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?,V\/VVVVV^W.JVVWVWVVW\'VV''VWVW.VV\'Wgt;iWVVVWVWV\'V\i\'VVVW%'WVWVW%'VVgt; WV\^^/VVVVWVV^'W'^^'^?%AVERTISSEMENT. Cet ouvrage pouvant servir a 1’enseigne-ment, j’ai du entrer souvent dans des détails minutieux, et suivre, pour l’expositiou desnbsp;mati?res, l’ordre Ie plus propre a en faciliternbsp;Fintelligence. L’ordre que j’ai adopté est celuinbsp;que 1’on suit maintenant dans les cours denbsp;Mécanique de FEcole Polytechnique. On s’ennbsp;forniera une idee precise, en parcourant lesnbsp;tables analytiques des mati?res qui précédentnbsp;les deux volumes- Je me suis aussi attaché anbsp;multiplier les exemples nécessaires pour éclair-cir les théories générales; ceux que j ai choi-sis ont été pris, surtout, dans TAstronomienbsp;et la Physique, et quelques-uns dans TAr-tillerie. Sa

destination principale est de servir d’in-troduction a uii Traité de Physique matlié-matique, dont la Nouvelle théorie de ?Action capillaire, que j’ai publiée il y a un an, est déja une partie ; les autres parties se com-



ij nbsp;nbsp;nbsp;AVERTISSEMENT. poseront des différens Mémoires que j’ai écrits, soit sur l’équilibre et Ie mouvement des corpsnbsp;élastiques et des fluides , soit sur les fluidesnbsp;imponderables, et que je me propose de réunirnbsp;et de rendre aussi complets qu’il me seranbsp;donné de Ie faire. On trouvera, a la fin du second volume, une addition relative a Fusage du principenbsp;des forces vives dans Ie calcul des machinesnbsp;en mouvement.



TABLE DES MATI?RESCONTENUES DANS LE PREMIER VOLUME,INTRODUCTION. Definitions de la maliere , des corps, de la masse, d’un point matériel, et de la force ,nbsp;nbsp;nbsp;nbsp;11“' i et a Objet de la M?canique^ division de cette science en deux parties , la Slalique et la Dynamique, nbsp;nbsp;nbsp;11“ 3 Le point d’application d’une force se déterminera au moven de ses trois coordonnées, rectangulaires, ou polaires, n“ 4nbsp;Ce qu’on entend par des forces égales ; expression nuine'rlquenbsp;de 1’intensite' d’une force ,nbsp;nbsp;nbsp;nbsp;n“ 5 La direction d’une force se déterminera au moyen de tvols angles aigus ou obtus, lies entre eux par une e'quation, ou de deux angles indépendans l’un de l’autre ; conversion en parties du rayon, d’un are exprime' en degre's, n“Ž 6, 7 et 8nbsp;Expression du

cosinus de l’angle de deux droites ; e'quation quinbsp;a lieu quand elles sont perpendiculaires 1’une a l’autre ;nbsp;transformation des coordonnées rectangulaires en coordonnées polaires,nbsp;nbsp;nbsp;nbsp;nquot; 9 Projections d’une ligne droite sur une autre droite, et d’une aire plane sur un autre plan,nbsp;nbsp;nbsp;nbsp;nquot; 10 Comment on déterminera les deux sens opposes de différentes forces parall?les,nbsp;nbsp;nbsp;nbsp;n” i t Dans eet ouvrage, on emploiera exclusiveinent la méthode des infniment petits; principes fondamentaux de l’analyscnbsp;infinitésimale,nbsp;nbsp;nbsp;nbsp;11“ 12 Définitions de la différentielle d’une variable et de celle d’iinea..



IVTABLE DES MATI?RES. fonction ; definition et notation de l’inte'grale de'finie ; cette inte'grale est, en ge'néral, la somme des valeurs de la diffe'-rentielle ,nbsp;nbsp;nbsp;nbsp;n° 13 DifFeTentiation d’une integrale, par rapport a une quantité regarde'e cotnme constante dans l’intégration,nbsp;nbsp;nbsp;nbsp;• nquot; i4 Formule des quadratures, nbsp;nbsp;nbsp;n“ i5 Dans l’infiniinent petit, Ie rapport de 1’arc d’une courbe a la corde est l’unite'; ce qui perniet de conside'rer une courbenbsp;coniine un polygone d’uu nombre infini de cóte's infiniuientnbsp;petits,nbsp;nbsp;nbsp;nbsp;n° i6 De'finition de la tangente a une coui-be ; formules qui de'termi-nent sa direction ; élément difierentiel de la courbe; e'qua-tion du plan normal • cosinus des angles que fait la perpendiculaire a un plan quelconque, avec des parall?les aux axes

des coordonne'es,nbsp;nbsp;nbsp;nbsp;n° 17 Expressions de l’angle de contingence et du rayon de cour-bure, nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;nquot; 18 Equation du plan osculateur; formules relatives k la direction de la perpendiculaire éi ce plan, nbsp;nbsp;nbsp;n* ig Coordonne'es du centre de courbure, nbsp;nbsp;nbsp;n° 20 Equation du plan tangent a une surface courbe ; élément dif-férentiel de la surface ; formules relatives a la direction de la normale: on renvoie aun Mémoire inséré dans Ie 21' cahier du Journal de l École Polytechnique, pour ce qui con-cerne la courbure des surfaces ,nbsp;nbsp;nbsp;nbsp;n” 21 Regie pour déduire 1 une de 1 autre , les formules relatives a trois axes rectangulaires, par rapport a cbacun desquels toutnbsp;est semblable dans un probl?me,nbsp;nbsp;nbsp;nbsp;n“ 22

Conditions générales auxquelles doivent satisfaire les équa-tions qui renferment des quantités de différentes natures, nŽ 23



TABLE DES MATI?RES. nbsp;nbsp;nbsp;vLITRE PREMIER.STATIQUE, PREMI?RE PARTIE.CHAPITRE P*'. De la composition et de Véquilibre des forces applique'es a un m?me point, page 4^ Ce qu’on entend par la résultante d’un nombre quelconque de forces applique'es a un m?me point; sa Yaleur, quandnbsp;toutes ces forces agissent suivant une m?me droite , nquot; 24nbsp;La re'sultante de deux forces égales qui comprennent un anglenbsp;de 120°, est e'gale a cbacune de ces forces, et divise l’angle ennbsp;deux parties e'gales,nbsp;nbsp;nbsp;nbsp;nquot; 25 Valeur et direction de la re'sultante de deux forces qui font un angle quelconque; regie du parallélogramme des forces, n°Ž 26,27 et 28 Conse'quences iinme'diates de ce the'or?me, nbsp;nbsp;nbsp;n” 29 Construction géométrique pour de'terminer,

en grandeur et en, direction, la re'sultante d’un nombre quelconque de forces, nŽ 3o Composition de trois forces rectangulaires en une seule force, et de'composition de celle-ci en trois forces rectangulaires, n° 31nbsp;Calcul de la re'sultante d’un nombre quelconque de forcesnbsp;donne'es; valeurs des angles qui de'terminent sa direction ;nbsp;expression de cette résultante en fonction des composantesnbsp;et des angles compris entre leurs directions, n°Ž 32 et 33nbsp;Proprie'té particuli?re de cette m?me résultante,nbsp;nbsp;nbsp;nbsp;n“ 34 Equation d’équilibre d’un point matérie! enti?rement libre : on vérifie qu’en vertu de ces équations, cbacune des forcesnbsp;qui agissent sur ce point est égale et contraire a la résultante de toutes les autres,nbsp;nbsp;nbsp;nbsp;n° 35 Equation d’e'quilibre d’un point materiel,

assujetti a demeurer sur une surface donnée; pression que supporte la surface ;nbsp;sens dans lequel elle s’exerce,nbsp;nbsp;nbsp;nbsp;n^' 36-et 37



ti nbsp;nbsp;nbsp;TABLE DES MATI?RES. Equation d’équilibre d'un point materiel assujetti a rester sur une courbe donnée ,nbsp;nbsp;nbsp;nbsp;n° 3R Equation des vitesses virluelles , contenant les e'quations d’équilibre relatives aux trois cas précédens^ nbsp;nbsp;nbsp;nŽ 39.CHAPITRE II. De Véquilibre du levier, page 72 Definition du levier; objet de ce chapitre, nbsp;nbsp;nbsp;n“ Déplacement du point d’application d’une force appliquée a un syst?me de forme invariable ,nbsp;nbsp;nbsp;nbsp;n“ 4i Definition du moment cl une force par rapport d un point ; équilibre de deux forces appliquées a un levier; cette equation est indépendante de l’angle des deux dras du levier;nbsp;cas oü les deux forces données sont parall?les , nŽ* 42 et 43nbsp;Deux forces parall?les agissant en sens contraires , et non di-rectement

opposées , ne sont pas réductibles a une seule; cenbsp;cpuple de forces peut ?tre transformé d’une infinite de ma-ni?res différentes, en un autre couple de forces irréductiblesnbsp;a une seule ,nbsp;nbsp;nbsp;nbsp;nŽ 44 Condition d’e'quilibre d’un nombre quelcouque de forces appliquées a un levier , nbsp;nbsp;nbsp;riŽ 45 Théor?me relatif au moment de la résultante de deux forces j extension de ce théor?me au cas d’ün nombre quelconquenbsp;de forces dirigées dans un m?me plan; quantité qui demeurenbsp;invariable, dans toutesles transformations de ce syst?me denbsp;forces ; équation d’équilibre de ces forces autour d’un pointnbsp;fixe, situé dans leur plan,nbsp;nbsp;nbsp;nbsp;nŽquot; 46, 47 et 48 On vérifie que l’équation des vitesses virtuelles a lieu dans l’é-quilibre du levier, nbsp;nbsp;nbsp;n° 49CHAPITRE III.

De la composition et de Véquilibre des forces parall?lesjnbsp;nbsp;nbsp;nbsp;P^gŽ 90 Demonstration directe de la composition de deux forces parall?les qu’on avait déduite, précédemment (nŽ 43), de celle des forces concourantes vers unm?me point: on en conclut lanbsp;grandeur et Ie point d’application de la résultante d’unnbsp;nombre quelconque de ces forces,nbsp;nbsp;nbsp;nbsp;n“* 5o et 5i



TABLE DES MATIERES. nbsp;nbsp;nbsp;vij Quand des forces parall?les tournent autour de leurs points d’application respectifs, en restant toujours parall?les, leurnbsp;re'sultante tourne aussi autour de son point d’application ;nbsp;definition du centre des forces parall?les} definition dunbsp;moment d’une force par rapport a. un plan ,nbsp;nbsp;nbsp;nbsp;n°' Sa et 53 Le moment de la re'sultante d’un nombre quelconque de forces parall?les , par rapport a un plan , est e'gal a la somnie desnbsp;inomens de ces forces, par rapport a ce inenie plan; coor—nbsp;donnees du centre des forces parall?les, n“' 54 j 55 et 56nbsp;Equation d’equilibre d’un syst?nie de forces parall?les, appli-que'es a un corps solide, soit que ce corps soit enti?rementnbsp;fibre, ou qu’il soit retenu par un point ou par un axe fixe, n'’’ Sij et 58

CHAPITREIV. Considerations générales sur les corps pesans et sur les centres de graoité,nbsp;nbsp;nbsp;nbsp;o6 On consid?re la pesanteur comme une force constante, en grandeur et en direction , dans toute I’e'tendue d’un m?menbsp;corps,nbsp;nbsp;nbsp;nbsp;n° Sg De'finition du poids et de la densité j e'quations qui existent entre le poids , la masse , le volume d’un corps, et la grandeur de la gravite',nbsp;nbsp;nbsp;nbsp;n“ 6o Definition du gramme^ rapport de son poids a celui d’un m?me volume d’eau, a la temperature de la glace fondante ; densite's de I’air et du mercure ,nbsp;nbsp;nbsp;nbsp;n“ 6i Les poids servent de terme de comparaison aux autres forces ; ils fournissent la mesure la plus commode de la masse , n“ 62 De'finition du centre de gravité; regie pratique pour en de'-terrniner la position dans

l’intérieur d’un corps solide, n° 63 Equations d’apr?s lesquelles on calcule les coordonnees dunbsp;centre de gravite d’un syst?me de corps, dont les centresnbsp;de gravite' sont d?ja counus; cas ou les masses des corpsnbsp;sont infiniment petites ; ce qu’on entend par les centresnbsp;de gravite d’un volume , d’une surface, et d une ligne , n“’ 64 et 65



VlijTABLE DES MATI?RES. Equation qui a lieu entre les distances mutuelles des centres de gravité de dilFérens corps, et leurs distances au centre denbsp;gravité du syst?me entier,nbsp;nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;66 Propriéte' curieuse de l’équilibre d’un point mate'riel enti?re-nient llbre, nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;67 Enuine'ration de diffe'rens cas oü Ie centre de gravité' est im-ine'diatement connu, nbsp;nbsp;nbsp;n°nbsp;nbsp;nbsp;nbsp;68 CHAPITRE V. Détermiriation des centres de gravité j nbsp;nbsp;nbsp;page 121 § 1*='. Centres de gravité des lignes courbes, nbsp;nbsp;nbsp;ibid. Coordonne'es du centre de gravité d’une ligne quelconque; application k la ligne droite , nbsp;nbsp;nbsp;n“ 69 Cas d’une courbe plane ; applications au eerde, et aux trois sections coniques ,nbsp;nbsp;nbsp;nbsp;ii°‘

70 et 71 Equation de la cyclo?de; e'noncé de ses diverses propriétés; coordonne'es du centre de gravité d’un are quelconque denbsp;cette courbe,nbsp;nbsp;nbsp;nbsp;n°“ 72 et 78 Régie pour determiner l’aire d’une surface de rc'volution, quand Ie centre de gravité de sa courbe génératrice estnbsp;connu sans aucun calcul,nbsp;nbsp;nbsp;nbsp;n° 74 § II. Centres de gravité des surfaces, nbsp;nbsp;nbsp;page i3i Coordonne'es du centre de gravité d’une surface quelconque ; cas oü la surface est plane , nbsp;nbsp;nbsp;n“ 78 Application au centre de gravité d’un triangle; determination de ce point, sans Ie secours du calcul intégral; comment on en déduit les centres de gravité du secteur etnbsp;du segment circulaires ,nbsp;nbsp;nbsp;nbsp;76, 77 et 78 On iiidiqiie, comnie exemple, les centres de gravité des trois sections

coniques ; on calcule compl?teinent les deux coor-données du centre de gravité d’üne portion quelconque denbsp;Taire de la cyclo?de,nbsp;nbsp;nbsp;nbsp;11“* 79 et 80 Centre de gravité de la zone d’une surface de révolution ; application aux surfaces concave et convexe engendréesnbsp;par la cyclo?de,nbsp;nbsp;nbsp;nbsp;n”Ž 8t et 82-



TABLE DES MATI?RES. nbsp;nbsp;nbsp;ix Régie pour determiner Ie volume d’un solide de revolution , cjuand Ie centre de gravité de Taire ge'ne'ratrice est connunbsp;sans aucun calcul; extension de cette régie a d’autres sortesnbsp;de corps ,nbsp;nbsp;nbsp;nbsp;83 et 84 Volume d’un prisine oud’un cylindre tronqué, nbsp;nbsp;nbsp;n“ 85 § III. Centres de gravité des volumes et des corps, page i5i Centre de gravité d’une pyramide ou d’un cóne quelconque, n“86 Determination du centre de gravité d’une pyramide triangulaire, sans Ie secours du calcul intégral; comment on en déduit les centres de gravité d’un secteur et d’un segmentnbsp;spliériques,nbsp;nbsp;nbsp;nbsp;n°’ Sn et 88 Centre de gravité d’un corps symétrique autour d’un axe, et, en particulier, d’une portion d’ellipso?de ,nbsp;nbsp;nbsp;nbsp;n“ 8g

Centre de gravité d’un solide de révolution, et, en particulier, des solides concave et convexe engendrés par la cyclo?de, nŽ go Expressions diverses, en intégrales triples, des coordonnées du centre de gravité d’un corps quelconque; application anbsp;une portion de sph?re hétérogéne,nbsp;nbsp;nbsp;nbsp;n°Ž gi et ga Élément différentiel d’un volume exprimé au moyen des dif-férentielles des coordonnées polaires, nbsp;nbsp;nbsp;n“ g3CHAPITRE AI. Calcul de Vattraction des corpSjpage 169 5 Iquot;. Formules relatives a un corps quelconque et d la sphere en particulier,nbsp;nbsp;nbsp;nbsp;page i6g Expressions générales en intégrales triples, des trois compo-santes rectangulaires de l’attraction exercée par un corps sur un point inatériel,nbsp;nbsp;nbsp;nbsp;n°’ g4 et g5 Réduction de ces trois intégrales triples,

aux différences par-tielles d’une seule intégrale , nbsp;nbsp;nbsp;n° g6 Une difficulté qui a déja été signalée dans Ie calcul des coordon-nées du centre de gravité d’un corps quelconque (n^gi) ,



X ' nbsp;nbsp;nbsp;TABLE DES MATI?RES. conduit ? examiner la constitution intinie des corps naturels. Definitions des atomes et des molécules; ce qu’on doit entendre par la densite' d’un corps en un point quelconque ;nbsp;definition de Yinlervalle mojen des mole'cules au m?inenbsp;point; on explique comment les formules relatives auxnbsp;masses des corps, aux coordonnées des centres de gravite',nbsp;et aux attractions en raison inverse du carré des distances,nbsp;peuvent ?tre appliquées , sans erreur sensible, aux corpsnbsp;naturels,nbsp;nbsp;nbsp;nbsp;n°* 97 et g8 L’attraction d’un corps sur un point materiel trés éloigné, est k trés pen prés la m?me que si la masse enti?re de ce corpsnbsp;était reunie a son centre de gravite ; attraction mutuelle denbsp;deux sph?res liomog?nes,nbsp;nbsp;nbsp;nbsp;n“ 99 Théorémes

relatifs aux attractions des coi-ps sphériques, sur des points matériels extérieurs ou intérieurs, n°Ž 100 et 101nbsp;Démonstration directe de l’équilibre d’un point matériel, si-tué dans un espace terminé par une couclie sphérique, n“ 102 5 II. Formules relatives a Vellipso?de , nbsp;nbsp;nbsp;page l85 Transformation des formules générales du nquot; gS, principale-ment utile dans Ie cas oü Ie point attiré fait partie du corps attirant,nbsp;nbsp;nbsp;nbsp;n” io3 Application a 1’ellipso?de liomog?ne: les formules relatives a son attraction sur un point intérieur , se réduisent a des in-tégrales simples , calculables au moyen des tables des fonc-tions elliptiques; extension du tliéoréine du n° 102, a unenbsp;couche elliptique ,nbsp;nbsp;nbsp;nbsp;o'quot;’ 104 et io5 Les intégrales s’effectuent sous foi’me finie, dans le cas de l’ellipso?de de

révolulion ; cas particulier d’un ellipso?denbsp;trés peu applati ,nbsp;nbsp;nbsp;nbsp;n” 106 Tliéor?me remarquable, au moyen duquel on fait dépendre l’attraction d’un ellipso?de sur un point extérieur, de 1’attrac-tion d’un autre ellipso?de sur un point intérieur: ce tlie'o-??me est indépeudaut de la lol de l’attraction en fonction denbsp;la distance; application au cas particulier de deux spb?resnbsp;concentriques,nbsp;nbsp;nbsp;nbsp;n°’ 107, io8 et 109.



TABLE DES MATI?RES. nbsp;nbsp;nbsp;xi LIYRE DEUXI?ME. dynamique , PREMI?RE PARTIE. CHAPITRE PL Du mouvement rectiligne et de la mesure des forces,nbsp;nbsp;nbsp;nbsp;2o5 S nbsp;nbsp;nbsp;I'^ Formules du mouvement rectiligne,nbsp;nbsp;nbsp;nbsp;ibid. Definition et e'quation dn. mouvement uniforme, nbsp;nbsp;nbsp;n° 11 o Remarque sur la mesure du temps; invariabilité du jour sidé-ral; sa durée comparée a celle du jour moyen, n“ 111 Definition de la vitesse dans Ie mouvement uniforme, et en-suite dans Wmouvement varie',nbsp;nbsp;nbsp;nbsp;n° 112 En quoi consiste Yinertie de la mati?re, nbsp;nbsp;nbsp;n“ 113 Expression de la vitesse dans un mouvement quelconque; expression de 1’espace parcouru dans un temps infininieiit petit, abstraction faite de la vitesse acquise

,nbsp;nbsp;nbsp;nbsp;n” 114 De'finition et e'quation du mouvement uniformément accéléré OU retardé ; la force qui Ie produit estune force constante;nbsp;ce mouvement est celui des corps pesans dans Ie vide; dansnbsp;un m?me lieu, l’accélération est la m?me pour tous cesnbsp;corps ; sa grandeur a 1’Observaloire de Paris ,nbsp;nbsp;nbsp;nbsp;n° 115 On démontre que les grandeurs des forces qui agissent succes-sivement sur un m?me point materiel, sont entre elles comme les vitesses infiniment petites qu’elles lai impri-ment dans un m?me temps infiniment petit,nbsp;nbsp;nbsp;nbsp;n° 116 Quand il s'agit de forces constantes, leurs intensités sont entre elles comme les vitesses qu’elles produisent dans 1 u—nbsp;nité de temps; exemple du rapport des forces, conclu de celuinbsp;des vitesses observées ;

exemple inverse du rapport des vi—nbsp;tesses , conclu de celui des forces ,nbsp;nbsp;nbsp;nbsp;n“ 117 Mesure de la force dans un mouvement varié quelconque,



?ij nbsp;nbsp;nbsp;TABLE DES MATI?RES. soit au moyen de la vitesse qu’elle produit, soit au moven de Tespace qu’elle fait parcourir, pendant un temps inlini-ment petit,nbsp;nbsp;nbsp;nbsp;nquot;nbsp;nbsp;nbsp;nbsp;ii8 Formules gdne'rales du mouvement varie', nbsp;nbsp;nbsp;ii”nbsp;nbsp;nbsp;nbsp;119 § II. Mesures des forces, en ajant égard aux masses, page 221 Impropriete' de 1’expression force d’inertie,nbsp;nbsp;nbsp;nbsp;n°nbsp;nbsp;nbsp;nbsp;120 Ce qu’on doit entendre par des points luale'riels e'gaux en masse; deux forces qui agissent sur deux points différens ,nbsp;sont entre elles cornme leurs masses multipliées paries vi-tessesproduites par ces forces, dans un m?me instant, n“ 121nbsp;De'finition de la force molrice ; sa valeur dans un mouvementnbsp;quelconque; elle se change en unepression, quand Ie

mouvement est de'truit,nbsp;nbsp;nbsp;nbsp;nquot;nbsp;nbsp;nbsp;nbsp;122 De Tidentite' du mouvement des corps pesans en chaque lieu de la terre, on conclut la proportionnalite' du poids a lanbsp;masse,nbsp;nbsp;nbsp;nbsp;n°nbsp;nbsp;nbsp;nbsp;128 Quand la force motrice est donne'e , on en deduit la force ac— célératrice, en divisantpar la masse du mobile; on prend,nbsp;pour exemples, la re'sistance d’un milieu, et un poidsnbsp;donné, applique successivement a des masses dilFérentes, 11'” 124 et 125- De'finitions de la quanliié de mouvement, et de la percussion OU impulsion; de'composition d’une percussion en deuxnbsp;autres; application au coin,nbsp;nbsp;nbsp;nbsp;n” 126 Condition de 1’équivalence de deux percussions; principe de l’e'quilibre dans Ie cboc , d’apr?s lequel deux corps dénue'snbsp;d’elasticité, qui vont

? la rencontre 1’un del’autre, se re'-duisent au repos, quand les vitesses sont en raison inversenbsp;des masses,nbsp;nbsp;nbsp;nbsp;nŽ 127 Comment on peut comparer un poids et une percussion, n° 128 CHAPITRE II. Exemples du mouvement rectilippie,page 237 Equations différentielles du mouvement rectiligne ; l’inte'gra-tion n’est possible, sous forme linie, que quand la force acce'lératrice est constante, ou donnée en fonction d’nne-



TABLE DES MA?I?RES. seule des trois variables, Ie temps, la vitesse, 1 espace par— couru,nbsp;nbsp;nbsp;nbsp;n“ 139 Mouvement vertical d’uii corps pesant dans Ie vide , nbsp;nbsp;nbsp;n° i3o Mouvement de ce corps sur un plan incline', nbsp;nbsp;nbsp;nŽ i3i Mouvement vertical d’un corps pesant dans un milieu resistant : lorsqu’il tombe d’une grande bauteur, sa vitesse ap-proclie de plus en plus d’etre constante ; moyen de determiner Ie coejjicienl de la re'sistance, par 1’observation du temps total de Télévationet de la chute successives du mobile, n“* 182 , i33, i34 et i35 Exemple de l’usage des solutions particulieres dans les pro-bl?ines de dynamique, nbsp;nbsp;nbsp;i36 Mouvement d’un corps attiré vers'un centre fixe, soit en raison directe de la distance , soit en raison inverse du carré de

lanbsp;distance,nbsp;nbsp;nbsp;nbsp;n“’ 187 et i38 Mouvement d’un corps attiré vers deux centres fixes; cas oil ces deux centres sont ceux de la lune et de la terre; diminution de la vitesse d’un projectile, produite par sa pesan-teur vers Ie corps d’oü il est parti, quand il est parvenu knbsp;une grande distance de ce corps, nŽ’ 189, i4o, i4'gt; 14^Ž*- *4^CHAPITRE III. Du mouvement curviligne, page 263 § Formules générales du mouvement, nbsp;nbsp;nbsp;ibid. La détermination du mouvement curviligne d’un point ma-tériel se réduit a celle des inouvemens rectilignes de ses trois projections sur les axes des coordonnées ,nbsp;nbsp;nbsp;nbsp;n“ i44 Expression de la vitesse du mobile: sa direction est tangen te a la trajectoire; les vitesses des trois projections sont cenbsp;qu’on appelle les composantes de la vitesse du

mobile ; lanbsp;composition et la decomposition des vitesses se font suivantnbsp;les m?ines régies quela composition et la decomposition desnbsp;forces,nbsp;nbsp;nbsp;nbsp;n° 145 Quelle que soit la variation de vitesse d’un point matériel, en grandeur et en direction, pendant un temps infinimentnbsp;petit, il y a toujours une certaine direction pour laquelle



XIVTABLE DES MATI?RES. l’augmentation de vitesse est la plus grande, et perpendicu-lairement a laquelle les composantes de la vitesse ne sont ni augmentées, ni diminue'es,nbsp;nbsp;nbsp;nbsp;n° 146 Eette direction de'termine'e est ce qu’on entend par la direction de la force qui agit sur un point mate'riel en mouvement ; en partant de cette definition, on de'montre que l’accroissement de la composante de la vitesse süivantnbsp;une direction quelconque, pendant un instant, est uni—nbsp;quement du a la force qui agit suivant cette direction, et Ienbsp;m?me que si les autres forces n’existaient pas , Construction de la trajectoire par points , qui i-e'sulte du principe pre'cédent, et determination de la vitesse et de la position du mobile a chaque instant sur cette courhe, 11“ 148 Equations différentielles du mouvement curviligne,

soit quandnbsp;l’origine des coordonne'es est fixe, soit quand elle est ennbsp;mouvement,nbsp;nbsp;nbsp;nbsp;n°* 149 et i5o Equations différentielles du mouvement d’un point matcrielsur une surface ou sur une courbe donnée; expression de la forcenbsp;accélératrice suivantlatangente k la trajectoire,n“’ i5i et iSa § II. Conséquences principales des formules précédentes, page 282 Intégrales premi?res des equations différentielles du mouvement curviligne, qui ont lieu quand la force est constani-ment dirigée vers un centre fixe , nbsp;nbsp;nbsp;n“ i53 Principe des aires, coinpris dans ces intégrales, nŽ’ i54 et i55 Eléinens différentiels de 1’aire et de la longueur d’une courbe,nbsp;rapportés aux coordonne'es polaires ; composantes de la vitesse d’un mobile relatives a ces coordonne'es ; définition denbsp;la vitesse

angulaire,nbsp;nbsp;nbsp;nbsp;11° i56 Intégvale premi?re des équations du mouvement, qui donne dans un cas trés général, Ie carré de la vitesse du mobile, in-dépendamment de la courbe décrite ; cette vitesse est constante , quand Ie mobile, enti?rement libre, ou oblige' de senbsp;mouvoir sur une surface ou sur une courbe donnée, n’estnbsp;sollicité par aucune force accélératrice ; l’intégrale a lieu



TABLE DES MATI?RES. nbsp;nbsp;nbsp;xv toutcs les fois que Ie mobile est soumis a des forces di-rigées vers des centres fixes et dont les intensités sont des fonctions de la distance a ces points,nbsp;nbsp;nbsp;nbsp;n°Ž et i58 Expression de la vitesse d’un corps pesant sur une courbe quelconque, en fonction de la hauteur dont Ie mobile estnbsp;tombé ; consequences immédiates qui s’en déduisent, nŽ i Sqnbsp;Propriété du mouvement d’un point materiel a laquelle onnbsp;a donné Ie nom Ae principe de la moindre action, n“ i6onbsp;En vertu de ce principe, un point materiel oblige' de se mouvoirnbsp;sur une surface donnée, et qui n’est sollicité par aucunenbsp;force accélératrice, décrit, en général, la ligne la plusnbsp;courte d’un point a un autre; en formaat 1’équatiou diffé-rentielle de la trajectoire, on prouve que

cette ligne la plusnbsp;courte a partout son plan osculateur, normal a la surfacenbsp;donnée,nbsp;nbsp;nbsp;nbsp;n° ibi § III. Digression sur Ie mouvement de la lumiere, page 3oi t)ans Ie syst?me de \’emission, les lois ge'nérales de la réfrac-tion et de la réjiexion se déduisent facilement du principe de la moindre action,nbsp;nbsp;nbsp;nbsp;n°’ 163, i63 et 164 Equations différentielles du mouvement d’un rayon de lu-ini?re, a son passage d’un milieu dans un autre ; consequences de ces equations relalivement a deux cas différens de reflexion , et a la refraction ; direction d’un rayon qui anbsp;traversé deux surfaces parall?les ; phénom?ne de Ia dispersion ,nbsp;nbsp;nbsp;nbsp;n“' i65, 166 et 167 La composition de la vitesse propve de la lumi?re avec celle de la terre , quiproduitle phénom?ne de Vaberration, n’a ce-

pendant aucune influence appréciable sur la grandeur denbsp;la refraction ; dans Ie vide , la vitesse de la lumi?re , directenbsp;uu réfléchie, est la m?me, soit qu’elle nous vienne du soled , des étoiles, ou des plan?tes; grandeur de cette vitesse ; diminution qu’elle a du éprouver en vertu de lanbsp;pesanteur des rayons lumineux vers Ie soleil,nbsp;nbsp;nbsp;nbsp;n“ 168



XVI TABLE DES MATI?RES. CHAPITRE IV. De la force centrifuge j page 3i8 Definition de la force centrifuge; determination de cette force inotrice, par la consideration de la vitesse normale de'-truite a chaque passage du mobile , d’un éle'ment de sa tra-jectoire a l’ele'ment suivant ; l’angle de contingence e'tantnbsp;infiniment petit, ce passage ne produit aucune diminutionnbsp;dansla vitesse suivant la tangente; determination complétenbsp;en grandeur et en direction, de la pression exerce'e sur la tra-jectoire, en vertu de la force centrifuge et des forces don-nées qui agissent sur Ie mobile ,nbsp;nbsp;nbsp;nbsp;nquot;’ 169 et 170 Calcul des trois composantes de cette m?me pression , d’apr?s les e'quations différentlelles du mouvement,nbsp;nbsp;nbsp;nbsp;n“ 171 Consequences que 1’on déduit de la valeur de cette pression et desa

direction, lorsque Ie mobile est assujetti a se mouvoirnbsp;sur une surface donne'e , et quand il est enti?rement libre, n°* 173 et 173 Determination de la force centrifuge, d’apr?s la considctation du mouvement circulaire,nbsp;nbsp;nbsp;nbsp;174 Coinparaison de la force centrifuge dans Ie eerde , a la pesan-teur ; tension d’un fil chargé d’un poids, et tournant autour d’un point fixe ,nbsp;nbsp;nbsp;nbsp;nŽ 175 Diminution de la pesanteur , a l’équateur et sur les différens parall?les , produite par la force centrifuge qui résulte de lanbsp;rotation de la terre ; variation totale de la pesanteur, due anbsp;cette cause et a 1’applatissement du sphéro?de terrestre , nquot;‘ 176, 177 et 178 CHAPITRE V. Exemples du mouvement d'un point materiel sur une courhe ou sur une surface donnée,page 337 § P'. Oscillations du pendule simple ,

nbsp;nbsp;nbsp;ibid. Definition du pendule simple; on fera voir par la suite qu’il y a toujours un pendule simple dont le mouvement est Ienbsp;m?me, dans le vide ou dans l’air , que celui d’un pendulenbsp;donné,nbsp;nbsp;nbsp;nbsp;nŽ179



TABLE DES MATI?RES. nbsp;nbsp;nbsp;xvij Formule différenüelle du mouvement du pendule simple dans Ie vide,nbsp;nbsp;nbsp;nbsp;n°nbsp;nbsp;nbsp;nbsp;i8o Gas oü cette formule s’int?gre sous forme finie, nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;i8t Gas des oscillations tr?spetites, nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;182 Sur une courbe quelconque, les oscillations nbsp;nbsp;nbsp;infinimentnbsp;nbsp;nbsp;nbsp;pe- tites d’un point mate'riel pesaut, ont une dure'e de grandeur finie et indépendante de la grandeur de leur amplitude, nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;i83 Correction qu’il faut faire a la durée des oscillations tres pe-tites d’un pendule simple, pour en conclure la dure'e de ses oscillations infiniment petites,nbsp;nbsp;nbsp;nbsp;n° 184 Reduction en série du temps d’une oscillation de,grandeur

quelconque,nbsp;nbsp;nbsp;nbsp;u° 185 Mouvement du pendule simple dans 1’air,, lorsque la resistance est supposée proportionnelle a la vitesse : les amplitudes successives des oscillations trés petites, décroissent en progression géométrique; leur durée n’est pas sensible-ment altérée par la resistance du milieu,nbsp;nbsp;nbsp;nbsp;n°Ž 186 et 187 Mouvement du pendule simple dans 1’air, quand la résistance est supposée proportionnelle au carré de la vitesse ; loi dunbsp;décroissement des amplitudes successives; dans Ie cas desnbsp;petites oscillations, on démontre que la durée d’une demi-oscillation ascendante est autant diminuée, que celle denbsp;l’oscillation descendante qui préc?de , a été augmentée, n“' i88, 189 et igo Correction dans la longueur du pendule et dans la durée des petites oscillations, qu’on

appelle la reduction au vide ^nbsp;augmentation qu’on doit faire subir a cette correction , anbsp;raison de l’état de mouvement de l’air,nbsp;nbsp;nbsp;nbsp;11“ tgt En chaqne lieu de la tcrre, la mesure de la pesanieurest pro-povtionnelle a la longueur du pendule a secondes; valeurs de ces deux quantités a l’Observatoire de Paris; les expé—nbsp;riences du pendule prouvent qu’en chaque lieu de sa surface,nbsp;l attraction de la terre est la m?nie sur les mati?res de lanbsp;nature la plus différente,nbsp;nbsp;nbsp;nbsp;n“ 192 Valeur de la pesanteur et de la longueur du pendule a secondes, h



xviij nbsp;nbsp;nbsp;TABLE DES MATI?RES. en fonctions de la latitude; retard d’une horloge régle'e a Paris sur Ie temps sidedal, et ensuite transportée a l’équa-teur,nbsp;nbsp;nbsp;nbsp;gt;9^ § II. Mouvement sur la cjclo?de, nbsp;nbsp;nbsp;page 368 Le temps de la chute d’un point mate'riel pesant sur Ia cyclo?de , est indépendant de 1’éle'vation du point de depart au-dessus du point le plus bas, soit que le mouvement ait lieu dans le vide, ou qu’il ait lieu dans l’air, r[uand on suppose la resistance proportionnelle a la vitesse, n“* I94et igS Pendule ^ycloidal ^ Dans le -sride, la cyclo?de est la seule courbe lautochrone, nquot; 197 Recherche de la brachjslochrone dans le vide ; formules relatives au cas OU la ligne de la plus vüe descente devrait ?tre tracée sur une surface donnée; formules relatives au cas ou sanbsp;longueur

serait donnée, qui serviront a re'soudre, dans lanbsp;suite, un autre probl?me de la m?me nature, nŽ’ 198, 199 , 200 et 201 On trouve pour la brachystocrone proprement dite , l’e'qua-tion d’une cyclo?de situe'e dans un plan vertical •, cas ou le point de depart et le point d’arrivée appartiennent a unenbsp;m?me verticale,nbsp;nbsp;nbsp;nbsp;jjo 302 5 III. Mouvement sur une surface donnée , nbsp;nbsp;nbsp;page 385 Equations diffe'rentielles du mouvement du pendule simple qui ne se meut pas dans un plan fixe ,nbsp;nbsp;nbsp;nbsp;11“ 2o3 Formules différentielles relatives aux oscillations coniques du pendule simple dans le vide ,nbsp;nbsp;nbsp;nbsp;nŽ’ 204 et 2o5 Cas des petites oscillations ; cas ou le pendule de'crit unifor-mément la surface d’un cóne droit a base circulaire; la courbe décrite par la projection horizontale du

mobile, estnbsp;toujours une ellipse dont le centre est le point de suspension, n°‘ 206 et 207



XIXTABLE DES MATI?RES.CHAPITRE VI. Exemples du mouvement dun mobile enti?reinent libre ^ nbsp;nbsp;nbsp;696 La trajectoire d’un point materiel pesant dans Ie vide, est tine parabole ; amplitude du jet; vitesse en un point quelcon-que,nbsp;nbsp;nbsp;nbsp;n” 208 La vitesse initiale étant donne'e, trouver sa direction, pour que Ie projectile atteigne un but donné courbe au-dela denbsp;laquelle Ie projectile ne peut arriver ,nbsp;nbsp;nbsp;nbsp;n° 209 Equations du mouvement d’un projectile dans 1’air ; construction, par points, de la trajectoire ; calculdu temps; expression de la vitesse en un point quelconque, n°’ 210,211 et2i2 Quand Ie mobile s’est e'levé a une grande hauteur, son mouvement, en retombant, approche de plus en plus d’etrenbsp;vertical et uniforme ; determination de Yasj-mptote verticalenbsp;de

la branche descendante,nbsp;nbsp;nbsp;nbsp;n” 2i3 L’autre branche de la trajectoire a aussi une asymptote ; direction de cette droite, et sa distance au point de depart du mobile,nbsp;nbsp;nbsp;nbsp;nŽ ai4 Equation de la trajectoire, dans Ie cas d’un petit angle de projection ; calcul de la portee horizontale et du temps dn trajet, d’apr?s la grandeur de la vitesse initiale; difFérentesnbsp;valeurs de la portee et de la vitesse qui sont données patnbsp;l’observation; incertitude sur la grandeur du coefficient denbsp;la re'sistance; moyens de Ie determiner par l’expérience, 2i5 et 216 § II. Mouvement desplan?tes, nbsp;nbsp;nbsp;page4*5 Lois de Kepler, nbsp;nbsp;nbsp;nŽ 217 Equations fournies par les deux premi?res de ces lois, nŽ 218 Definition de quelques termes employés en Astronomie; duréenbsp;de 1’année siderale et

de l’année équinoxiale; grandeur denbsp;la précession annuelle des equinoxes,nbsp;nbsp;nbsp;nbsp;nŽ 219 Expressions des deux coordonnées polaires de la plan?te et du temps, en fonctions de Xanomalie excentrique , n° 220nbsp;Méthode pour réduire Ie rayon vecteur et Téquation du centreb..



XXTABLE DES MATI?RES. en series ordonnées suivant les cosinus et les sinus des multiples du mojren mouvement, nbsp;nbsp;nbsp;n“ 221 Formules qui déterniinent en un point quelconque de l’el-lipse décrite par une plan?te, la grandeur et la direction de sa vitesse ,nbsp;nbsp;nbsp;nbsp;n° 222 Position d’une plan?te par rapport a un plan quelconque ; sa longitude et sa latitude, son ascension droite et sa décli-naison; obliquit? de 1’e'cliptique ; sa diminution annuelle ;nbsp;grandeur et période de la nutation ,nbsp;nbsp;nbsp;nbsp;n° 223 On conclut des trois lois de Képler, que la force qui retientles plan?tes vers leurs orbites est constainment dirigée vers Ienbsp;centre du soleil; qu’elle varie pour cliaque plan?te, suivantnbsp;la raison inverse du carré de la distance a ce point; qu’anbsp;1’unité de distance, la force accélératrice est

la m?rnenbsp;pour toutes les plan?tes : ces lois s’étendent aux coin?tes etnbsp;aux mouvemens des satellites autour de leurs plan?tes res-pectives, et aux mouvemens relatifs des étoiles doubles, n°’ 224, 225 et 226 Equations différentielles du mouvement d’une plan?te dansnbsp;un milieu resistant: on compléte Ie nombre des constantesnbsp;arbitraires que doivent renfermer leurs intégrales trouvéesnbsp;précédemment, pour Ie cas oü 1’on négligé la resistance, n°Ž 22 T et 228 Méthode de la variation des constantes arbitraires, pour 1’iri-tégration des equations différentielles, nbsp;nbsp;nbsp;nquot;Ž 229 et 280 Application de cette méthode aux equations du mouvement d’une plan?te ou d’une com?te dans un milieu résistant;nbsp;pourquoi la résistance de 1’ét^er peut ?tre appreciable dansnbsp;Ie mouvement d’une com?te et

insensible dans Ie mouvementnbsp;d’une plan?te ,nbsp;nbsp;nbsp;nbsp;nquot; 281,282 et 288 § 111. Mouvement d’un point materiel soumis a une force centrale , nbsp;nbsp;nbsp;Page 446 Equations du mouvement d’un point matériel attiré vers un centre fixe, par une force donnée en fonction de la distancenbsp;a ce centre,nbsp;nbsp;nbsp;nbsp;n” 284



TABLE DES MATI?RES. nbsp;nbsp;nbsp;xxj Cas OU la force est proportioiinelle a la distance , nbsp;nbsp;nbsp;u” 235 Gas oü la force est en raison inverse du cube de la distance, 11° 236 Cas OU la force est en raison inverse du carré' de la distance ; la trajectoire peut ?tre alors une des trois sections coniques;nbsp;circonstances qui déterminent cliacune des trois courbes, n“Ž 287 et 238 Examen spécial du mouvement parabolique ; en quoi consiste Ie probl?me astronomique de la determination complete denbsp;l’orbite d’une com?te,nbsp;nbsp;nbsp;nbsp;nquot;Ž 23g et 240 CHAPITRE VIL Digression sur Vattraction univer-sells, nbsp;nbsp;nbsp;psgs 465 Loi de Vatlraction Jiniverselle, nbsp;nbsp;nbsp;n“ 241 Force motrice resultant de 1’attraction mutuelle du soleil et d’une plan?te ; invariabilité du pouvoir

attractif,nbsp;nbsp;nbsp;nbsp;11° 242 Force accélératrice d’une plan?te dans son mouvement autour du soleil; correction qu’on doit faire a la troisi?me loi denbsp;Képler ; petitesse des masses des plan?tes par rapport i lanbsp;masse du soleil,nbsp;nbsp;nbsp;nbsp;n“ 243 Énoncé des dilférentes sortes de perturbations du mouvement elliptique des plan?tes, produites par leur attraction mu-tuelle : ces effets observes font coimaitre les masses des plan?tes perturbatrices, en prenant celle du soleil pour unite';nbsp;invariabilité des grands axes; Ie mouvement de la lune s’ac-cél?re de si?cle en si?cle,nbsp;nbsp;nbsp;nbsp;n°nbsp;nbsp;nbsp;nbsp;244 Autre moyen de déterminer les masses des plan?tes accoinpa-gnées de satellites, nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;245 Calcul des forces provenant de Faction du soleil

et de la lune, pour soulever les eaux de la mer • masse de la lune concluenbsp;du_^i/a, lunaire coraparé au Jlux solaire ; diminution de lanbsp;pesanteur a la surface de la terre, produite par Faction denbsp;la June,nbsp;nbsp;nbsp;nbsp;n“’246 et 247 A la distance de la lune a la terre, la pesanteur terrestre est 4 trés peu pres égale a la force qui i'etient ce satellite dans sonnbsp;orbite,nbsp;nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;248



XXIJtable des mati?res. Determination de la masse de la terre; parallaxe du soleil j sa densite'; sa distance a la terre; determination exacte dunbsp;grand axe de 1’orbite d’une plan?te dont la masse est con-nue,nbsp;nbsp;nbsp;nbsp;n*” 24g et aSo De'viation du fil a plomb produite par les attractions locales, nbsp;nbsp;nbsp;n^aSi Balance de torsion, propre a mesurer les forces trés petites; experience de Cavendish; densité moyenne de la terre, n“’ 2.52 et 253 Slabilité de 1’équilibre des mers, resultant de ce que cette densité est plus grande que celle de 1’eau; accroissement des densités des couches de la terre, en allant de sa surface aunbsp;centre; inégalité du mouvement de la lune , due a la non-sphéricité de la terre; influence des attractions locales sur lanbsp;longueur du pendule a secondes,nbsp;nbsp;nbsp;nbsp;n“ 254

Reduction au niveau des mers, de la longueur du pendule, observée a une elevation donnée,nbsp;nbsp;nbsp;nbsp;n° 255liyke troisi?me.STATIQUE, SECONDE PARTIE. CHAPITRE 1ŽL De 1’équilibre dun corps solide,page 497 Remarque sur la compressibilité et Ie changement de forme du corps que l’on va considérer,nbsp;nbsp;nbsp;nbsp;n° 256 Transforination d’un syst?me de forces quelconques , appli-quées a un corps solide, en ti’ois groupes de forces, Ie premier compose de forces perpendiculaires a un plan donné, Ie deuxi?me, de forces parall?les et comprises dans ce plan, etnbsp;Ie troisi?me, de forces dirigées suivant une droite perpendi-



TABLE DES MATI?RES. nbsp;nbsp;nbsp;xxiij culaire aux précédentes et tracée dans ce m?me plan , n°Ž 3,57, ‘2.58 et aSg Equations nécessaires et suffisantes pour l’e'quilibre d’uu corps solide enti?rement libre,nbsp;nbsp;nbsp;nbsp;11° 260 Ces equations sont encore nécessaires pour 1’équllibre de tout autre syst?me qui ne renferme aucun obstacle fixe, n° 261 Cas particuliers des forces parall?les et des forces qui sont toutes comprises dans un plan ,nbsp;nbsp;nbsp;nbsp;n° 262 Condition pour que des forces données aient une résultante unique ; equations de cette résultante ; sa gi-andeur et sa direction; dans tous les cas, les forces données peuvent senbsp;réduire a deux, d’une infinite de niani?res diiférentes , n°Ž 263 et 264 Equations d’équilibre de deux corps solides qui s’appuient 1’un contre

Tautre,nbsp;nbsp;nbsp;nbsp;11“nbsp;nbsp;nbsp;nbsp;265 Equations d’équilibre d’un corps solide retenu par des obstacles fixes , dans les principaux cas qui peuvent se présenter, nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;266 Transformation de l’équation nbsp;nbsp;nbsp;d’équilibrenbsp;nbsp;nbsp;nbsp;relative a un axe fixe , nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;267 Équilibre d’un corps pesant sur nbsp;nbsp;nbsp;unnbsp;nbsp;nbsp;nbsp;plan incline',nbsp;nbsp;nbsp;nbsp;n“nbsp;nbsp;nbsp;nbsp;268 Mesure dn frottement a 1’instant ou l’équilibre va se roinpre, 11“ 269 Charges des différens pieds d’une table horizontale qui sup-porte un poids donné; a quoi tient 1’indétermination appa- n” 2'',o rente du probl?me, CHAPITRE II. Théorie des momens^ nbsp;nbsp;nbsp;5^6 Les forces étant représentées par des lignes

droites, leurs nioniens sont représentés par des aires planes : Ie théor?uienbsp;du n“ 46, relatif au moment de la résultante de deux forces,nbsp;est alors une proposition de Géométrie dont on donne lanbsp;démonstration ,nbsp;nbsp;nbsp;nbsp;n° 371 Le moment de la projection d’une force sur un plan est la



xxiv nbsp;nbsp;nbsp;TABLE DES MATI?RES. projection du moment de cette force sur ce m?me plan, 11Ž 272 Ce qu’on entend par Ie moment d’un syst?me de forces par rapport a un axe ; les momens d’un m?me syst?me par rapport a deux axes situe's dans Ie prolongement I’lin de l’au-tre, sent e'gaux et de signe contraire; il en est de m?me anbsp;l’e'gard des momens par rapport a un m?me axe, de deuxnbsp;systernes de forces e'gales et contraires ,nbsp;nbsp;nbsp;nbsp;n“ 278 Expressions des momens d’un syst?me de forces par rapport aux trois axes des coordonne'es positives de leurs points d’ap-plication; comment on determine les signes des termes denbsp;ces formules,nbsp;nbsp;nbsp;nbsp;n° 274 Valeurs des cosinus des angles relatifs a la direction de la normale au plan qui contient une droite et un point donne', n° 275

Formules relatives aux projections d’un syst?me d’aires planes sur dilFérens plans; identité de ces formules et de celles quinbsp;répondent aux projections des lignes droites sur d’autresnbsp;droites,nbsp;nbsp;nbsp;nbsp;n“Ž 276 et 277 Plan et grandeur de 1’aire minima; propriété caracléristique de ce plan ,nbsp;nbsp;nbsp;nbsp;nŽŽ 278, 279 et 280 Propriétés des momens, déduites de celles des aires planes; identite' de la composition des momens et de la compositionnbsp;des forces, resultant de celle des projections des aires planesnbsp;et des projections des lignes droites,nbsp;nbsp;nbsp;nbsp;n° 281 Moment principal d’un syst?me de foi'ces ; nouvel énoneé des conditionsd’?quilibre de ce syst?me; conditions pour quenbsp;deux syst?mes de forces soient équivalens,nbsp;nbsp;nbsp;nbsp;n° 282 Variation du moment principal,

produite par Ie de'placement du centre des momens; momens prmcipaux minima; comment on en de'duit la condition ne'cessaire et suffisante pournbsp;1’existence d’une re'sultante unique,nbsp;nbsp;nbsp;nbsp;nŽŽ 288 et 284



TABLE DES MATI?RES. nbsp;nbsp;nbsp;xxv CHAPITRE III. Exemples de l’e'quilibre d'un corps flexible,nbsp;nbsp;nbsp;nbsp;page 551 5 1quot;. Équilibre du polfgone fiiniculaire, nbsp;nbsp;nbsp;ibid. Dans Tétat d’équilibre du polygone , il faut lt;^ue cliaque cóté soit tiré, suivant ses prolongemens , par des forcesnbsp;égales et contraires; equations nécessaires pour 1’équilibrenbsp;des forces appliquées au polygone ,nbsp;nbsp;nbsp;nbsp;u° 2.85 Construction de la figure du polygone en équilibre; calcul des tensions de ses cótés; cas ou ses points extremes sont supposed fixes,nbsp;nbsp;nbsp;nbsp;nquot; 286 et 287 Les extensions des cótés du polygone soiit proportioiinelles aux tensions qu’ils éprouvent,nbsp;nbsp;nbsp;nbsp;n° 288 Quanii uu des noeuds du polygone est remplacé par un anneau, la force appliquée en

ce point doit partager en deux partiesnbsp;égales l’angle des deux cótés adjacens,nbsp;nbsp;nbsp;nbsp;n“ 289 Condition relative aux directions des forces qui dolvent avoir lieu dans tous les syst?mes de points matériels en équilibre,nbsp;et dont la précédente est un cas particulier,nbsp;nbsp;nbsp;nbsp;n° 290 Équilibre d’un polygone chargé de poids; pressions éprouvées par les points fixes auxquels il est attaché ,nbsp;nbsp;nbsp;nbsp;n° 291 Remarque analogue A felle du n° 270 , sur les tensions des cordons qui supportent un poids donné : quel que soit Ienbsp;nonibre de ces cordons, leurs tensions et les charges desnbsp;points fixes peuvent se déduire de la mesure des allonge-inens,nbsp;nbsp;nbsp;nbsp;n”nbsp;nbsp;nbsp;nbsp;293 § II. Équilibre d'un Jil flexible, Équations d’équilibre d’un fil pesant, d’abord au

noinbre de trois , et qui se réduisent ensuite a deux ,nbsp;nbsp;nbsp;nbsp;n” 298 Intégrales de ces équations sous forme finie; équation de la chainette,- expression de la tension en un point quel-conque,nbsp;nbsp;nbsp;nbsp;nquot;nbsp;nbsp;nbsp;nbsp;294 Calcul de la tension au nbsp;nbsp;nbsp;pointnbsp;nbsp;nbsp;nbsp;Ienbsp;nbsp;nbsp;nbsp;plusnbsp;nbsp;nbsp;nbsp;bas,nbsp;nbsp;nbsp;nbsp;et des chargesnbsp;nbsp;nbsp;nbsp;que supportent les nbsp;nbsp;nbsp;deuxnbsp;nbsp;nbsp;nbsp;pointsnbsp;nbsp;nbsp;nbsp;denbsp;nbsp;nbsp;nbsp;suspension,nbsp;nbsp;nbsp;nbsp;nquot;nbsp;nbsp;nbsp;nbsp;29$



