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(Op verzoek van den promotor, prof. dr. L. ROSENFELD volgt hier,
in plaats van het gebruikelijke voorwoord, een korte levensschets.)

19 Mei 1918 werd ik te Amsterdam geboren. Daar bezocht ik de derde 5-jarige
H.B.S. aan de Mauritskade, (directeur dr. GERRITS), waar ik veel heb opgestoken,
In 1935 legde ik het eindexamen af, en liet me in hetzelfde jaar als student aan
de Amsterdamse Gemeente Universiteit inschrijven. Qorspronkelijk koos ik de
fysisch-chemische richting (e), maar veranderde al spoedig van koers, vooral
onder de invloed van de colleges van prof. MANNOURY. Tenslotte besloot ik, na
vele gesprekken met enige oudere jaars, de theoretisch-fysische kant op te gaan.

Voor het candidaatsexamen volgde ik de colleges van prof. CLAY, prof.
MANNOURY, (zoals gezegd), prof. MICHELS, prof. PANNEKOEK, prof. HK. DE
VRIES, (ik denk nog steeds met plezier aan het caput over meetkunde van het
aantal), prof. WIBAUT en dr. BUCHNER. Op 16 Februari 1938 legde ik het
candidaatsexamen a en d af. In dat jaar volgde ik nog enige wiskunde-colleges
van prof, BROUWER, prof. WEITZENBOCK en dr. FREUDENTHAL.

Het was in deze tijd, dat ik in aanraking gekomen ben met en opgenomen in
een kringetje van mensen, die ik het beste zou kunnen karakteriseren door onze
eigenschap om alles te kunnen lachen, vooral om onszelf. In tweéerlei opzicht is
dit contact beslissend voor me geweest, (vooral in het tweede).

In het voorjaar van 1938 ging ik naar Utrecht, om bij prof. UHLENBECK
theoretische natuurkunde te studeren., Veel heb ik geleerd van zijn glasheldere
colleges en de colloquia in kleine kring op ,,220"; maar vooral de tijed gedurende
welke ik met hem aan enige theoretische problemen heb mogen werken, is een
mooie tijd voor me geweest.

Met grote eerbied herdenk ik hier prol. ORNSTEIN. In de tijd dat ik experi-
menteel werkte op het Utrechts laboratorium heb ik hem Lkunnen waarnemen in
die hoedanigheid, waarin hij zo groot was: als organisator van een brok fysisch
leven. De bijna dagelijkse gesprekken die ik met hem had in het jaar na het
vertrek van prof, UHLENBECK zijn een kostbare herinnering voor me.

En nog iemand wil ik hier gedenken: KEES VAN LIER.

Voor mijn doctoraal examen volgde ik nog de colleges van prof, BARRAU en
prof. WOLFF; dit examen legde ik op 22 April 1940 af. In die cursus heb ik
met dankbaarheid gebruik gemaakt van de gastvrijheid, mij door prof, KRAMERS
op het theoretisch seminarium te Leiden geboden.

In September 1940 kwam prof, ROSENFELD naar Utrecht en onder zijn leiding
heb ik, oorspronkelijk als zijn assistent, mijn studie voortgezet, Ik beschouw het
als een voorrecht, dat ik onder zijn toezicht dit proefschrift heb kunnen bewerken.
Zijn steun, zijn aansporingen en vooral de belangstelling die hij steeds in mijn



persoon stelde hebben me door menig moeilijk moment heengeholpen. Het is
vooral van zo grote waarde voor me dat ik in hem iemand gevonden heb, die
me niet alleen veel op het gebied van de fysica geleerd heeft, (en nog veel zal
leren, naar ik hoop), maar met wien ik tegelijkertiid ook zoveel contact heb
kunnen vinden op andere gebieden. De hartelijkheid, die hij en zijn vrouw mij
steeds betoond hebben, is een grote steun voor me geweest in een moeilijke tijd.

Ik betreur het, dat door de omstandigheden de in deze dissertatie behandelde
problemen op sommige punten niet zo behandeld zijn, als dat in mijn voornemen
lag. Ik hoop evenwel later op deze kwesties terug te koten.

Aan hen, die mij het dierbaarst zijn, draag ik dit proefschrift op.



CHAPTER L

THE ENERGY MOMENTUM TENSOR IN PROJECTIVE
RELATIVITY THEORY.

Summary.

After a survey of the formalism of projective relativity theory (§2) an
expression is derived for the 5-dimensional energy momentum tensor of an
arbitrary field (§ 3). It is proved that, in virtue of the equations which hold for
the variables describing the field, this tensor is symmetrical and its divergence
vanishes. This last property expresses the conservation of energy, momentum
and charge of the system. As an application of the formalism the energy
momentum tensor for the Dirac field is computed in § 4.

§ 1. Introduction. Since KALuzA 1) in 1921 pointed out that
the unification of the gravitational and electromagnetic field might
be achieved by introducing a fifth dimension besides space-time of
general relativity, several attempts have been made, starting from
this idea, to obtain a formalism which satisfies the following
requirements:

a. (General covariance, (covariant formulation of the “cylinder-

condition™).

b. The first set of Maxwell equations follows Ffrom the

postulated structure of 5-dimensional space.

c. The field equations are derivable from a variational principle.

d. The “geodesic” equations of 5-dimensional space represent

the equations of motion of a charged mass point in the
gravitational and electromagnetic field.

The method of KaLuzA which was extended and improved by
O. KLEIN 2) does not fulfill the first condition, as it starts from a
5-dimensional metrical tensor, the components of which do not
depend on the fifth coordinate, and which is in fact nothing but
the ordinary metrical tensor bordered by the electromagnetic vector
potential, while gs5 is put equal to 1. EINSTEIN and MAYER 3) have
proposed another method, viz. of adjoining a linear 5-dimensional
vector space to every point of the 4-dimensional space-time conti-
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nuum. In this case, however, the conditions b and c are not fulfilled.

The projective interpretation which was first introduced by
VEBLEN and HOFFMANN 4) considers the 5-dimensional space as a
4-dimensional projective one. The treatment of these authors
exhibits the same defect as that of the KALUZA-KLEIN theory *),
but in the projective formalism ultimately developed by vaN DANTZIG,
SCHOUTEN 5) and PAULI 6) the covariance requirement is indeed
satisfied,

In the theory of ScHOUTEN and vAN DANTZIG the three-index
symbols I'* of projective space are not symmetrical with respect to
w and », PAULI has emphasized however, that there is no physical

argument for not keeping to symmetrical I' :, Starting from this
assumption one then gets a uniquely determined formalism. The
metrical tensor g,, is assumed to fulfill the (covariant) condition

g Xt X7 =1.

The last mentioned authors have also discussed the DIRAC theory
of the electron in the frame of this formalism and have derived an
expression for the energy momentum tensor of the DirAcC field. The
aim of the present paper is to do this for an arbitrary field of which
the Lagrange function is given in terms of the field variables.

The problem of the derivation of the energy momentum tensor
in general relativity theory has recently been discussed by BELIN-
FANTE 7) and by ROSENFELD 8). These treatments differ methodi-
cally and the first mentioned has for our purposes the drawback
that the differential conservation laws are only derived in the
approximation of special relativity. As it seems that no simple
physical meaning can be attached to a “special projective relativity
theory it will be clear that it is more convenient for us to proceed on
the lines of ROSENFELD's method which follows closely the ideas
outlined especially by HILBERT 9).

It should be noted that the situation here differs in two aspects
from that in general relativity: first, it is here no more allowed to
assume that the Lagrangian does not depend explicitly on the coor-
dinates and secondly, the transformation group of projective rela-

) The projective tensor y, s introduced in equ. (3. 1) [oe. cif. *) has essentially
the same properties as the metrical tensor of the KALUZA-KLEIN theory.
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tivity (hs), in contrast to the group of general relativity (g4),
admits only such transformations X*— X'* for which X'* is a
homogeneous function of the [irst degree of the X.

§ 2. Survey of the formalism of projective relativity theory.
We shall first summarize the main features of projective relativity
theory according to PAULI's formalism. For the omitted proofs and
a more detailed freatment of the subject, the reader is referred to
PAULI's paper.

a) 5-tensors and 5-tensor densities. The space-time continuum
is alternatively described by the inhomogeneous coordinates x! (to
this description we will refer as “4-space”) or by the homogeneous

coordinates *) X" (5-space), such that x!, ..., x! are homogeneous
functions of zeroth degree in X*“:
F e L e e e e o S R P (1)

We now define the 5-tensor T'Z:: 5" as a set of quantities which

By

obey the following transformation law for the group hj:

wm 0X'm X' XA OX
2oy wanly N = =g Trestiyiy
T B, vl - aXﬂ, A aXan aX";‘ .o aX’ﬁk T.?.---ﬁk' (2)

further, each tensor component shall satisfy the invariant condition
that it be a homogeneous function of degree p of X", where p is
given by:

p—n—Fk

Therefore, using Euler's theorem on homogeneous functions and
denoting by A:|, the partial derivative of A'"" with respect to X*:
P T @y

X'{' T‘;:-‘-ﬁgun_p Tﬁ:,_,;‘;;:- (3)

Thus the X* are co'mponents of a contravariant 5-vector field,
while the differentials dX* do not have this property as the second
condition is not fulfilled for them. Still one can define

dr =dXL. .. dX°

*)  We will adhere to the convention that 4-space quantities are marked by
Latin and 5-space quantities by Greek indices, so i—1...4, and p=1...5.
Summation signs are suppressed according to the usual rule,
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as volume-element in 5-space: if we-perform the transformation
XAk —g X¥, (4)
(o any homogeneous function of the X of degree zero), dr trans-
forms according to *)
dr. =piar, (5)
As a consequence of (4) we also have
‘Elm—er Tal 5. (6)
This enables us to find the degree of 5-tensor density components,
For, if ¢3::5is a 5-tensor density and T3 Z0the corresponding

(3
5-tensor integral:

b CLL L S iy SR
Loy 8t ﬂj £ at dr,

we see that the degree of £3; 3" is p—5, because of (5) and (6)**).

Noting that X%, = 5 we therefore have:

(s Xe)  =ptiiky ™
b) Metric; covariant differentiation. The metric is described by

the symmetrical tensor g, :

oy = Gape (8)
Further we postulate the following important relation, normalizing
the metric in 5-space

Guv . H (9)

this relation is invariant for the group hs. The raising and lowering
of indices can be performed by introducing the tensor g which is
connected in the usual way with g ...

Next the three index symbols I',, and I';, are introduced,
which we assume to be symmetrical in x and »:

ITJ_, = }j (gl,lc | # + Qv e — Gur| i.) (lOa]
L =g¥ Ty (10b)

*) Comp. PAULL, loc. cit. ) p. 311.

**) It is well known that the square root of the absolute value of Det gpr,
(where g, is the metrical tensor introduced in & below), is a scalar density.
Thus its degree is —5, as is also easily verified, the degree of g v being —2.



It is well known that, while T§' pkly,the derivative of a mixed

tensor with respect to X* is not a mixed tensor of rank p—1,
(except when T is a scalar), on the other hand the covariant

derivative of T'3!./57:

7 H— °‘!
rg van Bl T o

O T o IR U
F+ 2T TRi

k Eyee
= ,_- ,uPi T

i=1 f’r 1A Birre A

does possess this property. Also we remind that for covariant
differentiation the product rule holds:

(A B u=A B+ A Bk

and that the operations of covariant differentiation and raising or
lowering of indices are commutable on acwsount of

giul»=0, g, =0. (11)
Finally we introduce the 5-tensor X.:
Xpw=Xolli—Xulp =K jp—Kipp = — Xos (12)
which satisfies
Xuvjo + Xop|y T Xopjp =0. (12a)
From (3) and (10a) we infer that
XLon=—gwt++Xu, (13)
S0
X =4 X\ Xope=b Ko (13a)
With the help of (9) one verifies that
X X2 =10, (14)

c) Connection between 5-tensors and 4-tensors™). These
relations are established by the 40 quantities y;*and y”:

7= xk, (15)

*) A 5-scalar is at the same time a 4-scalar, therefore it is not necessary to
add a prefix to “scalar”,



whence, by (1)

X =0; (16)
7", is defined by

¥ v, =ak (17)

7', X =0, (18)

y,¥ transforms like a covariant 5-vector for the group h-, and
73 group h;
like a contravariant 4-vector for g,: y*, behaves similarly.

With the help of y:k (y*,) we can uniquely connect a contra-
‘variant (covariant) 4-vector with a contravariant (covariant) 5-
vector by

ak=pka ; ar=yp a. (19a)

From (19a) it follows that the metrical 4-tensor, which connects
a; and a¥, is related to g,, by
Gik =7 7"y G- (21a)
Furthermore, (17), (18) and (9) give
Yoyt =0t — X, X,

and this relation enables us to connect (starting from (192)) a
contravariant (covariant) 5-vector with a contravariant (covariant)
4-vector. For, contracting *) the first equation (19a) with 7.k and
the second with . we get '

at — }"!.‘k ak+ aX® " }r“;k ar- 8)(_;: “96)
a=aday Kb =—gt X""

There is a special type of 5-vectors, namely those for which the
corresponding scalar vanishes: a, X“—=0. Such vectors we denote
by a,., (or @).

In the same way connections can be established between 5-tensors
and 4-tensors of higher rank. For instance

=yt v, To (20a)
Tw =7l v;* Tu+ 7t X Tooy + X 7, Tovi + Ty (208)

*) By contraction we understand mu]tlp]icatan followed by summation over
the new dummy index (indices),



with

Tio=7", X" T, Toi=X"y"; Tpy and Tip9=X* X" Tj0o.
So we see that

it Fa= 1  then Tog— 1T  Tin= Lo

if Tyw—=— Ty then Tyu=— T, Teoy=— Tir T0i0="0.

