung der klassischenFormeln. Wir gehen in diesem Kapitel ??ber zur quantenmechanischenUmdeutung der im zweiten Kapitel behandelten klassischen Formelnf??r Z, E und H. Man kann eine Gr??sse f (z.?Ÿ. eine Komponente von Z). diedurch irgendeine Formel der klassischen Theorie bestimmt ist,entwickeln nach in der Zeit harmonischen Komponenten: ?’ = E (a,e2-'V nbsp;.....(j) oder: k Die Quantenmechanik besagt nun, i) dass die Gr??ssen a* ersetztwerden m??ssen durch Gr??ssen aÂ?, welche bestimmt sind durchdie Formel: aki =! (pk*f(pidt....... , {2) worin (pk bzw. (pi die normierten Wellenfunktionen des k^^quot; bzw. station?¤ren Zustandes sind, und ?’ die als Operator umgedeuteteklassische Gr??sse bedeutet. Die zu a/t geh??rige Frequenz Vk wirdersetzt durch die Frequenz Vki, welche gegeben wird durch dieBohrsche Formel: vki = ^{Ek- E^).......(3) worin Ek bzw. Ei, die Energie des A:'^quot; bzw. station?¤ren Zu-standes

bedeuten.Im Falle der Ausstrahlung eines Atoms, darfman sagen, dass die quantenmechanisch umgedeuteten Terme 1) Vgl. O. Klein, Zs. f??r Phys. 41, 407, 1927.



??? einer harmonischen Entwicklung von Z, E und H, welche sichauf die station?¤ren Zust?¤nde k und l beziehen, die Ausstrahlungeines Atoms beschreiben, das sich im Zustand k befindet und vonda nach einem Zustand / ??bergeht, vorausgesetzt, dass Ek gt; Ei gilt. Â§ 2. Zeemaneffekt der Dipolstrahlung. Mit Hilfe der Resultate von Kap. I Â§ 8, werden wir in diesemParagrafen die Intensit?¤ts- und Auswahlregeln vom Zeemaneffektder Dipolstrahlung herleiten i). Nach der Formel (22, II), wird Z gegeben durch die Formel; ^ = ........w Wir berechnen nun nach der Kramers'schen Methode (Vgl. Kap.I Â§ 8) die Matrixelemente von den Komponenten Ax, Ay, Az vonA. Dazu benutzen wir Formel (69. I), worin wir r = 1 setzen.Der symbolische Operator (67, I) wird sodann gleich: ?œ={â€”BX AY)^......(5) und es transformieren sich X'^, Y^ und â€” XY wie Ax iAy,â€” Ax iAy und Az. Das Resultat (69, I) vereinfacht sich sodann zu: = {aa* bbyj{a*A b*B)''.....(6a) ??i = q {aa* bb*yj-' {a*A b*B) (- bA aB) . {6b)?Ÿj-i = q-' (aa* bbyj-^nbsp;(- bA aB)^ . (6c) Wir betrachten den Fall j 1

â€”gt;â–  j. Durch eine Zerlegung vonFormel (6a) in der in Kap. I, Â§ 8 beschriebenen Weise werdenwir zu den folgenden Formeln f??r die einzelnen Matrixelementegef??hrt: ?’ v'fA â€? (A. Â?A,) lt; = q^- = . . . (?)(r^d ??i m) I (- ^^ lt; = o; ^ Qi j oder mit leicht verst?¤ndlichernbsp;Bezeichnung der Matrixelemente: nbsp;= (?’{-,)-gt; . . . .â–  (7a) nbsp;=q^. . . . {7b)_ = ........(7c) 1) S. Goudsmit und R. de L. Kronig, Naturwiss. 13, 90, 1924. H. H??nl,. Zs.f. Phys. 31, 340, 1925.



??? Wir haben A'x, A'y, A'z geschrieben, weil diese Matrixelementenoch nicht normiert sind. Wir m??ssen also noch die relativenWerte der Normierungsintegrale ?’ yj*f rpfdr untersuchen. DiesesIntegral wird gegeben durch Formel (65, I). Dort wurden dieMatrixelemente eines Invarianten Operators gefunden, und das istes. was wir hier gerade brauchen. Aus (64, I) und (65, I) findenwir f??r die Normierungsintegrale: J Q*y QV dr = Cj (aa* bb*)y.....(8) und: ^iM-fy^Jnbsp;.... (9) Um die normierten Matrixelemente {Ax iAy), (â€” Ax iAy)und Az) von A zu finden, haben wir die rechten Glieder von (7)noch durch einen Faktor;KN/,iwNy i.m/ zu dividieren wo M' = M 1,oder M oder M â€” 1 ist. Diese Matrixelemente, eingesetzt in Formel (1) an Stelle derGr??ssen a/t, liefern die allgemeinen quantenmechanischen Formelnf??r die harmonischen Komponenten von {Ax iAy), (â€” Ax iAy),Az von A. Die in der Zeit harmonische Z-Komponente von A wird imbesondren gegeben durch l^HAzme^quot;''quot;^; sie entspricht einer linearenSchwingung l?¤ngs der Z-Achse und einem

?œbergang M-gt;-M. Esgeben 2^R{Ax lAyje^-'''^ undnbsp; nbsp;eine rechts-, bzw. linkszirkulare Schwingung in der X, F-Ebene. Sie tretenauf bei den Uberg?¤ngen M \ M, bezw. M â€” 1 M. Der Vektor H ist nach (18, II): H=^[Z.??].......(10) Im Fall des ?œbergangs M-gt; M ist H parallel der A!quot;-Achsegerichtet, wenn ?? in der Y, Z-Ebene liegt. Der Absolutwert von H ist: H =nbsp;=nbsp;. (11) wo a der Winkel zwischen ?? (d.h. der Beobachtungsrichtung) undder Z-Achse ist. Der Energiestrom in der ??-Richtung ist gleich dem absolutenBetrag des Poyntingschen Vektors: 5 = ........(12)



??? Hieraus folgt der ??ber die Zeit gemittelte Energiestrom zu: 5 = ^ â€”. sm2 a . A^j Inc^R^nbsp;ZInbsp;^ {2nv)^ . 2 (/ M l)(y- M j) JCrUl â– = â€? quot; â€? (2/TW 2) â€? Q .C;., F??r den Fall der rechtszirkularen Schwingung von A:R{A. nbsp;. e^^^'quot;'. die dem ?œbergang M 1 M ent- spricht, zerlegen wir die zirkul?¤re Schwingung in zwei lineareSchwingungen gleicher Amplitude A parallel der X und der y-Achse, die einen Phasenunterschied von ^ haben. F??r jede dieser Schwingungen k??nnen wir sodann die eben gegebenen Uber-legungen anwenden und es folgt f??r den mittleren Energiestromin der ??-Richtung: 5 =nbsp; nbsp;.... (H) wo ?Ÿ bzw. y die Winkel von lt;5 mit der AT- bzw. der F-Achsebezeichnen, und wo gilt: A2 = V4!Ax tAyl2......(15) Daher finden wir f??r 5: 5 =nbsp;(1 cos2 a) (1A. -f t-A, I//jÂ? ^= F??r den Fall eines ?œbergangs M â€” 1 M. d.h. einer links-zirkularen Schwingung findet man in ?¤hnlicher Weise f??r dieausgestrahlte Energie: enbsp;,,,nbsp;{j-M-r2)ij^M l) jCrlL (17) Im Falle eines ZeemanefFekts wird die 2; 1 ^ fache Entartungder

