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AVERTISSEMENT.

Cet ouvrage pouvant servir 4 Penseigne-
ment, j’al dil enlrer souvent dans des détails
minutieux , et suivre, pour l'exposition des
matieres, l'ordre le plus propre 4 en faciliter
Pintelligence. L’ordre que j’ai adopté est celui
que 'on suit maintenant dans les cours de
Mécanique de I'Ecole Polytechnique. On s’en
formera une idée précise, en parcourant les
tables analytiques des matiéres qui précédent
les deux volumes. Je me suis aussi attaché &
multiplier les exemples nécessaires pour éclair-
cir les théories générales; ceux que jai choi-
sis ont €té pris, surtout, dans I’Asironomie
et la Physique, et quelques-uns dans I'Ar-
tillerie.

Sa destination principale est de servir d’in-
troduction 4 un 7raité de Plysiqgue mathé-
matique, dont la Nouvelle théorie de ' Ac-
tion capillaire, que j'ai publiée il y a un an,
est déja une partie ; les autres parties se com-~
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i AVERTISSEMENT.
poseront des différens Mémoires que j'ai écrits,
soit sur I'équilibre et le mouvement des corps
élastiques et des fluides , soit sur les fluides
impondérables, et que je me propose de réunir
et de rendre aussi complets qu’il me sera
donné de le faire.

On trouvera, a la fin du second volume,

L o oy ) TR

une addition relative a 'usage du principe
des forces vives dans le calcul des machines
en mouvement.
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TABLE DES MATIERES

CONTENUES DANS LE PREMIER VOLUME,

e
INTRODUCTION.
Definitions de la matiere , des corps , de la masse, d’un point
maiériel , et de la force, n r et 2
Objet de la Mécanigue ; division de cette science en deux par-
ties , la Statique et la Dynamique, n®.3

Le point dapplication d’une force se déterminera au moyen
de ses trois coordonnées, rectangulaires, on polaires, n® 4
Ce quon entend par des forces égales ; expression numeérigue
de Vintensité d'une force , n® 5
La direction d’une force se déterminera au moyen de trois an—
gles aigus on obtus, liés entre eux par une équation, ou de
deux angles indépendans I'un de I'autre ; conversion en par-
ties du rayon, d’un arc exprimé en degrés, 1% 6, 7 et 8
Expression du cosinus de "angle de deux droites ; équation qui
a lieu quand elles sont perpendiculaives 'une a Vautre;
transformation des coordonndes rectangulaires en coordon-

nées polaires, n° g
Projections d’une ligne droite sur une auire droite, et d’une
aire plane sur un autre plan, v ()

Comment on déterminera les deux sens opposcs de différentes
forces paralléles, n® 11
Dans cet ouvrage, on emploiera exclusivement la méthode
des infiniment petits ; principes fondamentaux de V'analyse
nfinitésimale, n° 12
Définitions de la différentielle d’une variable et de celle d'une
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fonction ; définition et notation de 'intégrale définie ; cette
intégrale est, en geéneral, la somme des valeurs de la diffé-

rentielle , n° 13
Différentiation d’une intégrale, par rapport i une quantité
regardéc comme constante dans Uintégration, n° 14
Formule des guadratures, n° 15

Dans Vinfiniment petit, le rapport de 'are d’une courbe 4 la
corde est 'unité; ce qui permet de considérer une courbe
comine un polygone d’un nombre infini de edtés infiniment
petits, n® 16

Définition de la tangente 4 une courbe ; formules qui détermi-
nent sa direction ; é/ément dillérentiel de la courbe; équa-
tion du plan normal ; cosinus des angles que fait la per-
pendicalaire & un plan quelconque , avec des paralléles

aux axes des coordonndes, n® 1y
Expressions de Vangle de contingence et du rayon de cour—
bure , n° 18
Equation du plan osculateur ; formules relatives 4 la direc—
tion de la perpendiculaire & ce plan, n° 19
Coordonnées du centre de courbure, A

Equation du plan tangent 4 une surface courbe ; €lément dif-
férentiel de la surface ; formules relatives a la divection de
la normale: on renvoie & un Mémoire inséré dans le 21° ca—
hiex du Journal de I’Ecole Polytechnigue, pour ce qui con-
cerne la courbure des surfaces , n® a1

Regle pour déduire I'ane de Tautre, les formules velatives i
trois axes rectangulaires, par rapport a chacun desquels tout
est semblable dans un probleme, H0lyn

Conditions générales auxquelles doivent satisfaire les équa~
tions qui renferment des quantités de différentes natures,

n°23
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LIVRE PREMIER.

STATIQUE,
PREMIERE PARTIE.

CHAPITRE I*. De la composition et de I'équilibre
des forces appliquées a un méme point,  page 43

Ce qu’on entend par la résultante d’un nombre quelconque de
forces appliquées 4 un méme point ; sa valear, quand
toutes ces forces agissent suivant une méme droite, n° 24

La résultante de deux forces égales qui comprennent un angle
de 120°, est égale & chacune de ces forces, et divise Pangle en
denx parties égales, n® a5

Valeur et direction de la résultante de deux forces qui font un
angle qucleonque; régle du parallélogramme des Jorces,

n 26, 2n et 28

Conséquences immeédiates de ce théortme, 1n° 29

Construction geométrique pour déterminer, en grandeur et en
direction , la résultante d’un nombre quelconque de forces,

n° 3o

Composition de trois forces rectangulaires en une seule force, et
décomposition de celle-ci en trois forces rectangulaires, n® 31

Calcul de la résultante d’un nombre quelconque de forees
données ; valeurs des angles qui déterminent sa direction ;
expression de cette résultante en fonction des composantes
et des angles compris entre leurs directions,  n” 32 et 33

Propriété particuliere de cette méme résultante, n® 34

Equation d’équilibre d’un point matériel entierement libre :
on verifie qu'en vertu de ces équations, chacune des forces
qui agissent sur ce point est égale et contraire 4 la résul-
lante de toutes les autres, n® 35

Equation d’équilibre d’un point matériel, assujetti & demeurer
sur une surface donnée ; pression que supporte la surface ;
sens dans lequel elle s’exerce, 0 362137




¢ TABLE DES MATIERES.

Equation d’équilibre d’un point matériel assujetti & rester sur

une courbe donnée , n° 38
Equation des »itesses wirtuelles , contenant les €quations d’é—
quilibre relatives aux trois cas précédens, n® 39
CHAPITRE II. De Uéquilibre du levier, page 72
Définition du levier; objet de ce chapitre, n° fo
Déplacement du point d’application d’une force appliquée a
un systtme de forme invariable n° 41

Définition du moment d'une force par rapport & un point ;
équilibre de deux forces applignées i un levier ; cette équa-
tion est indépendante de angle des deux bras du levier;
cas ou les deux forces donndes sont paralliles , n® 42 et 43

Deux forces paralltles agissant en sens eontraires, et non di-
recteinent opposées , ne sont pas réductibles 4 une seule ; ce
couple de forces peut étre transformé d’une infinité de ma-
niéres différentes, en un autre couple de forces irréductibles

a une seule , n® 44
Condition d’équilibre d’un nombre queleongue de forees ap-
pliquées & un levier, n® 45

Théoréme relatif an moment de la résuliante de denx forces ;
extension de ce théoréme au cas d’an nombre queleongue
de forces divigées dans un méme plan; quantité qui demeure
invariable, dans toutes les transformations de ce systeme de
forces ; équation d’équilibre de ces forees autour d’un point

fixe , situ€ dans leu'r plan, n® 46, 47 et 48
On vérifie que Péquation des vitesses virtuelles a lien dans 1'é-
quilibre du levier, r° §g

CHAPITRE III. De la composition et de Péquilibre
des forces paralléles, page go
Démonstration directe de la composition de deux forees paral-
ltles qu'on avait déduite, précédemment (n° 43), de celle
des forces concourantes vers un méme point; on en conelut la

grandeur et le point d'application de la résultante d’un
nombre quelconque de ces forces, n°* 5o et 51
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Quand des forces paralliles tournent autour de leurs points
d’application respectifs, en restant toujours parailéles, leur
résultante tourne aussi autour de son point d’application ;
définition du centre des forces paralléles; définition du
moment d'une force par rapport & un plan, 0% 52 et 53
Le moment de la résultante d’un nombre quelcongue de forces
paralltles , par rapport 4 un plan, est égal A la somme des
momens de ces forces , par rapport i ce méme plan; coor—
données du centre des forces paralléles, n* 54,55 et 56
Equation d’équilibre d’un systéme de forces paralltles, appli-
quées & un corps solide, soit que ce corps soit entitrement
libre , ou qu’il soit retenu parun point ou par un axe fixe,

n® 5n et 58
CHAPITRE IV. Cousidérations genérales sur les corps

pesans et sur les centres de gravité, page 106

On considéere la pesanteur comme une force constante, en
grandeur et en direction , dans toute 'étendue d’un méme
corps, n 59

Définition du poids et de la densité ; équations qui existent
entre le poids, la masse, le volume d’un corps, et la gran-
deur de la gravité, n® 6o

Définition du gramme; rapport de son poids A celui d’un
méme volume d’eau, i la température de la glace fon-
dante ; densités de 1air et du mercure,, n® 61

Les poids servent de terme de comparaison aux autres forces ;
ils fournissent la mesure la plus commode de la masse ,

n° 62

Définition du centre de gravité ; régle pratique pour en dé-
terminer la position dans I'intérieur d’un corps solide, n° 63

Equations d’aprés lesguelles on caleule les coordonnées du
centre de gravité d’'un systéme de corps, dont les centres
de gravité sont déja connus; cas ot les masses des corps
sont infiniment petites ; ce qu'on eatend par les centres
de gravité d’un volume, d'une surface, et dune ligne,

n* 64 et 65
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Equation qui a lien entre les distances mutuelles des centres de
gravité de différens corps, et leurs distances au centre de

gravité du systéme entier, n° 66
Propriété curieuse de 'équilibre d’un point matériel entitre—
ment libre, n° 6y

Epumération de différens cas ofl le centre de gravité est im—
médiatement connu , n°® 68

CHAPITRE V. Détermination des centres de gra-
pite , page 121
§ I, Centres de graviié des lignes courbes, thid.

Coordonuées du centre de gravité d’une ligne quelconque; ap-
plication 4 la ligne droite, n° 6g
Cas d’une courbe plane ; applications au cercle, et aux trois
sections coniques , : n® 7o et
Equation de la cycloide; €noncé de ses diverses proprictés;
coordonnées du centre de gravité d’un arc quelconque de
cette eourbe, n* 72 et 53
Régle pour déterminer l'aire d’une surface de révolution,
quand le centre de gravité de sa courbe generatrice est
connu sans ancun caleul, n° 74
§ 11. Centres de graviié des surfaces, page 131

Coordonnées du centre de gravité d'une surface quelconque ;
cas ou la surface est plane, n® 75
Application au centre de gravité d'un triangle; détermi-
nation de ce point, sans le secours du calenl intégral ;
comment on en déduit les centres de gravité du secteur et
du segment circulaires, n"n6, 0y et 8
On indique, comme exemple, les centres de gravité des trois
sections coniques ; on cakcule completement les deux coor-
données du centre de gravité d’une portion quelcongue de
Taire de la cycloide, 1% 7q et 8o
Centre de gravité de la zone d’une surface de révolution ;
application aux surfaces concave et convexe engendiées
par la cycloide, n 81 et B2
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Régle pour déterminer le yolume d’un solide de révolution ,
quand le centre de gravité de V'aive génératrice est connu
sans aucun calcul ; extension de cette régle & d’autres sortes
de corps, n® 83 et 84
Volume d’un prisme oud’un cylindre tronqué, n° 85

§ 111, Centres de gravité des volumes et des corps, page 151

Centre de gravité d'une pyramide ou d'un céne quelconque,
n° 86

Détermination du centre de gravité d’'une pyramide triangu-
laire, sans le secours du caleul intégral; comment on en
déduit les centres de gravité d’un sectenr et d’un segment

sphériques, n®* 8y ct 88
Centre de gravité d’un corps symétrique autour d’un axe, et,
en particulier, d’une portion d’ellipsoide , n° 89

Centre de gravité d’un solide de révolution, et, en particulier,
des solides concave et convexe engendrés par la cycloide,
n° go

Expressions diverses, en intégrales triples, des coordonnées
du centre de gravité d'un corps quelconque; application &

une portion de sphére hétérogéne, n* gr et g2
Elément différentiel d’un volume exprimé au moyen des dif-
férentielles des coordonndes polaires, n° g3

CHAPITRE VI. Calcul de lattraction des corps,

page 169
§ I, Formules relatives ¢ un corps quelconque et & Ia sphére
en particulier , page 169

Expressions générales en intégrales triples, des trois compo-
santes rectangulaives de l'attraction exercée par un corps

SUF un point matériel | n" g4 et g5
Réduction de ces trois intégrales triples, aux différences par—
tielles d*une seule intégrale, n® g6

Une difficulte qui a deji été signalée dans le caleul des coovdon-
nées du centre de gravité d’un corps quelconque (n°g1),
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conduit & examiner la constitution intime des corps natu=
rels. Définitions des alomes et des molécules ; ce qu'on doit
entendre par la densité d’un corps en un peint quelconque ;
définition de Vintervalle moyen des molécules au méme
point; on explique comment les formules relatives aux
masses des corps, aux coordonnées des centres de gravité
et aux atiractions en raison inverse du carré des distances,
peuvent étre appliquées , sans erreur sensible, aux Corps
naturels n® g7 et g8
L’attraction d’un corps sur un point matériel trés éloigné, est
i trés peu prés la méme que si la masse entitre de ce corps
était réunie a4 son centre de gravite ; attraction mutuelle de
deux sphéres homogenes, n® g9
Théorémes relatifs aux attractions des corps sphériques, sur
des points matériels extérieurs on intérieurs, n® 100 et o1
Démonstration directe de 'équilibre d'un point matériel, si-
tué dans un espace terminé par une couche sphérique, n® 102
§ 1I. Formules relatives a l’ele;nso't'dc 5 page 185

Transformation des formules générales du n® 95, principale-
ment utile dans le cas onle point attivé fait partie du corps
atlirant, n° 103

Application & Vellipsoide homogéne: les formules relatives i
son attraction sur un point intérieur , se véduisent & des in-
wégrales simples, caleulables an moven des tables des fone~
tions elliptiques; extension du théoréme dun n° 102, & une
couche elliptique , n“* 104 et 105

Les intégrales s'effectuent sous forme finie, dans le cas de
Vellipsoide de révolution ; cas particulier d'un ellipsoide
trés peu applati , n® 106

Théoréme remarquable, au moyen duguel on fait dépendre
Yagtraction d’un ellipsoide sur un point extérienr, de attrac-
tion d’un autre ellipsoide sur un point intérieur: ce théo-
veme est indépendant de la foi de I'attraction ¢n fonetion de
la distance ; application au cas particulier de deux sphéres

goncentriques, n” 107, 108 et 10g
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LIVRE DEUXIEME.

DYNAMIQUE,
PREMIERE PARTIE.

CHAPITRE 1. Dz mouvement rectiligne et de la

mesure des forces, page 203
§ 1. Formules du mouvement rectiligne , £bid.
Définition et équation du mouvement uniforme, n® r1o
Rcmm'que sur la mesure du temps; invariabilité du jour side-
ral; sa durée comparée a celle du jour moyen, n® 111
Définition de la vitesse dans le mouvement uniforme, et en-
suite dans lemouvement varié, n® 11z
En quoi consiste I'zneriie de 1a matiére, n® 113

Expression de la vitesse dans un mouvement quelconque; ex-
pression de Vespace parcouru dans un temps infiniment
petit, abstraction faite de la vitesse acquise , n® 114

Définition et équation du mouvement uniformément accéléré
ou retardeé ; la force qui le produit est une force constante;
ce mouvement est celui des corps pesans dans le vide; dans
un méme lien, l'accélération est la méme pour tous ces
corps ; sa grandeunr 4 I'Observatoire de Paris, n® 115

On démontre que les grandenrs des forces ui agissent succes—
sivement sur un méme point matériel, sont entre elles
comme les vitesses infiniment petites qu’elles lui impri-
ment dans un méme temps infiniment petit , n° 116

Quand il s'agit de forces constantes, leurs intensités sont
entre elles comme les vitesses quelles produisent dans 'u~
nité de temps; exemple du rapport des forees, conclu de celui
des vitesses observées ; exemple inverse du rapport des vi-
tesses , conclu de celui des forees , ne 1y

Mesure de la force dans un mouvement varié quelcongue
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soit au moyen de la vitesse qu’elle produit, soit au moyen
de Pespace qu’elle fait parcourir, pendant un temps infini-
ment petit, n® 118
Formules générales du mouvement varic, n° 1ig
§ I1. Mesures des forces, en ayant égard auz masses, page 221
Impropriété de Pexpression force d'inertie, n° 120
Ce quon doit entendre par des points matéricls égaux en
masse ; deux forces qui agissent sur denx points différens ,
sont entre elles comme lenrs masses multipliées par les vi-
tesses produites par ees [orces, dans un méme instant, n° 121
Définition de la force motrice ; sa valeur dans un mouvement
quelconque; elle se change en une pression, quand le mou-
vement est détruit, n" 122
De lidentité du mouvement des corps pesans en chaque lieu
de la terre, on conclut la proportionnalité du poids & la
masse, n® 123
Quand la force motrice est donnée, on en déduit la force ac—
célératrice,, en divisant par la masse du mobile; on prend,
pour exemples, la résistance d’un milien, et un poids
donné , appliqué successivement A des masses différentes,
n° 124 et 125

Définitions de la quantité de mouvement , et de la percussion
ou fmpulsion; décomposition d'une percussion en deux
autres ; application au coin, n° 126
Condition de I'équivalence de deux percussions; principe de
Péquilibre dans le choe, d’apres lequel deux corps dénués
d’élasticité, qui vont i la yencontre I'un de 'autre, se ré-
duisent au repos, quand les vitesses sont en raison inverse
des masses, n® 127
Comment on pcut comparer un poids et une percussion, n®128

CHAPITRE 1l. Exemples du mouvement rectiligne,

' page 237
Equations différentielles du mouvement rectiligne ; 'intégra~
tion n’est possible, sous forme finie, que quand la force
accélératrice est constante, ou donnée en fonction d’ane
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seule des trois variables, le temps, la vitesse, 'espace par-
couru , n® 129

Mouvement vertical d’un corps pesant dans le vide, n®130
Mouvement de ce corps sur un plan incliné, 1n® 131
Mouvement vertical d'un corps pesant dans un milieu résis—
tant : lorsqu’il tombe d’une grande hauteur, sa vitesse ap-
proche de plus en plus d’étre constante ; moyen de déter—
miner le cogfficient de la résistance, par Vobservation du
temps total de I'élévation et dela chute successives du mobile,
n™ 132, 133, 134-et 135

Exemple de P'usage des solutions particulitres dans les pro-
blemes de dynamique, n° 136
Mouvement d’un corps atliré vers un centre fixe, soit enraison
directe de la distance, soit en raison inverse du carré de la
distance , n® 137 et 138
Mouvement d’un corps attiré vers deux centres fixes ; cas ol
ces deux centres sont ceux de la lune et de la terre ; dimi-
nution de la vitesse d’un projectile,, produite par sa pesan-
teur vers le corps d’oi il est parti, quand il est parvenu i
une grande distance de ce corps, n° 139, 140, 141, 142 et 143

CHAPITRE 1. Du mouvement curviligne, page 263
S 1. Formules générales du mouvement, ihid.

La détermination du mouvement curviligne d'un point ma-
tériel se réduit A celle des mouvemens rectilignes de ses trois
Projections sur les axes des coordonnées,, n® 144

Expression de la vitesse du mobile: sa direction est tangente
dla trajectoire ; les vitesses des trois projections sont ce
qWon appelle les composanies de la vitesse du mobile; la

“Omposition et la décomposition des vitesses se font suivant
]165 memes régles quela composition et la décomposition des
.tOI‘CES, n° 145

Quelle que soit Ja variation de vitesse d’un point matériel ,
en grandenr et en direction, pendant un temps infiniment
petit, il y a toujours une certaine direction pour laquelle
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Paugmentation de vitesse est la plus grande, et perpendicu—
lairement & laquelle les composantes de la vitesse ne sont
ni augmentées, ni diminudes , n° 146
Cette direction déterminée est ce qu’on entend par la direc-
tion de la force qui agit sur un point matéricl en mou—
vement; en partant de cette définition, on démontre que
T'accroissement de la composante de la vitesse suivant
une direction quelcongue, pendant un instant, est uni-
quement dii i la force qui agit suivant cette direction, et le
méme que si les autres forces n'existaient pas, n® 147
Construction de la trajectoire par points , qui résulte du prin-
cipe précédent, et détermination de la vitesse et de la po—
sition du mobile & chaque instant sur cette courbe, n° 148
Equations différenticlles du mouvement curviligne, soit quand
Vorigine des coordonnées est fixe, soit quand elle est en
mouvement, n% 14g et 150
Equationsdifférentielles du mouvement d’un point matériel sur
une surface ou sur une courbe donnée ; expression de la force
accélératrice snivantla tangente 4 la trajectoire ,n® 151 et 152

§ II. Conséquences principales des formules précédentes ,
page 282

Intégrales premicres des équations différenticlles du mouve-
ment curviligne, qui ont lieu quand la force est constam—
ment dirigée vers un centre fixe , n° 153

Principe des aires, compris dans ces intégrales, n® 154 et 155

Elémens différentiels de Uaire et de la longueur d’une courbe,
rapportés aux coordonnées polaires ; composantes de la vi-
tesse d’un mobile relatives 4 ces coordonnées ; définition de
la vitesse angulaire, n°® 156

g ﬂtégrale premitre des équations du mouvement, qui donne

dans un cas trés général, le carré de la vitesse du mobile, in-

{iépendamment de la courbe décrite; cetle vitesse est cons—

tante ;Iuand le mobile, entiérement libre, ou obligé de se

mouvoir sur une surface ou sur une courbe donnée, n’est
sollicité par aucune force aceélératrice ; 'intégrale a lieu
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tontes les fois que le mobile est soumis & des forces di-
rigées vers des centres fixes et dont les intensités sont des
fonetions de la distance d ces points, n® 18q et 158
Expression de la vitesse d’un corps pesant sur une courhe
quelconque, en fonction de la hauteur dont le mobile est
tombé ; conséquences immédiates qui s’en déduisent, n® 159
Propriété du mouvement d’un point matériel & laquelle on
a donné le nom de principe de la moindre action, n® 160
En vertu de ce principe, un point matériel obligé de se mouvoir
sur une surface donnée, et quin’est sollicité par aucune
foree accélératrice, déerit, en général, la ligne la plus
courte d’un point & un autre; en formant Pdéquation diffé—
rentielle de la trajectoire, on prouve que cette ligne la plus
tourte a partout son plan osculateur, normal i la surface
donnde , n° 161

§ II1. Digression surle mouvement de la lumiére, page 3ot

Dans le systéme de V'émission , les lois geénérales de la réfrac-
tion et dela réflexion se déduisent facilement du principe
de la moindre action , n® 162, 163 et 164

Equations différentielles du mouvement d’un rayon de lu-

miere, a son passage d’un milien dans un autre ; consé-
quences de ces équations relativement 4 denx cas différens
de réflexion , et 3 Ia réfraction ; direction d’un rayon quia
traversé deux surfaces paralléles ; phénomene de la disper-
sion , n® 165, 166 et 167
‘& composition de la vitesse propre de la lumitre avee celle de
la terre qui produit le phénomeéne de Vaberration, n'a ce—
Pendant aucune influence appréciable sur la grandeur de
la réfraction ; dans le vide , la vitesse de la lumidre , directe
O réfléchie,
Yeil | de
tesse ;

I

est la méme, soit qu'elle pous vienne du so-
s etoiles, ou des plandtes; grandeur de cetie vi-
diminution quelle a da éprouver en vertu de la
pesanteur des rayons lamineux vers le soleil, n° 168
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]“! CHAPITRE 1V. De la force centrifuge, page 318

Définition de la force centrifuge; détermination de cette force
| motrice, par la considération de la vitesse normale dé-
truite 4 chaque passage du mobile, d'un élément de sa tra—
jectoire A Vélément suivant ; Vangle de contingence étant
b infiniment petit, ce passage ne produit aucune diminution

dans la vitesse suivant la tangente ; détermination compléte
en grandeur et en direction, de la pression exercée surla tra-
jectoire,, en vertu de la force centrifuge et des forces don-
nées (qui agissent sur le mobile , n® 169 et 170
Calcul des trois composautes de cette méme pression , d’apres
les équations difféventielles du mouvement, n® 171
Conséquences que U'on déduit de la valeur de cette pression et
desa direction , lorsque le mobile est assujetti & se mouvoir
sur une surface donnée, et quand il est entiérement libre,
n® 172 et 173

Détermination de la force centrifuge, d’apreés la considération
da mouvement circulaire, n° 194
Comparaison de la force centrifuge dans le cercle, 4 la pesan-
teur ; tension d’un fil chargé d’un poids, et tournant autour
d’un point fixe, e 175
Diminution dela pesanteur, & I'équateur et sur les différens
paralltles, produite par la force centrifuge qui résulte de la
rotation de la terre; variation totale de la pesanteur, duea
cette cause et & l'applatissement du sphéroide tervestre ,
n® 176, 177 et 178

CHAPITRE V. Exemples du mouvement d'un point
\ matériel sur une courbe ou sur une surface donnée,
i page 337
L G Osctllations du pendule simple , ibid.
Définition du pendule simple; on fera voir par la snite qu’il y
a tonjours un pendule simple dont le mouvement est le

méme, dans le vide ou dans V'air , que celui d'un pendule

donné , n® 179
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Formule différentielle du mouvement du pendule simple dans
le vide,

n° 180
Cas on cette formule s'intégre sous forme finie, n® 181
Cas des oscillations trés petites, n® 182

Sur une courbe quelconque, lIes oscillations infiniment pe-
tites d’un point matéricl pesant, ontune durée de gran-
deur finie et indépendante de la grandeur de leur ampli-
tude, n® 183

Correction qu'il faut faive & la durée des oscillations trés pe-
tites d'un pendule simple, pour en conclure la durée de ses
oscillations infiniment petites, n® 184

Réduction en série du temps d’une oscillation de, grandeur
quelconque, n 185

Mouvement du pendule simple dans lair, lorsque la résis-
tance est supposée proportionnelle & la vitesse : les ampli~
tudes successives des oscillations trés petites , décroissent
en progression géométrique ; leur durée n’est pas sensible~
ment altérée par la résistance du milien, n°* 186 et 187

Mouvement du pendule simple dans I’air, quand la résistance
est supposcée proportionnelle an carré de la yitesse; loi du
décroissement des amplitudes sucecessives ; dans le cas des
petites oscillations , on démontre que la durée d’une demi-
oscillation ascendante est antant diminuée, que celle de
Poscillation descendante qui précede, a été augmentée,

n* 188, 189 et 190

Correction dans la longueur du pendule et dans la durée des
petites oscillations, qu'on appelle la réduction au vide ;
augmentation qu’on doit faire subir i cette correction, a
raison de Uétat de mouvement de lair, n® 191

En chaque lieu de la terre, la mesure dela pesanieur est pro-

Portionnelle a la longueur du pendule a secondes; valeurs

de ces denx quantités & IObsevvatoire de Paris; les expé-~

riences du pendule prouvent qu’en chaque lien de sa suxface,

3, v et A : Tt
Pattraction de la terre est la méme sur les matiéres de la

natare la plus différente, n° 12

Valeur de la pesanteur et de lalonguenr du pendule 4 secondes,

b
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| | en fonctions de la latitade; retard d'une horloge réglée a
Paris sur le temps sidéral, et ensuite transportée a Péqua-
teur, n‘ 193

il § 1L Mouvemnent sur la ¢ycloide , page 368

! Le temps de la chute d’un point matériel pesant sur la cy-
i claide , est indépendant de Vélévation du point de dé-
"‘ part an-dessus du point le plus bas, soit que le mouve-
| mernt ait lien dans le vide, ou qu'il ait lieu dans Vair,
quand on suppose la résistance proportionnelle A la vitesse,
il n® 1gfet 195
1 Pendule gycloidal , . n® 1g6
Dans le wide, la cycloide est la seule courbe tautochrone,
: n® 197

Recherche de la brachysiochrone dans le vide ; formules rela-
‘ tives au cas ou la ligne de la plus vite descente devrait étre
tracée sur unesurface donnée; formulesrelatives ancasonsa
longueunr serait donnée, qui serviront i résoudre, dans la
suite, un autre probléme de la méme nature, n 198, 199,

200 ¢l 201

On trouve pour la brachystocrone proprement dite , Véqua-

\ tion d’une cycloide située dans un plan vertical ; cas ou le
point de départ et le point d’arrivée appartiennent & une

méme verticale, n® 202

§ III. Mouvement sur une surfaece donnée , page 385

Equations différentielles du mouvement du pendule simple
i i ne se meut pas dans un plan fixe , £
| Formules différentielles relatives aux oscillations conigques du
| pemhlle simple dans le vide, n% 204 et 205
! Cas des petites oscillations ; cas ou le pendule (l_écrit unifor-
}‘i mément la surface d’un céne droit & base circulaire; la

courhe décrite par la projection horizontale du mobile, est
‘ toujours une ellipse dont le centre est le point de suspension,

1°* 206 et 207
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CHAPITRE VI. Exemples du mouvement d'un mo-
bile entiérement libre , page 396

La trajectoire d’un point matériel pesant dans le vide ; est une
parabole ; amplitude du jet; vitcsse en un point quelcon-
que, n° 208

La vitesse initiale étant donnée, trouver sa direction, pour
que le projectile atteigne un but donné ; courbe au-dela de
laquelle le projectile ne peut arriver , n° 200

Equations du mouvement d'un projectile dans Pair ; construc-
tion, par points, de la trajectoire ; caleul du temps; expres-
sion dela vitesse en un point quelconque, n®™ 210, 211 et 212

Quand le mobile s’est élevé 4 une grande hauteur, son mou-
vement, en retombant, approche de plus en plus d’étre
vertical et uniforme ; détermination de Vasymptote verticale
de la branche descendante, n® 213

L’autre branche de la trajectoire a aussi une asymptote ; di-
rection de cette droite, et sa distance au point de départdu
mobile, n’ 214

Equation de la trajectoire, dans le cas d’un petitangle de pro-
jection ; caleul de la portée horizontale et du temps du
irgjet , d’aprés la grandenr de la vitesse initiale ; différentes
valeurs de la portée et de la vitesse qui sont donuées par
Pobservation ; incertitude sur la grandeur du coefficient de
la résistauce; moyens de le déterminer par Vexpérience,

n* 215 et 216

§ Y. Mouvement des planétes, page 415

Lois de Képler, n® 217

Equations fournies par les deux premiéres de ces lois, n® 218

Définition de quelques termes employés en Astronomie; durée
de Vannée sidérale ct de I'année équinoxiale; grandenr de

la précession aunuelle des équinoxes, n° 219
Expressions des deux coordonnées polaives de la planéte et du
temps, en fouctions de U'anomalie excentrique , n° 220

Methode pour réduire le rayon vecteur et 'équation du eentre

b..




- TABLE DES MATIERES.
en séries ordonnées suivant les cosinus et les sinus des mul-
tiples du moyen mouvement, ne aox

Formules qui déterminent en un point queleonque de Pel-
lipse décrite par tue planéte, la grandeur et la divection
de sa vitesse, n® 222

Position d’une planéte par rapport & un plan quelconque ; sa
Iongitude et sa lalilude, son ascension droite et sa déeli-
naison ; obliquité de Pécliptique ; sa diminution annuelle ;
grandeur et période de la nutation , n° 523

On conelut des trois lois de Képler, que la fores qui retientles
planétes vers leurs orbites est constamment dirigée vers le
centre du soleil; qu’elle varie pour chaque planéte, suivant
la raison inverse du carré de la distance & ce point; qu’d
Vunité de distance, la force accélératrice est la méme
pour toutes les planétes : ces lois s'étendent aux comdtes et
aux mouvemens des satellites antour de leurs planétes res—
pectives, et aux mouvemens relatifs des étoiles doubles,

1 224 , 225 et 226

Equations dilférentielles du mouvement d’une planéte dans
un milieu vésistant : on compléte le nombre des constantes
avbitraives que doivent renfermer leurs intégrales trouvées
précédemment , pour le cas o l'on néglige la- résistance,

n 227 et 228

Méthode de la vartation des constantes arbitraires, pour Pin-
tégration des équations difféventielles, n° 22g et 230

Application de cette méthode aux équations du mouvement
d’une planéte ou d'une cométe dans un milien résistant ;
pourquoi la résistance de Véther peut étre appréciable dans
le mouvement d’une cométe et insensible dans le monvement
d’une plandte , n9 231,232 et 233

§ I11. Mouvement d'un poinl matériel soumis a une force cen—
trale , Page 446

Equations du mouvement d’an point matériel attivé vers un
centre fixe, par une force donnée en fonction de la distance
4 ce centre, n® 234
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Cas ol la force est proportionnelle i la distance , n°® 235
Cas o1 la force est en raison inverse du cube de la distance,
n° 236

Cas o1 la force est en raison inverse du carré de la distance 5
la trajectoire peut étre alors une des trois sections conigues;
circonstances qui déterminent chacune des trois courhes,

n® 237 et 238

Examen spéeial du mouvement parabolique ; en quoi consiste

le probleme astronomique de la détermination complite de

Forbite d’une comite, n® 239 el 240
CHAPITRE VII. Digression sur Uattraction univer-
selle , page 465
Loi de Yatiraction universelle, n® 241

Force motrice résultant de Vattraction mutaelle du soleil et
d’une planéte ; invariabilité du pouveir attractif,  n° 242
Foree accélératrice d’une planete dans son mouvement autonr
du soleil ; correction qu’on doit faire 4 la troisieme loi de
Képler ; petitesse des masses des planétes par rapport A la
masse du soleil , n°® 243
Enoncé des différentes sortes de perturbations du mouyement
elliptique des planétes, produites par leur attraction mu=
tuelle: ces effets ohservés font connaiire les masses des pla—
nétes perturbatrices, en prenant celle du soleil pour unité;
invariabilité des grands axes ; le mouvement de la lune s’ac—

célere de siecle en siscle, n° 244
Autre moyen de déterminer les masses des planétes aceompa-
gnees de satellites, n® 245

Caleul des forces provenant de I'action du soleil et de la lune,
Pour soulever les eaux de la mer; masse de la lune conclue
du fluz lunaire comparé au_flux solaire; diminution de la
pesauteur 4 la surface de Ja terre, produite par laction de
la June ; 1108 246 et 24y

A la distance de 1a Tune 3 la terre, la pesanteur terrestre est a
trés peu prés égale 4 la force qui retient ce satellite dans son
arbite , u® 248
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Détermination de la masse de la terve ; parallaxe du soleil ;
sa densité ; sa distance i la terre ; détermination exacte du
grand axe de V'orbite d’une planiéte dont la masse est con—
nue, n™ 24g et 250

Déviation du fil & plomb produite par les attractions lo-
cales, n® 251

Balance de torsion, propre & mesurer les forces tris petites;
expcrience de Cavendish ; densité moyenne de la terre,

n® 252 et 253

Stabilité de I'équilibre des mers, résultantde ce que cette den—
sité est plus grande que celle de Vean ; accroissement des
densités des couches de la terre, en allant de sa surface an
centre ; inégalité du mouvement de la lune, due 3 la non-
sphéricité dela terre ; influence des attractions locales sur Ia
longueur du pendule i secondes , n® 254

Réduction au niveau des mers, de la longueur du pendule,
observée a une élévation donnde, n® 255

LIVRE TROISIEME.

STATIQUE,
SECONDE PARTIE.

CHAPITRE I¢. De léquilibre dun corps  solide ,

/
page 497
Remarque sur la compressibilité et le changement de forme
du corps que I'on va considerer, n® 256

Transformation d’un systéme de forces queleonques , appli-
quées & un corps solide, en trois groupes de forces, le pre-
mier eomposé de forces perpendiculairesdun plan donné, le

deuxieme, de forces paralléles et comprises dans ce plan, et

le troisitme, de forees dirigées suivant une droite perpendi-
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culaive aux précédentes et tracée dans ¢e méme plan ,
n° 257, 258 et 259

Equations nécessaires et suffisantes pour Uéquilibre d'un corps
solide enticrement libre, n’ 260
Ces €quations sont encore nécessaires pour Véquilibre de
tout autre systéme qui ne renferme ancun obstacle fixe,

xX11j

n® 261
Cas particuliers des forces paralleles et des forces qui sont
toules comprises dans un plan, n° 262

Condition pour que des forces donnees aient une résultante
unique ; équations de cette résultante ; sa grandeur et sa di-
rection; dans tous les cas, les forces donndes peuvent se
réduire a deux, d'une infinité de manieres différentes,

1 263 et 264

Equalions d’équilibre de deux corps solides qui s’appuient
I’an contre Vautre, n° 265

Equations d’équilibre d’un corps solide retenu par des obsta~

cles fixes, dans les principaux cas qui peuvent se pré-

senler, n° 266
Transfornation de I'équation d’équilibre relative & un axe
fixe , n° 261
Equilil)rc d’un corps pesant sur un plan incling, n* 268
Mesure du frottement 4 V'instant ot Péquilibre va se rompre,
n® 2(’59

Charges des différens pieds d’une table horvizoutale gui sup-
o I i

porte un poids donné; a quoi tient Pindétermination appa-

rente du probléme, n° 270

CHAPITRE 1l. 7%éoric des momens., page 526

Les forces étant représentées par des lignes droites, leurs
momens sont représentés par des aires planes: le théoréme
du n® 46, relatif au moment de la résultante de deux forces,
est alors une proposition de Géométrie dont on donne la
démonstration , n® 271

Le moment de 1a projection d’une force sur un plan est la
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projeetion du moment de cette force sur ce méne plan,
n° 252

Ce gu'on entend par le moment d’un systéme de forces par
rapport & un axe ; les momens d’un méme systeme par rap-
port & deux axes situés dans le prolongement 'un de au-
tre, sont €gaux et de signe contraire; il en est de méme a
U'égard des momens par rapport & un méme axe, de deux
systemes de forces égales et contraires , n® 273
Expressions des momens d’un systeme de forces par rapport
aux trois axes des coordonnées positives de leurs points d’ap-
plication ; comment on détermine les signes des termes de
ces formules, n® 254
Valeurs des cosinus des angles relatifs 4 la direction de la
normale au plan qui contient une droite et un point donné,
n° 278

Formules relatives aux projections d’un systéme d’airves planes
sur différens plans; identité de ces formules et de celles qui
répondent aux projections des lignes droites sur d’autres

droites, 0% 206 etiang
Plan et grandeur de Vaive minima; Propriété caractéristique
de ce plan, n* 278, 27g et 280

Propriétés des momens, déduites de celles des aires planes ;
identité de la composition des momens et de la composition
des forces , résultant de celle des projections des aires planes
et des projections des lignes droites, n* 281

Moment principal d'un systéme de forces ; nouvel énoncé des
conditions d’équilibre de ce systéme; conditions pour que
deux systémes de forces soient équivalens, n® 282

Variation du moment principal, produite par le déplacement
du centre des momens ; momens principau.\' minima; come-
ment on en déduit la condition nécessaire et suffisante pour
Vexistence d’une résultante unigue, n°* 283 et 284
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CHAPITRE T111. Lxemples de Uéquilibre d'un corps
Mexible, page 551
§ 1. Equilibre du polygone funiculaire, ibid.

Dans Vétat d’équilibre du polygone , il faut que chaque
cbIé soit tiré, suivant ses prolongemens , par des forces
égales et contraires; équations néeessaires pour 1'équilibre

des forces appliquées an polygone , n® 285

Construction de la figure du polygone en équilibre; calcul des

tensions de ses cotés; cas ol ses points extrémes sont sup-

posés fixes, n® 286 et 289
Les extensions des edtés du polygone sont proportionnelles
aux tensions qu’ils €prouvent , n® 288

Quand un des neeuds dy polygone est remplacé par un anneau,
Ia force appliquée en ce point doit partager en deux parties
égales 'angle des deux cités adjacens,

Condition relative aux directions des forees
lien d

n° 28g

qui doivent avoir
ans tous les systémes de points matériels en équilibre,
_ et dont la précédente est un cas particulicr, n° 2o
Equilibre d’un polygone chargé de poids; pressions éprouvées
par les points fixes anxquels il est attaché , n° 291
Iiemarque analogue 4 celle du n® 270, sur les tensions des
cordons qui supportent un poids donpé : quel gue soit le
nombre de ces cordons, leurs tensions ct les charges des
points fixes peuvent se déduire de la mesure des allonge—
mens, ne 293

§ 1. Equilibre d'un fil flexible, page 565
Equations d’équilibre d’un fil pesant, d’abord au nombre de
trois , et qui se réduisent ensuite 4 deux g n° 293

Intégrales de ces équations sous forme finie; équation de la
chainette ; expression de la tension en un poiut quel-
conque,

n° 294
Calcul de la tension au point le plus bas, et des charges que

supportent les deux points de suspension, n® 2g5
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Parmi toutes les courbes isopérimétres, la chainette est celle

“ qui a son centre de gravité le plus bas, n" 296
Cas ot les forces verticales qui agissent sur les élémens du fil

I sont proportionnelles & leurs projections horizontales ; la
‘ courhe d’équilibre est alors une parabole ; caleul de la ten-
Wit sion au point le plus bas, et des charges des points ex-
trémes, qui peut étre utile dans la construction des chemins
dl_‘ __ﬁ??‘, n° ;«_97
Tiquations d’équilibre d’un fil sollicite par des forces quelcon-
ques, n? 298

il Cas d’un fil pesant suspendu verticalement i un point fixe et
i chargé d'an poids 4 son extrémité inférieure ; caleul de son
allongement tetal , n° 299
Expression de la tension dans le cas général; la courbe est
déterminée par deux équations différenticlles secondes; ya-
leur du rayon de courbure d’aprés la direction de la tan-
gente en chagque point, - n° 3oo
Application des formules précédentes au cas d’un fil tendu sur
la surface d'un corps solide, par des forces appliquées A ses
extrémités, et qui sont les seules qui le sollicitent ; la tension
est la méme dans toute sa longueur; dans son état d’équi-
libre stable, le fil trace sur Ia surf'.}ce la ligne la plus courte
d’un point & un autre; la pression exercée en chacun des
points de la surface est en raison inverse du rayon de cour-
bure de cette ligne, et proportionnelle & la tension,
n® 3ot et 302

i Ces résultats sont modifiés par le frottement du il contre la
| surface du corps solide; caleul du frottement d'un fil sar la
i gorge d’une poulie fixe, n°® 303
On vérifie les six équations générales de Iéquilibre du n® 261,
dans le cas de I’équilibre d’un fil flexible; usage de ces
! €quations pour déterminer les coordonnées des points ex-
I trémes, (quand ils sont libres, ou les pressions qu’ils éprou-
vent, lorsqu'ils sont fixes et donnés de position,  n®™ 304
et 305
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§ IIL. Egquilibre d'une verge élastique, page 598

Condition pour qu’une verge soit €lastique par flexion ; diffé-
rens effets que ses parties éprouvent lorsqu’on V'a écartée
de sa position d’équilibre; définition de la lame élas-
tigue, n° 306

Hypotheses relatives aux forces qui résultent de U'extension
ou contraction des filets longitudinaux et de la grandeur de
leur courbure ; valeur de la force totale de contraction d’un
élément de la lame ; valeur du moment d'élasticité, n® 307

Dans la courbe élastique proprement dite , la tension est cons-
tante et n'influe pas sur la courbure de la lame ; équation
différentielle de cette courbe; conditions relatives a ses ex—
trémités , n® 3o8 et dog

Cas o la lame est horizontale, encastrée par un bout, et
chargée d'un poids donné & son autre extrémite ; caleul de
la flexion totale; comparaison de 'extension et de la flexion
d'une lame, qui peuvent étre produites par un méme
poids, n° 310

Cas ol la Jame est un ressort vertical posé sur un plan hori~
zontal, et chargé d’un poids A son extrémité supérieure:
examen détaillé des différentes formes que ce ressort pourra
prendre , n% 31 et Jra

Ce qu'on entend par la force d’un ressort; caleul de cette
force d'apriés Dextension on d’aprés la flexion du ressort,
produites par un poids donné, n® 313

Extension des résultats précédens au cas d’une verge €lastique,
droite ou courbe, (ui n’a pas été tordue sur elle-méme; ce
qu’on entend alors par le filet moyen; valeur du moment
d’élasticite, n® 314

Formule gui donne la flexion d’une verge droite, au moyen de
la force de ce ressort; caleul de cette force dans difféventes
hypothéses sur le contour de la section normale; compa-
raison de la force d’un vessort crenx a celle d’un ressort
plein , ntB15
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Valeurdeladifférentielledela tension en un point quelconque
| d’une verge élastique dont tous les points sont sollicités par

| des forces quelconques ; une verge tirce, par une extrémité,
- augmente devolume en méme temps gu'elle s'allonge, n°316
il Lquations générales de Péquilibre d’une ver
ayant égard 4 la torsion,

XXViij

ge élastique, en
n% 317

Le moment de la torsion est constant dans toute la longueur
de la verge ; sa valeur, d’aprés les forces qui agissent i 'une
des extrémitds, n° 318
Réduction des trois équations geéndrales & une seule, quand le
| filet moyen est une courbe plane; équations relatives aux
I forces particuliéres qui agissent aux deux extrémités de la
verge , n® 3ig
Cas de la verge uniformément pesante; détermination de sa fi-

gure ; calenl de sa flexion et des charges des points d’appui,

n* 320, 321 et 322

Cas ot la charge totale de la verge est inégalement répartie

entre ses différens points; formule de Lagrange, pour ex—

primer en série de quantités périodiques les valeurs d’upe

fonction donnde, dans une étendue aussi donnée des valeurs

de la variable, n® 323

Détermination de la figure d’une verge chargée dun poids

suspendu a son milicu ; caleul de sa flexion et des charges de

ses points d’appui, n°® 324

» Démonstration de la formule précédemment citée (n® 323); au-
tres formules de la méme nature, n® 325 et 326

| Usage des formules de ce genre pour la sommation des sé—
i ries, n® 327
il Formule de Fourier, déduite des précédentes, n® 328

CHAPITRE IV. Principe des wvitesses wirtuelles,
b ‘ Vérification de ce principe dans le cas de deux forces appli-
quées & une moufle, un treuil, une vis, un levier, n°* 329

et 330
Equation générale de Péquilibre d'un systeme quelconque de
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points matériels , qui résulte du principe des vitesses vii-
tuelles ; cette équation n'a lieu que ponr les mouvemens in-
finiment petits, compatibles avec les conditions du systéme,
et dont les mouvemens contraires sont également possibles;
elle a déja été démontrée n® 39, dans le cas d’un point ma-
téviel isolé | n° 331
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Errata.

= I - seve (7
Page 11, ligne 8, cos a cos af cos € +cos &', lisez cos 2 cos &’ - cos Ceos £

dz . x
29, 2 en remontant , 250 lisez 7o
(f_r lises ‘-{}i
ds3? ds?
3o, 12 ¢t 16, MO, lisez mO
8 en remontant, Mm, lisez Mm et mm’
B2, 0, angle AMB, lisez AMA’
185, 8 en remontant, le point ©, lisez le point O (fig. 32)
s ds .. dx
237, G, 7 lisez T
285, 5 en remontant, OMN, lisez MN
3na, B, le centre, lisez le centre de conrhure
4114 10, OH=1r, lisez OH = si: ?
4§16, 7 enremountant, 1 ez, lises ot
478, 4 en remontant, 27,5, lises 20,5
479, 5, a7 fois, lises ag fois
6, 135 métres, lisez 145 métres
524, 14, trois, lisez quatre
565, 2 en remontant, un autre point, fisez un autre point M’
Go1, 16, ces deux, Zisez les deux
623, 5 en remontant, 1, lises -
P r
G58, 14, CB, lisez CA

16, AC, lisez BC

Nota, Les fautes des pages 478, 479 et (23, ont été corvigdes dans le plus
&tand nombre des exemplaives.







TRAITE
DE MECANIQUE,

INTRODUCTION.

1. La matiére est tout ce qui peut affecter nos sens
d’une manié¢re quelconque,

Les corps sont des portions de matiére limitées en
tous sens, et qui ont, par conséquent, une Jforme et
un volume déterminés. On appelle masse d'un corps,
la quantité de matiére dont il est COmMposé.

Un point matériel est un corps infiniment petit /<

dans toutes ses dimensions ; en sorte que la Jongueur
de toute ligne comprise dans son intérieur, est infi-
niment petite, c’est-a-dire, moindre que toute lon-
gueur qu'on puisse assigner. On peut regarder un
corps de dimensions finies, comme un assemblage
d’une infinité de points matériels, et sa masse comme
la samme de toutes leurs masses infiniment petiles.
2. Un corps est en mouvement, lorsque ce corps
Ou ses parties occupent successivement différens licux
dans T'espace, Mais Pespace étant infini et partout
identique, nous ne pouvons juger de I'état de mou-
vement ou de repos d’'un corps, qulen le compa-
vant a d’aulres corps ou i nous-mémes; et, pour

b | X
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cette raison, tous les mouvemens que nous obser-
vons sont nécessairement des mouvemens relatifs.

Tous les corps sont mobiles ; mais la matiére ne se
ment jamais spontanément; car il n’y aurait pas de
raison pour qu'un point matériel se dirigeit plutot
d’un cOté que de Tautre; et, en effet, si nous conside-
yons un corps a l'instant ol 1l passe de V'état de repos
4 I'état de mouvement, nous reconnaissons toujours
que ce changement est dit a Paction d'une cause
étrangére ou sans laquelle nous concevons que ce
corps pourrait d’ailleurs exister.

On donne, en général, le nom de force a la cause
quelconque qui met un corps en mouvement, ou seu-
lement qui tend a le mouvoir, lorsque son effet est
suspendu on empéché par une autre cause.

5. Lorsque plusieurs forces sont appliquées a la
fois & un méme corps, elles se modifient réciproque-
ment, en vertu de la liaison qui existe entre ses par-
ties, et qui les empéche de prendre le mouvement
que tend & imprimer & chacune d’elles, la force  la-
quelle elle est soumise. 11 peut méme arriver que ces
forces se détruisent complétement, de sorte que le
corps ne prenne ancun mouverent : on appelle equi-
libre cet état particulier d'un mobile, qui reste en
repos quoiqu’il soit sollicité par plusieurs forces, ou
anlrement, on dit que ces forces se font éguilibre.

La Mécanique est la scieuce qui traite de Péquilibre
et du mouvement des corps. La partie dont le but est,
en général , de découvrir les conditions de I'équilibre,
se nomme Statique. On appelle Dynamigue Yautre
partie, qui a pour objet de déterminer le monvement
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que prend un mobile, quand les forces qui lui sont
appliquées ne se font pas équilibre.

Les géométres étant parvenus, comme on le verra
dans la suite, & réduire toutes les questions de mou-
vement a de simples problemes d’équilibre, il serait
naturel d’exposer d’abord la Statique entiére et en~
suite la Dynamique ; mais, pour faciliter Iintelligence
des matitres, il a para préférable, dans I'enseigne~
ment, de s'occuper de la partie la plus simple de Ia
Dynamique, avant de considérer les questions geéné-
rales de I'équilibre. Clest cet ordre que je snivrai dans
cet ouvrage.

4. Il y aura trois choses i considérer dans une
force agissant sur un point matériel : Ja position de
ce point, l'intensité de la force et sa direction, c'esi-
a-dire, I'espace rectiligne qu'elle tend & faive parcou-
rir & son point d’application. Toutefois, on ne doit
pas confondre un point matériel avec ce quion ap-
pelle un point en Géométrie, oir ce mol désigne P'ex-
trémité d'une ligne, ou Fintersection de deux lignes
qui se coupent; I'espace que parcourt un point ma-
tériel n’est pas non plus uue ligne privée de deux di-
mensions; mais ce corps étant infiniment petit en
tous sens, et la largeur et I'épaisseur de 'espace que
la force tend & Iui faire décrire, étanl aussi infini-
ment petites, on déterminera sa position et la direc-
tion de ceite force, de l]a méme maniére que Pon dé-
termine la position d'un point et la divection d’une
droite en Géométrie.

Amsi, d'abord, Ja position dans l'espace, du point
d’application d’une force, se déterminera, en général,
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an moyen de ses trois coordonnées paralléles aux in-

tersections de trois plans rectangulaires; ce qui,

comme on sait, ne laissera aucune indéeision , quand

on aura égard, en méme temps, ausigne et a la gran-

deur de chaque coordonnée. Quelquefois aussi, nous

emploierons les coordonnées polaires, savoir : le

rayon vecteur du point douné, ou sa distance 4 leur

origine, I'angle que fait ce rayon avec une droite fixe
menée par cetle origine, et Iangle compris entre le

plan de ces deux droites et un plan fixe passant par

la seconde.

5. Les forces ne peuvent se mesurer qu'en prenant
pour unité une force convenue, et en exprimant par
des nombres les vapporis des autres forces a cette
unité ; ce qui exige que Von définisse, d'une manicre
précise, ce que I'on doit entendre par une force égale
4 une autre, et par une force double, triple, qua-
druple,. .. d'une auire, indépendamment de la na-
tuve particuliere de ces diverses causes de monvement,

Deux forces sont cgales lorsqu'étant appliqudes
en sens contraire I'une de l'autre, & un méme point
matériel ou a deux points liés par une droite qui ne
peut changer de longueur, elles se font équilibre.

Si, aprés avoir reconnu que deux forces sont égales,
on les applique dans la méme direction & un méme
point, on aura une force double ; si Von réunit ainsi
trois forces égales, on aura une foree triple ; si l'on
en réunit quatre, on aura une force quadruple; et
ainsi de suite.

Lors donc que nous dirons qu'nne force, appliquée
3% un point matériel, est un certain multiple d’'une
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autre force, il faudra entendre que la premiere peut
étre regardée comme formée d’un certain nombre de
forces reconnues égales & la seconde, et agissant dans
une méme direction. C’est de cette maniére que les.
forces deviennent, quelle que soit leur nature parti-
culiere, des quantilés mesurables que 'on peut ex-
primer par des nombres, comme toutes les antres
sortes de quantités, en les rapportant & une unité de
leur espece. On peut aussi représenter Jeurs intensités
par des lignes proportionnelles & ces nombres, que 'on
porte sur leurs directions, & partir du point ol elles
sont appliquées ; ce qui a Iavantage de simplifier I'é-
noncé des théorémes.

6. Les points d’application des forces et leurs in-
tensités étant ainsi déterminés, il ne nous reste plus
qu'a nous occupér de leurs directions.

Soit M (fig. 1™), le point d’application d’une
force; représentons sa direction par la droite MD, de
maniére que cette force tende & faire avancer le
point M, de M vers D; par le point M menons trois
axes rectangulaires MA , MB, MC, qui seront, en gé-
néral, paralleles aux axes des coordonnées, et dirigés
dansle sens des coordonnées positives ; désignons par
e, €, 3, les angles aigus ou obtus que la direction MD
fait avec ces axes, de sorte quon ait

AMD—a, BMD=£; CMD=19;

je_dis que cette direction sera complétement déter-
minée quand ces trois angles seront donnés.

En effet, en ayant seulement égard aux deux an-
gles a et €, il faudya que la ligne MD se trouve a la
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fois sur deux cones droits, dont le sommet commup
est au point M, el qui ont pour axes les droites MA
et MB. 1l faudra donc que « ct € soient tels, que
ces deux cones puissent se couper; ce qui aura lieu
alors suivant deux arétes situdes dans un méme plan
Perpendir:ulaire au plan AMB, et qui feront, avec
I'axe MC, deux angles supplémens 1'un de T'auntre.
La droite MD pourra donc encore avoir deux posi-
tions différentes; mais Iangle 5 étant aussi donné,
on saura s1l est aigu ou obtus, et I'on pourra choisir
entre ces deux positions celle qui convient a la direc-
tion de la force.

Cette construction monire, en outre, que les an-
gles @, €, 5, ne peuvent pas étre pris tous les troisau
hasard. Il existe effectivement entre les cosinus des
angles qu’une méme droite MD fait avec trois axes
rectangulaires, une équation

cos* & - ¢os* € -}~ cos*y =1, (1)

que Ton démontre en prenant sur la droite MD, a
partir du point M, une ligne égale & Tunité, et for-
maunt un parallélépipéde rectangle, dont cette ligne
soit la diagonale, et qui ait ses trois colés adjacens
sur les trois axes MA, MB, MC. Ces trois cotés so-
ront les cosinus des ang]es t S 3 et:la somme de
leurs carrés devant élre égale au carré de la diagon
nale, d’apres une théoréme connu, il en rédsulters I'é-
quation qu'on vient d'éerire.

7. On adoptera, dans ce Traité, la division de la
circonférence en 560°, du degré en 6o minutes et de
Ja minute en 6o secondes. La lettre 7 sera constam-
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ment employée a représenter la demi-circonférence,
dont le rayon est égal a I'unité ; de sorte que Yon aura

wr = 3,1415926...

Le quart de la circonférence répond i I'angle droit
ou a I'angle de 524000"; il sensuit que la longucur
de I'arc correspondant & un angle d’un nombre quel-
conque 7 de secondes , sera le quatricme terme d'une
proportion , dont les trois premiers seront 7, n et
524000". En désignant cette longueur par @, 1l en ré-
sultera

I
T =
206264 ,8. ..

Le logarithme ordinaire de ce diviseur constant est
5,3144251.

Dans les calculs numériques, ce sont les arcs ainsi

calculés qu'on devra employer a la place des angles

qui ne seront pas compris sous les signes trigonome-

triques sin, cos, tang.

Pour qu'on puisse, au moyen des angles =, €, ¥,
représenter la direction d'une force dans tloutes les
positions possibles antour de son point d’application,
il faudra et il suffira qu'ils s’étendent depuis zéro jus-
quh 180° inclusivement. Si, par exemple, l'axe MC
est au-dessus du plan des deux autres axes MA et MBE,
Yangle 4 devra étre plus petit ou plus grand que 9o°,
selon que la droite MD sera située an-dessus ou au-
dessous de ce plan; il sera zéro quand la direction
MD coincidera avec MC, et égal a 180° quand MD
coincidera avec le prolongement MC' de MC. Tes co-
sinus de d, €, 9, pourront donc étre positifs ou ne-
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gatifs; mais leurs sinus seront toujours positifs,
que ces angles ne dépasseront jamais 180°,

En général, si nous considérons le prolongement
MDD de la droite quelconque MD, il est évident que
les angles qu'il fait avec les trois axes sont supplémens
de @, €, 3. En faisant donc

AMD' = m’, BMD' = €', CMD' — Wy

nous aurons

piis-

cosa'=——cosa, cos E'=—cosE, cos ¥'=—cosy;

d’ou il suit que les directions de deux forces qui agis~
sent en sens contraire sur un méme point M, I'une
suivant MD, lautre suivant MD’, se distingueront
l'une de Yautre par les signes des cosinus des angles
qui leur correspondent.

8. Au lieu des trois angles «, €, 3, liés entre eux
par I'équation (1), on pourra n'employer que deux
angles indépendans 'un de I'autre, pour déterminer
la direction d’une force.

En effet, soit ME la projection de MD sur le plan
AMB ; appelons 4 I'angle que fait ceite projection
avec I'axe MA, de sorte qu'on ait

AME = J\.
Lorsque cet angle & sera donné, il fera connailre
la position du plan CME, et I'angle 3 achévera en-
suite de déterminer celle de la droite MD comprise
dans ce plan. Il faudra que Tangle & soit compté,
a partic de MA, dans un sens convenu, et quil
puisse s'étendre depuis zéro Jusqu'a 560° ; Pangle
7 e s'étendra toujours que depuis zéro jusqu’a 180°.
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La projection sur le plan AMB de la diagonale
du parallélépipede précédemment indiqué (n° 6)
sera le cosinus de l'angle DME, ou égale a sin 3.
Si I'on projette de nouveau cetle projection sur
Iaxe MA, cette seconde projection se déduira de
la premiére, en la mullipliant par cos d'; elle coin-
cidera, d’ailleurs , avec la projection de la diagonale
du parallélépipede sur ce méme axe MA, et sera,
conséquemment, égale a cos @ ; par conséquent,
on aura
cos o = sin ) €os d .
On trouvera de méme
cos € = sin % sin d';

et ces deux formules serviront & transformer les
équations oit Fon aura fait usage des angles a, €,
%, en d’autres ou 'on n’emploiera plus que y et J'.
On vérifie immédiatement qu’elles satisfont a I'équa-
tion (1).

9. 1l existe une autre équation qui comprend ,
comme cas particulier, celte équation (1), et qui
nous sera souvent utile.

Pour Ia former, soient x, 7, %, les coordonnées
d’'un point queleonque M ( fig. 2) rapportées aux
trois axes rectangulaires Ox, Oy, Oz. Appelons r
son rayon vecteur OM, et «, €, 7, les angles ai-
gus ou obtus que fait ce rayon avec les trois axes,
de sorte qu'on ait, par exemple,

z0M = 3.

Si Pon abaisse du point M une perpendiculaire MN
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sur laxe Oz, la droite ON sera l'ordonnée zy et
dans le triangle rectangle MON, on aura

Z=rcosy;
on irouvera de méme
J = ”CO-“Q, €= picos .

Soit M’ un autre point, et désignons par z, P o
1 : ; :

i, !, €', 9/, ses coordonndes, son rayon vecteur et

les angles relatifs & cette droite ; nous aurons aussi

&'=r1'cos &'y ¥ =ir"cos€", “7 =¥ cos ¥

Appelons « la distance MM'; on aura, comme on
sait,

w= (2 — xP o+ (y'— )+ (2 —2);

et s1 lon représente par & I'angle MOM’, on aura
enl meéme temps

U= 4 s — arr! cos €,

dans le triangle dont 7, 1, u, sont les trois cotés.
A cause de

A S P L N L R g
la premiere valeur de «* est la méme chose que
U= 1= r'* — o (xa' - yy' + 27');
en la comparant & la seconde, on en conclura
' cose = axx’ 4~ yy S z2';

ct st Pon substitue dans cette équation les valeurs
¥ . r . . il Pl g ’
precedemes de £, 7%, £, %3, il en resultera
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€0s ¢ == cos 2 cos &’ 4 cos & cos E' - cosy cosy’; (2)
ce qu’il s'agissait de trouver.

Lorsque les deux droites OM et OM' coincident ,
les angles «', €', 9/, sont les mémes que «, €,v,ct
cette formule se réduit & 'équation (1). Quand ces
deux droites sont perpendiculaires I'une a lautre,
on a e==go°, et par conséquent

cos a cos &' cos 6 -~ cos 6" - cos 3 cos 3’ = o.

En mettant dans les valeurs de x, 7, z, celles de
cos @ et cos €, qu'on a trouvées dans le numeéro pré-
cédent, on aura

x=rsinycosd, y=—rsinysind, z=rcosy;
formules dans lesquelles les trois variables 7, 3, J'
sont les trois coordonnées polaires du point M, telles
gu'elles ont été définies dans le n° 4, et qui serviront,
par conséquent, a transformer les coordonnées rec—
tangulaires en coordonnées polaires.

10. La considération des projections dont on s'est
servi dans le n° 8, sera souvent employeée dans cet
ouvrage; il convient donc d'exposer ici leurs pre-
miers principes.

La projection d’'une droite sur une autre droite est
la partie de celle-ci qui est comprise entre les pieds des
perpendiculaires abaissées des deux extrémités de la
droite projetée. Ainsi, les différences x'—x, y'—7,
z'— 2z, des coordounées extrémessontles proj ectionsde
la droite MM’ sur les axes des, 7, 2; et,d’aprés la pre-
miere valeur de u*, la somme des ca rrés des projec-
tions d'une méme droite sur trois axes rectangulaires
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est égale au carré de cette droite. Si la droite proje-
tée et celle sur laquelle on la projette sont dans un
méme plan, la projection est égale et parallele 2 la
base d’un triangle rectangle, dont Ia droite projetée
est 'hypoténuse; en sorte que si I'on désigne par [
la longueur de cette droite, par A celle de sa projec—~
tion, et par i 'angle de ces deux droites, on a

A= {cosi.

La projection d'une surface plane sur un autre
plan, est la partie de ce plan terminée par la projec~
tion du contour de la surface projetée, c'est-a~dire,
par lacourbe que formentles pieds des perpendiculaires
abaissées de tous les points de ce contour. Or, I'équa-
tion précédentesubsiste encore,, si l'on y met & la place
de I Yaire de la surface projetée, et au lien de A Paire
de sa projection; i étant alors Vinclinaison d'un plan

-sur l'autre, pour laquelle on peut aussi prendre

I'angle compris entre les perpendiculaires i ces deux
plans.

En effet, décomposons I'aire de la surface projetée
en élémens d’'une largeur infiniment petite et per=
pendiculaires a I'intersection de son plan et de celui
sur lequel on la projette; la projection de chaque
¢lément sera égale & cet élément multiplié par le
cosinus de leur inclinaison mutuelle; par conséquent,
cette inclinalson étant la méme et égale i 7 pour tous
les élémens, la somme de leurs projections, gu A,
sera égale a leur somme, ou a laire totale 7 mulii-
pliée par cos i; ce quil s'agissait de prouver. On con-
clut de la que le carré de laire d'une surface plane
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est égal & la somme des carrés de ses projections sur
trois plans rectangulaires, en prenant pour I'inclinai-
son sur chaque plan T'angle que fait la normale a la
surface donnée avee les perpendiculaires a ce plan,
et ayant égard a I'équation (1).

11, Lorsque dans une question, on considérera un
systeme de forces paralléles, on pourra supposer que
I'un des trois axes rectangulaires MA, MB, MC,
(fig. 1™), leur est aussi parallele. Alors deux des
trois angles a, €, 7, les deux derniers, par exemple,
seront droits pour toutes ces forces; et I'équation (1)
se réduira

cos’et = 1 ;

d’ou l'on tire o =0 ou &= 180°.

De cette maniere, la direction de chaque force se-
rait fixée, en disant qu’elle fait avec l'axe MA un
angle nul ou un angle de 180°; mais dans ce cas par-
ticulier, il sera plus simple de déterminer cette di-
rection par le signe de la force, en regardant comme
positives les forces qui agissent dans un sens, et
comme neégatives celles qui agissent dans le sens
opposé.

Au reste, le cas des forces paralléles serale seul ot
nous considererons des forces posilives et des forces
négatives ; dans tous Jes autres cas, les quantilés qui
représenteront les grandeunrs des forces, dans le cal-
cul, seroat positives, et la variation de signe ne tom-
bera que sur les cosinus des angles que leurs direc-
tions font avec des axes fixes.

12. Ce qui précéde renferme les définitions préli-
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minaires , et des détails suffisans sur la détermina-~
tion des grandeurs et des directions des forces ; mais,
dans cet ouvrage, jemploierai exclusivement la mé-
thode des infiniment petits ; c’est pourquot il est né-
cessaire de rappeler, dans cette introduction, les prin-
cipes de '’Analyse infinitésimale, et parmi les for—
mules qui s'en déduisent le plus immédiatement,
celles dont nous pourrons avoir besoin par la suite.

Un infiniment petit est une grandeur moindre que
toute grandeur donnée de la méme nature.

On est conduit nécessairement i lidée des infini-
ment petits, lorsque l'on considére les variations
successives d'une grandeur soumise a la loi de conti-
nuité. Ainsi, le temps croit par des degrés moindres
quaucun intervalle qu'on puisse assigner, quelque
petit qu'il soit. Les espaces parcourus par les diffé-
rens points d'un corps, croissent aussi par des infini-
ment petils; car chague point ne peut aller d’une
position a une autre, sans traverscr toutes les posi-
tions intermédiaires ; et l'on ne saurait assigner an-
cune' distance, aussi petite que l'on voudra , entre
deux positions successives. Les infiniment peliis ont
donc une existence réelle, et ne sont pas senlement
un moyen d'investigation imaginé par les gdometres.

Un infiniment petit peut étre double, triple,
quadruple, ...... , d'un autre : les quantités infini-
ment petiles ont entre elles des rapports quelcon-
ques, dont la détermination est un objet essentiel de
FAnalyse infinitésimale. '

Sia et b sont des infiniment petils, et que le rap-
port de & & g soit aussi infiniment petit, & est ce
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quon appelle un infiniment petit du second ordre.
Par exemple, la corde d’un are de cercle étant sup-
posée infiniment petite, le sinus verse du méme arc
est un infiniment petit du second ordre, puisque le
rapport du sinus verse & la corde est toujours le
méme que celui de la corde au diametre, et devient ,
par conséquent, infiniment petit en méme temps que
le second rapport.

De méme, & ¢tant déja un infiniment petit du
second ordre , si I'on suppose que le rapport de ¢ 4 &
soit infiniment petit du premier ordre, on apellera ¢
un infiniment petit du troisieme ordre; et ainsi de
suite.

1l suit de 1a qu'un produit composé d'un nombre 7
de facteurs infiniment petits du premier ordre, devra
étre rangé dans la classe des infiniment petits de
Pordre n.

Laire d’une surface infiniment petite dans toutes
ses dimensions est au moins un infiniment petit
du second ordre; car elle est moindre que le carré
de la droite la plus longue qu'on puisse mener d'un
point a un autre de son contour, laquelle droite est
infiniment petite , par hypothese. On verra de méme
qu'un volume dont toutes les dimensions sont infi-
niment petites, est au moins un infiniment petit du
troisitme ordre, puisqu’il est moindre que le cube
de la plus longue droite menée d’un point 4 un antre
de sa superficie.

Cela posé, le principe fondamental de IAnalyse
infinitésimale consiste en ce que deux quantités
ﬁnieg, qui ne diﬁ'él‘ent ]’Illlc d(: l'auh‘e que d’ll[l




16 TRAITE DE MECANIQUE.
infiniment petit, doivent étre regardées comme
égales , puisqu'on ne saurait assigner enire elles au-
cune inégalité, aussi petite que I'on voudra.

Il en sera de méme a I'égard de deux quantités
infiniment petites du premier ordre, dont la diffé-
rence est infiniment petite du second ordre, et,
généralement, & Végard de deux infiniment petits
d'un ordre quelconque, qui ne different I'nn de
l'autre que d'un infiniment petit d'un ordre supé-
rieur : on les considérera comme des quaniilés ri-
goureusement égales, et leur rapport, comme égal a
Tunite.

On énonce encore ces principes dune autre ma-
niere, en disant qu’il est permis de négliger dans un
calcul , sans crainte d’aliérer aucunement les résul-
tats, soit les infiniment pelits ajoutés a des quantités
finies, soit les quantités infiniment petites d’'un ordre
quelconque, ajoutées 2 des quantités d'un ordre in-
férieur.

15. La différentielle dx d’'une variable indépen-
dante x, est l'accroissement infiniment petit qu'on
attribue 4 cette variable; la différentielle dy d'une
fonction » de a, est Vaccroissement correspondant
de ceite fonction, réduit au méme ordre de grandeur
que celui de la variable indépendante, par la sup-
pression des infiniment petits d'un ordre supérieur ;
d’on il résulte que cette différentielle dy est toujours
de la forme Xdx; X étant une autre fouction de .
Pour quelques valeurs particulieres de «, il peut
arriver que le coeflicient différentiel X devienne in-
fini, ce quirendra la différenticlle Xdx indéterminée ;
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mais cetle circonstance ne se présentera pas dans la
Mécanique.

Soient fx une fonction donnée de &, ¢ une cons-
tante arbitraire, et Far -4 ¢ lintégrale compléte ou
indéfinie de fxdzx. Soient encore @ et b deux cons—
tantes données. En déterminant la counstante ¢ de
maniere que cette intégrale soit nulle ou commence
quand x=o0, et faisant ensnite x =25, le résuliat
Fb—Fa sera ce quon appelle Iintégrale définie,
prise depuis x =a jusqu’a w==b. Je la désignerai

b . : \
par f Jads, suivant la notation tres commode que
a

Fourier a proposée; et j'€crivai, en conséquence ,
b
Fo— Fa= f Jeedx.
o &

8i 'on donne successivement 3 2 une infinité de
valeurs , croissantes depuis @ jusqu’a b par des dif-
férences infiniment petites, et que Pou prenne ces
différences égales oun inégales, pour les valeurs
de du, il est facile de faire voir que la somme de
toutes.les valeurs de la différentielle frdax sera égale
a l'intégrale définie Fb — Fa.

En effet, en négligeant les infiniment petits d'un
ordre supérieur au premier, on a, d'aprés la défini-
tion de la différentielle,

Flx 4+ dx) — Fx = foedx.
Si donc on représente par &', &, JY, ... . e

un nombre infini de quantités infiniment petites
telles que l'on ait

d,+d. 4. .. A dy=b—a;
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et que l'on prenne successivement, pour x et dux,
les couples de valeurs a et d\,, a+d', et J',, a+d~4-4\,
et Yy, o » . b—d', et dy, il en résultera

Fla+d) —Fa=fad,,
Fla+d'+d)—F(a+d)=/(a+J.)d\,
Flatd +dA4-dy)—Fla+d\+4d.)=fla+d\+d.)d5,

s s sie e B et essas R Y . P iy

Fb ""F(b —'(J\,J:f(b = Cj\n)‘a\n :
éqnations dont la somme est

Fb — Fa= fad,+ f(a -+ 8. fla 4, =+ &.)d%
vonvet f(b— D) d;

ce qui renferme le théoréme qqu'il s'agissait de dé-

montrer.

Lorsque la fonction fx deviendra infinie entre
los deux limites a et &, cette démonstration n’aura
plus lien, et le théoréme sera en défaut. Dans ce cas
d’exception , que nous ne rencontrerons pas dans la
suite, l'intégrale définie n'a plus aucun rapport avec
la somme des valeurs de la différentielle , et elle peut
méme étre négative, lorsque toutes ces valeurs sont
positives, ou positive, quand elles sont toutes néga-
tives. Pour faire reparaitre le théoreme, il faut alors
empécher que fx ne devienne infinie entre x=a et
a—Db, en faisant passer la variable x de l'une a Pautre
de ces limites, par une série de valeurs imagi-

naires (*)

(¥) Foyez, sux ce point, le Journal de U Ecole Polytechnique,

18° cahier, page 320.
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Le théoréme précédent s'étend sans difficulté aux
intégrales multiples. Ainsi, par exemple, si Sz, %)
est une fonction donnée de denx variables indépen-
dantes x et y; que I'on donne successivement a ces
variables des séries de valeurs croissantes pardes diffé-
rences infiniment petites; et que I'on prenne en méme
temps pour dx, les différences entre les valeurs con-
sécutives de x, et pour dy , celles des valeurs con—
secutives de 7, la somme de toutes les valeurs de

S, y)dxdy, sera I'intégrale f f S (2, y)dxdy, prise
entre des limites convenables.

14. Lorsque la fonction Ja renfermera une quan-
tité & considérée comme une constante dans 'inté~

. e 6"
gration , la valeur de Iintégrale / Jadx sera elle-
@

méme une fonction de a. 11 ¥ a des questions dans
lesquelles cette intégrale n'étant pas connue sous
forme finie, on aura besoin , néanmains, de déter
miner sa différenticlle par rapport & «. Or, cette
opération présentera deux cas différens , selon que
les limites @ et & seront indépendantes de , ou
qu'elles en dépendront dune maniére quelconque.

Dans le premier cas, il suifira de différentier ¥ i

par rapport a « sous le signe [; en sorte que I'on
aura

: z
d-‘[:‘ fii — /‘6 g??(f.x'.
de Ja da
En effet, daprés le théoréme du numéro précé-
dent , le premier membre de cette équation est le
coeflicient différentiel par rapport & a de la somme

~ .
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des valeurs de fxdx , comprises depuis & = a jus-
quha x==1b; tandis que son second membre est la
somme des valeurs, entre les mémes limites, du coef-
ficientdifférentiel de firdx relatifa a; et il est évident
que ces deux sommes sont identiques.

Dans le second cas, lorsque o se change en a~j-da,
la limite 4 devient b4 :}% de , et pour cette raison,
lasommedes valeurs de fxdzx, ou I'intégrale f; b. Jedax
se trouve augmentée de la valeur de fxdx qui ré-
pond & x=10b et dx= % da, c'est-a-dire, de fb .Z—id:c 3
en méme temps la limite a se change en a - gz de,
ce qui diminue cette intégrale de la valeur de fx,
corre5pondante a x—a et dx = % dee, ou de
Ja. gz de; donc, 4 cause de la variation simultanée

des deux limites a et b, produite par celle de «,
lintégrale se trouvera augmentée de la différentielle

db da ,°
SIb— 5 Ja)de,

et son coeflicient différentiel par rapport 4 z, de
ce coeflicient de da. Par conséquent, en P'ajoutant
au second membre de Véquation précédente, on

aura

I_fﬁ,_ [P et 3 fo— 32 S,
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pour la valeur compléte du coeflicient différentiel de

f; bf.x‘d.r.

Quand « n'entrera pas dans Jx , que cette quan-
lité sera I'une des deux limites b ou a, et que ces
deux limites ne dépendront pas I'une de lautre,
Cetle expression se réduira i

d r Jxdx _ d aﬁt:dx !
- _d?;—_":fb’ ou T =—Jfa;

ce qui est, d'ailleurs, évident en soi-méme.

Des remarques semblables s'appliqueront aux inté-
grales multiples , dont les coefliciens différentiels par
rapport & wne quantité quon a d’abord regardée
comme constante, s'obtiendront aussi en différen-
tiant sous les signes d'intégration , et en ajoutant au
résultat des termes dépendans des variations des
limites, quand elles dépendront de cette quantité
devenue variable.

15. Le caleul intégral fournit des regles pour dé-
terminer exactement ou par approximation, les va-
leurs numériques des intégrales définies, simples
ou multiples; en sorte qu'un probléme est censé
résolu , lorsqu'on est parvenu i exprimer les incon-
nues par des intégrales de cette nature. On dit alors
que le probleme est réduit aux quadratures, parce
que, d'une part, une intégrale multiple n’est autre
chose qu’une intégrale simple plusicurs fois répélée

3 A r . r b =
et que, d'un autre cHté, une intégrale f Jxdx peut
o

toujours éire représentée par le carré égal i Iaire
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d'une courbe plane, dans laquelle x et fx sont les
coordonnées d'un point quelconque, et @ et b les
abscisses des points extrémes.

Parmi les différentes formules dont on fait usage
pour calculer les valeurs approchées de cette intégrale

b . 2 -
f; t Jada, nous citerons la suivante, qui suppose que
les fonctions fx et ére ne deviennent point infinies

dx

entre les limites a et b.

Conservons toutes les notations précédentes, et
faisons de plus

dfer _ dfe
[b’.‘ _ Jf, E'E‘_- = j Ly ete.

Supposons que les différences d',, ', d, etc., ne
sont pas infiniment petites, mais seulement trés pe-
tites; prenons-les égales, et représentons par J'leur
grandeur commune. Nous aurons, d'aprésle théoréme
de Taylor,
F(a+ &) =Fa +dfat L' a4 ete.,
Flat20)=I (a4 4 df(a+ ) + L& (a + &) 4+ ele.,
F(a+ 30) =F (a+2d) + &/ (a-+23)+ 18°f" (a+ 23) + ete.,

...................................................

Flatnd) =F (a +nd— &)+ &f(a--nd — &)

+ 18 (a4 nd—9) - ete.
Donc, en supposant nd = b — a, et faisant la
somme de ces ¢quations, on aura

o —Fa=dZf(a+4id) +5d*Zf (a4 i)

+ + 8= (a4 id')F-ete.;
i étant un nombre entier ou z€ro, et les caractéristi-
ques Z indiquant des sommes qui s'étendent aux n
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valeurs de i comprises depuis i=o0 jusqu'a i==n—1.
En prenant successivement fix et f'x, f'x et f"x, etc.,
au lieu de Fac et for, on aura de méme
Sfb—fa=73=f"(a+ i)+ 1Zf"(a+id) +-etec.,
S'bo—[a=I=f"(a+1id") 4 elc.,
etc.

Cela posé, si 'on veut négliger les puissances de J
supérieures an carré dans la valeur de ¥6 — ¥a, on
pourra prendre , d’apres les derniéres équations,
13" (a-id)=1d (fb—fa) — £I*(f'b — f'a),
155" (a+id) =24 (f'b—F'a),

pour les valeurs de ses deux derniers termes. Sa va-
leur entiere deviendra done

Fb —Fa=J3f(a—+id) + 14 (fb— fa)
— L3 f'b —fTa),

ou, ce qui est la méme chose,

b, ,
[ fade = &[5 fat fla+ &) +f(a+2d). ..
a
cor=flad-nd — &) - Lfb]l— &=d(f'b—f"a).
Cette formule sera d’autant plus exacte, que la diffe-
rence J', on i(i) —a), sera plus petite, et que les
valeurs de ja varieront moins rapidement entre les
limites a et 5. Le plus souvent on pourra négliger le
terme dépendant de J*; la formule ne renfermera
alors que des valeurs de fox qui pourront étre don-
nées en nombres, sans que la forme de cette fonction
soit connue.
16. Dans la théorie des infiniment petiis, on con-
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sidere les courbes comme des polygones d'un nombre
infini de cotés infiniment petits. Cela suppose que la
corde d'un arc infiniment petit est égale & cet arc, ou
que le rapport de leurs longueurs peut étre pris pour
Punité; c'est effectivement ce que 'on peut démon-
trer de la maniére suivante.

Soit Mmm/M’ (fig. 3) un arc de courbe infiniment
petit; tirons les cordes Mm, mm', m'M', et prolon-
geons la troisieme, jusqu'a ce qu'elle rencontre le pro-
longement MT de la premicere, en un point K. L'arc
mm' est plus grand que la corde mm/, et moindre que
la ligne brisée mKm/; il suffira donc de prouver que
cette ligne et cette corde, infiniment petites, ne dif-
ferent que d'un infimment petit d’un ordre supérieur,
et que I'on peut prendre le rapport de I'une a l'autre
pour l'unité : cela sera vrai, @ fortiori, a I'égard de
Pare mm’ et de sa corde.

Or, s'il 0’y a dans I'étendue de Pare Mmm/M’ aucun
point singulier o la direction de la courbe change
brusquement, les cordes qui vont d'un de ses points
a un anire comprendront des angles infiniment peu
différens de deux droits. L’angle TEKM’, supplément
de MKM’, sera donc infiniment petit ; je le désignerai
par J'; et en faisant, en outre,

mK=gqa, mK=05, mm'=c,
on aura, dans le triangle mKn2', 'équation

¢* =@ b* -} 2abcosd,

que L'on peut changer en celle-cr :

N (e by — 4ab sin* 1 ',
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en ohservant que

cosd = 1 — 2sin* + J.

Nous aurons donc
= Ak fab .
oy S e e A
pour le carré du rapport de la corde mm' i la higne
brisée mKm'. On a d’ailleurs

b g 2 (ﬂ;’}) ]

TR T a=b/?
ce qui prouve que le coefficient de sin* 1 J' ne peut
pas devenir infini, puisqu'il est toujours moindre
que l'unité. En négligeant I'infiniment petit du se-
cond ordre, on aura donc I'unité pour le rapport de
¢ a a4 b; ce qu’il sagissait de démontrer.

17. Une courbe étant considérée comme un poly-
gone infinitésimal , les tangentes seront les prolonge-
mens de ses edtés infiniment petits; au point M, ol
le cOté est Mm, la tangente sera la droite indéfinie
T'MmT.

Si I'on désigne par x, y, z, les trois coordonnées
rectangulaires du point M, celles du point m seront
x ~-dx, y 4 dy, z = dz. En appelant ds I'élément
de la courbe, cest-a-dire, son cHté Min, les différen-
tielles dx, dy, dz, seront ses projections sur les axes
des &, y, z; par conséquent, si I'on représente par
@, €, %, les trois angles que fait la direction de la
droite MT avec des paralléles & ces axes, menées par
le point M, on aura

o, dx dy dz
Cos & ==, ros@—_—ﬁ;, eosy = =, (1)
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et en méme temps

da® 4+ dy* = dz* = ds*.

En prenant, sur la courbe que I'on considére, un
point fixe C, et supposant que s soit I'arc CM compté
de cette origine, cet arc pourra étre la variable indé-
pendante , dont x, ¥, %, seront des fonctions données
par les équations de la courbe. Dans ce cas, ds sera
positif; mais dx, dy, dz, et par suite cos a, cos €,
cos 7, pourront étre positifs ou négatifs. Les angles
@, 6, %, se rapporteront toujours au prolongement
mT du coté Mz, ou 4 la partie MmT de la tangente;
les angles relatifs a 'autre partie MT' seront les sup-
plémens de 2, 6, 3, (n° 7). ;

La direction de la tangente au point M étant dé-
terminde par les équations (1), on en peut conclure
I'équation du plannormal en ce méme point ; mais on
obtient directement cette équation par la considéra-
tion suivante.

Soit % le rayon d’'une sphére qui a son centre au
point M ; son équation sera

(@ — @)t - (f — ) — = B

x', 7', 7, désignant les coordonnées courantes. L'équa-
tion de la sphére du méme rayon, qui a son centre
au point m, se déduira de celle-la, en y mettant
x—dx, y+dy, z-+dz, alaplacede x, y, z; en
retranchant ces équations 'une de lautre, et négli-
geant les infiniment petits du second ordre, il
vient

(&' — & de A (' =) dy + (f — Dz =0



INTRODUCTION. <7
€quation qui appartiendra A Vintersection des deux
surfaces sphériques. Comme elle est 'équation d'un
plan dont &/, y', 7, sont les coordonnées courantes
ce sera celle du plan de cette courbe, et, par consé-
quent, I'équation demandée du plan normal , puis-
que les deux sphéres se coupent suivant un cercle
perpendiculaire 2 la droite T'T qui passe par leurs
cenires M et m.

En la divisant par ds, et ayant égard aux for-
mules (1), cette équation devient

(2" —x) cos a4 ( 3’ — ) cos € 4 (z'— Z) €OS 3 = 0.
Si done

a(@'—2) +b(y =)+ c(d — =0
représente I'équation d'un plan mené par le point
dont les coordonnées sont «, y, z, et perpendica-
laire i la droite dont la direction est déterminée par
les angles «, €, 9, il fandra qu'elle s'accorde avec la
précédente ; ce qui exigera qu'on ait

a=hcosa, b=hcos€, c=hcosy,
h étant un facteur indéterminé. En vertu de Péqua-
tion (1) du n° 6, on en conclura d'ailleurs

a* 4 b* 4= c* = h*;

ce qui fail connaitre la valeur de %, abstraction faite
du signe. On aura ensuite

a b ¢
cosa:-’;, cos€=z, Cos ) = 7; (’)

ce qui coincide avec les formules connues d’aprés
lesquelles on détermine la direction de la perpendi-
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culaire a un plan donné. Le signe de 4 reste indéter-
! min¢, parce que les angles a , €, 9, peuvent se rap-
porter & I'une ou a l'autre des parties de cette droite
| qui sont situées des deux cotés du plan.
H 18. On appelle angle de contingence l'angle infi-
‘ niment petit compris entre deux tangentes conséeu-
| tives. Ainsi Mm et mm' (fig. 4), étant deux cotés
| - consécutifs de la courbe, cet angle, au point M, est
le supplément de Mmm', ou langle Tmt, sous le-
| quel la tangente MmnT est coupée par la tangente
suivante mm't. Je le représenterai par J'; en suppo-
santque les angles ¢, €, 9, se rapportent toujours a la
| direction de MT, et désignant par o/, €/, 9/, ce qu'ils
| deviennent relativement 4 la direction de mi#, on aura,
‘ en vertu de 'équation (2) du n° g,

sin® J'=1— (cosacos a’ - cos€ cos &' - cosy cosy' ).

D’aprés le théoreme de Taylor, on aura aussi

‘ cos &' —cosa—d.cos o -+ d*.cos & elc.
cos &' = cos€+4- . cos6 + Ld*.cos€ +etc.,
c0s 3’ = cosy—+d.cosy - L d*.cos y—-elc.

Or, si 'on substitue ces valeurs dans celles de sin® J',

i et qu'un ait égard i 'équation

cos® a—-cos* 6 J-cos*y =1,
et 2 sa différentielle

| cos o d.cos a—-cos 6 d.cos6 +-cosy d.cosy = o,

i on voit que les quantités finies et les infiniment pe-

tits du premier ordre se détruisent; en sorte qu’en

négligeant les infiniment petits des ordres supérienrs
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au second, il vient
sin*J'= —(cosad®.cosee--cosb*.cos€ ~-cosyd*.cosy).
En différentiant I'équation précédente, on a, dail-
leurs,

cos zd*.cos o + cos € d*. cos € - cos yd*.cosy
+(d.cosa)* 4 (d.cos€ ) 4-(d.cosy ) =0 ;
ce qui change la valeur de sin* 4 en celle-ci :

sin® J' = (d. cos &)* + (d.cos €)* - (d. cosy )*,

laquelle sera aussi la valeur de 4, & cause que l'are
infiniment pelit J° est égal A son sinus.

Les différentielles de cos, cos €, cosy, se dédui-
ront des formules (1) du numéro précédent. En ne
specifiant pas la variable indépendante, on aura
ds’d*x — dadsd’s _

— ds 2

d.cose =
et comme on a
ds* ==dx* 4~ dy* 4 d=,

dscls = dxd*ax 4 dyd*y 4= dzdez,

il en résultera
d.cos = (dydew — dredsy) 42 (dech x —dedea);
3 Osd"—d_ﬁ()’ : % A O3
on aura de méme
d dz 8 I
d.cosE= %’; (dacd’y — dyd*x) 4 (dedty —dyd*z),
ax i/ i T
d.cos y = 5 (dad*z— dzd*zx) - :7? (dyd*z—dzd*y);

or, en faisant la somme des carrés de ces irois va-
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leurs, on trouve, aprés quelques réductions, que
Vexpression de sin* J' ou de J*, peut se mettre sous
la forme
Sre= "J—ZT [ (dxdy — dydsa)* + (ded*oe — daed’z)?
- (dydtz — dzd*y)*].

Le cerele osculateur est celui qui a deux cotés con-
cécutifs communs avec la courbe. Au point M, ce
cercle est donc celui qui passe par les trois points
M, m, m, dont le centre se trouve a l'intersection O
des deux perpendiculaires clevées sur les milieux de
Mm et mm’ dans le plan de ces deux élémens consé-
cutifs, et qui a pour rayon la droite MO. Si ces deux
¢lémens sont supposés égaux, cette droite divisera
Pangle Mmm' en deux parties égales : nous ferons
cette hypothése sans craindre d’altérer la valeur de
MO ; car il est aisé de voir que le rapport numérique
des deux cbtés infiniment petits Mm et mm’ n'influe
que d'une quantité infiniment petite sur la grandeur
de ce rayon qui est, par conséquent, la méme, soit
qu'on prenne ces deux cdtés conséeutifs égaux, ou
qu'ils soient inégaux.

La longueur des cotés Mm étant ds, et en repré-
sentant par p cclle de m0, la projection de p sur M
sera + ds; en sorte que I'on aura

L ds = pcos MmO ;
et puisque cetangle MmO est la moiti€ du supplément
de & ou égal a ;?_%J\’ il en résultera
~;— ds=— p sin sd :—; PJ‘ 4

en prenant Varc 24" la place de son sinus.
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Cela étant, sile rayon de courbure p était connu
d’une autre maniére, on aurait

ds
J\:-—,
P

pour la valeur de l'angle de contingence ; et récipro-
quement, d'aprés la valeur précédente de 4, celle
de p sera
i ds?

[(dzdy —dyda)y+ (ded'z — ded'z)*+(dyd' s — dzdiy )" o

10. Pour achever de connaitre 1a nature intime de
la courbe au point quelconque M, il faut encore dé-

terminer son plan osculateur, cest-a-dire le plan des
deux cbtés conséeutifs Mim et mm'.

Ce pian passant par le point M, on pourra repré-
senter son équation par

Afx'—x)+B(y' —p)4+C(z—z)=0;
', ', 7, étant les coordonndes courantes. A cause
qu’il doit aussi passer par les pointsm et ', les différen-
tielles premiére et seconde de cette equation, savoir :

Adx' 4+ Bdy' 4-Cdz' =o,

Adrax'+ Bd*y' 4 Cd*z'= o,
devront, étre satisfaites comme I'équation méme, ¢n
y faisant &'=ua, y' =1y, 7 =13; ‘en sorte que l'on
aura

Adx 4 Bdy 4+ Cdz = o,

. Ad*x - Bd*y + Cd*z=o.
Les valeurs de A, B, C, qui remplissent ces deux
conditions sont, comme il est aisé de le vérifier,
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C=D (dxd'y—dydx),

1 B=D (dzd*x— dxd*z),

! A=D (dyd*z — dzd*y) ;

D étant un facteur indéterminé. En les substituant

dans I'équation du plan osculateur, et supprimant ce

i facteur commun a tous ses termes , elle devient

(2 —z) (daedry — dyd*x) + (y'— y) (dzd*x — dacd*z)

.; -+ (' — x) (dyd*z— dzd*y) = 0.
Silon appelle A, ¢, v, les angles que fait Ja nor-

male au plan osculateur, avec des paralleles aux axes

i'.t des x, y, z, menées par le point M, on aura, d'aprés

les équations (2) dun® 17,

| cos?x=i(dja vz — dzd'y), |

r

L COS (= —;; (dzd®x — dxd®z), > (3)
I

E{ cos ¥ = %(dxd’j— dyd*x), g

en désignant par £* la somme des carrés des trois nu-
mérateurs.
On déterminera aussi 'angle infiniment petit com- .

pris entre deux normales consécutives, et qui sera

! I'angle de deux plans osculateurs consecutifs , comme

i on a déterminé tout 4 Theure Vangle de deux tan-

‘ gentes. En le désignant par ¢, on aura, par un caleul

I semblable 2 celui du numéro précédent ,

s ¢ = (d.cos J\.)’—I— (d.CDSM)’—f—(([.COSP)'.

4 20. Le centre de courbure O se trouve a la fois sur
le plan osculateur et sur lintersection des deux plans
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normaux consécutifs; ce qui fournit le moyen de dé-
terminer ses coordonnées d’aprés les équations de ces
trois plans, qui sont maintenant connues.

L’équation du plan normal en M étant (n°® 17)

(2! =) doc (' —p)dy 4= (2 —2)di==o0,
celle du plan conséeutif s'en déduira en y mettant
& -dx, y—4dy, z+4 dz, aulieu de «, ¥, z; par
conséquent, la différentielle de Péquation du premier
de ces deux plans, prise par rapport a x, y, z, saveir:

(&' —x) d*oe (' —5) dry 4 (2! —z)d's=ds*,

appartiendra & leur intersection.
On tire de ces deux équations

(&' — z) (dedly — dyd'z) = (z' —z) (dyd'z—dzdy) — ds*dy ,
r'—2) (dydix —dzdiy)= (7 —z) (ded’zs — dad'x) — ds*dx ;

el au moyen de I'équation du plan osculateur, on en
conclut

z
’

S mr = L (dy i dicty)
— dx (dzd*x — dxd’z) |,

en désignant, pour abréger, par p la méme expres-
sion que dans le n® 18. On aura de méme

¥ —y =:,;;4 [dx (doxcd®y — dyd*x)
— dz(dydrz—dzdiy) ],
I’*——xz—i: [ dz (ded*ax — dxd*z)
— dy (dxd*y —dyd*x) 3]
ce qui fait connaitre les trois coordonnées 2/, 7,3, du
centre de courbure 0, e, par conséquent, le sens

1 2
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de la courbure dont le rayon osculateur ne détermine
que la grandeur.

En ajoutant les carrés de ces valeurs de &'— ¢,

¥ —y, 58—z, et réduisant, on a

(—x) e s =
d'ou il résulte que la quantité p est la distance du
point O au point M, ou le rayon de courbure MO,
comme on le savait deja.

2{. Les formules des cing numéros précédens ren-
ferment tout ce qui est relatif a la direction et & la
courbure d'une ligne quelcongue, plane ou a double
courbure. Relativement & une surface quelconque,
on a aussi a consideérer la courbure et la direction de
son plan tangent; quant a sa courbure, je renverrai
au Mémoire que j'ai inséré sur ce sujet dans le 21° ca-
hier du Journal de U'Ecole Polytechnique, et je ne
m’occuperai ici que de ce qui concerne le plan tangent
et la normale.

En un point M, dout les coordonnées sont x, 7, z,
I'équation du plan tangent peut étre représentée par
Ax' — )+ By —p)+ OF — =03
x', y', 3, étant les coordonuées courantes. Ce plan
devra aussi passer par tout autre point M'de lasurface,
infiniment voisin de M; il faudra donc qu'on satis-
fasse a cette équation, au moyen de &' = x 4~ dx,
y=y+dr,d=12- dz, ou i sa différentielle re-
lative 2 x', 7', 2, en y mettant x, y, z, & la place

de ces variables. Par conséquent, on aura

Adx - Bdy 4+ Cdz = o.
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L'équation de la surface donnera

s = pdx - gdy ;

P €t g désignant des fonctions connues de x, Ty %
L'équation précédente devient done

(A + pC)dx + (B 4 ¢C)dy = o;
¢t comme elle doit subsister pour toutes les directions
de la droite MM/, c'est-2-dire, pour tous les rapports
qu'on peut établir entre dx et dy, il faudra égaler

séparément A zéro les coefliciens de ces différenticlles ;
d'ou il résultera

A—4pC=o0, B4-¢C=o.
Je tire de 4 les valeurs de A et B, je les substitue
dans I'équation du plan tangent, et je supprime le
facteur commun C; il vient

= - . ! —
¥ — 21— p(a' — &) —g(y' — ) =o.

Sia, b, ¢, sont les angles que fait la normale au
point M, avec les prolongemens des coordonnées 2
¥ %, on aura, d’apres les équations (2) da n® {7 I

7

COS d = — —_._i—‘:—_‘—:’
Vitp4q

g
cos b = — T/__I:m“, y (4)
—.__._l iy
Vitp+q¢ )
Le radical sepa positif ou négatif dans ces trois for-
mules, selon que la partie de la normale qu'on
voudra considérer fera un angle ¢ aigu ou obtus
3z

€08 .0 =
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avece la droite menée par le point M , suivant la direc-
tion des z positives.

En appelant @ l'élément de la surface dont la pro-

jection sur le plan des x et y est dedy, on aura

dxdy === wcos ¢,

selon que ¢ sera aigu ou obtus; car cet élément infi-
niment petit en tous sens, est compris dans le plan
tangent dont l'inclinaison sur le plan des x et y est
’'angle ¢ ou son supplément ; et le théoréme dun® 10
convient dgalement 2 la projection dwne surface
plane infiniment petite. Dapres cela on aura

o =dxdy Vi-4=p'+¢*,

en regardant touwjours le radical comme une quan-
tité positive.
Soit L une fonction donnée de x, y, z; repré-
sentons par
be=u;
équation de la surface que Pon considere ; enla dif-
férentiant successivement par rapport & x ¢t & ¥, on

aura
dL dL

dL dL
ETPE T HZTIE=o
Je tire de 1a les valeurs de p et ¢, et je les substitue
dans P'équation du plan tangent qui prend la forme

dL (IL A, o C{L '
(! — Efam +(J"“‘J’)@ F P =r) 2 e,

En méme temps, les formules (4) deviennent

_._[i dL

dL d ,
oS 4 = V[zl_r’ cosh=Y Pl COSC:V?I—:, (5)
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en [aisant, pour abréger,

(€%
e |

dLN* | gdIN* | pdINY S
=) +(GF) + (@] =V

22. Je placerai ici une remarque qui sera ulile
pour vérilier ou déduire les unes des autres les for-
mules analogues qui répondent 4 différens axes.

Supposons que dans une question tout soit sem-
blable a I'dgard des trois axes des coordonnées y
¥s 2. 8i l'on a une équation X=o, relative 4 l'axe
des 2, il en existera une semblable Y=o, qui ré-
pondra a Vaxe des y, et une troisiéme Z=o, relative
a Taxe des z; et ces deux autres équations Y = o
el Z=o0, se déduiront de X =o, par de simples
changemens de lettres. Or , voici comment ces per-
mutations devront s'effectuer.

On metira dans X toutes les quantités relatives a
laxe des o, 2 la place des quantités analogues qai
répondent & axe des y, puis celles-ci & la place de
celles qui répondent 4 laxe des z, et, enfin, ces
dernieres quantités 4 la place des premitres , qui ré-
pondaient a laxe des a. Par cette permutation
lournante, on déduira Z de X; par une seconde
permutation de la ménie nature, effectude sur Z !
on obtiendra Y; et par une troisieme permutation
tournante, effectude sur Y, on retrouverait X.

Sil agit, par exemple, des équations (3) du
n® 19, dont la premiere répond a laxe des &, la
seconde a Taxe des y, et la troisieme a laxe des z,
J'écriral sur une méme ligne, mais en deux parties,
les coordonnées a, 75 5, et les angles 2, p, v, qui
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leur correspondent respectivement ; puis, sur une se-
conde ligne, je disposerai ces six quantités , aussi en

deux parties, et dans un ordre différent, de sorte
qu'on ait

X, ¥, %, Ay thy v
By Xy ¥y vy A, M

Cela fait, je remplacerai dans la premiére équa—
tion (3), chacune des quantités de la ligne supé-
rieure par la quantité correspondante de la ligne in-
férieure ; par cette permutation, % ne changera pas,
et I'on obtiendra la troisieme équation (3). Je met-
trai de nouveau, dans celle-ci, les quantités de la ligne
inférieure a la place de celles qui leur correspondent
dans la ligne supérieure ; ce qui donnera la seconde
équation (3]; et en opérant de méme sur cette équa-
tion, on retrouvera la premiere équation (5), d’ou
I'on est parti.

Chacune de ces opérations revient 2 un change-
ment d’axes des coordonndes, dans lequel on fait
d’abord tourner les axes des x et des y dans leur
plan, de maniére que l'axe des x positives vienne
tomber sur T'axe des y positives, puis celui-ci sur
I'axe des o négatives; et ot I'on fait tourner ensuite
cet axe des y positives, ainsi déplacé, et Vaxe des z
Positives, de mamiére que le premier vienne tomber
sur 'axe des z positives, puis celui-ci sur I'axe pri-
mitif des x positives; en sorte que, finalement,
chaque axe des coordonnées positives ait pris la place
d’un autre axe des coordonnées positives. C'est pour
cela que les équalions relatives aux trois axes des
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coordonnées se déduisent I'une de 'autre par de sim-
ples permutations de lettres, ‘et sans aucun change-
ment de signe; ce qui n’aurait pas lieu si I'on ne per-
mutait pas simnltanément les trois coordonnées et
les quantités qui s’y rapportent de la maniere qu'on
vient d'indiquer.

25. Voici encore une observation géncrale , par
laquelle je terminerai cette introduction.

Les équations que nous aurons 4 considérer renfer-
meront des nombres abstraits, tels que le nombre 7,
les logarithmes, les lignes trigonométriques, etc. ; elles
contiendront, en outre, d’autres quantités de diverses
nalures, qui y seront aussi représentées par des nom-
bres exprimant leurs rapports & desunités choisies ar-
bitrairement, pourvu que chaque unité soit la méme
pour toutes les quantités d'une méme espece. Or, eu
changeant la grandeur d'une ou de plusieurs unités,
les nombres qui expriment les quantités correspon-
dantes, varieront en raison inverse de cette grandeur;
et, malgré ce changement, tout-a-fait arbitraire, les
équations qui les renferment devront encore subsister.
Il faudra, pour cela, que leur forme remplisse cer-
taines conditions, faciles a vérifier dans chaque cas
particulier, et qu'on appelle, dans 'acception la plus
€tendue, les conditions de Vhomogénéité des quan-
tites. Toute équation qui n’y satisfera pas sera, par
cela seul, inexacte, ct devra étre rejetée.

Ainsi, en indiquant par F une fonction donnce ,
supposons qu'on ait

F{j',‘f",... I L= W £ iy Yo i@
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f>/ 5+« - désignant des forces, 1, I, . , . des lignes, ..,
m, w,., . des masses, ¢, ,,,. des temps. Si I'on re-
présente par 7, @', 2, ", des nombres abstraits, et
que L'on diminue 4 la fois I'unité de force dans le rap-
port de un a n, 'unité linéaire dans le rapport de
un a 7/, I'unité de masse dans le rapport de un a ",
Punité de temps dans le rapport de un a n"”, les
nombres f, [, ..., I,...om, myeis £, 2,... devien-
dront nf, nf,... wl, w’l,... "'m, n'm,... n'"¢,
nt ,..., et I'équation (a) devra encore avoir lieu,
¢'est-a~dire , qu’on devra encore ayoir

Fnfinf!.. ..l n?,...0fmn"m! .. .n"E,m™¢ . . Y=o,

quels que soient 72, 7/, n’, n”. Si Yéquation («) ren-
fermait des surfaces s, s',... et des volumes ¢, ¢/,...
leurs’ dimensions devraient étre rapportées 4 la méme
unité queles lignes Z, 7, . . ., et ces quantités s, s'...
¢, ¢,.. . deviendraient conséquemment 7%, us,. ..
n'%¢, n'*,... par le changement de cette unité.
I’équation du n° 18, qui donne la valeur de p, sa-
tisfait évidemment  cette condition; car elle ne ren-
ferme que des lignes finies ou infiniment petites
Py ds, dx, dy, dz, dx, d°y, d*s; et quand on change
'unité linéaire et qu'on multiplie, comme on vient
de le dire, chacune de ces lignes par un méme
nombre 7', ce nombre disparait et I'équation n’est
pas changée. Celle du méme numéro, d’ott dépend la
valeur de J*, satisfait également & la condition de
Ihomogénéité, en ohservant que 4 est un nombre
abstrait qui ne change pas, non plus que cette valeur, _
ayec la grandeur de I'unité linéaire,
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Il sera impossible que Iéquation («) ne renferme
qu'une seule quantité d’'une méme espéce; lors-
qu'elle en contiendra deux, par exemple deux forces

Jet [, et quon la 1‘esoudra par rapport a l'une
delles, ce qui donnera

P R o G Miysan et soas )p

il faudra, pour Ihomogénéité des quantités, que f
soit facteur  tous les termes de la nouvelle fonction F,
ou, aulrement dit, il faudra qu'on ait

S'=Nf;

N étant un facteur qui ne contiendra aucune quan-
tité de la nature de f et f7, et ne variera plus avec
Funité de force.

Quelquefois le prmmpe del homogenute des quan-
tités paraitra n’avoir pas lieu, parce qu ‘on aura P is
pour unite de force 'une dcs forces que l'on consi-
dére dans la question, ou bien pour unité lindaire
la distance de deux des points matériels dont on s'oc-
cupe, ou bien pour unité de masse celle de I'un des
corps du probléme, etc. Mais, alors, si 'on change
arbitrairement ces uni tes, et que la force, la hgnc 5
la masse, le temps, qu ‘on avait d'abord pris pour uni-
tes soient maintenant expmmcs par @, A, ¢, 8, les
autres quantités de ces différentes natures qui entrent

Tl
dans I'équation (a) deviendront = L ’;, .

?‘g A e .
m I??— z t

2’ g gorees Al faudra douc qu’on ait
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équation qu'on pourra €crire ainsi

F, (0, />S50 X010, uymmd,. »B,2,¢,..)=o0,

et qui devra maintenant satisfaire a la condition de
I'homogénéité : T, indique ici une fonction qui se dé-
duira, dans chaque cas, de la fonction donnée F.
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LIVRE PREMIER.

STATIQUE,
PREMIERE PARTIE.

CHAPITRE PREMIER.,

DE LA COMPOSITION ET DE L’]EQUILII]RE DES FORCES
APPLIQUEES A UN MEME POiNT.

24. Lorsqu’un point matériel est soumis & 'action
simultanée de plusieurs forces qui ne se font pas équi-
libre, il se meut suivant une direction déterminée,
et I'on peut attribuer le mouvement qu’il prend &
une force unique agissant suivant cette direction.
Cette force est ce qu'on appelle la rédsultante des
forces qui ont mis le mobile en mouvement, et celles-
ci sont nommées les composantes de la premiére. Ap-
pliquée en sens contraire de sa direction, la résultante
fait équilibre aux composantes , puisqu’elle tend 4 im-
primer au mobile un mouvement égal et contraire
a celui qu’il recevrait de Paction simultanée des com-
posantes, et qu'il n’y a pas de raison, par conséquent,
pour quil se meuye plutot d’'un cité que de Tautre.

Si toules les composantes sont dirigées suivant une
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méme droite, et agissent dans le méme sens, il suit
de la notion que nous avons donnée de la mesure
des forces (n® 5), que la résultante sera égale & leur
somme. Si le mobile est sollicité par deux forces di-
rectement contraires, on décomposera la plus grande
en deux autres, dont I'ine, égale a la plus petite,
sera détruite par celle-ci, et dont l'autre, égale a
Vexces de la plus grande sur la plus petite, sera la
résultante. On conclut de ces deux propositions que
sl y a un nombre quelconque de composantes, di-
rigées, en partie suivant une droite, et en partie
suivant son prolongement, la résuliante sera égale  la
somme de celles qui agissent dans un méme sens,
moins la sommede celles qui agissent en sens contraire,
et quelle agira dans le sens de la plus grande somme.
Quand les deux sommes seront égales, la résultante
sera nulle, et les forces données se feront équilibre.

25. Il y a un autre cas dans lequel on détermine
aussi tres aisément la grandeur et la direction de la
résultante.

Soient MA , MB, MC (fig. 5), les directions de trois
forces égales appliquées au point M; supposous ces
forces comprises dans un méme plan, et les trois an-
gles AMB, BMC, CMA , égaux entre eux, ou chacun
i 120°; le point M demeurera en équilibre; caril n’y
aurait pas de raison pour qu'il sortit du plan des trois
forces, ni pour quil se mit en mouvement plutdt
dans 'un que dans 'autre de ces trois angles. Chacune
des trois forces sera donc égale et contraire a la ré-
sultante des deux auntres. Or, sil’on prend sur les di-
reclions MA et MB de deux d'entre elles des lignes
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¢gales MG et MH, pour représenter leurs intensités,
et qu'on acheve le losange GMHK, la diagonale MK
tombera sur le prolongement MD de MC; I'angle MGK
sera de Go°, comme chacun des deux autres anglesdu
méme triangle, qui sera équilatéral; on aura donc
MK = MG; par conséquent la diagonale MK du lo-
sange construit sur les deux forces MG et MH repré-
sente, en grandeur et en direction, la résultante de

. ces deux forces.

Cette proposition est comprise dans une autre que
nous allons d’abord démontrerdans le cas de deux for-
Ces €gales, dont les directions font un angle quelconque,
€l que nous étendrons ensuite & des forces inégales.

26. Larésultante de deux forces égales coupe tou-
jours en deux parties égales Fangle compris entre leurs
directions; car il n’y aurait pas de raison pour qu'elle
se rapprochat davantage de 'une de ces deux forces 7
ni pour que sa direction s'écartit de leur plan plutét
d’un ¢oté que de Pautre; sa direction est donc connue,
el nous n’aurons que sa grandeur & déterminer.

Soient, pour y parvenir, MA et MB (fig. 6) les
directions des composantes dont la valeur ¢ommune
sera représentée par P. Soient aussi 2ac Pangle AMB,
€t MD la direction de la résultante, de sorfe qu’on
ait AMD =BMD = . Son intensité ne peut dépendre
que des quantités P et x; en la désignant donc par R,
nous aurons

R=7(P, »).
Dans cette équation , R et P sont les seules quantités
dont I'expression numeérique varie avec l'unité de
force; d'apres le principe de Phomogéndéité des quan-
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tités (n° 23), il faut donc que la fonction f(P,x)
soit de la forme P@x. Ainsi on a

Pl.._—_.P(p.I,‘;

et la question se réduit & déterminer la forme de la
fonction Qx.

Pour cela, je méne arbitrairement par le point M
les quatre lignes MA’, MA’, MB’, MB’; je suppose les
quatre angles A’'MA, A'MA, BMB, B'MB, égaux entre
eux , et je représente chacun d’eux par z. Je décom-
pose la force P dirigée suivant MA, en deux forces
égales dirigées suivant MA’ et MA’, cest-a-dire que
je regarde la force P comme la résultante de deux
forces égales dont la valeur est inconnue et qui agis—
sent suivant MA’ et MA"; en désignant cette valeul
par Q, jaurai

car il doit exister entre les quantités P, Q, z,la méme
relation qu'entre les quantités R , P, x. Je décompose
de méme la force P dirigée suivant MB, en deux
forces Q, dirigées suivant MB' et MB’; de cette ma-
niere, les deux forces P se trouvent remplacées par
les quatre forces Q; par conséquent, la résultante de
celles-ci devra coincider, en grandeur et en direc-
tion, avec la force R, résultante des deux forces P.

Or, en appelant Q' la résultante des deux forces Q,
dirigées suivant MA’ et MB', et observant que
A'MD=B'MD =@ —z, cette force Q' sera dirigée
sutvant MD, et I'on aura

Q=09 (=—).
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De méme, la résultante des deux autres forces ( sera
encore dirigée suivant MD, puisque cette droite
coupe aussi I'angle A’MB" en deux parties égales; et
a cause de A"MD = B"MD = x -} z, on aura
n
Q' =0Q0¢ (x+-2);
Q" désignant cette seconde résultante. Les deux forces
Q" et Q" étant dirigées suivant la méme droite MD,
leur résultante, qui est aussi celle des quatre forces Q,
sera donc égale a leur somme; par conséquent, on
doit avoir
R — Qf + QH.
Mais on a déja
R = Popx = Qpzpx;
et en substituant celte valeur de R et celles de Q' et
Q" dans I'équation précédente, et supprimant le fac-
teur () commun a tous les termes, il vient
Pz = @ (x + z) + @ (x — 2). ()
Clest cette équation qui nous reste a résoudre pour en
déduire I'expression de @x.
27. On voit d'abord qu'on y satisfait en prenant
Qxr — 2 COs ax ;
a €tant une constante arbitraire, de sorte qu’on ait,
en meéme temps,
Pz=2c0s 4z,
¢ (x = z) =2 cos a(x 4 z),
¢(x —z)=2cosa(x -—z);

et, effectivement, si I'on substitue ces valeurs daus
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I'équation (1), on obtient I'équation connue

2 €08 ax €os @z = c0s a(x - z) -+ cos a(x — z).

Or, je dis que cette expression de la fonction @ est
la senle qui satisfasse & I'équation (1), et que de
plus, dans la question qui nous occupe, la constante
a est 'unité ; en sorte que l'on a

@ == 608 X, (2)

Cela est évident quand x=o0; car alors les di-
rections des deux forces P coincident, et la rédsultante
R est égale & 2P, ce qui suppose @x = 2. Admet-
tons quiil y ait une autre valeur 2 de x, pour
laquelle on ait aussi @a =2 cos a; je dis que I'équa-
tion (2) subsistera également pour toutes les va—

Jeurs 22, Ba, 4o, vaey S8, x2, £, ,de 22, et
généralement pour.

P 3 (3)

m el o étant des nombres entiers quelconques.

En effet, si 'équation (2) se vérifie pour les trois
angles x, z, ®—z, de maniére qu'on ait
Pr=2cosx, Pz=—2c05z, O(xr—z)=2c08(x—2),

elle aura encore lieu pour un quatriéme angle x—-z;
car, en vertu de I'équation (1), on aura alors

@ (@ 4 z) = 4 c0s 2 €08 5 — 2 cos (X — z) ;
équa‘tion C[l.ll se réduit i

q,:(.r—l-z):zcos(.x'—f-z).

Ainsi Véquation (2) ayant lieu pour x=0 et =20,
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il s'ensuit qu’elle subsiste pour x = 2a; ayant lieu
Pour x=e et xx=2e, elle subsistera pour x=3q;
et, en continant de méme, on verra qu’elle aura liew
Pour & — me.
Je fais maintenant m2 — €; on aura done

@6 = 2cos 6;

el de 1a on conclura que V'équation (2) aura encore
lieu pour - = £ €; car en faisant 2 — z — 1, Ié-
quation (1) deviendra
(@16€)* = 2c0s € + 2;
d’'otr Ton tire
Pi6 = 2cosL6.
En faisant ensuite 2=z =1€, on aura, d’apres
équation (1) et cette derniére ,
(0160 = 2co0s L€ 41, ¢ib=2cos16;
€t, en continuant ainsi, I'équation (2) sera démen-
trée pour x = E, c’est-a-dire, pour toutes les va-
>
leurs de x comprises dans la formule (3).

Or, les nombres m et 7 étant aussi grands qu'on
‘Voudra, et pouvant méme devenir infinis, on peut
faire crojtre ces valeurs de x par degrés infiniment
petits.La formule (5) comprend donc toutes les valeurs
possibles de I'angle «, ct I'équation (2) est complé-
tement démontrée, si toutefois elle est vraie pour
une valeur particuliere © =« , différente de zéro.
Mais, dapres le thdoreme du n° 25 , la résultante R
est égale 2 P, dans le cas de 2 = 60°; on a donc

A 4
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alors
@ar == 1= 2 cos 60°;
done P'équation (2) a lieu pour x = 60’ et consé-
quemment pour toutes les valeurs de a.
28. Au moyen de cetle équation, on aura

R = 2P cos .

Si done la résultante R et les deux composantes P
sont réprésentées, comme dans le n° 25, par des
droites prises sur leurs directions respectives, a par-
tiv de leur point d’application, la force R sera le
double de la projection de P sur sa direction, ou
égale a la diagonale du losange construit sur les
deux forces P.

Soient maintenant deux forces inégales P et (),
appliquées au point M{fig. 7) suivant les directions
MA et MB; représentons leurs intensités par les
lignes MG ct MH, prises sur leurs directions, et
achevons le parallélogramme MGKH : il y aura deux
cas 4 considérer, le premier ou 'angle AMB sera droit,
le second ou il sera aigu ou obius.

Dans le premier cas, tirons les deux diagonales
MK et GH qui se coupent au point Li; par les pomts
G et H, menons les paralleles GN et HO a ML, qu
rencontrent en N et O la parallele 8 GH, menée par
le point M. Le point L est le milieu de MK et de
GH; et comme, dans un rectangle, les deux diago-
nales sont égales, il gensuit qu'on a

1

1.es deux parallelogrammes GLMN et HLMO somi
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donc des losanges ; par conséquent, d’aprés la propo-
Sition précédente, la force MG pourra étre regardée
comme la résultante des deux foreces MN et ML, et
la force MH comme la résultante de MO et ML.
Donc, en substituant aux deux forces donndes leurs
composanles, nous aurons, au licu de MH et MG,
les deux forces MN et MO, qui se détruisent, puis-
qu'elles sont égales et contraires, ct les deux forces
ML, qui s'ajoutent et donnent une résultante repré—
sentée en grandeur et en direction par la diago-
nale MK,

Dans le second cas, menons par les points G et
H (fig. 8) les perpendiculaires GE et HF 4 Ia diago-
nale MK, et les paralleles GN et HO & cette méme
droite ; par le point M, menons aussi la perpendicu-
laire NMO & cette droite MK. Les deux parallélo-
grammes GEMN et HFMO seront des rectangles qui
auront lears cotés MN et MO égaux, comme étant
les hauteurs des deux triangles égaux GMK et HMK.
Dapresle premier cas, on pourra remplacer les forces
MG et MH par leurs composantes rectangulaires ME
et MN, MF et MO; au lieu des deux forces données,
On aura donc les deux forces MN et MO, qui se dé-
truiront , comme étant égales et contraives , et les
deux forces ME et MF de méme direction , qui §'a—
Jouteront et donneront » a cause de ME=TFK, une
résultante representée en grandeur-et en direciion
par la diagonale MK. '

Concluons done que la résultante de deux forces
quelcongues, appliquées en un méme point et repré-
sentées par des lignes prises sur leurs directions &

”

& I
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partir de ce point, est représentée, en grandeur et
en direction, par la diagonale du parallélogramme
conslruit sur les deux forces données.

2g. Voici les conséquences qui se déduisent le plus
immédiatement de ce théoreme.

On voit d’abord que toutes les questions quon
peut proposer sur la composition de deux forces en
une seule e sur la décomposition d'une force en deux
autres, sont ramenées a la résolution d’un triangle.
Fn effet, les grandeurs de la résultanie et des deux
composantes sout représentées par les trois cOtés
MK, MG, GK, du triangle MGK; et les trois angles
de ce triangle sont ceux que fail la résultante avec
chacune des composantes et le su pplément de T'angle
compris entre les deux composantes. 1l s’ensuit donc
que trois de ces six choses, les trois forces et les trois
angles compris entre leurs directions , étant données,
on trouvera les trois autres en résolyant le triangle
MGK ; ce qui suppose une force au moins au nom-
bre des donndes. Par exemple, soient P et Q les
valeurs des deux composantes, et m langle compris
entre leurs directions ; on demande leur résnltante R
et Vangle a qu'elle fait avee la force P. On aura
d’abord I'équation

R =P* 4 Q* - 2PQ cos m,
pour déterminer la valeur de R; et celle de x se dé-
duira de cette proportion :

sima : sinm 2 Q T R

Si Péquilibre a lieu entre trois forces P, Q, S, ap-
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pliquées en un méme point M (fig. g ), suivant les
directions MA, MB, MC, il faut que chacune de ces
forces soit égale et directement opposée a la résul-
tante des deux autres; et comme cette résultanie est
comprise dans le plan de ces deux forces, il s'ensuit
d’abord que les trois forces données doivent aussi
étre dans un méme plan. Soit MD le prolongement
de MC; la résultante de P et Q sera dirigée suivant
MD, et si on la représente par R, on aura R = S.
D’ailleurs, en comparant la force R a chacune de ses
composantes, on a, d'aprés ce qu'on vient de dire,

R : Q :: sin AMB : sin AMD),
R :P i sm AMB : sin BMD;
a cause de
sin AMD =sin AMC, sin BMD = sin BMC,
il en résuliera donc

5:0Q:P :: sin AMB : sin AMC : sin BMC;

J
ce qui montre que quand trois forces sont en equi-
libre autour d’un méme point, la grandeur de cha-
cune d'elles peut étre représentée par le sinus de
]’angle compris entre les directions des denx autres.

Du point 0, pris sar la direction de la résultante

ou sur son prolongement, jabaisse des perpen-
diculaires OE et OF sur les directions des compo-
santes P et Q; on aura

OE =MO sin AMD, OF = MO sin BMD.

Si donc on multiplic par MO les deax derniers
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! termes de la proportion

P :Q : sin BMD : sin AMD,

il en résultera
ir P:Q : OF : OF;

en sorte que les composantes sont en raison inverse
! des perpendiculaires abaissées sur leurs directions,
d'un point quelconque appartenant i la direction de
la résultante. Réciproquement, si les composantes
1 P et Q sont en raison inverse des perpendiculaires
i OE ct OF, abaissées sur leurs directions, d’un point
O pris davs leur plan, ce point appartiendra a la
| direction de la résultante ; car, en divisant par MO
les deux derniers termes de la derniére proportion,
i on obtient la précédente, qui détermine cette di-
i rection.

50. La résultante de deux forces étant connue,
il est aisé d'en déduire celle d'un nombre quelconque
| de forces appliquées a un méme point et situdes ou
non situées dans un méme plan. On prendra d'abord
la résultante de deux de ces forces; ensuite, on com-
posera cette résultante avec une troisieme force, ce
qui donnera une seconde résultante, que 'on com-
posera de méme avec une quatrieme force; et l'on
i continuera de méme jusqu'’a ce qu’on ait épuisé toutes
| les forces données. Dans cette construction | il est aisé
| de voir que si les grandeurs de toutes les forces sont
: représentées par les cotés d'une portion de polygone,
; paralléles a leurs directions et tracés dans le sens de
' leurs actions, la résultante sera représentée, en gran-~
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deur et en direction, par la droite qui joindra les
deux extrémités de cette ligne brisée et fermera le
polygone. L'ordre dans lequel les cotés paralleles aux
forces se succéderont sera indifférent. Quand le po-
lygone se fermera de lui-méme, la résultante sera
unlle, et les forces données se feront équilibre.

1 suit de & que quand les forces données sont au
nombre de trois, non situées dans un méme plan ,
leur résultante est, en grandeur et en direction, la
diagonale da parallélépipede dont ces trois forces sont
les cotés adjacens.

51. On peut effectuer d'une maniére plus simple
cette réduction d’un nombre quelcongue de forces a
ane seule, en considérant d'abord le cas particulier
de trois forces rectangulaires, auquel on raméne en-
suite le cas général.