From (20b) and (18) it is seen that we especially have for the
metrical 5-tensor:

Guv — ?",;_i ?;,k ik "— X.u X:u (ZIb)

Now we still have to find the relations between the covariant
derivative of a 5-tensor in 5-space with the analogous gquantity in
4-space. For this purpose we postulate, for any vector @ (ie. a
vector for which a"=y", a* holds, see above):

a¥ =92 7% 8)\a

where ak||; denotes the ordinary covariant derivative in 4-space.
Next we define y;¥, and »”, = as follows

:’J:—'kH,u :}J-.'kl,u— r’ _I_ ‘T‘k A -I 4 (226)

» u I e i

‘i

rf’k”ﬂ kl.u e F }’I o m JJ.l'cm 71.'1 ’ (22b)

4
where I' £ is the three-index symbol in 4-space. On account of these
definitions the following product-rules hold

.k adie =" v, @k + 9%, 2w
@ Ne= 7", v;' @40+ 70 2%
Furthermore, it can be seen that the postulate then becomes
7" ¥ ke =0

We now proceed to derive explicit expressions for the covariant
derivative of y.* and y”,.

We have, by (195) and (13a)
(7 @aNe=a%.—X"a,—%aX;.
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Therefore, using (3), (13), (14) and (16):

X e =—1 &7 7.
Also we have
X Ve =— " Xolle=—1 X 7", .

Using a relation similar to (20b) which holds for a mixed 5-tensor
of the second rank, we thus get

?’fm e + (X, "Y_,},T ==X X{-.ﬂ-) }"'L_Lk . (23a)
Likewise we find that
}';,"”9 =X XL X, X"_‘P) ]’;{k . (23b)

d) The postulate dealing with the electromagnetic [ield tensor.
Introducing

Xie=1",7, X (24)

we have (comp. (206) and (14)):
Xor= J’,;'- ?’,‘,k Xik (25)
With the help of (12), (33) and (34) one can prove that *)
Xiki1+ Xk + X0 =0. (26)

So if we put X proportional to the electromagnetic field Fy,
we see that the first set of Maxwell equations is a consequence of
the assumed structure of 5-space. The proportionality-factor can be
determined by comparing the field equations of gravitation theory
(in the absence of matter) combined with those of electrodynamics
on the one hand with the corresponding equations that follow from
the projective formalism on the other; it turns out to be (2x)' ¢-1
where » is the gravitational constant, thus

2% .

X = (27)

From (26) it follows that there exists a 4-vector f;, such that:

Xir = fr1i— fi|x. (26a)

*) Comp, PAULIS), s 3228
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By (27) f; is connected with the electromagnetic vector potential
@i by

L19% (28)

fr=
We may connect f; with a 5-vector f,,:
Fo=1i fis (Fu X*=0),

it can be proved *) that

;“_u — w % F\ e (29)

where F is an undetermined homogeneous function of the first
degree of X,

e) Connection between g,, and the DIRAC matrices. The line-
arization of the GORDON-SCHRODINGER equation of the electron
rests essentially upon the existence of 4 square matrices y¢ which
can have no less than 4 rows and columns and which satisfy

Vi vk =F Yeyi=208.

The product of those matrices: y5 = 7, 70 75 74 is also anticom-

mutative with each y;, while y5 = |. These matrix relations can all
be comprised in
Ve v+ 7y Y =208, =1, .. 5) (30)

where d,, is the unit matrix. Now just as TETRODE 10) postulated
that the matrices y; should be generalized to matrix fields describing
gravitation in 4-space, we can put here for a given metrical field
9w+ (writing a, instead of y,):

Cl:a a, + Uy Ay — 2 Geve (31)

For given g, it is in principle possible to find a solution for u
(comp. SCHRODINGER 1), which is unique apart from a trans-
formation with any non-singular matrix S:

(1:,, =5 @y S. (01' ﬂ,:f =— 8§ Uy S}. (32}

*} CE PAuLl p. 322323,
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For reasons that will soon be clear we consider only S-trans-
formations of the first type.

Further there exists a matrix A, the “hermitizing matrix” such
that

Aa,=(Aa,)t. (33)
As a consequence of (32) A is assumed to transform as follows:

A’ =St AS. (34)

f) 5-undors. We call

i
7,
7
7,
a 5-undor if, performing (32), it transforms according to

W — S, . (35)
From (34) and (35) we obtain

(PrA) =(PtA)S.

The quantities PtA4 ¥ YtA a, ¥, YtAa,a, W etc. are therefore
invariant for S-transformations.
Next we consider a rotation of the X@:

X'e =yt X, (36)

(n, is homogeneous of degree zero in X*), and we will confine
ourselves fo rotations with Det n*, = + 1, The consideration of

this group, of which the full group of LORENTZ transformations
(including spatial reflections) is an undergroup, is sufficient for all
physical purposes.

Now it is always possible to find a matrix ¥, such that if (with
= g a,.)

a’.“ — }T',‘)‘ a". (37)
then
@t = S an 3 (38)
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Such a “Z-transformation” only affects the o“ the quantities
¥, Wt and A are scalars with respect to these. Therefore ¥TAY
etc. mentioned above are real scalars, 5-vectors, etc, with respect
to the transformations (37),

It is possible to connect uniquely a S-transformation with a -
transformation by stating that a S-transformation and the “adjoined”
2-transformation, which shall be performed subsequently, shall
leave the o* unchanged. We then have in fact S = Z—1 (with
respect to the choice we have made as regards (32)).

§ 3. The energy momentum tensor. We now proceed to derive
an expression for the energy momentum tensor of an arbitrary
field. We generally denote the variables describing the field by
Q). This symbol thus comprises the gravitational field variables
(to which we will often refer as Q) and the others (Q;) which
have either tensor or undor character, (we denote them with Q
and Q; respectively). We will, only to fix our thoughts, consider
the Q4's to be covariant tensor components. If in a term the “index”
(w), (a), (z) or (o) occurs twice, ‘'summation” over all variables
Q) or Q, etc. is implied. '

We will — in contrast to BELINFANTE 7) and ROSENFELD 8) — not
establish the connection with undors by the explicit introduction
of “5-beinchen” but by the direct consideration of a set of matrices
a, varying from point to point and satisfying (31).

In case we only have to do with variables of the type Q) (the
“tensor case’) we adhere to the customary choice of the Q,
namely the components of the metrical tensor gu,. If there are also
undor variables present, (the “general case™), this choice cannot be
maintained; we now take the «, instead, connected with the g,..
by (31).

We denote by K the Lagrangian density of the gravitational 5-
field in the absence of matter, (K is assumed to depend on Q, and
their first derivatives only), and by L the Lagrangian density of
the arbitrary material field, containing the interaction of that field
with the g,,-field, (this is the interaction with gravitation and the
electromagnetic field). L depends on Qj,, their first derivatives, and
on X*:

L=L{Qu» Quip» X*). (39)
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The explicit dependence of I on the coordinates is an essential
feature of the projective formalism which finds no counterpart in
general relativity theory.

We obtain the gravitational equations in 5-space by putting:

aj'(K+L)dz:o; (40)

the variation of the integral should be taken for arbitrary variations
of independent combinations of the Q). The integration is to be
extended over the domain of 5-space corresponding with the domain
of 4-space occupied by the system, the independent combinations of
the Q;, vanishing on the border,

Therefore we have in the tensor case, (taking into account (8)

and (9)):

O(K--L : ]
SIS gt g0+ 120 X g oo, a1

7 and } being Lagrange multiplicators; the quantities 0K /g, etc.
are the variational derivatives of K with respect to g,,, etc. (4la)
gives

K —K© Xn X»= T T0) xu X0 (418)
with
oK oK
S = -+
ég!ﬁ:" ég!"fl

(42a)

Mooyt ( 0L | OL )

Ogur | Ogu
KO=Kw X, X, , TO=Tw X, X,.

Here T, is the energy momentum 5-tensor.,
In the general case, (42a) is extended, making use of well known
properties of variational derivatives and of (31), to

1 oL = 6L
o= ] ( w2 4. oL a) . (420)
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In the following we will for this and analogous formulae more
simply write
oL
Tw—___ = ak,
da,
the symmetrization being understood; we may of course assume the
@'s to be hermitized,

The invariance properties for the group hs of the guantities
hitherto introduced enable us to find an explicite expression for Tar
in terms of the field-variables. Consider an infinitesimal trans-
formation

X't= X | g, (43)
(&# an infinitesimal contravariant 5-vector); we then have by (3):
X7 &0, =&, (44)
As a consequence of (43), the field variables transform as follows
0Qu = Qiy (X'~ Quy (X =, &, (45)

where
= T8 Qo sorserc (46)

V1....,¥p are the tensor indices of Q)
Comparing this with (42a) and (42b) one infers that

w - OL
T R ;)Q_m C‘ltﬂ, v (42(‘.’)

It will appear that it is convenient to introduce the ‘local
variation” *Qy = Q/, (X*) — Q. (X7). Thus:
0Quy = ¢&* Quy + & Quy | e

The second part of the right member is the result of the con-
comitant displacement Q[ (X*) = Qi) (X"*).
Now | Ldr should be invariant for the group kg, i.e. we have *):

(SJ1L dr :f[d* L+ (L&) de=0, (47)

*} CE H. WEYL, Raum, Zeit, Materie, 5n¢ ed., p. 233; it should be noted
that in computing 0*L we need not vary X« as 6%L is the local variation of I
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where £ and its derivatives must satisfy (44) and all relations that
can be obtained from it by differentiation.
On account of (39) the variational derivative of L with respect

to Qp is
) ( OL )
= , 48

aQ(ml aQ{m) aQ(g.)“,; |2 ( )

o (47) becomes

J d‘!.’ [Ar 51’ _l_ (B‘”1 E" 'l' ::l Evli)[.u.] — 0, (49‘]

where we have introduced the following abbreviations

— éL (7 LY. aL
HER (EZJ o ") [ 6Qpuy Qe e
oL SL

I“” - ‘Laﬂ"——; )| — ¥

B , K OQ(—,,) i Qf ) + f)Q(r,;) c(m), » (Sl)
Ll - aL

o —

OQ(m]f‘u. fadhes

If we first consider an infinitesimal linear transformation of X-"'.

the second derivatives of &* do no more occur in (49). We then
obtain from (49) using (44):

(A, + B%) X*+ B, + R, =0. (53)

For a general infinitesimal transformation the condition

JR:" Eju=0

remains, where the £;;, are only restricted *) by the derivative of
(44}, viz.
X,u ‘51"1 |l — 0, (54)

) Higher derivatives of (44) need not be taken into account, (although the
derivative of (54) still contains 5"1;;:]- For, by counting the number of eguations
with which such a tensor relation is aeguivalent on the one hand and the number
of gquantities E"‘;_!“_ 51'\*'-|ﬂ|9 etc., that are involved in such a set of equations on
the other, it is easily seen that the higher derivatives of (43) do not impose any
further restriction on &u and their first and second derivatives.
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whence
R — Q% x# . (e pha 4, pid (55a)

The wholly undetermined quantity Q% which, on account of (54),
has to be introduced into (55), expresses an ambiguity of the
Lagrange function which is typical for the projective formalism; in
fact we may always replace Qs by a constant times X* Q2 (on
account of (3) if Q) is a tensor; for a 5-undor we have e.g.
X' W, =1¥, see later on equ. (97) ), but if we do so R* changes,
according to its definition (52), by an amount AR, where

oL
aQ(:u)

() is the constant mentioned above; of course one should not
perform the summation over (w) in this expression ).

Noting that, naturally, Cly,» C@nnot be written as the product of
a 5-tensor “‘cyy,”” with X¥, we consequently may, if we introduce the
convention not to allow products of the type X* Q)2 to occur in L,
put 2. equal to zero:

LT A
A R" =" ﬁ[ 4 C{J:)), i X *

RS%N == 0; (55b)

thus R, is antisymmetrical in ] and p from which follows that
R, |«= 0. We therefore obtain from (53) by differentiation:

{(A, + BLjo) X} + By = 0.
As A, + Bi,|, is 5-vector density we have by (7)
1A+ Bf’"l@) Xl = _Av_Bi.’-rIe-

whence, using (50)
(oL, oL o
Do (5Qrm e r) le o Q) ey (9)

Inserting this into (51) we get

" i d
Bg. v — LI:'_ a Q[r;.}] 1)| L Q:’-“)I"'
ff

O Q(w} | o - d Q[m]
Therefore, from (48) and (39) it follows that
’ oeL
Bll,-rilu :W) (5?)
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where the right member is defined as the derivative of L with
respect to those X which occur explicitly.
Inserting (57) in (54) and taking account of (56) we get:

; L o a L
L& — GQ( = Qi+ +¢3Q cemr + RS+ X s> = 0.
therefore (see (42c)):
fid aL B i;( u_ ﬂ _ _6L7 %
T e Sl X" 5Q @ 8

JH.

As T, only depends on the derivative of R:", it follows that the

occurrence of Q) would not affect the energy momentum tensor, for
(@ X9 =0,

on account of (7), 2, being a tensor density.
Now we must bring (56) and (58) in their covariant form. This
is easily brought about in the tensor case, for then we have, noting

that 0L/0Q, . cly» and R.“ are tensor densities:

JL 1 BL e éL 7] I—J.
éQ C(.u] » " 5Q( ) Clo. ), v " der,)) Cir.}). 2Ly,

A it i
Rfl“i.:R‘o']Z_ L)l[ I}:v.

So, as
QI?H} = Q(T][.u + C?:),g Pf,‘z ' (59)
we have, using (11):
oL VP o*L oL
5 " g i .::'
4 j-—aQ(m (;2(1\1 Ls, R"ll}— X" 5Q“C[)‘ '

% oL oL
T e+ (m Ci’;],'r) + = Qe Qs> =0.

Al

In the general case we may write instead of these last two
identities

T =9

— K o a:‘L._-
aae, + aQa}”u Q€ L

o (60)
.7.;1( s ‘u‘ € JL ‘«.
—Ri—X"5% " 5q,, -
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" e ) A ) "
T.v|_\‘u "l" (ana) Clay, v » a”, .y —|—' (5'——0(1) Q(q);,. = (61)

d a
with
i 0
Qs e = Q(at)lsa T Cloe Lpe (59a)

Thus Q) = Qe but the covariant derivative of a tensor
undor 13) is not completely given by an expression like (59a). In
this case we can achieve our purpose by using the invariance of
[ Ldr for a change in representation corresponding with a Z-trans-
formation in the sense as indicated above *). Such an (infinitesimal)
transformation is given by **):

r
gl at =g n,

& o0y (62)
from which follows
g — gyt
We can then bring ¢« into the form
¢ a* = dy i, &, (63)
with
deytr = 4 (8% a,— B az). (63a)

As a consequence of (62) the variables Q, are also affected:
0" Qi = disyn £™. (64)

It should be noted that 8’A — 0, for Aa’* is hermitian because
Aa* is hermitian and the transformation coefficients s are real,
We now assume that I depends in such a way on Qu, Qe a”
and a“|, that the (vanishing) variation of JLdr can be written as
follows

o S0 AT
5]de:‘J(fjwu6-a?—f-mﬁQm)+

Al oL |, -y
+.J (Galh. oe +5Q(o—1|v ° Qm) =0

Al

*) See PauLl, p. 350.