Energieniveaus, die einer inneren Quantenzahl j entspricht,aufgehoben. Man kann aber die den verschiedenen Werten vonM entsprechenden Wellenfunktionen, die alle zum ungespaltetenNiveau geh??ren, als nullte N?¤herung f??r die gest??rten Wellen-funktionen nehmen, wenn das st??rende homogene Magnetfeldl?¤ngs der Z-Achse gerichtet und schwach ist (Vgl. Kap. I, Â§ 6).Sodann geben die Formeln (13, 16, 17) die Intensit?¤ten der Zee-mankomponenten f??r den Fall ; 1



??? F??r den Fall jj und j - \ j findet man mit Hilfe derFormeln {?Ÿb) und (6c) in ganz analoger Weise f??r die Quadrateder Matrixelemente {(A. = iIÂ?MÂ?mj=iM Mi (2y)2 ' c/ (27)2nbsp;â€? C;2 , , y.M.2 M2 |Cj|2 (18) = (IzzMzzMLr^ icr'p 2y(2y - 1) â€? ^â€žTTQ2y(2y - 1) â€? C,_T7Q ^nbsp;2y(2;-l) -QTrQ- Hieraus folgen sofort die relativen Intensit?¤ten der Zeeman-komponenten in beliebiger Richting durch Multiplikation mit sin2a (MM) odernbsp;(MÂ? 1M). Die totale Intensit?¤t der nicht durch einen ZeemanefFekt gespal-teten Linie erh?¤lt man, indem man die totale Ausstrahlung f??r eineZeemankomponente berechnet durch eine Integration von 8 ??beralle Raumrichtungen und sodann die gefundenen Intensit?¤ten allerZeemankomponenten addiert. Die Summation der durch (13), (16)und (17) gegebenen Intensit?¤ten ergibt die totale Intensit?¤taller Zeemankomponenten der Linie y 1 /, die zum Endniveai'y!M geh??ren. Wie es die Summenregeln fordern ist diese Intensit?¤t vonM unabh?¤ngig und wir definieren die totale Intensit?¤t derungespalteten Linie als die

Summe aller Zeemankomponenten, d.h.gleich dem 2/4- 1-fachen von /j,^ Is,ij ~ K^J Ishj.M -nbsp;(2y 3). qâ€”q-- (19a) Wegen der sp?¤teren Anwendung haben wir uns in Formel (19a)im besondren einen ?œbergang 5',/', y 1s,/, y gedacht, diesich auf eine Multiplettlinie bei Russell- Saunderscher Koppelung be-zieht. Die in (19a) auftretenden Konstanten C h?¤ngen nicht nurvon y, sondern auch noch von s', 5 und / ab.Ahnliche Formeln gelten f??r die ?œberg?¤nge j â€” 1 -gt;yundy-gt;y:



??? [2j 1) [j 1)2 c3 â€?nbsp;2jnbsp;â€? C/ â€? â€? ^^^^^ (19) Â§ 3. Eine Formel f??r die Summe aller Zeemankomponenteneiner Multiplettlinie im Fall der Multipolstrahlang. In Â§ 2 haben wir die Summe der Intensit?¤ten aller Zeeman-komponenten einer Multiplettlinie im Fall der Dipolstrahlungberechnet. In diesem Paragrafen wollen wir eine Formel f??rdiese Summe im Fall der Multipolstrahlung geben, wovon dieFormeln (19a, b, c) einen Sonderfall bilden. In Kapitel II, Â§ 3 haben wir bewiesen, dass die Transforma-tionseigenschaften des Vektors H im Falle einer elektrischen2?„-Polstrahlung dargestellt werden k??nnen durch: S b'J^'Pl'.......(20) rn', m wo die 6â„?' sich bis auf konstanten Faktoren transformieren wie:Xi'^m'Yk-m' ^gnn {X, Y) ein Spinvektor ist und Pâ„? eine Kugel-funktion von der Beobachtungsrichtung 6 ist, deren Transforma-tionseigenschaften dargestellt werden k??nnen durch die Transfor-mationen von nbsp;wenn (f, rj) ein Spinvektor ist. Wirfassen nun die drei Komponenten des Vektors H mittels deskonstanten Spinvektors (a, b) in bekannter

Weise zusammen inder Invariante: {-bH^ aH^)^ = {-r]X iYfgt;'-'{-Ya^Xb)(-7]a m â€? (21) Die drei â€žKomponentenquot; von H (nl. Hx iHy, â€” iHy undHz) transformieren sich wie die Koeffizienten von bquot;^, a^ und â€” ab. Zur Berechnung der totalen Ausstrahlung brauchen wir denPoyntingschen Vektor. Dieser ist proportional mit | H p. DieWeise worauf ] H p aufgebaut ist wird symbolisch dargestellt durch; 4 IHP =nbsp;= {-Xr,^- {-X*if YTfquot;-'. . . YS) . {X*rj* YT) {Yr]) . {Y*r]*)] = {X'gt;'S Y*n){Xt Yt)].....(22) Wir mittein jetzt j H p ??ber alle Raumrichtungen. Da die inFormel (20) nicht von der Richtung der Ausstrahlung abh?¤ngen(Vgl. Kap. II, Â§ 3), so wird in Formel (22) nur ??ber (f, rj), nichtaber ??ber (A'quot;, F) â€žintegriertquot;.



??? Das Resultat der Integration ??ber alle Raumrichtungen ergibtf??r die totale pro Zeiteinheit ausgestrahlte Energie, welche pro-portional zu 1 H |2 ist, die einzigm??gliche Invariante: S = K {XX* nbsp;= =nbsp;. . . (23) wo K eine Konstante ist. Wenn wir jetzt zur Quantenmechanik ??bergehen, so haben wirbei der Beschreibung der Ausstrahlung, die einem bestimmtenUbergang entspricht, in (21) und (23) die durch die SymboleXk^myk m bezeichneten Ausdr??cke durch ihre Matrixelemente zuersetzen. Diese Matrixelemente sind bestimmt durch: . (24) wo die lt;pj.M die normierten Wellenfunktionen sind, die in sym-bolischer Schreibweise: =nbsp;.... (25) heissen (Vgl. (9)). Da wir die Summe aller Zeemankomponentenberechnen wollen, m??ssen wir ??ber M und M' summieren. Dieâ€žtotalequot; Intensit?¤t ergibt sich sodann zu: . (26) wo K nicht von j abh?¤ngt. Dies ist eine Summe von Produktenvon zwei Integralen; das Integral ?’ dx Hefert die Matrixelemente ^X'^.myi^-'nyiM^ das Integral ?’ dr'ihre komplex-konjugierten. Wir haben die Gr??ssen, auf welche sich

diese letzte Integration bezieht,durch Striche angedeutet. Wir finden nach (26) f??r ^TrM'fp'j'.M' und 2 Â?P Mf ^'y.Af Kc^v KQ;^(fT p^ ..........(27) ^nMVj.M--cvâ€” und es folgt dasquot; Integral; = c^fT // tnVnxx* YY'y^. ^jWnbsp;. . (28) . v'*vWxdx'.