Soient X, Y, Z, les trois composantes, R leur ré-
sultante, a, b; ¢, les-angles qu'elle fait avec X, Y, Z.
D’aprés ce qu’on vient de voir, R est la diagonale
du parallélépipede dont X, Y, Z, sont les trois ¢o-
tés adjacens ; or, ce parallélépipede étant rectangle,
il d’ensuit qu’on aura

Bt =X Yo L 75, (a)
Il s'ensuit avssi que st Yon joint l'extrémité de la dia-
gonale R i celles des trois ¢dtés X, X, Z, on for-
mera trois triangles rectangles, dont R sera I’hypo-
tenuse commune; d'ou I'on conclura

X=Rcosq, Y=Rcosb, Z=Rcosc; ()

6qualions qui saccordent avec la précédente, & cause
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quc ]es tl‘OiS ang]es a, b,- c, sont llﬁ"w enlre eux pﬂp
cette équation (n® 6)

543

cos® d =~ cos* b 4 cos* c = 1.

Lorsque les composantes X, Y, Z, seront don-
nées , Véquation (@) fera connaitre la valeur de la
vésultante , et les équations (6) en détermineront la
divection au moyen des trois angles.a, b, c;si; au
contraire, la force R est donnée, et quil s'agisse de
la décomposer en trois forces rectangulaires X, Y,
Z, qui fassent avec elle des angles donnés a, b, ¢,
les valeurs des forces demandées seront immédia-
tement détermindes par les équations (b).

§i I'une des composantes, la (orce Z par exemple,
est nulle, R n'est plus la résultante que des deux
forces X et Y; elle est comprise dans leur plan, et
sa direction dépend senlement des deux angles & et b.
Ces angles et la valeur de R sont alors déterminés
par les équations

P=X"4+Y, X=Rcosa, Y=R cosb.

32. Supposons actuellement que M (fig. 1) soit
le point dapplication d'un nombre quelconque de
forces données. Représentons ces forces par P, P,
P’ ele.; et, pour fixer les idées, supposons que la
draite MD soit la direction de la force P. Les direc-
iions des autres forces sont inutiles a iﬂdi({uel‘ dans
la figure. Soient e, €, 7, les angles que fait la direc-
tion MD avec les trois axes rectangulaires MA , MB,
MC, mends arbitrairement par le point M. Désignons
de méme par ¢, €', 9/, les angles que fait la foree P’
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avec ces mémes axes; par a’, €', 2", ceux qui
répondent & la force P"; etc. Tous ces angles
sont donnés et doivent s’étendre depuis zéro jus-
qu’a 180° (n° 7), afin que les forces P, I/, P’ etc.,
puissent avoir toutes les positions possibles autour
du point M.

Décomposons chacune de ces forees en trois autres di-
rigées suivant les ases MA , MB, MC. Les composantes
de Ja force P seront P cos e, P cos €, P cosy ; celles
de la force P’ seront P'cosa’, P'cos €, P cosy/; etc.;
et ces composantes agiront suivant les axes ou sui-
vant leurs prolongemens, selon qu'elles seront posi-
tives ou négatives. Par exemple, la direction MD
tombant, ainsi que T'axe MC, au-dessus du plan
AMB des denx autres axes, la composante P cos y
de la force P tend i élever le point M, c’est-a-dire
quelle agit suivant MC ; et, dans ce cas » Pcosy
est une quantité positive, puisqu'on a'y << Qo°.
Au contraire, si cette direction MD tombait au-
dessous du plan AMB, on aurait ¥ => go°; la com-
posante P cos 3 serait négative, et, en méme temps,
elle tendrait 2 abaisser le point M, c’est-a-dire qu’elle
agirait smivant le prolongement de MC. En ayant
donc égard aux signes des composantes , on voit,
d’apres ce quon a dit dans le n° 24, que toutes
les forces dirigées suivant un méme axe et son pro-
longement se réduisent 4 une seule, égale a leur
somme.

De cette maniére , les forces données P, P, P" , ete.,
seront remplacées par trois forces rectangulaires; et
en désignant celles-¢i par X, Y, Z, on aura
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{

!i X —=Pcosa+Pcosa’ 4 P"cos o | etc. ,
! Y =P cos 4+ P cos€ | P"cos 6" + etc., )
' Z =7Pcosy 4 P cosy’ 4P cos 3" + ete.

Les valeurs de X, Y, Z, pourront étre positives ou

négatives, et leurs signes feront connaltre le sens de

leur action. Si la force X est positive, clest qu'elle

! agit suivant 'axe MA ou dans le sens des compo-
5 H I 1 111 a1

[ santes P cosa, P’ cosa’, etc., qui sont positives; si

f

+

\

clle est négative, il en faut conclure qulelle agit sui-
vant le prolongement de MA ou dans le sens des com-~
posantes négatives; et de méme pour les forces YetZ.

Cela posé, soit R la résultante des forces données
P, P/, P", etc., ou des irois forces X, Y, Z; soient
aussi @, b, ¢, les angles que sa direction inconnue fait
1 avec les axes MA, MB, MC. Les valeurs de i}, a,
b, ¢, seront données par les équations (a) et (4),
I dans lesquelles on mettra les formules (¢) & la place
g de X, Y, Z. Les angles @, b, ¢, pourront étre aigus
ou obtus ; a cause que la force R doit toujours étre
i une quantité positive, les signes de leurs cosinus se-
ront les mémes que ceux des quantites X, Y, Z, en
vertu des équations (5). De cette maniére, la force R
sera complétement détermince en grandeur et en di-
rection.

53. La grandeur de la résultante R ne saurait dé-
pendre de la divection arbitraire des axes MA, MB,
MC ; elle dépend sculement de la grandeur des forces
données et des angles compris entre leurs directions;
et, en effet, on en peut trouver une expression qui
ne contienne que ces quanhtés.
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Pour cela, désignons par PMP’, PMP", P/ MP, etc.,

les angles compris entre les directions des forces P

et P, Pet P, P' et P", ete. D'aprés I'équation (2)
du n° g, nous aurons

cos PMP' = cos 2 cos &' -4~ cos € cos €’ -1 cos 2 €os )/,
cos PMP"— cos 2 cos " - cos £ cos £ -+ cosy cos 5",
cos P'MP"=: cos &"cos & - cos €/cos € - €087 'cos 5/,
etc.

Nous aurons aussi

08" & —-€0s* € +-cos* 5 = 1,
€os® &' -4~ cos* €/~ cos* & =1,
cos® 2" cos® 6"~ cos* T
(& (e

et, cela étant, si on ajoute les carrés des for-
mules (¢), et quion. ait égard a Véquation (a), il
vient
B*=— P P pr - elc,
~+ 2P cos PMP’ - oPP" cosP MP”
~+ 2P'P" cos P'MP" - eic.,

pour le carré de la valeur de R dent il sagit.

34. On déduit aussi des équations () et (¢) une
propricté de la résultante qui nous sera utile dans
un des numéros suivaus.

Dans une direction quelconque, je méne par le
point M yye droite, dont Jappelle O Tautre extré-
mité. Soient g, h, k, les angles AMO, BMO, CMoO,
que cette droite fait avec les trois axes MA, MB,
MC. Désignons par RMG, PMO, P'MO, etc,, les an-
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gles compris entre cette méme droite MO et les direc~
tions des forces K, P, P/, P, ete. ; on aura, comme
tout i I'henre,

cos RMO = cos g cos @ -+ cos s cos b -}~ cos £ cosc,
cos PMO = cos g cos e - cos i cos € | cos & cos 3,

cos PPMO = cos g cos o/ cos & cos 6’ cos & cos?’,
elc.

D'apres la premiere de ces formules et les équa-
tions (b), on aura

R cos RMO = X cos g 4 Y cos & 4 Z cos &;

et, en vertu des formules suivantes, si 'on ajoute
les équations (¢) aprés les avoir multiplices, la pre-
miére par cos g, la deuxitme par cos £, la troi-
sitme par cosk, il en résultera

R cos RMO = P cos PMO - P’ cos P'MO - etc. ;

ce qui montre déja que la composante de la résul-
tante R, suivant une direction quelconque MO, est
égale 2 la somme des composantes de P, P!, P, etc.,
suivant cette méme direction. '

Cela posé, jé “projette la droite MO sur les di-
rections' des forces Ry, P, P/, P, etc. ; yappelle r,
p, Py p's ete., ses projections, de sorte quon ait

r = MO cos RMO,
p=MO cosPMO, p'=MO cos P'™MO, ete.,

énconsidérant chacune des quantités r, p, p,
p", ete., comme positive ou comme négative , se-
lon que la projection qu'elle représente tombe sur
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la direction méme de la force on sur son prolon-

gement. Si donc on multiplie par MO Péquation
précédente, on aura

Rr=Pp—+Pp' 4 P"p" + elc.; (d)

ce qui renferme la propriété de la résultante qu’il
s’agissait de démontrer.

55. Pour que les forces P, P, P", etc., soient en
¢quilibre, il suffit que leur résultante R soit nulle,
et cette condition est nécessaire si lenr point d’ap-
plication M est entiérement libre ; mais Véquation
R=o0, ou

Xop Yo pe Zo e o,
ne peut avoir licu, 2 moins qu'on n'ait séparément
X:U, Y:O, Z:O,
Cest-a~dire , en vertu des équations (c),

P cos o 4P’ cos &' 4 P" cos & 4 etc. = o,
P cos €4 P cos & 4 P cos " 4 etc. — o . (e)
P cos 5 4P’ cos 3/ 4 P cos 5" 4 elc. = o.

Telles sont donc les dquations d'équilibre d'un
Point matériel qu’on suppose enticrement libre.
Dans cet état » chacune des forces qui le sollicitent
doit étre eégale et directement contraive i la résul-
tante de toutes les autres ; c'est, en effet, ce qu'il est
aisé de vérifier.

Soit R' la rdsultante des forces P, P", ete. Appe-
lons a/, ¥, ¢, les angles qu'elle fait avec les axes
MA, MB, MC, et faisons, pour abréger,
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X' =P cos a' 4+ P" cos 2" 4 etc. ,
Y =P cos 6’ 4 P" cos §" +-etc. ,
!
Z' =P cosy' 4 P"cos 3"+ etc. ;
nous aurons, d’apres le n® 32,
X'=R'cosa’, Y=Rcosd, Z'=R'cos ¢,
et par conséquent, en vertu des équations d’équilibre,
Pcosa=—R'cos &,
Pcos 6= —R'cos b/,
Pcosy= — R'cos ¢'.
En ajoutant ces équations, aprés avoir éleveé leurs
deux membres au carré, on a
Pn g Rl -
a cause de (n° 6)
cos* & 4= cos* 6 - cos*y =1,
cos* @' cos* b’ -+ cos* ¢'=1;
on aura donc P = ==R’; mais comme ces forces doi-
vent étre toutes deux des quantités positives, il fant
prendre P = R'. Les équations précédentes devien-

nent alors

cosa =— cosa’, cosb=—cosb’, cosy=—cosc’;

par conséquent, les angles @, €, 9, sont supplémens
de a', V', c; et répondent & une force dont la- direc-
tion est le prolongement de la force R’ (n° 7).
1l sensuit donc que la force P est égale et directe-
ment opposée 2 la résultante R’ de toutes les autres
forces P/, P, etc. ; ce qu'il Sagissait de vérifier.
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56. Si le point M, auquel sont appliquées les
forces P, P/, P, etc., est assujetti & rester sur une
surface donnée, il ne sera plus nécessaire, pour I'é-
quilibre,, que leur résultante soit nulle; il suffira
quelle soit normale a la surface, puisqualors elle
ne pourra faire glisser le point M dans aucun sens
sur cette surface; et, de plus, cette condition sera
nécessaire; car si elle n'était pas remplie, la résul-
tante se décomposerait en deux forces, P'une normale
a la surface et qui serait détruile, lautre tangente et
que rien n'empécherait de faire glisser le mobile. On
waurait donc qu’a chercher, dans chaque cas, la di-
rection de la résultante des forces P, P/, P", ete., et
a examiner si elle est perpendiculaire & la surface
donnée, pour sayoir si I'équilibre existera; mais il
vaut mieux , commnie nous venons de le faire pour un
point libre , exprimer les conditions de 'équilibre par
des équations entre les données de la question.

Ur,)a composante normale de chacune des forcesqui
agissent sur le point M est détruite par larésistance de
la surface ; par conséquent, cette résistance ¢quivaut
a une force ¢gale et contraire a la totalilé des {orces
détruites. On concoit donc que I'on peut faire abs-
traction de la surface donnée , et considérer le point
matériel comme entierement libre, pourvu que I'on
Jjoigne aux forces données P, P, P etc., une nou-
velle force de grandeur mconnue et perpendiculaire
a celte surface.

Soient done N cetie force, et A, @, v,y les angles
que sa direction fait avec les axes MA , MB, MC; cha-
cune des €quations d’équilibre qu'on vient de trouver
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sera augmentée d'un nouveau terme, de sorte quau-
lieu des équations (e), on aura

N cos AP cosa=-P'cos et/ 4-P"cose” 4-etc.=0, |
N cos pu—Pcos E4-P'cos 6/ P cos €'+ etc.—o, { (f)
Ncos v Pcosy—+Pcosy'4- P cosy""<-etc.=o. 1

Je désigne par &, 1) 2, les trois coordonnées de M
rapportées a des axes paralleles 8 MA, MB, MC, et
ar Li=o0 l'équation de la surface donnee: la direc-
tion de la force N étant, par hypothese, celle de la
normale au point M, on aura, d’aprés les équations (5)
da ne 21,
7 dL

dL dL
cos)\.—_—Vﬁ - cos,u._Vg}, cosy ="V i

en faisant, pour abréger,

JL\? dLN® N 3
7t ’_) s g )
v | Ndx o iy z¥ - dz ] ;

Le signe de V sera inconnu; parce qu'on ne sait pas
d’avance suivant quelle partie de la normale doit étre
divigée la force N; mais V disparait lorsqu'on éli-
mine N entre les équations (f); et si Ton a égard
aux formules (¢), on trouve

dL
Y75

dL dL dl.

— S 3 o et A
X =0l i Ry 5 0 (B
pour Jes deux équations nécessaires et suffisantes de
Véquilibre d’un point matériel assujetti a demeurer

sur une surface donnée,
B Si la POSltiOn de ce point sur celtle surface
west pas connue, les équations (g) , jointes a Véqua-
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tion donnée Li— 0, serviront a déterminer les coor-
données des différens points de cette surface, o le
mobile pourra demeurer en équilibre. Lorsque sa
position sera donnée, on aura sculement & vérifier si
les coordonnées z, J's %, des poinis d’application des
forces données satisfont aux équations (g). Mais, dans
€€ cas, on aura des équations plus simples en faisant
coincider I'un des axes MA, MB, MC, le premier, par
exemple, avec 'nne des deux parties de la normale ;
d’otr il résultera

COSA=czE1, COSH=0, CO5»=0;
ce qui change les équations (f) en celles-ci :
=N P cos a4 P cos o' 4 P’cos a” 4 ete. = o,
P cos € 4 P’ cos €' 4 P" cos € - etc. =0y
P cosy P cosy' 4 P’ cosy" - ete. = o.
Ues deux dernidres équations font voir, ce qui est
d'ailleurs évident, que dans le plan fangent a la sur-
face dounde, les composantes des forces appliquées
au mobile doivent se faire équilibre , comme si cette
surface n'existait pas.

La résistance N, que la surface oppose aux forces P,
P!, P, etc., est égale et contraire A la pression qu’elle
en éprouve. En vertu des équations ( 1), cette pres—
sion, dans I'état d’équilibre, est la résultanie méme
de ces forces. Dans la pratique , il en faudra calculer
la grandeur au moyen de I'équation (@) , pour savoir
st la surface est capable de la supporier. Si le mobile
est seulement posé sur cette surface, qui sera celle
d'un corps solide, il faudra ; de plus, que le sens de
Cette pression soit tel quelle appuic le mobile sur

1, 5
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cette surface ; condilion qui ne peut étre exprimée
par une équation, et qu’on devra vérifier dans chaque
cas, en déterminant la direction de cette force d’apres
les équations (b). Cette vérificaiion se fera plus sim-
plement au moyen de la premiére des trois équations
préccdentes.

En effet, supposons, pour fixer les idces, que la
partie de la normale avec laquelle on a fait coincider
I’axe MA , soit la partie située dans la concavité de
la surface. On saura si les angles donnés 2, o, 2", etc.,
sont aigus ou obtus; et le sigue de la somme X des
composantes dirigées suivant cette droite sera connu.
La quantité N devant étre positive, il faudra, dans
Véquation dont il s'agit, c'est-a-dire ,

iN—]—X:o,

prendre le signe — ou le signe - devant N, selon
que la somme X sera positive ou négative. Dans le
premier cas, on aura coOsA=—-—1, el la pression
contraire 4 N sera dirigée suivant MA ; dans le se-
cond cas, on aura cosA =1, et la pression agira
suivant le prolongement de cette partie déterminée
de la normale.

38. Lorsque le point matériel M sur lequel agissent
les forces P, P/, P", elc., sera assujetti a rester sur
deux surfaces données ou sur leur courbe d’intersec-
tion, il suffira, pour I'équilibre, que la résultante
de toutes ces forces puisse se décomposer en deux
forces Perpgndiculaires aux surfaces données, et qui
seront détruites par leurs résistances. En joignant
donc aux forces P, P, P', etc., deux forces nor-
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males & ces surfages, mais inconnues en grandeur,
on pourra faire abstraction des surfaces, et considé-
rer le mobile comme enticrement libre.

N et N’ étant donc ces nouvelles forces; a, ., »,
les angles qui déterminent la direction de N par rap-
port aux axes MA, MB, MC, et 2/, &/, v/, ceux qui
déterminent de méme la direction de N'; les équa-
tions (e) deviendront

NeosA+N'cosA'4Pcose4Pcos o'+ ete.— 0,
Ncosp+N'cosp'~-P cos € --P'cos 6'-etc.=o, (k)
Ncosy +N'cosy"—-P cos p-P'cos ' 4 etc.—o.

Dailleurs, en représentant par x, 7, 2, les coor-
données du point M rapportées & des axes paralléles
a MA, MB, MC, et par L=o et I/ =0, les équa-
tions des deux surfaces données, les valeurs de cos 2,
oSz, €os v, seront les mémes que précédemment,
et celles de cos A/, cos &', cos ', s'en déduiront en y
changeant L en L/. 8i l'on substitue ces valeurs dans
les trois équations (%), et qu'on élimine ensuite N et
N’ entre elles, on aura léquation d’équilibre & la-
quelle devront satisfaire les forces données P, P,
P, etc. ; ou bien, si la position du mobile n’est pas
donnée sur lintersection des deux surfaces, cette
€quation d’équilibre, et les équations Li==o et L/=o,
détermineront ses trois coordonnées -, gaad

Quand la position du mobile est donnée sur la
courbe ou il doit rester, on obtient immédiatement
I'équation d’équilibre des forces P, P!, P", etc., en
prenant les axes MB et MC, auxquels répondent les
angles 1, 6, &', ete., v, 5, 9/, etc., dans le plan des

i
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normales aux deux surfaces donmées. Le troisieme
axe MA tombe alors sur la tangente a leur courbe
d'intersection ; il est done perpendicu]aire aux forces
normales N et N'; en sorte que l'on a A=qo°,
A ==go®, €t, en vertu de la premiére équation (R),

P cos & - P’ cos 2’ + P¥cos a" - cte. =

0,

pour I'équation demandée.

Cette équation exprime que la somme des compo-
santes de P, P', P", etc., langentes & Pintersection des
deux surfaces données , est égale i zéro ; ce qui est,
en effet, la condition pour que le point M ne puisse
pas glisser sur cette courbe. Apres s'étre assure qu’elle
est remplie, on déterminera les valeurs des forces N
et V', et le sens dans lequel elles agissent, an moyen
des deux dernitres équations (%). Si I'on prend en-
suite des forees égales et contraires a N et N, et qu'on
les réduise A une seule par la regle du parallélo-
gramme des forces, celle-ci sera la résultante des
forces P, ', P, elc., el fera connaitre la pression
exercée sur la courbe donnée, a laquelle elle sera
perpendiculaire.

39- Par ce qui précede, on voit que quand le mo-
bile est astreint & demeurer sur une courbe donnde,
il 0’y a qu'une équation d’équilibre; quil y en a
deux lorsqu’il peut se mouvoir sur une surface don-
née , et trois lorsqu'il est entierement libre; en sorte
que le nombre de ces équations augmente , comme
cela doit étre cffectivement, 3 mesure que les mou-
vemens possibles du mobile sont moins limités. Ces
diverses équations peuvent éire renfermées dans nne
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seule formule, qui deviendra, par la suite, I'équa~
lion générale de 1'équilibre , applicable 4 un systéme
quelconque de poinis matériels.”

Pour obtenir cette formule, supposons que Je mo-
bile soit transporté d’un point M, qu’il oceupe dans
sa position d’équilibre, en un autre point O infini-
ment voisin de. M, et tel que ce déplacement soit
compatible avec la condition & laquelle le mobile est
assujetti, s'il n'est pas entiérement libre. Désignons
pavr, p, p'y p’, ete., les projections de la droite in-
finiment petite MO sur les directions des forces R 2
P, P/, ", eic., dans la premiére position du mobile;
et considérons chacune de ces projections comme
utie quantité pesitive oun negative , selon qu’clle
tombe sur la direction méme de la force a laquelle
elle répond, ou sur son prolongement. Si Yon sup-
pose que la force R soit la résultante des forces P,
P, P", etc., le produit Rr sera toujours nul dans le
cas de I'équilibre: il sera nul pour un point matériel
entierement libre, parce qu’alors la résultante R devra
¢lre égale & zéro; il le sera encore pour un point as-
sujelti & demeurer sur une surface ou sur une courbe
donnée, parce que , d’'une part, la force R devra étre
dirigée suivant la normale, et que, d'un auire cité,
la droite infiniment petite MO appartiendra au plan
tangent ou a la tangente, ce qui rendra nulle sa pro-
jection 7 sur la dirvection R. D’aprés 'équation (4) ,
qu'on a démontrée précédemment, et qui a égale-~
ment lieu quand la droite MO est infiniment petite ;
on aura done

P‘(J -+ Plpf b P”p” ~+eglc.==o0, ':.l-;l
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toutes les fois que les foreces P, P, PY, etc., se fe-
ront équilibre. Réeiproquement, I'équilibre existera
quand cette équation aura lien pour tous les déplace-
mens possibles d'un point matériel entiérement libre,
ou astreint & rester sur une surface ou sur une courbe
donnée.

On appelle vitesse virtuelle dun point matériel en
équilibre toute droite infiniment petite, telle que
MO, qu'on peut lui faire déerire, en observant les
conditions auxquelles il peut étre assujetti; et le
principe d’équilibre contenu dans I'équation qu’on
vient d’écrire, sur lequel nous reviendrons par la
suite , se nomme le principe des vitesses virtuelles.
En Tappliquant successivement 4 un point matériel
entiérement libre, assujetti & rester sur une surface,
astreint & demeurer sur une courbe;, on retrouvera
sans difficulté les équations d'équilibre que nous
avons précédemment obtenues. Chacune des equa~
tions (€) se déduira de la formule (i), en prenant
pour MO le déplacement de M sur I'un des axes
MA, MB, MC; on obtiendra les équations déqui-
libre qui ont lieu dans le cas d'un point assujetti
a rester sur une surface donnée, en considérant ses
déplacemens suivant deux axes tracés dans le plan
tangent; et la formule (i) fournit immédiatement
l’équulion d’équilihre d'un point astreint 2 rester
sur une courbe domnnée, en prenant pour MO Té-
lément de cette courbe, et pour ps Py ps ele.,
les projections de cet ¢lément sur les directions
des forces P, P, P’, etc. Les angles que ces direc-
tions font avec la tangente a4 la courbe étant «,
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a’, ", etc., on aura alors
p=MOcose, p'=MO cosa/, p"=MOcosz", elc.;

en supprimant le facteur MO commun i tous les
termes de I'équation (i), il en résultera

P cos o P’ cos o' 4 P" cos o 4~ etc. = 0,

comme précédemment.
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CHAPITRE II.

DE LYEQUILIBRE DU LEVIER.

40. On considérera ici un levier comme une ligne
droite ou courbe ECF (fig. 10) inextensible, et de
forme invariable, qui ne peut que tourner, dans un
plan, antour d'un de ses points C supposé fixe , que
Pon appelle le point d'appui du levier. Ordinaire-
ment il 'y a que deux forces qui soient appliquées
4 cette machine, et dont 'une a pour objet de tenir
Vautre en équilibre; la premiere sappelle la puis-
sance, et la seconde la résistance. Mais, pour plus de
généralité, nous supposerons qu'un nombre quel-
congue de forces dirigées dans le plan du levier agis-
sent en différens points de cette ligne; et il s'agira de
trouver les conditions de leur équilibre.

Je ne me propose pas, dans cet ouvrage, d’apph-
quer aux diverses machines les lois de I'équilibre qui
¥y seront exposées. Pour ce qui regarde les machines
simples, je renverrai aux Trailés élémentaires de
Slatique ; mais la loi de I'équilibre dans le levier
étant un principe de la Mécanique, il est nécessaire
de nous en occuper ; et 'on va montrer comment ce
principe est lié & celui de la composition des forces
qui agissent sur un point isolé.

41. Lorsque plusieurs forces sont appliquées a un
corps quon suppose de forme invariable, on pent
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iransporter le point d'application de chacune de ces
forces en un autre point du corps pris sur sa direc-
tion ou sur son prolongement. 8i une force donnée P
agit, parexemple, a I'extrémité E du levier, suivant la
droite AE, et que M soit un autre point appartenant
a cette direction, qu'on suppose lié au levier d'une
maniere invariable, il est permis de remplacer la
force P par une autre force de méme intensité, agis-
sant au point M suivant la droite MA. En effet, on
peut d’abord appliquer au point M deux forces égales
enire elles, agissant en sens contraires, I'une suivant
MA , Tautre suivant son prolongement MA’; si, de
plus, on suppose que chacune de ces forces soit égale
a P, celle qui agit suivant MA’ détraira la force P
appliquée au point E suivant EA, puisque ces deux
forces €gales agissent en sens contraires aux exirémi-
tés de la droite ME, de longueur invariable, par hy-
pothese ; il ne restera donc plus que la force P agis~
sant au point M dans la direction MA, et par laquelle
la force donnée P, qui agissait au point E, se trou-
vera remplacéé.

Les forces agissent souvent sur les corps: qu'elles
mettent en mouvement ou qu’elles tendent & mou-
voir, soit en les tirant par le moyen d’un fil qui
leur est attaché, soit en les poussant par le moyen
d’une barre appuyée contre leur surface. Ce fil ou
cette barre s’étend ou se contracte plus ou moins;
cest quand ils ont cessé de sallonger ou de se rac-
courcir qu'on les considére comme des lignes inya-
riables qui représentent la direction de chaque force,
dont T'action est la méme alors que si elle sexer-




74 TRAITE DE MECANIQUE.
cait immédiatement aux points de la surface du mo-
bile ol1 ces lignes viennent aboutir, Un levier n’est
pas non plus, comme on le suppose ici, une ligne
de forme invariable; ¢'est une barre qui fléchit un
tant soit peu, ct s'étend ou se contracte aussi d’une
petite quantité, en raison des forces qui y sont ap-
pliquées. La forme qu’il doit prendre serait trés dif-
ficile & déterminer d’avance; mais c'est quand il ¥
est parvenu gqu'on le considerc comme invariable,
et Clest & cette figure, trés peu différente de sa forme
naturelle,, que se rapporteront les conditions d’équi-
libre qu’il s’agit de trouver.

42. Supposons quune seconde force Q agisse a
Vautre exirémité F du levier, suivant la droite FB,
et que les deux directions EA et FB soient com-
prices dans le plan ou le levier peut tourner; ces
deux droites, ou leurs prolongemens, viendront se
couper en un cerlain point M, que l'on pourra
prendre , d'aprés ce quon vient de prouver, pour
le point d’application commun a P et Q. Cela étant,
par la regle du parallélogramme des forces on dé-
terminera la résuliante de ces deux forces, de la-
quelle M sera aussi le point dapplication. Or, pour
quelle soit détruite et que le levier demeure en
équilibre, il sera nécessaire que sa direction vienne
passer par le point d'appui C; et cela suffira, puis-
qu'en y transportant cette résultante, elle sera de-
troite par la résistance de ce point fixe. D'aprés ce
qu'on a vu dans le n® 29, si Ten abaisse du point
C des perpendiculaires CG et CH sur les directions
des forces P et O, on aura donc, dans le cas de
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Péquilibre,
P.5 QBieOnChyg
et, réciproquement, I'équilibre existera quand cette
proportion aura lieu. Par conséquent, en appelant
P et g les perpendiculaires CG et CH, Iéquation
d'équilibre sera
= Q.

On appelle moment dune_force par rapport a un
point, le produit de cette force par la perpendicu-
laire abaissée de ce point sur sa direction. Ainsi,
la condition d’équilibre dans le levier consiste en
ce.que les momens de la puissance et de la résisiance,
pris par rapport an point d’appui, sont égaux; ces
deux forces tendant d'ailleurs a faire tourner le
levier en sens opposés.

Si I'on suppose les droites CG et CH lides inva-
riablement au levier, on pourra prendre G et H
pour les points d'application des forces P et Q, et
remplacer le levier de figure quelconque ECF par
le levier coudé GCH (fig. 11). Les perpendiculaires
CG et CH sappellent les bras de levier, de la puis-
sance et de la résistance. La condition de I'équilibre
ne dépend pas de la grandeur de langle GCH ; et
cest aussi ce que 'on peut voir a priori.

En effet, si du point C et d'un rayon CH on déerit
Yare de cercle HIYY, qu'on le suppose lié invariable~
ment au levier, et qu'on applique au point H’ denx
forces €gales 4 (), agissant en sens contraires, suj-
vant les parties H'B' et H'B’ de la tangente en ce
point, il est évident que la force Q, dirigée sui~
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vant HBY, sera détruite par la force Q dirigée suivant
HB; car ces deux forces tendent 4 faire tourner le
systéme en des sens opposés, et il n’y aurait pas de
raison pour quil obéit plutot 4 I'une qu'a I'autre. La
seconde de ces deux forces se trouvera donc rem-
placée par la force Q dirigée suivant H'B', et I'an-
gle GCH sera changé dans 'angle GCII', plus grand
ou plus petit, sans que I'équilibre soit troublé.

Par ce changement, l'angle des deux bras du le-
vier pourra devenir 180° ou z€ro; alors le levier sera
droit; la puissance et Ja résistance seront des forces
paralleles dirigées dans le méme sens ou-en sens
contraires; et, pour Péquilibre, il faudra toujours
que leurs intensités soient en raison inverse des lon-
gueurs de leurs bras de levier.

453. i F'on appelle R la résultante des deux forces
P et Q concourantes au point M (fig. 10), et m'angle
AMB compris entre leurs directions, on aura (u® 29)

R*=P* 4 Q* 4 2PQ cosm;

et la valeur de R fera connaitre la charge que le
point d’appui G aura a supporter dans I'état d’équi-
libre. Appliquée en ce point, la force R aura pour
direction la droite CD, prolongement de MC, La fi-
gure 10 suppose le point C situé entre les poinis
d’application E et F de la puissance et de la vésis-
tance. Lie contraire a lieu dans la figure 12; mais les
raisonnemens qu'on vient de faire s'appliquent a ces
deux cas : ils different I'un de 'autre en ce que, dans
le premier cas, les forces P et Q agissent de deux
cotés différens du levier, et Vangle AMB est aigu, aun
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lieu que, dans le second cas, elles agissent d'un
méme coOté, et l'angle AMB est obtus.

Les trois points E, F, C, restant les mémes, si le
point de concours M des trois forces P, Q, R, s%-
loigne & I'infini, ces forces deviendront paralléles.
Dans le cas de la figure 10, I'angle m devient alors
infiniment petit; on a cosm = 1, et conséquemment

R=P40Q.

Dans le second cas, c'est le supplément de Pan-
gle m qui devient infiniment petit ; on a donc
COS M = == 1 s et

R=0Q—7P,

en supposant P < Q. Par couséquent, la résultante
de deux forces paralieles est égale 4 leur somme ou
a Jeur différence , selon que ces forces agissent dans
le méme sens ou en sens opposés ; et quand leurs
directions sont contraires, la résultante agit dans le
sens de la plus grande. Dans ces deux cas, les com-
posantes P et Q sont en raison inverse de leurs dis-
tances CG et CH a la résultante.

Cela étant, si I'on méne une perpendiculaire com-
Iune aux trois forces paralleles, et qu'on appelle «
la partie GH de cette droite (fig. 13 et 14) com-
prise entre les deux composantes P et Q, et a la dis—
tance CH de la résultante R 4 la composante
quon sappose la plus grande, on aura

) e R Rl R o o

en prenant le signe supériear ou le signe inférieur,
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selon que P et Q agiront dans le méme sens (fig. 13)

ou en sens contraires (fig. 14). On en déduit
Pt O s Pt Bt iy
et, par conséquent,
7 il 7_‘1L .
L= o=’
ce qui fera connaitre la position de la résultante,
dont la valeur sera en méme temps ==

44- Lorsque les*forces P et Q agissent en sens con-
traires, ct qu'elles différent tres pen I'une de I'autre,
leur résultante, toujours dirigée dans le sens de Ia
plus grande, se trouvera située a une irés grande
distance des forces donnédes. Mais quand elles seront
rigoureusement égales, cette distance deviendra in-
finie ; ce qui signific que deux forces égales, paral-
ltles et agissant en sens opposés, ne peuvent étre
remplacées par une seule force; et, en effet, il ny
aurait aucune raison pour que cette force unique
agit plutot dans un sens que dans l'autre.

Deux semblables forces agissant aux extrémités
d’une droite GII (fig. 15), feront tourner cette ligne
autour de son milieu K; effet qui, évidemment, ne
saurait étre produit par Vaction d’une seule force. On
peut les remplacer d'une infinité de manieres diffe-
rentes par deux autres forces qui tombent dans le
méme cas; car on ne changera rien a leur action en
appliquant, par exemple, aux points G et H, suivant
les prolongemens GE et HF de la droite GH, des
forces égales et de grandeur quelconque; or, la ré-
sultante des forces dirigées suivant GA et GE, et celle
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des forces dirigées suivant HB et HF, seront encore
des forces ¢gales, paralléles et dirigées en sens op~
Posés, suivant des droites GC et HD, et ces résul-
tantes remplaceront les forces primitives qui agissaient
suivant GA et HB. Si I'on appelle P la grandeur com-
Mune de ces deux forces, et z leur distance mutuelle,
Pune et Pautre de ces deux quantités changeront par
Popération que nous indiquons; mais leur produit «P
demeurera constant, ainsi qu'on le prouvera tout 3
Pheure,

45. Au reste, ce cas particulier est le seul dans Je-
quel un systéme d’un nombre quelconque de forces
P, T, P etc. » comprises dans un méme plan et agis-
sant sur des points matériels liés entre eux d'une ma-
niere invariable, ne puisse pas se réduire 4 une seule
force. En effet, soit que les deux forces P et P’ con-
courent en un point, ou qu'elles soient paralléles , on
les réduira & une seule force Q, par la régle du pa-
rallélogramme des forces, ou par celle du numéro
Précédent. On véduira de méme i une seule force (Y,
Cetle premiere résultante Q et P/; puis & une seule
force (7, la seconde résultante Q" et P”; et ainsi de
Suite, jusqu’a ce qu'on ait réduit toutes les forces don-
nées i deux seulement, quise réduiront elles-mémes
4 une seule force R » & moins qu'elles ne tombent
dans le eas d’exception dont il s'agit.

Dans le eas général, cette force R est la résuliante
des forces données P, P, P’, etc.; et si I'on joint aux
composantes une force R’ égale et contraire 2 R sily
aura ¢quilibre dang Je systeme. La grandeur de R et
sa position dans le plan des forces données ne dé-
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pendra nullement de T'ordre dans legunel on aura pris
ces forces dans les réductions successives qu'on vient
d’indiquer; car, en changeant cet ordre, si I'on par-
venait 2 une force S différente de R en grandeur ou
en direction, il faudrait que I'une de ces denx forces
prise en sens contraire fit équilibre i autre; ce qui
serait impossible.

Pour équilibre des forces P, P, P’, etc., quand
elles seront appliquées a un levier situé dans leur
plan, il faudra d’abord qu’elles se réduisent a une
seule force ; car si elles se réduisaient & deux forces
paralleles § et 8’ non réductibles a une seule, et que
§’ fit la plus rapprochée du point d'appui, on pour-
rait décomposer 8’ en deux forces Q et Q, paralleles
et agissant dans le méme sens, dont la premiere se—-
rait directement opposée & S et la seconde passerait
par le point d’appui : ces deux composantes seraient
Tune et Pautre moindres que S’ ou 8, la force Q' serait
détruite, et il ne resterait qu'une force S —Q, qui
ferait tourner le levier dans le sens de S. Les forces
données étant réduites a une force unique R, 1l fau-
dra, en oulre, pour I'équilibre du Jevier, que cette
force vienne passer par son point dappui. Cette con-
dition s'exprimera par une équation, au moyen du
théoreéme que nous allons démontrer.

46. Considérons d'aberd deux forces seulement et
leur résultante. Le moment de cette résultante , par
rapport & un point situé dans le plan des trois forces,
sera égal 4 la somme ou i la différence des momens des
deux composantes par rapport au méme poiat: & la dif
férenice, quand le centre des momens. est situé dans
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Fangle des composantes, ou, dans son opposé, au
sommet; a la somme, quand ce point est hors de ces
deux angles.

En effet, soient P et P/ ces deux forces » MA et MA’
(fig. 16 et 17) leurs directions, Q leur résultante
agissant suivant MB, C le centre des momens 5 PPy
75 les perpendiculaires Ca » Ca', Cb, abaissées du
peint C sur la direction de P, I, Q. Décomposons cha-
Cune de ces trois forces en deux autres, dirigées sui~
vant la droite MC et suivant la perpendiculaire KMK’
4 cette droite; et considérons les composantes per-
pendiculaires. On a évidemment

cos BMK — sin BMC — 5_7,

C
en désignant par ¢ la longueur de la droite MC ; done
la composante de Q suivant MK sera égale 4 %’ De
méme, les composantes de P et P’/ perpendiculaires
a MC seront %’i et P—;& Elles agissent en sens con-

traire, quand la ligne MC traverse langle AMA’
(fig. 16), et dans le méme sens, quand elle tomhe
hors de cet angle. Or, la somme de ces composantes,
davs le second cas, et Uexces de la plus grande sur la
plus petite, dans le premier, doit reproduire la com-
Posante de Q, puisque Q est la résultante de P et P’;
€1 supposant la composante de P plus grande que
celle de P', ot supprimant le diviseur comnuin €, On
aura done
Ugi=Pp = P'p';
¢e qu'il s'agissait de prouver.
1. 6
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Si I'on imagine que le point C soit fixe et que les
perpendiculaircs Ca, Ca', Cb, forment un systeme in-
! variable, les forces P, P', Q, qui peuvent étre cen~
sées agir aux extrémités @, @, b, de ces droites, ne
pourront produire qu'un mouvement de rotation au-
tour du centre des momens. Or, Vinspection de la fi-
gure i7, a laquelle répond le signe supérieur dans
'équation précédente, montre que quand le point G
tombe hors de 'angle AMB, et de son opposé au
sommet, les trois forces P, P, Q, tendent 2 faire tour-
ner leurs points d’application dans le méme sens au-
tour du point C; au contraire, lorsque ce point tombe
dans 'un de ces deux angles, la figure 16, qui ré-
pond au signe inféricur, fait voir que les forces P et
P’ tendent A faire tourner les points a et @’ en sens op-
posés; et I'on voit aussi que, dans ce cas, la résul-
tante Q tend a faire tourner son point d’application
dans le méme sens que la composante qui a le plus
grand moment. D’apres cette remarque, le théo-
reme quon vient de démonirer revient a dire que
le moment de la résultante de deux forces est égal
3 la somme ou A la différence des momens de ces
deux forces, selon que les composantes tendent a
faire tourner leurs points d'application dans le meme
sens ou en sens opposés autour du centre des mo-
mens, et que la résultante tend a faire tourner
dans le sens de la composante qui a le plus grand
moment.

Ce théoreme ayant lieu pour des forces dont les
directions font un angle quelconque, doit encore sub-
sister lorsqu'elles deviennent paralléles; clest effecti-
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vement une conséquence facile 4 déduire de Ia com-
Position des forces de ce genre (n° 453).

47.L’avantage de ce dernier énoncé est de pouvoir fa-
cilement s'étendre & un nombre quelconque de forces
P, P, P, etec. » dirigées dans un méme plan. En re-
gardant le centre des momens comme un point fixe,
autour duquel les forces tendent A fajre tourner le
systeme de leurs points d’application , 1ids entre eux
d'une maniére invariable, le moment de la résultante
est égal a la somme des momens des forces qui ten-
dent i faire tourner dans le méme sens qu'elle, moins

la somme des momens des forces qui tendent 4 faire
tourner en sens contraire.

Pour fixer les idées, supposons que les trois pre-
micres forces P, P, P, tendent & fatre tourner dans
un méme sens, et toutes les autres dans un sens
opposé. Reprenons la série de réductions du ne 45.
Soient (Q, la résultante deP et P, et Q' celle de Q et P,
ou de P, P/, P". Soient aussi P 5 P 95 ¢ les per-
pendiculaires abaissées du centre des momens sur les
directions de P, P, P", Q, Q'; nous aurons, d'aprés
e qu'on vient de voir,

Q=Pp+Pp, Qf=0Qq+Py,

et, par conséquent,
Q¢ = Pp 4 Pp' Pt

De méme, siTon désigne par Q, la résultante de toutes

les autres forces P”, P, etc.; par ¢, la perpendicy-

laire abaissée du centre des momens sur sa direction ;

par p¥, pv, etc., les perpendiculaires abaissées du
6..
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méme point sur les directions de P, P'7, etc., on
aura aussi

Qq, = P/p" - Prp - etc.

Or, la résultante R de toutes les forces données sera
celle des deux forces Q' et Q ; si, done, on représente
par 7 la perpendiculaire abaissée du centre des mo-
mens sur la direction de R, et si lon considere que
ces forces (' et Q, tendent a faire tourner en sens op-

posés, on aura
Rr === (U9 — Q4.)»

selon que Q¢ sera plus grand ou moindre que Q g,.
Dans le premier cas, la force R tendra a faire tourner
dans le méme sens que la force Q, et, conséquem-
ment, dans le méme seus que les trois forces P, P/, I".
Nous supposerons que ce soit ce premier cas qui ait
lieu; ct en substituant pour Q'q’ et Q,g, leurs valeurs,
nous aurons alors

Rr=FPp-+Pp' 4 P'p" — P"p" — PVpT —ete. ; (1)
dquation qui renferme le théoreme qu'on voulait de-
montrer.

En supposant que le centre des momens soit le
point d’appui du levier auquel les forces P, P', P", etc.,
sont appliquées , il faudra, pour I'équilibre de ce le-
yier, qu'on ait
. ? W
Pp__l__}vp + P”[)”""P P "—P'TP"‘——‘E"[C. —o, (2)
puisque, dans ce cas, ces forces doivent avoir une
résultante qui doit passer par le pomnt d’appui (n°
et pour Jaquelle on a donc r=o.

3
"ES,".!
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48. On peut rendre I'équation (1) plus générale,
en supposant que par des décompositions et recom-
positions des forces P, P, P’, etc., on les ait transfor-
mées en dautres forces S, §/, 8", etc., dont 'ensemble
soit équivalent aux forces données. En désignant par
5, 8, 8, ete., les perpendiculaires abaissées du centre
des momens sur les directions de S, 5, 8, ete., on
trouvera, par le méme raisonnement que dans le
numero précédent,

Ss—{-S’s’+S"s"+etc.=P1)+P'p'-|—P"],J"—P"f[)"’—l’“'P”-—etc.; (3)

€quation dans laquelle on devra prendre avec le
signe -4, les momens des forees S, §, &, etc., qui
tendent a faire tourner dans le méme sens que P, P, P";
et avec le signe —, Jes momens de celles qui tendent
a faire tourner dans le méme sens que P", P, etc.

Le cas particulier oi les forces P, I, P, etc., sont
irréductibles & une scule, est compris dans ceile der~
niere équation. Soient alors S et §' deux forces égales,
paralléles et non directement opposées ; et appelons %
leur distance mutuelle. Si le centre des momens est
situé entre leurs direclions, on aura s=-s"=h; elles
tendront a faire tourner dans le méme sens autour de
Ce point; on donnera donc le méme signe i leurs mo-
mens, et il en résultera

Ss - §'s' = S/.
51, au contraire, le centre des momens n'est pas com-
pris enire § et §', et quon suppose s>>s', On aura

[ T Sy
§—§ =h; ces deux forces tendront & faire tourner
en sens 0pposeés; on devra donner le sighe ~- au mo-
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1 ment de S et le signe — au moment de §'; et il en

‘ résultera
| Ss — 8's' — Sh.
Par conséquent, 'équation (3) deviendra toujours
Sh=Pp+4-Pp' +Pp"— P7p" —Prptr — ete.
Son second membre se composant de quantités qui
sont toutes données, il en résulte que si les valeurs
de S et % viennent i changer, leur produit demeurera
constant, ainsi qu'on lavait déja dit plus haut.
On conclut aussi de cetle derniére équation que,
| quand son second membre est nul, les forces données
ne peuvent pas tomber dans le cas d'exception ou
clles sont irréductibles & une seule; 1l s’ensuit donc
que I'équation (2) exprime a la fois que les forces
P, P/, P’, ete., ont une résultante unique, et que
cette résultanie passe par le centre des momens ; par
conséquent, elle est I'équation nécessaire et suffisante
pour équilibre du levier, dont ce centre est le point
d’appui. La résultante R que 'on obtiendra par la
série de réductions du n°® 45, exprimera la charge
qu’il aura i supporter; quand elle sera nulle, les
forces P, P/, P’, etc., se feront €quilibre dans leur
plan sans le secours de ce point fixe.
49. La condition de I'équilibre dans le levier peut
anssl § exprimer par une équation analogue a la for-
mule (i) du n° 39.
Soient, par exemple, M, M', M" (fig. 18), les
, points d’application des trois forces P, P', P", qui agis-
; sentsur le levier ECF, suivant desdirections MA, M'A’,
M”A", comprises dans son plan. Faisons tourner infi-
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niment peu ce levier autour de son point d’appui C,
de sorte que M, M/, M", viennent en m, m’, m". Va-
pres la définition du n® 39, les arcs infiniment petits
Mm, M'm/, M"m", que I'on peut prendre pour des
lignes droites, seront les vitesses virtuelles des points
d'application M, M, M", des treis forces que 'on con-
sidere. J'abaisse de m, m', m", des perpendiculaires
ma, m'a’, m'a", sar les droites MA, M'A’, M"A”, ou
sur leurs prolongemens; Ma sera la projection de Mm
sur Ja direction méme de la force P, qui tend & faire
tourner le levier dans le sens de la rotation qui a eu
lien; M'a’ et M’a" seront les projections de M'm' et
M’m" sur les prolongemens des deux autres forces
P et P, qui tendent a le faire tourner dans le sens
opposé. Pour cette raison, je considére la premicre
de ces projections comme une quantité positive, et
les deux autres comme des quantités négatives. Je
représenterai ces trois quantités par @, @', @”.

Cela posé, en vertu du principe des vitesses vir-
tuelles, la somme des forces données multiplides res-
pectivement par les projections ainsi définies des vi-
tesses virtuelles de leurs points d’application, est nulle
dans le cas de I'équilibre, et réciproquement I'équi-
libre a lieu quand cette somme est zéro; en sorte
que I'équation d’équilibre du levier est

Pz +Po' -Po"=—o0; %)

et, en effet, il est aisé de vérifier quielle coincide
avec celle que I'on a déduite de la considération des
momens.

Pour cela, désignons par p, p', p', les perpendica-
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laires CG, CG’, CG", abaissées du point C sur les di-
vections des forces P, P, P; pare, ¢/, ¢, les distances
CM, CW’, CM", de leurs points d’application au point G;
et par ¥, 7' 2", les vitesses virtuelles Mm, M'n/, M"nz'.
I arc infiniment petit Mm se confondant avec sa tan-
gente, les triangles Mma et CMG ont leurs colés
perpendiculaires I'un a l'aulre, et sont semblables; on
a donc

Ma : Mm :: CG : CM;
et a cause de

Ma=a, Mm=7, CG=p, (M=c¢,

on en déduit

i}
C
On anra de méme
r r U ¢
] Y " P
@‘:-———r_, 3 @':——'—(‘,,—,

en observant que @’ et @" sont, par hypothese, des
quantités négatives. De plus, la forme du levier étant
supposée invariable, les trois arcs Mm, M'm/, M'm”,
déerits en méme temps, répondent a un méme angle;;
et en les divisant par leurs rayons respectifs CM,
CM’, CM’, on aura Irois rapports égaux. En dési-
gnant par § la grandeur commune de ces rapports,
on aura done

f

¥

o

i
:%-::9,

o
.

et , par conséquent,
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Or, si I'on substitue ces valeurs dans Véquation (4),
et qu'on supprime ensuite le facteur § commun A tous
ses termes, elle deviendra

Pp—Dp' —I"p"=0;

ce qui est effectivement I'équation d’équilibre du le-
Vier que nous considérons. Réci proquement, si I'on
multiplie cette dernitre équation par 8, elle se chan-
gera dans I'équation (4).

Le raisonnement serait évidemment le méme,
quels que fussent le nombre des forces données P, P,

P’, etc., et le sens dans lequel elles tendent a faire
tourner le levier.
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CHAPITRE I1I.

DE LA COMPOSITION ET DE L’EQUILIBRE DES FORCES
PARALLELES.

50. La composition des forces parallcles se déduit,
ainsi qu'on Va vu précédemment (n° 43), de la regle
du parallélogramme des forces, en considérant les
forces données comme des forces dont le point de
concours est & I'infini ; mais en sappuyant toujours
sur cette régle, on peut aussi obtenir la résultante de
deux forces paralléles par un aulre moyen quil est
bon de connaitre.

Soient P et ) les deux composantes, agissant aux
points E et F de la droite inflexible EF, suivant les
directions paralléles EA et FB, dans le méme sens
(fig. 19), ou en sens opposés (fig. 20). On ne chan-
gera rien i ce systéme de forces, en appliquant aux ex-
trémités de cette droite des forces égales, dirigees en
sens contraire Pune de Vautre, suivant ses prolon-
gemens EC et FD, et dont Ja grandeur commune sera
représentée par S. Je prends la résultante des forces
P et S appliquées au point B, qui sera une force P
agissant suivant une droite EA” comprise dans Yangle
AEC; de méme la résultante des forces Q et 8, qui
agissent au point ¥, sera une force Q' dirigée sui-
vant une droite FB', comprise dans I'angle BFD; et
si I'on excepte le cas du n° 44, ol les forces données
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P et Q sont égales et agissent en sens opposés, les
deux droites EA’ et FB' ne seront pas paralléles, Par
conséquent , en supposant leur point d'intersection K
li¢ invariablement a la droite EF, il sera permis de
le prendre pour le point d'application commun aux
deux forces P’ et ' (n° 41). Par ce point K, je mene
les droites E'F’ et KH', paralléles a la droite EF et 4
la direction des forces P et Q, puis je décompose cha-
cune des forces P’ et Q' suivant ces paralleles : il est
évident qu'on retrouvera de cette maniere les com-
posantes S et P, dirigées suivant KE et KH, et les
composantes S et Q, dirigées suivant KIY et KH
(fig. 19), ou suivant KF' et KH' (fig. 20). Nous au-
rons done les quatre mémes forces quauparavant,
mais appliquées toutes quatre & un meéme point K.
En supprimant les deux forces S, il restera les deux
forces P et Q, dirigées suivant Ja méme droite KH,
dans le cas de la figure 19, ou suivant cette droite KH
et son prolongement KH', dans le cas dela figure 20,
qui suppose que Q est la plus grande des deux forces
données. Donc, la résultante de ces deux forces leur
sera parallele; et en la désignant par R, nous au-
rons

R=Q=P,

selon qu'elles seront dirigées dans le méme sens ou
en sens opposes.

Pour déterminer le point O, ou sa direction viendra
couper la droite EF ou son prolongement, je sup-
poserai que E' et F’ soient les intersections des lignes
AE et BF avee la droite E'F’; les deux quadrilatéres
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EE'KO et FF'KO seront des parallélogrammes; et si
I'on prend leurs diagonales KE et KF pour représen-
ter les résultantes P’ et (', on aura

S§:P : EO : KO,

§$:0 : FO : KO,

-

pour les rapports des composantes. On conclut de la
PO PO TR0;
ce qui fera connaitre la position du point O, qu'on
pourra prendre pour le point d’application de la ré-
sultante R.
On en déduit aussi
PrasQ == O TNEF,
i, e i o 0 e Tl

les signes supérieurs se rapportant 4 la figure 19, et
les signes inféricurs a la figure 20; en ayant égard &
la valeur précédente de R, on aura donc, dans les
deux cas,

P1Q R FO 3 EO 3 EX:

ce qui montre que chacune des trois forces P, Q, R,
est proportionnelle & la distance comprise entre les
points d’application des deux autres.

Cette proportion, et, par suite, la position du
point 0, sont indépendantes de l’angle sous lequel
les directions des forces donnces sont coupées par
la ligne EF , qui peut éire une droite quelconque
aboutissant par ses extrémiteés a ces deux directions.
51. On résoudra maintenant, sans aucune diffi-
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culté, toutes les questions qui peuvent se présen—
ter sur la composition de deux forces paralléles en
une seule et sur la décomposition d’une force en
deux autres qui lui soient paralleles, Nous n’entre-
rons dans aucun détail & ce sujet; et nous ne re-
viendrons pas non plus sur le cas particulier des
forces égales et non directement opposées, que nous
avons exclu de la démonstration précédente, et qui
a été suflisamment examiné dans le n° 44.

Je vais actuellement considérer un nombre quel-
conque de forces paralleles, dont une partie agit
dans un sens et Pautre partie dans le sens opposé,
qui sont situées ou non situées dans un méme plan,
et appliquées a des points liés entre eux d’une ma-
niere invariable, par exemple, & différens points
d'un corps solide.

En composant deux de ces forces en une seule,
puis celle-ci et une troisiéme encore en une seule ,
et ainsi de suite, on parviendra & déterminer la
grandeur et la position dans Vespace de la résul-
tante de toutes les forces données, & moins que les
deux dernitres forces quon aura a considérer ne
tombent dans le cas d'exception du n® 44. Cetie ré-
Sultante sera évidemment paralléle & la direction
“ommune des composantes; de plus, elle sera égale
4 la somme de celles qui agissent dans un méme
Séns, moins la somme de celles qui agissent en
Sens contraire, et elle agira dans le sens de la plus
grande somme. Si donc on regarde les unes comme
des quantités positives , et les auires comme des
Quantités négatives (n® r1); qu'on les représente
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toutes par P, P/, P’, etc., et leur résultante par R,
on aura toujours

R=P4 PP 1 etc.

5a. Si les forces données viennent i tourner au-
tour de lears points d'application sans cesser d’étre
paralleles, leur résultante tournera aussi aulour d'un
des points de sa direction ; car son point d’applica-
tion, qu’on trouve en composant successivement les
forces données, comme on vient de l'indiquer, ne
dépend en aucune maniére de la direction commune
de ces forces, et reste, conséquemment, le méme
quand cette direclion vient & changer.

Ainsi, par exemple, supposous que les forces dou-
nées soient au nombre de trois, P, P/, P’, dirigées
suivant les droites MA, M'A’, M"A" (fig. 21). Soit
d’abord NB la direction de la résultante de P et P/,
qui sera égale & P -4~ P’; soit ensuite N'B’ la direc-
tion de la résultante de P 4~ P’ et P'; cette der-
niere force P" étant supposée , dans la figure, agis-
sante en sens contraire de P et P/, et plus grande
que P - P'. Concevons maintenant que les trois
forces P, P’, P, tournent autour des points M, M/,
M", en conservant leur parallélisme et le sens relatif
de leurs actions. Soient Ma, M'a’, M"4", leurs nou-
velles directions. Dans ce nouvel état, la résultante
des forces P et P’ rencontrera la droite MM/ an méme
point N quauparavant , puisque la position de ce
point ne dépend que du rapport des composantes ,
et nullement de l'angle que la droite MM’ fait avee
Jeurs directions (n° 50); elle sera présentement di-
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rigée suivant la droite Nb parallele 2 Ma ct M/,
et encore égale a P -} P'. Par la méme raison, la
résultante de P - P’ et P’ rencontrera le prolon-
gement de la droite MM’ au méme point N qu’au-
Paravant, et sera dirigée suivant une droite N'5’ pa-
rallele & Nb; par conséquent, les trois forces P 5
P’, P’, tournant autour de leurs points d’application
M, M/, M, leur résultante tournera aussi autour
d'un méme point N'.

53. Nous appellerons centre des forces paralléles
le point dans lequel viennent se couper toutes les
directions successives de la résultante, quand ses
composantes lournent autour de leurs points d’appli-
cation, qu'on suppose invariables.

On verra par la suite combien le centre des forces
paralleles est important & considérer, surtout dans
les questions relatives 2 Iéquilibre et anu mouvement
des corps pesans, On peut déja observer que si un
Corps solide est sollicité par des forces paralléles
quelccnques, que I'on détermine le centre de ces
forces, et qu’on le suppose fixe , I'équilibre aura lieu
dans toutes les positions que le corps pourra pren-
dre autour de ce point , pourvu que les forces don-
Nées restent toujours paralléles et appliquées aux
mémes points de ce corps; car alors leur résultante
Passera constamment par le point fixe, ce qui suflit
pour qu’elle soit détruite.

Les coordonnées du centre des forces paralléles,
rapportées a trois axes rectangulaires, dépendent,
Comme on va le voir, des produits de ces forces mul-
tiplides par les coordonnées de leurs points d’applica~
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tion. A cause que ces produits se présentent dans un
grand nombre de cas, on leur a donné un nom parti-
culier; on appelle moment dune force par rapport a
un plar, le produit de cette force et de sa distance a
ce plan. Ainsi, P étant Vintensité d'une force appli-
quée en un point dont les coordonnées sont x, ¥, z,
les pl‘odnils Pz, Py, Px, seront ses momens par rap-
port aux plans des x et 7, des x et z, des y et z. Les
momens de ceite espéce n'ont rien de commun, en
général, avec les momens par rapport a un poinl
quon a définis dans le n° 42. Ceux-ci dépendent de
la direction de la force, et sont indépendans de son
point d’application; les momens par rapport a un
plan dépendent, au contraire, de la position du
point d’application de la force, et sont indépendans
de sa direction. On ne fait usage des derniers que
dans le cas des forces paralleies; en sorte qu’ils peu-
vent étre des quantités positives ou négatives, a rai-
son du signe de la force et des coordonnées du point
ou elle est appliquée.

54. Soient M, M/, M, etc. ( fig. 22), les points
d’application des forces paralleles P, P/, P, etec.,
dont il sera inutile d'indiquer les directions. Menons
arbitrairement trois axes rectangulaives Ox, Oy, Oz,
qui seront ceux des coordonnées; désignons par a,
¥y %, les coordonndes de M; par x', ', o, celles de
M'; par x", ", 27, celles de M’, etc.; et supposons
que loutes ces coordonnées et ces forces sont des
quantités données qui peuvent étre positives on né-
gatives. Soient encore Q, Q, @, etc., les projections
des points M, M', M, elc., sur le plan des x et y;
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1 sorte quon ait

MQ=z, MQ'=¢z, MQ*=:" etc.

%y

97

Euﬁn, représentons par x,, ¥,, 3, les trois coor-
données du centre des forces paralléles dont il s'agit
de trouver les valeurs.

La vésultante P 4P’ des deux forces P et P’ ren-
Contrera en un point N la droite MM’ ou son prolon-
gement, selon que ces deux forces seront de méme

signe ou de signe contraire ; mais dans les deux
€as on aura

Pr:P - P :: MN © MM.
Soit K la projection de N sur le plan des et 3. Par
le point M, menons la parallele MGH & la droite
QR(Q', qui rencontre les droites NK et M'Q’ aux
points G et H, de sorte qu'on ait

MQ = GK = HQ’;

On aura aussi

MN : MM' :: NG : M'H;
et de cette proportion, jointe & la préeédente, on
conclura

(P 4+ PH)NG = P'.M'IIL
A cette équation, jajoule équation identique
P 4+ P)GK = P.MQ 4 P'.HQ’;

ce C[ui d{)rme

(P 4 P)NK = Pz - P’z

» . - /) : i
La résuliante des deux forces P -~ P’ et P’ rencon-

i 7
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trera en un point N’ la droite NM” ou son prolon-
gement, selon que ces deux forces auront le méme
signe ou des signes contraires; et si K est la projec-
tion de N’ sur le plan des x et y, on trouvera,
comme dans le cas précedent,

(P + P 4+ Py NK/ = (P - P/) NK 4 P'z";
p{ll‘ CDDSéunnt, on aura
(ij + Pr __|__ 1}”’) NfKr — P: + Pr;r + P”E-".

On continuera de méme jusqu’a ce qu'on ait épuisé
toutes les forces données P, P/, P", etc.; el st R est
leur résultante totale, on aura finalement

Rz, =Pz Pz + P’ + etc.

La figare 22 suppose que tous les points M, M,
M", ete., N, IN', etc., sont situés d'an méme coté du
plan des x et ¥, ou que leurs ordonnées parallcles &
Vaxe des z sont loutes de méme signe: mais il est
aisé de voir que si P'équation précédente est vraie
dans ce cas, elle le sera encore lorsque ces ordonnées
seront en partie positives et en partie négatives. En
effet, transportons le plan des x et 7, parallelement 4
lui-méme , & une distance quelconque £ de sa posi-
tion primitive. Par rapport 4 ce nouveau plan,
sotent Z, Z', Z", etc., les coordonnées de M, M,
M", etc., et Z, celle du centre des forces paralleles,
de sorte qu'on ait

2, =z,—h, Z=—=sz—h, Z'=7—h, L'=3z"—h, etec.;

si I'on retranche de I'éguation précédente I'équation
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identique
Rh=Ph 4 P'h 4 P'h 4 etec.,
1l en résuliera
RZ, =PZ -+ PZ - P'Z" + etc. ;
¢quation dans laquelle les ordonnées Z, Z', Z", ete.,
peuvent étre posm\rcs on negatweq
On voit douc que, dans tous les cas, le moment
de la résultante d’un nombre quelconque de forces
paralléles par 1app01t a un plan choisi arbiiraire-
ment, est égal a la somme des momens de ces forces
par rappo:l au méme plan.
55. En pr(-‘nanl. successivement les momens par
mpporl aux trois plans des coordonnées, on aur
d’apres les notations précédentes,

a,

R, =Pax+P'a’ 4 P'a" 4 etc.,
Ry, =Py 4Py + Py + ete., (1)
Rz, =Pz 4+ P%2 +P"2" 4 ete.;
el a cause de
R=P4P 4P} eic., (2)

les trois coordonndes du centre des forces paralléles
seront Lomple’ement déterminées. En menant par ce
point une droite p'mnllele aux forces donndes, dans
le sens indique par le signe de R, on aura la du ec-
tion de la résultante. Ces quatre équations renferme-
ront, de la manitre la plus générale | la théoric des
forLes paralleles.

Lasomme des momens des forces P, P/, P", etc C., est
€gale & zéro, par rapport i tont plan passant par le

AT s
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centre des forces paralléles; car, en prenant ce plan
pour celui des « et ¥, il faudra qu'on ait z,=o0,
et, conséquemment,

Pz Pz P2 - ete.

Dans le cas particulier ou P, I, P", ele., se ré-
dusent a deux forces égales, agissant en sens oppose,
leur somme R est €gale a zéro; ce qui rend infinies
les valeurs de x,, 7., z,. Le centre des forces paral-
1¢éles est donc alors situé 4 l'infini, ou plutét ce centre
nexiste pas, non plus que la résultante.

56. Lorsque tous les points d’'application M, M/,
M", ete., des forces données sont situés dans un
méme plan, il est évident, par la nature du centre
des forces paralleles (n® 52), que ce point, il existe,
devra aussi se trouver dans ce plan; c’est aussi cc
que V'on peut conclure des équations (1) et (2).

En désignant par «, b, ¢, trois constantes don-
neées, on aura, dans ce cas,

z = ax + by + ¢,
2= ax' 4 by' + ¢,
= ax'"+ by'+ ¢,
ete.
de substitue ces valeurs de z, 2', 2, ete., dans la troi-
sieme équation (1); il vient
Rz, = (Px 4 P2’ 4 P'2" - elc.) a
+ (By =Py - P"y" |- ete.) b
+ P +P' 4P telc.)c.

En vertu des deux auires equations (1) et de I'équa-~
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ton (2), on peut remplacer par Ra,, Ry R, les
coefficiens de @, &, ¢; et en supprimant ensuite le
facteur commun R, on a

Zy=ax, - by, <= ¢;

ce qui montre que le centre des forces paralleles ap~
partient au plan des points M, M’, M", etc.

Lorsque tous ces points sont sur une méme ligne
droite, ce centre s'y trouve également; et il suffit de
la premicre deséquations (1) pour déterminersa posi—
tion, en prenant cette droite pour 'axe desac. Si, de
plus, les forces P, P/, P”, efc., sont perpendiculaires
a cette droite, les momens que nous considérons ac-
tuellement se confondent avec les momens par rap-
port i un point, qui est ici 'origine O des abscisses ,
et la premiére équation (1) coiucide avec I'équa-
tion (1) du n® 47. 1l est aisé de voir, en effet, que
parmi les forces données P, P/, P", etc., celles qui ten-
dent i faire tourner autour du point O dans le méme
sens que la résultante I, sont toutes les forces qui ont
le méme signe que leurs distances x, x!, a, etc., d.co
point, et que celles qui tendent 4 faire tourner dans
le sens opposé sont les forces qui ont un signe. con-
lraire 4 celui de ces mémes distances; par con-
Séquent, les momens des premicres sajoutent, et
ceux des derniéres se retranchent, conformément a
Pénoncé du numéro cité.

57. Les ¢quations d"équilibre des forces parallé]es
P, P, P, ete, , se déduisent aisément de la théorig
quon vient d’exposer.

Sil n'exisle aucun point fixe dans le systeme, il
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faut, pour I'équilibre, qu'en séparant Pune de ces
forces, par exemple la force P, toutes les autres aient
une résullante qui soit égale et directement opposée
4 P. Soit donc R’ la résultante des forces P/, P", eic.;
puisque les forces P et R’ sont égales et dirigées en
seus contraires, elles doivent étre égales et de si-
gnes différens, ou, autrement dit, on doit avoir
P+ R’ = 0. Mais R’ est la somme des composantes

P, PY, ete.; il en résulte donc, pour la premigre

équation d’équilibre,
P4+P 4P Letc. =o. (a)

Pour exprimer, en outre, que les forces P et R’
sont directement opposées, soient «, €, v, les trois
coordonnées du centre des forces paralleles P/,
P", ete., de maniére quion ait

Ra = Pla’ 4 P'a" - eic. ,
R'€ = Py’ + P"y" 1 ete.,
Ry = Pz’ - P2 4 ete.

Ce centre étant le point d'application de leur résul-
tante R/, il sera nécessaire qu'il se trouve sur la di-
rection de la force P, pour que R’ soit directement
opposce a ceite force, ou, ce qui revient au méme ,
ce centre et le point d’application M de la force P
doivent étre sur une méme parallele & Ia direction
commune des forces données. Si donc on prend ,
pour plus de simplicité, le plan des & et y perpen-
diculaire a cette direction, il faudra que ces deux
points soient situés sur une méme perpendiculaire &

ce plan; ils auront alors la méme projection sur cc
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plan ; par conséquent, leurs coordonnées seront les
mémes parallélement aux axes des o et ), de sorte
gque l'on aura

= Q:j.

Je substitue donc a et 3 a la place de « et € dans
les deux premiéres équations précédentes, et, i cause
de R" = —P, il vient

Px + Pax' - P'x" 4-etc. = o, 1
P P '-]—P"""+etc._.0,j

€quations qui signifient que la somme des momens de
toutes les forces P, P’, P”, est nulle, etc., par rapport
aux plans des x et z, et des ¥ et z, paralleles a leur
direction.

(&)

Ainsi, I'équilibre de ces forces exige que les équa-
tions (a) et () aient lien en méme temps. Récipro-
quement , quand ces trois équations sont satisfaites ,
Péquilibre existe; car si Pon considére la résultante
R’ de toutes ces forces moins une, on aura, en vertu
de ces équations,

R':—P, R’ =—DLx, R’g—-— },
et, par conséquent >
a=x, 6=1r;

en sorte que cette résultante sera égale et directe-
ment opposée i la force P, qu'on avait omise. Il n'est
pas nécessaire, pour cela, que les deux plans par
capport auxquels la somme des momens des forces
données est zéro, soient perpendiculaires l'un a
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Yautre; il sufiit qu’ils soient paralltles 4 la direction
de ces forces; et I'on peut aussi s'assurer facilement
que si cette condition est remplie par rapport & deux
plans paralléles & cette direction, elle le sera égale-
ment par rapport 4 tous les autres. -

Concluons done que pour Uéquilibre d'un systeme
de forces paralléles, appliquées 3 un corps solide en-
tierement libre, il est nécessaive et il snffit,

1°. Que la somme de ces forces soit égale 4 zéro;

2°. Que la somme de leurs momens soit nulle par
rapport a deux plans quelconques paralléles 4 leur
direction commune., Quand toutes les forces seront
comprises dans un méme plan, cette seconde con-
dition sera déja remplie par rapport & ce plan, et
il suffira qu'elle le soit, en outre, par rapport a un
autre plan,

58. SiI'un des points de ce corps solide est supposé
fixe, il suffira, pour Péquilibre des forces paralléles ,
que la somme de leurs momens soit nulle par rap-
port a deux plans passant par ce point et paralléles
a leur direction, et il ne sera plus nécessaire que
leur résultante soit égale & zéro; car alors les dis—
tances de cette résultante 4 ces deux plans serout
nulles: elle coincidera donc avec leur intersection,
et sera détruite par la résistance du point fixe.

Lorsque ce point sera le centre des forces paral-
1;31@3, Ia somme des momens sera Zero par rapport
a tous les plans passant par ce point; par consé-
quent, les forces données se feront équilibre,, quelle
que soit leur direction commune; ce que nous sa-
vions déja (n° 55).
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Si le corps solide est retenu par un axe fixe, au-
tour duquel il ait seulement la liberté de tourner,
il suffira, pour I'équilibre des forces paralleles ap-
pliquées en ses différens poiuts, que la somme de
leurs momens soit égale a zéro, par rapportau plan
men¢ par cet axe parallélement & leur direction ;
car leur résultante tombant alors dans ce plan, elle
¥ rencontrera Iaxe fixe, et sera détruite par sa résis-
tance. Lorsque Vaxe fixe est lui-meéme parallele aux
forces données, le plan dont il s'agit est indéterming;
la condition’ d'équilibre s'évanouit par conséquent ;
ce qui doit étre, puisque des forces qui sont toutes
paralléles & un axe fixe ne peuvent faire tourner un
corps solide autour de cette droite, de sorte que,
dans ce cas, 'équilibre a lien indépendamment de
leurs intensités et de leurs distances a cet axe.

IR ——




106 TRAITE DE MECANIQUE.
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CHAPITRE 1V.

CONSIDERATIONS GENERALES SUR LES CORPS PESANS
ET SUR LES CENTRES DE GRAVITE.

59. On appelle indifféremment pesanteur ou gra-
vité, la force qui préeipite les corps vers la surface
de la terre aussitdt qu'ils ne sont plus soutenus. Son
action s'exerce sur tous les points maleriels, dans
des directions perpendiculaires a cette surface, ou
suivant des lignes verticales. Les directions prolon-
gées de la pesanteur en différens lieux de la terre
convergent done vers son centre, i cause de sa forme
4 peu prés sphérique; mais en ayant égard a la
grandeur du rayon terrestre, relativement aux di-
mensions des corps que I'on considére ordinaire-
ment, on peut supposer, sans erreur sensible , la
pesanteur paralléle a elle-méme dans toute I'éten-
due d'un méme corps.

Lobservation a prouvé que lintensité de cette
force varie & la surface de la terre avee la latitude,
€l que sur une méme verticale elle varie aussi avec
I'elévation au-dessus de cette surface; mais il faut
que les changemens de hauteur et de latitude soient
irés considerables pour que ces variations devien-
nent sensibles, et ‘elles ne le sont nullement dans
I'étendue d'un corps de dimensions ordinaires.

6o. On conclut de la que la résultante des forces
paralléles, en nombre infini, qui agissent sur tous
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les points d’'un corps pesant, est indépendante de
sa forme ; cette résultante est ce qu'on appelle le
poids du corps. Dans les corps homogénes, le poids
est édvidemment proportionnel au volume; mais une
expérience journaliére nous montre que les corps de
nature différente n'ont pas le méme poids sous le
méme volume ; ce qui peut provenir de ce que
Vattraction de la terre, qui est la cause principale
de la pesanteur, comme on le verra par la suite,
dépend de la nature des points matériels sur lesquels
elle agit, ou bien, de ce que les corps hétérogénes
renferment, sous des volumes égaux , des quantités
différentes de points maiériels également pesans.
Nous expliquerons, dans un autre chapitre, com-
ment on a conclu, du mouvement observé des corps
pesans, que cest le second de ces deux cas qui a
liea dans la nature.

ll en résulte que le poids d'un corps quelconque
est en raison composée de sa masse et de I'imtensité
de la pesanteur dans le lieu o il est situé. Ainsi,
en appelant P ce poids, M la masse, et g la mesure
de la gravité, on a

= gM.

Cette quantité g, indépendante de la nature par-
ticuliere de chaque corps, est, comme on voit, le
poids de celui dont on prend arbitrairement la masse
pour unité. On verra par la suite comment sa valeur
a ¢ét¢ déterminée en différens points de la terre,

d’aprt‘%s le mouvement des corps soumis & la seule
action de la gravité,
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Nous pouvons aussi écrire
i — fZE‘V,

en désignant par @ le poids du corps sous 'unité de
volume, et son volume par V. Le poids @ est ce
quon appelle la pesanteur spécifique du corps que
Yon considére; dénomination impropre, puisque la
pesanteur est comuoruane a tous les corps d'espices
différentes, et qu'on devrait remplacer par celle de
poids specifique.

Enfin , si 'on représente par Dla masse, sous Punité
de volume, du corps que I'on considérc, D sera ce
quon nomme la densité de ce corps, et 'on aura

M =DV, P=_sDV,

Telles sont les équations qui ont lien entre les
cinq quantités P, g, M, D, V, dont chacune doit
élre exprimée numériquement, en la rapportant i
une unité de son espece.

61. Le gramme, ou l'unité de poids, est celui
dun centimétre cube d'eau distillée et prise & son
maximum de densité, qui répond a environ 4° du
thermomeétre centigrade. Ce poids varie avec le lien
qu'il occupe ; mais comme les poids des autres corps,
quil sert & peser, varient exactement dans le méme
rapport, il s’ensuit que le poids d'un corps quelcon-
que, exprimé en grammes, est partout le méme , et
qu'on w2 pas besoin de dire en quel endroit il a été
déterminé. Dapres les expériences de M. Hallstrom ,
le poids du centimetre cube dean distillée, 4 la tem~

péralure zéro , est

0 gr,un"{)e_;gsg 1 R =
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On prend communément pour unité de densite,
celle de I'ean distillée & cette derniére température.
Les densités d'un grand nombre de substances ont été
déterminées par 'expérience, et exprimées en nom-
bres au moyen de cette unité. Ainsi, par exemple, la
densité du mercure a cette méme temperature est
13,5975,
¢t elle augmente ou diminue de

I

Er 2
550

&)

pour chaque degré de diminution ou d’angmenta-
tion de la température. La densité de Tair, prise
aussi a la temperature de la glace fondante, sous la
pression barométrique de 76 centimetres et 2 I'Ohser-
vatoire de Paris, a été trouvée égale &

1
76_9,4 2
¢t, pour chaque varation d'un degré dans la tempe-
rature, elle varie, en sens contraire, de
0,00375,
comme celle de tout autre gaz.

Le poids de la colonne de mercure qui exprime la
pression barométrique variant avec la lalitude et T'é-
lévation au-dessus de la surface de la terre, la den-
sité de Vair, soumise 2 une pression dune hauteur
donnée, varie en méme temps. Voila pourqu':)i 1l ne
suffit pas d'assigner cette hauteur; il faut encore dire
a quel lieu elle se rapporte , comme ici a I'Observa-
toive de Paris. Le rapport de la densité du mercure 2
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celle de Tair, qui répond aux nombres précédens, est

10462.

Des qu'on attribue un phénomeéne, tel que la cha-
leur, par exemple , a une substance matérielle , cette
substance est soumise 4 la pesanteur; et 'expression
impondérable ne doit sentendre que d’'une matiere
dont la densilé est st faible, qu’elle échappe 4 tous
nos moyens d’'investigation ; en sorte que sa présence
n'augmente ni le poids ni la masse mesurables du
corps dont elle fait partic, en quelque quantité qu'elle
sy trouve.

62. Les poids sont les forces qui nous sont le plus
familiéres, et dont nous pouvons, au moyen de la
balance, déterminer les rapports avec le plus d’exac-
titude et de facilité. Cest pourquoi il est naturel de
les faire servir de terme de comparaison aux forces
d’une autre nature. Ainsi, lorsque la force muscu-
laire d'un animal, ou tout autre force, agit’ sur un
corps par l'intermédiaire d’une corde attachée i sa
surface, nous pouvons toujours concevoir (que cetic
force soit équivalente & un certain poids déterminé,
et nous pouvons méme, sans changer sa direction ,
remplacer son action par celle de ce poids, en le
suspendant a Pextrémité de la corde, apres avoir
{ait passer celle-ci sur wne poulie fixe convenable-
ment placée.

Le poids fournit la mesure la plus commode de la
misse ; sans le secours de la pesanteur, il serait , €n
effet, trés difficile de déterminer le rapport des masses
de deux corps. On verra par la suite qu'on pourrait,
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a la rigueur, le conclure du choc mutuel de ces corps;
mais il est beaucoup plus simple de remplacer le
Tapport des masses par celui des poids, auquel il est
égal en chaque lieu de la terre, en vertu de I'équa-
tion P=— gM. Toutefois, on doit avoir une idéde
prealable de I'égalité et du rapport des masses, in-
dépendamment de la pesanteur , qui n'est qu’une
Propriété secondaire des corps, puisqu'elle devien-
drait tout- & - fait insensible, sans que les masses
“ussent changé, en les transportant a une distance
suffisamment grande de la terre. Nous reviendrons
sur ce point dans un autre endroit de cet ouvrage.
65. Puisque tous les points d’un corps pesant sont
sollicités pardes forces paralléles, il sensuit que si
on lui fait prendre successivement diverses positions
Par rapport a la direction de ces forces, leur résul-
tante passera conslamment par un certain point de
¢ corps. Ce point, que nous avons appelé, en géné-
ral, centre des forces paralléles (n° 55), prend ici le
hom particulier de centre de gravité. Sa propriété
Caractéristique dans les corps solides, qui me sont
Soumis qu’a la seule action de la pesanteur, consiste
I ce que, ¢'il est supposé fixe, le corps auquel il ap-
Partient reste en équilibre dans toutes les positions
Possibles autour de ce point, puisque, dans toutes
Ces positions, la résultante des forces appliquées &
tous les points du corps vient passer par le point
fixe.
On conicoit auss; que quand un corps solide pe-
sant est retenm Par un autre point fixe , 1l est né-
Cessaire et il suflit, pour I'équilibre, que la droite
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qui joint ce point et le cenlre de gravité st ver-
ticale; ce centre pouvant d'ailleurs se trouver au-
dessus ou au-desscus du point fixe. En effet, le poids
du corps ¢tant une force verticale appliquée i son
centre de gravité, sa divection coincidera, dans cette
| hypothese, avec la droite qui joint ce centre et le
' point fixe, ou avec son prolongement; par consé-
quent, cette force sera détruite par la résistance du
point fixe, comme si elle y était immdédiatement ap-
pliquée.

Par la méme raison, si I'on suspend un corps so-
lide pesant a un point fixe, par le moyen d'un fil
dont I'extrémité inférieure est atlachée a un point
i de sa surface, la direction de ce fil sera verticale
dans I'état d’équilibre, et son prolongement ira pas-
! ser par le centre de gravité du corps. Il en sera de
méme sil'on suspend , une ou plusieurs autres fois, ce
méme corps au point fixe, en attachant l'extrémité
inférieure du fil & d'auires poinis de sa surface. Les
prolongemens du fil, tracés successivement dans l'in-
térieur du corps, sy couperoul a son centre de gra—
vité; ce qui fournit un moyen pratique de déter—
miner la position de ce cenire dans un corps de
forme quelconque, homogene ou hétérogeéne.

Dans toutes les questions d'équilibre relatives a
un corps solide, on pourra faire abstraction de la
pesanteur de ses diverses parties, pourva qu'on
ajoute aux auntres forces données qui agissent sur
“ ce corps, une force égale a son poids, et appliquée
i yerticalement 2 son centre de gravité. Ainsi, par
exemple, dans le cas de I'équilibre du levier, il fau-
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dra comprendre au nombre des forces données dont
la somme des momens doit étre nulle, par rapport
u point d'appui (n° 47 ), le poids du levier agis—
Sant a son centre de gravité suivant la direction de
la Pesanteur.

64. Lorsque I'on connait les centres de gravité G
et G’ des deux parties d'un corps, et leurs poids p
et p’, on en déduit immédiatement le centre de gra-
vité K de ce corps ; car ce centre est le point d’ap-
Plication sur la droite GG/, de la résultante des forces
paralléles p et p/, qui agissent dans le méme seps a

ses extrémités G et G'; et, pour en déterminer la
position, on a conséquemment

GK : GG’ :: p ; pp.

De méme, si Ton connait les centres de gravité K
et G d’un corps et de I'une de ses parties, et qae les
poids du corps et de cette partie soient P et p, on
en conclura le centre de gravité G’ de lautre partie;
car ce point sera situé au-dela du point K sur le pro-
longement de la droite GK, et sa distance au point G
Sera déterminée par la proportion

GG': GK :: P :P — p.

81 un corps est divisé en un nombre quelconque
de parties dont les poids et les centres de gravité
soient connus, on en pourra déduire son centre de
gravité par une suite de proportions; mais il con-
viendra mieux de déterminer ses trojs coordonndes
an moyen du théoréme rvelatif aux momens des
forces paralleles (n° 54).

L. 8
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Soient, pour cela, p, p', p’, etc., les poids des
différentes parttes du corps, et P son poids total,, de
sorte qu’on ait

P=p+p+p'+ et

Soientaussix, 7, z, les coordonnées du centre de gra-
vité de la partie dont p est le poids; «', 3, 2/, celles
du centre de gravité de la partie dont le poids est
p'; ete. Toutes ces quantités seront données par hy-
pothese; et si l'on appelle x,, 7., z,, les coordonnées
du centre de gravite du corps entier, rapportées aux
mémes axes que les préceédentes, on aura, d'aprés
le théoreme cité,

Px, = px - p'x’ 4 p'x" 4-ctc.,
Py, = py +py' +py" 4-ete.,
Pz, = pz = p'z 4-p'z" -ete.;

ce qui fait connaitre les valeurs de x,, y,, z,.

65. On peut, dans ces €quations, remplacer les
poids par les masses auxquelles ils sont proportion-
nels. Fn désignant donc par m, m/, m’, ete., les
masses des différentes parties du corps dont les poids
sont représentés par p, p', p', etc., et représenfant
par M Ja masse totale, de sorte qu'on ait

M= m o m/ 4-m" 4-etc.,
il en résultera

Mo, = mx - mlx’ 4= m'x’ 4 ete.,
My, =my ++mly" +=m’y" +etc., ) (1)
Mz, = mz - m'z' 4=m'2" + etc.;
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‘e qui montre que le centre de gravité est indépen-
dant de Plintensité de la pesanteur, et qu’il sera tou-
jours le méme point du corps, & différentes latitudes
et 4 différentes hauteurs au-dessus de la surface de la
terre. En considérant que ce point ne suppose pas I'ac-
tiondela gravité, et qu'il ne dépend que des masses et
de leur disposition respective , Euler et d’autres au—
teurs Tappellent centre d'inertie; mais la dénomi-
nation de centre de gravité a plus généralement
prévalu.

Si la masse M a été divisée en un nombre infini
de parties infiniment petites m, m’, m", ete., on pourra
prendre tel point qu'on voudra de chacune d’elles
pour son centre de gravité, puisque les coordonnées,
suivant chaque axe de tous les points d'un méme élé-
ment, ne différeront entre elles que d’un infiniment
petit. Les seconds membres des équations (1) se com-
poseront alors d'une infinité de termes infiniment
petits, dont les sommes seront des intégrales défi-
nies, d'aprés le théoreme du n° 13 étendu aux inté-
grales multiples. Par conséquent, on pourra toujours,
Par les régles du calcul intégral, déterminer exacte-
™ment on par approximation le centre de gravité d'un
corps quelconque, sans connaltre celui d’aucune de
ses parties,

Dans un corps dont toutes les parties sont homo-
génes, leurs masses sont entre elles comme les vo-
lumes; on peut done alors substituer les volumes aux
masses, dans les equations (1); et si 'on représente
par V le volume entier, et par v, ¢, ¢', etc., ses
parties correspondantes & m, n?’, md", etc., on aura

B
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V=v+¢ ¢ Lt etc.,
Vo, = v - va' - "x" 4 ete.,
Vy, =y 4= vy' vy etc.,
Vz, =z =49z 4 ¢"'2" 4 etc.

Le point qu'on détermine par ces équations est le
cenire des forces paralléles appliquées a tous les points
d’'un corps, et proportionnelles aux élémens de son
volume; ce point sappelle le centre de gravité du
volume, quoiquun volume n'ait ni masse ni pesan—
teur. On appelle aussi centre de grayité d'une surface
ou d’'une ligne, le centre des forces paralleles appli-
quées a tous leurs points, et proportionnelles a leurs
élémens. On déterminera ses coordonnées en rem-
placant, dans les équations précédentes, les yolumes
V, ¢, ¢, ¢, etc., soit par les aires de la surface et de
ses parties, soit par les longuecurs de Ja ligne et de ses
parties.

66. Les masses M, m, m', m", etc., et les dis-
tances mutuelles de leurs centres de gravité, sont
lides entre elles par une équation facile a déduire
des équations (1).

Pour cela, placons l'origine des coordonnées au
centre de gravité de M; ces équations deviendront

ma = m'a' 4= m''x" 4-etc. = o,
my my' - m’iy” —-etc. =,
mz == m'z 4 m' J-ete, = 0.
Ml a. S & i Y =
En faisant le carré de la premiére, on en conclut

mix® = m " - m x4 ete. =
F ) . I' 7
— amm/ xx’ — amm2x" — am'ml'x'x" — ete.
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Yajouie, aux deux nombres de cette équation, Ia
quantite

m (m' = m" - ete.) a* - m’ (m -+ m! - etc) x™
= m"(m 4 m’ -+ ele.) 2" 4 etc.

il en résulte
M (ma* 4 m' 2" 4+ m' 2" 4 ete,) = mm’ (& — 2')*
—~+ mm!" (2 — a2 4 m'm" (2 — 2")* 4 etc.

Lix seconde et la troisieme équation (1) donneront de
meéme

M (1:{}"’ = m'y"t - mly" 4 ete) = mm' (y —y')
—Smm’ (y—y" ) 4 m'm" (' —y"P 4 ete.,

M (mz* 4 m'z'"* 4 m"z" 4 ete.) = mm (z— )
= man’ (z— 2"} 4 m'm" (z'— 2"y -} etc.

Or, si nous ajoutens ces trois derniéres équations, et
que nous fassions

Xyt 2 =T,
.Ufz +‘}J‘n + PR i rf:
Y 25 = »
o g e 2 =

etc.,

(—-'I-' el e o W B e R
A H) +(f .r.r) +(, AT O
(=) e (' =y — 2P =

elc.

>

nous aurons

M (mr® 4= m'v's 4 m"7" 4 cte.) == mm/
= mp* = m'ml" - ete.,
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pour I'équation quil s'agissait d’obtenir, et dans la-
quelle p, p’, p", etc., sont les distances mutuelles des
centres de gravité de m, m/, n?’, etc., et r, 1, 1, etc.,
les distances de ces points au centre de gravité de M.

67. On déduit aussi des équations {1) une pro-
priélé curicuse de I'équilibre d’'un point matériel
entierement libre. Voici en quoi elle consiste.

Soit O (fig. 25) le point en équilibre ; représen-
tons en grandeurs et en directions, par les droites
0A, OA’, 0A’, cic., les forces qui le sollicitent; si
leurs extrémités A, A’, A", etc., sont les centres de
gravité de masses égales, le point O sera le centre
de gravité de ce systéme entier.

En effet, en appliquant les équations (1) a ces
masses, et supposant que n soit leur nombre, on
aura

nx, =& == &' =4~ a" = ete. ,
nyy =y +y +y" +ete.,
nz, =z 47 2" 4-ete.

D’un autre coté, si Fon désigne par «, €, 5, les an-
gles que fait la force OA avec trois axes rectangulaires
menés par le point O ; par &/, €',5/, ce que ces angles
deviennent relativement 4 la force OA’; pare”, 8" oM,
ce qu'ils deviennent relativement & la force QA” ; ele.,
les équations d'équilibre de ces forces seront

OA cos & =+ OA’ cos &'+ OA” cos «” 4- ete. = o,
OA cos & + OA’ cos €'+ OA” cos 6" - cte. =0,
OA cos 9 - OA" cos ' 4- OA” cos " 4 ete. = o.

Or, en placant l'origine des coordonnées au point O,
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01t aura

2 =0A cosa, » =0A cos€, = = 0A cosy,
2'—=0A'cosa’, ¥ =O0A cos€, z=0Acosy’,

"= 0A"cosa", 3"=0A"cos€", z'=0A%cosy’,
ete.,;

pour les coordonnées des points A, A', A", etc. En
vertu des équations d’équilibre, on aura donc

x4x' 4 2" 4etc. = o0,
=y 4" +elc.=o,
z 45 47’ J-etc.=o0;

d’otr 'on conclut
X, =0, F, =0, Z,—0,

pour les coordonnées du centre de gravité des masses
égales; par conséquent, ce centre coincidera avee le
point @; ce qu'il s'agissait de démontirer.

68. 11 y a beaucoup de cas particuliers ol le centre
de gravité est immédiatement connu. Ainsi, le centre
de gravité d’une sphere ou d’un ellipsoide est évi-
demment au centre de figure; celui d'un paralléle-
pipéde, & Vintersection de ses quatre diagonales; celui
d'un cylindre a bases paraﬂéleé, au milicu de son axe.
Le centre de gravité d’'un cercle ou d’une cllipse cst
aussi au centre de figure, et celui d’un parallélo-
gramme, i l'intersection des deux diagonales.Le centre
de gravité d’'une ligne droite est le milieu de cetle
droite; d'ott Von conclut sans difficulté le centre de
gravité du contour d'un polygone quelconque, soit
par une suile de proportions (n° 64), soit par les

i e, ——

|
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équations des momens des forces paralléles. On voit
de méme que quand on aura trouvé les centres de
grayité d’un triangle et d’'une pyramide triangulaire,
on en déduira, par I'un ou Pautre de ces deux maoyens,
les centres de gravité d'un polygone et d’'un polyedre
donnés, que I'on peut toujours décomposer, soit en
triangles, soit en pyramides triangulaires.

Mais, en général, la détermination des centres de
gravité exige l'emploi du calcul intégral; et dans le
chapitre suivant nous allons donner tous les détails
qu'on peut désirer sur ce probléme.
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CHAPITRE V.
DETERMINATION DES CENTRES DE GRAVITE.

P S
§ 1. Centres de gravité des lignes courbes.

69. Soit s I'arc de la courbe donnée, abontissant a
un point quelconque M, et compté a partir d'un point
fixe que jappellerai C. Soient aussi @, 7, z, les trois
coordonnées rectangulaires de M. On considérera cette
courbe comme un polygone d'une infinité de cotes;
ds sera le cOté ou l'élément de la courbe qui répond
au point M; et quelque part que soit le centre de
gravité de cet élément, on prendra x, y, z, pour ses
trois coordonnées, qui ne sauraient, effectivement,
d.ifférer de «, 7, 5, que de quantités infiniment pe-
lites.

Appelons [ la longueur de la partic déterminée de
la courbe dont il sagit de déterminer le centre de
gravité ; et représentons par s, et s, les valeurs don-
nées de 5 qui répondent aux deux extrémités de /.
Soient «,, y,, z,, les coordonnées du centre de gra~
vité de cet arc I, rapportées aux axes des x, J;
Daprés le théoréme du n° 13, la somme des va-
leurs de chacun des produits xcds, yds, zds, dans toute
Vétendue de 7, sera une intégrale définie prise de-
puis s==5, |USqUA sa=5

en rvegardant x, y, 2,
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comme des fonctions de s données par la nature de Ia
courbe que I'on consideére. Nous aurons done (n® 65)

l.r,:f;o xds, ly, —_:/;:'yds, Uz =ﬁ:lsds, (1)

pour les trois équations qui serviront & déterminer
K1y Fas &5

Supposons, par cxcmplt?, que la ligne donnde s0it
une droite, ct que sa partie { aboutisse au point C,
de sorte qu'on ait s,=o0 et 5, =1, Désignons par
@, €, y,les trois angles que fait cette partie I avec
des axes menés par le point C suivant la direction des
X, )y By POSitives ; soient aussi a, b, ¢, les trois coor-
données du point C ; pour le point quelconque M nous
aurons

X =a-tscosa, y=b-scos€, z=¢ ~+s5cosy.

Je substitue ces valeurs dans les équations (1); et
en effectnant les intégrations et divisant ensuit

e par Z,
il vient

Xy=a--3lcosa, y,=b--1lcos€, z, =c-1lcosy;

ce qui montre, comme cela devait étre, que le centre
de gravité de la droite [ est situé & son milieu.

70. Lorsquil s'agira d’'une courbe plane, et quon
prendra son plan pour celui des x et ¥, il suffira des
deux PI‘BI]]iél‘CS équations {I) pour dét@l‘]]'lil]ﬁ‘l‘ la po-
sition de son cenire de gravité dans ce plan. 8i, de
plus, la portion I de la courbe est symétrique de
part et d'autre du point C, on aura s,=—= —11 et
s;==3{; le centre de gravité sera situé sur la nor—
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male au point C; et en prenant cette droite pour I'axe
des x, il suffira de déterminer la valeur de x,, qui sera
donnée par I'équation

L’arc de cercle est compris dans ce cas particulier,
en prenant pour axe des x, le diametre qui passe par
son milieu. Si I'on place en méme temps l'origine des
coordonnées au centre du cercle, et qu'on appelle @
son rayon, on aura

5
X =dacos —,
a

pour l'abscisse du point quelconque M. On en con-
clut

AL
lx,=2a® sin —;
2a
et en appelant ¢ la corde de 'arc I, on aura
ey
¢=2asn— , lx,=ac;
2a

¢¢ qui montre que la distance x, du centre de gra-
vité d’un arc de cercle au centre du cercle, est qua-
Iritme proportionnelle au rayon, a la corde et a
lare,

71. L'équation de la courbe plane fera connaitre
'une des deux variables x et 7 en fonction de l'autre.

- L] ” 4 -
8i l'on suppose la valeur de y donnée en fonction
de &, on prendra

ds — \/. 4 U doe ;
dx*
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et en appelant « et € les valeurs de « qui répondent
aux deux extrémités de Varc Z, on aura, au lieu des
équations précédentes,

L —

l:ﬂc\/l—f—g:dm,

o= [ 2\ Ldn, ()

pi= LoVt L

81 la courbe donnée est une section conique, on ob-
tiendra sous forme finie, par les regles ordinaires,
les valeurs des intégrales contenues dans les deux der-
I nieres équations (2). Dans le cas de la parabole, on
obtiendra de méme la valeur de I'intégrale que ren-
ferme la premiere de ces équations; en sorte que les
deux coordonnées du centre de gravité d'un arc de
parabole pourront toujours s’obtenir en fonctions des
abscisses 2 et € de ses extrémités. D’apres un théoréme
de Landen, T'ave d’hyperbole sexprime au moyen
de deux arcs d'ellipse et d’une partie algébrique;
quant a l'arc d’ellipse, on le regarde comme une fone-
tion irréductible & d’autres fonctions plus simples; et
M. Legendre a caleulé des tables fort étendues de cette
fonction, qui en font connaitre les valeurs numéri-
(ues avec une grande approximation. Par conséquent,
lorsque les valeurs numériques de « et € of celles des
axes de I'hyperbole ou de Fellipse seront données,
il sera facile de calculer la valeur de 7, et par suite
les coordonnées x, et y, du centre de gravité d'un
arc apparlenant a P'une ou I'autre de ces deux courbes.
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72. Je prendrai l'ave de cycloide ponr un autre
exemple de lapplication des équations (2). Dans
cette courbe, la longueur, P'aire, la surface et le
volume engendrés par sa révolution, et les coor-
données de leurs centres de gravité, se détermi-
Nent exactement. La construction de la tangente en
un point quelconque de cette courbe est aussi tres
simple; sa développée est une autre cycloide; et, de
Plus, par une série de développemens successifs, une
courbe quelconque approche de plus en plus de se
confondre avec la cycloide, et s’y confondrait rigou-
reusement 4 l'infini (*). C’est encore la cycloide que
'on trouve, comme on le verra par la suite, lors-
quon cherche la courbe qui jouit des propriétés les
plus 1‘emm'quables » par rapport au mouvement cur-
viligne des corps pesans. Cette réunion singuliére d’'un
grand nombre de propriétés curieuses et de nature
différente sur une méme courbe, en rend la considé-
ration trés utile et trés fréquente en Géométrie et
dang la Mécanique. Yoici comment on obtient son
€quation.

La cycloide est une courbe plane ACB ( fig. 24 ),
Cngendrée par un point déterminé M de la circon-
férence d’un cercle pendant qu’il roule sans glisser
sur une droite AB. Si le point générateur se trouve
Qabord ay point A, et qu'il arrive ensuite au point
B de cette droite , Vintervalle AB sera égal a la cir-
conférence du cercle donné; on voit aussi que son

—

(%) Journal de [ Ecole Polytechnigue, 18° cahier, page 4371,

|
|
)
I

|
s_




126 TRAITE DE MECANIQUE.

diametre sera égal 4 la perpendiculaire CD, abais-
sée du sommet C de la cycloide sur AB, et qui di-
vise la courbe en deux parties symétriques. En ap-
pelant ¢ le tayon du cercle douné, on aura donc

AB = ame, CD = ac.

Dans une position quelconque du cercle, soient
_ HG son diamétre perpendiculaire & la base AB, et H
: son point de contact avec cette droite. Du point M,
abaissons les perpendiculaires MP et MK sur AB et
GH, et faisous

AP'="p, PM = ¢;
nous aurons
Al = AP + MK = p + Vacqg— ¢*,
arc MII = c.arc(sin == m"——qa)
c
Mais le cercle géncrateur tournant sans glisser sur la
droite AB, il s'ensuit qu'on a constamment
Al = ar¢c MH;

I'équation demandée de la cycloide sera done
P \/ch — ¢* = c.arc (sin: K-W-T_'—?) 3

petyg étant les coordonnées couranies,
En la différentiant, on a

kS V.?'C.f{ =g .

pour son équation différentielle. On en conclut que
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les deux cordes MG et MH du cercle génerateur sont
la tangente et la normale a la eycloide qui répondent
4u pomnt M. En déterminant par la formule connue
S0n rayon de courbure au méme point, on le trouve
€gal au double de MH; d'ott il résulte qu’en prolon-
§eant MH d’une quantité HN égale 4 MH, le point N
Sera le centre de courbure. En faisant de méme la
droite CDE double de €D , le point E sera le centre
de courbure qui répond au sommet C; et de Ih on
Conclut aisément que la développée ANE de la demi-
¢ycloide AMC est la méme courbe, venversée de
maniere que son sommet C soit transporté en A et
son origine A en E. Il Sensuit que la longueur de
ANE ou de AMC est égale 4 la droite CDE, et que, par
conséquent , la longueur totale dela cycloide est égale
4 quatre feis le diamétre de son cercle générateur.

73. Dans les usages que nous ferons de cette équa-
tion, il sera plus commode de transporter Porigine
des coordonnées au sommet C (fig. 25). Je pren-
drai pour axes des x et des  les droites Cx et Cy,
Perpendiculaires et paralléles a la base AB. En abais-
sant du point quelconque M une perpendiculaire MP
Sur Cx, on aura donc

G5, MP =

¢t si I'on compare ces coordonnées aux précédentes,

et que l'on appelle « le diametre CD du cercle géné—
Yateur, on voit que

P=z:ma —y, g¢q=a-—x;

done, en substituant ces valeurs dans I'équation dif-
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férentielle de la cycloide, et mettant aussi @ au lieu
de 2c¢, clle deviendra
dy = 2 ZIT N
: Var — z*
1l en résulte

ds = \/%1 dax.

En prenant I'intégrale de maniére qu'elle s'évanouisse
quand x =o0, on a

4
s = 2vax,

pour la longucur de I'arc CM, dont I'origine est au
sommet C. Au point A ,ona x =a; ce qui donne,
comme précédemment , 2a pour la longueur de la
demi-cycloide CMA. On peut remarquer que §*= 4ax
est une équation de la cycloide semblable & celle
de la parabole, dont elle ne differe quen ce que
Tordonnée » sy trouve remplacée par l'arc s.

En appliquant les deux derniéres équations (2) au
centre de gravité de I'arc CM, nous aurons

a’x,:fx\/gdx, u?)fl:f)f \/gcir,

ou l'on prendra les intégrales de maniére qu’elles
s'évanouissent avec x. En y mettant pour s sa va-
Jeur, 1l en résulte

a2, \V/x _—_f\,’de, 27, Vo J"’_i
Va
On aura donc
X, — %.:r;

d'otr Yon conclut d’abord que le centre de gravité
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d'un are M'CM symélrique de partet d'autre du som-
met C, qui doit appartenir 4 la droite CD, se trouve
au tiers de CP, & partir du point C.

En intégrant par partie, on a
ydx
Vz
Si Pon substitue pour dy sa valeur donnée par 1'é-
(uation (@), on aura donc

= ay Va — zf\,-fx({}f.

FiVa = rVx — fVa— xdx -

€t, par conséquent,
] 3 e
f|=\]'+37; [(ﬂ—x)‘—ﬁ\/ﬂ:l;

ce qui, joint a la valeur de x,, détermine comple-
tement le centre de gravité de l'arc CM. Dans le
cas de la demi-cycloide, on a x=a et y=2m7a;
d'olr il résulte

x, = 35a, ‘71:‘7‘(%%_—%)'

74- Quand une courbe plane tourne autour d’'une
droite comprise dans son plan et que je prendrai pour
Yaxe des abscisses, elle engendre une surface de ré-
volution dont I'étendue peut se déduire de la lon-
gueur de cette courbe et de ordonnée de son centre
de gravitd,

Pour le faire voir, soient x et 7 Pabscisse et or-
donnée du point quelconque M de cette courbe, et
$ I'arc CM aboutissant 4 ce point et compté d'un point
fixe C; I'élément ds engendrera la surface d'un coue

- 9
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tronqué, etson milieu décrira une circonférence égale
a 2w (y =+ dy), ou simplement & 27y, & cause que
dy est un infiniment petit. D’apres la régle connue,
on aura donc 27yds pour cet élément de surface.
Done, si Uon appelle s, et s, les valeurs de s qui ré-
pondent aux deux extrémités de la courbe généra-
trice, et S la surface engendrée, on aura, d’apres le
théoréeme du n° 15,

5
SE=—a7) [. s,
o 855"

On remarquera que cette expression suppose que
la courbe génératrice n’est pas coupée par l'axe des
2, sans quol ses parties situdes des deux cotés de cet
axe décriraient deux surfaces différentes, dont S n’ex-
primerait plus que la différence. Avec cette restric-
tion , elle subsistera encore lorsque la génératrice
sera nne courbe fermée; et, pour Tappliquer & ce
cas, il suflira de prendre pour s, I'arc s, augmenté de
la circonférence entiére de cetle courbe.

Cela posé, si I'on compare cette formule a la troi-
sieme équation (2), on en conclut

S: = amly; 3

ce qui montre que la surface engendrée S est dgale &
la longueur { de la courbe génératrice, multipliée
par la circonférence 27ry, que décrit son centre de
gravité.

Ce théoreme servira & déterminer la valeur de S
toutes les fois que le centre de gravité de la généra-
trice sera connu sans aucun caleul, et, pour ainsi
dire, & Vinspection de cette courbe; il ne servirait
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plus a rien §'il fallait calculer Yordonnée y,, puis-
que ce calcul serait le méme que celui de S. En sup-
posant, par exemple, que la courbe génératrice soit
un cercle ; désignant par @ son rayon , par ¢ la dis-
tance de-son centre a I'axe de rotation, et supposant

: ’ PP
quion n’ait pas ¢ << @, On aura

f:E"xT(L, Y = €,
et, par conséquent,
S — 4%”(1’(!.

Quand le cercle touchera I'axe de rotation, on aura
¢=a, et la surface engendrée sera équivalente au
carré dont le e6té est €gal a la circonférence 27wa
du cercle générateur.

§ IL. Centres de gravité des surfaces.

75. Soient toujours x, ¥, z, les coordonnées d'un
point quelconque M, et x,, 7,, 2,, celles du centre
de gravité qu'il s'agit de déterminer. Je considére z
comme une fonction donnée de x et y; je fais

dz dz

e =

o
et J'appelle » I'élément de la surface donnée qui ré
pond au point M ; on aura (n° 21)

@ = dedy\/14 p* =+
Quel que soit le point de » ou se trouve le centre

de gravité de cet élément, ses coordonnéss différe~
ront infiniment peu de &, y, z; on pourra donc
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prendre wx, @y, @z, pour les momens de o par
rapport aux trois plans des coordonnées, et il en
résultera (n* 13 et 65)

r=ffw, A= ffxe, Ay.=[[fro, Az = ffrw;
A étant laire 'de la portion de surface dont on de-
mande le centre de gravité, et les intégrales doubles
s'étendant & tous les élémens de 2.

Dans le cas d’une surface plane, et en prenant
son plan pour celui des x et y, les quantités p
et g seront nulles, et l'on aura seulement % con-
sidérer les trois équations

A :fﬁ/rr] TR =ff:rcf.x‘g€}f, A¥, =f‘ﬁﬂafx{b,_

Supposons que A soit alors terminée par la courhe
ABC (fig. 26); & chaque abscisse x ou OP répon-
dront deux ordonnées PM et PN, que je représen-
terai par y et »', et qui seront données en fonce—
tions de a par T'équation de cette courbe. Soient
aussi a et € les abscisses OD et OE des points A
et B ou les tangentes sont paralléles aux ordon-
nees. Les intégrales devront éire prises, d’abord de-
puis 3 = PN jusqua y = PM, et ensuite depuis
x=ea et x=~E; et il en résultera

f: (r — 7)dx,
(3

a= [y — y)ade, (1)
3

AP, =%ﬁ (=,

Au lien d'étre circonscrite par une courbe fermée

A

I
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ABC, si l'aire A est comprise entre deux courbes dif-
férentes et entre deux droites paralleles a I'axe Oy
des ordonnées, on tirera de I'équation de la courbe
supérieure la valeur de ¥, et de Péquation de la
courbe inférieure celle de »’, et Pon prendra pour
2 et 5 les distances de ces deux paralléles au point
0. Dans le cas le plus ordinaire, la eourbe. infé-
rieure sera remplacée par I'axe Ox des abscisses; on
aura done ' = o, et simplement

¢ ¢ ¢
;\:f;?dr’ Aa_.l:'/;‘?f-xdx-’ )':th';:/; J.-!dx., (2)

pour déterminer laire et le centre de gravité d’'une
portion de surface plane comprise entre une courbe
dounée, l'axe des abscisses et deux ordonmées de
cette courbe.

Observons aussi qu’on parvient directement aux
€quations (1) de la maniére suivante.

Je partage I'aire ABC en élémens tels que MNN'M/,
infiniment minces et parvalleles & axe Oy. Jappelle
u# la longueur de la droite MN; par ses deux ex-
trémités M et N, si I'on méne des paralléles 2 Paxe
Ox, on ajoutera i I'élément MNN'M’, ou l'on en
retranchera , des triangles infiniment pelits du se-
cond ordre, qui n'en altéreront pas la grandeur;
par comséquent, cet élément sera égal i ;t.;.d.'x‘._Si
Yon désigne par v la distance du milieu de MN a
Vaxe Ox, on pourra prendre a et ¢ pour les deux
coordonnées du centre de gravité de cet €lément;
car il est évident qu'elles n'en pourront différer que
de quantités infiniment petites. Dapres les autres
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notations précédentes, on aura donc
€ s ¢

A= f ude, Ax = ’!p xudx, Ay,—= f vudx. (3)
&% ol o @&

Daiilears, 7 et y’ étant toujours les ordonnées PM
et PN qui répondent & une méme abscisse quel-
conque, on a aussl
u=y — gy =5y

ce qui fait coincider ces derniéres formules avec les
équations (1).

76. Pour premier exemple, je suppose quon de-
mande le centre de gravité du triangle ABC (fig. 2r).

Je place l'origine des coordonm_ es au sommet C,
et je prends l'axe des o perpendiculaire a la base
AB; je représente cette base par b, et la hauteur CD
par %. Par le point quelconque P appartenant a CD,
je meéne la perpendiculaire MN a cette droite; CP et
MN seront les variables et z, et I'on aura la pro-
portion

Ui xs A

de laquelle on tire

i — T.
On aura, en outre, o = o0 et €=~/A. Au moyen de
ces valeurs, les deux premiéres équations (3) don-
neront
= L bh, Ax, = 1bh;
d'ou il résulte
Py T 3l

On n’aura pas besoin de calculer la valeur de 7 ;
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car si E est le milieu de AB, et qu'on tire la droite
CE, elle coupera en deux parties égales tous les élé-
mens du triangle paralléles & AB, et contiendra, con-
séquernment, son centre de gravité. Si donc on prend
sur CD une partie

"R o a3 B
\A}. ——S(JD—-I.,

et qu'on ¢leve la droite G perpendiculaire 2 CD, le
point G ou elle rencontrera CE sera le cenlre de gra-
vité du triangle. La droite FG coupant CD et CE en
parties proportionnelles, on aura aussi

CG — 2CE;

ce qui montre que le centre de gravité d’un triangle
se trouve sur la droite qui joint son sommet au mi-
lieu de sa base, aux deux tiers de cette droite & par-
tir du sommet, ou au iiers & partir de la base.

77. On démontre aussi ce théoréme sans le se-
cours du calcul mtegral,

En effet, par la décomposition du triangle ABC
(fig. 28) en élémens paralléles au coté AB, on prou-
vera que son centre de gravité se trouve sur la droite
Cb, qui joint le sommet C au milien D de ce e¢dié.
En le décom posant en élémens paralléles au coté CA,
on prouvera de méme que ce centre de gravité est
aussi sur la droite BE qui va du sommet B au milieu -
E de CA; ce peint sera donc situé a I'intersection G
des deux droites CD et BE. Or, si l'on tire la droile
DE, elle sera paralléle 3 CB, puisqu'elle coupe CA:
Zt AB en parties proportionnelles ; il en résultera

onc
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DE : €CB :: AD : AB :: « : 5

DG : CG :: DE : CB :: 1 : -

2

en sorte que DG sera la moitié de CG, et, consé-
quemment, le tiers de CD; ce qu’il s'agissait de dé-
montrer.

On en peut conclure que les trois droites qui vont
des sommets d’un triangle aux milieux des cdtds op-
posés, doivent se couper en un méme point; ce qui
est conforme 4 un théoréme connu,

Siles sommets A, B, C, du triangle soni les centres
de gravité de trois masses égales, le centre de grayité
de ces trois corps coincidera avee celui du triangle ;
car le centre de gravité des deux masses qui répon-
deat a A et B se trouvera d’abord au milieu D de la
droite AB; et ensuite le centre de gravité de ces deux
masses et de la troisieme sera le point G de la droite CD,
tel que GD est moitié de CG ou le tiers de CD.

Il snit de 1a et du théoréme du n° 67, que si l'on
applique au centre de gravité G dun triangle, des
forces représentées en grandeur et en direction par
les droites GA, GB, GC, qui vont de ce point aux
trois sommets, ces trois forces seront en dquilibre,

78. Connaissant le centre de gravité d'un triangle,
on en déduit successivement ceux d’un secteur et d’un
segment circulaires.

Soient CADB (fig. 29) le sccteur, et C le centre du
cercle. Si l'on considére Pare ADB comme une por-
tion de polygone d'une infinité de cotés égaux, on
pourra décomposer le secteur en élémens triangulaires
ausst égaux, qui auront tous ces colds pour bases et
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leur sommet commun au point C. On appliquera en-
suite la force qui agit sur chacun de ces élémens 4 son
centre de gravité ; et comme la distance au point C de
chaque centre de gravité est les deux liers du rayon
du cercle, il en résultera un systeme de forees paral-
leles et égales , appliquées a tous les €lémens de I'arc
ADB, déerit du point C comme centre, et d'un
Yayon égal 4 2 CD. Par conséquent, le centre de gra-
vité du secteur sera le centre de ces forces paralleles,
C'est-a-dire, le centre de gravité de cet arc AD'B’. Or,
en désignant par a, /, ¢, le rayon CD, l'arc ADB et
la corde AB, les quantités analogues, relativement
a AD'B, seront 2a, 21, 2¢; si done G est le centre
de gravité demandé, et qu'on fasse CG =, on aura,
d’apres le théoréme du n° 7o,

' sae

= =7
Maintenant, soient S, §', 8,, les surfaces du secteur
CADB, du triangle CAB et du segment ADBE; appe-
lons G, G/, G,, leurs centres de gravilé, qui seront
évidemment sur le rayon CD aboutissant au milien D
de Parc ADB; si 'on désigne par x, &', x,, les dis-
tances de ces trois points au centre C, et qu'on y ap-
plique des forces paralléles et proportionnelles 4 S, S/,
8., la premiére sera la résultante des deux autres; en
considérant les momens de ces forces, on aura donc

Sx — S'x° + S,x..

On a, d’aillears .

I
S=la, 2=%
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En appelant % la hauteur CE du triangle dont la base
est AB ou ¢, on a aussi

§'=1Lch, x'=1ik.
Done, a cause de
S,_—: "__S:% (al—-g}z)’
I'équation des momens deviendra
jate=7%cl 43 (al —ch) x, ;

et elle fera connaitre la distance 2, du centre de gra-
vité du segment ADBE au centre du cerele. En ob-
servant que

A I
¢ = 2a8n—, l= a cos —,
2a 2a

on en deduira

? {
4a*sin® —
24
oy e .

K(Z—asin é,)

Lorsque larc I est la demi-circonférence, on a
 ==ara; le secteur et le segment coincident, ainsi
que les distances « et x,, dont la valeur commune
est

:'I’{L
37

1 e, i e

79. 51 l'on prend successivement les trois sections
coniques pour la courbe a laquelle répondent les for-
mules (2), les intégrations seflectueront par les regles
connues, et I'on pourra obtenir, sous forme finie, les
valeurs des deux coordonnées a, et y, du centre de
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gravité. Jindique cet exemple comme exercice de
calcul, et je passe immeédiatement & la détermination

u centre de gravité de I'aire de la cycloide.

Soit CPM (fig. 25) le segment dont on veut trou-
ver le centre de gravité ; en désignant par x ety I'abs-
cisse CP et 'ordonnée PM, comme dans I'équation
(a) du ne 73, il faudra que les integrales contenues
dans les formules (2) s'évanounissent quand x =0} et
€n intégrant par partie, ces formules deviendront

A=uay— fxdy,
AXy = ; X%y _%fwl"’;’)" (4)
Ay =gyt — fxydy;

les nouvelles intégrales s'évanouissant aussi en méme
temps que x.

Eun vertu de l'équation (a), on a
Jxdy =\ ax—x*dx;

mais si N est le point o 'ordonnée PM rencontre le
cercle décrit sur CD comme diamétre, cette derniere
Intégrale exprime le demi-segment circulaire CNF ;
en représentant , pour abréger, par y U'aire de ce demi-
segment, on aura donc

A= xy — 7.

Dans le cas otz le point M coincide avec le point A,
on aura

x=0D=a, y=DA=ima, y=zi7%d",
et, par conséquent,

A=

=1 11]

wat.
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L’aire CAD de la demi-cycloide est done triple de
celle du demi-cercle CND, dont le rayon est 1 a, ou,
autrement dit, laire de la cycloide entiére est égale 4
trois fois celle de son cercle générateur.

On aura aussi

Sordy = fx \/ax — z* dux P

ou, ce qui est la méme chose,

Jxrdy=2taf'\/ ax—x*dx— S Ga—x)Waxr—z dx.

La derniére intégrale s'obtient immédiatement ; et 4
cause qu'elle doit s’évanouir, quand =0, nous au-
rons

3
AZy =3 2%y — tay =+ (ax — x*)5;
équation qui fera connaitre la valeur de u, d’apres
celle de A.

Dans le cas de la demi-cycloide CAD, o I'on a, en
meéme temps,

X=ay y=37a, ¥y =37, A==37wa*,

on en conclura

pour la distance de son centre de gravité i 'axe Cy.
Ainsi, le eentre de gravité de 'aire entiére de la cy-
cloide se trouve aux sept-douziemes de la hauteur CD,
a parlir du sommet C.

Relativement & un segment quelconque CMP, il
reste a déterminer Pordonnée y ; ce qui exige un cal-
cul plus compligué.
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80. En vertu de Péquation (@), on a

f,x:}‘d_}’ :f]f Viaxr — x* cf.r,

et la valeur de y peut s’écrire ains; :

__ {Ga—=x)dx a de
J = Var —z* 2) Var—x’

en faisant donc, pour un moment
» P ’

dz e

Va.r—-a’:“_-;,

Supposant que cette intégrale soil nulle comme
toutes les autres, quand 2 =0, on aura

r=Vax—x"4 taz;

d’ou1 il résultera

€t

Srydy = tax* — 3 2° + Lafi vax — a0 de. (5)
Parce que T'on a fait
y = f[Vax — x* dx,
On aura, en intégrant par parlie,
SiVaxr — xde = z — [d= (6)
On peut éerire I'expression de: 3 sous la forme

()a—;r:)“dx

ey o,
j/‘-_Zﬂ.[“/a:,:r:—ar:’ ‘/a.r-—?r

© en ntégrant par partie dans le second terme 5 ik
Vient

) §
bt O Ve
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d’ou l'on conclut
y=3a@z—*%(ra—x)Vax — x*.
A cause de \Vax — x*d= =—dx, on aura donc
[ydes = Fga*z* — 1 (ae — x*).

Je substitue ces valeurs de 3 et /3dz dans I'équation
(6); il en résulte

ce qui change ’équation (5) en celle~ci :
Seydy = ax 43 ax® — 1 x®
+ma’—jaz (3 a—x) Vax —z°. (7)
Aun moyen de cette valeur et de celle de z, savoir :

qQ'— a7
A== are {008 = —— ),

la troisicme équation (4) ne contiendra plus rien d’in-
connu, et fera connaitre la valeur de y, pour un seg-
ment quelconque CMP.
Dans le cas de la demi-cycloide CAD, on aura
x—=a, z=arc(Cos=——1)=7;
la formule (7) se réduira 4
ardr = (5o 2,
faydy =& gk 5-);
et a cause de
¥ = 37a, A = Sma,

la troisieme équation (4) donnera
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xa 4
I =7 (I e 3
Ce qui, joint a la valeur de o, du numéro précédent,
déterminera complétement la position du centre de
gravité,

81. Soit S Vaire d’une zone de surface de révolu-
tion, comprise entre deux plans perpendiculaires a
Son axe de figure. Cet axc renfermera le centre de gra-
vité de S : je le prendrai pour Faxe des x; et je dé-
signerai par a, la distance de ce centre & Vorigine des
coordonnées, et par a et € les distances 2 la méme ori-
gine, des deux plans qui terminent S; la détermina-
tion du centre de gravité de cette zone se réduira 4
celle de la valeur de =,.

Je décompose S en élémens dont chacun sera la sur-
face d'un cone tronqué décrite parle ¢6té infiniment pe-
tit de la courbe génératrice, comme dans le n® 74; celui
qui répond au point M de cette courbe dont les coor-
données sont x et ¥, sera égal a 2#)\/?&?—{-—_{5’7, i |
aura aussi son centre de gravité sur I'axe des x, et
Von pourra prendre x pour la distance de ce point &
l’originc des coordonnées, puisqu’elle ne pourra dif-
férer de » que d’un infiniment petit. Cela étant, on
aura (n* 13 et 65),

¢ dy
S=27rfhj \/:—}-—é%d.r,
et
Sa, = :m‘f xzy \/ 1+ é_%dlr,

en considérant ¥ comme une fonction de &, donnée
Par 'équation de la genératrice.
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S1 cette courbe est, par exemple, un arc de cercle;
que I'on place l'origine des coordonnées & son centre,
et qu'on appelle @ son rayon, on aura

o= \/{L‘ e

d’otr 1l résultera

I

S azma (6 — a),
Sz, = wa (6* — a*),

et, par conséquent,

x, = 3 (2 + 6);
ce qui montre que le centre de gravité d'une zone
sphérique est au milieu de la partie du diamétre
comprise entre les deux plans qui la terminent, et
perpendiculaire 4 ces plans.

82. La cycloide nous fournira deux exemples de
l'application des formules (8), en faisant tourner
saccessivement I'are CM (fig. 25) autour de I'axe Cx
et de P'axe Cy.

Dans le premier cas, on aura, en vertu de I'équa-
tion (a) du n® 73,

S=am Vafy \/d_; Sac, = 2w \Va [y Vxdax;

les intégrales étant prises de maniére qu'elles s'dva-
nouissent au point C, ot 'on a x=o0. En intégrant
par partie, et ayant égard a la valeur de dy , donnée
par la méme équation (a), il vient

S= fmyVax —4m\af\va — xdx,

Sx.:%{]’x \/E—fl—;\/&fx Va—zxdz,
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et, par conséquent,

— | 8 8
S 47:'}\/:1“1"—]— ?\/’a (a-—.r)’-—%?f a*,
Sy == %Wyx\/ca-l-%xx\/ﬁ(a— ;r,)%

167
45
Ce qui fait connaitre la surface concave vers l'axe
de figure, engendrée par Varc €M, et la distance de
son centre de gravite au point C. Quand cet arc de-

vient la demi-cycloide CA, ona x =a et y==5ma,
et, conséquemment,

107

;om :
—[-TS- Va(a—ax)* —

5,
a;

J
S:zwa’(vr—.é), Sa, =22 (W‘—-—a; A
3 15
Dans le second cas, 1l faudra, pour continuer de
faire usage de l'équation (@) du n°® 73, permuter x
et y dans les formules (8), lesquelles deviendront,
par la,

S= 2'.&"f.il’.‘\/l +Z‘§c.ir,

o —
Sy, = 27 fxy \/I - ;‘i,. dx;

Y, €tant la distance au point C, du centre de gravité
de S situé sur la droite Cy, et les mtégrales s'éva-

fouissant an point €, c'est-a-dire,, quand 2 = 0. D'a~
pres rt.’ri nation (@), nous aurons
"J—[; L‘rﬂ'
S=amfr\/%dr = Lax\/ax;
f s‘.r'lr x :. \/ 4

3

la valeur de 8y, sera la'méme que cclle’ de Sx, du

A 10
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premier cas, et en la divisant par cette valeur de S,
on aura la distance au point C, du centre de gravité
de la surface convexe vers I'axe de figure, engendrée
par I'are CM. Lorsque cet arc deviendra la demi-cy-

- cloide CA, la surface engendrée sera égale i 4ma’;

en méme temps, la distance y, aura pour valeur*

ar 8
PR S )

On peut remarquer que quand un méme arc de
courbe tourne successivement autour de deux axes
rectangulaires et passant par une de ses extrémilés,
le second membre de la seconde équation (8) ne
change pas de valeur, et, par conséquent, les dis-
tances a cette extrémité, des centres de gravite des
deux surfaces engendrées, sont en raison inverse des
aires de ces surfaces.

83. 81 la courbe ABC (fig. 26) tourne autour de
'axe Oz, compris dans son plan et qui ne la traverse
pas, sa surface engendrera un solide de révolution dont
le volume, que je représenterai par V, pourra s'ex-
primer au moyen de l'aire de cette surface et de 'or-
donnée 7, de son cenire de gravité.

En couservant toutes les notations du n® 75, il est
aisé de voir qu'on aura

¥ .= Wf;c (r* — ™) dx.