**)  We have written &' to distinguish these variations from those that follow
from (43).
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where, as already stated, all quantities in the second member of
(65) stand for their symmetrized expressions, i.e, one has actually
to take half the sum of the quantity written down and its hermitian
conjugate. From (65) the following identities can be derived

oL . L .,
w d(u:uu- + (EQ_M d(:r)lv— Or (66)
oL oL

3 o G 2 o2y = 0.
dar diw i + Q0 diz)a (67)

Now with any parallel displacement £’# in 5-space (from P to Q
say) corresponds a change of representation, namely o*(P)—a*(Q),
with a ’a* of the form (62), and it is this connection which causes
the difference between Q1w and Qu),,. From

& at—=—qu, g (68)
we can readily deduce the quantities s« corresponding with £,
For, as the a, are linear combinations of a set of constant matrices
., (see PauLr, p. 344), we have

at o= /_\-m@ Ay (69)
where A", is a c-number, One can easily deduce from (68) that
the e are connected with & by

#r= Y ¥e 7 (70)
where

¥ =3 (A ,— AT (70a)
Consequently we get for the covariant derivative of Q) and of
at;
Qulle= Que+ ¥, diyin, (71)
¥l =a", + Y”a i = 0. (72)
(From (72) and (11) it follows that tulle = 0). Thus, con-
tracting (66) and (67) with Y”, we get

SL L oL
Jar at.e - é_(j;] Gy — @ Q) ifer
oL oL aL

PR i =l PO Ty
0atj, +5Q(=>|.~ Qe 0Q) |« Qe
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which is exactly what we need to obtain the covariant form of (60)
and (61); for, inserting this we find

oL . e ofL aL
i ARETE e . J'_ =% Hia=— Vo = B WM
r S aQia} []ee QM e L4 g = 0eXx” 5Q(a} Sl » (73)
. L SL B
T I || " _!_ ((go(d’ C[’aj, r)f.u —l_ (SQ[“] Q(ﬂ) H WE=== 0 ) (74)

Naturally we must require that in the right hand side of (73) the
gravitational quantities do not occur explicitly and indeed this con-
dition is fulfilled except for R which, by its definition (52), con-
tains dL,/aQ(},]i;,. Cf;_)’,__.

In order to eliminate this term from R* we put
O N | ; "
S;:u} — JF (Cl('fu]-;. g T— sz] A gl‘“) + d[[fia)’ (75}

with di) = di5 = 0, while df}j is given by (64). For s{; we have

thus in the tensor case sy = 0, while in the general case, according

to (63a), we have for Qy=a,,

ny

St = — dw o™ = —geo g g diy ,i{':--' . (75a)
We now introduce
Dispr — 1 (R;-“ g2 _Rz" ge.ﬂ) ;
and then can write, using the identity (67), and (52), (75) and (75a)

‘ oL :
Dl;.m — a_(g;I_l sf;‘} 5 (76}
T'hus

" = guy [D¥#e— Dot - Duiet], (77)

and we see that in this form R does no more contain Qp explicitly.

The symmetry of Tt and the conservation laws. Representing
the energy momentum tensor in its form (42b) we have from (66):
oL

v T
T i 2 5Q

diy™. (78)
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If we form from the variables Q. a set of independent variables
Q@ *). the field equations are:

6L
30-— 0, (79)
@
consequently
£ ct
5Qy e =0
which enables us to modify (78) to
Ll 7 At ﬁeL
T’v—aaz).l,,QM"' LE—Rin—X"55s  (30)

(we have written T to distinguish this quantity from the cor-

responding tensor in (58)). As regards the symmetry of T%, on
account of (42b), (78) and (75)

o AL
12y i St
T —T" =2 5Qu

The right hand side vanishes however, if we make use of the field

equations (79). Therefore T is symmetrical in virtue of these
equations. As from (79) it also follows that

oL
Q0

the conservation laws hold under the same restriction:

T'va 1w = 0. (81)

Q1> =0,

Dividing (80) and (81) by l”g, (g = | Det g..). we obtain instead
of tensor densities the corresponding tensors. Then (81) is, on
account of (206) and (23), aequivalent with

Tk, — Xk Ty =0,
T o1+ =0.

Putting

#®

Tik=— A (82a)

*) We assume Q, to be a homogeneous and linear function of the @, 's.
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[~ 2
cl72

where T is the energy momentum 4-tensor of the total system
minus the tensor referring to the Maxwell field in the absence of
matter: T, and s, is the charge current density of the system
we have, with the help of (27):

Tro=— Sk (82b)

Tik||;.-—-Fik S — 0 i (83)
g s ie=(1"gs=0. (84
g = |Det. gix|.

So the 5 identities (81) are aequivalent with the conservation of
momentum, energy and charge!

From (416) we now derive two four-dimensional relations by
contracting with y.1y.% and X, y;7 respectively; they are

K :—% Tix, (85a)

Klio=To. (85b)
The left members have been computed by PAuLI, who finds
Kix=Rix—}% gue R+ 5 (Fi' Fie—4% gix Foun F™),
Kig=— l//— Fikp;
el 2
Rix is the contracted RIEMANN-tensor.

Thus (85a) is aequivalent with the equations of EINSTEIN's
gravitation theory, while (85b) becomes

Fikj,=si, " or 171“3 (L g Fityp = s, (86)

i.e. the second set of Maxwell equations.

§ 4. DIRAC theory in projective form. In case that Qy is the
S-undor ¥ we have (see (64), (75) and PAULI 6), p. 351):

s = d_m' — ___Rl Gt[gu-] g'f’ aLur] —af @’ —a” a, (87)
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We now introduce A,:
o =— Py T =—tap0s 7. (88)

Thus, on account of (71), ¥, = ¥, + 4, ¥. We are however
still free to replace A, by a quantity I', differing from A, by a
multiple of the unit matrix. The choice which is most adapted to our
purposes is

Ie=4,—1X,, (88)
with *)
ie ¢
= Vs (89a)

We then have
Hlo=¥e+ 4, ¥—1X, 7, (90a)
similarly
Plo=PY,— ¥ 4, 41X, 0. (906)
The expression for these covariant derivatives here chosen differ
from those of PAULI by the last term.
Using
a* ap o, —ay a, a' =2 (0:‘ a, — !5’: (1,:_).
it is easily seen that (72) can be brought into the form
@)= at, + Ay ot —atdy =0, (72a)

As regards the covariant derivative of A, we can normalize it in
such a way that **)

Aju=0. (1)
We now introduce the DiRAC-equation in 5-space:
at ¥, +5¥=0, 5= Iihw. (92)

This equation can be derived from the following Lagrangian ***)

s # (¥* Aat ¥+ 9Pt AY). | g, (93)

*) his PLANCK's constant divided by 2 =,

**)  See PAULI®), p. 339,
***) In (93) and the following formulae we have looked apart from the
factor —c2/= (cf. (82)).
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We can now compute the energy momentum tensor. In doing so
we must, according to our assumption as regards the derivation of
(65), consider the A,'s as functions of «* and «*,,. This is possible,
as a solution for A, satisfying (72a) is

Ao = (au;0 0 — a* ay;),

as can be verilied, using (69).
Using further (87) and the analogous relation holding for ¥t:

s = — 1 Pt glwlt,
we find from (76)
D% = Re— 1 wt At ol ¥, | g,

SO

RA”_“Re—:—C Yt Aot a*a, . [/g

(Here we have made use of the fact that Re —, ¥t Aat P=0).

i
For the tensor T,, we then find, using the field equations:
Ti»=Re % F T A (ap ot Pl )= VT Aag (o X0, X)) Ph (94)

where
ag = at X (95)

Finally we must establish the connection between 5-undors and
4-undors to show the equivalence of (92) with the DIRAC-equation
in 4-space. To this purpose we introduce 4 matrices ¢; by

@ =y*; o (96)

which satisfy (cf. (21a) and (31))
a; ap + ap a; = 2gix, (96a)
a; oy 4 ag a; = 0. (96b)

From (33) we get
Ay =(Aar)t, (Aay) =(Aay)t. (96¢c)
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The connection between 5-undors ¥ and 4-undors v is assumed
to be given by
Y=y .Fl; Yt=uyt F- (97)

where 1 is a homogeneous function of X# of degree zero, F the
homogeneous function of degree one occurring in (29) and [ is
given by (89a).

We also must find the connection between the A, and the
analogous 4-space quantities occurring in the ordinary covariant
derivative of

kA .
L4
W1 =agji— Ly 0+ Adjap—ap A= 0.

It is found *) that
fi.u — ?I;j AI‘ + a/_\‘ny, (98)
where
Ap=—1% Xurag al — ¢ Xy Xiq alkl, (99)
With the help of (29), (90), (96), (97) and (98) we now can

derive the DIRAC-equation in 4-space:

@ (i — e w) + ny + 15 Xieg ag kg =0,

or
a1k + I%C w—+ % Fypag alkll y =0, (100)
Here .

T{*Jlk:w”k*ﬁqﬁk W (101)

is the gauge-invariant covariant derivative of . The term propor-

tional to | is so small that its physical consequences (magnetic
moment for uncharged particles with spin) are negligible.

From (95) we can derive the 4-dimensional energy momentum
tensor and the charge current density, using the prescriptions (20a)
and (82). This calculation goes in the same way as in PAULI's case
and we will give here only the results:

*) See PAULI®), p, 361.



23

Tix=Re % WA (ax )0+ a v e) +

I/Z he

-+ T -T*P*A(ﬂrkuﬂoF:"[-{-ﬂ[u]aoFél)‘4’, (102)

si=eytAaiy —

(102) and (103) differ from the corresponding expressions found
with the usual methods by small terms. As already pointed out, it
is impossible to decide empirically whether this has to be regarded
as a defect of projective relativity theory in its present form, Finally
we remark that one can easily verify that s satisfies (84), noting
that the divergence of the second term in (103) vanishes on account
of altl = — al*/ and using the field equations.
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CHAPTER IL

MESON FIELDS IN 5-DIMENSIONAL PROJECTIVE
SPACE.

Summary.

The theory of projective relativity is applied to meson felds; it is shown how
to incorporate the MoLLER-ROSENFELD theory of nuclear forces in this scheme.
The two main features of such a treatment are: 1. a reduction of the number
of universal constants in the mentioned theory: 2. the automatical introduction
of the interaction between mesons and the electromagnetic field. After it
has been shown how to deal with the electron-neutrino Feld within this
formalism, an expression for the energy momentum S5-tensor is derived from
which one can obtain the Hamiltonian and the charge current density of the
system. The commutation rules for meson field variables are also brought in a
more compact form. The Hamiltonian is then transformed by separating off the
longitudinal electromagnetic field and the static meson field successively and the
transformation of the current and the density of electric charge is discussed in
detail. Finally, expressions are given for the electric dipole and quadrupole
moment and for the magnetic dipole moment of a nuclear system,

§ 1. Introduction. The idea to describe nuclear forces by a
charged field, corresponding with particles (mesons) of integral
spin and mass intermediate between those of electron and nucleon =3
was first put forward by Yukawa. The scalar field (meson spin
zero) originally introduced for this purpose 1) does not give the
right picture of these forces, but the introduction of mesons of other
type may help to overcome this difficulty. KEMMER 2) has namely
shown that, assuming the spin of the mesons to be not greater than
one, there are four kinds of possible meson fields characterized by
the transformation properties of the field variables. One may then
use either a vector field (spin 1) or a pseudoscalar field (spin 0)
or some suitable combination of them. Further, the best way to
account for the practical equality of proton-proton and proton-

*) BELINFANTE has suggested to call the heavy particle of which proton and
neutron are different states a “nuclon”, However, if we keep to the custom of
using the ending “—on" for names of elementary particles, the correct form of
the word is, of course, “nucleon”,
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neutron forces seems to be to introduce neutral mesons besides the
charged ones in a symmetrical way *), as proposed by KEMMER 3).

Adopting this last assumption, MeLLER and ROSENFELD 5) (this
paper will in the following be quoted as M.R.) have especially
advocated a particular combination of a vector and a pseudoscalar
field which allows to eliminate a term of highly singular character
(dipole interaction potential) from the expression for the static
nuclear interaction. The strength of the coupling between nucleons
and these fields is described by four constants: two, characteristic
for the “vector-interaction”, (g,M*;, g,M-R) and two for the “pseudo-
scalar interaction”, (f{MR, f£MR)  Apart from the condition
|g MR |2=|F,MR|2  that is necessary to eliminate the dipole
potential, they are completely independent. In view of the
possibility to obtain stringent tests for this theory, arguments which
would enable us to reduce this number of constants would be very
welcome.

Recently, MoLLER 6) **) has pointed out that such a reduction
follows from the requirement that the M.R.-theory be invariant
with respect to a wider group of transformations than the Lorentz-
group, namely that of the rotations in a five-dimensional space.
Moreover, it is then possible to bring the [ield-equations in a more
compact form. MeLLER chooses for this space on whose properties
the theory now essentially depends the five-dimensional DE SITTER
space. This, however, seems not to give rise to any significant
physical consequences. On the other hand, the treatment of this
problem from the projective point of view has the advantage that,
besides the reduction of the constants, the interaction of mesons
with the electromagnetic field is automatically introduced. This will
be studied in the present chapter.

Following M.R., we describe the mesons by three real fields. The
quantities referring to each field are distinguished by a bold-printed
index, e.g. .

FlrFﬂ'FS'

where Fy and Fj represent the charged and F3 the neutral mesons.