XXVJTABLE DES MATI?RES. Parmi toutes les courbes isopérim'etres, la chaiuette est celle qui a son centre de gravité Ie plus bas ,nbsp;nbsp;nbsp;nbsp;n“ 296 Gas OU les forces verticales qui agissent sur les élémens du fil sont proportionnelles a leurs projections horizontales ; lanbsp;courbe d’e'quilibre est alors une parabole ; calcul de la tension au point Ie plus bas, et des charges des points extremes , qui peut ?tre utile dans la construction des cheminsnbsp;de fer,nbsp;nbsp;nbsp;nbsp;n“ 297 Équations d’équilibre d’un fil sollicite' par des forces quelcon-ques, nbsp;nbsp;nbsp;n“ 298 Gas d’un fil pesant suspendu vertlcalement a un point fixe et chargé d’un poids a son extrémité inférieure ; calcul de sonnbsp;allongement total,nbsp;nbsp;nbsp;nbsp;n° 299 Expression de la tension dans Ie cas géne'ral; la courbe est de'termine'e par

deux équations différentielles secondes; va-leur du rayon de courbure d’apr?s la direction de la tangente en chaque point,nbsp;nbsp;nbsp;nbsp;n“ 3oo Application des formules précédentes au cas d’un fil tendu sur la surface d’un corps solide , par des forces appliquées a sesnbsp;extrémités, et qui sont les seules qui Ie sollicitent; la tensionnbsp;est la m?me dans toute sa longueur; dans son état d’équilibre stable, Ie fil trace sur la surface la ligne la plus courtenbsp;d’un point a un autre; la pression exercée en chacun desnbsp;points de la surface est en raison inverse du rayon de courbure de cette ligne, et proportionnelle a la tension, n“Ž 3oi et 3o2 Ges résultats sont modifies par Ie frottement du fil contre la surface du corps solide; calcul du frottement d’un fil sur lanbsp;gorge d’une poulie fixe,nbsp;nbsp;nbsp;nbsp;n“ 3o3 On vérifie les six
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TRAITÉDE MÉCANIQUEINTRODUCTION. I. La inatihre est tout ce qui peut affecter nos sens d’une mani?re quelconque. Les corps sont des portions de mati?re limitées en tous sens, et qui ont, par conséquent, xinejbrme etnbsp;un volume determines. On appelle masse dun corps,nbsp;la quantité de mati?re dont il est compose. Un point inaien?t est un corps infiniment petit dans toutes ses dimensions; en sorte que la longueur . '?4ax\nbsp;de toute ligne comprise dans son intérieur, est infi-niment petite, c’est-a-dire, moindre que toute Ion- gueur qu’on puisse assignee. On peut regarder un corps de dimensions finies, comme un assemblage d’une infinite de points matériels, et sa masse commenbsp;nbsp;nbsp;nbsp;' la somme de toutes leurs masses infiniment petiles. 2. Un corps est en mouvement, lorsque ce corps OU ses

parties occupent successi vement différens lieuxnbsp;dans l’espace. Mais ?espace étant infini et par toutnbsp;identique, nous ne pouvons juger de l’état de mouvement OU de i’epos d’un corps, qu’en Ie comparant a d’autres corps ou a nous-m?mes; et, pour



3 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. cette raison, tons les mouveniens que nous obser- vons sont nécessairementdes mouvemens relatifs. Tons les corps sonl mobiles; inais la mati?re ne se ment jamais spontanément; car il n’y aurait pas denbsp;raison pour qu un point materiel se dirigeat plutótnbsp;d’un cóte' que de l’autrej et, en efFet, si nousconside'-rons un corps a l’instant ou il passe de 1’état de reposnbsp;a l’état de mouvement, nous reconnaissons toujoursnbsp;que ce changement est dü a Faction d une causenbsp;étrang?re ou sans laquelle nous conceyons que cenbsp;corps pouri’ait d’ailieurs exister. On donne, en general, le nom de force a la cause quelconque qui met un corps en mouvement, ou seu-lement qui tend a le mouvoir, lorsque son effet estnbsp;suspendu ou emp?ché par une autre cause. 5. Lorsque plusieurs

forces sont appliquees a la fois a un m?me corps, elles se modifient reciproque-ment, en vertu de la liaison qui existe entre ses parties, et qui les empeche de prendre le mouvementnbsp;que tend a imprimer a chacune d’elles, la force a laquelle elle est soumise. Il peut m?me arnver que cesnbsp;forces se detruisent complelement, de sorte que lenbsp;corps ne prenne aucun mouvement : on appelle équi-libre cet état particulier d’un mobile, qui reste ennbsp;repos quoiqu’il soit solllcité par plusieurs forces, ounbsp;aulrement, on dit que ces forces se font équilibre. La Mecanique est la science qui traite de I’equilibre et du mouvement des corps. La partie dont le but est,nbsp;en ge'néral, de de'couvrir les conditions de I’e'quilibre,nbsp;se nomme Statique. On appelle Djnamique I’autrenbsp;partie, qui a pour objet de determiner le mouvement



INTRODUCTION. nbsp;nbsp;nbsp;3 que prend uu mobile, quand les forces qiii Ini sont appliquees ne se font pas equilibre. Les géora?tres étant parvenus, comme on le verra dans la suite, a reduire toutes les questions de mouvement a de simples problemes d’equilibre, il seraitnbsp;naturel d’exposer d’abord la Statique entiere et en-suite la Dynamique; mais, pour faciliter I’intelligencenbsp;des matieres, il a paru preferable, dans 1’enseigne-^nbsp;ment, de s’occuper de la partie la pins simple de lanbsp;Dynamique, avant de considerer les questions générales de réqulllbre. C’est cet ordre que je suivi'ai dansnbsp;cet ouvrage, 4. 11 y aura trois choses a considerer dans une force agissant sur un point materiel : la position denbsp;ce point, l’intensité de la force et sa direction, c’esl-a-dire, I’espace rectlligne quelle tend a faire

parcou-rir a son point d’application. Toutefois, on ne doitnbsp;pas confondre un point matérie! avec ce qu’on ap-pelle un point en Géométrie, oil ce mot désigne I’ex-trémilé d’une liune, ou 1’intersection de deux lignesnbsp;qui se coupent; I’espace que parcourt un point ma-tériel n’estpasnon plus une ligne privée de deux dimensions; mais ce corps étant infiniment petit ennbsp;tons sens, et la largeur et lepaisseur de I’espace quenbsp;la force tend a lui faire décrire, étant aussl infiniment petites, on détermlnera sa position et la direction de cette force, de la m?me mani?re que Ton determine la position dun point et la direction d’unenbsp;drolte en Géométrie. Alnsi, d’abord, la po.sition dans 1’e.space, dii point d’application d’une force, se détermlnera, en general,



4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. au moyen de ses trois coordonne'es parali?les aux intersections de trois plans rectangulaires; ce qui, comme on sait, ne laissera aucune indecision, quandnbsp;on aura égard, en m?me temps, au signe et a la grandeur de chaque coordonnée. Quelquefois aussi, nousnbsp;emplolerons les coordonnées polaires, savoir : Ienbsp;rayon vecteur du point donné, ou sa distance a leurnbsp;origine. Tangle que fait ce rayon avecune droite fixenbsp;menée par cette origine, et Tangle compris entre Ienbsp;plan de ces deux droites et un plan fixe passant parnbsp;la seconde. 5. Les forces ne peuvent se mesurer qu’en prenant pour unité une force convenue, et enexprimant parnbsp;des nombres les rapports des autres forces a cettenbsp;unité; ce qui exige que Ton définisse, d’une mani?renbsp;precise, ce que

Ton doit entendre par une force égalenbsp;a une autre, et par une force double, triple, quadruple ,... d’une autre, indépendamment de la nature particuliere de ces diverses causes de mouvement. Deux forces sont égales lorsqu’étant appliquées en sens contraire Tune de Tautre, a un m?me pointnbsp;matériel ou a deux points Hés par une droite qui nenbsp;peut changer de longueur, elles se font équilibre. Si, apr?s avoir reconnu que deux forces sont égales, on les applique dans la m?me direction a un m?menbsp;point, on aura une foi’ce double; si Ton réunit ainsinbsp;trois forces égales, on aura une force triple; si Tonnbsp;en réirait quatre, on aura une force quadmple; etnbsp;ainsi de suite. Lors done que nous dirons qu’une force, appliquée a un point matériel, est un certain multiple d’une



INTRODUCTION. nbsp;nbsp;nbsp;5 autre force, il faudra entendre que la premiere peut ?tre regardée comme formée d’un certain nombre denbsp;forces reconnues egales a la seconde, et agissant dansnbsp;une m?me direction. C’est de cette mani?re que lesnbsp;forces deviennent, quelle que soit leur nature particuliere, des quantités mesurables que Ton peut ex-primer par des nombres, comme toutes les autresnbsp;sortes de quantités, en les rapportant a une unite denbsp;leur esp?ce. On peut aussi représenler leurS intensitésnbsp;par des lignes proportionnelles a ces nombres, que l’onnbsp;porte sur leurs directions, a partir du point oü ellesnbsp;sont appliquëes; ce qui a l’avantage de simplifier l’é-noncé des théor?mes. 6. Les points d’application des forces et leurs intensités étant ainsi determines, il ne nous reste plus qu a nous

occuper de leurs directions. Soit M ( fig. 1''°), Ie point d’application d’uné force; représentons sa direction par la droite MD, denbsp;mani?re que cette force tende a faire avancer Ienbsp;point M, de M vers D; par Ie point M menons troisnbsp;axes rectangulaires MA, MB, MC, qui seront, en gé-néral, parall?les aux axes des coordonnées, et dirigésnbsp;dans Ie sens des coordonnées positives; désignons parnbsp;a, €, 5^, les angles aigus ou obtus que la direction MDnbsp;fait avec ces axes, de sorte qu’on aitAMD = a, BMD = ^, CMD = 7.; je dis que cette direction sera compl?tement déter-mmee quand ces trois angles seront donnés. En effet, en ayant seulement égard aux deux angles a et ?, il faudra que la ligne MD se trouve a Ia



6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQÜE. fois sur deux cones droits, dont Ie sonimet cominuo est au point M, et qui ont pour axes les droites MAnbsp;et MB. II faudra done que a et C soient tels, quenbsp;ces deux cones puissent se couper; ce qui aura lieunbsp;alors suivant deux ar?tes situées dans un m?rae plannbsp;perpendiculaire au plan AMB, et qui feront, avecnbsp;1’axe MC, deux angles supplémens l’un de l’autre.nbsp;La droite MD pourra done encore avoir deux positions dilFérentes; mais Tangle y étant aussi donné,nbsp;on saura s’11 est aigu ou obtus, et Ton pourra choisirnbsp;entre ces deux positions celle qui convient a la direction de la force. Cette construction montre, en outre, que les angles a, y, ne peuvent pas ?tre pris tous les troisau hasard. 11 existe effectivement entre les cosinus desnbsp;angles qu’une m?me droite MD

fait avec trois axesnbsp;rectangulaires, une equation cos* a -f- cos* ? cos* y = j, que Ton dëmonlre en prenant sur la droite MD, a partir du point M, une ligne e'gale a Tunite', et formant un parallele'pip?de rectangle, dont cette lignenbsp;soit la diagonale, et qui ait ses trois cóte's adjacensnbsp;sur les trois axes MA, MB, MC. Ces trois cótës se-ront les cosinus des angles a, y; et la somme denbsp;leurs carrës devaat ?tre égale au carré de la diagonale, d’apr?s une thëor?me connu, il en rësultera Të-quation qu’on vient d’ëcrire. 7. On adoptera, dans ce Traité, la division de la circonfërence en 36o°, du degrë en 60 minutes et denbsp;la minute en 60 secondes. La lettre ,t sera constam-



INTRODUCTION. nbsp;nbsp;nbsp;7 nient employee a representer la demi-drconference, dont le rayon estegal a lunite; de sorte que Ton aura 77- = 5,i4i5g26... Le quart de la circonference repond a Tangle droit ou a Tangle de 524000quot;; il s’ensuit que la longueurnbsp;de Tare correspondant a un angle d’un nombre quel-conque n de secondes, sera le quatrieme terme d’unenbsp;proportion, dont les trois premiers seront ^ vr, n etnbsp;324000quot;. En designant cette longueur par quot;ar, il en resit Itera 206264)8...quot; Le logaritbme ordinaire de ce diviseur constant est 5,3i4425i. Dans les calculs numeriques, ce sont ies arcs ainsi calcules qu’on devra employer a la place des anglesnbsp;qui ne seront pas compris sous les signes trigonome-triques sin, cos, tang. Pour qu’on puisse, au moyen des angles a, C, y , representer la

direction d’une force dans toutes lesnbsp;positions possibles autour de son point d’application,nbsp;il faudra et il sulEra qu’ils s’e'tendent depuis zero jus-qu’a 180° inclusivement. Si, par exemple, Taxe MGnbsp;est au-dessus du plan des deux autres axes MA et MB,nbsp;Tangle y devra ?tre plus petit ou plus grand que go°,nbsp;selon que la droite MD sera situee au-dessus ou au-dessous de ce plan; il sera zéro quand la directionnbsp;MD co’incidera avec MC, et egal a 180° quand MDnbsp;coincidera avec le prolongement MC' de MC, Les cosinus de d, Q, y, pourront done ?tre positifs ou né-



8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. gatifsj mais leurs sinus seront toujours positifs, püis- que ces angles ne dépasseront jamais 180°. En general, si nous considérons Ie prolongement MD' de la droite quelconque MD, il est evident quenbsp;les angles qu’il fait avec les trois axes sont supplémensnbsp;de a, ë, y. En faisautdone AMD' = a', BMD' = ?', CMD' = y'. nous aurons cosa'= — cosa, cos €'=—cos^, cos^'=:—cosj/j d’oü il suit que les directions de deux forces qui agis-sent en sens conti’aire sur un m?rae point M , Tune suivant MD, 1’autre suivant MD', se distinguerontnbsp;Tune de l’autre par les signes des cosinus des anglesnbsp;qui leur correspondent. 8. Au lieu des trois angles a, y, lies entre eux par 1 equation (i), on pourra n employer que deuxnbsp;angles inde'pendans Tun de l’autre, pour determinernbsp;la direction d’une

force. En effet, soit ME la projection de MD sur Ie plan AMB; appelons S' Tangle que fait cette projectionnbsp;avec Taxa MA, de sorte qu’on ait AME = S. Eorsque eet angle S sera donné, il fei-a connailre la position du plan CME, et Tangle y ach?vera en-suite de determiner celle de la droite MD comprisenbsp;dans ce plan. II faudra que Tangle S soit compté,nbsp;a parllr de MA, dans un sens convenu, et qu’ilnbsp;puisse s’étendre depuis zéro jusqu’a SGo”; Tanglenbsp;y ne s’étendra toujours que depuis zéro jusqu a 180°. i'



INTRODUCTION. nbsp;nbsp;nbsp;9 La projection sur le plan AMB de la diagonale du parallélépip?de précédemment indiqué ( n“ 6)nbsp;sera le cosinus de Tangle DME, ou égale a sin y.nbsp;Si Ton projette de nouveau cette projection surnbsp;Taxe MA, cette seconde projection se déduii'a denbsp;la premi?re , en la multipliant par cos tT; elle coin-cidera, d’ailleurs, avec la projection de la diagonalenbsp;du parallélépip?de sur ce m?me axe MA, et sera,nbsp;conséquemment, égale a cos st; par consequent,nbsp;on auranbsp;nbsp;nbsp;nbsp;' cos a ?= sin y cos cT. On trouvera de m?me cos € = sin y sin cT; et ces deux formules serviront a transformer les equations oü Ton aura fait usage des angles a, ?,nbsp;y, en d’autres ou Ton n’emploiera plus que y et cT.nbsp;On vérifie immédiatement qu’elles satisfont a Téqua-tion (i). g. II existe une

autre équation qui comprend , comme cas particulier, cette équation (i), et quinbsp;nous sera souvent utile. Pour la former, soient x, j, z, les coordonnées dun point quelconque M ( fig. 2 ) rapportées auxnbsp;trois axes rectangulaires Ox, O7, Oz. Appelons rnbsp;son rayon vecteur OM, et a, C, y, les angles ai-gus OU obtus que fait ce rayon avec les trois axes,nbsp;de sorte qu’on ait, par exemple, zOM = y. Si Ton abaisse du point M une perpendiculaire MN



lo nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQUE. sur l’axe Oz, la droite ON sera Tordonnee z, et dans Ie triangle rectangle MON, on aura z = r cos y ; on trouvera de m?me j = r cos ?, X = r cos a. SoitM' un autre point, et designons par j', 2'^ r', a'. Of, y\ ses coordonnees, son rajon vecteur etnbsp;les angles relatifs a cette droite; nous aurons aussi x' = r' cos a!, j' =. r' cos , z' =. r' cos y'. Appelons u la distance MM'; on aura, comme on sait,= (x' — xY {y — yY nbsp;nbsp;nbsp;— ^)* ’ et si Ton represente par s Tangle MOM', on aura en m?me temps 4- z“ = r“, nbsp;nbsp;nbsp;-I- -h 2'“ = r'% la premiei’e valeur de ?* est la m?me chose que = /’? r'“ — 2 (xx'-i~YY' Hquot; jnbsp;en la comparant a la seconde, on en concluranbsp;rr' cos g = xx' jyquot;' zz';



If INTRODUCTION, cos g — cos a cos a! -f- cos ^ cos cos y cos y';nbsp;nbsp;nbsp;nbsp;(2) ce qu’il s’agissait de trouver. Lorsque les deux droites OM et OM^ coincident, les angles a', ?', y', sont les m?mes que a., ë, y, etnbsp;cette formule se réduit a I’equatlon (i). Quand cesnbsp;deux droites sont perpendiculaires Tune a I’autre ,nbsp;on a ? = go°, et par consequent cos a. cos a! cos ë cos ë' cos y cos y' ~ o. -h En mettant dans les valeurs de x, j, z, celles de cos ct et cos ë, qu’on a trouvees dans le numéro précédent, on aura a? z= r sin ^ cos cT, jr = r sin sin cf, z — r cos y; formules dans lesquelles les trois variables r, y, e^' sont les trois coordonnées polaires du point M, tellesnbsp;qu’elles ont été délinies dans le n° 4, et qui serviront,nbsp;par consequent, a transformer les coordonnées rec-tangulaires en coordonnées polaires. 10.

La consideration des projections dont on s’est servi dans le n° 8, sera souvent employée dans cetnbsp;ouvrage; il convient done d’exposer ici leurs premiers principes. La projection d’une droite sur une autre droite est la partie de celle-ci qui est comprise entre les pieds desnbsp;perpendiculaires abalssées des deux extrémités de lanbsp;droite projetée. Ainsi, les dilférences x'—x, y’—y, ^—z, des coordonnées extremes sont les projectionsde la droite MM'sur les axes desXfy, z; et,d’apr?s la premiere valeur de la somme des carrés des projections d’une méme droite siir trois axes rectangulaircs



,2 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. est égale au carré de cette droite. Si la droite proje-tée et celle sur laquelle on la projette sont dans un m?me plan, la projection est égale et parall?le a lanbsp;base d’un triangle rectangle, dont la droite projetéenbsp;est l’hjpoténuse; en sorte que si l’on désigne par lnbsp;la longueur de cette droite, par X celle de sa projection, et par i Tangle de ces deux droites, on a X = ? cos i. La projection d’une surface plane sur un autre plan, est la partie de ce plan terminée par la projection du contour de la surface projetée, c’est-a-dire,nbsp;par la courbe que forment les pieds des perpendiculairesnbsp;abaissées de tous les points de ce contour. Or, Téqua-tion précédentesubsiste encore, si Ton j met a la placenbsp;de l Taire de la surface projetée, et au lieu de A Tairenbsp;de sa projection; i étant alors Tinclinaison d’un

plannbsp;sur Tautre, pour laquelle on peut aussi prendrenbsp;Tangle compris entre les perpendiculaires a ces deuxnbsp;plans. En effet, décomposons Taire de la surface projetée en élémens d’une largeur infiniment petite et perpendiculaires a Tintersection de son plan et de celuinbsp;sur lequel on la projette, la projection de chaquenbsp;élément sera égale a eet élément multiplié par Ienbsp;cosinus de leur inclinaison mutuelle; par conséquent,nbsp;cette inclinaison étant la m?me et égale a i pour tousnbsp;les élémens, la somrae de leurs projections, ou A,nbsp;sera égale a leur somme, ou a Taire totale l multi-pliée par cos i; ce qu’il s’agissait de prouver. On con-clut de la que Ie carré de Taire d’une surface plane



INTRODUCTION. nbsp;nbsp;nbsp;i3 est égal a la somme des carrés de ses pi’ojections sur trois plans rectangulaires, en prenant pour I’incllnai-son sur cLaque plan Tangle que fait la normale a lanbsp;surface donnee avec les perpendiculaires a ce plan,nbsp;et ay ant égard a Téquation (i). I?. Lorsque dans une question, on considérera un systeme de forces parall?les, on pourra supposer quenbsp;Tun des trois axes rectangulaires MA, MB, MC,nbsp;(fig. iquot;), leur est aussi parall?le. Alors deux desnbsp;trois angles a, S, y, les deux derniers, parexemple,nbsp;seront droits pour toutes ces forces; et Téquation (i)nbsp;se réduira a cos a: d’ou Ton tire ct = o ou a= i8o°. De cette mani?re, la direction de chaque force se-rait fixée, en disant qu’elle fait avec Taxe MA un angle nul ou un angle de 180“; mais dans ce cas particulier, il

sera plus simple de déterminer cette direction par le signe de la force, en regardant cominenbsp;positives les forces qui agissent dans un sens, etnbsp;comme négatives celles qui agissent dans le sensnbsp;opposé. Au reste, le cas des forces parall?les sera le seul oii nous consldérerons des forces positives et des forcesnbsp;negatives; dans tons les autres cas, les quantilés quinbsp;représenteront les grandeurs des forces, dans le cal-cul, seront positives, etla variation de signe ne tom-bera que sur les cosinus des angles que leurs directions font avec des axes fixes. 12. Ce qui préc?de renferme les definitions préli-



14 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. mvnaires, et des de'tails suffisans sur la determination des grandeurs et des directions des forces; mais, dans eet ouvrage, j’emploierai exclusivement ia methode des irifiniment petits ; c’est pourquoi il est nécessaire de rappeler, dans cette introduction, les principes de l’Analyse infinitésimale, et parmi les formules qui s’en déduisent Ie plus immédiatement,nbsp;celles dont nous pourrons avoir besoin par la suite. Un hifiniment petit est une grandeur moindre que toute grandeur donnée de la m?me nature. On est conduit nécessairement a Tidée des infini-ment petits, lorsque Ton consid?re les variations successives d’une grandeur soumise a la loi de conti-nuité. Ainsi, Ie temps ci’oit par des degrés moindresnbsp;qu’aucun intervalle qu’on puisse assigner, quelquenbsp;petit qu’il

soit. Les espaces parcourus par les diffé-rens points d’un corps, croissent aussi par des infini-inent petits; car chaque point ne peut aller d’unenbsp;position a une autre, sans traverser toutes les positions intermédiaires; et l’on ne saurait assigner au-cune distance, aussi petite que l’on voudra , entrenbsp;deux positions successives. Les infiniment petits ontnbsp;done une existence réelle, et ne sont pas seulementnbsp;un moyen d’investigation imagine par les géom?tres. Ln infiniment petit peut ?tre double, triple, quadruple, ......, d’un autre : les quantités iufini- ment petites ont entre elles des rapports quelcon-ques, dont la determination est un objet essentiel de l’Analyse infinitésimale. Si ? et ^ sont des infiniment petits, et que Ie rapport de h a a soit au.ssi infiniment petit, b est ce



INTRODUCTION. nbsp;nbsp;nbsp;i5 qu’on appelle un inliniment petit du second ordre. Par exemple, la corde d’un arc de cercle étant supposes infininaent petite, le sinus verse du m?me arcnbsp;est un infiniment petit du second ordre, puisque lenbsp;rapport du sinus verse a la corde est tonjours lenbsp;m?me que celui de la corde au diametre, etdevient,nbsp;par consequent, infiniment petit en m?me temps quenbsp;le second rapport. De m?me, b etant déja un infiniment petit du second ordre , si Ton suppose que le rapport de c a inbsp;soit infiniment petit du premier ordre, on apellera cnbsp;un infiniment petit du troisieme ordre; et ainsi denbsp;suite. II suit de la qu’un produit compose d’un nombre n de facteurs infiniment petits du premier ordre, devranbsp;étre rangé dans la classe des infiniment petits denbsp;1’ordre n. L’aire

d’une surface infiniment petite dans toutes ses dimensions est au moins un infiniment petitnbsp;du second ordre; car elle est moindr,e que le carrénbsp;de la droite la plus longue qu’on puisse mener d’unnbsp;point a un autre de son contour, laquelle droite estnbsp;infiniment petite , par hypothese. On verra de m?menbsp;qu’un volume dont toutes les dimensions sont infiniment petites , est au moins un infiniment petit dunbsp;troisieme ordre, puisqu’il est moindre que le cubenbsp;de la plus longue droite menée d’un point a un autrenbsp;de sa superficie. Cela posé, le principe fondamental de 1’Analyse infinitesimale consiste en ce que deux quantilesnbsp;finies, qui ne different I’mie de I’autre que d’un



,6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. infiniment petit, doivent ?tre regardées comme égales, puisqu’on ne saurait assigaer entre elles au-cune inégalité , aussi petite que l’on youdra. II en sera de m?nje a l’e'gard de deux quantités infiniment petites du premier ordre, dont la difference est infiniment petite du second ordre, et,nbsp;généralement, a l’égard de deux infiniment petitsnbsp;d’un ordre quelconque, qui ne différent l’un denbsp;l’autre que d’un infiniment petit d’un ordre supérieur : on les considérera comme des quantités ri-goureusement égales, et leur rapport, comme égal anbsp;l’unité. On énonce encore ces principes d’une autre ma-ni?re, en disant qu’il est permis de négliger dans un calcul, sans crainte d’altérer aucunement les résul-tats, soit les infiniment petits ajoutés a des quantitésnbsp;finies, soit les

quantités infiniment petites d’un ordrenbsp;quelconque, ajoutées a des quantités d’un ordre inférieur. i3. La différentielle dx d’une variable indépen-dante x, est l’accroissement infiniment petit qu’on atti’ibue a cette variable; la différentielle dj d’unenbsp;fonction de a?, est l’accroissement correspondantnbsp;de cette fonction, réduit au ra?me ordre de grandeurnbsp;que celui de la variable indépendante, par la suppression des infiniment petits d’un ordre supérieur;nbsp;d’oii il i’ésulte que cette différentielle dj est toujoursnbsp;de la forme X(?r; X étant une autre function de x.nbsp;Pour quelques valeurs particuli?res de x, il peutnbsp;arriver que Ie coefficient différentiel X devienne in-fini, ce qui rendra la différentielle ILdx indéterminée;



INTRODUCTION. nbsp;nbsp;nbsp;17 ma?s cetle circonstance ne se présentera pas dans la Mecanique. Soient Jcc une fonction donnee de x, c une constante arbitraire , et Fx -\-c l’intégrale compléte ou indéfinie de fxdx. Soient encore a et h deux cons-tantes données. En determinant la constante c denbsp;mani?re que cette integrale soit nulle ou commencenbsp;quand x=^o, et faisant ensuite x-=.b, Ie i'ésultatnbsp;Fb — Fa sera ce qu’on appelle l’intégrale définie,nbsp;prise depuis x — a jusqu’a x = b. Je la désignerai f xdx, suivant la notation trés commode que Fourier a proposée; et j’écrirai, en consequence, Fb — Fn = ƒquot; fxdx. Si l’on donne successi vemen t a x une infinilé de valeurs, croissantes depuis a jusqu’a b par des differences infiniment petites, et que l’on prenne cesnbsp;differences égales ou inégales, pour les valeursnbsp;de dx,

il est facile de faire voir que la somme denbsp;toutes les valeurs de la différenlielle fxdx sera égalenbsp;a l’intégrale définie Fb — Fa. En effet, en négligeant les infiniment petits d’un ordre supérieur au premier, on a, d’apr?sla défini-tion de la différentielle, F(a? -f- dx) — Fx = fxdx. Si done on représente par S',, nbsp;nbsp;nbsp;, S'3,nbsp;nbsp;nbsp;nbsp;. Sn, un nombre infini de quantités infiniment petites, telles que l’on ait



i8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. et que l’oa prenne successivement, pour x et dx, les couples de valeurs a et cT,, a cT, etnbsp;et el's, . . .h — cT^ et (ƒ„, il en résultera F(a ?r.)—Yaz=faS'^, F(? d' nbsp;nbsp;nbsp;—F(a-4-cr,)=y'(a-f“^i)d'a, F (a-f-cT , ƒj-f-cT3)_F(a c^, cTj) =f{a-\-S', cTs, —F(^gt; —cr„)=:/(^ —cr„)cr„ ; e'quations dont la somme est FA — Ffl! = fas', nbsp;nbsp;nbsp;~hnbsp;nbsp;nbsp;nbsp;fifl cJ'a)‘=^3 ......^quot;ƒ^^ - ^ ce qui renferme Ie théor?me qu’il s’agissait de dé-montrer. Lorsque la fonction fx deviendra infinie entre les deux limites a et A, cette demonstration n’auranbsp;plus lieu, et Ie théor?me sera en défaut. Dans ce casnbsp;d’exception, que nous ne rencontrerons pas dans lanbsp;suite, l’intégrale définie n’a plus aucun rapport avecnbsp;la somme des valem’s de la dlfférentielle , et elle

peutnbsp;m?me ?tre negative, lorsque toutes ces valeurs sontnbsp;positives, ou positive, quand elles sont toutes negatives. Pour faire reparaitre Ie théor?me, il faut alorsnbsp;cmp?cher que/ir ne devienne infinie entre x—a etnbsp;r—A, en faisant passer la variable x de Tune a l’autrenbsp;de ces limites, par une série de valeurs imagi-naires (’^). 'ue. (?*') Voyez, sur cc po int, Ie Journal de l’ Ecole Poljtechniq i8' cahier, page 35,o.



INTRODUCTION. nbsp;nbsp;nbsp;19 Le théor?me précédent s’étend sans difficulté aux intégrales multiples. Ainsi, par exemple, si j{x,j)nbsp;est une function donnée de deux variables indépen-dantes x el j‘, que Ton donne successivement a cesnbsp;variables des séries de valeurs croissantes par des differences infiniment petites; et que Ton prenne en m?menbsp;temps pour dx, les differences entre les valeurs con-sécutives de x, et pour dj, celles des valeurs con-sécutives de jy la somme de toutes les valeurs denbsp;f{x, j)dxdj, sera l’intégralenbsp;nbsp;nbsp;nbsp;f (x, j) dxdj, prise entre des limites convenables. 14. liOrsque la fonction fx renfermera une quantile a considérée comme une constante dans Tinté- gration, la valeur de l’intégrale fxdx sera elle- m?me une fonction de a. II j a des questions dans lesquelles cette intégrale n’étant pas connue

sousnbsp;forme flnie, on aura besoln, néanraoins, de determiner sa différentielle par rapport a a. Or, cettenbsp;opératlon présentera deux cas dlfférens, selou quenbsp;les limites a et b seront indépendantes de a., ounbsp;qu’elles en dépendront d’une mani?re quelconque. Dans le premier cas, il suffira de dlfférentier par rapport a a .sous le signe f; en sorte que Tonnbsp;aura act nbsp;nbsp;nbsp;J a En effet, d’aprcs le tbéor?me du numéro pi’écé-dent, le premier membre de cette equation est le coefficient différentiel par rapport a a de la somme



20 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. des valeurs de fxdx , comprises depuis x — a jus-qu’a x = b', tandis que son second membre est la somme des valeurs, entre les m?raes limites, du coefficient différentiel de fxdx relatif a a; et il est évidentnbsp;que ces deux sommes sont identiques. Dans Ie second cas, lorsque a se change en a-f-c?a, la limite b devient b-\-^da, pour cette raison, la somme des valeurs de/xfZr, ou l’intégrale J' fxdxnbsp;se trouve augmentée de la valeur de fxdx qui ré- pond a x=b et dx — en m?me temps la limite a se change en a dx da dit da., c’est-a-dire,defb.^da; dct, ce qui diminue cette integrale de la valeur de Jx ,nbsp;correspondante a x — a et dx — ^ da, ou de fa. -j- da-, done, a cause de la variation simultanée da dx des deux limites a et b, produite par celle de a, l’intégrale se trouvera

augmentée de la différentielle et son coefficient différentiel par rapport a a, de ce coefficient de da. Par conséquent, en 1’ajoutantnbsp;au second membre de Téquation précédente, onnbsp;aura nh'?. j fxdx J a da



• IlS?RODUCTIOf}. nbsp;nbsp;nbsp;21 pour la valeur complete du coefficient différentlel de Quand a n’entrera pas dans fx , que cette quan-tité sera Tune des deux limites b o\x a, et que ces deux limites ne dépendront pas Tune de l’autre,nbsp;eette expression se réduira a pb l. J fxdx nb . J fxdx -fh, OU da db ce qui est, d’ailleurs, évident en soi-m?me. Des remarques semblables s’appliqueront aux inté-grales multiples , dont les coefficiens différentiels par rapport a une quantité qu’on a d’abord regardéenbsp;comme constante, s’obtiendront aussi en diffe'ren-tiant sous les signes d'intégration , et en ajoutant aunbsp;résultat des termes dépendans des variations desnbsp;limites, quand elles dépendront de cette quantiténbsp;de venue variable. i5. Le calcul intégral fournit des regies pour dé-lerminer exactement ou par approximation, les valours

numériques des intégrales définies, simples ou multiples; en sorte qu’un probl?me est censénbsp;résolu, lorsqu’on est parvenu a exprimer les incon-nues par des intégrales de cette nature. On dit alorsnbsp;que le probl?me est réduit aux quadratures, pareenbsp;que, d’une part, une intégrale multiple n’est autrenbsp;chose qu’une intégrale simple plusieurs fois répétée, et que, d’un autre cóté, une intégrale J' fxdx peut toujours ?tre représentéc par Ic carré égal a l’aire



22 TRAITÉ DE MÉCANIQÜE. d’une courbe plane, dans laquelle x et jx sont lesnbsp;coordonne'es d’un point quelconque, et a et ? lesnbsp;abscisses des points extremes. Parmi les dilFérentes formules dont on fait usage pour calculer les valeurs approchées de cette integrale ^ fxdx, nous citerons la suivante, qui suppose que dfx les fonctions fx et ne deviennent point infinies entre les limites a et b. Conservons toutes les notations precédentes, et faisons de plus dx^ nbsp;nbsp;nbsp;' * dx etc. Supposons que les differences cT,, cT?, cTj, etc., ne sont pas infiniment petites, inais seulement trés pe-titesj prenons-les égales, et représentons par tTleurnbsp;grandeur commune. Nous aurons,d’apr?sle théor?menbsp;de Taylor, F (a 2J') =r(a J') y/(a lt;?) i ^^f{a lt;^) etc., F (a -j- 3J') =F (a 2^) -\-^f{a -f-2J)-f-nbsp;nbsp;nbsp;nbsp; 2.lt;t) -j- etc., r(a

ra^') =F(a nlt;^—?f {anS^ — ^) “fquot; ? sP- quot;1” nbsp;nbsp;nbsp; etc. Done, en supposant nS = b — a, et faisant la somme de ces equations, on aura Vb — fa= J'S/{aH-(S') -f-i' (a i^) -j- ^/cfj-f-etc.; i étant un nombre entier ou zéro, et les caractéristi-qiies 2 indiquant des sommes qui s etendeul aux n



INTRODUCTION. nbsp;nbsp;nbsp;23 valeurs de i compi'ises depuis i=o jusqu’a i:=.n‘—i. Eq prenant successivement fx et f x, f'x et J”x, etc.,nbsp;au lieu de Fu: etfx, on aura de m?me fb—fa = nbsp;nbsp;nbsp;H- rcT) nbsp;nbsp;nbsp;nbsp;'(a iJ') etc., fb—fa= nbsp;nbsp;nbsp;i^) etc., etc. Cela posé, si Ton veut négliger les puissances de lt;ƒ' supérieures au carré dans la valeur de FZ? — Fa, onnbsp;pourra prendre, d’apres les derni?i-es équations, U-y (a nbsp;nbsp;nbsp;- ij-t/'s -ƒ'lt;!), iS‘y (a ;ƒ) = -J S- (J'b -fa), pour les valeurs de ses deux derniers tei’mes. Sa valeur enti?re deviendra done FZ. — Fa = cTS/fa -j- ij') -h^lt;S'ifb —fa) ou, ce qui est la m?me chose, fy'a:dx = J' {\fa f{a -}- cT) -h/(a 2or)... • • • nbsp;nbsp;nbsp;—J'^)- Cette formule sera d’autant plus exacte, que la diffé- rence S', ou b(b — a), sera plus petite, et que les valeurs de fx varieront

moins rapidement entre les limites a et b. Le plus souvent on pourra négliger lenbsp;terme dépendant de S^', la formule ne renfermeranbsp;alors que des valeurs de fx qui pourront ?tre don-nées en nombres, sans que la forme de cette fonctionnbsp;soit connue. i6. Dans la théorie des inliniment petits, on con-



24 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQUE. sid?re les courbes comme des polygones d’un nombre infini de cóte's infiniment petits. Cela suppose que lanbsp;corde d’un are infiniment petit est égale a eet are, ounbsp;que Ie rapport de leurs longueurs peut ?tre pris pournbsp;I’unité; c’est efFectivement ce que l’on peut démon-trer de la mani?re suivante. Soit Mmm'M' (Gg. 3)un are de courbe infiniment petit; tirons les cordes Mm, mml, m!W, et prolon-geons la troisi?me, jusqu’a ce qu’elle rencontre Ie pro-longement MT de la premi?re, en un point K. L’arcnbsp;mm' est plus grand que la corde mm', et moindre quenbsp;la ligne brisée mKm'; il suffira done de prouver quenbsp;cette ligne et cette corde, infiniment petites, ne different que d’un infiniment petit d’un ordre supérieur,nbsp;et que l’on peut prendre Ie rapport de l’une a

l’autrenbsp;pour l’unité : cela sera vrai, a fortiori, a l’égard denbsp;l’arc mm' et de sa corde. Or, s’il n’y a dans l’étendue de Fare Mmm'M' aucun point singulier oü la direction de la courbe changenbsp;brusquement, les cordes qui vont d’un de ses pointsnbsp;a un autre comprendront des angles infiniment peunbsp;différens de deux droits. L’angle TKM', supplémentnbsp;de MKM', sera done infiniment petit; je Ie désignerainbsp;par cT ; et en faisant, en outre, mm mK = a m'K = b, on aura, dans Ie triangle mKm', l’équallon -f-nbsp;nbsp;nbsp;nbsp;-f- aa? cos cT, que Ton peut changer en celle-ci: c*z={a hY —/^ah sin“ icT,,



25 INTRODUCTION. en observant que cos cT = I — 2 sin* i tT. Nous aurons done ^ab(? by nbsp;nbsp;nbsp;(a by pour le carré du rapport de la corde mm' a la ligne brisee mKm'. On a d’ailleurs Jiab_ (a byr—Y-\a -j- b) ^ ce qui prouve que le coefficient de sin* | cT ne peutnbsp;pas devenir infini, puisqu’il est toujours moindrenbsp;que I’unite. En negligeant I’infiniment petit du second ordre, on aura done I’unite pour le rapport denbsp;c k a b ; ce qu’il s’agissait de demontrer. 17. Une courbe étant considérée comme un poly-gone infinitesimal, les tangentes seront les prolonge-mens de ses cotes infiniment petits; au point M, ou le cote est Min, la tangente sera la droite indefinienbsp;T'M/nT. Si Ton designe par x, j, z, les trois coordonnees rectangulaires du point M, celles du point m serontnbsp;X dx, j -f- dy, z dz. En appelant ds l’élémentnbsp;de la

courbe, e’est-a-dire, son cote Mm, les difFeren-tielles dx, dj, dz, seront ses projections sur les axesnbsp;des X, j, z; par consequent, si Ton represente parnbsp;les trois angles que fait la direction de lanbsp;droite MT avec des paralleles a ces axes, menees parnbsp;le point M, on aura cos a COS J cos ?tc nbsp;nbsp;nbsp;a dj ds ' ds



26 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQÜE. et en m?me temps dj’quot; dz’quot; = ds’quot;. En prenant, sur la courbe que Ton consid?re, un point fixe C, et supposant que s soit l’arc CM compténbsp;de cette origine, eet are pourra ?tre la variable indé-pendante, dont x,y, z, seront des fonctions donnéesnbsp;par les equations de la courbe. Dans ce cas, ds seranbsp;positif; mais dx, dj, dz, et par suite cos ot, cos C,nbsp;cos y, pourront ?tre positifs ou négatifs. Les anglesnbsp;ct,amp;, y, se i’apporteront toujoursau prolongementnbsp;7?zT du cóté Mm, ou a la partie MmT de la tangente;nbsp;les angles relatifs a 1’autre partie MT' seront les sup- pl?mens de a, nbsp;nbsp;nbsp;y, K 7)- La dii’ection de la tangente au point M étant d?-terminée par les equations (i), on en peut conclure réquation du plannormal en ce m?me point; inais

onnbsp;obtient directeraent cette equation par la consideration suivante. Soit Ji Ie rayon d’une sphere qui a son centre au point M; son equation sera {cc' — xf (j' — j)‘ H- (z' — z)“ = nbsp;nbsp;nbsp;; x', j', z', designant les coordonnees courantes. L’equa-tion de la sphere du m?me rayon, qui a son centie an point m, se de'duira de celle-la, en y niettantnbsp;X ^dx ,J dj, z-\-dz, a la place de x, j, z; ennbsp;retranchant ces equations Tune de I’autre, et negli-geant les intiniment petits du second oi’dre, ilnbsp;vient {x' — a ' dx (/' —j) dj-\~{z! — z) = o ;



INTRODUCTION. nbsp;nbsp;nbsp;27 equatioa qui appartiendra a I’intersection des deux surfaces spheriques. Comme elle est Tequation d’unnbsp;plan dont x', y', z', sont les coordonnees courantes,nbsp;ce sera celle du plan de cette courbe, et, par consequent , I’equation demandée du plan normal, puis-que les deux spheres se coupent suivant un cerclenbsp;perpendiculaire a la droite TT' qui passe par leursnbsp;centres M et m. En la divisant par ds, et ayant égard aux formules (i), cette equation devient {x'—x')cosa-{-(^y'—y) cos nbsp;nbsp;nbsp;—z) cos y = o. Si done a{x' — x) y-b^y' —y) -\-c{z' ?— z) = o represente I’equation d’un plan mené par le point dont les coordonnees sont x, y, z, et perpendiculaire a la droite dont la direction est déterminée parnbsp;les angles a, y, il faudra qu’elle s’accorde avec lanbsp;précédente; ce qui exigera qu’on

ait az=.h cos a, h — h cos amp;, c~h cos y, h étant un facteur indéterminé. En vertu de i’équa-tion (1} du n° 6, on en conclura d’ailleurs a* -f- nbsp;nbsp;nbsp;-f-nbsp;nbsp;nbsp;nbsp;; ce qui fait connaitre la valeur de h, abstraction faite du sigue. Ou aura ensuite — cos6 = ^, cosy^p (2) ce qui coincide avec les formules connues d’apr?s lesquelles on determine la direction de la perpendi-



28 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAMIQUE. culaire a un plan donné. Le signe de /^ reste indéter-miné, paree que les angles a , y, peuvent se rap-porter a Tune ou a Tautre des parties de cette droite qui sont situées des deux cótés du plan. i8. On SLT^T^e]\Q angle de contingence l’angle infi-niment petit compris entre deux tangentes consécu-tives. Ainsi Mnz et mm' (fig, 4)? étant deux cótés ?frv-y' consécutifs de la courbe, eet angle, au point M, estnbsp;le supplément de Mm/ra', ou Tangle l^mt, sous le-quel la tangente MmT est coupée par la tangentenbsp;suivante mm't. Je le représenterai par cT; en suppo-santque les angles cJL,,Q,y, se rapportent toujours a lanbsp;direction de MT, et désignant par a!,nbsp;nbsp;nbsp;nbsp;y', ee qu’ils deviennent relativement a la direetion de mt, on aura,^ en vertu de Téqualion (2) du n° g, sin*cr= I —

(cosacosa' eos^cos?'H-cos^/cos^')”. D’apr?s le théor?me de Tajlor, on aura aussi cos a'=:cosa i/. cos o. ^ c?*.cos a etc., cos €' =cos^-f-fi^.cos^ jd^.cos? etc.,nbsp;cos y' = cosy-f- d.cos y-{- 7 d’‘. cos y etc. Or, si Ton substitue ces valeurs dans celles de sin“ cT, et qu’on ait égard a Téquation cosŽa cosŽ€ cosŽy=?, et a sa difierentiellecos a d. cos a-f-cos ^ . cos ^ cos c/. cos )/ = o, on voit que les quautités finies et les infiniment pe-tits du premier ordre se détruisent; en sorte qu’en négligeant les infiniment pelits des ordres supérieurs



INTRODUCTION. nbsp;nbsp;nbsp;29 au secoud, il vient —(cos ac?“. cosa cos€rf*. cos? H-cos^i/'. cosj.). En differentlant I’equation précédente, on a, d’ail-leurs, cos lt;z . cos a cos ë nbsp;nbsp;nbsp;. cos € cos y c?*. cos y (^/.cosfl{)''-f-(J.cosC)* (lt;^.cos 5/)* = o; ce qui change la valeur de sinŽ cT en celle-ci: sinŽ d' = (g? . cos a)Ž-|-(G?.cos^)Ž ({i. cos y)*, laquelle sera aussi la valeur de cTŽ, a cause que I’arc infiniment petit cT est egal a son sinus. Les different idles de cos a, cosë, cosy, se dedui-ront des formules (i) du numéro précédent. En ne spécifiant pas la variable indépendante, on aura d.cosa, et comme on a ds'‘d‘x — dxdsd^s ds^ ds* c= dx^ -j- dj'- rfeŽ, dsd^s — dxd^x -j- djdj dzd^z, il en résultera ds^ on aura de m?me d. cos a.~‘~ (djd^x—dxdj) (dzd*x—dxd^z)-,d. cos ë = nbsp;nbsp;nbsp;{dxd^j—djd*x) ^ {dzd'j—djd^z),c?. cos y = —

{dxd’^z—dzd^x) nbsp;nbsp;nbsp;{djd‘z—dzdy); ?' or, en faisant la somme des carrés de ces trois va~



3o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. leurs, on trouve, apr?s quelques reductions, que l’cxpression de sin* S' on de S', peut se mettre sousnbsp;la forme J'gt;—[ {dxdy — djd'^xY -}- {dzd’-x — dxd^z^ {djd!‘z — dzd’^jY]. Le eerde osculateur est celui qui a deux cótés con-sécutifs comniuns avec la courbe. Au point M, ce eerde est done celui qui passe par les trois pointsnbsp;M, m, m', dont le centre se trouve a l’intersection Onbsp;des deux perpendiculaires clevées sur les milieux denbsp;Mm et mrd dans le plan de ces deux élémens consé-cutifs, et qui a pour rayon la droite MO. Si ces deuxnbsp;éle'mens sont supposes e'gaux, cette droite diviseranbsp;Tangle Minin' en deux parties e'gales : nous feronsnbsp;cette hypothese sans craindre d’alterer la valeur denbsp;MO; car il est aisé de voir que le rapport numériquenbsp;des deux cótés

infiniment petlts Mm et mm' n’influénbsp;que d’une quantilé infiniment petite sur la grandeurnbsp;de ce rayon qui est, par conséquent, la m?me, soitnbsp;qu’on prenne ces deux cótés consécutifs égaux, ounbsp;qu’ils soient inégaux. La longueur des cótés Mm étant ds, et en représentant par p celle de mO, la projection de p sur M/JZ sera ^ ds; en sorte que Ton aura \ds — f cos MmO; et puisque eet angle MmO est la moitié du supplément de S ou égal a i TT — tcT, il en re'sultegt;;pnbsp;izis=psinicr = :tpj',nbsp;en prenant Vare a la place de son sinus.



INTRODUCTION. nbsp;nbsp;nbsp;3t Cela ctant, si le rajon de courbure p était connu d’une autre mani?re, on auraitnbsp;pour la valeur de Tangle de conlingence; et recipro-quement, d’apres la valeur prëcédente de cTŽ, cellenbsp;de ƒ sera ds^P=-----7. \_{dxd^y'—djd^xy-^' (dzd^x — dxd^zy-\- {djd^z — dzd^jY~\ “ 19. Pour achever de connaitre la nature intlme de la courbe au point quelconque M, il faut encore determiner son plan osculateur, c’est-a-dire le plan desnbsp;deux cotes consecutifs M/u et mm'. Ce plan passant par le point M, on pourra I’epre-senter son equation par A {pc'— nbsp;nbsp;nbsp; B {j—j) C (z'— z) = o ; x', y, z', étant les coordonnées courantes. A cause qu’il doit aussi passer par les points in et in', les difleren-tielles premi?re et seconde de cette equation, savoir : Ar^r' -j- Tidy -f- Qdz' = o, Ac?“a?'-|- 'Bd*y-\- Ct/“z'= o, devront ?tre

satisfaites comme Tequation m?ine, ?n y faisant x-. aura Adx H- ?idj Uz — o, Alt;i*x-f-Hh Cfi?“z= o. Les valeurs de A, B, C, qui remplissent ces deux conditions sont, comme il est alse de le verifier, Ton que :z; en sorte



3 a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. C = D (dxdy— dy(tx), B = D {dzd*x— dxd’^z), A = D {djd’^z — dzdy); D étant un facteur indéterminé. Eu les substituant dans réquation du plan osculateur, et supprimant cenbsp;facteur commun a tous ses termes^ elle devient {z'—z) (dxdy—dyd'^x) (y'—y') (dzd‘^x—dxd‘z) (x' — x) (djd^z—dzdy) = o. Si l’on appelle A, r, les angles que fait la normale au plan osculateur, avec des parall?les aux axes des X, y, z, menées par Ie point M, on aura, d’apr?snbsp;les equations (2) du n“ 17 , cos ^ nbsp;nbsp;nbsp;^ (djd‘z — dzdy), j cos nbsp;nbsp;nbsp;{dzd*x — dxdy), gt; (5) cos V = ^(dxdy— dyd^x\ ' en désignant par la somme des carrés des trois nu-mérateurs. On déterminera aussi Tangle infiniment petit com-pris entre deux normales consécutives, et qui sera Tangle de deux plans osculateurs

consécutifs, commenbsp;on a determine tout a Theure Tangle de deux tan-gentes. En le désignant par ?, on aura, par un calculnbsp;semblable a celui du numéro précédent, É* = (d.cos A)*-{- (d. cos nbsp;nbsp;nbsp;(d. cos r)*.



INTRODUCTION. nbsp;nbsp;nbsp;33 iiormaux consécutifs; ce qui fournit le moyen de determiner ses coordonnees d’apr?s les equations de ces trois plans, qui sont maintenant connues. L’equation du plan normal en M etaut (n“ 17) (pc' — cc) dx -1- (j' —j) dj -\-(z' — z)dzz=:o, Celle du plan consecutif s’en deduira en y mettant ccdx, Jdf, z-\-dz, au lieu de x, y, z; parnbsp;consequent, la differentielle de Tequation du premiernbsp;de ces deux plans, prise par rapport a x,y, z, savoir: [x’ — x) d^oc -{- (y —y) dy (z' ?— z) d'^z = ds’^, appartiendra a leur intersection. On tire de ces deux equations{x' — x) (dxdy — djd^x) = {z' — z) (djd'^z—dzdy) — ds'^dj, {y—J) (djd?-x —dxdy) ?= (z'—z) [dxd^z — dzd^x) — ds^dx; et an moyen de I’equation du plan osculateur, on en conclut dzdy) — dx {dzd^x — dxd'z) ], en designant, pour abreger, par p la m?me expression

que dans le n° 18. On aura de m?me .a y —y = nbsp;nbsp;nbsp;[dx (dxdy — djd^x) — nbsp;nbsp;nbsp;dz (dfd^z—dzdy) ],nbsp;x'—x^^ [ dz (dzd’^x — dxd^z) — nbsp;nbsp;nbsp;dj (dxdy—dyd’^x) ];



34 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQUE. de la courbure dont Ie rayon osculateur ne determine que la grandeur. En ajoutant les carrés de ces valeurs de x*—-x, j'—j, z'—z, et réduisant, on a {x' — xy {j'—jY (z'— zy = p*; d’ou il résulte que la quantité p est la distance du point 0 au point M, ou Ie rayon de courbure MO,nbsp;comme on Ie savait déja. 2 i. Les formules des cinq numéros précédens renferment tout ce qui est relatif a la direction et a la courbui'e d’une ligne quelconque, plane ou a doublenbsp;courbure. Relativement a une surface quelconque,nbsp;on a aussi a considérer la courbure et la direction denbsp;son plan tangent; quant a sa courbure, je renverrainbsp;au Mémoire que j’ai iriséré sur ce sujet dans Ie 21Ž cahier du Journal de l’Ecole Polytechnique, et je nenbsp;m’occuperai ici que de ce qui concerne Ie plan

tangentnbsp;et la normale. En un point M, dont les coordonnées sont x,j,z, l’équation du plan tangent peut ?tre représentée par k{x’ — J?) B(j' — j) -f- C(z' — z) = o ; x',j', z', étant les coordonnées courantes. Ce plan devra aussi passer partout autre pointM'de la surface,nbsp;infiniment voisin de M; il faudra done qu’on satis-fasse a cette équation, au moyen de x'~x~\-dx,nbsp;y =f dy , z' = zdz, ou a sa diflérentielle relative a x',j', z', en y mettant x,j,z, a la placenbsp;de ces variables. Par conséquent, on aura \dx Bdj -|- (Idz = o.