En effet, la tranche infimiment petite de ce volume,
engendrée par l'élément MNN'M' de Daire génératrice,
sera la différence 7y*dx — wy'*dx des deux cylin-
dres dont les rayons sont PM et PN, et qui ont dx
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pour hauteur commune ; car on peut négliger les vo-
lumes infiniment petits du second ordre, engendrés
Par les triangles que I'on retranche de cet élément,
Ou qu'on y ajoute, en menant par les points M et N
des paralleles a Vaxe Ox. Or, si I'on compare cetle
€xpression de V a la troisieme formule (1) du numéro
Cii€, on a

¥ = aady,;

ce qui montre que le volume engendré par l'aive A
d’une courbe plane est égal a cette aire multipliée par
la circonférence 27y, du cercle que décrit son centre
de gravité ; théoreme analogue a celui du n® 74, et
qui servira a déterminer le volume V quand le centre
de gravité de A sera conna & priori. Il subsistera en-
core, lorsque la surface génératrice, au lieu d'étre
circonscrite par une courbe fermée, sera comprise
eatre deux courbes différentes et deux perpendicu-
laires 4 axe de figure, pourvu que cet axe ne passe
Pas entre ces deux courbes planes.

Si l'aire génératrice est un demi-cercle fournant
autour de son diametre, la distance de son centre de

IR . - \ qa
gravité a cet axe de rotation sera égale 4 %; (n° 78),
en désignant par a son rayon; la circonférence dé-
. . 8a
Crite par ce point aura donc ~~ pour longueur; et
comme 'aire du demi-cercle est & 7a®, on aura

v fma®

— 5 7

¢e qui est, effectivement, le volume de la sphere,

io,,
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Supposons encore que la courbe fermée ABC soit
une ellipse, et représentons par a et b ses deux dem-
axes, et par ¢ la distance de son centre 4 I'axe de ro-
tation. L aire A sera, comme on sait, €gale a wab;
et son centre de gravité étant évidemment le centre
de figure, on aura y,=¢; d'ou il résultera

VY = az*abc,

quelle que soit 'inclinaison de I'un ou l'autre des axes
de Pellipse sur V'axe de rotation.

84. 11 est évident que le segment du solide de ré-
volution compris entre deux plaus passant par P'axe
de figure, est au solide entier comme l'angle de ces
deux plans est & quatre angles droits, ou, ce qui est
la méme chose, comme l'arc décrit entre les deux
plans, par le centre de gravité de l'aire génératrice ,
est & la circonférence entiere 27y,. Donc, en appe-
lant  ]a longueur de cet arc, et L le volume du seg-
ment, on aura

Fit==t
A étant toujours 'aire génératrice qui, par hypothese,
n'est point traversée par 'axe de rotation.

Cette formule peut s'étendre de la maniére suivante
a d’autres segmens qui n’appartiennent pas & des so-
lides de révolution.

Supposons , en effet, quune courbe plane se meunve
sans glisser ni tourner dans son plan, et de telle sorie
que ce pian soit constamment {lﬁ;‘l‘pendiculaire a une
ligne donnée, qui peut éire une courbe plane ou 2
double courbure. Davs ce mouvement, le méme
point de ce plan demeurera toujours sur la directrice,
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etles autres points décriront des courbies semblables
a cette ligne. Soient A, L, [, Taire de la courbe gé-
nératrice , le volume engendré par celte surface, et
la longueur de la courbe parcourue par son centre
de gravité. Si / était un arc de cercle, L serait un
segment de solide de révolution ; mais, dans tous les
cas, on peut diviser / en parties infiniment petites,
dont chacune se confondra avec le cercle osculateur
qui lui correspond. Désignons par = I'nne de ces par-
ties, et par v le volume du segment correspondant de
Li; et supposons que les plans perpendiculaires i sa di-
rection, par lesquels ¢ est terminé, se coupent sui-
vant une droite qui ne traverse pas laire de la gé-
neratrice. Cet élément v de L sera un segment de
solide de révolution; et d’'apres I'équation précédente,
on aura

p=raX.

Done, en prenant la somme de toutes les valeurs de ¢
el observant que le facteur A est constant, il en ré-
sultera que le volume L est égal au produit de £ et A,
comme dans le cas d'un solide de révolution. La regle
que cette équation L = [ renferme est utile dans la
pratique, et susceptible d'un assez grand nombre d’ap-~
Plications ; toutefois, on ne devra point oublier qu'eHe
0’a plus lien quand les génératrices consécutives se
Coupent sur la surface engendrée, et forment, par
leurs intersections successives, ce qu'on appelle une
aréte de rebroussement. :

35. La considération du centre de gravité fournit
aussi une vegle pour évaluer le volume d'un prisme
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oun d'un cylindre & base quelconque, tronqué par un
plan inclin¢ sur cette base.

Soient 5 'aire d'une section de cylindre perpen—
diculaire a sa génératrice, A l'aire de la section in-
clinée qui le termine, § I'angle de ces deux plans,
@ un ¢lément quelconque de A, ¢ sa projection sur
le plan de 3, ou I'élément correspondant de l'aire 5,
qui est elle-méme la projection de A. D’aprés le théo-
réme du n° 10, on aura

5 = Acosl, &= wcosh.

Cela étant, je suppose que A soit la surface a laquelle
se rapportent les formules générales du n® 75, et que
f représente I'inclinaison de son plan sur celui des a-
et y. Je multiplie la troisieme de ces formules par
cos fl, et je fais passer ce facteur constant sous le
signe ff; en vertu des valeurs de y el ¢, on aura

va, = [fze.

Or, cette intégrale double est le volume du cylindre
tronqué compris entre les deux sections 3 et A, et
décomposé en filets infiniment minces et perpendi-
culaives a 5, en supposant , toutefois, que ces denx
sections ne se coupent pas mutuellement; il Sensuit
donc que le cylindre tronqué est égal a un cylindre
droit ayant la méme base 5, et pour hauteur la dis—
tance z, a cette base, du centre de grayité de la sec-
tion inclinee.

Ce théoreme est évident dans le cas ordinaire, ou la
base du cylindre est un cercle et la section inclinée
une ellipse; car en menant parle centre de cette courbe
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un plan parallele a la base, ce cylindre ne change
pas de volume, puisque le segment quon en re~
tranche est évidemment égal & celui qu'on y ajoute.

Siles aires désignées par 7y et A sc coupent mutuel-
lement, le volume se composera de deux segmens
dont Vintégrale ff z: exprimera la différence et non
pas la somme. Quand le cylindre sera terminé par
deux sections inclinées dont les zires ne se coupent
Pas, on pourra toujours le diviser en deux parties,
dont la base commune et perpendiculaire a la géné-
ratrice, ne coupera ni 'une ni Tautre de ces deux
seclions; et en observant que leurs centres de gra-
vite se trouvent sur une méme droite perpendiculaire
a cette base, on voit que le volume total sera égal &
Vaire de cette base multipliée par la distance mutuelle
de ces deux points,

§ lI. Centres de gravite des volumes et des corps.

86. La détermination du centre de gravité d'un
volume dépend, en général, de plusieurs intégrales
triples ; mais il y a des corps pour lesquels la posi-
tion de ce centre se détermine par des intégrales
Simples, Ce sont ces corps que nous allons d’abord
Considérer.

Le centre de gravité d'une pyramide ou d'un cone
2 base quelconque se trouve sur la droite qui va de
son sommet au centre de gravité de la base; car celte
dl‘Oite rencontre toutes les sections parallcles a la
base, en des points homologues qui sont leurs cen-
tres de gravite, et qu'on peut aussi prendre pour les
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r centres de gravité des élémens de ce corps, infini-
ment minces et paralléles a sa base. Par conséquent,
la droite dont il Sagit contient le centre de gravité
de la pyramide ou du céne, et il ne reste plus qu’s
déterminer sa position sur cette ligne.

‘ Soient & et X l'aire de la base et celle d’une sec-
i tion paralléle ; désignons par % et a les perpendicu-
il laires abaissées du soramet sur leurs plans; nous au-
roos, comme on sait,

bt e Mt e liig

ct, conséquemment,
bx*
X = B

I De plus, on pourra prendre Xdx pour I'élément du
‘ velume du céne ou de la pyramide; et si I'on ap-~
pelle V son volume total et x, la valeur de 2 corres-
pondante a la section qui contient le centre de gra-

viié, on en conclura, comme dans les questions pré-
cédentes,

V= f;h Xdzx, Va, =ff xXdax.

| En substituant la valeur de X et effectuant les inté—
| grations, il vient

bk bl
e Nk a2 V'rl == 4 ’
d’ou 'on tire
3 .
X = i h.

Mais si I'on mene par le centre de gravité un plan pa-
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ralléle & la base, il coupera en parties proportion-
uelles Ja hauteur % et la droite qui va du sommet
au centre de gravité de la base; il sensuit donc que
le centre de gravité du cone ou de la pyramide a base
quelconque se trouve aux trois quarts de cetie droile,
& partir du sommet, ou au quart, & partir de la base.

87. Relativement i la pyramide triangulaire, ce
théoréme se démontre sans le secours dn calcul in-
tégral,

Soit ABCD (fig. 30) eeite pyramide. Soient aussl
I!? et F les centres de gravité des faces ACD et BCD;
tirons les droites BF et AE, dont les prolongemens se
rencontreront au milieu I de l'aréte CD ; et ensuite
dans le plan AHB, tirons les droites AF et BE, qui
se couperont en un certain point G. Je dis que ce
point sera le centre de gravité de la pyramide ABCD;
car en la décomposant en élémens paralléles a la base
ACD, on verra, comme dans le numéro précédent,
que son centre de gravité doit se trouver sur la droite
BE; etenla décomposant en €lémens paralleles a BCD,
on verra, de méme, que ce point appartient a la
droite AF. Ces deux droites AF et BE, qui sont effec-
tivement dans un méme pian, devront done se con—
per, et lenr intersection G sera le centre de gravité
demandé,

Maintepant, dans le triangle ABH, la droite EF est
paralléle & la base AB, puisquelle coupe les cotés AH
E‘t BH en partics proportionnelles, cest- a-dire, au
hiers & partir de H; on aura done

FG: GA :; EF : AB :: EH : All,
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et, par conséquent,

FG : GA :: 1 : 3;

en sorte que FG est le tiers de GA ou le quart de AF;
ce qu'il s'agissait de prouver,

On en conclut que siles quatre sornmets A, B, C, D,
de la pyramide sont les centres de gravité de masses
égales, le point G sera le centre de gravité de ces
quatre masses ; car déja le point F est celui des trois
masses qui répondent a B, G, D (n®77); el ensuite le
point G, tel que GF est le tiersde GA, sera le centre
de gravité de ces trois masses et de la quatriéme.

Il suit de la (n° 67) que si I'on applique au centre
de gravité de la pyramide triangulaire des forces re-
préseniées, en grandeur et en direction, par les
droites qui vont de ce point aux quatre sommets, ces
quatre forces se feront équilibre,

88. Ayant déterminé le centre de gravité d'une PY-
ramide triangulaire, on en déduit immédiatement
celui d'une pyramide ou d'un cdne i base quelconque,
en décomposant cette base en un nombre fini ou in-
fini de triangles : le centre de gravilé de cette pyra-
mide ou de ce cone doit se trouver i la fois sur la
droite qui va du sommet au centre de gravité de Ia
base, et dans le plan paralléle & la base qui coupe
toutes les lignes menées du sommet 4 cette base, anx
trois quarts a partir du sommet ; ce qui s'accorde avec
le résultat du n° 86.

On en deduif aussi le centre de gravité d'un sec-
teur sphérique. En effet, si l'on décompose ce secteur
en une infinité de pyramides dont le sommet com-




STATIQUE, PREMIERE PARTIE. 155
mun soit au centre de la sphere, et qui aient pour
bases les élémens infiniment petits de la base du sec-
teur, leurs centres de gravité se trouveront tous sur
Ia hase d’un secteur concentrique , dont le rayon sera
les trois quarts de celui du secteur donné; d'ou l'on
conclut que le centre de gravité du secteur doune
sera le méme que celui de la base du secteur con-
centrique ; ce qui en détermine la position.

Supposons que le secteur sphérique soit engendré
par le secteur circulaire CADB (fig. 2g), tournant au-
tour du rayon CD, qui aboutit au milieu de I'arc AB;
le triangle CAB et le segment circulaire ADB engen-
dreront, en méme temps, un cone et un segment
sphérique; et le centre de gravité de ce segment
sphérique se déterminera d’aprés ceux du secteur sphé-
rique et du cone.

Pour cela, appelons V,, V, V/, les volumes respec-
tifs de ces trois corps, et x,, x, @', les distances de
leurs centres de gravité au point C; nous aurons

V=V 4V, Vx=Vz+Vazx. (a)
Soient « le rayon CD, ¢ la corde AB et fla fleche DE
de 'arc ADB. Relativement au cone, on aura

V=2 wer{a— f); x=3(a—f)-

La base du secteur sphérique sera ¢gale au produit
de la fleche et de la circonférence du grand cercle,
ou & 277af, et son volume aura pour valeur le pro-

dUit de cette base et de _:.a, on .Qirgi. Si Pon dé—*
o

crit du point C comme centre, et d’un rayon égal a
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2CD, un arc de cercle tel que A'D'B/, le centre de
gravité de la surface engendrée par cet ave se trou-
vera an milieu de la fleche D'E’ (n° 81), ou, antre-
mentdit, a unedistance du point C égale 1 CD'— L D'E,
dont la valeur est 2 (a—1/). Donc, ce centre de
gravilé étant, d'aprés ce qu'on vient de dire, celui
du secteur sphérique V, on aura

V= Qﬁr;?f, X = ?,.((z — %j)

En substituant ces différentes valeurs dans les équa-
tions (@), 1l vient

3 Wa":/':: 5 @ct (a —j) +V,,
Lraf(a—3 f) = fymera—f Vs
i d’'ou I'on tirera les valeurs de V, et a,.
Si l'on appelle 7 1a longueur de I'arc AB, on aura

¢ = 2a sin — =gl cos =
B Nol § dadtron i ¢ ®2a)’

et 1l en résultera
- . 4 ;
27EL Five
V.==—(1—cos — — —5{:1’F—cos—>,
3 2da o 2 24a
i !
3a sint —
2a
X, = E— —

7 Tt ] T
3 (1 —= 0§ — — — §IN* — ¢os —)
2a 2 24 24

Lorsque l'arc £ estla demi-circonférence, on a {==na,
et par suite

= fi_':rr!l!
" f——
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8g. On détermine aussi par des intégrales simples

le volume et le centre de gravité de tout corps sy-

métrique par rapport a un axe, comme un ellip-
soide, par exemple.

Soient -, 7, z, les trois coordonnées rectangulaires
d'un point t;luelconque de la surface ; prenons l'axe
de figure pour celui des x, et désignons par X l'aire
de la section perpendiculaire a ceite droite, qui ré-
pond i Vextrémité de Pabscisse x. Si l'on décompose
le volume en élémens infiniment minces et perpen-
diculaires & T'axe de figure, on pourra prendre Xdx
pour le volume d'un élément quelconque, et a pour
la distance de son centre de gravité a lorigine des
coordonnées. Done, en désignant par V une tranche
comprise entre deux sections correspondantes a des
ahscisses données a et €, et par x, la distance de son
centre de gravité i l'origine des coordonnées, nous
aurons

Ve [‘Xde, Vo= [ 2Xdx.

Dans le cas de Yellipsoide , 'équation de la sur-
face est
:r'A ‘7(.'1 zﬂ
== et I — 78 i
a® + b+ + o ’
a, b, ¢, désignant les trois demi-axes. Ceux de la
section X seront

b ’,/ ‘_‘1 c 1—._.

on 2ura done
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et, par conséquent,
g2 1 y & 4 uf - £
V._.'J'rba(g—a}(l —_— T ),

! VJL‘.:%%&:(@’—&“J (1 st oy,

2ag* ?

d’oir V'on tire
g §(ﬁ‘- +6) (2a*— 2> — €2)

; 4(Ba*— a* — of — 64)

i Si T'on applique cette formule au segment sphé-
L rique que l'on a considéré dans le n° précédent , il
‘ faudra prendre

/4
a=acos —, £=a;
2a

i ce qui donne

i 3da (1 -}-cos i) sin’_l—-
2a 24
x, =

Frer B L, 0 a2
:.‘i(l—-cosz—a—]—sm ;E)

et en multipliant le numératcur et le dénominateur
: A 5k
de cette fraction par 1 — cos 522 on verifie quelle
a
coincide avec la valeur de x, déja trouvée.
Pour avoir la valeur entiére de I'ellipsoide, il fau-
dra faire £ == a et @ = —a ; ce qui donne

r_ 4mabe
Y= —

Ce volume est aussi donné par Pintégrale triple
Sffdxdydz , étendue & tous les élémens de Vespace
terminé par la surface de ellipsoide ; mais en faisant

sl kel
K=t ax, ).._))’, z2=c7,
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l'équatiorj de cette surface devient

x'® o 't 2
et l’intégrale triple se change en
abe [ fdx'dy'dz'.

Cette nouvelle intégrale devra sétendre i tous les
€lémens de l'espace circonscrit par la surface qui
répond a'équation précédente ; elle sera, par con-
séquent, le volume de la sphére qui a T'unité pour

£
, v w . ’
rayon; et ce volume étant €gal a A% il en résulte

3
4wabe TRy . S
7> comme précédemment, pour celui de Vellip-

soide,

(90). Les corps symétriques autour d'un axe com-
prennent les solides de révolution. Nous prendrons
toujours l'axe de figsure pour ceclui des abscisses a.

0 supposant alors un solide de cette nalure engen-

ré par une aire plane, comprise entre deux COurbeq
données et les perpendiculaires & l'axe des x qui
répondent 4 x=a et 2= €, et désignant par
et 5’ les ordonnées de ces courbes relatives a une
méme abscisse quelconque x, il faudra faire

X=w(—ry"),

dans les formules du numéro précédent; ce qui
donne

: €
V:Wf.. (J’l __J.fst,x' - VJ‘-’: — W‘[; ().’_},fa)xdx.

Dans le cas le plus ordinaire ol la courbe interieure
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se confondra avec l'axe de figure, on aura 9 =o,
et simplement

Nit= crf:j”dx N Wﬂiﬁxdx. (&)

La cycloide fournira encore des exemples de I'ap-
plication de ces formules, dans lesquels toutes les
mteégrations s'eflfectueront sous forme finie.

§i l'on considére le solide convexe, engendré par
Vaire CMP (fig. 25 ) tournant autour de l'axe Cx,
on intégrera d’abord par partie; ce qui donnera

V = 7xy* — 2mfxydy,
Va,= s7aty* — afxtydy;
les intégrales ctant prises de maniere qu'elles s’éva-

nouissent au point C, ou quand = o. En vertu de
I'équation () du n° 73, on aura donc

V = axy* — 2mfy Vax — x* dx,
Vo= 1agxy* — afyxVaxr — 2*dx ;

et les calculs s’acheveront par des transformations
semblables a celles du n® 8o. Dans le cas du volume
engendré par la demi-cycloide CAB, on trouve

v :Wﬂg Q;—wa = I) X, = (———_637:2 T 6"@“
3 10 ’ ! 12 (05" am 16) 7

Sl s’agit, au contraire, du solide convexe en-
gendré par Paire CMP , tournant autour de I'axe Cy;
il faudra préalablement permuter x et y dans les

A}

équﬂtions (Z}} ; d'ou 1l ]’!_?Sllltﬁf'a

V= afady, Vy =mfaydy;
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7« €tant la distance au point C, du centre de gravité
qui se trouve sur I'axe Cy, et les intégrales s'éva-
nouissant en ce point C. En vertu de 'équation (a) de
la cycloide, on aura donc

V=af\Vax—z*dx, Vy,=ufyx\ ax — x*dx.
LY

La premiere intégrale s'obtiendra sans difficulté ; la
seconde , par des transformations semblables A celles
du n° 8o. Dans le cas ot CM sera la demi-cycloide
entiere, on trouvera
- *aq? 16 7\ a
V:gr]—{i, J’.:(-g-—l—“?]—);.
g1. Maintenant, soient x,, 7, , %, , les trois coor-
données rectangulaires du centre de gravité d'un
corps de forme quelconque, homogene ou hétéro-
gene , dont la masse sera représentée par M. D'apres
ce qu'on a déja dit dans le n° 65, il faudra, pour de-
terminer ces trois inconnues, diviser M en parties in-
finiment petites, et changer, en conséquence, les

sommes en intégrales dans les seconds membres des
équations(1) de cenuméro. On aura, de cette manicre,

Mo —=/7 foedm , My,.={[/) fydm , Mz,— [ [zdm; (1)

dm étant I'élément différentiel de la masse du corps
qui répond aux coordonnées x, ¥, z. En appelant p
la densité de ce méme élément , et dv son volume,
On aura aussi
dim = pdy.
On pourra prendre maintenant, pour I’élement dy
du volume, le parallélépipede rectangle dont les
trois edtés adjacens sont paralléles aux axes des ,
I. 11
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¥ &, et égaux aux différentielles dx, dy, dz; d'ou
il résultera
dy = daxedydz.
81 le corps est homogene, sa densité sera cons-
tante ; en désignant par V son volume, on aura

M = pV;
et les équations (1) deviendront

Ve, =ffJxdv, Vy.=/flfydy , Vz,=[]zdv. (2).

Si le corps est héterogene, il pourra se présenter
deux cas différens. Dans le premier cas, ce corps se
composera de parlies homogenes de grandeur finie,
et la densité ne variera que d’une partie i I'autre. On
appliquera donc a chacune d’elles les équations (2),
puis on déterminera le centre de gravité du corps
entier d’apres ceux de toutes ses parties (n° 64). Dans
le second cas, la densité variera par degrés insensi-
bles dans l'intérieur du corps; et alors on fera usage
des équations (1), dans lesquelles p devra éire une
fonction donnée de x, 7, z.

Toutefois, on doit remarquer que, soit qu'il s'a-
gisse d'un corps homogene ou d'un corps hétérogeéne,
la division de la masse en élémens infiniment petits,
dont les densités sont les mémes ou ne varient que
par degrés insensibles, suppose que ce corps est
formé d’'une matiere conlinue. Or, cela n'a pas lieu
dans la nature , ou les corps, au contraire , se com-
posent de parties matérielles disjointes et sépardes
les unes des autres par des espaces vides, compara-
bles en grandeur aux parties pleines. Nous revien—
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drons sur cette ohservation dans le chapitre suivant ,
et nous ferons voir qu'on peut, néanmoins, appliquer
les formules (1) et (2) aux corps naturels, comme si
!a matiére n’éprouvait aucune discontinuité dans leur
térieur.

92. Au lieu des coordonnées x, ¥, 5, il sera quel-
quefois nécessaire, pour faciliter les intégrations ,
d'employer les coordonnées polaires de chaque élé-
ment dm. Soit alors r son rayon vecteur, 8 l'angle
qu'il fait avec T'axe des a positives, et <L T'angle
Compris entre le plan de ces deux droites et celui
des 2 et y; nous aurons (n° g)

x=rcosl, y=rsinlcos, z=rsinlsin].

[l faudra, en méme temps, exprimer dv au moyen
des différentielles de ces nouvelles variables r, §, 1.
On a des formules générales pour la transforma-
tion des variables indépendantes dans les inté-~
grales multiples; mais on pent aussi trouver direc-
tement Vexpression de dv dont mous devrons faire
usage , savoir :

dy — r*sin § drdidv,

ainsi qu’on le verra tout 4 I'heure.

Je mets pdo 4 la place de dm dans les équations (1),
- €t i’y substitue ensuite cette valeur de dv et celles
de x, v, z; elles deviennent

Mz, = /ffpr® sin 0 cos bdr did-} ,
My, = fJ/pr® sin*fcos Ldr df dv} , (5)
Mz, = fJ7pr® sin*fl sin Ldrdi ), |

| 4
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a quoi il faudra joindre 'équation

M = fJfpr* sin Bdrdid-] .

Quant anx limites de ces intégrales triples, elles
seront différentes selon que T'origine des coordonnées
sera placée en dehors ou en dedans du corps. Lorsque
cette origine sera un des pomls de M, on intégrera
d’abord dcpms r= 0 jusqu’a r=u, en représentant
par % une fonction de 8 ct 4, donnée par Péquation
de la surface; cela fait, on mlcgrcra depuis f=o
et b =0 jusqu’s § = 7 el || = 27, en commencant
a volonté par 'angle 9 ou par T'angle |. Les limites
seront gene ral{:mcnt plus compliquées quand 'ori-
gine des coordonnées n'appartiendra pas a la masse M.
Représentons , dans ce cas, paru et 2/ deux fonctions
donnédes de § et #, par @ et o' deux fonctions
de «|, et par et o’ deux angles donnds; supposons
qu’il s’agisse d'une portion de corps comprise , d’'une
part, entre les deux surfaces qui ont pour ¢qualions
r==u et r==1u; d'une autre part, entre les surfaces
coniques qui ont pour axe commun I'axe des @, leur
sommet aussi commun a I'origine des coordonnées, et
pour équations § = o ¢t § = &’; enfin, entre les deux
pl'nlq passant par cet axe, et qui font des angles «
ct «” avec le plan fixe d’ou I'on wmpu. Fangle mf, On
1niégrera d’abord depuis r=w jusqus r=1u', en-
suite depuis f=w Jusqua 8 =o', et finalement,
depuis ) =@ jusqu’a

Prenons, par L.\cmplc, pour les deux premiéres
surfaces celles de deux spheres concentriques qui ont

feur centre commun a Porigine des coordonndes, et
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dont les rayons sont a €t a'; supposons, en méme
temps, que les deux cones soient 4 hase circulaire ,
ou, autrement dit, que ® et »' soient des angles
Constans ; supposons , de plus , que la densité ne soit
tonction que de r; de sorte que la portion de corps
que I'on considére appartienne & une sphére com-
Posée de couches concentriques infiniment minces
dont chacune ait la méme densité dans toute son
étendue,, laquelle densité variera d'une couche &
Pautre, suivant une fonction donnée de la distance
au centre, En faisant; pour ahréger,

vf:}ﬂd:-:A, /:?’f.r“"‘drzl:’-,

et effectuant les intégrations relatives 4 § et~ , on
trouve

M =A(a' — ) (cos @ —cos &'),
My = IB(«' — &) (cos* » — cos* &),
My = 1B(sina/—-sine) (o'— o — L sin 20’ Lsin2w),
Mz, — +B(coso— cos) (o' — @ — ;sin 2w’ 4= Isin 2w);.

e qui fait connalire les valeurs de x,, 7,, 5., qu'on
le pourrait déduire, daris cet exemple, des ¢qua-
tions (1),

8ila masse M forme un anneau complet , de sorte
qWon ait &' =—a -2, il en résultera y;,=o et
%i==o0, clest-a-dire que le centre de gravité sera
Situé, comme cela doit étre, sur 'axe de cet anneau :
sa distance z, au centre de la spheére dont cet anneau
fait partie, aura pour valeur

__ Bleosw~-cosa’)
24 -

) —
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: Dans le cas de 'homogénéité de la sphére, la den-
sit¢ p étant constante, on aura

'1; A=3p(a®—a"), B=1p(d*— ab).

Quand le vide de I'anneau disparaitra, on fera w=o;
et, eufin, §'il se change en un secteur sphérique, on
; fera aussi @ =0 ; dou li résuliera

- (1 -+ cosa');

ce qui s'accorde avec la valeur de la quantité dési-
gncée par a dans le n° 88, en observant que la fliche
représentée par faurait pour valeur a'(1— cosa’), et
que le rayon est /.

93. Pour trouver la différenticlle &v du volume ,
exprimée au moyen des différentielles des coordon-
nées polaires, je suppose que M (fig. 51) soit le point
qui répond aux coordonuées r, 8, \|; en sorte que O
é¢tant leur origine,, OM soit le rayon vecteur r, §'an~
gle MOx compris entre ce rayon et un axe fixe Ox,
et «] Pangle que fait Ie plan de ces deux droites avec
un plan h\e, mené arbitrairement par la seconde.
Soit M’ un point situé sur le pxoionru,mult de OM,
et dont le rayon vecteur OM' sera . Du point O
comme centre, et dans le plan M'Ox, décrivons les
} arcs de cercle MN et M'N’ compris entre les deux
droites OMM' et ONN', et désignons par § Fangle
NOx ; enfin, faisons tourner le plan de cet angle au-
tour de I'axe Ox, et représentons, dans sa nouvelle
position, par ' 'angle qu'il fera avee le plan fixe.
Dans ce mouvement, aire MM/N'N engendrera un
volume MM'N'NPP'Q'Q, que je représenterai par U.
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Or, cette aire, différence des deux secteurs circulaires

M'ON’ et MON, est égale a
Lo — ) @ — b

Si P'on appelle « la perpendiculaire abaissée de son
centre de gravité sur 'axe Ox, on aura (' — )
pour la longueur de I'arc que ce centre décrira an-
tour de cette droite. D’apres le théoréme du n° 84,
Nous aurons donc

U= 1) (" —1) @ — 0 (4 —)-

1 - - - -

Cela posé, concevons que les trois dimensions de
U deviennent infiniment petites, et faisons, en con-
séquence,

F—r=dr, §—f0=db, ' —=d.

Le facteur r' 4 r se réduira, en méme temps, a ar;
on pourra aussi prendre pour u la perpendiculaire
MH abaissée du point M sur I'axe Ox, laquelle est
€gale & rsinf, et ne saurait différer de u que d'un
infiniment petit ; enfin, U se changera en dv, dont
la valeur, qu’il s'agissait de déterminer, sera

dy = r* sinBdrdidy.

On remarquera, effectivement, que ce volume dv
Peut éire considéré comme un parallélépipede rec-
tangle, dont les trois coiés adjacens sont MM’ ou dr,
Varc infiniment petit MIN, qui a son centre au pointQ
€t pour longueur rdf, et I'arc infiniment petit MP,

I qui a son centre an point I et pour longueur
'Y rsin 8d8.
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La base MNQF de ce parallélépipede est Pélément
de la surface sphérique dont le centre est au point

O et le rayon €gal 4 r. En la désignant par do, on
a donc

dr = r*sinfdid), dv= dodr.

Si l'on appelle dw I'élément de la surface sphérique
dont le rayon est pris pour unité, on aura aussi

dw = sin §d8 dy, dv = rdrds.

En intégrant cette expression de dw depuis = o et
= o0 jusqui § =7 et | = 2w, on en dédnit
4w pour le rapport de la surface de la sphere au
carré de son rayon; ce qui est, en effet, sa valeur
connue.
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CHAPITRE YVI.

CALCUL DE L’ATTRACTION DES CORPS.

S 1. Formules relatives & un corps quelconque et a
la sphére en particulier.

94. Supposons quun point matériel O (fig. 32)
soit soumis aux attractions de tous les points d'un
corps de forme quelconque; en décomposant cha-
cune de ces forces en trois autres, dirigées suivant
des axes rectangunlaires menés arbitrairement par le
point O, et faisant ensuite la somme des compo-
Santes positives ou négatives qui agissent suivant
Chaque axe, on aura les trois composantes, dont
la résultante exprimera, en grandeur et en direc~
tion, Vatiraction totale qui sera exercée sur le point
_0- Ces trois composantes seront des sommes d’une
finité d’élémens infiniment petits, étendus a la
Masse entiere du-corps atlirant; elles s'exprimeront
par des intégrales triples, et le calcul de ces quan-
tités sera semblable & celui des coordonnées du centre
de gravité d’un corps quelconque dont nous venons

€ nous occuper : Cest pourquoi je placeral ict ce
que j’ai & dirve sur le caleul des attractions.

Cette question est une de celles dont les géometres
se sont le plus occupés, soit & cause des difficultes
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d’analyse qu'elle présente, soit & raison de ses rap-
ports avec le probléme de la figure de la terre et de
la loi de la pesanteur i sa surface; mais, dans cet
ouvrage, on se bornera 4 donner les formules qui se
présenient immédiatement, et quelques-unes de leurs
applications. Je renverrai, pour de plus grands déve-
loppemens, au second volume de la Mécanique céleste,
ct & mon Mémoire sur I'Attraction des S phéroides,in-
séré dans la Connaissance des Tems de Pannée 1829.

95. SoitD un point fixe prisdans U'intériear du corps
attirant; par ce point, menons irois axes reclangu-
laires Dz, Dy, Dz, quiseront les axes des coordonnées
positives ; désignons par ux, Ys %, les coordonnédes
d’un point quelconque M du corps attirant, et pardin
Iélément différentiel de sa masse, qui répond a ce
point M; représentons aussi par &, &, 7, les trois coor-
données du point 0, et par & la masse de ce point ma-
tériel ; et soit enfin « la distance OM , de sorte qu’on ait

w = (a— 2 (E— o (y— 2
Liattraction exercée par din sur p sera dirigée sui-
vant la droite OM. On suppose cette force propor-
tionnelle aux preduits des denx masses , et en raison
inverse du carré de la distance z; en la désignant
donc par F, on aura

Jrdm :

F —_— H—’,
J étant un coefficient constant qui exprimera l'inten-
sité du pouvoir atiractif, rapporté aux unitds de
rnasse et de distance. Pour se former une idée pre-
cise de cette quantité f, il faut concevoir deux corps
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de forme et de dimension quelconques, dont les
masses sont égales el prises pour unité, et supposer
que Pattraction ne varie ni en grandeur ni en direc~
tion dans tonte 1’élendue de ces deux corps; cn sorte
qu’elle soit la méme entre deux élémens quelconques
de leurs masses, égaux i dim et i ., qu'entre les points
Mateériels 1 et dm que nous considérons, lorsque leur
distance OM est égale a I'unité : la force fest I'attrac-
tion totale qui serait exercée alors par l'un de ces
deux corps sur lautre.

Les projections de la droite OM sur les axes Do,
)y, Dz, sont ¢ — &, E—y, 3 — z; en les divisant
par #, on aura les cosinus des angles qui détermi-
nent la direction de la force F ; ses trois composantes
seront donc

& — T ay E—7 5 o—Z
u F, .T_? K, u F;
et en y considérant z comme une quantité positive,
elles tendront, selon qu'elles seront positives ou né-
gatives, a diminuer ou & angmenter les trois coor-
données «, €, 5, du point 0. Si donc on désigne par
A, B, C, les trois composantes de l'attraction totale
exercée sur ce point, on aura, en mettant pour I sa

Valeur, et ohservant que p et f sont des facteurs

COnstans,
A = p&fjff‘t;mdm,
B;:,ufl[[‘f;;fdm, (1)
C :Mffff?;zdm;

., 1 ’ - " .y
tes mtégrales triples s’étendant & la masse entiére du
€orps attirant.
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En représentant par p la densité de Vélément din
et par dv son volume, on aura
dim = pdy.

Cette quantité p sera, dans le cas géneral , une fonc-
tton donnée des coordonnées du point M; elle se
réduira 2 une constante donnée, dans le cas de
Phomogénéité du corps attirant. On exprimera dv
av moyen des différenticlles des coordonnées de M,
dont on fera usage, et qui seront le plus propres a
faciliter les intégrations.

6. Par une considération fres simple, on réduit &
une seule les trois intégrales triples d'ou dépendent
les valeurs de A, B, C.

Les limites étant les mémes que dans ces inté-

grales, faisons
T __-/:f dm

A cause que ces limites sont indépendantes dé la
| position du point O, si 'on différentie T par rapport
a ses coordonnées, on pourra effectuer ces différen-
tiations sous les signes /" (n° 14); et comme on a

d’ailleurs
I 1 1
d.- = d.=
U r—a vy —€ W Ze—ry
de = wu® 7 g ut dy — s ?

en reésultera

il
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ce qui change les équations (1) en celles-ci :
A=—pf T, B=—wf G, C=—p/ 5 (a)
de sorte que le calcul des trois composantes A, B, C,
e dépendra plus que d’une seule intégrale T.

En la déterminant, il scra important de se rappe-
ler que le dénominaleur z devra avoir constamment
le méme signe dans toute I'étendue de I'intégration,
€t quil doit étre positif si Pon veut que les compo-
santes A, B, C, tendent a diminuer ou & angmenter
les coordonnées du point 0, selon que lewrs valeurs
données par les équations (2) serent positives ou né-
gatives.

Au lieu d’une attraction, si le point O ctait soumis
4 une répulsion, il suflirait de changer les signes des
valeurs de A, B, C, ou, ce.qui est la méme chose,
d’y regarder f comme une constante négalive. Dans
€ cas ou la force attractive ou répulsive qui agit sur
le point O ne serait pas, comme nous l'avons supposé,
€1 raison inverse.du carré de la distance , et qu'on re-
préseuforail, en general , 1¢ coeflicient de udm par une
fouction donnée de u, que je désignerai par gu, on
Prendrait une autre fonction ®u, telle que Uon el

dou

> _ — Qu,

. I =
€t que l'on meltrait 4 la place de - dans Yexpression
d_e T. 1l se pourrait aussi que cetie force ft attrac-
Uve pour une partie du corps qui agit sur O, et ré-
Pulsive pour une antre partie,, auquel cas la fonction
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ou, dans laquelle est compris le coefficient f, chan-
gerait de signe dans I'étendue de I'intégrale que T re-
présente. |

Les composantes de l'action exercée sur un corps
de forme et de dimension quelconques, se dédui-
ront des formules précédentes, en y remplacant p
par I'élément différentiel de sa masse, qui répond aux
coordonndes «, £, ¥ et inlégruut ensuite, par rap-
port & ces trois variables, dans tcute I'étendue de cette

asse; d’otr I'on voit que les composantes de Vaction
exercée par un corps sur un aulre dependront, gé-
néralement, d’intégrales sextuples.

Telles sont les formules d’apres lesquelles on cal-
culera les altractions ou répulsions; mais avant d’en
faire aucune application, il est nécessaire d’'expliquer
comment elles conviennent & la constitution intime
des corps naturels, et d’examiner la difficulté dont il
a été question i la fin du n° gr.

g7. Les différens corps renferment, sous des vo-
lumes €gaux, des guantités inégales de matiere pon-
dérable (n® Go); et ces quantilés variant, pour un
méme corps, avec sa température et la pression ex-
térieure A laquelle il est soumis, on a été conduit a
considérer les corps naturels comme un assemblage
de parties matérielles non conligués, et séparées les
unes des antres par des pores ou espaces vides de ma-
tiere pondérahle. Ces parties matérielles se nomment
des atomes; leurs dimensions et celles des pores
échappent, par leur extréme petitesse, & nos sens et
4 tous nos moyens de les mesurer. On regarde les
atomes comme indestructibles, et la masse, la forme,
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le volume de chacun d’eux , comme invariables. Les
dimensions des pores varient, au contraire, avec les
Quantités diverses de chaleur qu'on introduit dans les
Corps ou qu'on en fait sortir, et avec les pressions
Auxquelles on les soumet ; et comme les changemens
de volume d’un corps peuvent etre trés grands, sans
que sa masse ait augmenté ni diminué, il densuit
que les dimensions des partiu‘; vides doivent étre com-
Parables et généralement supérieures i celles des par-
ties pleines.

Les atomes de méme nature ou de nature diffé-
rente, se reunissent en diverses proportions, pour for-
mer d autres parties des corps, toujours insensibles,
qu'on appelle leurs molédcules. Les corps different
entre eux par la nature et la pr opor‘l:on des atomes
qui entrent dans la composition de chaque molécule;
et les atomes sont rega rdés comme invariables et in-
de%t:uctxbles ainsi qu'on vient de le dire, parce
quen les 1‘€lllll‘wbﬂnt dauns les mémes propor tions, on
Yeproduit, 4 toutes les époques, les mémes corps,
Jouissant des mémes propriétes.

98. 1 est évident, d'aprés cela, que la division de
la magge en nlemens infiniment petits, et la suppo-
Sition d’une densité de chaque €lément, qm ne varie
Pas dans les corps homogenes, ou qui varie par de-
8rés insensibles dans les corps hetérogénes, ne con-
Vienneut point aux corps naturels ; mais cela n'em-
Péche pas quon ne puisse faire usage des formules
fonddes sur cette considération, et qu'elles ne soient
€ncore applicableg lorsque les corps ont é1é divisés en
Parties de grandeur finie , mais tout-a-fait insensible,
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En effet, les molécules sont si petites et si rappro-~
chées les unes des autres, qu'unc partie de la masse
d’un corps qui en renferme des nombres immenses ,
peut encore ¢lre supposée extrémement petite , et
son volume regardé comme insensible. Soit ¢ le vo-
lume d'une semblable partie, d'une grandenr insen-
sible, et qui contient, néanmoins, des myriades de
molécules ; soit aussi 7 la somme de leurs masses ; et
désignons par M un des points de ¢, qui sera, si l'on
veut, son centre e gravité. 8i nous faisons

e
— = f,

>
ce rapport p exprimera réellement la densité du corps
an point B, quelles que soient d’ailleurs les masses
des molécules et leur distribution régulicre ou irvé-
guliere dans l'élendue de ¢. De méme, en dési-
gnant par n le nombre de molécules que ¢ ren-
ferme, et faisant

"

T
cette ligne e, de grandeur insensible, pourra étre
appelée lintervalle moyen des molécules qui répond
au poiat M et a la densité p. Dans un corps ho-
wogene , ce rapport et cette ligne ne varient pas
avec la position du point B ; dans un corps he-
térogene, ces denx quantités varicront par degrds
insensibles, et pourront étre supposées des fone-
tions donnces des coordonnées de ce point.

Cela posé, si Fon veut conpaitre la masse d'un

corps, ou, plus généralement, la somme des par-
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ties exirémement petites de cette masse, multipliées
chacune par une fonction U des coordonnées de I'un
de ses points M, on divisera le volume V de ce
Corps en parties exirémement petites ¢, puis on
fera la somme de tous les produits Upe, que jin-
diquerai par

2Upe,

€t qui devra s'étendre & toutes les parties ¢ de V.
D'aprés le théoreme du n° 13, st les termes de celle
S0mme étalent infiniment petits et que leur nom-
bre fat infini , sa valeur serait rigourensement égale
a lintégrale définie

S Updy

€iendue au volume entier V, dont dv est I'élé-
ment différentiel. Or, on concoit quen général la
différence entre ceite somme et cette intégrale di-
minuera de plus en plus, & mesure que les par-
ties de la premiere deviendront plus petiles, et que
leur nombre sera plus grand; de telle sorte que
la grandeur de ¢ étant insensible , mais toujours
distincte de dv, on pourra néanmoins prendre ,
S20s erreur appréciable, I'intégrale & la place de la
S0mme. Il y a cependant une exception i ce prin-
CIpe geénéral : Cest lorsque U est du genre des fone-
tons qui varient trés rapidement, et qu'en méme
temps cetie quantité change de signe dans I'étendue
Fl‘f Vintégration ; ce qui arrive, effectivement, dans
le calcul des forees provenant de l'attraction melé-
culaire et de la répulsion calorifique , qui ne sont
sensibles qu'a des distances insensibles. Mais il nous

L 12
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suflit, quant & présent, d'observer que cette excep-
tion n'a aucun rapport avec les formules des n* g1
et g5, relatives aux centres de gravité des corps et
aux aftractions en raison inverse du carré des dis-
tances, el qu'on peut, conséquemment, les appli-
quer aux corps naturels formés de molécules dis-
jointes.

9g. Revenons maintenant au calcul des attractions.

Si la distance du point O au corps attiré est trés
grande relativement aux dimensions de ce corps, on
pourra, dans Vexpression de T du n° g6, dévelop-

sy 1 r o= v = r
per la quantité - en série convergente, ordonnée

suivant les puissances et les produits de x, », z
En faisant :

a® + gu _|_ ,}_s — J\.s’
on aura alors

;‘ e r;_\_}_ur-ﬂkgj_x.ﬁ_l_ 3(ax—+-C ]+75):;.-, (& my )8

~-ete.

81 l'on prend le centre de gravité du corps attirant
pour lerigine D des coordonnées, on aura

[ffxdm=0, [ffrdm=o0, [f[zdm=o,
puisque ces intégrales, divisées par la masse M du
corps,seraient les trois coordennees de ce point (n°gt).
En désignant cette masse par M, nous aurons done

it )
T= g-}-z—arg,ﬂf(ﬁ-’?-{"cj"i"??v)"th (o, fﬁr" r?f(;t‘*—'—_yﬂ +::“)dm+ct(,

Lorsque la distance OD ou J sera asses grande
pour qu'on puisse réduire cette valeur de T & son
premier terme , les équations (2) deviendront
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S 2 =, é\.i ’

Or ces composantes sont les mémes que celles d'une

AR g AT o

, , M 3 i : 5
force eégale a e agissant au point O suivant la di-

a2 =
Tection OD ; il s’ensuit donc que l'attraction exercée
Sur un point (0, parun corps qui en est tres éloigné,
fst 4 peu prés la méme , en grandeur et en direction,
que si la masse M de ce corps élait réunie 4 son eentre
de gravité.

Lorsque ce corps sera une sphere homogene ou
composée de couches concentriques, on frouvera que
tous les termes de lavaleurde T, excepté le premier, se
détruisent; il suffiva pour cela de remplacer x, g, z, par
les coordonnées r, §, +., comme dans le n° Q2; ce qui
permetirad’effectuer lesintégrations relatives a § et ..
Le théoréme qu’on vient d’énoncer sera doncalors tout-
a-fait exact , si la distance J est seulemient assez grande
pour que le développement de % S01i une serie conver-
gente; et, en effet, on verra dans le numéro suivant,
Sans recourir a la réduction en série, que ce théoreme
alien, quelle que soit la distance du point O & la sphére
ﬂ_ttir:mte, pourvu qu'il ne soit passitué dans son inté-
Pteur. 1] est facile d’en conclure que l'atiraction d'une
sphére sur une autre est la méme que si la masse de
Chaf{ue Sphél‘u ¢tait reunie a son centre ; car, en appe-
ant M et M’ es masses des deunx sphéres, ¢t C et C'leurs
Centres, Pattraction de M sur un point queleongue 0
de M est dabord 1a méme que st la masse M était
foncentrée au point ; en outre, cette attraction de'C
Sur tous les points O de M, est ¢gale et contraire &

T2s
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l'attraction de tous ces points ou de M’ sur C, laquelle
est la méme que si la masse M’ élait réunie au point iz
donc, Vattraction des deux sphéres est la méme que
celle de deux points matériels situés en C et €', et
dont les masses seraient M et M.

100. Tattraction exercée sur le point O par une
couche sphérique , homogéne et d'une épaisseur cons-
tante, dont D est le centre, se réduira évidemment a
une force dirigée suivant OD. En faisant coincider
cette droite avec I'axe D, les composantes B et G, pa-
ralleles aux axes Dy et Dz, seront done nulles, et Von
waura que la valeur de A a calculer.

Dans ce calcul, on emploiera, comme dans le
n° g2, les coordonnées polaires r, 8, L. Liaxe Do se
confondant avec la droite DO, on aura alors

01)1}1:@, DO=c; Q:o, %E=0 3
et'4 canse de DM = r et OM = u, 1l en résultera
1 = o* — 2arcos f -+ .
L’ansle <L sera celui que fait le plan ODM avee un
5 s st P
plan fixe passant par la droite DO ; on prendra (n° 95}
dp = r*sin 8drdfdy ,
pour I'édlément du volume; et dans I'élément dm = pdv’
de la masse, on regardera p comme un facteur cons-

tant.

Apres avoir substitué ces valeurs dans 'expression
de T du n° g6, on intégrera depuis r =2 jusqu’a
r=a, en désignant par @ et b les rayons extérieur
et intérieur de la couche sphérique, et depnis § =o
el =0 jusqua =7 et L= 7. Comme la va-
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riable -l n’entrera pas sous le signe [, Vintégration,
relative 4 cette variable se réduira & rvemplacer la
différentielle d- par 2@. Cela étant, on aura

ayr !{‘ rsin 8d) )
F— —=ar——cri—ge J"dF.
& ZWP./; \J o Ve —ourcosd -1

Aux limites §=o0 et 8 =, le radical aura pour

valeurs
S ), s (e
mais comme il exprime la valeur de u, qui doit étre
constamment positive (n° g0}, il faudra prendre e~
a la limite f=w=, et r—a ou 2 —r i la limite f =o,
selon que le point O sera situé en dedans ou en de-
hors de la couche sphérique. Nous verrons tout a
Pheure ce qu'on doit faire lorsque ce point appar-
tiendra 4 la couche méme, de sorte quon ait 7 > «
dans une partie de cette couche, et » < a dans l'autre
Partie.
Relativement a §, l'intégrale indéfinie étant

f_‘_—i_‘-m;g_dj—v_: ]-\/a’-——sz'cus B-i-f"-}—c()nh['_,
o

V e — ar cos 8 -+t

Ot aura donc, dans le cas du point intérieur,

f" rsin 0d) N3 =L g o
T el L Al e DN

Par conséquent, la valeur de T ne dépendra pas de @,
et celle de A qui s'en déduit au moyen de la plemlEIC
€quation (»), sera ¢gale i zéro. Dans le cas du point
€xtérienr, on aura de méme

- rsin fdi

Seadde 1 L ROTIL Rt Ly R e W
o V;2_;ium§-—7—a[<"'+’) (a' ’)-l—— w'
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et, conséquemment,
T == 4_7.1 : rdr= 4--—-—~—-—-——~EP ol
 Jb Je 2
ou, ce qul est la méme chose,
M

_.__;

-3

M étant la masse de la couche sphérique dont le vo-

‘i—
lume est —— fe e — b —2) O en condlai
_ eNf
A= g (3)

ce qut est la méme force que si la masse entiere de
cette couche attirante était réunie a son centre.

101. Ces rédsnltats s'étendent immeédiatement aux
cas d'une couche sphérique d’une épaisseur constante,
mais composée d’autres couches concentriques, dont
la densité varie de I'une 4 I'autre, suivant telle loi
qu’on voudra, et ne change pas dans toute 'étendue
d'une méme couche ; car on peut déterminer séparé-
ment les atiractions de ces différentes coaches, et faire
ensuite la somme de toutes ces forces, laquelle sera
nulle pour un point intérieur, et donnée par la for-
mule (3) pour un poiat extérieur; M exprimant tou-
jours la masse totale du corps attirant.

Concluons done,

1°. Que les attractions en raison inverse du carré
des distances, exercées par tousles pointsd’une couche
sphérique d'une épaisseur constante, homogene ou
composée de couches congentriques, sur un point 0
situé dans U'espace vide que ceite conche termine, s€
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détruisent mutuellement; en sorte que ce point de-
Meurerait en équilibre , quelque part quil fut placé
dans cet espace.

2°, Que latiraction de cette méme couche et, par
Conséquent aussi, laltraction d'une sphere entiere,
€xercée sur un point extérieur 0, est la méme que si
'a masse du corps altirant était réunie i son centre.
St le point O fait partic de la couche atiirante,
Ou, autrementdit, sil'on a @ > b et a < a, on par-
tagera cette couche sphérique en deux autres : I'une
dont les rayons extérieur et intérieur seront a et o,
Vautre pour laquelle ces rayons seront « et &; le point
O étant intérieur & I'égard de la premibre de ces deux
couches, elle n’exercera sur lui auncune action; et si
Yon appelle m la masse de la seconde couche, par
rapporl a laquelle le point O est extérieur, Iattraction
e cetie couche se déduira de la formule (3), en y
Weitant m au lien de M. L’attraction totale exercée
Sur le point 0 aura donc pour valeur

A o hf
=

Sila couche sphérique se change en une sphere en-
titrement pleine, et qu’elle ait partout la méme den-
Sité, on aura

G Awpfoz
7 — < el i A= L
9

3 ' v e [ R S
Cest-a~dire que dans I'intérieur d’une sphere homo-
gene, l'attraction est proportionnelle a la distance du
Point attiré a son centre.

Les mémes théorémes ont lieu dans le cas d'une ré.
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pulsion, pourvu que cette force varie toujours en rai-
son inverse du carré des distances,

102. L’équilibre du point O, situé dans l'espace
que termine une couche sphérique, et attiré ou re-
poussé par tous ses points, peut facilement se vé-
rifier.

Supposons, pour cela, que cette couche soit d’abord
infiniment mince. Soit ¢ son épaisseur. Décomposons
sa surface en élémens infiniment petits; et désignons
par  Yaire de celui qui répond au point P (fig. 53).
Les élémens correspondans du volume et de la masse
de cctte couche seront ew et pew; et si lon appelle r
la distance OP, la valeur de la force dirigée suivant
cette droite sera

pfoew

J.‘R

Imaginons un cone dont la hase soit » et le som-
met O; en prolongeant la géndratrice OP jusqu’a
ce quelle rencontre en P’ la surface sphérique, et
prolongeant de méme toutes les auires gencratrices,
on déterminera sur cette surface un second élément
que je désignerai par o'. Soit, de plus, 7’ la distauce
OF’; la force dirigée suivant cette droite, en sens
contraire de la précédente, aura pour valeur

pfpea’

T
or, je dis que ces deux forces contraires seront égales
entre elles, c'est-a-dire qu'on aura
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Soient, eneflet, POQ et P'OQ’ les sections des deux
cones, faites par un méme plan quelconque, passant
par lear sommet commun O. Les surfaces semblables
@ et o' seront entre elles comme les carrés des li-
gnes homologues PQ et P'Q'. A cause des triangles
Semblables POQ et P'OQ’, on a d’ailleurs

20O Py 0P 0P

e élevant au carré les quatre termes de cette pro-
Portion, on en conclura done

R e e s
€l, par conséquent, I'équation précédente.

1l résulte de 14 que les actions exercées surle point O
par tous les élémens de la couche sphérique se dé-
truisent deux a deux. L’action totale de cette couche
sera donc nulle; et il en sera encore de méme si elle
& une épaisseur finie; car alors on pourra la décom-
Poser en une infinité de couches infiniment minces,
dont chacune n’exercera aucune action sur le point O.

§ . Formules relatives a Uellipsoide.

105. Lorsque le point O appartiendra a la masse
attirante, on facilitera souvent les intégrations en
Prenant ce point pour origine des coordonndes po-
laires. Le rayon vecteur du point quelconque M sera
alors u; en appelant donc, comme dans le n° g3,
dw I'dlément de 1a surface sphérique dont le rayon
est 'unité, on aura

dy = wu? detctz " dm — FH’ dmfw;
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etsi I'on appelle g, %, k&, les angles que fait la droite
OM avec des paralléles aux axes Dac, Dy, Dz, menées
par le point 0, on aura aussi, d'aprés les notations
dun® gb,

T — —C 2=
cos 2 =J_’___’ cosk = —--—7;
u i

cos § = ——

ce qui changera les €quations (1) de ce numeéro en
celles-ci:

A = — pf[ffp cos gdudw,
B = — uf[ffpcos hdudw,
C = — ufff]p cos kdudsm.

Les intégrales relatives a « s’étendront depuis u==0
jusqua z=r, en designant par r le rayon vecteur
d’un point quelcouque de la surface qui termine le
corps attirant. Pour plus de simplicité, si Pon sup-
pose ce corps homogene, ces intégrales s'effectueront
immédiatement, et 1l en résultera

A = —pfpffrcos gdw,
B = — pfp [ cos hdw, (a)
C = —pfp ffrcos k.

Pour déterminer la valeur de r, qu'on devra subs-
titner dans ces formules, soit, en coordonnées rec~
tangulaires,

F(JE,_)’, Z.) — 0,
l'équalion de la surface du corps attirant. En uo
point quelconque de cette surface, on a
X=—=a-+Ucosg, )’:g—l— #cosh, z:-y-l»-ucosff,

daprés les valeurs précédentes de cos g, cosh, cosh
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eta, £, 5, étant toujours les trois coordonnées du
point O dont les valeurs sont données. On substituera
done ces valeurs de x, 7> z, dans 'équation précé-
dente; celle qui en résultera donnera, en général,
deux valeurs de r, Pune positive et 'autre négative;
Mais on rejettera la valeur négative, parce que le
rayon vecteur r est une quantité positive dont la di-
réction est uniquement déterminée par les angles
8, h, k, qui peuvent étre aigus ou obtus.

Aprés la substitution de la valeur de r dans les
€quations (@), les intégrales doubles s’étendront a tous
les élémens dw de la surface sphérique, déerite du
point O comme centre, ¢t d’'un rayon égal a 'unité.

104. Appliquons ces formules au cas de I'ellipsoide
homogene dont la surface a pour équation

2 2 2
S+ L+ 5= ()
@, b, ¢, désignant les trois demi-axes, et le centre
de figure étant Porigine D des coordonnées. Si 'on y
substitue les valeurs précédentes de x, 7, z, il vient

P+ 2gr = 1,

en faisant, pour abréger,

cos? g cos* h cos® k =2
aq,_ + /e + _(!“_- e ows P?
xcosg+§cosh_Lycosk= q
a? bn 1 c* El
% a? (4 yJ l
a* = b-.- c*

Nous aurons done
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il L
—eEYrep

7 A~ —

Or, la quantité p est positive; la quantité £ est aussi
positive ou zéro, parce que le point O, qui répond
aux coordonnées ¢, &, 7, est situé dans l'intéricur
de Pellipsoide, ou, tout au plus, & sa surface; par
coméquent il faudra prendre le radical avec le
signe -, pour quc le rayon r ne soit pas négatif, Je
d15, de plus, qu ’on pourra supprimer ce }‘acu{:al dans
les formules (@). En effet, la partic correspondante
de I'intégrale contenue dans A, par exemple, serait

ff; V¢ pl cosgde ;

mais pourchaque couple d’¢lémens dw» dont lesrayons
sont dans le prolongement 'nnde I'autre, les élémens
de cette intégrale double se détruisent; car en passant
de l'un de ces élémens dw a I'autre, chacun des trois co-
sinus cos g, cos %, cos k., change de signe, les quan-~
tités p, 1, ¢*, restent les mémes, et le cocfficient
de d» sous le signe [/ prend des valcurq égales et de
signe contraire. Tous les éléemens de llntufl ale pré-
cédente se détruisant ainsi denx & deux, la valeur
de A devient d'abord

s =ph (G [ ZEdut 5 ff“’“ goosh o

en ayant égard a la valeur de ¢. Or, les deux der-
nicres de ces trois intégrales se composeront de cou-
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ples d’élémens qui répondront aux mémes valeurs
de % et de &, et & desvaleurs de g supplémens P'une
de Pautre. Ch.—u.un de ces ccmples d’élémens se ré-
duira donc & zéro, et, par conséquent aussi, les in-
égrales entiéres. En supprimant ces intégrales et fai-
sant subir des réductions semblables aux valeurs de
B et de €, on aura simplement

COS g
° dw,

A — e

a*

fols 71.
B — ue U cos?
fas ,cf;’;yffcos J:

Soientactuellement § langle COmPris entrele rayon
OM et la paralléle 2 I'axe O menée par le point D, et
Langle que fait le plan de ces deux droites avec un
Plan passant par la seconde et paralléle i celui des 2
&t 75 nous aurons (n° 8)

Cosg=cos ), cosh=sinfcos~l, cosk=sinbsinl,
€t, en méme temps (n° g3),
dw = sin 0dl d;
Tou il vésultera
a’la'cﬂp = b*c* cos* i 4 (¢* cos*\L 8% sin* J)at sin* 6,
A — ,ufm {’[‘ cos® § sin 0dd dxb

Poup comprendre les di recriom de tous les rayons OM,
€S intégrales devront s'étendre delllS d=oetl =0
Jusqud =7 et o == 2w ; mais i canse que le coefli-
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cient de db a la méme valeur pour § et pour w — 8,
il suffica d’'intégrer depuis §=o jusqua =17, ei
de doubler le resultat ; et parce que le coeflicient de]
est le méme pour -} et pour 7=t=.), 1l suffira aussi
d'intégrer depuis +, = o jusqu'a | = 17, el de qua-
drupler le résultat. Cela élant, je fais
d
= tang -], dp = Esf%]_,;

el & cause de

cos* '\[,/ =%

il en résulte

Sius'\ll - 1‘ @ ]

r + o’ -+ ¢

H—dd/ —a'b’e f d@ 7
f, p'— o (bPcos04-a’sin*f)c*4-(c cos*+u’sin®0)b’g’

wa'lhe

2 V((?"‘ cos® | -} a” sin*8) (e” cos® 0 - a® em‘T) .

au moyen de quoi la valeur de A ne dépendra plus
que de-lintégrale relative & . Sans nouveaun calcul,
on déduira B de A en y mettant € an lien de 2, ef
permutant les lettres @ et &; et de méme, on déduira
C de A en y mettant 3 au lieu de 2, et permutant les

lettres a et ¢. De cette maniére, on aura finalement

\/ (b*c08"04 a’sin®0)(c cos 0 4= 2’sin’f)

B = 4anfif VFL?“,":EE@

A e 47:‘;.&];39& be cos” ¢ sin (d |
=l PRy X ,f; (l
cos*lii+4=0"sin*t) (c*cos*d - b*sin’t) \

ab cos® § sin Ad3

(‘M4WF£J{F?[ ‘/(l,a B e e

cos*) - c'sin’t) (a’cos - sm“b)

Ces valeursde A, B, C, étant positives, il g'ensuil
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que chacune de ces trois composantes tend 2 rappro-
cher le point O du centre de I'ellipsoide ; le contraire
Aurait lieu dans le cas d’'une répulsion ou 'on de-
Vrait mettre , dans ces formules, — / au lien de f.

105, Désignons par J' une constante positive, et
“Upposons qu’on substitue (1 -+ fMNa, (14 )b,
(14 e, au licu de , &, ¢, dans les formules (¢).

‘¢ facteur 1 - & disparaitra, et les valeurs de
A, B, C, resteront les mémes. Or, par celte substi-
tfltion » Vellipsoide se trouvera angmenté dune par-
tie comprise entre sa surface primitive et une surface
Semblable ; les composantes A, B, G, ne changeant
pas, il en faut donc conclure que l'action de cette
partie additive sur le point intérieur O se réduit i
z¢ro.

Ainsi une couche homogene comprise entre deux
Surfaces elliptiques semblablés , ayant le méme centre
€t leurs axes dans les mémes directions , n'exerce au-
Cine action attractive ou répulsive sur un point O si-
tud dang I'espace vide que termine sa surface intéri eure;
0 sorte que ce point matériel restera en équilibre,
Quelque part qu’il soit placé dans cet espace ; théo-
"“me qui comprend celui que nous avons précédem-
fent trouvé pour le cas d'une couche sphérique,

I en résulte que l'action d'un ellipsoide plein et

®Mogene sur un point O de sa masse, se réduit &
celle qui est exercée par la partie de cette masse
lerminde parla surface elliptique, passant par ce point,
Semblable 4 celle du corps entier, et semblablement
Placge, Daprés les formules (¢), la composanie de
Cetic force, paraliéle 4 chacun des trois axes de Fel-

a
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lipsoide, est proportionnelie a I'ordonnée du point O
paralléle & cet axe, et ne dépend que de cette variable.
Dans le cas général ol les trois demi-axes a, &, ¢,
sont inégaux, on transforme en fonctions ellipti~
ques les intégrales relatives & 6 que ces formules
renferment ; ce qui permeltra d'en calculer les va-
leurs numériques, au moyen des tables de M. Le-
gendre. Ces mémes iniégrales s'obtiennent sous
forme finie, lorsque deux des constantes a, b, ¢,
sont égales, et quli} sagit, par conséquent, d’un
ellipsoide de révolution.

106. Supposons, par exemple, quon ait ¢ =b;
la forme des intégrales relatives a  sera différente,
selon que lellipsoide sera aplati ou allongé, c’est-a-
dire, selon qu'on aura & > a ou b < a. Supposons
aussi que ce soit le premier cas qui ait lieu; et fa1-
sons, dans cetle hypothese,

bmpa’ (1~} &
b* — a* = a’e*, s q—) ——
2

en sorte que la fraction e soit aplatissement de lel-

lipsoide, et m sa masse. Il en résultera
it B‘uﬁnzf:vr cos*f sin 0.0
SEGT TF o

3 1+ e* cos*8 ?

a°

et, en effectuant I'intégration, on aura

A ==

i&g?n—id [e — ane (tang = c)] ,

pour la composante parali¢le a I'axe de révolution.
On anra aussi

B C__  3ufm ir cos? f sin dd

c '_-},"— a (e + e*)J 5 V|+ef5in"»’3‘
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Les Composantes B et C étant entre elles comme les
Coordonnées € et 3 du point 0, il sensuit que leur
Tésultante sera dirigée suivant la perpendiculaire
abaissée de ce point sur 'axe de révolution. En ap-
Pelant A’ cette force, et o’ la longueur de la per-
Pendiculaire, de sorte qu'on ait
A':\/B’-I—C“, c&':\/gﬂ_.’__)/s,
et effecluant lintégration indiquée, il vient
3 frrnz’ e
T . 0 - — —
Al— s [mc (tang = ¢) 2w eg].

La résultante des deux forces A et A/ exprimera ,
en grandeur et en direction, Paction totale de Jel-
lipsoide sur le poiat O,

Lovsque e sera une tres petite fraction, on pourra
développer ces valeurs de A et A’ en séries trés con-

Vergentes, ordonnées suivant les puissances de e, A
cause de

ed e
arc (tang == ¢) P -l——5-—etc. .
e
14 e
Nous aurons

A =“-inf(l-—-37?—[— etc.),

a’

=e— &'~ e — etc.,

S (1 — 6; ~+- etc.).

Dans le cas de Ia sphére, ou de e==o, la résultante

de A et A’ sera dirigée vers le centre,, et aura Ia méme
utensité que dans le n° 1071.

107. Le calcul de Fattraction d’un ellipsoide ho-
1. 13
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mogéne sur un point extérienr présente encore beau-
coup plus de dificulté; mais on doit & M. Yvori un
théoréme au moyen duquel ce cas peut étre ramené
4 celui du point intérieur; ce qui permet d’exprimer
les composantes de Uattraction par des intégrales sim-
ples, semblables aux formules (¢). Voici une démons-
tration de cette importante proposition.

En faisant , dans la premiére équation (1)dun° g5,

dm = pdxdyds,

et observant que pest un facteur constant, on a

A= ujp.jﬂ‘ (2 — x) dedydz ;
e — 2 ok € = =T

Je suppose que I'équation de la surface soil toujours
Péquation (b), et i’y mets ax’, by', ¢z, i la place de
&, ¥, 7, ce qui Ja change en celle-ci :

x' =4 "+ zl' — 1.

En méme temps la valeur de A devient

[ HfFﬂbff/T (2 —ax’)dx'dy’dd iy
o’ & [(:..f—(}xf)“-i—(é’—— bj")l"}"(?-—(.'::—")u];

et si I'on désigne par == x, les valeurs de &', égales
et de signe contraire, que V'on tire de l'équatioﬁpl-é_
cédente, Vintégrale relative & @' devra étre prise de-
puis ' =— x, jusqua &' = 2, ; ce qui donne

o THE dy'ds
A =ujpbe | [/‘——%_ ird ;
\J o] [eman)+ @ — by'y + (v — )]

ey
[ w e (g et cz')‘»]"- /.;‘
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Chacune de ces deux intégrales doubles s'étendra i
tous les élémens de la demi-surface sphérique dont
le rayon est 'unité, et qui a son centre 2 l'origine
des coordonnées ; le produit dy'dz' est la projection
Sur le plan des y et z, d'un élément quelconque. Si
done on désigne par § 'angle que le rayon qui abou-~
Ht 3 cet élément fait avec I'axe des x, et par ) Vangle
“ompris entre le plan de ces deux droites et le plan
des 2 et 7, Taire de cet élément sera sin 0dbdl ,
Son inclinaison sur le plan des ¥ et z sera I'angle 6,
et il en résultera

dy'ds’ — cos O sin 0d0d ,

pour sa projection sur ce plan. On aura en méme
lemps

*,=cosl, y'=sinfcos~, z' = sinbsin .
Les limites des deux intégrales seront maintenant

=o0 et =o0, =17 et | = aw; maissi lon
Mel, dans la seconde, 7 — 6 & la place de #, il est
asé de voir que ces deux intégrales se réuniront en
e seule, qui aura les mémes limites par rapport
2 -l et dont les limites relatives & deviendront
=o0 et §=w=; en sorte que l'on aura simplement

. = (ar cos  sin 8 di)
A=ufbe [ f TS

. faisant, pour abréger,
Ree ,a + €% - o* — o (aacos § 4 €b siné cos<y 4 ycsind sin ¥)
~+ a*cos* g 1 % sin® 8 cos® .4/ _.|..c'l sin®é sin® '\J/ o
°t regardant R comme une quantité positive. Les
13..
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deux autres composantes B et C s'exprimeront pareil-
lement par des intégrales doubles.

Maintenant, considérons 'attraction d’un auntre el-
lipsoide ayant la méme densité p, le méme centre,
et ses axes dans les mémes directions que le premier.
Soient a,, b, ¢,, les trois demi-axes correspondans
aa, b, c;appelons O, le point soumis a cette attrac~
tion, a,, €., ¥, ses coordonnées, et A,, B,, C,, les
composantes de celte force, paralléles aux trois axes
de Dellipsoide. En supposant toujours que w soit la
masse du point altiré, nous aurons

7 (aw cosfsin 6 didy
A==’*ﬂ"‘"foﬁ, = & 3

R, étant ce que devient R quand on y change a,
b,e,a,6,y,en a,, b,, ¢, a, €,, y.. Les valeurs
de B, ‘et C, se déduiront de méme de celles de B
et C.

Supposons que les denx ellipsoides aient les mémes
foyers, et conséquemment des excentricilés égales;
on aura alors

b=a*+-h, c*=a'4+k, b'=a’4-h, ¢,=a+Ik;

hy by h— k, étant des quantités positives ou néga—-
tives qui exprimeront, abstraction faite du signe, les
carrés des excentricités communes 4 ces deux corps-
Supposons, de plus, que le point O,, attiré par le se-
cond ellipsoide, soit situé sur la surface du premier,
et le point O attiré par le pramier, sur la surface
du second. D'apres I'équation (b) et celle de la sur-
ace du second ellipsoide, il faudra qu’on ait
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e e e
> t+Eti=n|

Soient enfin p et g denx angles donnés; et prenons :

s senr, C=binpony, e |

=a,cosp, 6 =b;sinpcosq, 3 =esinpsing;
valeurs qui satisferont aux deux équations préce-
dentes et qui élablissent une relation particuliére entre
les coordonnées des points O et O,. En subslituant ces
valeurs de «, €, 9, dans Iexpression de R?, et y met-
tzfut aussi les valeurs précédentes de 6%, ¢2, b}, 7, il
vient

R* = 4 4= a*~ 4 (sin* p cos* g +sin® f cos* )

~ % (sin® p sin® ¢ +- sin®  sin® )

— 2(a,a cos p cos A 4 b, b sin p cos ¢ sin Bcos

~+ ¢, csin psin g sin Bsin A}).
Or, sans écrire Ia valeur de R}, on voit qu'elle sera Ia
Mméme que celle de R*; car elle s'en déduirait par les
Permutations de «’et a,, b et b,, c et c,, sans chan-
8€r £ et k, qui sont des quantités communes aux
deuy ellipsoides; et il est évident que cette derniere
fm‘mu]e ne change pas parces permutations, A cause de
‘=R, les valeurs de A et A, renfermeront la méme
Mi€grale double ; en 1'éliminant, on aura donc

A, be = Abe,.

gelatlvcment aux autres composantes, on obtiendra
® résuliats semblables; en sorte que, d'aprés les
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suppositions qu'on a faites sur les deux points attires
0O et O,, on aura finalement

A, bye, B, ac, 9] a,b, 5
BT BB T e, W e )
Pour énoncer le théoreme que ces trois équations
renferment, appelons points correspondans , sur les
surfaces des deux ellipsoides, deux points dont les
coordonnées sont entre elles dans le rapport des
demi-axes auxquels elles sont paralléles. Le point O,
de la surface du premier ellipsoide, dont les coor-
données paralleles aux demi-axes «, b, ¢, sont
,, €., ¥, aura pour correspoudant, sur la surface
du second ellipsoide , le point O, dont les coordon-
nées paralleles aux demi-axes a,, b, , ¢, , sont o, €, 9,
puisqu'on a, d’apres les équations (2),
ey

@
a;

| S

Y
3 T — -

1 i 4

| &

ay|

2

|
o

Cela posé, il résulte des équations (3) le théoréme
survant :

8i I'on a deux ellipsoides homogénes qui aient le
méme centre et les mémes foyers, I'attraction suivant
chaque axe que I'un des deux corps exerce sur un
point situé a la surface de l'autre, est & l'attraction de
celui-ci sur le point correspondant de la surface du
premier, comme le produit des deux autres axes du
premicr ellipsoide est au produit des deux autres axes
du second.

108. Lorsque deux ellipsoides différens ont, comme
on le suppose, le méme centre et les mémes foyers .
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Pun des deux est entierement compris dans autre ;
par conséquent , si le point O est extérieur par rap-
port au premier ellipsoide, le point O, sera intériear
par rapport au second. Pour déterminer, au moyen
du théoreme précédent, Tattraction d'un ellipsoide
donné sur un point extérieur O aussi donné, on fera
done passer par ce point la surface d'un second ellip-
soide ayant leméme centre et les mémes foyers que le
Premier ; par les formules relatives aux points inté-
Tieurs, on déterminera les trois composantesA,, B,,C,,
de I'attraction de ce second corps sur le point O, de la
surface du premier, correspondant du point O ; les
équations (3) feront ensuite connaitre les composantes
A, B, €, de Tattraction de l'ellipsoide douné sur le
point donné. Ainsi tout se réduira & trouver les va-
leurs des trois demi-axes a,, b,, ¢,, du second ellip-
Soide, d’apres ceux du premier qu'on a représentés
Para, b, ¢, et d’aprés les coordonndes o, €, 9, du
point donné 0.

Pour fixer les idées, je suppose que « soit Ja plus
}Ztetiie des trois quantités @, &, ¢; ce qui rendra posi-
tives leg quantités % et & du numéro précédent. Jap-
Pelle u le carvé de a,; on aura

&G =\u, b =V\Vut+h, ¢ = Vutk;

€t 1l ne restera plus qu’a déterminer cette inconnue «,
Tui devra étre réelle et positive. Or, en vertu de la
Seconde équation (1), nous aurons

. C*u i AR )
S e S s SO ()
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équation du troisiéme degré par rapport a u, qui a
au moins une racine réelle et positive; car en faisant
croitre u depuis zéro jusqu’a linfini, son premier
membre est d'abord plus grand et cosuite plus petit
que le second ; en sorte qu’il y a au moins une va-
Jeur positive de z qui les rend égaux. Je dis de plus
quil v’y en a qu'une; car en supposant quiil y en ait
deux, u et o/, 1l fandrait qu’on eirt & Ja fois

«® e v

—+u+f.'.+u+/r o

/4

oc“+ £ v e
7 uf_,j,:'f"ﬁ—g—l:

et en retranchant ces équations 'une de lautre, et
supprimant le facteur z' — u, commun & tous les
termes, il en résulterait

a* @’ ‘Y:
ul 5 (i b) (1 4 1) -+ (w k) (& + k)

:{)5

ce qui est évidemment impossible. Donc il n'existe
quun seul ellipsoide qui ait le méme cenire et les
mémes foyers qu'un ellipsoide donné, et qui passe en
outre par un point donné. La quantité , d'ot dépen-
dent ses trois demi-axes a,, b,, ¢,, est déterminée
par Péquation (4); ce qu’il gagissait de trouver:
109. Nous ferons remarquer que le théoréme du
yn° 107 convient également a toutes les lois d’attrac-
tion en fonction de la distance ; car la démonstration
qu'on vient d’en donner est fondée sur la forme que
prend Vexpression de R*, qui se trouve identique
pour les deux points O et O,, et non sur la forme
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de la fonction de R, qui exprime la loi de l'at-
traction..

8i les deux ellipscides sont des spheres concentri-
ques, I'attraction de chacune d’elles sera la méme sur
tous les points de la surface de l'autre, et il ne sera
Plus nécessaire que les points O et O, scient corres-
pondans. En appelant « et a, les rayons de ces deux
Sphéres, D V'attraction de la sphére du rayon « sur
un point de la surface sphérique du rayon «a,, et
D, celle de 1a sphere du rayon @, sur un point de
la surface sphérique du rayon a, lesquelles forces
seront dirigées suivant les rayons des points atiirés,
on aura

D Iy

quelle que soit la loi de Fattraction en fonction de la
distance.

Cette proportion est facile a vérifier dans le cas
ordinaire oix D'attraction est en raison inverse du
carré de la distance. En effet, d’aprés les résul-
lats du n° 101, si l'on suppose a > a,, l'attrac-
tion D de Ia sphére du rayon a sur un point in-
lerieur, situé a une distance «, de son centre et
dont 4 est Ia masse , sera

D= é—wﬁ;ﬁﬂ;

Tattraction D, de 1a aphere du rayon a, sur un point
?Xteue,ur dont g est aussi la masse et qul se {rouve
a la distance @ de son centre, aura pour valeur
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el en comparanl ces valeurs de D et D,, on voit

qu’elles sont entre elles comme les carrés des rayons
a Ekiety.
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DYNAMIQUE
PREMIERE PARTIE.

CHAPITRE PREMIER.

DU MOUVEMENT RECTILIGNE ET DE LA MESURE DES
FORCES.

§ 1°7. Formules du mouvement rectiligne.

110. Le mouvement le plus simple que puisse
Prendre un point matériel est celui qui a lieuw en ligne
dl’oite, et dans lequel le mobile décrit des espaces
LU{]U‘{ en temps eounx C'est ce mouvement reet:bone
que I'on appelle ma.jo:me, et qui sert de terme de
COmparaison 4 tous les autres mouvemens.

Quand le rapport des espaces parcourus aux lemps
employés i les décrire change continuellement, le
Mmouvement est v i€ ; sl ce charuemcnt n’avait lieu
qua des intervalles de temps hms, le mouvement

ne serait quune succession de mouvemens uniformes.

i

e e e e
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Dans un mouvement quelconque, 'espace parcouru
par le mobile, ou, plus généralement, sa distance 2
un point fixe pris sur la ligne quil déerit, est une
fonction du temps éeouléd depuis une époque con-
venue. Ainsi, en appelant # ce temps, et a cette
distance, on aura, dans tous les cas,

kL
et les diverses sortes de mouvemens différeront entre
elles par la forme de cette fonction Fz. La variable ¢
pourra étre posilive ou négalive : ses valeurs posi-
tives répondront a des époques postérieures i celle
d’oti 'on compte le temps, et ses valeurs négatives, 2
des époques antéricures.

Dans le mouvement uniforme, si 'on appelle «
Yespace parcouru dans chaque unité de temps, et b
la distance du mobile au point lixe, & l'origine du
temps ¢, cest~a-dire, la valeur de & qui répond A
f=o0, on aura, a un instant quelconque,

x = b - at;

car, d’apres la définition de ce mouvement , Pespace
2 —b décrit dans le temps ¢ doit étre égal a Yespace
constant @, répété autant de fois que ¢ renferme
d’uniiés.

117, On ne définit ni le temps ni Iespace; mais
il suflita la Géométrie et & la Dynamique que nous
puissions mesurer les dimensions deg corps et les du-
rées de leurs mouvemens. La mesure des longueurs
est fondée sur la superposition, et ge concoil sans au-
cune difficulté; celle du temps exige quelque expli-
calion.
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On ferait un cercle vicieux si I'on disait, d’une
part, que le mouvement uniforme est celui dans le-
quel les espaces parcourus sont proportionnels an
lemps, et, d'un autre c6té, que le temps a pour me-
Sure le mouvement uniforme, clest-a-dire qu'il est
Proportionnel aux espaces parcourus dans ce mou-
Vement. Mais la notion des temps égaux et la me-
Sure du temps ne sont fondces nécessairement sur au-
Cune loi particuliére de mouvement, et Uon peut,
€n conséquence, les supposer dans la définition du
mouvement uniforme et de toute autre sorte de mou-
Yemens.

Concevons, en effet, que des corps parfailement
ldenthueq se meuvent successivement, et que, pen-
dant toute la durée de son mouvement, chacun des
mobiles se trouve exactement dans le méme état que
Celui qui I'a précédeé : il est évident que tous ces
Mouveniens, dont la loi n’est pas donnée, s'exécute~
font en temps égaux, et que leur nombre pourra
Servir de mesure au temps. Ainsi, par exemple, si
Ces corps sout pesans et relenus par un axe fixe hori-
Zontal, quon les écarte tous également de leur po-
sition ' ("(IUIILJIB , el qu'on lcs abandonne ensuite &
“Ux-mémes, de sorte que le mouvement du second
“Ommence deés que le premier est revenu & cette po-
8”10“ celui du troisieme aussitot que le second y
St revenu de méme, et ainsi de suite, il n’y aura
ducune différeuce possible entre tous ces mouvemens
Suceessifs qai Sachéveront en temps éganx. On prou-
Vera par la suite qu'il n'est pas nécessaire pour cela
que ce soient diffévens mobiles qui se succedent, et
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que les oscillations successives d'un méme corps, de
part et d’autre de sa position d’équilibre, sont aussi
isochrones, ou d’égale durée; mais la considération
précédente, qui ne suppose la solution d’aucun pro-
bleme de Méeanique, suffit & Uobjet que nous nous
somINes proposeé.

Les astronomes ont reconnu, par les observations
les plus précises et le plus souvent répétées, 'inva-
riabilité de la révolution apparente de la sphére cé-
leste autour de la terre; et, effectivement, la théorie
n'indique aucune inégalité sensible dans le mouve-
ment de rotation de la terre qui donne lieu a cette
apparence. On appelle jour sidéral la durée cons-
tante de cette révolution, laguelle duréde est moindre
que celle de la révolution diurne du soleil. Celle-ci
n’est pas exactement la méme a toules les époques
de l'année; el cest sa grandeur moyenne que 'on
prend pour unité de temps dans les usages ordinaires,
et que I'on appelle le jour moyen. Nous adopterons,
dans cet ouvrage, la division du jour en 24 heures,
de I'heure en Go minutes, et de la minute en Go
secondes; en sorte que la seconde sera la 86400°
partie du jour moyen. Le jour sidéral ne contient
que 86164,0g secondes; dou il résulte que pour
exprinier en jours sidéraux un temps donné en
jours moyens, il faudra le multiplier par le rapport
de 86400 a 86164,09, ou par le nombre constant
1,002737¢

it 12. Un mouvement uniforme différe d’un autre
par la grandeur de l'espace parcourn dans I'unité de
temps. Dang chaque mouvement uniforme, cet €5~
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Pace constant est ce qu'on appelle la vitesse du mo-
bi]e; mais , pour parler exactement , cet espace n'est
que la mesure de la vitesse, et non pas la vitesse elle-
Méme. La vilesse d’un point matériel en mouvement
€t une chose qui réside dans ce point , dont il est
animé, qui le distingue actuellement d’un point ma-
triel en repos, et nest pas susceptible d’une autre
définition. La vitesse exprimée, danos le mouvement
Uniforme, par lespace que le mobile déerit dans
thaque unité de temps, suppose quon prend pour
Unité de vitesse celle du mobile qui parcourt I'unité
linéaire dans I'unité de temps.

Dans un mouvement varié quelcongue, la vitesse
du mobile varie par degrés infiniment petits, et elle
est une fonction du temps qui se déduit, ainsi qu'on
le verra tout & I'heure, de celle qui exprime 'espace
Parcouru : mais, auparavant , il est nécessaire de con—
Naitre le genre de mouvement que prendra un point
Matériel en vertu de sa vitesse acquise , si la force
qui lui a imprimé cette vitesse, par son action con-
tinuée pendant un certain temps, vient i cesser

2gir, et que ce mobile soit abandonné i luj-
Méme,

113, 1l est d’abord évident que si le mobile sest
MU jusque la en ligne droite, il continuera & se
Mouvoir suivant le prolongement de la ligne qu’il

CCrivait; car il n'y aurait aucune raison pour que
e point matgriel s’éeartit de Ia direction qu’il a recue
Plutét dun chig que de 'autre. Mais nous ne pouvons
Pas affirmer, 4 priori, que la vitesse qui lui a été
"mprimée ne se ralentira pas d’elle-méme, ¢t ne fi-
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nira pas par s éteindre enticrement ; ce n'est que par
Pexpérience ¢t I'induction que cette question peut
étre décideée.

Or, & mesure que les obstacles a 'état de mouve-
ment des corps, tels que les frottemens et les résis—
tances des milieux qu'ils traversent, diminuent d’in-
tensité, nous les voyons persévérer de plus en plus
dans cet état ; et, toutes les fois que nous apercevons
une altération dans leur vitesse, nous reconnaissons
que cet effet peut ¢tre aliribué a une cause étrangére.
Nous sommes donc conduils & conclure que s'il était
possible quun point matériel , aprés avoir été mis en
mouvement, ne fat plus sollicité par ancune force,
et ne rencontrat aucun obstacle, son mouvement se-
rait rectiligne et uniforme, c’est-a-dire, le plus simple
de tous les mouvemens,

Ainsi, par exemple, si une parcelle de fer est mise
en mouvement dans le vide, sur un plan horizontal
et sans {rottement, par la seule action du pole d’un
aimant, et que tout a coup on détruise le pouvoir
attractif de ce pole, en y juxtaposant un pole égal et
contraire, cette parcelle continuera de se diriger vers
ce point ; mais son mouvement deviendra uniforme,
et sa vilesse sera plus ou moins considérable, selon
qu’on aura laissé agir la force attractive plus ou moins
long-temps.

L'impossibilité ol sont tous les points matériels de
se metire en mouvement on de changer le mouve-
ment qui lear a été communiqué, sans le secours
d’ane force, est ce qu'on entend par Vinertie de la
matiere. Ce mot ne signifie pas que la matiere soit
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incapah]e d’agir; car, au contraire, chaque point
Matériel trouve toujours dans action d’autres points
Matériels, mais jamais en lni-méme, le principe de
*0n mouvement.

114. Au bout du temps ¢, et quand le mobile
°¢ trouve & la distance x d’un point fixe pris sur
la droite quil déerit, soit v sa vitesse acquise, cest-
a-dire, Ia vitesse du mouvement uniforme qui aurait
leu, si, 3 cet instant, la force qui agit sur le mo-
e venait & cesser d’agir. L'action de cette force
Conlinuant, I'espace dx que le mobile parcourra
dans Pinstant d¢ sera déerit en vertu de cette ac-
tion et de la vitesse ¢ la partie de dx corx"espon-
dante a cette vitesse, qui serait décrite d’un mou-
vement uniforme, aura ¢d? pour valeur. En appe-
lant donc ¢ la partie de cet espace qui répond i
Laction de la force pendant instant d¢, nous au-
Tons

dr = odt | e

Or, la vitesse variant par degrés infiniment petits ,
Ct ses variations étant uniquement dues a 'action de
4 force appliquée au mobile, il sensuit que dans
€ temps dr cette action ne peut produire qu'une vi-
tesse infiniment petite ; par conséquent, cette méme
action ne pent faire décrire qu'un espace infiniment
Petit du second ordre, moindre que celui qui se-
Tait décrit uniformément par le mobile, s'i} rece-
Vait au commencement de df toute la vitesse qui
Sera produite pendant la durée de cet instant. Qp
Peut done négliger ¢ par rapport & vdf dans Iéqua-

X 14
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tion précédente; et alors on aura

dx

P = —
de?

pour I'expression de la vitesse dans un mouvement
quelconque.

Si I'on voulait connaitre la partie € de l'espace par-
couru par le mobile dans le temps dt, en vertu de
Paction de la force qui le sollicite, il faudrait con-
server les puissances de dt supérieures  la premiere.
Or, cn appelant ' la distance du mobile au point
fixe, an bout du temps ¢ 4 df, on aura, par le
théoreme de Taylor,

o = %dﬁ-l—i %(ﬂt’»—l—etc.,

pour l'expression complete de I'espace parcourn dans
cet instant d¢. Le premier terme, €gal a odf, est
Vespace dit a la vilesse acquise au bout du temps #;
si donc on néglige les termes du troisieme et des
ordres supérieurs par rapport a ceux du second,
on aura

d’x

1
PRy 3SR &
o di? dt 2

E —
ou, ce qui est la méme chose,

e =— ~dvdt,
pour la partie de Pespace &'—a que Laclion de Ja
force a fait parcourir. La vitesse produite en méme
temps par cette action etant de, on voit que Tes-

pace que le mobile décrirait uniformément,, pen-
dant ce temps df, sl recevait au commencement
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toute cette augmentation de vitesse, serait égal au
Produit de dv et di, ou double de espace ¢ qu'il
décrit véellement.

t15. Lorsque l'espace parcourn sera donué en
fonction du temps, on en dédaira immédiatement
la vitesse correspondante, aun moyen de I'équation

Vs

5 . .
T Par exemple, les mobiles, dans la machine

&' dhood , décrivant des espaces qui croissent comme
les carrés du temps, on en peut conclure que léurs
Vitesses acquises doivent étreé proportionnelles aux
temps pendant lesquels ces espaces sont parcouruas;
Ce que cette machine fournit, en effet, le moyen de
vériflier.

Réciproquement, si la vitesse est donnée en fonc-
tion du temps par la définition du mouvement, on
€ déduira, par lintégration, I'expression de Ves-
Pace parcouru. Ainsi, apres le mouvement uniforme,
le plus simple est celui dans lequel la vitesse aug-
Mente ou diminue, de quantités égales, en temps
“gaux, et qu'on appelle, pour cette raison , unifor-
Mément accéléré ou retardé. Si done on appelle g
‘accroissement conslant, positif ou négatif, de la vi-
tesse dans chaque unité de temps, et @ la vitesse dun
Mobile quand =0, la vitesse v & un instant quel-
€onque sera, dans ce mouvement,

v = a - gt;
€t en multipliant par dt et intégrant, on aura
Lo=p bt at S rgtt, 0
Pour la distance du mobile 3 un point fixe de la

14..
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droite qu'il décrit; b étant cette distance & l'origine
da temps 2.

Lorsque les deux constantes @ et & seront mulles,
on aura simplement

v=pgt, x = ;gt"

L’espace parcouru est donc alors proportionnel au
carré du temps; et la vitesse acquise au bout dun
temps quelconque # est telle qu'en vertu de cette
seule vitesse le mobile décrirait, en un temps égal
i £, un espace ¢¢ double de celui qu'il a parcourn.
Il s'ensuit que si 'on connalt espace parcouru dans
la premiére unité de temps, on aura, en le dou-
blant , la valeur de la vitesse constante g, par la-
quelle un mouvement uniformément accéléré differe
d'un autre mouvement de la méme nature.

Ce mouvement est celui des corps pesans qui tom-
bent dans le vide. En un méme lieu, la vitesse g
est égale pour tous leurs points; en sorte qu’ils dé-
erivent tous, d'un méme mouvement de cette espece,
des droites verticales. Cette vitesse varie d'un lieu
4 un autre; en prenant la seconde pour unité de
temps, et le metre pour unité lin€aire, on a con-
clu de l'expérience

g = 9",80896,

4 I'Observatoire de Paris.

La force qui produit des vitesses égales en temps
égaux est pour nous une force constante. Ainsi, la
pesantenr est une force constante; ce qui signifie
sci quelle agit avec la méme intensité sur les corps
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déja animés de vitesses quelconques, et non pas
seulement, comme dans le n° 5g, que son inten-
sité est la méme dans toute 'étendue d’un corps de
dimensions- ordinaires.

116. Les lois de V'équilibre ne supposent aucune
relation particuliére entre les forces et les vitesses
forrespondantes; et, pour résoudre les problemes
de Statique , il suffit de connaitre les rapports nu-
Mériques des forces, tels quils ont été définis dans
le no 5. Les lois du mouvement , au contraire , dé-
Pendent du rapport qui doit exister entre les gran-
deurs des vitesses produites par des forces donnces; et
ce rapport, dont la connaissance est indispensable
pour la solution des problémes de Dynamique, est
le méme que celui des forces, aihsi qu'on va le dé-
xontrer.

Soient toujours & et ¢ Iespace parcouru et la vi-
lesse acquise par un point matériel au bout du temps ¢:
Supposons qua cetle époque deux forces données f
€t f* agissent simultanément sur le mobile , suivant
]a- direction de son mouvement; désignons par u Ia
Vitesse infiniment petite que la force f imprimerait
4 mobile, si elle agissait seule pendant un temps
finiment petit, et par #' celle qui serait prodiite
Parla force f*, dans le méme temps, si I force fn’exis-
tait pas, Je dis que la simultanéité de ces deux forces
1€ modifiera pas les vitesses dont elles sont capables
S€parément, et que la vitesse produile par Ja force
j + flf sera + u", [_:’cst-h..dire qu’nu bout du
temps # 4~ 7, la vitesse du mobile sera devenue

L nl /S NV

e

e
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En effet, I'augmentation de vitesse du mabile ne
pourra dépendre que du temps = anquel elle sera
proportionnelle, et de I'état de ce point matériel,
ou, autrement dit, de sa position et de sa vitesse
pendant ¢¢ méme terps 7 ; ce ne serait donc gqu'en
influant sur cet état que l'action de la force S pour=
rait medifierla vitesse qui sera produite par la force f.
Or, pendaunt le temps t, la distance du mobile & un
point fixe et sa vitesse ne peuvent varier que de quan-
tités infiniment petites, négligeables par rapport & a2
et v; ses variations de distances & d’aulres points fixes
ou mobiles, d'ott peuvent émaner les forces 1 et s
sont ¢galement négligeables; par conséquent , la vi-
tesse que produira la force f, pendant cet intérvalle
de temps T, ne saurait étre modifide en aucune ma-
niere par Vaction simultanée de la force S'setilen
sera de méme 4 I'égard de la vitesse due & Ia force f7,
qui ne sera pas non plus changée par laction de S
Done la vilesse tolale imprimée au mobile pen-
dant le temps 7, par la force f~ 7, sera égale a
w .

On verra de méme que si la force S agit dans le
sens de la vitesse ¢, et la force £ en sens contraire,
Paugmentation de vitesse produite par la force JS=/"
sera €gale 4 70—/,

Quelle que soit la nature de chacune des forces f
et /', si elles sont capables d'une méme vitesse #
dans un méme temps infiniment petit, ce sont pour
nous des féf‘c‘t’é' égales . Applfque'es en sens contraire
I'une de lautre , elles ne changeront pas la vitesse du
mobile, s'il est déja en mouvement ; il y aura équi-
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libre, si ce point matériel est en repos; ce qui rentre
dans la définition des forces égales du n° 5.

Lorsque la force qui agit sur le mobile dans le sens
de la vitesse acquise , deviendra double, triple, qua-
druple,.... la vitesse qu’elle produira dans le temps ©
troftra suivant la méme proportion. Réciproquement,
quand cette force se réduira i moitié, au tiers, au
quart,.... la vitesse qui sera produite diminuera de la
Méme maniére; et , généralement, les vitesses infini-
ment petites produites pendant des instans égaux, dans
%e sens ou en sens contraire de la vitesse acquise , ou
imprimées 4 un point matériel en repos, seront entre
elles comme les intensités des forces correspondantes.

C'est sur ce principe général qu'est fondée la me-
sure des forces dans la Dynamique. On a coutume de
le présenter comme une hypothese; nous le don-
nons ici comme une conséquence necessaire de ce
que les vitesses imprimées par des forces quelcon-
ques , dans des intervalles de temps infiniment petits,
sont toujours infiniment petites, et de ce qu'en
fnéme temps les déplacemens des mobiles sont aussi
nfiniment petits.

117, Siles forces que Yon veut comparer I'une a
Yautre sont des forces constantes, de sorte que cha-
Cune d'elles produise , pendant toute la durée du mou-
Vement, des vitesses égales en temps égaux (n°i15),
€urs intensitds seront entre elles comme les vitesses
qu'elles impriment en un méme temps quelconque a
un méme point matériel. Lors donc que ces vilesses
seront données par Pohservation, on en conclura le
tapport des forces; et, réciproquement, quand ce

et
=
.=

3. =
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rapport sera donné g priori, ou pourra le prendre
pour celui des vitesses,

Désignons, par exemple, par @ et @' les intensi-
tés de la pesanteur & deux latitudes différentes, et
supposons qu'on ait déterminé, en ces deux licux de
la terre, les vitesses g et g, acquises en une seconde

par les corps qui tombent verticalement dans le vide;
on aura

@ @ g ogh

Le rapport de ces forces @ et @' sera aussi celui des
poids d’un méme corps, ou de deux corps homogénes
et d'un méme volume, i ces deux latitudes. L’ohser~
vation a fait connaitre que les vitesses dues a la pe-
santeur augmentent en allant de I'équateur au pole ,
et que l'accroissement total est 2 peu prés -+ de la
plus petite. Il sensuit done que le poids d'un méme
corps, transporté de I'équateur an pole, augmentera
de 35, et que, pour mettre en équilibre les poids de
deux corps homogenes placés en ces deux lieux de
la terre, il faudra que le volume du corps situé 2
I'équateur excéde de 2 celni du corps situé au
pole.

Soient encore @ l'intensité de la pesanteur dans le
sens vertical, et @, sa composante suivant une droite
qui fait avec sa direction un angle . D'aprés la régle
du parallélogramme des forces, nous aurons

T, = @ COs &}

et si 'on appelle g et g, les vitesses qui seront pro-
duites dans I'unité de temps par ces deux forces cons-

tantes , agissant séparément sur un méme point ma-
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tériel, la proportion
g 8 » ®w: @,
donnera aussi
g, = § cos a.

S_i ce point matériel pesant est posé sur un plan in-
tling, qui fasse avec le plan horizontal un angle égal
2 go° —a, la force @ se décomposera en deux au-
tees, 'une perpendiculaire au plan donné ct qui sera
détruite par sa résistance , I'autre dirigée suivant ce
méme plan et qui sera la force @, Clest cette der-
niere force qui produira le mouvement dans le vide,
abstraction faite du {rottement du mgbile contre le
plan incliné. Ce mouvement, dit & une force cons—
tante, sera donc uniformément accéléré ; et s1 'on
appelle x, et v, I'espace parcouru et la vitesse acquise
au hout du temps £, on aura

v, = g, Xy = %g;t';

quations dans lesquelles on devra mettre la valeur
Précédente de g,.

Cet exemple est trés propre & montrer la nécessité
de connaitre & priori le rapport des vitesses dues a
des forces dont le rapport est connu; car si I'on ne
Savait pas déduire g, de la vitesse g donnée par I'ob-
Sfl'vation , et qu'il falliit, pour faire usage de ces der-
Diéres dquations, déterminer aussi par I'expérience la
Valeur de g, qui répond 4 chaque valeur de angle 2,
a Dynamique se trouverait & peu prés réduite 4 une
Seience expérimentale.
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118. Pour mesurer une force variable, il faut en
considérer I'effet pendant un temps infiniment petit,
durant lequel on peut la considérer comme constante.
Soit donc @, dans un meuvement rectiligne quel-
conque, la force qui agit sur le mobile an bout du
temps ¢, et que nous regarderons comme une quan-
tité positive ou négative, selon que cette force agira
dans Je sens de la vitesse acquise ou en sens opposé.
Cette vitesse étant v an méme instant, elle sera
¢ =+dv au bout du temps £—--dt; en sorte que la
force @ aura imprimé une vitesse do au mobile dans
Vinstant d¢. Si donc on désigne par @ une force cons-
tante et connue, capable d'une vitesse g dans I'unité
de temps, et qui puisse, conséquemment, imprimer
au mobile une vitesse gdt dans le temps dt; on aura

@ a i de: gdt;
d’'ou l'on tire
s aelv
P = odi’

Apres avoir choisi arbitrairement une unité linéaire
et une unité de temps, on exprimera en nombres la

dy : :
conslante g ci'la valeur de :;; qui a lien au bout

d’un temps “onné. Cette formule fera ensuite con-
paitre, au méme instant, le rapport numeérique de la
force ¢ a la force connune @ ; et si celle-ci est la pe-
santeur, ce rapport sera celui de la force @ au poids
du mobile sur lequel elle agit; en sorte que ce point
matériel étant pesant et sollicité par la force @ en sens
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Contraire de la pesanteur, demeurerait en équilibre ,
sil'on trouvait, par exemple, _LRIEY

3 p b g, d£

On simplifiera la formule précédente, en prenant
@ et ¢ pour unilés; ce qui la réduira &

___(Iu
T B

_L’unité de force sera alors la force constante qui
"Mprimerait au mobile, dans l'unité de temps, une
Vitesse représentée par Lunité linéaire, de maniére
que si ces deux derniéres unités sont la seconde et
le métre » Lunité de force sera & peu prés le dixieme
du poids du mobile, daprés la valeur de g du
n® 5.
dv

On peut remarquer que cette mesure . de la
force variable @ est la vitesse que produirait, dans
unité de temps, une force constante qui conser—
Verait pendant ce temps la méme intensité que la
force @ pendant linstant ¢, Ainsi, dans le monve-
Ment d'une parcelle de fer vers le pole d’'un aimant,,;
9u€ nous avons déja pris pour exemple (n° 115 ), la
force ¢ dépend de la distance au pole, et est par
Yonséquent variable; mais si 'on suppose qu’a un
Mstant donné le pole recule devant le mobile, de
Maniere que la distance de I'an & Tautre devienne
Constante, la force @ le deviendra aussi, le mouve~
Ment se changera en un mouvement uriformément
accéleré, et I'augmentation de: vitesse qui aura lieu
d’fms Punité de temps sera la mesure de celte force &
Vinstant on elle est devenue constante.

e T e St b T

e e

|
!
|
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En ayant égard & la valeur de ¢ trouvée dans le
n° 114, on peut aussi écrire

2
Pie= T5

1l suit donc de cette formule et de la précédente
qu'une force a également pour mesure la vitesse
qu’elle produit dans un temps infiniment petit, divi-
sée par ce temps, ou bien le double de Vespace qu’elle
fait parcourir, divisé par le carré de ce méme temps.
Dans le mouvement uniformément accélérd, ces deux
manieres équivalentes de mesurer la force ont encore
lieu, sans qu'il soit nécessaire que le temps soit infi-
niment petif.

119. Nous avons maintenant

dx dv

-T_-—_-th, v:d—t" @_..._.m,

pour les formules générales du mouvement recti-
ligue. Elles montrent les rapports qui existent, dans
un mouvement quelconque, entre I'espace parcouru,
la vitesse acquise et la force qui agit sur le mobile,
et comment ces trois fonctions du temps peuvent se
déduire 'une de l'autre, soit par la différentiation,
soit par l'intégration.
En €liminant ¢ entre les deux derniéres, on a

‘ d*x
=G

ce qui suppose qu'on prenne le temps ¢ pour la va-
riable indépendante, et que sa différenticlle oz soit
constante ; hypothese que nous ferons de méme, dans:
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toute la suite de cet ouvrage, sans que nous ayons
besoin de le répeter.

Par 'élimination de df, on aura aussi

o Y d.y*
cP_; dx ?

e qui servira a déterminer ¢ quand la force ¢ sera
donnée en fonction de &, et, réciproquement, cette
force lorsque la vitesse sera connue en fonction de
lfesl)ace parcouru.

Nous donnerons, dans le chapitre suivant, diverses
applications de ces formules générales.

S W. Mesure des forces en ayant égard aux
masses.

120. Avant de montrer comment on devra tenir
“ompte des masses dans la comparaison des forces qui
agissent sur des mobiles différens, il importe de rec-
lifier une expression inexacte, que I'on emploie sou-
vent, et qui tient 2 une confusion d’'idées.

Concevons quun corps soit posé sur un plan hori-
29[11;11, et qu'il n'y soit retenu par aucun frottement.
Si je veux le faire slisser sur ce plan, il faudra néan-
Moins , 4 cause de I'inertic de la matiére, que j'exerce
un effort quelconque; si & ce corps on en joint un
Second, puis un troisitme, etc., il faudra que je dé-
Ploie, pour produire le méme mouvement , une force
de plus en plus considérable. Jaurai, dans chaque
Cas, le sentiment de leffort que je seral ohlige' de
faire ; mais je ne deyrai pas en conclure que la ma-

i
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liere oppose aucune resistance & cet effort, et qu'il
existe dans les corps ce qu'on appelle trés impropre-
ment une force dinertie. Quand on sexprime ainsi,
on confond la sensation que I'on a éprouvée, et qui
résulte de leffort qu'on a exercé, avec la sensation
d’une résistance qui n’existe réellement pas.

Lorsque le corps frotte contre le plan, il y a effec-
tivement une résistance au mouvement horizontal ,
et je ne peux pas déplacer le mobile sur ce plan sans
exercer un effort supérieur a cetle résistance. De
méme, quand je veux soulever le mobile verticale-
ment, il y a aussi une résistance & ce mouvement,
que je dois vaincre par un effort qui la surpasse.
Dans les deux cas, je ne produirai aucun mouve-
ment tanl que je ne ferai pas un effort plus grand
que le poids du corps, ou que son adhésion au plan
horizontal ; mais si l'on ne suppose ni pesanteur ni
frottement, je mectirai le corps en mouvement, quel-
que faible que soit I'effort que j'exercerai, et quel-
que grande que soit la masse du mobile : alors, si
jéprouve quil faut faire un plus grand effort pour
communiquer le méme mouvement & un corps qu'a
un autre, j'en conclurai que le premier se compose
d’une plus grande quantité de matiére que le second ;
et si je pouvais comparer avec précision les gran-
deurs des efforts que j'aurai exereés, leur rapport se-
rait celul des masses de ces deux mobiles. Cest sur
une semblable considération quest fondée, . ainsi
que nous allons Vexpliquer, la mesure des masses
d’apres les grandeurs des forces qui les mettent
en mouvement, et, réciproquement, la mesure
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des forces en ayant égard aux masses et anx vi-
tesses,

121. Deux points matériels, appartenaht i des corps
qui peuvent étre de nature différente, ont des masses
égales ou inégales, selon que des forces qu'on sup-
Pose égales leur impriment, dans un méme temps, la
Tuéme vitesse ou des vitesses différentes. Supposons ,
Pour fixer les idées, que les forces appliqudes & ces
deux points soient verticales, et.qu’apreés les avorr
Placées dans les deux plateaux dune balance, il y ait
€quilibre. Ces forces seront égales dans cette hypo-
thése; et cela étant, si les deux points sont rendus
entierement libres, et que les mémes lorces les met-
tent en mouvement, leurs masses seront égales ou
Inégales, selon qu'ils prendront, dans le premier
fm;tant » des vitesses infiniment petites, dgales ou
Inégales,

Lorsque, de cette maniére , les masses de différens
Points matériels auront été reconnues égales, en les
Yéunissant on formera d’autres points dont les masses
auront entre elles des rapports quelconques. Ainsi,
“R appelant w la masse de chacun des points égaux ,
M et m’ les masses de deux autres points formés de 7
€t 7' des premiers, m et m' seront entre elles comme
e nombres 7 ct 7/, et I'on aura

M=y = wie

Maintenant, soient u, o, ¢', des vitesses infiniment
Pelites, 7 et 7' des nombres entiers, et

—

Vo= i, o = .
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Si deux forces Jf et f' impriment anx masses m et
m' les vitesses ¢ et ¢ dans un méme ivsiant, je dis
quon aura °

fofl onome :om.

En effet, on peut regarder la force f comme la
somme d’'un nombre 2 de forces égales qui impri-
ment la méme vitesse ¢ i chacun des n points égaux
dont m se compose ; de sorte qu'en appelant & I'une
de ces forces égales, on aura

f = nk.

Soit, en outre , / la force qui imprimerait la vitesse z
i chacun de ces points égaux , pendant le méme ins-
tant que la force & lui imprime la vitesse ¢. Ces forces
agissant sur un méme point matériel, seront enire
elles comme les vitesses u et ¢ (n° 116); et, a cause
de v =iu, 1l en résultera

k = ih.
Nous aurons de méme
PRGN =2

en regardant f” comme la somme de 7’ forces %' ca-
p'lb‘les d'imprimer la vitesse ¢’ a chacun des pomts
égaux dont se compose n', et app(,]ant R la force qul
1mpumermt & chacun de ces mémes’ points la vi-
tesse . Or, h et & étant des forces capables d'impri-
mer dans un méme instant une méme vilesse z
deux points égaux en masse, sayoir, a deux des points
dont la masse commune a été representef, par u , i
suit de ce qui précede qu'on doit avoir '=h. I’ apres
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les €quations précédentes, on aura alors

= mhy, =ik

®t, en ayant égard aux valeursde m, m/, v, ¢/, il en
*ésultera la proportion qu’il s'agissait de démontrer.

123, Cela posé, considérons un corps de grandeur
¢t de forme quelconques, dont tous les points déeri-
vent des droites paralléles, avec une vitesse com-
Mune qui peut d'ailleurs varier avec le temps. Parta~
§€ous ce corps en une infinité de points matériels
Ygaux en masse, tels quon vient de les définir. On
pourra attribuer le mouvement de tous ces poinls &
des forces qui seront €gales et paralleles dans toute
I'étendue du mobile ; leur résultante, pour une par-
tie quelconque de ce corps, sera égale i leur somme ;
€t appliquée au centre de gravité de cette méme par-
tie. Les forces correspondantes a deux parties quel-
onques seront donc entre elles comme leurs masses;
Par conséquent, si Yon appelle f'la force totale qui
“git sur le mobile, 7z sa masse, et @ la force qui ré~
Pond a une partie de cette masse prise pour unité,
on aura

J = mp.

Quant 1 1a foree @, elle sera proportionnelle & Fac-
Croissement de la vitesse des points du mobile pen-

a0t un temps infiniment petit; et si 'on appelle ¢
Cette vitesse an bout du temps¢, on pourra prendre
Pour sa mesure, comme dans le n° 118,

dy
de’

1af =]
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1l en résultera donc

¥ dy
L= m(—#,

pour lexpression de la force dans un mouvement
quelconque, en ayant égard a la masse da mohile ,
et supposant tous ses points animés d’'une méme vi-
tesse.

Cette force f, qui est la résultante ou la somme
des forces infiniment petites quon peut supposer ap-
pliquées a tous les points dont le corps est compesé,
se nomme force motrice; le facteur ¢ de sa valeur mg@
sappelle force accélératrice, et n’est autre chose que
la force motrice rapportée a I'unité de masse.

La force motrice se change en une pression lorsque
la masse sur laquelle elle agit est appuyée contre un
plan fixe, perpendiculaire a sa direction, Une pres-
sion et une force motrice ne different done I'une de
l'autre qu'en ce que les vilesses infiniment petites
qu’une pression tend & produire sont incessamment
délruites par la résistance du plan fixe qui la sup-
porte, tandis que celles qui sont effectivement pro-
duites pendani chaque instant par la force motrice
saccumulent dans le mobile, et qu’il en résulte une
vitesse finie aprés un temps fini. Deux pressions sont
entre elles comme les masses multipliées par les vi-
tesses infiniment petites qu’elles tendent 4 leur im-
primer dans un méme instant, et quelles leur im-
primeraient, en effet, si ces magses étaient libres.

125. Si le mouverment commun 4 tous les points
d’un mobile est uniformeément accélérd, et qu'on ap-
pelle g Paugmentation de vitesse qui a lien dans
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chaque unité de temps, on a

¢ =g, . J= mg.

Pour une autre force constante S5 agissant sur une
Masse m/, et produisant une vitesse g’ dans l'unité |
de temps, on aura de méme

Ji= g,

Or, Tobservation a prouvé que deux corps pesans,
quelle que soit la différence des matieres acquie-
Tent la méme vitesse en tombant dans le vide pen-
dant un méme intervalle de temps. Dans le cas de la
pesanteur, on a done g = g'; et, conséquemment,
les poids fet f' de deux corps quelconques sont
enire eux comme leurs masses m et n7, ainsi que
nous l'avons supposé dans le n° Go. Le seul fait,
Constaté par une expérience journalitre, que des
corps hétérogénes ont des poids égaux sous des vo-
lumeg différens, ne suffisait pas pour décider si leurs
Masses sont égales ou inégales; il fallait savoir, de
plus que la pesanteur leur imprime le méme mou-
Vement, pour pouvoir conclure, de Végilité des
poids, I'égalité des quantités de matiére.

Le poids d’'un corps pesant qui tombe dans e vide
st sa force motrice , et la pesanteur est sa force aced-
lél‘atrice. Pour abréger, on appelle souvent pesan—
teur ou gravité la vitesse g, qui n'est que la mesure
de cette force.

E—— =

124. 8i des forces données agissent & la surface ou
sur d’autres parties d’un corps solide, et qu’il en ré-
sulte pour tous ses points des vitesses égales et pa-

5.

e

S
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ralleles, il faudra que ces forces aient une résultante
unique , qui coincidera, en grandeur et en direction,
avec la force motrice, telle qu'on vient de la définir,
et dont on déduira la force accélératrice en la divisant
par la masse entiere du mobile.

Supposons, par exemple, qu"un corps pesant tombe
dans 'air , dans V'eau, ou dans tout auntre fluide, et
que sa forme et sa densité, s'il n'est pas homogene ,
soient symeétriques autour d'un axe vertical, Il est
évident que tout ¢tant semblable autour de cet axe,
tous les points du mobile décriront des droites verti-
cales; ce qui exige, puisqu’il s'agit d'un corps solide,
quls alent tous la méme vitesse & chaque instant.
La résistance du milieu, qui s'exerce 2 la surface de
ce corps , se réduira donc & une force dirigée suivant
son axe de figure. Je désignerai par R son intensité a
un instant que]conque ,» par + la partie correspon-
dante de la force accélératrice du mobile, et par m
sa masse ; on aura alors

PrE

m
Comme cette force agit en sens contraire de la gra~
vité pendant la chute du corps, la force accélératrice
totale sera g — L. Si le mobile était lancé verticale-
ment de bas en haut, les deux forces agiraient dans
le méme sens, et la force accélératrice totale serait
néga‘tive et égale & — g — .

La theorie de la résistance des fluides est encoré
trop pen avancée pour qu'on puisse déterminer, @
priori, la yaleur de R, laguelle peut dépendre de la
vitesse ¢ dont le mobile est animé , de sa forme, de
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la densité et de Ja nature du fluide. Le plus commu-
nément, on la suppose proportionnelle au carré de ¢
€t a la densité du fluide, que je représenterai par p,
de sorte que l'on a

R = opv*;

@ étant un coefficient qui ne peut plus dépendre que
de la forme et des dimensions du corps, de la nature
du fluide » liquide ou aériforme , et de sa tempé-
Tature,

Dans le cas d’une sphere , on regarde le coeffi-
Cient o comme proportionnel & sa surface on au carré
de son diamétre. En désignant donc par r son rayoen ,
et par D sa densité, de sorte que sa masse soit

hw
i — %Dr‘q,
Il en résultera
T of
S

Y de'signaut un coeflicient numeérique qui sera le
Méme pour toutes les sphéres, et dont la valeur de-

Vra étre déterminée par lexpérience pour chaque

Nature de fluide. A cause que cette quantité + est de
4 méme nature que g, il s'ensuit que si Pon désigne
Par £ une vitesse donnée,, il faudra qu'on ait

Dr = k2

AR

t

afin que l'w‘:}ipression de < prenne la forme

y =8

i

i
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conformément au principe de ’homogénéité des quan-
tités (n°® 23).

125. Une méme force constante, agissant succes-
sivement sur des masses différentes, produira des
mouvemens uniformément accélérds , dans lesquels
la foree accélératrice, ou 1'accroissement constant de
la vitesse dans chaque unité de temps, sera en raison
inverse de la masse.

Ainsi, par exemple, f étant le poids mg dune
masse m, si l'on suspend cette masse & Pextrémité
d'un fil qui soit attache par son autre bout 4 une
aulre masse m’ posée sur un plan horizontal, il est
évideni que ces denx masses prendront un méme
mouvement uniformément acceléré, et di a la force
motrice f, abstraction faite du frottement et du poids
de la partie verticale du fil. 8i donc on appelle g’ la
force aceélératrice de ce mouvement, on aura

Roile £

o ——
= m 4 m'’?

ou, ce qui est la méme chose,

f
g = g cosa,

en désignant par « un angle tel que L'on ait
m = (m -+ m') cos a.

Par conséquent , le mouvement dont il s'agit sera le
méme que cclui d'un corps pesant sur un plan in-
cliné, qui fait Iangle @ avec la verticale (n® 117).
Tous les corps €tant mobiles et susceptibles de
prendre des vitesses en raison inverse de leurs masses;
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lorsqu’ils sont soumis, pendant un méme temps, a
Paction d'une méme foree, il s’ensuit qu’il n'existe
Pas de corps réellement Jixes; ceux qu'on appelle
ainsi sont des corps qui ont de trés grandes masses
par rapport & celles dont dépendent les forces mo-
Irices qu'on leur applique, et qui ne recoivent,
tonséquemment , de l'action de ces forces que des
Vitesses extrémement petites. A la surface de la terre,
Ce sout les corps attachés & cette surface qui ne font
quune seule masse avec celle du globe terrestre ;
¢t, en effet, en prenant cette masse pour m' dans
Vexemple précédent, on voit que la vitesse g/ qui
lui sera imprimde dans l'unité de temps, par un
powds mg correspondant a une masse m de gran-
deur ordinaire, potirra étre regardée comme tout-a~
fait insensible.

126. On a coutume d'appeler quantité de mou-
vement d'un corps le produit de sa masse par sa vi-
tesse. Pour me conformer & Yusage , j'emploierai cette
e€xpression , & laquelle il serait toutefois plus correct
de substituer celle de quantité de witesse, puisque
Cest la yitesse qui réside dans le mobile, et que
le mouvement n'en est qu’nn effet subséquent.

Il 'y a aucune force qui produise instanlanément
Unhe quantité finie de mouvement. Le choc d'un corps
solide en mouvement contre un corps solide en re-
Pos imiprime 4 celui-ci, dans nn temps trés court,
ais non pas infiniment petit, une vitesse qui peut
étre quelquefois tres grande; et, pendaut cet inter-
valle de temps, les deux corps ne se déplacent pas sen-
siblement. Quelque durs qu'on les suppose, ils se com-
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priment toujours un tant soit peu; la vitesse passe de
Pun & Vautre par degrés infiniment petits; et si I'on fait
abstraction de T'élasticité de ces deux corps, leur ac—
tion mutuelle cesse dés qu'ils ont des vilesses égales.
Cette commuuication rapide de la vitesse, sans dé-
placement sensible des masses, estce qu'on appelle une
percussion ou une impulsion; elle équivaut, comme
on voit, a une force motrice agissant, pendant un
temps tres court, avec une trés grande intensité,

En considérant ainst la percussion comme la somme
des actions infiniment petites d'une force motrice, on
en conclut qu'elle se décompose en deux autres per—
cussions , suivant des directions données, par la régle
du parallélogramme des forees, comme chacune de
ces actions successives. Si, par exemple, on exerce
sur la téte d’'un coin une percussion normale que j’ap-
pellerai P, elle se décomposera en deux autres per-
cussions perpendiculaires & ses deux faces; et si l'on
repréasente par Q et Q' les deux composantes , par K
et K'les lobgueurs des faces auxquelles elles répon-
dent, et par H celle de la téte du coin, il est aisé de
voir qu'on aura, d’apres la regle citée,

Jabrab g 850 S |
Q. P i K@ H;
d’ou Ton tire

. PK : PK
Q"—i[:]i) Q:—lT.

']

Ainsi, en supposant que celte percussion P provienne
d'une masse m qui vient frapper la téte du coin avec
une vitesse a, ses deuy faces, oun plutdt les obstacles
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fixes contre lesquels elles sappuient, seront dans le
méme cas que s’ils éialent frappés normalement
Par la méme masse m, animée de vitesses propor-

1 STL Ka
tionnelles 4 leurs longueurs, et exprimées par T
./
et Ilf
H

127. Si un corps solide en repos est frappé a la
fois, en sens opposés, par deux autres corps dont les
Masses sont m et m’, et les vilesses ¢ et ¢'; que ces
trois corps soient symétriques autour dun méme
ixe quant & lear forme et quant i leur densité, et
(ue tous les points des deux derniers se meuvent pa-
rallelement & cette droite, leurs percussions sur le
corps intermédiaire se feront equilibre,, lorsque les
quantités de mouvement mv et m'v' seront égales,
Cest-a-dire que ces quantités de mouvement passe-
Yont, pendant un temps trés court, dans le corps in-
termédiaire , et 'y détruiront sans que ce corps soit
déplacé d'une maniére sensible.

L’équilibre aura lieu également si l'on supprime
€ corps intermédiaire, et que la communication de
& vitesse ge fasse immédiatement entre les deux au-
tres corps. Ainsi, deux corps solides qui vont au-de-
Vant I'un de lautre se réduisent au repos, ahstrac-
Uon fajte de élasticité, lorsqn’ils viennent a se cho-
quer, et que leurs masses sont en raison inverse de

Curs vitesses; et, réciproquement, les produits des
Thasses et des vitesses sonl égaux quand il y a équi-
!‘}?r‘e dans le choc de deux corps solides. On suppose
'€1, comme on vient de le dire, les deux mobiles
F¥métriques antour d'une méme droite, et les vitesses
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de tous leurs points paralltles a cette droite, laquelle
est celle qui passe par les centres de gravité des deux
masses. La condition d’équilibre dans le choe de ces
corps est donc I'égalité de leurs quantités de mouve-
ment, ou 'équation

my = m'y';

m et m' étant leurs masses, et ¢ et o leurs vitesses.
Nous déterminerons par la suile les mouvemens qui
auront lieu apres le choc, quand ces conditions rela-
tives aux grandeurs et & la direction des vitesses, ot
4 la forme des mobiles, ne seront pas remplies , ou
bien quand on aura égard a leur élasticité.

Il vésulte de ceite loi de T'équilibre dans le choc
que la percussion fournirait le moyen le plus direct
de mesurer la masse des corps. On imprimerait une
vitesse connue @ a tous les points d’un corps dont la
masse serait prise pour unité; et si I'on pouvait dé-
terminer exactement la vitesse v dont tous les points
d’un autre corps devraient étre animés, pour qu’il
fit équilibre au premier; en le choquant en sens con-
traire de son mouvement, la masse de ce second
corps agrait alors pour valeur numérique le rap-
port ‘:, miais il est inutile de dire que ce moyen est
impraticable, et que c'est toujours aux poids des
corps quil faut recouric pour mesurer leurs masses:

1l g'ensult ansst que deux percussions, exercdes sur
un corps solide, devront éire regardées comme équi-
valentes, lorsqu’elles répondront & des quantités égales
de mouvement; en sorte que, dans lexemple du
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numéro précédent , la téte et les deux faces du coin
€prouveront les mémes eflets, ou seront frappées avee
la méme énergie , si la masse m et la vitesse a sont
Templacées par une masse 2 et une vitesse @', telles
que Pon ait ma = m'a’.

128. Lorsque deux percussions, provenant de vi-
tesses en raison inverse des masses, seront exercées
Simultanément sur les deux plateaux d'une balance,
ily aura équilibre; la balance remplacant ici le corps
Intermédiaire que nous avons considéré dans le nu-
Méro précédent. Ce cas sera, par exemple, celui de

eux corps pesans, dont les masses sont m et m/, et
qui tombent an méme instant sur ces deux plateaux,
apres avoir acquis des vitesses ¢ et ¢, telles que 'on
ait mp =m'y'.

Si la masse m est en repos dans 1'un des deux pla-
teaux, son poids y exercera une pression qui sera
g€néralement vaincue par la percassion de Vautre
Masse ; mais il n'est point exact de dire, comme on
le fait ordinairement, que cela aura toujours lieu,
quelque grande que soit la pression dans son es-
Péce, et quelque petite que soit la percussion dans
la sienme.

En effet, on peut remplacer la percussion de m'
Par une force motrice agissant sur l'un des deux
Plateaux sans le déplacer sensiblement, pendant un
ifﬂmps trés court que je représenterai par r. En dé-
Sgnant par m'udy la quantité infiniment petite de vi-
tesse dont cette force variable est capable pendant

Vinstant dt, le produit m’szHﬂ sera la quantité

o
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de vitesse qu’elle communiquera & la balance pendant
le temps ‘7. Pendant ce méme temps, le poids de m
produira une quantité de mouvement esprimée par
mgT, en représentant par g la gravité. Pour qu'il y
ait équilibre dans le systeme, il faudra done que l'in-
tégrale ‘/; " udt soit toute la vitesse ¢' dont la masse

m' est animée 4 l'instant ou la percussion commence ,
de sorte qu’il ne lui reste plus aucun degre de vi-
tesse quand le choc est fini; et, cela étant, il suffira

que les quantités de mouvement mgt et m’f ude ,
o

Imprimées en sens contraive & la balance pendant la
durée du choc, soient égales entre elles. La condi~
tion de cet équilibre sera done exprimee par l'é-
quation

SPLE i
my' = mgT ;

et selon qu'on aura, au contraire, m'y’ > mgt ou
m'y' < mgr, ce sera la percussion qui I'emportera
sur la pression, ou la pression sur la percussion.
Or, quoique le temps T soit extrémement petit, ce
dernier cas est possible, en supposant la masse m
suffisamment grande & 'égard de m/: pour qu’il firt
impossible, il faudrait que la durée de la percus-
sion fut infiniment petite ; ce qui n’a pas lieu dans
la nature.