*) Another possibility has been proposed by BETHE ).
**) I am much indebted to dr. MeLLER for the communication of his results
before publication.
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Three such quantities are then written as F, F being, (with regard
to the index i), a vector in “isotopic spin space”. In the same way
the nuclear source densities § which determine the real fields in
question are treated:

S == (Sls S?l Sa)'
S can be brought into the form
S =z,

where S is the same for the three fields, and 7 the isotopic spin
vector, (the eigenvalue + 1 (—1) of 73 denoting meutron (proton)
states). Further we need for the following similar symbolical forms
for electromagnetic field quantities. If ¢; is the electromagnetic
vector potential we put

®:=(0, 0, ;). (1)
As in I we will denote the derivative of a tensor F by B, (in 5.
space) or F|; (in 4-space), the covariant derivative by Fj, (By2).

The covariant gauge derivative *) is indicated by Fiu (By:) and
we have:

Fli=Fj— h%'ﬁf/\F- (2a)

Fiju =Fjju— f; Pu\NF : =y qr. (20)

The symbols A\ and A indicate a vector product in ordinary and
symbolical space respectively. Thus

@i AFh=—0:Fs, (9 AFe=¢:F1, (¢ A F)s=0.

§ 2. The meson field in the absence of other material [ields.
The mesons are described by a 5-vector U, and an antisymmetrical
S5-tensor F,, defined by **)

F;", —— (I’w,'—- iX[ﬂ A u:'] s

(3)
< e — um[_u_U,qu — u:'l,u_uiu.‘y-.

*) We prefer this name to “covariant gauge-invariant derivative” as the
latter might suggest the invariance of meson theory with respect to the group
of gauge transformations which in fact is not the case,

e an by = a,b,—a, b
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The components of X, in isotopic spin space are (0,0, X,); 1is a
for the present undetermined constant. For the Lagrangian we
put ™)

2
L=—3F.F"— % u, us, (4)

i =myclh, my: meson rest mass,

so the field equations are

F,uv WE— _‘uz - _lF,uv A Xv- (5)

L is invariant with respect to rotations in isotopic spin space, and
we will now perform a rotation around the 3-axis of that space
(phase transformation). If Q is a field variable and Qs the trans-
formed quantity, such a transformation is given by

Q{u],i == @}( e, kv (6)
cos x, —sin x, 0
Of = [ sinx, cosx, 0]; (6a)
Q. 0 i
we put
x=1log F, (65)

where F is an arbitrary homogeneous function of the first degree
in X",
The product of two Ffield variables transforms as follows

Qw Qr = qw g,
s0 (4) becomes

2 -
L _ ‘]4' ffu' f"“‘ = % u!-‘ u'“ . (7)

As a consequence of (6) also (3) and (5) are affected, Considering
(3) we have

'3 T k k )
D v = 01 Qi = 05 (ttr, | — ) v) + (OF e i, s — OF s 11y, ).

*) AB=2XA B,. See also the last footnote on p, 22,
i
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Now by (656)
A
S = F ..
thus if we identify F with the corresponding function in I, (29):
X|p— ;'I- X;: ffx
we get

om — u. Iu'_u.u |2 + A X[‘" A u;]_l f[‘u A u.]
Consequently, putting

A:i . I/cl’j’ (¢ the gravitational constant), (8)
and using (2b) and I (28), formula (3) takes the form
fur =y | — g . (9)
In the same way (5) must be treated. The result is
£ » = — p2u”. (10)

From each equation (9) and (10) two four-dimensional equations
can be derived. If we introduce the 4-tensor f;; and the 4-vector

g: (cf. 1, (20a)):

fie = v, 7" B =— K, (11)
g = X" 7", fur, 13

and the 4-vector uy and the scalar u (cf. I (19)) by:
up = p*, Wa, (13)
o —X%H,, (14)

we have

v =7, 9% £ + X, v, @i (15a)
g — ;{;ﬂ" u +uXe.. (16a)

In order to obtain four-dimensional equations from (9) we first
contract this equation with y# »” . With the help of I (23) we obtain

fir = @ik +u Xk ik = Wk | i — Wi || k- (17a)
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Next we contract with X#»”. and use (see I (13), (13a))

Xty ja=—1% X" u,, Xr=3 X"

el

Therefore, (X* f, = 0):
X'u }"1:[ u.-]L‘u - Xu y‘_‘[ Ur||_u :_%' ka LB I

X ?1.':' Uy ||v = u![_g—% X}'kuk.

So
gi=—u (18a)
In the same way we proceed with (10) and get -
fik| e =— p? 0, (19a)
gh e+ § X* fyp =— p? u. (20a)

By means of the connection (16a) we thus have obtained from
(3) and (4) a mixture of a vector and a scalar meson field. One
can, however, modify (15a) and (16a) in a covariant way, such
that, in the case of special relativity *), (3) and (4) give rise to a
set of vector and pseudoscalar field equations.

Consider the quantity

AT Xy
I ;J[’illl: }r}-:s }'FIIB }1114] X;'E] ‘ !

&= (21)
where the brackets denote antisymmetrization with respect to the
embraced indices. The tensor in the numerator **) has only one
“Kennzahl™: 5. Obviously 4 is a scalar with regard to the group of
5-dimensional rotations that have the Det. 4+ 1. Furthermore, it is a
pseudoscalar with respect to the full Lorentz-group as follows from
well known considerations, Therefore the constant ¢ has the same
properties, while moreover:

g2 =1, (21a)

*) We have chosen this particular formulation in order to show clearly the
connection with special relativity which only is of interest for our present
purpose. It is clear that a quite general formulation is possible; to this point
we hope to return later.

**) This tensor occurs in a paper by SCHOUTEN, loc. cit. 7), p. 60 equ. (16).
I thank dr, PODOLANSKI for drawing my attention to this formula.
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Putting
w=z:su, h;=zeg

we may write instead of (15a) and (16a)
f‘ltl’ — }";‘i ;’;.k fik + L X[‘-;, }';-]f hf' (1 5b)
w=ykuc+ew X (16b)

which in the case of special relativity denotes a decomposition of a
5-tensor in a 4-tensor and a pseudo 4-vector and of a 5-vector in
a 4-vector and a 4-pseudoscalar. Starting from (15b), (16b) we
now obtain from (3) and (4):

fir = Qux + e w Xk, (17b)
hi=—ws (18b)
£k e =— g, (198)
h¥ |« + 4 e Xip £* =— i w. (200)

The equations (17)—(20) differ from those derived by the usual
methods (compare e.g. BHABHA 8)) by terms proportional to some
power of the gravitational constant (on account of I (27)). These
terms define an interaction between vector and scalar (or pseudo-
scalar) mesons, but only through the intermediary of the electro-
magnetic field. We need not bother about these somewhat peculiar
terms, however, as they are too small to have any effect on practical
calculations.

Finally we will write down the Lagrangian (7) expressed in
4-dimensional quantities in case we start from (15b) and (16b);

using (21a):
2 2
L:—%fl-kf”‘—%ukuk—éhk hk——%wz. (7a)

The first term on the right contains the small interactions mentioned
above,

§ 3. Interaction with nucleons. We introduce a 5-tensor S,.
and a 5-vector M,:

Sy = g; VA apn P, (22)

M,—g, ¥ieAa % (23)
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The hermitizing matrix A (I, (33)) makes both quantities real; ¥
is the nucleon 5-undor, having 8 components.
In this case we assume the Lagrangian to be

Ltot = L + Ln '
2
L=—}Fo B —5 U, U 4 U, M¥ (24)

and L, is the Lagrangian for free nucleons:

L.=Re ihc(¥rAa" ¥ ,+qPtAY) (25)

i 1-}13 2 1—z3 )
= = 2
:—}_fhc( 5 My C - 5 Mpc )

s

with

(cf. I, (93); my and mp denote the masses of neutron and proton
respectively). F,, is defined by:

F.m' — 'p_m' —4 X‘L’-‘ A Uv] ‘!" S{nr ' (26)
so the field equations are
B, =— w2 Ut 4 M —iF* A X (27)

In the same way as before we transform the Lagrangian by (6).
Consequently, in the terms of L arising from the presence of
nucleons we have to replace 7; by 7;. This rotation in isotopic spin
space can, however, be compensated by a change of representation
in this space. Having performed this we can continue to operate
with 7;. Thus (26) and (27) become:

fﬂul':un'u,u_u:”[r + S;rr. (26’)
£ = — 2 u - M. (27)

To obtain 4-dimensional equations from (26'), (27') we need the
4-space quantities that can be derived from .. In analogy with
(16a) and (16b) there are two possible decompositions, giving rise
to a mixture of a vector and a scalar and of a vector and a pseudo-
scalar meson field respectively:

12 Ay — }’ﬁ',.k ay = Uy Xm (288)
where «, ap satisfy I, (95) and (96),
2° A — ?‘,}k ag + &y X, fo = €. (28b)

3
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By is, according to its definition, a 4-pseudoscalar; from I, (96) it
follows that

a; fio+ foa; =0, ﬂﬁ =1, Afy= (A fo)t. (29)

In fact, in the case of special relativity, (gi4 = gos = gay —
= —g4y = 1), a realisation of «;, g, fy and A in accordance with
I (96) and (29) is given by

Qi = 03 0 e az‘:Qz‘Ir)

Gy——10 g —1

' “Lfor 28a), 2 Ugor 288):  (30)
Go——01 s /’0:_91&

A=—io, , A=ip,

both columns refer to the same representation of 0i, o;. Conse-
quently in either case yt Aa;y is a vector, while ywt Aagy is a scalar
and yt Afyy is a pseudoscalar *). In the following only the field
equations corresponding with (2856) will be considered **), These
are

fik = @ik + Sik + ew Xy, (31)
N = é‘g—; yptr A Qg W, (31a)

h1:—W;|_ir.L"S|im. (32)
sP = % ytTAfaiy,  (32a)

ffkllk =—u?ul + M, (33)
Mi— gi 1})1' T A a; Y, {333)

h¥ k + 4 e X¥ £y =— p? w + MO, (34)
MO=g, ytr A g, y. (34a)

") The S-transformation corresponding with spatial reflections is in both
cases: S — g3, p

**) To the general problem of the different kinds of meson fields that are
admitted by the projective formalism and by MeLLER's non-projective theory we
hope to return later.
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In order to compare this set of equations with the M.R. formalism
we adopt a similar notation as used there for the source densities:

-

Su=T1.8, SU=P,—Q,
-
M;=M —N, MO=R.

The expressions (31a)——(34a), (in configuration space of the
nucleons), become identical with those of M.R. if we put

=R =gt g — MR _ MR

Thus in order to describe the forces between nucleons we only need
two constants which are related to those in M.R. in the same way as
the two constants of MeLLER's non-projective formalism.

§ 4. Interaction with the electron-neutrino [ield. It is also
possible to incorporate in the present scheme the interaction of
meson fields with a system of light particles (electrons and neu-
trino's) and we will shortly indicate the way of treatment.

Following ROZENTAL *)9) we describe the light particles by

three real fields with the help of an “isotopic spin vector” 7,75 —
— -+ 1 (—1) referring to the electron(neutrino)state of the particle.

Then, similarly to (22) and (23) we can form a 5-tensor é,,,. and a

5-vector M,

M‘y — gu] y‘}-r ’; A t;_,l: !!u’,

% being the electron-neutrino 5-undor. Instead of (26) we now

define F‘m' by
F,m' — q)‘m-_AXLu A U:y] + S‘mr + éyv

*) I should like to thank dr. ROZENTAL for the kind communication of his
manuscript.
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and also add a term U1, M# and a term referring to the free electron-
neutrino field to the Lagrangian (24). As we are free to introduce
in the Lagrangian scalars that do not influence the field equations
it is further possible to add a term to L of the form

aS., S 4 S M, M*,

(¢ and g are arbitrary constants), describing a direct interaction
between the nucleons and the electron-neutrino field (not involving
a meson in an intermediate state).

It will be clear that in a theory which does not make use of the
condition of covariance in a 5-dimensional space, one can in the
most general case introduce four new constants instead of the two
constants o and f that suffice here. ROZENTAL has shown, however,
that such a diminution of the number of constants, on the basis of
MoLLER's theory, does not essentially affect the general conclusions
regarding the theory of f-radioactivity and meson disintegration.

§ 5. The energy momentum tensor and the charge current
density. With the help of the prescription given in I, we will
derive an expression for the energy momentum tensor, using L in
its form (24) and always writing down tensors instead of tensor

densities.
For Ri# (cf. 1 (77)) we find, using 1, (46), (75) and (76)

Rt =P,

The terms in L containing X¢ explicitly are
i i
> Xiw A Wy (P17 4 8) + i‘} Kip A Wy XA W

on account of X, X*—= X, X#—1, however, the second term is
equal to

22 »
Y (U, ur— U, s Us)

and in this form it does no more depend explicitly on X*. There-
fore

. OEL

xr I =xe L i, 4 ix AU A
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= 0
5x = (00 5% )

We can now immediately obtain the energy momentum 5-tensor
by using I (80) and the field equations (26) and (27):

with

T, =—F"F,,— w2 U* U, 4 F*°S,,+- M« U,— L& —
—A (X A W) HFoa (X A U —22 (X A Uy) (XA + Ty

where T, is given by I, (94), (the constant % takes the value
given in (25)). The application of the phase transformation (6)
to T, yields

T =—tre ko —p?utu, 4-f#2 S, + M* u, — LSk —
218 (X A ) (XA 02 (K Atteg) (XEA @)+ Tt (35)

The energy momentum 4-tensor T; and the charge current vector
s; can be found at once from T,.. In fact we have, denoting the
energy momentum tensor of the pure Maxwell field by T, (see
also the last footnote on p. 22)

T=ya"v'e T% + Tiins
b — I/_CZV vl X T%,.
Using (156) and (16b) we get
v, ey o = (0, Fll—2h? X7¥) (7™ fkm— e e X,)
=filfi; +hih.
The cross terms disappear on account of I, (16) and (18). Similarly
v £yt S =F" Sy + hISP

The terms in (35) containing X, or X explicitly disappear if we
contract with 7:' 7" Using (13) and (14) we thus obtain

Tflfc = ——f”fu + f“ Sk{ + Mi uk—,uz u" uk—h" hk +
+h!SP —L& + Tiw'e + Tle. (36)
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Tiwix is given by I, (102). From (36) we infer that the Hamiltonian
is given by *)

H:f(HmL + Hig) dv + Hin 1,

Hpo=—£"£4 4§84 + M*u,— w? w'u,—h'h, + h* 80 — [,

=4 ST e T B LS e .
Hi = 3 e 2 800,00 8 ) 4 R g 4 o]
1
> -
Hiy =1 (&% + 7).