INTRODUCTION. nbsp;nbsp;nbsp;35 L equation de la surface donnera dz = pdx qdj- i P q designant des fonctions connues de x, p, z. L’e'quation pre'ce'dente devient done (A -i- pC)dx (B -j- qC)dj- = o; €t comme elle doit subsister pour toutes les directions de la droite MM', e’est-a-dire , pour tous les rapportsnbsp;qu’on peut établir entre dx et dj, i\ faudra egalernbsp;séparément a zéro les coefficiens de ces dilFérentielles;nbsp;d’ou il résultera Je tire de la les valeurs de A et B, je les substitue dans l’équation du plan tangent, et je supprime Ienbsp;facteur commun C; il vient Si a, b, c, sont les angles que fait la normale au point M, avec les prolongemens des coordonnées x,nbsp;7, z, on aura, d’apr?s les equations (2) du n” i '7 , cos c = nbsp;nbsp;nbsp;____ Le radical sera positif ou négatif dans ces trois formules, selon que la parlie de la normale

qu’on voudra considérer fera un angle c aigu ou obtus 3..



36 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. avec la drolte metiée pai’ Ie point M , suivant la direction des z positives. En appelant co Télément de la surlace dont la projection sur Ie plan des Jc et j- est dccdj, on aura dxdy = rfc Ž cos c , selon que c sera aigu on obtus; car eet élément infi-niment petit en tous sens, est compris dans Ie plan tangent dont l’inclinaison sur Ie plan des oc et y estnbsp;Tangle c ou son supplément; et Ie théor?me du n° i onbsp;convient également a la projection d’une surfacenbsp;plane infiniment petite. D’apr?s cela on aura co = dxdj VI nbsp;nbsp;nbsp; 9“ gt; en regardant toujours Ie radical comme une quan-tité positive. Soit L une function donnée de x, y, z; repré-sentons par L = o, Téquation de la surface que Ton consid?re; en la dif-férentiant successivement par rapport a x et a on aura dL . dL Je tire de la les valeurs

de p et et je les substitue dans Téquation du plan tangent qui prend la forme dx ' nbsp;nbsp;nbsp;J ^ dj ' ^ ^ J dz En m?me temps, les formules (4) deviennent Vdtj 7 _quot;VT dL nbsp;nbsp;nbsp;dL^,cosb=Y^,cosc = y^^, (5)



37 IlNTllODUCTION. ew faisanl, poiir abréger, 22. Je placerai ici une remarque qui sera ulile pour verifier ou déduire les unes des autres les formules analogues qui i'épondent a différens axes. Supposons que dans une question tout soit sem-blable a l’égard des trois axes des coordonnées x, y, z. Si Ton a une e'quation X=o, relative a l’axenbsp;des X, il en existera une semblable Y==o, qui ré-pondra a l’axe desj', et une troisi?nie Z=o, relativenbsp;a l’axe des z; et ces deux autres equations Y = onbsp;et Z = o, se dëduiront de X = o , par de simplesnbsp;changemens de lettres. Or, void comment ces permutations devront s’efFectuer. On mettra dans X toutes les quantitës relatives a l’axe des x, 'a \a place des quantités analogues quinbsp;rëpondent a Taxe des j, puis celles-ci a la place denbsp;celles qui répondent a Taxe des z, et, enfin ,

cesnbsp;derni?res quantités a la place des premi?res, qui ré-pondaient a l’axe des x. Par cette permutationnbsp;tounuinte, on déduira Z de X; par une secondenbsp;permutation de la m?me nature, effecluée sur Z ,nbsp;OU obtiendra Y; et par une troisi?me permutationnbsp;tournante, effectuée sur Y, on retrouverait X. Sil s’agit, par exemple, des equations (3) du n° 19, dont la premi?re répond a l’axe des x, lanbsp;seconde a l’axe des j-, et la troisi?me a i’axe des z ,nbsp;j’écrirai sur une m?me ligne, mais en deux parties,nbsp;les coordonnées x, z, et les angles A, |W, v, qui



38 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANTQUE. leur correspondent respectivement; puls, sur une seconde ligne, je disposerai ces six quantités , aussi en deux parties, et dans un ordre difFe'rent, de sortenbsp;qu’on ait fjL, v; V , A , X, j, z, z, X, jr, Cela fait, je remplacerai dans la premi?re equation (3), cliacune des quantile's de la ligne supérieure par la quantité correspondante de la ligne inférieure ; par cette permutation, h ne changera pas, et l’on obtiendra la troisi?me équation (3). Je met-trai de nouveau, dans celle-ci, les quantités de la lignenbsp;inférieui’e a la place de celles qui leur correspondentnbsp;dans la ligne supérieure; ce qui donnera la secondenbsp;équation (3); et en opérant de m?me sur cette équation , on retrouvera la premi?re équation (3), d’ounbsp;Ton est parti. Chacune de ces opérations revient a un changement d’axes

des coordonnées, dans lequel on fait d’abord tourner les axes des x et des j dans leurnbsp;plan , de mani?re que l’axe des x positives viennenbsp;tomber sur l’axe des j positives, puis celui-ci surnbsp;l’axe des x négatives; et oü l’on fait tourner ensuitenbsp;eet axe desj^ positives, ainsi déplacé, et l’axe des znbsp;positives, de mani?re que Ie premier vienne tombernbsp;sur l’axe des z positives, puis celui-ei sur l’axe pri-mitif des x positives; en sorte que, finalement,nbsp;chaque axe des coordonnées positives ait pris la placenbsp;d’un autre axe des coordonnées positives. C’est pournbsp;cela que les equations relatives aux trois axes des



INTRODUCTION. nbsp;nbsp;nbsp;89 coordonnées se dëduisent rune de I’autre par de simples permutations de lettres, et sans aucun changement de signe; ce qui n’aurait pas lieu si Ton ne per-mutait pas simuitanement les trois coordonnées et les quantités qui s’y rapportent de la mani?re qn’onnbsp;vient d’indiquer. 23. Voici encore une observation générale, par laquelle je terminerai cette introduction. Les équations que nous aurons a considérer renfer-meront des nombres abstraits, tels que Ie nombre tt, les logarithmes, les lignes trigonométriques,etc.;ellesnbsp;contiendront, en outre, d’autres quantités de diversesnbsp;natures, qui y seront aussi représentées par des nombres exprimant leurs rapports a des unités choisies ar-bitrairement, pourvu que chaque unité soit la mémenbsp;pour toutes les quantités d’iine méme esp?ce. Or,

ennbsp;changeant la grandeur d’une ou de plusieurs unités,nbsp;les nombres qui expriment les quantités correspon-dantes, varleront en raison inverse de cette grandeur;nbsp;et,malgréce changement, tout-a-fait arbitraire, lesnbsp;équations qui les renferment devront encore subsister.nbsp;II faudra, pour cela, que leur forme remplisse cer-taines conditions, faciles a verifier dans chaque casnbsp;particulier, et qu’on appelle, dans l’acception la plusnbsp;étendue, les conditions de Vhoinogénéité des quantités. Toute équation qui n’y satisfera pas sera, parnbsp;cela seul. Inexacte, et devra ?tre rejetée. Amsi, en indiquant par F une fonction donnée , supposons qu’on ait ,. t, 't',.hl',.



4o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. f,f,... désignant des forces, 1,1',.des lignes,... m, m',.,. des masses, t, if,.,, des temps. Si l’on re-présente par n, n', nquot;, vlquot;, des nombres abstraits, etnbsp;que l’on diminue a la fois l’unité de force dans Ie rapport de un a ra, l’unité lineaire dans Ie rapport denbsp;un a ra', l’unité de masse dans Ie rapport de un a raquot;,nbsp;l’unité de temps dans ie rapport de un a ra'quot;, lesnbsp;nombres/, ƒ,... l,nbsp;nbsp;nbsp;nbsp;/ra',... t, t',... devien- dront ra/, nf,... n'l, n'l',... n!'m, rJ'in',... nquot;'t, gt;. •., et l’équation (ra) devra encore avoir lieu , c’est-a-dire, qu’on devra encore avoir F (// nf,... n'l, n'l',... ra'/ra, n^m',... n'quot;t, nquot;'t',.. .)=o, quels que soient ra, ra', rf. Si réquation(ra) ren-fermait des surfaces s, s',... et des volumes v, v',... leurs dimensions devraient ?tre rapportées a la

m?menbsp;unite que les lignes l,V,..., et ces quantites s, s'... v',... deviendraient consequemment ra'Ž^, ra'V',... ra'V, ra'Ž(/',... par le changement de cette unite'. L’equatiou du n° i8, qui donne la valeur de f, sa-tisfalt evidemment a cette condition; car elle ne ren-ferme que des lignes finies ou infiniment petites p, ds, doc, dy, dz, d^oc, dy, d‘z; et quand on changenbsp;I’unite lineaire et qu’on multiplie, comme on vientnbsp;de le dire, chacune de ces lignes par un m?menbsp;nombre ra', ce nombre disparait et I’equation n’estnbsp;pas changee. Celle du m?me numéro, d’ou depend lanbsp;valeur de cT*, satisfait egalement a la condition denbsp;rhomogénéité, en observant que cT’* est un nombrenbsp;abstraitqui ne change pas, non plus que cette valeur,,nbsp;avec la grandeur de I’unite lineaire.



INTRODUCTION. nbsp;nbsp;nbsp;4? II sera impossible que I’equation (a) ne renferme qu’une seule quantite d’une m?me esp?ce; lors-qu’elle en coatiendra deux, par exemple deux forcesnbsp;J et f, et qu’on la resoudra par rapport a Tunenbsp;d’elles, ce qui douuera ƒ z=: F {J, I, I',... m, m',... nbsp;nbsp;nbsp;, il faudra, pour I’liomogeneite des quantite's, que J soit facteur a tous les termes de la nouvelle function F,nbsp;ou, autrement dit, il faudra qu’on ait N étant un facteur qui ne contiendra aucune quan-tité de la nature de ƒ et ƒ', et ne variera plus avec I’unite de force. Quelquefois le principe de l’homogénéité des quan-tltés paraitra n’avoir pas lieu, paree qu’on aura pris pour unite de force Tune des forces que Ton consi-d?re dans la question, ou blen pour unite lineairenbsp;la distance de deux des points materiels dont on s’oe-cupe, ou blen

pour unite de masse celle de I’un desnbsp;corps du probl?me, etc. Mais, alors, si 1’on changenbsp;arbitralrement ces unites, et que la force, la ligne,nbsp;la masse, le temps, qu’on avait d’abord pris pour unites, soient maintenant exprimes par lt;p. A, 0, lesnbsp;autres quanlites de ces ditferentes natures qui entrent r nbsp;nbsp;nbsp;f f' I V dans I’equation (a) deviendront nbsp;nbsp;nbsp;..... il faudra done qu’on ait mm t i



42 TRAITÉ DE MÉCANIQÜE. vff f' ^ t ^ ^ i i'* vi’ 7’’'’7’quot;' equation qu’on pourra écrire ainsi F.(lt;P, ƒgt;ƒ'gt;• •• A,Z,Z',. nbsp;nbsp;nbsp;m',. ..6,..)=o, et qui devra maintenant satisfaire a la condition de l’homogénéité : F, indique ici une fonction qui se dé-duira, dans chaque cas, de la fonction donnée F.



'V\\W\W'gt;'VVNgt;VV\'V\\^V\'VVV\\\/W\gt;VVgt;WX'W\'\AA'W^AA*VVWV\A'WWV^/VWW?VVgt;'VV\V\\'V\A'VV\lt;VVWV^VV\'WVLITRE PREMIER.STATiaUE,PREMI?RE PARTIE.CHAPITRE PREMIER. DE LA COMPOSITION ET DE L’ÉQUILIBllE DES FORCES APPLIQUÉES A ÜN MEME POINT. 24. Lorsqu’un point materiel est soumis a Taction simultanée de plusieurs forces qui ne se font pas équi-iibre, il se ment suivant une direction déterminee,nbsp;et Ton peut attribuer Ie mouvement qu’il prend anbsp;une force unique agissaut suivant cette direction,nbsp;Cette force est ce qu’on appelle Ia résultante desnbsp;forces qui ont mis Ie mobile en mouvement, et celles-ci sont nommées les composantes de la premi?re. Ap-pliquée en sens contraire de sa direction, la re'sultantenbsp;fait ?quilibre aux composantes, puisqu’elle tend a im-primer au mobile

un mouvement égal et contrairenbsp;a celui qu’il recevrait de Taction simultanée des composantes, et qu’il n’j a pas de raison, par conséquent,nbsp;pour qu’il se meuve plutót d’un cóté que de Tautre. Si toules les composantes sont dirigées suivant une



44 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. m?me droite, et agissent dans Ie m?me sens, il suit de la notion que nous avons donnée de la mesurenbsp;des forces fn“ 5), que Ia résultante sera égale a leurnbsp;somme. Si Ie mobile est sollicité par deux forces di-rectement contraires, on décomposera la plus grandenbsp;en deux autres, dont Tune, égale a la plus petite,nbsp;sera détruite par celle-ci, et dont l’autre, égale anbsp;l’exc?s de la plus grande sur la plus petite, sera lanbsp;résultante. On conclut de ces deux propositions quenbsp;s’il y a un nombre quelconque de composantes, di-rigées, en partie suivant une droite, et en partienbsp;suivant son prolongement, la résultante sera égale a lanbsp;somme de celles qui agissent dans un m?me sens,nbsp;moins Ia somme de celles qui agissent en sens contraire,nbsp;et qu’elle agira

dans Ie sens de la plus grande somme.nbsp;Quand les deux sommes seront égales, la résultantenbsp;sera nulle, et les forces données se feront équilibre. 25. II y a un autre cas dans lequel on détermine aussi trés aisément la grandeur et la direction de lanbsp;résultante. Soient MA, MB, MC (fig. 5), les directions de trois forces égales appliquées au point M j supposons cesnbsp;forces comprises dans un m?me plan, et les trois angles AMB, BMC, CMA, égaux entre eux, ou chacunnbsp;a 120°; Ie point M demeurera en équilibre j car il n’ynbsp;aurait pas de raison pour qu’il sortit du plan des troisnbsp;forces, ni pour qu’il se mit en mouvement plutótnbsp;dans l’un que dans l’autre de ces trois angles. Chacunenbsp;des trois forces sera done égale et contraire a la résultante des deux autres. Or, si l’on prend sur les directions MA et MB de

deux d’entre elles des ligncs



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;45 egales MG et MH, pour representer leurs intensile's, et qu’on ach?ve Ie losange GMHK, la diagonale MKnbsp;tombera sur Ie prolongement MD de MC; l’angle MGKnbsp;sera de 60°, comxne chacun des deux autres angles dunbsp;m?me triangle, qui sera equilateral; on aura donenbsp;MK = MG; par conséquent la diagonale MK du losange construit sur les deux forces MG et MH repré-sente, en grandeur et en direction, la résultante denbsp;, ces deux forces. Cette proposition est comprise dans une autre que nous allons d’abord démontrer dans Ie cas de deux forces égales, dont les directions font unangle quelconque,nbsp;et que nous étendrons ensuite a des forces inégales. 26. La résultante de deux forces égales coupe tou-jours en deux parties égales Tangle compris entre leurs directions; car il

n’j aurait pas de raison pour qu’ellenbsp;se rapprochat davantage de Tune de ces deux forces,nbsp;ni pour que sa direction s’écartat de leur plan plutótnbsp;d’un cóté que de Tautre; sa direction est done connue,nbsp;et nous n’aurons que sa grandeur a déterminer. Soient, pour y parvenir, MA et MB (fig. 6) les directions des composantes dont la valeur communenbsp;sera représeutée par P. Soient aussi Tangle AMB,nbsp;et MD la direction de la résultante, de sorte qu’onnbsp;ait AMD=BMD =x. Son intensité ne peut dépendrenbsp;que des quantités P et o?; en la désignant done par R,nbsp;nous auronsR=/(P,x). Dans cette equation, R et P sont les seules quantités dont Texpression numérique varie avec Tunité denbsp;lorce; d’api’?s Ie principe de Thomogénéité des quan-



46 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. tités (n° aS), il faiit done que la fonction y(P,x) soit de la forme Pipx. Ainsi l’on a R = Tepx ; et la question se réduit a determiner la forme de la fonction (px. Pour cela, je m?ne arbitrairement par Ie point M les quatre lignes MA', MA'', MB', MBquot;; je suppose lesnbsp;qualre angles A'MA, Aquot;MA, B'MB, Bquot;MB, égauxentrenbsp;eux, et je repre'sente chacun d’eux par z. Je decompose la force P dirigee suivant MA, en deux foi’cesnbsp;égales dirigées suivant MA' et MAquot;, c’est-a-dire quenbsp;je regarde la force P comme la résultante de deuxnbsp;forces égales dont la valeur est inconnue et qui agis-sent suivant MA' et MAquot;; en désignanl cette valeurnbsp;par Q, j’aurai P = Qfz; car il doit exister entre les quantités P, Q, la m?me relation qu’entre les quantités R, P, o:. Je

décompósenbsp;de m?me la foi’ce P dirigée suivant MB, en deuxnbsp;forces Q, dirigées suivant MB' et MBquot;; de cette ma-ni?re, les deux forces P se trouvent remplacées parnbsp;les quatre forces Q; par conséquent, la résultante denbsp;celles-ci devra co?ncider, en grandeur et en direction, avec la force R, résultante des deux foi’ces P. Or, en appelant Q' la résultante des deux forces Q, dirigées suivant MA' et MB', et observant quenbsp;A'MD = B'MD = a^—z, cette force Q' sera dirigéenbsp;suivant MD, et Ton auraQ'~Qlt;p



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;47 De m?me, la résultante des deux autres forces Q sera encore dirigée suivant MD, puisque cette droitenbsp;coupe aussi l’anglenbsp;nbsp;nbsp;nbsp;en deux parties égales; et a cause de A'MD = Bquot;MD = z, on aura Q''=QP Qquot; déslgnant cette seconde résultante. Les deux forces Q' et Qquot; étant dirigées suivant la m?me droite MD,nbsp;leur résultante, qui est aussi celle desquatre forces Q,nbsp;sera done égale a leur somme; par conséquent, onnbsp;doit avoir R = Q'4-Qquot;. Mais on a déja R = Ptpjc = Qlt;pzlt;pjc; et en substituant cette valeur de R et celles de Q' et Qquot; dans l’équation précédente, et supprimant Ie facteur Q commun a tous les termes, il vient lt;pjclt;pz = lt;p (x -i- z) ~i- lt;p (:)c — z). nbsp;nbsp;nbsp;(1) C’est cette équation qui nous reste a résoudre pour en

déduire l’expression de (pjc. 27. On voit d’abord qu’on y satisfait en prenant (px = 2 cos aa?; Cl étant une constante arbitraire, de sorte qu’on ait, en m?me temps, (pz = 2 cos az, ~i-z) = 2 cos a(.T -j- z), (x — z) = 2 cos a(a: — z); et, efi’ectivement, si l’on substitue ces valeurs dans



48 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. 1 equation (i), on obtient l’équation connue 2 cos ax cosaz = cos a{x-^z)-\- cos a {pc — z). Or, je dis que cette expression de la fonctiou (px est la seule qui satisfasse a l’ëquation (i), et que denbsp;plus, dans la question qui nous occupe, la constantenbsp;a est l’unité j en sorte que l’on a (px = 2 cos X. (2) Cela est évident quand x~0', car alors les directions des deux forces P coincident, et la résultante R est égale a aP, ce qui suppose lt;px — 2. Admet-tons qu’il y ait une autre valeur a de x, pournbsp;laquelle on ait aussi (pa = 2 cos a; je dis que l’équation (2) subsistera également pour toutes les va-^leurs 2?, 3a, 4“^,nbsp;nbsp;nbsp;nbsp;^ a,nbsp;nbsp;nbsp;nbsp;, de x, et généralement pour ^ i (3) m etn étant des nombres entiers quelconques. En effet, si l’équation (2) se vérifie pour les

trois angles X, z, x — z, de mani?re qu’on ait lt;pa?=:2COSjr, lt;pz=2COSZ, lt;p{x-z):= 2C0s{x — z), elle aura encore lieu pour un quatri?me angle x car, en vertu de l’équation (i), on aura alors (x -h ^) = 4 COS ^ cos z — 2 COS {x — z]; équation qui se réduit a (p (x z) = 2 cos {x -j- z). Ainsi l’équation (2) ayant lieu pour x=:o et x= a.



STATIQUE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;49 il s’ensuit qu’elle subsiste pour a:=: sa-, ajant lieu pour x = ci et x=:3ot, elle subsistera pour a?=3a;nbsp;et, eu continant de m?me, on verra qu’elle aura lieunbsp;pour oc = ma,. Je fais maintenant ma = ^ j on aura done = 3 cos Q; et de la on conclura que l’équation (2) aura encore lieu pour jc = ^ ë; car en faisant x =? z ~ ë, l’e-quation (i) deviendra ((p 5 ?)* = 2 cos ë nbsp;nbsp;nbsp;o. •, d’oü Ton tire lt;P f S = 3 cos f ë. d’apr? aura, es En faisant ensuite X'=.z-=.\ë, on l’équation (i) et cette derni?re , ((P I ^)* = 2 cos ^ ^ 2 , (p i é = 2 cos i ^; et, en continuant ainsi, l’équation (2) sera démon-tree pour x —nbsp;nbsp;nbsp;nbsp;c’est-a-dire, pour toutes les va- leurs de x comprises dans la formule (3). Or, les nombres m et n étant aussi grands qu’on ’voudra, et pouvant m?me devenlr infinis, on

peulnbsp;faire croitre ces valeurs de x par degrés infinimentnbsp;petits.La formule (3) comprend done toutes les valeursnbsp;possibles de Tangle x, et Téquation (2) est compl?-tement démontrée, si toutefois elle est vraie pournbsp;une valeur particuliere x = a , différente de zéro.nbsp;Mais, d’apr?s Ie tbéor?me du nquot; 25, la résultante Rnbsp;est égale a P, dans Ie cas de x “ 60” ; on a donenbsp;t.nbsp;nbsp;nbsp;nbsp;4



5o alors TRAITÉ DE MÉCANIQUÉ. (px =1 = 2 COS 6oŽ ; done l’équation (2) a lieu pour x = 6o“, et conse-quemment pour toules les valeurs de x. 28. Au moyen de celte equation, on aura R = 2P cos X, Si done la résultante R et les deux composantes P sont réprésentées, comme dans Ie n° sS, par desnbsp;droites prises sur leurs directions respectives, a par-tir de leur point d’application, la force R sera Ienbsp;double de la projection de P sur sa direction, ounbsp;égale a la diagonale du losange construit sur lesnbsp;deux forces P. Soient maintenant deux forces inégales P et Q, appliquées au point M ( fig. 7 ) suivant les directionsnbsp;MA et MRj représentons leurs inteusités par lesnbsp;lignes MG et MH, prises sur leurs directions, etnbsp;aebevons Ie parallélogramme MGKH : il y aura deuxnbsp;cas a considérer, Ie premier oii

1’angle AMB sera di’oit,nbsp;Ie second oü il sera aigu ou obtus. Dans Ie premier cas, tirons les deux diagonales MK et GH qui se coupent au point L; par les pointsnbsp;G et H, menons les parall?les GN et HO a ML, quinbsp;rencontrent en N et 0 la parall?le a GH, menée parnbsp;Ie point M. Le point L est Ie milieu de MK et denbsp;GH; et comme, dans un rectangle, les deux diagonales sont égales, il s’ensuit qu’on a GL = LH = LM. IjCS deux parailélogrammes GLMN et HLMO sont



5i STATIQÜE, PREMI?RE PARTIE. done des losanges; par consequent, d’apr?s la proposition précédente, la force MG pourra ?tre regardée conime la résultante des deux forces MN et ML, etnbsp;la force MH comme la résultante de MO et ML.nbsp;Done, en substituant aux deux forces données leursnbsp;composantes, nous aurons, au lieu de MH et MG ,nbsp;les deux forces MN et MO, qui se détruisent, puis-qu’elles sont égales et contraires, et les deux forcesnbsp;ml, qui s’ajoutent et donnent une résultante repré-sentée en grandeur et en direction par la diagonale MK. Dans Ie second cas, menous par les points G et H (fig. 8) les perpendiculaires GE et HF a la diagonale MK, et les parall?les GN et HO a cette m?menbsp;droite; par Ie point M, menons aussi la perpendiculaire NMO a cette droite MK. IjCS deux parallélo-graranies GEMN et

HFMO seront des rectangles quinbsp;auront leurs cótés MN et MO égaux, comme étantnbsp;les hauteurs des deux triangles égaux GMK et HMK.nbsp;D’apr?s ie premier cas, on pourra remplacer les forcesnbsp;mg et MH par leurs composantes reclangulaires MEnbsp;et MN , MF et MO; au lieu des deux forces données,nbsp;On aura done les deux forces MN et MO, qui se dé-truiront, comme étant égales et conti’aires, et lesnbsp;deux forces ME et MF de m?me direction, qui s’a-jouteront et donneront, a cause de ME = FK, uocnbsp;resultante représentée en grandeur et en directionnbsp;par la diagonale MK. Concluons done que la résultante de deux forces quelconques, appliquées en un m?me point et repi’é-sentées par des lignes prises sur leurs directions a 4-.



5a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. partir de ce point, est repre'sentée, en grandeur el en direction, par la diagonale du parallelogram menbsp;construit sur les deux forces donne'es. 29. Voici les consequences qui se dëduisent Ie plus immédiatement de ce théor?me. On Yoit d’abord que toutes les questions qu’on peut proposer sur la composition de deux forces ennbsp;une seule et sur la decomposition d’une force en deuxnbsp;autres, sont ramenées a la resolution d’un triangle.nbsp;En effet, les grandeurs de la re'sultante et des deuxnbsp;composantes sont représentées par les ti’ois cótésnbsp;MK, MG, GK, du triangle MGK; et les trois anglesnbsp;de ce triangle sont ceux que fait la resultante avecnbsp;chacune des composantes et Ie supplement de Tanglenbsp;compris entre les deux composantes. II s’ensuit

donenbsp;que trois de ces six choses, les trois forces et les troisnbsp;angles compris entre leurs directions, étant données,nbsp;on trouvera les trois autres en résolvant Ie ti’ianglenbsp;MGK; ce qui suppose une force au moins au nom-bre des donnëes. Par example, soient P et Q lesnbsp;valeurs des deux composantes, et m Tangle compi'isnbsp;entre leurs directions ; on demande leur rësultante Rnbsp;et Tangle oc qu’elle fait avec la force P. On auranbsp;d’abord Tëquation R“ = P* -}- aPQ cos m, pour determiner la valeur de R j et celle de x se dé-duira de cette proportion .- sin X ' sin nbsp;nbsp;nbsp;Q ; R. Si Tëquilibre a lieu entre trois forces P, Q, S, ap-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;53 pliquées en un m?nie point M (fig. 9), suivant les directions MA, MB, MC, il faut que chacune de cesnbsp;forces soit égale et directement opposée a la résultante des deux autres; et comnie cette résultante estnbsp;comprise dans Ie plan de ces deux forces, il s’ensuitnbsp;d’abord que les trois forces données doivent aussinbsp;?tre dans un in?me plan. Soit MD Ie prolongementnbsp;de MC; la résultante de P et Q sera dirigée suivantnbsp;Md, et si on la représente par R, on aura R = S.nbsp;D’ailleurs, en comparant la force R a chacune de sesnbsp;composantes, on a, d’apr?s ce qu’on vient de dire, R : Q :: sin AMR : sin AMD, R : P sin AMR : sin BMD; a cause de sin AMD = sin AMC, sin BMD = sin BMC, il en résullera done S ; Q : P :: sinAMB : sin AMC ; sin BMC; ce qui montre que

quand trois forces sont en équi-libre autour d’un m?me point, la grandeur de cha-cune d’elles peut ?tre représentée par Ie sinus de ^’angle compris entre les dii'ections des deux autres. Du point 0, pris sur la direction de la résultante If OU sur son prolongement, j’abaisse des perpen-diculaires OE et OF sur les directions des composantes P et Q; on aura OE = MO sin AMD, OF = MO sin BMD. Si done on multiplie par MO les deux derniers



54 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQÜE. termes de la proportion P ; Q :: sin BMD ; sin AMD, il en re'sultera P : Q :: OF : OE; en sorte que les composantes sont en raison inverse des perpendiculaires abaissées sur leurs directions,nbsp;d’un point quelcotique appartenant a la direction denbsp;la résultante. Réciproquement, si les composantesnbsp;P et Q sont en raison inverse des perpendiculairesnbsp;OE et OF, abaissées sur leurs directions, d’un pointnbsp;0 pris dans leur plan, ce point appartiendra a lanbsp;direction de la résultante; car, en divisant par MOnbsp;les deux derniers termes de la derni?re proportion,nbsp;on obtient la précédente, qui détermine cette direction. 5o. La résultante de deux forces étant connue, il est aisé d’en déduire celle d’un nombre quelconquenbsp;de forces appliquées a un m?me point et

situées ounbsp;non situées dans un m?me plan. On prendra d’abordnbsp;la résultante de deux de ces forces; ensuite, on com-posera cette résultante avec une troisi?me force, cenbsp;qui donnera une seconde ré.sultante, que l’on com-posera de m?me avec une quatri?me force; et l’onnbsp;continuera de m?me jusqu’a ce qu’on aitépuisé toutesnbsp;les forces données. Dans cette construction, il est aisénbsp;de volr que si les grandeurs de toutes les forces sontnbsp;représentées par les cótés d’une portion de polygone,nbsp;parall?les a leurs directions et tracés dans Ie sens denbsp;leurs actions, la résultante sera représentée, en gran-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;55 deur et en direction, par la drolfe qui joindra les deux exfi’ëniités de cette ligne brisée et fermera Ienbsp;polygone. li’ordre dans lequel les cótés parall?les auxnbsp;forces se succéderont sera indifférent. Quand Ie polygone se fermera de lui-méme, la résultante seranbsp;nulle, et les forces données se feront équilibre. 11 suit de la que quand les forces données sont au nombre de trois, non situées dans un m?me plan,nbsp;leur résultante est, en grandeur et en direction, lanbsp;diagonale du parallélépip?de dont ces trois forces sontnbsp;les cótés adjacens. 3 i. On peut effectuer d’une mani?re plus simple cette reduction d’un nombre quelconque de forces anbsp;une seule, en considérant d’abord Ie cas particuliernbsp;de trois forces rectangulaires, auquel on ram?ne en-suite Ie cas général.

Soient X, Y, Z, les trois composantes, R leur résultante, a, h, e, les angles qu’elle fait avec X, Y, Z. D’apr?s ce qu’on vient de voir, R est la diagonalenbsp;du parallélépip?de dont X, Y, Z, sont les trois cótés adjacens j or, ce parallélépip?de étant rectangle,nbsp;11 s’ensuit qu’on aura R*=^X*-1-Y“-l-Z“. nbsp;nbsp;nbsp;{a) n s’ensuit aussi que si 1’on joint l’extrémité de la diagonale R a celles des trois cótés X, Y, Z, on for-mera trois triangles rectangles, dont R sera 1’hypo-ténuse commune; d’oü l’on conclura X = R cos a, Y = R cos b , Z = R cos c; nbsp;nbsp;nbsp;(ó) equations qui s’accordent avec la précédente, a cause



56 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. que Jes trois angles a, h, c, sont lies entre eux par cette equation (nquot; 6} cos“ a cos“ b cosŽ c = i. Lorsque les coniposantes X, Y, Z, seront don-iiées, l’équation (a) fera connaitre la valeur de la résultante, et les equations (b) en détermineront lanbsp;direction au moyen des trois anglesnbsp;nbsp;nbsp;nbsp;c ; si, au contraire, la force R est donnée, et qu’il s’agisse de la decomposer en trois forces rectangulaires X, Y,nbsp;Z, qui fassent avec elle des angles donnés a, b, c,nbsp;les valeurs des forces demandées seront immédia-tement déterminées par les equations (b). Si Tune des composantes, la force Z par exemple, est nulle, R n’est plus la résultante que des deuxnbsp;forces X et Y; elle est comprise dans leur plan, etnbsp;sa direction depend seulement des deux angles a et

b.nbsp;Ces angles et la valeur de R sont alors determinesnbsp;par les équations : XŽ YŽ, X = R cos a , Y = R cos b. Ba. Supposons actuellement que M (lig. iquot;) soit Ie point d’application d’un nombre quelconque denbsp;forces données. Représentons ces forces par P, P',nbsp;Pquot;, etc.; et, pour fixer les idees, supposons que lanbsp;droite MD soit la direction de la force P. Les directions des autres forces sont inutiles a indiquer dansnbsp;la figure. Soient a, ?, y, les angles que fait la direction MD avec les trois axes rectangulaires MA, MB,nbsp;MC, menés arbitrairement par Ie point M. Dé.signonsnbsp;de m?me par ?', y', les angles que fait la force P'



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;5^ avec ces m?mes axes; par af, ?quot;, y , ceux qui répondent a la force Pquot;; etc. Tous ces anglesnbsp;sont donnés et doivent s’étendre depuis zéro jus-qu’a i8o° (n° y), afin que les forces P, P', Pquot;, etc.,nbsp;paissent avoir toutes les positions possibles autournbsp;du point M. Décomposons chacune de ces forces en trois autres di-rige'es suivant les axes MA, MB, MC. Les composantes de la force P seront P cos a, P cos €, P cos -y; cellesnbsp;de la force P' seront P'cosa', P'cos?', P^ cos^; etc.;nbsp;et ces composantes agiront suivant les axes ou suivant leurs prolongemens, selon qu’elles seront positives OU negatives. Par exemple, la direction MDnbsp;tombant, ainsi que l’axe MC, au-dessus du plannbsp;AMB des deux autres axes, la composante P cos ynbsp;de la force P tend a

élever Ie point M, c’est-a-direnbsp;qu’elle agit suivant MC; et, dans ce cas, P cos ynbsp;est une quantité positive, puisqu’on a y go”.nbsp;Au contraire, si cette direction MD tombait au-dessous du plan AMB, on aurait y go°; la composante P cos^ serait negative, et, en m?me temps,nbsp;elle tendrait a abaisser Ie point M, c’est-a-dire qu’ellenbsp;agirait suivant Ie prolongement de MC. En ayantnbsp;done égard aux signes des composantes , on voit,nbsp;d’apr?s ce qu’on a dit dans Ie n° 24, que toutesnbsp;les forces dirigées suivant un m?me axe et son prolongement se réduisent a une seule, égale a leurnbsp;somme. De cette mani?re, les forces donnéesP, P^ P^^ etc., seront remplacées par trois forces rectangulaires; etnbsp;en désignant celles-ci par X, Y, Z, on aura



58 TRAITÉ DE MÉCANIOUE. X == P cos a -{- P' cos a! Pquot; cos aquot; etc. , (^) Y ==; P cos ^ P^ cos ?' Pquot; cos Cquot; -t- etc., ] Z = P cos 5^ P' cos y' -f- Pquot; cos yquot; etc. 5 Les valeurs de X, Y, Z, pourront étre positives ou negatives, et leurs signes feront connaitre Ie sens denbsp;leur action. Si la force X est positive, c’e.st qu’ellenbsp;agit suivant l’axe MA ou dans Ie sens des compo-santes Pcosa, P'cosa', etc., qui sont positives - sinbsp;elle est negative, il en faut conclure qu’elle agit suivant Ie prolongement de MA ou dans Ie sens des coin-posantes negatives; et de m?me pour les forces Y et Z. Cela posé, soit R la résultante des forces données P, P', Pquot;, etc., OU des trois forces X, Y, Z; soientnbsp;aussi a,b,c, les angles que sa direction inconnue faitnbsp;avec les axes MA, MB, MC. Les valeurs de R, a,nbsp;b, c, seront

données par les equations (a) etnbsp;dans lesquelles on mettra les formules (c) a la placenbsp;de X, Y, Z. Les angles a, b, c, pourront ?tre aigusnbsp;ou obtus; a cause que la force R doit toujours ?trenbsp;une quantité positive, les signes de leurs cosinus seront les m?mes que ceux des quantités X, Y, Z, ennbsp;vertu des e'quations (b). De cette mani?re, la force Rnbsp;sei’a compl?tement déterminée en grandeur et en direction. 53. La grandeur de la résultante R ne saurait dé-pendre de la direction arbitraire des axes MA, MB, MC ; elle depend seulement de la grandeur des forcesnbsp;données et des angles coinpris entre leurs directions;nbsp;et, en effet, on en peut trouver une expression quinbsp;ne contienne que ces quantités.



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;59 Póur cela, dësignons par PMP', PMPquot;, P'MPquot;, etc., les angles compris entre les directions des forces Pnbsp;et P', P et Pquot;, P' et Pquot;, etc. D’apr?s 1’équation (2)nbsp;du nŽ g, nous aurons cos PMP' = cos a cos a' -{- cos ë cos C' -!- cos y cos y', cos PMPquot;= cos fit cos fitquot; cos ë cos ëquot;-i~ cos y cos yquot;,nbsp;COsP'MP'sr: cos fit'cos fitquot;-f-COS ë'cos ëquot;-f-cos ^'cos yquot;,nbsp;etc. Nous aurons aussi cos“ a -f- cos* ë -f- cosŽ y z= i, cos” at' -f- cosŽnbsp;nbsp;nbsp;nbsp;cos* y' = I , cos” fitquot;-l- cos* €quot; cos* yquot;=: I , etc.; et, cela étant, si l’on ajoute les carrés des formules (c), et qu’on ait égard a l’équation (a), il vientR* = P* 4- FŽ 4- Pquot;Ž 4- etc. 4- 2PP' cos PMP' 4- 2PPquot; cosP MPquot; 4-2P'Pquot;cos P'MPquot;4-etc., pour Ie carré de la valeur de R dont il

s’aglt. 34. On dédult aussi des equations (b) et (c) uue propriété de la résultante, qui nous sera utile dansnbsp;un des numéros suivans. Dans uiTe direction quelconque, je m?ne par Ie point M une droite, dont j’appelle 0 l’autre extré-mité. Soient b, k, les angles AMO, BMO, CMO,nbsp;que cette droite fait avec les trois axes MA, MB,nbsp;MC. Désignons par RMO, PMO, P'MO, etc,, les an-



6o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. gles compi’is entre cette m?me droite MO et les directions des forces R, P, P', Pquot;, etc.; on aura, comme tout a l’heure, cos RMO = cos g- cos a -j- cos Ji cos b -f- cos k cos c, cos PMO = cos g cos OL -j- cos h cos amp; -f- cos k cos y,nbsp;cos P'MO = cos g cos a'-|- cos h cos Q'-\- cos k cos y',nbsp;etc. D’apr?s la premi?re de ces formules et les equations (b), on aura R cos RMO =: X cos g -j- Y cos A -h Z cos k j et, en vertu des formules suivantes, si Ton ajoute les equations (c) apr?s les avoir niultipliées, la premi?re par cos g, la deuxi?me par cos b, la troi-si?me par cos k, il en résultera R cos RMO = P cos PMO - ? P' cos P'MO -f- etc. j ce qui montre d?ja que la composante de la résultante R, suivant une direction quelconque MO, est égale a la somme des composantes de P, P', Pquot;,

etc.,nbsp;suivant cette m?me direction. Cela posé, je projette la droite MO sur les directions des forces R, P, P', Pquot;, etc.; j’appelle r, p, p', pquot;, etc., ses projections, de sorte qu’on ait r = MO cos RMO, p = MO cos PMO, p' = MO cos P'MO, etc., en considérant chacune des quantités r, p, p', pquot;, etc., comme positive on comme négatlve, se-lon que la projection qu’elle représente tombe sur



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;6i la direction m?me de la force ou sur son prolon-gement. Si done on multiplie par MO l’equation pre'cédente, on aura Rr = Pp Py Py elc.; {d) ce qui renferme la propriété de la résultante qu’il s agissait de démontrer. 35. Pour que les forces P, P', Pquot;, etc., soient en équilibre, il suffit que leur résultante R soit nulle,nbsp;et cette condition est nécessaire si leur point d’ap-pllcatioii M est enti?rement libre; mais Péquationnbsp;R = o, ou X- Y* Z* = o , ne peut avoir lieu, a moins qu’on n’ait séparément X=:o, Y=:o, Z = o,nbsp;c’est-a-dire, en vertu des equations (c), P cos a P' cos a! P'' cos aquot; etc. = o, ) P cos ? P' cos Pquot; cos Q,quot; etc. = o, / (e) P cos 5/ P' cos y' Pquot; cos y'' etc. = 0. ^ Telles sont done les équations d’équilihre dun point matériel qu’on suppose enti?rement libre.nbsp;Pans eet état,

chacune des forces qui Ie sollicitentnbsp;doit étre égale et directement contraire a ia résultante de toutes les au tres; c’est, en effet, ce qu’il estnbsp;aise de verifier. Soit R' la résultante des forces P', Pquot;, etc. Appe-lons al, h', c', les angles qu elle fait avec les axes Ma, MB, MC, et faisons, pour abréger.



62 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. X' = V' cos x' Pquot; cos aquot; -}- etc., Y' z= F cos C' Pquot; cos ?quot; 4- etc., Z' = P' cos y Pquot; cos y' etc.; uous aurons, d’apr?s Ie n” 52, X' — R' cos a', Y' — R' cos b', Z' — R' cos c', et j)ar consequent, en vertu des equations d equilibre,nbsp;P cos a = — R' cos a', P cos €= — R' cos b', P cos y— — R'cos c'. En ajoutant ces equations, apr?s avoir élevé leurs deux membres au carré, on a Pgt; = RS a cause de (n” 6 ) cos“ X eos“ C cos* y =: i, cos*a'4-eos* h' cos* c'= i; on aura done P = dbR'; mais comme ces forces doi-vent ?tre toutes deux des quantités positives, il faut prendre P = R'. Les equations précédentes devien-nent alors cosa = —cosa', cos?=—cos ?', cosy = — cosc'; par conséquent, les angles x, C,y, sont supplémens de a', b', c', et répondent a une force dont la direction est Ie

prolongement de la force R' ( n° 7).nbsp;II s’ensuit done que la force P est égale et directe-ment opposée a la résultante R' de toutes les autresnbsp;forces P', Pquot;, etc.; ce qu’il s’agissait de vérifier.



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;63 56. Si Ie point M, auquel sont appliquées les forces P, P', Pquot;, etc., est assujetti a raster sur unenbsp;surface donnée, il ne sera plus nécessaire, pour l’é-quilibre, que leur résultante soit nulle; il suftiranbsp;qu’elle soit normale a la surface, puisqu’alors ellenbsp;ne pourra faire glisser Ie point M dans aucun sensnbsp;sur cette surface; et, de plus, cette condition seranbsp;nécessaire; car si elle n’était pas remplie, la résultante se décomposerait en deux forces. Tune normalenbsp;a la surface et qui serait détruite, l’autre tangentc etnbsp;que rien n’emp?cherait de faire glisser Ie mobile. Onnbsp;n’aurait done qua chercher, dans chaque cas, la direction de la résultante des forces P, P', Pquot;, etc., etnbsp;a examiner si elle est perpendiculaire a la surfacenbsp;donnée, pour say oir si 1’éqnilibre

existera; mais ilnbsp;vaut mieux, comme nous venons de Ie faire pour unnbsp;point libre, exprimer les conditions de l’équilibre parnbsp;des equations entre les données de la question. Or, la composante normale de chacune des forcesqui agissent sur Ie point M est détruite par larésistance denbsp;la surface ; par conséquent, cette résislance équivautnbsp;a une force égale et contraire a la totalilé des forcesnbsp;détruites. On concoit done que I on peut faire abstraction de la surface donnée , et considérer Ie pointnbsp;matérie! comme enti?rement libre, pourvu que 1’onnbsp;joigne aux forces données P, P', Pquot;, etc., une nouvelle force de grandeur inconnue et perpendiculairenbsp;a cette surface. Soient done N cette force, et A, ^, v, les angles que sa direction fait ayec les axes MA, MB, MC; cha-tune des equations d’équilibre qu’on vient de

trouver



64 nbsp;nbsp;nbsp;traité de mécanique. sera augmentée d’un nouveau terme, de sorte qu’au-lieu des equations (e), on aura NcosA Pcostt-j-P'cosa' Pquot;cosaquot;-f-etc. =o, I N cos^H- Pnbsp;nbsp;nbsp;nbsp;^ P' cos ?' -4- Pquot; cos ^quot;-4- etc.=o, gt; (ƒ) Ncos i'-l-Pcos5/ P'cos^'-(-Pquot;cosy' etc.=o. j Je désigne par x ,f, z, les trois coordonnées de M rapportées a des axes parall?les a MA, MB, MC , etnbsp;par L = o l’équation de la surface donnée; la direction de la force N étant, par hypothese, celie de lanbsp;normale au point M, on aura, d’apr?s les equations (5)nbsp;du n? 21, _ \J COS V =\ -y-dz •?T? nbsp;nbsp;nbsp;\r (?i-i y-, cos,*=v^. COS A = en faisant, pour abréger,v=?[a)' (f)‘ 0T- Le signe de V sera inconnu, paree qu’on ne sait pas d’avance suivant quelle partie de la normale doit étrenbsp;dirigée la force N; mais V disparait

lorsqu’on éli-mine N entre les equations (ƒ) ; et si Pon a e'gardnbsp;aux formules (c) , on trouve xr dh az pour les deux equations nécessaires et sulFisantes de 1’équilibre d’un point materiel assujetti a demeurernbsp;sur une surface donnée., 57. Si la position de ce point sur cette surface Pest pas conaue, les équations {§), jointes a l’équa-



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;65 *iou donnée L = o, serviront a determiner les coor-^ donne'es des diflerens points de cette surface, oü Ienbsp;mobile pourra demeurer en e'quilibre. Lorsque sanbsp;position sera donne'e, on aura seulement a verifier sinbsp;les coordonnées sc, j, z, des points d'application desnbsp;forces données satisfontaux equations (g). Mais, dansnbsp;Ce cas, on aura des equations plus simples en faisantnbsp;co?nciderTun des axesMA, MB, MC, Ie premier, parnbsp;exemple, avec l’une des deux parties de la normale;nbsp;d’ou il résultera cos A = ? I , cos fjt. = o , cos )) = o ; ce qui change les equations (ƒ’) en celles-ci :nbsp;i N P cos a P' cos a' Vquot; cos a,quot; -f- etc. = O,nbsp;P COS ^ 4- P' cos é’' 4- Pquot; COS ?quot; etc. =: o,nbsp;P cos ^ P' cos y' Pquot; cos y” 4 etc. = o. Ces deux derni?res

equations font voir, ce qui est d’ailleurs évident, que dans Ie plan tangent a la surface donnée, les composantes des forces appliquéesnbsp;au mobile doivent se faire équilibre , comme si cettenbsp;surface n’existait pas. La resistance N, que la surface oppose aux forces P, P', Pquot;, etc., est égale et contraire a lapression qu’ellenbsp;en éprouve. Ea vertu des équations (ƒ), cette pression , dans l’état d’équilibre, est la résultante m?menbsp;de ces forces. Dans la pratique , il en faudra calculernbsp;la grandeur au mojen de lequation (a) , pour savoirnbsp;si la surface est capable de la supporter. Si Ie mobilenbsp;est seulement posé sur cette surface, qui sera cellenbsp;dun corps solide, il faudra, de plus, que Ie sens denbsp;cette pression soit tel qu’elle appuie Ie mobile sufnbsp;?,nbsp;nbsp;nbsp;nbsp;5



66 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. celte surface; condition qui ne peut ?tre exprimëe par une equation, et qu’on devra verifier dans chaque cas, en determinant la direction de cette force d’apr?s les equations (6). Cette verification se fera plus sim- plement au raojen de la premi?re des trois equations pre'ccdentes. En effet, supposons, pour fixer les idees, que Ia partie de la normale avec laquelle on a fait co?ncidernbsp;i’axe MA, soit la partie située dans la concavité denbsp;la surface. On saura si les angles donnés a, a', aquot;, etc,,nbsp;sont aigus ou obtus; et Ie signe de la somme X desnbsp;composantes dirige'es suivant cette droite sera connu.nbsp;La quantité N devant ?tre positive, il faudra, dansnbsp;l’équation dont il s'agit, c’est-a-dire , =bN X = o, prendre Ie signe — ou Ie signe - - devant N, selon que la somme X sera positive

ou negative. Dans Ienbsp;premier cas, on aura cos A = — i , et la pressionnbsp;contraire a N sera dirigée suivant MA; dans Ie second cas, on aura cosA= i, et la pression agiranbsp;suivant Ie prolongement de cette partie déterminéenbsp;de la normale. 38. Lorsque Ie point materiel M sur lequel agissent les forces P, P', Pquot;, etc., sera assujetti a rester surnbsp;deux surfaces données ou sur leur courbe d’intersec-tion, il suffira, pour lequilibre, que la résultantenbsp;de toutes ces forces puisse se decomposer en deuxnbsp;foi'ces perpendiculaires aux surfaces données, et quinbsp;seront détruites par leurs resistances. En joignantnbsp;done aux forces P, P^ etc., deux forces nor-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;67 niales a ces surfaces, raais inconnues en grandeur, On pourra faire abstraction des surfaces, et considé-rer Ie mobile comme enti?rement libre. N et N' étant done ces nouvelles forces; x, fz, v, les angles qui de'terminent la direction de N par rapport aux axes MA, MB, MC, et A', fz', v', ceux quinbsp;déterniinent de menie la direction de N'j les equations (e) deviendront N cos A -j- N'cos A'-f - P cos a -f- P'cos a' -f- etc.=o,) N cos/LZ N'cos ju'-f- P cos € P'cos ?'-f- etc.= O, gt; (k) N cos r -j-N'cos /P cos ^-f-P'cos j/'Hh etc,=o.' D’ailleurs, en representant par jc, j, z, les coor-données du point M rapportées a des axes parall?les a MA, MB, MC, et par L = o et L' = o, les equations des deux surfaces données, les valeurs de cos A,nbsp;cos./A, cos V, seront les m?mes que

precédemment,nbsp;et celles de cos A', cos fz', cos v', s’en déduiront en ynbsp;changeant L en L'. Si Pon substitue ces valeurs dansnbsp;les trois equations (h), et qu’on élimine ensulte N etnbsp;N' entre elles, on aura l’equation d’équllibre a la-quelle devront satlsfaire les forces données P, P',nbsp;Pquot;, etc.; OU bien, si la position du mobile n’est pasnbsp;donnée sur Pintersection des deux surfaces, cettenbsp;equation d’équillbre, et les equations L=o et L'=:o,nbsp;détermineront ses trois coordonnées a:, j, z. Quand la position du mobile est donnée sur la courbe ou il doit rester, on obtient immédiatementnbsp;1’équation d’équilibre des forces P, P', Pquot;, etc., ennbsp;prenant les axes MB et MC, auxquels répondent lésnbsp;angles fz,nbsp;nbsp;nbsp;nbsp;C', etc. ,v,y, y', etc., dans Ie plan des



68 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. normales aux deux surfaces données. Le troisi?me axe MA tombe alors sur la tangente a leur courbenbsp;d’intersection; il est done perpendiculaire aux forcesnbsp;normales N et N'; en sorte que l’on a A = 90“,nbsp;A' = 90°, et, en vertu de la premi?re equation (h), P cos a -f- P' cos o.' P'^cos aquot; -j~ etc. — o, pour réquation demande'e. Cette equation expiime que la somme des compo-santes de P, P', Pquot;, etc., tangentes a l’inlersection des deux surfaces données , est égale a zéro; ce qui est,nbsp;en effet, la condition pour que le point M ne puissenbsp;pas glisser sur cette courbe. Apr?s s’?tre assuré qu ellenbsp;est reraplie, on déterminera les valeurs des forces Nnbsp;et N', et le sens dans lequel elles agissent, au mojennbsp;des deux derni?res equations (/i). Si l’on prend en-suite des

forces égales et contraires a N et N', et qu’onnbsp;les réduise a une seule par la regie du parallélo-gramme des forces, celle-ci sera la résultante desnbsp;forces P, P', Pquot;, etc., et fera connaitre la pressionnbsp;exercée sur la courbe donnée, a laquelle elle seranbsp;perpendiculaire. 3g. Par ce qui préc?de, on voit que quand le mobile est astreint a demeurer sur une courbe donnée, il n’j a qu’une équation d’équilibre; qu’il y en anbsp;deux lorsqu’il peut se mouvoir sur une surface donnée , et trois lorsqu’il est enti?rement libre; en sortenbsp;que le nombre de ces équations augmente, commenbsp;cela doit ?tre effectivement, a mesure que les mou-vemens possibles du mobile sont moins limités. Cesnbsp;diverses equations peuvent ?tre renfermées dans une



STA?IQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;69 seule formule , qui deviendra, par la suite, 1’équa-tion générale de l’équillbi’e, applicable a un syst?me quelconque de points matériels.' Pour obteriir cette formule, supposons que Ie mobile soit transporté d’un point M, qu’il occupe dans sa position d’équilibre, en un autre point 0 infini-ment voisin de M, et tel que ce déplacement soitnbsp;compatible avec la condition a laquelle Ie mobile estnbsp;assujetti, s’il n’est pas enti?rement libre. Désignousnbsp;par r, p, p', pquot;, etc., les projections de la droite in-finiment petite MO sur les directions des forces R,nbsp;P, P', Pquot;, etc., dans la premi?re position du mobile;nbsp;et considérons chacune de ces projections commenbsp;une quantité positive ou négative, selon qu’ellenbsp;tombe sur la direction m?me de la force a laquellenbsp;elle répond,

ou sur son prolongement. Si I on suppose que la force R soit la résultante des forces P,nbsp;P', Pquot;, etc., Ie produit Rr sera toujours nul dans Ienbsp;cas de réquilibre : il sera nul pour un point matérielnbsp;enti?rement libre, paree qu’alors la résultante R devranbsp;?tre égale a zéro; il Ie sera encore pour un point assujetti a demeurer sur une surface ou sur une courbenbsp;donnée, paree que, d’une part, la force R devra ?trenbsp;dirigée suivant la normale, et que, d’un autre cóté ,nbsp;la droite infiniment petite MO appartiendra au plannbsp;tangent ou a la tangente, ce qui rendra nulle sa projection r sur la direction R. D’apr?s l’équation {d),nbsp;qu’on a démontrée précédemment, et qui a égale-ment lieu quand la droite MO est infiniment petite ,nbsp;on aura done Vp P'p' Pquot;y/' etc. = o, nbsp;nbsp;nbsp;{i)



TRAITÉ DE MÉCANIQUE. toutes les fois que les forces P, P', Pquot;, etc., se fe-ront équilibre. Réciproquement, Tequilibre existera quand cette equation aura lieu pour tons les déplace-mens possibles d’un point materiel enti?rement libre,nbsp;OU astreint a rester sur une surface ou sur une courbenbsp;donnée. On appelle vitesse virtuelle d’un point materiel en équilibre toute droite infiniment petite, telle quenbsp;MO, qu’on peut lui faire décrire, en observant lesnbsp;conditions auxquelles il peut ?tre assujetti; et Ienbsp;principe d’équilibre contenu dans l’équation qu’onnbsp;vient d’écrire, sur lequel nous reviendrons par lanbsp;suite, se nomme Ie principe des vitesses virtuelles.nbsp;En l’appliquant successivement a un point materielnbsp;enti?rement libre, assujetti a rester sur une surface,nbsp;astreint a demeurer sur une courbe, on

retrouveranbsp;saus difficulté les equations d’équilibre que nousnbsp;avons précédemment obtenues. Chacune des equations (e) se déduira de la formule (i), en prenantnbsp;pour MO Ie déplaceraent de M sur l’un des axesnbsp;MA, MB, MC; on obtiendra les équatious d’équilibre qui ont lieu dans Ie cas d’un point assujettinbsp;a rester sur une surface donnée, en considérant sesnbsp;déplacemens suivant deux axes ti'acés dans Ie plannbsp;tangent; et la formule (i) fournit immédiatementnbsp;l’équation d’équilibre d’un point astreint a resternbsp;sur une courbe donnée, en prenant pour MO l’é-lément de cette courbe, et pour p, p', pquot;, etc.,nbsp;les projections de eet élément sur les directionsnbsp;des forces P, P', Pquot;, etc. Les angles que ces directions font avec la tangente a la courbe étant a,,



STATIQÜE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;71 ol'\ etquot;, etc., on aura alors p=MOcosa, p'=MOcosa', pquot;=MOcosetquot;, eic.; en supprimant Ie facteur MO commun a tous les termes de l’équation (i), il en résultera P cos a -J- P' cos a' Pquot; cos aquot; etc. = o, comme précédemment.