??? Die Integration ?’ dr' l?¤sst sich einfach ausf??hren. Sie ist derIntegration (69, I) vollkommen analog, indem wir in (69, \)â€”B,A,- b, a, V. X. Y durch X F. ngt;nbsp;Y'* ersetzen. Es folgt sodann das Integral: C; . Cy/ J dessen Berechnung wir im Anhang geben. Das Resultat der Inte-gration wird nach Formel (24) des Anhangs: ^ r (k j j' \)\ {j' j-k)\(/c4-/-;)!(/c ;-/)!'nbsp;(2/c)! {2j)\ (2jy.nbsp;â€? â€? ^ ^ wo: L = K ' ^ Cj.Cf F??r den Fall der Dipolstrahlung {k = \) finden wir aus (30)die Formeln (19a, b. c): /r'=L.(2; 3) ..........(31) =L.(2y i). F??r die Quadrupolstrahlung {k = 2) ergibt sich: =L.(2y 5) _ ^ (; 2)12; 3) jJ^LM^P^^^......(32) Jnbsp;6;.(2;â€” 1) ry-i_r (y l)(27 l)4(y-i) = L . (2y 1). Â§ 4. Die Kronig-H??nlschen Formeln. Die Formeln (13, 16, 17, 18) erm??glichen es uns die relativenWerte der Zeemankomponenten einer bestimmten Multiplettliniezu berechnen, d.h. f??r einen bestimmten Ubergang f -gt; j. Wir fragen jetzt nach den relativen Intensit?¤ten der verschie-denen Linien eines Multipletts f??r den Fall von Russell-Saunders-Koppelung, d.h. f??r den von uns immer

betrachteten Fall schwa-cher Spin-Bahnkoppelung. Wir suchen also die relativen Inten-sit?¤ten von Linien, bei denen das Anfangs- bzw. das Endniveauzwar zu den selben 1' und s bzw. / und s-Werten, aber zu ver-schiedenen y-Werten geh??ren. Es kommt also darauf an, die rela-



??? tiven Werte der Konstanten Cy\ Or\ Cj und Cy zu finden.Dies wird m??glich, wenn wir Ausdr??cke f??r die Wellenfunktionenbenutzen, die zwar dieselben Transformationseigenschaften auf-weisen, wie die in der Invariante Q^ zusammengefassten Funkti-onen, die aber dazu noch die Angabe enthalten, wie die Wellen-funktionen aus den Funktionen der Bahn- und Spinkoordinatenaufgebaut sind. Das bedeutet: wir brauchen die in Kap. I. Â§ 7eingef??hrte Invariantenbsp;(Formel (59, I)): ..y = W^ - Vtr (- bt arj)^ (- bi' ariJ =nbsp;(33) wo: a = l s-j, ?Ÿ=j l-s, y=j s-L Dieses Verfahren gilt nur bei kleiner Spin-Bahnkoppelung.Wenn wir jetzt mit dem Operator (5) das Integral: =nbsp;. . . (34) berechnen, so stossen wir wieder auf die Formeln (6) und wirk??nnen ??ber die Konstantennbsp;Qquot;' und O. noch nichts aus- sagen, weil wir den Operator ganz allgemein gelassen haben. DieNatur des Problems bringt aber mit sich, dass f??r diesen Operatereine spezielle Wahl getroffen werden darf. Erstens bemerken wirdass der Operator A, den wir im vorigen Paragrafen f??r

dieDipolstrahlung benutzten, sich nur auf die Raumkoordinaten derElektronen bezieht, d.h. die Dipolstrahlung ist nur durch diezeitliche Varation der Raumkoordinaten des Elektrons bedingt. Dies k??nnen wir in unserer Schreibweise so zum Ausdruckbringen, dass wir die spezielle Form (70. I) f??r unsern Operator; ?? =nbsp;. . . . (35) w?¤hlen mit r = 1. In diesem Operator kommen sodann nur Spin-Vektorennbsp;vor, die sich auf die Bahnfunktionen beziehen, und nicht Spinvektoren (I', rj'), die sich auf die Spinkoordinaten be-ziehen. Wir denken uns im Integral ?’nbsp;?œ dt zuerstnur ??ber die Spinkoordinaten integriert. Dabei erscheint das Inte-gral additiv zerlegt in mit konstanten Faktoren multipliziertenIntegralen der Form: wo ?’ dt Summation ??ber die Spinkoordinaten bedeutet. Diese In-tegrale sind nur dann von Null verschieden wenn s' = s und n' = n



??? ist. Bei einem ?œbergang muss also der durch s gegebene totaleSpin konstant bleiden. Die Bedingung n = n hat f??r freie Atomekeine physikalische Bedeutung da in einer zu den Quantenzahlenj, l und s geh??rigen Wellenfunktion mehrere Werte von n auf-treten d??rfen. Die Berechnung der Intensit?¤ten erleichtert sich, wenn f??r Aund B im Operator (35) geschrieben wird: A = a-b* gt;?Ÿ = 6 ........^ ' Damit wird erreicht, dass sozusagen die Besonderkeiten betref-fend der einzelnen Zeemankomponenten der Multiplettlinien, dieuns ja nicht interessieren, aus der Rechnung verschwinden, w?¤hrendzugleich die in Rede stehenden Integrale nicht identisch Nullwerden. Die Integrale (6) vereinfachen sich sodann zu: Q'l't'Jj^d nbsp;.... (38) Im Kap, I. Â§ 7 fanden wir, dass f??r verschiedene Matrixelementepassende Werte von q im Operator (21) gew?¤hlt werden m??ssen,damit das Resultat der Integration nicht identisch Null wird. Sogilt f??r: / 1 ^ /nbsp;q = 1 / -gt; /nbsp;q = 0 .....(39) /_!-gt;/nbsp;q = â€” 1 Im besondren wird der Operator f??r den Fall / !-Â?â€? / gleich:

nbsp;â€”Q)2. . (40) wo: ?– = {a*S 4- t*Â??). Sodann wird unser Integral (23) gleich: Ql;=nbsp;-0)2 paQ?Ÿj^y^, . (41) Dieses Integral l?¤sst sich schreiben als eine Summe von dreiIntegralen: Qj; = ?’ P^'^Â?' Q^?Ÿ'R*y' j p*a'Qf?Ÿ'J^^Y pa Q?Ÿ Q2 j^y _nbsp;_ ^ â€” 2/P*Â?' Ct^'R^y'P'' Q^ 1 w = I II III.