Hypo has been represented in configuration space, the index (i)
-
referring to the i~th nucleon. (8, — B) is the electromagnetic vector

potential, (é i ) the electromagnetic field. w is a small term which
we will not write down explicitly.

In order to avoid the occurrence of singular terms of the d-func-
tion type **), we add to the Lagrangian the scalar + Suy S#*, Intro-
ducing a vector notation for the dynamical meson variables:

"
- -

fix=F, a w—=U,—V,

hi=1I—®, w=1v,
we then get

“
-

Hipo= 4152 4 G (84 vy — (BT - G R 4 (o304
+4 (?” + B+ @2 W) —(RY + Q) + 1 (Q*—P?). (37)

In the same way the field equations (31)—(34) can be treated.
The charge current density can be calculated by the same methods

*) Generally we denote the Hamiltonian of a system by H, if it depends
on some field variables Q(m) and their gauge derivatives Q1+ The corresponding
Hamiltonian depending on Q[a] and Qiﬂ)ﬂ is denoted by the same letter but
without the symbol L.

**) CE MelLLERY), p. 26.
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and it should be noted that it is the term — 2f#* (X, A U)) in (35)
which here plays an essential part. We obtain

!l — el,UTA

2 an ] —f— f“'” A\ W)z -+ &

& is a small term which (apart from a contribution of the , Dirac-

type’ due to the nucleons, whose divergence vanishes, compare
I, (103)) is equal to

1/2/

7 [ £  he—p? ul w4 £ S ) + M w]

and it can be shown that & ,—= 0, using the field equations. On
the other hand s ,— 0 on account of the general theorem proved
in I. Therefore, from now on entirely omitting all small terms, we
may write

st=gf st (38)

St = eyt 1_7 Aaty, (39)

oo = ea EF Aws. (40

With sy =p* s, ands; = _.; —p this leads to the following

-
expressions (cf. MLR. (61), the nucleon-part of s en p is expressed
in configuration space)

Bt e ay 1y
§ — Snuel _I' Smes — € 2
i

S gt o0 B — i) -

®

+ - GAU- EAVAPA TR, @)

8 (—xt8) - lI/\F—'I‘/\ D)3, (42)

0 — Onuyel + Omes — € :.'
&

§ 6. Quantization. In the present formalism it is possible to
bring the usual commutation rules in a more compact form which is
especially suitable for practical calculations, and which clearly
shows the intimate connection between wvector and pseudoscalar
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variables. In fact, the commutation relations of both fields are all
contained in

‘n he i )
[fd, w']=——12 () 8™ 2, 3, (43)
A 4
Tpvt = Guv — V4 Pr
Here fiy= ?'y fur 3 by u, we understand that the four-dimensional
quantities that can be derived from it, viz. u; and «’ should be taken

&
at the space time point (x'¢), and similarly f;; and g4 refer to the

=5
argument (x,¢). The isotopic spin indices are for convenience
written at the upper side of the symbols. Contracting (43) with
7", v", we obtain using I, (17) and (21a)

= -+, he i )
[£5 (8 up (x7, 9] =— = 8 (x—x') 0™ [gix—gia ot

this is equivalent with

i e hc
(U (x, 0, Fg (x', )] = —(5 (x—x Jomr gy (k=1,2,3), (44a)
- Contraction with ¢, X" gives simply the result that the vector
variables commute with the pseudoscalar variables. Finally con-
traction with X* X gives
-+ -+ hc
[D™ (x.8), ¥=(x', O] =— tS (x—x Jgme (44b)

In a similar way we can deal with the quantization of the electro-
magnetic field. If Fi is the electromagnetic field (identical with
Fik in 1, (27)) and Fe* the corresponding 5-tensor we put

he
[ eirpp] =——4 (x——x ),{m &

(” _! — Qur "X‘H,X Ve 4 ]";,-! = Vi T }’;-‘_?F,‘i };;'1’
from which the single set of relations
' - -

2 (%, 0, 8k (x', )] = f’d(x— xNgu (k=123 (440

follows *).

") One might think that, on account of the connection of the electromagnetic
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The commutation rule for the canonical variables of the nucleons is

[P(") ;’ k) m] — ]%' Slik) (slm' (45}

§ 7. Transformation of the Hamiltonian. a) Separation of the
longitudinal electromagnetic field. In effecting this separation we
put:

- - -
8:8\+gJ_:
=5 -+ s
ﬂ:ﬂ‘—l_ﬁd_-
B:Bin_'_ﬂexs

> -+
where &) is the longitudinal and &, is the transversal electric field

-
(similarly for A); B, is the part of the static potential which is
created by the system of nucleons and meson fields, while B,, is
the contribution of other sources eventually present. We now must

eliminate _é\‘. §H and B, from H. This problem has been extensively
dealt with by several authors, so we can confine ourselves here to
giving the results.

For the first term of H we get

J Hydv= J Hyydv— [‘:mes %Ldv— W(_éi)

The last term denotes a quantity proportional to the square of the
perturbation parameter (e2/hc): and therefore generally may be
neglected. At the same time we then must replace the gauge
derivatives which occur in H; by ordinary derivatives, and thus

—->

= -> =3 e S g
write F, G, I', @ instead of F, G, I', @, where the first group of
quantities are the same as in M.R. Similarly we must proceed with

=
Hin, s and ¢.

and the gravitational field, the c-number character of the latter might be affected
by (44c). Now from (51) follows (Cf. I (27) and (28)):

helZw . %
[Xus Fl=— == 5 6 (x—x) 1,,,3"

[}

and it is easily seen that this does not give rise to any new commutation rule.
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Further we have
> —>
H . = Hy, ‘J Snual Ay do
while the last terms of H gives

- ==
| Hiodo= [ Husdo+ G+ [eBuds,  Ho=1E +

Here G is the Coulomb energy of the system, o is the total charge
density as given by (42). Infinite electrostatic self energy terms
have been suppressed. Consequently the total result is (in the

-+ > -
following we write &, R, B, H,) instead of &,, A, B.. Hy,
respectively )

H:J'mﬁ do+ Hy, +me dod- G— f;ﬁdv-f—‘]'gﬂ dv | (46)
with

Hip= 4 {F2+ G2 + (@2 + V3 — B T+ T M) +

L3P 0 2 U R Q)+ 4 (8- HQ B, (47)

lFftm :E
4

L 142t 1)
0{) a0 pld) 4 gt (——;3 my,c? 4 23 mpcz)‘)*l. (48)

If we suppose that all wave lengths occurring in the Fourier-
development of the electromagnetic field are large compared to the
dimensions of the nuclear system, it may be shown that 10)

J eBdv—=128,+ P grad, B + (Q grad,) grad, B,, (49)

f :édv = §D ‘i}s + ﬁﬁg 41 grady) 5{, (50)

where the index 0 indicates that we have to take the value of the
quantity at a fixed point of the nuclear system, (its centre of gravity,
say). Further we have introduced the following quantities referring
to the nuclear system:



its total charge: ¢ = [p dv,

- -
its electric dipole moment: P = [ p x dbv,

+

> >
its magnetic dipole moment: M =4 [x A sdv,
its electric quadrupole moment: Qe =1% [0 x; do.

Instead of (49) and (50) we may also write:
f(gfs +sA)dv=eByt 8D+ MU - (Q grady) &+
d .= = " -
g i P 1 (Qgrady) 6. (51)

(For processes in which the total energy of the system is conserved
the matrix elements of the time derivative on the right of (51)
vanish ). '

b) Separation of the static meson field. The equations deter-
mining the static fields are:

%:fgrad Vv, ) : y " \ \
> ik = Pit + Siks
A

f'm- — (lev + S,u e

o S

?‘:_grad'll-"_{_P. ’ [} -] Q 5
s hi=—w; -+ s?, ’ (52)

> o
dIVF:_,qu_LNr )u_ et S

. B =t

R

A o o o
rot G = " U. / fm' y:_‘u_I u” +M;m‘ ]
!

3 ] .0 o 0 S

div '=— 2 W, h*  —=—p*w--M, |

The equations in the first column define the static field; those in
the second one are the same but now written in tensor form, while
in the third column the 5-tensor form is indicated. Any “tensor”
labeled with © is the same function of the static variables as the
corresponding tensor in the former equations is of the ordinary
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variables. Of course this covariant form of the equations has no
further meaning as the process of splitting off the static field is
not invariant; it will be seen however that it is very useful to work
with these equations in their 5-tensor form.

As has been shown in M.R. the static part of the fields may be
separated from all variables by means of a canonical transformation:

a

A=81AS, (53)
where the unitary operator S which transforms the function A of

the old variables (from now one indicated by ﬁ v, ...) to the

5
same function of the new variables (U, V,...) is given by

S= exp.hicK.

K= J do[fugur — e £, ] — fdu FU-—UF+ 7 a]. (59

The transformation of the terms of H which do not depend on the
electromagnetic field has been treated in M.R. Further [ Hy dv is
of course not affected by this transformation, so we have to consider
only more closely the Coulomb energy and the last two terms of
(46), or their equivalent (51). Thus all depends on the trans-
formation of p and s.

First we will transform ;m and g,,.. and we will do this by making
use of the 5-vector .;;cs (see (40)) from which both can be derived.

As a consequence of (53) *)

;.t :i(f’"ﬂ A ﬁ’)a;_-_SWI g S: %o‘l__l_ ;_i K sp%l
mes he * mes 6“ ! .hC )
) 7 5 1 g i 7 l
=ttt S it el 55

Terms for which [ == 3 need not be taken into account, as they are
of higher order than the second in g1 and g,.

" {A_BE’ =12, [, (A, Bi].. . i1 is the number of brackets.
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We now introduce a set of variables marked with 1 that refer to
free mesons. Of course:

—lP- =3 —Ir - 1 i
U=U.F=F,¥Y=%,K6 &—1o,

while
1 1

1 - - - >

V=—u?divF , G=rotU , I'=—grad ¥,
S0

i 1
- - > 1 - - -
G=G+8S,V=V+u?2N, I'=r+Pp,
= 2 -]> - =

Snee=Sues + 1= SAU—p?FAN+EPA W], (56

For the second term in the development we have

st= [K s4].
In calculating this commutator we must use (43); we then get *)

%:ﬁﬁ@Am%Wﬂ“”%WAﬁwmﬂ—
— }r ](f(,q/\f'f*a [t u] dv’ +

- J (e Awe [fg'a-f"-‘"] dv’. (57)

The commutators occurring in the integrals are composed of quan-
tities with the same isotopic index, which has been omitted. The
contribution of each term to the 4-vector sfy is then found by
inner multiplication with y,! and with the help of (155), (16b) and

of I (16)—(18). Thus the first term contributes (apart from the
factor e/hc)

o

- — - —i —ar 1 :>
to em: —(FAUWs; to suy: —(FAV)s=—(F A V)s—u2(F A NJs,
*) The first term has been computed making use of:

e, fl =7y l'e, ] 4 o, Lo, £
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and the second

to au: —(F A W — (F A B

1 o 1 [}
- = -+

= o - =F g o
to sp: (GA Wa+ A W)+ (S A Ws+PAT)s.
The third term gives, after multiplication with 7' and keeping in

mind that i‘l4 = ‘jl — )
o . ) 1
= hl_c J (Fra A\ £50)3 [ !, ug],

>
so it does not contribute to g, while it gives for s,

o
J

3 - 5 -+ 1 : 5 - -
= j (Fi A B (Ui, Vid'= 5 2 [ () A [Ui.div F)
Now

[U;.dwF]ﬁh—cai,‘i(; =" 0 sx ¥,

e
therefore the third term gives for s after a partial integration

—(F A V)a+ 42 (F A Ns.

Finally the last term of (57) becomes after multiplying with },};,»
. . (a] l E = ’ I )
- ;i. gj (™ A wi)s [fies £11] - [(w" A W)s [hS, hi]

from which we infer that it does not contribute to gy The contri-

S
bution to s, can be found in a similar way to the treatment of the
(1) ¥
preceding term. The result is

5 . > i B - )
(GAWs + (TAE)—E A Ws—(P A W)s.
Consequently the complete result of (57) becomes

{+]

n=ox=p UAF+UAF—¥ADs  (59)
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- -+ e = = =
S(1)—Sx— ;‘zC(S ﬁ D—a~FAN+PNEh+
+ £ BAU—p?FAN+BA Pl (59
where
1 r: l

Sx =7 (G/\II+G7\\II FAV—F/\V+P/\'1+1‘/\9) (60)

Now we must find the third term of (55)
{22 i "
5(2) = E}TC [K, Sm].