La Dynamique sera une application continuelle
des principes que nous avons exposés en détail dans
ce chapitre, et dont il est nécessaire de se former
une idée précise , avant dessayer de résoudre les dif-
férens problemes relatifs au mouvement des corps-
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CHAPITRE II.

|
!
r
EXEMPLES DU MOUVEMENT RECTILIGNE. I

i
129. D’apres ce qu'on a vu dans le n® 119, les |~

. . o ‘ . % il
“quations du mouvement rectiligne d’'un point maté- ik

. s H
riel sont celles-ci : ,gj

V=

|
. ' fl
ds dv e % e
R e R =:,7 g £E) : W‘

dont la derniére est une suite des deux autres, et '
dans lesquelles on a désigné, au bout d’un temps J{
quelconque ¢, par a la distance du mobile 4 un point W ’
fixe de la droite qu'il décrit, par ¢ sa vitesse acquise, i
¢t par ¢ la force qui le sollicite ; ¢ étant une quantité 1 ‘
Positive ou négative, selon que cette force agira dans 1

€ sens ou en sens contraire de la vitesse ». Ces '.;
“Quations s'appliqueront non-seulement & un point i}
Matériel isolé , mais aussi 3 un corps solide de gran- i
deyr quelconque, dont tous les points décriront des i

Ioites paralléles, et auront, par conséquent, un i
Mouvement commun : @ sera alors la force accélé— I
Tatrice, égale & la force motrice divisée par la masse l
tu mohjle. 17

La valeur de ¢ sera donnée dans chaque probleme; i
e.t la question consistera a en déduire, par ]'intégr;t— I
tion , les expressions de ¢ et x en fonctions de Z, Elleg it
Conliendront deux conslantes arbitraires, dont on Jé-
terminera les valeuys dapres celles de x ¢t ¢ 4 Pori-
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gine du mouvement, qui devront étre données dans
chaque exemple. Dorénavant, nous supposerons tou-
jours que I'on compte le temps # a partir de cette
origine ; en sorte que les valeurs données de x et v
répondt‘onl' af=o.

L/intégration ne sera généralement possible sous
forme finie, que quand @ ne dépendra, comme nous
le supposerons dans les exemples suivans, que d'une
seule des quantités £, ¢, x. Lorsque la valeur donnde
de @ les contiendra 1outes trois, ou deux seulement ,
les valeurs de et ¢ ne pourront s'exprimer que par
les séries.

130. Supposons d’abord que la force ¢ soit cons-
tante, et qu’il s'agisse, par exemple, du mouve-
ment vertical dun corps qui tombe dans le vide en
vertu de la pesantenr.

En désignant cette force par g, nous aurons

d'x
ap =87
d’ou1 P'on tire
pe=gt; =gl
et, par conséquent,
PE—

28,

en supposant que la distance x soit comptee du pomnt
de départ du mobile, et que la vitesse initiale soit
nulle, de sorte quon ait x=o0 et y— 0, quant']
0.

Si l'on appelle a la vitesse acquise en tombant
d'une hauteur %, on aura
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a= Vagh;

®¢ qui fournit une expression commode d'une vi-
tesse quelconque, au moyen de la hauteur doi
"R corps pesant devrait tomber pour I'acquérir, et
de Ja vitesse constante g- Le temps de la chute de

Celte hauteur %~ étant representé par §, on aura
Algs]

0= E:\/?—"E he=lglh =2
g / g » £ «
Si le corps est lancé verticalement de bas en haut,
3 : P .
lequatlon de son mouvement dans le vide sera
'z oy, g
T e

o

§ ctant la méme vitesse constante que dans le cas
Précédent, parce que lon suppose l'action de la
Pesanteur sur les corps en mouvement, indépen—
dante du sens dans lequel 1ls se meuvent, aussi bien
Que de la grandeur de leur vitesse. En supposant que
@ soit la vitesse initiale, on en déduira

p=a—gt, x=at—3gt*,

Pour la vitesse et I'espace parcouru a un instant
flu(']COIlquc. Il est évident que le mobile s'élevera
Jusqu’a ce que cette vitesse soit nulle. Si donc on
?Ppelle 6 le temps de son elévation , et /4’ la hauteur
y ]aquellc 1l parviendra, on aura

el o

S

—— ¥
& 28

L comme ces valeurs coincident avee celles de eih

.

===

e i
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du cas précédent, on en conclut qu'un corps pesant ,
lancé de bas en haut avec une vitesse @ , s'éléve dans
le vide & la hauteur d’ou il devrait tomber pour
acquenr cetle méme vitesse, et que le temps de
son élévation est le méme que celui de sa chute.

Communément on appelle % la hauteur due &
vitesse @, et , véciproquement, a la vitesse due &
Lauteur £.

151. Soit que le mobile monte ou descende, il
suffira, pour former les équations de son mouve-
ment sur un plan incliné, de meitre dans les pré-
cédentes g cos e a la place de g, en désignant,
comme dans le ne 117, par a le complément de
I'inclinaison du plan donné sur un plan horizontal.
Dans le cas de la chute, on aura done

Ja
Ja

ve=gicose, x=jgi*cosa, ¢'==a2gx Cosa;

mais en appelant / la longueur du plan incliné , etk
sa haunteur, on a

h = lcose;

si donc on indique par £ la vitesse acquise par le
mobile, quand il aura parcoura toute cette longueur,
on aura

k* = aglcosa = agh;

ce qul montre que cette vitesse £ est la méme que sl
le mobile fiit tombé par la verticale %,

Soit ABC (fig. 34) la circonférence d’un cercle
dont le plan est vertical. Supposons que AB repré-
sente son diametre vertical, et cherchons, d'aprés
les équations préccdentes , le temps qu'an point ma~
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tériel pesant emploiera & parcourir la corde AC, ahou-
lissante & l'extrémité supéricure de ce diamétre. En
abaissant du point C la perpendiculaire CD sur AB ;
On_aura, dans ce cas,

AC=1, AD=17;

Mais si I'on désigne par 6 le temps demandé , on
aura

fef
=gt cose = gzl( 5

) 5 L -
t‘iapres une proprieié connue du cercle, on a d’ail-
len

rs

B—= hb,

en appelant 4 le diameétre AB; d’on I'on conclut

{= \/_l = {2

Or, ce temps est le méme que celui de la chute par
4ne hauteur verticale 4 ; il en résulie done que la
torde AC sera parcourue dans le méme temps que
le diametre AB.

On trouvera le méme résultat , en considérant le
Mouvement sur la corde CB qui aboutit a Textré-
Mité inférieure de AB, et sera aussi parcourue dans
€ méme temps que ce diametre vertical.

Ce théortme , indépendant de 1a longueur de la
€orde parcourue, subsistera encore lorsqu’elle devien-
fa infiniment petite ; ce qui tient 4 ce qu'en méme
temps la composante de Ja gravité, qui agit suivant
“ette longueur, ne sepa plus une quantité finie.

132, Considérons actuellement le mouvement d’un

1

[t

10 ]
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corps solide pesant qui tombe ou qui est lancé de
bas en haut dans un milieu résistant , et dont tous
les points décrivent des droites verticales. Pour que
la force accélératrice ne dépende que de la vitesse,
nous supposerons que le milieu ait partout la méme
densité.

Dans le cas de la chute, on aura
S gv*
=g — I= 2

en supposant la résistance proportionnelle au carré
dela vitesse (n® 124 ), et désignant par & une vitesse
constante et donnee. Cetie valear de @ étant une fonc-
tion de ¢, il fandra faire usage de la seconde équa-

tion (1), et l'on en déduira

=6+

En intégrant et supposant nulle la vitesse initiale, de
sorte quon ait ¢ = o quand {= o, il en résulte

gdt ﬂ di'

kv
u't P— {9 plire ey, S48
gt = k log - s
et, réciproquement,
agt
k—v =%

d’onr 'on tire
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_Je désigne ici par e la base des logarithmes népgé-
Tiens, et par log un logarithme de ceite espece. 1l
n sera de méme dans toute la suite de cet ouvrage;
¢e qui n'empéchera pas d’employer ‘quelquefois la
lettre ¢ 3 représenter d’autres quantités, dans des
formules ou la base de ces logarithmes n’entrera pas.
Elle 4 pour valeur approchée

e = 2,7182818 ;

€t celle du module constant par lequel il faut multi-
plier le logarithme népérien d'un nombre quelconque,
Pour en déduire le logarithme ordinaire de ce nombre,
esk

0,4342945.

A cause de dx = vdt, on aura

&t 8t
o ok e
x = log ; <e + e ), (3)

®n intégrant et supposant x =0 quand £ == 0. On a
aussi

R
gdx =
€l, par conséquent ,
Y k2 X
W= dog pre—=smal (4]

Pour la valeur de & en fonction de v.

153. Ces formules renferment la solution com-
Pléte du probléme. On en déduit cette conséquence,
que le temps augmentant sans cesse , le mouvement

16.,
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approche de plus en plus de l'uniformiié, et quil
esl sensiblement uniforme guand la vitesse g#, pro-
duite par la pesanteur, est devenue trés grande par

rapport & k. En eflet, en négligeant alors I'exponen-
gt

; k . S . .
tielle € *, qui est une trés petite fraction, on a
. L4
.:::Jl{, Qr=la, J’."___.kf""-':l()gz.

La résistance du fluide étant une force qui s'exerce
4 la surface du mobile, la force motrice qui en ré-
sulte est indépendante de la masse , et serait la méme,
soit que le mobile {it formé d’une matiere trés dense,
soit quon enlevat la matiere intérieure, et qu'on le
réduisit & une enveloppe irés mince. Or, la force
accélératrice se déduisant de la force motrice, en
la divisant par la masse du corps, il s'ensuit que
la premiére de ces deux forces sera, toutes choses
d’ailleurs égales, en raison inverse de cette masse,

t, par conséquent, A en raison directe de sa ra-
cine carrée. C'est pour cela que le mouvement
final, dans un milien résistant, est le plus rapide
pour le corps pesant dont la densité est la plus
granﬂe; la forme et I'étendue de la surface restant
les mémes.

(Quand la densité du milieu est tres faible par rap-
port & celle du mobile, la quantité £ est trés grande;
et ce n'est quapres un temps trés long que le mou-
vement peul approcher de l'uniformité, Tant que l2
viiesse g¢ n'est pas devenue trés considérable, on ay
en séries convergentes,
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1 T i &t o
-(8 — e =% 4+ & +ete.,

&t ‘v_‘) 5 ,
1 - ~ay ol igi
_({x"—]—{: . =1 —l—--fTim—{'—e[C.,

2 ak?
lO I( %l ,_"Si—t g}ér‘ gl[& £
G \e e =g el

@t les formules (2) et (3) deviennent

?i.‘\
) =gt——%+cic.,

L g:it;i

x

Il

gt* —

-} etc.

12k®

Elles se réduisent, comme cela doit &tre, A celles du
mouvement uniformément accéléré, lorsque la den-
sité du milien est tout-a-fait nulle, ce qui rend la
Juantité £ infinie.

154. Dans le cas oit le mobhile est lancé de bas en

laut, on a
.

¢ =—g—%.

Sf Sa surface supérieure est la méme que sa surface in-
féricure, 1a constante % sera aussi la méme que dans
€ cas de la chute; mais si ces deux portions de sur-
ACe sont différentes, les valeurs de % le seront éga-
“Ment; et, par exemple, §'il s'agit d’'un cone dont la
ase soit horizontale, la quantité k& sera beaucoup
_Plug grande ou beaucoup plus petite dans son mou-
Yement ascensionnel] que dans sa chute, selon que son
SOmmet sera situé au-dessus ou au-dessous de sa hase.
our fixer les idées , je supposerai que le mobile soit
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une sphere homogene; en appelant rson rayon, Dsa
densité et p celle du milicu, on aura alors (n® 124)

3 Dr
] J— -
e = =

o étant une constante qui ne peut plus dépendre que
de la nature du milieu, liquide ou fluide aériforme,
et de sa température.

En substituant cette valeur de @ dans la seconde
équation (1), on aura

Fedy el gdt
TS o .’

ct en intégrant et désignant par a la vitesse initiale
du mobile, 1l en résulte

arc (taug = —E—): arc (tang == ]i) — “—;‘o—t

La valeur de ¢ qu'on en déduit peut facilement s'é-
crire sous la forme :

k (acos‘:’:{—lssm'%:)
| % G e T,
asin = ~-k cos =

En multipliant par d¢ et intégrant de nouveaun, dé
maniére qu'on ait x=o0 quand =0, on en conclut

Ix‘x a . é"t £
X = log ('13 sin = - cos%

On aura aussl
Kpdy

({.L ——_m,

o
o
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¢t, par conséquent ,

Si l'on fait 7:-:::., et que'on suppose ensuite 2=o,
Pour appliquer ces formules au cas du vide, elles se
Présentent sous la forme g ; et, par la régle ordinaire,
o1 trouve, comme cela doit étre,

v=—a—gt, x=at—;gt*;

Yésultat qu’on obtient aussi par le développement en
Série, comme dans le numéro précédent.

135. Appelons Zla plus grande hauteur i laquelle
le mobile parviendra, et qui répond & ¢ = o; nous
aurons

Soit qussi §, le temps qu’il emploiera pour y parvenir;
S yaleur sera

k a
9. e g; arc (tang-_—_. 7).

Parvenu 4 ceite hauteur, le mobile retombera, et
*00 mounvement sera exprimé par les formules du
1° 152, §i I'on représente par a' sa vitesse, lorsqu’il
S¢ra retombé de toute cette hauteur %, on aura, d’a-
Pres I'équation (4),

I3 B

]i: lOg m,

25
0 égalant cette valeur de % 4 la précédente, on a

TirkR ] P
W=
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et, par consequent,
‘ : gk
! a® - =7
d’ou Von conclut @’ <Z a; en sorte que la vitesse du
mobile, quand il sera revenu & son point de départ,
‘ se trouvera moindre que sa vitesse initiale.

Soit aussi §' le temps de la chute totale, lequel ré-
pondra a y=a'. On aura

9 eI 1 —[— a

28 5 fa——
ou bien, en mettant pour a’ sa valeur,

b= "1lo g}ﬁf’Tﬂ"‘“
5 Va4 kt— a

valeur différente de celle du temps 8, de I'élévation.

, En multipliant par Va* + k* —a, le numératenr

& et le dénominateur de la fraction comprise sous le lo-
garithme, on aura, plus simplement,

k
e o} s
- g By

et si Lon appelle 8 le temps total 8 4= 0, de lallée €t
& du retour du projectile, on en conclura

i -;_arc(t':ng__i)-{—l()ff‘/ . ——

o . a* ; ——a
; Si le mobile est un boulet lancé dans I'air par u¥

e canon vertical, on pourra, malgré la rapidité de €€

i mouvement, mesurer le temps 9 avec quelque pr éci-

' sion; et si Pon connait, en outre, la vitesse de pre”
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jection @, I'équation précédente servira 3 déterminer
l‘ﬂ' valeur de k, relative au rayon r du boulet. En dé-
Signant par k' ce que devient & par rapport 4 un
dutre boulet de la méme matitre et d'un rayon ', on

4ury
=T
r
o=k \/_;
r

dapres Iexpression de 4* du numéro précédent.

136. Dans le cas ou 'on fait abstraction de la pe-
Santeur, et ou I'on suppose la résistance du milieu
Proportionnelle & une puissance de la vitesse dont
Pexposant est moindre que I'unité, la solution du pro-
bléme présente une singularité qui mérite d’étre re-
marquee.

Supposons qu’on ait, par exemple,

v
@:_23\/k ;

§ et k& étant toujours la gravité et une vitesse cons-
tante et donnée. L’équation du mouvement sera

dv_ \/7
dr T SR N s

€ en tirant la valeur de gdt, intégrant et désignant
Par ¢ la vitesse initiale, il vient

gt = VEk(Va — V),

€L, par conséquent,

it s (\/;I-*‘/L;_ -

En multipliant par dt, et intégrant de nouveau, de
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sorte qu'on ait x =0 quand £=o0, on trouve

a\/ﬁ 1 T

pour 'espace parcouru a un instant quelconque.
D’aprés la valeur de ¢, la vitesse diminue depuis

l'origine du mouvement jusqu’a l'instant qui répond

V ak

o

; a cet instant, la vitesse est nulle; au-

dela, le mouvement continue dans le méme sens
qu'auparavant, et la vitesse augmente indéfiniment.
Mais la vitesse étant nulle 2 un certain instant, la
force accélératrice est nulle en méme temps; par
conséquent, le mobile doit s'arréter a cet instant et
demeurer en repos. Or, il faut remarquer que I'é-
quation du mouvement admet unc solutien parti-
culitre y==0; en sorle que sa solulion complete est
I'ensemble de son intégrale et de cette équation y=o0;
il sensuit donc que le probleme est résolu depuis

t—o0 jusqua = "/'f , par l'intégrale de I'équa-
o

tion du mouvement, et au-deli de cette valeur de #,
par la solution particuliécre. Pendant le premier in-
tervalle de temps, le mobile déerit, dun mouve-
ment continuellement retardé, une ligne égale a

£ , a l'extrémité de laquelle il s'arréte et demeure

3¢
en repos.

Cet exemple, purement hypothétique, suffit pour
montrer la nécessité d’avoir égard aux solutions par-
ticuliéres des équations différeatielles du mouvement,
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s'il en existait; ce qui n'arrive pas réellement, d’apres
les expressions des forces en fonctions de la vitesse
acquise et de I'espace parcouru, qui ont licu dans la
Nature, '

157. Donnons maintenant des exemples de mou-
Vemens dans lesquels la force accéléralrice variera
avec l'espace parcouru.

Le cas le plus simple a lieu, lorsqu’il s'agit d'un
point matériel altiré vers un centre fixe, en raison
divecte de la distance a ce point, que l'on suppose
situé sur la droite que ce mobile décrit. Au bout du
temps #, soit z cette distance ; a une distance donnée a,
supposons que la force accélératrice soit égale ala
gravité g; on aura, d’apres la loi donnée,

¢

= —

o

Le .3

pour sa valeur 2 un instant quelconque. Si x est V'es—
Pace parcouru au méme instant, et que le mobile
S0it parti du point situé 4 une distance ¢ du centre
Qattraction, en se dirigeant vers ce cenlre, on aura

ANssy

dz
G e= C=— 0y t'-——-(—;{?,

€tla troisitme équation (1) deviendra

d*z

de*

—_—

g
= A
a

Son intégrale complete est

z-_:A(;()st\i/"é’—[—BS'Illi\/i;
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A et B désignant les deux constantes arbitraires. En

supposant nulle la vitesse initiale du mobile, on aura
a la fois

d’ou V'on conclut
A=¢, B=o,

el, par conséquent,

7 = ccosi\/é.
&

Cette formule montre que la distance z sera nulle
ou que le mobile atteindra le centre d’attraction, au
bout d'un temps indépendant de la distance ¢ de son

point de départ, et égal A %11:’ \/ é :il fera ensuite,

de part et d’autre de ce centre, des oscillations dont
Pamplitude et la durée constantes seront cette dis-

tance ¢ et ce temps é v \/ g.

138. Pour un autre exemple , considérons le mou-
vement d'un corps pesant dans le vide; nous suppo-
sons qu'il tombe d’une assez grande hauteur pour
qu'on doive avoir égard, pendant sa chute, i la
variation de la pesanteur.

Soient BAE (fig. 35) un grand cercle vertical de
la terre, D le point de départ du mobile dans ce
plan, M sa position au bout du temps #, sur la droite
DC qui aboutit au centre C de la terre, et rencontre
en A sa sarface. Appelons 7 son rayon CA, 7 la hau-
teur AD, x Pespace DM parcouru par le mobile, z5#
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distance CM au centre C; en sorte qu'on ait

z=7r-=+ L — 2

(&3
ot

La force accélératrice ¢ serala pesanteur au point M;

en la dcswnant touj0u1s par g a la surface de la terre,
Lest-a—dne, au poml A, et supposant que son inten-
Sité varie en raison inverse du carré de la distance au
Cenire C, on aura donc

] -
d'ol Yon tire

iu moyen de quoi la troisitme déquation (1) de-

viendra
d*x 2 grt
de — (r4h—z)

Je mul t:phe ses deux membres par 2dx; j'integre
®isuite ; puis je détermine la constante al‘blll‘dlI‘L

dr
de maniere qu on ait —

7 — 0, quand z=o0; il vient

8" (= )’
ar T +]t—r r+lz 4

€ qui fera connaitre la vitesse acquise par le mobile,
2 une distance quelconque & de son point de départ.
Wpoint A, ou 'on a & =#, cette vitesse sera

S hes

par tonsequmt moindre, comme cela devait
» que si la grayité avait, dans toute la hauteur h,
4 méme inlensité qu’a la surface.

et

& tre
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L’équation précédente donne

“ gr‘*_ e ok (r-+ 71—.1‘}7:{%'_
r+h o V(I‘—}—]ﬁ);‘c‘—.‘l’.;.

Or, en comparant cette équation différentielle & I'e-
quation (@) du n° 73, on voit que si I'on construit
une demi-cycloide DOC, qui ait son sommet au
point D et son origim. au point 0, situé sur la per-
pendl(:ulan‘(, CO 2 la droite CD, et dont le cercle gé-
nérateur ait pour diameétre cette droite CD co*aie 3

r =~ k; que J'on mene ensuite par le point ] "\fI une
perpendiculaire MN a la droite DC, qui rencontre la
cycloide au point N, on aura

. o
MN_—.t\/I_f_h

en sorte que I'ordonnée MN du point N fera connaitre
le temps £, employe a parcourir 'abscisse DM, et ré-
ciproquement. Sous forme finie, on aura

_'igi—w e —al) e _rth—azy
t\/:‘—f-k‘_‘ (r+4-h)x 37+2(r+11‘)a1.,(cos..___——r_l_ﬁ )

en intégrant, et en observant que 2= o0 quand =0

Lorsque la hauteur % et, consequemment la dis-
tance x, seront tres p(,lltes par rapport a T, cette fol‘
mule devxa différer trés peu de celle qui répond
pesanteur constante. En effet, on a

r—r—fb-— S ; 2V(r'+h);r—-?—")-
AT —_— —J—arc(gin=—2Y VT """ -
ﬂl(..(cos ’ + k ( 10 e 7 7

le sinus étant trés petit, on peut le prendre & la plac®
de Varc; ce qui rend d’zbord le second terme de la
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formule précédente égal an premier. On peut aussi
Mettre le rayon r au lieu de r—- 42—, et réduire,

Par conséquent, leur somme i a \/rx; et, de cette
Maniere, la formule dont il sagit deviendra

287" o
A \/;-—_.l—_—h—_-z\,:x,

o
fa)

%u simplement
h négligeant £ par rapport a r.

Je me contenterai d’indiquer, comme exemple de
calcul, le cas o le mobile soumis a une pesanteur
variable est lancé de bas en haut; et, pour dernier
exemple du mouvement rectiligne , je vais consi-
dérer le mouvement d'un point matériel attiré vers
deux centres fixes, situds sur la droite qu’il décrit.

159. Soient A et B (fig. 56), les deux centres
Qattraction , M la position du mobile au bout du
temps 7, et D son point de départ. On suppose ,
pour fixer les idées, que le mouvement a lieu entre
les deux centres d’attraction, et de A vers B;
faisons

DM:J:', AM=z, AD=e2, BM=¢—z

2
tn sorte que x soit I'espace parcouru, z la distance
“u mohile au point A, = la distance initiale, et ¢
- IOngeur de la droite AB. En supposant toujours
8 attractions en raison inverse du carré des dis-
tances, et désignant, i l'nnité de distance, par a*
€t &* les intensités des forces qui émanent des cen-

2 =

a b
tres A et B, nous aurons — et —— pour leurs
z /

(c—=
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intensités quand le mobile est en M. La force accé~
lératrice @ sera l'excés de la seconde force qui tend
i augmenter T'espace x, sur la premiére qui tend &
le diminuer; donc, 4 cause de dx=dz, on aura

d’z b a’
ar e—ar  B? (@)

=

N . a1 0 I S e dz
pour ce que devient la troisieme équation (1), et 5

pour la vitesse ¢ du mobile au point M.
En multipliant I'équation (a) par 2dz et intégrant

on a
dz* :
=+ =y ®

C—“F

~ étant la constante arbitraire. Pour la déterminer ,
je désigne par k la vitesse initiale quirépond & z=do}

o1 aura
2H* 2a>

En retranchant cette équation de la précédente, il ent
résultera

C—4a

dz® ;. 1 I 1 N
EF:A’—‘-.’Z[)’ ct—z‘———"-—'— —"2(1.’(;'——;), (L)

ce qui fera connaitre la vitesse du mobile, dans
une position quelconque entre les deux points A
ct B.

14o. Il y a, surla droite AB, un certain point Gy
dans ]equel les deux forces dattmcuon sont Lgaleqf
en sorte que si 'on y placait le mobile, ou ql‘-ll
hi p.u.vuu sans aucune vitesse acqms(, > il ¥y detm,ulV
rait en équilibre. En appelant % la distance AC, on 2
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<]
<
3

H® a?
ey =i

On tire de la deux valeurs de %, dont I'une appar-
tient ay point C situé entre A et B, et l'autre & un
Point situé sur le prolongement de AB, du cdié du
tentre de la moindre attraction. La premiére de ces
deux valeurs est

h 2an

a4 b

Appelons f'la plus petite vitesse initiale qu'il faut
Imprimer au mobile pour qu’il arrive an point C, de

Sorte que, parvenn i ce point , sa yitesse soit nulle;
on aura a la fois

Kot oF, =aves B 7 = 0;

°t, en vertu de I'équation (¢) et de la valeur de 4,

U en réenl tera

= Sl il et L il (d)
C~— g e c

Si la vitesse initiale % est moindre que f, le mobile
*etombera sur A ; si elle est plus grande, il dépas—
%era le point C, et ira tomber sur B. Dans le cas
9¢ & =, le mobile emploierait un iemps infini &
Ateindre 1e point C, 3 cause qu'a une distance infi-
Wiment petite de ce point, il ne serait plus animé que
‘une vitesse infiniment petite, et sollicité par une
Orce qui le serait également.
141, Si A et B sont les centres de deux Sphéres
lomogenes, ou composees de couches concen triques,
I.

in
4
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on pourra supposer que les attractions que 'on con-
sidere sont celles de ces deux sphéres; et alors leurs
intensités a* et 0%, a Punité de distance , seront entre
elles comme leurs masses (n° 101 ). En supposant,
par exemple, que A soit le centre de la lune et B
celui de la terre, et négligeant la non-sphéricité de
ces deux corps, on aura

2o

car la masse de la lune, conclue de son action pour

1

soulever les eaux de la mer, est % de celle de la
4

terre. On aura done

h = 1_-]—6775 e (0,[0552)();
en sorte que le point également attiré par la terre et
par son satellite se trouve, a peu prés, au dixieme
de leur distance muluelle a partir de la lune.

Soit r le rayon de la terre ; on pourra prendre Gor
pour la distance ¢ de la lune & la terre; et si le mobile
est parti de la surface de la lune, on aura en méme
temps o = ‘j—’; , d’apres le rapport connu du rayon de

la lune & celui de la terre. Au moyen de ces valeurs
deret a, et de gee — % - :
eret ¢, e a== oo équation (d) devient
I* = (0.044894)22.
94 =

En désignant par g lattraction de la terre & sa sur-

face, on aura
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B — N
/i are ,

to]

Pour cette force a I'unité de distance. Si donc on

A

fait

1l en résultera
o e — agr'.

Q!‘ » Vattraction g peut éire prise pour la pesanteur
dont elle est la partie principale; par conséquent ,
S est la vitesse due & une hauteur ' ; et 2 cause de

8§ = 97,808g6, @r = 20000000"
sa valeur est

'f — 25{“8“‘-

La lune n'ayant pas d'atmosphere dont la résis~
lance puisse diminuer la vitesse des corps partis de
%2 surface, il s'ensuit que si la terre et la lune
Claient en repos , un corps Jancé de Ia surface de la
Une vers la terre », avec une vilesse plus grande
ue 2361 meétres par seconde, dépasserait le point
d’égule attraction, et viendrait tomber sur la surface
de la terre, Dans le mouvement de la lune autour de
A terre, la droite AB qui va d'un centre a lautre
Tencontre constamment la surface de la lune en un
Méme point, qui devrait étre le point D, dou le
Mobile serait lancé suivant la direction DB ; mais,
Pendant upe secoude, le point D parcourt sur le
Cercle décrit du centre de la terre, une longueur d’en-
Viron 1ooo™ par seconde; par conséquent, la vi-
tesse absolue du mobile serait, en grandeur et en

/
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direction, la résultante d’'une vitesse dirigée suivant
DB, et d’'une vitesse de 1000™ perpendiculaire & DB.
Lela etant, le corps ne restera pas sur la droite
mobile AB ; il déerira une courbe dans I'espace, les
formules précédentes ne s'appliqueront plus a son
mouvement, et il ne viendra plus tomber sur la sur-
face de la terre, comme dans le cas de I'immobilité
de la lune.

142, En résolvant l'équation () par rapport & dt,
on a

ti—— Ve—zds ;

V 2a%c — (2a* — 2b* 4 cy)z + yz?*
L'intégrale de cette formule s’exprimera toujours
au moyen des fenctions elliptiques; en sorte que
Von pourra calculer, au moyen des tables de ces
fonctons , le temps qui répond a une distance don-
née z, et réciproquement. Mais indépendamment des
cas ou l'une des deux attractions est nulle, il en est
d’autres pour lesquels I'intégrale de la formule pré-
cédente peut encore s'obtenir sous forme finic. Ces
cas ont lieu lorsque la quantité comprise sous le
radical est un carré parfait ; ce qui exige qu'on ait

(2a* — 20* + ¢y )* = 8a*cy;
équation d'ou l'on tire
y = > (a==b)
C .

En égalant cette valeur a ceile de 9 du n° 139, il

vient

- _2b L1 22 2@k by

e'— @ ¢
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Lune de ces deux valeurs de £ est celle de J*; lautre
st évidemment plus grande. 11 s'ensuit done que
quand aucune des deux quantités a et b n'esl zéro,
o0 peut exprimer le temps sous forme finie en fonec-
tion de z, lorsque le mobile a recu la plus petite
Vitesse favec laquelle il peut atteindre le point C, et
lUPSqu’on lui a imprimé une certaine vitesse plus
Srande que celle-14.
Je substitue la double valeur de 7 dans Pexpres-
sion de dt ; il vient '
\/‘%- dr — VYV e—zds

ac — (a j—:_/;j—z ;

formule que T'on rendra rationnelle et qu'on ini¢-
grera, sans difficulté, par les végles ordinaires. La dif-
férentielle ¢ doit toujours étre positive ; la différen-
tielle dz est positive pendant que le mobile s’avance
de D vers B » et négative lorsqu'il revient vers A.
Dans e premier- cas, on prendra domc le radical
Viez—7*, avec le méme signe que le dénomina-
teur e — (a == b)z, et, dans le second cas, avec
m signe contraire.

143. Soit que 'on suppose b=0 ou c =, le
Mobile ne sera plus soumis qu'a Paitraction du cen-
tre A. L’équation (c) se réduira i

2
Ei,j = J* — ag® (i = -;—) ; (e)
aleur de ¢ quon en déduit s'intégrera sous
forme finie, et fera connaitre ¢ en fonction de z,

la‘f

: .. dz ) ;
Si Pon fait Z = ¢, on aura léquatlon
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2a* 2a?
e fr— O

e z ”

pour déterminer la distance z & laquelle le mobile
s'arrétera. Dans le cas de 2a*= k*a, cette distance sera
infinie; ce qui signifie que le mobhile ne sarrétera
pas. Il en sera de méme dans le cas de 20a* < k*z,
d'ou il resulterait pour z une valeur négative qui
ne peut appartenir a aucun point de la droite indé-
finie DB, suivant laquelle le mobile a été lancé. Dans
ces deux cas le mouvement approchera de plus en
plus de Puniformité, 2 mesure que le mobile s'éloi-
guera de A.

Quand la distance z sera devenue trés grande et
le mouvement sensiblement uniforme, sa vitesse,

\

d'aprés l'équation (e), sera & peu pres égale 2

2a* 1 & Al B ]
g/]i"‘ — —s,0ua Vh*— 2ga, en su pposant qu'on

a @*= ge*, c'est-a-dire, en supposant que le corps soit
parti de la surface d'une sphére, d’un rayon &, et ou
Fattraction était égale & g. Ce qui montre que la di-
minution de la vitesse initiale £ sera d’autant plus
grande que cette force et ce rayon seront plus con-
sidérables.
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CHAPITRE II1.

DU MOUVEMENT CURVILIGNE.

S I, Formules générales de ce mouvement,

144. Dans le mouvement curviligne, la courbe
décrite par le mobile est ce quon appelle la trajec—
toire de ce point matériel. Au bout d’un temps quel-
conque 7, soit M (fig. 37 la position du mobile. Si
Yon appelle s 'arc CM de la trajectoire compris entre
le mobile et un point fixe C, pris arbitrairement sur
Cette méme courbe, s sera une fonction de Z; en sorte
que Yon aura, dans un mouvement curviligne quel-
Conque,

Sx==Ht:

Si I'on désigne, au méme instant, par x, 7, z, les
trois coordonnées rectangulaires du mobile, ces va-
TMables sepont aussi des fonctions de #, et I'on aura
Cgalement

b of =ﬁf, 8 :-_-:f’f, 5 :—_‘f”t.

(1)

Lorsque ces trois derniéres équations seront con=
Mues, on en déduira, par I'élimination de #, les deux
Cquations en @, y, z, de la trajectoires Au moyen
des €quations de cetie courbe, on déterminera s en
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fonction de I'une des trois coordonnées, et, par suite,
en fonction de £; ce qui fera connaitre 1a loi du mou-
vement sur la trajectoire. Chacune des trois équations
précédentes est celle du mouvement rectiligne de la
projection du mobile sur I'un des axes des coordon-
nées ; il s'ensuit done que la détermination complete
du mouvement curviligne d’un point matériel dans
Vespace se réduira a celle de trois mouvemens recti-
lignes, qui seront les mouvemens de ses projections
sur les trois axes Ox, Oy, 0z, des coordonnées.
Quand ces trois mouvemens seront uniformes, celui
du mobile sera aussi rectiligne et uniforme , et réci-
proquement.

145. Pendant I'instant dt, le mobile décrira I'élé-
ment ds de sa trajectoire; en négligeant, dans cet in-
tervalle de temps infiniment petit, I'action des forces
qui le sollicitent, on pourra considérer son mouve-
ment comme rectiligne et uniforme. Si donc on ap-~
pelle ¢ Ja vitesse acquise au hout du temps #, on
aura

3T =
dt’
Si ces forces cessaient réellement d’agir i V'instant
que Y'on considére, le mobile continuerait de se mou-
voir avec cette vitesse ¢, et suivant le prolongement
MT de l'élément ds, c'est-a-dire, suivant la tangenté
3 la trajectoire, puisque en vertu de l'inertie de 12
maticre 1l ne pourrait alors changer ni la direction d¢
son mouvement ui la grandeur de sa vitesse (n® 113)-
On peut donc considérer un point matériel qui deé-
crit une ligne courbe quciconque comme étant animés
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a chaque instant, d’une vitesse dirigée suivant la
tangente 4 cette courbe, et exprimée par le rapport
de son ¢lément différentiel & I'élément du temps.

En représentant, au bout du méme temps £, par
P, q, r, les vitesses des projections du mobile sur
les trois axes des x » 7'» %, on aura aussi, dans ces
trois mouvemens rectilignes,

dx dy dz
B T T
Mais si I'on désigne par «, €, 7, les angles que fait
la tangente i la trajectoire, ou la direction de la vi-
tesse ¢, avec des paralleles aux axes des x, y, z, on
a(n° 17)

P iy Q—-dﬂ U _dz_
0 ﬂt—-—c};, COS — a7 LDb'J/-—dE,

dou T'on conclut
p=vecosca, q-.:vcosg, re=ycosy, (‘)
¢t en méme temps
ot = p* = ¢ - 1

Le temps £ croissant continuellement, sa différen-
tielle est toujours positive. Les vitesses p, ¢, r, sont
Positives ou négatives, selon que les coordonnées x,
F> 3, croissent ou décroissent. Dans les équations (1),
On peut regarder la vitesse ¢ comme une quaﬂtité
Positive ; le sens de cette vitesse, ou la partie MT de
}'“_ tangente 4 la trajectoire, suivant laguelle elle sera
dirigée, se déterminera alors par les signes de p,
9» r, qui feront connaitre si les angles 2, &, 5, sont

e

e

e
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ds
de?
rera la vitesse ¥ comme posilive ou comme négative,
selon que I'arc s croitra ou décroitra.

On appelle composantes de la vitesse ¢ d’un point
matériel les vitesses p, ¢, r, de ses trois projections
sur des axes rectangulaires; et chacune de ces trois
composantes est ce que on entend par la vitesse du
mobile, parallelement & I'axe auquel elle répond. En
comparant les équations (1) a celles du n° 51, on voit
que cette composition des vitesses se fera suivant les
mémes regles que celle des forces. D’aprés cette ana-
logie, si l'on meéne par le point M une droite quel-

- r
on conside~

aigus ou obtus. Dans I'équation v =

conque MA, qui fasse avec les paralléles aux axes
des x, ¥, z, menécs par le méme point, des angles
a, b, ¢, aigus ou obtus, la composante de la vi-
tesse ¢ suivant cette droite MA aura pour expres-
sion générale

peosa - geos b -~ rcosec.

La quantit¢ de mouvement (n° 126) d'un point
matériel isolé, et celle dun corps dont tous les
points sont animés de vitesses égales et paralléles,
se décomposeront en d’autres quantités de cette na-
ture, et celles-ci se réduiront & une seule, suivant
les mémes regles que les vitesses qu'elles ont pouf
facteur.

146. Au bout du temps ¢ 4 df, soient p—I—-P’:
g=¢', r-+1', ce que deviennent les trois compo~
santes de la vitesse du mobile, paralléles aux axes
des x, y, z; en sorte que p', ¢', v, représentent
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les augmentations infiniment petites de vitesse qui
ont lieu suivant ces directions pendant linstant dr.
Laceroissement de vitesse suivant la droite MA sera

peosa - q'cosb + rcos c.

(,Jl‘, quelles que soient les quantités p’, ¢', 1, s1
on fait

F — Pf: + qfn + rfl’
€l qu'on regarde » comme une quantité positive,
on pourra toujours trouver irois angles o', &, 9/,
digus ou obtus, tels que T'on ait

pP=ucosa’, ¢=uwucos€, r'=ucosy’;

au moyen de quoi l'accroissement de vitesse suivant
MA deviendra

u(cos a cos o'~ cos b cos €' 4= cos ¢ cos 3).

De plus, la quantité comprise entre les parentheses
“t le cosinus d’un certain angle que j'appelle o. L’ac-
Croissement dont il s'agit est donc dégal & u cos ¢';
P?r conséquent , z est sa plus grande valeur, et elle
Ypond 3 la direction de la droite MA, pour la-
Queile les angles @, b, ¢, sont les mémes que «,
Y ce qui rend le coefficient de u egal a I'unité.
ans toute autre direction , I'accroissement de vi-
tesse sera égal au maximum u, multiplié par le co-
Slnus de Pangle ¢ que fait ceite direction quelcon-
Tue avee eelle du maximum; dot il résulte qu’il
H‘?Pa nul par rapport & loutes les directions perpen-
d“-‘lllaires a celles de sa ]ﬂu:_-; gr.’.l[ll.’]ﬁ valeur,
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Quelle que soit la variation de vitesse du mobile ,-
en grandeur et en direction, pendant l'instant dt,
il y a donc toujours une certaine direction pour la-
quelle I'augmentation de vitesse est la plus grande,
et qui jouit de cette propriété, que, suivant toutes
les directions perpendiculaives a celle-la, la vitesse
n'est ni augmentée ni diminuéde.

147. La direction d'une force qui agit sur un point
materiel en mouvement est la droite suivant laquelle
elle anugmente ou diminue la vitesse acquise, et per-
pendiculairement a laquelle elle n’y produit aucune
altération. Ainsi, quand nous disons que la pesanteur
d'un corps en mouvement dans un sens quelconque est
verticale, comme celle d’un corps en repos, nousenten-
dons par la que cette force augmente la vitesse ver-
ticale, et n’altére aucunement la vitesse horizontale.

Cela étant, désignons, au bout du temps ¢, par
U, U, UY etc., les intensités des différentes forces
qui agissent sur le point matériel dont nous considé-
rons le mouvement curviligne ; par a, b, ¢, &', ¥/, ¢/,
a’, b", ¢, ete., les angles que font leurs directions
donuées avec des paralléles aux axes des «, y, z; et
par X, Y, Z, les sommes de leurs composantes sui~
vant ces axes ; nous aurons d’abord (n® 32)

X =Ucos a + U cos a + U" cos a" 4 elces
Y = U cos b 4 U cos &' 4+ U" cos B" -+ etcy
Z = Ucos ¢ + U cos ¢' 4 U" cos ¢" 4 etc
Soient ensuite wu, u', i, elec. , les vitesses infiniment
petites que ces forces U, U’, U”, etc., produiraient;
pendant Pinstant df, suivant leurs directions respec—
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lives, si chacune delles agissait seule sur le mobile
animé de la vitesse #. On verra , comme dans le
" 116, que la simultanéité de ces forces n'influera
Mullement sur les grandeurs et les directions des vi-
tesseg qui seront réellement produites; par consé-
quent, si 'on continue dappeler p', ¢/, 7/, les quan-
ttés infiniment petites dont les vitesses p, g, r, des
Projections du mobile sur les axes des a, 9y By Sac=
Croitront dans linstant dZ, ces quantites seront les
SOmmes des composantes de u, #, «", etc. , suivani
Ces trois axes; en sorte (ue Nous aurons

r

P = ucos a4+ w cos a' + ' cos a" 4 etc. ,

' =— u cos b ' cos B " cos b” etc.
2

M= ucos ¢ + u cos ¢ - u' cos ¢" - ete.

Mais en appliquant 4 chacune des forces u, o'

' »
uf

» €te., ce quion a trouvé (n° 118) pour la mesure
i =

QTune force d'apres la vitesse dont elle est capable,
o0 a aussi

U = Udt, ' = Ulde, o' = U'dt, etc;

1 d i |
8 comparant les valeurs de p’, ¢, ', & celles de X,
s Z, il en vésulte donc

Pl Xat, g == Ydt, o' = Zdis

C€ qui montre que l'accroissement de la composante
€ la vitesse du mobile suivant chague axe, dans
instant dt, est la vitesse produite, pendant cet ins-

ta“t, par la composante totale suivant ce méme

e, des forees dounées qui agissent sur ce point
Matériel.
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Ce résultat tient 5 ce que les forces sont propor-
tionnelles aux vitesses qu'elles impriment au mobile
dans un méme temps infiniment petit, lesquelles vi-
tesses infiniment petites ne changent pas, soit qué
ces forces agissent isolément, soit que leurs action$
aient licu simultanément. 1l s'ensuit aussi que si les
{orces appliquées au mobile sont, par exemple, au
nombre de trois, non comprises dans un méme plan;
que I'on prenne sur les directions de ces trois forees
U, U, U", & partir de lear point d'application , des
droites de grandeurs finies qui solent entre elles
comme les vitesses correspondanles u, u', #'; et que
I'on achéve le parallélépipéde dont ces trois droites
seront les cOtés adjacens, la résultante de ces forces
sera dirigée suivant la diagonale, et sa grandeur sera
i celle de chacune de ces forces comme la diagonale‘
est au cote correspondant.

148. Si les forces qui agissent sur le mobile sont
indépendantes de sa vilesse et de sa position daps
Vespace , les mouvemens de ses trois projections sur
fes axes des coordonnées seront indépendans entre
eux; en sorte que sa projection sur chaque axe s€
irouvera , au bout d'un temps quelconque, au mémeé
poiut, et aura la méme vitesse que si les forces et les
vitesses étaient nulles parallélement aux deux autres
axes. Ll n’en sera plus de méme, en général , quand
les forces données varicront, en grandeur ou en direc”
tion , soit avec la position du mebile, soit avec 5
yitesse acquise; mais on pourra toujours déterminé®
sa vitesse et sa position , & chaque instant, de la ma~
niere suivante.
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P uisque toutes les forces qui agissent sur le mobile
Peuvent toujours ¢tre réduites 4 une seule » Suppo-
5918 que U, capable de la vitesse 2, soit cette force
Lhique, et désignons par ¢ I'espace quielle fera par-
Courir ay mobhile pendant I'mstant d¢, suivant sa di-
Tection , indépendamment de la vitesse v de ce point
Matéricl au hout du temps £, D'aprés ce qu'on a va
“ans le n° 114, nous aurons

€ = Iudt.
| s . . .
M“I-‘S, en vertu de celle vitesse acquise v et de 'action
€ la force U ou de ses composantes, les espaces par-

ourus par les projections du mobile sur les axes des
*5 7> 2, pendant Vinstant d#, seront

pdt 4+ p'de, qdt H= s q'dt, rdt + 2rds,
done , a cause de
I e | (4
=ucosa, ¢=ucosbh, r=ucosc,

ten ayant ¢égard aux équations (1) ‘et & la valeur

(e5;0naum
x'-—-x:wcosa-—f—scosa,
Y —ry=wcos 6 - ¢ cos b,
F— z=wcosy + ¢ cos c;

@ €tant Yespace vdt qui serait décrit par le mo-
t: € dans Finstant dt, en vertu seulement de la vi-
€356 v, et .1,»’, L?,r,
u temps ¢
teﬂlps i

z/, ses trois coordonnées auw bout
~=dt, qui étaient x, 4, z, an bout du

Lela posé , soient toujours M ( fig. 37 ) le point
€ la trajectoire dont x, ¥, 5, sont les trois coor-

il ST

e L e——————

pEpevey

|
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données, et MT la direction de la vitesse ¢. Soif
aussi MA celle de la force U. Prenons sur MA et
MT des droites MH et MK, égales & ¢ et o, et
achevons le parallédlogramme MHM'K, dont ces
droites sont les deux cotés adjacens. Llextrémité M’
de sa diagonale sera, en vertu des équations préce-~
dentes, le point dont les coordonnées sont &/, ¥/, 2/,
ou la position du mobile au bout du temps £ - dt.

Appe]ons " la vitesse du mobile au point M,
laquelle vitesse sera dirigée suivant le prolonge-
ment M'T" de la droite MM/, et aura pour valeur
la composante de ¢ suivant MM’, augmentée de la
vitesse produite suivani celte direction par laction
de la force U pendant I'instant d¢. L’espace ¢ étant
infiniment petit par rapport 4 @, il s'ensuit que
Iangle TMM’ est aussi infiniment petit; la compo~
sanie de ¢ est donc cette vilesse méme, en négli-‘
geant les infiniment petits du second ordre. De plus;
si Yon désigne par &' angle AMM' que fait la di-
rection de la force U avec le cHté MM’ de la tra”
jectoirc, on aura u cos J' pour laugmentation de
vitesse qui sera produite par laction de cette forces
il en résultera donc i

¢ = v =} wcosdJ.

Je fais v dt = &', et je prends sur M'T’ une parti"'
MK’ égale & o'; je désigne par M'A’ la direction d°
la force qui agit sur le mobile quand il est parven®
en M'; sur cette droite, je prends une partie M’H_’
égale a Vespace que cette force peut faire parcon™”
au mobile dans un instant dz; jachéve le parn]léIO’
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Sramme M'H'M"K’; et l'extrémité M" de la diagonale
ST un troisieme point de la trajectoire.

En commencant cette suite de constructions an
point de départ du mobile, oit 'on doit connaitre sa
Vitesse en grandeur et en direction, il est évident
Tue I'on délerminera successivement tous les points
de 55 trajectoire plane ou & double courbure, et , en
Wéme temps, la vitesse dont il sera animé en cha-
“an de ces points. Si les intervalles de temps, qu'on a
“Upposés infiniment petits et désignés par df, sont
Seulement trés petits, on obtiendra une suite de
points qui seront les sommets d'un polygone , d’au-
fant moins différent de la trajectoire, que ses cotés
seront plus petits. En regardant la vitesse comme
constante sur chaque col€, et prenant pour sa valeur
la demi-somme des vitesses quon aura trouvées aux
deux extrémités, on pourra calculer le temps em-
Ployé i parcourir une portion quelconque du poly-
80ne ; par conséquent, on connaitra de cetle manitre
l2 courbe décrite par le mobile, ainsi que sa vitesse et
4 position & un instant donné sur cette courbe, a
tel degré d’approximation qu’on voudra ; mais il vaut
Mieux faire dépendre les valeurs des coordonnées du
Mohile en fonctions du temps, d'équations différen~
tielles que 'on intégrera ensuite s'il est possible.

149. Ces équations différentielles du mouvement
urviligne sont une suite immédiate du principe éta-
bli dans le pe 147.

En effet, les composantesde la vitesse dumobile, pa-

SR v . dx
13116165 aux axes de geg '_';U(_)pdonnct:s &y ¥y %, etant )

1. 18
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' dz
:5_17’ =+ au bout du temps quelconque ¢, leurs ac-

croissemens , pendant Iinstant df, seront d . i—f,
di

quement a la composante suivant 'axe correspon-

dant, de la force qui agit a cet instant sur le mobile,

il Sensuit quen appelant towjours X, Y, Z, les

compesantes de ccite force, paralleles aux axes des

coordonndes &, ¥, 5, nOUS aurons

dy dz ; ! ;
(I‘?fj?’ d.%-; et comme chacun d'eux est dit uni-

— Ydt, d.2 — 7dt,

podr dy
(.Z.E pr—— th, d.“ di

dt

ou, ce qui est la méme chose,

d'z dy d’z
E.:"_:X’ —[‘E‘f—,,:Y, T.sﬂ:z' (2)

Le probléme consistera, dans chaque cas, a -
tégrer ces trois équations du mouvement; et l'on
peut considérer, pour cette intégration, le procédé
du n° précédent comme une méthode générale d'ap-
proximation. Leurs intégrales contiendront six cons*
tantes arbitraires, que l'on déterminera au moyen
des trois coordonnées du mobile a 'origine du mou~
vement, et des trois composantes de la vitesse ini~
tiale , Clest-i-dive, au moyen des valeurs des s1X

o de dy dz % :

quamltes Xy, ¥ B o gp? g M seront donnee®
pour Z==0- Ces intégrales et leurs différentielles
premiéres feront ensuite connaitre la position du
mobile & un instant quelconque, et sa vitesse ent
grandeur et en direction. En éliminant entre elles
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le temps z, on aura les deux équations de la tra-
Jectoire, Quand on saura d’avance que cette courbe
st plane, on pourra prendre son plan pour celui
des & et y, par exemple; ce qui réduira les trois
€quations précédentes aux deux premitres.

150. Au bout du temps ¢, soient @, b, ¢, les
trois coordonnées d'un second point matériel, 4 la
Pposition duquel on veut comparer celle du premier.
Les axes de ces coordonnées étant ceux des x, ¥
% j& fais

X =a4 2, y=b+4y, z=c+ 7
les variables &/, 7/, 2/, feront connaitre & chaque
instant la position du premier point par rapport an
Secoud; et d'aprés les équations (2), on aura
d‘ d*a ¥ 0 a*h dz d'c

—X dr’ dr —de? W:Z—@’

pour les déterminer en fonctions du temps.

Quand le mouvement du second point ne sera
Pas connu, mais que l'on donnera seulement les
Composantes A, B, C, paralleles aux axes des coor-
dﬁﬂnées de la force qui le sollicite, on aura

d’a d2b d*c
==48 F=8 F=¢
til en résultera
dl‘r( d d"”
L= .7’ — A e e
T =X—A, =-=Y—B, —-=Z=C,

Pour les équations du mouvement relatif du pre-
Mier point.
Si la force dont A, B, C, sont les composantes
18..
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agit ala fois sur les deux mobiles, ces composantes
entreront aussi dans les valeurs de X, Y, Z, et
disparaitront de ces derniéres équations. Clest ce
qui arrivera, par exemple, 4 I'égard des corps qui
se meuvent & la surface de la terre, et dont on
rapporte les positions &4 des points déterminés de
cette surface : les forces relatives & ces points et
provenant du mouvement diurne de la terre, n'en-
trent pas dans les équations des divers mouvemens
que P'on consideére a sa superficie; et 'on en fait com-
pléetement ahstraction , en formant ces équations.

Toutefois, cela ne veut pas dire que les mou-
vemens que nous observons soient tous indépen-
dans de la vitesse de rotation de la terre, Elle
influe pour une petite partie sur lintensité de la
pesanteur , et, conséquemment, sur les mouve-
mens verticaux. De plus , quand un corps tombe
d’'une hauteur considérable, la vitesse de rotation
dont il est anmimé a son point de départ est un
peu plus grande que celle qui a lieu au pied de la
verticale menée par ce point; d'on il est aisé de
conclure que le mobile doit s’écarter un peu de cette
droite , et venir rencontrer la terre 4 une petite dis-
tance de son extrémité inférieure, Cetie déviation ,
qui a €té effectivement observée, rend sensible , pa¥
une experience directe, le mouvement de la terré
autour de son axe.

Les mouvemens indépendans de cette rotation sont
ceux que pI‘Odﬂit le choc des corps, et aussi ccuX
qui sont dus 3 P'action musculaire des hommes et de5
apimanx,
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¥51. Les équations (2) sont celles du mouvement
d'un point matériel entiérement libre; mais il est
facile de les étendre & un point matériel assujetti a
S¢ mouvoir sur une surface donnée. 1l suffira pour
‘?Cla » comme dans le cas de I'équilibre (n° 36), de
Joindre aux forces donndes qui agissent sur le mo-

hlle, une force de grandeur inconnue, qui repreé-.

Séntera la résistance de la surface. Celte force sera
formale a la surface donuée;; je la représenterai par N,
G par A, i, v, les angles qu'elle fait avec les prolon-
§emens des coordonnées x, 3, z, du mobile; les
equations du mouvement seront alors

%:X-{—Ncos?\,

d'y >

- =Y + N cos u, (3)
%:Z -+ N cos».

-

En représentant par L = o I'équation de la surface
donnée , et faisant, pour abréger,

dL* dLs dlsN—*®
e T i =0 s
V= (o 4+ 5 o
o0 aura (n® 21 ), en méme temps,

COSN: o r‘f_l_i - rd_L i f’f'ﬂ
A=V —, cosp =) T cosy =V -

A‘Pl‘bs avoir substitué ces valeurs dans les équa-
Yons (3), on éliminera entre elles le produit NV ;
les deux équations qui en résulteront, jointes i Li—o,
Serviront 4 déterminer a, 5 &, en fonctions de ¢, On
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tirera ensuite de l'une des équations (5), ou d'un¢
combinaison quelconque de ces équations , la valeur
de NV ; et comme N doit toujours étre une quantité
positive , le signe de cette valeur fera connaitre celui
de V; au moyen de quoi la force normale N et le
sens dans lequel elle agit seront complétement déter-
minés.

Si le mobile est assujeiti 4 se mouvoir sur deux
surfaces données , ou sur leur courbe d'intersection,
on le considérera encore comme enticrement libre,
aprés avoir joint aux forces données deux forces
inconnues N et N', normales a ces surfaces; et en
désignant par A, @, v, les angles qui détermineront
les directions de la premiére par rapport aux axes des
2, ¥, 5, et par A, &, ', les angles qui répondront
a la seconde, il en résultera

d

m—f— = X - NcosA -4 N'cos’,

d!

jfi— = Y - Ncosp 4 N'cosp/, » (4)
d'z

- — 4 + Ncosv + N'cos s,
pour les équations du mouvement. Si L=o est I'équa-
tion de la surface dont N est la résistance , et qu'ont
représente par L'=o celle de la surface a ]aquelle N’
c()rrespoud » les valeurs de cos &, cos u, cosv, seront
les mémes que précédemment, et celles de cos s
cos i/, cos 'y sen déduiront par le changement de v
et L en V' et L. Aprés avoir substitué les unes et les
autres dans les équations (4), on éliminera les pro~
duits NV et N'V'. L'équation qui en vésultera, et 1es
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€quations données L—=o0 et I/ = o , serviront a dé-
terminer les valeurs de x, 7, z, en fonctions de 2.
Cela fait, on tirera de deux des équations (4), les
Valeurs de NV et N'V/, dont les signes seront ceux
de V et V’; et, de cette maniére, on connaitra les
forces normales N et IV, et lc sens dans lequel elles
agissent : Jeur résultante sera, en grandeur et en
direction , la résistance de la courbe sur laquelle le
mobile est astreint 4 se mouvoir.

152. Pour donner une forme plus simple aux
€quations (4) , soient m la masse du mobile et mP la
Pression qu'il exercera, dans son état de mouvement,
sur la courbe qu’il est forcé de décrire. Désignons
par @, @', @', les angles que fait la direction
de cette force avec les prolongemens, dans le sens
positif, des coordonnées x, ¥, z, de ce point ; la ré-
sistance que la courbe oppose au mouvement du mo-
]?ile , considérée comme une force accélératrice, sera
€gale et contraire 2 P; en la joignant aux forces
données X, Y, Z, qui agissent sur le mobile, nous
durons, au lieu des équations (4),

.
Tz, Xo'P cosa,
di
d!‘
d—f:- =Y — Pcosa’, ) (5)
f—é = Z — Pecosa".
dt

La divection de la force P n’est pas connue & priori :
On sait seulement qu'elle est normale a la courbe
donnée; d'owr il résulte que le cosinus de I'angle
Compris entre cette direction et la tangente & la tra-

!
;ﬂ
i

$r——ra—
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jectoire doit étre égal & zéro; ce qui donne

dzr . dy ; dz 7 iy
- cos@ -+ - cos @' 4 - cos@’ = o. (6)

Les angles @, @', @", seront, en outre, liés entre
L eux par l'équation ordinaire
cos’aw -~ cos*@’ - cos*@’ = 1.
On éliminera P, @, @', @", enire ces équations, en

ajoutant les équations (5), apres les avoir multipliées
; dr ' o 2 , S 3
., par —, %, =+ en ayant €gard a I'équation (6),
et en faisant, pour abréger,

dx - dy dz

= Y = L — =

ds s ds + ds 5
on a alors

dzd®z 4 dydy 4 dzd’z
dsdi*

En différentiant I'équation identique
dx® 4 dy* - dz? ds®
de e et o
et divisant par 2ds, on voit que le premier membre de

2L - 73 o, 3 A ds
Péquation précédente est la méme chose que 5 on

aura douc simplement

s
aw = @ (7)

La force ¢ est la somme des composantes des forces
données, suivant la langente a la trajectoire, les~
quelles composantes seront regardées comme posi~
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tives ou comme négatives, selon qu’elles tendront &
dugmenter ou & diminuer Vare s décrit par le mo-
bile, L'équation (7) signifie donc que dans le mou-
Vement curviligne , comme dans le mouvement rec-
tiligne, la force qui agit sur le mobile dans le sens

Qe son mouvement esi égale au second coeflicient

S - > ds
différentiel de Iespace parcouru : i cause de v = =

di’
On peut aussi dire qu’elle est égale au premier coef-
¥ tel

ficient différentiel de Ta vitesse acquise v.

Cette équation étant indépendante de la résistance
de la courbe, convient aussi au mouvement d’un point
matériel entiérement libre et & celui d’un point maté-
riel assujetti & demeurer sur une surface courbe ; mais
t'est principalement dans le cas d’un point matériel qui
s¢ meut sur une courbe donnée, que cetle équation
Pourra étre utile. On tirera des équations de cette
Courbe les valeurs de o, ¥, z, en fonctions de s; et
apres les avoir substitudes dans Véquation (7], il ne
"estera plus qu'a intégrer cette équation du second
Ordre entre s et . Les deux constantes arbitraires
Tue renfermera son intégrale se détermineront au
Moyen des valeurs de s et %qui répondent 4 =o,
F"ffSt—il-dire , au moyen de la position et de la vitesse
mtiales du mobile. Quand les trois coordonnées o,
J> z, auront été détermindes en fonetions de £,
(f-'apl'és lintégrale de I'équation (7), jointe aux deux
Cquations donnges de la trajectoire , les équations (5)

ront connaitre, 4 un instant quelconque, les trois
“Omposantes de la pression P quéprouvera la courbe
sar laquelle le mobile est obligé de se mouvoir,
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On trouvera, dans le chapitre suivant, une déter-

mination plus Simple de cette force en grandeur et
en direction.

§ 1. Conséquences principales des formules
précédentes.

153. Lorsque le mobile est sollicité par une force
dirigée vers un centre fixe, on obtient immédiatement
trois intégrales premiéres des equations (2).

Pour cela, placons 'origine des coordonnées x, ¥, z,
en ce point; représentons, en grandeur et en direc~
tion, la force qui sollicite le mobile, par son rayon
vecteur; et construisons le parallélépipede dont ce
rayon est la diagonale, et qui a ses trois cotés ad-
jacens sur les axes des ¢, 7, z. Les trois coordonnées
2, ¥, &, du mobile seront les grandeurs de ces trois
cbtés, et représenteront les trois composantes de la
force donnée ; en sorte que I'on aura

XU NPT Wl 9 °F z;
d’otr I'on tire
Ry i= Yo, . fr=KXs.' Yz= 17

D'un autre coté, les équations (2) peuvent étre rem-
placées par celles—ci :

yarx —xdty = (Xy— Yx)de*,

2tz — zdlxe — (Zx i X;) di‘, (a)

zy —yd'z = (Yz — Zy) dr.

Or, leurs seconds membres sont nuls en vertu des
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équations précédentes; et comme leurs premiers
membres sont les différentielles de ydx — xdy,
Xdz — zdx , zdy — ydz, on aura, en intégrant,

ydx — xdy =cdt,
xdz — zdx = c'dt, (6)
zdy — ydz == c'dt;

¢, ¢/, ¢", étant des constantes arbitraires.

_ 154. Pour énoncer le théoréme contenu dans ces
Intégrales premiéres des équations du mouvement,
Considérons la projection AMB (fig. 38) de la trajec-
toire du mobile sur le plan des coordonnées x et y,
dont les axes sont Ox et Oy. Au bout du temps ¢,
soient M la projection du mobile, OP et MP son
abscisse x et son ordonnée y; et Cétant le pointon cette
courbe coupe l'axe Oy , appelons u le secteur COM,
P l'aire COPM, ¢ le triangle OPM; nous aurons

u=p—gq, q= %
Si M est la projection du mobile au bout du temps
¢~ dt, MOM' sera 'aire décrite par le rayon vecteur
de cette projection pendant I'instant d¢; ce sera aussi
la différentielle de » ou de p—gq; et & cause de

dp =ydx, dgq=1xdy-+3ydx,
on aura
du = % (ydx — xdy) ;

par conséquent, la premiére équation () signifie que
Paire décrite pendant chaque instant dt par le rayon
Vecteur de la projection M du mobile est constante
et égale 4 2cdt; donc aussi Iaire décrite pendant un
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temps ¢ quelconque, est proportionnelle a ceite va-
riable et égale a ;ct. Les aires décrites dans ce méme
temps par les rayons vecteurs des projections du mo-
bile sur les plans des - et z, et des y et z, seront de
méme ¢gales & L'z et L't

Concluons done que quand un point materiel est
soumis a une force constamment dirigée vers un
centre fixe, les aires décrites autour de ce point par
le rayon vecteur de sa projection sur un plan quel-
conque passant par ce meme point, sont proportion-
nelles au temps employé a les décrire.

Réciproguement, lorsque cette propriété a lieu par
rapport a trois plans rectangulaires mends par le
centre des aires, on en peut conclure que la force ou
la résultante des forces qui sollicitent le mobile est
constamment dirigée vers ce centre fixe.

En effet, si les équations (b) sont données, on aura,
en les différentiant,

ydr—xd'y=o0, xd*z—zd*r=0, zd'y—yd'z=0;

en vertu des équations (a), qui sont celles d'un mou-
vement quelconque, on aura donc aussi

Xy = Yu, Lo Xz, Yoo

par conséquent , les forces X, Y, Z, seront entre e]lﬂS.
comme les coordonnées &, ¥, z, du mobile; ce qut
suffit pour que leur résultante soit constamment di~
rigée vers Porigine des coordonnées. Au reste, cett€
force peut étre attractive ou répulsive, ¢est-a-dire
qu'elle peut agir suivant le rayon vecteur du mobilé;
ou suivant son prolongement.
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135, Lorsqu'un point matériel est soumis & une
foree dirigée vers un centre fixe, il est évident que
54 trajectoire est une courbe plane, puisqu'il n'y au-
Tait aucune raison pour qu'il sortit, plutdt d'un coté
quede I'autre, du plan passant par ladirection de savi-
18sse initiale et parle eentre fixe. Cest aussice que I'on
déduit des équations (b); car en les ajoutant, apres les
avoir multipliées par z, y, a, et divisées par dt, il vient

ez =+ 'y + "v = o.

On peut prendre ce plan pour celui des x et e
Vaire décrite par le rayon vecteur méme du mohile,
dans le plan de sa trajectoire , sera donc proportion~
nelle au temps; et, de plus, le théoréme précédent
Se réduira a cette proportionnalité. En effet, si elle a
lieu pour I'aire décrite sur le plan de la trajectoire,
elle aura lieu egalement pour laire déerite par le
Yayon vecteur de la projection du mobile sur tout
duire plan ; car cette autre aire n’est autre chose que
d projection de la premiere sur ce plan; et nous sa-
Yons (n° 10) que la projection d’une aire plane a un
Yapport constant avec l'aire projetée.

156. L’aire infiniment petite MOM' peut aussi s'ex—
Primer en coordonnées polaires. Pour cela, désignous
Par r le rayon vecteur OM, et par g I'angle MO
qQuil fait a:rec I'axe des . Décrivons du point O,
‘Omme centre, I'arc de cercle OMN qui coupe au
Point N le rayon vecteur OM’ correspondant & I'angle
b— db, et qui aura pour longueur rdf. Le secteur cip-
eulaire MON seva égal & Lodf), et pourra étre pris
Pour Faire MOM', en négligeant Iaire MNM', infini-
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ment petite du second ordre. On devra donc avolr
ydx — xdy = r*db;

’ - 3 r_ o N - -
équation que I'on vérifie effectivement au moyen des

valeurs
& == rcos b, - ="rsmnl;

et de leurs différentielles, qui sont
dx=cos8dr+-rsin6d8, dy=sinbdr— rcosfds,

3 cause que celle de l'angle 8 est ici —df. De cette
maniére, la premiére équation () prendra la forme
rdl = cdt,

sous laquelle on I'emploie ordinairement.
On exprime de méme en coordonnées polaires I'é-

lément de la courbe. En désignant I'arc CM par o et
cet élément par do, on aura a la fois

MM =ds, MN=rdi, NM'=dr;

en considérant MNM’ comme un triangle rectiligne
rectangle en N, on en conclura donc

de* = dr* 4 r*db*;
ce qu'on peut aussi déduire de la formule
do* = dx* 4 dy*,

au moyen des valeurs précédentes de dx et dy.

A cette occasion, nous ferons remarquer que , dans
une trajectoire plane, les composantes de la vitess®
du mobile suivant le prolongement MO’ de son rayor*
yecteur MO, et suivant la perpendiculaire a ce rayo?
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Sont exprimées par
dar rdj

e’ &’
Car angle O'MT que fait ce prolongement avec la
tangente MT est complément de I'angle M du triangle
MMN ; d’apres ce triangle, on a donc
cos O'MT = d’, sin O'MT = "% d{,- ;

€l en multipliant ce cosinus et ce sinus par la vitesse
de . . ;
4 » dirigée suivant MT, on aura les composantes dont

il sagit. Il est souvent utile d’en faire usage. Elles

dx
différent des composantes —- et de la méme vitesse

dr

en ce que les directions de ce]les~01 sont fixes, et
que celles des précédentes varient avec la position
du mobile.

d,_
La vitesse =, avec laquelle le rayon vecteur OM
di

déerit I'angle COM, compté & partir d'une droite fixe,
stce qu'on appelle la vitesse angulaire du mobi]e Elle

Se dedult comme on voit; de sa wtesse -, perpen-

diculaire 2 OM, en la divisant par la longueur de ce
Tayon.

157. Revenons maintenant aux équations diffé-
fentielles du mouvement.

Ajoutons les équations (5) du n° 152, aprés les
avoir multiplides par dx, dy, dz; en ayant égard &
1equat10n (6) du méme numéro, et observant que

d? 9. £
ded’z 4-dy &y + dzd'z ld_d_f_ e .o
de* 2 di* 2
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il en résultera

3 30 = Xdo + Ydy + Zdz. ()

Supposons que les expressions des forces donnees
X, Y, Z, ne venferment explicitement ni le temps 7,
ni la vitesse v, et qu'en considérant 2, y, z, comme
des variables indépendantes, cette formule (c) soit
une différentielle exacte’; faisons, en conséquence,

i Xdx 4 Ydy 4 Zds —=d.F (=, y, 2);

F indiquant une fonction donnée : en intégrant I'é-
guation (¢) et désignant par C la constante arbitraire,
nous aurons

v* = oF (=, 7,3 + G

Pour éliminer cette constante, soient a, b, ¢, k, les
valeurs initiales de &, y, z, v; on aura

k* = aF (a, b, c) + C,
et, en retranchant cette ¢quation de la précédente,
=4 aF (x, 7, 2) — 2F (a, b, ¢). (d)

Ce résultat étant indépendant de la résistance N dé
Jig la courbe, égale et contraire 4 la force P qni entrail
dans les ¢quations dont on I'a déduit, il Sensuit qu'ﬂ
| a également lien dans le mouvement d'un point ma~
i teriel entierement libre, et dans le mouvement su¥
Bl une surface ou sur une courbe donnée.

La conséquence immédiate de cette équalion (d)>

dest que la vitesse est constante et le mouvemen!
aniforme toutes les fois que le mobile n'est sollicité

par aucune force dounée; car alors la fonction ¥ est
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nulle, et Pon a p=4k, soit que le mouvement ait
lieu sur une surface ou sur une courbe donnée, ou
que le mobhile soit entierement libre.

Cette équation nous montre, de plus, que dans la
*Upposition qu’on a faite sur la nature des forces X, Y,
4, Taceroissement du carré de la vitesse du mobile,
€0 passant d’unc position 4 une aulre, est toujours le
Wéme, quelle que soit la courbe quil a déerite, et
e dépend que des coordonnées a, b, ¢, x, 7, z,
ﬁlcs deux points extrémes. Lorsque celte courbe sera
F{Onnée, ou seulement lorsque le mobile sera assu-
Jetti & se mouvoir sur une surface donnée, on pren-
dra pour £ la vitesse du mobile tangente a cette courbe
ou a cette surface. Si la percussion exercée sur le
mobile 4 I'origine de son mouvement n’a pas cette
direction, elle se décomposera en deux autres forces,
Pune normale et Iautre tangentielle; la premiére sera
détruite par la resistance de la courbe ou de la sur-
face donnée ; et c'est la seconde qui produira la vi-
tesse £, et qui en déterminera le sens et la direction.

Si T'on désigne par C une constante arbitraire, I'é-
Juation

¥i(w, vy 2y =G,

Sera celle d'une surface qui sera aticinte avec des vi-
tesses égales par tous les mobiles soumis aux mémes
forces, partis du point dont a, b, ¢, sont les coor-

onnées, suivant différentes directions ct avee une
Méme vitesse /. Lorsque, par exemple, ces mobhiles
te sont sollicités que par la pesanteur, celle équation
¢st celle d’un plan horizontal.

1.
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Dans le cas d'une courbe donnde, on déduira de
ses équations les valewrs de ¢, y, %, en fonctions de
Vare s; en les substituant, dans I'équation (d), et ¥

ds .
mettant — & la place de ¢, on en tirera
dt = Sds 2

ou S est une fonction donnée de s ; par conséquent,
dans ce cas, la détermination du temps en fonction
de Vespace parcouru se trouvera réduite i 'intégra-
tion d’une différentielle donnée. Mais la supposition
sur laquelle est fondée 'équation (d), et, conséquem-
ment , cette équation, n’auront pas lieu quand le mo-
bile éprouvera la résistance d'un milieu, qui est uné
force dépendante de la vitesse; il en sera de méme
lorsqu'il sagira du mouvement d’un point matériel
attiré ou repoussé par d’autres points qui seront eux-
mémes en mouvement; circonstance qui introduira
le temps ¢ explicitement dans les valeurs de X, Y, Z.
Dans ces deux cas, si la trajectoire est une courbe
dennée, on fera usage de I'équation (¢), dans laquelle

on me'tlrag au lieu de ¢, et qui se changera dans
Péquation (7) du n° 152.

158, La formule Xdx -~ Yy 4 Zd= sera une dif
férentielle exacte, comme on vient de le supposers
toutes les fois que le mobile sera altivé ou repoussé
par dis centres fixes, et que les intensités de ces forces
seront exprimeées par des fonctions de la distance au®
centres dont elles émanent,

En effet, soient e, f, g, les trois coordonnées d'unt
des centres fixes, rapportées aux mémes axes que &
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Xy . Désiguons par r la distance du mobile & ce
Pomt; on aura

= (e — @) (f =)+ (5 — '

€t les cosinus des angles que cette droite » fait avee
des axes menéds par le mobile, suivant les directions
des 2, Y5 %, positives, seront les rapports de e—

— > §— %, ar. Sidonc on représente par R la
force attractive, dirigée du mobile vers ce centre
fixe, ses trois composantes auront pour expressions

Rle—z) R{f—y) R@g—s)
. /

r r 2 r >

et, conséquemment, la partie de Xdy Yy 4 Zdz
qui proviendra de R sera

R . ‘
e ) de + (f—§) dy (5 — 2) .
Mais en différentiant la valeur de 7%, on a
Pr = — (¢ — x)dxe — (f—y)dy — (g —z) dz ;

€e qui réduit 2 — Rdr la quantité précédente. Si la
f‘m‘ce qui émane du centre fixe était répulsive, il suf-
jl}"ait de changer le signe de cette quaniité , qui de-
Viendrait Rdr, en considérant, dans tous les cas, R
“Omme une quantité positive.

On conclut de 1a que si le mobile est sollicité par
" nombre quelcongue de forces R, R', i, elc., qui
“Mmanent de centres fixes, dont les distances & ce point
Materiel sont r, 1, 1, etc., on aura

Xflx—f-Yf{_}‘ ~+Zdz = =Rdr=R'dr' = R'dr = ete;

]f} .

j
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les signes supérieurs ayant lieu dans le cas des altrac~
tions, et les signes inférieurs dans le cas des répul-
sions. Or, en supposant que chacune de ces forces soit
ane fonction donnde de la distance correspondante,
tous les termes de cette valeur de Xdax - Ydy - Zdz
seront des différentielles dépendantes d’une seule va-
riable, et, par conséquent, cette formule sera une
différenticlle exacte ; ce qu'il s'agissait de prouver.

On voit aussi par la, et d’apreés I'équation (d), qué
Vaccroissement du carré de la vitesse provenant de
chacune des forces R, R/, R", etc., sera le méme
que si elle existait senle : & I'égard de la force ki,
par exemple, cet accroissement sera exprimé par
= 2 fRdr, en prenant l'intégrale de maniere qu’elle
g’évanonisse pour la valeur initiale de r.

15g. Dans le cas d'un point matériel pesant, qui
se meut, sur une courbe donnée, dans le vide et sans
frottement sur cette courbe, I'équation (d) se ré-
duira &

o=k 4 og — ),

en désignant par g la gravité, et prenant I'axe des *
positives vertical et dans le sens de cette force, de
sorte qu’nn ait
N e Z_—""S'
Soient ADBC (fig. 39) la courbe donnée, B so”
point le plus bas, A son point le plus élevé, qut
peut n’étre pas dans la méme verticale que B, et -
Je point de départ du mobile. Placons en ce dernie’
point Vorigine des z, et supposons que la vitesse ini-
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tiale £ soit due & une hauteur % ; nous aurons

et, par conséquent,
v = a2g(h 4 =z).

Il en résultera que quand le mobile arrivera au
point B, la vitesse maxima sera la méme que s'il fiut
lombhé de la hauteur %, augmentée de celle du point
D au-dessus du plan horizontal mené par le point B.
En vertu de cette vitesse acquise, le mobile s’élevera
le Jong de BCA; sa vitesse diminuera continuelle-
ment ; et si 'on a 2= o, elle sera nulle au point C
silu¢ dans le méme plan horizontal que D. Parvenu
au point G, le mobile redescendra le long de CB; et
il oscillera ainsi indéfiniment de D vers C, et de C
vers D. Lorsque la constante /& ne sera pas nulle, le
wobile s'élevera au-dessus du point C. Si I'éiévation
du point A au-dessus du plan horizontal qui com-
prend D et C, est moindre que £, le mobile nal-
teindra pas le point A; il sarrélera en mn certain
Point C'; et si 'on meéne par €' un plan horizon-
tal qui coupe la courbe en un autre point I, le
Mobile oscillera indéfiniment de C' vers D/, et de

" vers (. Les oscillations seront toutes isochrones
%u d’égale durde. Cela est évident 4 'égard de celles
qui auront lieu dans le méme sens; et l'on voit
dussi que la durée de chaque oscillation de C' vers
W sera la méme que celle d'une oscillation de D’
Vers (', en observant qu'un élément quelconque de
la courhe sera parcourn avec la meme vitesse dans

e

== A
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les deux cas. Cetle durée commune de toutes les
oscillations entieres dépendra de la forme de la
courbe et de la grandeur de .

Lorsque L'élévation de A au-dessis du plan hori-
zontal passant par le point de départ sera égale a /i,
l¢ mobile approchera indéfiniment du point A,
mais ne l'atteindra qu’aprés un temps infini. Quand
cetle élévation sera plus grande que %, le mobile
dépassera le point A, et parcourra la circonférence
entiere de la courbe donnée. Revenu au point D,
sa vitesse sera la méme qu'a l'origine du mouve-
ment; dou l'on conclut qu’il fera une suite in-
définie de révolutions, qui avront toutes une égale
durée, dépendante de la forme de la courbe et de
la grandeur de 4.

Si la courbe donnée est d’abord comprise dans un
plan vertical, tangent 2 un cylindre a base quel-
conque , et qu'on enveloppe ce plan sur le cylindre,
de sorte que la courbe donnée devienne une ligne 2
double courbure, le mouvement oscillatoire ou révo-
lutif du mobile ne changera nullement, en suppo-
sant, loulefois, que son point de départ et sa vitesse
initiale restent les mémes ; car alors la valeur de ?
en fonction de s, déterminée comme il a été dit pl'é‘
eédemment (n° 157), ne dépendra que de celle de #
en fonction de s, qui ne changera pas, quelle qué
soit la base du cylindre vertical sur lequel la courbe

" donnée sera lracée.

160. Dans tous les cas ou I'équation (d) a lieu, et
ou le mobile n’est pas asireint & se mouvoir st¥
une courbe donnde, celle qu'il déerit pour aller d'un
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point douné que jappellerai A, & un autre point
donng que je nommerai B, jouit d'une propriéié
Temarquable. Si le mobile est entiérement libre,
I’inté.{_ﬂ;mle fvds, prise depuis le point A jusqu'au
Point B, est plus pelite que suivant tonte auire
Courbe aboutissant a ces deux points; s'il est assu-
Jetti & se mouveir sur une surface donnée, cette
Propriété de la trajectoire n’a plus lien que relati=
¥ement a toutes les courbes tracées sur ceite sur-
face, et qui aboutissent toujours aux points A et B.
Dans ces deux cas, ds est Télément differentiel
d’une courbe quelconque , qui répond aux coordon~
nées &, ¥, z, et » une fonction de ces trois varia—
bles et d'une constante &, donnéde par Véquation (d).

La démonstration de ce théoréme revient & prou-
ver quen vertu des équations du mouvement, la
Yariation de fvds est nulle, en supposant fixes les
limites de cette intégrale : alors elle sera un mni-
imum ou un masxcimum; et ce sera toujours le mini-
Mum qui aura lieu quand le mobile sera entierement
libre ; car il est évident que l'intégrale fvds pourra
roitre jndéfiniment avec la longueur de la trajec—
t01'1'(:, et ne sera pas suscepiible de maximum.

Or, par les régles les plus simples du calcul des
Variations, on a

d'. fods = [dvds, J&.vds = dvds 4 vdds.

Dailleurs 4z étant I'élément du temps, on a ds==velt;
done
dods = Ldid.v.

Si Yon différentie Véquation (d) et que Y'on remplace
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les différentielles dx, dy, dz, par les variations Ja,
Y A‘z, on aura

1d.v* = Xdx + Ydy + ZJ-.
En ayant égard aux valeurs de cos A, cos u, cos v,
et observant que

dL dl

EJ“T -+ c‘\j’--—l— cj—LJ‘.’f.'-:J\L,

‘E’ Z
les équations (3) du n° 151 donnent
dy
dr*

XY dy 42D 2= p 0422 oyt 2% 9 NVIL.
Le terme NVJ'L n’entrerait pas dans celte équation,
si_le mobile était entierement libre ; quand il est
assujetti a se mouvoir sur la surface dont I'équation
est L—=o, ce terme est nul; car toutes les courbes
que 'on compare a la trajectoire du mobile devant
ausst etre tracées sur cetle surface, on a JL = o;
donc on doit supprimer ce terme dans tous les cas;
et 1l en résulte
d*z dy

Pk gal T &op oo gl &z 5
J‘&.rds__.;dtcf‘.v _TJ\,JL-!— - dy -+ - d'z.

Quant au second terme vd'ds de la variation de vds »
nous avons

ds* = dx* 4 dy* 4 dz=*,
et, par conséquent,
_ d= dy de e o
dds = 35 ddx + 50 ddy -5 N

done, a cause de ds= vd¢, et en intervertissant, dans
le second membre , Vordve des caraciéristiques d et 25
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uous aurons
odds = 2= dfx + X g9y 4% dps.
dt de dt
th réunissant ces deux parties de la valeur de J'. vds,
1 vient

dx d: dz
& .vds = d(—&iJ‘w—F%JfT-FE d”:»);

d'ot Yon conclut
& dx dy dz : L
jJ‘. vds = EJ\.I'-I-({—IJ] e d'z - constanie ,

Pour I'intégrale indéfinie de J'.vds. Mais les deux
points extrémes A et B étant supposcs fixes , les va-
riations Jx, &'y, 'z, qui s’y rapportent, devront élre
nulles ; par conséquent, l'intégrale définie f4'.vds ,
prise depuis le point A jusqu’au point B, laquelle est
€gale a la variation d.[vds, se réduira i zéro; ce
qu’il sagissait de démontrer.

161. Quand le mobile, assujetti a se mouvoir sur
une surface courbe, n'est sollicité par aucune force
donnée , sa vitesse est constante (n°® 157); Iintégrale
[ods est donc le produit vs. Par conséquent l'arc s
décrit par le mobile est, en général, la ligne la plus
Courte du point A au point B; et il suit de 'unifor-
mité du mouvement, que, dans ce cas, le mobile
Va d'un point i l'auire, dans un temps plus court
que s'il était forcé de décrire sur la surface donnce
tf)ute autre courbe que sa trajectoire. Toutefois ,
81 cette surface est fermée de toute part, comme une
sphere, par exemple, les points A et B seront les
extrémités de deux arcs de grand cercle, dont I'un
sera moindre et Vautre plus grand que tous les arcs
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de petits cercles aboutissant aux mémes points; et le
mobile pourra décrire I'une ou Vautre de eces deux
portions d'un méme grand cercle, selon le sens de sa
vitesse initiale £ tangente 2 la spheére.

On peut présenter l’équatiou différentielle de la
m]cctmre sous une forme qm mette en évidence la
propriété de la ligne la plus courte sur une surface
quelconque, Jaquelle consiste en ce que son plan os-
culateur en L]mqnc pomf est normal i cette surface.

Les forces X, Y, Z, étant supposées nulles, les
¢quations (3) du n° 151 se réduisent a
(—l{:F__.NcosA %:_-:Ncos,u, ‘%:Ncosr.
A cause que ¢ est une constante, et que vi=s,
on a

dj:y"fﬁ Q:p’f{.g_ﬁ d_Jz_:p’.l:P_z
de di=r de de¥di s de e

en prenant l'arc s pour la variable indépendante ; et
cela étant, on pourra remplacer les équations précé-
dentes par celles~ci :

dadly —dyd'z dy )
e (d cos p ——~ COSA
dzdlx — dxdiz - dz A dx
e = —(E COos 7 cos v) 3
dyd'z — dzd'y N rdy dz
——-——-;F*——-——‘F—g COSL’—*ECOSM),

qui s'en déduisent aisément. Je les ajoute apres les
avoir multipliées par cos v, cos g, cosA; la quantité N
disparalt, et 'on a simplement
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Jodtn. s dedie — ;
A : dyd'x — dzd’z : drd?s T
ds’ ds?® (P)
dyd’z — dzd® 5
== {J_d“;L J cosS A = 0.

D aprés les valeurs de cos A, cos i, cos v, citées dans
le n 15, , on aura donc

dzd*y — dyd®z dL dad’x — dzd?z dli
ds3 dr ' ds dy ?
dyd*z — dzd?y dL __ [
s S oS, (N

pour I'équation différentielle seconde de la trajec-
toire. On y substituera la valeur de l'une des trois
coordonnées x, ¥, z, en fonction des deux autres,
tirce de l'équation L = o de la surface donnée,
sur laquelle cette courbe doit étre tracée; on inté-
Srera ensuitc I'équation i deux variables qui en ré-
Sultera; puis on déterminera les deux constanles ar-
bitraires que l'intégrale renfermera, en assujettissant
la_courbe a passer par les deux points A et B de
la surface donnde. L’équation qu'on obtiendra de
Ceite maniére, et qui sera, comme on voit, indé-
Pendante de la grandeuret de la direction de la vitesse
itiale £, devra étre celle de la ligne la plus courle
€otre ces deux points.

Or, sil'on appelle , €, 3, les angles que la nor-
Male an plan osculateur d'une courbe quelconque,
an point dont les coordonnées sont x, ¥, %, fait
vec Jeurs prolongemens daus le sens positif, €t qu'on

fasg abrd
sse, pour abréger, 1

[(J:r(l‘j-— dyd'xy*+ [:J:;i"_r—-.:l.vd'z)*-{-(:b‘tf“;-—r[::dy)“]':’ =h,

Faai

r—
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N N T

e
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nous aurons

COS & — %((.I]--d“z — dzd'y),
cos € — ;L(dzr[’  — dxd*z),
cos y = ]iz(dxd‘f)f — dyd’x),

d’apres les formules (3) du n° 19, ol ces mémes
angles sont représentés par A, w, y. En vertu de
Péquation (e), on aura donc

Cos A cosat =~ cos € cosp —-cosy cosy =0 ;

ce qui montre que la normale au plan osculateur
de la trajectoive, et la normale 4 la surface donnée;,
sont perpendiculaires I'une & autre; d’oir 'on con-
clut que Véquation { 1), qui appartient 4 la ligne
la plus courte, est aussi celle de la courbe qui a par-
tout son plan osculateur normal i la surface donnée ;
en sorte que ces deux lignes sont une seule et méme
courbe tracée sur cette surface, quand on les assujettit
Pune et lautre a passer par les mémes points ex-
trémes A et B, .

Il suit de la que, quand ces deux points appar-
tiennent & une des lignes de courbure de la surface
donnée , cette ligne est la plus courte d'un point a
I'autre; car son plan osculateur en un point qucl‘
conque renferme deux normales consécutives a ]f‘
surface donnce, et est, par conséquent, normal &
cette surface.
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S 1L Digression sur le mouyement de la lumiére.

162. Le théoréeme du n® 160 est connu sous la dé-~
Bomination de principe de la moindre action , qui
lui vient da point de vue métaphysique sous lequel
On T'a d’abord envisagé, et qu'on a depuis justement
?l!alldonné. Mais il peut encore étre utile de donner
¢l une des premicres applications quon a faites de
e principe, celle qui est relative 2 la réflexion et &
la réfraction de la lumitre dans le systeme de 1é-
tission.

Tant qu'un rayon lumineux se meut dans un mi-
lieu d’'une egale densite, sa vitesse et sa direction
restent les mémes; mais quand il passe d'un milien
dans un autre, sa direction s'infléchit et sa vitesse
thange. Dans l'instant du passage, la lumiére déerit
e courbe d'une étendue inappréciable, dont on
Peut faire abstraction sans erreur sensible. La tra-
Jectoire de chaque particule lumineuse est donc alors
l’assemblagc de deux droites, dont chacune est dé-
“fite d'un mouvement uniforme. Ainsi, en appe-
lany J ety les longueurs de ces droites, n la vilesse

e la lumidre dans le premier milieu, 7' sa vitesse

d'f‘“S le second, on aura ny pour la valeur de l'in-
tégrale fods, prise depuis le point de départ de la
Particule jusqu’a son entrée dans le second milieu,
€t nly’ pour la partie de cette intégrale relative au
Second miliey ; par conséquent cette intégrale, prise
dang toute Pétendue de la trajectoire, sera expri-
Mege par 1)y —-n'y’; et clest cette somme qui doit




302 TRAITE DE MECANIQUE.
étre un minimum , d’apres le principe de la moindre
action,

Avant d’aller plus loin, observons que, si le second
milien est une substance diaphane et cristallisée, la
vitesse de 1a lumiére , dans cette substance, dépendra,
en général, de la direction du rayon lumineux; en
sorte qu'elle sera constante pour un méme rayon,
mais variable d'un rayon & un autre. Le phénomene
de la double réfraction. que présentent le spath 'Is-
lande et la plupart des cristaux transparens, tient 2
la différence de vitesse des différens rayons lumineux
qui les traversent. On doit alors regarder la vitesse #'
comme une fonction des angles qui déterminent la
direction de chaque rayon; etla loi de la réfraction
dépend de la forme que on suppose a cette fonction-
En faisant une hypothese convenable sur cette forme,
Laplace est parvenu & déduire du principe de la
moindre action (*), la loi de la double réfraction ;
découverte par Huyghens et conlirmée par Malus;
mais ce n'est point ici le lieu d'exposer cette théorie :
nous nous bornerons a considérer le cas ou tous les
rayons se meuvent avec la méme vitesse, quelles
que solent leurs directions. Dans le calcul suivant,
les vitesses n et ' seront donc resardées comme des
quantités données pour chaque milieu en particulier,
et indépendantes de la direction des rayons. lumi-
neux. |

16%. Soient maintenant A et B (fig. 40) les deux

(*) Mémoire de la premiére classe de Ulnstinue, pour Van-
nee 1 809.
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points exirémes de la trajectoire. Supposons que la
Surface de separation des deux milieux soit plane, et
Menons par ces deux points un plan qui la coupe
Suivant la droite CD. Soit encore AEB une ligne bri-
Sée au point E, qui représente la projection de la
Irajectoire sur ce plan. Menons par les points A, B,
E, les perpendiculaires AF, BG, HEK, & la droite
Cb. Puisque la position des points A et B est don-
ke, les trois droites AF, BG, FG, sont connues;
Mais la position du point E, et les angles AEH et
BEK sont inconn us, et doivent étre déterminés par la
Condition du minimum. Nous su pposerons donc

AF=a, BG=0b, FG=c, AEH=ux, BEK = x';
les triangles rectangles AFE et BGE donneront
EE = atangx, EG =1 tang x';
Par conséquent, on aura
atang x - btang x' = c¢. (a)

Le rayon lumineux traverse la surface de sépara-
ton des deux milieux en un point dont E est la pro-
J€ction sur le plan de la figure. St nous appelons z la

'Stance de ce point inconnu au point E » 7 sera Thy-
Poténuse d’un triangle rectangle dont z et AE seront
€ deux petits cotés, et 3’ T'h ypoténuse d'un autre
t““ﬂlglc qui aura z et BE pour ses deux pelits eOtés;
Mais en considérant les triangles AEF et BEG, on a

. b
AI‘, — 2 BE — __,

o r
cosa ? cos T
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on aura donc

T S
M P / z3 S R L/ g8
= "6 i o z? J = v'/" = i cos* '

Si Von substitue ces valeurs dans la quantité ny -+ n'y’s
il en résultera une fonction de z, x, &', qui deyra
étre un minimum par rapporl & ces trois variables,
dont les deux derniéres sont lides entre elles par 1'é-
quation (a). Il faudra donc d’abord que la différen-
tielle de cette fonction, prise par rapport 4 z, soit
égale a zéro; d'ou l'on conclut

’

(b ,;({T‘ e 13 + }E e

n e ~ s 3—
Or, on ne peut satisfaire a cette condilion qu'en pre-
nant == 0; te qui nous apprend que le rayon la-
mineux Iraverse au point E la surface de séparation
des deux milieux, et, par conséquent, qu'il ne sorl
pas du plan perpendiculaire a cette surface, mené
par les points A et B.

En faisant donc z=o0, on aura simplement

na n'h

ny 4y =22 4 T2,

cos & cos T

et en égalant & zéro la différentielle compléte de
cette quantité, 1l vient
na sin xdz n'b sin x'dx’

G =0;

cos* & cos* x

mais en differentiant aussi Péquation (a), on a, €t
meéme temps,
adz bdx'

+

cos® T cos* &'

l
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. N rye . d ! r 2
€t si Pon élimine 9-? entre ces deux équations, on
tI‘Ouve ; .
nsinx = u sin ', (5)

Celle-ci et I'équation (a) détermineront les valeurs
de o et o/ qui répondent an minimum de ny + n'y'.
Aprés avoir calculé la valeur de 2, on construira le
Point E, en prenant EF = a tang x; ensuite on tirera
les droites AE et BE , et la ligne brisée AEB sera la
Toute que suit le rayon luminenx pour aller du point
A ag point B.

Langle AEH compris entre la normale EH a la
surface de séparation des deux milieux, et le rayon
meident AE, est ce qu'on appelle Vangle d'incidence;
fangle BEK, compris entre le prolongement EK de
felte normale et le rayon réfracté BE, se nomme
Pﬂngle de réfraction. Ces deux angles ont été dési-
Sﬂés par x et x'. Ainsi 'équation (b) fera connaitre

angle de réfraction quand I'angle d'incidence sera
onné; et 'on voit, d’apres cette équation , que le
Sl)l‘lus de l'angle de réfraction est au sinus de angle
ncidence dans un rapport constant.

Cest, en effet, la Ioi connue de la réfraction ordi-
Naip
"pport des deux sinus dépend de celui des vitesses
% et ' relatives aux milienx que I'on counsidere, et,
Pour cette raison, il varie avec les différentes sortes

e milieux tra nsparens.
164. Si le rayon lumineux, au lieu de pénéirer

ns le second milieu, est réfléchi a la surface de sé-
I.

20

e, dont la découverte est due i /Bescartes. Le/
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paralion, sa vitesse sera constante dans toute I'éten~
due de la trajectoire, qui est alors comprise en entier
dans un méme milieu. L'inlégrale [vds sera donc
égale a la longueur totale de la trajectoire, multi-
plice par celte vitesse constante ; par conséquent, cette
longueur devra étre un minimum, en vertu du prin-
cipe de la moindre action.

Supposons donc, comme dans le numéro préce-
dent, que la surface de séparation soit plane. Soient
A et B (fig. 41) les deux poinis extrémes de la tra-
jectoire ; menons par ces points un plan perpendicu-
laive a cette surface, quila coupe suivant CD : chaque
particule de lumiére ira du point A au point B, en
sutvant une ligne brisée AEB, la plus courte de toutes
celles qui se réfléchissent sur la surface de séparation.
Or, il est d’abord évident que cette ligne sera com-
prisc dans le plan perpendiculaire a cetle surface; car
toute autre trajectoire serait plus longue que sa pro-
jection sur ce plan. De plus, il est aisé de prouver,
sans aucun calcul, que la plus courte ligne brisée
est celle qui fait deux angles égaux avec la droite
€D, cest-a-dire que si I'on a

AEC = BED,

la ligne AEB sera plus courte que toute autre ligne
brisée AE'B, dont le point E' appartient, ainsi queé
E, a la droite CD.

En effet, abaissons de A la perpendiculaire AF sur
cette droite ; prolongeons-la d'une quantité A'F égale
3 AF, et tirons ensuite les droites A’E et A’E’. Les
deux angles AEC ct A’EC seront égaux; donc les
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deux angles A’EC et BED le seront aussi, & cause
de Péquation précédente ; par conséquent, la ligne
A’EB sera droite : on aura donc

A’E + BE < A'E’ + BE/;

€, a cause de A'E=AE et A'E — AE/, il en ré-
fultera

AE 4 BE < AE' + BE';
Ce quil s'agissait de prouver.

8i l'on éleve au point E la perpendiculaire ElI
Sur la droite CD, AEH et BEH seront les angles
d’incidence et de réflexion du rayon lumineux qui
va du point A au point B. Ces angles scront égaux,
Puisqu’ils sont complémens des angles egaux AEC
€t BED; d'ou il résulte la loi connue de la réflexion
de la Jumiere, qui consiste en ce que l'angle de ré-
flexion est toujours €gal a I'angle d’incidence.

165. Lorsque Fon admet Ja théorie de 'émission
de la lumiére , les lois de la réflexion et de la vé-
fraction se déduisent de Pexpression du carré de la
Vitesse d'un point soumis & des forces d'attraction
(n° 158), d'une maniére plus dirccte qu'en faisant
Wage du principe de la moindre action. Cette ques-
lon nous offrant un exemple du mouvement d'un
Point matériel, intéressant par la nature des forces
que Ton y considére, et par son application a la
P hysique , nous allons en exposer la solution dans le
Cas ordinaire, ol les deux milienx que traverse la
lumi¢re ne sont pas cristallisés. _

Daus cette théorie, on suppose chaque particule

20..
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lumineuse soumise a l'attraction de tous les points
matériels du milieu qu'elle traverse, et 'on regarde
cette force comme une fonction inconnue de la
distance , dont on sait seulement qulelle décroit
avec une extréme rapidité quand la distance aug-
mente, de sorte quelle devient tout-a-fait insen~
sible dés que la distance a une grandeur, sensible-
Ainsi, par exemple, désignons par r la distance
du point attiré au point attirant, par « une ligne
de grandeur finie, mais insensible, et par e la base
des logarithmes népériens. Une force de cetie nature

;

pourra étre représentée par Ae *; A étant son in-
tensité relative & une distance r infiniment petite.
Dés que cette distance aura une grandeur sensible,
et sera, conséquemment, un trés grand multiple
de «, cette fonction n’aura plus aucune valeur sen-
sible.

Tant quun rayon lumineux se meut dans un mi-
lieu homogéne et d'une densité constante, les at=
tractions qu'il éprouve se détruisent, et son mou~
vement est rectiligne et uniforme. Mais supposons
quil soit parvenu en un point M (fig. 42) situé &
une distance insensible de la surface €D, qui €~
pare deux milieux différens, et que nous suppose”
rons horizontale pour fixer les 1dces; de ce point
M, abaissons sur CD une perpendiculaire MP, €t
menons ensuite , dans le milieu supérieur, deu®
plans CD' et C'D" paralléles & CD, dont la distanc®
mutuelle soit égale 3 MP, et dont le premier passé
par Je point M; il est ¢vident que les attraction$
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exercées sur le rayon lumineux au point M, par
les deux couches du milieu supéricur, qui sont com-~
prises, I'une entre CD et CD', I'autre entre €D’ et
U'D", seront égales et contraires; elles se détrui~
Yont donc, et le mobile ne sera sollicité que par
Pattraction de la partie du milieu quil traverse,
Supérieure 2 C'D", et par l'attraction tolale du mi-
lieu inférieur. Ces deux forces seront perpendicu—
laives 3 CD ; elles varieront avec la distance MP sui-
Vant des lois inconnues, mais telles que chacune
de ces forces sera insensible quand MP ne le sera
Pas, et qu'elles atteindront leurs maxima lorsque
cette distance sera nulle, ou que le mobile sera
parvenu i la surface de séparation des deux mi-
lieux.

Au bout du temps £, je représente par z la dis-
tance MP, et par Z et Z' des fonctions inconnues de
3, qui expriment les forces accélératrices provenant
des attractions du milieu inférieur et de la partic
de Yautre milieu , supérieure & C'D" La force ac-
Celératrice totale , lendanle 2 diminuer z, sera la
ifférence Z — Z'; par conséquent, on aura, dans
€ milieu supérieur,

dz / -

= L =4 =0, (1)
Pour P’équation du mouvement vertical d’'une parti-
Cule lumineuse.

Lorsque ce mobile aura traversé la surface CD en
Un point E, et qu'il aura pénétré dans le milie in-
févieur jusqu’en un point M’, tel que la perpendicu-

:

A
‘

il

|
d
4

i
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laire M'P' & CD soit aussi représentde par z, il est aisé
de voir que la force accélératrice qui tendra a dimi-
nuer cette variable sera alors la différence 7/ —Z;
en sorte que Pon aura

dz J
Toob L — L = 0; (2)

pour I'équation du mouvement vertical dans le mi~
lieu inferieur.

Quant au mouvement horizontal ou paralléle 4 CD,
il sera uniforme, et la vitesse horizontale ne changera
pas en passant d'un milieu dans I'autre ; car les forces
attractives de chaque milieu se détruisent paralléle
ment a CD, et, dans ce sens, un rayon lumineux
n'est soumis 4 aucune force accélératrice. Ainsi, en
appelant £ la vitesse de la lumiére en un point A du
milieu supérieur, situé i une distance sensible de CD,
et a I'angle aign que la direction de cette vitesse fait
avec la verticale, on aura, 4 un instant quelconquey
% sin o pour la vitesse parallele 2 CD. 8i le rayon lu=
mineux pénétre, d'une quantité sensible, dans le mi~
lien inférieur, et qu'on représente par &’ et 2’ ce que
deviennent £ et « en un point A’ de ce milieu, sitaé
a une distance sensible de CD, on pourra également
représenter la vitesse horizontale du mobile pa*
A' sin a”; en sorte que I'on devra avoir

ksina = k'sin . (3)

On voit aussi, a priori , que la trajectoire du mo~
bile sera une courbe plane et verticale ; il ne resters
done plus qu'a déterminer sa vitesse perpel:ldlic:u]aif"e
& CD, soit dans le milieu supérieur, soit dans le mi=
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lieu inférieur, & une distance quelconque z de cette
surface CD. E

166. Je désigne cette vitesse par u, de sorte qu'on

v d 43 = 11
art o5 = u* pour les deux milieux. En multipliant

1 . . 4 L

]equahon (1) par 2dz, mtegrant et dcmgnant par ¢
4 constante arbitraire, on aura, dans le milieu su-
Perieur,

u* = ¢ + 2fZ'dz — afZdz.

Je supposerai que ces deux intégrales s'évanouissent
avec z, et je représenterai par £ et /' leurs valéurs a
une distance sensible de CD. Il sera permis d’étendre
Ces intégrales ¢t /2’ depuis zéro jusqu'a I'infini; car,
au-dela d'une valeur sensible, les fonctions Z et Z/,
et par conséquent les parties correspondantes de
SZdz et fZ'dz, sont nulles ou insensibles par hy-
Potheése. On pourra donc écrire, si 'on veut,

Jii=s ‘[.:CZdz, R -._—_f‘wZ’dz.

o g 0

3 0% >
Dallleurs, pour une valeur sensible de z, om a
4" == }* cos* 2; on aura donc alors

k*cos*a — ¢ 4 2k — oh;
€ en éliminant ¢ de la valeur générale de #*, il en
Tesultera
Ut = k* cos* o - 2k — ok’ - 2f2'dz — 2/ Zdz

0 un point quelconque M.
Je représente par £, la vitesse du mobile au point
de la surface CD, et par a, langle que fait sa

e e T

AL
i
t_l
“
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direction avec la verticale. On aura en ce point
u* = k; cos*2,; et comme il répond 4 z=o0, les
deux derniers termes de la formule précédente s'é-
vanouiront , el elle se reduira a
k| cos* o, = k* cos® & -}~ 2k — oF/. (4)
Pour que le rayon lumineux atteigne la surface de
séparation des deux milieux, il faudra donc que le se-
cond membre de cette équation soit une quantité po-
sitive, ou qu’on ait
b < B -~ 1k cos® a.

Si cette condition n’est pas remplie, ce qui exi-
gera que lattraction du milien supérienr surpasse
celle du milieu inférieur, la vitesse verticale du mo-~
bile s'épuisera avant qu’il ait atteint le plan CD. Il y
aura donc un point de la trajectoire o la tangente
sera horizontale. Parvenu en ce point, le mobile ré-
trogradera ; les deux branches de cette courbe, abou-
tissantes en ce méme point, seront semblables, puis~
quelles seront décrites en vertu de forces égales
pour la méme valeur de z; et, pour une grandeur
sensible de cette distance z, ces deux branches sé
changeront en des lignes droites qui feront des an-
gles égaux avec la verticale, ou, autrement dit, les
angles de réflexion et d'incidence seront égaux,

Si, au contraire, lattraction du milieu inférieutr
surpasse celle du milieu supérieur, et que la condi~
tion précédcnte soit remplie, le rayon lumineux pé-
nétrera dans le second milieu avec une vitesse per-
pendiculaire & CD, qui sera déterminde par Péqua-
tion (4). Dans cette hypothése, on aura, d’aprés
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l’éC{Uation (2) relative a ce milieu ,

w =k, cos* a,+ 2 [Zdz — 2 [Z/dz,

fu supposanl toujours les intégrales nulles quand
Z = ¢, A une distance sensible de CD, on a
U = k'* cos* ¢'; on aura donc

k'® cos® e’ = k7 cos® o, - 2 — 2/';

€t en éliminant £? cos® o, au moyen de I'équation (4),
1l en résultera

k* cos* e’ = k* cos* @ - fh — 4H'. (5)

Pour que le rayon lumineux, aprés avoir traverse la
surface CD, pénetre jusqu’a une profondeur sensible
dans le milieu inférieur, il sera donc nécessaire et
1l suffira quon ait

B < h - %k cos®a.

Lors done que %', quoique moindre que 2 -4-3A*cos’z,
Surpassera néanmoins % |- £ k* cos® ¢, le mobile ne
Pénétrera dans le milieu inférieur que jusqua une
distance insensible au-deld de CD; il rentrera ensuite
dans le milicu supérieur; et les deux branches de sa
trajectoire seront semblables de part et d'autre du
Point ot il commencera a rétrograder. Par consé-
Quent, la lumiére sera réfléchie, comme dans le cas
Précédent , en faisant I'angle de réflexion égal a l'an-
gle d'incidence ; en sorte qu’il y a deux cas distincts
de réflexion dans la théorie que nous considérons.

167. Supposons maintenant que ni I'un ni Pautre
de ces deux cas n'ait lien , de sorte que le rayon
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lumineux soit réfracté. Wapres 'équation (5), on
aura

A sin® o/ = k*sin* o ;
et en ajoutant membre & membre 'équation (5) et
celle-ci, il en résultera

K =k 4= 40 — 4F; (6)

ce qui montre que laugmentation du carré de la
vitesse du mobile, en allant du point A du milien
supérieur au point A’ du milieu inférieur, sera in-
dépendante , comme cela devait étre (n" 157), du
chemin qu'il aura suivi.

On tire aussi des équations (3) et {(6)

sine’ k e
sine T VB FL—F)’

(7)

formule qui renferme la loi du rapport constant du
sinus de réfraction au sinus d’'incidence, et qui donne
la valeur de ce rapport en fonction de la vitesse k dé
la lumi¢re dans I'un des deux milieux, et de la dif-
férence h— 7/ de leurs pouyoirs réfringens h et I

Si le milicu inférieur est terminé par deux plan$
paralléles, et qu'il y ait au-dessous le méme miliet
quau-dessus, Pexpérience prouve que la lumiére;
apres avoir subi deux réfractions et traversé les den¥
faces du milien intermédiaire,, reprend une direc-
tion parallele a celle qu'elle avait dans le milien st~
périeur. Clest aussi ce qui résulte de I'équation (7)3
car si Yon désigne par " Vangle que le rayon lu-
mineux fait avec la verticale, apres étre sorti du
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milien intermédiaire, il faudra, pour déterminer
sin g échanger entre elles, dans cette équation, les
quantités £ et A', et y mettre &, o, ", au lien
de &, o, /. On aura done

sin 2" K
sin 2" T Vs g (hfg_;_?;j %

ou hien, en vertu des équations (6) et (7),

sin 2" VE L 4h—k) _ sinz_

sin 2 k sin e’

¢e qui donne, effectivement,

Le phénomene-de la dispersion, qui provient d’'une
valeur différente de I'angle de réfraction o/, pour les
rayons diversement colorés dont se compose un méme
fayon de lumiere incidenie, peut étre attribué, d’a~
Pres la formule (7), soit 4 une inégalité de leur vi-
tesse £, soit & une action différente de chaque milieu
Sur ces différens rayons, d’oi il résulterait des valeurs
iﬂégales de h—17'.

168. Toutes choses d’ailleurs égales, cette équa-
tion (7) montre que le rapport du sinus de réfraction
u sinus d'incidence doit changer avec la vitesse de
la Tumigre. Or, st l'on considére une étoile située
dans le plan de I'écliptique, il y a une époque dans
Fanmée oty la vitesse de la terre s'ajoute & celle de la
lumiére, et une autre époque ol la premiére vitesse
Se retranche de la seconde ; ce qui rend la vitesse de
la lumiére, relativement 4 un milien qui se meut

—

T ————
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avec la terre , sensiblement plus grande dans le pre-
mier cas que daus le second. Le rapport dont il s'agit
devrait donc aussi étre différent & ces deux époques;
mais des expériences trés précises de M. Arago ont
prouvé qu'au contraire ce rapport ne varie pas d’'une
maniére sensible pendant toute I'année, et, de plus,
que sa grandeur est la méme pour le soleil et pour
les diverses étoiles d’onr la lumiére est partie.

Quelle que soit la théorie de la lumiere que l'on
adopte, c’est toujours un fait trés remarquable, que
la composition de la vitesse propre de la lumiere
avec celle de la terre, qui se manifeste dans le mou-
vement apparent des étoiles, connu sous le nom
d’aberration, n'ait cependant aucune influence appreé-
ciable sur la réfraction de la lumiére qu’elles nous
envoient & différens jours de I'année.

Dans le vide, le mouvement de la lumiére directe
ou réfléchie est uniforme, et sa vitesse indépendante
de la source dont elle émane. La grandeur de cette
vitesse est telle, que la lumiére parcourt en 493,54 se-
condes la distance moyenne du soleil a la terre ; ce
qui donne 30950 myriametres par seconde.

Un rayon lumineux, lancé du soleil ou d'une
ctoile, doit éprouver dans sa vitesse, comme tout
autre projectile , une diminution due a sa pesanteur
vers cet astre, c'est-a-dire, a 'attraction en raison in-
verse du carré des distances & son centre, que 12
masse du corps exerce sur chaque particule maté-
rielle de la lumiére; mais cette diminution est uné
fraction trés petite de la vitesse finale de la lumiere-
Ainsi, par exemple, I'intensité de la pesanteur ala
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surface du soleil étant vingt-sept fois et demi I'inten-
sité de la pesanteur terrestre, comme on le verra par
la suite, et le rayon du soleil étant égal 4 110 rayons
dela terre, on conclut de ce qu'on a vu dans le n° 143,
que la vitesse de la lumiére , pour étre de 30950 my-
Tiametres par seconde a une grande distance du so-
Leil , a da étre plus grande d'un peu moins de deux
millioniemes seulement, en partant de sa surface.
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BARVIALY LAl v AV

CHAPITRE 1V.

DE LA FORCE CENTRIFUGE.

169. La pression quun point matériel exerce sur
une courbe quil est forcé de déerire, nlest pas la
méme que quand il est en équilibre sur cette courbe-
L’état de mouvement donne naissance i une pression
particuliére qu'on appelle force cenirifuge, parce
quon I'a d’abord considérée dans le cercle ou elle
est dirigée suivant le prolongement du rayon, ef
tend continuellement & éloigner du centre le mobile
sur lequel elle agit. Cest cette force que nous allons
considérer dans une courbe quelconque.

Soient M,M et MM' (fig. 43) deux élémens consé-
cutifs et égaux de la courbe donnée, H et H' leurs
milieux , MT et M'T" leurs prolongemens. Leur plan
et I'angle TMT' seront le plan osculateur et I'angle
de contingence de la courbe au point M; et si 1'on
mene dans ce plan la droite MO, qui divise I’anglé
MMM’ en deux parties égales, elle représentera 12
direction du rayon de courbure en ce méme point M;
en sorte que le cenire de courbure sera le point 0
de cette droite. Appelons ds Vélément MM de l2
courbe, lequel sera aussi égal 5 HMH/ ; soient, eft
outre, d' I'angle infiniment petit TMT’, et p le rayor
de courbure MO, nous aurons (n°18) - '

d==
f
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Cela posé, faisons d'abord abstraction des forces

Olin€es qui peuvent agir sur le mobile, et suppo-
%0ns qu’au bout du temps ¢, il arrive au point M avec
Une vitesse . S'il était entierement libre, il conti-
flUerait 3 se mouvoir sur MT avee la méme vitesse ;
Mais par hypothese, il est forcé de décrire une
“ourbe donnée; ce qui change la direction de son
Mouyement qui devient MT". Or, si I'on éléve sur
T 1a perpendiculaire MK, comprise dans le plan
Oculateur et en dehors de la concavité de la courbe,
9% pourra substituer i la vitesse v, dirigée suivant
T, deux autres vitesses , Pane égale 4 ¢ ¢as J et
dil‘igée suivant MT, T'autre égale & v sin & et di-
l‘igée suivant MK ; et alors leffet de la courbe sera
de détruire la derniére de ces deux vitesses , pour
e laisser subsister que la premiére, ou, autrement
dit, cet effet se réduira a imprimer au mobile une
“_'itﬂSSe égale et contraire & ¢ sin . La courbe donnée
“tant donc remplacée par un polygone infinitésimal ,
% résistance consiste i im primer au mobhile, 4 chaque
Sommet M de ce polygone, une vitesse infiniment pe-
lite ¢ 4ipn dJ', dirigée en sens contraire de MK.

Pour assimiler completement cetle résistance 4
"We force motrice f qui agit incessammient sur le
Mobile, nous pouvons supposer que la vitesse ¢ sin J°
St produite pendant que ce point matériel va de
. e H', et prendre d¢ pour la durée de cette ac—
Uon, Nous pouvons aussi negliger, dans cet intep-
Valle de temps, le changement de direction de cetie
Orce, et la supposer, par exemple , parallele 3 Ia

roite MO. Alors la force accélératrice Correspon-
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dante aura pour mesure, comme chacune des forces
U, U, U", etc., du n° 147, la vitesse vsinJ* qu'elle
produit pendant I'instant dt, divisée par dt; et en
appelant m la masse du mobile, il en résultera

my sin &'
f= et st

pour la valeur de f. Donc, en remplacant sin J' par
&', mettant pour d'sa valeur précédente , et observant
que ds = vdt , on aura

S =

La pression que la courbe éprouve, et qui est uni~
quement due 4 I'état de mouvement du point maté-
riel qui la décrit, ou la force centrifuge qui agifi
sur ce mobile, est égale et contraire i cette force /-
Il s'ensuit donc qu'au point quelconque M, de 12
courbe donnée, la force centrifuge est comprise dan?
le plan osculateur, et dirigée en dehors de la concavite
de cette courbe , suivant le prolongement MN de so™*
rayon de courbure, et que son intensité est en raiso?
inverse de ce rayon, et en raison directe de la mass€
du mobile et du carré de sa vitesse.

170. Gette vitesse étant ¢ sur le coté MM, et deve-
nant ¢ cos d' sur le c6té suivant MM/, il s'ensuit qué
sa grandeur n’est point altérée par la courbe; car o
peut négliger la quantité ¢(1 — cos d), infiniment
petite du second ordre, de laquelle il ne pourl'ait
résulter qu'une diminution infiniment petite de Vi~
tesse , sur une partie de la courbe de grandeur finie:
Le mouvement sur une courbe quelconque est don®
uniforme qeand le mobile n'est sollicité par aucuné

my*

¢
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force donnde. (Vest ce qu'on a deja vu dans le n° 4 G753

mais nous voyons de plus que ce résultai tient i ce
que Iangle de contingence est infiniment petit, et
qu’en un point ou deux courbes différentes se cou-
Peraient sous un angle fini, le mobile éprouverait
Une perte finie de vitesse, en passant d'une courbe 4
Autre ; laquelle perte serait dgale & sa vilesse primi-
tive, multipliée par le sinus verse de cet angle.

Lorsque le mobile est sollicité par une ou plusieurs
Orces données, sa vitesse varie 4 raison des compo-
Santes de ces forces tangentes a Ia trajectoire, et leurs
®Omposantes normales exercent, comme dans U'état

© repos, une pression sur ceite courbe qu'il faut
loindre 2 la force centrifuge.

Soit, en genéral, mR la résultante des forces don-
Nées qui agissent sur le mobile, quand il est parvenu
U point M. Décomposons cette force motrice en
deuy autres, I'une tangente et l'autre normale 3 la
Wrajectoire » que nous représenterons par mT et mQ ;
A premiére sera la force qui fera varier Ia vitesse 5 et
% seconde produira la partie de la pression indépen-
ante de I'état de mouvement du mobile. En pre-
Dang, par la régle du parallélogramme des forces , la

2 » my
sultante de mQ et de la force centrifuge f ou——-, on

Wra , eq grandeur et en direction, la pression totale
94 aura lieu au point M de Ia courbe donnée. Cette
Orce | divisée par la masse du mobile, ou la résul-
Wante des forces accélératrices Qet ‘—;:, deyra coinci-
der avec la force P du n® 152, Clest en effet ce que
Yous allons vérifier.

13
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171. Je 1empla(,e les équations (5) de ce numer®
par celles-ci , qui s’en déduisent immeédiatement ,

P 1 L
dedy—dyd_ydr & p(% coun ~—cosw)

dsdt*
dedx—dzd'z o dz dx p dz s dz “ 5
odr =A Z— ds c sar ;rcr)b ), (1)
dyd’z— dzdly 7% dy :L
S Y A ———ctiam ).
dsdt* ds s d.s CObE L ‘i )

Quelle que soit la variable indépendante , 0na

dy
ity iyt _ et © s g,
de* det  di
on a , en méme temps,
g & dy
dx* _ dx* ds irT.r i o' e di ¥
aE — de de* dr T ds  dt’
3 as. - 7
4 cause de v = o il en résultera
d &
dedy—dyd'z _ . de " dx v (dxdly — dyd'z],
dedP i e s s ds? 3

et 'on trouvera de meme,

dediz — dxdiz __ ¢ (dzd’z — dxd’z)
3

dsdt* e ds?
dyd’z — dad’y v (dyd’z — dzd )
dsdr? = ds*

En désignant par g, ', ¢", les angles que la force
Q fait avec des paralléles aux axes des x, y, 2, el
observant que X, Y, Z, sont les composantes sulv
ces paralléles de Q et de la force tangentielle T, %

ant
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ura aygsi

¢ 4 d:
A=T f- +Q evsg, Y=T —‘I—I-Q cosg’, Z=T d_z ot Qcosg”;

€t an moyen de ces valeurs et des précédentes, les
‘E[Uatlom( ) deviendront

(dzg

d J e 3 &
= d_yci ’r)_Q( cos g —- ‘cocg )—P(‘il—.ccns = -——? COS@ )
d;d

“'E::_‘}id ’]__Q(

—

Iz
g——tmq )——P = cosa % cosz—”),
dz
—cosa’ ——cosw’ ).
( ds )

Or, silon appelle 3, 9/, 97, les angles que la direc-
tion de 1a for ce cenirifuge , c'est- a—dlre le prolonge-
Ment MN du rayon de rombm e MO, fait avec des pa-
falleles aux axes des , 7, z, menées par le point M,
', ', 2/, les coordonnées du centre de courbure O
On aypa

dzd® 7
\‘W ==L (Geoss

cl.'.'H_,‘_xJ:’o cosy, _,.'}"_.T’:P cos ,,.r ?'_"”F—F cosn n’
“Len combinant les équations (2) avec les forrules du

% 20, on en déduira sans difficulté x
pa

7 05y =) £{)’<d\ COSG — - lﬂb?) i %. Cosy — t.m(] )—I
LSRG _> 2(ee -——) |
o) S )]
L 1)
~—P r:: j"cns s—__4 o5 ) d_y ‘h 08w "—-ﬁ—;crrwa— )_.

214,

(2)
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Mais & cause que les forces P et Q sont perpendi-
culaires & la tangente de la tra]ectoire , On a

tI.C

cos ¢ +— ca)sg -|—-—cosq
{I' dy ' )
— COS @ -~ =~ 08 —cos@ =0
= +ds Co8 @ +d$ cos @ 0;

ce qui réduit les coefficiens de Q, dans les trois équa-
lions précédcntcs ) & — cos g, —cosg', —cosq", et
ceux de — P & — €08 @, — €05 @', — cos@@” ; on aura
donc enfin

¥ 3
”—cospl—I—Qcosq = P cos @,
P

vﬂ
—cosy' + Qces ¢ =P cos @,
P

085"+ Q cos¢" =Pcos @,

ot 'on voit, comme il gagissait de le vérifier, que
la force P est, en grandeur et en direction, la résul-

tante des deux forces ‘? et Q.

172. (Juand le mobile sera seulement assujetti a
se mouvoir sur une surface donnée, il faudra que

bl #)

! n . my* 3
la résultante des forces motrices mQ et —, qui est
?

déja pm‘pendlcu]a]ro i sa trajectoire, soit, de plus,
-mmale a cette surface. En appelant donc mN cetté
-ésultante , et désignant par o et | les angles, aigus
+u obtus, que font ses deux composantes avec uné
partie déterminée de la normale a la surface , au point
ou se trouve le mobile, on aura

= = (Qcosm -+

2

% cos 4.)
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La force N agira suivant cette partic de la normale
Ou suivant son prolongement, selon que la quantitd
Comprise entre les parentheses sera positive ou né-
8ative; et pour que N soit toujours une quantité po-
Sitive , on prendra le signe supérieur dans le premier
@s, et le signe inférieur dans le second. Cette force
ceélératrice N devra étre égale et contraire & celle
qui entre dans les équations (3) du n® 1515 et, en
effet, celles-ci ne différant des équations (5)du n® 152
Tu'en ce qu’elles contiennent N, A, u, », au lien de
~P, @, @', @, on en déduira, par 'analyse précé-
t%ente » des composantes de la force N, qui seront
“gales et contraires & celles que l'on a trouvées pour
la force P.
Dans ce méme cas d'une surface donnée, si 'on dé-

Signe par o' et -l les angles que les forces m() et
Thp

7 font avec un axe mené par le point ou se trouve
le mobile, tangent a cette surface et perpendiculaire a

A trajectoire, de sorte qu’on ait
€os* @ —-cos* @’ == 1, €05 4 cos*' =1,

U fandra que la somme des composantes de ces deux

forces suivant cet axe tangent, soit égale & zéro,

Puisque leur résultante est normale an méme point
€ la surface; on aura done

Wiy v '
Qcos &' 4 —cos~l' = o;
r
E_: = x - . ¥ . P -
Quation qui pourra servir 2 déterminer V'inclinai-

\. ‘. ; i
Son " du plan osculateur de Ja trajectoire sur le plan
langent 4 la surface donnde.
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Lorsque le mobile ne sera soumis 4 aucune force
donnde, ou, plus généralement, lorsqu’il ne sera
soumis qu'a une force tangente a sa trajectoire, on
aura Q=o; il enrésultera dom cos~}'=oetl'=g0%
en sorte que le plan osculateur de cette courbe serz
constamment perpendiculaire & la surface donnée-
Cette propriété étant, en général, celle de la ligne
la plus courte entre deux points donnés sur cette
surface, c'est cette ligne que le mobile déerira , ainst
quonladit précédemment (n° 161); mais maintenant
nous voyons, en outre, qu’uue force tangente a
la trajectoire, telle qu’un frottement contre la surface
donnée, ou la résistance d’un milieu, ne fera pas dé-
vier le mobile, de la ligne la plus courte entre so®*
point de départ et son point darrivée.

175. Enfin, si le mobile est entierement libre, it
faudra que la composante normale a la trajectoires
de la force motrice mR qui le sollicite, fasse équi~

A 5 . op m? . -
libre a sa force centrifuge 37 puisque dans ce cas il

n'y a pas de courbe ou de surface donnée qui puissﬁ
détruire la résultante normale de ces deux forces.
faudra donc, en premier lien, que le plan osculatet®
de la trajectoire soit celul qui passe par la tangen!®
ct par la direction donnée de la force mR; en appe”
lant 81’ angle que ceite direction, en un pomt quet”

conque , {.ut avec le rayon de courbure MO, *
faudra, en outre, que cet angle soit aigu pour que
la composante normale de la force mR agisse en sei®
contraire de la force centrifuge qui est dirigée sui~

vant MN ; et cela étant, on devla avoir
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(3

Rcos § — UT (a)

Quand la force accélératrice R, a laquelle le mobile
€st soumis, sera une force centrale dirigée vers un
Point connu, et quel'observation aura fait connaitre la
tourbe qu'il décrit autour de ce cenire fixe, on pourra
déduire de 'équation de cette courbe, le rayon de
ourbure p et I'angle 6 qu'il fait avec la direction de
la force R; on déduira aussi, de cette équation et de
la proportiounalité des aires aux temps ( n° 155 ),
lexpression de la vitesse ¥ en un point quelconque
de la trajectoire ; par conséquent, I'équation (@) de-
terminera la valeur de R, ou la loi de la force centrale
qui fait décrire an mobile la courbe donnée. Clest
de cette maniere que Newton a découvert la loi de la
\fﬂl‘ce dirigée vers le centre du soleil, qui fait decrire
A chaque planéte une ellipse dont ce point occupe un
des foyers ; mais on verra, dans la suite, qu’en par-
tant des mémes dounnées, cetie détermination peut
Seffectuer par un calcul plus simple.