??? Die Berechnung dieser Integrale, welche im Anhang gegebenist, ergibt nun, dass f??r einen bestimmten Ubergang ?’-gt;-y jedesmalnur eines dieser Integrale von Null verschieden ist. F??r den Fall/ = 7 1 gilt n?¤mlich; a = a, ?Ÿ' = ?Ÿ 2. y' = y und es ist nurdas Integral 1 von Null verschieden, f??r den Fall ?’ = j gilt:a.' = a ?Ÿ' = ?Ÿ '/ = y â€” 1 und es ist nur das Integral IIInicht Null, w?¤hrend schliesslich f??r den Fall j=jâ€” 1 gilt:a' = a 2, ?Ÿ' = ?Ÿ, y â€” y â€” 2 und nur II ungleich Null ist. Aus den Formeln (11, 16) des Anhangs folgt sodann, dass f??rdie verschiedenen Uberg?¤nge 7quot; = y 1, / =?’ = jâ€” 1 dieMatrixelementenbsp;durch nachstehende Formeln bestimmt sind: (?Ÿ y 3)\{a^y)l{a-\-?Ÿ r2)l^nbsp;' = ......... (^r j' 2)!(a gt;')! (a ^ 2)! = Cj-(aa* nbsp;..........(436) ^ ^ux {a^?Ÿ y \)\{a-^2)\?Ÿ\y\ , ^ , {?Ÿ-i-y-\-\)\ {a y)\{a ?ŸÂ?2)\nbsp;' = Cf'(aa* nbsp;..........(43) wo C/^' nur von l und s abh?¤ngt, nicht aber von j. Wirhaben jetzt noch die Konstanten Cj in (19) zu bestimmen, die mitder Normierung unserer Wellenfunktionen zusammenh?¤ngen.Diese sind gegeben durch

das Integral (vgl. (11) des Anhangs): i?Ÿ^ yi-l)l(a-t ?Ÿ}\(aty}l .(44). Ci. {aa* bb*i?Ÿ y = Cjiaa* bb*)?Ÿ y wo Ci nur von / und s und nicht von j abh?¤ngt. Die in dieser Weise bestimmten Konstanten, eingesetzt in dieFormeln (19a, b, c) liefern uns die relativen â€žtotalenquot; Intensit?¤tender Multiplettlinien f??r den Fall Z 1 Z: (27IV)4 ' {?Ÿ-\-y 3)[?Ÿ y 2){a ?Ÿ 2){a ?Ÿ-{-l)' Cui.C] . (45)



??? 8/ {2nvY (2j \]{j 1)(a ?Ÿ y 2){a l)(?Ÿ l)y â– {?Ÿ y 2f {a ?Ÿ 2) {a ?Ÿ -r D' Cu^.Ci (a 2) (a \)y{y - 1)nbsp;|G i?Ÿ y \){?Ÿ y) {a ?Ÿ Â? 2) {a -T ?Ÿ ^ \y Cux .Cioder unter Benutzung der Bedeutung von a, ?Ÿ und y (vgl. (33)): ^ ^y_t_l) (â€ž ^ j, 2) (a 1) (yg 1)^ . , (46t)' jij 1) . . . (46c) wo:nbsp;= I -â€”TT,â€”â€”eiJi^ Konstante ist, welche nicht ' 12/ 2) (2/ 1JU/ 1 .C/ von j abh?¤ngt, und die (Vgl. (19a)) gleich der totalen Intensit?¤tdes ?œbergangsnbsp;l (bei Vernachl?¤ssigung des Spins) ist, multipliziert mit: __1__ 2(2/ 1)(2/ 2) (2/ 3)' Nach der Summenregel, auf dessen allgemeinen Beweis wir hiernicht eingehen, soll die Summe von (46a, b, c) gleich dem Pro- duki vonnbsp;'nbsp;der Tat ergibt die Summierung von (46a, b, c): 2(2; 1) [21 2) {21 = P^K Wir gehen jetzt ??ber zur Berechnung der Intensit?¤tsformeln f??rden Fall /' = /. Dazu brauchen wir den Wert der KonstantenOj, Oj^^ und in diesem Fall. Zur Berechnung brauchen wirnach (39) den Operator: ?Ÿ = (6 a*) ^ (a - b*)n\nbsp;a*) ^^ (a - b*)



??? Die Anwendung dieses Operators auf die Ausdr??cke P, Q undR liefert, wenn wir die Bezeichnung R = b*r}') einf??hren: ?œP-^{Q-Q){R-R)',??Q = {Q-Q){aa* bb*)-, QR = Q (48)Sodann berechnen wir das Integral: Vi = ?’ P*quot;' O*^' OP^Q?ŸRy == ?’p*a'Q^?Ÿ'.pa-1 Q?Ÿ-KRy.(Q-'Q).(a[R-R] Q ?ŸP{aa*-f bb*)), (49) Auch hier k??nnen wir das Integral wieder in drei Teile zerlegen,welche je f??r sich nur in einem der drei F?¤lle ?’ = j, ?’ =y 1, ?’ =â€” j â€” 1 von Null verschieden sind. Man findet in dieser Weise: ??lY'= !nbsp;Q^-1 ^Hcy i i^y^^aQ^R) (50a) Q*?ŸQ?Ÿ-HRR'')y-{-a[QR RQ]Q ?ŸPQ{aa'^ bb*)). (506) ^g-inbsp;pa-lnbsp;j^^y-l Ry .{ aQW-?ŸPQ(aa'-hbb*)) ' (50c) Die Berechnung dieser Integrale mittels der im Anhang gegebenenFormeln liefert f??r die â€žtotalenquot; Intensit?¤ten unter Benutzung derNormierungsintegrale (44): Islij '' = ^Y) â€? ^ 2)a (^ -f 1) (y 1). (51a) nbsp; nbsp;. . (516) =j-{lt;^ ?Ÿ Y nbsp;. . (51c) wo Kl eine Konstante ist, welche gegeben ist durch: 2/(2/ 1).,(2l 2)Kl = Ii wenn Ii die â€žtotalequot; Intensit?¤t des ?œbergangs /-Â?â–  /,bei

Vernachl?¤ssigung des Spins ist. Die Intensit?¤ten f??r den Fall / â€” I / ergeben sich aus denFormeln (46a, b, c) durch Vertauschung von Anfangs- und End-zustand. Wenn man in den Formeln (46, 51) die a, ?Ÿ, y mittels(33) durch die s, /, j ersetzt, bekommt man genau die Kronig-H??nlschen Formeln i). 1) R. de L. Kronig, Zs. f. Phys. 31, 885, 33, 261, 1925; A. Sommerfeld undH. H??nl, Preuss. Akad. IX, 141, 1925.