The calculation of this commutator goes by the same methods which
we have used to find sf. It gives rise to field-independent (f.i.)
terms as well as to terms quadratic in the meson field components.
For the calculations in the following chapter we are only interested

in the former which we here directly give:

AF)s, (61)

So

f.i. part of = Qexc =<
p 0(2) = Qexch hc(

= =p. B = ,.\ —0} —DP 7 =¥ o
f.i. part of sm:sm;,—h—c(s AU—p2FAN+PAY), (62

with

o o
- - >

AU—FAV+EITAW);. (63)

e

Sexet = h—i (
Thus, from (58) and (61) we may infer that to the approximation
indicated

Omes = Cmes + €x + Qexck (64)
and similarly from (56), (59) and (62) that

1

- - - -

Smes — Smes + Sx + Sexch « (65)

(64) and (65) can Jmmedlateiy be understood if one remembers
that any fieldvariable A OCCUTTING iN ges iS approximately the
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sum of a static part A and a new free meson variable A. Inserting
this one gets: a) a part of 0., depending only on the free meson

variables, namely ¢n.,; b) a part depending both on A and A: Ou

c) field-independent part of g,.. : O:sen! Similarly for :mes

We must now apply the same transformation to s" . This
calculation is quite straightforward. For the deve]opments of the
next chapter we only need the f.i, part of s-:ud and it can be seen

that this is simply s* . Thus, summarizing the result of the trans-
-+ >
formation, we may state that, in order to compute ®, ¥ and @ in

our approximation, we may put

@ — @nucl + OQexch s
> > -+
§ = S.ucl —l_ Sexch »
Q
> > o
To calculate ® we remark that F = — grad V and
e Hrik 1 -+ >
) B fp — : W= exp, —x | x—axt®],
[ ol gap 9 55 exp. —#|
. 47| x—xl? |

Bringing U and V in a form in which the nuclear variables occur
explicitly (cf. M.R. equ. (14)) we get:

e € g1 62 : bz Tk —ry
- 21— x(” -~ > (v A T¥)e, (6@ N\ ) e~#Tik,
7 20— 20— -E B 7 (40 A oy (o) A Y
with
- ¥
ic x(fl_x‘:-’l‘l
il — —°
0 -+ =5
| 2t — ) |

Further we have replaced ¢{) by 1 which only gives a difference of
the second order in the velocities.
@ is found in the same way. Here we make use of

i k)

e e—FTir ) + xlk
x O @) dy =

j e Sn‘u 2
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and get

Qi = ,2 :(L_Tltl) x“]x“’
2

__& &8 5 (DA t®)g | (acld - xclh) (5[:‘}/\}1’{{) e—rik . (67)
l6zhe” = % *Vm m’ 0

=
For ¥ we have

- - -+
m — mnucl —f_ mexch *

= =

To compute .., we introduce in s..., the explicit expressions for
the static field variables (see also M.R. (37) and (40)) and then
get

e = o A | —gTo0 G0N GO )+

lfl

( (f) v{el) f“l/'\ (Uckl/\ f(m f“) qD”“

g§+_—>-+ > g:s » 2 > >
T . olf ok £19) & (x—aclt) + =2 (50 7 ) f} (o) fi) |,
t

i
-+ - -
[® = grad® @b, 71 = grad'd
-+
Therefore ..., becomes

-+

Mo _2_ 2 (A H)g L_gg f i Aotk (o Fiky @D g -
9% > > X gz—>. > > >
‘E‘?I(“m VD) (£ FR) (/o) dp 4 ,Tg (0 A0t 6157 00 @ (rgg)] -+

9-2 o T
+ 55 [[Gonm G |
e

The first two terms describe the “exchange” part of the magnetic
dipole moment due to the vector field and the other two the con-

tribution of the pseudoscalar field. The separate expressions for
these two parts are:
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—Pvec'nr 2 E i r 1 _ rik

e -+ - _1 B 1 )
+ (0% zi) § oI (2@ 4= x®) } (2 ULk " 2(#&7:)2):' D (zik).

5 F 1
P8.5C —— 51 i) [k) i) lk) .
me\ch gZ 2 h (T‘{ A & [ 0 ] /\ ¢ ) 2 }12

+ (0 ) za(*'/\(x“'—sxlk’)i( L zfulr-kﬁﬂm”“"

2 Uik

These expressions depend on the coordinates of the centre of
gravity of the i~th and k—fh nucleon (neglecting the difference
between my and mp) and it is remarkable that this is no more the

- - >
case for M. = MIGT - MBS, which, as regards spatial

i
variables, only depends on r;x, and thus is a translation-invariant
quantity, The complete expression for the magnetic dipole moment
of a nucledr system thus is

1—)

M=2 1) (@) (i) o | () A ok 1 4
= T 2 (x /\a)+92 zh (T At } (U /\G) ‘L:LZ

£
2

wrie  (w e

1 (;(f)_;rk) (;;“‘" A :ik] (1 -z 1}1)] P (rur) -

Finally, we will give here for later purposes the expression for

>
the time derivative of ¥ which has been computed by MeLLER and
ROSENFELD 10):

P— < Z(1—f) ol o

+ e 20 A T)a (0—x®) (g2 + g3 5) & e

In calculating the time derivative of the quadrupole moment we have
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made use of the same method which was followed to find ‘25 We
will here merely state the result:

’ e i S
Qi = — Z(1—=)) (@l x + xi olf)) +

#y
€ 3 (plm) A ) (lm) seim) ) i) (o2 L 2 glm) gl (
"'Thcm,n(f I T (el M — P i) (g2 g2 o ) @ (£mn).
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CHAPTER III.

THE PHOTO-EFFECT OF THE DEUTERON.

Summary.

The photo-disintegration of the deuteron and the capture of neutrons by
protons are discussed from the standpoint of the MoLLER-ROSENFELD theory
of nuclear forces. The general expression for the cross section of the photo-
electric effect turns out to be identical in form with the corresponding quantity
in the old BETHE-PEIERLS theory, while the photo-magnetic cross section contains
an extra term due to the meson field. As a consequence of the different wave
functions used for the ground state of the deuteron the cross sections decrease
more rapidly with increasing photon energy than in the old theory. The absolute
values for the cross sections are of the same order of magnitude as found empiri-
cally, though definite numerical results can as yet neot be given, owing to the
unreliability of the deuteron wave functions used, This circumstance makes a
definite statement with regard to the angular distribution premature. The capture
cross sections also are of the right order of magnitude and, as in the old theory,
the 1/v law appears to be a magnetic effect.

§ 1. Introduction, The discovery, made by CHADWICK and
GOLDHABER 1), that the deuteron can be disintegrated under the
influence of y-rays of sufficiently high energy, provides us with
most valuable information about the interaction of electromagnetic
radiation with nuclear systems. This effect is closely connected
with the capture process of neutrons by protons, which especially
plays a prominent réle in experiments with slow neutrons. In the
earliest treatments that were given of the photo disintegration 2) 3)
as well as of the capture, these effects were considered as photo-
electric (PE) processes, (interaction of the electric field of the
incident wave with the nuclear system). The cross sections thus
obtained for the PE disintegration were in reasonable agreement
with experiment, but there turned out to be a difference of several
orders of magnitude between theoretical expectations and the
measured values of the capture cross section. This point was
cleared up by the remark of FErRmI %) that, besides the mentioned
processes, one has also to take into account the photomagnetic
(PM) transitions, due to the interaction of the magnetic field of
the incident wave with the magnetic moments of the nuclear
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particles, (cf. also BrErT and ConpDON 3)); it was shown by him
that the slow neutron capture is essentially of magnetic character
and that the well-known 1/v law could be explained on this
assumption. Thus, all experimental data known at the time could be
accounted for on a theory based only on the assumption that the
range of the nuclear forces was small compared to the radius of
the electron,

More recent experiments by voN HALBAN 6), however, seem to
indicate a discrepance with theoretical expectations on the angular
distribution of the disintegration products: while for the PM effect,
(corresponding to a transition between the 3S-state and the 1S-state
of the deuteron), this distribution is isotropic, the contribution of the
PE effect (a 35 — 3P transition) per unit solid angle is proportional
to sin 26, @ being the angle between the incident y-ray and the
ejected meutron. Therefore, from the expressions for the differential
cross section of both effects, which we will call d@<! (@) and
d@mraan, we find for the ratio of the intensities at @ — 0, (&, ) and
0 =a/2, (D.):

@H . d @magn
@, d o | P (w]2)° (1)

For ThC” y-rays this ratio was calculated to be 0,29 (assuming
the 1S-level of the deuteron to be a virtual one, as now seems to be
certain ), while the measurements of vON HALBAN give a value that,
(considering the experimental uncertainties), lies between 0,01 and
0,13. This effect, if real, constitutes a difficulty which may be
expected to be cleared up only by a deeper insight in the nature of
nuclear forces. It is therefore of interest to see whether our present
conceptions of the interaction between nucleons can clarify this
point.

We shall here for this purpose adopt the standpoint of the theory
of MeLLER and ROSENFELD 7), according to which nuclear forces
are described by a mixture of vector and pseudoscalar meson
fields ™). In the next two sections we will treat the PE and PM
mly, a discussion of the PE effect in the frame of the meson theory
of nuclear forces was given by FROHLICH, HEITLER and KAHN ®), assuming the
interaction to be described by a field of the vector type. However, their "Ansatz”

is clearly inconsistent with the general electromagnetic properties of nuclear
systems; we will therefore here not consider their results.
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effect from this point of view, while in the last section the capture
problem has been dealt with. The admixture of a D-state with the
8S-ground state of the deuteron has, on account of its smallness,
practically no influence on the effects under consideration. We will
therefore throughout neglect the contribution of this D-state, and
thus consider the ground state to be purely of the 3S type.

§ 2. a) The wave equation of the deuteron. We will first give
a survey of the properties of the deuteron wave functions, repre-
senting in a slightly different form results obtained by KemmEgr 9)
in a paper on the meutron-proton interaction.

The two nucleons that constitute the deuteron, and all quantities

that refer to them, are labeled with the upper indices 1 and 2
+ > > >
respectively; thus, for instance, x, p) and x@, p@? represent the

spatial coordinates and impulse, (multiplied by the velocity of
light c), of the first and second particle. The deuteron is described
by a 16-component wave function ¥ . (x stands for all those sets
of values of the degeneracy parameters that belong to the same
energy E). In the frame of reference in which the centre of gravity
of the deuteron is at rest it satisfies the equation *):

i hc —+ : 7 =
H, Y. (x)= (-1- agrad + f Mc* -V {r)) Veu(x) = E %e.(x) (2)
with

> = - > > o+ =
x=xW—x, r=|x|, a=alt)—q?, =0+ 05, M=Mny=Mp,

e*ﬂr
4nr’

V=l ) [g2 + g2 o0 6] .

According to KEMMER we can classify the non-trivial proper
solutions of (2} as follows:

T Ia: i i =%

i corresponds in non-relativistic tr{p]et Beate WI_th = ,i .
Type Ib: st wieh triplet state with I = j.
Type IIb: PP singlet state, (I = j).

*) h is PLANCK's constant divided by 2 a.
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Next we introduce the normalized spin wave functions:

1 L=
30 = ——=(0:m) , 0. o 0@ )
Ao 1/2( sg),l ay ,—]+ 1(31,—] 7(5,1)
m=0m 0, a=dm_ .00 |\

1
=175 (a0 — )

and similarly the “isotopic spin wave functions™ { and the “p-wave

functions™ &:

=00, etc.: (3a)
= dgg)'l 59(32)' i ete. (30)

(0)
We then have, to the first order in the velocities, (¥ is the
velocity-independent part of ¥ which we will call “large com-

(1)
ponent”, ¥ which is of the order of v/c is the “small component”)

(0) (1)

Y=¥4+Y : (4)
with
) '
Type 1a,1b: ¥=2%Pn Z" +2 Z° 4+ 1= ZA!]-J‘ (5a)
©
Type 116 : ¥=23¢ 11 Z,, s
and
1)
Type La, Iby ¥=1% Py 2"+ W2l + 127" 1+ 0 Z‘é-z (5b)

(1
Type ILb <1 =3¢ Py2, 1+ 31 22 + 3y 2] S

The functions Z and z only depend on the relative spatial
coordinates; introducing polar variables, (x = r sin ¢ cos @,
y — rsin sin @, z = r cos ), we obtain the following expressions
for them, (to these we will refer as (6)):



. QZJ = (j+m—1) (j+m) Yi’f?”/ 1 s
Ype la = : . () e e S el Ljﬁl,
i#j—l/zu =—2(j+m)(j—m) Y \ Ve ¢

ZA =V j—m—1)(j—m) Y'Y
o B QZI =1 (-m+1)(j—m+2) Y{5" 1
ype la, | AT i =2 - Ra(j+1
e 20 =L72(j+m+1)(j-m+1) Y(- J : T =
I=j+1 V2(j+1)(2j+3) r

) = jem+1)(j+m+2) Y]

/
\
s’z= = — VAj+m) (j-m-+1) Y™~ ”/
/ \

S 1 Ry (j)
(70— (m2) LY
Type b Z ml2 Y; YT -
L2 =+ m A1) (j—m) Y
Typellb Z° = yim L’i(j).
2! =— |V 2(m)(j-m+1) YV
Type Ia'szg = —2m ;" ? 1 —1)
I=j=1 |z = 2(j+m+1) —m Y“”“S 2172
\z?, = —2j Y(m]
(2 = L72(j+m) (j—m-+1) Y"1
TYpeIaszg =—2m i ( 1 Ca(j+1)
I:J*H?z—l = 1" 2(j+m-+1) (j—m) Y,‘-"””S 207234t
\Za =2(j+1) g
(2 =1 2(jm—1) (jm) Y ) L C (j)
Ib\zg :—2|/(_ITH‘!)(:?1) Y-(ml ‘ 2'/2]{j+1](2j—1} r
Type*) < \ 1 H'Y
" # =2 (j—m—1) (j—m) Y2{")  2172(2;—)) r
L2 =0,
\1/2 (—m-+1) (j— m+2)}""‘”/ . C2))
+221/F€%¢1)(;——m+1) Pt
L 2(+m+1) +m+2) YII") 2172243 -

*) The expressions before the braces are the same for both types. The upper
expressions behind the braces refer to Ib-states, the lower to Ib-states.
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The spherical harmonics are defined as in M.R. equ. (115); we
also use the same normalization prescriptions as stated there.
The large radial functions R(j) satisfy

V*Cﬁ_ﬂtﬂg+412”+qnuﬂza (7

for type la, 1b: I'=[1—2 (—1)/*+1]. 9‘1;9’ (

Lt (7a)
for type 11b: I'=[1—-2(—1)/] 91_41_92g

From (7) it follows that R., the asymptotic solution for R, is
given by

Ro=1) Zcosthetes oy=—F G+ 1)+0j: k=L'MEh ()

The factor 1)72/7 normalizes R, in the energy scale; as shown
by BETHE and BACHER 10) we have for ]

A‘J/ lzmk ©)

The phase constants d; are essentially fixed by the solution of
(7). With the exception of d, they are mnegligibly small if
(h/ME)' %% 1, (cf. BETHE and BACHER 10), p. 115).