174. Huyghens, a qui Ton doit la mesure de la
force centrifuge, l'a déduite de la considération du
Mouvement circulaire; et quoique cetie méthode soit
Moins directe que la précedente, je crois cependant
Utile de I'exposer ici en peu de mots.

Soit M ( fig. 44 ) un point matériel attaché & un
Point fixe par un fil inextensible CM ; supposons
Qfl’une percussion lui imprime une vitesse &, dans une
direction perpendiculaire a la longueur du fil; et,
Pour simplifier la question, supposons aussi quancune
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force motrice donnée n’agisse sur le mobile. Ce point
matériel va décrire un cercle AMB, dont le centre
et le rayon seront le point fixe et la longueur du fil.
Pendant ce mouvement, le fil qui retient le mobile
éprouvera, dans le sens de sa longueur , une certaine
tension qui West autre chose que la force centrifuge.
En appliquant au mobile une force égale 4 cette ten-
sion et coustamment dirigée vers le cenire fixe, on
pourra faire abstraction du fil, et considérer le mo-
bile comme entiérement libre. C'est done en vertu de
celte force cenirale, dont la grandeur est inconnue,
combinée avec la vitesse a, que le cercle sera déerit.

Il s’ensuit d’abord que les secteurs circulaires dé-
crits par le rayon du mobile, seront proportionnels
au temips (n° 155); ce qui exige que les arcs de
cercle parcourus le solent aussi. Le mouvement cir-
culaire sera done uniforme ; et si Pon désigne par $
Parc déerit dans le temps £, on aura s = 2.

Soient mz la masse du mobile , ma la force centrale,
et, conséquemment, o la force accélératrice qu'il
sagira de déterminer. Quelle que soit cette force, on
peut la regarder comme constante en grandeur et
en direction pendant un intervalle de temps infi-
niment petit; ainsi, pendant que le mobile dderit
Parc de cercle infiniment petit MM, la force « serd
supposcée constante, et parallele au rayon CM qui
aboultit & Porigine de cet arc; d’'on nous concluons
que si le mobile n’était pas animé de la vitesse @, 18
force centrale lui ferait parcourir , dans un temps 11
finiment petit, le sinus verse MN, ou la projection
sur CM de Parc MM’ qulil déerit réellement. Or;
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toute force accélératrice a pour mesure le double de
]’espace infiniment petit qu’elle est capable de faire
Parcourir 2 un mobile dans un temps infiniment pe-
Ut, divisé par le carré de ce temps (n° 118 ); si
done on appelle e le sinus verse MN, et t le temps
€mployé i décrire arc MM/, on aura

-]
"

o =

<]
N9

Mais en désignant cet arc par ¢, et le rayon CM
Par r on a

3

9

E = —,

T

&)

&n prenant l'arc an lien de la corde ; done & cause de
= garv, onaura

a

& ===

5]

Cette valeur de « est donc celle de la force centri~
fuge rapportée i 'unité de masse, dans un cercle déerit
‘un monvement uniforme. On en conclut immédia~-
tement que cette force , dans une courbe quelconque,
ura pour mesure le carré de la vitesse divisé par le
Yayon de courbure; car la trajectoire ayant deux éle-
Mens conséeutifs communs avec son cercle oscula-
"?“I‘, on peut supposer que, pendant un temps in-
Niment petit, le mobile se meut circnlairement
“tour du centre de conrbure, et qu’il a conséquem-
Ment 1a force centrifuge qui convient a ce mouye-
Ment. Ea muala pliant par m cetie force accéleratrice ,
o1 aura la méme valeur que pour la force désignée .
Par £ dams le n° 16Gg. :
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175, Pour comparer la force centrifuge dans le
cercle a la pesanteur, supposons que la vitesse « soit
celle qui serait due 4 une hauteur %, de sorte qu'on
ait a* = 2gh (n° 150), en désignant par g la gravité ;
il en résultera
2k

;

@&

g r
ce qui monire que la force centrifuge est a la pesan-
teur, comme le double de la hauteur due 4 la vitesse
du mobile est au rayon.

Si le mobile est un corps dont les dimensions
soient irés petites par rapport & sa distance au point C,
on pourra counsideérer, dans toute son élendue , la va-
leur de « comme & trés peu pres constante, et pren—
dre le rapport ; pour celui de la force centrifuge

8
provenant du mouvement circulaire, au poids du
corps sur lequel elle agit.

Quand le mouvement n’aura pas lieu dans un
plan horizontal, la vitesse du mobile, la férce cen~
trifuge et la tension du fil attaché au point C, seront
variables. Supposons que le mobile se meuve dans un
plan vertical ; désignons par 2g/ le carré de sa vitesse;
quand il se trouve dans le plan horizontal passant par
le point C; et, 4 un instant quelconque , appelons
z sa distance & ce plan, regardée comme positive
lorsque le mobile sera situé au-dessous, et commeé
négative quand il aura passé au-dessus; nous aurons
a cet instant 2g( 2 - z) pour le carré de sa vitesse
(n° 159 ), et :n-’—(—];—_-{_—z— pour la force centrifuge:

Pour ayoir la tension totale du fil, il faudra ajou
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ter & cette force la composante du poids du mobile
dmgé suivant le prolongement de son rayon, la-

mgz

quelle composante est égale a , comme il est aisé

de le voir. Donc, en appelant § la tension totale du
il 3 un instant quelconque , nous aurons

g == ’ES’('—’J* + 3z)

r

Cette force exprimera aussi la pression que le point
(.; éprouvera a chaque instant, suivant la direction
Qu rayon qui aboutit au mobile. Elle atteindra son
Maximwm, lorsque le mobile sera au point le plus
bas du cercle, ot 'on a z=r, et son minimum,
1Drsqu’il sera au point le plus élevé, ou l'on a z=—r.

. . 3r . . rond 3
Si % est moindre que =) la tension deviendra négative

¢t se changera en une contraction pendant une par-
tie du mouvement : il faudra alors que le fil soit in-
flexible pour que le mouvement circulaire ait liea,
On néglige , dans ce caleul, le poids et la force cen-
rifuge du fil; ce qui suppose sa masse trés pelite par
Yapport 4 celle du mobile. On verra, par la suite,
“Omment on y devrait avoir égard si cela ctait né-
Cessaire.

176. Revenons au mouvement circulaire et uni-
fol‘me, et désignons par T le temps que le mobile
®mploie & parcourir la circonférence entiére. On aura

27r

a = =,

)
€, par conséquent,
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ce qui montre que la force centrifuge est en raison
directe du rayon du cercle, et en raison inverse du
carré du temps d’une révolution entiere.

Lorsquun corps solide tourne autour d'un axe
fixe, tous ses points déerivent, dans le méme temps,
des cercles dont les plans sont perpendiculaires 2
axe, qui ont lcurs cenires dans cet axe, et pour
rayons les perpendiculaires ahaissées de chaque point
sur ce méme axe ; par conséquent, les forces centri-
fuges de ces différens points sont entre clles comme
ces perpendiculaires. Ainsi, par exemple, la force
centrifuge des corps placés a la surface de la terre, et
qui tournent avec elle autour de Vaxe des péles, est
proportionnelle aux rayons des paralléles quils deé-
crivent; et, de plus, cette force est dirigée en chaque
lieu de la terre suivant le prolongement du rayon
du paralléle qui aboutit en ce poiut.

177. La force qui précipite les corps vers Iz
terre, et que nous appelons pesanteur, est due prin-
cipalement & 'attraction du sphéroide terrestre suf
ces corps. Mais quelle qu'en soit la cause, il est tou-
jours certain que la force centrifuge diminue cetl®
tendance des corps pesans; en sorte qu'excepté av
pole, oitla force centrifuge est nulle, la pesantent
est partout moindre que si la terre n'avait pas de
mouvement de rotation. A I'équatenr, la force cen~
trifuge et la pesanteur sont dirigées cn sens conlrah‘?
Pune de Vautre; la pesanteur y est donc égale @
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Vexeds de Iattraction de la terre sur la force centri-
fuge; par conséquent, on a
b®r

o .
e Ts *

N

g €tant cette pesanteur, G l'attraction terrestre , ou
la pesantenr qui aurait lieu si la terre était immobile,
": le rayon de I'equateur, et T le temps de la rota-
tion de la terre.

Le second terme de cette formule étant trés petit
Par rapport an premier, on a, & trés peu prés,

gt
e S— & —_— iﬁf_f
T G (1 T 7

P . . .:’i-;r“}
our convertir en nombre la fraction —TT?

gT

Prendre le rayon du meridien au lieu du rayon r de
5. L

lequateur, dont 1l est peu différent; on aura alors

on pourra

2Wr = 40000000".

En prenant la seconde pour unité, et néglgeant,
ans ce calcul, la petite variation de la pesanteur a
2 surface de la terre, on a aussi (n°® 115)

g = 9™,00806.
On a @ailleurs (n° 111)

T = 86164;
“tde la on conclut,  trés peu prés,

i 1

gT* = a8q’

A
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Ainsi, a I'équateur, la pesanteur est diminuée de 280

par le mouvement de rotation de la terre autour de
son axe. Si ce mouvement devenait plus rapide, le
temps T diminuerait, et la force centrifuge différerait
moins de la gravité. En observant que 28g est le
carré de 17, on voit qul suffirait que la rotation
ett lieu en un dix-septieme de jour, pour que Ja
force centrifuge a I'équatenr fut dgale 2 la gravité;
alors la pesanteur y serait égale a zéro, et les corps
abandonnés 4 eux-mémes y demeureraient en équi-
hibre.

Dans ce calcul, nous avons sculement eu égard &
la foree centrifuge provenant du mouvement de ro-
tation des corps pesans autour de l'axe de la terre;
et, en effet, on concoit que le mouvement de transla-
tion autour du soleil, qui est commun i tous ces
corps, 4 la terre et a son axe, ne saurait influer su?
leur tendance a s'écarter de cetle droite mobile. En
imaginant, par exemple, un fil paralléle & I'équateury
attaché a cet axe et aboutissant & un corps situé a 12
surface, il est évident que sa tension ne changera au-
cunement par Peffet d'un mouvement qui emportera
a la fois, l'axe, le fil et le corps, sans changer leurs
positions relatives.

178. La force centrifuge diminue la pesanteur €
tous les points de la surface de la terre ; mais d’une
quantité moindre qua Véquateur, soit parce quée’
allant de I'équateur au pole la force centrifuge de-
eroit, soit parce que Pangle quielle faitavec la verti~
cale augmente. En appelant toujours r le, rayon de

»
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]'équateur, et désignant par w la latitude d’un lieu

quelconque de la terre, et par xle rayon du parallele
Correspondant, on aura

i = I COS lu;

°0 négligeant la non-sphéricité du globe terrestre,
; : ;
4ngle 1 sera celui que le prolongement de %, ou la
'rection de la force centrifuge, fait avec la verticale;
la Composante verticale de la force centrifuge s'ob-

: . 9 . - - ha
tendra done en multipliant son intensité i%zpar

“0s 5 ce qui donne
fa"r cos’e
Ta 2

Pour la diminution de la pesanteur due & la rota-
tion de la terre; et, d’aprés ce qui précide, cette
Quantité aura pour valeur

cos® w
289

~ Ce serait 12 toute la diminution que la pesanteur
“Prouverait, si la terre était une sphére homogeéne :
elle serait proportionnelle au carré du cosinus de la
aitnde ; et la diminution totale du péle ou l'on a
B = 90°, a I'équateur ou I'on a . = o, s'éleverait 4

I
2By’ Mais la terre est un sphéroide aplati a ses poles ;

Lattraction qu’elle exerce sur les corps placés 4 sa sur-
f,“fﬁe diminue, pour cette raison, en allant du pole i
Cquateur; cette diminution, en chague point de la
Surface, est aussi proportionnelle au carré du cosinus
de 1, latitude ; elle s'ajoute 4 celle qui est produite
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par la force centrifuge, et par cette addition le

- I " Tl :
‘oeilic 58, dugme rient — A pe &S,
coeflicient 289 gmente et devient oo 4 peu pr

al o 1 . * 2
Cest donc cette fraction —— qui exprimera, commne
200
3 Pry . Yy . |
nous lavons déja dit (n° 117 ), laccroissement” to-

tal du poids dun corps iransporte de I'équatent
au pole.
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CHAPITRE V.

EXEMPLES DU MOUVEMENT D'UN POINT MATERIEL
SUR UNE COURBE OU SUR UNE SURFACE DONNEE.

§ 1. Oscillation du pendule simple.

179. Un pendule est, en général, un corps solide
Pesant, qui oscille autour dun axe fixe et horizontal,
Mais pour comparer plus facilement entre elles les
darées des oscillations de différens pendules et les jn—
tensités correspondantes de la pesanteur, les géo-
Wetres ont imaginé un pendule idéal qu'on appelle
Pendule simple, et qui consiste en un point matériel
Pesant, suspendu a un point fixe par lintermédiaire
dun fil inextensible et inflexible , dénué de pesanteur
¢t méme de densité, et dont la longueur est celle de
¢ pendule.

On verra, dans un autre chapitre, qu'’il Y a tou-
Jours un pendule simple dont les oscillations coin-
Cident, et pour leurs durées et pour leurs amplitudes,
avec celles d'un pendule quelconque; et nous mon-
trerons comment la longueur du premier peut se
déterminer d’apres la forme et les dimensions du se-
tond. Nous ferons voir aussi que cet accord ayant
liew entre Jes mouvemens de deux pendules dans le
Vide, il subsistera c¢galement dans un milicu résistant,

: 22
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quelle que soit la fonction de la vitesse qui exprime
la résistance. Ainsi, il suffira de considérer le mouve-
ment du pendule simple, soit dans le vide, soit dans
un milieu résistant; et c'est ce qu'on va faire dans ce
premier pataglaphe

180. Soient C (fig. 45) le point de suspension,
CB la verticale passant par ce pomt fixe, et CA la
position initiale du pendule. Supposons que le point
matériel qui le termine parte du point A avec une
vitesse & perpendiculaire a CA, et divigée dans le plan
des droites CA et CB; il est évident qu’il ne sortira
pas de ce plan vertical, et qu’il y décrira des arcs de
cercle dont C est le centre et CA le rayon.

Au hout du temps quelconque ¢, soit M la positio?
du mobhile ; des points M et A, abaissons sur la ver-
ticale CB, des perpendiculaires MP et AD , et faison$

CP = z, CD =

En désignant par g la gravilé et par v la vitesse dv
mobile au point M, nous aurons, dans le cas du vide
(n°159),

P =k 4 2g(z — ¢);
et si Pon appelle s Parc AM décrit par le mobile, de

te quion ait & = dédui

sorte quon al 7; =V, on en deduira

i — : d.: .

V'E + 25(3 — ¢)

Désignons par8langle MCB, qui sera positif quand
le pendulc se trouvera a gauche de CB, comme la
droite CA , et négatif lorsque le pendule sera i droit€
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de la verticale. Soit aussi « Vangle ACB, ou la va-
leur initiale de §. On aura

ds dd
s=a(e—40), V= =—a,

€n représentant par « la longueur CM ou CA du pen-
dule. On aura, en méme temps,

z=acosl, ¢c=acosa;

et au moyen de ces valeurs, celle de d¢ deviendra

ds — adi

= (r)

T VEE 2ga (cos 4 — cos @)

Telle est donc la formule qu’il s'agira d’intégrer
exactement ou par approximation.

181. Il n'y a qu'un cas dans lequel intégration
sous forme finie soit possible, c'est lorsqu'on a

k* = aga(1 -+ cos a);

e qui a lieu quand le mobile part du point A avee
la vitesse qu'il aurait acquise en tombant d’une hau-
teur égale a ED; E étant le point le plus élevé du

cercle qu’il décrit. En faisant 0 = 2.], et obser-
vant que
1 - cos 2y = 2cos*4),
on a alors
%y
dt —— g- m-

J'intég‘re, je détermine la constante arbitraire de
sorte qu'on ait <L = 1« quand # = 0, et je mets
£0 a la place de | ; il vient

23
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X Lol (r — sin 2 ) (1} sin ;=)
i = 2 glog (I—I"Sin ée) (l—Sinéd).

Si le point A coincidait avec le point E, on au-
rait ¢ = @ ; ce qui rendrait infinie cette valeur de
t, quel que ful T'angle §. Cela signifie que le mo-
bile ne quitterait pas le point E; et en effet, dans
ce cas, sa vitesse initiale serait nulle, et la tangente
au point E étant horizontale, il y demeurerait en
equilibre.

Le point B répondant & § = o, on aura, dans
tout anlre cas,

‘s 3 1
T i 1 sin 4 2
v o 10g + i b

& 1 — sin g2

2

pour le temps que le mobile emploiera a parcourir
Varc AB. Avec sa vitesse acquise en ce pointk, il s'éle-
vera sur la demi-circonférence BA'E; mais, d’apres
ce qu'on a vu dans le n° 159, il devra employer un
temps infini pour atteindre le point E : c’est ce qui a
lieu effectivement; car en faisant = —=x, on 2
i = .

Quelle que soit la vitesse initiale & et I'angle «, la
formule (1) pourra sintégrer par les fonctions ellip~
tiques ; en sorte que le temps des oscillations ou des
révolutions du pendule se calculera toujours att
moyen des tables numeériques de ces fonctions ;
mais, dans la pratique, on a seulement besoin de
connaitre la durée des oscillations trés petites, que
nous nous hornerons & considérer.

182. Pour que le pendule ne fasse que de petites
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oscillations de part et d’autre de la verticale CB, il
faudra que I'angle o et la vitesse % soient peu consi-
dérables; on pourra toujours rendre cette vitesse
lout-3-fait nulle, en faisant partir le mobile d'un
Point un peu plus élevé que A, c’est-a-dire, en aug-
Mentant convenablement I'angle ¢ ; on ne nuira donc
Pasa la généralité dela question en supposant £—o;
¢e qui réduit I'équation (1) a

a do
di = — ‘/(—I e et 2
& Vzcosﬂ-—- 2C08 ¢ ( )

Par les formules connues, on a

a4

ga

0! = —-— — —— e — eflc.

cos 6 g 1.2.3.4 Al
a® et

cos &8 — | — — ——— — eglc.
2 1.2.3.4

Les angles et § étant trés petits, par hypothése,
Je néglige leurs quatriemes puissances ; il en résulte
Simplement

i \/E ds
df =— — ——_—
g ‘/d_"-—ﬂ”

En iutégrant et observant que l==a quand =0,
On en déduit

a (1
S — arc(cos — o
e e

dou Pon tire
2 CO5 L o A= & asmt\',a p

Ces formules montrent, conformément a ce qu'on
 déja vu (n° 15g), que le pendule fera une suite in-
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définie d'oscillations égales et isochrones de part et
d’'autre de la verticale CB: il reviendra, avec une vi-
tesse nulle, au point A ou l'on a § =«, toutes les

fois que £ \/ é';’ sera un multiple de 29r, et au point

A/, situé 2 la méme hauteur que A et ol l'on a

= — &, loutes les fois que § sera un multiple im-
pair de 7. En appelant T le temps qu’il emploiera a
aller de I'un de ces points extrémes & autre , 'est-i-
dire, le temps d’une oscillation entiére, on a

T:ﬂ'“g.

Les durées des deux demi-oscillations, 'une descen-
dante et l'autre ascendante , seront égales entre elles
etazT.

En général, a deux instans séparés par un temps
égal 2 T, le pendule occupera, des deux cotés de la
verticale CB, des positions également éloignées de
cette droite, et sera animé de vitesses égales et con-
traires ; car si 'on met # 4 T a la place de ¢, dans les

df . :
valeurs de 8 et —» on voit qu'elles ne font que chan-

ger de signe.
Le pendule coincide avec la verticale quand on 2
§ = o0, ou ¢ égal 4 un multiple impair de £ T; il en

résulte g
di z
7=%a/t

et, par conséquent,
¢ === a\ga,
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pour la vitesse du mobile au point B. En appelant
la hauteur DB de son point de départ au-dessus
de B, on aura

b = a(1 — cos o) = taa*,

2 cause que 'on néglige la quatrieme puissance de .
Abstraction faite du signe , la vitesse acquise au point
le plus bas sera done

v = \/::—ﬁf);

Ce qui est, comme eela devait étre, la vitesse due a
la hauteur &.

183. La valeur de T est, comme on voit, inde-
pendante de I'angle «; elle subsistera encore , et sera
rigoureusement exacte, quand cette amplitude o sera
infiniment petite. Si donc on écartait le pendule ir.-
liniment peu de la verticale, il emploierait pour y

3 : ; Sy a
Yévenir un temps fini et egal a—7 \/—. Dans ce
2 &

mouvement , le mobile décrirait un espace infini-
Ment petit dans un temps fini: ce qui vient de ce que
Vintensité de sa force accéléralvice serait infiniment
Petite. En effet, cette force est la pesanteur décom-
Posée suivant la tangente a la trajectoire; or, dans
Pétendue de I'arc infiniment petit qui aboutit au point
le plus has de cette courbe, la tangente fait avec la
Verticale un angle qui differe d'un droit d’une quan-~
Uité infiniment petitc ; le cosinus de cet angle, par
quue] il faut multiplier la pesanteur pour obtenir sa
Composante, est donc infiniment petil; par conse-
Guent, cetle composante est anssi infiniment petite.

s I ——
e =—pas

d
:
A
If
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On peat étendre ce résultat aux oscillations d’un
point matériel pesant sur une courbe quelconque ,
dont le plan osculateur au point le plus bas B est
vertical ; car dans une étendue infiniment petite 1a
courbe coincide avec son cercle osculateur, et, dans
! une étendue seulement trés petite, elle s'en dearic
i tres peu; d'olt il suit que C étant le centre de ce
I cercle, la durée des oscillations tros petites sur la
courbe, de part et d’autre de son point B, est la
méme que pour un pendule simple dont C serait le
; point de suspension, et qui aurait pour longueur le

rayon de courbure CB correspondant a ce point B.
r Les oscillations trés petites ont donc une méme du-
L vée indépendante de leur amplitude , sur toutes les
: courbes verticales qui ont la méme courbure X leur
i point le plus bas. Lorsque le plan osculateur en ce
] point n'est pas vertical, il faut remplacer dans I
| valeur de T la gravité g par sa composante dans
ce plan, laquelle est égale & gsini, en appelant ¢
l'inelinaison du plan donné sur un plan horizontal-
| { 184. Quand T'angle « a une grandeur finie et seu-
"‘ lement trés petite, la valeur précédente de T n’est
I qu’approchée.
! En effet, si I'on conserve les quatriémes puissances
de a et de 8 dans les valeurs de cos @ et cos §, €l
i quon les substitue dans la formule (2), on aura

I a d

3 5 ‘/d—?‘tfl—ﬁ(cf.’—l—ﬂ‘)
'Js; A ce degré d’approximation, il faudra prendre
B

1 2 (o7 o O)] =y (02 0)
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on aura donc

sV et v

lormule qui s'integre par les régles connues. En in-
= . . 1 .
‘egrant depuis § =a jusqu'a 6=— a, pour avoir
la durée T d’une oscillation entiere, on trouve

A 6["

s (1)

¢ qui montre que cette durée est un peu augmen-
tée par la grandeur de 'amplitude.

Il en résulte que si I'on appelle # le nombre des
Oscillations infiniment petites d'un pendule quelcon-
Gue dans un temps donné, et #' le nombre des os-
tillations du méme pendule et dans le méme temps,

i~

g 0

fuand leur amplitude « est sculement trés petite, on
dura

P n.’(] -+ m—),

16

Car le nombre »' doit diminuer dans le méme rap-
Port que la durée de chaque oscillation est augmen-
t€e par Ja grandeur de cette amplitude.

185. Quoiqu’on ait soin, dans les différens usages
du pendule , de faire en sorte que l'amplitude des
ctsﬂillations soit trés pelite, ce qui rend toujours suf-
"lf:ante la correction relative a la grandeur de @ qu'on
Vient de déterminer, il est bon , néanmoins, de con -
nﬁ‘ilre la série convergente par laquelle on peut ex-
Ptimer la durée d’une oscillation , quelle que soit son
Amplitude.

=5 gl 8 I
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: Pour cela, soient & et € les sinus verses des angles
0 et @, de sorte qu'on ait

1—cosfl =2, 1 — cosa—EC;

on aura, en meme temps,

T
‘//23 —_—"
La formule (2) deviendra
dt _ i é _.._dx——-_: H
. \v/g Ver — V1 —ta’

| et, pour en deduire la durée 2T d’une demi-oscilla~
? tion, il faudra intégrer depuis 2 =€, qui répond 2
| #=a, jusqua =0, qui répond i 8 =o.

kil Or, en développant par la formule du binome
ona

| L x i 1.3.5 =3 L
i '_""”) R e I T TR s

série dont le terme général est

1:315.: 2n—1 ( )

2.4.6...2n
et qui sera toujours convergente, i cause que x st
constammenl moindre que 2. Si donc on intervertit
I'ordre de I'intégration, ce qui est permis en chan~
geant en méme temps le signe de d¢; qulon fass®
ensuite, pour un nombre guelconque 7 ou zéro,

(5 and:
1 [‘ - ’i,;_ — {‘\_5 5
s A V Cpv== x
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€t qu'on double la valeur de é T, il en résultera
e JE (4 b B2 g B ;
g(A“+z'zA'+2.4'4A’T2.4.6'8A3+Gl'”')'

Les valeurs des intégrales définies A,, A,, A,,
A‘:n etc., sont lides entre elles de maniere que l'une
Qelles étant connue, il est facile d’en déduire suc-
Cessivement toutes les autres. En effet, on a, identi-

Quement,
"\ 2*dz __ (x—i6)x""'dx 6 [ z"'dx
Vézez  J Véz—z o) ez —a*’
[-r-.i g) " —idy ey I
fﬁix* =S e \/é‘x—.r*—{—(n-—l]f.r"—’ ‘/Qx—r‘d.r,
n—i lld
f.x“_’ \/Gr—,x‘ s—0 xi s if:—_,
g ‘ V bx—a* Cx—x*

Yob I'on conclut

xdzx g ——— o e x"dx

F fV Lx—a* i \/Gx—:r (n : ) f\/C:r-—x"
(2n—1)6 [ 2" 'dx

S J Vbz—z*’

+ »
€, par conséquent,

SB[

o —— n 2n J \Cx—a

Aux deux limites =0 et x=6, on a \/Ex—x*=0;
3? passant aux intégrales définies, on aura donc,
apres celte derniere équation,

e S L e

an
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Sil'on fait successivement n—=1, =2, =3, etcy
dans cette formule, on en déduit

A== CAy,
2
ﬂ A.:%Q}g:ii & A,
| 2%
v 5 8/6
A‘B — 6 CAR :m QSA,,,
ete.

par conséquent, nous aurons, geénéralement,

A.-—-——Igg 9::-—-1ng’
L

et quant a la valeur de A,, on aura

A__f'/_az 7.

En substituant les valeurs de A,, A, A,, ete:s
dans celle de T, il en résulte

e/ o) GO+ ©) ]

pour la série qu'il s’agissait d’obtenir, et qui est €5~
sentiellement convergente , puisque =& est toujour®
moindre que I'unité.

8i l'on néglige la quatriéme puissance de o, O
aura 6 = 2 a; il faudra réduire la série i ses deu®
premiers termes, et la valeur de T coincidera aveC
celle du numéro précédent.

186. Considérons actuellement le mouvement d®
i pendule simple dansun milieu résistant. En conservan®
toutes les notations précédentes, la composante de
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la pesantenr suivant la tangente M'T' sera gsin, a
“use que 'angle que cette droite fait avec la verti-
‘3_3]6 MN est complément de l’anglc MCB ou f. Dé~
Signons par V la foree accélératrice provenant de la
PéSiSt.’lDCe, laquelle est dirigée en sens contraire de
L:’"'ite composante g sinf, et appelons s l'ar¢ AM;
€quation du mouvement sera (m® 152 )

d’s

= gsint — V. (3)

. On pourra faire différentes hypothéses sur la va-
“urde V en fonction de la vitesse du mobile; le
PFHS simple est de la supposer proportionnelle i cette
Vitesse, de sorte que l'on ait

paleg i
‘—ﬁ'dt’

n désignant par £ une vitesse constante et donnée,
0 a ayssi

: 0*
Y= g (@ — §), smﬂ:g——-m-{—ctc.;

SUdope § est, comme précedemment, un trés petit
E{‘}glc, et que l'on néglige sa troisieme puissance,
quation (3) deviendra

28 g di &g b
ztiz+tii=o

Sop inte’gralc compléte est

- A
b (e \/5' T _‘/5) #
= (¢ coszy = -+ ¢ sin £y ) R ’

B e _ :
% représentant par ¢ et ¢! les deux constantes arbi-
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traires, par ¢ la base des logarithmes népériens, et
| faisant , pour abréger,

i
Y — !TF o = 3{.
i . I ds
Je détermine ¢ et ¢’ par les conditions f = « et 5=
: quand ¢ ==o0; ce qui donne

P— i/'_g__a

LS a? i’.'ylri' .

Par conséquent, on aura

= az(costy \/é’i‘%?ﬁnf?\/%)e_%,

et , en différentiant,

. : gt
de . St = g\ = 2k
42 \/E(smiyy/S)e ™,
pour les formules qui font connaitre, a un instant
quelconque , la position du pendule et sa vitess®
angulaire,

. : di i
A la fin de chaque oscillation, ona —=o; ce qut

a lieu toutes les fois que \/ i estunmultiple de?

Il s’ensuit done que les oscillations sont 1sochroneés?
comrme dans le vide, et qu'on a

T:f\/é
Y g’

pour la durée d'une oscillation entiére; en sorte qu’ell6
i est augmentéE, par la résistance du milien, dans 1€
rapport de 'unité & la fraction 7.
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Quant aux amplitudes des oscillations , elles di-
Minuent continuellement & cause de I'exponentielle
g
T *. En appelant a, 'amplitude de la ' oscilla-
Hon, ¢'est-a-dire, en supposant qu'on ait §= (—1)a,,
fuand ¢ = nT, il en résultera

nw Vga
i, = ae ayk 3

‘¢ qui montre que les amplitudes successives forment

Une progression géomeétrique décroissante, dont le
» Vga

Tapport est e ak .

Toutefois, ce mouvement oscillatoire suppose que
¥ soit une quantité réelle; et, en effet, c’est ce qui
3lieu dans les expériences du pendule, qui n'a jamais
e longueur extrémement considérable, et dont la
dl‘iusité est tonjours trés grande eu égard i cellede lair
Ou il se meut : la vitesse £ étant proportionnelle au
"pport de la premiére densité & la seconde, elle est
Wes grande par rapport a +\/ga, et, conséquem-
I:len_t, 7 est une quantité réelle qui différe peu de
_nité, 8i, au contraire, on avait 2k < Vga, 7 serait
Maginaire et de la forme € vV —1, en désignant
Par € yne quantité réelle; par les formules connues,
€S sinus et cosinus quientrent dans I'expression de §
%¢ changeraient en exponentielles; et cetle transfor-
Inﬂt_i()n faite, on verrait que 'angle f ne pourrait de-
Yenir nul qu'aprés un intervalle de temps infini ; en
*orte que le pendule approcherait indéfiniment de 1a

g
0
H
i

|
i
!
i)
ip
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verticale CB, sans pouvoir la dépasser ni méme
Patteindre rigoureusement.

187. A mesure que les amplitudes des oscillation®
diminuent, expérience prouve qu'elles approchent
de plus en plus de décroitre dans l'air en progression
géométrique: elles s’en écartent peu, par exemple;
lorsque l'angle o est d’un tiers de degré ou au-des~
sous. L'expérience montre, de plus, que ce décrois-
sement est tres lent; ainsi, dans une expérience de
Borda, ot il avait lieu sensiblement en progressior
géométrique, Pamplitude ne se réduisait qu'aux deu*
tiers environ , apres 1800 oscillations. En appliqualli
expression de d, 4 cet exemple, on aura done

18007 YV ga
E]

e :"Tk —_— 3
et, par conséquent,

1800V ga __
ok

niais on a

il en résultera donc
(o0 (1 — 3%) = 7 (0,40546)";

d’ou Pon tire

¥ = 1,00000000257. ..,

4 g —— 3 4 iger

ou & trés peu prés 3 = 13 ce qui permet de néglige’
Ja résistance de air daus le caleul de la valeur de T
On peut donc admettre que quand les oscillation®
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SO0t trés petites, la résistance de lair est propor-
Uonnelle 4 la vitesse, comme nous venons de le
SUpposer , et que cette résistance n'influe pas sensi-
Slement sur leur durée. Mais lorsque les amplitudes
Sont un peu considérables, Vobservation montre
qu'elles ne décroissent plus en progression géomé-
trique ; en sorte qu'il devient nécessaire de faire une
Atre hypothese sur la loi de la résistance.
188. Supposons cette force proportionnelle an
Carré de la vitesse , et prenons
) T ds* |
ﬂ-‘l dtr‘ >
f't‘ €tant une vitesse constante et donnéde qui sera tou-
Iours tres gmude; en sorle que si l'on fait

TR = M,

“sera une trés petite fraction. A cause de ds—=—adi ,
3, P - .
lfﬁquatlon (3) deviendra

d%8

L . da? y
cet = = i
dar’ = a e e 3 de? (4')
en a multipliant par 2df , intégrant et faisant
Pl dy? dy
A e
10us aurons
dy

25 sesil

43 7 PSRy =03

Couats o fis 4 T
{uation linéaire du premier ordre, dont I'intégrale
“omplete est

23
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46 2g(sinf — pcosd)

e i

| ¢ étant la constante arbitraire et e la base des loga~
! rithmes népériens. Je la différentie par rapport a 8,

au lieu de dr. il vient

2 d3®
et je remeis

b de* di’
dd* 8 2g(cos ) - gsin b)
— =" e .
dt'.l IU[ + ([ —t- Fi)a ?

(L8}
I = ] - "y .
! ce qui est une mtegralc premiere sous forme finie de
|
Péquation (4).
Pour déterminer ¢, je suppose qu'on ait, commeé
’ r dﬂ - r
précédemment , — = 0 quand § = 2; il en re~

sultera

A 24(CoS & sin &) — Mo
‘ T e +f 1 ]
: ' (1 + #*)a

Par conséquent, on aura, a un instant quelconque ’

dga [cosb+-p sm‘—(cosu-i—,u,bum ] @)

G+ +s-=“)a

Au point le plus bas, ot l'on a 8 = o, on aura don¢

adP' = aga s ’ T |
T [1 —(cosa+psinale ], '

pour le carré de la vitesse acquise, laquelle est ovi~
il demment moindre que dans le vide.
: En vertu de cette vitesse, le mobile montera sU*
Varc BA’ jusquen un point A, moins élevé que Al

de
la valeur correspondaunte de 8, il en résultera

3 dp
A et pour lequel on aura — =0, Si I'on désigne par —
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[ 1G]
{cosa, — wsin a, Je¥* = (cos a4 psine e

€l si Ton développe les exponentielles suivant les
Puissances de w, et quon néglige le carré de celte
fraction trés petite, on aura

C0sot, —pe(sine, — @,c08¢, )==Cose +,u(sinm—acosa).
La valeur de a, que lon tirera de celte équation,

diffiérera tres peu de « ; je fais donc e, =—=a — J', et
i€ néglige le carré de J' et le produit wd' ; il vient

dsine = a2p(sina — acosa);
£n sorte que l'on aura

Dpe .
= 4 —-— — Sinod — o COos o
Qe Sl & ( >’
pour la grandeur de §, abstraction faite du signe
la fin dela premicre oscillation,
Ce résuliat ne suppose pas les oscillations tres pe-
Utes ; mais si elles sont assez petites pour qu’on puisse

‘
y &

Négliger la quatrieme puissance de a dans cette va-
eur de 2, , elle se réduira a

F Dpea”
B O

Parvenu an point A, , le mobile redescendra , et 1l
Continuera ainsi a osciller de part et d'autre du
point B, jusqu’a ce que les amplitudes de ses oscilla~
Yions soient devenues sensiblement nulles. Si Pon
appelle =, 'amplitude de la seconde demi-oscillation
A5cendante , 1l est vident quelle se déduira de e,
tomme on a déduit 2, de a; en sorte que 'on aur

23..

]
a
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o

Et de méme, s1 oy, «,, etc., sont les amplitudes
successives des autres demi-oscillations ascendantes s
on aura

) = »
2ficiy 2#“;

ay = &, 3,a4=¢:¢3—'———3-,ctc.;

ce qui montre qu'elles ne décroitront plus en pro-
gression géométrique, comme dans le cas de la ré-
sistance proportionnelle 2 la vitesse

189. Pour déterminer le temps qui répond & un
angle §, il faudra intégrer la valeur de d# tirée de
I'équation (5); ce qui sera toujours possible par la
méthode des quafh‘alures, quand les valeurs numeé-
riques de 2, 1, 0, seront données. Mais dans le cas
des petites osmllahon.»,., on peut obtenir, en série con-~
vergente, la valeur de f en fonction de £, et récipro-
quement.

Je supposerai toujours la vitesse initiale du mobile
égale a zéro'; la valeur de f 2 un inslant quelconque,
sera une fonction de ¢ et o qui devra se réduire a zér0
dans le cas de @ = o; je la représenterai donc par

8 = af, 4+ a.’eg.-i-l— a%, 4 etc.;

§,, ., B, etc., étant des coefliciens indépendans
de a. Ea substituant cette série dans I'équation (4)»
développant les denx membres suivant les puissances
de 2, et égalant ensuite les coefliciens des mémes
puissances , on formera une série dequatlons diffé-
rentielles du second ordre, qui serviront A détermi-
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uer les inconnues 6, , B, , 05, ete. De plus , pour qu’on
- di ; g2

at f = o et 7 =0 quand Z=o et quel que soit a,

il faudra que les valeurs initiales de 6., 6, etc.,

dt, ) .
%2 o etc., soient toutes nulles, et que celles de

de . oAl . 3 5
0, et —, Soient I'unité el z€ro ; et Cest d'aprés ces con-
ditions qu'on déterminera les constantes arbitraires
qui seront contenues dans les intégrales completes de
Cetle snite d’équations. De cette maniére, on calcu-
lera autant de termes que Pon voudra de la serie
précédente. Nous bornerons Papproximation au carré
de , et nous négligerons le cube et les puissances
supérieurcs de cette quantité.
Alors, on a simplement

AR R

e~ dr drs’
sinf = af, 4 20,

ar

s dr’

el en substituant ces valeurs dans I'équatien (4), et
égalant les coefficiens de « et de a* dans ses deux
Membres, 1l vient

d, g o

dr* e a 0, = o,

de, 8o g dé>
g gl e

En intégrant la premiére de ces denx équations, et
terminant les deux constantes arbitraives , de sorte
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y ¥ di,
’ =8 of &
quon ait 9! == o ot 7

9; = cos57? \/ 55.’_
a
1l en résultera

ant g
TR sin® t\/_ —E 1 —C0s 2¢ \/g)

la seconde équation deviendra done

d’d, g — 8K \/
(ﬁ;""'&g 4 (I—CObEl )

et 'on aura

G,:——cost\/ -[— ,u,—|— ,wco»zt\/

pour son intégrale assujettie aux conditions f, = o et

&, T
i 0, quand { = o.
Au moyen de ces expressions de 8, et §,, celle

de B devient

ﬂ_._(a.—-— cust\/ -]-””“.;_ wsﬂ\/b.

di
acause de vy =—a Z» On aura, en méme temps,

v.—_-(at.—- —)\/gasm t\/ ~|~“#‘/—" sin 2 \/2

et ces formules feront connaitre la position et la V1
tesse du mobile & un instant quelconque.

= 0, quand ¢ =0, nous

aurons

:| |ty |

Ay |

190. Si nous remplacons, dans la derniére, sm.'zt\/
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Par asin ¢ \/ % cos ¢ \/ f—; , I'équation v =0, qui a licu

ala fin de chaque oscillation, prendra la forme

i i g ] \/ é p—

(: -3—+3cost\/a)smt o = o.
L’angle o étant trés petit, le premier facteur ne
Peut étre nul; le second est zéro toutes les fois que

t\/% est un multiple de 7. 11 s'ensuit donc que l'in-

tervalle de temps qui s'écoule entre deux vitesses
nulles et consécutives, ou la durée T d'une oscilla-
lion entiere, est

T=7r\/§€z;

en sorte que la résistance de l'air, proportionnelle au
Carré de la vitesse, n'influe aucunement sur cette
durée,

Cependant, elle augmente le temps que le mobile
€mploie 4 atteindre le point B. En effet, en le dési-
8hant par ¢/, et faisant §—=o0, on a

dpe / é e o 1 \/é'__
I—- iy [ 2 — 0.
( 3)cost \/ﬂ—[— Z +[2 cos 2t ==0

La plus petite valeur de #/ ‘/% qui satisfasse a cette

“Quation differe trés peu de £ 77 ; soit donc

g 1
4 \/‘E.—-;'ﬂ' -+ J&';

€n négligeant le carré de & et le produit ad', on aura

g = -g.-d.,u.,

e

—

5
»i.

Al
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et, par conséquent,

1 ; (- 473
i M— (I N pa )
2 7 g ) 37
La résistance de I'air angmente donc la durée de la
premicre demi-oscillation descendante, dans le rap-
port de 1 - = d Yunité ; et puisqu'elle n'influe pas
sur la durée de l'oscillation entiere, il faut qu'elle di-
minue, dans le méme rapport, la durée de la demi-
oscillation ascendante.
En substituant cette valeur de #/ dans celle de ¢,
et négligeant le cube de &, il vient
f —
e (1 —_ :&) a\'ga;
d’'otr 'on conclut que la vitesse acquise au point le
plus bas est diminuée par la résistance de l'air, dans
T Sy
le rapport de 1 — ~- a lunité.
o
Si I'on désigne par — ¢, la valeur de 8 qui a lieu
4 la fin de la premiere oscillation entiére, et qui vé-

o
pound i ¢ \/1‘:; =%, On aura
= S5~

comme précédemment.

Ces différens résultats sont indépendans de la gran-
deur du coefficient @ de la résistance, et supposent
seulement l’anglc o lres Pelit; 1ls conviennent égn]e’
ment au mouvement du pendule dans un fluide aéri=
forme et dans un ]_iquidi‘:, pourvu que e (:()r;‘m(_,"ltif‘i"r
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# soit déterminé pour chaque miliecu en parlicu-
lier. Dans le cas de o irés petit, il est inutile d’exa-
Miner I'hypothese dune résistance proportionnelle
au cube ou & une puissance supérieure de la vitesse ;
Car il n'en pourrait résulter, dans les valeurs de 0
et v, que des termes dépendans des puissances de @
Supérieures au carré, que l'on a regardés comme né-
gligeables dans les calculs précédens. En rapprochant
¢e qu'on vient de trouver-de ce qui a éié dit dans le
° 187, on en conclut donc que la résistance de lair
w'influe pas sur la durée des tres petites oscillations
du pendule, pour lesquelles on néglige la correction
relative A la grandeur de Vamplitade (n° 184). Quand
on tient compte de ceite correction, la resistance a
une petite influence, a cause quelle fait varier les
amplitudes pendant la durée du mouvement.
1g1. Il ne suit pas de Ja que la durde des oscilla-
tions d’un corps pesant, quelque petite qu’on la sup-
Pose, soit la méme dans Vair que dans le vide ; car
¢e fluide, par la pression qu'il exerce sur le mobile,
dugmente cette durée en diminuant la pesanteur.
Dabord, on sait par Pexpérience, et nous démon-
Werons dans 'Hydrosiatique, qu'an corps en repos,
Plongé dans un fluide, y perd une partie de son
Poids, égale au poids du fluide dont il occupe la
Place. Ainsi, P étant le poids de ce corps dans le
v:dE, P’ son poids dans Pair, 11 le poids d'un volume
Daiy égal & celui du corps, on a

P=PFP—II

En appelant p le rapport de la densité de air i celle
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dn corps, g la gravité dans le vide, g’ ce que cette force
devient dans Vair, et 7 la masse du corps, on a auss!

=Y, P—amg, PF=m:
on aura donc

B S g

Or, si l'on désigne par T et T' les durées des petites
oscillations d'un méme pendule qui-répondent aux
deux forces accélératrices g et g', on aura

a /a
T=4r\/§, T’=wvé?,

et, par conséquent,

P i e oo

[ ==

Soit aussi @' la longueur du pendule soumis & Ia gra-
vité g’, qui fait ses oscillations dans le méme temps
que le pendule soumis i la gravité g et dont la lon~
gueur est @ ; il faudra qu'on ait

Vi=V5
g BN g
d’olr I'on tire |
a = a(1 — p).
Donc, par la seule considération de la perte de poid5
a I'état de repos, la durée des oscillations dans 1'alr
se trouve angmentée dans le rapport de l'unité a
V1 — p pour un méme pendule, et la longueur dv
pendule simple se trouve diminuée dans le rapport
de 1— p & P'unité pour une méme durée.
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De plus, M. Bessel a fait voir, par l'expérience,
que la perte de poids quun méme corps €prouve
dans I'air n'est pas la méme, quand il est en repos et
101‘Squ’il a un mouvement oscillatoire. Elle augmente
dans le second cas; et il en résulte qu’il faut, dans
les formules précédentes, multiplier p par un fac-
teur f plus grand que l'unité, et dépendant de la
forme du mobile. Je suis parvenu a ce méme résul-
tat dans un Mémoire sur les Mouvemens simulianés
dun pendule et de Uair environnant (*); et, d’apres
mon analyse, on a_f=—2 quand le pendule consiste,
comme celui de Borda, en une sphére suspendue a
Pextrémité d’un fil trés mince, dont la longueur est
trés considérable par rapport an diametre de cette
sphére; en sorte qualors il faut augmenter de moitié
la correction relative & la densité de V'air, que l'on
faisait subir, avant I'observation de M. Bessel, a la
durée des petites oscillations et i la longueur du
Pendule simple. Dans tous les cas, le coeflicient f est
toujours indépendant de la densité du pendule, ainsi
que de la densité et de la nature du fluide dans le-
quel il oscille, de maniére qu'on peut toujours le
d(,é‘rerminer par I'expérience, en comparant les du-
Tees des oscillations de deux pendules de méme forme
et. de densités différentes, dans un méme fluide, ou
bien d'un méme pendule dans deux fluides différens,
tels que Vair et I'eau, par exemple.
1g2. Maintenant, soit » le nombre des oscilla-

tons infiniment petites qu'un pendule quelconque
T
(*

(%Y Mémoires de I Académic des Sctences, tome XI.




364 TRAITE DE MECANIQUE.
ferait dans le vide pendant un temps donné 7. Pout
déduire ce nombre, par la régle du n° 184, de celui
des oscillations trés petites qui est denné par V'ob-
servation , et afin d’avoir égard 4 la variation des
amplitudes pendant ce temps T, on a coutume de
prendre pour I'angle « la moyenne des amplitudes
extrémes qui sont aussi donnédes par l'chservation.
Cela ctant, la durée T d'une oscillation infiniment
petite de ce pendule sera
¢ x
T = =3

et I'erreur que l'on pourra commettre sur la mesure
du temps T aura d’autant moins d'influence sur celie
valeur de T, que le nombre n sera plus considé-
rable. D’apres la forme et les dimensions du corps
oscillant, on déterminera, par la formule qui ser2
donnée dans un autre chapitre, la longueur du per
dule simple, dont le mouvement est le méme que
celui de ce corps; on réduira cette longueur, comme
on vient de l'expliquer tout i I'heure, 2 ce qu'elle
serait dans le vide ; et si on la’ désigne par @ apré
cette réduction, et qu'on représente par g la gra-
vité dans le vide, on aura

T (23
- =7 -3
7E g

x'n'a

gi— — (a)

T

d’ou l'on tire

('est au moyen de cetie formule que P'on déter
mine avec nne extréme préeision , en chaque lie?
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de la terre , la mesure de la pesanteur, ou la vitesse g

que les corps pesans acquitrent en tombant vertica—

€ment dans le vide, pendant une unité de temps.

aprs expérience faite par Borda , 2 'Observatoire

€ Paris, avec un pendule d’environ 2 metres de
l““gucur, on a

®h prenant la seconde pour unité; et lon en con-
Chat

g = 9",808q6,
n ce lieu de la terre, cesi-a-dire, 4 une latitude
de 48° 50" 14".

M. Bessel ayant fait osciller successivement des
Corps de toutes sortes de matieres, tels que des mé-
taux, de Pivoire, du marbre, des pierres météori-
ques, etc., a constamment trouvé des valeurs de g
Sensiblement égales; les plus grandes différences,
fle part et d'autre de la valeur moyenne, s'élevant
4 peine i un cent-millieme de cette valeur, et pou-
Vaut étre atiribuées aux erreurs inévitables de I'ob-
*ervation. Il ne peut donc rester aucun doute sur
A parfaite égalité de l'attraction exercée par la terre
*Ur tous les corps, quelle qu'en soit la nature, qui

S_unt situés en un méme lieu de sa surface; car cette
“Balité résulte de celle des valeurs de la pesanteur
L Puisque cette force est lexces de Vattraction ter-
'estre sur la composante verticale de la force cen-
Inrllge, commune 4 tous ces corps.

193, En counsidérant la surface de la terre comme
¢ prolongement du nivean des mers en équilibre,
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on démontre, dans la Mécanique céleste, que la va*
riation, a cette surface, de la longueur du pendulf{
simple qui fait chaque oscillation dans une unité
de temps , est proportionnelle au cosinus du double
de la latitude ; en sorte quen désignant par A cetté
lengueur en un licu dont la latitude est 4, on doit
avoir
= (1 — wcos2l); (b)

[ et w étant des constantes déterminées par I'obser-
vation. On démonire aussi que le coellicient o est
lié a l'aplatissement du sphéroide terrestre par I'é-
quation

20 4 & = Sr,

dans laquelle on appelle J' cet aplatissement, de
sorte que le rayon de l'équateur et celui du pole
solent entre eux coimme 14 et l'unité, et ou l'on
désigne par r le rapport de la force centrifuge & la
pesanteur, qui a lien a 'équateur, et dont la valeu?
est (n° 177)

I

Fra= %.

La formule (b) est, en effet, confirmée par I'e¥
périence quand on fait abstraction des circonstance®
locales qui peuvent influer , comme on le verra par
la suite, sur Pattraction de la terre et sur la longuew”
du pendule. I’ensemble des observations faites & dil
férentes lalitudes donne

@ = 0,002588 ;

ce qui suppose d' a trés peu prés égal & r. La cons”
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tante / est la valeur de A correspondante a + = 45°;
elle differe pen de celle qui répond 2 la latitude de
Pﬂl‘is; et, d’apres celle-ci, on a

0™,093855 = I[1 + 0,002588 .sin (7° 40" 28")];

d'ots T'on tire
== 6™,0g501%

8i I'on fait n=1 et v =1 dans la formule (a);
f{ue I'on y mette successivement / et A a la place de

@, et qu'on deqlgnc par p et @ les valeurs correspon-
dantes de g, on aura

P = A

On aura donc
p .= g™80957,

&, 4 une latitude quelconque,
@ = p(1 — 0,002588 cos 2).
En observant que
cos 24y = 2cos*a] — 1,

1 yoit que la diminution de la pesanteur, en allant
du pole 3 I'équateur, sera proportionnelle au carré
du cosinus de la latitude, conformément a I'énoncé
(l]] n° 178

En transportant un méme pendule en différens
lieux de 1a terre, on voit, par 1eqmtwn (@), que les
U0mbhres 7 de ses oscﬂlatlons, dans un méme temps T,
Varieront proportionnellement a la racine carrée de
4 gravité, Ainsi, par exemple, une horloge réglée ,
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2 Paris, sur le mouvement diurne de la terre, ¢t
transportée ensuite 4 l'équateur , retardera sur €€
mouvement. En appelant 7 et 7’ les nombres des 05
cillations de son pendule en un jour sidéral dans
ces deux lieux de la terre, on aura

e — 0.002 e T T
= 8{“64 ’ n'=n \/ - (:J‘( : = i )
1 | 0,002588 sin (7° fo’ 287)

et, par cons¢quent,

n! == 86037 ;

en sorte que le retard sera d’environ 127 secondes ep
24 heures. Clest I'observation de ce retard qui a mis
en évidence, pour la premiére fois, Ja variation de
la pesanteur 4 la surface de la terve.

§ Il. Mouyement sur la cycloide.

194. Soit ABC (fig. 46) la trajectoire d'un point
matériel pesant, dont le plan est vertical. Supposon®
que ce mobile parte du peint quelconque D, sans
vitesse initiale, et qu'il soit en M au bout du temps £}
des points D et M abaissons des perpendiculaires 'D’]‘j
ot MP sur la verticale passant par le point B, q@
‘est Te ‘plus ‘bas de la courbe; en faisant EP =z, et
désignant par ¢ la vitesse acquise au pomnt M, et pa
o la gravité, nous aurons (n° 159)

&
v = \/ 282 ,

si V'on suppose que Ja pesanteur soit la seule force qut

agisse sur le mobile. Soit aussi s V'are BM ; comme !

déeroit quan{i le temps augmente, on anra
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ds

o= —
de?

€t s1 I'on fait
EB—=%, PB=ax=h—z,
Il en résultera
ds
i e 1
‘/h— x ( )
Quelle que soit la courbe donnée.

Cette courbe étant, par hypothese , une cycloide,
90 aura (n° 73)

\//Q_gﬂ.?t = —

& = gax,

€n désignant par a le diameétre BF de son cercle ge-
hérateur. On aura done

28 d:
\/2—5(# = — —._r—,
L V hx —ax*

» en intégrant,

L e —— 1 (cos == ———) -
@ h

% wajoute pas de constante arbitraire, afin qu’on ait

t=o 3 origine du mouvement, ou quand x = /.
8i l'on appelle # le temps que le mobile emploie &

“Meindre le point B qui répond & & = o, on aura

ef

v [2g
¢ ?::{i‘ﬁ(COs:-—-r):'ﬂ',

€, par conséquent,

.-}‘;_| mr
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Ce temps est, comme on voit, indépendant de Ia
hauteur % du point de départ D du mobile, au-des=
sus du point le plus bas B; en sorte que cette pro-
priété, qui a lieu par approximation dans toutes les
coarbes pour une hauteur % trés petite, est rigou-
vensement vraie dans la cycloide, quelle que soit
cette hauteur, loujours moindre que a ou BI'. 1l en
résulte que tous les mobiles, partis en méme temp$
de différens points de la cycloide, arriveront en méme
temps a son point le plus bas.

On aura 7 5./ = pour le temps d’une oscillation en-

tiere de part et d autre du point B; or, on voit qué
ce temps est celui des oscillations tres petites du pen-
dule dont la longueur 2a est le rayon de courbure
de la cycloide en ce point (n° 72); ce qui s'accorde
avec le résultat du n® 183, relatif & la durée des pe-
tites oscillations sur une courbe quelconque, laquelle
durée est la méme, dans le cas de la cycloide, queé
celles des oscillations d'une amplitude quelconque.

195. Le temps que le mobile emploie a parcourif
i'arc DB de la cycloide est encore indépendant de la
longueur de cet arc, quand le mouvement a lieu dans
un milieu résistant, et que la résistance est qupp():aee
proportionnelle & la premiére puissance de la V1
tesse.

En eflet, représentons cette force par % , comme€
dans Je n® 186; la composante de la pesanteur sul~

dzx dz
vant la tangente MT est g +» en observant que Zy

est le cosinus de langle TMN que fait cette droité
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avec la verticale MN ; la force qui agit au point M,
€t qui tend a4 diminuer l'arc BM ou s, sera donc la

différence g = — ar conséquent, o a po
e g g},\,p équent, ou aura pour
lequatu:url du mouvement

ds Al (da’,‘ v

e ds =k
Ou, ce qui est la méme chose,

d%s g ds

5 S
; @t ha T aa i
@ cause de
e R T LR A R
de’? ds' T 2@

Je suppose qu'a l'origine du mouvement, ou
Quand #=0, la vitesse v soit nulle, et qu'on ait
f=a; en déterminant les deux constantes arbi-
traives d’apres ces conditions, et faisant , pour

abreger ; e
ge __
\/ b ety

s - . r
llntegrale de I'équation précédente sera ( n° 186)

z. Vo \/
COS oy \/_ 23,!. L 2u

Si done on appelle ¢ le temps qui répond au point B
ua = = 0, on aura

cos ¢ v + % gin £ \/_
Squation d’oiz_ Pon tirera une valeur de £ indépen-
hte de 2; ce qu'il s'agissait de trouver.
24-.
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Si la résistance est trés petite, ou la vitesse & tres
grande, on aura = 1, & trés peu pres; et l'équa~
tion précédente donnera

” ?_1 ‘/;I.
PVE =t D

ce qui montre que le temps #' est un peu augmenté
par cetle résistance.

196. Prolongeons la droite BF jusqu'en O, d'une
quantilé égale a BF ; ce point O sera le centre de la
cycloide au point B ; et si l'on trace les deux demi~
cycloides OA et OC, tangentes aux droites OB et AC,
et ayant OF pour diametre de leur cercle générateur
OA sera la développante de AB, et OC celle de BC
(n° 72); par conséquent, un fil d'une longueur
constante OB ou 24, attaché au point 0, el qui s'en-
veloppera successivement sur les deux courbes 0A
et OC, tracera par son aulre extrémité la cycloide
ABC.

Cela fournit un moyen de construire un pendule
cycloidal. Pour cela, supposons que les courbes 0A
et OC soient tracées en relief, et que OB soit ur
fil inextensible et parfaitement flexible, attaché av
point fixe O; attachons aussi un corps pesant i sont
autre extrémité B, puis écartons ce fil de la pasi'
tion verticale,, de sorte qu'il s'enveloppe, en tout 0%
en parlie , sur I'une des courbes OA et OC, et que 54
p!li‘tlt: non euveioppgc soit une droite tangente i
cette courbe : en abandonnant ensuite le mobl“*
4 lui-méme, ]'e‘{tr'émiié infévieure du fil déerira J2

courbe ABC; et, daprés le n° 194, la durée des
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Oscillations de ce pendule, dans le vide , sera rigou-
Teusement, et constamment indépendante de leur am-
Plitude. Mais ce moyen ne serait susceptible d’aucune
P}‘écision dans la pratique ; et, d'ailleurs, 'isochro-
Msme des grandes oscillations n’aurait plus lieu dans
Vair, la résistance de ce fluide n'étant point alors
Proportionnelle a la simple vitesse.

197. On appelle fautochrone toute courbe sur
aquelle un point matériel pesant parvient toujours
ans un méme temps aun point le plus bas, quel que

Soit le point de cette courbe d'ou il est parti. Ainsi,
dans le vide, la cycloide est une courbe tautochrone ;
e, de plus, on va voir qu'elle est alors la seule
eourbe de cette espece.

Si l'on appelle ¢’ le temps que le mobile emploie

4 aller, sans vitesse initiale, du point D au point le
Plus bas B, sur une courbe quelconque ADB, la
Valeur de 7'4/2g sera donnée par lintégrale de la
formule (1), prise depuis & =£% jusqua x=o0, ou,
e qui est la méme chose, depuis x=o jusqu’a x=h,
en changeant le signe de cette formule; on aura
done

: — h ds
b N2 (== [' ey
Vag A

€t pour trouver la courbe tautochrone, il s'agit de
déterminer s en fonction de a, de maniére que cette
Valeur de #\/2g soit indépendante de .

Or, je suppose cette fonction inconnue develop_.

Pee suivant les puissances ascendantes de x, de sorte
Tu'on ait
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s = Ax* 4 Ba® 4+ Cxr 4 etc.;

A, B, G, etc,, a, 6, 9, etc., étant des coefficiens et des
exposans indélerminés. Comme Pabscisse x et Parc §
ont leur origine au méme point B, on devra avoir
en méme temps o =o0 et s=o0; il faut donc que
tous les exposans @, &, 9, etc., soient positifs, et
4] quaucun d'eux ne soit zéro. On voit aussi, & priori,
que le plus petit d’entre eux devra étre moindre que
lunité ; car le point B étant, par hypothése, le plus
bas de la courbe demandée, la tangente y est horizon-
tale ou perpendiculaire & 'axe des x; ce qui exige

’ ey d5 =
quon ait —=co , quand x=o.

En prenant la différentielle de cette série, et la
substituant 4 la place de ds dans la formule précé-
dente , il vient

3 e b 21dy h ¥ dy .
_;-. ——:'{—Bg\[‘ = g +C - ——7%-'-—3“"
[V’?'f’ =20 o Vh—zx ° Vhi—=x 4% V h—z
Je fais & = hx' et de = hdx'; les limites des inté-
grales relatives a cette nouvelle variable ' seront
zéro et I'unité ; on aura, par exemple,

b ® 1z it O N
f — = ll "
o Vh—g o V1—2a

et s1 nous faisons, pour abréger,

ALY 2/ dy!
= — A, —————
o ‘/I——-’F 0 ‘/[—x'

il en résultera

¢ \/og = aAAE " 4 EBBA T 40 CCRY T - ete-

=B, etc.;
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1 est important d’'observer qu'aucune de ces inté-
grales A’, B', C, etc., ne peut étre nulle; car les valeurs
des différenticlles dont elles sont les sommes (n° 13)
e changent pas de signe entre les limites des inté-
8rations : ces valeurs sont toutes positives, et par
Conséquent aussi celles des intégrales.

Maintenant, il est évident que la valeur de ¢ ne
Peut étre indépendante de %, a moins que tous les
termes de la série précédente ne soient nuls, excepte
Celui dans lequel l'exposant de % est zéro, ou qui
Vet ‘. , v 1
i:‘dpond 2 un des exposans a, €, 9, cte., égal & o
Supposons que ce terme soit le premier, ou qu'on

= I . . -
dit ¢ =-. Pour que le second terme disparaisse, il
2

faudra que le produit EBB' soit nul; ce qui exige
que B soit zéro, puisque & et B" ne le sont pas. On
Verra de méme que les autres coefliciens C, D, etc.,
Sont aussi égaux a z€éro; de sorte que I'équation de
la tautochrone se réduit a celle—ci :

s=Ax*, ou s = A%x,
qui appartient a une cyclo'ide, dont la base est hori-
Zontale et dont le sommet est au point B que le
Mobile atteint toujours dans le méme temps.
En désignant par a le diametre du cercle généra-
leur, on aura A*= 4a, et par conséquent

Y\ = Na.

A cause de @ = L. on a daillenrs

Al = fﬂl 28 =91z

Va—z"




346 TRAITE DE MECANIQUE.

on aura donc
a
U = \/—,
28

comme dans le n° 194.

198. Clest eucore la cycloide que I'on trouve quand
on cherche la brachystochrone dans le vide, c’est-i-
dire, la courbe AMB (fig. 47) qu'un point matériel
pesant doit suivre pour aller dans le temps le plus
court, sans vitesse initiale, du point donné A au
point B aussi donné.

Pour déterminer cette courbe, soient &, ¥, z, les
trois coordonnées rectangulaires du point M on se
trouve le mobile au hout du temps #; soit aussi ¥
I'arc AM qu'il a parcouru. En supposant que 'axe des
a s0it vertical et dirige dans le sens de la pesanteur

et désignant par o la valeur de & au point A, la vi~

¢ ds
e5se ar

4 1M ok i n ¥
teur & — 2 ; en represeniant la gravite par g, on
aura donc

» acquise en M, sera la vitesse duc & la hau-

ds —
5= \/25‘(.70 — a);
et en faisant, pour abréger,

dz?

d!l
“\,/I+EJ.E:3+ Eﬁ=u?

de sorte qu'on ait ds = udx, il en résultera

Donc, en appelant € la valeur de x au point B, €i?
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le temps que le mobile emploiera a aller du point A
“n point B, nous aurons

¢
4 \(@ — f udr

a VJ:—&-

Ainsi, il s'agira de déterminer la courbe pour la-
Quelle cette intégrale est un minimum; mais, pour
Plus de généralité, je considérerai I'intégrale

U =f;CXudr,

dans laquelle X est une fonction donnée de x; ce qui
Nous servira, par la suite, a résoudre un autre pro-
bleme du méme genre : dans celui dont il sagit
maintenant, on prendra (x — r:c)""l pour X.

199. Désignons par i une quantité constante et in-
finiment petite, et par d'y et Jz deux fonctions arbi-
raires de x, assujetties seulement 4 la condition
$étre nulles pour x = a et pour x =6, et de ne
Pas devenir infinies pour les valeurs intermédiaires
de . Soient U’ et # ce que deviennent U et z lors-
qWon y met y—+id'y et z=4-idz 1 la place de 7 et z,
de sorte qu'on ait

¢
I — f Xeu'dx;
of o
‘0tégrale qui répondra i une autre courbe AM'B,
Passant, comme la courbe demandée AMB, par les

Points A et B, et s'écartant infiniment peu de celle-ci,
Ous aurons aussi

U — = [‘CX(N'-—— u)rlx;

o S 1."‘

=

e

FoA

S i Se——
e

T

= 2,

ey

fema ler-is

g,
!
i
It

e
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et, d’apres la propriété de la courbe AMB, il faudra
que cette différence U’ — U soit positive, quelles que
soient les valeurs de JY et J'z, et quelque signe gn’on
donne & 7. Or, en développant la différence 2/ — u
snivant les puissances de 7, et désignant par idu le
premier terme de son développement, le premier

A 5 -
terme de celui de U’ — U sera ¢ f Xdudx; d'oli V'on

conclut qu'on devra avoir
¢
f Xdudr = o, (a)
a

sans quoi la difference U' — U changerait de signe en
méme temps que i.

Cette condition est commune au minimum et au
maximum de U. Quand elle sera remplie, la diffé-
rence U’ — U sera, en général, infiniment petite du
second ordre ; elle aura le méme signe que le coefli-
cient de i* dans son développement; par conséquent,
il y aura mazximum ou minimm, selon que ce coefli-
cient sera négatif ou positif. Mais, comme il est évi-
dent que le temps #' n'est pas susceptible d'un maxi-
mum, ce coeflicient sera certainement positif dans
le probleme de la brachystochrone, et il suffira de
satisfaire 4 la condition exprimée par I'équation (@)-

La quantité idu n'est autre chose que la différen-
tielle de z, prise par rapport & y et z, et dans la-
quelle lenrs accroissemens sont représentés par id)
et iJ'z. En supprimant le facteur i, commun & if'#
et h sa valeur, on aura donc

1 dy ddy 1 dz ddz
8= g T 5
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€0 sorte que I'équation (@) deviendra

¢X dy ddy ¢ X ds ddz
e R e ' =0,
f“ 2 +f

u dr dr 2 # dr dr

o/

Mais en intégrant par rartie, et observant que les
g par | q
Quantités d'y et J'z sont nulles par hypothese, anx
deux limites = a et & =

,ona
(}\ dy
“Xdrdiy , 3
b sz O dydzx,
(\ dz
£ X dz ddz 1w d;r
dax = —

« u dr dr
e qui change I'équation précédente en celle-ci :
e /X dy X dz
d\u dx (n tix) hy
— L+ — z dx:o.
-2
Or, d'y et J'z étant des fonctions arbitraires de x,
Cette intégrale ne peut étre nulle, 4 moins que la
Quantité comprise sous le signe [ ne le soit elle-
Méme ; par conséquent, on aura

d (}‘ L (-- if7>
u d.r

o 0. (b)

200. Si la courhe demandée AMB et la courbe
Quelconque AM'B doivent étre tracées sur une sur-
face donmée dont I'équation soit L=o, il fandra que
les valeurs de ¥ et z en fonctions de x, qu'il sagit de
déterminer, et ces valeurs dugﬂ]EHtBCS de idy et idz,
Satisfassent successivement i cette équation ; d'ou 'on
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conclut

@,JT + £ = 0;

au moyen de quoi I'on éliminera, de leqmtlon (6),
l'une des deux quantités £y et ,’J‘u. l'autre s'en ira en
méme temps, et I'on aura

X d‘r) 4 X dz
dL u dr dL (H dr)

i{}—' dr %

Cette derniére équation et L = o seront, dans ce
cas, les deux équations de la courbe demandée, et
pourront servir, par exemple, & déterminer la courbe
de Ia plus vite descente sur une surface donnée.

Si, au contraire, le minimum de U doit avoir liev
entre toutes les courbes qui aboutissent aux points A
et B, et ne sont assujettics & se trouver sur aucune
surface particuliere, les quantités &'y et J'z seront
arbitraires et indépendantes entre elles. Il faudrd
donc que leurs coefliciens soient séparément nuls
dans I'équation (2), qui se décomposera ainsi er
deux autres, savoir :

CH_ 4P
u dx pegge S
= o, e =30

c’est ce cas que nous nous bornerons i considérer-

En intégrant et désignant par @ et o’ les deu®
constantes arbitraires, nous aurons
Ady- X dz i 2o

a A
- = =il (C)
u dx 2 u dr 4 \
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€t, par conséquent,

a_’fdl T “dz

dx ;E:()'

Intégmnt de nouveau, et désignant par 9 une troi-
Sleme constante arbitraire, il vient

dy — az = 7y ;

e qui montre que la courbe demandée sera plane
et comprise dans un plan perpendiculaire a celui des
J et z. Pour simplifier, je prends le plan de cette
Courbe pour celui des x et y; on aura alors

< g A
W= ‘/ i 1{_::_“.
¢t Yon aura seulement a considérer la premiere
€quation (c), qui deviendra
Xdy = aVdx* + dy*;
Tou: T'on déduit
adx

e e

7% g

Il ne vestera donc plus qu'a intégrer cette formule,
Ce qui dépendra de la forme de la fonction X, et en-
Suite & déterminer @ et la nouvelle constante arbi-
Yaire, introduite par celle intégration, d’apres la
Condition que la courbe demandée passe par les deux
Points donnés A et B.

201. Avant d’aller plus loin, soit ¢ une constante
cIuelconr_]m-, el supposons qu'on melte X+cala
Place de X dans les formules précédentes. L'inté-
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grale U deviendra

U._f X\/ + (fa‘-i—cf \/1+dfdr,

et la valeur de ¥, qui la rend un minimum, sera don
née par I'équation
adz
e (e)
VEFeor—a
Or, cette somme d'intégrales que U représente étant
un minimumn, en considérant toutes les courbes qut
aboutissent aux points A et B, il est évident que 12
premiere intégrale
¢ T dy
X/i+ L4
f; + dax® &
sera un minimum, en considérant seulement, parmi
toutes ces courbes, celles qui répondent & une méme
valeur de la seconde intégrale.
Cette remarque fort simple permet d’étendre im-

médiatement aux problemes de maximum ou de mi-
nimwm relatif, les solutions des problemes de maxi-

dy =

maum ou de minimum absolu; nous en verrons uné
application par la suite,

Comme 1ci la seconde intégrale contenue dans U
est la longueur de la courbe cherchée, il s'ensuit queé
I'équation () servira & déterminer, entre toutes les
courbes d’égale longueur, ou isopérimétres, celle qut
répond au minumum ou au maxinum de la premiéré
intégrale. En appelant 7 la longueur donnée et com~
mune 4 toutes les courbes, on aura :

&t LT d
_[; \/l-l-'g{—,,d.x == [
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Condition 4 laquelle on satisfera au moyen de la cons-
tante indéterminée ¢, qu'on a introduite dans la for-
mule (e)-

202. Appliquons actuellement la formule (d) a la
Courbe de la plus vite descente.
A cause de

X: !:

Vz—a

M aura alors

(x—a)dx

i’.’f?" A ———————3 |
i Valrx—a) —(x — a)f

e mettant — - & Ia place de a. Or, cette équation
(23
différentielle est celle d'une cycloide (n® 72 ) dont la
base est horizontale et passe par le point de départ A
du mobile, et dont le cercle générateur a a pour dia-
Wetre ; ce qu’il s'agissait de trouver.
En intégrant, on a

J"'-zz’:%a.arc(cos:a—_??ﬂ)— a(x—a)—(v—a)*;

e ¥ . . . r
% etant la constante arbitraire qui represente la va-
€ur de 5 correspondante 4 x=e. Si l'on désigne
Par € celle qui répond & x = €, on aura

Gf-_a'=$a a]‘C(COSzt%—’ff&)"—\/ar\g _o!,) J— (C-é)z;

Les coordonnées « et @', € et £/, des points A et B,
SOnt données ; cette derniere équation déterminera la
Coustante a; et la valeur précédente de y ne renfer—~
Mera plus rien dinconnu.

Au moyen de la valeur de dy, on a
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mt dr* Va i
U = \/I + &?“ = VE——__._&-._,_;"

i on aura donc (n° 1g8)

L]

{1 et, par conséquent,

i a a— 2t 3

| Al— \/—-.HI‘C (cos:-__'t'ﬁ),
{ 2z a

pour le temps le plus court que le mobile puisse
employer & passer du point A au point B. ‘

Si ces denx poiuts sont situés dans une méme ver~
ticale, on aura €' = a'; condition & laquelle on s3~
tisfera en prenant @ = ; car on a

arc (cos: %‘tﬂ’f) = arc (sin-_— E—V‘qi{;—]ﬂ) H
et, dans le cas de a=o0, cet arc peut étre remplacé
par son sinus, ce qui réduit 4 zéro la valeur p:‘écé"
dente de €' — 2'. En méme temps, la valeur de y %€
réduit & a'; en sorte que le mobile ne s'écartera pa°
de la direction verticale. T.a wvaleur de # deyiendr®
anssi

,,_\/_E sVaf—a)—(C—a) _ yaE—a),
=\ 2 = V-2,

ce qui est effectivement le lemps quil doit employe®
a parcourir la hauieur 6 — @, du point A au-dessu®
i du pownt B.

La determination de la ligne de la plus vite des”
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Cente étant un probléme de pure curiosité, je me
suis borné 4 en considérer le cas le plus simple, ce-
lui 011 e mouvement a lieu dans le vide, et ou les
Points extrémes sont donngs. Si ces points A et B ne
sont pas fixes et dounés, mais qu’'ils soient seulement
“SSujettis a se trouver sur des courbes données DAE
€t FBG, ou sur des surfaces aussi données, la bra-
Chystochrone , dans le vide, sera encore une cycloide,
€t, d'apres les regles du calcul des variations, on
Pourra déterminer, dans tous les cas, les coordon-
Uées de ces deux points. Dans un milien résistant,
Ceite ligne sera une autre courbe, dont on obtient ,
Par les régles de ce calcul, Péquation différentielle ,
dépendante de la loi de la résistance par rapport a la
Vitesse du mobile. Pour tout ce qui concerne le cal-
Cul des variations, je renverrai au Mémoire sur ce
Sujet, que j’ai inséré dans le XII* volume de I'Aca-

emie des Sciences.

§ HI. Mouvement sur une surface donnée.

203. Pour donner un exemple du mouvement
dun point matériel sur une surface donuée, je re-
Prends le pendule simple du n° i7g; mais je sup-
Pose qu’apres V'avoir écarté de la verticale CB (fig. 45),
€t Pavoir transporté en CA, on lni imprime une vi-
lesse qui ne soit pas dirigée dans le plan vertical
ACB. Le pendule sortira alors de ce plan, et le point
Materiel qui le termine se mouvra sur la surface
Qune sphere décrite du point C comme centre, avee
Un rayon égal & la longueur @ de ce pendule, La

Xy 25
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?mn.usblon qui sera exercée sur ce mobile, a I origing
du mouvement, se décomposera en deux forces,
I'une dirigee saivant AC ou suivant son prolonge-
ment, qul sera déiruite par la résistance du pOllllt
4xe €, Vautre perpendiculaire & AC, qui produira
v vitesse 1nitiale du pendule, que je représenteral
ar %. Je supposerai que le mouvement a lieu dans
o vide; en sorte que la gravité soit la seule force ac~
élératrice donnée qui agisse sur le mobile.

Cela pose, au bout du temps ¢, soit CM la poc{..
tion du pendule ; et désignons par x, 7, z, les coor-
Jonnées rectangula i1CS (lu point M. Soient aussi 17
12 tnasse du mobile, et mN la tension inconnue du
4] CM, dirigée suivant son prolongement. En pre=
nant le point C pour lougwc des coordonnées &y
~, z, les composantes de la force accélératrice N sui~
sant leurs prolongemens seront

3 R %
N, ZN, =N.
a a 8

3r, si Pon applique au mobile une force égale et
-ontraire 4 N, on pourra ensuite le considérer comm€
mtierement libre, et faire abstraction du fil CM;
lune en supposant Taxe des z positives, vertical et di-
1z¢ dans lc sens de la pesanteur, les trois équation?

Jdu mouvement seront

d'x 2 3
R

a5 . F

b=, (1)
o’z 2

e i
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qui s'accordent avec les équations (3) da n° 151. On
les réduira a denx par I'élimination de l'inconnue IN;
€t en y joignant I'équation de la sphére, savoir,

xﬂ + j.ﬂn + z’ — (LQ,
On aura les trois équations qui devront servir a dé-
lerminer x, ¥, z, en fonctions de #.
204. Jajoute les équations (1), aprés les avoir
Mmultipliées par «, y, z; il vient

xd*x +yd®y 4 zd’z
de

~+ Na — gz = o.
En différentiant Péquation de la sphére, une pre-
Mmigre fois, on a
xdx 4+ ydy 4+ zdz = o, (a)
¢, une seconde fois,
Xd'y 4 ydy + z2d'z = — dx* — dy* — dat.

Si donc on représente par ¢ la vitesse du mobile au
bout du temps ¢, de sorte qu'on ait

dz*4- dy*4dz* -
dr -

U en résultera
w? £z
N= i =73
€t, en effet, la tension mN doit étre la somme

. mo* meoes
de 1a force centrifuge —— et de la composante —>
a

du poids du mobile suivant le prolongement du
Tayon CM.
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J'ajoute aussi les equatmm (1), aprés les avoir
multipliées par dx, dy, dz; I'inconnue N disparait
en vertu de 1equat10n (2), et I'on a

ded’r 4 dyd*y 4 dzd’z
de

= gdz.
En intégrant et désignant par b la constante arbi-
traire, on aura donc

dz® - dy* + dz?
T de

= 2gz - b. (3)

La valeur initiale du premier membre est 4*; par
conséquent, si Ion désigne par 3 celle de z, on
aura

k* — agy = b,

et, & un instant quelconque,,
=k o+ 28(z — 3);

ce que nous savions déja.

Enfin, je multiplie la seconde équation (1) par *7
et j’en retranche la premieére, multipliée par y; €€
qui donne

d 4y dz
Tae T ) ar

— i)
donc, en inlégrant et désignant par ¢ Ia constant®
arbitraire, nous aurons

xdy — ydx = edt. (4)

De cette maniere, la solution du probleme ne dé-
pend plus que des trom equatmns différentielles (2)7
(3), (4), qui sont du premier ordre, et dont la pre”
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Miere a déja pour intégrale I'équation de la sphére.
On peut séparer les variables, et réduire la question
aux quadratures par le calcul suivant.
205. L’équation (2) donne

xdx 4 ydy = — zdz;

€n ¢levant an carré ses deux membres et ceux de
LI . . . ’ " J 4
l'E(]u::ltmn (4), et ajoutant ensuite les équations ré-
sultantes, il vient

(x* =+ 7*) (dx* 4 dy*) = z*dz* 4 c*de*.

Je meils a®— z* au lieu de x* +4»?, et jélimine
dx* 4~ dy* au moyen de l'équation (3); il en ré-
sulte

(a* — z%)[(2g2 + b) dt* — dz*] = 2*dz* = c*dt* ;
dou Ton tire

adz

df = 5 '
V(a* —z*) (2gz + b) — ¢*

(3)

Désignons par r le rayon vecteur de la projec-
tion du mobile sur le plan horizontal des x et y,
€t par 4} I'angle que fait ce rayon avec l'axe des x;
Nous aurons

X=rcos, yp=rsin, xdy—ydex=rdi;
4 cause de r*=a*— z*, I'équation (4) deviendra

(a* — :’) d\l, — edt;

®l en y mellanl pour d# sa valeur précédente, on

=

e =,

<
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en déduira

) = etllemet o B o
’\I’ (@ — 2% V/(a* — 2*) (2g% + b) — c* (6)

Les intégrales de ces expressions de df et di] fe-
ront connaltre les expressions de ¢ el - en fouciions
de z; elles se réduiront toujours aux fonctions ellip~
tiques, et ne pourront s'obtenir sous forme finie que
quand la quantité du troisiéme degré par rapport
a z, renfermée sous le radical , aura un facteur double-
La valeur de | et I'équation de la sphére détermi~
neront la trajectoire du mobile; la valeur de ¢ en
fonction de z, ou de z en fonction de £, fera ensuite
connaitre la position du mobile, & chaque instant;
sur ceite courbe.

La coustante b est connue d’apres les valeurs don~
nées de % et . On déterminera les constantes arbi-
traires qui seront introduites par les intégrations de dt
et d} , d’apres les conditions £ =0 et =0, quand
z = 7, dont la seconde suppose qu’on place 'axe
des a dans le plan vertical ACB, d’ou part le pen~
dule. 1l ne restera donc que la constante ¢ a déter”
miner. Or, la vitesse ¢ du mobile étant perpendicu~
laire au rayon CM de la spheére sur laquelle il 5
meut, si on la décompose en deux, 'une Pe‘:‘peﬂdi"
culaire au plan vertical MCB, et Pautre compris®
dans ce plan, la premiere composante sera la vitesse
de la projection horizontale du mobile,, perpendic?”
laire 4 son rayon vecteur 7; en la désignant par #»
on aura donc (n° 156) ]

dy

U= r—

dr’
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ou bien, en vertu de I'équation (4),
c [

U= —

.
7

done, si 'on appelle ¢ Vangle que la vitesse iniliale &
fait avec la pctpendlculane au plan ACB, de sorte
qu'on ait =k cos ¢ a Vorigine du mouvement, 1l
en résultera

c = k\a* — 9* eos :.

Lorsque la vitesse & sera nulle, ou aura ¢=0,
b=— g et, par conséquent,
8% p

ee qui coincide avec la valeur de d¢ du n° 185, en
observant quea—zeta—Yy sont ce r[u on a app"]e
ax et af dans cette valeur.

206. Considérons spécialement le cas ou le pen-
dule 1 été trés peu écarté de la verticale CB, et a
Tecu une trés pelllc vitesse initiale. Supposons celte
Vitesse horizontale, et, par conaequent perpendicu-
laire ag plan ACB, de sorte qu’on ait ¢ = o. Desi-
guons par € une. fraction trés p(,nte, el faisons

¢ —_": r;’\,-’;;?z.

Solent aussi « et 0 les angles ACB et MCB; en négh-
geant leurs quatriémes puissances, on aura

g 1 gl ¥ '__l
y=a—3aa’, z=a— 3 al’

i b

b= —3ga +ga(«*+E€), c=ga*a*t*;

2
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et les formules (5) et (6) deviendront

a bel) ]
dt = — = —_———————
V 5” ‘/(12 " 84) (&9 =i g‘;) / (n‘)
T Hpe e ML . S ‘
0V (=) @ — ¢

L’angle o fera connattre la position du plan ver-
tical MCB, dans lequel le pendule se trouve a chaque
instant; 1l pourra croitre indéfiniment. L'angle § dé-
terminera, aussi a chaque instant, la position du
pendule dans ce plan variable; on le regardera
comme une quantité positive, et les positions du
pendule, également éloignées des deux cotés de la
verticale CB, répondront & un méme angle § et 2
des valeurs de +, qui différeront enire elles de 180°

D’aprés la valeur de 3—1?, tirée de la premiere équa-
tion (@), on voit que 'angle f sera toujours compris
entre « et 6. Si I'on a € =&, on aura constamment
=2 ; en divisant les équations (a) I'une par I'autre;
on a, dans tous les cas,

d = \/E% dt; )

dans le cas de i =2 —=_E€, on aura donc

~L=t\/§;

. . r
par conséquent, le pendule décrira alors uniformeé-
ment un cone droit a base circulaire, et le temp®

: 7 a T
d’une révolution entiere sera 27 \/ o c’est—a~dire ;
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le méme que celui d'une double oscillation dans le
plan vertical ACB. Ainsi, deux pendules de méme
longueur 4, qui partiraient ensemble de la méme
droite CA, J'un sans vilesse initiale et l'autre avec
une vitesse perpendiculaire au plan ACB et égale a
2\/ga , reviendraient ensemble a cette droite CA.

207. On peut écrire la valeur dt sous la forme :

dt:——?.\/f i

g V@—0)—(@F —a—5)
Je fais, pour simplifier,
off —ar— G (a*—C ), 4Hdi=(a*—E*)dx;

le radical devient == (2* — €2) V1 —a*; et il en

résulte oy
I a dx
di =— o= - \/— —
Lo 8 Vv 1—x*

A cause de l — @ et x=1, quand £=0, on tire
de 13

1 i
t ==t - \/{} arc(cos = x ),
€t, réciproquement,

= cos'5l &/i
On aura done, & un instant quelconque,

Br=1 (a2 -£%) 4 L (@*— &%) cos 2t {/ 55

¢¢ qui montre que le pendule fera dans le plan va-
riable MCB, des oscillations isochrones dont les ex-
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trémités répondront 4 =a et § = €, et dont 1a du-
c 1 sty sl
ree scra; T g, ou moitie dune oscillation dans
le plan fixe ACB.
Je substitue cetle valeur de §* dans 'équation (b) ;

en observant que

/ g g
cos 2¢ *,V* %“— COSt \’/g — sIn?% \/9 ’
a

(4
il en résulte

{1.'[ Foa, _E{ aodt
a

o : P
e cos’t & L 6 sin’t \/‘:

a a

?

et, & cause de 1) = o quand ¢ = 0, on en concluf
e tang <l = € tang ¢ \/‘%r

Cela étant, le mouvement du plan MCB ne sera plus
uniforme comme dans le cas de & = € ; mais on voit
que ce plan effectuera successivement les quatre quarts
de sa révolution entiére, dans des temps égaux entre

eux et au temps ; s \/g » pendant lequel le pendule

fait une oscillation dans ce plan variable.
On tire de cette derniére équation

elcos* t {/ 2
a a
cos* ) = = o
@® cos® ¢4 /’g - 6 sin® ¢ &
¥V a a

6* sin® ¢ \/‘E
a
7= =
o gr
a* cos' ¢ \/"‘1 - & sin* ¢ \/‘:
4 [

sin® &, ==
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On a gussi

x*
J,ﬂ
d’aprés la valeur approchée de z; donc, i cause de
0* — a® cos* ¢ \/5 e €2 sin* ¢ \/5
a ¢ a’

nous anrons

I

(a* — :-’JCOS°-\L = a’ﬁ’cos"\]/,

(a* — z*)sin*a} = a*f*sin* ),

|

2* = a'atcos® o, gyt = a6 sin*y], /7
et, par conséquent,

A

’T__I_Jf—as-
a? g5 T y

¢e qui fait voir que la trajectoire de la projection du
mobile sur le plan horizontal passant par le point C,
est une ellipse qui a son centre en ce point, et I'un
de ses axes dans le plan ACB, d’ou part le pendule
avec une vitesse perpendiculaire a ce plan.




396 TRAITE DE MECANIQUE.

AR W WA

CHAPITRE VI.

EXEMPLES DU MOUVEMENT D’'UN MOBILE ENTIEREMENT
LIBRE.

§ 1. Mouvement des projectiles.

208. Dans ce paragraphe, nous nous occuperons
particuliérement des projectiles de Partillerie, qui
sont lancés avec de grandes vitesses, et soumis a I3
pesanteur et 4 la résistance de l'air.

Faisons d’abord abstraction de celie résistance , el
considérons un point matériel pesant qui part du
point O ( fig. 48 ), avec une vitesse a dirigée suivanl
la droite OA. Il est évident que le mohile ne sortira
pas du plan vertical passant par cette droite. Soit
OMD sa trajectoire dans ce plan, laquelle sera tan~
gente & OA. Dans ce méme plan, menons deux axes
Ox et Oy, le premier horizontal , et le second ver-
tical et dirigé en sens contraire de la pesanteur. Pre-
nons ces axes pour ceux des coordonnées; au bout
du temps quelconque #, soit M la position du mobile,
a son abscisse OP, et y son ordonnée PM. Désignon$
par g la gravité. Enfin , appelons « I'angle aign AOX
que fait la vitesse initiale a avec 'axe Ox, de sorte
que ses composantes soient @ cos a suivant cel axe
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et @ sin & suivant Vaxe Oy : angle @ serait négatif,
s1 la droite QA était située au-dessous de Ox.

D'aprés ce quion a vu dans le n® 148, les mouve-
Mens des projections dumobile sur les deux axes Ox et
Oy seront indépendans I'un de I'autre; le mouvement
de sa ‘pt‘OJBCUOI] horizontale sera donc uniforme et dit
2 la vitesse @ cos , et celui de sa pr OJecllon verti-
Cale sera dii 2 la vitesse initiale @ sin o et & la force
Constante g agissant en sens contraire de cette vitesse;
Par conséquent , on aura

X = tacosa, - R & (e

et si 'on élimine 7, et qu'on suppose la vitesse a due a

une hauteur f, de sorte quion ait a = \/2gh, il en
Tesultera
x‘l
=" fang % =
J o 4hcos*a’

Pour I'équation de la trajectoire.

Cette courbe est donc une parabole qui 2 son grand
axe vertical ; son sommet, déterminé par Uégquation
dy 3
4z = o, répond i

x = shcosasma, o =k sie® o

€l elle rencontre ’axe Ox en un sccond point B, tel
Qu'en appelant & la distance OB, on a

b = 4hsina cos ¢ = 2hsin 2a.

Cette distance b est ce qu'on appelle Vamplitude du
Jet. Dans le vide , son maximum répond, comme on

L

S ~

[

e ey R g

o=
e




398 TRAITE DE MECANIQUE.

voit, & o = 45° et il est égal & 2k, Clest-a-dire;

double de la hauteur due & la vitesse initiale.
Enappelant ¢ la vitesse du mobile au bout du temp$

¢, et substituant les différenticlles des valeurs précé-

dentes de x et ) dans 'équation

s ol s
Tl a2 >
il en résulte
P = a* — aagtsine - g,

Le temps que le mobile emploie a arriver au point B
en décrivant la courbe OCB, ecst le méme que g'il
décrivait la droite OB avec la vitesse a cos a; il est
done

b 45 sine
a cos a a

N a* . ’ : S
et & cause de b = a5 il en résulte gf = 2a sin &;

ce qui donne ¢* = a*. La vitesse en ce point B est
done la méme qu’au point O ; elle est dirigée suivant
la tangente BE, et Pangle de chute EBx est aussi le
méme que Pangle de projection AQzx.

Sile mobile, au lieu d’étre un point matdriel , est
un corps solide, de forme et de dimensions quel’
conques, on verra par la suite que ces équations du
mouvement parabolique devront étre rapportées a
son centre de gravité.

20g. La vitesse a étant donnée, si I'on demande
quel doit étre langle & pour que le mobile atteigne u™
point déterminé, dont les coordonnées seront =
et y =19, on melira ces valeurs dans I'équation de
la trajectoire, et l'on aura
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g3

= Ctangat —
g ghnt‘ Ghcos®z?

Pour déterminer «. En faisant
- e > —le—
tange = z, Cos™ el = S
Cette €quation devient
/}f;;/ S e .{.‘;]Ig:» - £252 — 0;

doh I'on tire

V4ht — 4f — 6.

o) -

Cette double valeur de z on de tang 2 nous montre
Quen peut atteindre un but donné, en tirant sous
fux directions différentes, tant que 4%* surpasse
4y, 1 €*; que ces deux directions se réduisent 2 une
Seule, lorsque ces denx quantités sont ¢oales; et qu'on
U peut aiteindre le but, sous ancune direction,
Tuand 47* est moindre que 4k -+ €.
insi, ‘en tracant dans le plan vertical qui passe
133’1‘ la direction initiale du mobile, la parabole dont
Cquation est
Wy 4 € = 4,

“Gtte courbe divisera le plan en deux parties, telles
que tous Jes points de la partie extérieure seront ga-
fantis de toute atteinte, que ceux de la partie inté-~
Meyre pourront étre atieints de deux manicres diffé-
rf?l‘ues, et ceux de la ligne de séparation, d'une ma-
Were seulement.

210, La théorie du mouvemen! des projectiles
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serait donc trés simple, si on pouvait négliger 12
résistance que V'air oppose a leur mouvement; mais
dans le cas des grandes vitesses dont nous nous occu~
pons spécialement, cette force est beaucoup trop
considérable pour qu'on en puisse faire abstraction :
elle change entiérement la forme de la trajectoire €t
les lois du mouvement sur cette courbe, ainsi qu'on
va le voir.

Quelles que soient la forme et les dimensions dv
projectile,, on fera voir, dans un autre chapitre, queé
son centre de gravité aurale méme mouvement qu'un
point matériel pesant, dont la masse serait celle do
mobile, qui aurait une vitesse initiale donnée en gran-
deur ct en direction, et auquel on appliquerait et
outre, parallelement a elles-mémes, les forces pro=
venant de la résistance et du frottement de P'air, qut
s'exercenta la surface dece corps solide. On yerra ansst
que la force motrice qui résultera de ces résistances
transporlées au centre de gravité, pourra quelque[bis
faire sortir ce point du plan vertical mené par la di-
rection de la vitesse initiale; mais ici nous supposé”
rous que ce cas n'ait pas lieu, et que la force motricé
dont 1l s’agit soit constamment tangente a la trajec”
toire du centre de gravité.

Cela posé , pour former les équations de son mou~
vement, conservons toutes les notations précédentes
et supposons qu’elles se rapportent maintenant a la fir
gure 49, ou la trajectoire OMD n'est plus une pﬂl'_a‘
bole. Soit, en oatre, s 'arc OM décrit par le mobilé
au bout du temps £, et R la force motrice provenant
de la résistance de I'air, qui sera dirigde suivant la
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Partie MT de la tangente en M. Les cosinus des an~
gles que fera cette droite MT avec des axes mends
Par le point M suivant les directions des o et des y po-

ds
Masse du projeciile et g la sravité, nous aurons done
Py 8 X »

& r dy
Sitives , seront — — €t — Tz ; en appelant m la

L Pl 00 T BB o

de 77 g | I S +) m ds’
Pour les équations du mouvement de son centre de
Sravité.

Je prendrai pour ce projectile une sphére homo-
geue ou composée de couches conceniriques dont
chacune sera homogéne ; en appelant D sa densité
Mmoyenne et r son rayon, on aura alors

;’ln—T)r"'
M = =

Je supposerai aussi, conformément aux hypotheses
8enéralement admises, la force R proportionnelle
2 carré de la vitesse du centre de gravité, i la sur-
face du projectile, et a la densité de lair; il en ré-
Sultera

R np ds®

m — Drde’
P étant cette densité, ¢t 7 un facteur n umerique qui
€vra étre déterminé par I'expérience. Cette expres-
Slon satisfait & la condition de I'homogénéité des

-t R 3 dst o
nantités; car — et le ra 4 r sont deux
9 tés; car — et le rapport de i
quantites de la méme nature que la gravite g, et les
facteurs n et IF) sont des nombres absivaits, Pour
L. 26
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plus de commodité, je ferai

i - .
de sorte que - soit une ligne dont la longueur sera

donnée, et que je regarderal comme constante, ent
faisant abstraciion du changement de densité de la
masse d'air que traverse le projectile.

N . B R ds®

211. En mettant a la place de —, sa valeur ¢ =,
m dt
les deux équations du mouvement deviennent

d*x ds dx

T eaE= )

d*y ds dy

— = D= 0,
di* +Cd.'. dt + 8 @

L’intégrale de la premiére est

dx -k
= = acos a e,
dt

2 dz ¥ \
en ohservant quon a - = a cosz, au point 0 ou

s==o0, et désignant par ¢ la base des logarithmes né-
périens. La forme de la seconde ne différant de celle
de la premiére que par son dernier terme, je fais,
pour l'intégrer,

dy dx

il e
p étant une nouvelle inconnue. En substituant cetté
dy
de
égard a la premiére, il vient

valeur de =- dans la seconde équation (1), et ayant
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de dp
& d — — &
Je divise cette valeur par le carré de f; ou de sa va-
£
leur précédente; il en résulte

dp dr Z

P = 2c4
dt dt arcos*a

En considérant y et p comme des fonctions de &, on
dura

e d;‘}’ = (Lf_ d_T' f-ii'l' : dz ST d])

— dt C dt T dx’ dt * dt ~ dx’
st done on fait tonj s a* = aoh, Véquat recé—
‘onc on iat tomjours @* = 2g/z, lequation prece
dente deviendra
dp I o
dz ohcos*a 7 (?)

¢t ce sera I'équation différentielle de la trajectoire.

Ona identiquement
Vi 4+ prdr = ds;
€0 multipliant membre & membre ces deux derniéres
€quations, on aura donc

VI pdp= — oo

a2k cost 2

B /AL e 2 % = P
Toy ] suit, en mtegrant et desugnant par % la cons~
tante arbitraire ,

PV Hog (p+V1Hp ) =0 — saieesn O (8)

POm: déterminer 3, on fera, & la fo1s, s =0 et
2b..
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p = tang «; ce qui donne
—-tange V w-{—ln{;(langu-l» \/WJ;

Y=ok oy =

mais, pour abréger, je conserverai  a la place de
cette valeur.
D’apres les équations précédentes, on a

doe=—2shcos*ae™**dp, dy=pdx, gdt*=—dxdp;

en éliminant 'exponenticlie au moyen de I'équa-
tion (3), nous aurons donc

edx = o L/ e b
PV ipr+log(p4- Vi +p)—y s
ey = "——— 2o [ o
< PV I+P=+ 10{:(I)+V I"i‘*])“)—'}” b (4
Vegdt = =P =

[y—pV 1Hp—log(p+V 1 +p7)" |

formules qui ne sont point intégrables sous forme fi-
nie : dans la derniére, on regardera le radical comme€
une quantité positive, parce que l'angle dont p est
la tangente diminue quand le temps augmente.

212. Sil'on appelle » cet angle, c'est-a-dire, Pincl
naison MT de la tangente 4 la trajectoire, sur T'ax€
horizontal Ox, on aura

dﬁ'

cos® &

p=tangw, dp =

Les valeurs de 2, 7, ¢, déduites des équations (4)s
seront de la forme [Qdw; lintégrale étant prise
i de maniere qu'elle s'évanouisse au point O on I'on
a @w=a, ct Q désignant une fonction donnée de &-
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Du calculera ces trois valeurs, pour chagque point M,
par la méthode des quadratures (n° 15). De cette
Mmani¢re, on pourra construire la trajectoire par
points, et I'on connaitra le temps £ que le mobile
emploiera 4 déerire chaque arc OM, dont la lon-
gueur s sera donnée par I'équation (5). Quant a la
vitesse du mobile au point M, on aura

dx? art

¢ = (1 +p) G = 80 +p)

et, par conséquent,

t_fj):‘ ?

o (1 - P
Gt = AL 5)

y—pV'1 4+ p* —log (p+ Vitp)

En étendant ces intégrales jusqus @ =0, on dé-
terminera 'abscisse et I'ordonnée du point C, le plas
€levé de la trajectoire. SiVon donne ensunite a & des
valeurs négatives, on déterminera les points de la
branche descendante CBD de la trajectoire. Quand
On sera parvenu a une valeur — o' de », pour la-
quelle I'ordennée ) de la trajectoire sera nulle, la
Valeur correspondante de x exprimera 'amplitude
du jet OB, qui ne sera plus double de Iabscisse du
point C, comme dans le cas du vide, et dont le
Maximum, par rapport a a, répondra 3 un angle
Moindre que 45° et dépendant de la grandeur de la
Vitesse initiale. L’angle ¢’ ou EBx et la vilesse an
Point B différeront aussi de « et a.

Ainsi, toutes les circonstances du mouvement se-
font connues, et la solution du probleme est com-
plete , sauf la longueur des calculs numeériques qu’il
faudra exéculer dans chaquge eas, lorsque les valears

1Y

I
i
&

P

—
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des trois constantes %, o, ¢, contenues dans les for-
mules précédentes, seront données.

213. Le mouvement du projectile sur la branche
descendante de la trajectoire, approche de plus en
plus d’étre vertical et uniforme.

En effet, soient x,, y,, £, les valeurs de x, 7,

» qui répondent au sommet C; transporions l'ori-
gine des coordonndes en ce point, et faisons

i i s ' = .
=@, G x, y=ri—y, t=1t 4 t;
en sorte que x' et 3’ soient I'abscisse et I'ordonnée
At ; I Ee o da e
du point quelconque M’ (fig. 50) de la branche des
cendante, rapportées a I'axe horizontal Ca’ et a Paxe
Gy’ qui est dirigé dans le sens de la pesanteur s
et que ¢ leprcseute le temps cmploy a pdl(oul!l
Yarc CM'. Soit aussi p' la tangente de Pangle M/'T 2!
que fait la tangente a la courbe en M’ avec l'axe Cx'
Nous aurons

et a cause de

log (Vi pt—p) = — log(p' +Vi+p*)
la premiére équation (4) deviendra

d i/
ddx == —P—P: 4

en faisant, pour abréger,

¥ —+p V14p* =4 log(p' 4 Vitph) =P,
I’angle aigu M'T ' pouvant apmochcr continuelle~
ment d un angle droit, la variable p’ croitra indéfini~
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Ment; maisil n’en sera pasde mémea I'égard de x”.Pour
de trés grandes valeurs de p’, on pourra mettre p’ ala
Place de \/1 -4 p™; et en négligeant 9 4 log 2 par
Yapport a p'*, on aura

P = p* 4 ;logp™,

ou simplement P’ = p”, en observant que le loga-
rithme d’une quantité trés grande p™, et, a plus forte
raison, 1log p™, est irés petit relativement a cette
quantité : on aura donc, pour ces valeurs de p/,
"{ /
({.‘x" = —}—.{;;
('IJ
en intégrant et désignant par C une quantilé cons-
tante, et il en résultera
1 1
2 = G — — 3
C]J
e qui montre que les valeurs de x ne croitront pas
Indéfiniment avec celles de p'. Cela étant, soit
= [’”’ dp’
q 3, ‘-" s O I)’ 4
. 5 g 3
q sera une ligne de grandeur finie, quon pourra
Caleuler par la méthode des quadratures; et si Fon
Prend sur Cx' une partie CA égale a cette ligne,
la verticale AB menée par ce point sera une asymp-
tote de la partie CD de la trajectoire; en sorte que
le mouvement du projectile sur cette branche des-
cendante, approchera indéfiniment de la direction
¥erticale.

Observons, de plus, que pour les trées grandes
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valeurs de p', les deux derniéres équations (4) se
réduiront a

dp’ —_— dp'
edy =L " Neady = L .
- P fa) P »
d’ou il résultera
ﬁb"’ g
S V!

par conséquent, le mouvement final et vertical du
projectile sera uniforme; ce qu'il s'agissait de dé-
montrer. La vitesse de ce mouvement sera celle qu'un

corps pesant acquiert en tombant dans le vide, d’une
£

o5 ¢t Cest aussi ce que l'on conclut

hauteur égale 4
de la formule (5), en mettant —p' au lieu de p, et
considérant ensuite p’ comme une trés grande quan-
tite.

En faisant, dans la premiére équation (4),

da
P = tangm, dp = !
et, pour abréger,

e —_— I
[y—tange |/ 14ta ng*w —log(tange + /1 4 taug"w)]cnsgm:a

on en déduira
T e l/d Qdew ,
¢/ a
pour l'abscisse du point C. Si donc on prend sur
Ox (fig. 49), un point F, tel que V'on ait
OF = &, + ¢,

la verticale FG, menée par ce point F, sera 'asymp-
tote de la branche descendante de la irajectoire.
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214.Soit ON le prolongement de la trajectoire OCD;
le point de départ du mobile étant O, le mouvement
D'aura pas lieu sur cetle partie de la courbe; mais on
Peut, néanmoins, désirer d’en connaitre la forme. Or,
Onla construit par points,au moyen des deux premiéres
formules (4), en y donnant & p des valeurs positives
€l plus grandes que tang «; et il est aisé de s'assurer
qQWelle a aussi une asymptote , mais quil n'est pas
Verticale, comme celle de la branche descendante.
Pour cela, jobserve que, d'apres la valeur de
du n° 211, il y a toujours un angle € aigu, et
> a, qui est tel que p = tang€ vend nul le déno-
minateur commun de ces deux formules, c'est-a-dire,
un angle € qui satisfait a I'équation

¥~ tangs {1+ tau{-,'*if—— log (tang e+ V 1+ tang’€) =o0. (6)

Cela étant, on voit par la valeur de dp, tirée de
Pune ou l'autre des deux premiéres équations (4),
ue I'abscisse @ et I'ordonnée y croissant indéfini-
Ment, abstraction faite du signe, dans cette partie
ON de la courbe, la quantité p cesse de croitre, lors-
qu'elle différe infiniment peu de tang€; en sorte que
P ne peut jamais dépasser ni méme atteindre rigou-
reusement cette valeur p==tang&; ce qui signifie
que la branche de courbe ON a une asymptote qui
Coupe le prolongement de I'axe Ox sous I'angle 6.
On déterminera sa distance au point O de la maniére
Suivante.

Je mene par le point O un axe qui fasse, avec le pro-
longemenl de Ox, un angle égal au complément de

» et qui soit, par comséquent, perpendiculaire a
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Pasymptote de ON. Jappelle # Pabscisse d'un point

‘ quelconque de la courbe , comptée sur cet axe & par-
tir du point O; les coordonnées de ce point, par rap-
port aux axes Ox et Oy, étant toujours x et y, on aura

u = ycosb6 — xsing.
En différentiant et mettant pour da et dy leurs va-
leurs données par les deux premitres équations (4),
il vient
_ (tang= —p) d"i—_;, e
v—pV 14 p*—log(p+V 14 p)] cos &’

formule dans laquelle on donnera i p des valeurs

cdin —

plus grandes on plus petites que tange, selon qu'il
g'agira d’un point de la partie ON ou de la partie OM
de la courbe. On peut retrancher de son dénomina-
teur le premier membre de 'équation (6) , multiplié
par cos€; et sil'on fait, en outre,

P s tangw, dp = ——,
et, pour abréger,
tangg \/f1+tang‘§—]—]0g{tang€+ \:"1-]—tang“gj
—tangmy/ 1 —\—tang’w-—log(’[angw-{-\/f—{—tnngTa;)_:U»

il en résultera
(tang 6 — tang o)do

tlie e e R i
cUcos 6 cos?a

Or, en faisant

?

I J'C (tang & — langa) da

U cos* w
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Fsera une ligne de grandeur finie, que Yon calcu-
lera par la méthode des quadratures, et qui exprimera
%a valeur de z relative a asymptote de ON, clest-
a-dire, la longueur de la perpendiculaire abaissée du
Point O sur cette droite , qu'il sagissait de déterminer.

Cette droite asymptotique aura pour ¢quation
yeos6 — xsin€ = r;

en sorte que si 'on prend sur le prolongement de
Ox un point H tel que I'on ait

O = T;

]’as_ymplolc de la branche ON sera la droite HK,menée
par le point H, et faisant avec le prolongement de Ox
un angle KHO supplément de €. Les deux asymptotes
FGetIIK, prolongées au-dessus del'axe Ox, se rencon-
feront en un point L, de manicre que la courbe en~
titve sera comprise dans I'angle KLG, dont le complé-
ment est Vangle € déterminé par I'équation (6).

215. Lorsque I'angle de projection AOx ou = est
teés petit (fig. 51), le projectile ne g'éleve qu'a une
Pelite hautenr au-dessus de l'axe horizontal Ox ,
Iené par son point de départ. Or, dans ce cas, on
Peut obtenir, avec une approximation suffisante,
]_’équatinn en x et y de la partie 0OCB de la ira-
Jecloire, située au-dessus de Ox; et méme on peut
€tendre cette équation jusqu’a un point D, dont la
distance & cet axe n'est pas trés considérable.

En effet, dans toute cette partie OCB, ou méme
OCD de la trajectoire, la tangente a cette courbe
Sera presque horizontale, et la quantilé p tres petite ;

T

e

G e L T

e il b

-

-
S
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en négligeant le carré de P> on aura donc

ds — da $ ==,
et 'équation (2) deviendra

C_f]z . aip iy I

aAcr
dx dax® - =)

En intégrant deux fois de suite, et déterminant les
constantes arbitraires de maniéve qu’on ait g'% = tang 4
et y = o, quand x = o, il vient

; y = x tang & — —Sc—,h%m (e** — 202 — 1),
pour 'équation approchée de la trajectoire, qu'il s'a-
gissait d'obtenir. En développant I'exponentielle
qu’elle renferme , réduisant et faisant ensuite ¢ — 0y
elle devient I'équation exacte de cette courbe dans
le vide.

D'aprés Téquation gde* = — dacdp du n® 215, el

5 p dp
la valeur précédente d(:;l,j—.r , On aura

I
dt - — ff'c'z(iﬂ’-",
V 2gh cos w

el, par conséquent,

I §

Pt ah Suealh o= i T Y
¢V 2ghcosa (( I)"

ce qui fait connaitre le temps 7 que le mobile em~

ploiera a parcourir une portion quelconque OM de

; la courbe OCD.

216, Supposons que le projectile vienne tombes
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sur le terrein en un pumt D; representons par A I'a-
baissement de ce point au—desqous du plan horizon-
tal, mené par le point O, ou la perpendiculaire DQ
 Taxe Ox; soient aunssi / la distance 0Q, et 7 le
teln])s employé a aller du point O au point D; nous
durons, i la fois,

E == by ) o N D

¢ten remplacant, pour plus de simplicité, cos® a par
Punité dans Jes formules précedentes, 1l en résultera

Sc*h (A+4-Iltang o ) =e*"— 2¢l—1,
A a
te\/ogh =— et — 1. (@)

Lors done que les deux constantes & et ¢ seront
donnges, et quon aura mesuré l'angle « et I'¢léva-
tion 2 du point O au-dessus du ferrein, ces équa-
tions feront connaitre la portée horizont'llel et la
durde + du trajet du projectile. Réciproquement,
Quand on connaitra &, A, I, T, par des mesures di-
Tectes, ces équations pourront servir 4 déterminer le
Coefficient ¢ de la résistance, et la hauteur % due i la
Vitesse initiale. En éliminant & ,ona

4(A 4 Itang &) (e —1)* =gr* (e — acl—1);

Cquation d'otr 'on tirera la valeur de ¢ : Pune des
deuy préccdentes donnera ensuite immédiatement la
Valeur de /.

Il existe encore de I'incertitude sur les grandeurs
des portées et des vitesses initiales. D’aprés Lombard,
Powr un canon de 24 chargé au tiers du poids du

Oulet, la vitesse initiale est de 465 metres par se-
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coude; et pour un canon de 12, dont la charge est
aussi le tiers du poids du projectile, cette vitesse s€-
léve 4 4g4 métres, Suivantle méme auteur, les portées
correspondantes et relatives & A = o0, sont 700 me=
tres dans le premier cas, en supposant o= 1° 56"
et 660 meétres dans le second cas, en Supposallt
= 1250 50/

Au lien du temps 7, on pourrait employer 2 la
détermination de / et de ¢, une seconde portée du
méme canon A une élévation différente au-dessus dt
terrein. Ainsi, en supposant que le poids du projec”
tile, celui de la charge et langle « ne soient pas chan~
gés, les quantités £ et ¢ resteront aussi les mémes; et
si A et [ deviennent A’ et I/, on aura

8c*h (W'~ I tang &) = e*’ — 2¢l' — 1;
d’ou 1l résultera

(A1 tang ) (e*¥ — acl' — 1)
= (N+4-ltang &) (e — 2cl — 1), (h)

en éliminant /2 au moyen de la premiere équation (a)

Les auteurs de Balistique ne sont nullementd’accor
sur la grandeur du nombre 7 qui entre dans l'ex~ ‘
pression du coeflicient ¢, savoir (n° 210 ),

C = ﬁ;:

D'aprés une théorie tres 1mpm{mte de la résistanc®
des fluides, ce nombre 7 serait 3; mais toutes les expé”
riences le donnent plus petit, et Lombard le fait €g2
i 2. L’équation (b) fournirait le moyen le plus sus~
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Ceptible de précision pour la détermination de ¢, en
SUpposant bhien connu et invariable, I'angle de pro-
Jection «,

§ 1l. Mouvement des planétes.

217. Les lois du mouvement des planetes autour

U soleil sont connues sous la dénomination de Lois
de Kepler, parce quelles ont été découvertes par cet
tronome, qui les a déduites de Iobservation. Elles
Sont an nomhre de trois, dont voici les énoncés :

1o, Les planetes se meuvent dans des courbes
P]-anes, et leurs rayons vecteurs deécrivent, autour
du centre du soleil, des aires proportionnelles au
t‘fmps.

2°. Les orbites, cest-a-dire, les trajectoires des
Plandtes, sont des ellipses dont le soleil occupe un
des foyers.

3. Les carrés du temps des révolutions des pla-
Betes autour du soleil sont entre eux comn:e les cubes
des grands axes de leurs orbites.

Toute leur importance n'avait pas d'abord été com-
I\"'ESG; c'est Newton q‘ui en a monire I’usage pour

Sterminer la force qui retient chaque planéte dans
%0u orhite, c'est-a-dire, la direction de cette force et
S variations de son intensilé, soit dune position &
e autre d’'une méme planéte , soit d'une planéte a
e aytre. On verra, en cffet, dans ce paragraphe,
Q‘}E chacune de ces trois choses est une conséquence
Uecessaire des trois lois du mouvement planétaire
que I'on vient d’énoncer.

il
:
1
|
i

T
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Ces lois se rapportent au mouyvement du centre de
grayité de chaque planéte; c'est le mouvement de €€
point que nous allons considérer; et quand il ser?
question de la position ou de la vitesse d'une planetes
il faudra entendre la position ou la vitesse de so
centre de gravité,

218. Soient AMBD ( fig. 52 ) Vellipse décrite par
une planete, AB son grand axe, C son centre , O €t
0’ ses deux foyers, O celui qui est occupé par 1¢
centre du soleil, B le périkélic ou le point de 1'orbit¢
le plus rapproché de O, A 'aphélie ou le point le plo
éloigné du soleil.

Au bout du temps ¢ qui sera compté a partir d:“
passage de la planéte & son périhélie, soit M sa post”
tion sur l'orbite. Désignons par r son rayon vet~
teur OM, et par § Vangle MOB que l'on appelle, €”
Astronomie, Vanomalie vraie. Le secteur décrit p2*
ce rayon pendant Uinstant d¢ sera & r* db (n° 156 )
d’'apres la premiere loi de Kepler, on aura done

rdi = cdt; (1)

¢ étant une constante égale au double de I'aire décr‘it‘i
dans 'unité de temps, et k ct le double de T'aire MOE
décrite dans le temps quelconque ¢.

Soient aussi
OM=7, CB=CA=a, CO=C0' = ae.
D’apreés une propriété de lellipse, on aura
r =4 r = aa;

dans le {riangle G'MO, on a aussi
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r'* = r* = 4raecos § + 4a‘e’;

E=
~3

et si I'on élimine 7’ entre ces deux équations, il vient

a(y — &3

a2 1 4 ecosf? (2)

Pour 'équation de la trajectoire. :

Pour toutes les planétes connues avant ce siécle,
Yexcentricité e est une fraclion trés petite; celle de
Porbite de la terre est

e = 0,01685518,

Ou, & peu pres, un soixantieme. La plus grande était
telle de Mars, qui surpasse neuf centiémes; c'était
donc pour cette planéte que le mouvement elliptique
devait étre le plus différent du mouvement circulaire
excentrique, que 1'on adoptait avant Képler; et cest,
en effet, dans les observations de Ticho-Brahé, re-
latives a cette planeéte, que Képler a reconnu d'abord
la différence de ces deux mouvemens. Sil'on déve-
l(-"ppe les valeurs de 7 et 8, en séries ordonnées sui~
Vant les puissances de e, au moyen de I'équation des
aires proportionnelles au temps, jointe a celle de Ja
trajectoire elliptique ou a celle de la trajectoire cir-
Culaire excentrique, on trouve que pour un méme
temps t, les développemens correspondans & ces
deux courbes , ne different que dans les termes qui
dépendeu‘t du carré ou des puissances superieures
de e; circonstance qui rendait, i 'époque de Ké-
pler, la différence des deux mouvemens tres difficile
2 découyrir.

21g. Si l'on appelle T le temps de la révolution

a5
27
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d’une planete, et qu'on fasse

celte constante n sera la vitesse moyenne angulaire,
et nt le moyen mouvemnent de la planete.

Imaginons un astre fictif dont le mouvement soit
uniforme, et qui parte du périhélic et achéve sa ré=
volution en méme temps que cette planéte; sop
rayon vecteur déerira Vangle nt, pendant que celul
de la planéte décrit I'angle §; Pangle § — n¢, compris
4 une époque quelconque entre ces deux rayons, est
ce que les astronomes appellent U'éguation du centre :
il est positif, et la planéte précede lastre fictif,
en allant du périhélie & I'aphélie; le contraire a liet
en revenant du second point au premier. Le maxi=
mum de I'équation du centre dépend de la grandeur
de lexcentricité.

En prenant le jour moyen pour unité de temps, el
mettant 560° au licu de 27, on a, relativement & 12
terre,

T == 3654,356574., n = o°59 8.

Cette valeur de T est la durée de Vannée sidérale s
ou l'intervalle de temps qui s'écoule entre deux re=
tours consécutifs du soleil & une méme étoile,, dan®
son mouvement apparent autour de la terre. L'inter~
valle compris entre deux retours consécutifs a u?
méme cguinoxe, est plus court, a cause que les poiﬂts
équinoxiaux ont sur I'éeliptique un mouvement po=
trograde, ou en sens contraire de celui du soleil.
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En prenant 50",22427 pour la précession annuelle en
1800, et observant que le rayon vecteur du soleil
emploie o/,014158, a décrire ce petit angle, il en
résulte
3657,242216,

Pour la longueur de 'année équinoxiale au commen-
Cement de ce siecle. I’année sidérale est constante ;
Mmais la précession des équinoxes varie un peu, et,
Par conséquent aussi, l'année équinoxiale : sa lon-
gueur diminue d’a pen prés une demi-seconde par
siecle,

220. La constante ¢ aura pour valeur le double de
la surface de Iellipse divisé par T ; en observant que
le demi-petit axe est @ V1 — e*, et la surface
7a*y/1 — ¢*, on aura donc

272" l/l —_ e

C = T .

Au moyen de cette valeur et de celle de r, 'équa-
tion (1) devient

Pdl = na\/1 — e dt.

L’équation (2) donne

f = arc(cos = m),

er
aV/'1 — e*dr

rVae — (r — a)

df

e

Par conséquent , on aura

rdr
nadt — —————,
P& — (r — a)*

%]
w1
i
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Pour intégrer ces formules, faisons
r=a(1 —ecosu); (a)
nous aurons
dr = aesinu, ndt = (1 — ecosu)du;

4 canse de r=a( 1 — ¢) au point B, il faudra que
I'angle  soit nul ence pointoi 'on a aussi =0 ;en
intégrant, on aura done

nt = u — esinu. (6)

En mettant pour r sa valeur dans celle de df , et ob-
seryant que cos & == cos*§ u—sin® 1 %, il en résulte

A0 V1 — e'du i :
1 — ecos®Lu 4 esin*tu’
et si l'on fait ‘
tang 1 u = 2, E_"o;u% - = adz,
cette valeur devient
2 V”]Tf'“-a':.

B= e on,

En integrant et observant que 0 et u sont zéro en
méme temps, ¢’est-a-dire, au point B, on aura

L) =arc (tang =% \/:—.f_;)’

d’ou 'on conclut

tang 36 = \/1 * ° tang 2 u, (c)

I e—

en remettant pour z sa valeur.
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Ces trois équations (a), (8), (c), expriment, sous
forme finie, les valeurs de r, nt, §, au moyen de la
variable auxiliaire &, qu'on appelle I'anomalie excen-
trigue. En éliminant z entre elles, on aura les deux
coordonnées polaires » et §de la planéte en fonctions
du temps, sous forme de séries ordonnées suivant les
Ppuissances de Vexeentricité, qui seront, par consé-
Quent, trés convergentes dans le cas des anciennes
planétes. Aprés qu'on aura formé ces séries, on y
Pourra remplacer les puissances de cos 72 qui se trou-
veront dans le développement de r, et celles de sin n¢
que renfermera le développement de §— nt, par des
cosinus et des sinus des multiples de rt. Si I'on con-
coit qu’on ait ensuite ordonné ces développemens du
rayon vecteur et de I'équation du centre suivant les
cosinus ou sinus des multiples croissans de nt, on
Pourra déterminer directement, par l'analyse sui-
Vante, les valeurs des coefliciens de ces deux séries
en fonctions de Vexcentricilé.
221. Je fais

P=A A, cosni-A,cosant+. . .~A cos int - etc.,
9*—-115:]31 sinni—B,sin ant—+. . .4 B, sin int 4~ etc.;

A, A,, A,, etc., B,, B,, etc., et géneralement A,
€t B,, étant les coefliciens qu'il s'agit de déterminer.

8i i et ¢ sont deux nombres entiers positifs et dif+
férveng , on aura , en effectuant les intégrations,

w = )
f cos int cos intd.nt=o,
t]

- a - . ot
sinint sin int d.nt = 0;

; £

8 4 Dy LT
S rom e
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et dans le cas de i=7, on trouvera

[ - I
f cos*intd . nt = -,
o

o & . 1
f sin® intd . nt — ~or.
(4]

Ces derniéres formules ne sappliquent peint 4 i = o0
dans ce cas, la premiére intégrale est égale a =, et
la seconde a zéro.

Cela étant, je multiplie le développement de
par cos intd.nt, et celui de | —nt par sin int d.nt;
puis j'integre depuis nf = o jusqua nt =wm. Tous
les termes s’évanouissent, excepté ceux qui ont A;
ou B, pour coeflicient, et 'on en conclut

A = f—rfwrcos intd.nt,

(]

Il

- a@ - -
B, : f (68 — nt) sin int d.nt.
0

Dans lefcas de i =0, on aura, en particulier,

A, =" [wrd.m,
wTJ o

cest-i-dire qu’il faudra réduire & moitié la valeur

générale de A,. En intégrant par partie, et obser-

vant que § — nf est zéro aux deux limites 7£=—o0 €t

nt =, Vexpression de B, pourra étre remplacée

par celle-ci :

o
By = — cos int d (§ — nt).

oty

Je substitue & la place de r, n#, f, leurs valeurs
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en fonctions de u , tirées des équations (@), (8), (¢);
4 cause de

di V11— e d._nt 3
du — 1—ecosu’ e B T S iy

€t parce que z==o0. et u=m répondent & nt=o0
et nt¢ =, 1l en résultera

2a x - - .
A= 5 f (1 — ecos w)*cos (it —.ie sina) du ,
o 0

cos(iu—1resinu)
== —e*—(1—ECco51 o T
' f r\/l et (I cos ) J i—etosz %
formules qui feront connaitre les valeurs numéri-
ques des coefliciens A; et B, soit par la méthode
des quadratures, soit par la réduction en séries,
Pour cette réduction, on aura, par le théoréme de
Taylor,

..’ a

Los(zu—zeq: nu} (1——— s1n’ u+—ﬁsm i—ete. )CO‘;M
3.4

S et s
e (ua sinze— ﬁ sinu - ctc.)suuu;

el il en résultera pour A, et B; des séries d'inté-
grales relatives a u, dont les valeurs exactes s’ob-
tiendront toutes, soit immédiateruent, soit par des
formules connues; en sorte que 'on pourra prolon-
ger ces de\feluppcmulb de A; et B, aussi loin qu'on
Voudra. On pourra mémg obtenirv leurs termes ge-
nemm en fonctions de i et de e ; mais ce n'est pomt
ici le lieu dinsister davantage sur ce sujet, qui ap-
Partient specialement a l:‘\.‘i‘thllOule.
Relativement &4 i=o0, on a
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=
Ay = ;f; (1—ecosu)ydu=a(1+4 )y

en ne prenant que la moitié de la valeur de A,
qui répond & i = o: clest le seul des coefficiens
Ao, A, A,, etc., B,, B,, etc., dont on puisse ob-
tenir la valeur exacte.