??? Â§ 5. Die Quadrupolstrahlung. Rubinowicz hat die Quantenmechanik der Quadrupolstrahlungausf??hrlich behandelt und die Intensit?¤ten sowohl der Zeeman-komponenten, wie der Multiplettlinien im Fall von Russell-Saunders-koppelung bestimmt i). Die Berechnung der Matrixelemente, welche die Ausstrahlung imFall der Quadrupolstrahlung bestimmen, erfordert gar keine neu-artigen ?œberlegungen, sie ist von der bei der Dipolstrahlung be-nutzten Methode nicht wesentlich verschieden. Nach Â§ 2 des zweiten Kapitels ist die Quadrupolstrahlung be-stimmt durch einen symmetrischen Tensor zweiten Ranges mitDiagonalsumme Null, Ihre Komponenten waren durch die bij in(27, II) gegeben. Es lassen sich Linearkombinationen dieser Kompo-nenten so w?¤hlen, dass sie sich transformieren wie die aus demSpinvektor (X. Y) gebildeten 5 Monome X^^'nbsp;{t = 2, 1, 0, â€” 1,-2). Wir fassen die 5 Monome zusammen in der Inva-riante: ?œ = {â€”BX ?„Y}^.......(52) Mittels (69, I), wo r = 2 gesetzt ist, sieht man, dass dieMatrixelemente dieser Monome je f??r einen

bestimmten Wert vonM â€” M' von Null verschieden sind, und zwar kommen [M â€” M'] == 0, Â?1, Â?2 vor. Sie entsprechen deshalb eben den verschiedenenKomponenten des Zeemaneffekts, wenn ein magnetisches Feldparallel der Z-Achse angelegt ist. Weiter ergibt sich sofort, dassnur Uberg?¤nge vorkommen, wo \ j â€” jquot; \ = 2, w?¤hrend zudemnoch die ?œberg?¤nge j j, wenn j ^ V2 quot;nd y 1 ^ j, wennj â€” 0. verboten sind. Anders gesagt: Es sind nur ?œberg?¤nge ge-gestattet, wobei die Zahlen ?’, j und 2 die Seitenl?¤ngen einesDreiecks bilden k??nnen. Unter Benutzung der Formeln (69, I) und unter Ber??cksichtigungder Normierungsfaktoren (44), ergeben'sich die Quadrate der nor-mierten Matrixelemente f??r den Fall 7 2j zu: .2.AÂ?.2 ^ (y M 4) (;â€? M 3) ry M 2) (7 M 1) iCj-^p^nbsp;(2y 4)(2y 3)(2y 2,(2y-M) ' .1 _ (y-M 1) (y M^ 3) (y M 2) (y M i) jq^V^nbsp;(2y 4)(2y 3)(2yT2)(2j i)nbsp;â€? _ (y M 2) (y-M 2) (y^ M-f 1) (y-M 1) iq j ,M â€”nbsp;^TTquot;: - . .-â€”-â€”^rr-^â€”â€”- . â€”=-â€” 2y 4) (2y 3) (2y 2) (2y i)nbsp;â€? Cy.2. Q 1) A. Rubinowicz, Zs. f. Phys.

53, 267; 61, 338; 65, 662.



??? ~nbsp;1\nbsp;r cy' MM-2 _ ij-M- 4) (y-M f 3) (j -M 2) 0-M 1)' quot;nbsp;(2; 4)(2;-r3)(2yi-2)(2;i-l)nbsp;' Cj.2 . Cj Die Konstanten C in diesen Formeln sind von j, nicht von Mabh?¤ngig. F??r die andren erlaubten Uberg?¤nge f j ergeben sich?¤hnliche Formeln. F??r die Berechnung der r?¤umlichen Verteilungder Ausstrahlung im Falle des ZeemanefFekts verweisen wir nachder zweiten Arbeit von Rubinowicz, die auf S 49 zitiert wurde.Diese Berechnung ist von der von uns bei der Dipolstrahlungangewandten Methode nicht wesentlich verschieden und nur etwaskomplizierter. Was die Berechnung der Strahlung betrifft, so hatRubinowicz sich sofort auf die Ausstrahlung einer in der Zeitharmonischen Strom- und Ladungsdichte spezialisiert und dieseunter der Annahme einer Superposition von Anfangs- und End-zustand quantenmechanisch berechnet, w?¤hrend wir zuerst unsereklassische Rechnung ganz allgemein gehalten haben und sodannunsere Formeln quantenmechanisch umgedeutet haben. Rubinowicz zeigt, dass die Intensit?¤ten der Quadrupollinien sichberechnen lassen, indem man â€žZwischenniveausquot;

aufsucht, welche,mit dem End-, sowie mit dem Anfangsniveau kombiniert, vonNull verschiedene Matrixelemente der Dipolstrahlung liefern. DasProdukt dieser Matrixelemente, summiert ??ber alle â€žZwischen-niveausquot;, ergibt die Matrixelemente der Quadrupolstrahlung. Zudieser Berechnung braucht Rubinowicz gewisse Summenregelnbez??glich der in den Matrixelementen der Dipolstrahlung auftre-tenden, von M unabh?¤ngigen Konstanten. Diese Summenregelnergeben sich aus dem Umstand, dass bei verschiedener Wahl derReihenfolge der Faktoren bei der Matrixmultiplikation sich die-selben Matrixelemente der Quadrupolstrahlung ergeben m??ssen.Wir berechnen dagegen alle Matrixelemente nach einer direk-ten Methode, ohne die Matrixelemente der Dipolstrahlung zubenutzen, und erhalten sofort die Endresultate von Rubinowiczin einer Form, die sich kaum mehr vereinfachen l?¤sst. Jetzt betrachten wir die Intensit?¤ten der Komponenten einesMultipletts (bei Russell-Saunderskoppelung), das einer reinenQuadrupolstrahlung entspricht. Wir definieren die totale Intensit?¤teiner Multiplettlinie als die Summe

ihrer Zeemankomponenten.Die Formeln (32) geben an wie diese Intensit?¤ten mit den Gr??ssenCj, Cj zusammenh?¤ngen. Es handelt sich also nur noch darum,diese Gr??ssen als Funktionen von /, s. j zu berechnen. qgt;2 2



??? Wir ersetzen den Operator (52) nach Formel (70, I) durcheinen Operator in | und i]. F??r die 5 erlaubten ?œberg?¤nge 2-gt;- l, / !-gt;â– /......./ â€” 2 / hat dieser Operator nach Formel (72, I) jedesmal eine verschiedene Form. Nachdem wirdie Substitution (37) f??r A und B gemacht haben, wird unserOperator f??r den Fall / 2 / gleich: ?Ÿ = (Q â€” Q)^.......(54) und wir berechnen das Integral: f P^^^'Q'^'R'^y'{Qâ€”Q)^ P^Q^R^ dr . . . (55) Dieses Integral l?¤sst sich in 5 Integrale zerlegen, von welchen bei jedem der 5 erlaubten ?œberg?¤nge j 2 -gt;â–  j,.....y â€” 2 -gt;â€? ; nur eines von Null verschieden ist. Im besondren erhalten wir f??r den Fall f = j 2: a = a,?Ÿ' = ?Ÿ 4, y' = y und es wird und es wird das Integral gleich: fnbsp;dt .... (56) Unter Benutzung des Normierungsintegrals (44) finden wir f??r q.2^2 die in den Formeln (32) auftretenden Konstante 2 Q 2 . Cj Ja ?Ÿ y 5){a ?Ÿ y 4){a ?Ÿ y 3){a ?Ÿ y 2)(/? 4){?Ÿ 3){?Ÿ 2)(?Ÿ \) j^u7-nbsp;127 5) (2; 4)(2; 3)(2y 2)nbsp;' ' ^ ' Die Berechnung der Quadrupolintensit?¤ten lauft also parallelder bei der Dipolstrahlung gefolgten Methode. F??r den Fall / -H 1 / werden die Formeln