On account of (8) we may write for the asymptotic solution of
the complete large wave function

Vg ule—=> 00)=B:(E, u; %, @) . — cos (kr +¢;), (¥ large). (10a)
£ (). . o). o), o o),

Further, the small radial wave functions are related with the
corresponding large functions by



Fely s (.c?:'_% R.(j—1)

e i (fi“ DRt +1

] f'(d%"f])mu) Mey g Y
Hi(j= _(dir+_£) Ru()

H? (j)= (dir_'_dr )Rn()

Similarly to (10) we can write for the asymptotic expression of
the complete small wave function:

Ve (r— o0) =B:. % .isin(kr—4¢;), (¥ small). (105)

b) Interaction with electro-magnetic radiation *). We now
examine the result of an irradiation of the deuteron with a mono-
chromatic polarized y-ray beam, and thus have to insert the operator
0 into the time dependent SCHROEDINGER equation of the deuteron:

ﬁa? (Hy + 2 e~ L conj) ¥,
where (see chapter II)
> > -+ > v
Q=8P+ MH-|(Qgrad) &; (12)
_8: and gf are the electric and magnetic amplitude respectively, taken

= e
at the centre of gravity of the system. ®, ¥ and @ of course also

*) The developments in this section are analogous to the treatment of the
PE effect for the hydrogen atom as given by BETHE 1),
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refer to the system in which the centre of gravity is at rest. Thus

in the expressions for these quantities given in chapter II we must
-+ -+

-> x ¥ x
replace x" by £ and x@ by iy Consequently we have

e g g:(rm/\,l.[z; (au]_|_gt2>)/\x° e, (13)

P=—2 (elD—22) —
4% 81" Bahe' x

-+

=g x A | (1—dt) a0 — (1—o2) o} +

e

b g, B AR B0 A (-2 4 a9

R (atr] ri k] {o(kl N\ rzk) ( + lerz )] e_”ik.

i

S

where 3 i
x0=".

20 ]

The expression for @ is mot given here as we will see that it
does not play any réle in these calculations. The expression (12)
for the interaction operator is sufficiently accurate if the wavelength
of the light quantum is small compared to the “radius” of the
deuteron, a condition which is well fulfilled for the whole energy
region of interest.

We now expand ¥ into the proper wave functions of the un-
perturbed problem:

LB, +2McA L (E 42 Meyjt

PNy The A" + Zde’ apy. Peae © w{15)

Assuming the deuteron to be initially in the ground state (0),
we have for ag,, (and similarly for a, but this quantity is of no
interest here):

—1 —
(B, 9°10)°— ;
— -—l— 4 ,
E,—E+m —E—E—h» " | (1¢)

(E,y]Q]O):fd;WE“Q W, S

apu=(E, | 2]0)°

—:;'("En‘ E+ha)f ——(—-E‘. E—h»)t )
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E, is the absolute value of the binding energy. The second term in
the expression for ag, can be neglected as it will not give rise to
resonance.

We now must obtain the asymptotic expression for (15); to find
this we can neglect the contribution of the discrete spectrum and
may write ¥g, (r — <) instead of ¥g,. Thus

L (B2 Moyt & ;' el 1
— L Bramen —
!pw:zvfdﬁr.(ﬂr’#lg O)e 7 ![f‘;u(z‘—)-oo).—E,*-—,
7 —
with
E—h»—E, (17)

Expanding around the resonance value of E’:
dk
f o~ = He
K=k +dE(E E),

(E',u|Q

0)=(E, u| 2|0,
and inserting (10), we get

i 4
i (E+2Met

Yoo = 2'B:(E, u: 9, @) . (E, | 2]0) [e' ], + e~ ]y,
1

where the plus and minus sign hold for the large and small com-
ponents respectively and

witr o “ﬁ:‘ r—%) [ELE)HEE;ENE'—EI
= dE’ . ——rou —
! 2{_{ E'—E
0
AR N e gk e 2
e—ikr de, e ;EH};)(& f”ﬁe_'ﬁ”g —E)
L= f ' E—E
0
Now *)
¥ u(E—E) _ oi B(E'—E) ) g 0 if « and f have the same sign,
0 )—2niﬁa<0<ﬁ.

*) CE loc. cit:11), p. 446.
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dE. d
Thus, if we take ut—?p— t))r, so— T — h we have
ikr
h=— *’”eT’ =0
and
— &8 = i(kr+zj)
Vo =—mie #° " DB (B, 1:9,9). (B 2]0) .
I

With

2 .
e(r=>0,8,9)=| Y% [*=3|IB:.(Epn| 2|05 (18)
"

the differential cross section is, (for a fixed direction of polarization
of the y-rays)

dP=pveldwm, (19)

where g is meant to be the average over the three magnetic sub-
states corresponding with the degeneracy of the ground state.

3. Calculation of the cross sections*). According to the prescrip-
tion given in M.R. we must break off our calculations at the first
stage which gives non-vanishing contributions to the effect con-
cerned. We thus will not have to go further than to the first order
in the velocities, that is to say, we will only have to consider matrix
elements (F |{2| 0) which belong to one of the following three types

Q) (@) > (1) * (0) (1)
f W Q W, d, J P2 0 W, do, J Wi QW do.

It should be noted that, even if (F|Q2]|0) satisfies this requirement,
it still may be negligible in our approximation if Q itself contains
velocity dependent factors,

a) The PE effect. 'We have to consider the transitions due to

- -
Q4= & P. Taking the x-axis as direction of propagation of the
photon beam, and the z-axis as the direction of its electric vector:

Qu=A®P,. (20)

*) I should like to thank dr. MaLLER for the communication of preliminary
calculations on the photo-effect which have provided a valuable check of the
calculations given here.
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We choose the amplitude A of the fields of the light wave such
that it normalizes the radiation to one (polarized) photon per sec.
per cm?2:

: hy
\A|2:2C-. (21)
First we consider Q5 .
Qe — : A () —2) z. (22)

As the ground state is antisymmetric in the isotopic spins and
o ((—) 1 =2; 1 (—) 1 00=0,

the final state must be antisymmetric with respect to 9. Taking
further into account the behaviour of (22) with regard to rotations
and spatial reflections and the fact that the ground state is of the
type la with I = 0, j = 1, we find the following possibilities for
the states that combine with the ground state, (behind each state
we have indicated in brackets the spectroscopic symbol that cor-
responds to the non-relativistic approximation):

La, T=1.7=23P3).
la, I=1,j =0
Ilbl=j=1_ 12P1)
while the familiar selection rule Am — 0 holds. From (5) it is

easily seen that to the first order in the velocities we have for all
these transitions:

(F | Q5 0) = f P e sﬁfo dv. 23)

Using (6) the matrix-elements can readily be calculated and we get
L76/6 1—1
La, i=1,j=2|2390)= —ﬁA LX<{ V213 00

e V6/6 =] s

(la I1=1,j=0|Q3 0)= %A.Il 0—>0 (24)
176/6 1—1
(16, j=1 [meig) = %A LX<{ 0 00

8—1/6/6—1-»-1.
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where we have indicated behind each expression the corresponding
magnetic transition; further

Ilzfdr.r.R;(l)R

]2:fdr.rR'5(0)R[,.

where Ry, is the large radial wave function of the ground state.

Now, by (7):
R.()=R;(0)=R=FR, (25)

S0
I,:IgiI:JdrI?Ror.
Q5" the second part of Qy, which is given by (see equ. (13)):

03 = — g5 AL D102 (0 A )y {004 5) A B e (26)

8zhe
does, in our approximation, not contribute to the PE effect. This
will be shown in the appendix.

With the help of (18) and (19) we can now directly obtain the
differential cross section. As the final states all are P-states, the
phase factors 0; may be neglected in this case. We then get, with
the help of (9) and (2) and neglecting those terms in B that
are proportional to (v/c)2, expressions which turn out to be the
same for the three possible magnetic transitions, so that they directly
give the average value p. The result is:

2

d o (9) = rdr| cos?®.sin®dddp.  (27)

This is the cross section for a fixed direction of polarization. To
obtain the cross section for an unpolarized photon, we have to
average over all ¢ corresponding with the same @, (the angle
between the direction of the light quantum and that of the neutron).
This we do by first transforming to other angular variables:

cos = sin ® cos y, sin ¥ di dd = sin O dO dy,
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where 1y is related to @ in the same way as @ to #; we then inte-
grate over all orientations v of the polarization direction (which
gives us a zonal cross section” for an unpolarized photon), and
multiply the result by diy/2x. This gives, on account of the factor
cos? 4y, an averaging factor 14 in the differential cross section:

2

sin* ®.sin @dO dy. (28)

_ 2y | ke
dqﬁﬂ(@):zilé—c JdrRRor
. |

The total cross section is
aely 2

(pe]_____- 12? IdrERor

0

£ (29)

This result is identical in form with that obtained in the BETHE-
PEIERLS theory. Deviations from this simple formula are at most to
be expected in the second order with respect to the velocities.

b) The PM effect. To begin with we consider the contribution
of the first term in (14), for which we write, noting that the magnetic
vector stands in the y-direction

ol — 2 A [ A H(1—e) a0 — (1—2) i} ], .

Now

Wo (1= =—1 , (1) =1

Tol—g) =1, ., 'L(—f) =1, :
so there are allowed transitions to states which are symmetric as
well as antisymmetric in the isotopic spins. In the second case
however (transition to a3D-state) the contributions are vanishingly
small in the whole energy-region which is of interest; we neglect

them in the following. If the final state is symmetric in the ©'s we
can write

gl . E A ‘4’/\ ol L )y
-Jmaqn—_g X ((J, +G )}}"

the only allowed transitions are to the state of the type IIb with
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j =0 (15), while Am = =+ 1. With the help of (6) we get (for
10 aswellas —1—0)

. nucl | . 5 BE d 1
(16, j=0| 22, | O)=ipm A —'{2—1 drrI:Ro (dr—-r) R(0) -+
(4]

where ttyg = eh/2Mc is the nuclear magneton. The integral can be
simplified by partial integrations. The result is

(I1b,j=0] 22 0 )——f‘quQ J drRRy : R=Ryu(0). (30)
0

The extra magnetic moments of proton and neutron are contained
in the second part of (22), namely those terms for which
i—Fk (= 1,2)*). These terms are “of course’ infinite and can only
be managed by using a cut-off prescription. Calling their contri-
bution to (19) Qnic, we have

(-c-\'tn — hm —-—gl—IEA Z' T.(n:] 2{;(1') L_ 1 +
magn a=d 4nhc 112 xze. 2 »

+ (60 2) 6 A &) (1= +JJ}3”%
)

e Fd

=»
Averaging over all directions of ¢ (which we indicate by the

- -
overlining of the left member) gives for any componont (o ¢) of o

&+ > > -+ >
(6 0) (0 &) =4 (6 ).

e -
Thus if we take for (a?) ) (o') A\ g), its average over all directions

=
of @, which seems to be an appropriate way to deal with this
quantity, we have to replace it by !/; (o{!) ol — {0 6?)) — — 2/3 ol

*) Other terms of higher order, which also contribute to these extra magnetic
moments, have to be discarded according to the prescription given by Mol LER
and ROSENFELD 12),

5
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We now cut off by replacing

lim M1(1_5)
otodnhe Mn' 3 \ g €

by a finite quantity which we call y and obtain

extra — 37 i) Iz)
—angn = Ho | LLA i 73 G}

For this operator only the 1S-state is allowed as final state. The
matrix-elements are of the type as indicated in (23). The result is

(116, j=0|Qu|O)=—ipou A2 ]drRRc.
b

We notice that
20(11B, j= 02 [0) = 15 (1b, j = 0] Q5| 0),

the perhaps unexpected factor 14 on the right arising from the fact
that we have to do with the magnetic moment of the deuteron with
respect to its centre of gravity 12).

At the moment the only way of dealing with u is to fix it with
the empirical values for yp and py (the magnetic moments of proton
and neutron in units tg):

=1 ey = —u. (31)
This gives

(Wb, =0 25+ 2253 O =— iy A L2

(ro—sx—14) | dr RRy. (32)
¢
Finally we have to consider the terms from the second part of
(14) with i k; we call the corresponding operator Qe which
reduces after some simple calculations to

.,

!-ily;f:ghn_eA (TH)A 7(2)]3 l:( A1) /\ 0(2} (‘ ze )

.J|

- (am A xO) (Um .cn)f o) A ch) (o“’ ru ( L)—j e—7r,
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As 3, (xW A vy 10, =24, ', (v A v?)3 1§, =0, the final states
must be antisymmetric in the isotopic spins. The only states that
combine with the ground state turn out to be

Type 11 b, j=0, (1S).
Type 115, j—2, (‘D).

The matrix-elements are found to be again of the type (23). They
are

Lot 116, =005 a0
—l-—>0§( G == | magn )

B . M zl/éj 4 )_
" 4mhe ”LHM,"AT dr R R, x_r—s &
Q

1_*0 ? ll b 2 !)O\Ch
=] 05 _]-—- ' —rnagn‘ )ﬁ

g . 2!/10 1 .
_{r:(h ’OMmA sz‘RU (x—r—l-])e .

(34)

We have verified that inclusion of the latter modifies only very
slightly the final results and we will therefore ignore its contribution.
The transitions to D-states, to which the electric quadrupole moment
gives rise are also small and will be neglected.

The differential cross-section is computed from (32) and (33)
in the same way as (28) was found, (averaging over the directions
of polarization here gives a factor 2a). The result is

d@magn:_‘%'ugglflz.sin @dﬂ')dl{) (35.)
with

]:—L{Z—z(,up— UN— %) deRRDT

2
e B famn (225) e

(36)

47 he M, ®r



68

Therefore
4

pmagn — 3_ 1“(2) . _::; ‘]Iz_ (37)

c¢) Numerical estimations. For the numerical evaluation of the
cross-sections we have taken for the large radial wave function of
the ground state the approximate expression obtained by WILSON
under the assumption of a nuclear potential of the type as used here:

s o =
f a3 53

Rolr)= |, 7€ 287, (38)
Further we take E, — 2,16 MeV. Assuming
Mn _ 1
M 10’
we have ¢ = 2,13 and (cf. ML.R. (107), (108) (109)):
g g5
i —0.027, ¢y —=0.065.