222. Si Pon appelle ¢ la vitesse de la planéte au
bout du temps £, et J l'angle que fait sa direction
avec le prolongement de son rayon vecteur r ou OM,
on aura (n° 156)

__ drt - rrdi

o df
S di

veosd = r—,
A dt

En éliminant d¢ au moyen de I'équation (1), on &

Atk
[ d

! o V44
L= & = ., ———
U_C\déi)_f—r“’ plasd =iy

En vertu de I'équation (2), on a aussi

I 1 - ecos r e sin §

s
e S —

r . a(i—é) ? 4 alt — ¢’
d’otr il résulte
a* (1 — e*)* v* = (1 4 2¢ cos - e*) c*,

et, par conséquent,

BT ot oL B
;;___a’“_eg)(r 1), cosd' = -~ s (d)
— — 1
:

ce qui montre comment, dans le mouvement ellip~
tique, la vitesse et ]a direction du mobile en chaqu€
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Point se déterminent au moyen de son rayon vecteur.
D'aprés 1a valeur de ¢ du n° 220, celle de ¢* peut aussi
€tre éerite ainsi :

]
o8 .fi_ 20 ;
— (113 r’ -

Ces formules, jointes 4 celles des numéros préce-
dens, fonl connaitre complétement le mouvement
@une plantte dans le plan de son orbite ; mais quand
on veut considérer a la fois les mouvemens de deux
Ou de plusicurs planetes, il est nécessaire de rappor-
ter la position de chacune d’elles & un autre plan,
qui est ordinairement le plan de Pécliptique ou de
Porbite de la terre.

295, Soient NON' (fig. 53) I'intersection du plan
de Torhite d’'une planéte avec un plan passant par
le ¢entre O du soleil, OE une droite menée dans ce
second plan, OM'Ja projection du rayon vecteur OM
de ]a plantte sur ce méme plan. Désignons par 3
linclinaison des deux plans, par o l'angle NOE, par
@ Pangle BON que fait le rayon vecteur OB aboutis-
sant au périhélie avec la droite ON. Ces trois angles
%, 5, w, devront étre donnés, et ils détermineront
le plan de l'orbite et la position de Vellipse dans ce
Plan. Soient aussi @ et A} les angles variables MOW
¢t M'OE, que fait le rayon vecteur OM avec sa pro-
lection OM', et cette projection avec la droite OE,
lesquels angles détermineront, 4 chaque instant, la
divection du rayon OM aboutissant & la planéte.

Cela posé, considérons l'angle triedre qui a son
sommet au point O, et dont les trois aretes sont OM,
OM’, ON. L’anomalie vraie, ou Vangle MOB, étant
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toujours 8, les trois faces de cet angle triedre seront

MON = MOB + BON = § + o,
M'ON = M'OE — NOE = — «,
N[(]M': q‘};

la prem:ere sera opposce a un angle droit, et la
troisicme a l'angle 5. D’aprés les premieres legh;'s de
Ia 'Fr;gonomelrlc sphérique, on aura donc

sin @ = siny sin(f + o),
tang (v — @) = cosy tang (0 + w);

et I'angle 8 étant connu en fonction de ¢, par ce qut
précede, chacun des angles @ et le sera aussi, at
moyen de ces formules.

Lorsque le plan donné sur lequel on compte 'angle
+ est Lécliptique , et que la droite OE, i partir d¢
laquelle on compte cet angle, dans le sens du mou~
vement de la terre, est celle qui va du soleil & I'équr
noxe du printemps, les angles . et @ s'appellent 12
longitude etla latitude de 1a plantte que I'on considére:
La droite NON est la ligne des ncends delson orbite ; 8¢
elle entre dans Phémisphére boréal quand elle trayerst
leplande I’ écliplique au point N, c¢ point est le neend
ascendant , et N' le nceud rfmr‘mr{cmt Selon que la
planéte se trouve dans cet hémisphere ou daus lhﬂ“
misphéere austral, la latitude ¢ est positive ou né-
gative, et I'angle MON, ou 0 4 , est plus glﬂ“d
ou moindre que 180°. L/ angln Qs etcnd depuis — 90’
Jusqua go°, et Fangle MON, ainsi que la longitude
M'OE, depuis zéro jusqu’a 560°.
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Si l'cn remplace le point O par le cenire de la
terre , que I'on prenne l'équateur pour le plan donné
sur lequel on compte l'angle |, et pour origine de
tet angle la droite OE qui va de ce centre au premier
point du signe aries, les angles N et @ seront alors
Vascension ¢ dwltc et la déclinaison de la planéte. En
ippliquant les formules précédentes au mouvement
apparent du soleil autour de la terre, on aura 2=o,
¥ exprimera Lobliquité de Vécliptique, et I'on devra
Prendre pour § -~ » la longitude de cet astre ; d'ou il
Yésulte qu'en la désignant par A, on aura

sin @ = sin ysin A, tang-l=cosytang 2,
€t, en méme temps,

sin g tang -
‘/to*' + tar tang® \L

Les plus grandes déclinaisons boréale et australe ré-
Pondent & A= go° et A== 270°, et sont Z=3. Cet
angle 4 est aussi celui que fait 'axe de rotation de la
Fﬁrre avec la perpendiculaire an plan de Iécliptique;
U est soumis & wme petite inégalité qu'on appelle la
Mutation, dont la période est d’environ 18 ans, et le
Mazimum de "4 senlement. Sa valeur moyenne, au
Commencement de 1800, ¢était

sin@ =

y =2

(52}
)

27' 55" ;
elle diminue de 0",436g2 par année.

224. Dans tout ce qui précéde, on na point eu
€gard 4 la force qui agit sur C}l.lqllti planete , dout le
Mouvement a ¢té déterminé d’apres les données de
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Yobservation, et sans recourir aux principes de la
Dynamique; il s'agit maintenant de déterminer le
lois de cette force, ainsi qu'il a été dit précédem-
ment (n® 217).

[l suit de la premiére loi de Képler que la force qui
retient chaque planéte dans son orbite est constam=
ment dirigée vers le centre du soleil ; quoique cettC
conséquence nécessaire de la proportionnalité des al-
res aun lemps ait éié déduite des équations du mou-
vement dans le n° 155, il ne sera pas superflu d'en
donner ici une démonstration synthétique.

Soit MM (fig. 54) le cOté de la trajectoire que Je
mobile décrit pendant un temps T infiniment petit-
Arrivé au point M, si ancune force n’agissait sur €€
mobile, il décrirait, dans un autre temps T, un®
partie M da prolongement MT de MM, égale 2
M,M; mais, a cause de la force a laquelle il ¢st sou-
mis, il se transporte, dans ce second inslant, en
un autre point M'. Soit MK la direction de cetté
force au point M; pendant le temps 7, on pourra
supposer qu'elle reste paralléle & elle-méme, et alors
si I'on tire la droite mM', elle sera parallele x ME
(n° 148). Or, si C est le centre fixe autour duquel
le rayon vecteur CM décrit des aires proportion~
nelles au temps, les triangles M,CM et MCM’, qu!
sont les aires décrites d.ms deux instans egdux, se-
ront équivalens; mais les triangles M,CM et MCm
le sont ausst, puisquils ont leurs sommets au méme
points G, et lenrs bases M\M et M égales et suf
une méme droite ; les triangles MG et MCM/ sont
donc équivalens ; et comme 1l.~, ont une méme basé
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MC, il faut que la droite mM’ qui joint leurs som-~
Mets soit parallele a cette hase; par conseéquent,
la dyoite MK, parallele & mM’, coincide avec MC.
Done, en chaque point M de la trajectoire , la di-
Tection MK de la force sera celle du rayon vecteur
MG; ce qu'il s'agissait de démontrer.

Réciproquement, si la force qui agit sur le mo-
hiIE, au point quelconque M, est dirigée suivant
MC, 1a droite mM’ sera paralléle & ce rayon vecteur,
les deux triangles M'CM et MCm seront équivalens,
€l, par conséquent aussi, les deux triangles M'CM
€ M,CM. Les aires décrites par le rayon vecteur
utour du point C, en deux instans conséculifs et
€gaux, étant égales, et cela ayant lieu dans toute
Pétendue de la trajectoire , si la force qui agit sur
le mobile est constamment dirigée vers ce pont, il
Yensuit que les aires décrites en temps égaux se-
font égales, et, en des temps quelconques, propor-
Bonnelles i ces temps.

225. Soit, comme dans le n® 218, M la position
de 14 planéte au bout du temps £ (fig. 52). Con-
Seryons toutes les notations de ce numeéro, de sorte
Que r et 8 soient le rayon vecteur OM et l'angle

OB; désignons, en outre, par x et » les deux
“ordonnées rectangulaires OP et PM, rapportées a
des aves Oux et Oy, dent le premier passe par le
Périhélie B; nous aurons

e=rcosf, y=rsinf, a*4r*=r.

Soit aussi R la force accélératrice, inconnue en grau-
fur, qui agit sur la planéte. Cette force est diri-
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gée,, comme on vient de le voir, suivant le rayon
vecteur, et elle agit du point M vers le point O
a cause que la trajectoire tourne sa concavité du
coté du soleil ; les cosinus des angles qu’elle fait avec

les prolongemens de x et y sont donc — ,E et

——J;r; par conséquent, les équations du mouvement
seront
Qipag
Jis =

—RE, ZL=—RZ. ()

dr?

En appelant toujours ¢ la vitesse au point M,

nous auromns
dxr dy*

Mo O L1
V=g ‘

et, en différentiant,

I a dy

;d.v’_ Tﬂ’x + Ef{)’",
par conséquent, si on ajoute les équations (1)
aprés les avoir multiplides par dx et dy, et si I'o?
observe que axda - ydy = rdr, il en résultera

1d.v* = — Rdr.

Mais , dans le mouvement elliptique, on a (n° 222)

I

& e, £ e
v ¥

en faisant

on aura donc
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¢ qui montre que la force qui agit sur chaque pla-
Nete suit la raison inverse du carré de la distance au
Centre du soleil.

La grandeur de cette force est 2 a P'unité de dis-
tance ; soit p! ce qu'elle devient pour une autre pla-
uete, dont le demi-grand axe et le temps de la reé-
Volution seront représentés par ' et T'; on aura
de méme

[ 25 [P__:ﬂ"'i
W= -

O, d’apres la troisieme loi de Képler, on a

111,, . rl‘,fn ve ‘:{'3 . ala;

d’on il résulte
(4

a."l -

T = T2 po= p;

Par conséquent , & I'unité de distance, et, générale-
Ment, a la méme distance du soleil, la force accélé-
Tatrice R est la méme pour deux planctes diffé-
Tentes.

La force motrice de chaque planéte est done indé-
Pendante de sa nature particuliére, et proportionnelle
% $a masse, comme les poids 4 la surface de la terre.
Elle varie d'une planéte a une autre suivant la méme
O‘i que d'une position a une autre de la méme pla-
"f‘ite; et si deux planctes étaient situdes a la méme

Stance du soleil et abandonnées & elles-mémes ,
Sans yitesse initiale, elles tomberaient d'un méme
Mouyement vers cet asive, et Vatteindraient dans le
Méme intervalle de temps.
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Ainsi, les trois lois de Képler nous font connaitre
compléterent la force qui retient les plandtes dans
leurs orbites : la loi des aires proportionnelles att
temps nous fait voir que cetle force est constamment
dirigée vers le centre du soleil ; celle du mouyemen?
elliptique , on Pexpression de la vitesse qui se déduit
de cette loi et de la précédente , nous montre que SO
intensité varie, pour une méme plancte, en raiso®
inverse du carré des distances au soleil ; enfin, nou$
concluons de la loi des carrésdes temps des révolution’
proportionnels aux cubes des grands axes, qu'h éga~
lité de distance au centre de cet astre, Vintensité de
la force motrice est proportionnelle aux masses de
chaque planéte , et indépendante de sa nature parti©
culiere.

226. Newton a étendu aux cometes, dans leu’
mouvement autour du soleil, et aux satellites autot®
de leurs plandtes respectives, les lois de Képler et 165
conséquences qui sen déduisent relativement a la
force qui agit sur ces mobiles.

Les cometes, dans leur mouvement, ne différent
des planétes qu’en ce qu'elles ne sont pas constam”
ment visibles, a raison de I'éloignement de leurs aph€”
lies; ce qui rend tres diflicile la détermination d¢
leurs orbites. Néanmoins, il y a maintenant trois
comeles dont on connait les orbites et les temps de
leurs révolutions, presque aussi exactement que pou’
les planétes. A I'égard des autres cométes, on calcule
leur mouvement par approximation, en prenant pout
la trajectoire, dans la petite étendue on chaque €9~
méte est visible, une parahole dont le foyer est 3l
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centre du soleil , et supposant toujours les aires dé-
Crites par le rayon vecteur autour de ce point, pro-
Portionnelles au temps pour chaque cométe. Ce cas
st compris dans les formules précédentes du mouve-
fuent elliptique, en y faisant

a4 = @, ﬂ([—-(’):b;

b désignant la distance perihélie OB, qui est une
Quantiié finie.

Les masses des cometes sont trés petites par rap-
Port a celles des planetes et paraissent dune tout
dutre nature. En vertu de la troisieme loi de Képler,
les forces motrices de deux cometes, ou d'une cométe
€t d'une planéte, 2 la méme distance du soleil , sont
entre elles comme leurs masses respectives, et leurs
forces accélératrices sont égales; il en est de méme i
]’égard de plusieurs satellites d'une méme planete,
Mais non pas relativement aux satellites de denx pla-
letes diflérentes, ou & un satellite et une planete; car
la 1oi des carrés du temps des révolutions propor-
tiounels aux cubes des grands axes n'a lieu que pour
les corps qui tournent autour d'un méme centre ;
fous ferons connailre par la suite le rapport qui existe
Ehtre les forces motrices de deux satellites apparte-
Bant & des planctes différentes, et entre celles d'une
Plantte et d'un satellite.

Ajoutons encore que dans ces derniers temps on
A €tendu les lois du mouvement elliptique aux éloiles
doubles , dans lesquelles un mouvement révolutif de
Pane des étoiles autour de V'autre a été reconnu, et
que leurs positions relatives, calculées d’apres ces

¥ 28
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Jois, se sont accordées aussi bien quon pouvait 'es~
pérer avec leurs positions observées.

227. Examinons actuellement les altérations qué
la résistance d’un éther trés rare répandu autour du
soleil, produirait dans le mouvement elliptique des
planétes. Leur non-sphéricité parfaite etle frottement
du fluide contre leur surface, pourraient faire sortir I¢
centre de gravité du plan de son orbite : on ferd
abstraction de ces deux circonstances; et il ne s’agird
que de former les équations du mouvement de ce
point, en ayant égard , a la fois, a la force centralé
en raison inverse du carré de la distance, et a un®
force tangentielle provenant de la résistance dv
milien.

Je supposerai, comme dans le mouvement des
projectiles dans I’air, celte résistance proportionnellf’
au carré de la vitesse, a la densité du milieu et a la
surface de chaque planete; la force accélératrice qui
en résultera scra , en outre, en raison inverse de la

5 2

-mg i’ ] L :
masse du mobile; je la représenteral par g S €N de-

signani par ds Pélément de la trajectoire, et par P
un coefficient trés petit et proportionnel, pour un®

A . % N I '1 \' r gy t
méme planéte, a la densité du milieu. En observan

ue cette force agit en sens contraire de la vitesse dv
mobile, et représentant toujours la force principalﬂ
divigée vers Je centre du soleil , par w & unité de dis-

O . ; :
tance et par  a la distance r, les équations (x) de-

e

vront étre remplacées par celles-ct :
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d*z p ds dx

dr ol B W = l 3
&y wr ds dy ‘ (2)
P E ="z |

En employant les coordonnées polaires, on en dé-
duit, sans difficulté, ces autres équations

didr 4 o) ap(dr® + r°d%)
LI — st = ML, 3)
d.rd) = — pradlds,

qui en sont une transformation.

228. Lorsqu'on néglige leurs seconds membres, les
€quations (2) se réduisent &

d*z @ dy By
im0y b0, v ()
et les équations (3) a celles-ci :

d@,n 3 ],'Jdéu)
dt*

—2,(.(.(.{.:::0, der*dd =0 . (5)

On satisfait & ces équations (5) au moyen des for-
Mules (a), (b), (¢), du n® 220; ces formules n’en sont
Pas les intégrales completes, parce qu’elles ne con-
tlemu,nt que deux constantes arbiiraires a et €3 mais
st on fait attention que les équations (5) ne renfer-
Ment pas explicitement les variables § et ¢, et qu'elles
Contiennent seulement leurs différentielles df et dt ,
On en conclut que les formules do numéro cité de-
Vront encore satisfaire 3 ces équalions, en ajoutant
des constantes quelconques 4 ¢ et §. De cette maniere,
les lntegraies completes des équations (5), et, par
28..
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conséquent, des équations (4), seront exprimées par
ce systéme de formules :
r= a(1 — ecosu),
nt -4 ¢ = u — esinu,

e gy (a)

i 4+ e 1
ctang-;u;

tang £ (b — @) = \/

a, e, &, @, ctant les qualre constantes arbitraires, et
n une constaute lice a @ par I'équation
i =it

a 27 hwa’ sl o
qui résulte de T =1, A= = p, par I'édlimination

de T.

Le zéro de la variable z répondra toujours i la
plus petite valeur de r, ou au périhélie B (fig. 52)-
Pour u = o, on aura § = @; de sorte que § repre-
sentera maintenant l'angle MOE, compté a partir
d’une droite OE, qui fait un angle BOE = w, ayec
OB. La valeur de § en série sera de la forme

d=nt 4+ ¢+ 40,

en désignant par §, sa partie périodique, ordonné?
suivant les sinus des multiples croissans de nt—-e—w-
Cet angle 8 sera la longitude vraie de la planéte dans
le plan de son orbite, au bout du temps z quelconques
nt--¢ exprimera sa longitude meyenne au méme
instant, « sa longitude moyenne a l’c'p()que d’ot Von
compte le temps 2, et » la longitude de son périhélie.

22g. Cela posé, quand on counait les intégrales
complétes d'un systeme d’équations différentielles
comme les équations (4), on en déduit les intégrales
d'un autre systeme d'équations différentielles, telles
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que les équations (2), qui ne different des premiéres
qQue par de trés petl s termes, au moyen d'une mé-
thode dont les géometres ont fait les plus heureuses
applications & la Mécanique céleste, et que je vais
exposer 4 'occasion du probleme qui nous occupe.

Les valeurs de x et , qui satisfont aux équations
(4), sont de la forme :

x=f(t,a,e,¢,0), y=F{taver:-uwv);
J et F indiquant des fonctions données. Pour que ces
valeurs satisfassent encore aux équations (4), |’y con-
sidere a, e, ¢, @, comme de nouvelles variables qu’il
Sagira de delelmmur. Mais ces inconnues €tant au
nombre de quatre, et les équations (2) seulement au
nombre de deux, je peux prendre & volonté deux
équations auxiliaives; et je fais, en conséquence,

d —'—dfdi’-—l-dfd—}-—df{{ ittt

(%)
d + d + ffr. £chw= 0,

d a

ou, aulrement dit, j*égale i zéro les parties de du
et dy, provenant des variations de a, e, ¢, @ De cette
i x lz d
maniére, les valeurs complétes de et ¥ sont
. ’ dt dr,
Simplement
de __ df dy __ dF
&t T de? dl T udb
En différentiant de nouveau, on a
diz d_f &f da d*f de af de d'f dw
a: = ¢ T dide @ + wade @ U dids T dids di !
d__‘r &F d*F da d'F de + a'F de+_d_=F_ du
A= Gr T didadi ¥ dide de. ' dids dt ' dtdade”

e

==A5id

ki
B
I
]
H
:

B

as




438 TRAITE DE MECANIQUE.

Or, par hypothese, les valeurs précédentes de a
et ¥ satisfont aux Lquatlons (,) en y reg gardant a,
e, £, @, comme des constantes arbitraires, on a donc

a2 B d'F B
& 0 ge hE

L
B U

par conséquent, si Pon substitue les valeurs com-

3 d*x d h -
pletes de —= et .:h% dans les équations (2), on aura

dif af difle ol ds dx '

LA, 7 9 W — — p — —

Bigds o g e i P b 05
C

&F . &F d'F &F ds dy

2 s 7 e s e e Paide & ;

et ce systeme des quatre équations () el (¢) servira
a déterminer a, e, & @, en fonctions de £.

250. Cette substitution de quatre équations diffé-
ventielles du premier ordre, aux deux équations (2),
qui sont du second ordre, n'aurait, en général, au-
cun avantage. Mais les valeurs de da, de, d:, dw,
qu'on tire des équations (4) et {c), auront pour fac-
teur le coeflicient ¢ de la résistance, qui est une
trés petite quantité; les parties variables de a, e,
€, @, seront donc aussi tres petites; et si 'on né-
glige le carré de p, on pourra considérer a, ¢, ¢, @,
comme des constantes, dans les expressions de da,
de, de, de; ce qui réduira aux quadratures le caleul
des parties variables de a, e, ¢, @. Par la méthode
des approximations successives, on obtiendra ainsi
des valcurs de ces quantités, ordonndes suivant les
puissances de p et aussi exactes que 'on voudra;
nous nous arréterons a la premiere puissance de p.
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Les équations (a), aprés quon y aura substitué
les valeurs variables de 4, e, &, @, feront connaitre,
comme dans le cas du mouvement elliptique, les va-
leurs de r et § en fonctions du temps. La trajectoire
sera encore une ellipse, mais dont les élémens varie-
ront continuellement. Sil'on suppose que l'on cons-
truise & chaque instant Vellipse constante qui répond
aux valeurs des élémens 3 ce méme inslant, les or-
données x et 5, et leurs différentielles dx et dy, se-
ront communes, en vertu des équations (b), a cette
ellipse et & la trajectoire, qui sera, par conséquent,
la courbe de contact de toutes les ellipses constantes.
Par la méme raison, la vitesse du mobile et ses com-
posantes anront les mémes expressions, et seront de-
lerminées par les formules (d) du n° 222, dans le
mouvement elliptique et dans le mouvement altéré
par la résistance du milieu.

251. Observons qu'on a identiquement
nt = [ndt 4 [tdn;

¢n comprenant [Zdn dans I'inconnue £, on pourra

done écrire ainsi :
fudt - ¢ — @ = u — e sinu, (d)

la seconde équation (). Alors, en méme temps gu'on
changera, dans les équations du mouvement ellip-
tique, les constantes a, ¢, ¢, @, dans leurs valeurs
variables, il y faudra remplacer nZ par l'intégrale
{ndt, que nous supposerons nulle quand ¢==o.
La quantité 7 qu’elle renferme se déduira de @, an

|

|

!

———eTe o
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moyen de la formule

donnée par 'équation a’n* = x du n°® 228. Cette
intégrale fhdt exprimera le moyen mouvement de
la planete (n® 219), altéré par la résistance du milieu;
et, de cette maniere, la différentielle du moyen mou-
vement sera ndt, dans le mouvement troublé comme
dans le mouvement elliptique.

Aupérihélie, I'angle § — @ est égal a zéro on i un
multiple de360°; en vertude la premiére équation (a)
il en sera de méme a I'égard de l'angle ; donc, pen-
dant I'mtervalle de temps compris entre deux passages
consécutifs de la planéte a son périhélie, la rIu:mtltb
Jndt 4 ¢ — & avgmentera de 360°; ce qui servira a
déterminer cet thrvalle, quand on connaitra n, ¢, @
en fonctions de £. Le temps de la révolution, ou I'in-
tervalle compris entre deux retours consécutifs de 12
planéte au méme point fixe, sera celui qui répondra 2
un pareil accroissement de sa longitude vraie §.

232. Nous pouvons remplacer les équations (b)
et (c) par d’'autres équations équivalentes, desquelles
il sera plus facile de déduire les valeurs de da, de;
de, do.

Pour cela, observons que si une équation quel"
conque

e(nt, r,0,a,e ¢ 0) =o,

a lieu dans le mouvement elliptique, elle subsistera
encore dans le mouvement altéréd par la résistance du
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milieu, en y regardant a, e, ¢, @, comme des va-
tiables déterminées par les équations (b) et (¢), et
¥ mettant fnd¢ i la place de ne. La différentielle de
la fonction ¢ sera donc nulle, soit qu’on la prenne,
dans le premier cas, par rapport a nt, r, ; soit
qu'on la prenne, dans le second cas, par rappout &
Judt, r, 8, a, e, ¢, @; or, r et § étant des fonctions
de x et y, leurs différentielles sont les mémes dans
les deux cas, en vertu des équations (b); par con-
séquent, en supprlmant dans la dlﬂcrenhclle com-

plete de o, la partic —= d nt—l— -l- dﬂ qui

ést séparément uulle, on aura

dgp dp dp ;. de ;
‘—Eda. -+ Erls o e d: + dw.tr.'w = 3.

Cela posé, apres avoir mis dans I'équation (2)
du n° 218, §f — 4 la place de §, on en déduit
r 4+ recos( —@) = a(1 —e*);

en différentiant, comme il vient d’étre dit, on aura
done

reosBd.e cosw 4 rsindd.esino =d.a(1—e?). (e)
Je différentie de méme la premiére équation (a) et
Péqaation (d); ce qui donne

(1 —ecos#)da — a cosude +- ae sinudu = 0,

ds —dw - sinwde — (1— ecosu)du = 0,

en considérant x comme une fonction de a, e, s, @.
Y oy > v . . .
Pélimine du entre ces deux équations; il vient




442 TRAITE DE MECANIQUE.
(1—ecosu)*da—+a e—cos u)de—-ae sin u (de—da)=0-

Mais , en mettant dans les formules

I— tang®; u . 2 tang § u
casu_———+—, sinpg = ———————
I-}- tang® ; u

1 + tang* ;u’
4 la place de tang 1z sa valeur donnée par la tro1-

sitme équation (@), on a

£08 u:L—j-_CPM , Slnz=— K('*_"‘)S"H‘l:-“);
1 = ecos(i—a) 14 ecos (§— a)

au moyen de quoi I'équation précédente devient

S g — acos(l—a)de- ainy )

1 +-ecos(f—a) g (ds —dw)=o. (f)

Ce que nousdisons relativement a 'équation ¢ =0
i sapplique également au cas ou la fonction @ renferme
les différentielles premicres de r et 6. Ainsi, T'on a;
dans le mouvement elliptique,

dar? + r.a.d;z ap — e

———— S e— —

de r a’

rdf = \/ua( 1 — e*)dt,

en mettant \/,u,a au lieu de a’n dans la valeur de

radf du n® 220 : or, les différentielles dr et df, ains
que ret §, restant les mémes lorsque a, ¢, ¢, o, de~
viennent variables , il s'ensuit que ces deux équation®
subsisteront encore dans cette hypotheése ; cela étants
en comparant leurs différentielles completes aux équa”
tions (3) dun® 228, on en conclut

1.1 = 20 (2—2)ds,
e - 2p (r a)(s " @)
d. \/a.(l e BF) = —p Va1 — e*jds.
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\lamtcuant on tirera facilement des quatre équa-
tons (e), ( f)s (g), les valeurs de da, de, de, dw; en
¥ mettant pour r sa valeur, savoir,

a1 — e*)
1 + ecos (1—a)’

r =

afin de les exprimer en fonctions de Pangle § seule-
Ment, on trouve

dg — ZFa = [1+2ecos(0—a ) 4 e]ds,

e — — ogp [rz + cos (0 — w )]ds,

€dey—= — 2p sin(f — @ )ds, (%)
o . e sin (5—a) [V 1—c—c*—ecos (8 —a) ]

[14-¢cos (8 — a)] (1V'1 — &)

La valeur de ds qu'on devra substituer dans ces for-

Mules, est
\/ r* =4 d; dl ;

€t en y substituant celle de r, elle devient

alt — e V' +2c=co%(6—u)—l—c'dg
[t4ecos (0 —a)]"

]
as —

On intégrera les seconds membres des équations (%),
Uy considérant @, e, ¢, @, comme des constanles,
dins; quil a été dit pré (_Ledemmcnt et quand le coef-
Cient p sera donné en fonction de r, et conséquem-—
Ment de §, on en déduira, par la methode des qua-
Matures ou par la réduction en série, les valeurs
Variables de a, e, e, o, quidevront étre substitudes
s les équations du mm.vcment elliptique.
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233, Sil'excentricité e est une trés petite fractions
les formules (%), réduites 2 leur partie principale,
deviendront

da==—2p @*d), de=—2pacos(f— o )db,
edw = — 2pa sin (§—o )d, de=>opae sin (§—a)db;
etYony pourra considérer le coeflicient p comme cons”
tant. En intégrant et désignant par J'a, Je, &', J'ér
les parties variables de a, ¢, ¢, @, on aura donc

da = — 2pa’l,

de = — 2pasin(f — @),
edo = apacos(f — @),
de¢ = — apaecos(l— ).
Si l'on exprime par d'n1a partie correspondante de 7
ou de ‘/'u_, de sorte quon ait
ay a

dn = — 3‘/‘“4 da,
2a*\/ a

il en vésultera
dn = 3panh.

On voit donc que I'effet de la résistance d'un i~
licu trés rare surle mouvement d'une planéte tres pet
excentrique , serait de faire décroitre indéliniment le
grand axe, d’augmenter de méme la vitesse angt”
laire 7, et de produire dans chacune des trois quan”
titds e, @, ¢ une inégalité dont la période est la mém®
que la révolution de cette plancte. Non-seulement le
mouvement angulaire s'accélérerait de plus en plus-
mais méme la vitesse absolue; car elle est & peu pres
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€gale & an; son accroissement est donc ad'n -4 nda;
Quantité positive et égale a pa*nll.

En négligeant tout-a-fait 'excentricité, ona
r = a, § = fndt 4 ¢;

St donc on désigne par J'ret 0, les parties du rayon
".ectem‘ et de la longitude qui proviennent de la ré-
Slance du milieu, on aura, an méme degré d'ap-
Proximation ,

dr = — 2pa’l, b= {pal™

En vertu de cette diminution continuelle du rayon
Vecteur, qui s¢€léverait a 4mpa® a chaque révolution
de1a planéte, elle finirait nécessairement par atteindre
la surface du soleil.

Au reste, s'1l existe dans I'espace un éther qui in-
flue sup le mouvement des astres, cest sur les cométes
ue cette influence peut étre sensible, i cause de la
Petitesse de leur masse, et parce que, loutes choses
Qailleurs égales , le coeflicient p est en raison inverse
de la masse du mobile. Et, en effet ;, on n’a reconnu
jusqu’h présent aucune trace d’unerésistance de 1'é=
ther dans le mouvement des planétes et des satellites;
Mais d'aprés les calculs de M. Enke, cette résistance
Parait influer d'une maniére appréciable sur le mou-
Yement de la cométe récemment découverte, dont la
*évolution est d'environ 1200 jours.




446 TRAITE DE MECANIQUE.

S HI. Mouvement d'un point matériel sowmis i unt
Jorce centrale.

254. Le probléme que nous allons résoudre est
Vinverse de celui du paragraphe précédent : on sup-
posait alors la irajectoire et 1a loi du mouvement
donnces par I'observation , etils ‘agissait de détermi-
ner en grandeur et en duu,txon, a force i laquellb
ce mouvement était dii; maintenant, on suppos€
qu'une force constante d]ru,u, vers un centre fixe, €t
donnée en fonction de la distance du mobile & @
point, est appliquée 4 ce mobile, et 'on propose d’en
conclure la trajectoire etla loi du mouvement.

Cette courbe DMB ( fig. 55 ) sera comprise dans e
plan passant par le centre fixe C, et par la direction
DA dela vitesse initiale. Je mene dans ce plan et pa¥
le point G, deux axes rectangulaires Car et Cy, dont
le premier passe par le point de départ D du mobiles
et qui seront les axes des coordonnées. Au bout dt
temps £, compté depuiq ce départ, je suppose que le
mobile soit en M, et je désigne par x et y ses coor”
données CP et l’M par' 7 son' rayon vectear CM, €
par R'sa force accé]eratru,e, dirigée de M vers G et
donnée en fonction de r; les équations du mouyement
seront i

o i R &y p ] ¥

T = o i b onael

r

ct st la force R était dirgée suivant le pmlm:gemeﬂt
de CM, il suffirait de changer les signes de leurs s€~
conds membres.
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On en déduit immédiatement les deux intégrales
Premieéres
dz* + dy’
xdy — ydx = cdt, —I—;[_—‘T= — a2fRdr+ b,

dans lesquelles & et ¢ sont les constantes arbitraires ;
©t si P'on appelle § I'angle MCax, de sorte qu'on ait

x = rcosh, y = rsmnb,

Ces intégrales deviendront

et T L

XY » = 5
@oli Pon déduira des valeurs de dz et dfi, de la forme
2
k! == ji'dr, df = ]."J‘d.r‘,
qu’il ne s'agira plus que d'intégrer exactement ou par

4pproximation.
En éliminant d¢ eatre les équations (2), on a

,d.1 = 5
C’[\Tj->—{—-i+2fﬁdr:ﬁ, (3)

=
Pour J'équation différentielle de la trajectoire. Si I'on
4ppelle ¢ la vitesse du mobile au point M, on aura

* = b — afRdr; (4)
®t en représentant par J' Fangle que sa direction fait
#Vec MC, ses composantes seront

dr
dt

dd

pcosd = — vsind = r_,

Suivant MC et suivant MH perpendiculaire a ce rayon
Vecteny.,
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Les deux constantes b et ¢, et celles qui seront in~
troduites par I'intégration des valeurs de dt et df, s¢
détermineront d’aprés la position et la vitesse initiales
du mobile. Pourcela, je représenterai par y la distance
initiale CD, par « I'angle CDA qui pourra étre aigtt
ou obtus, et par 4 la hauteur due 2 la vitesse initiale;
de sorte que cette vitesse soit \,f’ﬂ, en appelant §
la gravilé. Si Von suppose que Vintégrale fRdr, qui
entre dans les formules précédentes, soit nulle quand
r=-1, on aura d’abord

b= agh,

d'aprés la valeur de ¢*. En vertu de I'équation
r*df = cdt, la valeur de ¢ sin J' est la méme chose

i ,
que -; par conséquent, nous aurons
¢ = y \Vaghsina.

Quant aux deux autres constantes arbitraires, on les
déterminera de maniére quon ait 6=o0 et r=17
quand £ = o, et le probleme sera complétement
resolu. .

235. Lorsque la force R est proportionnelle a Ia
distance r, les variables & et y sont séparces dans les
équations (1), et I'on n’a pas besoin de recourir au¥
coordonnées polaires et aux équations (2).

Soient, en eflet, & la valeur de R qui répond &
r=2y, et

kr

R=— —

5 >

sa valeur générale. Les équations (1) deviendront
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i ey kz  diy ky
===ty

df = ot dp 5

et leurs intégrales complétes seront

P
e

73 .
x = Acost \/; —+ A’ sin £ \ -
¥

¥y = B cost \//? ~+ B'sin ¢ \/;r—,,
5

A, A, B, B/, étant les quatre constantes arhitraires.
) ; . . 5 4%
Pour les déterminer, on a, d apres les suppositions
Precédentes,

dx

— - / d e
‘Z‘-_}, Y=o, ) =V 25:71 cos &, d%: \/ ;ggfismcz,

fuand £ = 0; d'oi1 il résulte
," — na"t/z —_— ! /‘P(r
A = ) 4 ‘ o Sy | S— |4 JD 3 COS A »
¥ ¥ 3 T .
Bi==1wsi B S \/zghsmm,

€L, par conséquent,

ity 3 agh - Ty
== 9 kcust ; e z.;cosausmt ;),

2gh . : 'k
o) i) 4 ‘/Eﬁ_’ St oL s1n ‘/7

Ces formules nous montrent que les révolutions du
Mobile autour du point C seront isochrones, et leur

durée commune égale a a7 \/ Ai On en déduit

oon. 1 AR 47,
SIin £ 8in £ = =
¥ 2 8in \/ = i ogh’
7 51N 2 COs £ 1'/ I Z 810 & -+ 7 cos e

- 2 2 9




45o TRAITE DE MECANIQUE.
d’ou 1} résulte
ky

= ¥* 4 {xsine 4+ ¥ cosa ) = 9*sin* 2,

pour l'équation de la trajectoire , qui est , comme OO
voit, une ellipse dont le centre est an point C. Pour
I quecette ellipse soit un cercle, il faut quon ait e=qo"’
et k) =2gh.Daus ce cas, le mouvement est uniforme;
car, d’aprés les valeurs de x et -, on a

dz — . / F dy —= \/I—’

— = Vo kst —, = k co: EEL
dt \/)AS R‘V o " dl \/'}" i v’
ce quidonne \/y£ pour la vitesse v. La force cen”

- s
trale R et la force centrifuge — sont constautes ef
¥
toutes deux cgales a 4.

Si la force R est répulsive au lieu d’étre attractives
comme cn I'a supposé, il faudra changer & en —h
dans les formules précédentes. La trajectoire serd
alors une byperbole, et le mouvement cessera d'étré
révolutif. :

25%6. Prenons actuellement la force R en raiso?
inverse du cube des distances , etveprésentons-la par

k étant toujours sa valeur au point D.

Nous aurons, dans cetle hypothese,

j““ g Rdir = A‘y(l - ':?),

a cause que l'intégrale doit s'évanouir quand r=7%"
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En ayant égard aux valeurs de b et ¢, et faisant
¥ r dz

e —

oo i = g

]'équation (3) deviendra

‘i:"f'(I-—- }W._H_ b il ky

.
di* 2gh sin® « sin® « 2gh sin® «

Le coeflicient de z* pourra étre positif ou négatif; je
fais donc

ooy i
o T = = ?i',x;
2oh sin® @
d'on1 il résulte
dz (Y a e
— oo phgt == pol* e = gt
di
&, par conséquent,
ndz
ndi = 3
\/cat“u i et 7 Y

Danps le cas des signes supérieurs, on aura

nz n
2 = are(sin= ——=—=)—arc(sin — ————
ar(,(mn._ Vcoi.’m—i—u"') g m = Veoter o)
“t, dans le cas des signes inférieurs,

nz —4- \/cntim — 4+ nezi
n -~ cot »

ni = log =

n ohservant quion a r= wetz="1 quand §=o.
De 1a ])}'enﬁél‘e valeur de 8, on tire

nz == cot esinnf -4 ncosnf.

39, -
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Le maximum de z ou le minimwn de rrépond a 1a
valeur de 8, tirée de I'équation dz =0, ou

I
tang nd = ~cote,

pour laquelle on aura
¥ R
2 Z == L = ) Y
_ = /1 + Lcora.

Au-dela de cette valeur de 6, le mobile s'éloignera
indéfiniment du point C, et son rayon vecieur rsera
infini , pour laplus petite valeur de 0 tirée de U'équa-
tion z=—0, ou

ot tangnl = — ntang a;

valeur que f ne pourra atteindre qu'aprés un temps
infini. En mettant a la place de r, la valeur de % dans
' L ot M e
! la premiére équation (2), on en déduira sans difficulté,
t en fonction de 0.

Dans le cas de la valeur logarithmique de =6, on

aura , en passant aux nombres et désignant par e la
base des logarithmes népériens ,

e e | o LR o
nz = Veot® & — n* 4= n*z* = (n - cot &) ew;

it d’ou l'on tire

v 1 ( + t . 1l 1 Long
\ T e (U1 cota e = gy .
h o ) —!—Zn(n cotale ;
gl ce qui montre que 7 diminuera indefiniment; €%
sorte que l¢ mobile décrira une spirale autour du
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point C, et atteindra ce point apres un nombre infini
de revolhtlons.

8i I'on fait « = go°, pour simplifier , on aura

2y

nf —nf?
e e

pour 'équation de cette spirale. La premiére équa-~
tion (2) devient

fv db

( nb —HG)
Y(enﬁ ey E—HH)

. nit \/ g?’ —_ nh —nb "

e =e

\-‘/;‘g_‘ﬁ dit —

et, en intégrant, on a

257. Pour dernier exemple, supposons , comme
dans la nature, la force R en raison inverse du carré
des distances: de sorte qu’on ait

i ‘r"::"’ .der o !:3/(1 —%’),

fietunl Iintensité de cette force au point D, pour
lequel Vintégrale est supposée nulle.

Si V'on fait

=p, 2ky—5b=02¢6,
Péqualion (3) de la trajectoire deviendra

(‘{p2 ; ]{}'P st (."'0‘ x=tic é’;

C?— —
Ao #

ol Yon tire
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edp

D)

En intégrant et désignant par @ la constante arbr
traire, on aura done

de —

A.,,n__ a2
f = & - are (cos == r_%;),
\/k“'y“—*l’:‘y’c
ce qui donne

ky'r = c* — rVEsA—c€ cos (§—w), (a)

en metlant @ 47 A la place de @, afin que o soit
la valeur de § qui répond a la plus petite valeur
de r, c'est-a-dire, au point de la trajectoire ou le mo-
bile est le plus rapproché de C.

Pour en déduire P'équation de cette courbe en co-
ordonnées rectangulaires, je fais

2 =rcos(@—w), ¥ = rsin(l—e);

x' et y’ serontles coordonnées du mobile rapportées
a des axes Cx' et Cy', tels que I'on ait 'Cx = @}
on aura

x.’; + ]u —

et en €levant au carré les deux membres de l'équa~
tion (@) de la trajectoire, elle deviendra

fon iy - Ec'x™ = ¢t — 20'2’ \Vkpt — iyt — 6.

Or, sous cette forme, on voit qu’elle appartient i
une section conique, qui sera une ellipse, une para”
bole ou une hyperbole, selon que la constante € serd
positive , nulle ou négative. On voit aussi que, dans
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tous les cas, le point C sera un {oyer de cette courbe ;
Car, d'apres I'équation (@), le rayon vecteur r est une
fonction linéaire de I'abscisse a; ce qui n’a licu, dans
les trois sections coniques, que quand 'origine des
Coordonnées est un de leurs foyers.

A cause de b = 2gh, on aura

€ = 2ky — agh;

il 'ensuit donc que le signe de €, et, par consé-
quent, la nature de la section conique qui sera dé-
crite par le mobile, ne dépendra que de sa distance
et de sa vitesse initiales, et nullement de la direction
de cette vitesse ; en sorte que différens points matériels
partant d'un méme point D, avec des vitesses égales ,
décriront tous des sections coniques de méme nature,
quelles que soient leurs directions initiales. Si l'on
4, par exemple, k = g, la courbe décrite sera une
cllipse, une parabole ou une hyperbole, selon que
la hauteur due 2 la vitesse initiale sera moindre que
(b, égale a cette distance, ou plus grande.

238. Dansle cas de l'ellipse , I'’équation (4) montre
Que la plus grande et la plus petite valeur de r, ré-
Pondent 4 0 =@ +7 et =w; en les désignant
Par a(i 4 ¢) et a(1 —e), de sorte que a soit le

emi-grand axe et e l'excentricité, on aura donc

(ky* — Vit — c-g") alt 4¢) = ¢*,

(ky* 4 V¥ —c*€) a(1 —e) = c*,
9u, ce qui estla méme chose,

Ca(1e) = ky* + VEy*—c€,

—‘.fﬂ"\'] —e) = hp® — \//1-3}4__.(;2@.
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En ajoutant ces équations et les multipliant membre
a membre, il vient

ba = ky*, €a'(1 —e') = c
Si I'on y met pour € et ¢ leurs valeurs
€ = a(ky —gh), ¢ = 3 \Vaghsina,
on en deduit
o(ky — ghla = ky?,
e Vi i s 4 A R

ce qui fait connaitre le demi-grand axe et 'excentri-
cité. On déterminera 'angle ® en faisant, 3 la fois,
8 = 0 et r— 7 dans I'équation (z). Ainsi, les dimen-
sions de Uellipse et la position de son grand axe seront
complétement déterminées, d’apres la position, la vi-
tesse et la direction initiales du mobile. Quant i son
mouyement sur cette courbe, il est connu par les for-
mules (@), (8), (¢), du n° 220.
Le carré de la vitesse a un instant quelconque ests
d’apres la formule (4) du n° 234,
2y
o’:zgh—-ﬂk‘y—{—-,—_v—, |
ou, ¢e qui est la méme chose,

b1 3N
6l — A 4 = 8 n
’ :U ( r 4'{) # l‘()
i cause de la valeur qu’on vient de trouver pour @»
et en faisant A9* = u, de sorte que u soit ici comm®
dans la formule du n° 225, Vintensité de la force
cenirale a Punité de distance.
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93g. Il ne sera pas inutile de cousidérer en parii-
culier le mouvement parabolique que l'on prend,
par approximation , pour celui des cometes pendant
la durée de leur apparition.

A cause quel'on a, dans ce cas, £=o0 ou !Ly.._gf? p
les équations (?) donnﬁnt a=m et e==1; ce qui a
effectivement lieu dans la parabole. La formule (¢ se
réduit a

[ Y
Pt = H

-8
=
en appelant « la vitesse dans un cercle du rayon r,
on aurait, en vertu de la méme formule,

P P e

z

=
r

Par conséquent , & distance égale du soleil , la vitesse
d'une comete est i celle d'une planéte qm décrirait un

tercle, comme V/2 esta1.

En général , les équations (b ) donnent
kya(i — e) (1 + &) = 2ghysin*a,

en élevant au carré les deux membres de la derniére,
et les multipliant ensuite par ceux de la premicre. Si
donc on appelle p la plus courte distance de la co~
mete au soleil , de sorte qu'on ait

p = a1 — &),
€t qu'on fasse &y —gh et e—=1, on aura
P ="y sin®a;

¢e qui détermine la distance pérthehie, au moyen de
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la distance et de la direction initiales du mobile , que
I'on suppose connues.

Je fais 6 = o et ky = gh dans I'équation (a), et
j’y mets pour ¢* sa valeur 2g%)*sin® « ; elle devient

r= aysin*ea — rcos(f — @);
d’ou il résulte

p
1 4 cos(f — a)?

i @)
pour I'équation de la trajectoire. Si l'on y fait =0
et =1, on en déduit

¥t 4 cos@) = 3p, cosi® = sina;

ce qui détermine I'angle @ que fait le rayon vecteur
du périhélie avec celui qui ahoutit au point de départ
du mobile.

Je substitue les valeurs de ¢ et de r, dans la pre-
miere équation (2) du n® 234, et je fais, pour abréger;

'y\/g_‘f; sine
s § e

il en résulte
4

[1 4+ cos (6 — a)]° = n \/2dt.

En observant ¢que
1 4 cos(f — @) = acos*1(8 — ),
et faisant

§ — o = ai, di = 2d.,
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On aura donc
dy __ ndt _
cost ‘_/;’

d'otr I'on tire, en intégrant et désignant par ¢ la cons-
tante arbitraire ,

(3 =4~ tang® <] )tang o 4 ¢ = o

Va2
Pour déterminer cette constante, on a, en méme
temps,

105 9 0, N=— t@;

Il

et i cause de cos + @ =sin «, il en résulte
e = (5 - cot*a) cot a.

En appelant ¢ le temps écoulé depuis le départ du
mobile jusqu’a son passage au périhélie, on aura ala
foig

t =1, 0=w, il =250

et, par conséquent,

) Ve
s 3n

Cela étant, désignons par T le temps compté a partir
de I'instant de ce passage, de sorte qu'on ait t=1'--7,
Hous aurons

B4 tang*i(8—o)) tangi B—@) = Z=5  (°)

en résolvant cette équation du troisieme degré, on
aura donc tang + (§ — @ ) en fonction de 7, et, par
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suile, ret f & un instant quelconque : le temps T sera
b positif aprés le passage au périhélic, et négatif avant
= ce passage.

"‘.L;'I" A cause de

ghy = by =up, Vysine = y\/p,
la valeur précédente de 7 est 1a méme que

_ Ve
i n=—";
tl PV p

elle est donc, d’aprés I'équation a’n* = u du n° 228,
la vitesse moyenne angulaire d’unge plantte dont le
demi-grand axe serait égal & p; et si T'on appelle i
celle de la terre et I son demi-grand axe, de sorte
quon ait

i e

= —— 3
Vi
bl on en conclura
fif IV T
| pVp

pour la valeur de 7.

240. Cette analyse montre qu'en considérant Ja dé-
termination du mouvement d’une cométe , comme
un probléme de dynamique, et supposant, en con-
i séquence , que sa position, sa direction et sa vitesse
| initiales soient connues, on peut dédmire de ces
données, la distance p du sommet de la parabole 2
son foyer, I'instant du passage du mobile par ce som*
met ou la valeur de #, et Ia position de I'axe dépen-
dante de I'angle @ ; les équations (¢), (d), (e), fon!

N
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ensuite connaitre la vitesse de la comete et sa posi~
tion sur sa trajecloive 4 un instant quclconque; et
Comme le plan de cette courbe est celui qui passe par
le centre du soleil et par la direction de da> vitesse
Iitiale, il Sensuit que le mouvement est complete~
ment déterminé. Mais le probleme astronomique est
ifférent. Lorsqu'on découvre une cométe, Jes obser-
Vations ne donnent pas immédiatement le plan de son
Orhite, sa distance au soleil, sa vitesse et sa direction,
4 Iinstant ot elle apparait; en sorte qu'en prenant sa
Position & cet instant, pour son point de départ, les
Constantes 4, 2, &, ne sout pas données comme dans
le probléeme précédent. La question consiste alors a
déduire des observations, les valeurs de cinq quan—
lités, savoir : l'inclinaison de Porbite et la longitude
de son neeud ascendant sur le plan de Pécliptique, ce
qni déterminera le plan de Porbite ; la longitude du
Périhélie et sa distance au soleil, d’otr il résultera la
Position de V'orbite dans son plan ; et, enfin, le temps
Lorrespondant au passage de la comete par son péri-
hélie. Lorsque ces cinq inconnues sont déterminées ,
€ équations (c), (d), (e), représentent, comme pré-
tdemment, le mouvement de la cométe dans son
plan, Or, chaque observation de la comete donne
0n ascension droite et sa déclinaison; trois observa-
Yons fournissent done six données, et, par consé-
quent, six équations qui sont plus que suflisantes
Pour déterminer les cing inconnues; et cela permet
de remplacer deux de ces équations par leur combi-
Naison la plus propre 2 diminuer Vinfluence des er-
Yeurs des observations. Les valeurs approchées des
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cing ¢lémens qu'on vient d’énumérer étant ainsi con-
clues de trois observations faites 4 'époque de 1'ap-
parition:; les observations subséquentes servent en-
suite & corriger ces premieéres valeurs et i vérifier les
formules (d) et (e).

Nous ne pouvons qu'indiquer ici ce probléme d’as-
tronomie , dont il existe différentes solutions.
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CHAPITRE VIIL

DIGRESSION SUR LATTRACTION UNIVERSELLE.

241, Les points matériels de tous les corps s'attirent
Mutuellement, en raison directe des masses, et inverse
du carré des distances.

Cette grande loi de la nature, que Newton a dé-
Couverte, esl une conséquence nécessaire de l'obser-
Vation et du caleul. On peut voir, en effet, dans ' -
position du Systéme du Monde , comment, en partant
de expérience, on est conduit, sans aucune hypo-
thése et par une suite de raisonnemens rigoureux , au
Principe de Vattraction: universelle. Les développe-
mens de ce principe sont objet spécial de la Mcca~
’“quc céleste. Dans ce chapitre , nous nous bornerons
& en exposer succinctement les principales consé-
Juences.

242. La force qui retient les plan¢tes dans lenrs
orbites, est la résultante de T'attraction exercée par
tous les points matériels du soleil sur tous ceux de
thaque planéte. Vu la petitesse des dimensions du
Soleil et des planétes par rapport aux distances qui les
Sépar(,n‘t on concoit que ces attractions peuveut étre
Fegardées, avec une approximation suffisanie, comme
des forces paralleles et égales dans toute l'étendue
dune meme Dlam,tc leur résultante est alors é '.galc
aleur somme , et la distance restant la méme, la
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force motrice de chaque planéte est proportionnelle
au produit de sa masse et de celle du soleil ; ce qul
devient encore plus exact, 4 cause de la forme 2 pet
prés sphérique de ces deux corps, lorsqu’on prcud
poug leur distance celle de leurs centres de gruvité
(n°99).

Supposons donc, pour exprimer numeériquement
Uintensité de cette force, que 'on prenne une certaine
distance , par exemple, celle du soleil & la terre,
pour unité linéaire ; choisissons une masse et un in~
tervalle de temps déterminés pour unités de ces deu®
sortes de quantités ; et prenons enfin’ pour unité dé
force , comme dans le n° 118, la forece accélérairice
constante qui produit dans 'unité de temps une'vitessé
égale & unité de longueur. Concevons maintenant
deux corps dont les masses soient é¢gales & celle qu'on 2
prise pour unité, et qui scient placés & une distancé
Yun de Vautre égale 2 I'unité linéaire ; soit fla forcé
attractive de I'un' des deux corps sur lautre, c’est”
a-dire , le rapport numérique de son intensité a celle
de la force choisie pour unité ; soient aussi M etm 12
masse du soleil et celle de la planéte v Ia force mo~
trice de la planéte seva f Mme, i 'anité de distance, €*
S Mm

r

deviendra , & la distance quelconque 7.

La grandeur de la quantité que nous ddsignon®
par f, dépend du pouvoir attvactif dont la maticre est
douée ; ce pouvoir est le méme, & égalité de masse et
de distance, pour tous les corps de la nature; rvie?’
jusqu’a present, ne fait soupconner qu’il au;?;mt?ﬂtta
ou diminue avec le temps; et nous avons lien de
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penser qu'il a été et quiil restera constamment le
méme.

245. La force motrice de Ja masse M, due a lat-

A - ‘, . mM
traction de m , est ausst representee parfT , de ma~

uitre que la réaction de chaque planete sur le soleil
est égale et contraire a I'action de cet astre sur la pla-

S Mm

——» agissant sur les

héte ; mais la force motrice

deux masses M et m, leur imprimera 2 chaque ins—~
tant des vitesses infiniment petites qui sont récipro-
quement proportionnelles 4 ces masses, ou, autre-

fm M
B

Went dit, leurs forces accélératrices sont—= et

)

[l en résulte que si ces deux corps sont abandon-
Ngs, sans aucune vitesse initiale, a leur attraction mu-
tuelle , ils s’avanceront Yun vers l'autre en parcou-
rant, dans le méme temps, des espaces qui seront en
raison inverse de leurs masses; ils se joindront au
Centre de gravité de M et i, qui partage leur distance
Primitive en deux parties réciproquement propor-
tionnelles aux masses.

En général, si la plantte est projetée dans I'espace
Suivant une direction quelconque, et qu'on propose
de déterminer son mouvement apparent autour du
Centre du soleil, regardé comme un point fixe, il
t?“lldra concevoir que 1'on imprime a chaque instant
4 cet astre, une vitesse infiniment petite, égale et
®ontraire a celle qu'il recoit de lattraction de la pla-
Wete ; mais, afin de ne point altérer le mouvement
Yelatif de ces deux corps, il faudra, en meme temps,
Imprimer cette vitesse a la planete; ce qui revient i

1 3o
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lui appliquer une force accélératrice égale ct con-
traire a4 celle du soleil; donc, dans le mouvement
dont il est question , la force accélératrice de la pla-
nete m sera constamment dirigée vers le soleil M, et

1 N[ ? z .
égale 2 la somme des deux forces fr— et {—’ ; s1 don¢

on veut l'exprimer par % , comme dans le n® 225, il

faudra prendre
L :_}”.M e m).
Ainsi, 'on devra substituer cette valeur dans les
différentes équations du mouvement elliptique qu'ot
a données précédemment; par conséquent, I'équatiot

{17_,9 a

“T‘* e .u.,
dua n° citée donnpera

2 gy fa*
7 e f{:\l ~+ m)? (1)

T étant loujours le temps de la révolution de la pla~
nete , et @ le demi-grand axe de son orbite.

Le rapport % qui dépend, comme on voit , de 12
quantité m , différera donc, pour deux planétes dont
les masses sont inégales; ensorle qu’on ne peut pas sup”
poser qu’il soit rigoureusement le méme pour toute?
les planétes. Cependant les observations qui condul~
sent & la troisieme loi de Képler, prouvent que ce rap”
port est sinon exactement , du moins i trés peu pl’é5
constant ; il en faut donc conclure que les masses des
planétes sont tres peiites par rapport a celle du soleil ;
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i

Ce qui fait que le rapport é; du carré du temps au
cube de la distance moyenne varie trés peu en pas—
Sant d'une planéte & une autre. La masse de Jupiter,
la plus considérable de toutes, est effectivement
moindre qu'un millicme de la masse du soleil.
244. Cest pour cette raison que Paliraction mu-
tuelle des planetes ne produit que des perturbations,
Ou tréslentes, ou tres peu considérables, dans le mou-
vement elliptique dii & Vattraction du soleil. En effet,
les masses de deux planetes étant m et m,, la foree
motrice dirigée de l'une vers I'autre, est exprimée

frm
par =~

7
P

» & la distance p ; la force accélérairice de m
provenant de laltraction de i, sera donc “ﬁ?—’ et
comme la distance p ne devient jamais trés petite par
rapport a la distance r de m au soleil, il s'ensuit que
s1 m, est une trés petite fraction de M, le mouvement
de m produit par l'attraction solaire devra éire fort
Peu modifié par 'attraction de m,.

Les perturbations planétaires peuvent donc étre
détermindes par la méthode de la variation des cons-
tantes arbitraires, que nous avons expliqnée précé-
demment (n° 229 ). Elles sont de deux especes. Les
Unes consistent en des indgalitcs périodiques généra-
lement tres petites, dont les périodes comprennent
des multiples peu considérables, en général, des ré-
Volutions de la planele troublée et de la planéte per~
turhatrice. Cependant, lorsque leurs moyens mou-
Vemens approchent d'étre commensurables , ces pé-
Tiodes peuvent devenir beaucoup plus longues, ‘et
Jo..
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les inégaiite's beaucoup plus sensibles. Ainsi, les
moyens mouvemens de Saturne et de Jupiter étant
2 pen pres entre eux comme 2 et 5, Laplace a trouve
qu’il résulte de T'atiraction mutuelle de ces deux pla-
uttes, une inégalité dont la période est de gag aus, et
dont le maximurm est d’environ 48' dans la longitude
de Saturne , et d'a peu prés 20/ dans celle de Jupiter.
Les autres perturbations des planetes sont : 1°, les
mouvemens progressifs du périhélic et des nceuds de
leurs orbites, danslesquels ces points parcourent la cir-
conférence entiére, en des temps exirémement longs
qui peuvent surpasser un millier de siecles; 2°. les
variations séculaires qui affectent les excentricités
et les inclinaisons de ces orbites, ainsi que les lon-
gitudes moyennes des planétes, dont les périodes sont
semblables aux précédentes, et dont les amplitudes ,
peu considérables , ne sont pas encore bien connues.
Mais tandis que ces divers élémens du mouvement
elliptique varient simultanément en vertu de Tattrac—
tion planétaire, il est tres remarquable que cette force
n'altére aucunement les grands axes des orbites et les
moyens mouvemens des planéies, qui seront les
meémes a toutes les époques, ainsi que les temps des
révolutions, liés aux grands axes par I'équation (1)
Toutefois, les variations séeulaires des longitudes
moyennes en produisent de semblables dans les in-
tervalles entre deux retours consécutifs & un méme
point fixe; elles sont insensibles dans le mouvement
des planeles, mais non pas dans celui des satellites,
et particulierement dans le mouvement de la lune,
qui s'accelere, pour gette raison, de siécle en siecle-
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La force accélératrice qui provient de I'attraction
d'une planete m, sur wue autre planete m, étant indé-
pendante de la masse m et proportionuelle a la masse
m,, on concoit que les perturbationg dues & cette force
et ohservées dans le mouvement de m autour du so-
leil, peuvent servir a déterminer le rapport de la
masse m, & celle de cet astre. Ainsi, par exemple ,
d'apres la grande inégalité de Saturne, produite par
Paction de Jupiter, on a trouvé la masse de cette
derniére planete égale 4 1555 de celle du soleil. Nous
indiquerons tout & I'heure un autre moyen de cal-
culer la masse des planétes, quand elles sont accom~
pagnées d'un ou plusieurs satellites.

Les cometes, a cause de la petitesse de leurs masses,
ne produisent aucun effet appréciable sur les planctes;
mais leurs mouvemens sont troublés par les attractions
planétaires, et I'on détermine aussi par la méthode
dun® 220, leurs perturbations, qui influent considera-
blement sur les époques de la réapparition de chaque
comeéie, ¢'est-a-dire, sur I'intervalle de temps compris
entre deux passages consécutifs a son périhélie.

2/45. Soient m' et m les masses d'un satellite et de
sa planéte, et 7' la distance de leurs centres; la force
motrice du satellite, dirigée vers le centre de Ja pla-

ny . 2
75— 4 celte distance

I e coefficient f étant le méme que précédemment.
Dans son mouvement apparent autour de la planete,

éte , sera aussi exprimée par

la force accélératrice du satellite aura pour expression
o e
o7 » en faisant

W o= f(m 4 m').
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Je représenterai par «' le demi-grand axe de I'or-
bite du satellite, et par T’ le temps de sa révolution;

en appliquant I'équation (¢) 4 son mouvement, on

aura

'2. f_a

B % ) i
a* — f(m 4 m')’
et si l'on divise ces deux équations membre & membre;,
afin d’éliminer le coeflicient f', il en résultera

i'-i

T a2 M4 m
Be g T Mot

Or, si 'on excepte la lune, les masses des satellites
sont trés petites par rapport  celles de leurs planétes
respectives : la masse d'un satellite de Jupiter, par
exemple , n’est pas un diz-millieme de celle de cette
planete ; on peut done metire 4 la place de m +- '
dans celte dernitre équation; et comme a, &, T, T’
sont des données de 'observation , elle pourra servir &
déterminer le rapport de m & M. Cest de celte ma-
niére que Newton a trouvé pour Ja masse de J upiter,
7s57 de celle du soleil ; ce qui differe peu de la frac-
tion 155 qu'on a cbtenue depuis par un autremo yen.

246. L/attraction mutnelle des satellites- d'uve
méme planéte, quand ¢lle en a plusieurs, et Iindga*
Lité d’action du soleil sur chaque satellite et sur 3
planete , produisent dans les mouvemens ellipti-
ques des satellites , des perturbations analogues a
celles que nous venons dindiquer pour les planétes:
Les perturbations provenant de Paction réciproque
des satellites, font connaitre les rapports de leurs
masses a celle de la plancte, dont Pattraction p:'oduit
lear mouvement elliptique. Mais ce moyen manqualté
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pour la lune, on y supplée par d’auires considéra-
tions, parmi lesquelles e vais indiquer Faction de
¢e satellite sur les eaux de la mer.

Soient C ( fig. 56 ) le centre de la terre, A celui de
lalune, Mun pointquelconque du sphéroide terrestre;
faisons

CA = o, AM = Ps (M = s
et appelous A I'angle ACM ; nous aurons
(* = a® — 2arcosA + 7*;
et si nous abaissons du point M la perpendiculaire MB
sur la droite AC, nous aurons aussi
MB = rsinaA, AB = a — rcosa.
Au point M, la force accélératrice provenant de
Pattraction de la lune et dirigée suivant MA, aura
m' .
pour valeurf—f, en designant par m' la masse du
p
satellite , et par f le méme coeflicient que précédem-
ment. Les composantes de cette force suivant la per-
pendiculaire MB et la paralléle MD a la droite AC,
Serount donc
Jm'rsina  fm o Jm'reosa
'_;-}""'_ ’ FR i o F

Je substitue la valeur de p dans ces quantilés; et
la plus grande valeur der, Cest-a-dire, le rayon du
globe terrestre, étant, a peu pres, un soixantiemne
de 2, je néglige le carré de r; en faisant alors
ofm'r cos A

Jm'r sin ’
=== P, i e,

les denx composantes de I'attraction lunaire seront
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Sm

per e @". Tous les points de la terre sont don¢

sollicitds parallelement 3 CA par une force constante
I P

.
et égale dfa, » €1, en outre, par des forces @ et @

dont Ia résultante varie en grandeur et en direction,
d’'un point M & un autre, et est nulle au centre C.

‘
. . 7
Or, il est évident qu'en vertu de la I'm‘ce'f—l » la masse
o

entiere de la terre se portera vers la lune, d'un mon-
vement commun a toutes ses parties, sans que les
points dela partie fluide changent de position relative;
c'est donc aux forces @ et @' appliquées aux différens
points de la mer, que seront dus le fliex et le reflux
produits par 'action de ia lune.

La masse dun soleil étant M, et @ sa distance a la
terre, si l'on désigne, en outre, par p, -, |/, ce
que deviennent A, @, ¢/, relativement 2 cet astre,
on aura’ de méme

+ _@Ir sin e .4,,: 2fMr cos u

— 3 -
a’ s

pour les composantes de la force provenant de I'ac-
lion du soleil, qui concourent au phénomene des
marées, En les comparant aux forces ¢ et @/, on voit
que pour un point de la mer, dont le rayon vecteur
r fait le méme angle A ou g avec le rayon vecteur de
la lune ou du soleil, les actions de ces deux astres s
qui produisent les oscillations de la mer, sont entre
elles comme leurs masses, divisées par le cube d¢
Jeurs distances au centre de la terre. Or, on concoit
que, toutes choses d’ailleurs égales, les grandeurs de
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ces oscillations doivent étre entre elles comme les
forces correspondantes; si done on désigne par w le
rapport de la marée lunaire 2 la marée solaire, dans
un méme liea de la terre et pour des positions sem-—
blables des deux astres, ou aura

m’ e B w]\‘t-

& T a8
€quation dans laquelle on prendra pour « et a les
distances moyennes de la lune et du'soleil a la terre,

et d'ou l'on tire
m'
e At

en appel:ml m la masse de la terre.
D’apres les lois différentes que suivent les marees

lunaire et solaire, on peut, effectivement , distinguer

les unes des autres, et déterminer leur rapport en
thaque lieu de la terre. La moyenne d'un grand
nombre d'observations, faites dans le port de Brest,
donne *)

w = 2,35535;

pour la valeur de ce rapport. La distance a est, a
tres peu pres, 4oo fois la distance a, et la masse M,
comme on le verra tout & 'heure, aussi & trés peu
pres, 355000 fois la masse m. Au moyen de ces va-
leurs, on trouve, d’aprés la formule précédente, la
masse de la lune égale 4 % de celle dc la terre.
Indépendamment des oscillations de la partie fluide

-—

(*) Mécanigue céleste, tome V, page 200.
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de la terre, les actions du soleil et de la lune produi'
sent encore, dans le mouvement du sphéroide ter~
restre autour de son centre de gravité, i raison de sa
nou-sphéricité , des perturbatiﬁns que nous ferons
connaitre lorsqu’il sera question du mouvement de
rotation d'un corps solide.

247. On pent vemarquer que la composante des
forces @ et @', suivant le prolongement ME du rayon
CM, est ¢ cosA — @ sin A ; en sorte que sa valeur est

(208 A — sin*2) I
2 COS — SIN" A ) .
)TSQ‘J

Clest la diminution de la pesanteur au point M, pro-
duite par I'action de la lune. Or, en supposant que M
appartienne a la surface de la terre, et t‘léqignani par
gla gmvnp en ce point, on a aussi fm = gr*, a tres
peu pl'ec;, d'ailleurs, le maximum de 2cos* A —sin®/A
répond &4 A==o0, ct est égal & 2. La plus grande
valear de cetie diminution de pesanteur sera don¢
2e7"

’,g:—, quantité & peu pres €gale & un huit- milhoniemeé
vl

a Ty B + Ta + %P y
de g, en prenant Go pour le rapport -. Pour que 'in

fluence de Vaction lunaire sur la longueur du pen-
dule i secondes fiut appréciable, il faudrait donc pou~
voir porter U'exactitude jusqua la seconde décimale
au-dela des cent-milliémes, ot I'on s'arréte ordinaire~
ment dans la mesure de sa longueur. Cette mﬂ:.enf.t
produn‘ml dans la mesure du temps, une inégalité res
glée sur le mouvement de la lune, dont le mr.c.mm.m“
ne s'éleverait qua un demi-centieme de seconde €?
un jour.



DYNAMIQUE, PREMIERE PARTIE, 475

248. Abstraction faite de la force centrifuge due &
la rotation de la terre, la pesanteur que nous obser—
Yons & sa surface est la résultante des attractions
exercées par tous les points du sphéroide sur chaque
Ppoint matériel , laquelle résultante ne dépend que de
la position et de la masse de ce point, et nullement
de la nature du corps auquel il appartient ; c'est, en
effet, ce que lexpérience a pleinement confirmé.
L'intensité de cette force doil diminuer & mesure
qu’on g'éleve au-dessus de la surface de la terre; et
C'est aussi ce qui resulte des observations du pendule,
faites & différentes hauteurs. De plus, la pesanteur
terrestre , diminude dans le rapport du carré du
rayon de la terre au carré du rayon de l'orbiie lu-
naire, doit étre la force accélératrice qui retient la
lune dans son orbite. Or, la distance du satellite
Stant, i peu prés, 6o fois le rayon de la terre, il
Sensuit que la lune, si elle n'avait aucune vitesse ,
deyrait tomber vers la terre, de la méme quantité en
Une minute qu'un corps quelconque, dans le vide,
en une seconde 2 la surface de la terre. Cette quan-
tité n'est autre chose que le sinus verse de I'arc
que la lune déerit sur son orbite en une minute,
Ou, i tres peu pres, le carré de cet are divisé par
le diamotre de cette courbe; et comme la circon-
férence de lorbite est Go fois celle de la terre; on
€n conclut que la quantilé dont il s'agit est égale a

a1y - —r Gow ’
4o millions de meires, muliipliés par —, en dé-

Signant par n le nombre de minutes que contient
une révolution lunaire. 11 faut done, dapres la va-
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leur de la gravité g quion a trouvée par Pexpe-
rience du pendule, que ce produit soit & trés pet
prés égal & 4™,90; on trouve, effectivement, 4,58
pour sa valeur, en observant que n = 3¢3453. La
différence serait encore moindre , en ayant égard &
diverses circonstances dont nous avons fait abstrac-
tion pour simplifier la démonsiration.

La pesanteur terrestre est donc un cas particulier
de lattraction universelle; et, pour cette raison,
Von appelle aussi cette force générale la pesanteur
ou la gravitation universelle.

249. A canse que la terre s'écarte peu de la forme
sphérique , Vattraction qu'elle exerce sur un point

: . fm y
de sa surface est a peu pres J:‘_“ comme celle d’'uné

sphere, en désignant par m sa masse, par r son
rayon, et par f le coefficient de I'attraction univer-
selle. Cette valeur approchée doit étre tout-a- fail
exacle ponr les points appartenant a un certain pa-
ralléle; et, d'apres la théorie de Pattraction des sphé-
roides peu différens d’une sphere, ce parallele est
celui dont le carré du sinus de la latitude est . Sor
ce parallele, la pesanteur a pour mesure 9"’,79586
(n°® 193); mais, pour I'égaler a I'attraction terrestre;
il faut préalablement 'augmenter de la composanté
verticale de la force centrifuge , laquelle composant®

’ \ 1 - 2 .
est égale , sous ce paralléle, a la fraction de Ia
¢ 3.28g

gravité (n° 178). Done, en faisant

raon 2 e L A
g = (9",79550) ( ki —b> = 9",8164,
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On pourra regarder cette valeur de la gravité, ainsi
modifide, comme égale & lattraction de la terre, et
Poser I'équation

o

o

Jm
—_ ?c

En la multipliant membre & membre par Péqua-

tion (1) du n° 243, appliquée au mouvement de la !11 i
lerre autour du soleil, on en conclut S
Ly i

m Fruf My bl

M+m — fea’

formule qui va servir & déterminer le rapport de la
Masse de la terre 2 celle du soleil.

Si l'on concoit un iriangle rectangle qui ait pour
base le rayon de la terre, et pour hauteur sa distance
A soleil, le petit angle opposé 4 la base est la paral-
laxe du soleil, que Fon détermine directement par
des observations asironomiques, et que l'on peut
Aussi déduire d'une certaine inégalité produite dans
le mouvement de la lune par l'action du soleil , que
on appelle I'inégalité parallactique. Lia grandeur de
4 parallaxe varie avec le rayon de la terre et son
E’I_Oignement du soleil auxquels elle répond ; pour la
stance moyenne a et pour le rayon r qui aboutit
U parallele dont le sinus de la latitude est Vi, sa
Valeur est 8”,60. On a, par conséquent,

el B

= tang 8",60, a=/(23984)r.

= 0 e

?0115 ce méme parallele, et en prenant 53, pour
aplatissement de la terre, on a

r = 63645517,
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pour son rayon. Le temps de sa révolution antour
du soleil, exprimé en secondes, est

T = (86400) (365,256574).

Au moyen de ces valeurs et de celle de g, qui sup~
pose aussi qu'on a pris la seconde pour unité de

temps, on trouve
Nl — m_{\—!_-_.
2040092
250. Le soleil est une sphére d'un rayon égal a
10 fois celui de la terre; on counait donc le rapport
des volumes de ces deux corps et celuide leurs masses;
dotr I'on conclut immédiatement le rapport de leurs
densités moyennes : celle du soleil est, 2 peu press
le quart de la densité de la terre.
A la surface de cet astre, lattraction est expri

meée par
JM
P

en appelant R son rayon. A cause de

fm
R = 10or, g§="0,

cette quantité est la méme chose que

gM

(Imm’

et elle a pour valeur (2g,5)g, dapres celle de

M : . .
Y La durée de la rotation du soleil autour de so%
m

. I 0 - -
axe étant de 25,5, la force centrifuge & son equateuf
n'est que le sixieme de cette force a I'équateur de la
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terre. En négligeant donc la diminution qu'elle pro-
duit dans la pesanieur & la surface du soleil, on veit
que le poids d'un corps a cette surface est 29 fois et
demie le poids du méme corps a la surface de la
terve , et que les corps y parcourent a peu pres
135 meétres dans la premiére seconde de leur chute.
- En appliquant successivement I'équation (1) du
0% 245 a la terre et a une auire planéte, et supposant
que les quantités m, a, T, relatives a la terre, de-
Viennent m,, d,, T, par rapport ala plauéle, on en
Conclura

par l'élimination de f. Connaissant la valeur de «
par I'observation de la parallaxe solaire, ou autre-
Went, ainsi que la masse m de la terre et la durée T
de Pannée sydérale, cette eéquation servira a déter-
Miner la valeur du demi-grand axe @, d'une planéte
Juelconque, lorsque sa masse m, et le temps T, de sa
Pévolution seront donnés. Le procédé du n° 245
Pour déterminer cette masse, suppose seulement qu’on
Connaisse une valewr approchée du demi-grand axe.

251. L'attraction exercée a la surface de la terre
Par une masse considérable, telle qu'une haunte mon-
tagne, fera dévier les corps pesans de la direction
Verticale, et le prolongement du fil @ plomb n’ira
Plus rencontrer le ciel au zénith. il s'en écartera en
Sens contraire des deux coiés opposés de la mon-
tﬂ{a;nc:; en sorte que si tout est semblable de part et
Qantre , pour la forme de la montagne et pour I'¢loi-
8hement du fil & plomb, la distance angulaire des
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deux étoiles par lesquelles son prolongement ira pas-
ser, sera double de sa déviation. Cet effet a été ob-
servé, par les astronomes, au Pérou et en Lcosses
mais, & cause que les masses des plus hautes monta~
gnes sont encore tres petites, eu égard a la masse de la
terre, les déviations dont il s'agit sont aussi trés pett
considérables, et ne s'éléevent qua de petits nombres
de secondes. Voici un exemple du calcul de la dévia-
tion du fil & plomb, due 2 atiraction d’'une massé
donnée.

Soit A (fig. 57) le centre d'une sphere homogene,
suspendue & lextrémité d'un fil inextensible et in-
flexible, dont l'autre bout est attaché au point fixe C;
soit aussi O le centre fixe d’'une autre sphére homo-
geéne qui agit sur la premiére. Le fil CA s'écartera de
la verticale CB sans sortir du plan passant par cette
droite et la ligne CO; et, dans sa position d’équi-
libre, il faudra que la résultante du poids de la pre-
miéere sphére et de laltraction de la seconde vienne
passer par le point fixe C. Or, ces deux forces se~
ront appliquées au point A, l'une suivant la ver-
ticale AD, l'autre suivant la droite AQ; et elles ten-
dront i faire tourner le fil CA en sens opposés autou?
du point C. Pour que leur résultante passe par le
point 0, il faudra donc que leurs momens, par rap-
port 4 ceméme point, soient égaux (n° 46); par consé”
quent, si I'on appelle P et Q le poids de la premiere
spheére et Pattraction tolale de la seconde, ct que I'on
désigne par p et g les perpendiculaires CE et CF,
abaissées du point C sur les prolongemens de DA
et de DA, on aura



DYNAMIQUE, PREMIERE PARTIE. 481

Pp = Qq,

pour I'équation d’équilibre qui devra servir a dé-
terminer la déviation inconnue BCA.

Yappelle x cet angle, 3 T'angle donné BCO, «
et ¢ les distances aussi données CA et CO, et y la
distance inconnue AQ ; nous aurons

y* = a* 4 ¢* — 2accos(y — x),

et, en oulre,

asin(y—z) __ acsin(y )

$inCOA = e ¥ , p=asmx.

Appc!ons aussi 7 la masse de la terre, m, celle de la
sphére mobile, m' celle de la sphere attirante. En dé-
signant toujours par fle coeflicient de laltraction
universelle, et représentant par r le rayon de la
terre , les forces motrices P et Q auront pour valeurs

e, ; __ Jmm,
e N Q o o

et si p est la densité moyenne de la terre, ¢’ celle de
la sphere attirante, et 7 son rayon, on aura aussi

Au moyen de ces différentes valemrs, l'équation
Pp = Qq se changera en celle-ci :

el a3 s FA'8.n of " b
prydsinax = p'rsin(y — x),

oix il ne restera plus qu mettre Ja valenrde 3 pour
en déduire ensuite celle de 2.

31
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Je quppo:,erm , ce qui a licu généralement, la lon-
gueur CA du fil & plomb tres petite par rappmt a
Ja distance CO. En négligeant a par rapport a ¢
dans les valeurs de 5, on aura simplement y =¢;
d’on 1l résultera

sin & o'

Ry e

La densité o’ et le rayon r' de la sphére attirante
restant les mémes, la valeur de x que l'on tirera de
cette équation sera d’autant plus grande que la dis-
tance ¢ sera plus petite, et que I'angle 5 approchera
davantage d’étre un angle droit; et comme ¢ ne peut
pas étre moindre que le rayon 7/, il sensuit qu'on
aura le maximum de déviation du fil & plomb que
puisse produire V'attraction d'une sphere donnée, en
prenant ¢ = 1" et 3 == go°; ce qui réduit I'équation
précédente a

7’

tang * = %;—
8i I'on suppose , par exemple, p'=¢, et qu'on de-
mande quel doit étre le rayon r' pour que la devm-
tion x s’éléve & une seconde , on aura 1 =rtang 1"
et, i cause que la circonférence a7r de la terre eslde
40 millions de metres, il en résultera r'=30",856...
Ainsi, une sphére homogéne d’environ 31 metres de
rayon, et d'une densité égale 2 la densité moyenne
de la terre, ne produit qu'une déviation d’une se~
conde an plus dans la direction du fil a plomb; e
pour qu’elle la produise, il faut qu’elle touche Yex=
trémité inférieure de ce fil, et que son centre soit
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situé dans le plan horizontal passant par cette ex-
trémité.

352. Cette moyenne densité de la terre, conclue
de la déviation du fil & plomb que produit I'attrac~
tion des montagnes, a été évalude 4 quatre ou cing
fois la densité de I'eau. Cavendish I'a trouvée égale a
cing fois et demie cette densité, en la déduisant de
Pattraction exercée par deux globes de plomb de
huit pouces anglais de diameétre, qu'il a su rendre sen—
sible par le moyen de la balance de torsion. Sans en-
trer ici dans tous les détails de cette belle expérience,
des diverses précauntions qu'elle exige, et des calculs
qu’il faut faire pour en déduire un résultat exact, je
vais seulement indiquer les points principaux de ces
calculs (*).

La balance de torsion est I'instrument le plus exact
que nous ayons pour servir a la mesure des forces
lres petites. Coulomb, & qui Iinvention en est due,
Ya surtout employée a mesurer les forces d’attraction
€t de répulsion des corps électrisés; et, pour cette
raison, elle est aussi connue, en Physique , sous le
wom de balance élecirique. Elle consiste principale~
ment en un fil métallique tres délié, vertical , attaché
% un point fixe, et & Iextrémité duquel est suspendu
un levier horizontal. Supposons ce levier formé d'une
tige trés mince ACA’ (fig. 58 ), partagée en deux
Parties €gales 4 son point d’attache €, et terminée

(*) On trouve dans le 17° cabier du Journal de I Feole
Pol_jrterrhm'gue une ftraduction exacte du mémoire de Ca—
¥endish.

31..
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pav deux sphéres d’'un petit diamétre, dont les cen-
tres sont A et A”. Du point C comme centre, et d'un
rayon égal a CA, décrivons le cercle horizontal
BAB'A’, dont nous diviserons la circonférence en un
grand nombre de parties dgales. Lorsque le levier
tournera autour du point C, ses extrémités A et A’
parcourront cette circonférence, et les points de di-
vision auxquels ils répondront 3 chaque instant fe-
ront connaitre les arcs qu’ils auront déerits. Tant que
le fil de suspension qui aboutit au point C v’est pas
tordu, le levier reste en repos dans une certaine po-
sition. Je suppose qu’il réponde alovs 4 la ligne BCB';
si l'on vient & 'écarter de cette ligne, pour le mettre
dans une autre position quelconque ACA’, Ie fil de
suspension sera tordu sur lui-méme, et cette torsion
tendra & ramener ce levier vers la ligne BCB'. Pour
le retenir daas la direction ACA’, supposons que 'on
applique a ses deux extrémités des forces égales et
contraires , dirigées dans le plan horizontal , et per-
pendiculaires & sa longueur; la valeur commune de
ces deux forces sera la mesure de la force de torsion
qui leur fait equilibre. Or, les expériences de Cou-
lomb ont prouvé que le fil de suspension restant le
méme, cette force de torsion est proportionnelle 2
I'ingle BCA; en prenant donc Pangle droit pour
unité, appelant % la force de torsion qui répond &
cet angle, et désignant par 6 Iangle BCA, cette
force, dans la position ACA’ du levier, sera égale
a 2 : ainsi, dans cette position , la torsion du fi!
de suspension équivaudra i deax forces égales a /b
horizontales , perpendiculaires & ACA’, appliquées
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aux points A et A’, et tendantes & ramener le le~- i
vier a la ligne de repos BCRH' g

Cela posé, approchons du levier deux sphéres ho-
mogeénes d'une méme matiere, d'un méme diame- |
tre, et symétriquement placées de part et dautre

de 1a ligne BCB'. Soient O et O’ leurs centres si- }Ii
tués dans le plan horizontal qui contient le levier, “a i
a égale distance de C, et sur une droite 0CO’ menéde | i
par ce point. L’attraction de ces deux corps va écar- %fi
ter le levier de la ligne BCB'; et, & cause que tout ‘b

est semblable autour du centre C, la droite ACA’

tournera autour de ce point, qui restera immobile. i

A mesure que le levier s'écartera de la ligne de H
repos, la force de torsion augmentera. 1l existe une il ‘E
position dans laquelle cette force ferait équilibre A i‘i‘-ﬁa

Vatiraction des deux spheres; mais comme le levier i
atteint cette position avec une vitesse acqm‘;e, il Ia

dépasse, et il oscille, de part et d'autre, i la ma- i
nicre d’un pendule horizontal. L’ohservation fait '
connaitre la durée d'une oscillation enti¢re. En com-
Parant la longueur de ce pendule & celle d'un pen-
dule ordinaire qui oscillerait dans le méme lemps,
on en conclut le rapport de la force d'attraction de
chague sphere a la pesanteur; et, par smite, on a i
le rapport de la masse de ceite sphere a celle de
la terre. L equahon qui sert a déterminer ce rap-
port est facile & former, ainst qu'on va le voir.

253. Les deux sphéres mobiles dont les centres sont i
en A et A', étant sollicitées par les mémes forces, et
ayani le méme mounvement autour du pomt fixe C, gl

1l suffira de considérer le mouvement du centre de
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I'une d'elles, du point A, par exemple; soient don¢
comme davs le probleme précédent,

CA=a, C((O=¢c, BCO=1y;

appelons m’ la masse de la sphére attirante dont le
centre est en O, et fle coefficient de l'attraction uni-
vcrsg_ﬂlc; au bout d'un temps quelconque ¢, désignons
par U langle ACB, et par z la distance AO, nous
aurons

2 = a* + ¢* — 2accos(y — §);

et la force accélératrice provenant de Pattraction di-
fm

rigée suivant AQ sera*—. Je la décompose en deux

autres forces , I'une dirigée suivant le prolongement
de CA, ct l'autre perpendiculaire 2 CA. Cette derniere

Jm'

composante sera égale 2 sin CAO, cest-a-dire;
~

e A
a j—zr sin (5 — 8), en y mettant pour sin CAO s2
valeur déduite du triangle COA. Si 'on retranche de
cette composante tangente a la trajectoire, la force
de torsion A8 qui lui est directement opposée , et 5t
Pon observe que V'arc BA déerit par le mobile est égﬁl
4 all , on aura

d*0 j?u'c - ]
a 5z ="gsm(y — 8) — 28,
pour Péquation du mouvement ( n° 152).

L’attraction de la masse m’ étant une tres petite
force, I'angle f dont elle écarte le levier ACA' de s*
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ligne de repos sera trés petit. En appelant 4 Ja dis-
tance BO , ou la valeur de z qui répond a =0, de
sorte qu'on ait

b* = a* -+ ¢* — 2accosy,

et développant suivant les puissance de 8, il vient '

sin (n—8 sin - 4
.L(.:/_) = _Z‘_/_ [(@®+ ¢*) cos ) — 2ac —acsin®y] 7 ~+-ete.

$i done, on fait, pour abréger, .
% m' e
[(a*+- c*) cos y — 20C — AC sin®y | jT +h=g,

fmcsiny o
b == oy

et qu'on néglige les puissances de B supérieures a la

premiere , I'équation du mouvement deviendra

&

e .
d!s—_gb-—gg’

d’oti 'on tire, en intégrant,
§ = 6 4+ k cos (t é;—-]— k’);

k et k' étant les deux constantes arbitraires.

D’aprés cette valeur de 8, le plus petit et le plus
grand écart du levier ACA’, i partir de la ligne BCK/,
seront & - % et € — k; et si lon tire laligne DCDY,
telle que Yangle BCD soit égal & €, le levier fera, de
part et d’autre de cette droite, des oscillations égales
et isochrones dont I'amplitude sera la constante 4 :




488 TRAITE DE MECANIQUE.
on déterminera Vangle & par I'expérience , en mesu-
rant le plus petit et le plus grand écart du levier, et
prenant , pour cet angle, la demi-somme de ces va-
leurs extrémes de §. La droite DCD' quirépond & h=E€
est la position du levier dans laquelle il demeurerait
en équilibre , §'il y parvenait sans vitesse acquise. La
durée de chaque oscillation entitre du levier, de part
et d'autre de cetie ligne, sera le temps pendant le-

quel Vangle # \/% - k" augmentera de 180°; en le

désignant par T, on aura donc

/a

T ==« V‘ E;
et cette durée T sera aussi donnée par I'observation.
Maintenant, si Pon appelle g la gravité, et [ la
longuenr du pendule simple qui fait ses oscillations
infiniment petites dans le temps T, on a (n° 182),

I
T o \/(—;
g

— JTI .
ga = g'l;

on aura donc

par conséquent, a cause de

Jm'esing

__Jm P
8 =T 8 =g
neus aurons, finalement,
m. _ Cab®
m — elr*sin 5’

m étant la masse de la terre et r son rayon.
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Toutes les quantités contenues dans cette formule
sont connues dans chaque expérience; elle servira
donc i calculer le rapport de la masse m' a celle de
la terre ; et connaissant, en outre, les volumes de ces
deux corps et la densité de m’, on en conclurala den-
sité moyenne de la terre.

254, On démontre , dans la Mécanigue céleste ,
que pour la stabilité de Péquilibre de Ja mer, il est
nécessaire et il cuffit que la densité moyenne de la
terre surpasse celle de leau. Clest parce que cette
condition est remplie , que les forces provenant des
actions simultanées du soleil et de la lune ne produi-
sent que de petites oscillations : si elle ne Vétait pas,
et que la terre, par exemple, en conservant sa den-
sité moyenne , fut recouverte par une mer de mer-
cure , laction des moindres forces étrangeres au
sphéroide terrestre, produirait, dans ce fluide, un
mouvement progressif, de sorte que la mer, au
lieu d’osciller, parcourrait la surface enticre de la
terre.

On prouve aussi, par diverses considérations , que
la densité des couches concentriques du sphéroide
terrestre doit croitre en allant de la surface aun centre;
Q’ott il résulte que sa densité moyenne doit surpasser
celle de la couche superficielle; condition qui se
trouve effectivement remplie ; car si 'on excepte les
mélaux, qui sont en petite quantité dans cette couche.
les densités des autres matiéres dont elle est formée ,
sont toutes beaucoup moindres que cinq fois et de-
mie la densité de I'eau. Mais il importe d'observer
que cet accroissement de densité ne suppose pas U'exis-
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tence de matiéres entierement différentes de celles
que nous voyons a la surface, et dont la densité
propre serait excessivement grande : on peut admettre
que toutes les couches de la terre sont formées d'une
méme matiére , un peu compressible, ou d'un mé-
lange de différentes matitres, comme i sa surface;
et dans cette hypothese , qui parait la plus naturelle ,
leur accroissement de densité serait di i la conden-
sation produite , dans chaque couche, par la pression
des couches supérieures, qui va en augmentant de
la surface au centre.

Dans l'intéricur de la terre, la loi de l'attraction
dépend de la loi inconnue des densités ; en dehors,
elle varie sur le prolongement de chaque rayon, a
peu pres en raison inverse du carré de la distance
au centre; et d'un rayon & un autre, elle éprouve en
méme temps une variation proportionnelle au carré
du cosinus de 'angle que chaque rayon fait avee I'axe
de figure du sphéroide terrestre. Il résulte de cette
derniére variation qu’a égale distance du centre de la
terre , la force appliquée au centre de la lune et pro-
venant de Y'attraction de ce sphéroide, n’est pas la
méme dans toutes les directions du rayon vecteur;
en sorte quion peut considérer cette force comme
étant composée de deux autres, V'une provenant de
la pal'tie sphérique-de la terre et qui est constante ou
ne varie qu'a raison de la distance a son centre, Vautre
due au rvenflement de la terre & I'équateur et qui
varie avec la direction du rayon par rapport & l'axe
des poles. Laplace a déterminé la petite inégalite en
longitude et en latitude, que cette seconde force
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produit dans Je mouvement de la lune; on concoit
que sa grandeur doit dépendre de lapplatlsqement
de la terre; et en la comparant & celle que T'ob-
seryation a donnée , on en conclut un applatisse-
ment -1, peu différent de celui qui résulte de I'en-
semble des mesures du pendule et des degrés du
meridien.

A la surface de la terre , la variation de la pesanteur
provenant de celle de Patiraction et de la force centri-
fuge, suit la méme loi qu'a une distance quelconque
du centre, cest-a~dire qu’elle est proportionnelle,
comme nous 'avons déja dit (n° 178 ), au carré du
cosinus de la latitude. Mais pour vérifier cette loi par
les mesures du pendule & secondes, il faut que les
oscillations ne soient pas observées pres d'une mon=
lagne ; car, en méme temps que Ja composante ho-
rizontale de son attraction écarle le pendule de la
Verticale, dans sa position d'équilibre , la composante
Verticale de cette force diminue la pesanteur, et,
conséquemment, la longueur du pendule simple. En
évitant celie cause d'anomalie, on irouve encore
quen certains lieux la longueur du pendule a se-
condes s'écarte de la loi de variation donnée par la
théorie ; ce qu'on doit attribuer a ce qu'en ces licux,
la densité du terrein , dans une étendue et une pro-
fondeur considérables, est plus grande ou plus petite
que la densité générale de la couche super rficielle ;
d’ou il résulte une auqmeutahon oun une diminution
de la pesanteur totale, et, par conséquent, de la
longueur du pendule simp]e, qui est proportionnelle
a son intensité. Le pendale est donc aussi un instru-
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ment de Géologie, qui annonce, par ses anomalies
des variations d'une grande étendue dans la nature
du sol.

Au reste, il faut observer que la loi du décroisse~
meut de la pesanteur, proportionnel au carré du co-
sinus de la latitude , en allant du péle & I'équateur ;
suppose qu'on prend pour la surface de la terre le
prolongement du niveau des mers; et comme les
lieux des conlinens ot se font les observations s'élé~
vent a.des hauteurs différentes au-dessus de ce niveau,
il est nécessaire de réduire les longueurs observées,
a celles qui auraient lieu 4 ce niveau-méme sur
chaque verticale. Cette réduction se fait ordinaire-
ment en augmentant la pesanteur et la longueur du
pendule a secondes , dans le rapport du carré de la
distance du lieu de I'observation au centre de la terre,
au carré de cette méme distance diminuée de la hau-
teur de ce lien au-dessus du niveau des mers; ce qui
revienl a négliger I'attraction de la couche de terre
comprise entre la surface du continent et le prolon-
gement de la surface des mers. On va voir, dans e
numeéro suivant, que celte correction est trop grande
de prés de moitié.

255. Soient AM'B ( fig. 59 ) la surface d'un conti-
nent, DAMBE le niveau des mers etson prolongement,
et C le centre de la terre ; soient aussi M’ le lien dé
Tobservation, et M le point ou le rayon CM’ ren-
contre ce prolongement; M'M sera la hauteur de
poini M au-dessus de la surface des mers, que j@
représenterai par %, etqui sera donnée par un 11ivﬁ1"
lement ou par des mesures barométriques. Si M’ étail
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tres voisin de la mer, la pesanteur pourrait étre un peu
diminuée et sa direction un peun dérangée , a cause
que la densité de T'eau est moindre que celle du ter-
Tein; mais je supposeral que cela n'ait pas lieu, et je
Supposerai aussi qu'autour du point M’ la surface du
terrein soit horizontale ou sensiblement perpendicu-
laire au rayon CM’, et que sa densité soit uniforme,
Il Cagira de calculer I’attraction exercée au point I,
par la couche AM'BM, ¢levée au-dessus du niveau
des mers. Dans ce calcul, on poura faire abstraction
de la courbure de cette couche et de la variation de
Son épaisseur, ou, autrement dit, on pourra consi—
dérer I'épaissenr de cette couche comme constante
et égale a &, dans toute I'étendue ot son attrac-
ton peut éire sensible. Je représenterai par ¢ le
fayon de cette étendue, et par p’ la densité de la
Couche.

Cela posé, soit K un point quelconque de la conche
attirante ; désignons par z et y ses distances 4 la sur-
face du terrein et au rayon CM'; et déerivons deux
Surfaces cylindriques qui aient MM’ pour axe com-
Mun, et dont les rayons soient y et y—4-dy. Le volume
Compris entre ces deux surfaces aura amydy pour
base et dz pour hauteur; et si on le décompose en
neaux horizontaux d'une épaisseur infiniment
Pelite, le volume de 'anneau qui répondra au point
K sera a@ydydz, et sa masse 27’ ydydz. L'attraction

€ cel anueau sur un point matériel situé en M’ se
Yéduira 2 une force dirigée suivant MM', qui sera
€gale i la somme des composantes verticales des gt
Iractions de tous ses points; et comme, pour le
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point quelconque K, on a

‘}Fa z*

i KM = V7" + 2, cos KMM=_——>-_,

la force accélératrice provenant de I'attraction de
Panneau entier, aura pour valeur

2xf v yzdydz
e i
e ¥

f étant toujours le coeflicient de lattraction uni~
verselle. Par conséquent, pour avoir latiraction de
la couche que nous considérons, il faudra intégrer
cette formule depuis z = o jusqu'a z = £, et de-
puis =0 jusqu’a y =c¢ ; ce qui donne

K = anff(c + h — \e*+ B,

en désignant ceite force par A’. Mais, en général,
Pépaisseur verticale de la couche attirante est pe-
tite, en égard & son rayon horizontal ; si donc on
néglige A* par rapport & ¢*, on aura simplement

kK = amfp'h.

Soit k I'attraction exercée au point M par la par-
tic de la terre qui se termine au niveau des mersy
et r le rayon CM; cette attraction au point M’ de-
viendra

ks

=+ b

En désignant la pesanteur et la composante verti-
cale de la force centrifuge par g et 9 au point M, et
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par g’ et 5/ au point M, on aura donc

' kr®
g§=4k— 2 8=m+i’"—'?"-

Je développe le premier terme de g’ suivant les puis-
sances de &, puis je retranche g'de g, et je néglige
le carré de & et la petite différence 3 — 5 ; il vient

8.—"_7—1{:’-

. = h S
A cause de la petitesse du facteur —, on peut faire
k= g' dans le premier terme de cette formule ; dans
la petite quantité A', on peut aussi supposer

‘ .
G el Pﬁ —
3 =

tn désignant par pla densité moyenne de la terre, et
Aot . L
Prenant iT pour son volume; il en résultera alors

P 3p'7?g’
A i i - 18

2T =

€t, par conséquent,

—

2h 3R
¢ / | P
‘_r o (I

T A 2r /'’
(est donc par le facteur compris enire les paren-
\ - ‘:’.J’J‘.
‘heses, et non par le facteur 1 - —, comme On a
coutume de le faire , qu'on devra multiplier la pesan-
teur of qui a lien sar un continent, & une hauteur A
au-dessus du mivean des mers, pour la réduire i ce
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niveau. On peut, en géneéral, évaluer ¢' a la moiti€
’ 5h N
de ¢, et prendre, en conséquence, 1 -~ o pour ce

facteur. A Paris, I’élévation % du point de I'Obser-
vatoire ou se trouve le barometre, est de 63 meétres;
d’otr il résulte que la gravité et la longueur du pen-
dule i secondes y sont moindres qu’au niveau des
mers, dans le rapport de 'unité 4 1,0000125.




FPAMAAAAAAARAAA ARV LA VAL AAA A ARV AR VLA WA AMAR AR AVAALTAARMAARAANA ARAAA AR,

LIVRE TROISIEME.

STATIQUE,
SECONDE PARTIE.

CHAPITRE PREMIER.

DE L'EQUILIBRE DUN CORPS SOLIDE.

256. [1 »’y a pas de corps solide, dans la nature, qui
ne soit plus ou moins compressible, et qui ne change
de forme lorsqu'il est soumis & des forces qui se font
€quilibre. Mais quand le corps solide que nous al-
lons considérer aura pris la forme convenable, on
pourra regarder les points d’application des forces
qui le sollicitent comme un systeme de forme inva-
Mables et c’est i cet étal que répondront les coordon-
ées de ces différens points, quon supposera con-
nues, et qui entreront dauns les équations d'équilibre.

Soient M, M/, M", etc. , ce systéme de points ma-
tériels. Pour chaque point on aura sept quantités 3
considérer, savoir, ses trois coovdonnées, la force
qui ie sollicite; et les trois angles qui en détermi-

1. 2
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nent la direction. Je désignerai par P la force qui est
appliquée au point M, et dont la direction sera la
droite MD (fig. Go); par «, ¥, z, les trois coordon-
nées 0G, GH, HM, du point M, rapportées aux axes
rectangulaires Ox, Oy, Oz; et par a, 6, 3, les an-
gles aigus ou obtus que fait la droite MD, avec des
paralleles a ces axes, menées par le point M. Relati~
vement aux autres points M', M, etc., je représente-
rai les quantités analogues par les mémes lettres avec
des accens.

Cela posé, avant de chercher les conditions d’équi-
libre des forces données P, P/, P”, etc., nous allons
transformer ce systeme de forces en trois autres, dont
'un sera composé de forces paralléles a I'axe Oz, unt
autre de forces paralléles a 'axe Oy et dirigées dans
le plan des x et ¥, et le troisieme de forces dirigées
suivant l'axe Ox.

257. Décomposons chacune des forces P, P',
P, etc., sans changer son point d’application , en
trois forces paralleles aux axes des o, ¥, 5; P cos 2,
P’ cos a', P" cos 2", etc. , seront les forces paralléles a
Vaxe Ox; Pcos6, P cos &', P’ cos 6", etc., les forces
paralléles i Iaxe Oy ; P cosy, P’ cos 3/, P cos 3, ete.
les forces paralleles a 'axe Oz; et I'on pourra d’abord
remplacer les (orees données par ces trois groupes de
forces paralléles.

Sans altérer le systeme de forces que Ton consi~
dére, il est permis d'appliquer en un méme point
deux forces égales et contraires. Japplique done a®
point M deux forces paralleles & Taxe Oz, égales et
opposées, et que je représente par g et — g. Je cont
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pose la force g qui agit suivant MC, avec la force
P cose, dirigée suivant MA parallele 2 Ox; soient
ME la direction de leur résultante , et K le point ot
son prolongement vient rencontrer le plan des x et y.
Je transporte son point d’application en ce point K,
puis je la décompose en deux forces paralléles aux
axes des « et z; ce qui reproduit les forces P cos
el g; mais la force P cos 2 est maintenant dirigée
suivant la projection sur le plan des x et y, de sa
premiére direction; et la force g est appliquée , per-
pendiculairement i ce plan, au point K de cette pro-
jection, dont les coordonnées sont faciles & déter-
miner.

En effet, H étant la projection du point M sur le
plan des x et y, ses coordonuées seront x et y, et 'on
aura ¥ et & — KH pour celles du point K, puisque
ces deux points appartiennent & une méme parallele
a l'axe des a. Or, en considérant le rectangle KNMH,
dont la diagonale KM est la direction de la résultante
des forces g et P cos 2, qui agissent suivant les cotés
KN et KH, on a la proportion

KH : HM :: Pcos e : g;
d'otr I'on tire

KH = £
i g .
a cause de IIM = 5. Les coordonnées du point d'ap-
plication K de la force g, dans le plan des x et y,
sont donc
zP cos «

et X — ————.
YA g

DS
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En opérant de la méme maniere sur les foreces
Pcos€ et —g, la premicre sera transportée dans le
plan des x et y snivant la projection de sa premicre
direction , et les coordonnées dn nonveau point d’ap-

plication de la force — g, dans ce méme plan,
seront
2P cos €
7+ et x.

On transporlera par le méme moyen toutes les
forces P'cos o/, P" cos 2", etc., P cos 6, P" cos €", etc.,
dans le plan des x et 3 ; chacune de ces forces agira
suivant la projection sur ce plan , de sa direction pri-
milive, qui pouvait étre au-dessus ou au-dessous de
ce méme plan; et I'on aura de plus autant de couples
de forces g" et — g’, g" et — g", etc., qu'il y a de
points M/, M”, etc. Les coordonnées des points d’ap-
plication de ces derniéres forces, dans le plan des &
et y, se déduiront de celles qui répondent aux forces
g et —g, en acceniuant les letires x, 7, z, g, P,
a, 6.

258. Maintenant, par une semblable opération ;
faite sur les forces Pcosa, P'cos«’, P"cos o, ete. ,
paralleles & I'axe des o, et comprises dans le plan des
x et,y, on les transformera en deux groupes de
forces, dont I'un se composera de forces paralléles &
laxe Oy, et l'autre de forces dirigées suivant 'axe Ox-

Ainsi, au point H (fig. 61), ou agit la force Pcos #
suivant la direction HF, ‘j’applique des forces paral-
leles & Oy et représentées par & et —4; je compose
la force &, dirigée suivant HB, avec la force Pcos ¢ ;
je transporte le point d’application de leur résultante
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au point Q, ou le prolongement de sa direction HK
vient rencontrer Paxe Ox; puis je la décompose sui-
vant les directions rectangulaires Qux et Q7, ce qui
reproduit en ce point Q les forces P cos o et /. D'ail-
leurs, on aura

: GH 2 P ocos a : k;
et, a cause de 0G = x et GH =y, on en conclura
DQ L _y‘l’(;os r.a’
(]
pour I'abscisse du point Q.

La force P cos @, dont la direction était HF | sera
done remplacée par une force P cos a, qui agira
suivant I'axe Ox, et deux forces &2 et — £, perpen-
diculaires  cet axe, et appliquées & des points Q et G
dont les positions sont connues. Il en sera de méme
a égard des autres forces P/ cos e/, P" cos 2’ ete. ,
Paralleles a Taxe des x, et comprises dans le plan
des 2 et y, qui seront aussi remplacées par des
forces P/ cos &, P"cosa”, ete., dirigées suivant la
droite Oxx , et par des couples de forces 7' et — &/, 1"
et — A", etc., paralleles a 'axe Oy,

259. Nous voyons donc que par ces deux opéra~
lions successives, les forces données seront transfor—
Mées, comme on Vavait dit, en trois groupes de
forces, dirigéces suivant I'axe de: x, perpendiculaires a
et axe et comprises dans le plan des x et 7, et per-
pendiculaives a ce plan.

Dans cette transformation, la force quclcouquc Pse
trouvera remplacée par six autres forces, qui seront :

1°. Les trois forees P cosy, &, — g, paralléles a
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Yaxe des z, et dont les points d’application sur Je
plan des a et » ont pour coordonnées rapportées
aux axes Ox et Oy, savoir : celui de la premiere, &

. s zP cos a
ct y; celui de la deuxiéme, xr — —
z

et r; celul

de la troisicme, x et y + zP cos ¢

p
2°. Les deux forces P cos € — ket h, paralléles &
I'axe des ¥, ecomprises dans le plan des x et 7, et qu'on
peut supposer appliquées a 'axe des a; la premiere
a la distance 2 du point O, et la scconde ala distance
et
=

5¢, La force P cos o, dirigée suivant Paxe des x, et
dont on pourra transporter le point d'application en 0.

260, Il est facile actuellement de former les équa-
tions d’équilibre des forces données P, P, P, etc.,
ou des trois groupes de forces qu'on vient de leur
substituer.

On doit d’abord remarquer que cet équilibre ne
peut exister, & moins qu’il n’ait licu séparément
dans chacun de ces trois groupes de forces. En effet,
si les forces paralleles & I'axe des z ne se détruisaient

K ——

pas entre elles, et que cependant 'équilibre de toutes
les forces données fit possible, on pourrait, sans
troubler cet équilibre, rendre fixe une droite tracée
dans le plan des & et y; mais alors les forces com~
prises dans cc plan seraient détruites, soit parce
qu’c[]eg renconireraient cet axe fixe, soit & cause
qu'elles lui seraient paralleles. On pourrait done les
supprimer; ct, eela fait, I'équilibre serait rompu ,
contre Ihypothese, puisque rien w'empécherait plus
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les forces perpendiculaires au plan des x et 3 de faire
tourner le corps solide autour de I'axe fixe; par con-
séquent, I’équilibre est impossible tant que ces der—
niéres forces ne se détruisent pas séparément. Cela
étant, on verra de méme que 'équilibre ne peut exister
entre les forces comprises dans le plan des x et 7,
sans que les forces paralleles a T'axe des y ne se dé-
truisent entre elles; car s'il avait lieu, et que cette
condition ne it pas remplie, on fixerait un point de
Paxe des a, qui détruirait toutes les forces dirigées
suivant cette droite : rien n'empécherait plus les
forces perpendiculaires i cette droite, de faire tourner
le systeme autour de ce point; en sorte que I'équilibre
se trouverait détruit par I'addition d'un point fixe, ce
qui serait absurde.

Cela posé, si le corps solide que nous cousidé-
tons est entierement libre, il faudra d’abord (n° 57),
pour I'équilibre des forces paralléles P cos 3, P’ cos 9/,
P" cos 5, etc., g et — g, g et — g, g" et
— g", ete., que leur somme soit nulle; ce qui
donne

Pcosy 4+ Pecosy + P'cosy” 4 ele.= o,

1l faudra, en outre, que les sommes de leurs me-
Mens par rapport au plan des x et z et a celui des
¥ et z, qui sont paralleles ages forces, soient aussi
nulles. Or, par rapport au premier plan, on a

yPeosy = 9P cosy' + y"P'cosy” + ete.,

pour la somme des momens des forces P eos 9 ,
Peosy!, P"cosy", ete.; celle des momens des forces
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§» 81 &', etc., est

gy + 87" + 8" + ete.;

et la somme des momens des forces — g, — g,
— g, ete., a pour valeur
zP cosC z'P'cos€”
( i = e (} = ) elc.,

d’apres les coor donnecs des points dapphcai ion de
ces diverses forces, On a donc, en ajoutant ces trois
sommes et rédulsant,

P( ycosy— zcos €)4-P'( ycos5'—z'cos €') - ete.= 03

et I'on trouvera de méme, en formant la somme des
momens des mémes forces, par rapport au plan des
¥ et z, et I'égalant & zéro,

P(xcosy —zcosa)+P'(x'cosy/—z'cos e’ )4 etc.==o.

Quant aax forces Pcos 6§ — %, P'cos &€ — #,
P"cos 6" — 1’ etc., et k, I/, 1", etc., paralléles &
Yaxe des y, et toutes comprises dans le plan des x
et y,il n'y aura que deux equatmn-,dethbrc n° ’37)
il suffira que leur somme soit égale 2 zéro, ce qui
donne

Pcos € P cos & =4 P cos €' 4 etc. = o0,

et que la somme de leurs momens, par rapport au
plan des et z, soit aussi égale & zéro. Or, par
rapport a ce plan, la somme des momens des pre-
mieres forces est

(P cos € — i) 4= x' (P! cos ' — &)+ elc.=0;
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celle des momens des forces &, ', 7', ete., cst,
en méme temps,

B . n Vg _:{l
7 (x o Py (EE_J) oy 4 (.x-’ — Pycos el

e

d’aprés Jeurs distances a Paxe des y ; par conséquent,,
en égalant la somme totale & zéro, on aura

Pl cos 6—y cosa) +-P/(x'cos€6'—y cos &') +ete.= o.

Enfin, pour I'équilibre des forces dirigées sui-
vant l'axe des «, il suffira que leur somme soit
nulle; d'ou il résulte

P cos 2 - P’ cos &' 4~ P" cos 2" J-etc. — 0.

Telles sont les six équations nécessaires et suffi-
santes pour l'équilibre d’un corps solide entiere-
ment libre et sollicité par des forces quelconques,
quil s'agissait d’obtenir.

261. En faisant, pour abréger,
PcosaPcosa’+ P'cosa” +etec. =X ,
Pcos€+4 P cos€ -P'cos €' fete. = Y,

P cosy 4P cosy)’ 4 P"cosy 4-etc. = Z,

P(a cos € —y cosa)-P(x'cos€'—y'cosa’)4-ete. =TI, ;
P(zcos @ —xcosy )P 2 cose’'—a'cosy \-ete.=M,
P{ ycosy — zcos E)+P(y'cosy’—z'cos €') 4 ete.=N,
ces équations d’équilibre deviendront

X:o, Y—._-o, Z:U, L:O, M:O, N=o. ([}

On peut remarquer que ces quantités L, M, N, ainsi
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que Z, Y, X, se déduisent les unes des autres par la
régle du n° 22.

Ces six équations renferment des conditions d’équi-
libre communes i tous les systémes de points malé-
riels, enticrement libres; car, quelle que soitlanatare
d’un pareil systéme, ou la liaison mutuelle des points
qui le composent, il est évident qu'on ne troublera
pas leur équilibre en rendant leurs distances in-
variables , sans changer leurs coordonnées, ni les
forces qui les sollicitent, Par conséquent, les équa-
tions d’équilibre d'un systeme de formie invariable,
qui ont lien entre ces quantités, doivent encore
subsister pour tout autre sysiéme ; mais alors elles ne
sont plus suffisantes ; et il y faut joindre d’antres con-
ditions spéciales pour chaque' systeme en particulier, ‘
qui serviront, comme on le verra par la suite, 2 dé-
terminer les positions relatives de ses différens points
dans V'état d’équilibre.

262. Quand les forces donndes sont toutes paral-
léles entre elles, les angles qu’elles font avec chacun
des axes Ox, Oy, Oz, sont égaux ou supplémen-
taires, selon que ces forces agissent dans le méme
sens ou en sens contraire; on peut les supposer
égaux, en considérant, en méme temps, comme
positives les forces qui agissent dans un sens, et
comme négatives celles qui agissent dans le sens op-
posé (n° 11); on aura dongc alors

a=—a'=a", clc., E=06'=6", etc., yr=ale=s !l e1s;

an, moyen de quol les irois premieres équations (1)
se réduisent a une seule, savoir :
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P+ P 4 P4 ete. = o,
et les trois autres deviendront

(Px + P2/ P'a"J-ete.) cos € =(Py+- Py’ 4- P'y"J-etc.)cos «,
(Pz L P'z' 4 P"z" ete.)cosa= (P4 P’ P z"- etc.)eos v,
(Py 4 Py’ + Ply"+ete.) cosy = (Pz+ P'7 4-P"z" 4 ete.)cos 6.

Mais les équations d’équilibre des forces paralléles
étant seulement an nombre de trois, il faut que ces
trois dernieres équations se réduisent a deux ; et, en
effet, si on les ajoute apres les avoir multipliées par
cos 3, cos 6, cosz, on trouve une équation iden-
tique; en sorte que I'une d’elles est une suite des
deux autres.

Quand tountes les forces données sont comprises
dans un méme plan, on peut prendre ce plan pour
celui des x et y; alors les angles 5, 9/, 7", etc., sont
droits, et les coordonnées z, 2/, 2", etc., égales a
zéro; ce qui fait évancuir la troisieme et les deux
derniéres équations(1). Dans ce cas particulier, comme
dans e cas des forces paralléles, il y a donc seulement
trois équations d’équilibre, qui sont

X:O, Y:O, =Gt

263. Lorsque les forces dounées ne se font pas
€quilibre, on peut demander la condition qu’elles
doivent remplir pour avoir une résultante unique,
et quelle est cette résultante.

Pour répondre 4 cette question, je désigne par R
celte force; par @, &, ¢, les angles que sa direclion
fait avec des parall¢les aux axes Ox, Oy, Oz, mendes
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par un de ses points, qu'on prendra pour son point
d’application , et dont les coordonnées, rapporiées 2
ces memes axes, seront représentées par &, ¥, , Zi-
Cette force, prise en sens coniraire de sa direction ,
fera équilibre aux forces données. Les équations (1)
auront donc lieu en joignant a P, P/, P", eic., une
force égale et contraire 3 R; par conséquent, on
aura

X=Rcosa, Y=Rcos?d, Z=Rgcosc, (2)
et, en outre,

L
M
N = R(y,cos¢ — z, cosb),

I

R(x,cosb6 — y,cosa),

|

R(z, cosa — x,cos¢),

¢’est-a-dire, en vertu des trois premicres équations,
X._Tl = Y'rl - L 0,

— Xz, +~ M= o, (3)
Yz, — Zy, + N = o.

1l

Les coordonnées x,, Y15 %, pouvant appnrlenit- i
un point quelconque de la droite suivant laquelle est
dirigée la résultante, ces trois derniéres équations
seront celles de ses projections sur les trois plans des
coordonnées. Pour que cette droite existe, il faudra
donc qu'elles se réduisent a deux ; or, en les ajoutant
apres les avoir multipliées par Z, Y, X | les trois va-
riables x,, 7., 5., disparaissent, et I'on a

ZL + YM + XN = o;  (4)

par conséquent, 1l sera néeessairve et il suffira que
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cette équation (4) soit satisfaite pour que les forces
donnédes aient une résultante unique : quand elle
aura lieu, cette force sera déierminde, en grandeur
et en direction , par les équations (2),

Si les trois sommes X, Y, Z, des composantes pa-
ralléles aux axes des a, T % sont nulles, I'équa-
tion ({) sera satisfaite; mais alors la resultanl(, sera
une force infiniment petite, située 4 une distance in-
finie des points d’application des forces données, ou,
plus exactement, ces forces se réduiront i deux,
€gales, pamlleles agissant en sens contraire, et non
réductibles & une seule (n® 44).

Lorsque les trois sommes L, M, N, sont nulles,
lcquatlon (4) sera aussi qahsf'ute et Uon voit, par
les équations (3), que la requllantc passera par 'ori-
gine des coordonnées.

264. Quand la condition exprimée par I'équa-
tion (Jr) ne sera pas remplie, on y pourra satisfaire
en joignant aux forces données une force conve-
nable. Je supposerai, pour plus de simplicité, qu’elle
Passe par l'origine O des coordonndées ; je la repré-
Senterai par Q, et par A, @, », les angles qu’elle fait
avec les axes Oz, Oy, 0z. Les quantités L, M, N, ne
¢thangeront pas par Paddition de cette force , et les
Sommes X, Y, Z, angmenteront des termes Q cos 2 ,
Qcos ; Q cos 5. L'équation (4) deviendra done

QL cosy +—M cos u—Ncos A) - LZ MY NZ = o;

€n sorte qu'on y satisfera d'une infinité¢ de maniéres
différentes, an moyen de la force Q et des angles 2,
Py, relatifs 4 sa dir ection.
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La résultante R des forces Q, P, P/, P", etc., ¢t
sa position, se détermineront au moyen des équd*
tions (2) et (3) , dans lesquelles on mettra X+Q cos 2,
Y4+ Qcospe, Z4Qcosv, au lieu de X, Y, Z. Les
forces données P, P, P”, etc., pourront donc étre
remplacces par cette résultante R et une force égale
et directement contraire a la force Q; d'ou I'on con-
clut que quand des forces données ne sont point en
équilibre , ni réductibles 2 une force unique, on
peut toujours les réduire’, d’une infinité de ma-
nitres différentes, & deux forces seulement, qui ne
seront pas comprises dans un méme plan, sans quot
elles se réduiraient & une seule, contre 'hypothese.
Cest dailleurs ce qu'on voit immédiatement par 12
transformation du n° 257; car les forces données I,
P, P", etc., pourront étre remplacées par la résul-
tante des forces paralleles a axe des z, et par celle
des forces comprises dans le plan des x et y; et l'on
pourra ensuite transformer, sans difficulté, ces deux
résultantes en deux autres forces, d'une infinité de
maniéres différentes. En cherchant la condition pour
qu’elles se rencontrent, on trouvera I'équation (4)»
relative i lexistence dune résultante unique.

265. Si I'on considére deux corps solides A et Al
(fig- 62), qui se touchent en un point K et s’appuiuut
I'un contre Pautre, et si Uon suppose quils soient
sollicités par des forces données, il sera facile de de-
duire de ce qui précide les conditions de leur équi~
libre. ‘

Pour cela , je suppose que les six quantités X, Y,
Z,L, M, N, du n° 24, se rapportent au corps A, et
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je désigne par X', Y/, Z/, I/, M/, N/, ce qu’elles de-
Viennent relativement 4 A'; j'appelle a,, ¥, z,, les
coordonnées du point K rapportées aux mémes axes
que celles qui entrent dans ces diverses quantités;
par le point K, je méne une droite HKIY perpendi~
Culaire au plan tangent commun aux deux corps; je
représente par @, b, ¢, lesangles que faitla partie KH
de cette droite, comprise dans A, avec des paralleles
aux axes des x, ¥, z, menees par ce méme point K :
toutes ees quantités sont données, et il s'agira de for-
mer les équations d'équilibre auxquelies elles doivent
salisfaire.

Or, le corps A exercera sur A', dans la direction
_KH’ , une pression inconnue que‘je représenterai par
R; il en éprouvera, en méme temps, une résistance
€gale et contraire A cetle force normale. Si donc on
joint aux forces données qui agissent sur A une force
R dirigée suivant KH , on pourra ensuite faire abs—
traction de A’; et, de méme, si l'on joint aux forces
appliquées & A’ une force R dirigée suivant KI', on
Pourra aussi considérer A’ isolément. Il résulte de la
et des équations (1) gu’on aura pour I'équilibre de
Ces denx corps les douze équations suivantes :

X + Reosa=o0, Y4+Reosh=0, Z+4Rcosc==o,
X' — R cosa= 0, Y—Rcosb=o0, Z'—R cosc=o,
L - Rx, cosb — . cos ). =0,
M +R(z cosa — ., cos £) ==o,
N +R(rcose — z cosb) =o,
Er e R (.:rlcos e ¥, Cos gz) =0,
1\1’ —_ R(:‘.’-, cosa — x, cos 0) =05
N — R{y.cos¢ — z, cos &) =o,

e

———




512 TRAITE DE MECANIQUE.

qui se réduiront a onze par I'élimination de R. Aprés
que ces onze Equations d'équilibre auront été véri-
fides, I'une des précédentes fera connaitre la valeur
de R, qui devra étre une quantité positive pour
que les deux corps s'appuient réellement I'an contre
Pautre.

Ces douze équations donnent immeédiatement

X+X=0, Y+ Y =0, Z4 7 =0,
L - L/ 0, M+ M=o, N4 N = o;

ce qui résulte aussi des conditions d’équilibre com~
munes 4 tous les systémes entiérement libres, comme€
celui des deux corps A et A’ (uv° 261).

On trouvera pareillement les équations d’équilibre
d’un nombre quelconque de corps solides, dont plu-
sieurs sappuient I'un coutre Yautre; et il est aisé d€
voir que le nombre de ces équations sera égal & six
fois celui des corps, moins le nombre de leurs
contacts.

266. Les équations d’équilibre d’un corps solide
assujetti a des conditions données doivent étre com~
prises parmi celles d'un corps enti¢rement libre ; car
I'équilibre de celui-ci ne serait pas troublé, si on 'as-
sujettissait a ces condilions particuliéres; en sorte
qu'aucune nouvelle équation d’équilibre ne peut étré
introduite par ces conditions. Mais, au contraire, uné
ou plusicurs des équations (1) deviendront super”
flues; et il s'agira de déterminer, pour les différen
cas qui peuvent se présenter, celles de ces équation®
qui resteront nécessaires. Cest ce que nous allon®
faire successivement dans ce numéro, en supposanit
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toujours qu'on ait remplacé les forces données P,
P, P", etc., par les trois groupes de forces du n® 259,
1°. 8i le corps solide qui doit rester en équilibre
renferme un point fixe, on prendra ce point pour
lorigine O des coordonmees. Les forces dirigdes sui~
vant I'axe Ox seront déiruites par ce point; ce qui
fera disparaitre: I'équation X = 0. Pour l'équilibre
des forces paralleles & Paxe Oy et comprises dans le
plan des x et ¥, il ne sera plus nécessaire qu’on ait
Y ==o0, et il suffira que leur résultante coincide avec
Faxe Oy, ou que la somme L de leurs momens, par
rapport au plan des y et z, soit égale & zéro. Enfin,
pour Yéquilibre des forces paralléles 4 'axe des z, 1'é-
quation Z = o ne sera plus nécessaire ; il suffira que
leur résultante coincide avec l'axe Oz ; ce qui exigera
que les sommes de leurs momens; par rapport aux
plans des y et z, et des & et z, qui sont les quantités
— M et N, soient égales & zéro.
Ainsi, dans ce'premier cas, les trois équations d’é-
quilibre qui resteront nécessaires seront

Iy, M= 0, "N =

Elles signifient, effectivement, que les forces don-
nées ont une resultante unique, et que cette résul-
tante vient passer par le point fixe 0. Cette force
exprimera, en grandeur et en direction, la pres-
sion exercée sur ce point, et sera déterminée par
les équations (),

2°. Supposons que le corps solide soit retenu par
un axe fixe, autour duquel il est assujetti & tour-
ner, sans pouvoir glisser dans le sens de sa lon-

E 33
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gueur. Prenons cet axe pour celui des z; les forces
paralleles a cette droite Oz ne’ pourront produire
aucun' mouvement , et les trois équations Z = o0,
M=o, N==o0, relatives a leur équilibre, ne se-
ront plus mécessaires. Les équations X=o0 et Y==0
ne le seront pas non plus pour I'équilibre des forces
comprises dans le plan des a et 5 ; en sorte que,
dans ce-cas, il 0’y aura plus qu'une seule équation
d’équilibre, qui sera Li==o, ¢est-a-dire ;-

P(zcoss —ycosa) 4+ P'(z cosC — y'cosa’) 4 ete.=o0. (5)

Mais si le corps’ avait la hiberté  de glisser le long
de V'axe fixe, il faudrait en outre, pour empécher
ce mouvement; que la somme Z des forces paral~
leles a Oz fiut égale-a zéro; et il y aurait alors les
deux équations: d’équilibre

=0, Lia=.0.

La pression que Paxe fixe éprouvera perpendicu~
lairement & sa direction sera la résultante des forces
comprises dans le plan des x el y, déterminée, en
grandeur et en direction, par les deux premiéres
équations (2), et passant par le point O, en verte
de Téquation (5). Les forces paralleles a cet axe
tendront en méme temps i le faire tourner sur jui=
mérme.