?RAITÉ DE MÉCANIQUË. (V\'MVVXAA'\'VV\‘VVgt;Wgt;iVV\iWV\/V^XV\ VV\'WVVV^'VV^'VWVXVWWV'^^lt;V^W^'VV\lV\^lVV^?W^^^'\V^'VV^VV^/VV\A/WV\^CHAPITRE II. ?E L9ÉQUILIBRE DU REVIER. 40. On considérera ici un levier comme une ligne droite Ou courbe ECF (fig. 10) inextensible, et denbsp;forme invariable, qui ne peut que tourner, dans unnbsp;plan, autour d’un de ses points C suppose fixe, quenbsp;i’on appelle Ie point d’appui du levier. Ordinaire-ment il n j a que deux forces qui soient applique'esnbsp;a cette machine, et dont Tune a pour objet de tenirnbsp;l’autre en équilibre; la premi?re s’appelle Ia puissance, et la seconde la resistance. Mals, pour plus denbsp;gén?ralité, nous supposerons qu’un nombre quel-conque de forces dirig?es dans Ie plan du levier agis-sent en différens points de cette ligne; et il

s’agira denbsp;trouver les conditions de leur équilibre. Je ne me propose pas, dans eet ouvrage, d’appli-quer aux diverses machines les lois de i’équilibre qui y seront exposées. Pour ce qui regarde les machinesnbsp;simples, je renverrai aux Traités élémentaires denbsp;Statique ; mais la loi de l’équilibre dans Ie leviernbsp;étant un principe de la Mécanique, il est nécessairenbsp;de nous en occuper; et Ton va monti’er comment cenbsp;principe est lié a celui de la composition des forcesnbsp;qui agissent sur un point isolé. 4i- Lorsque plusieurs forces sont appliquées a un corps qu’on suppose de forme invai’iable, on peut



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;73 transporter Ie point d’application de chacune de ces forces en un autre point du corps pris sur sa direction OU sur son prolongement. Si une force donnée Pnbsp;agit, par exemple, a Textrémité E du levier, suivant lanbsp;droite AE, et que M soit un autre point appartenantnbsp;a cette direction, qu’on suppose lie au levier d’unenbsp;niani?re invariable, il est permis de remplacer lanbsp;force P par une autre force de m?me intensité, agis-sant au point M suivant la droite MA. En effet, onnbsp;peut d’abord appliquer au point M deux forces égalesnbsp;entre elles, agissant en sens contraires. Tune suivantnbsp;MA, 1 autre suivant son prolongement MA'; si, denbsp;plus, on suppose que chacune de ces forces soit egalenbsp;a P, celle qui agit suivant MA' de'truira Ia force Pnbsp;appliquée au point

E suivant EA, puisque ces deuxnbsp;forces ëgales agissent en sens contraires aux extrémi-tës de la droite ME, de longueur invariable, par hypothese ; il ne restei’a done plus que la force P agissant au point M dans la direction MA, et par laquellenbsp;la force donnée P, qui agissait au point E, se trou-vera remplacé?. Les forces agissent souvent sur les corps qu’elles mettent en mouvement ou qu’elles tendent a mou-voir, soit en les tirant par Ie moven d’un fil quinbsp;leur est attaché, soit en les poussant par Ie moyennbsp;d’une barre appuyée contre leur surface. Ce fil ounbsp;cette barre s’étend ou se contracte plus ou rooins;nbsp;eest quand ils ont cessé de s’allonger ou de se rac-courcir qu’on les consid?re comme des lignes inva-i'iables qui représentent la direction de chaque force,nbsp;dont 1 action est la m?me alors que si olie s’exer-



74 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. caitimniédiatement aux points de la surface du mobile OU ces lignes viennent aboutir. TJn levier n’esl pas non plus, comme on Ie suppose ici, une lignenbsp;de forme invariable; c’est une barre qui flécbit unnbsp;tant soit peu, et s’étend ou se contracte aussi d’unenbsp;petite quantité, en raison des forces qui y sont ap-pliquées. La forme qu’il dolt prendre serait trés difficile a determiner d’avance j mais c’est quand il ynbsp;est parvenu qu’on le considere comme invariable,nbsp;et c’est a cette figure, trés peu différente de sa formenbsp;naturelle, que se rapporteront les conditions d’equi-libre qu’il s’agit de trouver. 42. Supposons qu’une seconde force Q agisse a I’autre extrémité F du levier, suivant la droite FB,nbsp;et que les deux directions EA et FB soient comprises dans le plan ou

le levier peut tourner; cesnbsp;deux droites, ou leurs prolongemens, viendront senbsp;couper en un certain point M, que Ton pourranbsp;prendre, d’aprés ce qu’on vient de prouver, pournbsp;le point d’application commun a P et Q. Cela étant,nbsp;par la regie du parallelogramme des foi'ces on dé-terminera la résultante de ces deux forces, de la-quelle M sera aussi le point d’application. Or, pournbsp;qu’elle soit detruite et que le levier demeure ennbsp;e'quillbre, il sera nécessaire que sa direction viennenbsp;passer par le point d’appui C; et cela suffira, puis-qu’en y transportant cette résultante, elle sera dé-truite par la résistance de ce point fixe. D’apr?s cenbsp;qu’on a vu dans le 11° 29, si Ton abaisse du pointnbsp;C des perpendiculaires CG et CH sur les directionsnbsp;des forces P et Q, on aura done, dans le cas de



1 equilibre, STATIQUE, PREMI?RE PARTIE. P : Q :: CH : CG; 75 et, réciproquement, Tequilibre existera quand cette proportion aura lieu. Par conséquent, en appelantnbsp;p et ^ les perpendiculaires CG et CH, 1 equationnbsp;d’équüibre seraPp = Q^. On appelle moment dune force par rapport a un point, Ie produit de cette force par la perpendiculaire abaissée de ce point sur sa direction. Ainsi,nbsp;la condition d’équilibre dans Ie levier consiste ennbsp;ce que les momens de la puissance et de la resistance,nbsp;pi'is par rapport au point d’appui, sont égaux; cesnbsp;deux forces tendant d’ailleurs a faire tourner Ienbsp;levier en sens opposes. Si l’on suppose les droites CG et CH liées inva-riablement au levier, on pourra prendre G et H pour les points d’application des forces P et Q , etnbsp;remplacer Ie levier de figure quelconque ECF

parnbsp;Ie levier coudé GCH (fig. ii). Les perpendiculairesnbsp;CG et CH s’appellent les bras de levier, de la puissance et de la i'ésistance. La condition de l’équilibrenbsp;ne depend pas de la grandeur de Tangle GCH; etnbsp;c’est aussi ce que Ton peut voir a priori. En eff'et, si du point C et d’un rayon CH on décrit Tarc de eerde HH', qu’on Ie suppose lié invariable-ment au levier, et qu’on applique au point H' deuxnbsp;forces égales a Q, agissant en sens contraires, sui-vant les parties H'B^ et H'Bquot; de la tangente en cenbsp;point, il est évident que la force Qgt; dirigée sui-



76 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. vant sera dëtruite par la force Q dirigée suivant HB; car ces deux forces tendent a faire tourner Ienbsp;syst?me en des sens opposes, et il n’y aurait pas denbsp;raison pour qu’il obéit plu tót a Tune qu’a l’autre. Lanbsp;seconde de ces deux forces se trouvera done rem-piacée par la force Q dirigée suivant H'B', et Tangle GCH sera change dans Tangle GCH', plus grandnbsp;OU plus petit, sans que Téquilibre soit trouble. Par ce changement, Tangle des deux bras du le-vier poun'a devenir 180“ ou zéro; alors Ie levier sera droit j la puissance et la résistance seront des forcesnbsp;parall?les dirigées dans Ie m?me sens ou en sensnbsp;contraires; et, pour Téquilibre, il faudra toujoursnbsp;que leurs intensités soient en raison inverse des longueurs de leurs bras de levier. 45. Si

Ton appelle R la résultante des deux forces P et Q concourantes au point M (fig. 10), et 7?z Tanglenbsp;AMB compris entre leurs directions, on aura (n° ag) R“ = P? -I- Q“ -I- aPQ cos m; et la valeur de R fora connaitre la charge que Ie point d’appui C aura a supporter dans Tétat d’équi-libre. Appliquée en ce point, la force R aura pournbsp;dh’ection la droite CD, prolongement de MC. La figure 10 suppose Ie point C situé entre les pointsnbsp;d’application E et F de la puissance et de la x’ésis-tance. Le contraire a lieu dans la figure la; mais lesnbsp;raisonnemens qiTon vient de faire s’appliquent a cesnbsp;deux cas : ils different Tun de Tautre en ce que, dansnbsp;le premier cas, les forces P et Q agissent de deuxnbsp;cótés différens du levier, et Tangle AMB est aigu, au



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;77 lieu que, dans le second cas, elles agissent d’un ni?me cote, et Tangle AMB est pbtus. Les trois points E, F, C, restant les m?mes, si le point de concours M des trois forces P, Q, R, s’e'-loigne a Tinfini, ces forces deviendront paralleles.nbsp;Dans le cas de la figure lO, Tangle in devient alorsnbsp;infiniment petit; on a cosra = 1, et consequemment R = P Q. Dans le second cas, c’est le supplement de Tangle m qui devient infiniment petit ; on a done cos 7ra = —. I, et R - Q — P, en supposant P lt; Q. Par consequent, la resultante de deux forces paralleles est égale a leur somme ounbsp;a leur difference, selon que ces forces agissent dansnbsp;le rn?me sens ou en sens opposes; et quand leursnbsp;directions sont contraires, la résultante agit dans lenbsp;Sens de la plus grande. Dans ces

deux cas, les com-posantes P et Q sont en raison inverse de leurs distances CG et CH a la résultante. Cela étant, si Ton m?ne une perpendiculaire commune aux trois forces paralleles, et qu’on appelle a la partie GH de cette droite (fig. i3 et i4) comprise entre les deux composantes P et Q, et a? la distance CH de la résultante R a la composante Qnbsp;qu’on suppose la plus grande, on aura P : Q :: x : a zp x, cn prenant le signe supérieur ou le signe inférieur.



n8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. selon que P et Q agiront dans Ie w?me sens (fig. i5) OU en sens contraires (fig. i4)- On en déduit P : Q rt P et, par conséquent, ce qui fera connaitre la position de la résultante,nbsp;dont la valeur sera en méme temps Q ? P. 44* Lorsque les'forces P et Q agissent en sens contraires, et qu’elles different tres peu Tune de l’autre, leur résultante, toujoxirs dirigée dans Ie sens de lanbsp;plus grande, se trouvera située a xxne tres grandenbsp;distance des forces données. Mais quand elles sei’ontnbsp;rigoureusement égales, cette distance deviendra in-finie; ce qui signifie que deux forces égales, paral-l?les et agissant en sens opposés, ne peuvent ?trenbsp;remplacées par une seule force; et, en effet, il n’ynbsp;aurait aucune raison pour que cette force uniquenbsp;agit plutót dans un

sens que dans l’autre. Deux semblables forces agissant aux extrémités d’une droite GH (fig. i5), feront tourner cette lignenbsp;autour de son milieu K; eft’et qui, évidemment, nenbsp;saurait ?tre produit par faction d’une seule force. Onnbsp;peut les remplacer d’une infinité de mani?res diffé-rentes par deux autres forces qui tombent dans Ienbsp;méme cas; car on ne changera rien a leur action ennbsp;appliquant, par exemple, aux points G et H, suivantnbsp;les prolongemens GE et HF de la droite GH, desnbsp;forces égales et de grandeur quelconque; or, la résultante des forces dirigées suivant GA et GE, et celle



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;79 des forces dirigées suivant HB et HF, seront encore des forces égales, parall?les et dirigées en sens opposes , suivant des droites GC et HD, et ces résul-tautes remplaceroat les forces primitives qui agissaientnbsp;suivant GA et HB. Si Ton appelle P la grandeur com-niune de ces deux forces, et a leur distance mutuelle,nbsp;1’une et l’autre de ces deux quantités changeront parnbsp;1’opération que nous indiquons; mais leur produit aPnbsp;demeurera constant, ainsi qu’ou Ie prouvera tout anbsp;l’heure. 45. Au reste, ce cas particulier est Ie seul dans le-quel un syst?me d’un nombre quelconque de forces P, P4 P% etc., comprises dans un m?me plan et agis-sant sur des points matériels lies entre eux d’une ma-ni?re invariable, ne puisse pas se réduire a une seulenbsp;force. En efFet, soit

que les deux forces P etP' con-courent en un point, ou qu’elles soient parall?les, onnbsp;les réduira a une seule force Q, par la regie du parallelogram me des forces, ou par celle du numéronbsp;précédent. On réduira de m?me a une seule force Q',nbsp;cette premi?re résultante Q et P''; puis a une seulenbsp;force Qquot;, la seconde résultante Q' etPquot;'; et ainsi denbsp;suite, jusqu’a ce qu’on ait réduittoutes les forces don-oées a deux seulement, qui se réduiront elles-mémesnbsp;a une seule force R, a moins qu’elles ne tombentnbsp;dans Ie cas d’exception dont il s’agit. Dans Ie cas général, cette force R est la i’ésultante des forces données P, P', P', etc.; et si l’on joint auxnbsp;composantes une force R' égale et contraire a R, jl jnbsp;aura équilibre dans Ie syst?me. La grandeur de R etnbsp;sa position dans Ie plan des forces données ne dé-



8o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. pendra nullement de l’ordre dans leqiiel on aura pris ces forces dans les re'ductions successives qu’on vientnbsp;d’indiquer; car, en changeant eet ordre, si Ton par-venait a une force S différente de R en grandeur oiinbsp;en direction, il faudrait que Tune de ces deux forcesnbsp;prise en sens contraire fit équilibre a 1 autre j ce quinbsp;serail impossible. Pour 1’équilibre des forces P, P', P', etc., quand elles seront appliquées a un levier situé dans leurnbsp;plan, il faudra d’abord qu’elles se réduisent a unenbsp;seule force; car si elles se réduisaient a deux forcesnbsp;parall?les S et S' non réductibles a une seule, et quenbsp;S' fut la plus rapprochée du point d’appui, on pour-rait decomposer S' en deux forces Q et Q', parall?lesnbsp;et agissant dans Ie m?me sens, dont la premi?re serail

directement opposée a S et la seconde passeraitnbsp;par Ie point d’appui : ces deux composantes seraientnbsp;Tune et l’autre moindres que S' ou S, la force Q' serailnbsp;détruite, et il ne resterait qu’une force S — Q, quinbsp;ferait tourner Ie levier dans Ie sens de S. Les forcesnbsp;données étant réduites a une force unique R, il faudra , en outre, pour l’équilibre du levier, que celtenbsp;force vienne passer par son point d’appui. Cette condition s’exprimera par une equation, au raoyen dunbsp;théor?me que nous allons de'monlrer. 46. Considerons d’abord deux forces seulement et leur résultante. Le moment de cette résultante, parnbsp;rapport a un point situé dans le plan des trois forces,nbsp;sera egal a la somme ou a la difference des momens desnbsp;deux composantes par rapport au m?me point: a la difnbsp;f?rence, quand le

centre des momens est situé dans



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;8i 1’angle des composantes, ou, dans son oppose, au sommet; a ia somme, quand ce point est hors de cesnbsp;deux angles. En effet, soient P et P' ces deux forces, MA et MA' (fig. i6 et 17) leurs directions, Q leur résultantenbsp;agissant suivant MB , C Ie centre des momens, p, p',nbsp;9, les perpendiculaires Ca, Ca', CZgt;, abaissées dunbsp;point C sur la direction de P, P', Q. Déconiposons cha-cune de ces trois forces en deux autres, dirigées suivant la droite MC et suivant la perpendiculaire KMK'nbsp;a cette droite; et considérons les composantes perpendiculaires. On a évidemment cosBMK = sin BMC = C en désignant par c la longueur de la droite MC; done la composante de Q suivant MR sera égale a De méme, les composantes de P et P' perpendiculaires gt; nbsp;nbsp;nbsp;Po

P^o'quot; a MC seront ~ et Elles agissent en sens contraire , quand la ligne MC traverse l’angle AMA' (fig. 16), et dans Ie m?me sens, quand eJle tombenbsp;hors de eet angle. Or, la somme de ces composantes,nbsp;dans Ie second cas, et l’exc?s de la plus grande sur lanbsp;plus petite, dans Ie premier, doit reproduire la composante de Q, puisque Q est la résultante de P et P';nbsp;en supposant la composante de P plus grande quenbsp;celle de P', et supprimant Ie diviseur commun onnbsp;aura doneQ9 = Pp ? P'p'; ce qu’il s’agissait de prouver. ?• 6



82 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Si l’on imagine que Ie point C soit fixe et que les perpendiculaires Ca, Ca', Cb, forment un syst?me invariable, les forces P, P', Q, qui peuvent ?tre cen-sées agir aux extrémités a, a', h, de ces droites, nenbsp;pourront produire qn’un mouvement de rotation au-tour du centre des momens. Or, l’inspection de la fi-gui’C 17, a laquelle re'pond Ie signe supérieur dansnbsp;1’éguation précédente, laontre que quand Ie point Cnbsp;tombe hors de Tangle AMB, et de son oppose aunbsp;somniet, les trols forces P, P', Q, tendent a faire tour-ner leurs points d’application dans Ie m?me sens au-tour du point C; au contraire, lorsque ce point tombenbsp;dans Tun de ces deux angles, la figure 16, qui ré-pond au signe inférieur, fait voir que les forces P etnbsp;P' tendent a faire tourner les points a et a' en

sens opposes ; et Ton voit aussi que, dans ce cas, la résultante Q tend a faire tourner son point d’applicationnbsp;dans Ie méme sens que la composante qui a Ie plusnbsp;grand moment. D’apr?s cette remarque, Ie théo-r?me qu’on vient de démontrer revient a dire quenbsp;Ie moment de la résultante de deux forces est égalnbsp;a Ia somme ou a la difference des momens de cesnbsp;deux forces, selon que les composantes tendent anbsp;faire tourner leurs points d’application dans Ie m?menbsp;sens ou en sens opposes autour du centre des momens , et que la résultante tend a faire tournernbsp;dans Ie sens de la composante qui a Ie plus grandnbsp;moment. Ce tbéor?me ayant lieu pour des forces dont les directions font un angle quelconque, doit encore sub-sister lorsqu’elles deviennent parall?les; c’est ef?ecti-



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;83 vement une consequence facile a déduire de la composition des forces de ce genre (n” 43). 47 • L’avantage de ce dernier énoncé est de pouvoir fa-cilement s’e'tendre a un nombre quelconque de forces P, P', P', etc., dirigées dans un m?me plan. En regardant Ie centre des momens comrae un point fixe,nbsp;autour duquel les forces tendent a faire tourner Ienbsp;syst?me de leurs points d’application, He's entre euxnbsp;d’une niani?re invariable, Ie moment de la résultantenbsp;est égal a la somme des momens des forces qui tendent a faire tourner dans Ie m?me sens qu’elle, moinsnbsp;la somme des momens des forces qui tendent a fairenbsp;tourner en sens contraire. Pour fixer les idees, supposons que les trois premi?res forces P, P', Pquot;, tendent a faire tourner dans un m?me sens,

et toutes les autres dans un sensnbsp;oppose. Reprenons la série de reductions du n° 45.nbsp;Soient Q, la résultante deP et P', et Q' celle de Q et Pquot;,nbsp;OU de P, P', Pquot;. Soient aussi p, p', pquot;, q, q', les per-pendiculaires abaissées du centre des momens sur lesnbsp;directions de P, P', Pquot;, Q, Q'; nous aurons, d’apr?snbsp;ce qu’on vient de voir,qq = Vp py, q'9' = qq Py, et, par conséquent,= Vp -j- py 4- py. De m?me, si Pon désigne par la résultante de toutes les autres forces PŽ, P”', etc.; par q^ la pei-pendicu-laire abaissée du centre des momens sur sa direction;nbsp;par y, etc., les perpendiculaires abaissées du6..



84 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. m?me point sur les directions de P'quot;, P'% etc., on aura aussi = 'Pquot;Yquot; nbsp;nbsp;nbsp;-f- etc. Or, la résultante R de toutes les forces données sera celle des deux forces Q' et ; si, done, on représentenbsp;par r la perpendiculaire abaissée du centre des mo-mens sur la direction de R, et si l’on consid?re quenbsp;ces forces Q' et tendent a faire tourner en sens opposes, on aura Rr = d= nbsp;nbsp;nbsp;, selon que Q'q' sera plus grand ou nioindre que Q^q^. Dans Ie premier cas, la force R tendra a faire tournernbsp;dans Ie m?rne sens que la force Q', et, conséquem-ment, dans Ie m?me sens que les trois forces P, P', Pquot;.nbsp;Nous supposerons que ce soit ce premier cas qui aitnbsp;lieu; et en substituant pour Q'q' et leurs valeurs,nbsp;nous aurons alors Rr=Pp py 4- py —

py gt;- nbsp;nbsp;nbsp;— etc.; CO equation qui renferme Ie théor?me qu’on voulait démon trer. En supposant que Ie centre des inomens soit Ie point d’appui du levier auquel les forces P, P', P', etc.,nbsp;sont appliquées, il faudra, pour lequilibre de ce levier, qu’on ait (0Pp 4- py y py ^ py ~ p-p- „ etc. puisque, dans ce cas, ces forces doivent avoir une i’ésultante qui doit passer par Ie point d’appui (n° 45),nbsp;et pour laquelle on a done r=:o.



STATIQÜE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;85 48. On peut rendre l’équation (j) plus générale, en supposant que par des decompositions et recompositions des forces P, P', Pquot;, etc., on les ait ti’ansfor-mées en d’autres forces S, S', Squot;, etc., dont l’ensemblenbsp;soit équivalent aux foi’ces données. En désignant parnbsp;s, s', squot;, etc., les perpendiculaires abaissées du centrenbsp;des momens sur les directions de S, S', S', etc., onnbsp;trouvera, par Ie m?me raisonnement que dans Ienbsp;numéro précédent, Sj S'/-f-S^quot;4-etc.=Pp Pgt;' P'gt;quot;—Pgt;'quot;—P*''/?'quot;—etc.; (3) équation dans laquelie on devra prendre avec Ie signe -f-, les momens des forces S, S', S% etc., quinbsp;tendent a faire tourner dans Ie m?me sens que P, P', Pquot;jnbsp;et avec Ie signe —, les momens de celles qui tendentnbsp;a faire tourner

dans Ie m?me sens que P'quot;, P'^', etc. Le cas particulier oü les forces P, P', Pquot;, etc., sont irréductibles a une seule, est compiis dans cette der-ni?re équation. Soient alors S et S' deux forces égales,nbsp;parall?les et non directement opposées; etappelons hnbsp;leur distance mutuelle. Si le centre des momens estnbsp;sifué entre leurs directions, on aura s-\-s'ellesnbsp;tendront a faire tourner dans le m?me sens autour denbsp;ce point; on donnera done le m?me signe a leurs rao-mens, et il en résultera SV = S//. Si, au contraire, le centre des momens n’ést pas com-pris entre S et S', et qu’on suppose nbsp;nbsp;nbsp;on aura j nbsp;nbsp;nbsp;ces deux forces tendront a faire tourner en sens opposes; on devra donner le signe au ino-



86 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE, ment de S et Ie signe — au moment de S'- et il en resultera Ss — S's'= SA. Par consequent, 1 equation (5) deviendra toujours SA = Pp P'/ Py — Py — P'Y^ _ etc. Son second membre se composant de quantite's qui sont toutes données, il en résulte que si les valeursnbsp;de S et A viennent a changer, leur produit demeureranbsp;constant, ainsi qu’on l’avait déja dit plus haut. On conclut aussi de cette derni?re equation que, quand sou second membre est nul, les forces donnéesnbsp;ne peuvent pas tomber dans Ie cas d’exception oiinbsp;elles sont irréductibles a une seule; il s’ensuit donenbsp;que l’équation (2) exprime a la fois que les forcesnbsp;P, P', Pquot;, etc., ont une résultante unique, et quenbsp;cette résultante passe par Ie centre des momens; parnbsp;conséquent, el Ie est

l’équation nécessaire et suffjsantenbsp;pour l’équilibre du levier, dont ce centre est Ie pointnbsp;d’appui. La résultante R que 1’on obliendra par lanbsp;série de reductions du n° 45 ? exprimera la chargenbsp;qu’il aura a supporter; quand elle sera mille, lesnbsp;forces P, P', Pquot;, etc., se feront équilibre dans leurnbsp;plan sans Ie secours de ce point fixe. 49. La condition de l’équilibre dans Ie levier peut aussi s’exprimer par une équation analogue a la formule (?) du n° 3g. Soient, par exemple, M, M', Mquot; (fig. 18), les points d’application des trois forces P, P', Pquot;, qui agis-sent sur Ie levier ECF, suivant des directions MA, M'A',nbsp;comprises dans son plan. Faisons tourner infi-



STATIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;87 niment peu ce Ie vier autour de son point d'appui C, desorte que M, M', Mquot;, viennent en m, m', iri'. D’a-pr?s la definition du n* Sp, les arcs infiniment petitsnbsp;Mm, M!m', Mquot;mquot;, que l’on peut prendre pour desnbsp;lignes droites, seront les vitesses virtuelles des pointsnbsp;d’application M, M', Mquot;, des trois forces que l’on con-sid?re. J’abaisse de in, m', mquot;, des perpendiculairesnbsp;ina, rn'a', irfa', sur les droites MA, M'A', Mquot;Aquot;, ounbsp;sur leurs prolongemens j Ma sera la pi’ojection de Mmnbsp;sur la direction m?me de la force P, qui tend a fairenbsp;tourner Ie levier dans Ie sens de la rotation qui a eunbsp;iieu; M'a' et M'aquot; seront les projections de M'm'etnbsp;M^mquot; sur les prolongemens des deux autres forcesnbsp;P' et Pquot;, qui tendent a Ie faire

tourner dans Ie sensnbsp;oppose. Pour cette raison, je consid?re la premi?renbsp;de ces projections comme une quantité positive, etnbsp;les deux autres comme des quantités negatives. Jenbsp;représenterai ces trois quantités par 'Zër, lt;w', Cela posé, en vertu du principe des vitesses virtuelles, ia somme des forces données multipliées res-pectivement par les projections ainsi définies des vitesses virtuelles de leurs points d’application, est nulle dans Ie cas de l’équilibre, et léciproquement l’équl-libre a lieu quand cette somme est zéro; en soitenbsp;que l’équation d’équilibre du levier estPlt;^-l-PW'-t-PVquot; = o; (4) et, en effet, il est aisé de vérifier qii’elle coincide avec celle que l’on a déduite de la considération desnbsp;momens. Pour cela, désignons par p, p', pquot;, les perpendicu-



88 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. laires CG, CG', CG% abaissées du point C sur les directions des forces P, P', Pquot;; par c, c', c”, les distances CM, CM', CMquot;, de leurs points d’application au point C;nbsp;et par y, y', yquot;, les vitesses virtuelles M^n, M'm', v't. L’arc infiniment petit M/u se confondant avec sa tangente, les triangles Mma et CMG ont leurs cótés perpendiculaires l’un a l’autre, et sont semblables; onnbsp;a done Mlt;z : M/ra :: CG : CM; et a cause de Ma=Ž', Mm = 7, CG=p, CM = c, on en déduit fSF ^py On aura de m?me t r py lt;ar ?ZtT en observant que lt;w' et sont, par hypothese, des quantités negatives. De plus, la forme du levier étantnbsp;supposée invariable, les trois arcs Mm, M'm', M'W',nbsp;déci’its en m?me temps, répondent a un m?me angle;nbsp;et en les divisant par leurs rayons respectifs

CM,nbsp;CM', CMquot;, on aura trois rapports égaux. En d?si-gnant par ö la grandeur commune de ces rapports,nbsp;on aura doney_ c'il cquot; et, par conséquent, •P'8,= p0.



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;89 Or, si l’on substitue ces valeurs dans Tequation (4) gt; et qu’on supprime ensuite Ie facteur ö commun a tousnbsp;sestermes, elle deviendraPp_py_py = o; ce qui est effectivement l’équation d’e'quilibre du le-vier que nous considérons. Rëciproquement, si Ton inulliplie cette derni?re equation par 8, elle se chan-gera dans l’ëquation (4). Le raisonnement serait évidemment Ie m?me, quels que fussent le nombre des forces données P, P',nbsp;Pquot;, etc., et le sens dans lequel elles tendent a fairenbsp;lourner le levier.



9° TRAITÉ DE MÉCANIQUE. lt;W%'VVVW\WVV^^VVWVVV^^'W''''^'''VWW^lVVWV^lVV^'W^lVV^lWW^lVVV^(WWV^'W\'WX\W'V\A‘V^^/VV^'VV^'VVgt;^Vgt;CHAPITRE III. BE LA COMPOSITION ET DE L’ÉQUILIBRE DES FORCES PARALL?LES. 5o. La composition des forces parall?les se déduit, ainsi qu’on l’a vu précëdeniment (nŽnbsp;nbsp;nbsp;nbsp;regie du parallélogramme des forces, en considérant les forces données comme des forces dont Ie point denbsp;concours est a l’infini; mals en s’appuyant toujoursnbsp;sur cette regie, on peut aussi obtenir Ia résultante denbsp;deux forces parall?les par un autre mojen qu’il estnbsp;bon de connaitre. Soient P et Q les deux composantes, agissant aux points E et F de la droite inflexible EF, suivant lesnbsp;directions parall?les EA et FB, dans Ie m?me sensnbsp;(fig. ig), OU en sens opposes

(fig. 20). On ne chan-gera rien a ce sjst?me de forces, en appHquant aux ex-ti'émités de cette droite des forces egales, dirigees ennbsp;sens contraire Tune de I’autre, suivant ses prolon-gemens EC et FD, et dont la grandeur commune seranbsp;représentée par S. Je prends la résultante des forcesnbsp;P et S appliquées au point E, qui sera une force P'nbsp;agissant suivant une droite EA' comprise dans Tanglenbsp;AEG; de m?me la résultante des forces Q et S, quinbsp;agissent au point F, sera une force Q' dirigée suivant une droite FB', comprise dans Tangle BFD; etnbsp;si Ton excepte le cas du n” 44 gt; oil les forces données



STA?IQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;91 1* et Q soat egales et agissent eu sens oppose's, Jes deux droites EA' et FB' ne seront pas parall?les. Parnbsp;conséquent, en supposant leur point d’intersection Knbsp;lié iuvariablement a la droite EF, il sera permis denbsp;Ie prendre pour Ie point d’application commun auxnbsp;deux forces P' et Q' (n° 4i)- Par ce point K, je ni?nenbsp;les droites ET' et KH', parall?les a la droite EF et anbsp;la direction des forces P et Q, puis je decompose clia-cune des forces P' et Q' suivant ces parall?les : il estnbsp;évident qu’on retrouvera de cette mani?re les com-posantes S et P, dirigées suivant KE' et KH, et lesnbsp;composantes S et Q, dirigées suivant KF' et KHnbsp;(fig. ig), OU suivant KF' et KIP (fig. 20). Nous au-rons done les quatre m?mes forces qu’auparavant,nbsp;mais appliquées

toutes quatre a un méme point K.nbsp;En supprimant les deux forces S, il restera les deuxnbsp;forces P et Q, dirigées suivant la méme droite KH,nbsp;dans Ie cas de la figure ig, ou suivant cette droite KHnbsp;et son prolongement KH', dans Ie cas de la figure 20,nbsp;qui suppose que Q est la plus grande des deux forcesnbsp;données. Done, la résultante de ces deux forces leurnbsp;sera parall?le; et en la déslgnant par R, nous au-rons R = Q ? P, selon qu’elles seront dirigées dans Ie méme sens ou en sens opposés. Pour determiner Ie point O, oü sa direction viendra couper la droite EF ou son prolongement, je sup-poserai que E' et F' soient les intersections des lignesnbsp;AE et BF avec la droite ET'; les deux quadrilat?res



92 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. EE'KO et FF'KO seront des parallëlogrammes; et si Ton prend leurs diagotiales KE et KF pour représen-ter les résultantes P' et Q', on aura S : P :: EO : KO, S : Q :: FO : KO, pour les rapports des coraposantes. On conclut de la P : Q :: FO : EO; ce qui fera connaitre la position du point O, qu’on pourra prendre pour Ie point d’application de Ia résultante R. On en déduit aussi P : Q ? P :: FO : EF, Q : Q ? P :: EO : EF; les signes supérieurs se rapportant a la figure 19, et les signes inférieurs a la figure 20; en ayant égard anbsp;la valeur précédente de R, on aura done, dans lesnbsp;deux cas, R :: FO : EO EF; P : Q ce qui montre que chacune des trois forces P, Q, R, est proportionnelle a la distance comprise entre lesnbsp;points d’application des deux autres. Cette proportion, et, par suite, la position

du point 0, sont indépendantes de Tangle sous lequelnbsp;les directions des forces données sont coupées parnbsp;la ligae EF , qui peut ?tre une droite quelconquenbsp;aboutissant par ses extrémités a ces deux directions. 5i. On résoudra maintenant, sans aucune diffi-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;g3 culté, toutes les questions qui peuvent se présenter sur la composition de deux forces parall?les en une seule et sur la decomposition d’une force ennbsp;deux autres qui lui soient parall?les. Nous n’entre-rous dans aucun détail a ce sujet; et nous ne re-viendrons pas non plus sur Ie cas particulier desnbsp;forces égales et non directement opposées, que nousnbsp;avons exclu de la demonstration précédente, et quinbsp;a été sufGsamment examiné dans Ie n° 44- Je vais actuellement considérer un nombre quel-conque de forces parall?les, dont une partie agit dans un sens et l’autre partie dans Ie sens oppose,nbsp;qui sont situées ou non situées dans un m?me plan,nbsp;et appliquées a des points lie's eiitre eux d’une ma-ni?re invariable, par exeraple, a différens

pointsnbsp;d’un corps solide. En composant deux de ces forces en une seule, puis celle-ci et une troisi?me encore en une seule,nbsp;ct ainsi de suite, on parviendra a déterminer lanbsp;grandeur et la position dans 1’espace de la résultante de toutes les forces données, a molns que lesnbsp;deux derni?res forces qu’on aura a considérer nenbsp;bombent dans Ie cas d’exception du nquot; 44* Cette résultante sera évidemment parall?le a la directionnbsp;commune des composantes; de plus, elle sera égalenbsp;a Ia somme de celles qui aglssent dans un m?menbsp;sens, moins la somme de celles qui aglssent ennbsp;sens contraire, et elle agira dans Ie sens de la plusnbsp;grande somme. Si done on regarde les unes commenbsp;des quantités positives, et les autres cemme desnbsp;^uautités negatives ( n” 11); qu’on les

représente



94 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. toutes par P, P', Pquot;, etc., et leur résultante par R, on aura toujours R=P-f P' p-' etc. Sa. Si les forces données viennent a tourner au-tour de leurs points d’applicatiou sans cesser d’?tre parall?les, leur résultante tournera aussi aulour d’unnbsp;des points de sa direction; car son point d’applica-tion, ququot;on trouve en composant successivement lesnbsp;forces données, comme on vient de I’indiquer, nenbsp;dépend en aucune mani?re de la direction communenbsp;de ces forces, et reste, conséquemment, le m?menbsp;quand cette direction vient a changer. Ainsl, parexemple, supposons que les foi’ces données soient au nombre de trois, P, P', Pquot;, dirigées suivant les droites MA, M'A', M^A* (fig. ai). Soltnbsp;d’abord NB la direction de la résultante de P et P',nbsp;qui sera égale a P -f-P'; soit

ensulte N'B' la direction de la résultante de P -f- P' et Pquot;; cette der-ni?re force P’ étant supposée, dans la figure, agis-sante en sens contraire de P et P', et plus grandenbsp;que P P'. Concevons maintenant que les troisnbsp;forces P, P', Pquot;, tournent autour des points M, M',nbsp;Mquot;, en conservant leur parallélisme et le sens relatifnbsp;de leurs actions. Soient Ma, Ma', Waquot;, leurs nou-velles directions. Dans ce nouvel état, la résultantenbsp;des forces P et P' rencontrera la droite MM' au m?menbsp;point N qu’auparavant, puisque la position de cenbsp;point ne dépend que du rapport des composantes,nbsp;et nullement de Tangle que la droite MM' fait avecnbsp;leurs directions (nquot; 5o); elle sera présentement di-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;gS ?igée suivant la droite N6 parall?le a Ma et Wa’, encore egale a P -j- Par la m?me raison, lanbsp;résultante de P P' et P'' rencontrera Ie prolon-gement de la droite MM' au m?me point N' qu’au-paravant, et sera dirigée suivant une droite N'^' parall?le a Né; par conséquent, les trois forces P,nbsp;i*', Pquot;, tournant autour de leurs points d’applicationnbsp;M, M', Mquot;, leur résultante tournera aussi autournbsp;d un méme point N'. 55. Nous appellerons centre des forces paraUeles Ie point dans lequel viennent se couper toutes lesnbsp;direetions successives de la résultante, quand sesnbsp;composantes tournent autour de leurs points d’application, qu’on suppose invariables. On verra par la suite conibien Ie centre des forces parall?les est important a considérer, surtout

dansnbsp;les questions relatives a l’équilibre et au mouvementnbsp;des corps pesans. On peut déja observer que si unnbsp;corps solide est solllcité par des forces parall?lesnbsp;quelconques, que l’on determine Ie centre de cesnbsp;forces, et qu’on Ie suppose fixe, l’équillbre aura lieunbsp;dans toutes les positions que !e corps pourra prendre autour de ce point, pourvu que les forees don-uées restent toujours parall?les et appllquées auxnbsp;ui?mes points de ce corps; car alors leur résultantenbsp;passera constamment par Ie point fixe, ce qui suffitnbsp;pour qu’elle soit détruite. Les coordonnées du centre des forees parall?les, rapportées a trois axes rectangulaires, dependent,nbsp;comme on va Ie voir, des produits de ces forees mul-tipllées par les coordonnées de leurs points d’applica-



q6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANTQUE. tion. A cause que ces produits se présentent dans un grand nombre de cas, on leur a donné un nom particulier ; on appelle moment dune force par rapport anbsp;un plan, Ie produit de cette force et de sa distance anbsp;ce plan. Ainsi, P ëtant l’intensité d’une force appli-quée en un point dont les coordonnées sont x, j, z,nbsp;les produits Pz, PjTj seront ses momens par rapport aux plans des x etj-, des x et z, des jr et z. Lesnbsp;momens de cette esp?ce n’ont rien de commun, ennbsp;ge'ne'ral, avec les momens par rapport a un pointnbsp;qu’on a définis dans Ie n° 42- Ceux-ci dependent denbsp;la direction de la force, et sont inde'pendans de sonnbsp;point d'application; les momens par rapport a unnbsp;plan dependent, au contraire, de la position dunbsp;point d’application de la force, et sont

indépendansnbsp;de sa direction. On ne fait usage des derniers quenbsp;dans Ie cas des forces parall?les; en sorte qu’ils peu-vent ?tre des quantités positives ou negatives, a raison du signe de la force et des coordonnées du pointnbsp;ou elle est appllquée. 54. Soient M, M', M’, etc. ( fig. 22), les points d’application des forces parall?les P, P', Pquot;, etc.,nbsp;dont il sera inutile d’indiquer les directions. Menonsnbsp;arbitrairement trois axes rectangulaires Ox, Oj, Oz,nbsp;qui seront ceux des coordonnées; désignons par x,nbsp;j-, z, les coordonnées de M; par x', j'^ z', celles denbsp;M'; par x”, jquot;, zquot;, celles de Mquot;, etc.; et supposonsnbsp;que toutes ces coordonnées et ces forces sont desnbsp;quantités données qui peuvent ?tre positives ou né-gatives. Soient encore Q, Q', Qquot;, etc., les projectionsnbsp;des points M , M', M’, etc.,

sur Ie plan des x et y •,



S?A?IQÜE, PREMI?UE PARTIE. nbsp;nbsp;nbsp;97 t'ii soi’te qu’ou ait MQ = z, M'Q'=:z', nbsp;nbsp;nbsp;etc. Enfin, repre'sentons par nbsp;nbsp;nbsp;z,, les trois coor- donne'es du centre des forces parall?les dont il s’agit de trouver les valeurs. La résultante P -f- P' des deux forces P et P' reu-contrera en un point N la droite MM' ou son prolon-gement, selon que ces deux forces seront de m?me signe ou de signe contraire; mais dans les deuxnbsp;cas on aura P' : P P' :: MN ; MM'. Soit K la projection de N sur Ie plan des x et^. Par Ie point M, menons la parall?le MGH a la droitenbsp;QRQ', qui rencontre les droites NK et M'Q' auxnbsp;points G et H, de sorte qu’on ait MQ = GK = HQ'; on aura aussi MN : MM' :: NG : M'H; et de cette proportion, jointe a la précédente, oir conclui’a (P p/)KG = P'.M'H. A cette equation, j’ajoule 1’équation

identique (P P')GK = P.MQ P'.HQ';nbsp;ce qui donne (P 4. P') NK =-. Vz -f- P'z'. La résultante des deux forces P P' et Pquot; rencori-



gS nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. trera en un point N' la droite NMquot; ou son prolon-gement, selon que ces deux forces auront Ie m?we signe OU des signes contraires; et si K' est la projection de N' sur Ie plan des jc et j-, on trouvera,nbsp;comme dans Ie cas precedent, (P P' r') N'K' = (P -f- P') NK -f Pquot;2quot; ; par consequent, on aura (P P' H- Pquot;) N'K' = Pz H- P'z' Pquot;zquot;. On continuera de m?me jusqu’a ce qu’on ait épuisé toutes les forces données P, P', Pquot;, etc.; el si R estnbsp;leur résultante totale, on aura finalement Rz. == Pz -j- P'z' -f- P'V' -h etc. La figure 22 suppose que tons les points M, M', Mquot;, etc., N, N', etc., sont situés d’un m?me cóté dunbsp;plan des J? et j-, ou que leurs ordonnées parall?les anbsp;l’axe des z sont toutes de m?me signe; mais il estnbsp;aisé de voir que si

Tequation précédente est vraienbsp;dans ce cas, elle Ie sera encore lorsque ces ordonnéesnbsp;seront en partie positives et en partie négatives. Ennbsp;effet, transportons Ie plan des jc etj-, parall?lement anbsp;lui-m?me, a une distance quelconque h de sa position primitive. Par rapport a ce nouveau plan,nbsp;soient Z, Z', Zquot;, etc., les coordonnées de M, M',nbsp;Mquot;, etc., et Z. celle du centre des forces parall?les,nbsp;de sorte qu’on ait Z,=z,—h, Z=z—Z'=z'—Tl, Z' —zquot;—h, etc.; si 1’on retranche de 1’équation précédente l’équation



99 STATIQÜE, PREMI?RE PARTIE. identique RA == nbsp;nbsp;nbsp; V'h 4- Pquot;A 4- etc., en résultera RZ, = PZ 4- P'Z' 4- P''Zquot; 4- etc.; equation dans laquelle les ordonnées Z, Z', 7J', etc., peuvent ?tre positives ou ne'gatives. On volt done que, dans tons les cas, Ie moment de la resultante d’un nombre quelconque de forcesnbsp;parall?les par rapport a un plan choisi arbitraire-ment, est e'gal a la somme des momens de ces forcesnbsp;par rapport au m?me plan. 55. En prenant successivement les momens par ?’apport aux trois plans des coordonnées, on aura,nbsp;d’apr?s les notations précédentes,Rj:?, = Tjc 4- nbsp;nbsp;nbsp;4-nbsp;nbsp;nbsp;nbsp;4- etc., \ Rj. = Pj 4- P'j' 4- Py' 4~ etc., ( (i) Rz, =Pz 4- PV 4-PV' 4- etc.; 5 et a cause de R = P 4quot; nbsp;nbsp;nbsp; etc.,nbsp;nbsp;nbsp;nbsp;(2) les trois coordonnées du

centre des forces parall?les seront compl?tement déterminées. En raenant par cenbsp;point une droite parall?le aux forces données, dansnbsp;Ie sens indiqué par Ie signe de R, on aura la direction de la résultante. Cesquatre équations renferme-ront, de la mani?re la plus générale, la théorie desnbsp;forces parall?les. La somme des momens des forces P, P', P^',etc., est égale a zéro, par rapport a tout plan passant par Ie



loo nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. centre des forces parall?les; car, en prenant ce plan pour celui des x et j, il faudra qu’on ait z, = o,nbsp;et, consequemment, Pz PV PV etc. Dans Ie cas particulier oii P, P', Pquot;, etc., se ré-duisent a deux forces égales, agissant en sens oppose, leur somme R est égale a zéro; ce qui rend infiniesnbsp;les valeurs de .r,, jquot;,, z,. Le centre des forces parall?les est done alors situé a I’infini, ou plutót ce centrenbsp;n’existe pas, non plus que la résultante. 56. Lorsque tous les points d’application M, M', Mquot;, etc., des forces données sont situés dans unnbsp;m?me plan, il est évident, par la nature du centrenbsp;des forces parall?les (nŽ Ss), que ce point, s’il existe,nbsp;devra aussi se trouver dans ce plan; c’est aussi cenbsp;que 1’on peut conclure des équations (i) et (2).

En désignant par a, b, c, trois constantes données, on aura, dans ce cas, z = ax bj c, z' — ax' -j- bj' -f- c, zquot;=: etc.axquot;bjquot;-]r c, Je substitue ces valeurs de z, z', zquot;, etc., dans la troi-si?me equation (i); il vient Rz. = (?x F'x' P V' -j- etc.) a (Pj -}- Py Fquot;jquot; etc.) bnbsp;-f- (P-j-F-f-Pquot;_j-etc.)c. En vertu des deux autres équations (i) et de 1 equa-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;loi- tiou (2), on peut remplacer par Ba:,, Bj ,, B, les coefficiens de n, c; et en supprimant ensuite Ienbsp;lacteur commun R, on a z, = ax, H- lt;7; Ce qui raontre que Ie centre des foi’ces parall?les ap-partient au plan des points M, M', Mquot;, etc. Lorsque tous ces points sont sur une m?me ligne drolte, ce centre s’j trouve également; et il suffit denbsp;la premi?re des equations (i) pour determiner sa position, en prenant cette droite pour l’axe desa?. Si, denbsp;plus, les forces P, P', Pquot;, etc., sont perpendiculairesnbsp;a cette droite, les raomens que nous considérons ac-tuellement se confondent avec les raomens par rapport a un point, qui est ici l’origine 0 des abscisses x,nbsp;et la premi?re equation (i) coincide avec l’équa-tion (i) du n” 47* H est aisé de voir, en effet,

quenbsp;parmi les forces donnéesP, P', Pquot;, etc., celles qui teii-dent a faire tourner autour du point 0 dans Ie m?menbsp;sens que la résultante R, sont toutes les forces qui ontnbsp;Ie m?me signe que leurs distances x, x', xquot;, etc., a cenbsp;point, et que celles qui tendent a faire tourner dansnbsp;Ie sens oppose sont les forces qui ont un signe contraire a celui de ces m?mes distances; par consequent, les momens des premi?res s’ajoutent, etnbsp;eeux des derni?res se retranchent, conformément anbsp;1 énonc^ du numéro cité. ^7. Les équations d’équilibre des forces parall?les P, P', etc., se déduisent aisément de Ia théorienbsp;quon vient d’exposer. Isil n’exisle aucim point fixe dans Ie sjsl?me, d



103 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. faut, pour rdquiJibre, qu’en séparant Tune de ces forces, par exemple la force P, toutes les autres aientnbsp;Tine résultante qui soit égale et directement opposéenbsp;a P. Soit done R' la résultante des forces P', Pquot;, etc,;nbsp;puisque les forces P et R' sont égales et dirigées ennbsp;sens contraires, elles doivent ?tre égales et de si-gnes différens, ou, autrement dit, on doit avoirnbsp;P R'^ = o. Mais R^ est la sonime des coraposantesnbsp;P', Pquot;, etc.; il en résulte done, pour la premi?renbsp;équation d’équilibre, (a) etc.P F pquot;, Pour exprimer, en outre, que les forces P et R' sont directement opposées, soient a, C, y,les troisnbsp;coordonnées du centre des forces parall?les P',nbsp;Pquot;, etc., de mani?re qu’on ait Ka. = P'.r' -f- F'a:quot; 4- etc., R'g = P'j' F’f' 4- etc.,

Ky = ?z' 4- F'zquot; 4- etc. Ce centre étant Ie point d’application de leur résultante R', il sera nécessaire qu’il se trouve sur la direction de la force P, pour que R' soit directement opposée a cette force, ou, ce qui revient au m?me,nbsp;ce centre et Ie point d’application M de la force Pnbsp;doivent ?tre sur une m?me parall?le a la directionnbsp;commune des forces données. Si done on prend,nbsp;pour plus de simplicité, Ie plan des x et j- perpendiculaire a cette direction, il faudra que ces deuxnbsp;points soient situés sur une m?me perpendiculaire anbsp;ce plan; ils auront alors la m?me projection sur cc



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;io3 plan • par conséquent, leurs coordonnées seront les in?mes parall?lement aux axes des a? et de sortenbsp;que l’on aura ot. = a:, C = J-. Je substitue done a? et a la place de a et ? dans les deux premi?res equations précédentes, et, a causenbsp;de R' = — P, il vient Px 4- P'a;' Pquot;a:quot; etc. = 0,1 Pj py py' etc. = o ; j equations qui signifient que la somme des mornens de toutes les forces P, P', Pquot;, est nulle, etc., par rapportnbsp;aux plans des ar et z, et des j- et z, parall?les a leurnbsp;direction. Ainsi, l’équilibre de ces forces exige que les equations (a) et'(?) aient lieu en m?me temps. Récipro-quement, quand ces trois equations sont satisfaites, l’équilibre existe; car si l’on consid?re la i’ésultantenbsp;R' de toutes ces forces moins une, on aura, en vertunbsp;de ces équations, R'=

—P, R'a = —Par, R'C = — Pj, et, par conséquent. a = ar, en sorte que cette résultante sera égale et directe-ment opposée a la force P, qu’on avait omise. II n’est pas nécessaire, pour cela, que les deux plans parnbsp;rapport auxquels la somme des mornens des forcesnbsp;données est zéro , soient perpcndiculaires Tun a



io4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. l’autre; il suffit qu’ils soient parall?les a Ia direction de ces forces; et l’on peut aussi s’assurer facilementnbsp;que si cettc condition est remplie par rapport a deuxnbsp;plans parall?les a cette direction, elle Ie sera égale-ment par rapport a tous les autres. Concluons done que pour r?quilibre d’un syst?me de forces parall?les, appliquées a un corps solide en-ti?rement libre, il est nécessaire et il suffit, 1°. Que la somme de ces forces soit égale a zéro; 2°. Que la somme de leurs momens soit nulle par rapport a deux plans qnelconques parall?les a leurnbsp;direction commune. Quand toiites les forces serontnbsp;comprises dans un m?me plan, cette seconde condition sera déja remplie par rapport a ce plan, etnbsp;il suffira qu’elle Ie soit, en outre, par rapport a

unnbsp;autre plan. 58. Si Tun des points de ce corps solide est suppose fixe, il suffira, pour l’équilibre des forces parall?les,nbsp;que la somme de leurs momens soit nulle par rapport a deux plans passant par ce point et parall?lesnbsp;a leur direction, et il ne sera plus nécessaire quenbsp;leur résultante soit égale a zéro; car alors les distances de cette résultante a ces deux plans serontnbsp;nulles; elle co?ncidera done avec leur intersection,nbsp;et sera détruite par la resistance du point fixe. Lorsque ce point sera Ie centre des forces parall?les, Ia somme des momens sera zéro par rapport a toils les plans passant par ce point; par conséquent, les forces données se feront équilibre, quellenbsp;que soit leur direction commune; ce que nous sa-vions déja (n” 55).