verwickelter (analogan / / verglichen mit / !-Â?â– / bei der Dipolstrahlung), Diesgilt in noch h??herem Masse f??r den Fall /- â– /. Da haben wirdas Integral: 'p^'Q^Rydt^ = f piQ*?Ÿ' Fi*Y' .{Q-Qf-plt;^-2Q?Ÿ-2j^Y ^[(a-]-?Ÿ){R-R) PQS ^{a{R-R)Q ?ŸPS) .{{a-\)(R-R)Q i?Ÿ-\)PS)l . (58) wo 5 = (aa* bb*) ist, zu berechnen. Alle vorkommende Inte-grale k??nnen mit Hilfe der Formel (16) im Anhang berechnetwerden. Unsere Methode ergibt sofort Ausdr??cke, welche sich



??? kaum unterscheiden von den Rubinowiczschen Endformeln, dieunter Aufwand m??hsamer Rechnungsarbeit erhalten sind. H?¤tten wir bei den Berechnungen in diesem und im vorigenParagrafen den Ansatz (73, I) benutzt, der scheinbar einfacher istals (70, I), so w?¤ren die Ausdr??cke der Matrixelemente zur??ck-gef??hrt auf Integrale der Form: / = ?’nbsp;. pa-sQ?ŸQs i^Y s^^ Der Wert dieses Integrals l?¤sst sich aber nicht wie die Integrale(11, 16) vom Anhang als ein Quotient von Produkten von Fakul-t?¤ten schreiben. Â§ 6. Die magnetische Dipolstrahlung. Im zweiten Kapitel haben wir gezeigt, dass die magnetischeDipolstrahlung bestimmt ist durch das magnetische Moment desAtoms: 2mc mcnbsp;2mc ^ ^ ^^ mc 2mc ^^^ wo L das Bahn-, S das Spin-, und P das totale Impulsmomentbedeutet. Die zu den zwei Wellenfunktionen (pigt;,s',j' und (pi,s,j ge-h??rigen Matrixelemente sind offenbar nur dann von Null ver-schieden, wenn = / und s' = s ist. da ja | L | und | S | in Russell-Saunderskoppelung zeitlich konstant sind. Es kommen

also bei dermagnetischen Dipolstrahlung eines freien Atoms nur ?œberg?¤ngevor, bei denen allein j seinen Wert ?¤ndert. Ausserdem ist derFaliy =y noch auszuschliessen, da dieser Fall keinem ?œbergangentspricht, sondern das magnetische Moment des Atoms im statio-n?¤ren Zustand /, s, j liefert. Da wir es mit einer Dipolstrahlungzu tun haben, k??nnen wir sofort feststellen, dass |y'â€”y| = l gilt,w?¤hrend die Matrixelemente des Zeemaneffekts dieselben wie beider elektrischen Dipolstrahlung sind. Bei der Beschreibung desStrahlungsfeldes sind aber die E und H bei der elektrischen Dipol-strahlung durch H und â€” E zu ersetzen. Zur Berechnung der S. 40 definierten totalen Intensit?¤t dernicht durch einen Zeemaneffekt gespalteten Linie, beachten wir,dass die Matrixelemente Pjquot; und Null sind. Die Matrix-elemente von L sind durch (51a) und (51c) gegeben. Die Matrix-elemente von S gehen aus diesen Formeln hervor durch Ver-tauschung von l und s. Sowohl die Matrixelemente von L, wiedie Matrixelemente von S liefern nach

(59) die Intensit?¤ten der



??? magnetischen Dipolstrahlung. Dieser scheinbare Widerspruch wirdaufgehoben, indem wir bemerken, dass die Formeln (51a) und(51c) durch eine Vertauschung von l und s nicht ge?¤ndert werden i).Da wir es hier mit einem magnetischen Moment zu tun haben,so k??nnen wir in diesem Fall die absoluten Intensit?¤ten berechnen.Sie ergeben sich zu: Man rechnet leicht nach, dass im Grenzfall grosser Quanten-zahlen diese Formeln genau ??bereinstimmen mit was sich aus demklassischen Vektorschema ergeben w??rde. 1) Die Anwendung von (5IiÂ?) f??hrt leicht zur Ermittelung des Landeschenp-Faktors.



??? ANHANG. DIE BERECHNUNG EINIGER INTEGRALFORMELN.Wir wollen hier die Berechnung des Integrals: ?’ {pp*f. . {RR*)y dt = ?’ - . (Sri' - s'^r. . (â€” a*r)*fnbsp; anf . (â€” b^'* a*rj'*y . .{â€” bS' arj'y dx.......(1) geben. Dazu betrachten wir das Integral: . (_ b's' a'n'y^'' dx = ?’ (QQy Â?.nbsp;dx. . (2) worin T = {â€” b'S' a'rj') und {a, b') ein von (a, b) unabh?¤n-giger Spinvektor ist. Dieses Integral l?¤sst sich berechen, indemman bemerkt, dass es sich als ein Produkt zweier Integrale schreibenl?¤sst: ?’nbsp;. {T*T)y ^ dx = ?’nbsp;dx'. ?’nbsp;dxquot; o) Hierin bedeutet ?’ cfr' Integration ??ber die Bahnkoordinaten undj dxquot; Summierung ??ber die Spinkoordinaten, Es ist das Integralnach (64, I) gleich: ?’nbsp;. (rrT Â? dx =nbsp;. {aa-^- nbsp;. .......(4) Wir wenden sodann den Operator: ^ _ _ 02 /_^ ?–2 ~ W'??a bb^'}nbsp;' ' an. Aus??bung dieses Operators auf die linke Seite der Gleichung(4) ergibt; jnbsp;- rr^r. - rnf. (QQ^ . (rr)''c/r. (6) Zur Aus??bung des Operators (5) auf die rechte Seite von (4)wenden wir zuerst Q'*quot;- an. Das Resultat

ergibt sich sofort zu:



??? . (aa* nbsp;. [a'a'* b'b'y^'^ = . = Ca^?Ÿ -Ca^y ( h'a - baT. (aa* bb^^. {aW* b'by . -â€”?Ÿ]---(-a ?Ÿ-^a y^nbsp;' ?Ÿ\ y\ ' y'gt; Die Aus??bung von ??' auf (7) liefert: . . . . [aa* nbsp;. (a'a- nbsp;= ^ ^ (^ a)!(7 a)! rja-\ o?Ÿ-l C'y-1 nbsp; nbsp;â€”a(aâ€”l)a^6.Z7-^5.5'^- -h yaa'. a'*. 5 . . 5' - ?Ÿyaquot;b*U) = ... (8) fiieraus ergibt sich das Resultat der Anwendung des Operators(5) auf die rechte Seite von (4) zu: ^a ?Ÿ'^a y ?Ÿ^nbsp;{?Ÿ ^ y t l)\ ^^ ^ . (a'a'* b'b'*y Terme. welche {a*b'* â€” a*b*) enthalten. . (9) Die Gleichsetzung der beiden Resultate (6) und (9) ergibt dieGleichung f(P?Ÿmnm?ŸiTT*vdx- j{PP){QQY{ll y'^'-l?Ÿ y l)\{a ?Ÿ)]{a y)\' . . C^^?Ÿ . . (aa^ bb^f . (a'a'* b'b'^ Terme in {a*b'* - a'*b*).....(10) Indem wir die unabh?¤ngigen Spinvektoren (a'. b') und (a, b)gleich setzen erhalten wir das erw??nschte Resultat: ?’ {PPT â€? (QQ^^f' dz = (a /3 y 1)1 a\?Ÿ\ y\ c,. C^ (aa* bb*]?Ÿ y II) Die beiden Konstanten Ca ?Ÿ und C^ y h?¤ngen von der beson-dren Form der Wellenfunktionen und im besondren von a ?Ÿ{ = 21)und a y (= 2s) ab; nicht aber von ?Ÿ y {= 2j), da ja im Integral(4) diese Zahl

nicht auftritt, Die hier benutzte Methode derAnwendung von Operatoren f??hrt leichter zum Resultat (11) alsdas von Kramers angewandte Verfahren (Vgl. H. A. Kramers.loc. cit.) Er hatte zur Berechnung von (11) eine Reihe von Pro-



??? dukten von Binomialfaktoren zu summieren, was wir hier ver-mieden haben. Zur Berechnung des Integrals: wo: Q = (a*^ und R = (a*|' ist,wenden wir den Operator: ?– . /nbsp;?? Ydb' ^ ^ ??^j â€?___d^Y ( ?–2 ?–6W*/ -l??/^'??a ?–6?–T7 . (13) an auf beide Seiten der Gleichung (4). Hieraus ergibt sich f??rdie linke Seite von (4): (^ a)!(7 a)! {?Ÿ a)\ (;gt; Â?)! yl ' {?Ÿ s}]{y t)\ ' wo: f=(a'T 6'*r) ist. Man sieht sehr leicht durch Vergleich mit (8) dass die Anwen-dung des Operators (13) auf die rechte Seite von (4) ein Resul-tat ergibt, dass sich nur darin von (9) unterscheidet, dassnbsp;1)1durch 7 5 f 1)! ersetzt werden muss, w?¤hrend zudemnoch die Faktoren (a'a* b'by und (â€” aa'* â€” bb'*y auftreten.Hieraus ergibt sich die Gleichung; i?Ÿ a)l{y-{-a)l {?Ÿ a)\{ya)\ , Ty sTf^r-r r (a ^)! (g y)! a!(a i5 y l)!. {aa* bb*)?Ÿ. (aW* f b'b'*y. {a'a* b'b*)^ . (- a'*a - b'*b/ Terme. welchenbsp;und (6a'-6'a) enthalten . (15) oder nach Gleichsetzung von (a'.b') und (a, b): lP*-Q*?Ÿl^*ypa-s~t Q?Ÿ t^Qsj^y^s'^t^^^ ^^^^ _ ^^^^ ^ _ _lt; Bei der Dipolstrahlung brauchen wir dieses

Integral mit s, tgleich 0,1; 1,0; 2,0; 1,1; 0.2. Bei der Quadrupolstrahlung habens, t die Werte 4,0; u.s.w.



??? Schliesslich geben wir noch die Berechnung des in Kap. III,Â§ 3 gebrauchten Integrals: nbsp; nbsp;. . (17) Wir gehen aus vom Integral (69. I), wo f??r 2/, bzw. 2j,bzw. 2r. hier a ?Ÿ. bzw. a y. bzw. ?Ÿ y geschrieben ist: = ClX^^. (aa^= f bb^T .{-?Ÿa Abf. {a'A If'Bf ' ^und wenden den Operator: l??i??i^nbsp;â€?W??A^??6*???Ÿ/ -l dSda^dAdty = QI . ???Ÿ .nbsp;. (19) an. Aus der linken Seite von (18) ergibt sich nach der Anwen-dung dieses Operators: {a^?Ÿ)\{a y)\(?Ÿ y)\!{-Y^ Xvy .{X^'^ Yr^^f .{^^Wn^'dx. (20)Der Operator angewandt auf die rechte Seite von (18) liefert; a^?Ÿ Â?!jaÂ?Â? j. l)!nbsp;?Ÿ ^nbsp;?Ÿ^^y ^ (21) (?Ÿ yÂ?\)\ ^nbsp;^ J \ Sodann ergibt Anwendung des Operators Q?Ÿ auf (21): a\ia ?Ÿ-\-y D! ?Ÿ\ i?Ÿ 7 1)1 (^ 7 1)! â€? (7 1)! (22) Schliesslich folgt nach Anwendung des Operators ??^ auf (22): a!(a y3 7 l)! ?ŸH?Ÿ y 1)1nbsp; ui C'^^?Ÿnbsp;(23) Nach der Gleichsetzung von (23) und (20) erhalten wir dasEndresultat: ?’ (- Ff . (AT Yri'')?Ÿ . m V*riy dx = _ ^a ?Ÿ ia-\-?Ÿ y l)la\?Ÿ\ylnbsp;.... (a-t ?Ÿ)\ {a y\ â–  â€? ' ' ^ f Man sieht, dass die Berechnung aller dieser

Integrale einfacheFormeln ergibt, worin Fakult?¤ten auftreten. Diese Integrale h?¤n-gen unmittelbar mit den physikalischen Anwendungen zusammen.Der Vorzug der Kramers'schen Methode besteht darin, dass um-st?¤ndliche Rechnungen vermieden werden.