En comparant les quantités M et N 4 L, on con-
clut de lenr composition que I'équation d’équilibre
autour de Taxe Oy sera M = 0, et qu'elle sera
N == o autour de Vaxe Ox. Il en résulte anssi que
la condition d’équilibre autour d’un point fixe con-
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siste en ce que l'équilibre ait lien successivement
autour de trois axes fizxes et rectangulaires, menés
arbitrairement par ce point. Par conséquent , si 1'é-
quilibre existe autour de trois axes rectangulaires
qui se coupent en un méme point, il aura ausst
lieu autour de toute autre droite passant par ce
point.

50, Je suppose que trois ou un plus grand nombre
de points non en ligne droite, appartenant au coeps
solide , soient assujettis & demeurer sur un plan fixe
dont la position est donnée; et je prends ce plan pour
celui des a et . Les forces paralleles & Taxe des z
ne pouvant produire aucun mouvement, les équa~
tions relatives a leur équilibre n'auront pas lieun;
mais les trois équations

A==rnh i = 0, "= oa

qui répondent aux forces comprises dans le plan des
@ ¢t ¥, seront nécessaires pour empécher le corps de
glisser ou de tourner parallélement @ ce plan fixe.
La force Z exprimera la pression totale que le plan
fixe éprouvera. Si le corps est seulement posé sur ce
plan, de sorte qu'il s'agisse, par exemple, d'an po-
lytdre dont une face soit en contact avec le plan des
x et y, il faudra que le signe de Z soit tel, que cette
fovrce appuie le corps contre ce plan. 1l faudra; en
outre, que cette résultante des forces paralléles a
Paxe des z vienne percer le plan des & et dans Pe-
tendue de la base du corps, sans quoi elle le déta-
cherait de ce plan, en le faisant tourner autour de
P'un des cotés de cette base. Or, si I'on appelle a, et

33..
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¥ les coordonnées du point ol cette résultante ren-
contre le plﬂﬂ des x et Y, ses momens par rapport
aux plans des x et z et des ¥ etz seront Zy, et Zx,;
ils devront ¢tre égaux aux sommes des momens des
composanies par rapport aux mémes plans; et, d'a-
pres les valeurs de ces deux sommes qu’on a trouvées
précedemment (n° 260), on aura

e, = — M, L= I\

1 faudra done vérifier, dans chaque cas particulier,
que les valeurs de x, et y,, tirées de ces équations,
apparliennent a un point de la hase du corps; condi-
tion d’équilibre qui ne peut étre exprimée par des
equations, non plus que celle qui est relative au signe
de Z.

4°. Si les poinls du corps assujettis & rester sur le
plan fixe des & et y sont seulement an nombre de
deux, ou bien s'is sont tous situés sur une méme
droite, on prendra cette ligne pour l'axe des ; la ré-
sultante Z devra alors rencontrer le plan des x et )’
en un point de cet axe; et, indépendamment des
trois équations du cas précédent; on aura cette qua-
trieme équation d’équilibre M == o.

5°. Enfin, lorsque le corps solide ne touchera le
plan fixe des & ety qu’en un seul point, ot I'on pla-
cera l'origine O des coordonndes, on verra, sans dif
ficulté, que les équations d'équilibre serent au nom-
bre de cinq, savoir :

X=o0, Y=0, L=0o, M=o, N=o,

La force Z exprimera toujours la pression exercée sur
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le plan fixe au point O, et devra avoir un signe con-
Venable,

Ce résultat coincide avec eelui du numéro pré-
cédent; car si I'on suppose le corps A’ fixe et ter-
miné par un plan, que I'on prenne ce plan pour
celui des « et 7, et le point K (fig. 62) pour ori-
gine des coordonnées, on devra faire, dans les é équa-
tions de ce numéro, @, = o, ¥, =0, z = o,
a=qo°, b=go°; ce qui rédnira aux cmq équa—
tions pl‘ecedentc‘; un pareil nombre des six équations

relatives a I'équilibre du corps A. La sixieme de ces

€quations deviendra, en méme temps,
Ra4-7Z —o,

€n supposant qu ‘on ait ¢ = 0, ou que la parhe
KH de la normale soit I'axe des z positives; par con-
Séquent, la pression exercée sur A/, qui est égale
el contraire a la rvésistance R, sera la force Z en
grandeur et en direction.

On peut remarquer, d’aprés cctte énumération des
différens cas deqmln]ue que les nombres d’éqna—
tions relatives & un corps solide géné par des obs-
tacles fixes peuvent étre tous ceux qul sont infé-.
Yieurs au nombre six, (,on‘cgpondaut a un corps
entierement libre.

267. L’équation (5) relative 2 léquilibre autour
de Taxe des z supposé fixe, ne contient ni les
Composantes paralleles a cet axe, des forces don-
nees P, P', P, etc., ni les coordenndes paralléles
iu meéme axe, de leurs points d’application M,
M, M" etc.; en sorte que Yéquilibre ne serajt pas

= .,

i
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troublé, si I'on remplacait ces forces et leurs poinis
d’application par leurs projections sur le plan des
@’ et y; ce quon démontrerait d’ailleurs facilement
@ priori.

Soient donec Q, ', Q" ete., les forces P, P/,
P, etc., projetées sur le plan des x et y, cest-a—
dire, décomposées parallélement & ce plan et trans-
portées aux projections des points M, M/, M", ete.,
sur ce méme plan. Désignons par ¢, ¢/, ¢", ete.,
les perpendiculaires abaissées de Porigine des coor-
donuées, supposée fixe, sur les directions des forces
Q, O, QY etc.; et, pour fixer les idées, supposons
que Q, Q', ¢/, tendent i faire tourner, dans le méme
sens , autour de cette origine, et que Q”, Qv, ete. ,
tendent & faire tourner dans le sens opposé. Pour
Péquilibre de toutes ces forces, il faudra, dapres le
n® 47, que Fon ait

Qg+ Q' +Q'¢"—Q"g"—Q¢"—etc.=o0, (0)

en considérant ¢, ¢', 4", ¢, elc., comme des quan-
tités posilives, aussi bien que Q, Q', Q", Q7, ete. ;
par conséquent , cette équation devra coincider avec
Péquation (5) ; ce qu'on veérifie, en effet, de la ma-
niere survante,

Soient H (fig. 63) la projection du point M, 0G et
1IG ses coordonnées x et y, HA la direction de la
force Q, ret p les angles que fait cette droite avec
des paralleles aux axes Ox et Oy, menées par 1€
point H. Par le point O, menons deux autres axes
Ox, et Oy, , le premier suivant la direction HA, et
le second perpendiculaire a cette droite et tel que
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Pangle 0y, soit aigu ou obtus en méme temps
que x0x, ; appelons x, €t y, les coordonnées OF et
FH du point H, rapporiées & ces nouveaux axes ; nous
aurons, comme on sait,

x[:J'COSM"'E"-TCOS/.\, ,}rIZJACOSP\—.Z'COS}L.
Or, la perpendiculaire OK ou ¢, abaissée du point O
sur HA , devant étre une quantité positive, on aura
g = == y, = == (ycosA — xcosp),

selon que l'ordonnée y, sera positive ou négative,
ou, ce qui est la méme chose ; d'aprés le sens qu'on
a supposé a I'axe Oy, selon que la force Q tendra.a
faire tourner, dans un sens ou dans le sens opposé,
autour du point 0. On a d’ailleurs

Q=P smy,
et, de plus (n® 8)
cosa = siny cosA, cosE = siny cosp;
il en résultera donc ;
Qq = == P(pcosa — xcosé).
Les forces Q' et Q" tendant, par hypothese, & faire
tourner dans le méme sens que (), on aura de méme
Q¢ = == P (y' cosa’ — a’cost’),

Q'¢" = == P'(y" cos e’ — x"cos €");

et les autres forces Q", Q*", etc., tendant a faire tour-
her en sens OPpPosé, on aura, au contraire,
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Q!ﬂqﬂ? — =F PH’I(]IH CcOoSs G(."’ i xrﬂ COs gﬂf) "
qul! = Pn ()..lrcos a'" — 'Y cos g:v),

etc.

I

On prendra done, en méme temps, les signes supé-~
rieurs ou les signes inférieurs dans toutes ces valeurs;
et en les suhstituant dans I'équation (6), elle devien-
dra Péquation (5); ce qu'il s'agissait de vérifier.

268. Le corps en équilibre étant toujours soumis
4 la pesanteur, il faudra comprendre parmi les forces
données P, P, P", etc., son poids appliqué suivant
la verticale & son centre de gravité. Supposons, par
exemple, qu'il s’agisse d'un corps pesant posé sur un
plan incliné et soutenu par une seule force. La fi-
gure 64 représente une section du corps passant par
le centre de gravité G, et perpendiculaire au plan in-
cliné; la longueur de ce plan est AB, sa base BC, et
sa hauteur AC. On place l'origine O des coordonnées
sur la verticale GH passant par le centre de gravité,
et Uon prend les axes Oz et Ox perpendiculaire et
paralléle & AB : le troisiéme axe Oy, qui nest pas
représenté, serait perpendiculaire au plan de la fi-
gure. La force P sera le poids du corps, la verticale
GH sa direction, et HOx I'angle «. On aura, en ou-
tre, x==o0, y=0, 6 = go°. En prenant donc P
pour la force donnée qui soutient le corps pesant, les
équations d’équilibre du troisitme cas du n® 266 €
réduiront a

Peosa 4Peosa’—9, P'cos 8=0, P(z'cost—y eosa’)=0"

Daprés les deux dernieres, on aura §'= go° ¢
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»'=o0; ce qui montre d’abord que la force P’ devra
ttre comprise dans le plan des x et z; et, en effet,
cela est évidemment nécessaire pour que celte force
et le poids du corps aient une résultante unique,
perpendiculaire au plan incliné. Je supposerai que O
soit le point ot1 la direction de P’ rencontre la verti-
cale GH, et je représenterai par OD cette direction.
L’angle o’ ou DOx devra étre obtus pour satisfaire a
la premiére des trois équations précédentes; jappel-
lepai & Iangle aigu DOx’ que fait la force P’ avec le
prolongement de Ox, de sorte qu'on ait

cos @ = — cos d.
L’'angle ¢ ou HOx est le complément de I'inclinaison
ABC.du plan; en désignant la hauteur AC par £, et
la longueur AB par /, on aura donc

h
COS d = 7;

d'olt il résultera finalement

P/
—l—z = P'cos d';

€quation d’équilibre qui fera connaitre I'une des deux
quantités P’ et ', quand l'autre sera donnée.
Lorsque, par exemple, la force P’ sera parallele
au plan incliné, on aura &' = o, ct, conséquem-
ment,
P Beagsodivesty
ou, ce qui est la méme chose,

P — Psini,
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en appelant i I'inclinaison du plan. Si 'on appelle Q
la pression que le plan éprouvera, et qui sera, dans
ce cas, la composante du poids P suivant la perpen=
diculaire Oz , on aura, en méme temps,

Q = Pcosy,

26g. On fait ici abstraction du frottement qui s'a~
joute a la force P’ paralléle au plan mncling, pour em-
pécher le corps de glisser le long de ce plan. Si cette
force P’ est nulle, le frottement seul peut retenir le
corps tant que l'inclinaison n’a pas atteint une cer-
taine limite. En désignant par A cette limite, c'est-a-
dire, Pangle i qui a lieu lorsque I'équilibre va com-
mencer 4 se rompre, et supposant qu'a cet instant le
froltement est une fraction f de la pression, il faudra
que la force fQ fasse exactement équilibre a la com-
posante P sin 2 du poids du corps, parallele au plan
incliné. Par conséquent, on aura, a la fois,

Q = Pcosa, JQ = Psina;

d’ou I'on tire
Jf = tang A;

ce qui fera connaitre la valeur de f, d’apres l'obser-
vation de P'angle A, sous lequel le mouvement com-
mence , et qu'on appelle Vangle du frottement,

Toutes choses d’ailleurs égales, 'expérience prouve
qu’a Vinstant qui précéde la rupture de I'équilibre,, le
frottement est proportionnel a la pression ; en sorte
que Je coeflicient f et I'angle A sont indépendans de
la pression Q , et par suite du poids P. Ce coeflicient
yarie avec la nature du corps et le poli des sur-
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faces: on a aussi remarqué qu'il n'atteint le maximum
desa valeur qu’apr‘es que le contact du corps et du
plan a eu lieu pendant un certain temps, différent
pour les corps de mature diverse; et ce n'est qu'a
partir de ce maximum que le frottement est propor-'
tionnel & la pression.

En admettant cette loi expérimentale, il en ré-
sulte que s1 plusieurs corps de méme nature, et dont
les surfaces ont le méme poli, sont placés sur un plan
horizontal , et quaprés un certain temps on incline
ce plan graduellement, tous ces corps commenceront
a glisser sous un méme angle 2, quels que soient leurs
poids et I'étendue de leurs surfaces en contact avec le
plan.

270. Lorsqu'un corps est posé sur un plan hori-
zontal, la pression exercée par son poids P se distri-
bue entre les points d’appui de ce plan ; mais quand
leur nombre surpasse trois, cette distribution semble
d’abord indéterminée; ce qui présenterait une diffi-
culté que nous allons examiner.

Pour fixer les idées, supposons que ce plan hori-
zontal soit la surface d'une table dont les pieds sont
verticaux. Dans ce plan, menons deux axes rectan-
gulaires O et Oy (fig. 65). Soient € la projection du
centre de gravité du corps sur ce plan, et A, A,
A", etc., les points de ce méme plan qui répondent
aux pieds de la table. Désignons par x, et y;, & €t 7,
a' et ', 2" et 3", ete., les coordonnées de ces points
C, A, A', A, etc., rapportées aux axes Ox et Oy,
Pour que la table ne soit pas renversée, il faudra que
le point C soit situé dans Pintérieur du polygone
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A A’A"A" ete. Cette condition étant remplie, le poids
P appliqué au point C se décomposera en forces
paralléles, dirigées dans le sens de la pesanteur, et
passant par les points d'appui A, A’, A", etc. , les—
quelles forces seront les charges que les pieds de la
table auront a supporter. Soient Q, Q', Q" cte., ces
charges inconnues ; d’aprés la théorie des forces pa-
ralléles , nous aurons
Q+Q + U e,
Qx + Q'x' 4 Q"x" 4 etc.,
Q + Q@ + Q) + ete:
Or, §'il v’existe que trois points d'appui A, A/, A",
ces trois équations suffiront pour déterminer les
charges Q, Q', Q"; mais s'il y en a trois ou un plus
grand nombre, le probléme sera indéterminé, et I'on
pourra prendre a volonté les valeurs de toutes les
inconnues, moins trois, pourvu qu'il n’en résulte,
pour ces trois inconnues, que des valeurs positives.
Cette indétermination aurait lieu, en effet, sila
table élait rigoureusement inflexible ; mais cela n’ar-
rive jamais; et, quelque peu flexible quion la sup-
pose, elle se déformera un tant soit peu et se com-
primera inégalement dans ses différentes parties. Or,
la figure qu'elle prendra et la quantiié dont elle sera
comprimée en chaque point dépendront non-seule-
ment du poids P, mais aussi du nombre et de la dis-
position des points d’appui A, A’, A’ etc. ; et I'une
et 'autre, ainsi que la pression qui aura licu en cha-
cun de ces points; seront complétement déterminées
dans chaque cas particulier. Toutefois, cctte déter—
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mination est un probléme trés difficile, dont la solu-
tion générale n'a pas encore été donnée, et qui ap=
partient & la Physique mathématique. Nous nous
bornerons ici & remarquer que tout est nécessaire-
ment déterminé dans la nature, et que quand quel-
que chose nous semble indcterminé, c’est que nous
avons fait abstraction de quelque donnée du pro-
bleme, clest-a-dire, de quelque propriété de la ma-
ticre, comme le degré de flexibilité de la table, dans
la question présente.
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CHAPITRE 1I.

THEORIE DES MOMENS.

271. Les momens que nous allons considérer dans
ce chapitre sont ceux dont il a été question dans le
n° 42. Ainsi, le moment d'une force P est le pro-
duit Pp de cette force et de Ia perpendiculaire 7
abaissée du centre des momens sur sa direction. Si
done ce centre est C (fig. 66), et que la force P soit
représentée par la droite MA prise sur sa directions
son moment aura pour expression le double du
triangle CAM qui a pour base cette force et son som=
met au point C. D'aprés cela, le théoréme du n° 405
relatif au moment de la résultanle de deux forces,
nlest plus qu'une proposition de Géométrie facile
4 démontrer.

En effet, solent MA et MB les deux composantes;
Ja diagonale MD du parallélogramme MADB ser2
leur résultante; et le point C étant en dehors de
Vangle AMB et de son opposé au sommet, il s’agird
de prouver que le triangle CMD est la somme des
triangles CMA et CMB. Or, on a d'abord

CMD = CMA 4 CAD - MAD;

en abaissant du point C une perpendiculaire CE sar
1a droite MB, qui rencontre en F sa parallele AD, o

aura

CMB=2MB.CE, CAD=1:;AD.CF;
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et a cause de

MB = AD, CF=CE—FEF,
1 en résultera
CAD = CMB — 1 MB.FEF;

Mmais le produit MB.EF est la surface du parallélo~
gramme MADB, ou le double du triaugle MAD ; on
aura donc

CAD = CMB — MAD,

€1, par'conséquent ,
CMD = CMA + CMB ;

te quil sagissait de démontrer.

La figure suppose que la droite EF soit 1a diffé-
rence des perpendiculaires CI et CF; elle pourrait
Ctre leur somme, et I'on modifierait sans diffienlté
la démonstration précédente pour l'appliquer 4 cet
dutre cas. Un prouvera aussi, de la méme maniére ,
Tue le triangle CMD est la différence des triangles
CMA et CMB, quand le point C est placé dans I'angle
AMB ou dans son opposé au sommet.

ana. Par le centre des momens (fig- 67), menons
Un plan quelconque ; projetons sur ce plan la droite
‘%B qui représente la force P en grandeur et en direc~
an‘;_ soit Q la force représentée de méme par la pro-
Jection A'B’de AB; le moment de la force P sera le
double da triangle CAB, et celui de la force Q le
double du Iriangle CA'B'; par conséquent, le centre
d&.s momens vestant le méme , le moment de la pro-
lection d'une force sur un plan passant par ce point,
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est la projection, sur ce méme plan, du moment de
cette force.

Si 'on appelle H le moment de la force P, et K ce-
lui de sa projection Q; que I'on éléve sur les plans de
ces deux momens des perpendiculaires CD et CE, et
qu'on appelle & Vangle DCE, cet angle sera aussi I'in~
clinaison de H sur K, et 'on aura (u° 10)

K=H COs J‘

Pour une méme force P, Iangle & et le moment H
changeront avecla position du point C sur ladroite CE;
mais cette droite restant la méme, le produit H cos &
ne variera pas; car K ou le triangle CA’'B’ ne fer?
que se déplacer parallelement a lui-méme, san
changer de grandeur.

273. Au lieu d'une seule force, considérons up
systeme de forces quelconques P, P, PY, ete. Soient
H, H', H", etc., leurs momens par rapport au point G
(fig. 68). Désignons par d, d’, 4", etc., les angles
que les perpendiculaires CD, CI’, CD", etc., au¥
plans de ces momens, font avec un méme axe CE;
par Q, Q', Q", etc., les projections de P, P/, P, etc-
sur le plan mené par le point C et perpendiculaire a
cet axe; et par K, K', K”, etc., les projections de H,
H', H", etc., sur ce méme plan. Nous aurons

K=Hecosd, K'=MH"cosd’, K" =H" cos g, etc:

Si I'on voulait senlement connaitre les aires des
projections d'aprés celles des surfaces projetées, il
faudrait considérer les inclinaisons d', J¥, J7, etc-s
comme des angles aigus; mais dans les usages qué
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Rous ferons des projections des momens, nous regar-
derons ces angles comme aigus ou obtus, ou, antre-
Ment dit, nous prendrons pour les droites CD, CD,
CD", eic. , les parties des perpendiculaires aux plans
des momens H, ', H", etc., qui font des angles aigus
Ou obtus avee I'axe CE, selon que les projections Q,
0, Q, ete., des forces P, P/, P’, etc., tendront a
faire tourner autour du point C, dans un sens con-
Venu, ou dans le sens opposé. Ainsi, dans la figure,
les angles DCE, D'CE, D"CE, étant aigus, et les angles
D"CE,, D''CE, etc. , étant obtus, cela suppose que les
forces Q, Q, Q, tendent a faire tourner dans un
méme sens, et les forces Q", Q', ete., dans le sens
oppose. Les droites CD" et CD” étant le prolonge—
ment 'une de Pautre, cela signifie que les forces P
€t P sont comprises dans un méme plan passant par
le pomnt C, mais qu'elles tendent, ainsi que leurs
Projections Q" et Q", a faire tourner en des sens op-
Posés,
En appelant S la somme des valeurs positives ou
Népatives de K, K/, K', etc. , nous aurons

S=Hcos d+ H' cosd’ 4 H" cos J" 4 etc. ;

abstraction faite du signe, S sera la somme des mo-
Mens des forces (), Q', Q, elc., qui tendent & faire
lourner dans un sens, moins la somme des momens
de celles qui tendent a faire tourner dans le sens
opposé ; dapres le théoréeme du n° 47, la quantité
%S exprimera donc le moment de leur résultante
qui tendra a faire tourner dans le sens des forces qui
Fépondent aux angles aigus d5 4", 4, ou aux angles
P 34
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obtus 4", ', etc., selon que la valeur précédente
de S sera positive on négative.

Si on change i la fois toutes les droites CD, €D’,
CD", ete., dans leurs prolongemens, les angles J'
4’y d"; ete., se changeront dans leurs supplémens,
et S deviendra — 8. Il en sera de méme lorsqu’on
remplacera 'axe CE par son prolongement CE/,

La somme S, comme chacune de ses parties, sera
mdépendante de la position du point C sur I'axe CE;
elle ne dépendra que du systeme des forces P, P/,
P", ete., de la position de cet axe et de sa direction
perpendiculaire au plan de projection. Dorénavant
nous appellerons celte quantité S le moment des
forces P, I, P’, etc. , par rapport a l'axe CE.

274. D’apres cette délinition, les trois quantités L,
M, N, dun® 261, seront les momens des forces I,
P/, P, etc., par rapport aux axes des coordonnées
positives de leurs points d’application.

Pour le faire voir, soit ( la projection de la force P
sur le plan des x et y, et ¢ la perpendiculaire ahais—
sée de l'origine des coordonnées sur sa divection, de
sorte que son moment par rapport a ce point ait Q¢
pour valeur. Supposons que la force Q agisse de A
vers B ( fig. 6g), ct que AC et AD soient les coor-
données a et y de son point d’application A, rappor-
tées aux axes rectangulaives Ox et Oy. Soient aussi A
et w les angles BAC' et BAD' que fait 1a force () avee
les prolongemens de x et y ; les composantes dirigées
suivant AC’ et AD" seront Q) cos A et Q cos u, et leurs
momens par rapport au point 0, 0 cos A et 2() cos 45
Fapres la figure, elle tendrout i faire tourner en Sens
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contraire I'une de P'autre, et la force Q, dans le geng
de Q cosu; on aura done

Q¢ = «Qcosp — () cos A.

En examinant les différentes positions que peut
avoir le point A, et les diverses directions qu’on peut
supposer a la force Q, il est aisé de voir que cette
€équation subsistera quels que soient les signes de @,
J> €0s A, cos k., pourvu que la force Q, transportde
au point E ou F, ou sa direction rencontre I'axe des 2
ou des 7, tende a faire tourner l'axe Ox des x po-
sitives , dans I'angle des o et » positives, et, consé-
quemment , I'axe Oy des y positives, en dehors de cet
angle, comme cela est indiqué par les floches s et s'.
Si le contraire avait lien, cest-a-dire, si la force Q,
ainsi transportée , tendait & faire tourner 'axe des r
positives, dans 'angle des & et y positives, ef, par
conséquent, l'axe des & positives, en dehors de cet
angle, on aurait

Qg = yQcos A — xQcosp,

quels que scient aussi les signes de x, ¥, ¢0s A, cos g,

1l suit de 14 que si S est le moment des forces P, P,
P, etc., par rapport a 'axe des z posilives, et que L'on
regarde les angles d) ", d", etc., du numeéro précé-
dent, comme aigus ou obtus, selon que les projections
Q, @, Q", etc., de ces forces tendent i faire tourner
I'axe des x positives, dans 'angle des coordonnées x
et y positives , ou en dehors de cet angle, on aura

S =0Q (xcosp—y cos )4 Q' (z'cos ' — ' cos A')
~+ Q" (x" cos " — 5" cos A") - etc. ;
34

L
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aly s Ny 3 297, A5 ' eles, étant ce que de=
viennent x, ¥, *, 4, relativement aux forces Q',
Q" etc.

Soient, de plus, 2, 6, ; 2/, €, 7/; 2", 6", 9"; ete.,
les angles que font les directions des forces P, P/,
P’, etc., avec des paralleles aux axes des x, 7, 2;
on aura

Q="Psingy, Q'=P'siny/, Q'=P"sin¢’, ete.,
cOS2 = Siny cosA, Cosa’=siny'cosy’, cosz'=siny’cosr’, ete.,

= . & ] 7 7 o " n
co8b==SINnycoSg, COSo —SINy COSK’', COSk ==S1Ny COSK ,ele.;

et d'apres ces valears, celle de S coincidera avec la
quantité L dun® 261. Ainsi L est le moment des forces
P, P', P’, etc., par rapport 2 I'axe des z positives; et
selon qu’il est positif on négatif, ce systeme de forces
tend a faire tourner le plan des x et z positives autour
de cet axe , dans I'angle triedre des coordonnées po-
sitives, ou en dehors de cet angle.

Maintenant, si l'on substitue respectivement les
axes des z, x, ¥, positives, a ceux des x, ¥, 2z, posi—
tives, L« se changera dans M; il s'ensuit donc que M
est le moment des forces P, P, P", etc., par rapport a
Vaxe des ¥ positives, et que, selon qu'il sera positif ou
négatif, ce systeme de forces tendra a faire tourner le
plan des z et y positives autour de cet axe, dans I'an-
gle triedre des coordonnées positives, ou en dehors de
cet angle. Cela fait, si I'on remplace de méme les axes
des z, 2z, ¥, positives, par ceux des y, z, x, positives,
Mse changera en N; par conséquent, N sera le moment
des forces P, P, P, etc., par rapport a 'axe des
positives; et suivant qu’il sera positif ou négatif, ce
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systéme de forces tendra a faire tourner le plan des »
et x positives autour de cet axe, dans l'angle des
coordonnées positives, ou en dehors de cet angle
triedre.

Les trois quantités L, M, N, sont donc, comme
on I'a dit, les momens d'un méme systeme de force
par rapport aux trois axes des coordonnées positives
de leurs points d’application ; et les signes de leurs va-
leurs, telles qu’elles sont écrites dans le n° 261, ré-
pondent 4 un sens de rolalion connu, autour de
chaque axe supposé fixe.

275. La premiére valeur de Qg du numéro précé-
dent, est la méme chose que

Qg = aPcos€ — Pycosa.

En appelant H le moment de P par rapport 4 Uorigine
des coordonnées, et J I'angle compris entre une par-
tie de Ja perpendiculaire au plan de ce moment et
Paxe des z positives, on aura donc (n°® 272)

Hcosd = P(xcos€ — yceosa);

ce qui suppose que cette partie de la perpendiculaire
au plan de H, soit celle qui fait un angleaigu ou obtus
avec l'axe des z posilives, selon que la quantité com-
Prise entre les parenthéses est positive ou négative.

Soient &, et d), les angles que fait 12 méme partie
de cette perpendiculaire avec les axes desy et des x
positives ; on aura de méme

Hceosd, — P(zcosa — xcosy),

Heosd, == P(yecosy — zcos§ ).
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Si donc on fait, pour abréger,

(zeosC—y cos 4)*+(zcos e —x cosy) 4 (g cosy— zcos)=p”,

et qu'on regarde p comme une quantité positive, il en

resultera ‘
H = Pp,

i cause de ‘

cos® J' = cos* d, - cos* I, — i;

par conséquent , on aura

! ;
cos §f = ;}(.x'cosé — ycosa’),
1
cos J', = b (zcosa — xcosy),

!

cos ', —_—P(Jrcosy— zcos€ ),

pour déterminer sans dmbigulle les trois angles 4\,
d',, d L'angle § sera aigu ou obtus, comme on I'a
supposé, selon le signe de 2 cos & — y cos a, etles
angles J', et J,, selon les signes de z cos & — & €0s ¥
et ycosy—zcos 6.

On vérifiera aisément ces formules. En effet, re- ‘

présentons I'équation du plan qui comprend l'origine |
des coordonnées et la force P, par

Au 4 By 4 Cw = o} '

u, v, w, etant les coordonnées courantes. Les coor-
données du point d’application de cette force étant
&, ¥, 2, il faudra qu'on ait

> == By 4= Cz = o
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de plus les équations d’une droite menée par I'ori-
gine des coordonnées et paralléle i cette force, seront

v cos o = ucosb, WCOS & = COS¥;

et comme cette parallele est aussi comprise dans le
plan que l'on considére, il en résultera cetle seconde
équation de condition :

Acosa 4 Beos€ 4 Cceosy = o.

De ces deux équations, on tire

A(zeoske — yeosa)

yeosy — zcoshs ]
T == A(zcose — xcosy)
Jycosy — zeosf

et en substituant ces valeurs dans I'équation du plan,
elle devient

u( ycos y—:z 008 8) 4-v(z €05 a—2 €08 ) )z cos L—ycosa)=oq,

Or, daprés les formules connues (n° 17 ), les cosi-
nus des angles &, J\, d,, que fait la normale & ce
plan avec les axes des %, ¢, w, qui sont aussi cenx
des x, 7, %, auront pour valeurs les formules qu’il
s‘agissait de verifier.

En yertu de V'équation H = Pp, la gquantité p- est
la perpendiculaire abaissée de V'origine des coordon-
nées sur la direction de la force P. Clest aussi ce qui
se vérifiera sans difficulté, en prenant le pied de cette
perpendiculaire pour le point d’'application de P; car,
si Uon appelle r le rayon vectenr de ce point, qui sera
alors cetie perpendiculaive, et 2, x, ¥, les angles quq




536 TRAITE DE MECANIQUE.
fait sa direction avec les axes des x, ¥, z, on aura

X = rcosA, ¥y —=rcosp, z = rcosy;

ct en substituant ces valeurs dans celle de p*, et ayant
égard aux équations (n** Getg )

cos* 2 -~ cos*€ -} cos*y = 1,
€os* A < cos*p - cos® v = 1,
oS & €05 A~ €0S 6 cus pt—~ cos 5 cosy =0,

on frouvera

P“ i e 9 1 p =7

276. Les momens d'un méme systeme de forces
par rapport a différens axes, jouissent de propriétés
remarquables qui sont une conséquence immédiate
de celles des projections des surfaces planes sur diffé-
rens plans, que nous allons maintenant exposer.

Soient Ox, Oy, Oz, trois axes rectangulaires qui
se coupent en un point O ( fig. 7o ). Menons par ce
point trois autres axes Oa’, 0y’, 0z', aussi rectangu-
laires. Pour déterminer les directions de ces nouveaux
axes par rapport aux premiers, faisons

20z = &, Wal'= &, 20z’ Y,
&, 200" =y,
207 = a', yOz = €', 207 = 4

l

4

20yl = !, < 5Oy

|
Il

et considérons @, €, y, elc. , comme étant neufangles
donnés, aigus ou obtus. Leurs cosinus seront liés
entre eux par six €quations. En considérant suceessi-
vement les trois droites Ox', 09", 0z, on aura d’abord
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cos* & -+ cos* € - cos* 5 =1,
cos® &' - cos* &' -4 cos* 3/ =1, (1)
cos® a" 4 cos® 6" 4 cos® 9" = 1;

et & cause que x'0y', 2’0z, 'Oz, sont des angles
droits, on aura aussi
cos o cos &' - cos € cos €'} cosy cos Y = o,
€os a cos &= cos € cos 6" cos  cos ' =0, ¢ (2)
cos &' cos e’ cos 6'cos 6”4~ cosy’ cos 3" = o.
Les neaf angles «, o/, 2", etc. , détermineront ré~
ciproquement les directions des premiers axes O,
Oy, Oz, par rapport aux seconds Ox', 0y’, Oz’ De
cette maniére on aura d’abord
cos* @ ~+ cos* o' 4 cos* a” = 1,
cos® € - cos* &' -4 cos* 6" = 1, (5)
cos* y 4 cos* 3 4 cos* " = 1,

el, en oulre,

€0s « cos & - cos &' cos &' 4 cos &’ cos 6" =o,
€Os ¢ €05 - cos &' cos 3’ 4 cos e’ cos " = 0,5 (4)
cos € cos 5 - cos &' cos )/ -+ cos £ cos 3" = 0;

€quations qui seront équivalentes aux six précédentes,
et pourront leur étre substituées.

Soit @ I'aire d'une surface plane terminée par un
contour quelconque, et situce dans un plan passant
par le point (; par ce point, élevons sur ce plan
une perpendiculaire OD, et faisons

20D = g, yOD=¢, z0D = ¢".

Ces trois angles aigus ou obtus , détermineront la di-
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rection de OD et celle du plan de a ; s'ils se changent
tous les trois dans leurs supplémens, la droite OD
se changera dans son prolongement, et le plan de @
restera le méme.

Appelons aussi p, p/, p", les projections de a sur les
plans y0z, 20z, 20y, nous aurons (n°® 10)

p=acosg, p=uacosq, p'=acosq".

Soit, enfin, & la projection de a sur un quatrieme
plan, qui sera, si Pon veut, le plan '02’, et ¢ Vangle
x'0D; on aura anssi

b = acosc,

et, d'apres la formule (2) du n® g,

€08 €== €08 § €0$ a—-c0s ¢’ cos E4-cos ¢"cosy; (5)
d’ou I'on conclut

b=pcosa~pcosEp'cosy; (6)

équation qui fera connaitre la projection d'une aire @
sur un plan quc]wnquc lorsque T'on connaitra ses
projections sur trois plans rectangulaires.

Comme I'équation (5) n'a lieu qu'en tenant compte
des signes des cosinus qu’elle renferme, il s'ensuit
quil faut de méme avoir égard , dans I'équation (6),
aux signes des projections p, p', p’, et les considérer
comme des quantités positives ou négatives, selon que
la pcrpcndiculairc OD au plan de a fait des angles
aigus ou obtus avec les axes Ox, Oy, Oz,

277. Cela posé, considérons de méme un nombre
quelconque d'aires planes @, &', a’, elc., situées dans
des plans différens; projetons toutes ces aires sur les
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trois plans «Qy, 20z, y0z, etajoutons ensemble les
Projeclions faites sur un méme plan , enayant égard a
leurs signes , ainsi qu'il vient d'étre dit. Soient A, A,
A" les trois sommes quon obtiendra de cette ma-
Nigre ; soit aussi B la somme des projections de 4, @/,
@', etc., sur le plan 9'0z'; en formant pour chacune
de ces aires,, une équation semblable & I'équation (6),
et ajoutant ensuite toutes ces équalions , on aura

B = Acosa 4~ A'cos& - A"cosy.

Représentons encore par B la somme des projec-
tions de a, &/, ', etc. , sur le plan x'0z". 1l est évi-
dent que la valeur de B’ se deduira de celle de B,
par la substitution de I'axe Oy’ perpendiculaire 4 ce
plan , & Paxe O« perpendiculaire au plan y'07, c’est-
& dire, en mettant dans la formule précédente 2, €',
¥, au lien de 2, €, 7 ; ce qui donne

B =A cosm’—l—-ﬁcos €’+¢cos LA

Si Pon représente de méme par B” la somme des
Projections de @, @', a’, etc., sur le plan x'0y”’, sa
valeur se déduira de celle de B, en y substituant ",
€", ", au lien de «, €, 3; dou il résultera

B"= A cos a" + B cos 6" + G cos 5"

De ces valeurs de B, B, B', et en ayant égard aux
eéquations (3) et (4), on tire réciprequernent
A=Bcosea - B cos a’ - B" cos e,

A'=Bcos € B/ cos &'+ B" cos &, (7)
A'— D cos ¥ + B’ cos '},' —- B’ cos 'y".
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Ces diflérentes équations nous montrent que les
projections des surfaces planes sur différens plans,
suivent les: mémes lois que celles des lignes droites
sur des droites différentes.
278. En faisant la somme des carrés des valeurs
de B, I/, B", il vient, d'aprés les équations (3) et (4),

B: + sz + BU, _— A.’ + Af, + Aﬂ,5 (8_}

ce qui fait voir que la somme des carrés de ces trois
quantités B, B’, B, ne varie pas avec la direction
des trois plans rectangulaires de projection auxquels
elles se rapportent. Dans le cas particulier ol toutes
les aires a, &, a’, etc., sont dans un méme plan ,
cette somme n'est autre chose que le Carre de I'aire
totale @ -~ a’ 4 a" 4 etc.; et si Pon pr(,nd ce plan
pour celui des axes Oy et Oz, par exemple, on
aura évidemment

A=a+d+4-a" -4etc., A=o0, A=o.

Cherchons actuellement ce que la méme somme
représente dans le cas général ou les aires a, 4/,
a’, etc., sont situées dans des plans quelconques.

L’équation (8) donne

VA A" A" — B — B

Ja somme B, qui varie en passant d'un plan de projec-
tion & un autre, est donc la plus grande possible,
quand on a B'=o0 et B" = 0; et alors elle est égale 2
VA A" A™. Ainsi, Ja quantité constante
dont il s'agit représente , dans le cas général , la plus
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§rande somme des projections sur un méme plan ,
des ajres planes que l'on considére dans I'espace.
27qg. Le plan »'0z' qui répond i cette plus grande
Projection , jouit de propriélés importantes en mé-
Canique , que nous ferons connaitre dans la suite de
Ce traité. Sa position est facile 2 déterminer , d’apres
l‘?s équations B’ = o et B" = o, qui le caracté-
Tisent.

En effet, les équations (7) se réduisent alors &
A—Bcosa, A'=Bcos€, A"=Bcosy;

d'ou 'on tire

A
cos & =—
VA,'A + A o= _!1”""
A
cos 6 = .
VA + A® L A
Aﬂ'
cos y =— W

VA 4 AT 4 AT

Lors donc que T'on connaitra les sommes A, A', A",
des projections sur trois plans rectangulaires 3Oz,
*0z, 20y, choisis arbitrairement , on pourra immé-
diatement déterminer la direction du plan »'0z2’ de la
Plus grande projection , au moyen des trois angles a,

» %, qui se rapportent a la droite Ox' perpendicu-
dire & ce plan. Quant & sa position absolue dans I'es~
pace , il est évident qu'elle est indéterminée ; car les
Projections de chacune des aires @, @, &', etc., et,
Par conséquent, 1a somme de ces projections, sont les
Mémes sur tous les plans paralléles.

280, La somme des projections des aires a, a,
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1", etc. , est égale sur tous les plans également inch-
nés sur celui de la plus grande projection.

Pour le démontrer, prenons le plan perpendicu-
laire & la droite OD ; désignons par G la somme des
projections de a, &, @', etc. , sur ce plan; soient tou~
jours ¢, ¢, ¢", les angles que cette droite OD fail
avec les axes Ox, Oy, Oz, et ¢ 'angle 2'0D qui me-
sure I'inclinaison de ce plan sur celui de la plus grande
projection, On aura, d’aprés ce quion vient de trou-
ver (n°® 277 ),

C = Acosq + A'cos¢ -+ A'cosq’.

En substituant Bcos ¢, Beos&, Bcosy, ala place
de A, A/, A’, on aura donc

C =B (cos a cos ¢ = cosb cos ¢’ 4 cosycosq’),

ou bien, en vertu de la formule (5), C = B cos ¢
et, en metiant pour B sa valeur,

C = VA 4+ A* 4 A™ cos c;

par conchuunt la valeur de C est la méme pour tou‘=
les plans qui font le méme angle ¢ avec le plan y 07
de la plus grande projection.

Celte valeur diminue 4 mesure que langle ¢ ap~
proche de go®; elle est nulle pour tous les plans per~
andlCulanm 5 02",

281. Pour appliquer maintenant i la théorie des
mormens Ces pr OPOS,IUOI'IE- relatives aux pm;LLhonS
des surfaces planes, il suffit de supposer que les aires
a, @', d', etc. , sont les doubles des triangles qui ont
pour sommet commun le point O, et pour bases les
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droites qui representent, en grandeur ei en direc-
lion, les forces P, P/, P’, etc., que 'on a considérées
précédemment. Leurs momens L, M, N, par rapport
ux axes Oz, Oy, Ox, des coordonnédes positives de
leurs points d’application (n® 274 ) seront alors Jes
$ommes des projections de a, &, a’, ete., sur les plans
20y, 20z, ¥0z; et voiei les conséquences qui résul-
tent des propositions qu’on vient de démontrer ;

1°. En appelant E le moment des forces B, P
P ete. » par rapport a un axe passant par le point O,
qui fait avec les axes Ox, Oy, 0z, des angles e, ¢'

"
ez
aigus ou obtus, on aura

E=Ncose+Mcose 4 Lcosé".

2°. Parmi toutes les directions autour du point O,
de 'axe du moment E, il en est une pour laguelle ce
Mmoment est le plus grand possible et égal a
VL# 4 M 4= N°. Par rapport i tout antre axe » pas-
Sant toujours par le point O et perpendiculairve 4 ce-
lui du plus grand moment, le moment E est zéro,
et il est égal a v/L* 4 M*—- N cos d', relativement
L un axe qui fait Fangle &' avec celui du plus grand
Moment.

3°. Enfin, si I'on appelle «, €, 4, les angles que
fait 'axe du plusgrand moment passani par le point 0,
avec les axes Oz, 0y, Oz, des momens N, M, L, et
que 'on désigne par G la grandeur de ce plus grand
moment , on aupa

= M
Cos &b = ~, COSQ:E’ COs Yy =

L
a)
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et, en meme temps,

= \/L’ - M* + N%
d’out il résulte qu'en prenant sur les axes Ox, Oy, Oz,
3 partir du point O, des droiles proportionnelles aux
momens N, M, L, et achevant le parallélepipede
dont ces droites seront les trois coOtés adjacens, la
longueur de sa diagonale représentera la grandeur du
plus grand moment , et cette droite sera l'axe de ce

moment principal.

Ces théorémes remarquables sont dus a Euler. Ils
établissent une parfaite analogie entre la composition
des momens et celle des forces ; analogie qui tienta
ce que les forces étant représentées par des lignes
droites , les momens sont exprimeés par des surfaces
planes qui se projeltent sur des plans différens, de la
méme maniere que les lignes sur des droites diffé-
rentes ( 0° 277 ).

282. Le point O et le systeme des forces P, P,
P’, etc., étant donnés, jappellerai moment principal
de ces forces, leur plus grand moment G. Si l'on
transporte toutes ces forces parallélement a elles—
mémes, en ce point O, elles auront une résultante
que je désignerai par R, et dont les composantes,
suivant les axes Oz, Oy, 0z, seront les trois quantités
X, Y, Z, dun® 261. La considération de cette ré—
sultante et du moment prineipal, fournit un énoncé
tres simple des resultats du chapitre précédent.

Pour I’équilibre des forces P, F', P’, etc., appli~
quées 2 un corpssolide entitrement libre, il suffira
que la résultante R et le moment principal G soient
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€gaux i zéro ; car, a cause de
Rt = Xo - Yo -2, G* =124 M 4 Ny,

les équations R=0 et G =0, entraineront les six
équations d’équilibre du n® 261.

On en peut conclure que pour quun systéme de
forces fasse équilibre & un auntre, il est nécessaire et
il suffit : 1° que les résultantes R qui ont lieu dans
¢es deux systemes soient égales et contraires ; 20. que,
pour un méme point O, leurs momens principaux
soient égaux et répondent a des axes dirigés en sens
contraire, on dont I'un soit le prolongement de Pautre.
La résultante R et sa direction, le moment principal
et la direction de son axe, resteront les mémes,
dans toutes les transformations qu’on peut faire subir
4 un méme systtme de forces, et, généralement,
Pour deux systemes de forces équivalens.

Seient @, b, ¢, les angles que la force R fait avec
les axes O, Oy, Oz, on aura

Y
%{—, cos b=

Z
cosa = B cose =g

Soient aussi @ I'angle compris entre sa direction et
y - - > r

Yaxe du moment principal ; ¢, €, %, €tant les angles
que fait cet axe avec Ox, Oy, Oz, nous aurons

€05 & == ¢0s @ 08 & ~ cos b cos € - cos ¢ cos y,

ou , ce qui est la méme chose,

XN «+ YM + ZL
Mo =-—"x5 - .

Il Sensnit donc que la cordition d'une résultante

3. 35

il

I
[

bl
il
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unique qui est exprimée ( n° 263 ) par I'équation

XN 4+ YM +~ ZL = o,

consiste en ce que I'axe du moment principal G et la
direction de la résultante R doivent se couper & angle
droit. C'est ce qu'on vérifie, en effet, en observant
que si les forces P, P/, P", etc., dans leur véritable ‘
position, ont une résultante unique, cette force doit
étre égale ct parallele & R, et que son moment par ‘
rapport au point 0, doit aunssi étre le moment princi-
pal G; en sorte que l'axe du moment principal est
alors perpendiculaire & cette resultante transportée
au point O parallelement & elle-méme; mais ce rai-
sonnement ne suffirait pas pour prouver que réci-
proquement, quand I'équation précédente a lieu , les
forces données ont une résuliante unique.

283. Je transporte le point 0 en un autre point
it quelconque que jappelle O, ; je désigne par 2., ¥, 2,
les coordonnées de O, , rapportces aux axes Ox, Oy,
0z, et par L,, M,, N,, ce que deviennent L, M,
N, relativement 2 ce point O, : les valeurs de ces
dernieres quantités se déduiront des premieres
(n® 261 ), en y mettant & — 2, y — 7., 2— 2%,
a la place de x, ¥, z; et il en résultera

L, = L X}f‘ . Y.’I:,,
M, =M 4 Zx, — Xz, \ (ﬂ)
NNt |

Ces formules montrent que quand P, P/, P, etc.,
se réduisent a des forces égales, paralléles et dimgeées
en sens contraire, mais non dircctement opposees,
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auquel casona X =0, Y =0, Z=0, les quantités
L,, M,, N,, sont indépendantes des coordonnées dy
point O, ; en sorte que la grandeur du moment prin-
cipal et la direction de son axe ne varient pas avec
la position de ce point. En effet, quelque part que
soit placé le point O,, il est évident que laxe du
moment principal des deux forces paralléles qu’on
peut substituer anx forces données P, ¥, P ety
est la perpendiculaire i lear plan; et nous savons
d'ailleurs (n° 48) que la somme des momens de ces
deux forces qui sera le moment principal des forces
données, est une quantité constante.

Dans tout autre cas, le moment principal change
avec la position du point O, ; et 'on peut demander
quel doit étre ce point, ou ces points, s'il y ena plu-
sleurs, pour lesquels ce moment est un minimum.
En le désignant généralement par G, , cest-i-dire ,
en faisant

Gln — ]-“‘I:J + Mln + Nl’!
nous aurons
G2 = (L4-Xy,—Yz, )*+ (M-Zx—Xz,)24-(N +Yz,—Zg )7

Si I'on égale & zéro ses trois différences partielles par
rapport 4 x,, 7., %, afin de déterminer sa valeur
minima, et si 'on ohserve que

Rﬂ J— I.ie ‘—I" I‘IH + N’;

on obtient trois équations qu’il est facile d’écrire sous
cette forme :

(k]
on
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R, =X (Xx, + Yy, - Zz, )4 YL —ZM,
Ry, =Y (X, + Yy, 4 Zz, ) +ZN — X1,
Rz, =Z ( Xz, + Yy, +Zz, ) +XM— YN,

Or, si Yon ajoute ces trois équations aprés les avoir
multiplides par X, Y, Z, on trouve une équation
identique; il s'ensuit donc que l'une d'elles est une
suite des deux aulres; et comme les coordonndes
%1y ¥i5 %i, D€ S’y montrent qu'au premier degré, elles
appartiennent a une ligne droite qui est le lieu des
centres des momens, par rapport auxquels le mo-
ment principal est au minimum. Il n'est pas nécessaire
d’examiner lequel a lieu du maximum ou du mini-
mum ; car 1l est évident que la valeur de G, croit in-
définiment avec les variables x,, 7., z,, et n'est pas
susceptible de maacimum.

284. Eu dliminant la quantité Xz, 4 Yy, 4+ Zz,,
entre les €quations precédentes, prises successivement
deux i deux, on trouve

Z(NX + MY 4+ LZ)

X_}".-——Y.T, + L=

R* :
Zr,—Xs,+M=LEXF MY+ 12) b
- : (NX . ¥ LZ
Va,— Zy, + N== 20X+ XX+ L2),

gquations qui appartiendront aux projections sur les
trois plans des coordonnées du lieu des centres des
momens principaux minima.

On en déduit

- NX MY 4 LZ
(‘ll _ _‘—+ l{  ; (""J
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pour la valenr du moment principal minimeim, qui est
ainsi la méme pour tous les centres 0,.

Si Ton appelle &, 6.5 2.5 les angles que l'axe
du moment G, fait avec des paralléles aux axes Ox,
0y, Oz, menées par le point 0,, on aura

N, € M, L,
COS‘Z::(]'T": COos E=G—:, COS}.:T:,

quel que soit le centre des momens ; et, d'aprés les
équations (a), (), (c), il en résullera, en particu-
lier, pour un point {}, appartenant a la droite dé-
terminée par les équations (b) ,

| BN

-

Lk
COS oL, — "

¥
> osb,=g, c05y =

ce qui montre que les axes de tous les momens prin-
cipaux minima , dont la valenr commune est donnée
parla formule (¢), sont paralléles enlre eux et aladi-
rection de la force R.

Quand les forces données ont une résultante
unique, il est évident que la plus petite valeur de
G, doit avoir lieu lorsque le point O, est pris sur sa
direction ; ce qui rend cetle valeur égale & zéro. Ré-
ciproquement, si la valeur de G, est nulle par rap-
port 3 un point 0,, on en conclura que les forces
données P, P/, P’, etc., ont une resultante uni-
que, passant par ce point; car si elles se rédui-
saient & deux forces non comprises dans un méme
plan, on pourrait faire passer I'une d’elles par le
point 0,, et véduire leur moment principal & celui
de T'autre force, lequel ne serait pas zéro, contre
Phypothese. On conclut de la que la condition néces-
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saire et suffisante pour que les forces données aient |
une resultante unique, consiste en ce que leur mo-
ment principal puisse étre égal 4 zéro. Ce moment
¢tant alors un minimum , 1a condition dont il sagit

sera exprimeée par I'équation

LZ + MY -+ NX — 0,

d’apres la formule (€) ; et le point 0, auquel il se rap- (
porie, appartenant a cetle résultante, les équaltions
de la droite suivant laquelle elle est dirigée , seront ’

Xre — Yx, + L = o,
Zx, — Xz, 4+ M = 0,
YE: _Z‘;}—l + N = 0,

en vertu des equations (b). Ces résultats coincident

avec ceux du n° 263 qu’'on a trouveés par d’autres con-
sidérations.
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CHAPITRE 111.

EXEMPLES DE L'EQUILIBRE D’UN CORPS FLEXIGLE.

Side; Equilibl‘@ du polygone funiculaire.

285. On appelle, en général , machine funiculaire,
tout assemblage de cordes liées entre elles par des
nceuds fixes, ou simplement passées dans des an-
neaux qui peuvent couler le long de ces cordes. Le
nombre des cordons qui viennent aboutir & un méme
neeud pent étre quelconque ; mais pour simplifier la
question , nous supposerons que chaque neeud n'as-
semble jamais que trois cordons; et , en premier lieu,
nous exclurons les anneaux mobiles.

Prenons done une corde parfaitcinent flexible et
d'une longueur quelconque , dont A et B (fig. 71)
soient fes deux extrémités, Soient M, M', M", eic.
différens points de cette corde ; attachons 4 ces points
des cordons MC, M'C/, M"C’, etc., suivant lesquels
agiront des forces données P, I, P', etc. ; appliquons
aussi au point M une force donnée H , agissant dans
la direction du cordon MA , et au dernier des points
M, M’, M", etc., une autre force donnée K, dirigée
vers le point B, Dans I'état d'équilibre, cette corde
flexible formera un polygone dont les sommels seront
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les points A , M, M, M’,... B, et que nous appelle-
rons spécialement un polygone funiculaire. 1l sagit
de trouver les conditions que les forces données H,
P, P, P’ ... K, doivent remplir pour que cet équi-
il libre soit possible , et de déterminer la figure du po-
lygone qui convient 4 cet élat.

Pour trouver ces conditions, je pars de ce principe
évident que si I'équilibre existe, chacun des cordons
MM’, M'M’, etc., doit étre tiré, & ses deux extrémités,
par des forces égales, dirigées suivant ses prolonge-
mens ; car si ces deux forces n'avaient pas la méme
direction que le cordon, rien ne les empécherait de le
faire tourner; et si elles n’étaient pas égales et con-
traires, elles feraient avancer le cordon suivant sa
direction.

Il s'ensuit d’abord que la résultante des deux forces
H et P, appliquées au point M, doit coincider avec le
prolongement MD du cordon M'M. On peut donc
transporter le point d’application de cette force au
point M’ situé sur sa direction ( n° 41 ); en la com-
posant ensuite avec la force P, appliquée a ce point,
il faudra que cette seconde résultante, qui sera celle
des trois forces H, P, P, coincide avec le prolonge-
ment M'DY du cordon M"M'; et, par conséquent, il
sera permis de la transporter an point M". Je prends
encore la résultante de cette force et de P qui agit
! en ce méme point M"; j’ai, de cette manigre, la force
| qui tire le cordon M"M"” i son extrémité M”, et qui
doit étre dirigée suivant son prolongement M'D'.
Cette force est, comme on voit, la résultante des
forces H, P, P/, P"; un raisonnement semblable prou-
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verait que la force qui tire le méme cordon & son ex-
trémité M", et qui doit coincider avec son autre pro-
longement M”D", est la résultante des forces P,
P ..., K; ces deux résultantes sont donc égales et
direclement opposées; et, conséquemment, la résul-
tante de toutes les forces données H, P, P/, P".... K,
doit étre égale a zéro. On parviendrait évidemmentau
méme résultat, en considérant les forces qui agissent
aux deux extrémités de tout autre coté du polygone.

Ainsi, les forces appliquées au polygone funicu~
laire doivent étre telles gu'en les transportant en an
méme point parallelement a elles-mémes, elles s’y
fassent équilibre; ce qui donne, comme on sait,
trois équations entre les grandeurs de ces forces et les
angles que font leurs directions avec trois axes
rectangulaires menés par ce point. Ces équations
sont (n°® 35)

H cosa-4-Kcose—+P cosa—-P'eosa’4etc.=o,
H cos 54K cos f4-Pcos€—+-P'cos€'+-cte.=0, (@)
Hcose +Kcosg+Pc05}-—l—P'cos 7' +-etc.=o0;

a, e, a, o, etc., désignant les angles relatifs a l'un
des axes; 0 i €, €, etc., les angles relatifs a un
autre axe; el ¢, g, . )5 elc., ceux qui répondent
au troisieme.

286. Lorsque les forces H, P, P/, P’,... K, et les
directions des cordons par lesquels elles agissent, ne
satisferont pas i ces équations, il sera impossible
quelles se fassent équilibre par le moyen du poly-
gone funiculaire, quelque figure qu'on lui doune ;
mais toutes les fois que ces équations seront satis—
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faites, on pourra donner au polygone une figure
telle que Péquilibre ait lieu. Les grandeurs et les di-
rections des forces H, P, P, P",. .. K, étant don-
nées, cette figure est déterminée, et sa construction
résulte de la suite de compositions de forces que nous
venons d'indiquer.

En effet, connaissant les™ directions des cordons
MA et MC, par lesquels agissent les forces H et I,
on déterminera la grandeur et la dirvection de leur
résultante. Sur e prolongement de cette direction, a
partic du point M, je porte la longueur donnée du
coté MM'; cela fait, japplique au point M/ la résul-
tante de H et P suivant la ligne M'M, et Ja force P’
sutvant la direction donnée du cordon M'C/. Je prends
la résultante de ces deux forces, et sur le prolonge-
ment de sa direclion, & partic du point M/, je porte
Iz longueur donnde du coté M'M". Maintenant, je
fais au point M” ure construction semblable & celle
que je viens d'indiquer pour le point M; j'applique
en M"Ia derniére résultante sur le coté MM, et la
force P" suivant la direction donnée du cordon
M"C"; je compose ensuite ces deux forces én une
seule, et, sur le prolongement de celle-ci, je porte
Iz longuenr donnée du cdié MM’

Je continue ainsi jusqu’a ce que je sois parvenu au
dernier des nocuds M, M/, M”, eic., qui sera, je sup-
pose, le point M'*, de sorte que M'*B soit le dernier
coté du polygone. Sa direction est connue, puis-
qu'elle représente celle de la force extréme K, qui est
dounée par hypothese. 11 faudra done que la diree-
tion prolongée de la résultante des deux forces appli-
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quées an point M7, suivant le coté M"M" et suivant
le cordon M*C', coincide avee la direction donnée
da coté M*B. C'est, effectivement, ce qui arrivera
toujours; car, d’apres notre construction, la force
dirigée suivant M'"M" n'est autre chose que la résul-
tante des cinq (orces H, P, P/, P", P, lrausportées
au point M parallelement & leurs directions; en la
composant avee la force P, dirigée suivant M"C',
on aura la résultante de toutes les forces données ,
moins la force K; or, en vertu des équations (a),
qu'on suppose satisfaites, cette résultante est égale et
directement opposée 4 la force K (n* 35).

8i I'on méne par le point A, les trois axes auxquels
se rapportent les angles a, e, &, &/, ete., b, f, €,
€, elc., ¢, g,7%, Y, etc., les coordonnées de chacun
des sommets du polygone, rapportces a ces axes, se-
ront les projections sur ces mémes axes de la partie
du polygone comprise depuis le point A jusqu’a ce
sommet. On pourrait les calculer, en fonctions de ces
angles, des longueurs des cotés du polygone et des
forces données ; les formules générales que I'on oh-
tiendrait de cette maniére serviraient, dans chaque
cas, a construire directement tous les sommets du
polygone, ou seulement un ou plusieurs de ces
points; mais il est plus simple de déterminer succes-
sivement, et les uns au moyen des autres, les
différens edtés du polygone , ainsi qu'on vient de
I'indiquer.

287. Quand les forces données remplissent les con-
ditions exprimées par les équations (@), et quon a
fait prendre au polygone la figure propre a Péqui-
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libre, I'intensité cornmune des deux forces égales et
contraires qui tirent chacun des cotés suivant son
prolongenlenl:, est la Zension que ce cordon éprouve;
il est donc important, dans la pratique, de calculer
cette tension , et de s'assurer, par Vexpérience, qu'elle
ne dépasse pas celle quun cordon du méme dia-
métre et de la méme matiére peut supporter sans se
rompre.

Or, d’apres ce qu'on vient de voir, cette iension
variera d'un ¢Oté a Pautre du polygone; la tension
du coté MM’ sera égale a la résultante des forces H
el P, ou a celle des forces P/, P, P",... K; la ten-
sion da coté M'M" sera égale a la résultante des forces
H, P, P/, ou i celle des forces P, P”,. .. K; et ainsi
de suite. Il sera donc aisé, dans chaque cas particu-
lier, de déterminer les tensions quéprouvent tous
les cotés du polygone en équilibre, lorsque les gran-
deurs et les directions des forces 1L, P, P, PV, ... K,
seront toutes données.

8i les points extrémes A et B du polygone sont
fixes, les forces H et K représenteront a la fois les
tensions des cordons qui aboulissent a ces points el
les pressions que ces points éprouvent. Dans ce cas,
les valeurs de H et K, et des angles a, b, ¢, ¢, S5 8
qui déterminent les directions des deux cOtés extré-
mes du polygone, ne seront plus données ; mais on
aura huit équations pour déterminer ces huit incon-
nues, savoir, les équations (@), les équations (n° 6)
cos*a—-cos*h - cos’c=1, cos’e—-cos® f4-cos*g =1,
et trois équations résultant de ce que la position des
deux points fixes A et B esl donnée. On formera
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celles-ci en calculant les valenvs des trois coordonndes
de I'un de ces points, rapportées & des axes passant
par Pautre point, c'est-a-dire, les projections du po-
]ygone entier sur ces trois axes, et les égalant aux
valeurs données de ces mémes coordonnées.

La détermination de ces huit inconnues sera géne-
ralement tres compliquée; mais aprés que le poly-
gone funiculaire aura pris de lui-méme la figure
propre a Péquilibre des forces appliquées a ses som~
Mets, on obtiendra sans difficulté les tensions de ses
différens cotés ; ce qui suflira pour la pratique. Ainsi,
en décomposant la force P appliquée au point M en
deux autres forces dirigées suivant les prolongemens
des cotés AM et MM, les composanies, données im-
médiatement par la régle du parallélogramme des
forces, seront les tensions de ces deux cotés. Celle qui
agira suivanl le prolongement de AM devra étre égale
a la force agissant suivant ce premier cbte, lorsque le
Point A sera libre; et quand il sera fixe, elle expri-
Mera la pression exercée sur ce point. Pareillement,
les composantes de la force P’ suivant les prolonge-
Mens de MM’ et M'M", exprimeront la tension de
Mw, déja connue par la décomposition de P, et celle
du chté adjacent M'M"; et ainsi de suite.

288. Les cordons qui forment les différens cotés
d’un polygone funiculaire sont tounjours un peu ex-
tensibles ; chacun d’eux s'allonge d’une petite quan~
lité, en raison de la tension qu’il éprouve dans 1'é-
tat d’équilibre; et lorsque cette tension est connue,
on peut calculer l'allongement correspondant,

En effet, I'expérience prouve que tant que Ia
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tension d'un fil homogéne et d'une épaisseur cons-
tante n'approche pas de la force nécessaire pour le
rompre , SOD allongement est proportionnel a sa lon—
gueur et a la tension qu'il éprouve; il varie d'ail-
leuls, d’un fil a un autre, avec I'épaisseur et la ma-
tiere du fil. Cela étant , je suppose que l'on attache a un
point fixe un fil de la méme épaisseur et de la méme
maticre que le cordon AM, et que l'on suspende & son
extrémité inférieure un poids donné IT, trés grand
par rapport a celui du fil. Soient / et I (1 4~ @) ses
longueurs avant et apres la suspension du poids IT;
cette quantité @ sera une fraction tres petite, indé-
pendante de et proportionnelle & IT, en négligeant
le poids du fil ; en sorte que si, dans une autre expé=
rience , les trois quanhtés [, @, I, sont I/, @', IT', on
aura

! @l
N — o’

quels que soient / et . Or, il est évident quun fil at-
taché & un point fixe et tiré i son autre extrémité
par une force dirigée suivant son prolongement, est
dans le méme état que s sl était tiré par ceite meéme
force suivant ses deux prolongemens. Si done on ap-
pelle T la tension du cordon AM, et si l'on suppose
qu'il se soit allongé dans le rapport de 1-~7 a J'unite,
on aura

pour déterminer cet allongement; et il en sera de
méme pour tous les autres cotés du polygone.
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289. Soit que les points extrémes A et B da poly-
Bone soient fixes, ou qu’ils scient libres, si 'un ou
Plusieurs des nocuds M, M, MY, ete,, sout remplacés
Par des anneaux, celte circonstance donnera lieu i
de nouvelles conditions d’équilibre. Supposons, par
exemple, que M’soit un anncau mobile qui puisse
glisser le long du cordon M'M"M"; il est clair que
dans ce mouvement la somme des distances M'M”
et M"M”, du point M" aux points M’ et M”, res—
lera constante. Or, si I'équilibre existe, cet état ne
Sera pas troublé en rendant fixes ces deux derniers
Points; mais alors le point M" sera dans le méme
Cas que s'il étail astreint a demeurer sur la surface
d’un ellipsoide de révolution, dont M’ et M" sont
les deux foyers, et dont le grand axe est égal 4 la
longueur donnée du corden M'M"M"™; donc ce point
e peut rester en équilibre (n° 56), 4 moins que la
{orce P’ qui lui est appliquée ne soit perpendicu—
laire 3 ceite surface; d'ou il suit, d'apres une pro-
Prieté connue de Vellipse, que la direction de cette
force doit couper en deux parties égales 'angle des
deny rayons vecteurs MM’ et M"M".

Lors donc qu'en exécutant la construction du
0° 586, on sera parvenu a un anneau mobile tel
que M”, et que l'on aura pris la résultante des
deux forces dirigées suivant M"M' et M"C”, dont le
prolongement sera le coté M'M"; si 'on trouve que
les angles C'M"M’ et C'M"M" ne sont pas égaux
enire eux, il en faudra conclure que Péquilibre
Wexiste pas. En général , il faudra que la direction
du cordon M"C”, attaché & un anneau mebile, ne
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soit pas donnée d'avance, afin qu'on puisse, en la
déterminant d'une maniére convenable, remplir la
condition de l'égalité des deux angles M'M"C" et
M/mc".

Observons que dans 1'état d’équilibre, les tensions
des deux c¢bHids adjacens 2 un anneau mobhile seront
égales entre clles; cela résulte de ce que ces deux
cotes font des angles égaux avee la direction de la
force appliquée a cet anneau, et que leurs tensions
sont les composantes de cette force suivant leurs
propres directions; mais cette égalité de tension peut
aussi étre considérée comme évidente en elle-méme,
puisque les deux cotés le long desquels 'anneau peut
glisser ne forment qu'un cordon, qui doit néces-
sairement éprouver la méme tension dans toute son
étendue.

2go. Ce que nous disons a l'égard d'un anneau
obligé de glisser le long d'un fil considéré comme
inextensible et parfaitement flexible, peut s'étendre
i tous les points d'un systeme de poinls matériels
en équilibre. Quelle que soit la liaison de ces points
entre eux, on ne troublera pas cet équilibre en
fixant tous les points du systéme, excepté un seul.
Or, si la liaison de ce point avec les autres est telle
quil puisse encore décrive une surface ou seule-
ment une ligne conrbe autour de ces points fixes
il est évident que le point mobile sera dans le méme
cas que sl la surlace ou la ligne courbe existait réel-
lement ; par conséquent, la direction de la force
qui lui est appliquée doit étre normale & cette sur-
face ou i cette ligne.
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Concluons donc que dans tout systeme de points
matériels en équilibre, la force appliquée & chacun
de ces points est perpendiculaire 3 la surface ou &
la ligne sur laquelle ce point serait obligé de res-
ter, si tous les aatres points auxquels il est hé
étaient regardés, pour un moment, comme des
points fixes.

Quand cette condition, relative 4 la direction des
forces et i la liaison des parties du systéme, n’est
Pas remplie, on peut étre certain que Féquilibre
Wexiste pas; mais elle ne suffit pas a elle seule pour
assurer V'équilibre du systeme.

29t. Si toutes les forces qui agissent sur un poly-
gone funiculaire suspendu aux deux points fixes A
et B, sont des poids donnés, il résulte de la cons-
truction du n°® 286, que ce polygone tout entier sera
contenu dans le plan vertical passant par ces deux
points; et cela est d’ailleurs évident en soi-méme,
puisqu’il n'y aurait aucune raison pour qu'il s’écartit
de ce plan plutét d'un colé que de l'autre. En pre-
hant alors la perpendieulaire 2 ce plan pour I'axe
2uquel répondent ¢, g, 3, %', etc., tous ces angles
seront droits, et la troisieme équation (@) disparaitra ;
les deux autres se réduiront 2

Heosa 4 Kcose = o, } (b)
Hecosb + Kceos 4 1T = o,

en supposant que les angles @, e, <, ', ele., répon-

dent & un axe horizontal, ¢t les angles b, Fio By

€, elc., a un axe dirigé dans le sens de la pesan=
I- 36
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teur, et en représentant par H la somme des poids P,
P/, P", etc., appliqués au polygone.

L’¢quilibre de ce polygone ne sera pas troublé st
'on rend sa forme invariable; par conséquent, la
force I1 devra étre égale et directement opposée ala
résultante des forces H et K. En vertu des équa-
tions (5), elle est déja égale et contraire i cetle ré-
sultante; il faundra donc encore qu’elle passe par le
point O (fig. 72), ou les prolongemens des cordons
extrémes AM et BN viennent se couper, et quion
peut prendre pour le point d’application commun
aux deux forces H et K. Ainsi, dans I'état d’équilibre,
la résultante 11 des forces verticales P, I, P", ete.,
sera diriuée suivant la verticale OD; et, cela étant,
on aura les proportions (n° 29)

H : IT :: sin BOD : sin AOB,
K : 1 :: sin AOD : sin AOB,

qui feront connaitre les tensions des cordons ex-
trémes , ou les pressions H et K exercées sur les deux

oints fixes A et B, quand on aura mesuré les angles
AOD et BOD.

292. On peut faire sur les tensions des cordons qui
supportent un poids donné , la méme remarque que
I'on a déja faite & I’égard des pressions éprouvées par
Jes points d’appui d’un plan horizontal sur lequel un
poids est placé (n° a70).

Supposons que les trois cordons attachés aux points
fixes A, B, C (fig. 73), se réunissent an point M, et
qu’en ce point un poids P soit suspendu et agisse sni=
vant la verticale MD., Prenons un point D’ sur le pro-
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longement de cette droite, et construisons le paral-
lélc’pipéde dont MD’ est la diagonale, et qui a ses
trois cotés adjacens MA', MB', MC/, sur les directions
des trois cordons. 8i I'on représente la force P par la
droite MDY, ses composantes suivant ces directions
seront représentées par les droites MA/, MB’, M(, ct
elles exprimeront les tensicns des trois cordons MA,
MB, MC, ou les charges des trois points fixes A, B,
€, lesquelles se trouveront, dans ce cas, compléte-
ment déterminées. Mais, lorsque les cordons abou-
tissant au point M seront au nombre de quatre , ou
en plus grand nombre, on pourra décomposcr la
force P d'une infinité de maniéres différentes, suivant
leurs directions; en sorle que leurs tensions et les
charges des points fixes ne seront plus déterminées,
et une ou plusieurs d'entre elles pourront étre nulles
ou prises arbitrairement. Or, cette indétermination
aurait réellement lien dans la question abstraite, o
Pon n’a tenu aucun compte de Yextensibilite des cor-
dons; mais elle n'existe plus dés qu'on a égard a
cette propricté de la matiére : alors tous les cordong
gallongent un tant soit peu ; leurs extensions dépen-
dent de leur nombre et de leurs positions relatives;
et si lon mesurait ces petits allongemens, on en
pourrait conclure la tension de chaque cordon, ou
la charge de chaque point fixe qui a réellement
lieu.

Ainsi, en supposant que le cordon AM, par exem-
ple, se soit a]]ongé dans le rapport de bl l'um'lé,
et sachant, d'ailleurs, qu'un cordon de méme matipre
et de méme diameétre s'allonge dans le rapport de

36..
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1 4~ @ a l'unité, quand on le suspend verticalement
a un point fixe , et qu'on attache le poids P 4 son ex-
trémité inféricure, on en conclura (n° 288) que la
tension €prouvée par ce cordon, ou la charge que
supporte le point A, est égale au produit gl’ .

Si 'on désigne par @’ et 4", @" et 4, etc., ce que
deviennent les fractions @ et J' relativement aux cor-
dons MB, MC, etc., et par y, 3/, 9/, ete., les angles
aigus que font les cordons MA, MB, MC, etc,, avec
la verticale MD', il faudra qu’on ait

2 y 2

- cos )+ —cosy' + — o8y - elc. =1,

-
afin que la somme des composantes verticales de
toutes les tensions soit égale au poids P. En proje-
tant les mémes cordons sur un plan horizontal mené
par le point M, et désignant par @, o', ', elc., les
angles que les projections de MA, MB, MC, etc.,
font avec une droite M() tracée arbitrairement dans
ce plan, on aura aussi

i = ShL L 1
§in 3 81N & 4= —sin )’ sin o’ —+- etc. = o,

- =

S s s o ; ; _
S % cos @ -+ — Sl ) COs @ ~-etc. — o,

pour exprimer que la résultante de toutes les tensions
est une force verticale.

Quand il n’y a que trots cordons, ces trois équa-
tions suffisent pour déterminer les rapports de leurs
&y

—, , — 5 Alk
Co" 2 W”’

i . &
tensions au poids P, ou les valeurs de -,
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moyen des angles que ces trois cordons font avee la
verticale MD/, et des angles compris entre les plans
de cette droite et de leurs directions. Quand il n’y en
a que deux, leurs directions et cette verticale sont
comprises dans un méme plan; ce qui réduit a une
seule les deux dernieres équations.

§ IL Equilibr‘e dun fil flexible.

295. Considérons d’abord un fil pesant, homogene
‘et d'un diamétre constani; supposons-le parfaitement
flexible et attaché par ses extrémités A et C (fig. 74)
i deux points fixes; et proposons-nous de déterminer
la courbe ABC qu’il forme dans son état d'équilibre.
On nomme cette courbe la chainette; elle est évi-
demment comprise dans le plan vertical passant par
les deux points fixes A et C; car il o’y aurait aucune
raison pour quelle s'en écartat plutdt d'un coté que
de l'antre. ‘

Par un point O, menons dans ce plan deux axes
rectangulaires Ox et Oy, qui seront ceux des coor-
donuées positives ; prenons Ox horizontal et dirigé
du coté du point A, et Oy vertical, dirigé en sens
contraire de la pesanteur, et passant par le point B,
le plus bas de la courbe. Soient x et y les coordou~
nées OP et PM, rapportées a ces deux axes, dun
point quelconque M de la chainette, et s larc BM
aboutissant en ce point et compté du point B; et deé-
signons par &/, ', ', ce que deviendront x, ¥, s,
velativement 4 un autre point de cette courbe , tel
que l'on ait &' > s,
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Si V'on appelle p le poids de T'unité de longueur
du fil, lorsqu’il est couché sur un plan horizontal ,
p(s'=—s) sera, dans cet état, le poids d'une longueur
" — s du méme 'ﬁl_, puisqu'on le suppose homogéne
et d'une épaisseur constante. Quand 1l sera suspendu
aux denx points fixes A et B, ses différentes parties
s'allongeront inégalement , 4 raison de leurs tensions
respectives; et, en méme temps, leurs deusités ou
leurs épaisseurs diminueront de maniére que leurs
masses ne changent pas ; par conséquent, le poids de
cette longueur s'— s ne sera plus exactement le méme
quauparavant ; mais si la matiere du fil est trés peu
extensible, et qu'on néglige les petites dilatations de
ses parties, on pourra encore prendre p(s'—s) pour
le poids correspondant a Farc MM’ de la chalnette.

Soient, en outre, T et T les forces inconnues qui
agissent i ses extrémités M et M/, et proviennent de
ce que ces points sont liés aux parties CM et AM' de
cette courbe. En joignant ces forces au poids p(s'—s),
on pourra considérer MM’ comme entiérement libre ;
par conséquent, si Pon représente par o ¢t € les an-
gles que fait la direction de la force T avec les prolon-
gemens des coordonnées x ct y de son point d’appli~
cation, et para’ et €' les angles analogues relativement
a la force T', nous aurons

T cos 2~ T" cos o' = o,
Teos € - T cos & = p(f—s),. 5 (a)
T(xcost —ycos 2) +T' (x'cos6'—y cos &)= p(s'—8)z,,

pour I'équilibre de ces trois forces comprises dans
un méme plan (n° 262 ); x, étant I'abscisse hori~
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sontale du centre de gravité de arc MM'. Elles au-
ront lieu, quelle que soit la longueur de ecet arc:
si on la suppose infiniment petite, on powiTra né-
gliger, dans ces équations, les quantités infiniment
petites du second ordre ; mais il faudra conserver
les quantités du premier ordre; ce qui n'empéchera
pas quon ne doive considérer la force T comme
étant dirigée suivant la partie MH de la tangente,
3 Dextrémité M, et la force T', suivant la partie
M'H' de la tangente , a l'autre extrémité M'.

Pour le faire voir, prenons sur MM’ un point m
tel que T'arc Mm soit infiniment petit du second
ordre; ce qui permetira de négliger le poids de
cette parlie de la chainette. Si l'on fixe le point m,
l'équilibre ne sera pas troublé ; or, le fil étant sup-
posé parfaitement flexible , il n'y aurait rien qui
empéchat la force T de faire tourner Yare Mm au-
tour de m, si elle n'était pas dirigée suivant son
prolongement MH. On verra de méme que la force T’
doit &tre dirigée suivant M'H'.

D’aprés cela, nous aurons

dr dy

cos o = S cos 6 = — &,
dx dy'
oo it e .
cos &' = =, cos 6 = 4]

et en négligeant les infiniment petits du second or-
dre, ces dernieres valeurs seront

! dz dz " Jj‘ dj"

Ccos &' == o= s & == =+ /A

- sl i s B T

On peut aussi prouver quon a T'=T+dT. En
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effet, la quantité T est une fonction des coordon=
nées du point quelconque M auquel elle répond ,
qui devient, conséquemment, T -~ dT an point M';
en ce point, elle exprime la force qui agit sur la
partie supérieure AM’ de la chainette, suivant la
direction M'II,, prolongement de I'M'. Or, si m'
est un point de la courbe dont la distance & M’ est
infiniment petite du second ordre » la force qui agit
en m' sur la partie Am!, sera la méme, en gran-
deur et en direction, que celle qui agit en M’ sur
AM'; par conséquent, la partic M'm' de la chai-
nette est tirée en sens contraire, suivant M'H’ et m'H,,
par des forces T’ et T+ dT, qui doivent étre égales
pour que M'm’ demeure en équilibre.

Cela posé, je substitue ces différentes valeurs dans
les deux premieres équations (a), et J'y fais s'—s=ds;
elles deviennent

dTZ =0, dTYL =pd. ()
Quant a la troisiéme, elle prendra la forme
d d.
d.T(:r% — _}fﬁ) = pxds ,

en y négligeant les infiniment petits du second ordre,
ce qui permet de remplacer a, par x dans son se-
cond membre. Or, cette équation esi la méme
chose que

xd.T% ——]‘(i.Tg == pads ;

et, comme on voit, elle est une suite des deux au-
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tres. Effectivement, le probléeme ne peut dépendre
que de deux équations, puisqu’il n'y a que deux in-
connues y et T a déterminer en fonctions de x ; la
premiére, pour connaitre I'équation de la courbe, et
la seconde, pour savoir quelle est la tension en un
point quelconque M, c'est-i-dire, la grandeur des
forces égales qui tirent I'élément Mm suivant ses deux
prolongemens.

294. L'intégrale de la premiére équation () est
dx
T E.s— == Cn
en désignant par ¢ la constante arbitraire. Au point B,

dx . -
ona ——=1 et T = ¢; si donc on représente la ten-
iy

sion en ce point le plus bas, par le poids d'une lon-
gueur % du fil, on aura ¢=pk, et, en un point
quelconque ,

ds
T .= pfz T

La seconde éqnation (b) deviendra donc

(2 e =
ﬁd. E.;." = ({J,

d'ou1 I'on tire

en observant qu'on a, en méme temps, s =0 et

dx
immediatement I'arc s et la tension T, lorsque Vor-
donnée y aura été déterminée en fonction de a.

=0 au point B. Ces équations feront conmaitre
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En mettant dans I'équation précédente, a la place
de ds, sa valeur

ds = dx \/I -]—%:,

on en déduit

A T > d'
En mtegrant et observant quonax=oet &;7: — 0
i o

au point B, on en déduit

% — k]ob(———}-\/[—}—dx)

et, par conséquent,

4 S B,

e étant, i ordinaire, le base des logarithmes népe-
riens. Je multiplie cette équation par

x
Ty ™ _.71
(\/ +d_r dl %

il en resulte

dy* __dr
!+d — dx’

on aura donc

‘ ds:i(eg-{—e_;‘)dx,

X X
1 = —
e ; (ﬁh S h)dx-
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d'o I'on tire
I I a A
: _x
.g:—(e""—-e "‘),
s ‘
2

4 _ (©)
L ( h “r)
ry =3 et 4+ e "/, |
en observant que s =o0 et =0, au point B, et
prenant Lorigine O des coordonnées a la distance k
au-dessous de ce point, de sorte quon ait y=nh
quand & =o0.

Ces équations (c) donnent § = h% , comme plus
haut. La seconde est I'équation de la chainette, sous
la forme la plus simple; elle montre que celte courbe
est symétrique de part et d'antre de son point le
plus bas.

La valeur précédente de T deviendra
ds 2
T = ph el

en sorte que la tension en un point quelconque M est
exprimée par le poids d'une longuewr du fil, égale &
la perpendiculaire MP abaissée de ce point sur la
droite horizontale, passant par le point 0. Clest an
point B que cette tension est la plus petile; et sa va-
leur en ce point est ph, comme on I'a supposé.

2g5. 1l ne reste plus qu'a déterminer la constante £
qui entre dans ces formules. L’expression de y fera en-
suite connaitre la figure de la chainette ; mais pour
(que sa posilion soit connue dans le plan vertical
passant par les points A et G, il faudra aussi déter-
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miner la distance de l'axe Or a l'un de ces points
fixes,

Pour cela, je méne par le point A une horizontale
qui coupe l'axe Oy en un point Q, et par le point C,
une verticale qui rencontre cette horizontale au point
D. La position du point C, par rapport au point A,
étant connue, les distances AD et DC seront données.
Je les représente par @ et & . je désigne aussi par £ la

distance AQ; en sorte qu'on ait
AD=a, DC=5h, AQ=*#, 0B=17;

a et b étant des quantités données, et k et h les
deux inconnues quil s’agira de déterminer.

Fappellerai & la distance QD [ la longueur don-
née de la courbe ABC, 8 et g’ ses parties AB et
BC, f'la fleche BQ; on aura

k=t = a, g+ g =1,

en regardant X' et g’ comme des quantités positives
ou négatives, selon que le point C appartiendra au
prolongement de AB ou 3 AB méme. Les ordon-
nées des points A et C sevont 4 ~+f et htfsb,en
considérant aussi la quantité b comme positive ou
comme négative , selon que C sera au-dessous ou
au-dessus de la droite horizontale, menée par le

point A.
Si T'on fait dans les équations (c), d’abord

x=k, s=4g, y=h+f

et ensuite

x = — [, §$ = — g, Yy=h+ 45 -5,
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il en résultera

g = h(e —e 7’), 7?'+f=f(e’?+ e";‘),

gzé(e%,_ ) bt f— b= A':-;L..e_!%);

d'ou l'on tire

i k k 14

h(z ~% = %)

[l =-\e" —e " + e" — e g
E !

k
!):éek"}"eh—‘eh-"eh_

De 12 et de £+ A'=a, on conclut

@ @
2 =4
P — b= R e‘-—f—e"—z),

et, par conséquent,
1 i P ey
;;( e — e ) P (d)

€n faisant, pour abréger,

W \/l‘—b“ — ]
2-}1 = o, at = .

Cette quantité n étant composée de quantités dou-
nées , 'équation (d ) fera connaltre la valeur de «,
et par suite celle de %. En général, cette équation se
vésoudra par des essais; et l'on en déduira la valeur
numerique de e d’aprés celle de 72, aussi exactement
qu'on voudra. 8i n (iffere trés peu de lunité, la
Valeur de @ sera trés petite ; en développant alors
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les exponentielles, et négligeant la quatrieme puis-

sance de «, on aura simplement o* =6 (n — 1).
Si nous faisons aussi

k—F
L

nous aurons
k=%a‘+‘kg, k':%a—-—flé;

et la valeur précédente de & deviendra

I ( i ¥ ; ) ( : ﬂ)
| 2k X alt = T
b= S e —e¢ 3 (e)

ce qui fera connaitre la valeur de €, d’apres celle
de %, et, conséquemment, les quantilés % et A'. Le
signe de &' décidera de quel coté de Oy, le point C
sera place.

Le cas le plus simple aura licu quand les points fixes
A et C seront situés sur une méme droite horizontale.
On aura alors b = o0 ; I'équation (¢) donnera € = o,
3 a, comme cela doit étre-

On aura, en méme temps,

et, par suite, k==k'=

a @
h 4 f= i_"(e"h-[— e 2");

ce qui fera connaitre les tensions aux points A et G,
ou les charges que ces points fixes auront 4 supporter;
aprés que la valeur de & aura été calculée. Dans
le cas général, ces tensions extrémes se déduiront
des wvaleurs de y, correspondantes 4 a = k ¢t
x = — K.

2g6. Parmi toutes les courbes de méme longueur,
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qui aboutissent aux points donnés A et C, la chainette
est celle dont le centre de gravité est le plus bas.

En effet, menons par le point A (fig. 75 ) un axe
horizontal Ay/, et un axe Ax' vertical et dirigé dans
le sens de Ja pesanteur. Soient x° et )’ les coordon-
nées d’'un point quelconque M, rapportées a ces axes.
En appelant x, la distance du centre de gravité d'une
courbe quelconque AMC, a l'axe Ay', nous aurons

b d_}"’
——— A Jand
e, _..f;.x \/I + o dx;
b étant la valeur de x’ qui répond au point C, et !

désignant la longueur dounce de cette courbe, de
sorte qu'on ait

b dj’“ .

l:f; \/1 + Idr.
Or, d’aprés la formule (e) du n® 201, la courbe dans
laquelle la premiere intégrale est un maximumn entre

toutes les conrbes de méme longueur, a pour équation
différentielle

gk c'dx .,

< V@ + o —
e et ¢ étant des constantes arbitraires. En intégrant
et ohservant que les variables 2 et ' sont nulles en
méme temps, il vient

y = log

2 4+ VE + o —c”
——————3
¢+ Ve — ™

et, par conséquent,
=

£ e+ VE T = =yl
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en faisant , pour abréger,

C—i—\/ﬂ‘—c":}.

On tire de 1a

x + Pt \,-’(.r’ o= C')‘ — ' 7’ e :,

en faisant aussi

¢ — Vet —c* =9

On aura donc

;

S

X A
X ec=sye’ +33'e ¢, (f)
pour I'équation dela courbe qui jouit de la propriéte
demandée. Au point C, on aura

R

‘}\I ]

a
be=gye? iy 679

a étaut la distance donnée de ce point a I'axe A/,
de sorte qu'on ait a la fois ' = b et ' = a. Cette
équation particuliere et la longueur / de la courbe
serviront 4 délerminer les deux constantes ¢ et ¢'.

Maintenant, pour faire coincider I'équation (f) avec
celle de la chainette, désignons par ¢ une constante
indéterminée , et changeons les coordonnées x” et 4/
en d’autres, telles que l'on ait

f = — ) il = ]
xde=—0 Fy=¢—ux;
de mani¢re que ces nouvelles coordonnées x et ¥
soient dirigees en sens contraire de 5’ et a/, et rap-
portées a une autre origine, Par ce changement, I'é-
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quation ( f) deviendra

1 X '3 o

7 T 7 -
y = —1pede Y lqfe < g¥

Determinons la quantite €, en posant I'équation

E
% e’ = ;;,'(?_-"—;
et désignons o= k, la valeur commune de ces
deux quantités égales, de sorte qu'on ait
€ &
4 c? o ]I,, 3/' 6’_? = — k.
Comme on a 39’ = ¢™, il en résultera £ = ¢; et

I'équation pl‘écédente de la courbe deviendra

](h 6”

¢e qui coincide avec la seconde équation (¢) que nous
avons trouvée pour la chainette.

297. Si la force verticale qui agit sur chaque €lé-
ment da fil suspendu aux points A et C (fig. 74),
au lien d’étre proportiunuelle a la Jongueur de 1'élé-
ment ds, est proportionnelle & sa projection horizon-
tale dx, la seconde équation (5) deviendra

g m s
d.T = = pdx;

p €tant une constante donnée qui représente le poids
d'un prisme dont la hauteur est I'unité linéaire. En
vertu de la premiére équation (b), qui ne changera
pas, on aura toujours

. ds

p/s

~1
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en désignant par / une ligne de longueur inconnue,
et par ph un poids équivalent a la tension au point B,
le plus bas de la courbe. U en résultera donc

hd. = = dx';

d’ou I'on tire

‘R
l— = a2, aky. = x*,

en placant l'origine des coordonnées x et y au point B.
Dans ce cas, la courbe sera, comme on voit, une
parabole qui aura son sommet au point le plus bas ;

et 'on aura
T = P AV R

pour la tension en un point quelconque.

En employant les notations du n° 295, on aura,
aux points A et C,

shf = k2 2h(f— b)) = K,
et a cause de k + &' = a, on en conclura
ohb = a(k — K');

ce qui fera connaitre %, ¥, f, quand on aura déter-
miné ki, dont la valeur se déduira de la lO‘[lgueur [
du fil. On aura, en effet,

e k R,
% = % vV 4 a2, hl == t[; 2 VBt - xtdoe;

ce qui donne, en effectuant lintégration par les
regles ordinaires,



STATIQUE, SECONDE PARTIE. 690

ahl=litlog Lok - kBB K B

En supposant, pour plus de simplicité, les deux
points A et C dans une méme droite horizontale, on
aura

/)-‘:O: ﬁ‘:/{’:;a;

Péquation précédente se réduira a

M= hlogt tYEEE L VT F;
¢t 'on en déduira, par des essais, la valeur approchée
de %, lorsque les valeurs numériques de / et & seront
données.

Cette inconnue % se déterminera plus facilement
quand la longueur 7 de la courbe différera trés peu
de sa projection a; ce qui rendra la valeur de % trés
grande par rapport & @. On aura alors, en séries tres
tonvergentes,

= 2 A
Vit 4 = h 4+ e %%: -+ ete.,

k+ VERFF __k ) R
IOg e e N e o ~- etc.
Aumoyen de ces valeurs, 'équation précédente de-
vient, a ires peu pres,
(I — 2k) = &%
d’'our I'on tire
ay/ 2a
T 4V3I—9)

LAy
s |
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On a choisi cet exemple, parce qu'il trouve une
application utile dans la construction des ponts sus-
pendus, ou il est important de calculer la tension de
la chaine de suspension et la charge de ses points
d’appui.

208. Supposons actuellement que tous les points
du fil soient sollicités par des forces quelconques. 1l
formera, en général, une courbe 4 double courbure;
les équations d’équilibre de chacun de ses élémens
seront au nombre de trois; et, en supposant toujours
le fil parfaitement flexible, on obtiendra ces équa-
tions par les considérations que nous avons exposées
en détail dans le n® 2¢3. De cette maniére, on trouve

dr

J'TE + Xeds = o,

—
s
b

d.T j—‘? + Yeds = o,
d,T j—: + Zeds = o;

x, ¥, %, étant les coordonnées rectangulaires d'un
point quelconque M de la courbe, ds I'élément diffé-
rentiel de sa longueur, : le produit de la deunsité du
fil et de la section perpendiculaire & sa longueur qui
out lieu au point M, de sorte que eds soit I'élément
de la masse du fil ; T la tension en ce méme point,
ou la force, de grandeur inconnue, qui tire cet élé-
ment eds suivant chacun de ses prolongemens; X,
Y, Z, les forces rapportées a I'nnité de masse et pa-
ralléles aux axes des x, 7, z, qui répondent an point M
et seront des fonctions données de ses trois coor-
données.
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En vertu de la tension T, 'élément ds aura éprouvé
une extension et la qu.milic ¢ une diminulion, telles
que la masse eds n'ait pas changé; en désignant donc
par ds’ et ¢/, ce que ces quantités étaient dans I'état
naturel du fil, on aura | j
|

il
elds = e'ds’; !lh
I

et en supposant I'extension proportionnelle  la force
. s . 5 B
qui la produit (n°® 288), nous aurouns, en méme temps, !

ds = (1 4+ @ T)ds"; (?J

étant un coeflicient trés petit, dépendant de la ma-
tiere et de I'épaisseur du il au point M. Quand le fil H
sera homogene et d'une é€paisseur constante dans
loute sa longueur, & et » seront des quantités cons-
tantes; mais, en géneéral, ces denx quantités pour- i
ront éire regardees comme des fonctions données de “)u
Varcy’, compté d’un point déterminé du fil et ahoutis-
sant au point M. A
2099. Si le fil, de nature quelconque, est seulement
soumis i la pesanteur et suspendu verticalement a un
point fixe que | ‘appellerai A, les deux derniéres équa-
tious (1) disparaitront, et la troisieme se réduira &

dT 4+ gedx = o,

en prenant 'axe des & vertical et dirige dans le sens ‘ii"‘
de la pesanteur, et désignant cette force par g. Je H
place au point A Vorigine des x, et j’appe]lc Q la
aleur de T qui vépond & x =0, c’est-a~dire , la
charge que ce point aura & supporter. Au point quel-
Congue M, on aura
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T = Q — gfedx;

I'integrale etant nulle en méme temps que a.

Appelons B lextrémité inférieure du fil; atta-
chons en ce point un poids P, et désignons par / la
longucur de AB. 1l est évident que P sera la tension
au point B; on aura donc, en méme temps, x =1,
et T—="7P ; ce qui donne

Q:P-,L—gf!ff!‘r,

o 0

et, par conséquent,
: !
T =P gf edx — g [edx.
()

Or, le second et le troisieme terme de cette formule
sont les poids du fil entier et de sa partie AM ; il
s'ensuit donc que la tension au point M est le poids
de la partie BM, augmenté du poids P; ce qul est
d’aillears évident.

La loi de l'allongement du fil dans toute son éten-
due, dépend de sa nature et de son épaisseur. Je sup-
pose , par exemple, qu’il soit homogene et partout
d’'une méme épaisseur, ce qui rendra constant le
coeflicient . En appelant x’ la longucur de la par-
tie AM, avant que le fil soit tendu, laquelle longueur
devient x par Veffet de la tlension, et meltant, en
consequence , dx' et dx au lieu de ds' et ds, dans
Péquation (2), on aura

ar == (I + ﬁJT)(!x".

Soient aussi I’ la longueur totale du fil avant son al-
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longement, et p son poids entier. Le poids de la par-

5 AR 3 z
tie BM sera P—(F—l,—u, et la tension au pomt M

aura pour valeur
i D pil —a)
Py el
En la substituant dans 'équation précédente, inté-
grant ¢t observant qu'on a x' = o et x = 0 au
point A, il vient
s e rif Sepfaraies 27)
2-— et e R o7 ’
pour lallongement de la partie AM. On en déduit
I'allonsement total en faisant 2'=1" et x = [; ce qui
8 i

donne
|—l=aol (P+4+3p);

en sorte que pour avoir égard au poids du fil dansle
calcul de cet allongement, il faut ajouter Ja moitié
de ce poids & celui qui est attaché a son extrémité
inférieure.

%00. Dans le cas général , j’ajoute les équations (1),

\ . . 3er dz dy dz . ]
apres les avolr multipliées par -, —, —; il'en réaulte

AT + ¢(Xdx + Ydy + Zdz) = o, (5)

a cause de
dz* dy* dz*
P, ot e
dx dx dy dy dz d‘f__
A g+dd g+ zd 5=o

SiTon suppose le il homogéne ct son €paisseur cons-
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tante ," et quon udglige la petite dilatation de ses
élémens, la quantité ¢ sera constante; de plus, la
formule Xdax + Ydy ~}- Zdz est, en général, la dif-
férentielle exacte d’une fonction des trois variables
x, ¥, %, considérées comme indépendantes; en fai-
sant donc

Xdx 4+-Ydy +Zde = —d.¢ (x,7,2),
nous aurons

T Ed.(p ( Xy Vs & ),
et, par conscquent,
I="8 @il @75 54

en comprenant la constante arbitraire dans la fonc-
tion @. Cette constante disparaitra dans la différence
des valeurs de T relatives & deux points du fil; il
densuit done que sans avoir déterminé la figure d’é-
quilihre, on connaitra V'accroissement de la tension
d'un point 2 un autre ; en sorte qu’il suffira que Ja
tension soit connue en un point déterminé, pour
qu'elle Je soitaussi dans toute la longueur du fil.
Quant i la courbe formée par le fil, elle sera dé-
terminée par deux des irois équations (1), ou par
deux combinaisons quelconques de ces trois équa—
tions, dans lesquelles on substituera la valeur précé-
dente de T; en sorte qu'il faudra généralement inté-
grer le systéme de deux équations différentielles du
second ordre pour connaitre cette courbe. Son rayon
de courbure au point quelconque M s’exprimera au
moyen de la formule difféventiclle suivante, qui nest
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que du premier ordre, et qui suppose seulement con-
nue la direction de la tangente en ce point.

Les équations (1) peuvent éire remplacées par
celles—ci :

r{.l‘

dy dJ dx - -
Eﬁ“d-Td—‘:'—ad.Ta:E(hci}r \{{a?),
dz dz dz dz
LATE —Zd T = ¢(Zdx —Xds),

dy dz dz Ay e 3 A
fd-TES—_F\ Cz-TdT—E(YdE Z-’,{?"J,

qui sout la méme chose que

dedty — dydix = (Xdy — Yda) T,

dedte — dxedz = (Zdx — Xdz) %rf s ¢ (4)
: - eds?
dydiz — dady = (Ydz — Zdy) Y

en effectuant les différentiations et prenant l'arc s
pour la variable indépendante. Or, si I'on appelle p
le rayon de courbure au point M, on a (n° 18)
ds
= -5
[(dxd’y—dyd*z)'+ (dedx — ded'z)" - (dyd'z — dad’x)"}* :

d’apres les équations précédentes et la valeur de T,
on aura donc

P

O Xdy— Yd.z-_)? <4 (Zdr — Xdz)* + (Ydz — e

o(x, ¥y, z)ds 5)

Dans le cas de la chainette, on a

" 7 L -
X=0o, =g, =0, T=yg

al
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en prenani les axes et 'origine des coordonnees que
supposent les équations (¢) du n° 204. On aura donc
ds
= g
ce qu'il est aisé de vérifier, d’aprés ces équations.

501. Appliquons ces formules au cas d’un fil tendu
sur la surface d'un corps solide, et supposons, pour
plus de simplicité, quil ne soit soumis a aucune
force donuée , de sorte que la seule force qui agisse
sur ses différens points soit la résistance inconnue du
solide sur lequel il sappuie.

Au point quelconque M du fil, soit Nes la gran-
deur de cette force appliquée a I'élément eds du fil,
et dont les trois composantes seront Xeds, Yeds,
Z:ds ; sa direciion sera mormale a la surface du so-
lide, et dirigée de dehors en dedans. La pression qui
aura lien sur la partie du solide correspondant a
ds sera égale et contraire a cette force Nds, de ma-
niére que N exprimera la mesure de la pression rap-~
portée & l'unité de longueur.

En appelant 2, g, v, les angles que fait la par-
tie extéricure de la normale en M avec des paral-
leles aux axes des x, ¥, %, mendes par ce point,
on aura

X =NcosA, eY=Ncosp, e =Ncoss.

De plus, st Lk = o est I'équation de la surface du
solide, et qu'on fasse, pour abréger ,

dir . dlr | dIa-1
Y= ( -+ ~+= SE )
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on aura aussi (n° 21)

dlL

dL » dL
- i T S ._.V e | it e,
cos A =¥ <=y COSEES T cosy =1V PP

en prenant convenablement le signe de V.
Cela étant, nous aurons

Xdx + Ydy + Zdz = NVdL = o;

ce qui rendra nulle la valeur de dT donnée par
I'équation (3). La tension sera donc la méme dans
toute la longueur dn fil, quelle que soit la forme
du corps solide. Je supposerai sa valeur donnée, et
je la représenteral par . 8i le fil est attaché par
une de ses extrémités 4 un point du corps, et qu'un
poids considérable, par rapport a celui du fil qu'on
a négligé , soit suspendu verticalement a son autre
bout, ce poids sera la tension k et la pression que
le point fixe éprouvera. Si le fil est libre par ses
deux bouts, et que des poids considérables y soient
suspendus , ils exprimeront les tensions extrémes ;
par conséquent, ils devront étre égaux, ct chacun
d’enx sera la tension k. Enfin, si les deux bouts du
fil sont supposés fixes, sa tension £ se déduira de
son extension, qui sera constanle dans toute sa lon-
gueur.

502. Je désigne par A’, ', v/, les angles que fait
la perpendiculaire au plan osculateur au point M,
avec des parallgles aux axes des x, ), 2. Le rayon
de courbure en ce point étant p, on aura (n° 1)
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dedly — dydiz

S

ds® el o L
dzd’z — dxd’z .
i e g T POy
dyd*z — dzd* .
L—;L\—ZFJ — PCos > S

Si donc on ajoute les équations (4) apres les avoir
multipliées par cos », cos x, cos A, et qu'on ait
¢égard aux valeurs de X, Y, Z, qui ont lieu dans
le cas que nous considérons, il en vésultera

’ ! ¢ L . -
€OS ¥ cos ¥' —~ coS . cos g’ - cos A cos A =o0;

par conséquent, les normales & la surface du corps
solide et au plan osculateur de la courbe formde par
le fil, en chaque point M, sont perpendiculaires
I'une i lautre; ce qui est la propriété caractéristique
de la ligne dont la longueur est un minimum ou un
mazxinum sar une surface donnée (n° 161). 1l sensuit
donc qu'un fil tendu sur un corps solide, trace, en
général, la plus courte distance d’un point & un autve
sur la surface. A la rigueur, il est possible que ceite
distance soit, au contraire, un maximum ; ainsi
par exemple , deux points donnés sur une sphére
sont les extrémitds communes a deux arcs de grands
cercles, dont I'un est la plus courte distance entre ces
points, et autre la courbe plane la plus longue ; or,
il est évident que I'équilibre du fil tendu sera rigou-
reusement possible sur ces deux ares de cercle, puis-
quen le placant sur I'un des deux, il n’y aurait aucune
raison pour qu’il s'en écartat plutdt d'un coté que
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de l'autre; mais sur le petit arc I'équilibre sera
stable, et sur le grand il ne sera qu'instantané, de
sorte quil ne pourra subsister, physiquement, qu’a
l'aide du frottement du fil contre le corps solide.

Si 'on substitue encore les valeurs de eX , &Y, €Z,
du numéro précedent, dans la formule (5), on aura

dipe az | - dz dz =
N [(E oS A— <, €os ,b:) -+ (EF €OS ¥ —— COS A)
dz e X |t
\-{—(was,u.——d—swsy)]—-— .
a cause de @ (x, ¥, z) = k. En méme temps, on a

dz’

—
ds* ’

+d'|
Cos* A - cos* . = cos*y = 1;

la normale a la surface du corps et la tangente a
la courbe du fil, en chaque point M, étant perpen-
’ P . perp
diculaires I'une 4 I'aulre, on a aussi
dx

d—coq/\—l— cosp.—{—- CO8 ¥ == 0;

, au moyen de ces trois derniéres équations, on ré-
duit sans difficulte le coeflicient de N, dans la précé-
dente, 4 I'unité. On a donc simplement

il
i
ce qui montre que la pression rapporiée a I'unité de
longueur, exercée par un fil tendu sur la surface
d'un corps solide, est égale, en chaque point M, &
la tension divisée par le rayon de courbure du fil,
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Cest-a-dire, par le rayon de la section normale a la
surface et tangente a la courbe du fil.

505. Ces résultats seront modifiés par le frotte-
ment du fil contre la surface du corps sur lequel il
s'appuie. Pour montrer comment on doit avoir égard
a cette force dans I'équilibre d'un fil flexible, je vais
considérer I'équilibre d’'un cordon ABMCD (fig. 76),
dont la partie BMC est appliquée sur la gorge d'une
poulie fixe, et qui est tiré, suivant les prolonge-
mens BA et CD de cette partie, par des {orces don-
nées. La poulie et la droite AB seront supposces ver-
ticales; la force agissant suivant BA sera un poids £,
et je représenterai par F celle qui agit suivant CD.
Les tensions qui ont liea aux points B et C suivant
les tangentes BA et CD, auront k et F pour valeurs.
Je supposerai aussi, pour simplifier la question, que
la poulie soit circulaire; Jappellerai ¢ son rayon, et
je prendrai son centre 0 pour Torigine des coordon-
nées : I'axe des z sera perpendiculaire & la poulie,
'axe des 7 vertical et dirigé de bas en haut, I'axe
des x horizontal et passant par le point B, Enfin, je
fixerai au point C l'origine de l'arc s aboutissant au
point quelconque M du cordon, de sorte qu'on. ait

o

Cela posé , si le frottement était nul, il faudrait
qu’on etit k =F dans le cas de I'équilibre ; mais, 2
raison du frottement , 'équilibre peut subsister tant
que la différence de ces deux forces k et F n’a pas
dépassé une certaine limite. Concevons donc que I'é-
quilibre soit sur le point de se rompre dans le sens
du poids k; ce qui suppose quon ait k& > F. A cet
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instant, le frottement du cordon contre la poulie,
qui a lieu au point quelconque M, sera dirigé, sui~
vant la partic MII de la tangente, en ce point. Je re-
présente par w son intensité, et, comme précédem-
ment, par N la résistance normale qui a lien au méme
point M, suivant le prolongement MO’ de MO, de
maniére que uds et Nes soient les forces tangente et
normale qui agissent sur I'élément éds du cordon
ahoutissant au point M, et que u et N représentent
ces mémes forces, rapportées a I'unité de longueur.
8iI'on méne par ce point M des paralleles Mx' et My’
aux axes Ox et 0y, cn aura

coscMH — — ‘g, cos ¥'MH =— cf
cos x'MO' = f—r - cos y'MO' = ‘Z_
de la on conclut
-_]... N

pour les valeurs de X et Y qu’il faudra substituer
dans les équations (1). La force ¢Z sera évidemment
nulle; la troisieme équation (1) disparaitra , et les
deux premiéres deviendront

Nads Hj’ds
a’s ST
N ds prds
A e

c

Le point M appartenant a la circonférence de la
poulie , on a

xt =yt =1, xdr~ydy=o0;
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an moyen de quoi les deux équations précédentes
peuvent étre changées en celles-ci :

.rd.Tgf—l— ’d.Tf{‘Z-}-chs=o, l
©)

c & ;e
ey T+ T a Y (e — xdy)=o. |

Mais 5 ( ydoc — xdy) est la différentielle du secteur
décrit par le rayon OM, & partir d'une ligne fixe
(n° 156), qui sera OC, par exemple. Ce sccteur
étant circulaire et répondant a larc s, sa valeur est
Les; on a donc

ydx — xdy = cds.

D’ailleurs, on a aussi

dx dy dx d

= -{-_y% = o, ch.dT -+ J’(f-% = — ds,
dx* dy* o dr ; dz dy ‘({'y
o e g b S 505

ce qui réduit les équations (6) a
Po== cN 3 dTl = Pgd.;;
d’otr l'on tire
cdN = pds.

La pression qui a lieu au point M, sur la gorge de
la poulie, est égale et contraire a la force N ; si donc
on suppose le froitement proportionnel & la pres-
sion (n® 269 ), on aura

r=JN;

f étant un coefficient constant qui dépendra de la
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nature des deux surfaces en contact. On aura donc
cdN = fNds
et, en intégrant, .
N = Ae*;
A désignant la coustante arbitraire, et e la base des
logarithmes népériens. On aura, en méme temps,

by

: 1
‘ » M = Ajer J

Au point C, on a s =0 et T=F; on a donc

T — Ace

o

A— 1—:; et si 'on appelle / la longueur de I'are CMB,

on aura s=17 et T=1£%, a son autre extrémité B
Nous aurons donc finalement

e S fs
5. TR = 3
N==-e¢°, T=Fe-, ;.a:f—{'”,
C o
en un point quelconque M, et, de plus,
1t
%k = Fe*;,

pour I'équation d’équilibre.
En représentant par ¥’ le frottement total qui 2
lien dans toute la longueur de CMB, on aura

: S
¥ = fnl,ud.f — I*‘(e‘_'——l) ’

et I'équation d'e’quilibre pourra sécrire ainsi :
EF=F + F.

Si nous faisons
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£l

a !
> — e
e _|_.f,

- nous aurons

| ment flexible.

on aurd

(19— [25 ]+ [, Xeds

ds

Y (T %) xS [T ji'] + f : Yeds

; . k
l"‘—‘?—jF, _jf=-1:_——1;

(%)~ (1% ]+ [ 2=

ot Ton voit que le frottement total F' est égal a la
plus petite des deux forces £ et F, multipliée par
un coefflicient f7, qui varie non-seulement avec la
H‘ . quantite f, mais aussi avec l'étendue I du contact
i et le rayon ¢ de la poulie. La différence des forces
[ ket F, i Vinstant ot I'équilibre se rompt, fera con-
naitre la valeur de ', et leur rapport, diminué¢ de
Punité, sera la valeur du coefficient f', d'ou l'on
pourra ensuile déduire celle de - Lorsque F sera un
poids , ainsi que &, on devra, pour plus d’exacti-
tude, comprendre dans ces poids k& et F, ceux des
parties verticales BA et CD du cordon.

504. Dapres les trois équations (1), il est facile
i de vérifier que les six équations générales de I'équi-
libre (n° 261) ont lieu dans le cas dun fil parfaite-

Pour cela, jappelle K et K' les deux extrémités
du fil , et sa longuenr; et je fixe au point K Vori-
gine de Varc s. En intégrant les premiers membres
des équations (1), depuis le point K jusqu'au point K',

o,
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les quantités comprises entre les crochets répondant
au point K, et celles qui sont renfermées entre deux
parenthéses, au point K'. Indépendamment des forces
X, Y, Z, qui agissent dans toute la longueur du fil,
je suppose que des forces particuli¢res, données en
grandeur et en direction, soient appliquées & ses deux
bouts: j'appelle £ celle qui agitau pointK, et a, €, 9,
les angles que fait sa direction avec des paralléles aux
axes des @, J, z, menées par ce point; et je désigne
par ¥, o', €/, 9, les quantités analogues relativement
an point K'. Ces forces & et &’ seront les tensions ex-
trémes, en grandeur et en direction; et dapres les
parties des tangentes en K et K’, avee lesquelles leurs
directions devront coincider, nous aurons

(!.I' d.:_l" pets 3 - dz
ET;I\- — ) cosx Ty I:Td—‘}—;\ CO:.C, [TE]-:—A cosy,

,.r'].?-' , P - 'd ] : d= : . (7)
(l ——)::A cos 2, (\'I%):fr cos €', (Trﬁ =R cos '

ds
les équations précédentes deviendront donc
’ ' L |
k cos e <~ & cos 2 —-}-J Xids=o,
(4]
l r
kcosé’-—l—k’cosé”—i—f Yeds = o, (8)
WA
: L
kcos 5 4= &' cos ' - f Zeds =o0;
o o
et elles expriment, comme on voit, les conditions
d’équilibre renfermées dans les trois premieres équa_
tions (1) du n*abx,

En observant qu'on a identiquement

38..
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) dy g ompdr dy _dx
xd TY —yd. T =d. V(=L —rF),

"de—Lv—T(de% :d.T(f\ﬁ ——T%ﬁ) 3

s dz £33 gy & dz (IJ
yd. T — — ,..d.Tt—‘ i T('} 5

on déduira des équations (1) du n° 208
d.T (Tﬂl — ff) A (Y — yX)eds =0,
ds ~aels <
L1(2% —2 %) (X — aZ) eds =0
. (z—"q"—'—.xa; +-.J. — Xt ) eas =— O,

ATy % — sF) 4 (yh— oY) sds=o.

Si donc on intégre ces quantités nulles depuis le
point K jusqu’au point K/, et que l'on déqigno para,
b ¢, les valeurs de =, 7, z, relatives a K, et par

8- b’, ¢, celles qm u,pcmdcnt A K/, on aura, en
a_yant égard aux équations (7),

l :
k(acost-~beose)-k'(a coss’—b'cosa’) - ,/‘ (xY—yX)eds =0

Z
k(ecose—acosy)- k' (c cose ——a’eosv')-}—f (zX—aZ)eds =0, 5 (0)
o

I
k(beose—e cosb) 4K (b cosc’—c coss’) -|—[ (yh—zY)eds—0 ;
J oo

ce qui exprime les conditions d’équilibre relatives
aux momens des forces données, qui sont renfer—
mées dans les trois dernieres équations (1) du n® 261.

305. Ces équations (8) et (9) serviront, en géné-
ral, & déterminer les coordonnées a, b, ¢, @/, ¥, ¢,
des deux points extrémes K et K'; toutefois, il y aura
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des cas ou une partie de ces quantités devra rester
indéterminée. Si, par exemple, les forces donndes
qui agissent sur le fil sont la pesanteur et d’autres
forces indépendantes des coordonnées de leurs points
d’application , il est évident que la position absolue
du fil dans V'espace ne pourra pas étre déterminée :
on pourra alors prendre arbitrairement les trois coor-
données de 'un des points K et K’; les équations (g)
détermineront les trois coordonnées de l'antre point;
et, pour que I'équilibre soit possible, il faudra que
les forces données satisfassent aux équations (8).

Lorsque I'un des points K et K’ sera fixe, le pre-
mier par exemple, les équations (8) et (g) auront en-
core lieu, pourvu que l'on vegarde la force & comme
inconnue, en grandeur et en direction, et représentant
la pression que le point K aura a supporter. Dans ce
cas, les valeurs de @, b, ¢, seroni données; les équa-
tions () détermineront celles de &, &', ¢/, et les équa-
tions (8) feront connaitre les irois composantes de la
force k. Quand les deux points K et K’ seront fixes et
donnés de position, on connaitra leurs coordonnées,
et les équations (8) et (g) serviront & déterminer, en
grandeur et en direction, les pressions £ et & exer-
cées sur K et K'.

Dans tous les cas, soif que les coordonnées de K
et K’ aient éi¢ dennées, soit qu'on les ait déduites des
équations (8) et (g), on assujettira la courbe formée
par le fil a passer par ces deux points; ce qui servira
a déterminer les quatre constantes arbitraires que
renfermeront les intégrales completes dg ses deux
équations différenticlles du second ordre. Quant 4 la
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constante arbitraire que contiendra la fonction ¢ du
n® 300, on déduira sa valeur de la longueur donnée
du fil, c'est-a-dire, de I'équation

[ V+E +Z de =y,

dans laquelle on regarde y et z comme des fonctions
2 ;

de x. De cette maniere, le probléme sera complete—

ment resolu.

§ L. Equilibre dune verge clastique.

306. Nous entendons par cettc dénomination une
verge droite ou courbe, dont on ne peut changer la
courbure sans y appliquer unc ou plusieurs forces, et
qui reprend sa forme naturelle des que ces forces ont
cessé d’agir, tandis qu'au contraire un fil parfaite-
ment flexible conserve, sans le secours d’aucune
force, la courbure qu'on lui a fait prendre, et n'est
élastique que dans le sens de sa longuenr. Pour
qu'une verge ¢oit élastique par rapport a la flexion,
il faut qu’elle soit formée d’une matiére fort peu ex-
tensible et contractible ; mais cela ne suffit pas : il
faut encore que les dimensions de son épaisseur,
quoique trés petites par rapport i sa longueur, aient
cependant une grandeur convenable ; car, quelle que
soit la matiere de la verge, on peut toujours dimi~-
nuer assez son épaisseur pour quelle n’ait plus au-
cune lendance sensible 2 reprendre la figure dont on
Yaéeartée , et quielle soit ainsi réduite i P'état d’un fil
parfaitement flexible,
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Lorsqu'une verge élastique est écartée de sa forme
naturelle par des forces données, chacun des filets
longitudinaux dont elle se compose peut éprouver
trois effets différens : chaque partie, d’une longueur
aussi petite qu'on voudra, peut étre contraciée ou dila-
tée, sa courbure naturelle peut éire augmentée ou di-
minuée, et cette partie peut avoir éié tordue sur clle-
méme. La tendance de chaque partic 4 reprendre son
état naturel, dépend des attractions et répulsions mu-
tuelles qui ont lieu entre les moléeules de tous les
corps et ne s'étendent qu'a des distances 1nsensibles,
Le ealcul des forces totales qui en résullent el doivent
faire équilibre aux forces données , appartient a la
Pliysique mathématique : je renverrai, pour cet ob-
jet, 4 mon Mémoire sur I'éguilibre et le mouvement
des Corps élastigues (*). Dans ce Traité, on for-
mera les équations d'équilibre d’une verge élastique,
en partant de principes secondaires qui sont géné-
ralement admis.

On appelle, en particulier, lame élastique un pa-
rallélépipede rectangle d’une pelite épaisseur, que
Pon courbe dans le sens de sa longueur, de ma-
nigre quil se trouve compris entre deux surfaces
cylindriques, dont les aretes sont égales  sa largeur.
Cette dimension peutavoir une grandeur quelcongue;
en la divisant par des plans tres rapprocheés et per—
pendiculaires i sa direction, la lame sera partagée en
verges €lastiques rectangulaires. Jacques Bernouilli
a déterminé, le premier, la figure de la lame élas—

e —

(¥ Jidématres de I’ dcadémic des Sciences, tome V111,
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tique en équilibre, d'aprés des considérations que
nous allons développer, et qui servivonl ensuite &
la solution compléte du probléme, dans le cas d’une
verge élastique quelconque.

307. Considérons une lame élastique encastrée
par une de ses extrémilés, cesth-dire, fixée de ma-
niere que Fun des deux petits rectangles qui la ter-
minent perpendiculairement 3 sa longneur, ne puisse
prendre aucun mouyement. Supposons qu'on la plie
dans le sens de sa longueur au moyen d'une foree
appliquée a son auire hout, et qui sera la seule
qui agisse sur la lame. Pour que la lame prenne
une figure cylindrique , comme on vient de le dire,
il faudra qu’elle soit terminée, a son extrémité Ii-
bre, par un rectangle inflexible , au milieu duquel
on appliquera la force donnée, dans un plan per-
pendiculaire 2 la largeur de la lame. Toutes les
coupes longitudinales ou perpendiculaires & cette
largeur seront égales; celle qui renferme la direc-
tion de la foree donnée est représentée par la fi-
gure 77 ; et les courbes AMB et A'M'B’ sont les sec—
tions des deux surfaces cylindriques de la lame, qui
formaient ses deux faces planes dans son état pa-
turel.

On suppose que tous les points qui appartenaient,
dans cet état, & une méme perpendiculaire 3 ces
deux faces, sont encove situés, apres que la lame
a été pliée, sur une méme normale aux deux sur-
faces cylindriques ; ce qui est, effectivement, con-
forme 4 ce quon observe dans son changement de
figure. 11 en resulte que si MM’ est une normale 3
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la courbe AMB, elle sera aussi perpendiculaire &
A'M'B’, et contiendra tous les points de la lame qui
élaient situés primitivement sur une des perpendi-
culaires i ses deux faces; 1l s'ensuit aussi que si 'on
décompose la lame, dans son état naturel, en filets
longitudinaux, et que la courbe CND représente un
de ces filets apres le changement de figure, elle cou-
pera a angle droit en N la normale MM'.

Soit m un point de la courbe AMB, infiniment voi-
sin de M; menons la normale mnm' aux trois lignes
AMB, CNDY, A'M'B/, qui les coupe en m, n, m’; les
prolongemens de MNM' et mnm’ e rencontreront en
un point O, qui sera le centre de courbure commun
a ces trois courbes. Appelons p le rayon de courbure
da filet moyen, ou également cloigné de AMB et
A’'M'B’; 7 la partic de ce filet comprise entre ces deux
normales MNM' et mnm’; u la distance du filet quel-
conque CND au filet moyen, et ¢’ la longueur de
Nn. En considérant cette distance & comme positive
ou comme négative , selon que CND se trouve, par
rapport au filet moyen, du c6ié de la convexité AMB
de la lame, ou du coté de sa concavité A'M'B, e
rayon de courbure MO de CND sera egal a p—f-u, et
les longueurs infiniment petites o' ¢t o seront entre
elles comme p 4 et p, de sorte que 'on aura

; e
gli= g J= —
F

En se courbant, les filets longitudinaux auront
éprouvé de trés petites extensions ou contractions ,
et les longueurs 5 el o, qui €taient égales auparavanl,
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seront devenues i incgales. i)uugnons par 7 leur gran-
deur primitive, et falsons

c=y(+d), =30+J);

d' et 4’ étant de trés petites fractions, posilives ou né-
gatives, selon que le filet moyen et le filet CND se

. =t 2 - . . i
seront allongés ou raccourcis. La fraction - est aussi

» . - P
supposee tres petile ; 51 donc on neglige le produit de

& et =, on aura
y
P J -+ -

ce qui monlre que quand le filet moyen n'aura pas
changé de longueur, les filets situés du coté de la
convexité se serout tous allongés, et les filets situés
du c6té de la concavité se seront tous raccourcis, les
uns et les antes proportionnellement a lears distances
au filet moyen.

Cela posé, rendons invariable la forme de chacane
des deux parties de la lame qui répondent & AMM'A
et Bmm'B/, et que nous appelierons H et K, pour
abréger. La partie H sera immobile; la partie K sera
tirée vers H, ou en sera repoussée , par Ja tendance de
la partie intermédiaire Mazm/M’ 2 veprendre son état
naturel et redevenir une tranche dune é]miqqeup
constante 5. Le filet Nn de cette tranche tendra 2 se
contracter ou & se dilater, selon qu'il aura été allongé
ou raccourei, ¢'est-i-dire, selon que la quantité J sera
positive ou négative. La partie K sera dong tirde dans
le premier cas, et poussée dans le second cas, par une
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force appliquée au point 72; or, on suppose que celle
force, provenant de T'action de Nz, est proportion-
nelle 2 la quantité J" et normale & mnn?, comme si ce
filet Nr était isolé.

En adoptant cette hypothese, je représenterai par
ad" la force dont il s'agit, rapportée a l'unité de sur-
face, et, conséquemment , par ad’Adu la force nor-
male exercée sur 'élément transversal de la surface K,
qui répond au point 72; a étant une constante dépen-
dante de la matiére de la lame, A salargeur, et Adu I'aire
de cet élément. Si donc on désigne par 2¢ épaissenr
de la lame, et qu'on représente par T la force totale qui
tirera ou poussera K, selon qu'elle sera positive ou
négative , on aura

T = ci.)\Jr/1§ Edvt‘b!.,

el, en mettant pour J" sa valeur,
T —= a2z2X:d.

Soit, en outre, ¢ le moment des forces normales a la

y 4 1 - T LT - 2 - G .
surface de K, pris par rapport i Paxe transversal éga-
lement éloigné des deux faces de la lame; nous aurons
aussl

p = ar " Mudu,

et, par conséquent ,

On voit par la, 1°, que la force T, qui tend a con-
tracter ou 2 dilater une tranche quclconque de 1a
lame , est proportionnelle a I'extension positive ou né-
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gative du filet moyen, et indépendante de sa courbure;
2°. que son moment x est, au contraire, indépen-
dant de cette exlension , et en raison inverse du rayon
de courbure; 3°, que la matiére et la largeur de la
lame restant les mémes, la valeur de T est propor-
tionnelle & son épaisseur, el celle de ®, au cube de
cette dimension.

Quand le filet moyen n’a pas changé de longueur,
on a J'==0 et T=o0; les forces paralléles qui ti-
rent ou poussent K se réduisent i deux, égales et
contraires, mais non directement opposées, dont le
moment, par rapport a l'axe transversal perpendi-
culaire a ces forces, est toujours égal & w. Celle
quantité p est ce qu'on appelle le moment de 'é-
lasticiié, lequel est proportionnel, en chaque point,
a la courbure de la lame, on a l'angle de contin-
gence de son filet moyen.

508. li est facile actuellement de former les équations
d’équilibre de cette lame. Dabord, si 'on appelle T
ce que devient la force T au point M, on voit que la
tranche infiniment petite qui répond a Mmm/M/, sera
tirée ou poussée, d'un cdlé par cette force T, et de
I'autre par une force égale et contraire a4 T; et puis-
que , par hypothése , aucune force donnée n'agit sur
cette tranche, il fandra done qu’on ait T" = T. Ainsi
la force T est constante dans toute la longueur de la
lame, et, par conséquent, égale a la composante
suivant cette longueur, de la force donnée qui agit
i son extrémité libre. La dilatation d' sera aussi cons-
tante , proportionnelle A cette force, et positive ou
négative selon que cetie force tendra & allonger ou &
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contracter les filets longitudinaux. Elle n'aura aucune
influence sur la figure de la lame; mais quand on
I'aura mesurée, elle pourra servir a déterminer la
valeur de la constante z, relative 4 la matiere de la
lame. En représentanl par @ un poids équivalent &
la force qui tire la lame dans le sens de sa longueur,
et par @ laire de chaque section transversale de la
lame, on aura

& = 2A&, T— @ —awd, o= —.