100 STATIQÜE, PREMI?RE PARTIE. Si Ie corps solide est retenu par un axe fixe, au-tour duquel il ait seulement Ia liberté de tourner, il suffira, pour Tequilibre des forces parall?les ap-pliquées en ses différens points^ que la somme denbsp;leurs momens soit égale a zéro, par rapport au plannbsp;?ttené par eet axe parall?lement a leur direction ;nbsp;car leur résultante tombant alors dans ce plan, ellenbsp;y rencontrera l’axe fixe, et sera détruite par sa résis-tance. Lorsque l’axe fixe est lui-m?me parall?le auxnbsp;forces données, Ie plan dont il s’agit est indéterminé;nbsp;la condition d’équilibre s’évanouit par conséquent;nbsp;ce qui doit ?tre, puisque des foi’ces qui sont toutesnbsp;parall?les a un axe fixe ne peuvent faire tourner unnbsp;corps solide autour de cette droite, de sorte que,nbsp;dans ce cas, l’équilibre a lieu indépendainment

denbsp;leurs intensités et de leurs distances a eet axe.



io6 TRAITÉ DE MÉCANIQÜE. /VV'WWW^*/V^'VWVVV^^WVVV''VV?^VWWVW\/1UVVWVW^A/V\V?lt;A/\A(W?'V\^^'VV''W^•VV^'VV^VV^'VV\ Wgt;'VV^JVV\'\,V^•VV'\CHAPITRE IV. COWSIDÉRATIOIVS GEIVÉUALES SUR LES CORPS PESAIVS ET SUR LES CENTRES DE GRAVITE. 5q. On appelle indifFeremment pesanteur ou gra~ vité, la force qui précipite les corps vers la surfacenbsp;de la terre aussitót qu’ils ne sont plus soutenus. Sonnbsp;action s’exerce sur tous les points matériels, dansnbsp;des directions perpendiculaires a cette surface, onnbsp;suivant des lignes verticales. Les directions prolon-gées de la pesanteur en différens lieux de la terrenbsp;convergent done vers son centre, a cause de sa formenbsp;a peu prés sphéi’ique; mais en ayant égard a lanbsp;grandeur du rayon terrestre, relativement

aux dimensions des corps que Ton considere ordinaire-ment, on peut supposer, sans erreur sensible, lanbsp;pesanteur parall?le a elle-m?me dans toute I’e'ten-due d’un m?me corps. L’observation a prouve que I’intensite de cette force varie a la surface de la terre avec la latitude,nbsp;et que sur une m?me verticale elle varie aussi avecnbsp;I’ele'vation au-dessus de cette surface; mais 11 fautnbsp;que les changemens de hauteur et de latitude soientnbsp;tres considerables pour que ces variations devien-nent sensibles, et elles ne le sont nullement dansnbsp;fetendue d’un corps de dimensions ordinaires, 6o. On conclut de la que la résultante des forces parall?les, en nombre inlini, qul agissent sur tous



S?ATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;107 les points d’un corps pesant, est indépendante de sa forme; cette résultante est ce qu’on appel) e Ienbsp;poids du corps. Dans les corps homog?nes, Ie poidsnbsp;est évidemment proportionnel au volume; mals unenbsp;experience journali?re nous montre que les corps denbsp;nature différente n’ont pas Ie m?me poids sous Ienbsp;ni?me volume; ce qui peut provenir de ce quenbsp;1’attraction de la terre, qui est la cause principalenbsp;de la pesanteur, comme on Ie verra par la suite,nbsp;dépend de la nature des points matériels sur lesquelsnbsp;elle agit, ou bien, de ce que les corps hétérog?nesnbsp;renferment, sous des volumes égaux, des quantitésnbsp;differentes de points matériels également pesans.nbsp;Nous expiiquerous, dans un autre chapitre, comment on a conclu,

du mouvement observe des corpsnbsp;pesans, que c’est Ie second de ces deux cas qui anbsp;lieu dans Ia nature. II en résulte que Ie poids d’un corps quelconque est en raison composée de sa masse et de l’intensiténbsp;de la pesanteur dans Ie lieu oü il est situé. Ainsi,nbsp;en appelant P ce poids, M la masse, et g la mesurenbsp;de la gravité, on a Cette quantité g, indépendante de la nature particuliere de chaque corps, est, comme on volt, Ie poids de celui dont on prend arbitrairement la massenbsp;pour unité. On verra par la suite comment sa valeurnbsp;a été déterminée en différens points de la terre,nbsp;dapres Ie mouvement des corps soumis a Ia seulenbsp;action de la gravité.



io8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAKIQUE. Nous pouvons aussi écrire P = ^V, en désignant par Ie poids du corps sous Funité de volume, et sou volume par V. Le poids lU est cenbsp;qu’on appelle la pesanteur spécijique du corps quenbsp;l’ou consid?re; denomination impropre, puisque lanbsp;pesanteur est commune a tous les corps d’esp?ccsnbsp;diflérentes, et qu’on devrait remplacer par celle denbsp;poids spécifique. Enfin, si l’on représente par D la masse, sous 1’unite de volume, du corps que l’on consid?re, D sera cenbsp;qu’on nomme la densité de ce corps, et l’on aura M = DV, P = gm. Telles sont les equations qui ont lieu entre les cinq quaatités P, g, M, D, V, dont chacune doitnbsp;?tre exprim?e nume'riquement, en la rapportant anbsp;une unite de son esp?ce. 6i. Le gramme, ou l’unité de poids, est celui d’un

centimetre cube d’eau distille'e et prise a sonnbsp;maximum de densité, qui répond a environ 4° dunbsp;tbermom?tre centigrade. Ce poids varie avcc le lieunbsp;qu’il occupe ?, mais comme les poids des autres corps,nbsp;qu’il sert a peser, varient exactement dans le m?menbsp;rapport, il s’ensuit que le poids d’un corps quelcon-que, exprimé en grammes, est partout le méme, etnbsp;qu’on n’a pas besoin de dire en quel endroit il a éténbsp;determine. D’apr?s les experiences de M. Hallström,nbsp;le poids du centimetre cube d’eau distillée, a la temperature zéro, est oS‘quot;‘'?-,99989i8.



S?ATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;109 Oa prend communément poiu’ unite de densité, celle de l’eau distillée a cette derni?re temperature.nbsp;Les densités d’un grand nombre de substances ont éténbsp;déterminées par l’expérience, et exprimées en nom-bres au moyen de cette unite. Ainsi, par exemple, lanbsp;densité du mercure a cette m?rne temperature est13,5975, et elle augmente ou diniinue de O I 555Ö ’ pour chaque degré de diminution ou d’augmenta-tion de la temperature. La densité de Fair, prise au.ssi a la temperature de la glace fondante, sous lanbsp;pression barométrique de 76 centimetres et a l’Obser-vatoire de Paris, a été trouvée égale a 7% gt;4’ et, pour chaque variation d’un degré dans la tempé-rature, elle varie, en sens contraire, de 0,00575, comme celle de tout autre gaz. Le poids de la

colonne de mercure qui exprime la pression barométrique variant avec la latitude et i’é-lévation au-dessus de la surface de la terre, la densité de 1’air, soumise a une pression d’une hauteurnbsp;donnée, varie en in?me temps. Voila pourquoi il nenbsp;sufEt pas d’assigner cette hauteur; il faut encore direnbsp;a quel lieu elle .se rapporte, comme ici a FObserva-toire de Paris. Le rapport de la densité du mercure a



I 10 TRAITÉ DE MÉCANIQÜE. celle de l’air, qui répond aux nombres précédens, est 10462. Des qu’on attribue un phénom?ne, tel que la cha-leur, par exemple, a une substance matërielle, cette substance est soumise a la pesanteur; et l’expressionnbsp;imponderable ne doit s’eutendre que d’une mati?rcnbsp;dont la densité est si faible, qu’elle ëchappe a tousnbsp;nos niojens d’investigation; en sorte que sa presencenbsp;n’augmente ni Ie poids ni la masse mesurables dunbsp;corps dontelle fait partie, en quelque quantite' qu’ellenbsp;s’y trouve. 62. Les poids sont les forces qui nous sont Ie plus famili?res, et dont nous pouvons, au moyen de lanbsp;balance, determiner les rapports avec Ie plus d’exac-titude et de facilité. C’est pourquoi il est naturel denbsp;les faire servir de terme de comparaison aux forcesnbsp;d’une

autre nature. Ainsi, lorsque la force musculaire d’un animal, ou tout autre force, agit’sur unnbsp;corps par 1’intermédiaire d’une corde attachée a sanbsp;surface, nous pouvons toujours concevoir que cettenbsp;force soit équivalente a un certain poids determine,nbsp;et nous pouvons m?me, sans changer sa direction,nbsp;remplacer son action par celle de ce poids, en Ienbsp;suspendant a l’extrémité de la corde, apr?s avoirnbsp;fait passer celle-ci sur une poulie fixe convenable-ment placée. Le poids fournit la mesure la plus commode de la masse •, sans le secours de la pesanteur, il serait, ennbsp;el?et, tres difficile de determiner le rapport des massesnbsp;de deux corps. On veiTa par la suite qu’on pourrait,



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;iii a la rigueur, Ie conclure du choc mutuel de ces corps; mais il est beaucoup plus simple de remplacer Ienbsp;rapport des masses par celui des poids, auquel il estnbsp;egal en chaque lieu de la terre, en vertu de 1’equation P=gM. Toutefois, on doit avoir une ideenbsp;préalable de l’égalité et du rapport des masses, in-dépendamment de la pesanteur, qui n’est qu’unenbsp;propriété secondaire des corps, puisqu’elle devien-drait tont-a-fait insensible, sans que les massesnbsp;eussent change, en les transportant a une distancenbsp;suffisamment grande de la terre. Nous i'eviendronsnbsp;sur ce point dans un autre endroit de eet ouvrage. 63. Puisque tous les points d’iin corps pesant sont sollicités par des forces parall?les, il s’ensuit que sinbsp;on lui fait prendre successiveroent

diverses positionsnbsp;par rapport a la direction de ces forces, leur résultante passera constamment par un certain point denbsp;Ce corps. Ce point, que nous avons appelé, en general, centre des forces parall?les (n“ 53), prend ici Ienbsp;particulier de centre de graoité. Sa -propriéténbsp;earactéristique dans les corps solides, qui ne sontnbsp;soumis qua la seule action de la pesanteur, consistenbsp;Cu ce que, s’il est supposé fixe, Ie corps auquel il ap-partient reste en équilibre dans toutes les positionsnbsp;possibles autour de ce point, puisque, dans toutesnbsp;ces positions, la résultante des forces appliquées anbsp;tous les points du corps vient passer par Ie pointnbsp;fixe. On concoit aussi que quand un corps solide pesant est retenu par un autre point fixe, il est nécessaire et il suflit, pour 1’équillbre, que la droite



113 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. qui joint ce point et Ie centre de gi’avité soit verticale; ce centre pouvant d’ailleurs se trouver au-dessus OU au-desscus du point fixe. En ef?’et, Ie poids du corps étant une force verticale appliquée a sonnbsp;centre de gravité, sa direction co?ncidera, dans cettenbsp;hypoth?se, avec la droite qui joint ce centre et Ienbsp;point fixe, on avec son prolongement; par conséquent , cette force sera détruite par la resistance dunbsp;point fixe, comme si elle y était immédiateinent appliquée. Par la m?me raison, si Ton suspend un corps solide pesant a un point fixe, par Ie moyen d’un fil dont rextrémité inférieure est attachée a un pointnbsp;de sa surface, la direction de ce fil sera verticalenbsp;dans l’état d’équilibre, et son prolongement ira passer par Ie centre de gravité du corps. II en

sera denbsp;m?me si l’on suspend, une ou plusieurs autres fois, cenbsp;m?me corps au point fixe, en attachant l’extrémiténbsp;inférieure du fil a d’autres points de sa surface. Lesnbsp;prolongemens du fil, tracés successivement dans l’in-térieur du corps, s’y couperonl a son centre de gravité; ce qui fournit un moyen pratique de determiner la position de ce centre dans un corps denbsp;forme quelconque, homogene ou hétérog?ne. Dans toutes les questions d’équilibre relatives a un corps solide, on pourra faire abstraction de lanbsp;pesanteur de ses diverses parties, pourvu qu’onnbsp;ajoute aux autres forces données qui agissent surnbsp;ce corps, une force égale a son poids, et appliquéenbsp;verticalement a son centre de gravité. Ainsi , parnbsp;exemple, dans Ie cas de l’équilibre du levier, il fau-



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;ii3 dra comprendre au nombre des forces donuées dont la somme des momens doit ?tre nulJe, par rapportnbsp;au point d’appui (nquot; 4?) gt; 1Ž poids du levier agis-sant a son centre de gravité suivant la direction denbsp;la pesanteur. 64. Lorsque Ton connait les centres de grayité G et G' des deux parties d’un corps, et leurs poids pnbsp;et p', on en déduit immédiatement Ie centre de gra^nbsp;Vité K de ce corps; car ce centre est Ie point d’ap-plication sur la droite GG', de la résultante des forcesnbsp;parall?les p et p', qui agissent dans Ie niéme sens anbsp;ses extrémités G et G'; et, pour en determiner lanbsp;position, on a conséquemment GK : GG' :: p' 4 p -i- p'- De m?me, si Ton connait les centres de gravité K et G d’un corps et de Tune de ses parties, et que lesnbsp;poids du corps

et de cette partie soient P etp, onnbsp;en conclura Ie centre de gravité G' de l’autre partie;nbsp;car ce point sera situé au-dela du point K sur Ie pro-longement de la droite GK, et sa distance au point Gnbsp;sera déterminée par la proportion GG' : GK :: P : P — p. Si uu corps est divisé en un nombre quelconque de parties dont les poids et les centres de graviténbsp;soient connus, on en poin’ra déduire son centre denbsp;gravité par une suite de proportions; mais il con-viendra mieux de déterminer ses trois coordonnéesnbsp;au raoyen du théor?me i’elatif aux momens desnbsp;forces parall?les (nquot; 54).j. nbsp;nbsp;nbsp;8



854 TRAITÉ DE MÉCANIQUE. Soient, pour cela, p, p', pquot;, etc., les poids des différentes parties du corps, et P son poids total, denbsp;sorte qu’on ait P == p -f- p' pquot; -|- etc. Soientaussi , j, z, les coordonnéesdu centre de gra-vité de la partle dont p est Ie poids; oc', j', z', celles du centre de gravité de la partie dont Ie poids estnbsp;p'; etc. Toutes ces quantités seront données par bj-poth?se; et si l’on appellenbsp;nbsp;nbsp;nbsp;z,, les coordonnées du centre de gravité du corps entier, rapportées aux m?mes axes que les précédentes, on aura, d’apr?snbsp;Ie théor?me cite, Pj?, ; Pz. : px p'x' pquot;xquot; etc., , PJ Pgt;' H-pY' etc., : pz pV -J- pquot;zquot; etc. ; ce qui fait connaitre les valeurs de nbsp;nbsp;nbsp;Zy. 65. On peut, dans ces equations, remplacer les poids par les masses auxquelles ils sont proportion-nels.

En désignant done par m, m', mquot;, etc., lesnbsp;masses des différentes parties du corps dont les poidsnbsp;sont représentés par p, p', pquot;, etc., et représentantnbsp;par M la masse totale, de sorte qu’on ait M = /n to' mquot; -f- etc., il en résultera Mx, = mx -j- to'x' -j- toV etc., i Mj, = mj H- m'f my -f- etc., gt; (i)nbsp;Mz. = mz m'z' -f- toV etc,; )



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;ii5 ce qui montre que Ie centre de gravité est indépen-dant de l’intensité de la pesanteur, et qu’il sera tou-? jours Ie m?me point du corps, a différentes latitudesnbsp;et a difFe'rentes hauteurs au-dessus de la surface de lanbsp;terre. En considérant que ce point ne suppose pas Taction de la gravité, etqu’il ne depend que des masses etnbsp;de leur disposition respective , Euler et d’autres auteurs Tappellent centre d’inertie; mais la dénomi-Dation de centre de gravité a plus généralementnbsp;prévalu. Si la masse M a été divisée en un nombre infini de parties infiniment petites m, m', nfi\ etc,, on pourranbsp;prendre tel point qu’on voudra de chacune d’ellesnbsp;pour son centre de gravité, puisque les coordonnées,nbsp;suivant chaque axe de tous les points d’un m?me élément, ne

différeront entre elles que d’un infinimentnbsp;petit. Les seconds membres des equations (i) se com-poseront alors d’une inlinité de termes infinimentnbsp;petits, dont les sommes seront des intégrales défi-nies, d’apr?s Ie théor?me du n° i3 étendu aux intégrales multiples. Par conséquent, on pourra toujours,nbsp;par les regies du calcul intégral, déterminer exacte-ment ou par approximation Ie centre de gravité d’unnbsp;corps quelconque, saus connaitre celui d’aucune denbsp;ses parties. Dans uu corps dont toutes les parties sont homo-g?nes, leurs masses sont entre elles comme les volumes j on peut done alors substituer les volumes aux masses, dans les équations (i)j et si Ton représentenbsp;par V Ie volume entier, et par v, d, d', etc., sesnbsp;parties correspondantes a m , m', etc., on aui'a8..



, i6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. V = 4--f-1'quot; nbsp;nbsp;nbsp;, Yx, =vx-^ v'x'-\- nbsp;nbsp;nbsp;etc., V/. =vj ^ v'j' v''y 4- etc., Vzi =vz 4-/z' f^V' etc. Le point qu’on determine par ces equations est Ie centre des forces parall?les appliquées a tous les pointsnbsp;d’un corps, et proportionnelles aux élémens de sonnbsp;volume; ce point s’appelle le centre de gravité dunbsp;volume, quoiqu’un volume n’ait ni masse ni pesan-teur. On appelle aussi centre de gravité d’une surfacenbsp;OU d’une ligne, le centre des forces parall?ies appliquées a tous leurs points, et proportionnelles a leursnbsp;élémens. On déterminera ses coordonnées en rem-placant, dans les équations précédentes, les volumesnbsp;V, V, v', d’, etc., soit par les aires de la surface et denbsp;ses parties, soit par les longueurs de la ligne et de

sesnbsp;parties. 66. Les masses M, m, m', m'*, etc., et les distances rnutuelles de leurs centres de gravité, sont llées entre elles par une equation facile a déduirenbsp;des equations (i). Pour cela, placons l’origine des coordonnées au centre de gravité de M; ces équations deviendront mx 4“ m'x' 4“ mquot;xquot; -j- etc. = o, mj- 4quot; ~h nd'y -f-etc. = o,nbsp;mz 4- in'z' 4- tni'zquot; 4- etc. = o. En faisant le carré de la premi?re, on en conclut 4- nbsp;nbsp;nbsp;4- rd'^xquot;’^ 4- etc. = .— zmm'xx' — 2mm’'xx’'— 2m'm’'x'xquot; — etc.



STA?IQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;117 J’ajüute, aux deux nombres de celte equation, la quantité m (m' -f- mquot; etc.) x* m' (in -f- m!' etc) oc'^- n^quot;(77^ m' etc.) etc.; d eti résulte M {inx' nbsp;nbsp;nbsp; mVŽ etc.) = mm' [x — x'y mmquot; (.r — xquot;y m'mquot; (x' — xquot;y -f- etc. La seconde et la troisi?me equation (i) donneront de ni?me M (mjrŽ m'j’’^ 7wyŽ etc.) = mm' (y —y'y mmquot; (^y —yquot;y -|- m'mi' (y' —yquot;y etc,, M (mzŽ m'z'quot; nbsp;nbsp;nbsp;etc.) = mm' (z— z')Ž min!' (z — zquot;y m'mquot; (z'— zquot;)Ž -f- etc. Or, si nous ajoutonsces trois derni?res equations, et que nous fassions XŽ jr’ nbsp;nbsp;nbsp;= Tquot;Ž, x'Ž yŽ z'Ž = r Ž, x''Ž yŽ4-z''Ž = rquot;Ž,nbsp;etc., (x —a:'y-\-(y —y)“-|-(2 —z'y = y,— ^'7 (7 ~fy nbsp;nbsp;nbsp;— z'OŽ = p'Ž, (x' _ a:quot;y (j' -fy (^' - ^'7 = 17 etc., nous aurons M (mrŽ m'r'“

4- mV'Ž etc.) = mm'f mmquot;p''‘ m'mquot;fJ'^ etc.,



ii8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. pour l’équation qu’il s’agissait d’obtenir, et dans la-quelle p, p', pquot;, etc., sont les distances mutuelles des centres de gravite' de in, m', m”, etc., et r, r', rquot;, etc.,nbsp;les distances de ces points au centre de gravité de M. 67. On de'duit aussi des equations (i) une pro-prlélé curieuse de Tequilibre d’un point materiel enti?rement libre. Voici en quoi elle consiste. Soit 0 (fig. aS) Ie point en e'quilibre ; représen-tons en grandeurs et eh directions, par les droites OA, OA', OAquot;, etc., les forces qui Ie sollicitent; sinbsp;leurs extrémités A, A', Aquot;, etc., sont les centres denbsp;gravité de masses égales, Ie point 0 sera Ie centrenbsp;de gravité de qe syst?me entier. En effet, en appliquant les équations (i) a ces masses, et supposant que n soit leur nombre, onnbsp;aura nx, —x-j-

x'-{-xquot;-\-etc., nji ~J y ƒ' etc.,nbsp;nz, z z' z” etc. D’un autre cóté, si 1’on désigne par a, y, les angles que fait la force OA avec trois axes rectangulaires menés par Ie point 0; par a!, 6', y', ce que ces anglesnbsp;deviennent relativement a la force OA'; paraquot;, Cquot;, yquot;,nbsp;ce qu’ils deviennent relativement a la force OA^'; etc.,nbsp;les équations d’équillbre de ces forces seront OA cos at H- OA' cos aJ -j- OAquot; cos aquot; etc. = o, OA cos ? “fquot; OA' cos C -f- OA cos Cquot; -(- etc. = o,nbsp;OA cos y -f- 0A' cos y'-jr OAquot; cos yquot; -[- etc. = o. Or, en placant Torigine des coordonnées au point O,



STATIQUE, PREMI?RE PARTIE. tgt;n aura X = O A cos a , ƒ = 0 A cos Q , z = 0 A cos y , x' = OA' cos cc', y — OA' cos z' — OM cos y',nbsp;^?'=OA'cosa', / = OAquot;cos?', s' = OA'cosgt;',nbsp;etc., pour les coordonnées des points A, M, M', etc. En vertu des equations d’équilibre, on aura done x-\-x' y M' etc. = o, J 4-y f' etc. = o,, z -\-z' yzquot; -f-etc. = ojnbsp;d’oü 1’on conclut x, = 0, J, = o. pour les coordonnées du centre de gravité des masses égales; par conséquent, ce centre co?ncidera avec Ienbsp;point O; ce qu’il s’agissait de démontrer. 68. 11 y a beaucoup de cas particuliers oü Ie centre de gravité est immédiatement connu. Ainsi, Ie centrenbsp;de gravite d’une sphere ou d’un ellipso?de est évi-demment au centre de figure; celui d’un parallélé-pip?de, a l’intersection de ses quatre diagonales; celuinbsp;d’un cylindre a bases

parall?les, au milieu de son axe.nbsp;Le centre de gravité d’un eerde ou d’une ellipse estnbsp;aussi au centre de figure, et celui d’un parallélo-gramme, al’intersection des deux diagonales.Le centrenbsp;de gravité d’une ligne droite est le milieu de cettenbsp;droite; d’ou l’on conclut sans difiiculté le centre denbsp;gravité du contour d’un polygone quelconque, soitnbsp;par une suite de proportions (n° 64) gt; soit par les



i'2o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Equations des momens des forces parall?les. On voit de m?me que quand on aura trouvé les centres denbsp;gravité d’un triangle et d’une pjramide triangulaire,nbsp;on en déduira, par i’un ou l’autre de ces deux moyens,nbsp;les centres de gravité d’un polygone et d’un poly?drenbsp;donnés, que l’on peut toujours décomposer, soit ennbsp;triangles, soit en pyramides triangulaires. Mais, en général, la détermination des centres de gravité exige I’emploi du calcul intégral; et dans Ienbsp;chapitre suivant nous allons donner tous les détailsnbsp;qu’on peut désirer sur ce probl?me.



STATIQUE, PREMI?RE PARTIE. 'VV\^W\fVV\'VV\ VVMW^\iXH/W\/VW/W\(VWVV*VV''W^/VVMVV%/W\iVWV\A.WWVV\'Wgt;fWMVVH'WV'VV^iWgt;iWWWWVfVVgt;CHAPITRE V. DÉTERMIIVATION DES CENTRES DE GRAVITE. § i'quot;’. Centres de gravit? des lignes courbes. 69. Soit j’ Fare de la courbe donnée, aboutissant a un point quelconque M, et compté a partir d’un pointnbsp;fixe que j’appellerai C. Soient aussi x,j-, z, les troisnbsp;coordonnées rectangulaires de M. On considérera cettenbsp;courbe comme un polygone d’une infinite de cótés;nbsp;ds sera Ie cóté ou Télément de la courbe qui répondnbsp;au point M; et quelque part que soit Ie centre denbsp;gravité de eet élément, on prendra x, z, pour sesnbsp;trois coordonnées, qui ne sauraient, effectivement,nbsp;difFéi’er de x, j, z, que de quantités infiniment pe-

tites. Appelons l la longueur de la partie déterminée de la courbe dont il s’agit de déterminer Ie centre denbsp;gravité; et représentons par et s, les valeurs don-nées de s qui répondent aux deux extrémités de l.nbsp;Soient jc,, j',, z,, les coordonnées du centre de gravité de cel are Z, rappoi’tées aux axes des x, J, z.nbsp;Dapr?s Ie théor?me du nquot; i3, la somme des valeurs de chacun des produits xds,nbsp;nbsp;nbsp;nbsp;dans toute 1 étendue de sera une intégrale définie prise de-puis s-=.s^ jusqu’a ^ = .9,, en regai'dant x, r, z,



123 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAISTQUE. comme des fonctions de s données par la nature de Ia courbe que Ton consid?re. Nous aurons done (n° 65J lx ^=J''xds, nbsp;nbsp;nbsp;zds, (i) pour les trois equations qui serviront a determiner XifJ^ij Zj. Supposons, par exemple, que la ligne donne'e soit une droite, et que sa partie l aboutisse au point C,nbsp;de sorte qu’on ait s'o = o et = l. Désignons parnbsp;a, ^, y, ies trois angles que fait cette partie l avecnbsp;des axes menés par Ie point C suivant la direction desnbsp;x,j, z, positives; soient aussi a, b, c, les trois coor-données du point C; pour Ie point quelconque M nousnbsp;aurons x = a-j-scosa, b-{-s cos ë, z = c -{-scosy. Je substitue ces valeurs dans les equations (i); et en effectuant les integrations et divisant ensuite par l,nbsp;il vient x,=ö-f-|Zcosa, j, = b-\-{lcosC, z,—o-f-

jkos^; ce qui montre, comme cela devait ?tre, que Ie centre de gravité de la droite l est situé a son milieu. zo. Lorsqu’il s’agira d’uiie courbe plane, et qu’on pi’endra son plan pour celui des a? et jp, il sufFira desnbsp;deux premi?res equations (i) pour determiner la position de son centre de gravité dans ce plan. Si, denbsp;plus, la portion l de la courbe est symétrique denbsp;part et d’autre du point C, on aura 5^^=— 5, = Je centre de gravité sera situé sur la nor-



S?ATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i23 ?iiale au point C; et en prenant cette droite pour l’axe des^, il suffira de determiner Ia valeur de qui seranbsp;dounée par l’équation Zjj, nbsp;nbsp;nbsp;_ ^jcds. L’arc de eerde est compris dans ce cas particulier, en prenant pour axe des x, Ie diam?tre qui passe parnbsp;son milieu. Si Ton place en m?me temps l’origine desnbsp;coordonnées au centre du eerde, et qu’on appelle anbsp;son rayon, on aura JC: : a cos pour l’abscisse du point quelconque M. On en con-clut lx. = aa* sin —: ia’ et en appelant c la corde de l’arc Z, on aura hcy i c — ia sin- ee qui montre que la distance x, du centre de gra-vitë d’un are de eerde au centre du eerde, est qua-tri?me proportionnelle au rayon, a la corde et a l’arc. ri. Tune des deux variables x et j en fonction de l’autre. Si l’on suppose la

valeur de j donnée en fonctionnbsp;de X, on prendra L’e'quation de la courbe plane fera connaitre



124 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. et en appelant a et € les valeurs de jc qui re'pondent aux deux extrémités de l’arc l, on aura, au lieu desnbsp;equations précédentes. ? (2) Si la courbe donnée est une section conique, on ob-tiendra sous forme linie, par les regies ordinaires, les valeurs des intégrales contenues dans les deux der-ni?res equations (2). Dans Ie cas de la parabole, onnbsp;obtiendra de m?me la valeur de l’intégrale que ren-ferme la premi?re de ces equations; en sorte que lesnbsp;deux coordonnées du centre de gravité d’un are denbsp;parabole pourront toujours s’obtenir en fonctions desnbsp;abscisses at et ^ de ses extrémite's. D’apr?s un théor?menbsp;de Landen, Fare d’hyperbole s’exprime au mojennbsp;de deux arcs d’ellipse et d’une partie algébrique;nbsp;quant a l’arc d’ellipse, on Ie regarde

comme une fonc-tion irre'ductible a d’autres fonctions plus simples; etnbsp;M. Legendre a calculé des tables fort e'tenduesde cettenbsp;fonction, qui en font connaltre les valeurs numéri-ques avec une grande approximation. Par conséquent,nbsp;lorsque les valeurs numériques de at et C et celles desnbsp;axes de Fhyperbole ou de Felllpse seront données,nbsp;il sera facile de calculer la valeur de Z, et par suitenbsp;les coordonnées a?, et y, du centre de gravité d’unnbsp;are appaiTenant a 1’une ou 1’autrc de ces deux courbes.



STATIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;laS 72. Je prendrai l’arc de cjclo?de pour un autre exemple de Fapplication des equations (2). Dansnbsp;cette courbe, la longueur, l’aire, la sui'face et Ienbsp;volume engendrés par sa revolution, et les coor-données de leurs -centres de gravité, se détermi-iient exactement. La construction de la tangen te ennbsp;point quelconque de cette courbe est aussi tresnbsp;simplej sa développée est une autre cyclo?de; et, denbsp;plus, par une série de développemens successifs, unenbsp;courbe quelconque approche de plus en plus de senbsp;confondre avec la cyclo?de, et s’y confondrait l?gou-reusement a l’infini (*). C’est encore la cyclo?de quenbsp;1’on trouve, comme 011 Ie verra par la suite, lors-qu’on cherche la courbe qui jouit des propriétés lesnbsp;plus remarquables, par

rapport au mouvement cur-viligne des corps pesans. Cette reunion singuliere d’unnbsp;grand nombre de propriétés curieuses et de naturenbsp;différente sur une m?me courbe, en rend la considé-cation trés utile et trés fréquente en Géométrie etnbsp;dans la Mécanique. Void comment on obtient sonnbsp;equation. La cyclo?de est une courbe plane ACB (fig. 24 ) , engendrée par un point déterminé M de la circon-férence d’un cercle pendant qu’il roule sans glissernbsp;sur une droite AB. Si le point générateur se trouvenbsp;d’abord au point A, et qu’il arrive ensuite au pointnbsp;B de cette droite, Tinterv alle AB sera égal a la cir-conférence du cercle donné; on voit aussi que son (?’') Journal de rÉcole Polylechnique, i8' cahier, page /jSi



ia6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. cliam?tre sera e'gal a la perpendiculaire CD, abais-sëe du sommet C de la cjclo?de sur AB, et qui di-vise la courbc en deux parties symétriques. En appelant c Ie rayon du eerde donné, on aura done AB = nbsp;nbsp;nbsp;CD = Dans une position quelconque du eerde, soient HG son diam?tre perpendieulaii'e a la base AB, et Hnbsp;son point de contact avec cette drolte. Du point M,nbsp;abaissons les perpendiculaires MP et MK sur AB etnbsp;GH, et faisons PMAP = p nous aurons AH = AP -f- MK = p -f- \/2cq — nbsp;nbsp;nbsp;, v/aegr — q- c. are ( sin \ are MH Mais Ie eerde gënérateur tournant sans glisser sur la droite AB, il s’ensuit qu’on a constamment AH = are MH; l’ëquation demandée de la cyclo?de sera done p -f- \/2.cq — nbsp;nbsp;nbsp;= c.arc ^sin=nbsp;nbsp;nbsp;nbsp;; p

et q étant les coordonnées courantes. En la diffërentiant, on a dp \/ 2cq — pour son equation différentielle. On en conclut que



STATIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;127 les deux cordes MG et MH du eerde générateur sont la tangente et la normale a la cyclo?de qui re'pondentnbsp;au point M. En determinant par la formule connuenbsp;son rayon de courbure au ra?me point, on Ie trouvenbsp;égal au double de MH; d’oü il re'sulte qu’en prolon-geant MH d’une quantité HN égale a MH, Ie point Nnbsp;sera Ie centre de courbure. En faisant de m?me lanbsp;droite CDE double de CD, Ie point E sera Ie centrenbsp;de courbure qui répond au sommet C; et de la onnbsp;eonclut aisément que la développée ANE de la demi-cyclo?de AMC est la m?me courbe, i'enversée denbsp;manl?re que son sommet C solt transporté en A etnbsp;son origine A en E. II s’ensuit que la longueur denbsp;ANE OU de AMC est égale a la droite CDE, et que,

parnbsp;conséquent, la longueur totale de la cyclo?de est égalenbsp;a qualre fois Ie diam?tre de soa eerde générateur. 73. Dans les usages que nous ferons de cette equation, il sera plus commode de transporter l’origine des coordonnées au sommet C (fig. aS ). Je pren-drai pour axes des a? et des jr les droites Cx et Cy,nbsp;Perpendiculaires et parall?les a la base AB. En abais-sant du point quelconque M une perpendiculaire MPnbsp;SRr Ca:, on aura doneCP = X, MP = j; et si l’on compare ces coordonnées aux précédentes, et que l’on appelle a Ie diam?tre CD du eerde géné-i’ateur, on voit que P = i '^a — y, q = a — x; done, en subslituant ces valeurs dans l’équation dif-



128 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. férentielle de la cyclo?de, et mettant aussi a au lieu de elle deviendra [/ ax — x^ ds = ^ ^ dx. {a) {a — x) dx II en résulte En prenant l’intégrale de mani?re qu’elle s’evanouisse quand x = o , on a ^ = 2 \/ ax , pour la longueur de 1 are CM, dont l’origine est au sonimet C. Au point A, on a x = a; ce qui donne,nbsp;comnie précédemment, ia pour la longueur de lanbsp;demi-cjelo?de CMA. On peut remarquer quej“=4^xnbsp;est une equation de la cyclo?de semblable a cellenbsp;de la parabole, dont elle ne diff?re qu’en ce quenbsp;l’ordonnée j s’y trouve remplacée par l’arc s. En appliquant les deux derni?res equations (2) au centre de gravité de Fare CM, nous auronssx,=j'x\/-^dx, sj,z=j'j sj^dx, oü 1’on prendra les intégrales de mani?re qu’elles s’évanouissent avec x. En y mettant pour s sa

vaquot;nbsp;leur, il en résulteIX, \/x =f\/xdx, IJ, s/x = f J y X On aura done M nbsp;nbsp;nbsp;i 'V' • tA. J —— nbsp;nbsp;nbsp;2nbsp;nbsp;nbsp;nbsp;gt; d’oü Ton conclut d’abord que Ie centre de gravité



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;129 d’ua are M'CM symétnque de partei d’autre du som-raet C, qui doit apparteoir a la droite CD, se trouve au tiers de CP, a partir du point C. En integrant par partie, on a = 2j\/a: — 2/’ s/oedj. J y X Si Ton substitue pour dj sa valeur donnée par l’é-quation (a), on aura donej, S/x = j \/x — J \^a •— X dx, et, par conséquent. — /— = [(lt;z — a;)* ?— a Va\ ; ce qui, joint a la valeur de x^, determine compl?-tement Ie centre de gravité de Vare CM. Dans Ie eas de la demi-cyclo?de, on a a? = a et y' = anbsp;d oü il résulte 0-jr. = 74- Quand une courbe plane tourne autour d’une droite comprise dans son plan et que je prendrai pournbsp;1’axe des abscisses, elle engendve une surface de revolution dont l’étendue peut se déduii-e de la longueur de cette courbe et de Tordonnée de son

centrenbsp;de gravité. Pour Ie faire voir, soient x et j l’abscisse et l’or-donnée du point quelconque M de cette courbe, et s l’arc CM aboutissant a ce point et compté d’un pointnbsp;üxe C; l’élément ds engendrera la surface d’un cóne gt;• nbsp;nbsp;nbsp;9



,Jr i3o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. tronqué, et son milieu décriraime circonféi’ence égale a 27r {j'^ djquot;), Ou simpleinenta a cause quenbsp;dj' est un infiniment petit. D’apr?s la régie connue,nbsp;on aura done oTrjds pour eet élément de surface.nbsp;Done, si l’on appelle i', et les valeurs de s qui i’é-pondent aux deux extrémités de la courbe généra-tidce, et S la surface engendrée, on aura, d’apr?s Ienbsp;théor?me du n” i5, ?XTC'f.y*- On remarquera que cette expression suppose que la courbe génératrice n’est pas coupée par l’axe desnbsp;X, sans quoi ses parties situées des deux cótés de eetnbsp;axe décriraient deux surfaces différentes, dont S n’ex-primerait plus que la différence. Avec cette restriction , elle subsistera encore lorsque la génératricenbsp;sera une courbe fermée; et, pour l’appliquer a cenbsp;cas,

il suffira de prendre pour l’arc augmenté denbsp;la circonférence enti?re de cette courbe. Cela posé, si l’on compare cette formule a la troi-si?me équation (2), on en conclut nbsp;nbsp;nbsp;^ S = 27r^,; ce qui montre que la surface engendrée S est égale a la longueur l de la courbe génératrice, multipliéenbsp;par la circonférence aTr/, que décrit son centre denbsp;gravité. Ce tbéor?me servira a déterininer la valeur de S toutes les fois que Ie centre de gravité de la génératrice sera connu sans aucun calcul, et, pour ainsinbsp;dire, a I’inspection de cette courbe ,• il ne servirait



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i3i plus a rien s’il fallait calculer l’ordonnée j-,, puis-que ce calcul serait Ie m?me que celui de S. En sup-posant, par exemple, que la courbe génératrice soit un eerde; dësigna-nt par a son rayon, par c la distance de son centre a I’axe de rotation, et supposantnbsp;qu’on n’ait pas c a , on aura / = 27r^^, j, z= c, et, par consequent, S = Quand le cercle touchera I’axe de rotation, on aura c — a, et la surface engendrëe sera équivalente aunbsp;carré dont le cóté est égal a la circonférence 27ranbsp;du cercle générateur. § II. Centres de gravité des surfaces. 75. Soient toujours nbsp;nbsp;nbsp;les coordonnées dun point quelconque M, et .r,, j,, z,, celles du centre de gravité qu’il s’agit de délerminer. Je consid?re znbsp;comme une function donnée de x et j'; je fais dz _ dz _ dx P *

djquot; ^ * et j’appelle m rélérnent de la surface donnée qui ré pond au point M; on aura (n° 21) ü) = dxdj \/i Quel que soit le point de agt; oü se trouve Ie centi’e de gravité de eet élément, ses coordonnees différe-ront infiniment peu de x, z^ on pourra done9-.



132 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. prendre ?x, cdj'-, ooz, pour les momens de ? par rapport aux trois plans des coordonnées, et il ennbsp;résultera (nquot;Ž 15 et 65 ) X=ffco, Xx,=ffxa), Xj,z=ffjagt;, Kz,=zffzm; A e'tant l’aire de la portion de surface dont on de-mande Ie centre de graylté, et les intégrales doubles s’étendant a tous les éléinens de A. Dans Ie cas d’une surface plane, et en prenant son plan pour celui des oc et j-, les quantités pnbsp;et q seront nulles, et l’on aura seulement a con-sidérer les trois equations A = ƒfdxdj, Ax, = ffxdxdj, Xj, = ffjdxdj. Supposons que A soit alors terminée par la courbe ABC (fig. 26); a chaque abscisse x ou OP répon-dront deux ordonnées PM et PN, que je représen-terai par j et j', et qui seront données en fonc-tions de x par 1 equation de cette courbe. Soientnbsp;aussi et et C les

abscisses OD et OE des points Anbsp;et B ou les tangentes sont parall?les aux ordonnées, Les intégrales devront ?tre pi’ises, d’abord de-puis j = PN jusqu’a j — PM , et ensuite depuisnbsp;X = a et X = ^; et il en résultera C {j — j') doe, J ct (0 /C ^ (j f)ocdx, Au lieu d’etre circonscrite par une courbe fermée



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i33 ABC, si Faire A est comprise entre deux courbes dif-férentes et entre deux droites parall?les a Faxe Oj des ordonnées, on tirera de Féquation de la courbenbsp;superieure Ia valeur de jy, et de Fe'quation de lanbsp;courbe infeVieure celle de j', et l’on prendra pournbsp;a et S les distances de ces deux parall?les au pointnbsp;O. Dans Ie cas Ie plus ordinaire, la courbe. inférieure sera reniplacée par Faxe Ox des abscisses; onnbsp;aura done = o , et slmplement^x,z=J'^jjcda:, nbsp;nbsp;nbsp;(2) pour determiner Faire et Ie centi’e de gravité d’une portion de surface plane comprise entre une courbenbsp;donnée, Faxe des abscisses et deux ordonnées denbsp;cette courbe. Observons aussi qu’on parvient dlrectement aux equations (i) de la mani?re suivante. Je partage Faire

ABC en élémens tels que MNN'M/, • nfiniment minces et parall?les a Faxe Ojr. J’appelle u la longueur de la droite MN; par ses deux ex-trémités M et N, si Fon m?ne des parall?les a Faxenbsp;Ojc, on ajoutera a Félément MNN'M', ou Fon ennbsp;retranchera, des triangles infiniment pelits du second ordre, qui n’en altéreront pas la grandeur;nbsp;par conséquent, eet élément sera égal a udx. Sinbsp;Fon désigne par e la distance du milieu de MN anbsp;Faxe Ox, on pourra prendre x et if pour les deuxnbsp;coordonnées du centre de gravité de eet élément;nbsp;car il est evident qu’elles n'en pouxTOul dilférer quenbsp;de quantités infiniment petites. D’apr?s les autres



134 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. notations précédentes, on aura done X=j'^udx, Xx^=J' xudx, nbsp;nbsp;nbsp;vudx. (3) D’aiileurs, j et j' étant toujours les ordoane'es PM et PN qui répondent a une m?me absdsse quel“nbsp;conque, on a aussi u — j — nbsp;nbsp;nbsp;V = 1 (j 4- j') ; ce qui fait co?ncider ces derni?res formules a vee les equations (i). 76. Pour premier exemple, je suppose qu’on de-mande Ie centre de gravité du triangle ABC (fig. 27). Je place l’origine des coordonnées au sommet C, et je prends l’axe des x perpendiculaire a la basenbsp;AB; je reprësente cette base par b, et la hauteur CDnbsp;par h. Par Ie point quelconque P appartenant a CD,nbsp;je m?ne la perpendiculaire MN a cette droite; CP etnbsp;MN seront les variables x ei u, et l’on aura la proportion bx T' u \ X :: b h, de

laquelle on tire On aura, en outre, a = o et C=^ h. Au moyen de ces valeurs, les deux premi?res equations (3) don-neront A = \ b}i, Xx^ — ~bh^-, d’oü il re'sulteX, =: I A. On n’aura pas besoin de calculer la valeur de J ^



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i35 car si E est Ie milieu de AB, et qu’on tire la drolte CE, elle coupera en deux parties égales tons les élé-niens du triangle parall?les a AB, et contiendra, con-séquemment, son centre de gravité. Si done on prendnbsp;sur CD une par tie CF = I CD = X,, et qu’on él?ve la drolte FG perpendiculaire a CD, Ie point G oü elle rencontrera CE sera Ie centre de gravité du triangle. La droite FG coupant CD et CE ennbsp;parties proportionnelles, on aura aussi CG = I CE; ce qui montre que Ie centre de gravité d’un triangle se trouve sur la droite qui joint son somrnet au milieu de sa base, aux deux tiers de cette droite a par-tir du somrnet, on au tiers a partir de la base. 77. On démontre aussi ce théor?me sans Ie se-cours du calcul integral. En et?et, par la decomposition du triangle ABC (fig. 28)

en élémens parall?les au cóté AB, on prou-vera que son centre de gravité se trouve sur la droitenbsp;CD, qui joint Ie somrnet C au milieu D de ce cóté.nbsp;Eu Ie décomposant en élémens parall?les au cóté CA,nbsp;on prouvera de m?me que ce centre de gravité estnbsp;aussi sur la drolte BE qui va du somrnet B au milieunbsp;E de CA; ce point sera done situé a I’intersection Gnbsp;des deux droites CD et BE. Or, si l’on tire la droitenbsp;DE, elle sera parall?le a CB, puisqu’elle coupe CAnbsp;et AB en parties proportionnelles; il en i’ésulteranbsp;done



136 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. DE ; CB :: AD ; AB :: 1:2, DG : CG :: DE : CB ;; 1:2; en sorte que DG sera la moitié de CG, et, consé-quemment, Ie tiers de CD; ce qu’il s’agissait de dé-montrer. On en peut conclure que les trois droites qui vont des sümmets d’un triangle aux milieux des cótés opposes, doivent se couperen un m?me point; ce quinbsp;est conforme a un théor?me connu. Si les sommets A, B, C, du triangle sont les centres de gravité de trois masses égales, Ie centre de graviténbsp;de ces trois corps co?ncidera avec celui du triangle;nbsp;car Ie centre de gravité des deux masses qui répon-dent a A et B se trouvera d’abord au milieu D de lanbsp;droite AB; et ensuite Ie centre de gravité de ces deuxnbsp;masses et de la trolsi?me sera Ie point G de la droite CD,nbsp;tel que GD est

moitié de CG ou Ie tiers de CD. II suit de la et du tbéor?me du n° 67, que si l’on applique au centre de gravité G d’un triangle, desnbsp;forces représentées en grandeur et en direction parnbsp;les droites GA, GB, GC, qui vont de ce point auxnbsp;trois sommets, ces trois forces seront en équilibre. 78. Connaissant Ie centre de gravité d’un triangle, on en déduit successivement ceux d’un secteur et d’unnbsp;segment circulaires. Soient CADB (tig. 29) Ie secteur, et C Ie centre du eerde. Si I on considere l’arc ADB comme une portion de polygone d’une infinite de cótés égaux, onnbsp;pourra decomposer Ie secteur en élémens triangulairesnbsp;aussi égaux, qui auront tous ces cótés pour bases et



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;137 leur sommet commun au point C. On appliquera en-suite la force qui agit sur chacun de ces élémens a son centre de gravité; et comme la distance au point C denbsp;chaque centre de gravité est les deux tiers du rayonnbsp;du eerde, il en résultera un syst?me de forces paral-l?les et égales , appliquées a tous les élémens de l’arcnbsp;décrit du point C comme centre, et d’unnbsp;rayon égal a | CD. Par conséquent, Ie centre de gravité du secteur sera Ie centre de ces forces parall?les,nbsp;c est-a-dire, Ie centre de gravité de eet are A'D'B'. Or,nbsp;en désignant par a, l, c, Ie rayon CD, l’arc ADB etnbsp;la corde AB, les quantités analogues, relativementnbsp;a A'D'B', seront ~a, fZ, fc; si done G est Ie centrenbsp;de gravité demandé, et qu’on fasse CG = on aura,nbsp;d’apr?s

Ie théor?me du nŽ 70, Maintenant, soient S, S', S,, les surfaces du secteur CADB, du triangle CAB et du segment ADBE; appe-lons G, G', G,, leurs centres de gravité, qui serontnbsp;cvidemment sur Ie rayon CD aboutissant au milieu Dnbsp;de l’arc ADB • si l’on désigne par x, x', x^, les distances de ces trois points au centre C, et qu’oa y applique des forces parall?les et proportionnelles a S, S',nbsp;gt; la premi?re sera la résultante des deux autres; ennbsp;considérant les momens de ces forces, on aura doneSar = S'ar' -|- S,ar,. On a, d’ailleurs, o.ac S = - al, X



?38 nbsp;nbsp;nbsp;TIUITÉ DE MÉCANIQÜE. En appelant h la hauteur CE du triangle dont la base est AB OU e, on a aussiS' — ^ch, nbsp;nbsp;nbsp;j?' = I Ji. Done, a cause de S. = S' —S = |(aZ —cA), l’équation des moniens deviendra j a^c = ch^ -f- 7 {al — cJi) x, j et elle fera connaltre la distance x, du centre de gra-vité du segment ADBE au centre du eerde. En observant que h: ; a cos ? : sa sin 3.a on en dëduira 4a* sin^X, Lorsque l’arc l est la demi-circonférence, on a I =7ra; Ie secteur et Ie segment coincident, ainsinbsp;que les distances x et x\, dont la valeur communenbsp;est Xz=X,= jg. Si 1’on prend successivement les trois sections coniques pour Ia courbe a laquelle re'pondent les formules (2), les integrations s’effectueront par les regiesnbsp;connues, et l’on pourra obtenir, sous forme linie,

lesnbsp;valeurs des deux coordonnées x, etj, du centre de



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;iSg gravité. J’indique eet example comme exercice de calcul, et je passe immédiatement a la determinationnbsp;du centre de gravite' de l’aire de la cyclo?de. Soit CPM(fig. 25) Ie segment dont on veut trou-Ver Ie centre de gravité; en désignant par jc etjy l’abs-cisse CP et l’ordonnée PM, comme dans l’équation (ö) du nquot; , il faudra que les intégrales contenuesnbsp;dans les formules (2) s’evanouissent quand x—o; etnbsp;en integrant par partie, ces formules deviendront X=.xj—foedj, )Aar. = •- xy — ifx^dj, V (4)Ar. = T rr* —f^jdj; ) les nouvelles integrales s’évanouissant aussi en méme temps que x. En vertu de l’e'quation [a), on a fxdy =f \/ax — x' dx-, TOais si N est Ie point oü Pordonnée PM rencontre Ie eerde décrit sur CD comme diam?tre, cette derni?renbsp;integrale

exprime Ie demi-segment circulaire CNP ;nbsp;en représentant, pour abréger, par y Paire de ce demi-segment , on aura done X = xy — y. Dans Ie cas oü Ie point M coincide avec Ie point A, on aura x = CD~a, j=:DA = ^7ra, et, par conséquent, A = Irta”.



i4o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. L’aire CAD de la demi-cjclo?de est done triple de eelle du demi-cercle CND, dont Ie rayon est | rt, ou,nbsp;autrement dit, l’aire de la cyclo?de enti?re est égale anbsp;trois fois celle de son eerde générateur. On aura aussi fx’^dy =fx s/ax — x^ dx, ou, ce qui est la m?me chose, fx’‘dj= \af \/ ax—x’^dx —f{\a — x)\/ax — x’quot; dx. La derni?re integrale s’obtient immédiatement; et a cause quelle doit s’évanoulr, quandx = o, nous au-rons 3 z=\xy-- \ay -{.i{ax ~ x^; equation qui fera connaitre la valeur de x, d’apr?s celle de A. Dans le cas de la demi-cycldide CAD, on Ton a, en m?me temps, x = a, j = ~7ra, y=.~7ra’^, A=|'^a% on en conclüra 7“ ~ 11' pour la distance de son centre de gravite a I’axe Cy. Ainsi, le centre de gravite de Faire enti?re de la cyclo?de se trouve aux sept-

douziemes de la hauteur CD,nbsp;a partir du sommet C. Relativement a un segment quelconque CMP, il reste a determiner I’ordonnee jr,; ce qui exige un cal-cul plus complique.



i4i STATIQUE, PREMI?RE PARTJE. 8o. En vertu de l’e'quation (a), on a fxjdj=ff \/ax — dx, et la valeur de peut s’ëcrire ainsi: d a — x)dx . a=ƒ a r dx 1/ ax — . ax — nbsp;nbsp;nbsp;J V/ ax — en faisant done, pour un moment, dx\/ ax — x'^ et supposant que cette integrale soit nulle comme toutes les au tres, quand x= o, on aura fzxx'l/'ax — x’‘ -{-{az ; d’oü il résultera fxfdf = A ajc* — i nbsp;nbsp;nbsp; ' afz \/ax — x“ dx.nbsp;nbsp;nbsp;nbsp;(5) Paree que l’on a fait y =: fsjax — x^dx, ön aura, en inte'grant par partie, fzS/ax — x'dx = zy — fydz. (6) Ön peul écrire l’expression dc' y sous la forme _I ^ r dx__ri{a^xydx_ ^ nbsp;nbsp;nbsp;4^ J \yax — x^ j \^ax — x‘- et en integrant par partie dans Ie second terme, il vient gt; = i a* r?? nbsp;nbsp;nbsp;~(-a — x\ v/ö.x—ƒ l/ ax—x\ix y ^ J nbsp;nbsp;nbsp;ax—x^nbsp;nbsp;nbsp;nbsp;/



42 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. d’oü l’on conclut yz=\a^z — nbsp;nbsp;nbsp;— jc) S/ax — A cause de \/ax —? x’‘dzz=:dx, on aura done ƒydz — nbsp;nbsp;nbsp;^ (ax —• x’). Je substitue ces valeurs de y et fydz dans l’équalion (6); il en i’ésulte fz{/ ax—x^dx~ nbsp;nbsp;nbsp;— 2(2**—V'ax —nbsp;nbsp;nbsp;nbsp;^dx—x’); ce qul change l’équation (5) en celle-ci ; fxjdj = f aJ^x 1 cix' — jx^ nbsp;nbsp;nbsp;— ^az(ia — x)\/ax — x‘.nbsp;nbsp;nbsp;nbsp;(7) Au moyen de cette valeur et de celle de z, savoir : (a — 2X\ COS = --- ] , Ia troisi?me e'quation (4) ne contiendra plus rien d’in-connu, et fera connaitre la valeur dey^, pour un segment quelconque CMP. Dans Ie cas de la demi-cjelo?de CAD, on aura X — a, z ?=. are (cos = — i) = -rr;nbsp;la formule (7) se réduira a et a cause de f = - Tra, la troisi?me

equation (4) donnera



143 S?ATIQÜE, PREMI?RE PARTIE. va . Ce qui, joint a la valeui’ de a?, du numéro précédent, déterminera compl?tement la position du centre denbsp;gravité. 81. Soit S l’aire d’une zone de surface de révolu-tion, comprise enti’e deux plans perpendiculaires a son axe de figure. Get axe renfermera le centre de gravité de S : je le prendrai pour I’axe des a?; et je dé-signerai par .r, la distance de ce centre a Forigine desnbsp;coordonnées, et par a et ? les distances a la m?me origine, des deux plans qui terminentS; la détermina-tion du centre de gravité de cette zone se réduira anbsp;celle de la valeur de Je decompose S en élémens dontcliacunsera Ia surface d’un cóne tronqué décrite par le cóté infinimenl petit de la courbe génératrice, córame dans le n° 74,’ celui fiui répond au point M de cette courbe dont les coor-données

sont x ei j, sera égal a o.'Kjs/dy’‘; ilnbsp;aura aussi son centre de gravité sur l’axe des x, etnbsp;f’on pourra prendre x pour la distance de ce point anbsp;^’origine des coordonnées, puisqu’elle ne pourra dif-férer de x que d’un infiniment petit. Ceia étant, onnbsp;aura (nquot;’ i3 et 65), (S) Sa:, cn considérant j comme une fonction de a:, donnée par l’équation de la génératrice.