??? ZUSAMMENFASSUNG. Viele physikalischen Eigenschaften eines freien Atoms werdendurch die Matrixelemente gewisser quantenmechanischer Opera-toren festgelegt. Die relativen Werte dieser Matrixelemente sindoft schon vollkommen bestimmt durch die Transformationseigen-schaften. welche die Wellenfunktionen und die Operatoren beiDrehungen des Koordinatensystems aufweisen. Im ersten Kapitel werden die Transformationseigenschaften derWellenfunktionen bei Drehungen des r?¤umlichen Koordinaten-systems behandelt. Zuerst wird der Zusammenhang der unit?¤renzweidimensionalen und der reellen orthogonalen dreidimensionalenTransformationen nachgewiesen. Sodann wird besprochen, wie dieWellenfunktionen eines freien Atoms eine Darstellung der Raum-drehungsgruppe induzieren. Es wird im Falle von RusselUSaunders-koppelung gezeigt, wie man mittels eines von Kramers gegebenenVerfahrens die Wellenfunktionen in nullter N?¤herung als lineareKombinationen von Produkten von jeweils einer Funktion

derBahn- und einer Funktion der Spinkoordinaten bestimmen kann. Sodann wird die. auf Weyl fussende, Kramers'sche Methode zurBerechnung der relativen Werte von Matrixelementen behandelt.Es werden die Wellenfunktionen des Atoms und die betreffendenOperatoren in symbolische Invarianten zusammengefasst. Aus derBemerkung, dass eine Integration solcher Invarianten wieder eineInvariante liefern muss, folgen sodann in vielen F?¤llen unmittelbardie relativen Werte der Matrixelemente. Im zweiten Kapitel wird die Ausstrahlung eines freien Atomsnach der klassischen Elektronentheorie behandelt. Ausgegangenwird vom Hertzschen Vektor, der sich zur Bestimmung desStrahlungsfeldes eines Atoms oder Molek??ls sehr eignet. Es wirdeine Entwicklung des Hertzschen Vektors nach negativen Potenzender Lichtgeschindigkeit gegeben. Es zeigt sich, dass eine Analyseder Transformationseigenschaften der Terme dieser Entwicklungeine Einteilung des Strahlungsfeldes ergibt in verschiedene Artenvon Multipolstrahlung. Im

allgemeinen liefert der {k â€” Termdieser Entwicklung des Hertzschen Vektors Dipol- bis 2'f-Pol-



??? Strahlung. Diese Strahlungen lassen sich einteilen in elektrischeund magnetische Strahlungen. Man erh?¤lt eine magnetische2'^-Polstrahlung indem man in den Formeln einer elektrischen2'^-Polstrahlung den magnetischen Vektor H durch den elektrischenVektor E, und H durch â€” E ersetzt. Im dritten Kapitel werden die im zweiten Kapitel abgeleitetenTransformationseigenschaften der Bestimmungsst??cke des Strah-lungsfeldes zur Berechnung von Matrixelementen benutzt. Dieklassischen Formeln werden quantenmechanisch umgedeutet. Sodannwerden nach der Kramers'schen Methode die Matrixelemente be-rechnet, welche den Zeemaneffekt und die Intensit?¤ten der Multi-plettlinien bei Russell-Saunderskoppelung im Falle elektrischer Dipol-und Quadrupol- und magnetischer Dipolstrahlung beschreiben. Eszeigt sich, dass diese Behandlungsweise keine m??hsamen Zwischen-rechnungcn fordert und fast sofort zu den Endresultaten in ihrereinfachsten Form f??hrt.
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Multipolstrahlungnbsp;41 Â§ 4. Die Kronig-H??nlschen Formeln.......43 Â§ 5. Die Quadrupolstrahlung..........49 Â§ 6. Die magnetische Dipolstrahlung.......52 ANHANG. Die Berechnung einiger Integralformeln ...nbsp;54 ZUSAMMENFASSUNG.............58 Formeln und Paragrafen aus demselben Kapitel werden immernur mit ihrer Ziffer, Formeln und Paragrafen aus andren Kapitelnmit Beif??gung der Ziffer des Kapitels zitiert. â– P11



??? STELLINGEN. I. Er zijn in de spektra van vrije atomen overgangen te verwachten,waarbij alleen j springt met Â? 1 en de andere quantumgetallenniet veranderen. Deze overgangen zijn misschien in het R??ntgen-gebied experimenteel te vinden. II. De regel, dat bij dipoolstraling slechts overgangen toegestaanzijn. waarvoor \j' â€”j\= 1 is, terwijl bovendien nog jquot; = j ver-boden is als j = O, is een biezonder geval van de regel, dat bijZ^poolstraling de overgangen, waarvoor | ?’ â€” ; | gt; r of (?’ j)lt;ris, verboden zijn. Bij een toegestane overgang moeten dus degetallen ?’, j en r een driehoek kunnen vormen. III. Het verdient aanbeveling bij de ontwikkeling van een golffunktienaar eigenfunkties gebruik te maken van de theorie der Stieltjes-integralen. IV. In de kinetiese theorie van de vloeistofreakties gaat men vaakuit van de theorie van de Brownse beweging. Hoewel dit totgoede resultaten leiden kan, is het maken van een â€žStossansatzquot;in deze theorie onjuist. Zo zijn de theoretiese resultaten van?–lander, die een formule voor de

reaktiesnelheid bij vloeistof-reakties afleidt, niet juist (vgl. A. Olander Zs. f. phys. Chem. A144, 118, 1929). V. 5. De door Oppenheimer gegeven quantummechaniese theorievan de invanging van elektronen door a-deeltjes geeft voor grotesnelheden van het a-deeltje (vergeleken met het elektron in^ zijnbaan) een goede benadering. Zijn berekening van de werkzamedoorsnede van atomaire waterstof is echter onjuist. (Vgl. I. R.Oppenheimer. Phys. Rev. 31. 66. 349. 1928; H. C. Brinkman enH. A. Kramers. Proc. Kon. Akad. Amst. XXXllI 973. 1930).



??? Het bewijs in dit proefschrift, dat een bij unitaire transformaties invariant polynoom in ^i, i]i.....een polynoom is in de grondinvarianten (â€” rjk ^k' Vk' ^k) (vgl. pag. 5 en 6 van ditproefschrift), kan iets verkort worden. Het verliest dan echter aanoverzichtelikheid. VII. De ontwikkeling van een holomorfe funktie volgens Lagrange: waar: C = a t(p{C), (vgl. Whittaker and Watson, Modern Ana-lysis, pag. 133) kan worden uitgebreid tot een ontwikkeling vaneen rij van holomorfe funkties. Deze uitbreiding vindt een toe-passing in de theorie van de geretardeerde potentialen (vgl. pag.27, (15) van dit proefschrift). Vin. In tegenstelling met het resultaat van Heisenberg, is deformule van Kramers voor de cos^-koppeling gelijk aan de qua-drupoolintensiteitsformule 1/,1'j van Rubinowicz, nadat in dezelaatste formule j en s verwisseld zijn. Dit pleit voor de juistheidvan de formule van Kramers, (vgl. H. A, Kramers, Proc. Kon.Akad. Amst. XXXIV 965, 1931; W. Heisenberg, Zs. f. Phys. 39,499, 1926). XI. Bij de toepassingen van de kansrekening bewijst het

verschil,dat Talma maakt tussen kans en waarschijnlikheid, goede diensten,(vgl. P. Talma, diss. Utrecht 1921). X. De intensiteitswisseling van het geluid, die men waarneemt,als men een trillende stemvork ronddraait, berust op het feit, dateen stemvork quadrupoolstraling uitzendt. De verklaring, die inveel leerboeken der natuurkunde voor deze intensiteitswisselinggegeven wordt, is onjuist, (vgl. Gerrits, Leerboek der Natuur-kunde; Reindersma en van Lohuizen, Nieuw Leerboek derNatuurkunde),
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