For the phase d;, of the 1S state which occurs as final state in the
magnetic transitions we have, according to BETHE and BACHER 10),

p : k

Sy = . by —= —— 3 39
€os 9y VB LR sin dgy YT (39)

where
== '/TE& : (40)

The plus or minus sign holds according to whether the first excited
(1S) state of the deuteron (with the energy Ep) is real or virtual.
Experiments have decided for the latter possibility. We have taken
Ey = 105.000 eV. Further we put *)

— ra sin kr
R—llf;(_COSkf+ T ), (41)

P—3 ],/—i sin (kr + d;).

*)  See loc. cit. 19), p. 124 equ. (77b), (77¢) and p. 128 equ, (93a).
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Inserting all this in (29) and (36) and carrying out all integrations
we get *)

a o @ el (Mc\ v =Y 1

- (42a)
=5 ro2 ; 9 d¥
2 (a(k)) sin @.sm@d().ﬂ
g 2d5 e (Mc\ hr (=Y 1 1\
& —T‘E'(T -Mcz(ﬂ k(ru:)) \426)
magn a® e’ hy ad : 1 magn s d
dom :Tz.zc.mz (k) BT A P.sm@d@.zr.(é_’;a)
magn a’ eZ hy % 7 1 maqn |- -
S :s*“c-Mcz(k) wTpl BT #3b)
with

92 M 2172 3§ 4 A% 1 VY
t i a3 (—z?m“”““)(ﬁ) '(m) |

B ": (;)2 .o bl =1 (“J;Zj (%)2 (45)

We notice that for very large energies both the PE and the
PM cross sections decrease like »—":, that is more rapidly than in
the “old” theory (wv»»—":). Apart from that we may state in a
general way that the results for not too large frequencies are of the
same order of magnitude as in the old theory. As regards the
absolute values of the cross sections we have thus reasonable agree-
ment with the measured values, viz. 5.10—28 ¢cm2 (CHADWICK and
GOLDHABER 1)) or 9.10—28 cm? (voN HALBAN 6)) for the y-rays

*) It should be borne in mind that e is expressed in Heaviside units in
accordance with the normalization (21) of A.
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of ThC” (h» = 2,64MeV), and 11,6.10—28 for an energy of
6,2 MeV (ALLEN and SmiTH 13)).

As regards the angular distribution, it seems that the terms
specific for meson theory, (arising from ! f,,fgn) do not appreciably
ameliorate the situation. However, we are unable as yet to decide
this point, since we have noticed that the wave functions at our
disposal are much too unreliable to allow definite statements
regarding such a sensitive effect (see also the Appendix).

5. Capture of neutrons by protons. The cross-sections for these
processes can immediately be inferred from (42) and (43). We
have in fact, calling the cross-sections for “electric” and “magnetic"”
capture @¢ and @79 respectively

2 2
21_3 i el magn __i v magn
qDC_Z(kc)@'(p“ _2(kc)@ :

Therefore
6
el __ a5 e_z (Mc) hy (x)s 1 (1)
djc_gm'hc' h ) M K \a(k))’ (#6)

¢magn_a_3 e h (,_. )J(x)a 1 BT, (47)
¢ he " Mc’ k) KK+

We are especially interested in the behaviour of these expressions
in the region of thermal neutron energies. In this region we may
write 2 for k2 + 2 (as 2 = 25,7.1022 cm—2),

It is then easily seen that, for thermal neutrons, @ o k, while
D" o 1, %' can thus be ignored, while, just as in the “old”
theory @, " gives us the well known 1/v law. The agreement with
the experimentally found values: 0,27.10—24 em?2 for a velocity of
2,2.105 cm.sec.—! (FriscH, v. HALBAN and KocH 14)) and
0,31.10—24 em? for a velocity of 2,5.105 cm.sec.—! which was
obtained by AMALDI and FERMI 15) appears to be satisfactory.

APPENDIX.
> >

To calculate the PE effect we have made use of operator & ®
But, as

a3, 4 @3
Eé—l—ﬁ{ ).
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and as the second term on the right has vanishing matrix elements

for the transitions concerned (because of energy conservation), we
> >

may use the operator f# ® just as well. This we will do here; in

the centre of gravity system we have

>

D= (v A 1)s {g? 4 g2 o) o8} x0 . (48)

e e e
3 - o

Denoting & 2_5 by Q. we have for the first part of this operator:
A'e
2

ELI = [(1 - I(1)) (11 _!_ 1 _1-(21 [2)]

(A" = ic/» A is the amplitude of the vector potential). This gives
rise to the following matrix elements:

g L 1—=1
il 1—1;_2\-%1 O)=—eAl 22173 0—=0
(_ 1 —1—=—1
(la, I=1,j=0|84 (n::l-,_-,zr.uta 0—0
B 1 1—>1
b, j=1|840)= V% 0 0—0
—1 —l=—1

With

L= fco(.lemz ).

:_§Vﬁfc (F=1)Ra{l ch (7=0) Ry

1, = fc;* (j=1) Ry (0).

0
Now (see (25))'R, (1) = R, (0) = R. Taking into account the
equations (11), we get introducing

I;:‘JRT(‘%—%) R, dr,
0
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vaa
Ll e e __ieA'h .
(IH,I—I,}-—2|.QB[|0)— Me I[([/%B
L7 6/6
eah §° (49)
—_ g — O! __-Ie —
(la,1=1,j=0| Q| 0)=—Z"1 ;B
o I —176/6
(1B, j=1| 84| 0)= —i%;hbs 0
e

The second part of (48), (the corresponding operator is called

27,), must be treated in the same way. We obtain expressions
entirely similar to (49); we must in (49) only replace

h gl \ 92
Mc '™ T gahe I

where
IH :fdt' e‘”T? Rg.
0
Now it is easy to see that
S = ool h - e 1 )
drRRDr——mfdrR (z‘ ;) Rn—}—e

91+92 — % S
2w he Jde RR(}

(50)

In fact, R and R, satisfy the following equations:

R (d 2 gite e 5
[H(ci_rz_?)+£_ fn " R0

“h? 3g+ed en],.
[M — B+ e ]RG—O.

Subtracting these equations (E + E; = h»!) and multiplying the
result by r/2, (50) readily follows.
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Therefore
(F‘ ﬂ'IO Flgf‘)nuc]l

That the matrixelements of (F | 8 @mh | 0) indeed vanish in our
approximation can also directly be seen. For these are all pro-
portional to

Y. 8192 —2r D
i hcfdr e " R R,

and thus are obviously of higher order in the velocities compared to
those of O, . Now the matrixelements of @ and Q) are of the
same order, as follows from (52) below, which proves our
assumption.

Using the right member of (50) to calculate the PE cross section,
we find, in the same way as we have derived (42),

. a® e? M¢? ¢ \3 d
deifg=r (;) .| B sin?©. sm@d@—i} (51a)
3 2 3
a_® € M (x\ 1 5,
@—s'hc'hv'(k)'kz'w' (518)
with
Muy (1 V, #2148 (2)2
- j—
Be=a 51 '(a{k))+ 4the "\bK)/ 192}

On account of (50), (51) and (42) are mathematically equivalent.
If one inserts numerical values in these equations, however, one
meets with a serious discrepancy between the final results so
obtained which clearly is a consequence of the approximative
character of the wave functions we have used.

Finally we remark that the first term on the right of (52), arising
from £ is of the same order in the velocities as the second which
arises from 2. This completes our proof that the matrix-elements

of g Q_D:xch vanish in this approximation.

It should be noted that this result is also valid in a pure vector
meson theory provided the dipole interaction potential (including
cut-off) may be regarded as a perturbation,
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CONSPECTUS.

In hujus dissertationis primo capite explicatur theoria jam a
compluribus auctoribus elaborata, qua campus gravificus et campus
electromagneticus in spatio projectivo quintidimensionali complecti
possunt; deinde ducitur expressio generalis tensoris densitatis
energiae et momenti cujuslibet campi. Eum tensorem legum campis
impositarum causa symmetricum esse et evanescentem divergentiam
habere ostenditur, qua secundo loco dicta proprietate energiae
momenti ac electricitatis conservatio exprimitur. In quarta para-
grapho adhibetur formula generalis ad calculationem tensoris
energiae et momenti campi Diraciani,

In capite secundo extensione theoriae projectivae ad campos
mesicos ostenditur, quomodo in illa theoria Meller—Rosenfeldiana
de viribus nuclearibus incorporanda sit. Hac tractatione etiam
minuifur numerus universalium constantium quae camporum mesi-
corum intensitatem determinant, et naturaliter introducitur inter-
actio mesonum cum campo electromagnetico. Postquam deinde
ostensum est. quomodo campus electronico-neutrinicus tractandus
sit, expressione tensoris energiae ac momenti constituta, systematis
functio Hamiltoniana et electricitatis distributio ducitur. Regulae
commutationis variabilium campos mesicos describientium in com-
pendiosiorem formam traducuntur. Functio Hamiltoniana postea
transformatur separanda longitudinali parte campi electrici et statica
parte campi mesici, Ejusdem methodi applicatio ad electricitatis
distributionem transformandam accuratius discutitur et expressiones
indicantur momentorum dipoli et quadrupoli electrici necnon dipoli
magnetici nuclearis systematis.

In tertio capite photodisintegratio deuteronis et captatio neutronum
a protonibus ex theoria Moller—Rosenfeldiana de viribus nuclearibus
tractantur. Expressionem generalem sectionis efficaciae effectus
photoelectrici invenitur formaliter identicam esse ei, quae ex
anteriore Bethe—Peierlsiana theoria sequitur, sectionem efficaciam
photomagneticam autem insuper accessionem ex mesico campo
orientem continere. Sectiones efficaciae energia incidentis photonis
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crescente celerius minuuntur quam anterioris theoriae ratione.
Magnitudines absolutae sectionum efficaciarum ejusdem magnitu-
dinis categoriae sunt, atque magnitudines empirice inventae, quam-
gquam certi numeris expressi effectus nondum dari possunt propter
incertas functiones undarum deuteronis quibus usi sumus. Haec res
certum judicium de angulari distributione praematurum reddit.
Sectiones efficaciae captationis eaedem veram magnitudinis cate-
goriam habent et, sicut in anteriore theoria, legem 1/v magneticum
effectum esse apparet.



STELLINGEN

I

Wil men de mesontheorie zodanig formuleren, dat deze covariant
is voor een continue 5-dimensionale groep van transformaties, dan
is van [ysisch standpunt de projectieve formulering te verkiezen.

11

In een systeem, bestaande uit een combinatie van een vectorieel
en een pseudoscalair mesonveld kan men een rechtstreekse wissel-
werking tussen deze velden invoeren, door aan de Lagrange-functie
extra termen toe te voegen. Eist men de in de vorige stelling ge-
noemde invariantie, dan legt dit aan deze termen een grotere
beperking op dan de gebruikelijke eis van invariantie f.o.v. de
Lorentz-groep doet.

111

Metingen van de warmte, die vrijkomt bij een Uraan-splijting zijn
niet te interpreteren zonder een gedetailleerde kennis van alle secun-
daire processen, die op de splijting volgen.

Vgl. M. C. HENDERSON, Phys, Rev. 58, 774, 1940.

v

Het is mogelijk, een differentiaalvergelijking op te stellen, die
aangeeft hoe een groot-kanoniek ensemble ontstaat.

v

Het vereenvoudigde model van FURRY voor het kaskade-shower
fenomeen kan zodanig verfijnd worden, dat het meer in overeen-
stemming is met het werkelijke proces, Het aldus verkregen model
heeft qualitatief dezelfde eigenschappen als het FURRY-model.

H. Furry, Phys. Rev. 52. 569, 1937.






VI

De berekeningen van HAFSTAD en TELLER tonen aan, dat men
uit de gegevens omtrent de bindingsenergieén en spectra van lichte
atoomkernen niets met zekerheid kan zeggen over de bouw van die
kernen.

L. R. HAFSTAD en E. TELLER, Phys. Rev. 54, 681,
1938,

VII

Het is gewenst de werkzame doorsneden voor de foto-desinte-
gratie van het deuteron te meten voor zeer hoge foton-energieén,

VIII

DIRAC's opvattingen betreffende een ,mathematical quality in
nature” is onaanvaardbaar,

P. A, M. DIRAC, Proc, Edinburgh Soc. 59, 122, 1939,

IX

Men kan de definitie van ,,pool van een punt t.o.v. een punten-
paar op een rechte” uitbreiden tot ,,poolfiguur van een p-dimen-
sionale vlakke ruimte t.0.v. een lineair k-stelsel hyperkwadrieken in
een n-dimensionale ruimte”, (p <= n). Het aantal dimensies van
deze laatste figuur is n— |k—p|—1, (n—12=|k—p]|), zijn graad

G+D! o e, @D

o (o—k+ 1)1 k!’

k—p+1)!p! S s

X

Het is zeer gewenst, dat voor candidaten in de natuurkunde hetzij
een college over ,,algemene methoden in de fysica” gegeven wordt,
hetzij in seminaria of colloquia aandacht aan dit onderwerp wordt
besteed.,

XI

Het verdient aanbeveling om in wiskunde-schoolboeken de uit-
drukking , bewijs uit het ongerijmde” te vervangen door ,,bewijs van
de ongerijmdheid van het tegendeel”’, (zo men deze methode al
wenst te handhaven),



Tl L E
o Er

I.II '.E ..-?. = 'Fl

ll-lli -rlﬂ'.i-l:-q il b ol
1 -'-'-"'!ﬂ“-
_ _""L'I-I""'II
:i' .nil.ir.-l.- -:.q.u-.i -

I .3_
u -I . . . 1 ] I -

i "
| T
1)



Al e = S et
. . .
=Rl | - .

]
=1
o 1= B dl n

_WlFT-lrl‘-. -‘- !*I.. 5 :
-Il::-l:.'.-jd":-':!' .-F‘..rl ﬁll-"l:gf '-E' I_I!EI . B

o
) B
. i

=i - | :
e =i L i B = =l Nl -
- | 1 - -1 e D e [l o
'F 'I :_,;:L Il‘l '_l'- - |-‘ r-.:. Bt |I I _J | - ]
= |_|._'_.-'_. B o= _IJf Sl r " - ¥ 5
N Lapgrs S Ll - I I |l\
- [ LT N : iy -



\IIIII “

II:I-\i

L
1

=
5
|§__!'

! i
:;"I—_.'”E'. TP
__-.; -I’r‘l

I
r

L_ I|
_%_'II"









http://www.tcpdf.org