44 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE, Si cette courbe est, par exemple, un are de cercle; que Ton place I’origine des coordonnéesa son centre,nbsp;et qu’on appelle a son rayon, on aura jr = d’ou il résultera S = i7ra{^ — a),Sx. = -Tra (€* — a*), et, par conséquent, ?^1 = r nbsp;nbsp;nbsp;I ce qui montre que Ie centre de gravité d’une zone sphérique est au milieu de la partie du diam?trenbsp;comprise entre les deux plans qui la terminent, etnbsp;perpendiculaire a ces plans. 82. La cyclo?de nous fournira deux exemples de rapplication des formules (8), en faisant tournernbsp;successivement l’arc CM (fig. 25) autour de l’axe Cjcnbsp;et de l’axe Cy--. Dans Ie premier cas, on aura, en vertu de l’équa-tion (a) du n“ yS,S ~ 27r s/a jy, Sx, = 2'7C S/ajy \/a:djc; ? les intégrales étant prises de mani?re qu’elles s’éva-

nouissent au point C, ou Ton a o: = o. En integrant par partie, et ayant égard a la valeur de dj, donnéenbsp;par la m?me equation (a), il vient S = 4’*J nbsp;nbsp;nbsp;— 4quot;^ \/a f v/oquot; Sx, = ^jx s/ax — ^ \/afx s/a — xdx,



145 STATIQUE, PREMI?RE PARTIE. et, par conséquent, S = 4'^ nbsp;nbsp;nbsp;—^\/a (a — xy — Sa:, = ^jrx\/ax~{-^ X \/a(a— xY ^nbsp;nbsp;nbsp;nbsp;9 , l6;r , /- r nbsp;nbsp;nbsp;163-nbsp;nbsp;nbsp;nbsp;? 45 Vö(?—?^) — ce qui fait connallre la surface concave vers l’axe de figure, engendrée par fare CM, et la distance denbsp;son centre de gravité au point C. Quand eet are de-vientla demi-cyclo?de CA, on a x=.a tX jr~\'7iaynbsp;et, conséquemnient, S = 27r?“ (^ -1), nbsp;nbsp;nbsp;Sgt;^. == ^ (’^ - ^)- Dans Ie second cas, il faudra, pour continuer de faire usage de féquation {a) du nquot; yS, permuter xnbsp;et j dans les formules (8), lesquelles deviendront,nbsp;par la, S = XTT fx\j I Sj. = o.7rfxj y, étant la distance au point C, du centre de gravité de S situé sur la droite Cy, et les intégrales s’éva-noulssant au point C, c’est-a-

dire, quand n? = o. D’a-pr?s féquation (lt;z), nous aurons S == aw'fx \J^dx == ^x \/ax', la valeur de Sj-, sera la niéme que celle de Sa?, du



i46 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQüE. premier cas, et en la clivisant paV cette valeur de S, on aura la distance au point C, du centre de graviténbsp;de la surface convexe vers l’axe de figure, engendréenbsp;par Tarc CM. Lorsque eet are deviendra la demi-cj-clo?de CA, la surface engendrée sera égale a ;nbsp;en m?me temps, la distance jquot;, aura pour valeur^ a/ nbsp;nbsp;nbsp;8 \ = iV’quot; “ T5gt; On peut remarquer que quand un m?me are de courbe tourne successivement autour de deux axesnbsp;rectangulaires et passant par une de ses extréraités,nbsp;Ie second membre de la seconde équation (8) nenbsp;change pas de valeur, et, par conséquent, les distances a cette extrémité, des centres de gravité desnbsp;deux surfaces engendrées, sont en raison inverse desnbsp;aires de ces surfaces. 83.

Si la courbe ABC (fig. 26) tourne autour de laxe Ox, compris dans son plan et qui ne la traversenbsp;pas, sa surface engendrera un solide de révolution dontnbsp;Ie volume, que je représenterai par V, pourra s’ex-primer au mojen de l’aire de cette surface et de l’or-donnée^, de son centre de gravité. En conservant toutes les notations du n° yS, il est aisé de voir qu’on aura V = En effel, la tranche infiniment petite de ce volume, engendrée par lelément MNN'M' de l’aire génératrice,nbsp;sera la différence Ttj'dx —nbsp;nbsp;nbsp;nbsp;des deux cylin- dres dont les rayons sont PM et PN, et qui ont dx



STATIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;147 pour hauteur commune; car on peut négliger les volumes infiniment petits du second ordre, engendrés par les triangles que l’on retranche de eet élément,nbsp;OU qu’on y ajoute, en menant par les points M et Nnbsp;des parall?les a l’axe Ox. Or, si Ton compare cettenbsp;expression de V a la troisi?me formule (i) du numéronbsp;ei té, on a V = ce qui montre que Ie volume engendré par l’aire A d une courbe plane est égal a cette aire multipliée parnbsp;la circonférence du eerde que décrit son centrenbsp;de gravité; tbéor?me analogue a celui du n* 'j4gt; etnbsp;qui servira a determiner Ie volume V quand ie centrenbsp;de gravité de A sera connu a priori. II subsislera encore, lorsque la surface génératrice, au lieu d’etrenbsp;circonscrite par une courbe fermée, sera

comprisenbsp;entre deux courbes différehtes et deux perpendicu-laires a l’axe de figure, pourvu que eet axe ne passenbsp;pas entre ces deux courbes planes. Si l’aire génératrice est un demi-cercle tournant autour de son diam?tre, la distance de son centre de gravité a eet axe de rotation sera égale a (n° 78), Žn désignant par a son rayon; la circonférence dé- crite par ce point aura done pour longueur; et ‘?omme l’aire du demi-cercle est 7^(2“, on aura Ce qui est, effectivement, Ie volume de la sphere. 10..



,48 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Supposons encore que la courbe fermée ABC soit une ellipse, et repre'sentons par aetb ses deux demi-axes, et par c la distance de son centre a l’axe de rotation. L’aire A sera, comme on sait, égale a Trab;nbsp;et son centre de gravilé étant évidemment Ie centrenbsp;de figui'e, on aurajTi = c; d’oü il résultera V = 27T* abc , quelle que soit l’inclinaison de l’un ou l’autre des axes de l’ellipse sur l’axe de rotation. 84* II est évident que Ie segment du solide de ré-volution compris entre deux plans passant par l’axe de figure, est au solide entier comme l’angle de cesnbsp;deux plans est a quatre angles droits, ou, ce qui estnbsp;la m?me chose, comme Fare décrit entre les deuxnbsp;plans, par Ie centre de gravité de Faire génératrice ,nbsp;est a la circonférence enti?re 27s^,.

Done, en appelant l la longueur de eet are, et L Ie volume du segment , on aura Ij = Ik j A étant toujours Faire génératrice qui, par hypothese, nest point traversée par Faxe de rotation. Cette formule peut s’étendre de la mani?re suivante a d’autres segmens qui n’appartiennent pas a des solides de révolution. Supposons, en effet, qu’une courbe plane se meuve sans glisser ni tourner dans son plan, et de telle sortenbsp;que ce plan solt constamment perpendiculaire a unenbsp;ligne donnée, qui peut ?tre une courbe plane ou anbsp;double courbure. Dans ce mouvement, Ie mérnenbsp;point dece platidemeurera toujours sur la directrice,



STATIQUE, PREm?RE PARTIE. nbsp;nbsp;nbsp;i49 gt; et les autres points décriront des courbes semblables a cette Hgne. Soient A, L, Z, l’aire de la courbe gé-nératrice, Ie volume engendré par cette surface, etnbsp;la longueur de la courbe parcourue par son centrenbsp;de gravité. Si l était un are de eerde, L serait unnbsp;segment de solide de revolution; mais, dans tous lesnbsp;cas, on peut diviser l en parties infiniment petites,nbsp;dont chacune se confondra avec Ie eerde osculateurnbsp;lt;4ui lui correspond. Désignons par a Tune de ces parties, et par i’le volume du segment correspondant denbsp;Ilt;; et supposons que les plans perpendiculaires a sa direction, par lesquels v est terminé, se coupent sui-vant une droite qui ne traverse pas Faire de la ge-nératrice. Cet élément iquot; de L sera un segment denbsp;solide de

révolution; et d’apr?s l’équation précédente,nbsp;on auraaA. Done, en prenanl la somme de toutes les valeurs de v Žt observant que Ie facteur A est constant, il en ré-sultera que Ie volume L est égal au produit de Z et A,nbsp;comme dans Ie cas dun solide de ré volution. La regienbsp;que cette equation L = AZ renferme est ulile dans lanbsp;pratique, et susceptible dunassez grand nombre d’ap-pUcations; toulefois, on ne devra point oublier qu’ellenbsp;u’a plus lieu quand les génératrices consécutives senbsp;coupent sur la surface eugendrée, et forment, parnbsp;leurs intersections successives, ce qu’on appelle unenbsp;fir?te de rebrousseinent. 85. La consideration du centre de gravité fournit aussi une régie pour éValuer Ie volume d’nn prisme



i5o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQüE. OU d’un cylindre a base quelconque , tronqué par uit plan incline' sur cette base. Soient y l’aire d’une section de cylindre perpendiculaire a sa ge'nératrice, l’aire de la section in-clinée qui Ie terniine, 6 Tangle de ces deux plans, (tö un élément quelconque de A, ? sa projection surnbsp;Ie plan de y, ou Télément correspondant de Taire y,nbsp;qui est elle-m?me la projection de A. D’apr?s Ie théo-r?me du n° i o, on aura y — A cos 6, ? = ?COS0. Cela étant, je suppose que A soit la surface a laquelle se rapportent les formules générales du n“ yS, et quenbsp;6 repi’ésente Tinclinaison de son plan sur celui des xnbsp;etjr. Je multiplie la troisi?me de ces formules parnbsp;cos 6, et je fais passer ce facteur constant sous Ienbsp;signe ff; en vertu des valeurs de y el e, on aura yz, =

ffzc. Or, cette integrale double est Ie volume du cylindre tronqué compris entre les deux sections et A, etnbsp;décomposé en filets infiniment minces et perpendi-culaires a y, en supposant, toutefois, que ces deuxnbsp;Sections ne se coupent pas mutuellement; il s’ensuitnbsp;done que Ie cylindre tronqué est égal a un cylindrenbsp;droit ayant la m?me base et pour hauteur la distance z^ a cette base, du centre de gravité de la section inclinée. Ce théor?me est évident dans Ie cas ordinaire, ou la base du cylindre est un eerde et la section inclinéenbsp;une ellipse; car en menant par !e centre de cette courbe it'



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i5i plan parall?le a la base, ce cylindre ne change pas de volume, puisque Ie segment qu’on en re-tranche est évidemment e'gal a celui qu’on y a jou te. SI les aires de'signees par y et A se coupent niutuel-lenient, Ie volume se composera de deux segmens *lont l’inte'grale ffz? exprlniera la difference et nonnbsp;pas la somme. Quand Ie cylindre sera terminé parnbsp;deux sections inclinées dont les aires ne se coupentnbsp;pas, on pourra toujours Ie diviser en deux parlies,nbsp;dont la base commune et perpendiculaire a la géné-ratrice, ne coupera ni Tune ni l’autre de ces deuxnbsp;sections; et en observant que leurs centres de gra-vité se trouvent sur une m?me droite perpendiculairenbsp;a cette base, on voit que Ie volume total sera égal anbsp;l’aire de cette base

rpultiplle'e par la distance mutuellenbsp;de ces deux points, S III. Centres de gravité des volumes et des corps. 86. La de'termination du centre de gravité d’un volume depend, en general, de plusieurs intégralesnbsp;triples; mals il y a des corps pour lesquels la position de ce centre se determine par des intégralesnbsp;simples. Ce sont ces corps que nous allons d’abordnbsp;considérer. Le centre de gravité d’uue pyramide ou d’un cóne a base quelconque se trouve sur la di oite qui va denbsp;son sommet au centre de gravité de la base; car cettenbsp;droite rencontre toutes les sections parall?les a lanbsp;base, en des points homologues qui sont leurs centres de gravité, et qu’on peut aussi prendre pour les



p- iSa nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. centres de gravité des élémens de ce corps, infinl-ment minces et parall?les a sa base. Par conséquent, la droite dont il s’agit contient Ie centre de graviténbsp;de la pyramide ou du cóne, et il ne reste plus quanbsp;déterminer sa position sur cette ligne. Soient et X l’aire de ia base et celle d’une section parall?le; désignons par k et o: les perpendicu-laires abaissées du sommet sur leurs plans j nous au-rons, comme on salt, IL : b X' h% et, conséquemment. De plus, on pourra prendre Xcfar pour l’élément du volume du cóne ou de la pyramide; et si l’on ap-pelle V son volume total et x^ la valeur de x corres-pondante a la section qui contient Ie centre de gravité, on en conclura, comme dans les questions pré-cédentes, V = r '^dXf \x, ~ f xHdx. J O nbsp;nbsp;nbsp;J O En

substituant la valeur de X et effectuant les integrations , 11 vient d’oü i’on tire h. Mais si Ton m?ne par Ie centre de gravité un plan pa-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i53 rall?le a la base, il coupera en parties propovtion-iielles la hauteur h et la droite qui va du sommet centre de gravité de la base; il s’ensuit done quenbsp;Ie centre de gravité du cóne ou de la pjramide a basenbsp;^luelconque se trouve aux trois quarts de cette droite,nbsp;3 partir du sommet, ou au quart, a partir de la base. 87. Relativement a la pyramide triangulaire, ce théor?me se démontre sans Ie secours du calcul integral. Soit ABCD (fig. 5o) cette pyramide. Soient aussi E et F les centres de gravité des faces ACD et BCD;nbsp;tii’onsles droites BF et AE, dont les prolongemens senbsp;rencontreront au milieu H de l’ar?te CD; et ensuitenbsp;dans Ie plan AHB, tirons les droites AF et BE, quinbsp;se couperont en un certain point G. Je dis que cenbsp;point sera Ie

centre de gravité de la pyramide ABCD;nbsp;car en la décomposant en élémens parall?les a la basenbsp;ACD, on verra, comme dans Ie numéro précédent,nbsp;^lue son centre de gravité doit se trouver sur la droitenbsp;EE; et en la décomposant en élémens parall?les a BCD,nbsp;on verra, de m?me, que ce point appartient a lanbsp;droite AF. Ces deux droites AF et BE, qui sont effec-tivement dans un m?me plan, devront done se cou-pcr, et leur intersection G sera Ie centre de gravitédemandé. Maintenant, dans Ie triangle ABH, la droite EF est parall?le a la base AB, puisqu’elle coupe les cótés AHnbsp;ct BH en parties proportiotinelles, c’est-a-dire, aunbsp;tiers a partir de H; on aura done FG ; GA :: EF : AB :: EH : AH,



i54 nbsp;nbsp;nbsp;TRAITÉ DE M?CANIQÜE. et, par conséquent, FG : GA i ; 5 ; en sorte que FG est Ie tiers de GA ou Ie quart de AF; ce qu’il s agissait de prouver. On en conclut que si les quatre sommets A, B, C, D, de la pyramide sont les centres de gravité de massesnbsp;égales, Ie point G sera Ie centre de gravité de cesnbsp;quatr? masses; car déja Ie point F est celui des troisnbsp;masses qui répondent a B, C, D (n“ 77); et ensuite Ienbsp;point G, tel que GF est Ie tiers de GA, sera Ie centrenbsp;de gravité de ces trois masses et de la quatri?me. II suit de Ia (11° 67) que si l’on applique au centre de gravité de la pyramide triangulaire des forces re-présenlées, en grandeur et en direction, par lesnbsp;droites qui vont de ce point aux quatre sommets, cesnbsp;quatre forces se feront équillbre^ 88. Ayant déterminé Ie

centre de gravité d’une pyramide triangulaire, on en déduit immédiatement celui d’une pyramide ou d’un cóne a base quelcouque,nbsp;en décomposant cette base en un nombre fini ou in-fini de triangles : Ie centre de gravité de cette pyramide OU de ce cóne doit se trouver a la fois sur lanbsp;droite qui va du sommet au centre de gravité de lanbsp;base, et dans Ie plan parail?le a la base qui coupenbsp;toutes les lignes menées du sommet a cette base, auxnbsp;trois quarts a partir du sommet; ce qui s’accorde avecnbsp;Ie résultat du n° 86. On en déduit aussi Ie centre de gravité d’un sec-teur spbérique. En effet, si l’on décompose ce secteur en une infinite de pyramides dont Ie sommet com-



STATIQUE, PREMI?RE PARTIE. ^ nbsp;nbsp;nbsp;i55 l?iun solt au centre de la sphere, et qui aient pour bases les élémens infiniment petits de la base du sec-teur, leurs centres de gravité se trouveront tous surnbsp;la base d’un secteur concentrique, dont Ie rayon seranbsp;les trois quarts de celui du secteur donné; d’oü Tonnbsp;^nclut que Ie centre de gravité du secteur donnénbsp;sera Ie m?me que celui de la base du secteur con-eentrique ; ce qui en détermine la position. Supposons que Ie secteur sphérlque solt engendré par Ie secteur circulaire CADB (fig. 29), tournant au-tour du rayon CD, qui aboutit au milieu de i’arc AB;nbsp;Ie triangle CAB et Ie segment circulaire ADB engen-dreront, en m?me temps, un cóne et un segmentnbsp;sphérique; et Ie centre de gravité de ce segmentnbsp;sphérique se déterminera

d’apr?s ceux du secteur sphérique et du cóne. Bour cela, appelons V,, V, V', les volumes respec-tlfs de ces trois corps, et x,, ar, ar', les distances de leurs centres de gravité au point C; nous auronsV = V' V,, V.r = V'x' 4- nbsp;nbsp;nbsp;(?) Solent a Ie rayon CD, c Ia corde AB et ƒ la fl?che DE de l’arc ADB. Relativement au cóne, on aura = nbsp;nbsp;nbsp;ar' = |(a—ƒ). La base du secteur sphéi’ique sera égale au produit de Ia fl?che et de la circonférence du grand eerde,nbsp;OU a 2^a/, et son volume aura pour valeur Ie produit de cette base et de ou . Si Ton dé-orit du point C comme centre, et d’un rayon égal a



156 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQIIE. I CD, un are de eerde tel que A'D'B', Ie centre de gravité de la surface engendrée par eet are se trou-vera au milieu de la fl?che D'E' (n° 8i), ou, aulre-ment dit, a une distance du point C égale a CD'—^ D'E',nbsp;dont la valeur est | (a — if)- Done, ce centre denbsp;gravité étant, dapr?s ce qu’on vient de dire, celuinbsp;du secteur sphérique V, on aura a,= \(a En substituant ces différentes valeurs dans les equations (a), il vient-3 '7raf=z ^ ttc* {a — ƒ) V,, i TrafXa — i ƒ) = -^ nbsp;nbsp;nbsp;[a —ff V, j:-, ,• d’ou l’on tirera les valeurs de V, et x,. Si l’on appelle l la longueur de l’arc AB, on aura c = 2aamp;m—, fz=a(\ — cos—\ 20 nbsp;nbsp;nbsp;\nbsp;nbsp;nbsp;nbsp;i.aj ’ et il en, résultera TT

nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;lnbsp;nbsp;nbsp;nbsp;!?nbsp;nbsp;nbsp;nbsp;/nbsp;nbsp;nbsp;nbsp;/\ V, = —( I — cos---sin“ — cos — ), 5 \ nbsp;nbsp;nbsp;2anbsp;nbsp;nbsp;nbsp;anbsp;nbsp;nbsp;nbsp;3.anbsp;nbsp;nbsp;nbsp;aa/' 3a sin'^ aa ar. I * • a ^ l\ cos---Sin* — cos — ' aa 2 aa8(.- Lorsque Vare l est la demi-circonférence, on a l=.'Ka, et par suiteV, = 23-a’ ?r, 3a '8'



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i5rj 8g. On determine aussi par des integrales simples Ie volume et Ie centre de gravité de tout corps sy-niétrique par rapport a un axe, com me un ellipso?de, par exemple. Soient X, yy z, les trois coordonnées rectangulaires *l’un point quelconque de la surface; prenons l’axenbsp;de figure pour celui des x, et désignons par X Fairenbsp;de la section perpendiculaire a cette droite, qui ré-pond a Fextre'mité de 1’abscisse x. Si Fon decomposenbsp;Ie volume en élémens infiniment minces et perpen-diculaires a Faxe de figure, on pourra prendre X^/xnbsp;pour Ie volume d’un élément quelconque, et x pournbsp;la distance de son centre de gravité a Forigine desnbsp;coordonnées. Done, en désignant par V une tranchenbsp;comprise entre deux sections correspondantes a

desnbsp;abscisses données et et ë, et par x, la distance de sonnbsp;centre de gravité a Forigine des coordonnées, nousnbsp;aurons V = nbsp;nbsp;nbsp;^ X dx, Vjt, = f xlLdx, Ja. nbsp;nbsp;nbsp;Ja. Dans Ie cas de Fellipso?de , Féquation de la surface est ^ t b, c, désignant les trois demi-axes. Ceux de la section X seront sj' on aura done X nbsp;nbsp;nbsp;(, _ J),



i58 nbsp;nbsp;nbsp;TRAITÉ CE MÉCANIQüE. et, par coaséquent. V :^7rbc{Q — a)^i 3a^ S'- Yx,z= ^ ’Ttbc (^* — ?“) d’oü Ton tire _3(rf. S) (2a“_ ?t’— Si l’on applique cette formule au segment sphe-rique que l’on a considéré dans Ie n° précédent, il faudra prendre gt;? nbsp;nbsp;nbsp;P cf=. a cos — , nbsp;nbsp;nbsp;6 = fl ; 2a ' ce qui donne 3a {i COS —^sin” — \nbsp;nbsp;nbsp;nbsp;2a/ 2a // nbsp;nbsp;nbsp;^ 4( 1 — cos--f- sin“ — ) V nbsp;nbsp;nbsp;2anbsp;nbsp;nbsp;nbsp;2.a/ et en mullipliant Ie numérateur et Ie dénominateur de cette fraction par i — cos ^, on vérifie qu’elle coincide avec la valeur de déja trouvée- Pour avoir la valeur enti?re de l’ellipso?de, il faudra faire € = rteta = — a;ce qui donne ^Tcabcv= Ce volume est aussi donné par l’intégrale triple ffjdxdxdz, étendue a tous les élémens de l’espacenbsp;terminé par

la surface de Tellipso?de; mais en faisant : CZ X = ax', j =



iSg STATIQUE, PREMI?RE PARTIE. 1’équation de cette surface devient et rinte'grale triple se change en abc fff dx'dy'dz'. ^?^ette nouvelle inte'grale devra setendre a tous les élémens de l’espace circonscrlt par la surface quinbsp;répond a 1 equation précédente ; elle sera , par conséquent , Ie volume de la sphere qui a l’unité pour rayon; et ce volume étant égal h ^, il en résulte comme précédemment, pour celui de 1’ellip- so?de. (90). Les corps symétriques autour d’un axe com-prennent les solides de revolution. Nous prendrons toujours l’axe de figure póur celui des abscisses x.nbsp;En supposant alors un solide de cette nature engen-dré par une aire plane, comprise entre deux courbesnbsp;données et les perpendiculaires a l’axe des x quinbsp;répondent a x = a et x = ë, et désignant par jnbsp;y les ordonnées de

ces courbes relatives a unenbsp;O??me abscisse quelconque x, il taudra faire X = TT (/*—/’)gt; dans les formules du nume'ro precedent j ce qui donne , Va:. = TT j'\y—f’^)xdx. Dans Ie cas Ie plus ordinaire ou la courbe intérieure



t6o nbsp;nbsp;nbsp;traité de MÉCANIQUE. se confondra avec l’axe de figure, on aura j-' =0, et slmplement V = •Try^ , Yx, = tt J' j^xdx. (h) La cyclo?de fournira encore des exemples de l’ap-plication de ces formules, dans lesquels toutes les integrations s’effectueront sous forme finié. Si 1’on consid?re Ie solide convexe, engendré par l’aire CMP ( fig* ^5 ) tournant autour de l’axe Cx,nbsp;on intégrera d’abord par partie; ce qui donnera V = TTXJ'^ UTrfxjdj, YXt— -^TTXy-^ - Tlfx'jdj les intégrales étant prises de mani?re qu’elles s’e'va-nouissent au point C, ou quand x — o. En vertu de l’equation {a) du n” yS, on aura done V =: 'TSxj^ — sTjyy \/ax — nbsp;nbsp;nbsp;dx, Vx,= nbsp;nbsp;nbsp;— itfjxsjax — x’^dx ; et les calculs s’ach?veront par des transformations semblables a celles du n” 80. Dans Ie cas du volumenbsp;engendré par

la demi-cjeloide CAB, on trouveV — — nbsp;nbsp;nbsp;-r —nbsp;nbsp;nbsp;nbsp;— 64)^ 3 \ i6 / ’ nbsp;nbsp;nbsp;’nbsp;nbsp;nbsp;nbsp;12(93-’?- 16) ' S’il s’agit, au contraire, du solide convexe engendré par Faire CMP, tournant autour de Faxe Cf, il faudra préalablement permuter x et f dans lesnbsp;équations {b); d’oü il résultera Y = -Ttf x'^df , Vjr, = Ttfxfdj;



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i6i /i étantla distance au point C, du centre de gravité lt;?ui se trouve sur l’axe Cj-, et les intégrales s’e'va-?iouissant en ce point C. En vertu de l’e'quation (a) denbsp;la cyclo?de, on aura done \:=7tfx \^ax—x^dx, Vj-,=TrJjx \/ax — dx. La premi?re integrale s’obtiendra sans difficulté; la seconde, par des transformations semblables a cellesnbsp;du n° 8o. Dans Ie cas oü CM sera la demi-cyclo?denbsp;enti?re, on trouvera V = — r z=f— -f- —V i6 ’nbsp;nbsp;nbsp;nbsp;Vg ^ 4j3-‘ gi. Maintenant, soient x^, j-, j z, , les trois coor-données rectangulaires du centre de gravité d’un corps de forme quelconque, homogene o-u hétéro-g?ne , dont la masse sera représentée par M. D’apr?snbsp;ce qu’on a déja dit dans Ie n° 65 , il faudra, pour determiner ces trois inconnues, diviser M

en parties in-finiment petites, et changer, en consequence, lesnbsp;sommes en intégrales dans les seconds membres desnbsp;équations(i) de ce numéro. On aura, de cette mani?re, Mx,=fffxdm, Mj,—fffjdin,mz,=fffzdm-, (i) dm étant l’élément différentiel de la masse du corps lt;iul répond aux coordonnées x ,j, z. En appelant ƒnbsp;la densité de ce m?me élément, et dv son volume,nbsp;On aura aussi dm = fdv. On pourra prendre maintenant, pour Télément dv du volume, Ie parallélépip?de rectangle dont lesnbsp;trois eótés adjacens sont parall?les aux axes des x, 11



i6a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. j', z, et égaux aux differentielles dx, dy, dz', d’oü il résultera dv = dxdjdz. Si Ie corps est homogene, sa densité sera constante ; en désignant par V son volume, on auraM = pV; et les equations (i) deviendront =ffjxds’, Vj. ^fffjdv, yz,z=fffzdv. (2). Si Ie corps est hétérog?ne, il pourra se présenter deux cas différens. Dans Ie premier cas, ce corps senbsp;composera de parties homog?nes de grandeur linie,nbsp;et la densité ne variera que d’une partie a l’autre. Onnbsp;appliquera done a chacune d’elles les équations (2),nbsp;puis on déterminera Ie centre de gravité du corpsnbsp;entier d’apr?s ceux de toutes ses parties (n° 64). Dansnbsp;Ie second cas, ia densité variera par degrés insensi-bles dans l’intérieur du corps; et alors on fera usagenbsp;des équations

(i), dans lesquelles / devra ?tre unenbsp;fonction donnée Ae x, j, z. Toutefois, on doit remarquer que, soit qu’il s’a-gisse d’un corps homogene ou d’un corps hétérog?ne, la division de la masse en élémens infiniment petits,nbsp;dont les densités sont les m?mes ou ne varient quenbsp;par degrés insensibles, suppose que ce corps estnbsp;formé d’une mati?re continue. Or, cela n’a pas lieunbsp;dans la nature, oü les corps, au contraire, se com-posent de parties matérielles disjointes et séparéesnbsp;les unes des autres par des espaces vides, comparables en grandeur aux parties pleines. Nous revien-



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i63 drons sur cette observation dans Ie chapitre suivant, QOus ferons voirqu’on peut, néanmoins, appliquer les formules (i) et (2) aux corps naturels, comme sinbsp;la mati?re n’éprouvait aucune discontinuité dans leurnbsp;intérieur. 92. Au lieu des coordonnées z, il sera quel-ijiiefols nécessaire, pour faciliter les integrations, ^’employer les coordonnées polaires de chaque élément dm. Soit alors r son rayon vecteur, ö l’anglenbsp;iju’il fait avec l’axe des a: positives, et l’anglenbsp;compris entre Ie plan de ces deux droites et celuinbsp;des X et j'; nous aurons ( n° g ) x — r cos 9 , J—r sin G cos , z = r sin 0 sin ?vf/. II faudra , en m?me temps, expvimer dv au moyen des différentielles de ces nouvelles variables r, 6,4-On a des formules générales pour la transformation des

variables indépendanfes dans les inté-grales multiples; mais on peut aussi trouver direc-tement l’expression de digt; dont nous devrons fairenbsp;?sage, savoir : dv — r'quot; sin 0 drd^ d-^, ninsi qu’on Ie verra tout a 1’heure. Je mets fdv a la place de dm dans les équations (i), ? j y substitue ensuite cette valeur de dv et cellesnbsp;de X,y-, 2; elles deviennent Mx, =ffffd sin 0 cos Bdr lt;i0 d'\ , Mjr, = sin“0 cos -^dr t/0 dd^,nbsp;Mz, = sin“9 sin d^-dr f/G d'\., (5)



164 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQÜE. a quoi il foudra joindre Tequatlon M r= ffffr' sla ^drlt;Md^. Quant aux limites de ces intégrales triples, elles seront différentes selon que Torigine des coordonnëesnbsp;sera placëe en dehors ou en dedans du corps. Lorsquenbsp;cette origine sera un des points de M, on intégi’eranbsp;d’abord depuis r = o jusqu’a r=u, en représentantnbsp;par u une fonction de 6 et -vj. donnée par l’équationnbsp;de la surface; cela fait, on intégrera depuis 6 = onbsp;et %{/ =o jusqu’a 0 = et -xl. = a-rr, en commencantnbsp;a volonté par Tangle 0 ou par Tangle -vl/* Les limitesnbsp;seront généralement plus ccmpllquées quand Tori-gine des coordonnëes n’appartiendra pas a la masse M.nbsp;Reprësentons, dans ce cas , par u et u' deux fonctionsnbsp;données de 0 et \jy, par co et

a/ deux fonctionsnbsp;de •vj', et par ceet a! deux angles donnés; supposonsnbsp;qu’il s’agisse d’une portion de corps comprise, d’unenbsp;part, entre les deux surfaces qui ont pour ëqualionsnbsp;r=. u et r=:u' • d’une autre part, entre les surfacesnbsp;coniques qui ont pour axe coinmun Taxe des x, leurnbsp;sommet aussl coramun a Torlgine des coordonnëes, etnbsp;pour équations 0 := amp;gt; et 0 = enfin, entre les deuxnbsp;plans passant par eet axe, et qiii font des angles etnbsp;et a! avec Ie plan fixe d’ou Ton compte Tangle Onnbsp;intégrera d’abord depuis r — u jusqu’a r=u', en-suite depuis 0 = Ž jusqu’a 9 = co'^ et finalement,nbsp;depuis •xj' = “ jusqu’a 4 = a'. Prenons, par exemple, pour les deux premi?res surfaces celles de deux spheres concentriques qui ontnbsp;’eur centre commun a Torigine

des coordonnëes, et



STATIQÜE , PREMI?RE PARTIE. nbsp;nbsp;nbsp;i65 ^ont les i’ajons sont a ?t a'; supposans, en m?me temps, que les deux cones soient a base circulaire,nbsp;aulrement dit, que o) et amp;)' soient des anglesnbsp;constans ; supposons, de plus , que la densité ne soitnbsp;lonction que de r-, de sorie que la portion de corpsnbsp;Ton consid?re appartienne a une sphere com-pose'e de couches concentriques infiniment minces ,nbsp;dont chacune ait la m?me densité dans toute sonnbsp;etendue, laquelle densité variera d’une couche anbsp;l’autre, suivant une function donnée de la distancenbsp;au centre. En faisant, pour abréger,r“/rWr=A, Ja nbsp;nbsp;nbsp;Ja et efFecluant les intégrations relatives a 6 et 4, on trouve M — k(aJ — a)(cos ffl —costó'), Ma:,= iB(a' — a) (cos'”? — cos“co), ,= ?iB(sina'“sina) {co'— co —^ sin

aoj'-f- -jsin 2?),, = jB(cosa.— cosx'){co'— co — ^sin2Ž' jsinsŽ);. Ce qui fait eonnaitre les valeurs de o:,, jr,, z, , qu’on *^e pourrait déduire, dans eet exemple, des équa-bons (i). Si la masse M forme un anneau complet, de sorte T*^ on ait a' = a 27r, il en i’ésultera jquot;; = o etnbsp;^? = o, c’est-a-dire que Ie centre de gravité seranbsp;situé, comme cela doit ?tre, sur l’axe de eet anneau :nbsp;sa distance a?, au centre de la sphere dont eet anneaunbsp;fait partie, aura pour valeur O', B(cOSai-}-'coS a') aA



i66 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQüE. Dans Ie cas de rhomogénéité de la sph?re, la den-sité f e'tant constante, on aura A = I f — a^), B = nbsp;nbsp;nbsp;— a^). Quand Ie vide de l’anneau dlsparaitra, on fera ci)=o; et, enfin, s’il se change en nn secteur sphérique, onnbsp;fera aussi a = o ; d’oü il résultera 3a' . nbsp;nbsp;nbsp;, a?, = -ö- (i 4- cos ft)); ce qui s’accorde avec la valeur de la quantité designee par a? dans Ie n° 88, en observant que la fl?che représentc'e par ƒ aurait pour valeur a’[i—cosa)'), etnbsp;que Ie rayon est a'. g3. Pour trouver la difiei’entielle dv du volume , exprimée au mojen des différentielles des coordon-nées polaires, je suppose que M (fig. 3i) soit Ie pointnbsp;qui répondaux coordonnées r, ö, -4^; en sorte que Onbsp;étant leur origine, OM soit Ie rayon vecteur r, 6 Tangle MOx

conipris entre ce rayon et un axe fixe Oa::,nbsp;et -4, Tangle que fait Ie plan de ces deux droites avecnbsp;un plan fixe, mené arbitrairement par la seconde.nbsp;Soit M' un point situe’ sur Ie prolongement de OM,nbsp;et dont Ie rayon vecteur OM' sera r'. Du point O coinme centre, et dans Ie plan M'Ox, décrivons les arcs de eerde MN et M'N' compris entre les deux.nbsp;droites OMM' et ONN', et désignons par 6' Tanglenbsp;NOa:,‘ enfin, faisons tourner Ie plan de eet angle au-tour de Taxe Oa?, et représentons, dans sa nouvellenbsp;position, par Tangle qu’il fera avec Ie plan fixe.nbsp;Dans ce mouvement, Taire MM'N'N engendrera unnbsp;volume MM'N'NPP^Q^Q, que je représenterai par U.



STATIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;167 Or? cette aire, difFérence des deux secleurs circulaires M'ON' et MON, est e'gale a _ r') (Ö' — 0). Si l’on appelle u la perpendiculaire abaissée de son centre de gravité sur l’axe Ox, on aura — -J/)nbsp;pour la longueur de l’arc que ce centre décrira au-tour de cette di’oite. D’api’?s Ie théor?me du n° 84,nbsp;?gt;ous aurons done U = ^ (r' r) (r' - r) (0' - 0) (4' - 4). Cela posé, concevons que les trois dimensions de U deviennent infiniment petites, et faisons, en consequence , r' — r=.dr, 0'—0 = J0, nbsp;nbsp;nbsp;4^—4—^4* Le facteur r'-(-r se rédulra, en m?me temps, a ar; On pourra aussi prendre pour u la perpendiculairenbsp;MH abaissée du point M sur l’axe Ox, laquelle estnbsp;egale a rsin0, et ne saurait différer de u que d’unnbsp;infiniment petit; enfin, U se

cbangera en dv, dontnbsp;la valeur, qu’il s’agissait de determiner, sera dv ?=? r* miBdrd^d'^. On remarquera, effectivement, que ce volume dv peut ?tre considéré comme un paralléléplp?de rectangle, dont les trois cótés adjacens sont MM' ou dr,nbsp;1 are infiniment petit MN, qui a son centre au point 0nbsp;et pour longueur rd^, et I’arc infiniment petit MP,nbsp;j qui a son centre au point II et pour longueurnbsp;1^' i’sin0ö?0.



i68 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAINIQUE. lia base MNQP de ce parallélëpip?de est I’element de la surface sphe'rique dont Ie centre est au pointnbsp;0 et ie rayon égal a r. En la déslgnant par dtj, onnbsp;a done dfy 2= r* sin 0 d? d’^ , dv s= dadr. Si Ton appelle dco l’élément de la surface sphérique dont Ie rayon est pris pour unite, on aura aussi dco = sin6lt;iölt;^4? nbsp;nbsp;nbsp;— r^drdco. En integrant cette expression de dco depuis 0 = o et 4 = 0 jusqu’a 0 = TT et 4 = on en de'duitnbsp;475quot; pour Ie rapport de la surface de la sphere aunbsp;cari’é de son rayon j ce qui est, en effet, sa valeurnbsp;connue.



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;169 ^^'''^Alt;X'\'VVVWVV\AiW\'WVW%'VVVVWVVVW\iVVVVVVWVVVgt;'WVWVV\XiW\iWWVgt;'W^fc\\Vgt;A/W\’VWVV\ Wgt; ?VXrt CHAPITRE VI. CALCUL DE L’ATTRACTIOIV DES CORPS. S I*''. Formules relatives a un corps quelconque et a la sphere en particulier. 94. Supposons qu’un point materiel 0 (fig. Sa) soit soumis aux attractions de tous les points d’unnbsp;corps de forme quelconque; en decornposant cha-cune de ces forces en trois autres, dirigées suivantnbsp;des axes rectangulaires menés arbitralrement par Ienbsp;point 0, et faisant ensuite la somme des compb-santes positives ou negatives qui agissent stilvantnbsp;cfiaqne axe, on aura les trois composantes, dontnbsp;la résultante exprimera, en grandeur et en direction , l’attraction totale qui sera

exercée sur Ie pointnbsp;0- Ces trois composantes seront des sommes d’unenbsp;mfinité d’élémens infiniment petits, étendus a lanbsp;iRasse enti?re du corps attirant; elles s’exprimerontnbsp;par des intégrales triples, et Ie calcul de ces quan-tités sera semblable a celui des coordonnées du centrenbsp;de gravité d’un corps quelconque dont nous venonsnbsp;de nous occuper : c’est pourquoi je placerai ici cenbsp;que j’ai a dh-e sur Ie calcul des attractions. Cette question est une de celles dont les géom?tres se sont Ie plus occupés, soit a cause des difficultés



170 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. d’analjse qu’elle presente, soit a raison de ses rapports avec Ie probl?me de la figure de Ia terre et de la loi de la pesanteur a sa surface; mais, dans eetnbsp;ouvrage, on se bornera a donner les formules qui senbsp;présentent immédiatement, et quelques-unes de leursnbsp;applications. Je renverrai, pour de plus grands déve-loppemens, au second volume delaMécanique celeste,nbsp;et a mon Mëmoire sur YAttraction des Sphéro?des,\n-sëré dans la Connaissance des Tems de 1’année 1829. 95. SoitD un point fixe pris dans Tintérieur du corps attlrant; paree point, menons Irois axes rectangu-lairesDa:, Djquot;, Dz, qui sei’ont les axes des coordonnéesnbsp;positives; désignons par x, j, z, les coordonnéesnbsp;d un point quelconque M du corps attirant,

etparrZ/wnbsp;réléraent différenliel de sa masse, qui répond a cenbsp;point M; représentons aussi par a, ë, gt;,les trois coordonnées du point O, et par la masse de ce point ma-tériel; et soit enfin u la distance OM, de sorte qu’on ait = (a _ xy -}- (? nbsp;nbsp;nbsp;(y—zy. L’attraction exei’cée par dm sur /x sera dirigée sui-vant la droite OM. On suppose cette force propor-tionnelle aux produits des deux masses, et en raison inverse du carré de la distance u; en la désignantnbsp;done par F, on aura F — ?Ë?l- f étant un coefficient constant qui exprimera I’lnteuquot; si té du pouYoir attractif, rappor té aux unités denbsp;rnasse et de distance. Pour se former une idéé precise de cette quantité J, il faut concevoir deux corps



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;171 de forme et de dimension quelconques, dont les l?iasses sont égales et prises pour unite, et supposernbsp;que 1’attraction ne varie ni en grandeur ni en direction dans toute 1’élendue de ces deux corps - cn sortenbsp;qu’elle soit la m?me entre deux élémens quelconquesnbsp;de leursmasses, égaux a dm et a qu’entre les pointsnbsp;ttiatëriels ju, et dm que nous considérons, lorsque leurnbsp;distance OM est égale a l’unité : la force f est l’attrac-tion totale qui serait exercée alors par l’un de cesnbsp;deux corps sur Tautre. Les projections de la droite OM sur les axes \)x, Jij, Dz, sont a — x, ë —y, y — z; en les divisantnbsp;par ?/, on aura les cosinus des angles qui détermi-nent la direction de la force F •, ses trois composantesnbsp;seront done c?- X F, F, Q—j.

et en y considérant u comme une quantité positive, elles tendront, selon qu’elles sei’ont positives ou negatives , a dinnnuer ou a augmenter les trois coor—nbsp;données a, amp;,y, du point 0. Si done on désigne parnbsp;B, C, les trois composantes de l’attraction totalenbsp;exercée sur ce point, on aura, en mettant pour F sanbsp;valeur, et observant que ji* et ƒ sont des facteurs eonstans,A = f^/Jff’^dm, (0 ces intégrales triples s’étendant a la masse enti?re du corps attirant.



172 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAÖIQtE. En représentant par p la densité de l’élément dm ^ et par dv son volume, on aura dm == ^dv. Cette quantité p sera, dans Ie cas general, une fonc-tion donnée des coordonnées du point M; elle se réduira a une constante donnée, dans ie cas d?nbsp;rhomogénéité du corps attirant. On exprimera dvnbsp;au mojen des difierentielles des coordonnées de M,nbsp;dont on fera usage, et qui seront Ie plus propres anbsp;faciliter les intégrations. g6. Par une considération tres simple, on réduit a une seule les trois intégrales triples d’oü dépendentnbsp;les vatéurs de A, B, C. Les limites étant les m?mes que dans ces intégrales, faisons A cause que ces limites sont indépendantes dé la position du point 0, si Ton différentie T par rapportnbsp;a ses coordonnées, on pourra

effectuer ces difTéren-tiations sous les signes f (n° 14) ; et comme on anbsp;d’ailleurs d.- d.- d.- U del .3quot; dS dy jl en résultera — da dS dy I



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;573 ce qui change les equations (i) en celles-ci : W ^e sorte que Ie calcul des trois composantes A, B, C, ?ie de'pendra plus que d’izne seule inle'grale T. En Ia determinant, il sera important de se rappe-^er que !e de'nominateur ic devra avoir constamment Ie m?me signe dans toute l’étendue de l’lntégration,nbsp;et qu’il (loit étre positif si Ton veut que les composantes A, B, C, tendent a dhninuer ou a augmenternbsp;les coordonnées du point 0, selon que leu-rs valeursnbsp;données par les equations (2) seront positives ou negatives. Au lieu d’une attraction, si Ie point 0 était soumis a une repulsion, il suffiralt de changer les signes desnbsp;Valeurs de A, B, €, ou, ce.qul est la méme chose,nbsp;dy regarder f comine une constante negative. Dansnbsp;Ie cas Ou la force

attractive ou repulsive qui agit surnbsp;Ie point 0 ne serait pas, comme nous Favons suppose',nbsp;en raison inverse du carré de la distance , et qu’on re-présentcralt, en general, Ie coeflGcieut de f^dm par unenbsp;fonction donnée de u, que je désignerai par (pu, onnbsp;pfendrait une autre fonction lt;igt;u, telle que 1’on eut dlt;Sgt;u7,r = - Žt que 1’on mettrait a la place de ^ dans Fexpression de T. II se pourrait aussi que cette force fut attractive pour une pai’tic du corps qui agit sur 0, et repulsive pour une autre partie, auquel cas la fonction



'74 TRAITÉ DE MÉGANIQUE. (pu, dans laquelle est compris Ie coefficient ƒ, chan-gerait de signe dans l’étendue de l’intégrale que T re-présente. Les composantes de l’action exercée sur un corps de forme et de dimension quelconques, se dédui-ront des formules pre'cédentes, en y remplacant /anbsp;par l’éle'ment difféi’entiel de sa masse, qui rëpond auxnbsp;coordonnées a, €, y, et integrant ensuite, par rapport a ces trois variables, dans teute l’étendue de cettenbsp;masse; d’ou I’on voit que les composantes de Factionnbsp;exercée par un corps sur un aulre dépendront, gé-néralement, d’intégrales sextuples. Telles sont les formules d’apr?s lesquelles on cal-culera les attractions ou repulsions; mais avant d’en faire aucune application, il est nécessaire d’expliquernbsp;comment elles conviennent a la

constitution intimenbsp;des corps naturels, et d’examiner la difficulté dont ilnbsp;a été question a la fin du n” 91. gy. Les différens corps renferraent, sous des volumes égaux, des quantités inégales de mati?re ponderable (n° 60); et ces quantités variant, pour un méme corps, avec sa temperature et la pression extérieure a laquelle il est soumis, on a été conduit anbsp;considérer les corps naturels comme un assemblagenbsp;de parties matérlelles non contiguës, et séparées lesnbsp;unes des autres par des pores ou espaces vides de mati?re pondérable. Ces parties matérielles se nommentnbsp;des atoines; leurs dimensions et celles des poresnbsp;échappent, par leur extréme petitesse, a nos sens etnbsp;a tous nos inoyens de les mesurer. On regarde lesnbsp;atomes comme indestructibles, et la masse, la

forme.



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;175 Je volume de cliacun deux, comme invai’iables. Les dimensions des pores varient, au contraire, avec lesnbsp;^juantités diverses de chaleur qu’on introduit dans lesnbsp;‘^orps OU qu’on en fait sortir, et avec les pressionsnbsp;^Uxquelles on les soumet; et comme les changemensnbsp;lt;Je volume d’un corps peuvent ?tre trés grands, sansnbsp;•?ue sa masse ait augmenté ni diminué, il s’ensuitnbsp;'{Ue les dimensions des parties vides doivent étre comparables et généralement supérieures a celles des parties pleines. Les atomes de m?me nature ou de nature différente, se réunissent en diverses proportions, pour former d’autres parties des corps, toujours insensibles, qu’on appelle leurs molecules. Les corps differentnbsp;entre eux par la nature et la proportion

des atomesnbsp;qui entrent dans la composition de chaque molecule; les atomes sont regardes corome invariables et in-destructibles, ainsi qu’on vient de le dire, paree ^uen les réunissant dans les memes proportions, onnbsp;reproduit, a toutes les époques, les memes corps,nbsp;jouissant des m?mes propriétés. 98. II est évident, d’apr?s cela, que la division dc masse en élémens infiniment petits, et la supposition d’une densité de chaque élément, qui ne varienbsp;pas dans les corps homog?nes, ou qui varie par de-gres insensibles dans les corps hétérog?nes, ne con-^lennent point aux corps naturels; mais cela n’em-Peche pas qu’on ne puisse faire usage des formulesnbsp;foudées sur cette considération, et qu’elles ne soientnbsp;Sincere applicables lorsque les corps ont été divisés ennbsp;parties de grandeur

finie , mals tout-a-fait insensible.