Pour déterminer la figure de la lame , menons par
le point A, dans le plan du filet moyen, deux axes
rectangulaires Ax et Ay, dont le premier sera tangent
4 la courbe AMB, et représentera la direction de la
lame dans son ¢état naturel , et dont le second sera
tourné du coté de sa concavite. Soient o et y les
coordonnées rapportées 2 ces deux axes, dun point
quelconque du filet moyen ; a ¢t b, celles de son extré-
mité libre, que nous prendrons pour le point d'applica-
tion de la force donnée qui tient la lame en équilibre ;
Pet() les composantes de cette force, syivant les pro-
longemens de @ et b.Par le point qui répond a x et y,
menons laxe perpendiculaire au plan de la figure,
auquel répond le moment désigné parp, et faisons
une section perpendiculaire au filet moyen. Pour
Iéquilibre de la partie de la lame comprise entre ceite
section et son extrémité libre, il faudra que le mo-
ment ¢, ajouté aux momens de P et Q, par rapport
au méme axe, donne une somme €gale’a zéro, en ayant
égard au sens dans lequel lgs forces dont & est le mo-




606 TRAITE DE MECANIQUE.
ment, et les forces P et (), tendent i faire tourner
cette partie de la lame ; on aura de cette maniére

p+P(b—y)—Q(a—ax)=no.

En prenant Vabscisse a pour la variable indépen~-
dante, et observant que la lame est convexe vers
Vaxe Ax, on aura
3

1 d*y ( dyiNe

e L 1 T,

) dz* y " syt
ou l'on regardera le radical comme une quantité po-
sitive. Si denc on substitue celte valeur dans celle de
@, et celleci dans l'équation précédente, et qu'on
fasse , pour abréger,

3 are? = <
il en resultera

pour I'équation de la courbe formée par la lame
élastique en équilibre.
Son intégrale contiendra deux constantes arbi-
traires que I'on déterminera par les conditions y=¢
dy

'R s -_— P . 2 "
et =~ =o0, quand x =o, ou, si l'on vent y=o
et 7= =0, pour cette valeur de x, & cause de la

ax

petitesse de ¢. En faisant ensuite x =g et y =15
dans cette inlégrale , on aura une équation en a et b,
que l'on joindra a celle qui résuliera de la longueur
donnée de la lame; on aura alors les deux équations
nécessaires pour déterminer ces inconnues a et b; ct
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la courbe élastique proprement dite, sera compléte-
ment déterminée.

509. Si la lame, au lieu d'étre encasirée, est
entiérement libre a son extrémité A, il faudra pour
la maintenir en équilibre, appliquer a cette extrémité
une force dont les composantes soient égales et con-
traires 2 P ¢t Q; en prenant l'extrémité correspon-
dante du filet moyen pour son point d'application,
il faudra, de plus, que la résultante de P et Q
vienne passer par ce point; ce qui exigera quon
ait

Qa="P (b—¢).

Cette équation suffira, quand la lame sera rete-
nue par un axe fixe, passant par cette exirémité
du filet moyen, et dirigé dans le sens de sa lar-
geur. Si elle est simplement posée sur un plan per-
pendiculaire & sa longueur, qui ne 'empéche pas de
tourner antour de 'aréte d'une de ses deux faces, il
fandra que le frottement de cette aréte contre lo
plan , ou une autre force, empéche la lame de glisser

La lame n’étant point encastrée, la direction de
son plan tangent en A ne sera plus connue; si l'on
place toujours en ce point lorigine des coordonnées
X et y, on aura encore ¥y =¢ ou y =0, quand
2 = 0; mais on ne pourra plus prendre I'axe des x
sur la tangente en A, dont la direction ne sera pas
donnée a priori. Cet axe sera alors la direction donnée

3 ; } dy
de la force P, et I'équation = =0, quand o= 0,

devra étre remplacée , pour la détermination deg
constantes arbitraires, par l'équation précédente ,
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relative aux momens des forces P et (), qu'on pourra
réduire a Qa =P5.

310. Supposons quon ait P=o0; en sorte que la
lame soit pliée par une force Q perpeundiculaire &
sa direction primitive ; ce qui est, par exemple, le cas
d’une lame horizontale,, encastrée par un bout, et &
I'antre boutde laquelle on suspend nun poids donné Q.

Je fa1s dans ce cas

€ = c*Q;

¢ étant une ligne dont la longueur donnée sera gé-
néralement trés grande, & moins que le poids () ne
soit aussi trés considérable. L’équation (1) de-
viendra

3
gyt

dy .
c’a;.(i—]— —a— x; (2)

dz?

dp-
Y — o quand

et en inltegrant de maniere quon ail 2= ==
dx

X =0, on aura

d dy*
28’;}% : \/1—'—(%_‘_;:2(51.1‘—:6’.

On en deduit

(2ax — 2% dx

l

V et — (2ax — ;5;’
sc*dx

V jet — (pax — x*)* i

dy

s

ds étant I'élément différentiel de la courbe. Ces for-
mules s'intégreront exactement par le moyen des fonc-
tions elliptiques; mais a cause de la grandeur de ¢,
onas=a, a trés peu prés, et I'on peut réduire 2
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I
dy = = (2a22 — x*)dx ,

la valeur de dy; d'ou Von tire

6c*y = Bax® — a®,

pour I'équation de la courbe.

La lame s'écarlera peu de la direction horizonlale;
Pabscisse @ pourra étre prise pour sa longueur, et
Yordonnée 4 exprimera son plus grand écart. A cause
de

3Qc* = awe’,

si Pon fait 2¢A = @, comme précédemment, nous
aurons
aweh = a*Q,

dans le cas de x = a et y=20b. 1l en résulte donc
que la nature de la lame restant la méme, la quan-
tité b dont elle fléchira sera proportionnelle au poids
Q ct au cube de la longueur a, et en raison inverse
du carré de son épaisseur ¢ et de I'aire & de sa section
tranversale.

Silon substitue pour c.w savaleur = do o° Zo8. et
P & ’

qu'on appelle / T'allongement total ad* de la lame,
produit par un poids @, on aura

Bl rtal
£ =

En supposant @ = (), on en conclura que si un

méme poids Q, appliqué & Pextrémité libre dune

lame élastique , asit successivement dans le sens de sa
[ue;ag

1. 39
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longueur et perpendiculairement 2 sa longueur,
Pextension / et la flexion b, supposées trés petites
par rapport & la longueur a, seront entre elles comme
les carrés de 'épaisseur et de celte longueur.

Fi1. Quelles que soient les forces P et (), on oh-
tiendra toujours une intégrale premiére de I'équa-
tion (1) en la réduisant & la forme de I'équation (2)
par la transformation des eoordonnées. Nous nous
bornerons a considérer le cas ou la lame, appuyée
contre un plan et non encastrée, s'écarte peu de sa
forme naturclle. Ce sera, par exemple, un ressort
posé sur un plan horizontal par son exirémilé infé-
riecure A, et chargé d'un poids donné a son extré-
mité supéricure B. On suppose qu'en se pliant sous
celte charge, le ressort s'écarte trés peu de la ver-
ticale AB, et que dans toute sa longueur, la tangente
a la courbe qu’il forme dans son état d’équilibre,
fait un tres petit angle avec cette ligne droite. La
figure 78 représente différentes formes quil peut
prendre dans cet état.

Prenons pour axes des a ct des y , la verticale Ax
dirigée en sens contraire de la pesanteur, et I'hori-

dedy : a
zontale Ay. La quantite d—‘i sera tres petite, par h_y—

pothese ; nous négligerons son carré dans I'équa-
tion (1); on aura aussi Q = o, puisque la force qui
agit & Pextrémité B est verticale; en vertu de 1'é-
quation Qa="Pb du n° 309, il sensuivra b =o;
et comme le poids P sera dirigé de B vers A, il fau-
dra changer le signe de cette force dans I'équation (1),
qui la suppose dirigée en sens contraire. De cette
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maniére, cette équation deviendra simplement

« A

— 8
¢ dr* = 7’.,7’ ’
en faisant, pour abréger,
1 o?
— A L (i Py o
o 3 awe' = - P.

On represente ici par @ laire de la section du
ressort, perpendiculaire 4 sa longueur; par ¢ sa
demi-épaisseur, dans le sens on il est plié; et par
e une quantité dépendante de la matiére dont il est
formé. Ces trois quantités sont supposées constantes %
et par suite ¢ cst une ligne de grandeur constante
et donnée.

A cause que l'on a y=o0, quand x==0, on déduit
de cette équation
dy =k T

. xx
y=ksmn-—-, = = — cos—;
k étant une constante arbitraire qui doit éire nulle ou
ires petite par rapport ac.

Quand on aura £ = o, le ressort restera droit, et
sa longueur AB sera un peu diminude par la pression
du poids P. Lorsque ce coefficient % ne sera pas nul
le ressort se pliera; au point B, on aura x =a et
y=b=o0};en désignant par i un nombre entier, il
faudra done qu'on ait

F 1 I
pour la valeur de @ ou de AB. 51 'on appelle / la lon-

gueur du ressort, on aura aussi
3q..
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]—f \/ ldx*

T . . k
en négligeant la quatrieme puissance de —, et mei-

tant pour & sa valeur, il vient

=i+ )

fes 2 ¢f SR )

T e

d’ou 'on tire

Ainsi le coefficient & sera nul ou exprimé par ceite
formule.

%1a. Voici les conséquences remarquables qui se
déduisent de ce résultat.

1°, Tant que [ sera moindre que ¢, la formule (5)
sera imaginaire pour toutes les valcurs du nombre
entier i; on ne pourra pas prendre le coeflicient £
différent de zéro , et le ressort ne sera pas plié par le
poids P.

2°. Soit parce qu'on aura augmenté la longueur
du ressort , soit parce qu'on aura diminué la quan-
tité ¢ en faisant croitre le poids P, supposons que /
surpasse c; la valeur de £, différente de zéro et qui
répond & i =1, sera réelle, et le ressort pourra etre
plié' par ce poids. En désignant par f une fraction
trés petite, et faisant i

0on auara
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F'équation de la courbe du ressort sera done

SR T - -
¥ = jfa sin =,

ou l'on voit qu'elle ne coupera pas la verticale entre
les deux points A et B.

£ 1 . - S

5°. Le rapport - conhinuant i croitre, s'1l vient &
surpasser 2, la valeur de & qui répond & i = 2 sera
réelle, et le ressort pourra prendre une figure diffé-
rente de la précédente. En désignant par /' une frac-
tion trés petite , et faisant

. - f
l = 2¢(x 4+ «*/™),

nous aurons
. o AP
I= 2, Q= 20, A_ja,
d'our 1l résultera
, . %Fx
y = f'a sin =i
ce qui montre que, dans ce cas, la courbe coupera
la verticale au milieu de AB, qui répond & x=1aq.
4°. En continuant ainsi, on voit que si / surpasse
un peu ic, et qu'en désignant par @ une trés petite
fraction, on ait

- izwﬂgﬁ
l=ic (I i i ),

on pourra prendre
q == e k = qa;
ce qui donnera

S L
XY= Qa sm — ;
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équation d'une courbe qui coupera la droite AB en
un nombre i1 de points équidistans, y compris
A et B.

Lorsque { surpasse un multiple de ¢ d'une quan-
tité qui n'est pas tres petite, la valeur de &, dounée
par la formule (3), cesse d’étre trés petite par rap-

A d P :
port a c; et celle de ZI{ n'étant plus alors une tres

petite fraction, la figure du ressort ne peut plus
étre déterminée par I'analyse précédente. 1l faut oh-
server que, dans tous les cas, la figure rectiligne,
qui répond & £ = o, est possible; mais elle n’est
stable et nécessaire que quand / est moindre que c.

313. On entend par la jforce d'un ressort, sup-
posé vertical pour fixer les idées, le plus grand
poids qu’il peut supporter sans fléchir. Ce pouds P
est détermine par l'équation ¢ =1/, qui donne

R

YT

ou I'on voit que, toutes choses d'ailleurs égales, la

force d'un ressort est en raison inverse du carre de

sa longueur. Le ressort étant un parallélépipede rec-

tangle, on voit aussi que si l'on essaie de plier suc-

cessivement les faces adjacentes, sa force sera pro-

portionnelle au carré de Vépaisseur perpendiculaire A
la face qu'on voudra plier.

Quant a la grandeur absolue de P, on la calculera
en mettant dans la formule précédente la valeur de
e, que l'on déduit soit de 'extension /4 de ce ressort,
soit de sa flexion b, que produirait un poids @ ; or,
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daprés les n® 308 et 310, et i cause de ad =/h ct
a = [, ces valeurs sont :

wi R

8 = — ] i
al’ wih ’

par conséquent, on aura
T wwl

514. Les résultats du n°® 507 s'étendent aisément a
une verge élastique , lorsqu’on la suppose droite ou
a stmple courbure dans son état naturel, et qu'en la
pliant elle reste encore & stmple courbure et n’éprouve
aucune torsion.

On prendra, dans ce cas, pour le filet moyen, ce-
lui qui passe par les centres de gravité de toutes les
sections perpendiculaires a sa longueur, lesquelles
pourront étre constantes ou variables, pourva quen
chaque point Jeurs dimensions soient trés petites par
rapport au rayon de courbure de la verge. Soit @
I'aire de I'une de ces sections, faite par un point quel-
conque du filet moyen ; décomposons o en élémens
perpendiculaires au plan de ce filet; et soit vdu Paive
de I'élément qui répoud a la distance © de ce méme
filet; la variable % pouvant élre positive ou négative,
et ¢ désignant une fonclion donnee de u. Soient
aussi & et — K les valeurs extrémes de w; nous

k k
f_. t vy — w, ‘f_y prdy. = 03

la seconde équation résultant de ce que l'origine de
la yariable % est le cenire de gravité de o,

aurons
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Désignons par o, o', &', J", p, les mémes quanti-
tés que dans le n° 307, et par , 9/, r, ce quétaient
o, o', p, dans I'état naturel de la verge élastique; on
aura, pour les deux états de cette verge,

Ue

)»’:y-{—%, =04 —,
p
et, pour le passage de I'un & I'autre,
c=15(1 —{-cP), o' =9 (14 J').

Si donc on néglige les produits Sl s , on en de-
r p
duira

S=4+ul—1);

valeur qui coincide avec celle du numéro cité, dans
le cas “de la verge naturellement droite, ou l'on a
f=ruo

Soit encore T la somme des forces perpendiculaires
4 » qui tirent ou poussent I'une des deux parties de
la verge, séparées par cette section normale. Appe-
lons p le moment de ces forces par rapport & laxe
passant par le centre de gravité de w, et perpendi-
culaires au plan du filet moyen; d'aprés I'hypothése
du n° 307, on aura

k k
T — af A,J’Vdu, p=a |  Jvudes;
— -~

« étant une quantité dépendante de la matiére de la
verge, quon suppose constante dans I'étendue de
chaque section ®, mais qui pourra varier d'un point
4 un autre du filet moyen. En substituant pour 4’
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sa valeur précédente, et faisant, pour abréger,

k 'f i
f_”vuzu_—_gwq X

il en résultera

T= an‘, = U;qi (-:; — rl)

Quand la verge élastique sera & double courbure ,
dans son état naturel ou apres son changement de fi-
gure, la force T aura encore la méme expression ; de
plus, le filet moyen étant toujours celui qui passe
par les centres de gravité de toutes les sections nor-
males, et en désignant par r et p ses rayons de cour-
bure en un méme point, avant et aprés ce change-

I
le moment de I'élasticité par rapport & un axe pas-
sant par ce point et perpendiculaire au plan oscula-
teur du filet moyen ; mais il faudra, en outre, avoir
égard 4 la torsion de la verge, comme nous le ferons
tout a 'heure.

ment, on pourra prendre cette expression de p pour

315. En comparant celte valeur de w a celle du
n® 307, on voit que I'équation différentielle seconde
de la courbe plane formée par le filet moyen d'une
verge élastique qui n'a éprouvé aucune torsion, ne
différera de celle qui répond & la lame élastique pro-

. . I I
prement dite, qu’en ce qu’elle contiendra - —  au
. I .o s »
lieu de 7o & la quantité ¢ & la place de la demi-

épaisseur &. Si la verge est homogene,, et qu'elle soit,
dans son €tat naturel, un prisme ou un cylindre al-
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longe, les trois quantites &, », y, seront conslantes,
et Uon aura r= . On en conclut que la flexion
d’'une verge naturellement droite, produite par un
poids Q perpendiculaire 4 sa direction, et ia force de
ce ressort, se déduiront des valeurs de 6 et P trou-
vées dans les n** 510 et 3153, en y mettant ¢ i la place
de e. Par cette substitution, / étant la longuecur de
celte verge, on aura

b= bic] [ e

5

ﬁ@?ﬂ 4 Jl;"

?

ou, ce qui est la méme chose,

ol #400Q y . e k "
b”‘—e.T.)" Pirzss 7 .f_#uudu.

Pour deux verges différentes, mais de méme lon-
gueur, les flexions produites par un méme poids se-
ront done en raison inverse des forces de ressort ; en
sorte qu’il suffira de comparer entre elles les gran-
deurs de ces forces, dans les différentes hypotheses sur
le contour de la section normale.

Supposons que la section normale soit un triangle
isoctle, et qu'on veuille plier la verge, de maniere
que la (ace correspondante a la base de ce triangle de-
vienne une surface cylindrique, concave ou convexe.
Soient @ et ¢ la base et la hauteur de ce iriangle.
Dans le cas de la convesité, vers laquelie sont diri~
gées les valeurs positives de z (n° 507) , nous aurons

1 2 a[r2

k=ze, y=§c, WE= e e -i—u),

et 1l en vésultera
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waac’

P = 5m

Dans le cas de 1a concavité, on aura

2 My I = = a1 4
k=§(}, ]1—'3(., V.__E<3-L+u);
d’ou I'on conclut

aiaac’

P:——-;

120*

ce qui monire que, dans ce second cas, la force du
ressort est triple de celle qui a licu dans le premier.
Si la section normale est un carré représenté par
f*, et qu'il sagisse de plier le ressort, de sorte que
deux de ses faces opposées deviennent des surfaces
cylindriques, on aura
3%
e e T . =afl
bl frawssf, Posgm
Si elle est un cercle dont le rayon soit &, nous au-
rons
ekt

=k, v=aVk—w, P= S ke

et en supposant Faire de la section normale égale
dans les deux cas, de sorte quon ait f*== wk*, on
voit que la force de ressort qui a lieu dans le premiet
cas surpasse celle qui répond au second, dans le rap-
port de 7 a 3.

Supposons eucore que le ressort C_y]il.ldljiqlle 30it
un tuyau Creux, dont les surfaces conceniriques, in-
térieure et extérieure, aient g et g pour rayons.
Pour avoir la force de ce ressort, il fandra mettre
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successivement g ct g’ & la place de 4 dans la derniére
valeur de P, et retrancher les résultats I'un de lautre;
ce qui donne
P — wa (g 4 g*) (g — g9
44 ]

- P Jie i/ . »
Si laire 7 (g™ — g*) de la section normale est ¢égale
a whk*, on aura done

D ot awoak® (k* 4 28%)

c’il"' 2

d’otr I'on conclut que le volume, la longueur et la
matiere étant les mémes, la force d’un ressort creux
est plus grande que celle d’un ressort plein, dans le
rapport de 1 - i_f a Tunité; 2g étant le diamétre
wntérieur, et wA* aire de la section normale.

516. Formons maintenant les équations d’équi-
libre d’'une verge élastique quelconque, dont tous les
points sont sollicités par des forces donndes.

Appelons A et Bles deux extrémités du filet moyen.
Soientz, ¥, z, lestrois coordonndes rectangulairesd’un
point quelconque M de cette courhe, s lare AM, o
la section normale de la verge faite par le point M,
> sa densité en ce point, et, conséquemment, ) wds
la masse d’une tranche infiniment mince de la verge.
Désignons par Xy wds, Yywds, Zywds, les forces don-
nées qui agissent sur celte masse parallelement aux
axes des &, y, z, de sorte que X, Y, Z, soient ces
forces rapportées & l'unité de masse. La somme de
leurs composantes, suivant la tangente en M au
filet moyen, et tendant 2 augmenter larc s, sera
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(7]
)

dx |
(X = Y == Z {3) yeods.

Représentons aussi par T la force provenant de I'ac~
tion d’une partie de la verge sur la partie adjacente,
appliquée & 'une des faces de la tranche ywds, per-
pendiculaire a @, et tendant & diminuer ou & aug-
menter l'arc s, selon qu'elle est positive ou négative.
Lautre face de pwds sera tirée ou poussée en sens
contraire par une force égale & T 4 dT ; par consé-
quent, pour I'équilibre de cctte tranche, il faudra que
la force d'T soit égale et contraire a la force tangen-
tielle donnée, ou qu'on ait

dT 49w (Xdx + Ydy 4 Zdz) =o0; (@)

ce qui s'accorde avec 'équation (3) du n° 3o0.

A cause du peu d’extensibilité de la matiére de la
verge, on pourra prendre, dans cette équation (a),
pour % et w la densité et la section normale de la
verge au point M, dans son état naturel. 8i ces deux
quantités sont constantes, et que la formule com-
prise entre les parentheses soit une différentielle
exacte, on obtiendra, par 'intégration immédiate, la
valeur de T; et, parce que I'on a T=avd (n° 507),
on en conclura la dilatation positive ou négative de
Pélément ds, qui se sera allongé dans le rapport de
1 + d a I'unité ; mais cela ne fera pas connaitre la
dilatation de la gection mormale ®, ni le change-
ment de densité de la verge au point M. Or, d’appés
ce que j'al fait voir dans le Mémoire cité au commen-
cement de ce paragraphe, l'allongement ou le rac-
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courcissement de ds est toujours accompagné d’une
diminution ou d'une augmentation de », mais telle,
que le volume wds variera dans le méme sens que
ds, et la densité 9, en sens inverse. Il sensuit que
quand une verge homogene, prismatique ou cylin-
drique , est attachée par un bout, et tirée a son autre
extrémité par une force dirigée suivant le prolonge-
ment de sa longueur, elle éprouvera, i la fois, une
extension et une augmentation de volume, propor—
tionnelles a cette force; ce qui a €té effectivement
confirmé par I'expérience. Réciproquement, si cette
verge est posée verticalement sur un plan horizontal,
et chargée d'un poids a sa partie supérieure, qui ne
la fasse pas plier, elle se raccourcira, et, en méme
temps, son volume sera diminué proportionnelle-
ment a la grandeur de ce poids.

517. Prenons sur I'arc AM du filet moyen un point
m infiniment voisin de M; par ce point m, faisons
une section normale; et concevons que la partie de
la verge comprise entre ceite section et I'extrémité A,
soit rendue tout-a-fait immobile, et que la partie
comprise entre I'autre bout B et la section faite par
le point M, devienne seulement de forme invariable.
Cela étant, cherchons les conditions d'équilibre de
cette seconde partie, que nous appellerons K.

En vertu de la torsion de la verge, les points de la
tranche comprise entre les deux sections normales
faites par M et m, seront sollicités par des forces qui
tendront i détordre ses différens filets longitudinaux,
et agiront dans des plans perpendiculaires & Mm,
c'est-a-dire, a la tangente en M au filet moyen. Ces
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forces tendront 24 faire tourner K autour de cette
droite, en sens contraire de la torsion. Soit T leur
momient par rapport a cette droite, que I'on ap-
pellera le moment de la torsion de la verge, cor-
respondant au point M. Si on méne par ce point
des paralleles aux axes des &, y, z, et si U'on ob-
serve que 'axe de ce moment fait, avec ces droites ,
dr dy dz

. X
des angles dont les cosinus sont —, ==, —, on en
es angles e sinus F 2 de? Fon e
conclura (n® 281)
dr dy » dz
=== de’ i ds ? S ds?

pour les momens par rapport & ces trois paralléles,
des forces qui agissent sur K dans le sens de la tor~-
sion,

Désignons par p, le moment de I'élasticité relatif
au point M, c'est-a~dire, le moment des forces dont T
est la somme, par rapport & un axe mené par ce point
et perpendiculaire au plan osculateur du filet moyen ;
r et p étant les rayons de courbure en ce méme point,
dans 1'état naturel et apres le changement de forme
de Ja lame, et € désignant une quantité positive, dé-
pendant de la matiere et de la section normale aun
point M, nous aurons (n° 314)

! 1
b=t 2
et si I'on appelle fr 85k, les angles que l'axe de ce
moment fait avee les paralleles aux axes des x, Y52,
mendés par le point M, les momens de I'élasticité par
rapport a ces trois droites seronl
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peosf, jpcosg, pcosh.

Soient M’ un point quelconque de 'arc MB; &/, 3/,
2/, ses trois coordonnées; s’ I'are AM/, et 9/, ', X/,
Y., Zl, ce qu deviennent %, w, X, Y, Z, relati-
vement a M". En appelant Zla longueur totale du filet
moyen , et faisant

l
I (@ = 2) — X7 = plywat =2,
[ B = 8 20— ey =,

l : T ¢ r
fs [Z' (y —r) — Y (& — z5)])edd =X,

ces trois quantites X, Y,, Z , seront les momens
des forces données qui agisser_lt sur K, par rapport
aux axes menés par le point M, suivant les directions
desx, 7, =.

Enfin , supposons que des forces particulieres agis-
sent & lextrémité libre de K; représentons par
P, Q, R, les sommes de leurs composantes paralleles
aux axes des x, ¥, z, et par &/, &', ¢/, les coordonnées
du point d’application de.leur résultante; leurs mo-
mens par rapport aux mémes axes que Z,, Y,, X,
seront

Q@ — &) — P ¥ — 1)
P ("R RN R = ),
R — ) — Q@ — 1);

et si on désigne par @, b, ¢, les coordonnées de
lexirémité B du filet moyen, on pourra remplacer
ces momens par




STATIQUE, SECONDE PARTIE. 625
(a— x) —P (b —y) 4+ R,
(¢ —2) —R{@—a)+ Q,
R —7y)—Q(c—z)+ P,
en faisant, pour abréger,
Q@ —a)— P (3 — b) R/,
P —c¢c)—R(@ — a) Q,
R —b—Q( —¢)=P.

MO

—

l

Généralement, les coordonnées a', &', ¢!, seront
distinctes de @, b, ¢, parce que les forces extrémes
P, Q, R, ne seront pas appliquées immédiatement &
la verge élastique, et qu'elles agiront aux extrémités
de bras de levier. Soit que ces forces aient ou non
une résultante unique, les quantites P/, Q’, R/, seront
leurs momens par rapport 2 des axes menés par le
point B, parallelement & ceux des x, y, z, ; si donc
on suppose qu'on ait en ce point

dx / d;)'- — - 7 dz e |
- = cos &/, ;[;-_._cosC, o = cos )/,

el qu'on fasse
Pleos ! + Q cos &’ + R cosy = 1.,

cette quantité L exprimera le moment des forces ex-—
trémes par rapport a la tangente au point B (n® 281);
d’ou l'on peut déja conclure que L sera le moment
de la torsion extréme , oli la valeur de 7 relative 3 ¢o
méme point.

Cela posé pour l'équilibre de la partie K'de 1a verge

) 19 .'in
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élastique, il faudra que la somme des momens par
rapport a chaque axe, de toutes les forces qui agis-—
sent sur ses différentes tranches et i ses extrémités ,
soit égale & ZE€ro; ee qui donne ces trois équations

. dx ! 5
o cos fmv E +X P L RO —5) Qe —5) = o,
d
HCDHKWT%“ Y +Q 4 Ple—z)—Ra—zx) = o, (%)

wcosh —T—;—+ Z 4R+ Qa—x) —Ph—y) — o,
oas i

318. D'apres les formules du n® 1), on a
p ¢

: d_;}'d‘ — dzd?
cos f = S—pd,
‘ dzd’r — dzdz
VG
dred’'y — dyd*x
cos b = __J_;.\TJJ' .

>ds® étant la racine carrée de la somme des carrés des
trois numerateurs. Il en resulte

L. dad. wdly

1'_ E ads® ?

d.p cos [ = dyd. -

d.p cosg = dzd. "D _ grg M2

d.w cosh = dad. 2L —dy A
b Adds? 2dds3 ?

et, par (rnmequcl_ﬂ 5

dax ' ’[7 J’e
:?:—n’. i eos [ - 5 d.pcos g f-— d.p cos h = o.

On a d'aillewrs
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dz* a‘y‘

ds® + ?
dx dx d'_;r J;} dz . Jds
F‘ [- d + { + d‘.; ({.a = 0.

Si donc on ajoute les différentielles des équations (B),

apres les avoir multipliées par cry g e

s’ 4o gp» Onoaura,

en réduisant,

gy Sl g m i s
mais i cause que les quantités soumises a I mtcgmtmn
dans les e\prcsqmm L e Z , s'évanouissent &
la limite ' =, 1l suffit (n 14) de différentier sous
les signes [ par rapport a x, y, z, pour obtenir lcs
valeurs de dX, dY,, dZ,; on a donc simplement

2 /
dX = d:,f Y9 'w'ds' — dy frl?}’j/’m’,-f,s’,
dY, = dx /‘_!Z’}'w’ds‘ — dz /‘/X,Q/!w’ff.i",
dZ, = dy /‘ IX’;»'O)’(ls" — dx ‘/'IY’-},’w’ch’;

et en substituant ces valeurs dans I'équation précé-
dente, elle se réduit a dr = o.

Ainsi le moment de la torsion est coustant dans
toute la longueur d'une verge élastique en équilibre,
quelles que soient les forces qui y sont appliquées.

Sa valeur sera done partout la méme qu'a chacun
des deax bouts de la verge; et il est facile de vérifier
qu'an point B, on a ¢+ =1L, comme on I'a dit plus
haut. En effet, en ce point, ona, x =a, 5 =4b,

4o.,
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z==¢; les intégrales X , Y, Z , g'évanouissent, et
les équations (&) deviennent

T cos &' = p cos f 4 P,
. y ! = t
T cos ' = p cos g+ Q)
T cos 3" = m cos &4 R'.

A cause que la normale au plan osculateur du filet
moyen et la tangente a cette conrbe, sont perpendi-
culaires I'une a l'autre, on a, ¢n ce méme point B,

cos o' cos f < cos € cos g -+ cosy cosh = o;

en ajoutant donc les équations précédentes, apres les
avoir multipliées par cos &', cos €', cos 3/, la quantité
o disparaitra , ‘et, d’apres la valeur de L, on aura
7 G

Le moment de la torsion peut seul se déduire des
équationsd’équilibre ; quanta la torsion elle-méme, sa
grandeur est variable le long de la verge, lorsque la
matiére ou la section normale varie d’un point a un
autre. Si la verge est homogéne, et que la section nor-
male soif constante, la différence des angles de torsion
estla mémeaux extrémités de deux parties de la verge,
d’égales longueurs, et proportionnelle aux longueurs,
quand elles sont différentes. Supposons, pour fixer
les idées, qunne verge homogéne, prismatique ou
c}'lindrique , soit encastrée par un hout, et qu'on
applique a son autre exirémité deux forces égales,
paralléles et contraires, agissant a distances égales et
de deux cotes différens; cette verge restera droite ;
mais elle se tordra sur elle-méme, proportionnelle-
ment & sa lougueu r et au moment de ces deux forces
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par rapport 4 son filet moyen, lequel moment sera la
valeur de la quantité L. J'al trouvé, en outre, dans le
Mémoire déja cité (n® 306), que si la section normale
de cette verge est un cercle, la quantité de la lorsion
sera propartiounclle, toutes choses d’ailleurs égales,
a la quatrieme puissance de son diaméire; ce qui
est conforme & l'expérience.

519. Deux des équations (b), ou deux combinai-
sons quelconques de ces équations, aprés quon y
aura substitué la valeurde g et mis L a la place de 1,
serviront 4 déterminer la figure de la verge en équi-
libre. Si elle est droite dans son état naturel , et que
toutes les forces qui y sontappliquées soient comprises
dans un méme plan , les trois équations (4) se rédui-
ront & une seule qui sera celle de la courbe plane
formée par le filet moyen.

Prenons le plan de ces forces pour celai des « et y;
nous aurons

d’ou il résultera

X =0, Y=0,P=0,0=0, r=L=4;
et les deux premieéres équations (4) s'évanouiront.
A cause de r—co, la valeur de w se réduira ﬁg;

on aura aussl cos f = =k 1 ; mais en ayant égm‘d au
sens de laction de T sur la partie K dela verge
(u® 314), 1 est ais¢ de voir quil faudra prendre
cos h = — 1 dans la troisieme équation (b),




630 TRAITE DE MECANIQUE.

deviendra, de cette maniere,

2 I s’ T8 Ak ’ /
[ Y@~ 2) =X — y) Pads

)
+ R+ Q(a — ) —P(b —y) :PE ;

¢t T'on remarquera qu’en conservant les notations du
n® 514, le coefficient € aura pour valeur

k
£ — a f l,vu’du.

Lorsque les forces X et Y seront nulles, cette équa-
tion (¢) coincidera avec 'équation (1) du n° 308, en
observant que dans celle-ci, les forces P et Q agissent
a I'extrémité méme de la verge, ce qui rend nul leur
moment R". Dans tous les cas, on fera disparaitre par
des différentiations, les intégrales cootenues dans
cette équation (¢), qui se changera par la en une
équation différenticlle du quatriéme ordre.

La figure de la verge élant déterminée par I'équa-
tion (c), il faudra en ontre que les forces données
qui y sont appliquées, satisfassent aux conditions
d’équilibre du n® 261, qui se réduisent a trois, &
cause que ces forces sont toutes comprises dans un
méme plan. Désignons donc par D et E les sommes
des forces particulitres qui agissent 4 extrémité A
de la verge, parallelement aux axes des = et o
et par F’ Jeur moment par rapport i ce point A,
de mani¢re que D, E, F', soient & Pégard de ce
point, ce que P, Q, R, sont rclativement i I'autre
extrémité B; les trois dqualions dont il s'agit se-~
ront
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!r 3 i '
D+P+f h’y'@dvzo,

; ;
E4+0Q +f Y'9'a'ds’ =0, (d)
F4+R+4+0Q@—z)—Pb—=3)
! s v
-+ f Y(z'—x) —X'(y — )]yeds=0,

ou P'on mettra pour x et y les coordonnées du
point A.

Lorsque les deux bouts de la verge seront entiere-
ment libres, les forces extrémes et leurs momens se-
ront donnés. Si la verge est encastrée a son extré-
mité A, les forces D et E, ainsi que leur moment I,
seront indélerminés; mais on connaitra les valeurs

de x, 7, Eg, relatives 2 ce point A. 5i la verge est

senlement retenue par le point fixe A, les forces D
et E seront encore indéterminées ; leur résultante sera
égale et contraire & la charge de ce point d’appui,
dont elle exprimera la résistance, et Yon aura F'=o

pour leur moment : on connaitra alors les valeurs
de x et y, mais non plus celle de j—j; Les mémes re-
marques s appliquent au point B.

530. Supposons, par exemple, que la verge soit
homogene et naturellement prismatique ou cylin-
drique; ce qui rendra constantes les trois quantités
7, w, 6. Supposons, en outre, qu'elle ne soit sou-
mise qu'a des forees perpendiculaires a sa longueur,
qui Pécartent trés peu de sa position primitive; et
prenons pour l'axe des x, le filet moyen dans cette
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position; on aura alors

D:o, X:o, e s

ce qui fait disparaitre la premiére équation (d). En

; qe d !
négligeant le carré de i—j;, on aura aussi

ds = da, "= = il
p dx*?
et I'équation (¢) se réduira a
de gERen : :
€ =R+ Qa—x)+yo [ Y(a'—x)ds. (e)

En la différentiant une premiere fois, on a

On a aussi (n°® 14)
l
d. f Yds' — — Yds:

en différentiant une seconde fois, et mettant dx au
lieu de ds, on aura donc
§

Z=wl (N

i Les quatre constantes arbitraires que contiendra
I'intégrale complete de cette derniere equation , se
X détermineront d’aprés les conditions relatives aux
| deux bouts de la verge, et en observant que la va-
leur de y tirée de cette équation devra satisfaire aux
deux précédentes pour toutes les valeurs de . Gir;,
I'équation ( f) résultant des deux autres par la diffé-
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rentiation, il suffira, pour cela, que cette valeur de y
satisfasse a celles-ci pour une valeur particuliérede x;
il suffira donc qu’on ait

EL=R, €2%=—0q, (g
pour & =a ; conditions qui résultent de 'équation (e)
et de sa différentielle premieére, en y donnant 2 x
cette valeur particuliere. Si 'on y donne & x la va-
leur relative au point A, et qu'on ait égard aux équa-
tions (d), on aura

&y ' dly ;
gd.r"—_-F’ gda: E

o0 ()

mais ces équations n'expriment pas de nouvelles con-
ditions distinctes de celles que renferment les équa-
tions (d) et (g), que 'on pourra, si I'on veut, rem-
placer par le systeme des équations (g) et (%).

321. Ces formules comprennent le cas de la verge
pesante. Alors, je suppose le point A fixe, et |’y place
Porigine des coordonnées x et y; je suppose aussi
que l'axe des x, qui représente la direction matu-
relle de la verge, soit horizontal ; je prends I'axe des
7 positives dans le sens de la pesanteur, et je repré-
sente cette force par g. On aura Y=g, et l'intégrale
de Véquation ( f) sera

€y = ﬁ:{’ xt 4= Cat = Clar - C'x; (1)
C, €, €', désignant trois constantes arbitraires, et

la quatrieme élant nulle, & cause quon a x=o et
¥ = o au point A.
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Supposons la verge encastrée a cette extrémité; il

g . dr g
faudra quon ait aussi sodg - quand x =0 ; d'ou il
dx 2

|

i resulte "= o. Supposons, en outre, que le poids Q
i soit attaché immédiatement & l'autre extrémité B,
de sorte que son moment R’ soit zéro; en vertu

des équations (g), qui répondent 4 ce point, ou &
X = 0, On aura

s 8ywa’ 4 6Ca + 2l = o,
gywa + 6C = — Q.

Je tire de la les valenrs de C et C; je les substitue
dans I'équation (1), dont je supprime le terme C'x;
jappelle ¢ le poids de la verge, de sorte qu'on ait
g == gywa; il vient
S gl syt 2q)axt;
! gf_:a.q'.a (S(Q_I_Q)x +2(Q+9q i
équation qui coincide avec celle du n° 310, quand
on néglige le poids de la verge, et qu'on y met Qc*
a la place de €.

Dans les deux cas de Q = o0 et =0, on a

ga’ )a*
b=, b=3F,
pour lordonnée du point B, qui exprime la flexion
totale de la verge. En supposant Q =¢, on voit done
que les flexions produites par un poids ¢ suspendu
a Vextrémité libre d'une verge horizontale encastrée
par son autre bout, et, par ce méme poids, réparti
uniformément sur toute la longueur de cette verge,
sont entre elles comme 8 est a 3.
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322. Si le point B est fixe comme le point A, et

situé sur la méme horizontale, il faudra qu'on ait

Y=o quand x=a; ce qui change I'équation (1)
en celle-ci:

2

&y = 27, (@ —a') + Cox (2" —at)+ Qe(x—a); ()

q étant toujours le poids de la verge, La déter-
mination des deux constantes C et C’ présentera les
€as suivans.

1°. Quand la verge est encastrée a ses deux bouts,
* 4 vt .t dj__ e - S
1l faut qu'on a1 4y = O pour x =0 et pour x=a;

on tire de 12
C=imiiyg, 0= Zag;
D o= —q, U= g

el Péquation (2) devient

gj" s gzt (x — a)i.

24a

En appelant f la fleche de la courbe formée par cette
verge , <'est-a-dire, la valeur de » qui répond i son

milieu, on & x == ;a, on aura
i
= 16.24.€

2°. Sila verge est simplement retenue par les points
fixes A et B, les charges de ces points d’appui seront
les forces E et Q, prises en sens contraire de leurs d;-
rections, et leurs momens F’ et R’ seront nuls (n°351 9)-
En vertu des premiéres équations (g) et (%), on aura
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dpi = O pour X =o et pour x — a; dou Pon
conclut
I
C L C’ =0,
12

On aura alors

- 9x(a — 7)(a* 4+ ax — 27)
Gf 3= 2:1&[ ’

et la fleche J sera

5qa’
I =—zors:
c'est-a-dire, quintuple de celle qui avait lieu dans le
premier cas, D'aprés les dernieres équations (g) et
(h), on aura aussi

E:Q—_-—.—niq;

valeurs qui ont aussi lieu dans le premier cas, et qui
sont eévidentes en elles-mémes.

3°. Enfin, lorsque la verge est encasirée i son
extrémité A, et seulement retenue & son autre hout,

e 1y
on a 4===0 pour x =0, ¢t

ce qui donne

& e
r.{r*‘:ﬂ pour x —

= S5qg e gaT
(-‘ = E) (" oo _IG 2
au moyen de quoi I'équation (2) devient

gr*(a — x) (3a — 27)

Gf . ;i Ba =

Les secondes équations (g) et (#) donnent, en méme
temps,

Q'::—’:‘r;r
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ce qui montre que le poids de la verge se partage
inégalement entre les deux points d’appui, et que la
charge de 'ex trémilé encastrée est plus gmnde que
celle de 'autre , dans le rapport de 5 4 3.

525. En supposant toujours les points A et B fixes
et situds sur une méme horizontale, et la verge ho-
mogeéne et prismatique, considérouns le cas out les
autres points sont chargés de poids inégalement dis-
tribués dans toute la longueur.

Soit denc

7

F)Y = =z

'J( (4 @ ?

@ étant une fonction donnée qui s'évanouit quand
x =0 et quand x=w, et ¢ désignant le poids

total , ce qui suppose

f: pxdx = a.

Cette fonction @x pourra étre continue ou disconti-
nue, cest-a-dire que son expression analytique
pourra changer une ou plusieurs fois entre les valeurs
exirémes x = 0 et x = a ; ou, autrement dit, si on
la représente par 'ordonnée d’une ligne dont 2 soit
Iabscisse, cette ligne pourra se composer de plu-
sieurs portions de courbes différentes. Si I'on désigne
par J' une ligne d'une longueur aussi petite qu'on
voudra, nous pourrons supposer, par exemple, que
o soit zéro depuis x=o jusqu’a x =za—d', et
depuis x=1a -} J jusqu'a x=a, de sorle que cette
fonction n’ait de valeurs différentes de zéro que dans
une tres petite étendue & de part et d’autre de x=1a.
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Ce cas sera celui d'un poids ¢ agissant au milicu de
la verge élastique, que nous examinerons tout i
I'heure en particulier.

Quelle que soit la fonction ga, continue ou dis-
continue, pourvu qu’elle soit nulle pour x =o et
pour & =d, on aura, depuis & =0 jusqua xr=a
inclusivement ,

. E ( f Si (px'dx ) sin ’—'f-:f (a)

n étant un nombre entier et positif, et la caraciéris-
tique = indiquant une somme qui s'¢tend a loutes les
valeurs de 7, depuis =1 jusqu’a n =0 . Cette for-
mule est due & Lagrange, qui I'a donnée dans les an-
ciens Mémoires de U Académie de Turin (*); nous la
démontrerons plus bas. En en faisant usage , I'équa-
tion (f) devient

d4 24 L
édo:j: jZ(f blﬂ—(PJ“(!%‘)Sll]_ ;

et en intégrant et observant que y = o0 pour x =o
et pour & = a, on aura

2(1'0'
g]._ ;:1(/,‘ mﬁ@x(h)qm—— 3
-+ (a, — x) [Cx 4 U (a — x)]; (0)
C et C' étant des constantes arbitraires que I'on dé-
terminera comme dans les trois cas du numéro pré-

cédent.
%324. Examinons en détail le cas out le poids ¢ est

*} Towme HI, page 261.
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suspendu au milieu de la verge, c'est-a-dire, le cas
ou, comme on vient de le dire, la fonction ¢x’ est
nulle pour toutes les valeurs de «’ qui different un
tant soit peu de ja.

3 = y .f — = "

On pourra alors faire &' = L a dans le facteur
. nxx . 2% gt : g
sin — que renferme I'intégrale relative % z'; ce
qui donnera

a ., nzx’ . mx e . 77
[ sin — Qx'dx’ = sin — f ox'dr’=asin 2=
J @ a 2 J o z
et fera disparaitre tous les termes de la somme = qui
répondent a des nombres pairs n. Je désigne par { un
nombre pair ou impair; je fais n=2i—1, et j'étends

la somme = 2 toutes les valeurs de i, depuis i = 1

(2

’ s . —_—1) )
jusqu’a i==0. A cause de sin -—-)—2—(._ 1)t
2 2

Véquation (b) devient

€= (a— 2) [Cx+C (a — )]

4 : ,
2ga rn . 2L — 1) #wx
L T e sin )

it (28 — 1)t a o

Mais d’apres une formule connue, on
on le verra plus bas,

4, comme

f
S

i s
\ 7:-.:2,-3 Th

I) el @
e SIN 2] | ) == — — e
Gi—1) ) Y, 3 2

pour toutes les valeurs de w, depuis @ == o jusqu’a
@ L g s
w=17.Sidoncon a x<"~a, on fera = — et l'on
2

aura

~ (=1)" S (e )wze & s oy
S s = e (e B
(28—1) e gb )3
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. - I ~ #(A—7)
s1, au contraire, on a x > S @, 0n fera w — —(_l;

a
et comme on a
(21—1) = le—x) . (si—r1)=zx

sin = sin —— -
a a

on en conclura

(—1)

(2i—1)7x
( : Iﬁ' N
DL ——

§
:5&;[4(:1-—.2:’)3—551’(@—1‘)].

De cette maniére, nous aurons I'une ou l'autre de ces
deux équations :

8y = 2(a—x)[Ca+C (a—z)]— 45;3 (fr°—3a°z)
’ : ()
Gy = a(a—=)[Cr+Cla—a)}— £ [f(a—a)—Baa—a)]

1l ne restera donc plus qu’a déterminer les cons-
tantes C et C’ dans les trois eas suivans :

. s Ly
1°. La condition - =0 pour x=0 et pour xr=a,

qui a licu quand la verge est encasirée a ses deux
extrémités, donne

C=C= — Z
C 16
Lies équations (1) deviendront
&y =L (Bax* — 4x%)
.:«Y ._-ig S
t] [rd g a -
&y = glBa(a — 2P —4 (@ —2)];
T : dy
au milieu de la verge, on aura 4z = 0, comme aux

extrémités ; et la fleche f, ou Pordonnée correspon-
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danle 3 ¥ = 1 a, sera
__ 9@
S = rme
cest-a-dire, double de celle qui avait lieu dans le

premier cas dun’ 322. En vertu des secondes équa-
tions (g) et (&), on aura aussi

Q=E=—19yg,

B

comme cela devait étre
2°. Dans le cas de la verge simplement retenue par

Lan

s . s d'y
ses deux bouts, ou l'on doit avoir —5==0 pour

x=oetpour x=a, il en résulte
C o=y 0, C’ — 0O,
et, par conséquent,
& = g Bax — 47°),
O aied (D i e N M
5F =g [3a*(a — x) — 4{a — x)°].

La tangente an milien de la courbe est horizontale, et
les valeurs de Q et E sont — 1¢, comme dans le pre-
mier cas; mais Ja fleche f/ a pour valeur
- qa
J= imes
en sorte qu'elle est quadruple de la précédente, et
plus grande dans le rapport de 8 4 5, que celle du
second cas du n® 355, Si Pon mene une langente 4 la
courbe élastique, par Fun ou Vautre des points A
et B; que Von appelle @ son inclinaison, et qu’on
) 0
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désigne par /' l'ordonnée verticale du point de cette
droite qui répond a I'abscisse égale &4 1 a, on aura

: __ gqa® . )

tang @ = ., J = atange;
d'olr I'on conclut

fr=if

Dans le second cas du n® 322, le rapport de f* 4 f sc-

. B
rait =.
5

5°. Enfin, sila verge est encastrée a I'extrémité A

et seulement appuyée & l'anire bout B, on aura

dy dy
” a:opour =06l (};n__opour X==aj; on eit
i déduira

b i B, -4 PR
;!":: L ol 16, C — £

et les équations (1) deviendront

e :
By &= o (gax* — n1x®),
n €y = L (5a’—15ax* 4 120°x— 24°).

gb
Elles donnent pour x =% a, la méme valeur de
¥, SAVOIP

L 799,
J = 89687
i mais ce nest pas la plus grande ordonnée. On aura

. aussi

L ) Dy o=
L k.= 16 7 Qs 167
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en sorte que le poids ¢ se partagera dans le rapport de
11 4 5 entre les poinis d’appui A et B.

525. Nous allons maintenant démontrer la formule
de Lagrange, citée précédemment.

Pour cela, considérons la quautité g

I — B
1 — 2k cosf 4 A2’

qui est une fraction rationnelle par rappert a %, et
dans laquelle f désigne un angle réel. Son développe-
ment suivant les puissaneces de % sera

1 -+ 2k cos § G2k cos 29 -1~ 2h% cos 35-f-akt cos {0 + ete.

;
ce qu'on peut aisément vérifier; car si 'on multiplie
cette série infinie par le dénominateur 1—z2% cos 0-4-7*
de la fraction, on retrouve son numeérateur, en ob~
servant quon a

2 cos 1 cos § = cos (r—1)8 }cos (n—1)8,
quel que soit Je nombre 7. Si % est moindre que I'unité,
abstraction faite du signe, cette série sera conver-
genie, et la fraction sera rigoul‘euscmen't éga]e ason
développement prolongé a linfini; & cause de

t— aohcosf 4Bt = (1 — Ay 4hsin*% g,
nous aurous done, dans cette hypothese,

= fis

(v—H)* 4 fhsin® L0

= 1 4 23k"cosnb;

la somme = s'étendant 2 toutes les valeurs du nombre
entier 72, depuis n=1 jusqu'a 2= . Quelles que
soient la fonction /8 et la constante reelle &, on aura

T
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donc aussi

x —h*) fedi ” N
o E; 4;,_; -,), {9._ E’a__co: f ; jbde—.-}—z‘zh’i[:, JSicosn(f-e)db.

Soit g une quaniité positive et infiniment petite;
cette équation subsistera encore en y faisant A—=1—g,
puisqu’elle a lieu pour toute valeur de % moindre que

P'unité. Pour toutes les valeurs finies de 7, on aura

P = (1 —gr="%;

pour des valeurs infinies de cet exposant, A" pourra
différer de I'unité, mais en intégrant par partie ,
on a

ﬁﬂ cosn(f —a)di— ;rfé sin n(f—e) — %f% sin n(f — e)di;

en sorte que si_f§ ne devient point infinie, entre les li-
mites § == o et § =, ni pour ces limites, intégrale

f::r_/ 6cosn(8—a)de, qui multiplie £*, s'évanouira

pour n=c0 ; d'our il résulte qu'on pourra toujours
remplacer /2 par 'unité sous le signe =. Au numéra-
ieur de la fraction comprise sous le signe f, on aura
t—Fk* = 2g, en négligeant g* par rapport a 2g;
dans le second terme du dénominateur, on pourra
mettre Punité au lieu de % ou 1 — g; et, de cette ma-
niére , NOUS aurons

LT » rr o 88
== ; sn{l—z)dl = L—._‘?_f_.__.._ﬁ
zf;jada-l-x‘/;ﬁ cos n{f—za)¢ ,fagﬂ i _;_(B_u).(l}

Le coefficient de dfl sous cetie derniere intégrale
est infiniment petit, excepté pour les valeurs de §
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infiniment peun différentes de a , qui rendent son dé-
nominateur infiniment petit ; cétte intégrale est donc
infiniment petite ou nulle, tant que la différence
§ — o est une quantité finie; ce qui aura lieu dans
toute I’étendue de lintégration , lorsqu’on supposera
a < o, ou a > 7 ; donc toutes les fois que la cons~
tante ¢ tombera en dehors des limites zéro et 7, on
aura l'équation

i_f‘;rj'gffg + Ef:]ﬂcos n(0 —a)df =o. (2)

Si, au contraire, on a a > o et < 7, il y
aura des valeurs de § qui différeront infiniment pen
de a; en faisant doac

ﬁ:a-{—.-u, df = du,

Pintégrale dont il s’agit s'évanouira encore pour les
valeurs finies de z, mais non plus pour les valeurs
infiniment petites de cette variable, posilives ou né-
gatives; 4 'égard de celles-ci, on aura

Vi -l.-.:faf., sind (8 —a) = %u;

par conséquent, le second membre de V'équation (1)

- gdu
Ja f g+ w’

lorsque « tombe entre zéro et w. Or, ceile intégrale
étant nulle pour toute valeur de = qui m'est point
infiniment petite, nous pouvons maintenant U'étendre,
sans en altérer la valeur, a des valeurs quelconques
de u, positives ou négatives, et la prendre, si nous

devient
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voulons, depuis # = — jusqu’a u=

alors
i rddu
B
g o W

o0 Oonaura

et finalement

; f A [ 7 flcos (8 — )l = wfer. (3)

Ce raisonnement conviendra encore ay cas ou o
coincide avec une des deux limites zéro on s
mais si U'on a a=o0, on ne pourra douner & u que
des valeurs positives, et seulement des valenrs né-
gatives, si I'on a = =, afin que dans ces deux
cas, la variable § qu'on a faite égale A 24 u, ne sorte
pas des limites de lintégration. De cette maniére,
Vintégrale relative & z se trouvera réduite 4 la moitié
de sa valeur, ou & 17 5 ¢t si 'on représente par
€ et 3 les valeurs de Je qui répondent & ¢ — ¢ et
a =, il en résultera

;ﬁ'f’ygdﬂ +2f;wfﬁ cos nfldf = i 76,
iﬁqrfﬁda+2(—1)"f;wfﬂcos bl = %W}._

Maintenant faisens

4

wx wdx’
f = dif = .

et 501t aussi
70'! i
— ) = ox',
fZ)=¢

La quantité x étant positive et moindre que la cons—
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tanie ¢, mettons a la place de e, — W’—L dans I'équa-
i

tion (2) et :; dans J'équation (3); en observant que

= = » 2 v I »
les limites relatives a &' seront zéro et @, nous aurons

t & i1 & o nw(x L 1)
o px'dr’ + 7 = [‘ &GOS - —r(f—!v— dxlim—10 }
Jo

2a.) o a
o eder oy e te ey

— px'de’ + — F @z cos
2d.) o a: v e

et en retranchant ces deux équations I'une de autre,

()

nx(x -_——;r)d.rf = ‘
4

.

il vient
- @ .. NFX. T
:fz( X' sif —— dx)sm—— = Qo
- = ¢ a a et

ce qu'il s'agissait de tronver.

546, Cette formule représente les valeurs de la
fonction @, pour toutes les valeurs de la variable
x, qui sont positives et moindres que @, et méme
pour x =o0 et x = a, lorsque @x sera nulle pour
ces valeurs extrémes. Il est important d’observer que
la série indiquée par =, finira toujours par étre con-
vergente; car pour de tres grandes valeurs de », I'in-
tégrale relative a 2! deviendra une trés petite quan-
tité, qui diminuera de plus en plus & mesure que
n_augmeniera, et qui sera tout-a-fait nulle pour
n = , comme on l'a vu plus haut au moyen de
Vinlégration par parlie. Cetle remarque esl nécessaire
et suflit pour justifier 'emploi quon fera de la for-
mule précédente,

Lies differentes formules par lesquelles on peut
ainsi représenter en séries de quantités périodiques,
toujours convergentes, des portions de fonctions arbi-
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traires continues ou discontenues, se déduisent des
équations (5), que nous vemons d’élablir. Je me
contenterai de donner ici deux de ces formules , qui
nous seront utiles dans la suite ; pour de plus grands
développemeus sur cette matiére, je renverrai 2 mes
Mémoires sur lo Calcul intégral, qui fout partie
du Journal de U Ecole Po{?ytecﬁmque, et ou 'on trou-
yera une théorie compléte de ce genre de transfor—
mations.

Aprés avoir ajouté les équations (5) et retranché
la premiere de la seconde, j'y mets 2/ au lien de a,
puis & L et &'~ 14 la place de x et &/, et ensuite
¢x et ga’ au lieu de (o 4 1) et @(x’- I); les limites
des intégrales relatives & a” deviennent == I, et ces
équations sont remplacées par celles-ci :

@’L'_ f @'x’dx"—[—l (/‘ o 0:, +Dd ) Ji?r(m—l-[)

@xfurz f @x'sin +Qa’a>' 7.—(:2;}-!)-

Partageons chaque somme X en deux autres, dont
I'une se rapporte aux nombres 7 pairs, et Pautre aux
nombres 7 impairs. Pour cela, soit i un nombre en-

tier queleonque ; et faisons successivement 7 = o7,
7t == 20=— 1; nous aurons

ct de méme pour les sinus ci cosinus compris sous

Oszm"(‘:-—l-'-l):(-—l)iuos E;E, sin 21_3'%-4—_!) =(—1)'si n%r
(21 -1)w{z~4-1) i (.J Dwx ” (2= (z -1 o kn;..;}r
e i o e AT R ¢ et sl e
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les signes [’ par conséquent, on aura
l I, izx’ 1
qax.-_-gl[ _zqg;a:’dx'—!-;— 5.( f Ecp:r cos’f;— dx’) cos ill'f ]
(f gz’ smgzz—_lk;x (2:-—1)9;‘.:1:
> (6)
f QT sm 5 dr )qn ik

]
!

) oy
li E f ex cos ; ik I;r') cos el 2;) = J

les sommes S s'étendant 2 toutes les valeurs de 7,
depuis i==1 jusquia i=®. Ces Lquallom auroni
licu pour teutes les valeurs de & qui seront comprises
entre les Iimites == L.

Cela posé, si Ja fonction @a: est telle que 'on ait
@ (— x) = — @a, il en résultera

L 4 iz’ , £ ( 211 )r:l:
xde’= x'cos—— dxr'=0 x'c =0,
f_f‘” r O’f-—l@ cos—-d ,f_z@ 08— —dzl=0
et, en outre,
i i IHE wo AT A
f @' sin ——dx'==2 [ @x'sin —— dx’,
e o l
1) 2f —1)mx’ l . (2i—1)7rz’
f ox' 'sin & ) = zf ox'sin ( L TR
= o 2l 2

au moyen de quoi la seconde équation (6) coincidera

avec la formule f(L), en y changeant a en /; et la
premiére se réduira a

sy 2 (f @x’sin (21")?” = dx )sm(ﬂ_l)” (7)

Si. au contraire, la fonction @x est telle que Yon ait
? b}
¢ (— x)==0x, on aura
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z gie (2[—-]]7?1" : z TS iz’ '
&' sin ————dr'— o 2'sin —dax'=— o
.f_z@ 2l i ./‘—t@ R \

et les autres intégrales pourront s'étendre seulement
i depuis x =0 jusqu’a x =1, en doublant les résul-
'F“ tats. La seconde équation (6) rentrera dans I'équa-
¥ tion (7), en y mettant L— 2 au licu de «, et Qx i
la place de ¢ ({ — x). La premitre équation (6)
deviendra

A 2 Z ‘F- ¢ 7 7 C
qD.:r_—..} f: )l@x"(l.x’ +;z ( [ ; ®x'cos L; dx )cosix. (8)

. Ces formules (7) et (8) représenteront les valeurs de
¢x, depuis & = o jusqu'a x = /; celles qui s'en dé-
‘ duiront, en les différentiant par rapport a4 x, ex-
primeront, dans le méme intervalle, les valeurs
de ‘ii: La formule (7) suppose @2 = o pour xr=o,
g dpz

et ——=o0 quand x=/; la formule (8) exige que

Pon ait ?—; == 0 pour & = o et pour x=1,. Lorsque
ces conditions ne sont pas remplies, ces formules ou
i leurs différentielles n'ont pas lieu pour les valeurs ex-
il trémes de .

; 527. Réciproquement, les formules de ce genre
; font connaitre les sommes des nombreuses sépies pé-
; riodiques que l'on a obtenues par différens moyens.
l‘? Ainsi , par exemple;, pour en déduire la somme de
i la série dont on a fait usage dans le n° 324, ja-
t' Joule les équations (2) et (3) » Aprés avoir mis — 2
i a la place de « dans la premiére; il en résulte
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il .
/ S 0db + az(fo Sflcosn B([Q) cos na = 7rfe.
Je prends ensuite J8==0; on a alors

fﬂjg cos ngde i COS 127.’i —_1 ;
o n*

quantité nulle pour tous les nombres pairs, et égale

2 - y Y 4 . P d r
our 72 — 2i — 1. L’éguation préce-
P P

(2i—1)*

dente devient done

cos (2i—1)2

v
(2t —1)f-- L. 8(71' N 2‘2)5

la somme = g'étendant 2 toutes les valears da nombre
entier i, depuis =1 _jusqu’;‘t E—

En multipliant par dz et intégrant, on en déduit

sin (2f — 1) &

T
il e g7 — a)a.

On n’ajoute pas de constante arbitraire, parce que
les denx membres de cetie-équation’ sont nuls, soit
pour & =0, soit pour a=; en sorle que cctte
équalion a lien pour toutes les valeurs de , depuis
a=o0 jusqui a =7 inclusivement. Si T'on y fait
a=-« -1 w, On aurd

sin (zi--1)a=—-—(—1)fcos(2i#—1)w,

et, par COIISéquent -

(— 1) cos (ai—1)n & . I
e ),

(2f — 1)
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depuis ® = — ;7 jusqui o = 1z. Je multi-
plie par dw et jintégre de nouveau; il en ré-
sulte

2(— 1)sin (2i—1)w ___ wal e

(28 — 1)t = _2T TR gy

ce qu'il s'agissait d’obtenir.

528. Si I'on met 2a au lieu de a, et ensuite 2’ a
et x—4a ala place de x et «', dans la seconde
équation (5), et qu'on fasse ¢ (¢ 4+ x)=Fx, on
aura

F.r:—_.—ifa Fa'dx’ 4 — qu Fx'COswi)dx',
bfat —a 2a =" 2a

pour toutes les valeurs de & comprises entre == a.
En faisant

celle équation pourra s'écrire ainsi :

= [t 3] [ Bt

x étant un multiple de ¢, et la somme = s'éten-
dant & toutes les valeurs de #, depuis % = ¢ jus-
qua u=<w. Or, si la constante a devient infinie,
la différence & des valeurs consécutives de u de-
viendra infiniment petite, et la somme = se chan-
gera en une intégrale prise depuis u=—¢, ou u=o,
jusqu'a #=co. En faisant dout g = et ¢ =du,
mettant le signe [ au lieu de =, et supprimant le
premier lerme de la formule précédente, ncus au-
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rons

Fx = %_f;m [f:;F.r' cos u (x'— x)dx']du.

Fourier a donné le premier cette formule impor-
tante, qui s'’étend a toutes les valeurs réelles, posi~
tives ou négatives, de la variable x, et convient,
comme les précédentes, dont elle se déduit, & une
fonction quelconque Fx, continue ou discontinue.
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CHAPITRE 1V.

PRINCIPE DES VITESSES VIRTUELLES.

529. Dans les cas les plus simples de 'équilibre des
machines, la puissance et la résistance sont récipro-
quement proportionnelles aux espaces que leurs points
d’application décriraient simultanément, si 'équilibre
venait & se rompre. Pour que ce rapport ait toujours
lieu, il faut prendre les espaces infiniment petits qui
seraient décrits dans le premier instant, et les rem-
placer par leurs projections sur les directions des
forces. Il a été remarqué depuis long~temps dans les
machines simples; Jean Bernouilli I'a ensuite étendu,
par induction, a un systtme quelconque de points
matériels sollicité par des forces données ; et, sous la
dénomination de principe des vitesses virtuelles, il
est ainsi devenu le principe général de I'équilibre.
Nous le démontrerons dans toute sa généralité ,
apres lavoir vérifié sur les exemples suivans.

1°. Soient (fig. 79) A, A’, A”,... une suite de
poulies contenues dans une méme chape, et formant
une moufle fixe, et B, B!, BY,... une auire suite de
poulies aussi contenues dans une méme chape, et
formant une moufle mobile. Supposons qu'un fil soit
attaché & la poulie inféricure de la moufle fixe, et s'en-
roule successivement sur toutes les poulies, en pas-
sant alternalivement d’une moufle i V'autre. A Pex-
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irémité libre de ce fil, suspendons un poids P qui
fasse équilibre & un poids R suspendu a la poulie in-
férieure de la moufle mobile. La tension du fil sera
la méme dans toule sa longueur; et égale au poids P;
de plus, si les diamétres des poulies sont trés petits,
en égard a la distance qui sépare les deux moufles,
les cordons qui vont de Pune a I'autre seront sensi-
blement paralléles et verticaux : la force qui soutient
le poids R sera donc égale a la somme de lenrs ten-
sions, ou & n fois le poids P, en appelant » le nom-
bre de ces cordons; par conséquent, dans Pétat d’é-
quilibre , on aura

R = nP:

Or, si léquilibre se rompt, et que le poids R monte
ou descende d'une quanlité a, tous les cordons qui
aboutissent 2 la moufle mobile se raccourciront ou
sallongeront de cette méme quantité. La longueur
totale du fil devant rester la méme, la partie a la-
quelle est attaché le poids P sallongera ou se rac-
courcira de n fois cette quantiié « ; donc, en dési-
gnant par € la quantité dont le poids P s'élevera
ou s'abaissera, on aura §=nx, et, conséquemment,

Rz — PE;

ce qui renferme le principe qu'on vient d’énoncer.
2° ABC ( fig. 80 ) représente la rouc d’un treuil,
et A'B'C/ Vintersection du plan verlical de cette roue
et de la surface du cylindre; O est le centre commun
de ces deux circonférences, et AOC et AOC sont leurs
diamétres horizontaux. Un fil g'enroule sur la roue,
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et s'attache a I'un de ses points; un autre fil, attaché 4
I'un des points du cylindre, s'enroule de méme sur sa
surface. On suspend un poids P au premier fil, ¢t un
poids R au second ; ces deux poids tendent a faire
tourner le treuil en sens contraire, et sont supposés
en équilibre. Cela posé, si I'on applique an point C’
deux forces R’ et R”, verticales, égales et contraires,
Iéquilibre ne sera pas troublé; si, de plus, ces forces
sont égales 2 R, la force R et le poids R se feront
équilibre, puisqu’il n’y aurait pas de raison pour que
leur action simultanée fit tourner le treuil plutdt
dans un sens que dans le sens opposé ; il faudra donc
qu’il y ait aussi équilibre entre le poids P et la force
R/, perpendiculaires A AOC, et qui agissent aux extré-
mités de ce levier, dont O est le point d’appui. Donc,
en appelant r le rayon AO de la roue, et ' le rayon
OC' du cylindre, I'équation d’équilibre sera

|yl

a cause de R'=R. Maintenant, si I'équlibre se rompt,
et que le poids R monte ou descende d'une quantité e,
tandis que le poids P descendra ou montera d'une quan-,
tité €, il est évident, par la nature de la machine,
qu’on aura &r' = ar; d’ou 'on conclut

PE — Rz,

conformément & I'énoncé du principe qu'il s'agissait
de vénlier.

5°. Supposons qu'une wis verticale soit chargée
d’'un poids R a son extrémité supéricure ; qu’une
roue horizontale, ayant son centre dans laxe de
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cette vis, soit adaptée a son extrémité inférieure ;
quun fil soit enroulé sur celte roue et attaché par
un bout a sa circonférence, et qu'on applique 4 son
autre bout une force horizontale F qui agisse sui-
vant une tangente & la roue, et fasse équilibre au
poids R. On pourra, si I'on veut, placer sur la di-
rection de cette tangente une poulie fixe et verti-
cale, plier le fil sur cette partie, et remplacer F par
un poids P égal a cetie force et attaché a Vextré-
mité libre de la partie verticale du fil. En appelant
k la hauteur du pas de la vis, et ¢ la circonférence
de la roue, on aura

Pe = R%,

d’apres la condition connue de I'équilibre dans cette
machine. Les deux poids R et P tendront i faire
tourner la vis en sens contraire; si Péquilibre vient &
se rompre, I'un de ces poids montera, et I'autre des-
cendra; et si le poids R s’abaisse ou séléve d’un pas
h de la vis, le poids P s’élévera ou s'abaissera d’une
hautear égale a la circonférence ¢ de la rouc; d’omn il
résulte qu'en appelant, en général, « et € les es-
paces parcourus simultanément par les deux poids R
et P, on aura ac = 6h, et, par conséquent,

P = Re,

conformément ay principe dont nous nous occupons.

4e. Considérons encore deux poids P et R posés

sur deux plans inelinés, et attachés 'un 4 'autre par

un fil passant sur une poulie fixe, située en haut des

deux plans qui sont adossés I'un & Tautre, La fi-
2 42
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gure 81 représente une section verticale de ce sys-
téme; AC est la longueur dua plan sur lequel est posé
le poids R, BC celle du plan qui supporte le poids P,
AB une droite horizontale, et CD une verticale qui
représente la hauteur commune des deux plans.
Faisons

AC:G‘, BC:b, CD = £;

. o h
la composante de R survant CA sera Ii;l, et celle de

. S b A
P suivant CB aura P ; pour valeur. Pour I'équi-

libre, il faudra que ces deux composantes solent
égales; en sorte que l'on aura

Pa = Rb.

8i équilibre se rompt, et que le poids R glisse d’'une
quantité 3 sur le plan CB, le poids P glissera de la
méme quantité, mais en sens centraire, sur le plan
AC; et en appelant « la hauteur verticale dont le
poids R se sera élevé ou abaissé, et G celle dont le
poids Pse sera abaissé ou €levé, il est aisé de voir que
I'on aura

s Ma g e VT .

a -
@ b’
d’onr 11 résulte

PE = Rea 5

comme dans les exemples précédens : mais ici « et €
sont les projections verticales des espaces déerits si-
multanément par les poids R et P, tandis que , dans
le cas précédent, « et € étaient ces espaces mémes.
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530. D'apres ce qu'on a yu dans le n® 4g, deux
forces qui se font équilibre par lintermédiaire dun
levier quelconque, sont en raison inverse des espaces
infiniment petits, projetés sur leurs directions res-
pectives, et que peuvent décrire en méme temps
leurs points d’application. Cet énoncé est celui qui
convient & tous les cas. Ainsi, en appelant P et R la
puissance et la résistance en équilibre par Vintermé-
diaire d'une machine quelconque, supposant qu'on
imprime un mouvement infiniment petit & celte ma-
chine, et désignant par & et a les projections sur les
directions de ces forces, des espaces qui seront décrits
en méme temps par leurs points d’application , on
aura toujours

P€ = Qa;

a quoi il faut d'ailleurs ajouter que I'une des projec-
iions devra tomber sur la direction méme de la force
correspondante, et l'autre sur son prolongement,
ainsi que cela a lien dans le levier.

Dans la pratique, il suffira que le mouvement im-
primé & la machine soit seulement trés petit. En me-
surant les longuenrs des projections € et «, on en con-
clura immédiatement le rapport de la puissance i la
résistance,, sans rien connailre de la composition par-
ticuliere de la machine.

531. Non seulernent cet énoncé convienl i une
machine que]conquc, mais il s’étend aussi & un nom -
bre quclconque de forces en équilibre. Soient done, ¢n
general, M, M', M", etc. (fig. 82), un systeme de
points matériels liés entre eux de telle maniére qu'on

Las
s
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voudra; supposons que des forces P, P/, P’, eic,
agissent sur ces points, suivant les directions MA,
M'A’, M'A", etc.; faisons subir 2 ces points des dé-
placemens infiniment petits et compatibles avec les
conditions du systeme, de sorte qu’ils soient trans-
portés en N, N, N, ete. ; projetons N, N, N", etc.,
sur les droites MA , M'A/, M"A", etc, ena, &/, a”, etc.,
el posons

Ma = p, Md = p/, Ma" = p’ etc.

En considérant ces projections p, p/, p, etc., comme
des quantités posilives ou négatives, selon quelles
tombent sur les directions des forces correspondantes,
ou sur leurs Pl‘O]OﬂanlCIlS, nous aurons

Pp 4 Pp' 4 P'p" + ete. = o,

lorsque équilibre aura lieu; et réciproquement il y
aura Cquilibre , quand cette équation subsistera pour
tous les déplacemens compatibles avec les conditions
du systeme.

Les droites infiniment petitesMN, M'N', M"N", ete.,
sont ce qu'on appelle les vitesses virtuelles des points
M, M’, M", etc.; dénomination qui provient de ce
qu'elles sont considérées comme les espaces qui se-
raient parcourus simultanément par les points du sys-
teme, dans le premier instant ot l'équilibre vien-
drait a se rompre.

On doit observer que le principe des vitesses vir-
tuelles , contenu dans la formule qu'on vient
d’écrire, donne seulement les conditions d'équi-
libre qui peuvent étre exprimées par des équations,
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mais non pas celles qui sontrelatives a la direction de
certaines forces, et 4 I'étendue dans laquelle elles
doivent rencontrer un plan fixe (n® 266). Les mou-
vemens compatibles avec les conditions du systeme,
qui donnent lieu & des équations d'équilibre, sont
ceux dont les mouvemens directement contraires
sont également possibles. Mais, par exemple, si uh
point matériel est posé sur un plan fixe, le mouve-
ment sera possible dans ce plan, suivant chaque di-
rection et suivant la direction contraire ; et perpendi-
culairement i ce plan, il ne pourra avoir lieu que dans
une seule direction. Or, la considération des mouve-
mens dans le plan, donnera lieu aux conditions d’é-
quilibre qui s'expriment par des équations, et la con-
sidération du mouvement perpendiculaire détermi-
nera seulement la direction de la force normale, qui
doit étre contraire a celle du mouvement possible.
Dans l'énoncé du principe des vitesses virtuelles ,
on suppose implicitement que chacun des mouve-
mens compatibles avec les conditions du systeme, et
le mouvement directement contraire , sont également
possibles; en appliquant successivement équation
précédente a ces deux mouvemens, les quantités p,
Py p', ete., changeront toutes de signe, et il n'en
résultera qu'une seule équation d’équilibre.

Sila force P, est la résultante de plusieurs forces
données Q, @', Q", etc., et quion représente par ¢,
7', ¢",etc. , les projections de MN sur leurs directions,
on aura (n° 34)

Pp = Q7 + Q¢ + Q¢"+etc.;
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en soite quon pourra remplacer dans Péquation pré-
cédente, le terme Pp relatif 4 la force P, par cette
somme de termes de la méme nature, qui répondent
& ses composantes; et de méme, par rapporl aux
forces P, P', ¥, etc., si elles sont aussi les résultantes
de plusieurs aulres forces.

Le principe des vitesses virtuelles, dans Ie cas d’un
poiut 1s0lé en équilibre, est, comme on I'a va dans
le n° 39, une conséquence de cette dernicre équa-
tion, soit qu'il s'agisse d’un point entierement libre ,
ou qu’il soit assujetti A demeurer sur une syp—
face ou sur une courbe donnde. 1l sagit actuelle-
ment de démontrer ce principe général, dans le cas
d'un systeme quelconque de points matériels M, M/,
M, ete.

532. Supposons ces points liés entre eux par des
verges inflexibles ou par des fils flexibles, dont les
uns soient fixement attachés i ces points, tandis que
d'autres les traversent comme des anneaux mobiles.
Dans ce dernier cas, ces points on annecaux ont la li-
berté de glisser le long des fils qui les traversent, et
que l'on suppose, pour cela, parfaitement flexibles.

Aprés quon a appliqué les forces données P, P,
P, etc., aux points M, M, M", etc., ct que P'éqai-
libre s’est établi, il est clair que les fils qui joignent
ces poinls deux i deux , éprouveront chacun une ten-
sion particuliere, clest-a-dire, que chacun de ces
fils sera tiré a ses deux extrémités par des forces éoales
et contraires, dirigées suivant ses prolongemens ,
ainsi qu'on Fa déja dit dans le cas du polygone funi-
culaire (n® 285). L'intensité de celte force serd la me-
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sure de la tension inconnume que ce fil éprouve.
Un fil qui ne serait pas tendu, ne contribuerait
pas i U'équilibre, et 'on pourrait en faire abstrac-
tion.

La tension peut varier d'un fil & un autre; mais s'il
sagit de deux fils qui sont le prolongement T'un de
Lautre & travers un anneau, la tension est la méme
dans ces denx parties d'un méme fil qui doit néces-
sairement éprouver une ¢gale tension dans toule sa
longueur (289). Ainsi, par exemple, si M est un
anneau traversé par le fil M'MM”, la tension de MM’
sera égale a celle de MM,

Lorsque plusieurs fils viennent se croiser dans un
méme anneau , la tension est la méme dans les deux
parties de chaque fil , ¢t peut varier d’un fil a autre.
Si donc, outre le fil M'MM", il passe encore un fil
MMM, dans anneau M, la tension sera la méme
dans les deux parties MM” et MM de ce dernier fil,
et, en général, elle sera différente de celle des denx
parties MM’ et MM", du premier fil. Et si un autre {il,
tel que MM, vient aboutir au méme anneau M au-
quel il soit fixement attaché, ce fil aura sa tension
particuli¢re, généralement différente de toutes celles
des autres fils qui aboutissent au méme point M.

Ohservons eucore que si M’ est un anneau ainsi
que M, et que le fil M"MM’, aprés avoir traversé
Panneau M, passe encore par I'anneau M/ pour aller
aboutir au point M, la tension sera la méme dans
les trois fils MM, MM', M'M"; car alors ces trois
fils n’en font qu’un seul M"MMM™. En général , lors-
qu'un fil est partagé en plusieurs parlies, par des an-




664 TRAITE DE MECANIQUE.
neaux mobiles, la tension est la méme dans toutes
ces parties.

A Tégard des verges inflexibles, quand 'équilibre
existe, elles sont tirdes ou poussées dans le sens de
leur longueur, par des forces égales et contraires ,
agissant a leurs extrémitds. L'intensité commune de
ces deux forces, pour chaque verge, est la mesure
de la tension ou contraction quelle éprouve. S'il en
existe unc ou plusieurs dans le systéme, qui ne soit
ni tendues, ni contractées, elles sont inutiles 4 Péqui-
libre, et L'on peut les supprimer. Ainsi, dans ce qui
va suivre, nous supposerons tous les liens physiques
qut existent dans le systéme, tendus ou contractés
suivant leurs longueurs par des forces inconnues.

L'avantage du principe des vitesses virtuelles est de
donner I'équation d’équilibre dans chaque cas parti-
culier, sans qu’on ait besoin de calculer ces forees inw
térieures ; mais comme la démonstration que nous
allons donner est fondée sur la considération de ces
forces, de grandeur inconnue, voici la notation
doat nous ferens usage pour les représenter.

Nous désignerons par [m, m'], la tension ou la
contraction du fil flexible ou inflexible qui joint deux
points quelconques M et M’ du systeme, De cette
maniére [m, m'"], [m/, m"], etc., représenteront
les tensions ou contractions des fils qui joignent M
et M", M' et M", ete.

535. Nous aurons aussi a considérer les variations
infinimentpetites qu'éprouventles distances des points
M, M, M", etc., pris deux & deux, soit quand I'un
de ces points change seul de position, soit quand ils
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sont déplacés simultanérent. Alors, nous désignerons
par (m, m') ladistance de deux poinis quelconques
M et M’; en sorte que (m, m"), (', m"), etc., soient
de méme les distances de M et M", M’ et M’, etc.
Nous emploierons la caractéristique J), pour indi-
quer les variations de ces distances, relatives au dé-
placement du point M; la caractéristique J'/, pour
indiquer celles qui ont lieu quand cest le point M’
qui se déplace; la caractéristique ", pour indiquer
les variations provenant du déplacement de M”; et
ainsi de suite. Enfin, nous réserverons la caractéris-
tique 4', sans aucun accent, pour indiquer la varia-
tion de la distance de deux points, résultant de leurs
déplacemens simultanés.

Puisqu’'on suppose, par exemple, que M a été
transporié de M en N et M, de M’ en N’, nous
aurons :

d (m, m) = MM' — NN/,

& (m,m’) = MM — NW,

d ) (m, m') = MM’ — MN’;

Il est important d’observer que la variation to-
tale, indiquée par d', est égale a la somme des varia-
tions partielles, indiquées par ', et J'; de maniére
qu'on a, pour deux points quelconques,

d'(m, m') = &, (m,m') 4+ &/(m, m');
équation qui résulte de ce que les déplacemens de M
et M’ sont infiniment petits , et quin'a lieu que dans
cette hypothese. En effet (12, m') est une fonction des
coordonnées de ces deux points; ces variables pren-
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nent des accroissemens infiniment petils, posilifs ou
négalifs, quand M et M’ sont transportés en N et N';
or, cn rejetant les puissances de ces aceroissemens
supérieures a la premiére, il est évident que V'acerois-

sement total d'une fonetion quelconque de ces coor-

données, est égal a la somme des accroissemens
partiels qui seraient ‘dus 4 la variation de chaque
coordonnée 1solément; par conséquent, la variation
totale de (m, m'), indiquée par la caractéristique d'
doit étre égale 4 la somme de ses variations partielles
qui 1‘ép0ndenl a d\l et cj‘,’.

534. Tout ce qui précéde étant admis, considé-
rons le point quelconque M, auquel est appliquée la
force donnée P. Ce point est lié aux autres par les
fils MM’, MM, etc. ; il est donc liré ou poussé , dans
le sens de chacun de ces fils, par une force égale ala
contraction ou a la tension que ce fil éprouve; en
sorte qu'outre la force donnée P, le point M est en-
core soumis a l'action d’autant d’autres forces qu'il y
a de fils aboutissant a ce point. Aprés qu'on a eu égard
a ces forces intérieures, il faut faire abstraction des fils
qui lient M aux autres points du systéme, et le consi-
dérer comme un point isolé,, aulour duquel les forces
[m, m'], [m,m"], etc., et la force P, doivent se faire
équilibre. S8i M est un point fixe, il n'en résultera
aucune équation de condition; mais sl est entiere—
ment libre, on sl est seulement assujetti & rester sur
une surface ou sur un courbe donnde, on aura entre
ces forces Véquation des vitesses virtuelles, déja dé-
montrée pour I'équilibre dun point matériel isolé.
Pour former cette équation, prenons un point N
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infiniment voisin de M, et appartenant a la surface
ou i la courbe sur laguelle ce point M est astreint &
demeurer, sl n'est pas entierement libre. Soient
p, &, ', 1", etc. , les projections de MN sur les direc-
tions des forces P, [m, m'], [m, m"], [m, '], etci;
nous aurons (n° 39),

Pp[m, m'].t+[m, m"). £ 4 [m, m"] .t"4-ele.= o.
Mais, & cause que la ligne MN est infiniment petile,
il est aisé de voir que sa projection sur la ligne MM’
n'est autre chose que la différence des denx distances
MM' et NM'; car si Pon abaisse du point N (fig. 83)
la perpendiculaire NH sur MM, la droite MH sera
cette projection, et I'on aura

MII = MM’ — HM'.
Or, on a aussi

HM' = V(NM')* — (NH* = NM/,

en négligeant les infiniment petits du second ordre ;
on aura donc

MH — MM' — NM"
D’apres Jes notations convenues, cette equalion est

Pe=id
¢t I'on aura de méme
— C.P, (,n’ ”Z”) y gy cr', (m., m,’”) , cle.;
par conscéquent, I'équation d’équilibre deviendra
Pp - [, 1) oy ) [y . B, i

"y o .
4 [m, m"}, &, (m, m")+ etc. = 0.
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En considérant les autres points M/, M", M", ete. ,
du systéme, oun aura pour chacun d’eux une équa~
tion pareille & celle-ci ; ces équations seront

P'p' [, m].d) (m!, m) 4 [, m"]. &) (m!, m")
+ [mf, m™]. 4 (m', m") 4 etc. = o,

Pip"-[m", m). 8" (m", m) [m", m"].d)"(m", m’)
=+ [, ™). (", m™) 4 etc. =o,
P"p" - [, m]. dm" (m"™, my—|m", m].d\"(m", m)
NI [’nm, ”,LU] _J\Jfﬂ(mm’ mrr) -+ ete, = 0;

P p"s P, ete., Etant les vitesses virtuelles de M/, M,
M", etc., projeiées sur les directions des forces donnédes
P, P", P, etc., qui agissent sur ces points matdriels.

Ajoutons toutes ces équations: en observant que
[m, m'] et (m, m') sont la méme chose que [m', m]
et (m/, m), et de méme pour toutes les notations sem-
blables ; et en substituant la variation totale de chaque
distance  la somme de ses variations partielles, nous
aurons

Pp L Pp' 4 P'p"+ P"p" + ete.
+[m,m'].d (m,m’) 4 [m,m"].d(m m" )4 [m,m"].d (m,m")-etc.
+[m', m"]. & (e, m") 4= [, m"). (0, m") - et
—+[m", m"]. & (m", m") - etc.
—eéelec. — o :

335, Jusqu'iciles déplacemens MN, M'N’, M'N". etes
(fig.82), sont indépendans entre eux; el I'équation (a)
suppose seulement que ces points n'ont pas quitté les
surfaces oules courbes données, sur lesquelles ils sont
obligés de rester; mais si nous supposons, en outre,
quen vertu de ces déplacemens, les points du systeme
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qui sont joints par une verge ou un fil tendu, ont
conservé les mémes distances respectives, nous aurons

Py my =0, & (m, m')=0, & (ut, ul')=o, elc.,
et I'équation () se réduira a celle-ci :
Pp+ P I+P'f "y P m+ elc.==0j ([;)

qui est précisément celle du principe des vitesses vir-
tuelles (n° 351).

Si dans les déplacemens des points M, M’, M", etc.,
ceux qui sont des anueaunx ont gl issé le long des fils
qui les traversent, I'équation (b) aura encore lieu,
pourvu que les longueurs totales de ces fils n’aient
pas varié. Supposons, par exemple, que M est un an-
neau qui a glissé le long du fil M'MM"; alors on n’a
plus séparément J'(m,m’)=o0 et J'(m, m')=o0,
mais on a toujours

&(m, m') + J(m, m") = o,

puisque la longueur totale du fil reste constante.
Mais, dans ce cas, les tensions [m, m'] et [m, m'"]
des deux parties de ce fil sont égales; les termes qui
renferment ces tensions dans I'équation (a) peuvent
donc s'écrire ainsi :

[m, m'}.[d (m, m) 4 J (m, m")],

et, par conséquent, ils se détruisent.

Eu général, on concoit que si un fil flexible passe
4 travers un nombre quelconque d’anneaux, les ten~
sions égales de ses différentes parties disparaitront de
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I'équation (a) toutes les fois que la Tongucur totale de
ce fil ne variera pas.

Concluons donc, enfin,

1°. Que l'équation résultante du principe des vi-
tesses virtuelles a lien pour tous les mouvemens in-
finiment petits qu'on peut donner & un corps solide,
libre ou géné par des obstacles fixes; car dans tous
ces mouvemens les distances respectives des points de
ce corps sout invariables.

2°. Que ceite équation a aussi lieu pour tous les
mouvemens infiniment petits que peut prendre un
systteme de points ou danneaux liés par des fils
flexibles, pourvu que ces fils restent droits ou ten-
dus. Quand cette condition n'est pas remplie, lcs
tensions ne disparaissent pas toutes dans Péqua-
tion (@), et, conséquemment, 'équation () n'a plus
lien.

556. 11 faut encore démontrer que, réciproque-~
ment, quand I'équation (4) a lieu pour tous les mou-
vemens infiniment petits qu'on peut faire prendre an
systeme des points M, M/, M", eic., les forces don-
nées P, P, P, ete., sont en équilibre, ainsi que nous
'avons enoncé précédemment (n°331).

Supposons pour un moment que I'équilibre n’ait
pas lien. Les points M, M/, M", etc., ou une par=
tie d’entre eux, se mettront en mouvement, et,
dans le premier moment, ils décriront simultand—
ment des droites telles que MN, M'N’, M"N", ete. ;
on pourra donc réduire 10uUS ces points au re-
pos, en leur appliquant des forces convenables,
dirigdes suivant les prolongemens de ces droites, en
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sens contraire des mouvemens produits; par consé-
quent, si nous désignons ces forces inconnues par R,
R, R", ete. , Véquilibre aura lieu entre les forces P,
P/, P', ete., R, R, R", ete.; en sorte que r, r,
7, etc. , désignant les vitesses virtuelles projetées sur
les directions de ces nouvelles forces R, R/, R’, etc.,
on aura, d’apres le principe des vitesses virtuelles qui
vient d’élre démontre,

I)P_i_]_)lpf_f_l)rrpu_l_ etc.-—]—-.ﬂr—l—- R’r’-{-l’l”r"’—l—elc.:o,
ou simplement
Rr+Rr'+R'"4-etc. =0, (¢

en vertu de I'équation (b), qui a lieu par hypothese.
Cette équation (¢) existant pour tous les mouve-
mens infiniment petits compatibles avec les condi-
tions du systeme des points M, M', M", etc., nous
pouvons choisir pour leurs vitesses virtuelles les es—
paces réellement décrits MN, M'N’, M"N", etc., dans
un méme instant ; mais comme ces lignes sont comp-
tées sur les prolongemens des directions de R, R/,
R, etc., il s'ensuit que toutes les projections r, 7',
1" etc. , seront négatives (n® 351), et égales, abstrac-
tion faite du signe, a ces mémes lignes MN, M'N/,
M"N", etc. Alors, tous les termes de T'équation (¢)
étant de méme signe, leur somme ne peut étre nulle,

wal 4

% moins que chaque terme ne soit séparément €3

z6ro ; on aura done
R.MN—o, R.MN=o0, R'".MN'=o, etc

Or, pour que le produil R.MN soit nul, il faut
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quon ait, ou R=0, ou MN=o0; ce qui signifie ,
dans T'un et Tauire cas, que le point M ne peut
prendre aucun mouvement : il en est de méme 4 1'é-
gard de tous les autres points; par conséquent, le
systeme entier est en équilibre; et clest ce que nous
nous proposions de démontrer.

3537. Lorsqu'il sera question des fluides, nous fe-
rons voir, en partant de leur prapriété fondamentale,
que le principe des vitesses virtuelles a aussi lien dans
Péquilibre d’un systeme de forces dont les actions se
transmettent par I'intermédiaire d’un fluide contenu
dans un canal ou dans un vase de forme quelconque,
De cette maniére, la démonstration da principe ge-
néral de I'équilibre aura toute I'étendue que I'on peut
désiver ; car les verges inflexibles, les fils tendus, les
fluides contenus dans des canaux, sont les différentes
sortes d'intermédiaires qu'on peut établir entre des
points matériels, séparés les uns des autres, pour
transmettre I'action des forces de 'un de ces points
a un autre; et si d’ailleurs, parmi ces points, il yena
qui soient immobiles, d'autres parfaitement libres, et
d’autres assujettis a rester sur des surfaces ou sur des
courbes données, on aura le systéme de points maté-~
rielsle plus général qu'on puisse ayoir besoin de con-
sidérer. Toutefois, je vais donuer une autre démons-
tration du méme principe, que I'on doit A Lagrange,
et qui repose sur des notions plus élémentaires que
la précédente; elle est fondée sur Ia possibilité de
remplacer toutes les forces appliquées 2 un systéme
quelconque de points matériels, par un seul poids
agissant comme on va d’abord I'expliquer.
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538. Si un point M (fig. 84) est sollicité par une
force P dirigée suivant la droite MA , on peut d’abord
supposer que cette force soit appliquée au point A,
et agisse au moyen d'un cordon MA attaché a ce point
M. On peut ensuite remplacer ce cordon par un fil qui
s’enroule alternativement sur une moufle fixe et sur
une moufle mobile, et soit attaché par I'mn de ses
deux bouts & I'une ou 4 V'autre de ces deux moufles ;
celle qui est fixe répondant au point A, et celle qui
est mobile au point M. En suspendant verticalement
un poids K 2 I'extrémité libre du {il, la tension sera
égale & K dans toute sa longueur. Si les dimensions
des poulies sont regardées comme infiniment petites,
les tensions de toutes les parties de ce fil, qui abou-
tissent & la moufle mobile, auront la méme direc-
tion ; en appelant i lenr nombre, leur résultante sera
égale & iK, et agira sur le point M suivant la direc-
tion MA; par conséquent, si U'on a iK = P, on
pourra remplacer Faction de la force P par celle da
poids K.

Il en sera de méme a I'égard des antres forces P/,
P", ete., appliquées 2 des poinis M’, M, ete. , suivant
des directionsM'A’, M"A", etc.; chacune d’elles pourra
étre remplacée par un poids égal & un sous-multiple de
son intensité , agissant comme on vient de expliquer
pour la force P. De plus, il est aisé de voir quon
pourra toujours faire passer successivement, comme
le veprésente la figure 85, un seul et méme fil sur
toutes les moufles fixes en A, A’, A", etc., et sur
toutes les moufles mobiles attachées aux points M,
M, M", etc. Supposons donc que i, ', i, etc., sont

. i3
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des nombres entiers, et qu'on ait

K=P, /K=P, "K=P" ectc. (d)

En suspendant verticalement le poids K 4 l'extré-
mité libre de ce fil, le systéme des forces données
P, P, PY etc., se trouvera remplacé par ce seul
poids, dont Paction sera transmise aux points M,
M', MY, etc., par Tintermédiaire de ce fil , et des
moufles fixes et mobiles. A la vérité, les équations (d)
supposent les forces P, P, P, etc., commensura-
bles ; mais cette hypothése est toujours admissible,
puisque leur commune mesure K peut étre un poids
aussi petit qu'on voudra, et méme nfiniment pe-
tit, s1 cela est nécessaire.

339. Concevons actuellement qu'on imprime aux
points M, M, M”, etc., un mouvement qui soit
compatible avec les conditions du systéme, ainsi que
le mouvement directement contraire; soient N,
N', N”, ete., leurs positions aprés un temps infini-
ment petit; et appelons, comme précédemnwnt, P>
P, p', etc., les projections de MN, M'N’, M"N", etc.,
sur les directions de P, P’, P, etc., ou sur leurs
prolongemens.

Le point N étant projeté en a sur la droite MA |
chacun des cordons qui vont de A & M sera rac-—
courci d'une quantité AM — AN, pour laquelle on
pourra prendre Ma, en négligeant les infiniment
petits du second ordre ; ce cordon serait, au con-
traive , allongé de Ma, si le point @ tombait sur
le prolongement de AM; d’ou 'on conelut qu’a rai-
son du déplacement de M, le poids K descendra
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dans le premier cas, et montera dans le second,
d’une quantité égale au produit de Ma et de i; ce
qui revient a dive, d’apres le signe de p (n° 531), que
la variation positive ou négative de sa hauteur verti-
cale sera exprimée par ip, a raison de ce seul dépla-
cement. 11 en sera de méme par rapport a tous les au-
tres points M', N ", elc.; par conséquent, si l'on désigne
par £ une quanlité infiniment pelite, qui représente,
selon qu’elle sera positive ou négative, la quantité to-
tale dont le poids K descendra ou montera, par suite
des déplacemens simultanés de tous les points du sys-
téme, nOUS aurons

{ = ip + ip" -+ i'p" 4 ete.

Or, le’ poids K tendant 4 descendre, et étant la
seule force qui agisse sur le systeme, il est évident
que rien ne l'empéchera de produire le monvement
que nous considérons, si celte valeur de £ est posi-
tive; et que, si elle est négative, rien n'empéechera
le poids K de produire le monvement directement
conlraire, qu'on SUppose également possible , et pour
lequel 7 changera de signe. Pour que I'équilibre ait
lieu, il est donc nécessaire que £ soit zéro. Récipro-
quement, le polds K ne pouvant produire aucun
mouvement que]conquc, sans descendre d’une quan—
tité infiniment petite dans le premier instant, il s'en-
suit qu'il n'en produira aucun, et que I'équilibre aura
licu, si l'on a Z= o, pour tous les déplacemens des
points M, M, M", etc., infiniment petits et compa-
tibles avec les conditions du systeme.

Maintenant, si Von multiplie par K I'équation

1’;3-.
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ip 4 Ip + I'p" - ete. = o,

nécessaire et suflisante pour I'équilibre, et qu’on ait
égard aux équations (d), elle se changera dans 'équa-
tion (b) du principe des vitesses virtuelles, qu’il s'a-
gissait d’obteniy.

540. Cette démonstration ne suppose pas le prin-
cipe préalablement démontré pour un point matériel
isolé. 8i le systeme se réduit A un seul point M au-
quel sont appliquées les forces P, P', P", etc., don-
nées en grandeur et en direction, on substituera &
leur. action simultande celle d'un seul poids K,
comme dans le n® 338 ; et, dans le cas de I'équilibre
de ces forces, le principe des vitesses virtuelles se dé-
duira de cette substitution par le raisonnement quon
vient de faire : or, ce principe fournira immédiate-
ment les équations d’équilibre du point M, assujetti
& rester sur une surface on sur une courbe, ou en-
tierement libre (n° 3g). Dans ce dernier cas, en con-
sidéerant I'une des forces données comme étant égale
et contraire a la résultante de toutes les autres, on
en déduira les regles de leur composition et de leur
décomposition, et le théoréme du parallélogramme
des forces. En appliquant ce principe & Péquilibre de
trois forces paralléles, dont l'une est, par consé-
quent , €gale et contraire & la résultante des denx an-
tres, on en conclura également les régles de la com-
position et de la décomposition des forces paral-
leles.

On déduit aussi, sans difficulté, du principe géné-
ral des vitesses virtuelles, les équations d’équilibre
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d’un corps solide entierement libre, que nous avons
trouvées d'une autre maniere dans le n® 260.

En effet, nous pouvons d’abord supposer que tous
les points de ce corps décrivent des droites égales
entre elles et paralléles & I'un des axes des coordon-
nées. En appelant £ la longueur de ces droites, et e,
@, a", eic., les angles que leur direction commune
fait avec celles des forces données, nous aurons

p=rhcosa, p=hcosa’, p'=hcosa’, etc.,

pour les vitesses virtuelles des points M, M', M, etc.,
du corps solide , projetées sur les directions des forces
P, I, P", elc., appliquées a ces points ; donc, en subs-
tituant ces valeurs dans U'équation (4), et supprimant
le facteur %, comme a tous les termes, on aura I'é-
quation d’équilibre

P cosa 4P’ cos &’ - P" cos a" -~ elc. = o.

En considérant successivement les mouvemens du
corps parallelement aux deux autres axes des coor-
données, on obtiendra-de méme les deux autres équa-
tions d’équilibre semblables a celle-la.

Nous pouvons aussi faire tourner le corps autour
de Yun des axes des coordonnées. Pour former 1'é-
quation qui correspondra 2 ce mouvement, je re-
présenterai les coordonnées des points M, M', M, ete.,
ct les angles que font les directions des forces P, I,
P’ etc., avec celles de ces coordonndes, par les mémes
lettres que dans le n° 260. En supposant que la rota-
tion ait lieu autour de Vaxe des z, chacun de ces

A 5 3 : 3
points décrira un arc de cercle parallele an plan des
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& et ¥, qui aura pour rayon la perpendiculaire abais-
sée de ee point sur cet axe. De plus, par la nature du
corps solide, l’angle décrit par cetle perpendiculaire
sera le méme pour tous ses points. Si donc on le sup-
pose infiniment petit, qu'on le désigne par w, et par
r, ', 1, etc., les distances des points M, M/, M”, etec.,
a I'axe des z, on anra rw, re, r'e, ete., peur leurs
vitesses virtuelles ; et en appelant aussi d, 4V, 4V, etc.,
les angles aigus ou obtus que font les directions de
ces vitesses avec celles des forces P, P, P, etc., il
en résultera

p=rwcosd, p'=rwcos J', p'=r"w cosd"”, etc.,

pour les projections de ces mémes vitesses sur les di-
rections de ces forces ou sur leurs prolongemens.

Soient, en outre, a, b, ¢, les angles compris entre
la direction de la vitesse rw et des paralléles aux axes
des &, 7, 5, menées par le point M; les mémes an-~
sles relatifs i la direction de la force P étant 2, €, 5,
on aura

cos d'=cos a cos 2 —}-cos b cos £ cos ¢ cos 7 ;

mais 2 cause que la vilesse ro est tangente en M, au
cercle du rayon r qui a son centre dans l'axe des z,
il est aisé de voir qu'on a

= =
cos b ==k -, COSA=IF", cosc= o,
et, par conséquent,
p = ruecosd = ==(xcos€ — ycosa)m.

On aura de méme
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p’ = == (:‘L"' cos 8/ — ¥y cos a')w,
e~ (x® cos €" — »"cos 2")w,
etc.

Les signes dépendront du sens de la rotation ; et I'on
devra prendre, 3 la fois , les signes supérieurs ou les
signes inférieurs dans toutes ces valeurs ; en les subs-
tituant donc dans I'équation (1) et supprimant le fac-
teur == » , commun a tous les termes, nous aurons

p(a cos E—y cos a)+p'(xcos €'—9” cos 2")tete.==o.

Cette équation d’équilibre est celle des momens
par rapport & I'axe des z, autour duquel le mouve-
ment a eu lieu; on obtiendra de la méme maniere
les équations des momens par rapport aux axes des
x et des 7, en faisant tourner successivement le corps
solide autour de ces deux droites.

541. On peut donner a équation (b), une forme
différente qui en rendra les applications plus faciles.

Pour cela, soient x, ¥, 7, les coordonnées du point
M dans sa posilion d'équilibre;; x4 dx, y+ Iy,
2z 'z, ce 'qu'elles deviennent quand on transporte
ce point matériel dans une position N infiniment voi-
sine; X, Y, %, les composantes de la force P suivant
les prolongemens des ', ¥, 2, dans le sens positif;
ces quantités infiniment petites J'x, Jy, 9z, seront
les projections de la vitesse virtuelle MN sur les direc-
tionsde X, Y, Z; et p élant toujours sa projection suy
la direction de P, on aura (n° 331)

Pp = Xdx 4 Ydy - Zdz.
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En désignant par les mémes letires avec des accens,
les quantités analogues qui répondent aux points M/,
M’, ete., on aura aussi

Pp Xdx' 4 Yy + Zd7,
Xdx" 4= Yy 4 279",

<
W

ele. ;

et si 'on ajoule ces équations et la précedente, on
pourra ecrire

Pp 4P’ A P'p" o cte. =3 (Xdz + Yy + Zd%) ;

la somme = s'étendant A tous les points M, M,
M, ete., du systéme, et se composant, par consé-
quent, d'un nombre de parties semblables, égal a
eelui de ces points. De cette maniere, I'équation )
prendra la forme :

=(XJx - Yy Zdz) = o, ()

qu’il s'agissait de lui donner.

Or, quelle que soit la liaison des points du systéme,
on peut toujours I'exprimer par une ou plusieurs
€quations entre leurs coordonndes. Soient donc L,
L/, L etc., des fonctions données de «, s Eaie,
¥, ete., ou d'une partie de ces coordonndes; et Sup-
posons que ees équations soient

L=o, I' = o, L"= o, et (f)

Les déplacemens simultanés de lous les points du
systeme devant éire compatibles avec les conditions
auxquelles il est assujetti, il fandra que les coordon-
nées x, y, z, 2, ¥, ete., de M, M/, M, etc., et les
cuordonuées x—-J'a, y-dy, i-d'z, a'Pa’, ete.,
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de N, N, N, etc., satisfassent successivement a ces
équations ; par conséquent, en négligeant les infini~
ment petits du second ordre , nous aurons

dL dL , , dL a. -
dx ‘J\"""'l‘g} by == dz 4 - da’t-etc.==0,

dL" i AL dL’ dL
s L

b i i, A iy i b
EJ%"’]‘@:J)'{‘ H—Z‘J\»—]——ﬁ X +etC.-—0,‘

etc,

dx'ete.=0,{ (.

Si I'on change en méme temps le sens des déplace~
mens de tous les points du systéme, les signes de
dx, &y, Iz, dx', eic., changeront tous & la fois, et
ces équations seront encore satisfaites; en sorie que
le mouvement infiniment petit auquel elles repon-
dront, et le mouvement directement contraire, sont
également compatibles avec les conditions données,
comme le suppose implicitement I'énoncé du prin-
cipe des vitesses virtuelles (n° 351).

Cela posé , au moyen de ces équations (g), on éli-
minera, dans chaque cas, de I'équation (e), un
nombre des quantités J'x, Iy, Iz, Iz, etc., égal a ce~
lui des équations ( f); celles de ces quantitcs qui res-
teront ensuite dans le premicr membre de I'équation
(¢), seront indépendantes entre elles; on devra donc
égaler séparément leurs coefficiens a zéro ; ce qui four-
nira toutesles équations d'équilibre du systéme, dont
le nombre sera égal & trois fois celui des points maté--
riels M, M', M", ete., moins le nombre des équations
(f)- Lorsque les positions de ces points, cest-a-dire,
les valeurs de lears coordonnées x, 7, z, &/, etc.,
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seront données, il faudra que les composantes des
forces P, P’, P, etc., satisfassent a ces équations
d’équilibre; quand, aun contraire, on donnera ces
forces en grandeur et en direction, et que les posi-
tions des points du systéme seront inconnues, ces
mémes équations , jointes aux équations (f), servi-
ront 4 determiner toutes leurs coordonndes.

342. Les équations (¢) et (g) étant lindaires par
rapport a Jx, Jy, Iz, Jx’, etc., Vélimination
d'une partie de ces quantités pourra se faire, d'aprés
la méthode connue, en ajoulant ces équations apres
avoir multiplié les equations (g) par des facteurs indé-
terminés, et en égalant i zéro , dans cette somme, les
coefliciens de celles des quantités dx, dJy, Jz,
dx’, ete., qu'on voudra éliminer. Les coefliciens des
quantités restanies devant ensuite élre aussi égaux a
zéro, il s'ensuit qu'on devra égaler & zéro les coefli-
ciens de toutes les quantités Ja, dy, &z, da', etc.,
indistinctement , dans la somme dont il s'agit ; d'olt il
résultera un nombre d’équations égal i celui des coor-
données, entre lesquelles il restera, dans chaque cas,
4 éliminer les facteurs indéterminés, pour avoir les
équations d’équilibre du systeme.

En désignant par A, 2’, 2", etc., les facteurs par
lesquels on multipliera les équations (g), on aura,
par ce procedé,

- I ,
X g_|_)\’ ‘2_';_—{—?\”%; -+ ete. = o,
; ”
Y 42 _+A dg;_ }.”’%} -}~ ete.

{!L f 11"
Ed A ol O

y ()

l

-+ etc. = o0,

dz
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pour les équations provenaunt des coefficiens de dx,
dy, 4'z; on aura de méme

dL’ dL"
XA ¥ NG o+ et = o,
= dL ,dr it ]
Y2 -2 +7\'(b,, + ete. = o, (#)
,dL dL”

Z—|—7 +A S+ 2" + ete. = o,

pour celles qm proweuncnt des coefliciens de J'a’,
J‘; ,d'z'; et ainsi de suite.

Au lien d’éliminer simplement A, A, 2", elc., on
pourra tirer de ces équations les leEUIS de ces in-
connues; nous allons expliquer comment on en dé-
duira ensuite, en grandeur et en direction , les forces
provenant de la liaison des points du systeme, qui
agissent sur tous ces points et font équilibre aux
forces données P, P/, P”, ete. La détermination de
ces forces mconnues est une parlle 1mp0rtante du

mlslemc de la,qulhbw dont la solution complcte et

qcncmlt, se trouvera ainsi comprise dans I'ensemble
des équations (f) , (%), (/1) etc.

545. Sil'on suppose que tous les points du systéme,
moins le point M, soient rendus fixes, I'équilibre ne
sera pas troublé. En vertu deT equdnou L=o, le
point M sera alors astreint a se moavoir sur la sur-
face dont L=o est I'équation, et dans laquelle les
coordonnées x, y, z, seront seules variables. Or, en
désignant par u la résistance de cetle surface, laquelle
sera rln igée suivant une desdeux partiesde la normale
en M, on pourra remplacer cette surface, ou I'équa~
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tion de condition Li=o, par cette force inconnue.
De méme, on pourra remplacer L' =o par une
force p, normale 4 la surface qui répond i cette équa-
tion ; L”" = o par une force g, normale i la sucface
correspondante; et ainsi de suite. Donc, en joignant
4 la force donnée P, ou a ses composantes X, Y, Z,
ces forces normales w, , , u,, etc., on pourra en-
suite considérer le point M comme entiérement libre
et isolé. Par conséquent, si I'on désigne par a, 4, ¢,
les angles que fait la direction de la force g avec
des paralleles aux axes des @, ¥, z, menées par le
point M; par.a,, b,, ¢,, les mémes angles relatifs 2
la force u,; et ainsi de suile, nous aurons

X+ cos a+-p, cos a, +p, cos a,--elc.=o,
Y - cos b-p, cos b, =, cos b, —-etc.=o0,
Z —-p cos ¢ —-u, cos ¢, -, cos c, +ete.=o,

pour les trois équations d’équilibre du point M. De
plas, silon fait, pour abréger,

s AP T )
i \/(dL’)“ s ({:1; ) 4+ (;!L

dL" ’ (J_’L" =
((h: ({y) o (r!— )

etc.,

on aura aussi, par les formules connues (n° 21),
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S o vudl ‘_‘(,___Id]} o udl ]
COs & = ;' d;.IA" COs & — |-' [’Jy, COsSC = ’—EIE »
. - 1 dLS 5 o 1 al’ 1dLS
cos [Il———T E , COS0,— ; (Ef-—, COos Cl=;—zz‘ 2 (i)

| e i i ]

1 dL" i 1 dL” 1 dL*
COs d,=— ~ e COs Oy, — = {.f‘_'}-'" COs Caz;* E 3
elgas

ce qui changera les trois équations d’équilibre en

celles—ci :

r pdl |, w dl p: dL el
K—{_;:E—lyldr—}—hd_r‘ﬁ—ttc._ﬂ,
‘V_d[. éﬂ e, dL" "

' +7¢7+ v o T e s o,
ol iyl g s gl g
L+ T *tE e =0

Or, en les comparant aux trois équations (g) avec
lesquelles elles doivent étre identiques, on en con-
clut

o= A, = p A, @ = 12" ete.

Ainsi, par rapport au point M, les forees prove-
nant de saliaison avec 'autrespointsdu systéme, sont
exprimées par les produits »A, v, 1,2, eic.; ces
forces devant étre des quantités positives , on don~
nera aux radicaux v, ¥, ¥,, eic., les mémes signes
quaux quantités A, A’, A", ete., et leurs directions
seront complétement déterminées par leséquations (7).

Si l'on appelle de méme ', 2./, 1./, ete., les forces
provenant de la liaison du systeme, qui agissent sur
le point M' et sont normales anx différentes surfaces

Poy
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sur lesquelles il est obligé de se mouvoir, quand
tous les autres points M, M", M7, etc., sont rendus
fixes, on trouvera pareillement

= ViRy My == Al ns == 1A, ete.,

en faisant pour abréger,
=VE + @) + (i")
s \/ dL) + Cg») et (dz
= \/ dl_.") - ({j{;:«) (a’L”

ete.

On obtiendra de méme les expressions des forces rela-
tives aux points M", M”, etc.
344. En comparant les valeurs de p et p/, on a
TRTNER e
= W
de sorte qu’elles sont entre elles comme les quantiiés
vet . Lors donc que denx points matériels M et M’
sont lids entre eux, et, sil'on veut, & d’autres points
en nombre quelconque, par une équation L=o0,
il en résulte, dans I'état d'équilibre, des forcesu et
@' appliquées & M et M, dont les grandeurs sont
entre elles comme v et », et qui font avec les axes
des coordonnées , des angles dont les cosinus sont

1 dL 1 dL 1 dL

y dz? T?y' v dz ?

pour la force i, et
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1 dL 1 dL 1 dL
Yar' vdr' Yai?
pour la force p'. Le sens et la grandeur de ces forces
dépend du signe et de la grandeur d'une quantité A qui
se déduit, dans chaque cas, des équations d’équilibre.

La considération des surfaces sur lesquelles chacun
des points d'un systeme conserve la liberté de se
mouvoir, lorsque tous les autres sont supposés fixes,
détermine les directions normales des forces provenant
de la liaison de ces mobhiles, pour chacune des équa-
tions par lesquelles cette liaison est exprimée (n° 290);
mais on n'en peut conclure aucun rapport entre les
forces relatives 4 deux points matériels liés par une
méme équation ; et c'est le principe des vitesses vir—
tuelles, ou les équations (%), (%), etc., qu'on en a
déduites , qui fait conrailre ce rapport @ priori, dans
le cas de 'équilibre.

545. Pour donner une application de ces formules,
reprenons I'exemple du polygone funiculaire que
nous avons déja considéré dans le § I'" du cha-
pitre précédent ; et supposons que les points maté-
ricls M, M/, M", etc. , soient les sommets successifs
de ce pol} gone.

Si I'on appelle Z, I', I', etc., les longueurs données
des cotés MM/, M'M", M"M”, ete. lf’b eéquations (f),

seront , dans ce cas,
L——-V/(JC“—TI)‘—"-(I 'Ja-')'l_i_(-,-_#' _._Z_O
V(x _xr!,n+(], __}” a+( e l;)n ,-_0,
In._. \/( Y e 5 1) =+(} =y = T m)a__ ==

ete. ;
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d’ou 1l résultera

dL dl. x*—z' JI/ Sl __al—a" L
dz— d¢ I ? dr - dx— 7 » tlc,
ol st b vidlit o o DR iemipt g
P AR At S B bt oy S WY
dL____dL__z —2 di’ _ dL'__Zd—2" .
& A& I @ g = e

et toutes les autres différences partielles de 1., L,
LY etc., qui entrent dans les formules précédentes, se-
rout égales a zéro.

En considérant les deux points M et M, on aura

vy=vV =1, p=pu =42

—_— 3

ol 'on prendra les signes supérieurs ou inférieurs,
selon que la valeur de A sera positive ou négative.
On conclut de Ia et des équations précédentes, que les
points M et M’ seront sollicités par des forces égales et
contraires, dirigées suivant la droite MM’ ou suivant
ses prolongemens, et dout la quantité A, abstraction
faite du signe, sera la grandeur commune. 11 en sera
de méme a I'égard des points M’ et M”, M'et M”, etc.;
en sorie que dans I'élat d'équilibre, les quantités 2,
A, A", etc., exprimeront les contractions ou les ten-
sions des cOtés successifs MM/, M'MY, M'M”, etc.
Comme on aura, d'aprés les équations (i),

0

r—a =y
cosa==""", cosb=t""F o0 —p-?—7

A L T2
et qu'on devra prendre les signes supérieurs ou infé-
rieurs, selon que la valeur de 2 sera positive ou né-
gative,, on en conclut, par exemple, que la force ap-
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pliquée au point M sera dirigée de M vers M, et ex-
primera une contraction du coté MM’, quand cette
valeur sera neégative, et que cette force agira dans le
sens opposé et exprimera une tension, lorsque la va-
leur de A sera positive. L’un ou l'autre de ces deux
cas sera possible , si les cotés du polygone sont des
verges inflexibles, jointes par des charniéres; et le
second cas pourra seul avoir lieu, si les eOtés sont
des fils flexibles.

Les équations (%), (%), (&"), etc., pourront s'écrire

ainsi
Az’ —x)

Xo= = ’

L, ’“(.,?'r;—f) )

giis & ;_-z—) )

X/ ’i_(f_l— Zhie "_(x:l___r_),
A
/R et ) L,
X L) - TEn)
W= )
Gy ol T) oty B g
etc,

Lies trois premiéres montrent que la tension X sera la
vésultante des forces X, Y, Z. En les ajoutant aux

rr

' 44
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trois suivantes, on aura

Az — .?:'_)

XX = "

Y wlid Y ALY =07

Il

/s, LS e 3 B

ce qui fait voir que la tension 2 sera la résullante de
X', Y, Z, et des forces X, Y, Z, Iransporiées au
point M', parallelement & elles-mémes. En conti-
nuani de méme, on avra pour la tension d'un coté
quelconque la méme valeur que dans le n° 287.

Le nombre des sommets M, M, M", etc., étant
désigné par 7z, celui des équations précédentes sera
3n, et celui des tensions A, X', A”, eic., égal a
n — 1. En éliminant ces quantités, on aura done
on = 1 équations d’équilibre , lesquelles, jointes aux
n— 1 longueurs données Z, I', I, etc., des cotés du
polygone, suffiront pour déterminer les 3n coordon-
nées de ses sommels, et, par conséquent, sa figure
d’équilibre. Mais ce caleul n’aurait aucane utilité; et
il vaut mieux, comme nous l'avons fait dans le
n° 286, tracer successivement les ¢otés du poly-
gone funiculaire, d'aprés les grandeurs et les direc-
tions données qui agissent & ses difiérens sommets.

546. Dats le cas dun systéme quelconque de
points matériels M, M, M’ ete., si les forces don-
nées, quisont appliquées a ces points, proviennent de
leurs attractions ou répulsions mutuelles, et de forces
semblables qui ¢manent d'un ou plusieurs. centres,
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on aara
s Xdx 4 Ydy + Zdz) =do(x, ¥, 3, x', ), 2, ete.);

@ désignant une fonction donnée des coordonnées de
M, M/, M", etc., dépendante de la loi de ces forces
par rapport aux distances.

En effet, a Pégard des forces provenant des centres
fixes, cela résulte de ce qu'on a vu dans le n° 158.
Supposons, en outre, que U exprime Vaction mu-
tuelle de M et M’, qui sera attractive, pour fixer
les idées. Soit ausst w leur distance muiuelle, de
sorte que U soit une fonction donnée de %, et quon
ait

= (' — &2 + (¥ — )+ (& — =

Les cosinus des angles que fait la droite MM’ avec des
droites menées par le point M, suivant les directions
des x, y, z, positives, seront
Wl 2 ¥—y "

u 7 Talst g2

en les multipliant par U, on aura les composantes de
cette force appliquée au point M et dirigée suivant
MM'. Celles de Is méme force U, appliquée au point
M’ suivant la direction M'M, seront égales et con-
traives ; et de 12 on conclut

.U r ! I A I i 3
- [(z'—x) (dz—dx') 4 (' —y) (dy—dy") + (' —2) (da—dz)],
pour la partie de la somme = qui provient de T'ac-

tion et de la réaction de M et M'. Or, en différentiant
la yaleur de #*, on a
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udu=(z'— ) (dx' —dx)4(y' —y)(dy'—dy)H(z'—z)(d'—dz) ;

ce qui réduit la quantité précédente & — Udlu, c'est-
-dire, & la différentielle d’une fonction de z. Il ensera
de méme pour les parties de la somme = provenant
des actions mutuelles des autres points du systeme;
par conséquent, sa valeur entiére se composera de
termes qui seront tous des diffiérentielles exactes, et
celte valeur sera aussi la différentielle d’une fonction
donnée des coordonnées de tous ces points.

En vertu de Véquation (e), cetle fonction, que
nous représentons par @, sera un maximum Ou un
minimum, relativement aux valeurs des coordonnées
qui répondent & une position d’équilibre du systéme;
et, réciproquerment, si I'on détermine le maximum
ou le minimum de la fonction @, en ayant égard aux
équations (f) qui peuvent étre données entre les
coordonnées, les valeurs qu’on obtiendra pour ces va-
riables répondront a des positions d'équilibre.

On conclutde la que quand le systeme des points M,
M’,M", etc., esten mouvement, de sorte que leurscoor-
données , et, par suite, la quantité @, soient des fonc-
tions du temps, cette fonction @ atteindra son maxi-
mum ou son minimumn , toutes les fois que le systeme
passera dans une position ot il resterait en cquilibre,
si les points qui le composent n’avaient pas de vitesses
acquises.

347. 1l y aura entre le mascimum et le minimum de
la quantité ¢ une différence essenlielle, 4 laquelle il
importe d'avoir égard, et que nous allons expliquer.
On dit que V'étatd’équilibre d'un corps ou d'un sys-
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temede corps est stable, lorsqu’en écartant un tant soit
peu ces mobiles de leurs positions, ils tendent a y re-
venir, en faisant de petites oscillations que les frotte-
mens et les résistances des milieux finissent toujours
par éteindre ou rendre nsensibles. L’équilibre est non
stable ou instantané, lorsque le corps ou le systeme
de corps qui est dans cet €tat, tend de plus en plus &
sen é€loigner, et finit par chavirer, dés qu'on Ven a
un peu écarté. En ne supposant aucun frottement qui
puisse, jusqu’a un certain point, retenir les corps dans
leurs positions, ce second état d’équilibre est un cas
purement mathématique, qu'on ne saurait jamais ob-
server, puisque la moindre force perturbatrice suffi-
rait pour le détruire.

Cela posé, les équations fournies par le principe
des vitesses virtuelles, ou, ce qui est la méme chose,
par la condition du maximum ou du minimum de la
fonction @, sont communes a ces deux états; mais le
maximum convient a la stabilité, et le minimum A
Péquilibre instantané; et c'est, en effet, ce que nous
ferons voir dans un autre chapitre, ol nous considé-
rerons la nature du mouvement qui a lieu lorsqu’un
systeme de points matériels a ét¢ trés peu écarté dun
état d'équilibre quelconque. En attendant, nous al-
lons donner des exemples de ces deux états d'équi-
libre dans le cas d'un systéme de corps pesans; et faire
connaitre d’abord une propri¢té de son centre de gra-
vite.

348. Supposons donc que la pesanteur soit la seule
force appliquée aux points M, M', M", etc., lesquels
seront les centres de gravité de corps dont nous
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représenterons les poids par @, @', @', ete. En
prenant la pesanteur verticale et dirigée dans le sens
de cette force, nous aurons

r,
L="a, L= o, "I"= @', elc.;

les autres composantes seront toutes nulles , et il en
résultera

dp = @dz 4 @'ds' - @"d® - ete.

Mais en appelant I la somme des poids @, @, @”, etc.,
et z, Fordonnée de leur centre de gravité, verticale et
dirigée dans le sens de la pesanteur, on a aussi (0° 64)
Iz, = @z + @7 4+ &"7" - etc.;
ou aura dong
dp = Ndz,, ¢ = ¢ - Iz, ;
¢ étant une cohstan,te arbitraire.

Or, on conclut de 1, 1°. que Vordonnée z, est la
quantité qui devra étre un maximuiow an mirimunm,
lorsque, le systéme sera en équilibre , et réciprogue-
ment ; 2° que le maxinwm de z, répondra au cas de
Iéquilibre stable, et son minimum au cas de I'équi-
libre instantané.

Ainsi, la condition d’équilibre d’un systéme quel-
conque de corps pesans, consiste en ce que le centre
de gravité du systeéme entiersoit le plus has ou le plus
haut possible; le plus bas quand I'équilibre est stable,
et le"plus haut quand il n'est qu'instantané.

349. D’apres ce théoréme , si une chaine pesante,
attachée par ses deux bouts i des points fixes, est en
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équilibre, son centre de gravitc sera le plus bas pos-
sible; ce qui s'accorde avec le résultat du n® 2¢6.

Si un poini matériel pesant est posé surune courbe,
et qu'en plusieurs points la tangente soit horizontale,
Fordonnéde verticale du mobile, comptée dans le sens
de la pesanteur, sera un maximum dans ceux de ces
points ot la courbe est concave paren haut, et un mi-
nimum dans ceux ou elle tourne sa concavité par en
bas ; par conséquent, les premiers seront des posi-
tions d’équilibre stable, et les derniers des positions
d’équilibre instantané.

Si T'on pose un ellipsoide homogene et pesant,
sur un plan fixe horizontal , son cenire de gravité, ou
de figure, sera le plus bas possible lorsque Tellipsoide
touchera le plan fixe par Pune des deux extrémités
du plus petit de ses trois axes ; etalors I'équilibre sera
stable. Quand il le touchera par 'une des extrémités
du plus grand de ses frois axes, son centre de gravité
sera le plus haut possible; et Péquilibre ne sera qu'ins-
tanlané. Enfin, si le point de contact est une extré-
mité de I'axe moyen, 1'élévation du centre de gravité
sera un minimum pour une partie des sections du
corps , et un mmaximumn pour les autres sections; par
consequent , I’équilibre sera stable ou non stable, se-
lon que les déplacemens auront lieu dans le sens des
premieres scctions ou dans le sens des derniéres. Tout
cela étant évident, & priori, peut servir de vérifica-
tion au théoréme du numéro précédent.

Supposons encore quon ait versé dans un vase
deux liquides homogenes et pesans. Si la surface
de séparation et celle qui termine le liquide supé-
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rieur sont toutes deux horizontales, et que ce li-
quide soit celui qui a la moindre densité, le centre
de gravité de ces deux liquides sera le plus bas pos-
sible; car il est aise de voir qu'en inclinant ou cour-
bant 'une ou Vautre des deux surfaces, on €levera
toujours le centre de gravité du systeme. Ces deux
surfaces étant toujours horizontales, si le liquide le
moins dense est au-dessous de l'autre, on verra de
méme que le centre de gravité du systéme sera le
plus haut possible. Par conséquent, pour Péquilibre
de deux liquides superposés , il est nécessaire et il
suffit que chacun d'eux soit terminé par un plan
horizontal ; mais, pour la stabilité , il faut, de plus,
que ce soit le liquide le plus dense qui occupe la
partie inféricure du vase. Quand la différence des
deux densités est peu considérable, il est possible,
avec beaucoup de précaution, de faire surnager le
liquide le plus dense; mais cet équilibre non stable
ne peut se maintenir assez de temps, pour étre ob-
servé, qua raison du frottement des deux licuides
contre les parois du vase.

FIN DU PREMITR VOLUME.
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