176 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. En effet, les molecules sont si petites et si rappro-chées les unes des autres, qu’une partie de la masse d’un corps qui en renferme des nombres immenses,nbsp;peut encore ?tre supposée extr?mement petite , etnbsp;son volume regai’dé conime insensible. Soit e Ie volume d’une semblable partie, d’une grandeur insensible, et qui contienf, néanmoins, des mjriades denbsp;molecules ; soit aussi m la somme de leurs masses; etnbsp;désiguons par M un des points de e, qui sera, si l’onnbsp;veut, son centre de gravité. Si nous faisonsnbsp;ce rapport p exprimera réellement la densité du corpsnbsp;au point M, quelles que soierit dailleurs les massesnbsp;des molecules et leur distribution réguliere ou irréguliere dans Télendue de v. De m?me, en dési-gnaut par n Ie nombre de

molécules que u renferme, et faisantnbsp;cette ligne e, de grandeur insensible, pourra étrenbsp;appelée Yintervalle inoyen des molécules qui répondnbsp;au point M et a la densité p. Dans un corps homogene , ce rapport et cette ligne ne varient pasnbsp;avec la position du point M ; dans un corps hé-térog?ne, ces deux quantités varieront par degrésnbsp;insensibles, et pourront ?tre supposées des fonc-tions données des coordonnées de ce point. Cela posé, si Ton veut connaitre la masse d’un corps, ou, plus généralenient, la sornme des par-



S?ATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;177 •liquerai par ties extrémement petites de cette masse, multipliées chacune par une fonction U des coordonnées de Tunnbsp;ses points M, on divisera Ie volume V de cenbsp;corps en parties extrémement petites u, puis onnbsp;fera la somme de tous les produits Vpi', que j’in-SUfi ct qui devra s’étendre a toutes les parties v de V. ö’apr?s Ie théor?me du n° 15, si les termes de cettenbsp;sonime étaient infiniment petits et que leur nom-bre fut infini, sa valeur serait rigoureusement égalenbsp;a l’intégrale définie étendue au volume entier V, dont dv est 1 element différenliel. Or, on concoit qu’en general la difference entre cette somme et cette integrale di-minuera de plus en plus, a mesure que les parties de la premi?re deviendront plus petites, et quenbsp;leur

nombre sera plus grand; de telle sorte quenbsp;la grandeur de v étant insensible , mais toujoursnbsp;distincte de dv , on pourra néanmoins prendre ,nbsp;Sans erreur appreciable, 1’integrale a la place de lanbsp;somme. II y a cependant une exception a ce prin-cipe general: c’est lorsque U est du genre des functions qui varient tres rapidement, et qu’en menienbsp;temps cette quantité change de signe dans l’étenduenbsp;de 1’lntégration j ce qui arrive, effectivement, dansnbsp;Ie calcul des forces provenant de l’attraction moleculaire et de la repulsion calorifique , qui ne sontnbsp;sensibles qu’a des distances insensibles. Ma?s il nous



1,8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. suffit, quant a présent, d’observer que cette exception na aucun rapport avec les formules des n“91 et 95, relatives aux centres de gravité des corps etnbsp;aux attractions en raison inverse du carré des distances, et qu’on peut, conséquemment, les appli-quer aux corps naturels formés de molécules dis-jointes. 99. Revenons maiutenant au calcul des attractions. Si la distance du point 0 au corps attiré est trésnbsp;grande relativement aux dimensions de ce corps, onnbsp;pourra, dans l’expression de T du n° 96, dévelop- per la quantité ^ en série convergente, ordonnée suivant les puissances et les produits de ar, jr? 2;. En faisant -d- H- gt;* = on aura alors -f-etc. I_ax Cj--^yz^3(lt;?x Cj Yzy-~(x'’ y-‘-}-z^)?'^ Si I on prend Ie centre de gravité du corps attirant pour l’origine D

dés coordonnées, on aura fffxdm = o, ffJfdinz=o, fffzdmz=o, puisque ces intégrales, divisées par la masse M du corps,seraient les trois coordonnées de ce point (n°9i).nbsp;En désignant cette masse par M, nous aurons done U M ^ Lorsque la distance OD ou d' sera assez grande pour qu’on puisse réduire cette valeur de T a sonnbsp;premier terme , les equations (2) deviendront



179 STATIQÜE, PREMI?RE PARTIE. fMfy ^3 nbsp;nbsp;nbsp;gt;--lt;^3 nbsp;nbsp;nbsp;gt;--gt;3- ? Or ces composantes sont les m?mes que celles d’unc force égale a , agissant au point 0 suivant la di- ?'Cctlon OD •, il s’ensuit done que l’attraction exercée •5Ur un point 0, parun corps qui en est trés éloigné,nbsp;est a peu pres la m?me , en grandetir et en direction,nbsp;lt;l?e si la masse M de ce corps était reunie a son centrenbsp;de gravité. Lorsqne ce corps sera une sphere homogene ou composée de couches concentriques, on trouvera quenbsp;tous lesterniesde lavaleurdeT, excepté Ie premier, senbsp;détruisent; il suffira pour cela de remplacernbsp;nbsp;nbsp;nbsp;z, par les coordonnées r, 6,4? comme dans Ie n° 92 ; ce qui permetlrad’efFectuer les integrations relatives a 6 et 4-Le théor?me qu’on vient

d’énoncer sera done alors tout-a-fait exact, si la distance cf est seulement assez grande pour que le développeinent de ^ soit une série convergente; et, en efl’et, on verra dans le numéro suivant, sans recourir a la reduction en séi’ie, que ce théor?menbsp;^ lieu, quelle que soit la distance du point 0 a la spherenbsp;attirante, pourvu qu’il ne soit passitué dans soninté-'aeur. II est facile d en conduce que l’attraction d’unenbsp;sphere sur une autre est la m?me que si la masse denbsp;^haque sphere était reunie a son centre; car, en appelant M et M' les masses des deux spheres, et C el C' leursnbsp;centres, I’attraction de M sur un point quelconque 0nbsp;de cst d’abord la m?me que si la masse M étaitnbsp;concentrée au point C; en outre, cette attraction de Cnbsp;Sur tous les points O de M', est égale et contraire a



i8o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. l attraetion de tous ces points ou de M'sur laquelle est la m?me que si la masse M' élait re'unle au point C’jnbsp;done, l’attraction des deux sph?res est la m?me quenbsp;celle de deux points matériels situés en C et C', etnbsp;dont les masses seraient M et M'. löo. L’attraction exercée sur Ie point 0 par ime couche spliérlque, homogene et d’une épaisseur constante , dont D est Ie centre, se réduira évidemment anbsp;une force dirigée suivant OD. En faisant co?ncidernbsp;t) cette droite avec l’axe Qx, les composantes B et C, pa-rall?les aux axes Dj et Dz, serontdonc nulles, et l’onnbsp;n’aura que la valeur de A a calculer. Dans ce calcul, on emploiera, comme dans Ie n° 92, les coordonnées polaires r, 9, -vl/. L’axe Da: senbsp;confondant avec la droite DO, on aura alors

ODM = 6, DO = ?, f = o, y = o‘ et a cause de DM = r et 0M= u, il en résultera u' = si.“—2arcos0 r*. L’angle ?%[/ sera celui que fait Ie plan ODM avec un plan fixe passant par la droite DO; on prendra (n“ 95) di’ = r’sin ^drd^d'^, pour Félémentdu volume; et dans l’élément dmz=.^dv de la masse, on regardera p comme un facteur constant. Apr?s avoir substitue ces valeurs dans l’expression de T du n° 96, on intégrera depuis r~h jusqu’anbsp;r = a, en de'signant par a e\ b les rayons extérieurnbsp;et intérieur de la couche sphérique, et depuis ö = onbsp;jt'l -v}, = o jusqu’a 8 = et = 27r. Comme la va-



STATIQÜE, PUEMI?RE PARTJE. nbsp;nbsp;nbsp;i8i i’iable -l n entrera pas sous Ie signe ƒ, rintégrat?on relative a cette variable se réduira a remplacer lanbsp;différeutielle c?4 T = r ( r ^ nbsp;nbsp;nbsp;)rdr. ^ J b \ J o V — 2,cir COS ? r'-' Aux limites ö = o et ^=^7r, Ie radical aura pour valeurs rt’ (a — r), . zh {a r) ; Kiais comme il exprime la valeur de ti, qui doit ?tre constamment positive (nŽ 96), il faudra prendre a 7-a la liinite G = -jT , et r— et on ct — r a la limite 0 = o,nbsp;selon que Ie point O sera situé en dedans ou en dehors de la couche sphérique. Nous verrons tout anbsp;I’heure ce qu’on doit faire lorsque ce point appar-tiendra a la couehe m?rae, de sorte qu’on ait rgt; anbsp;dans une partie de cette couche, et r ?lt; a dans l’autrenbsp;partie. ƒ? ~=~\/ ct^—aarcos G-f-rŽ-f-const., 2ccr cos ö -f- r“ aura done, dans

Ie cas du point interieur, j’sinfidé “ nbsp;nbsp;nbsp;— 2arcosfi r P^i’ consequent, la valeur de T ne dépendra pas de a, et celle de A qui s’en déduit au inojen de la premi?renbsp;equation (2), sera egale a zéro. Dans Ie cas du pointnbsp;extérieur, on aura de m?me Relativement a 0, l’intégrale indéfinie étant r sin ?dif. rsin ids “ nbsp;nbsp;nbsp;— 2?;’ cos Ö -p , ar *



i83 nbsp;nbsp;nbsp;traité de mécanique. et, conséqueniment, . r^__ 4'*-? —f’quot;’) ,3 _ 3aT=4^ rv^r=^ ? J b nbsp;nbsp;nbsp;3 OU, ee qui est la m?me chose, M M étant la masse de la couche sphérique dont Ie vo lume est — nbsp;nbsp;nbsp;On en conclut 3 (3)A _ nbsp;nbsp;nbsp;. ce qui est la m?me force que si la masse enti?re de cette couche attirante était reunie a son centre. loi. Ces résultats s’étendent imme'diatement aux eas d’une couche sphérique d’une épaisseur constante,nbsp;mais composée d’autres couches concentriques, dontnbsp;la deusité varie de Tune a l’autre, suivant telle loinbsp;qu’on voudra, et ne change pas dans toute Tétenduenbsp;d’une m?me couche; car on peut determiner séparé-ment les attractions de ces différentes couches, et fairenbsp;ensuite la somme de toutes ces forces,

laquelle seranbsp;nulle pour un point intérieur, et donnée par la formule (3) pour un point extérieur; M exprimant tou-jours la masse totale du corps attirant. Concluons done, i“. Que les attractions en raison inverse du carré des distances, exercées par tousles points d’une couchenbsp;sphérique d’une épaisseur constante, homogene ounbsp;composée de couches concentriques, sur un point 0nbsp;situé dans l’espace vide que cette couche termine, se



STATIQU5, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i83 lt;^etruisent mutuellement j en sorte que ce point de-meurerait en équilibre, quelque part qu’il fut placé lt;ians eet espace. 2°. Que Tattraction de cette m?me couche et, par conséquent aussi, Fattraction d’une sphere enti?re,nbsp;exercée sur un point extérieur 0, est la m?me que sinbsp;’a masse du corps attirant était réunie a son centre. Si Ie point 0 fait partie de la couche attirante, Ou, autrement dit, si Fon aa^?etotcüa, on par-tagera cette couche sphérique en deux autres : Funenbsp;dont les rayons extérieur et intérieur seront a et cl,nbsp;1 autre pour laquelle ces rayons seront a,etb;\e pointnbsp;0 étant intérieur a Fégard de la premi?re de ces deuxnbsp;couches, elle n’exercera sur lui aucune action; et sinbsp;Fon appelle m la masse de Ia seconde couche,

parnbsp;rapport a laquelle Ie point 0 est extérieur, Fattractionnbsp;de cette couche se déduira de la formule (5), en ynbsp;Riettant m au lieu de M. L’attraction totale exercéenbsp;sur Ie point 0 aura done pour valeur la couche sphérique se change en une sphere en-tierement pleine, et qu’elle ait partout la m?me den-Žité, on aura in = c’est-a-dlre que dans Fintérieur d’une sphere homogene, Fattraction est proportionnelle a la distance du point attiré a son centre. Les m?mes théor?mes ont lieu dans Ie cas d’une iquot;é?



,84 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANlQüE. pulsion, pourvu que cette force varie toujours en raison inverse du carré des distances. 102. L’équilibre du point O, situé dans Tespace que termine une couche sphérique, et attiré ou repousse par tous ses points, peut facilement se verifier. Supposons, pour cela, que cette couche soit d’abord infiniment mince. Soit ? son épaisseur. Décomposonsnbsp;sa surface en élémens infiniment petits; et désignonsnbsp;par ? l’aire de celui qui répond au point P (fig. 53).nbsp;Les élémens correspondans du volume et de la massenbsp;de cette couche seront s.a et pesy; et si Ion appelle rnbsp;la distance OP, la valeur de la force dirigée suivantnbsp;cette droile sera Imaginons un cóne dont la base soit a et Ie som-met O; en prolongeant la génératrice OP jusqua ce qu’elle rencontre en

P' la sui’face sphérique, etnbsp;prolongeant de m?me toutes les autres generatrices,nbsp;on déterminera sur cette surface un second élémentnbsp;que je désignerai par Soit, de plus, r' la distancenbsp;OP'; la force dirigée suivant cette droite, en sensnbsp;contraire de la précédente, aura pour valeur j/Si. 7 or, je dis que ces deux forces contraires seront égales entre elles, c’est-a-dire qu’on aura Cl) nbsp;nbsp;nbsp;cJ ^ nbsp;nbsp;nbsp;7^'



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;i85 Soient, en effet, POQ et P'OQ' los sections des deux ^nes, faites par un m?meplan quelconque, passantnbsp;par leur sommet commun O. Les sui’faces semblablesnbsp;^ et co' seront entre elles comme les carrés des li-gnes homologues PQ et P'Q'. A cause des trianglesnbsp;Semblables POQ et P^OQ', on a d’ailleurs PQ : FQ' :: OP : OP'; en élevant au carré les quatre termes de cette proportion, on en conclura done r* co co et, par conséquent, Péquation précédente. II résulte de Ia que les actions exercées sur Ie point O par tous les élémens de la couebe sphérique se dé-truisent deux a deux. L’action totale de cette couchenbsp;sera done nulle; et il en sera encore de m?me si ellenbsp;a une épaisseur linie; car alors on pourra la decomposer en une infinite

de couches infiniment minces,nbsp;dont chacune n’exercera aucune action sur Ie point O. § II. Formules relatives a Vellipso?de. io3. Lorsque Ie point 0 appartiendra a la masse attirante, on facilitera souvent les integrations ennbsp;prenant ce point pour origine des coordonnées po-laircs. Le rajon vecteur du point quelcouque M seranbsp;alors u', en appelant done, connue dans lenquot;g3,nbsp;dco Lélement de la surface sphérique dont le rayonnbsp;est l’unité, on aura dv = n^dudco dm = dudoo;



i86 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. et si l’on appelle g, h, k, les angles que fait la droite OM avec des parall?les aux axes Dx, Dz, menéesnbsp;par Ie point O, on aura aussi, d’apr?s les notationsnbsp;du nŽ 95, cos^; X — a nbsp;nbsp;nbsp;, r — Q cos g = —-, cos ft = — ce qui changera les equations (i) de ce numéro ennbsp;celles-ci: A = — gf fff ^ co?, gduda, g _ — f/ffff p cos hdudoo, C = — ^‘ffff P cos kdudü). Les intégrales relatives a u s’étendront depuis ?=0 jusqu’a u=r, en désignant par r Ie rayon vecteurnbsp;d’un point quelcouque de la surface qui termine Ienbsp;corps attirant. Pour plus de simplicité, si l’on suppose ce corps homogene, ces intégrales s’effectuerontnbsp;immédiatement, et il en résultera —gfpff r cos gdagt;, ) B = — ixfpffr cos Jidco, r (a) C = — pfp ffr cos kd'ü. ' Pour déterminer la valeur

de r, qu’on devra subs-tituer dans ces formules, soit, en coordonnées rec-tangulaires, F nbsp;nbsp;nbsp;z) = o, réquation de la surface du corps attirant. En uu point quelconque de cette surface, on a X ~ ct u cos g, j' — S -j- u cos h, z = ^ -j- ft cos A’, d’apr?s les valeurs précédeutes de cosg, cosh, cask.



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;187 y, étant toujours les trois coordonnées du point 0 dont les valeurs sont données. On substitueranbsp;done ces valeurs denbsp;nbsp;nbsp;nbsp;z, dans l’équation précé- dente; celle qui en résultera donnera, en general, deux valeurs de r. Tune positive et l’autre negative;nbsp;*^iais on rejettera la valeur negative, paree que Ienbsp;•'ayon vecteur r est une quantité positive dont la di-i'ection est uniquement déterminée par les anglesnbsp;§} h, k, qui peuvent ?tre aigus ou obtus. Apr?s la substitution de la valeur de r dans les equations (a), les inte'grales doubles s’étendront a tousnbsp;les élérnens dco de la surface spbérique, décrite dunbsp;point O comme centre, et d’un rayon egal a l’unité. 104. Appliquons ces formules au cas de l’ellipso?de bomog?ne dont la

surface a pour equation(^) b, c, designant les trois demi-axes, et le centre de figure étant I’origine D des coordonnées. Si Ton ynbsp;substitue les valeurs précédentes de x, j, z, il vientpi'* 4quot; nbsp;nbsp;nbsp;— I, faisant, pour abréger, cos“ e , cos“ h . cos“ k b'-S cos h c* cos k c'* 4- —- 4- nbsp;nbsp;nbsp;= P, etCOSg' ^ous aurons done



188 TJUTTÉ DE MÉCANIQÜE. —q?: Or, la quantitë p est positive; la quantité l est aussi positive OU zéro, paree que Ie point 0, qiii répoudnbsp;aux coordonnées a, C, y, est situé dans Tintérieurnbsp;de l ellipso?de, ou, tout au plus, a sa surface; parnbsp;conséquent, il faudra prendre Ie radical avec Ienbsp;signe , pour que Ie rayon r ne soit pas négatif. Jenbsp;dis, de plus, qu’on pourra supprimer ce radical dansnbsp;les formules {a). En effet, la partie correspondantenbsp;del’intégrale contenue dans A, par exeraple, serait ff'p VT g dce ; mals pourchaque couple d’éléniens dont les rayons sont dans Ie prolongement l’un de l’autre, les élémensnbsp;de cette integrale double se détruisent; car en passantnbsp;de Fun de ces élémens dco a l’autre, chacun des trois cosinus cos g, cosh, cosk, change de signe, les quan-tités p,

l, q'^, restent les m?mes, et Ie coefficientnbsp;diedo) sous Ie signe^prend des valeurs égales et denbsp;signe contraire. Tous les élémens de l’intégrale pré-cédente se détruisant alnsi deux a deux, la yaleurnbsp;de A devient d’abord A=?/p nbsp;nbsp;nbsp; 1= ƒI y rr cos ff cask , N en ayant égard a la valeur de q. Or, les deux der-ni?res de ces trois intégrales se composeront de cou-



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;189 pies d’élémens qui répondront aux m?mes valeurs h et de k, et a des valeurs de g supplemens Tunenbsp;de 1’autre. Chacun de ces couples d’éléraens se i-é-eluira done a zéro, et, par conséquent aussi, les in-^égrales enti?res. En supprimant ces intégrales et fai-S3nt subir des réductions semblables aux valeurs denbsp;Ž et de C, on aura simplementA = rr^^dco, J J nbsp;nbsp;nbsp;P Solent actuellement 6 Tangle compris entre Ie rayon OM et la parall?le a Taxe Ox menée par Ie point D, etnbsp;Tangle que fait Ie plan de ces deux droites avec unnbsp;plan passant par la seconde et parall?le a celui des xnbsp;y; nous aurons (n° 8) cosg—cosö, cos/f = sinöcos4/, cosA: = sln6sin4z, en m?nie temps (n° 95), doo = dmQd^d-\gt;; ‘lonil résultera cos*9 (c* cos*4/

sin* 4^)a* sin’ 6, ^nbsp;nbsp;nbsp;nbsp;rr cos'^ 9 sin ?dö d^/~~ JJ 'p ? l*our comprendre les directions de tons les rayons OM, les intégrales devront s’étendre depuis ö = o et 4/ =0nbsp;JRsqu’nnbsp;nbsp;nbsp;nbsp;et 4 — S'TT ; mais a cause que Ie eoeffi-



igo nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. clent de (? a Ia m?me valeur pour ö et pour tT — 6, il suffira d’intëgrer depuis G = o jusqu’a 0 = i7r, etnbsp;de doubler Ie résultat; et paree que Ie coefficient de 4'nbsp;est Ie m?me pour et pour yrdz-^, il suffira aussinbsp;d’inlégrer depuis ^ = o jusqu’a -vj, =nbsp;nbsp;nbsp;nbsp;, et de qua- drupler Ie rësultat. Celaélant, je fais lt;p = tang 4, d(p et a cause de cos* 4 = —r—^ gt; sin' il en résulte J4- dtp o (?“cos’ö-f-fl”sui’ö)c’4-(c“cos“ö-|-rt'sin“öjiquot;(p'‘ vra^bc 2 V'{b^ cosŽ ö -p aŽ sinŽ e) (cŽ cosŽ ö -p aŽ sinŽ 6) au moyen de quoi la valeur de A ne dépendra plus que de l’intégrale relative a ö. Sans nouveau calcul,nbsp;on déduira B de A en y mettant amp; au lieu de“a, etnbsp;permutant les lettres n et ?; et de m?me, on déduiranbsp;C de A en j mettant y au lieu de a, et

permutant lesnbsp;lettres a et c. De cette mani?re, on aura finalement C = iTTuffyf'' bc cosŽ 6 sin ?dS \/ {6ŽcosŽ? ? • a’sinŽ6)(cŽcosŽe -j- a'’sinŽfi) ac cosŽ 6 sin (dl Žcos“9 /^quot;sinŽfl)(cŽcosŽ6 -)- Z?ŽsinŽ6)nbsp;ab cosŽ S sin Sd^ t/ (^?ŽcosŽ3-l-cŽsinŽ.ö)(aŽcosŽ5-f-cŽsinŽÖ) ! Ces valeurs de A, B, C, étant positives, il s’ensuit



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;191 C[ue chacune de ces trois composantes tend a rappro-cher Ie point 0 du centre de rellipso?de; Ie contraire öurait lieu dans Ie cas d’une repulsion ou Ton de-vrait mettre, dans ces formules, —jT au lieu de f. io5. De'signons par cT une constante positive, et supposons qu’on substitue (1 0 tf)c, au lieu de a, h, c, dans les formules (c). ?je facteur i cT disparaitra, et les valeurs denbsp;A, B, C, resteront les m?mes. Or, par cette substitution, l’ellipso?de se trouvei’a augmenté d’une par-be comprise entre sa surface primitive et une surfacenbsp;semblable; les composantes A, B, C, ne changeantnbsp;pas, il en faut done conclure que l’action de cettenbsp;partie additive sur Ie point intérieur O se réduit anbsp;z;éro. Ainsi une couche homogene comprise entre deux surfaces elliptiques

semblablés, ayant Ie méme centrenbsp;Žt leurs axes dans les m?mes directions, n’exerce au-cune action attractive ou repulsive sur un point 0 si-tué dansl’espace vide que terraine sa surface intérieure;nbsp;^n sorte que ce point materiel restera en équilibre,nbsp;quelque part qu’il soit placé dans eet espace; théo-*'eme qui comprend celui que nous avons précédem-bient trouvé pour Ie cas d’une couche sphérique, II en résulte que faction d’uu ellipso?de plein et I'Otnog?ne sur un point 0 de sa masse, se réduit anbsp;qui est exercée par la partie de cette massenbsp;'^^i’nilnée par la surface elliptique, passant paree point,nbsp;^fimblable a celle du corps entier, et semblablementnbsp;placée. D’apr?s les formules (c), la composante denbsp;^ette force, parall?le a chacun des trois axes de fel-



,g2 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. lipso?de, est proportionnelle a l’ordonne'e du point 0 parall?le a eet axe, et ne depend que de cette variable-Dans Ie cas general oü les trois demi-axes a, b, c,nbsp;sont inégaux, on transforme en fonctions ellipti-ques les intégrales relatives a ö que ces formulesnbsp;renferment; ce qui permettra d’en calculer les va-leurs numériques, au moyen des tables de M. Legendre . Ces m?mes intégrales s’obtiennent sousnbsp;forme finie, lorsque deux des constantes a, b^c,nbsp;sont égales, et qu’i! s’agit, par conséquent, d’unnbsp;ellipso?de de revolution. io6. Supposons, par exemple, qu’on ait c=b; la forme des intégrales relatives a 0 sera différente,nbsp;selon que l’ellipso?de sera aplati ou allongé, c’est-a-dire, selon qu’on aura b a on b lt;C. a.

Supposonsnbsp;aussi que ce soit Ie premier cas qui ait lieuj et fai-sons, dans cette hjpoth?se. m; en sorte que la fraction e soit l’aplatissement de Tel-lipso?de, et tn sa masse. II en résultera ^ Zfi fmA ir cos“ fl sin 6 J o i-pe'cos“fl ’ et, en effectuant l’intégration, on aura 3^fmet [e — are (tang = e)'\ , A; pour la composante parall?le a l’axe de revolution. On aura aussi Sftfmƒ; fw cos“6siaSlt;i9 \/ I -j- e’ sin”



STATIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;igS Les composantes B et C étant entre elles comme les coordonnëes ^ et du point O, il s’ensuit que leurnbsp;résultante sera dirigée suivant ia perpendiculairenbsp;abaissée de ce point sur Faxe de revolution. En appelant A' cetle force, et a.' la longueur de la perpendiculaire, de sorte qu’on ait et effectuant Tintégration indiquée, il vient = W nbsp;nbsp;nbsp;= quot;) - TT?]- La résultante des deux forces A et A' expriraera , en grandeur et en direction. Taction totale de Tel-lipso?de sur Ie poiut O. Lorsque e sera une trés petite fraction, on pourra développer ces valeurs de A et A' en séries trés con-vergentes, ordonnées suivant les puissances de e. Anbsp;cause de gS nbsp;nbsp;nbsp;g5 are (tang z=é)—e — ^ 4-^ — etc. , etc. = e — eŽ -f- eŽ Pous auronsA=eg!f(._|’ elc.), Öans Ie cas de

la sphere, ou de e = o. Ia résultante de A et A' sera dirigée vers Ie centre, et aura la m?menbsp;intensité que dans Ie n° lOi. 107. Le calcul de Tattraction d’un ellipso?de bo-I. nbsp;nbsp;nbsp;i3



,^4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. mog?ne sur un point extérieur présente encore beau-coup plus de difficulté; mais on doit a M. Yvori un théor?me au moyen duquel ce cas peut étre ramenénbsp;a celui du point intérieur; ce qui permet d’exprimernbsp;les composantes de l’attraction par des intégrales simples, semblables aux formules (c). Voici une démons-tration de cette importante proposition. En faisant, dans la premi?re équation (i)dun° g5, dm = pdjcdj-dz, et observant que fgt; est un facteur constant, on a A=fijp rrr—jJJ [(“ — —jT (y — 2)“]’ Je suppose que l’équation de la surface soit toujours I’équation [b), et j’j mets ax', hy', cz', a la place denbsp;X, J, z, ce qui la change en celle-ci: x'* -f- j’’quot; -f- z'* = 1. En méme temps la yaleur de A devient ^ f ff-^ JJJ i{A — ax) ?y {^-bj'r {y~cz'yY

et si 1’on désigne par ? les valeurs de x', égales et de signe contraire, que Fon tire de Féquation pré-cédenle, i’intégrale relative a x' devra ?tre prise de-puis x' ~-~x, jusqu’a x' = x,-^ ce qui donne dj'dz'A == (./fate cz'rr ? axy (ë— bj'y -l-(y-dfdd__ [(? 4- axy -f- (f — hjf (y — cz')“3‘)



STATIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;195 Chacune de ces deux inte'grales doubles s’e'tendi’a a tous les élémens de la demi-surface sphérique dontnbsp;Ie rayon est l’unité, et qui a son centre a Toriginenbsp;des coordonnées ; Ie produit df'dz' est la projectionnbsp;Sur Ie plan des j et z, d’un élément quelconque. Sinbsp;done on désigne par G l’angle que Ie rayon qui abou-a eet élément fait avec l’axe des x, et par 4 Tanglenbsp;uonapris entre Ie plan de ces deux droites et Ie plannbsp;des X et j-, 1’aire de eet élément sera sin GrZQ^/4 ?nbsp;son inclinaison sur Ie plan des y et z sera Tangle G,nbsp;et il en résultera dj'dz' =: cos 6 sin 6c?9 d-\/, pour sa projection sur ce plan. On aura en méme temps a?, — cos 9, y' — sin ö cos 4 gt; z' = sin G sin 4 • Les limites des deux intégrales seront maintenant 6 = 0 et 4=0? ^ = -^7r et

4 = ^7^? ™ais si Tonnbsp;^lel, dans la seconde, tt— G a Ia place de 'fc, il est /nbsp;uisé de voir que ces deux intégrales se réuniront ennbsp;'^ue seule, qui aura les in?mes limites par rapportnbsp;^ 4? et dont les limites relatives a Ö deviendrontnbsp;Ž == o et G = TT j en sorte que Ton aura simplement . nbsp;nbsp;nbsp;/• /nbsp;nbsp;nbsp;nbsp;/'ZTT cos 6 sin 6 cl9 tJ-d/A = ^JfbcJJ^ ---gt; faisant, pour abréger, ~ nbsp;nbsp;nbsp;— 2 (cta COS ?-\~ Clf sinö cos 4' -f-yrsin 6 siinj/) cE- cos^ ö Z?’ sin'* 6 cos“ nbsp;nbsp;nbsp;sin“ ö sin“ ?'J/, et regardant R comme une quantité positive. Lesi3..



196 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. deux autres coraposantes B et C s’exprimeront pareil- leraent par des intégrales doubles. Maintenant, considérons Tattraction d’un autre ellipso?de ajant la m?ine denslté fgt;, Ie m?me centre, et ses axes dans les m?mes direelions que Ie premier.nbsp;Soientnbsp;nbsp;nbsp;nbsp;, c,, les trois demi-axes correspondans a a, b, c; appelons 0, Ie point soumis a cetfe attraction, a-i, ?i, y^, ses coordonnées, et A,, B,, C,,les composantes de celte force, parall?les aux trois axesnbsp;de lellipso?de. En supposant toujours que ^ soit lanbsp;masse du point attiré, nous aurons COS sin i did-^ ~K R, étant ce que devient R quand on y change a, b, c, et, ë, y, en at, ?,, c,, a,, ?,, Les valeursnbsp;de B, 'et C, se déduiront de méme de celles de Bnbsp;et C. Supposons que

les deux ellipso?des aient les m?mes foyers, et conséquemment des excentricités égales;nbsp;on aura alors b^=a’^-\-h, nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;b’‘^=a\-\~h, c\-=a\~\~k^ Ji, h, h — kt étant des quantités positives ou negatives qui exprimeront, abstraction faite du signe, les carrés des excentricités communes a ces deux corps.nbsp;Supposons, de plus, que Ie point 0., attiré par Ie second ellipsoide, soit situé sur la surface du premier,nbsp;et Ie point 0 attii’é par Ie premier, sur la surfacenbsp;du second. D’apr?s Féquation {b) et celle de la surface du second ellipso?de, il fandra qu’on ait



STAT?QÜE, PREMI?RE PARTJE. y. _ (O = 1. JSoient enfin p et q deux angles donnés; et prenons“i —acosp, é', = sinƒ?cosg-, 5.^, =csinpsin^, | ^ =a,cosp, ë =biSmpcos q, y =e,sinpsin^ j J Valeurs qui satlsferont aux deux equations précé-dentes et qui élablissent une relation particuliere entre les coordonnées des points 0 et O,. En subslituant cesnbsp;Yalei?rs de a.^ ë, dans l’expression de R“, et y met-tant aussi les valeurs préeédentes de b*,nbsp;nbsp;nbsp;nbsp;b\, c\, il vient R* = ?“ ? ? lt;2* h (sin*p cos* 5 4- sin’ 0 cos’ 4) 4- k (sin’p sin’ ^ sin’ 0 sin* 4) — 2 (a, a cos p cos 9 4- nbsp;nbsp;nbsp;^ sinp cos q sin 0 cos 4 c sinp sin q sin 0 sin 4)* Or, sans écrire la valeur de R“, on voit qu’elle sera Ia ?u?me que celle de R’; car elle s’en déduirait par lesnbsp;permutations de a'et a,, b et b,, c et c,, sans changer h et k, qui sont des quantitcs

communes auxnbsp;deux ellipso?des; et il est évident que cette derni?renbsp;formule ne change pas par ces permutations. A cause denbsp;= R, les valeurs de A et A, renfermeront la m?menbsp;integrale double; en l’éliminant, on aura done A./?c = A.b,c,. l^elativement aux autres composantes, on obtiendra des résultats semblables; en sorte que, d’apr?s les



igS nbsp;nbsp;nbsp;TBAITÉ DE MÉCANTQUE. suppositions qu’on a faites sur les deux points attires O et O,, on aura finalement (3) A, _ A nbsp;nbsp;nbsp;bc ' Pour énoncer Ie théor?me que ces trois equations renferment, appelons points correspondans, sur lesnbsp;surfaces des deux ellipso?des, deux points dont lesnbsp;coordonnées sont entre elles dans Ie rapport desnbsp;demi-axes auxquels elles sont parall?les. Le point 0,nbsp;de la surface du premier ellipso?de, dont les coordonnées parall?les aux demi-axes a, b, c, sontnbsp;^17 gt;igt; ^ui’a pour correspondant, sur la surfacenbsp;du second ellipso?de , le point 0, dont les coordonnées parall?les aux demi-axes , Z?,, c,, sont a, ?, y,nbsp;puisqu’on a, d’apr?s les équations (2), Cela posé, il résulte des équations (3) le théor?me suivant : Si l’on a

deux ellipso?des homog?nes qui aient le m?me centre et les m?mes foyers, l’attraction suivantnbsp;chaque axe que l’un des deux corps exerce sur unnbsp;point situé a la surface de l’autre, est a l’attraction denbsp;celui-ci sur le point correspondant de la surface dunbsp;premier, comrae le produit des deux autres axes dunbsp;premier ellipso?de est au produit des deux auti’es axesnbsp;du second. 108. Lorsque deux ellipso?des différens ont, comniu on le suppose, le m?me centre et les m?mes foyers.



STATIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;199 1’un des deux est enti?rement compris dans l’autre; par conséquent, si Ie point O est extérieur par rapport au premier ellipso?de, Ie point 0, sera intérieurnbsp;par rapport au second. Pour, déterminer, au moyennbsp;du théor?me précédent, l’attraclion d’un ellipso?denbsp;donné sur un point extérieur 0 aussi donné, on feranbsp;done passer par ce point la surface d’un second ellipso?de ayant Ie m?me centre et les m?mes foyers que Ienbsp;premier; par les formules relatives aux points intérieurs, on déterminera les trois composantes A„ B,, C,,nbsp;de Pattraction de ce second corps sur Ie point 0, de lanbsp;surface du premier, correspondant du point 0; lesnbsp;equations (5) feront ensulte connaltre les composantesnbsp;A, B, C, de Fattraction de Fellipso?de donné sur

Ienbsp;point donné. Ainsi tout se réduira a trouver les va-leurs des trois demi-axes a,, b,, c,, du second ellipso?de, d’apr?s ceux du premier qu’on a représentésnbsp;par a, b, c, e\ d’apr?s les coordonnées a, y, dunbsp;point donné 0. Pour fixer les idéés, je suppose que a soit la plus petite des trois quantités a,b, c; ce qui rendra posi-fives les quantités A et ^ du numéro précédent. J’ap-pelle u Ie carré de a,; on aura^ nbsp;nbsp;nbsp;b^ =nbsp;nbsp;nbsp;nbsp;7i, c, = \/MA:; il ne restera plus qu’a déterminer cette inconnue u, ^ui devra ?tre réelle et positive. Or, en vertii de lanbsp;Seconde équation (1), nous aurons u-.(4)



200 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. equation du troisi?me degré pai’ rapport a m, qui a au moins une racine réelle et positive; car en falsantnbsp;croitre u depuis zero jusqua I’infini, son premiernbsp;membre est d’abord plus grand et ensuite plus petitnbsp;que Ie second; en sorte qu’il y a au moins une va-leur positive de u qui les rend égaux. Je dis de plusnbsp;qu’il n’y en a qu’une; car en supposant qu’il y en aitnbsp;deux, u et li, il faudrait qu’on eut a la fois et en retranchanl ces equations l’une de l’autre, et supprimant Ie facteur — u, commun a tous lesnbsp;termes, il en résulterait ar uu' (u -j- /i) (i/ nbsp;nbsp;nbsp;quot;fquot;nbsp;nbsp;nbsp;nbsp;quot;i” ce qui est évidemment impossible. Done il n’exlste qu’un seul ellipso?de qui ait Ie m?me centre et lesnbsp;m?mes foyers qu’un ellipso?de

donné, et qui passe ennbsp;outre par un point donné. La quantlté u, d’oii dependent ses trois demi-axes a,, ?,, c,, est déterminéenbsp;par l’équation (4); ce qu’11 s’agissait de trouver. 109. Nous ferons remarquer que Ie théor?me du n° 107 convient également a toutes les lois d’attrac-tion en function de la distance; car la demonstrationnbsp;qu’on vient d’en donner est fondée sur la forme quenbsp;prend l’expression de R“, qui se trouve identiquenbsp;pour les deux points O et O,, et non sur la fornie



201 STATIQÜE, PREMI?RE PARTIE. la fonctioa de R, qui exprime la loi de l’at-tractlon.. Si les deux ellipso?des sont des spheres concentri-^ues, l’atti’action de chacuue d’elles sera Ia rn?nie sur tous les points de la surface de l’autre, et il ne seranbsp;plus nécessaire que les points O et O, soient corres-pondans. En appelant a et lt;2, les rayons de ces deuxnbsp;Spheres, D Paltraction de la sphere du rayon a surnbsp;Ru point de Ia surface sphérique du rayon a,, etnbsp;ö, celle de la sphere du rayon a, sur un point denbsp;la surface sphérique du rayon a, lesquelles forcesnbsp;seront dirigées suivant les rayons des points attires,nbsp;on aura D : D, :: nbsp;nbsp;nbsp;: a,*, quelle que soit la loi de rattraclion en function de la distance. Cette proportion est facile a verifier dans le cas Ordinaire ou I’attraction est en raison inverse

dunbsp;carré de la distance. En effet, d’apres les résul-^ats du n° loi, si Ton suppose a a,, I’attrac-tion D de la sphere du rayon a sur un point inférieur, sltué a une distance a, de son centre etnbsp;dont f/, est la masse, sera I’attraction D, de la sphere du rayon a, sur un point extérieur, dont fx est aussi la masse et qui se Irouvenbsp;3 la distance a dc son centre, aura pour valeur



202 nbsp;nbsp;nbsp;TRAITÉ DÉ MÉCANIQUÉ. •n _ et en comparant ces valeurs de D et D,, on voit qu’elles sont entre elles comnie les carrés des rayonsnbsp;a et rt,.



LIVRE DEUXI?ME.DYNAMIftUE,PREMI?RE PARTIE.CHAPITRE PREMIER. DU MOUVEMlEAT ivectiligne et de la mbsure des FORCES. 11 § iquot;. Formules du mouvement rectiligne. 1 lo. Le mouvement Ie plus simple que puisse prendre un point male'riel est celui qni a lieu en lignenbsp;droite, et dans lequel le mobile décrit des espacesnbsp;Žgaux en temps égaux. C’est ce mouvement rectilignenbsp;1’on appelle uniforme, et qui sert de terme denbsp;‘^oniparaison a tous les autres mouvemens. Quand le rapport des espaces parcourus aux temps Employes a les décrire change continuellement, lenbsp;rnouvement est varie'; si ce changement n’avait Heunbsp;qua des intervalles de temps finis, le mouvementnbsp;Ue serait qu’une succession de mouvemens uniformes.



2o4 nbsp;nbsp;nbsp;traité de mécaniqüe. Dans un mouvement quelconque, l’espace parcouru par Ie mobile, ou, plus génëralement, sa distance anbsp;un point fixe pris sur la ligne qu’il décrit, est uoenbsp;fonction du temps écoulé depuis une époque con-venue. Ainsi, en appelant t ce temps, et x cettenbsp;distance, on aura, dans tous les cas,X = Fé; et les diverses sortes de mouvemens différeront enlre elles par la foi’me de cette fonction Ff. La variable tnbsp;pourra ?tre positive ou negative : ses valeurs positives répondront a des époques postérieures a cellenbsp;d’oii l’on compte Ie temps, et ses valeui’s negatives, anbsp;des epoques antéricures. Dans Ie mouvement uniforme, si l’on appelle a Fespace parcouru dans chaque unité de temps, et bnbsp;la distance du mobile au point fixe, a l’oiigine

dunbsp;temps f, c’est-a-dire, Ia valeur de x qui répond anbsp;f = o, on aura, a un instant quelconque,X =. h at-, car, d’apr?s la définition de ce mouvement, l’espace X — b décrit dans Ie temps t doit ?tre égal a l’espacenbsp;constant a, répété autant de fois que t renfermenbsp;d’unités. III. On ne définit ni Ie temps ni l’espace; mais il suffit a Ia Géométrie et a la Djnamique que nousnbsp;puissions mesui’er les dimensions des corps et les du-rées de leurs mouvemens. La mesure des longueursnbsp;est fondée sur la superposition, et se concoit sans au-cune difficulté; celle du temps exige quelque explirnbsp;cation.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;2o5 On ferait un eerde vicieux si I’on disait, d’uiie psrt, que Ie mouvement uniforme est celui dans le-^uel les espaces parcourus sont proportionnels aunbsp;^^emps, et, d’un autre cóté, que Ie temps a pour mesure Ie mouvement uniforme, c’est-a-dire qu’il estnbsp;proportionnel aux espaces parcourus dans ce mou-’fement. Mais la notion des temps égaux et la me-sure du temps ne sont fondées nécessairement sur au-t^une loi particuliere de mouvement, et Pon peut,nbsp;consequence, les supposer dans la definition dunbsp;ttiouvement uniforme et de toute autre sorte de mou-Vemens. Concevons, en effet, que des corps parfaitement identiques se meuvent successivement, et que, pendant toute la durée de son mouvement, chacun desnbsp;niobiles se trouve exactement dans

Ie m?rae état quenbsp;Celui qui Va precede : il est évident que tons cesnbsp;uiouvernens, dont la loi n’est pas donnée, s’exécute-^'ont en temps égaux, et que leur nombre pourranbsp;servir de inesure au temps. Ainsi, par exemple, sinbsp;ces corps sont pesans et retenus par un axe fixe horizontal , qu’on les écarté lous également de leur po-sition d’équilibre, et qu’on les abandonne ensuite anbsp;cux-m?mes, de sorte que Ie mouvement du secondnbsp;commence des que Ie premier est revenu a cette po-sition, celui du troisi?me aussitót que Ie second ynbsp;est revenu de m?me, et ainsi de suite, il n’j auranbsp;^Rcuiie difference possible entre tous ces mouvemensnbsp;ŽUceessifs qui s’ach?vei'ont en temps égaux. On prou-^era par la suite qu’il n’est pas nécessaire pour celanbsp;^oe ce soient différens mobiles qui se

succ?dent, el



2o6 nbsp;nbsp;nbsp;traité de mécanique. que les oscillations successives d’un m?me corps, de part et d’autre de sa position d’équilibre, sont aussinbsp;isochrones, ou d’égale dure'e; mais la considerationnbsp;précédente, qui ne suppose la solution d’aucun pro-bl?me de Mécanique, suf?it a l’objet que nous nousnbsp;sommes propose. Les astronornes ont i’econnu, par les observations les plus précises et Ie plus souvent répétées, 1’inva-riablllté de la revolution apparente de la sphere celeste autour de la terrej et, effect!vement, la théorienbsp;n’indique aucune inégalité sensible dans Ie mouvement de rotation de la terre qui donne lieu a cettenbsp;apparence. On appelle jour side'ral la durée constante de cette revolution, laquelle durée est moindrenbsp;que celle de la révolution diurne du soleil. Celle-

clnbsp;n’est pas exactement la m?me a toutes les époquesnbsp;de l’année; et c’est sa grandeur mojenne que l’onnbsp;prend pour unité de temps dans les usages ordinaires,nbsp;et que l’on appelle Ie jour mojen. Nous adopterons,nbsp;dans eet ouvrage, la division du jour en 24 heures,nbsp;de l’heure en 60 minutes, et de la minute en 60nbsp;secondes; en sorle que la seconde sera la 86400°nbsp;partie du jour mojen. Le jour side'ral ne contlentnbsp;que 86164,09 secondes; d’oii il i’ésulte que pournbsp;exprin^r en jours sldéraux un temps donné ennbsp;jours mojens, il faudra le multiplier par le rapportnbsp;de 86400 a 86164,09, OU par le nombre constantnbsp;1,0027079. 112. Un mouvement uniforme diff?re d’un autre par la grandeur de l’espace parcouru dans l’unité denbsp;temps. Dans chaque

mouvement uniforme gt; eet es-



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;207 pace constant est ce qu’on appelle la vitesse du mobile ; mais, pour parler exactenient, eet espace nest que la mesure de la vitesse, et non pas la vitesse elle-’^'?me. La vitesse d’un point materiel en mouvementnbsp;une chose qui reside dans ce point, dont il estnbsp;^'?imé, qui Ie distingue actuellement d’un point materiel en repos, et n’est pas susceptible d’une autrenbsp;‘definition. La vitesse exprime'e, dans Ie mouvementnbsp;‘^üiforme, par l’espace que Ie mobile décrit dansnbsp;lt;^d?aque unite de temps, suppose qu’on prend pournbsp;unite de vitesse celle du mobile qui pai’court l’uniténbsp;dinëaire dans l’unité de temps. Dans un mouvement varié quelconque, la vitesse du mobile varie par degre's inflniment petits, et ellenbsp;est une fonction du temps qui se déduit,

ainsi qu’onnbsp;de verra tout a l’heure, de celle qui exprime l’espacenbsp;pai’couru: mais, auparavant, il est nécessaire de con-Uaitre Ie genre de mouvement que prendra un pointnbsp;Uiatériel en vertu de sa vitesse acquise, si la forcenbsp;'lui lui a imprimé cette vitesse, par sou action con-buuée pendant un certain temps, vient a cessernbsp;^^gir, et que ce mobile soit abandonné a lui-‘Uéme. II est d’abord évident que si Ie mobile s’est ^^u jnsque la en llgne droite, il continuera a senbsp;‘^louvoir suivant Ie prolongement de la ligne qu’ilnbsp;‘décrivait; car il n’y aurait aucune raison pour quenbsp;point niatériel s’écartat de la direction qu’il a recuenbsp;plütót d’un cóté que de l’autre. Mais nous ne pouvonsnbsp;pas affirmer, a priori, que la vitesse qui lui a éténbsp;'Uipriniée ne se ralentira pas d’elle-m?me, et ne fi-



2o8 nbsp;nbsp;nbsp;traité de mécanique. ui ra pas par s’éteindre enti?rement; ce n’est que par l’expérience et Finduction que cette question peutnbsp;?tre décidée. Or, a niesure que les obstacles a Fétat de niouve-ment des corps, tels que les frottemens et les re'sis-tances des milieux qu’ils traversent, diminuent d’in-tensité, nous les voyons pei’se'vérer de plus en plus dans eet etat; et, loutes les fois que nous apercevonsnbsp;une alteration dans leur vitesse, nous reconnaissonsnbsp;que eet effet peut ?tre altribué a une cause étrang?re.nbsp;Nous sommes done conduits a conclure que s’il e'laitnbsp;possible qu’un point materiel, apr?s avoir ?té mis ennbsp;mouvement, ne fut plus sollicité par aucune force,nbsp;et ne rencontrat aucun obstacle, son mouvement se-rait rectiligne et uniforme, c’est-a-dire, Ie plus

simplenbsp;de tous les mouvemens. Ainsi, par exeraple, si une parcelle de fer est mise en mouvement dans Ie vide, sur un plan horizontalnbsp;et sans frottement, par la seule action du pole d’unnbsp;aimant, et que tout a coup on détruise Ie pouvoirnbsp;attractif de ce pole, en y juxtaposant un pole égal etnbsp;contraire, cette parcelle continuera de se diriger versnbsp;ce point j mais son mouvementdeviendra uniforme,nbsp;et sa vitesse sera plus ou moins considerable, selonnbsp;qu’on aura laissé agir la force attractive plus ou moinSnbsp;long-temps. L’impossibilité oü sont tous les points matériels de se mettre en mouvement ou de changer Ie mouvement qui leur a ?té communiqué, sans Ie secoursnbsp;d’une force, est ce qu’on entend par Yinertie de 1*nbsp;mati?re. Ce mot ne signifie pas que la mati?re soit



DY?fAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;209 incapable d’agir; car, au contraire, cliaque point ?^atériel trouve toujours dans l’action d’autres pointsnbsp;^?iate'riels, mais jamais en lui-m?me, Ie principe denbsp;mouvement. 114* Au bout du temps t, et quand Ie mobile trouve a la distance x dun point fixe pris surnbsp;ia droite qu’il décrit, solt v sa vitesse acquise, c’est-a-dii’e, la vitesse du mouvement uniforme qui auraitnbsp;lieu , si, a eet instant, la force qui agit sur Ie mo-igt;ile venait a cesser d’agir. L’action de cette forcenbsp;Continuant, l’espace dx que Ie mobile parcourranbsp;dans l’instant dt sera décrit en vertu de cette action et de la vitesse c j la partie de dx correspon-dante a cette vitesse, qui serait décrite d’un mouvement uniforme, aura vdt pour valeur. En appelant done € la partie de eet espace qui répond

anbsp;l’action de la force pendant l’instant dt, nous au-i'ons dx = vdt -f- ?? 0lt;', la vitesse variant par degrés infiniment pet lts, ct ses variations étaut uniquement dues a Taction denbsp;la force appliquée au mobile, il s’ensult que dansnbsp;Ic temps dt cette action ne peut produire qu’une vi-tesse infiniment petite ; par conséquent, cette m?menbsp;action ne peut faire décrire qu’un espace infinimentnbsp;petit du second ordre, moindre que celui qui se-^'ait décrit uniformément par Ie mobile, s’il rece-Vait au commencement de dt toute la vitesse quinbsp;Sera produile pendant la durée de eet instant. Onnbsp;peut done négliger g par rapport a vdt dans Téqua-1.nbsp;nbsp;nbsp;nbsp;14



2,0 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. tioa précédente; et alors on aura dx pour l’expression de la vitesse dans un mouvement quelconque. Si l’on voulait connaitre la partie ? de l’espace par-couru par Ie mobile dans Ie temps dt, en vertu de Taction de la force qui Ie sollicite, il faudrait con-server les puissances de dt supérieures a la premi?re.nbsp;Or, en appelant x' la distance du mobile au pointnbsp;fixe, au bout du temps t dt, on aura, par Ienbsp;théor?me de Taylor, dx j, , 1 d^x 7 „ , 2 dt^ nbsp;nbsp;nbsp;H-etc., pour Texpression complete de Tespace parcouru dans eet instant dt. Le premier terme, égal a vdt, estnbsp;Tespace du a la vitesse acquise au bout du temps t;nbsp;si done on négligé les termes du troisi?me et desnbsp;ordres supérieurs par rapport a ceux du second,nbsp;on aura de OU, ce qui

est la m?me chose, 6 = \dvdt, pour la partie de Tespace x' — x que Taction de la force a fait parcourir. La vitesse produite en mémenbsp;temps par cette action étant dv, on voit que Tespace que le mobile décrirait uniformémentpendant ce temps dt, s’il recevait au commencement



21 r DYNAMIQÜE, PREMI?RE PARTlE. toute cette augmentation de vitesse, serait égal aunbsp;produit de dv et dt, ou double de l’espace e qu’ilnbsp;déci'it réellement. n5. Lorsque l’espace parcouru sera domié en fbnction du temps, on en déduira immédiatementnbsp;vitesse correspondante, au moyen de l’équation Par exemple, les mobiles, dans la machine ^dihood, décrivant des espaces qui croissent comme les cari’és du temps, on en peut conclure que leursnbsp;Vitesses acquises doivent ?tre proportionnelles auxnbsp;temps pendant lesquels ces espaces sont parcourus;nbsp;ce que cette machine fournlt, en effet, Ie moyen denbsp;verifier. Rëciproquement, si la vitesse est donnée en fonc-tion du temps par la definition du mouvement, ou en déduira, par l’intégralion, l’expression de Fes-pace parcouru. Ainsi, apr?s Ie

mouvement uniforme,nbsp;Ie plus simple est celui dans lequel la vitesse aug-Wiente ou diminue, de quantités égales, en tempsnbsp;egaux, et qu’on appelle, pour cette raison, unifor-^éinent accéléré ou retardé. Si done on appelle gnbsp;1’accroissement constant, positif ou négatif, de la vi-^6sse dans chaque unite de temps, et a la vitesse dunbsp;’^^obile quand t = o , la vitesse v a un instant quel-lt;^onque sera, dans ce mouvement, = a -i- gt; Žt en multipliant par dt et integrant, on aura jc z= -i- at -i- igt% pour la distance du mobile a un point fixe de la *4”



2,a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. droite qu’il décrit • b étant cette distance a rorigine du temps t. Lorsque les deux constantes a et b seront nulles, on aui’a simplement V — gt, X — {gt\ L’espace parcouru est done alors proportionnel au carré du temps j et la vitesse acquise au bout d’unnbsp;temps quelconque t est telle qu’en vertu de cettenbsp;seule vitesse Ie mobile décrirait, en nn temps égalnbsp;a un espace vt double de celui qu’il a parcouru.nbsp;II s’ensuit que si l’on connait l’espace parcouru dansnbsp;la premi?re unite de temps, on aura, en Ie dou-blant, la valeur de la vitesse constante g, par la-quelle un mouvement uniformément accéléré diff?renbsp;d’un autre mouvement de la m?me nature. Ce mouvement est celui des corps pesans qui toni-bent dans Ie vide. En un m?me lieu, la vitesse g est

égale pour tous leurs points; en sorte qu’ils dé-crivent tous, d’un m?me mouvement de cette esp?ce,nbsp;des droites verticales. Cette vitesse varie d’uia lieunbsp;a un autre ; en prenant la seconde pour unité denbsp;temps, et Ie metre pour unité lineaire, on a con-*nbsp;clu de l’expérience g = 9™, 80896, a rObservatoire de Paris. La force qui produit des vitesses égales en temps égaux est pour nous une force constante. Ainsi , lanbsp;pesanteur est une force constante; ce qui signifienbsp;ici qu’elle agit avec la m?me intensilé sur les corps



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;n3 animés de vitesses quelconques , et non pas ^ulement, comme dans Ie n“ Sg, que son inteii-sité est la m?me dans toute I’etendue d'ün corps denbsp;dimensions ordinaires. ii6. Les lois de I’equilibre ne supposent aucune *’elation particuliere entre les forces et les vitessesnbsp;*^Orrespondantes; et, pour résoudie les probl?inesnbsp;de Statique , il suffit de connaitre lës rapports nu-^ériques des forces, tels qu’ils ont eté définis dansnbsp;ie n“ 5. Les lois du mouvement, au contraire, dependent du rapport qui doit exister entre les grandeurs des vitesses produites par des forces données; etnbsp;Ce rapport, dont la connaissance est indispensablenbsp;pour la solution des probl?mes de Djnaraique, estnbsp;Ie m?me que celui des farces, ainsi qu’on va Ie dé-tnontrer. Soient

toujours oc et p Fespace parcouru et la vi-lesse acquise par un point materiel au bout du temps t. Supposons qu’a cette époque deux forces données ƒnbsp;f' agissent simultanément sur Ie mobile , suivantnbsp;ia direction de son mouvement; désignons par u lAnbsp;'^itesse infiniment petite que la force J imprimeraitnbsp;mobile, si elle agissait seule pendant un temps tnbsp;^•tfiniment petit, et par ?' celle qui serait prodiiitenbsp;pat la force J', dans Ie m?me temps, si la force ƒ n’exis-^ait pas. Je dis que la simultanéité de ces deux forcesnbsp;modifiera pas les vitesses dont elles sont capablesnbsp;Separénient, et que la vltesse produile par la forcenbsp;^ quot;dquot; f' sera u -p. c’est-a-dire qu’au bout dunbsp;temps ? -f- T , la vltesse du mobile sera devenne



2 4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. En e?fet, l’augmentation de vitesse dn mobile ne pourra dëpendre que du temps r auquel elle seranbsp;proportionnelle, et de l’ëtat de ce point materiel,nbsp;OU, autreraent dit, de sa position et de sa vitessenbsp;pendant ce m?me temps t; ce ne seralt done qu’ennbsp;influant sur eet état que l’actlon de la force ƒ' pour-rait modifier la vitesse qui sera produite par la force J.nbsp;Or, pendant Ie temps t, la distance du mobile a unnbsp;point fixe et sa vitesse ne peuvent varier que de quan-tltés infiniraent petites, négligeables par rapport axnbsp;et v; ses variations de distances a d’autres points fixesnbsp;ou mobiles, d’oii peuvent émaner les forces J et f,nbsp;sont egalement negligeables; par consequent, la vitesse que produira la force f, pendant cet intervallenbsp;de temps

t, ne saurait ?tre modlfiée en aucune rna-ni?re par Taction simultanee de la force f'-, et il ennbsp;sera de m?me a Tégard de la vitesse due a la force ƒnbsp;qul ne sera pas non plus changee par Taction de f.nbsp;Done la vitesse totale imprimée au mobile pendant le temps t, par la force f f, sera égale a On verra de rn?me que si la force f agit dans le sens de la vitesse c, et la force f en sens contraire,nbsp;Taugmentation de vitesse produite par la force f—f,nbsp;sera égale a u — u'. Quelle que soit la nature de chacune des forces f et ƒ', si elles sont capables dune méme vitesse unbsp;dans un m?me temps infiniment petit, ce sont pournbsp;nous des forces egales. Appliquees en sens contrairenbsp;Tune de Tautre, elles ne changeront pas la vitesse dunbsp;mobile, s’il est deja en mouvement; il y aura eqniquot;



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;3i5 libre, si ce point materiel est en repos; ce qui rentre la definition des forces égales du n° 5. Lorsque la force qui agit sur Ie mobile dans Ie sens lavitesse acquise, deviendra double, triple, qua-'ii'uple,.... la vitesse qu’elle produira dans Ie tempstnbsp;^i'oitra suivant la méme proportion. Réciproquement,nbsp;'luand cette force se réduira a moitié, au tiers, aunbsp;^uartla vitesse qui sera produite diminuerade lanbsp;^?nie manl?re; et, ge'néralement, les vitesses infini-?i?entpetites produites pendant des insfansegaux, dansnbsp;Ie sens ou en sens contraire de la vitesse acquise , ounbsp;iniprimées a un point matérie! en repos, seront entrenbsp;elles comme les intensités des forces correspondantes. C’est sur ce principe general qu’est fondée la mesure des forces dans la

Djnamique. On a coutume de Ie présenter comme une hypothese; nous Ie donjons iel comme une consequence nécessaire de cenbsp;^ue les vitesses imprimées par des forces quelcon-S'ies, dans des intei’valles de temps infinlment petits,nbsp;Žont toujours infinlment petites, et de ce qu’ennbsp;^tieme temps les déplacemens des mobiles sont aussinbsp;^ofiniment petits. Uy. Si les forces que l’on veut comparer Tune a 1’autre sont des forces constantes, de sorte que cha-•^Rne d’elles produise, pendant toute la durée du mouvement, des vitesses égales en temps égaux(n° ii5),nbsp;^eurs intensités seront entre elles comme les vitessesnbsp;^u elles impriment en uu méme temps quelconque anbsp;Rn m?rne point matériel. Lors done que ces vitessesnbsp;seront données par 1’observation, on en conclura Ienbsp;rapport des

forces; et, réciproquement, quand ce



2i6 nbsp;nbsp;nbsp;traité de mécanique. rapport sera donné a priori, ou pourra Ie prendre pour celui des vitesses. Designons, par exeraple, par ?ra- et les intensi-tés de la pesanteur a deux latitudes difFe'rentes, et supposons qu’on ait determine, en ces deux lieux denbsp;la terre, les vitesses g et g', acquises en une secondenbsp;par les corps qui tombent verticalement dans Ie vide;,nbsp;on aura lt;tir ear liC rapport de ces forces lt;zër et fsr' sera aussi celui des poids d’un m?me corps, ou de deux corps homog?nesnbsp;et d’un m?me volume, a ces deux latitudes. L’obser-vation a fait connaitre que les vitesses dues a la pesanteur augmentent en allant de l’équateur au pole ,nbsp;et que I’accroissement total est a peu pres de lanbsp;plus petite. II s’ensuit done que Ie poids d’un m?menbsp;corps,

transporté de l’e'qualeur au pole, augmenteranbsp;de et que, pour mettre en équilibre les poids denbsp;deux corps homog?nes places en ces deux lieux denbsp;la terre, il faudra que Ie volume du corps situé anbsp;l’équateur exc?de de celui du corps situé aunbsp;pole. Solent encore ar l’intensité de la pesanteur dans Ie sens vertical, et sa composante sulvant une droitenbsp;qui fait avec sa direction un angle ct. D’apr?s la regienbsp;du parallélogramme des forces, nous aurons lt;zjr, = lt;Zér cos a; et si l’on appelle g et g, les vitesses qui seront pro-duites dans 1’unité de temps par ces deux forces cons-tantes, agissant séparément sur un m?me point ma~



217 DYNAMIQÜE, PREMI?RE PARTIE. teriel, la proportiong ' gi •• ^ : lt;t!r, , ^onnera aussi g. = g cos a. Si ce point materiel pesant est posé sur un plan in-cliné, qui fasse avec Ie plan horizontal nn angle égal a go* — a, la force se décomposera en deux au-h'cs, l’une perpendiculaire au plan donné et qui seranbsp;detruite par sa resistance, 1’autrc dirigée suivant cenbsp;l?i?nie plan et qui sera la foi’ce 'W,. C’est cette der-ni?re force qui produira Ie mouvement dans Ie vide,nbsp;abstraction faite du frottement du mobile contre Ienbsp;plan incline. Ce mouvement, du a une force constante , sera done uniformément accéléré; et si l’onnbsp;appelle ar, et t', l’espace parcouru et la vitesse acquisenbsp;bout du temps t, on auraf, = gl^5 nbsp;nbsp;nbsp;a gl^ 5 equations dans lesquelles on devra metti’e la valeur précédente de g,. Cet

exemple est tres propre a montrer la necessite de conuaitre a priori Ie rapport des vitesses dues anbsp;des forces dont Ie rapport est connu; car si Ton nenbsp;Žavait pas déduire g, de la vitesse g donnée par l’ob-servation, et qu’il fallut, pour faire usage de ces der-öieres equations, determiner aussi par I’experience lanbsp;Valeur de g, qui répond a chaque valeur de 1 angle st,nbsp;la Dynamique se trouverait a peu pres réduite a unenbsp;Science expérimentale.



ai8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. II8. Pour niesurer une force variable, il faut en considérer l’effet pendant un temps infiniment petit,nbsp;durant lequel on peut la considerer comme constante.nbsp;Soit done lt;p, dans un mouvement rectiligne quel-conque, la force qui agit sur Ie mobile au bout dunbsp;temps t, et que nous regarderons comme une quan-tité positive ou negative, selon que cette force agiranbsp;dans Ie sens de la vitesse acquise ou en sens oppose.nbsp;Cette vitesse e'tant v au m?me instant, elle seranbsp;e Je au bout du temps t-\-dt; en sorte que lanbsp;force tp aura impriraé une vitesse dv au mobile dansnbsp;l’instant dt. Si done on désigne par mr une force constante et connue, capable d’une vitesse g dans l’uniténbsp;de temps, et qui puisse, conséquemment,

impriraernbsp;au mobile une vitesse gdt dans Ie temps dt^ on aura dv -ar d’oii l’on tire Apr?s avoir eboisi arbitrairement une unite lineaire et une unite de temps, on exprimera en nombres la constante g et la valeur de lieu au bout di nbsp;nbsp;nbsp;^ d’un temps '^onné. Cette formule fera ensuite con-naitre, au m?me instant, Ie rapport numérique de la force (p a Ia force connue lt;3r; et si celle-ci est Ia pe-santeur, ce rapport sera celui de la force tp au poidsnbsp;du mobile sur lequel elle agit; en sorte que ce pointnbsp;matérie! étant pesant et sollicité par la force lt;p en sens



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;aig Contraire de Ia pesanteur, demeurerait en équilibre, si 1’on trouvait, par exemple, - ^ = i. On simplifiera la formule prccédente, en prenant 'Ž’ et g- pour unites; ce qui la réduira a dv L’unité de force sera alors la force constante qui 'Qiprimerait au mobile, dans l’unité de temps, unenbsp;Yitesse représentée par Funité lineaire, de mani?renbsp;que si ces deux derni?res unites sont la seconde etnbsp;Ie metre, l unité de force sera a pen prés Ie dixi?menbsp;du poids du mobile, d’apr?s la valeur de g du n” 115, dv On peut remarquer que celte mesure force variable (p est la vitesse que produirait, dans ^ unite de temps, une force constante qui conser—nbsp;Yerait pendant ce temps la m?me intensité que lanbsp;force lt;p pendant l’mstant dt, Ainsi, dans Ie mouve^nbsp;lUent

d’une parcelle de fer vers Ie pole d’un aimant,nbsp;que nous avons déja pris pour exemple (n° 115), lanbsp;force lt;p depend de la distance au pole, et est parnbsp;conséquent variable; mals si l’on suppose qua unnbsp;^ostant donné Ie pole recule devant Ie mobile, denbsp;^lani?re que la, distance de l’un a 1 autre deviennenbsp;constante, la force cp Ie deviendra aussi, Ie mouvement se cbangera en un mouvement uniformementnbsp;^ccelére, et 1’augmentation de vitesse qui aura lieunbsp;dans l’unité de temps sera la mesure de cette force anbsp;^ instant ou elle est devenue constante. de la



2ao nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. En ayant égard a la valeur de a trouvée dans Ie nŽ 114, on peut aussi écrire ^ ~ dt-’ II suit done de cette formule et de la précédente qu’une force a également pour mesure la vitessenbsp;qu’elle produit dans un temps infiniment petit, divi-sée par ce temps, ou bien Ie double de l’espace qu’ellenbsp;fait parcourir, divisé par Ie carré de ce m?me temps.nbsp;Dans Ie mouvement uniformément accéléré, ces deuxnbsp;mani?res équivalentes de mesurer la force ont encorenbsp;lieu, sans qu’il soit nécessaire que Ie temps soit infiniment petit. 119. Nous avons maintenant dt 3C — nbsp;nbsp;nbsp;V = pour les formules générales du mouvement recti-ligne. Elles montrent les rapports qui existent, dans un mouvement quelconque, entre l’espace parcouru,nbsp;la

vitesse acqulse et la force qui agit sur Ie mobile,nbsp;et comment ces trois fonctions du temps peuvent senbsp;déduire Tune de Fautre, soit par la differentiation,nbsp;soit par 1’intégration. En éliminant v entre les deux derni?res, on a d‘x ‘P = nbsp;nbsp;nbsp;7 ce qui suppose qu^on prenne Ie temps t pour la valuable indépendante, et que sa différentielle dt soit constante; hypothese que nous ferons de méme, daus'



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;321 toute la suite de eet ouvrage, saus que nous ay ons besoin de Ie repeter. Par l’élimination de dt, on aura aussi _ 1 d. ^ nbsp;nbsp;nbsp;2nbsp;nbsp;nbsp;nbsp;dxnbsp;nbsp;nbsp;nbsp;’ Ce qul sei’vira a determiner v quand la force (p sera donnëe en fonction de a?, et, re'ciproquement, cettenbsp;force lorsque Ia vitesse sera connue en fonction denbsp;* espace parcouru. Nous donnerons, dans Ie chapitre suivant, diverses applications de ces formules générales. § 11. Mesure des forces en ajant égard auoc masses. 120. Avant de montrer comment on devra tenir compte des masses dans la comparaison des forces quinbsp;^gissent sur des mobiles dlfférens, il importe de rec-bfier une expression inexacte, que l’on emploie souvent, et qui tient a une confusion d’idées.

Concevons qu’un corps soit posé sur un plan horizontal, et qu’il n’j soit retenu par aucun frottement. je veux Ie faire glisser sur ce plan, il faudra néan-’^loins, a cause de I’inertle de la mati?re, que j’exerce effort quelconque; si a ce corps on en joint unnbsp;second, puis un troisi?me, etc., il faudra que je dé-ploie, pour produire Ie m?me mouvement, une forcenbsp;de plus en plus considérable. J’aurai, dans chaquenbsp;cas, Ie sentiment de l’effort que je serai oblige denbsp;faire j mals je ne devrai pas en conclure que la ma-



222 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. ti?re oppose aucune resistance a eet effort, et qu’il existe dans les corps ce qu’on appelle trés impropre-ment une force d'inertie. Quand on s’exprime ainsi,nbsp;on confond la sensation que l’on a éprouvée, et quinbsp;résulle de Teffort qu’on a exercé, avec la sensationnbsp;d’une resistance qui n’existe réellement pas. Lorsque Ie corps frotte contre Ie plan, il j a effec-tivement une resistance au mouvement horizontal, et je ne peux pas dé placer Ie mobile sur ce plan sausnbsp;exercer un effort supérieur a cette resistance. Denbsp;m?me, quand je veux soulever Ie mobile verticale-ment, il J a aussi une résistance a ce mouvement,nbsp;que je dois vaincre par un effort qui la surpasse.nbsp;Dans les deux cas, je ne produirai aucun mouvement tanl que je

ne ferai pas un effort plus grandnbsp;que Ie poids du corps, ou que son adhésion au plannbsp;horizontal; mais si l’on ne suppose ni pesanteur ninbsp;froltement, je mettrai Ie corpsen mouvement, quel-que faible que soit 1’effort que j’exercerai, et quel-que grande que soit la masse du mobile : alors, sinbsp;j’éprouve qu’il faut faire un plus grand effort pournbsp;communiquer Ie méme mouvement a un corps qu’anbsp;un autre, j en conclurai que Ie premier se composenbsp;d’une plus grande quantité de mati?re que Ie second;nbsp;et si je pouvais comparer avec précision les grandeurs des efforts que j’aurai exercés, leur rapport se-rait celui des masses de ces deux mobiles. C’est suvnbsp;une semblable considération qu’est fondée, ainsinbsp;que nous allons l’expliquer, la mesure des

massesnbsp;d’apr?s les grandeurs des forces qui les metten^nbsp;en mouvement, et, réciproquement, la mesure



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;223 des forces en ayant égard aux masses et aux vi-tesses. 121. Deux points matérlels, appartenaht a des corps peuvent ?tre de nature différente, ont des massesnbsp;'^gales OU inégales, selon que des forces qu’on suppose égales leur impriment, dans un méme temps, lanbsp;lo?me vitesse ou des vitesses différentes. Supposons,nbsp;Pour fixer les idees, que les forces appliquées a cesnbsp;deux points soient vertlcales, et qu’apr?s les avoirnbsp;placées dans les deux plateaux d’une balance, il y aitnbsp;Oquilibre. Ces forces seront égales dans celte hypothese j et cela étant, si les deux points sont rendusnbsp;enti?rement fibres, et que les m?mes forces les met-tent en mouvement, leurs masses seront égales ounbsp;inégales, selon qu’ils prendront, dans Ie

premiernbsp;instant, des vitesses infinlment petites, égales ounbsp;inégales. Lorsque, de cette mani?re, les masses de différens points matériels auront été reconnues égales, en lesnbsp;i'eunissant on formera d’autres points dont les massesnbsp;^nront entre elles des rapports quelconques. Ainsi,nbsp;Žn appelant fx, la masse de chacun des points égaux,nbsp;^ et m' les masses de deux autres points formés de n n' des premiers, m et m seront entre elles comme nombres n et n', et l’on aura m = njii, m' = n fx.. Maintenant, soient u, v, des vitesses infiniment petites, i et i' des nombres entiers, et JU .



214 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Si deux foi’ces f et jTMmpriment aux masses m et m' les vitesses v et v' dans un ni?me instant, je disnbsp;qu’on aura f f' mv m'v'. En effet, on peut regarder la force f comme la somme d’un nombre n de forces égales qui impri-ment la ra?me vitesse v a chacun des n points égauxnbsp;dont in se compose; de sorte qu’en appelant k Tunenbsp;de ces forces égales, on aura ƒ = nk. Soit, en outre, h la force qui imprimerait la vitesse? a chacun de ces points égaux, pendant Ie m?me instant que la force k lui imprime la vitesse v. Ces forcesnbsp;agissant sur un m?me point matériel, seronl enlrenbsp;elles comme les vitesses m et v (n° 116); et, a causenbsp;de = iu, il en résullera ' nbsp;nbsp;nbsp;k = ik. Nous aurons de m?me f = n'k', k' = i'h', en regardant J'

comme la somme de n' forces k' ca-pables d’imprlmer la vitesse v’ a chacun des points égaux dont se compose 7n', et appelant h' la force quinbsp;imprimerait a chacun de ces mémes points la vi'nbsp;tesse u. Or, h et h' étant des forces capables d’impri-mer dans un merae instant une m?me vitesse u anbsp;deux points égaux en masse, savoir, a deux des pointsnbsp;dont la masse commune a été représentée par fjt,, ünbsp;suit de ce qui préc?de qu’on doit avoir h'=h. D’apr?s



DYNAM?QtJE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;2x5 ?es equations précédentes, on aura alors f = inh, nbsp;nbsp;nbsp;= i'n'h ; ?t, en ayant égard aux valeurs de m, m', P, v', il en résultera la proportion qu’il s’agissait de démontrer.nbsp;122. Cela posé, considérons un corps de grandeur'nbsp;de forme quelconques, dont tous les points décri-Yent des droites parall?les, avec üne vitesse com-?oune qui peut d’ailleurs varier avec Ie temps. Parta-geons ce corps en une infinité de points matérielsnbsp;egaux en masse, tels qu’on vient de les définir. Onnbsp;pourra altribuer Ie mouvement de tous ces points anbsp;des forces qui seront égales et parall?les dans toutenbsp;rétendue du mobile ; leur résultante, pour une par-tie quelconque de ce corps, sera égale a leur somme,nbsp;et appliquée au centre de gravité de cetle

ni?rae par-tie. Les forces correspondantes a deux parties quel-eouques seront done entre elles comme leurs masses;nbsp;par conséquent, si i’on appelle y la foi’ce totale quinbsp;^git sur Ie mobile, m sa masse, et (p la force qui ré-pond a une partie de cette masse prise pour unité,nbsp;Un aura / = mp. Quant a la force p, elle sera proportionnelle a l’ac-nroissement de la vitesse des points du mobile pendant un temps iufinimenl petit; et si l’on appelle e nette vitesse au bout du temps on pourra prendrenbsp;pour sa mesure, comme dans Ie n” 118, i5



2?.6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. 11 en résultera done r nbsp;nbsp;nbsp;dv t = m-r , dt ’ pour l’expression de la force dans un mouvement quelconque, en ayant égard a la masse du mobile ,nbsp;et supposant tous ses points animés d’une m?me vi-tesse. Cette force ƒ, qui est la résultante ou la somme des forces infiniment petites qu’on peut supposer ap-pliquées a tous les points dont Ie corps est composé,nbsp;se nomme jórce motrice; Ie facteur (p de sa valeur 7ult;pnbsp;s’appelle force accélératrice, et n’est autre chose quenbsp;la force motrice rapportée a l’unité de masse. La force motrice se change en une pression lorsque la masse sur laquelle elle agit est appuyée contre unnbsp;plan fixe, perpendiculaire a sa direction. Une pression et une force motrice ne différent done Tune

denbsp;l’autre qii’en ce que les vitesses infiniment petitesnbsp;qu’une pression tend a produire sont incessammentnbsp;détruites par la réslstance du plan fixe qui la sup-porte, tandis que celles qui sont effectivement pro-duites pendant chaque instant par Ia force motricenbsp;s’accumulent dans Ie mobile, et qu’il en résulte unenbsp;vitesse finie apr?s un temps finl. Deux pressions sontnbsp;entre elles comrae les masses raultipliées par les vi'nbsp;tesses infiniment petites qu elles tendent a leur im-primer dans un m?me instant, et qu’elles leur im-primeraient, en effet, si ces masses étaient fibres. 123. Si Ie mouvement commun a tous les polnt-s d’un mobile est uniformément accéléré, et qu’on ap'nbsp;pelle g 1’augmentation de vitesse qui a lieu dans



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;o-i-j chaque unite de temps, on alt;P = ggt; ƒ = mg. I r*our une autre force constante agissant sur une wiasse m', et produisant une vitesse g' dans runiténbsp;•Je temps, on aura de m?me ƒ' = m'g'. Fobservation a prouvé que deux corps pesans, quelle que soit la difference des mati?res , acqui?-i’ent la m?me vitesse en tombant dans ie vide pendant un m?me intervalle de temps. Dans Ie cas de lanbsp;pesanteur, on a done g= g'; et, conséquemment,nbsp;les poids f et f' de deux corps quelconques sontnbsp;entre eux comme leurs masses m et m', ainsi quenbsp;nous l’avons suppose dans Ie n“ 6o. Le seul fait,nbsp;constate par une experience journali?re, que desnbsp;corps hétérog?nes ont des poids égaux sous des volumes differens, ne suffisalt pas pour deciders!

leursnbsp;masses sont égales ou Inégales; il fallait savoir, denbsp;plus, qiie la pesanteur leur imprime le m?me mouvement, pour pouvoir conclure, de 1’e'galité desnbsp;poids, legalité des quantités de mati?re. Le poids dun corps pesant qui tombe dans le vide ^st sa force motrice, et la pesanteur est sa force acce'-lóratrice. Pour abréger, on appelle souvent pesanteur Ou gravité la vitesse g, qui n’est que la mesurenbsp;lt;3e cette force. 124- Si des forces donne'es agissent a la surface ou sur d’autres paities d’un corps solide, et qu’11 en ré-mlte pour tous ses points des vijesses égales et pa- i5..



228 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. rall?leSjil faudra que ces forces aient une résultante unique, qui co?ucidera, en grandeur et en direction,nbsp;avec la force motrice, telle qu’on vient de la définir,nbsp;et dont on déduira la force accélératrice en la divisantnbsp;par la masse enti?re du mobile. Supposons, par exemple, qu’un corps pesant tombe dans Vair, dans l’eau, ou dans tout autre fluide, etnbsp;que sa forme et sa densité, s’il n’est pas homogene,nbsp;soient sjmétriques autour d’un axe yertical. II estnbsp;évident que tout étant semblable autour de eet axe,nbsp;tous les points du mobile dëeriront des droites verti-cales ; ce qui exige, puisqu’il s’agit d’un corps solide,nbsp;qu’ils aient tous la m?me vitesse a chaque instant.nbsp;La resistance du milieu, qui s’exerce a la surface denbsp;ce corps,

se réduira done a une force dirigée suivantnbsp;son axe de figure. Je déslgnerai par R son intensité anbsp;un instant quelconque, par 4 1^ partie correspon-dante de la force accélératrice du mobile, et par mnbsp;sa masse; on aura alors 4 = 5^. ‘ m Comme cette force agit en sens contraire de la gra-vlté pendant la chute du corps, la force accélératrice totale sera g — 4- Si Ie mobile était lancé verticale-menl de bas en haut, les deux forces agiraient dansnbsp;Ie m?me sens, et la force accélératrice totale seraitnbsp;négative et égale a — g — 4- La theorie de la resistance des fluides est encore trop peu avancee pour qu’on puisse déterminer, dnbsp;priori, la valeur de R, laquelle peut dépendre de lanbsp;vitesse dont Ie mobile est animé, de sa forme, de



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;229 la denslté et de la nature du fluide. Le plus commu-néiuent, on la suppose proportionnelle au carré de a la densité du fluide , que je représenterai par p,nbsp;sorte que 1’on aR = ^ étant un coefÜcient qui ne peut plus dépendre que öe la forme et des dimensions du corps, de la naturenbsp;•lu fluide, liquide ou aériforme , et de sa tempé-i’ature. Dans le cas d’une sphere, on regarde le coefli-cient cr comme proportionnel a sa surface ou au carré de son diam?tre. En désignant done par r son rayon ,nbsp;et par D sa densité , de sorte que sa masse soit /ijr - Dr^3 nbsp;nbsp;nbsp;’ il en résultera y désignant un coefficient numérique qui sera le ??i?nie pour toutes les spheres, et dont la valeur de-?''ra ?tre déterminée par l’expérience pour chaque ,nbsp;Nature de fluide. A

cause que cette quantité '\J, est denbsp;3 méme nature que g, il sensuit que si 1’on désignenbsp;k une vitesse donnée, il faudra qu’on ait Dr _ k'‘ ’4p “ g- ’ ^fin que l’expression de -xj. premie la forme T - k=- gt;



a3o nbsp;nbsp;nbsp;TRA-I?É DE MÉCANIQUE. conformémentau principe de l’homoge'néité des quan-tite's (n“ 25). laS. Une m?me force constante, agissant successi vement sur des masses différent es, produira des mouveniens uniformément accélérés, dans lesquelsnbsp;Ja force accélératrice, ou 1’accroissement constant denbsp;la vitesse dans chaque unite de temps, sera en raisonnbsp;inverse de Ia masse. Ainsi, par example, ƒ étant Ie poids /ng d’une masse m, si Ton suspend cette masse a l’extrémiténbsp;d’un fil qui soit attaché par son autre bout a unenbsp;autre masse m' posée sur un plan horizontal, il estnbsp;évident que ces deux masses prendront un m?rnenbsp;mouvement uniformément accéléré, et du a la forcenbsp;raotrice J, abstraction faite du frottement et du poidsnbsp;de la partie

verticale du fil. Si done on appelle g' lanbsp;force accélératrice de ce mouvement, on aura OU, ce qui est la m?me chose, g' = g cos et, en désignant par cl un angle tel que l’on ait 772 = (m -f- nt!) cos a. Par conséquent, Ie mouvement dont il s’agit sera Ie m?me que celui d’un corps pesant sur un plan in-cliné, qui fait Tangle a avec la verticale (nŽ 117). Tous les corps étant mobiles et susceptibles de prendre des vitesses en raison inverse de leurs masses,



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;231 lorsqu’ils sont soumis, pendant un m?rae temps, a I action d’une m?me force, il s’ensuit qu’il n’existenbsp;pas de corps réeWement fixes; ceux qu’on appellenbsp;ainsi sont des corps qui ont de tres grandes massesnbsp;par rapport a celles dont dependent les forces mo-trices qu’on leur applique, et qui ne recoivent,nbsp;consequemment, de Taction de ces forces que desnbsp;vitesses extr?mement petites. A la surface de la terre,nbsp;ce sont les corps attaches a cette surface qui ne fontnbsp;lt;lu’une seule masse avec celle du globe terrestre ;nbsp;ct, en etfet, en prenant cette masse pour m' dansnbsp;1 exemple précédent, on yoit que la vitesse g' quinbsp;lui sera imprimee dans 1’uriité de temps, par unnbsp;polds mg correspondant a une masse in de grandeur

ordinaire, poürra ?tre regardée comme tout-a-fait insensible. 126. On a coiitume d’appeler quantile de mou-*gt;’ement dun corps le produit de sa masse par sa vitesse. Pour me conformer a Tusage , j’emploierai cette Expression, a laquelle il serait toutefois plus correctnbsp;•le substituer celle de quantité de vitesse, puisquenbsp;cest la vitesse qui reside dans le mobile, et que mouvement n’en est qu’un effet subsequent. Il n’y a aucune force qui produise instantanément tine quantité finie de mouvement. Le choc d’un corpsnbsp;solide en mouvement contre un corps solide en repos imprime a celui-ci, dans un temps trés court,nbsp;ttiais non pas infiniment petit, une vitesse qui peutnbsp;?tre quelquefois trés grande; et, pendant cet inter-valle de temps, les deux corps ne se déplacent pas sen-siblemcnt. Quelque durs qu’on les

suppose, ils se com-



23a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. priment toujoiii’s un tant soit peu; la vitesse passe de l’un a l’autre par degrés irifiaiment petits; et si l’on faitnbsp;abstraction de l’élasticité de ces deux corps, leur action mutuelle cesse d?s qu’ils ont des vitesses ëgales.nbsp;Cette communication rapide de la vitesse, saus dé-placement sensible des masses, est ce qu’on appel Ie unenbsp;percussion ou une impulsion; elle équivaut, commenbsp;on voit, a une force motrice agissant, pendant unnbsp;temps tres court, avec une tres grande intensité. En considërant ainsi la percussion comme la somme des actions infiniment petites d’une force motrice, onnbsp;en conclut qu’elle se decompose en deux autres percussions , suivant des directions donnëes, par la regienbsp;du parallélogramrne des forces, comme

chacune denbsp;ces actions successives. Si, par exemple, on exercenbsp;sur la t?te d’un coin une percussion normale que j’ap-pellerai P, elle se décomposera en deux autres percussions perpendiculaires a ses deux faces; et si l’onnbsp;représente par Q et Q' les deux composantes, par K,nbsp;et K' les lohgueurs des faces auxquelles elles répon-dent, et par H celle de la t?te du coin, il est aisé denbsp;voir qu’on aura , d’apr?s la regie cit?e,QQ' K : H, K': H; d’oü l’on tire PK TT ’ Ainsi, en supposant que celte percussion P provienno d’une masse m qui vient frapper la t?te du coin avecnbsp;une vitesse a, ses deux faces, ou plutót les obstacles



DYNAMIQUjE, premi?re PARTIE. 233 fixes conlre lesquels elles s’appuient, seront dans Ienbsp;cas que s’ils étaient frappés normalementnbsp;par la l?i?tne masse ?n, animée de vitesses proper- Ka TT tlonnelles a leurs longueurs, et exprimées par 17- et 127. Si im corps solide en repos est frappe a la fois, en sens opposes, par deux autres corps dont lesnbsp;iRasses sont m et m', et les vitesses e et e'; que cesnbsp;trois corps soient symetriques autour d’un m?menbsp;axe quant a leur forme et quant a leur densité , etnbsp;que tous les points des deux derniers se meuvent pa-rall?lement a cette droite, leurs percussions sur Ienbsp;corps intermédiaire se feront équiJibre, lorsque lesnbsp;quantités de mouvement et 7raV' seront ëgales,nbsp;c’est-a-dire que ces quantités de mouvement passe-i’out, pendant un temps tres

court, dans Ie corps intermédiaire , et s’y détruiront sans que ce corps soitnbsp;déplacé dune mani?re sensible. L’équilibre aura lieu également si I on supprime ^e corps intermédiaire, et que la communication denbsp;vitesse se fasse immédiatement entre les deux autres corps. Ainsi, deux corps solides qui vont au-de-^ant l’un de I’autre se réduisent au repos, abstraction faile de l’élasticité, lorsqu’ils viennent a se ebo-^Rer, et que leurs masses sont en raison invei’se denbsp;leurs vitesses; et, réciproquement, les produits desnbsp;Riasses et des vitesses sont égaux quand il J a équi-libre dans Ie choc de deux corps solides. On supposenbsp;comme on vient de Ie dire, les deux mobilesnbsp;^ymétriques autour d’une m?me droite, et les vitesses



234 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. de tous leurs points parall?les a cette dioite, laquelle est celle qui passe par les centres de gravité des deuxnbsp;masses. La condition d’équilibre dans Ie choc de cesnbsp;corps est done l’ëgalité de leurs quantités de mouvement, OU l’ëquation mv lil et m' étant leurs masses, et v et v' leurs vitesses. Nous déterminerons par la suite les mouvemens quinbsp;auront lieu apr?s Ie choc, quand ces conditions relatives atix grandeurs et a la direction des vitesses, etnbsp;a la forme des mobiles, ne seront pas remplies, ounbsp;bien quand on aura égard a leur élasticité. II résulte de cette lol de réquilibre dans Ie choc que la percussion fournirait Ie mojen Ie plus directnbsp;de mesurer Ja masse des corps. On imprimerait unenbsp;vitesse connue a a tous les points d’un

corpé dont lanbsp;masse serait prise pour unite; et si l’on pouvait determiner exactement la vitesse v dont tous les pointsnbsp;d’un autre corps devraient ?tre anirnés , pour qu’ilnbsp;fit équilibre au premier, en Ie choquant en sens contraire de son mouvement, la masse de ce secondnbsp;coi’ps aurait alors pour valeur numérique Ie rapport 2 ? niais il est inutile de dire que ce mojen est irnpraticable, et que c’est toujours aux poids des corps qu’il faut recourir pour mesurer leurs masses. II s’ensuit aussi que deux percussions, exercées sur un corps solide, devront ?tre regardées comroe équi-valentes, lorsqu’elles répondront a des quantités égaleSnbsp;de mouvement; en sorte que, dans l’exemple du



DYNAMIQÜE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;235 iiurnéro précédent, la téte et les deux faces du coin eprouveront les m?mes effets, ou seront frappées avecnbsp;lu?nie énergie , si la masse m et la vitesse a sontnbsp;^emplacées par une masse m' et une vitesse a', tellesnbsp;lt;?ue Ton ait ma = m'a'. 128. Lorsque deux percussions, proveuant de vi-lesses en raison inverse des masses, seront exercées si?uultanément sur les deux plateaux d’une balance ,nbsp;d y aura équilibre; la balance remplacant ici Ie corpsnbsp;intermédiaire que nous avons considéré dans Ie numéro précédent. Ce cas sera , par exemple, celui denbsp;deux corps pesans, dont les masses sont m et m', etnbsp;qui tombent au m?me instant sur ces deux plateaux ,nbsp;apr?s avoir acquis des vitesses v et /, telles que Ton ait mv = in'v'. Si la

masse m est en repos dans Tun des deiix plateaux, son poids y exercera une pression qui sera généralement vaincue par la percussion de l’autrenbsp;niasse; mais il n est point exact de dire, comme onnbsp;Ie fait ordinairement, que cela aura toujours lieu,nbsp;quelque grande que soit la pression dans son es-p?ce, et quelque petite que soit la percussion dansnbsp;la sienne. En effet, on peut rem placer la percussion de m! P^r uue force molrice agissant sur l’un des deuxnbsp;plateaux saus Ie déplacer sensiblement, pendant unnbsp;temps trés court que je représenterai par r. En dé-signant par m!uclt la quantité infiniment petite de vitesse dont cette force variable est capable pendant 1’instant dt, Ie produit m' J'^udt sera la quantité



236 nbsp;nbsp;nbsp;?IUI?É DE MÉCANIQUE. de vitesse qu’elle cornmuniquera a la balance pendant Ie temps t. Pendant ce méme temps, Ie poids de innbsp;produira une quantité de mouvement e^primée parnbsp;mgr, en représentant par g la gravité. Pour qu’il ynbsp;alt équillbre dans Ie syst?me, il faudra done que Tin- ^ udt soit toute Ia vitesse v' dont la masse m' est animée a l’instant oü la percussion commence, de sorte qu’il ne lui reste plus aucun degre de vitesse quand Ie choc est fini; et, cela étant, il suffira que les quantités de mouvement mgr et J udt, imprimées en sens contraire a la balance pendant la durée du choc, soient égales entre elles. La condition de eet équilibre sera done exprimée par 1’é-quatlonn^v’ = mgr ; et selon qu’on aura, au contraire, m'd gt; mgr ou mV' ?lt; mgr, ce sera la percussion

qui l’emporteranbsp;sur la pression, ou la pression sur la percussion.nbsp;Or, quoique Ie temps r soit extréme ment petit, cenbsp;dernier cas est possible, en supposant la masse innbsp;suffisamment grande a l’égard de m': pour qu’il futnbsp;impossible, il faudrait que Ia durée de la percussion fut inliniment petite; ce qui n’a pas lieu dansnbsp;la nature. La Dynamique sera une application continuelle des principes que nous avons exposés en détail dansnbsp;ce chapitre, et dont il est nécessaire de se formernbsp;une idee precise, avant d’essayer de résoudre les dif'nbsp;férens probl?mes relatifs au mouvement des corps*



DYNA.MIQUE, PREMI?RE PARTIE. ^^''^'W^V\,^/VWWWW\lV\'W^^W^^'VWWVWVWVV*lVW^AAl^^/^-VV^lW\lWW^/WV^lWgt;\/V^'VVWVW\^lt;V^^'W^lVV%CHAPITRE II. EXEMPLES DU MOUVEMENT RECTItlGNE. i2g. D’apr?s ce qu’on a vu dans Ie n° iig, les 'Equations du mouvement rectiligne d’un point maté-gt;’iei sont celles-ci: d‘x IFf=T,’ 'lt;' = Ie dont la derni?re est une suite des deux autres, et dans lesquelles on a dëslgné, au bout d’un tempsnbsp;quelconque t, par x la distance du mobile a un pointnbsp;fixe de la droite qu’il dëcrit, par v sa vitesse acquise,nbsp;ct par (p la force qui Ie sollicite; cp étant une quantiténbsp;positive OU negative, selon que cette force agira dans sens OU en sens contraire de la vitesse v. Ces Equations s’appliqueront non-seulement a un point ’Matérie! isolé , mais aussi a un corps solide

de gran-*leur quelconque, dont tous les points decriront desnbsp;'^roites parall?les, et auront, par conséquent, unnbsp;^louvement commun : lt;p sera alors la force accelé—nbsp;^’atrice, égale a la force motrice divisée par la massenbsp;mobile. La valeur de (p sera donnée dans cliaque probl?me; la question consistera a en déduire, par l’intégra-fion, les expressions de P et a: en fonctions de t. Ellesnbsp;Contiendront deux constantes arbitraires, dont on dé-ferrninera les valeurs d’apr?s celles de a: et p a l’oin-



238 nbsp;nbsp;nbsp;TRAITÉ DE M?CANIQÜE. gine du mouvement, qui devront ?tre données dans chaque exemple. Dorénavant, noiis supposerons tou-jours que l’on compte Ie temps t a partir de cetienbsp;origine ; en sorte que les valeurs données de x et Vnbsp;répondront a t=zo. L’intégration ne sera généralement possible sous forme linie, que quand (p ne dépendra, comme nouSnbsp;Ie supposerons dans les exemples suivans, que d’unenbsp;seule des quanlités t,v, x. Lorsquela valeurdonuéenbsp;de lt;p les contiendra loutes trois, ou deux seulement,nbsp;les valeurs de o? et v ne poui’ront s’exprimer que parnbsp;les séries. i3o. Supposons d’abord que la force lt;p soit constante , et qu’il s’agisse, par exemple , du mouvement vertical d’un corps qui tombe dans Ie vide en vertu de la pesanteur. En désignant

cette force par g, nous aurons d’ou l’on tire V = 2t, et, par conséquent. en supposant que la distance x soit comptée du point de depart du mobile, et que la vitesse initiale soitnbsp;nulle, de sorte qu’on ait x = o et 0=0, quandnbsp;i = o. Si Ton appelle a la vitesse acquise en tombaiit d’une hauteur on aura



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;289 a = \/ ^tgh ; ^6 qui fournit une expression commode d’une vi-tesse quelconque, an moyen de la hauteur d’oii ’Jn corps pesant devrait tomber pour l’acquérir, etnbsp;de la vitesse constante g. Le temps de la chute denbsp;^6*te hauteur h etant représenté par ö, on auranbsp;3ussi , ft = ^ga'==—. gnbsp;nbsp;nbsp;nbsp;V g ’nbsp;nbsp;nbsp;nbsp;“Onbsp;nbsp;nbsp;nbsp;-j-g Si le corps est lancé verticalement de bas en haut, J equation de son mouvement dans le vide sera d‘xIF § étant la m?me vitesse constante que dans le cas picécédent, paree que Ton suppose l’aclion de lanbsp;Pesanteur sur les corps en mouvement, indépen-dante du sens dans lequel ils se meuvent, aussi biennbsp;de la grandeur de leur vitesse. En supposant quenbsp;^ soit la vitesse initiale,

on en déduira v = a — gt, x=at — \gt\ pour la vitesse et l’espace parcouru a un instant q'ielconque. II est évident que le mobile s’él?veranbsp;i^squ’a ce que cette vitesse soit nulle. Si done onnbsp;^Ppelle §' le temps de son elevation , et I1! la hauteurnbsp;^ laquelle il parviendra, on aura 6' = -, conune ces valeus s coincident avec celles de ö et h



a4o nbsp;nbsp;nbsp;TRAITÉ BE MÉGANIQÜE. du cas precedent, on en conclut qu’un corps pesanl gt; lancé de bas en haut avec une vitesse a , s’él?ve dansnbsp;Ie vide a la hauteur d’ou il devrait tomber poufnbsp;acquérir cette m?me vitesse, et que Ie temps denbsp;son éle'vation est Ie m?me que celui de sa chute. Communément on appelle h la hauteur due a Ia vitesse a, et, réciproquement, a la vitesse due a lanbsp;hauteur h. i3i. Soit que Ie mobile monte ou descende, il suffira, pour former les equations de son mouve-'nbsp;ment sur un plan incline, de metlre dans les pr?-cédenles g cos a a la place de g, en de'signant,nbsp;comrne dans Ie nquot; 117, par a Ie complément denbsp;I’inclinaison du plan donné sur un plan horizontal. Dans Ie cas de la chute, on aura done v = gt cos a , nbsp;nbsp;nbsp;07 == -j

cos a, e* = 2gx cos a, ? mais en appelant l la longueur du plan incline, et h sa hauteur , on a h = Zcosa; si done on indique par k la vitesse acquise par Ie mobile, quand il aura parcouru toute cette longueur,nbsp;on aura yJi- 2gZcos ce qui niontre que cette vitesse k est la m?me que si Ie mobile fut tombé par la verticale h. Soit ABC ( fig. 54) la circonférence d’un cerclc dont Ie plan est vertical. Supposons que AB repré-sente son diam?tre vertical, et cherchons, d’apr?snbsp;les equations précédentes, Ie temps qu’un point ma-



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;2.^1 tériel pesant emploiera a parcourir ]a corde AC, abou-tissante a Textrémité superieure de ce diam?tre. En ‘ibaissant du point C la perpendiculaire CD sur AB,nbsp;ön.aura, dans ce cas, AC = l, AD z=i h; Riais si l’on de'slgne par G Ie temps de mandé , on 9ura l. cos a 2/ *iapr?s une propriélé connue du eerde, on a d’ail-leursl^ = hb, en appelant h Ie diam?tre AB; d’ou l’on conclut Or , ce temps est Ie m?me que celui de la chute par ’^ne hauteur verticale ^ ; il en résulte done que lanbsp;corde AC sera parcourue dans Ie m?me temps quenbsp;diam?tre AB. On trouvera Ie m?me résultat, en considérant Ie Mouvement sur la corde CB qui aboutit a l’extré-^Ré inférieure de AB, et sera aussi parcourue dansnbsp;nt?me temps que ce diam?tre vertical. Ce théor?me ,

indépendant de la longueur de la ^orde parcourue, subsistera encore lorsqu’elle devien-lt;lra infiuiment petite ; ce qui tient a ce qu’en m?menbsp;temps la composante de la gravité, qui agit suivantnbsp;^ette longueur, ne sera plus une quantité linie.nbsp;i32. Considérons actnellement Ie mouvement d’uu 16



343 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. corps, solide pesant qui tombe ou qui est laiicé de bas en bant dans un milieu resistant, et dont tons les points décrivent des droites verticales. Pour que la force accélératrice ne depende que de la vitesse, nous supposerons que Ie milieu ait partout la m?me densité. Dans Ie cas de la chute, on aura en supposant la resistance proportionnelle au carré de la vitesse (n” 124)? et désignant par k une vitessenbsp;constante et donnée. Cette valeur de (p étant une fonc-tion de e, il faudra faire usage de la seconde equation (i), et l’on en déduira 7, nbsp;nbsp;nbsp;k / dv , dv \== '2 nbsp;nbsp;nbsp; nr; } En integrant et supposant nulle la vitesse initiale, de sorte qu’on ait e = o quand t=o, il en résulte 8^ A -f V et, réciproquement, :igt A — r k V d’oü l’on tire 'Ü A ! e * _ ël ^ j ' e e

ëL k(2) i \



DYNAMIQUE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;243 Je désigne ici par e la base des logarithmes népé-^?ietis, et par log un logarithme de cel te esp?ce. II en sera de m?me dans toute la suite de eet ouvrage;nbsp;ee qui n’emp?chera pas d’employer quelquefois lanbsp;^ettre e a représenter d’autres quantités, dans desnbsp;formules oü la base de ces logarithmes n’entrera pas.nbsp;Elle a pour valeur approchée e = 2,7182818 ; et celle du module constant par lequel il faut multiplier Ie logarithme nëpérien d’un nombre quelconque, pour en déduire Ie logarithme ordinaire de ce nombre,nbsp;est 0,4542945. A cause de dx = vdt, on aura(5) en integrant et supposant x = 0 quand t — o. Ou a nussi , nbsp;nbsp;nbsp;k'‘vdv gdx = gt; par conséquent, pour la Yaleur de x en fouction de o. i55. Ces formules venfei'ment la

solution compléte du probl?me. On en déduitcette consequence, ^ue Ie temps augmentant sans cesse, Ie mouvementi6..



mi V- 244 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. approche de plus en plus de luniformité, et qu’ü est sensiblement uniforme quand la vitesse gt, pro-duite par la pesanteur, est devenue trés grande parnbsp;rapport a k. En effet, en négligeant alors l’exponen--S. k • tielle e , qui est une tres petite fraction, on aV =.k, = kt jta — log 2. iJ.; La resistance du fluide e'tant une force qui s’exerce a la surface du mobile, la force motrice qui en ré-sulfe est inde'pendante de la masse, et serait la méme,nbsp;soit que le mobile fut forme d’une mati?re tres dense,nbsp;soit qu’on enlevat la mati?re inférieure, et qu’on lenbsp;réduisit a une enveloppe tres mince. Or, la forcenbsp;accélératrice se deduisant de la force motrice, ennbsp;la divisant par la masse du corps, il s’ensuit quenbsp;la premi?re de ces deux forces sera, toutes

chosesnbsp;d’ailleurs egales, en raison inverse de cette masse,nbsp;et, par consequent, k en raison directe de sa ra-cine carree. C’est pour cela que le mouvementnbsp;final, dans un milieu resistant, est le plus rapidenbsp;pour le corps pesant dont la densite est la plusnbsp;grande; la forme et letendue de la surface restantnbsp;les m?mes. Quand la densite du milieu est trés faible par rapport a celle du mobile, la quantite k est trés grande j et ce nest quapres un temps trés long que le mouvement peut approcber de luniformité, Tant que lanbsp;vitesse gt nest pas devenue trés considerable, on a,nbsp;en séries convergentes, f;' i ‘ ? ?iv- 1'^



345 DYNAMIQUE, PREMI?RE PARTIE./t 6F quot;1^ ctc*^ ?f) ' nbsp;nbsp;nbsp;'nbsp;nbsp;nbsp;nbsp;? ..nbsp;nbsp;nbsp;nbsp;quot;'nbsp;nbsp;nbsp;nbsp;7 . -l-etc., 2^“ nbsp;nbsp;nbsp;12A' les formules (2) et (3) devienneiit 4- etc., — ^4- etc. Elles se réduisent, comme cela doit ?tre, a celles du ftiouvement uniformémeut accéléré, lorsque la denote du milieu est tout-a-fait nulle, ce qui rend lanbsp;'?uantité k infinie. 134. Dans Ie cas oü Ie mobile est lancé de bas en ^‘aut, on a lt;P = — g — gt; sa surface supérieure est la m?me que sa surface in-?'ieure, la constante k sera aussi la m?me que dansSi fé ---------------- j Ie cas de la cbute; mais si ces deux portions de surface sont différentes, les valeurs de k Ie seront éga-?etnent; et, par exemple, s’il s’agit d’un cóne dont la fgt;ase soit horizontale, la quantité k sera

beaucoupnbsp;plus grande ou beaucoup plus petite dans son mouvement ascensionnel que dans sa chute, selon que sonnbsp;souimet sera situé au-dessus ou au-dessous de sa base.nbsp;?*our fixer les idees, je supposei’aique Ie mobile soit



246 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. une sphere homogene; en appelant r son rayon, D sa densité et p celle du milieu, on aura alors (nquot; 124) k' = —• y?' y étant une constante qui ne peut plus de'pendre que de la nature du milieu, liquide ou fluide aériforme,nbsp;et de sa temperature. En substituant cette valeur de lt;p dans la seconde equation (i), on aura kdv et en integrant et désignant par a la vitesse initiale du mobile, il en résulte are (^tang = f ) = are (tang — 0 — p gdl k il. La valeur de u qu’on en de'duit peut facilement s’é-crire sous la forme : ? nbsp;nbsp;nbsp;I 7nbsp;nbsp;nbsp;nbsp;’ a sm ^ A: cos ^ knbsp;nbsp;nbsp;nbsp;k En multipliant par dt et integrant de nouveau, de mani?re qu’on ait ar = o quand ? = o, on en conclu* Ou aui'a aussi ^dx ?:= k^vdv



Ml DYNAMIQUE, PREMI?RE PARTIE. par conséquent, X = — log 9.g Ö k^ -i- k'^ Si Toil fait -^=a, et quel’onsuppose ensuite a,=o, pour appliquer ces formules au cas du vide, elles senbsp;présentent sous la forme ^ gt; et, par la régie ordinaire,nbsp;*^0 trouve, comme cela doit ?tre, vz=a—gt, x=at~\gt'‘, fésultat qu’on oblient aussi par Ie développement en Serie, comme dans Ie numéro précédent. i35. Appelons Ala plus gravide hauteur a laquelle Ie mobile parviendra, et qui répond a f = o; nousnbsp;aurons * = nbsp;nbsp;nbsp;‘“g —— Soit aussi 6, Ie temps qu’il emploiera pour y parvenir j valeur sera 6. = A arc (tang = 1). Parvenu a cette hauteur, Ie mobile retombera, et Sou mouvement sera exprimé par les formules dunbsp;t52. Si Ton représente par a' sa vitesse, lorsqu'ilnbsp;Sera retombé de toute cette hauteur/t, on

aura, d’a-Pi’?slequation (4), égalant cette valeur de ^ a la précédenle, on a k^



*48 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. et, par conséquent. a' ? lt;i“ /(?“ ’ :'i!. d’oü l’on conclut a' a; en sorte que la vitesse du mobile, quand il sera revenu a son point de depart,nbsp;se trouvera moindre que sa vitesse initiale. Soit aussi G' Ie temps de la chute totale, lequel ré' pondra a sgt; ~a'. On aura OU bien, en mettant pour d sa valeur.0'= ^log valeur différente de celle du temps 0, de l’élévatiou. En multipliant par \/a'-\- nbsp;nbsp;nbsp;— a, Ie numérateui’ et Ie dénominateur de la fraction comprise sous Ie lo-garithme, on aura, plus simplement. 0' = — log ? nbsp;nbsp;nbsp;--; et si l’on appelle 0 Ie temps total 0' 0, de l’allée et du retour du projectile, on en conclura = are (tang =p) log- g^ k k V/agt;_j_ k^ — a Si Ie mobile est un boulet lancé dans l’air par oo canon vertical, on pourra, malgré la rapidité de

cenbsp;mouvement, mesurer Ie temps 0 avec quelque préoquot;nbsp;sion; et si Ton connait, en outre, la vitesse de prOquot; ?H11Ét



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;249 jection a, l’ëquation-précédente servira a determiner la valeur de A:, relative au rayon r du boulet. En dé-‘^•gnant par A' ce que devient k par rapport a unnbsp;autre boulet de la m?me mati?re et d’un rayon r', onnbsp;aura k' d’apr?s l’expression de A* du numéro précédent. 156. Dans Ie cas oü 1’ón fait abstraction de la pe-santeur, et ou l’on suppose la résistance du milieu proportionnelle a une puissance de la vitesse dontnbsp;1’exposant est moindre que 1’unité, la solution du pro-bl?me présente une singularité qui mérite d’etre re-marquée. Supposons qu’on ait, par exemple,(p; g Gt k étant toujours la gravité et une vitesse constante et donnée. -L’équation du mouvement sera\l\-’ dv dt — — 2g Žn en tirant la valeur de gdt, integrant et désignant par a la

vitesse initiale, il vient gt = \/k(\/a — \/p), Žt, par conséquent, En multipliant par dt, et intégrant de nouveau, de



zSo nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. sorte qu’on ait x — o quand lt; =; o, on trouve a\/ ak Sé' pour l’espace parcouru a un instant quelconque. D’apr?s la valeur de t?, la vitesse diminue depuis i’origine du mouvement jusqua l’instant qui re'pond l/ öA’ , nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;1nbsp;nbsp;nbsp;nbsp;.nbsp;nbsp;nbsp;nbsp;,, ; a eet instant, Ja vitesse est nulle; au-dela, Ie mouvement continue dans Ie m?me sens qu’auparavant, et la vitesse augmente indéfiniment.nbsp;Mais la vitesse ëtant nulle a un certain instant, lanbsp;force accélératrice est nulle en m?me temps; parnbsp;conséquent, Ie mobile doit s’arr?ter a eet instant etnbsp;demeurer en repos. Or, 11 faut remarquer que l’é-quation du mouvement admet une solution particuliere v=o; en sorte que sa solution complete

estnbsp;l’ensemble de son integrale et de cette equation =nbsp;il s’ensuit done que Ie probl?me est résolu depuis t==: o jusqu’a t = nbsp;nbsp;nbsp;, par Tintégrale de Féqua- tion du mouvement, et au-dela de cette valeur de t, par la solution particuliere. Pendant Ie premier in-tervalle de temps, Ie mobile décrit, d’un mouvement continuellement retardé, une ligne égale a ^ nbsp;nbsp;nbsp;a 1’extrémlté de laquelle il s’arr?te et demeure 3g- en repos. Get exemple, purement bjpotbétique, suffit poiu' monfrer la nécessité d’avoir égard aux solutions par-ticuli?res des éqnations différentielles du mouvement,



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;aSi s’il enexistait; ce qui n’ai'rive pas réellement, d’apr?s expressions des forces en fonctions de la vltessenbsp;^cquise et de l’espace parcoiiru, qui ont lieu dans lanbsp;^lature. i3y. Donnons maintenant des exeraples de mou-i'^emens dans lesquels la force accélératrice variera ^Vec l’espace parcouru. Le cas Ie plus simple a lieu, lorsqu’il s'agit d’un point materiel attiré vers un centre fixe, en raisonnbsp;directe de la distance a ce point, que l’on supposenbsp;situé sur la droite que ce mobile dëcrit. Au bout dunbsp;temps t, solt z cette distance; a une distance donnée a,nbsp;Supposons que la force accélératrice soit égale a lanbsp;gravité g; on aura, d’apr?s la loi donnée,(p = on aura pour sa valeur a un instant quelconque. Si x est l’es-Pace parcouru au m?me

instant, et que le mobile Žoit parti du point situé a une distance c du centrenbsp;d’attraction, en se dirigeant vers ce centre,Hussi ia troisi?me équatlon (i) deviendra Son intégrale complete est z = A cos t nbsp;nbsp;nbsp;B sin ^ J



|H.r aSa nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. A et B désignant les deux constantes arbitraires. En supposant nulle la vitesse initiale du mobile, on auranbsp;a la fois dz Z ~ C, d’ou l’on conclut dt B = o, v/f' et, par consequent, z = c cos ^ Cette formule montre que la distance z sera nulle OU que Ie mobile atteindra Ie centre d’attraction, aunbsp;bout dun temps indépendant de la distance c de son point de depart, et e'gal a nbsp;nbsp;nbsp;ensuite, de part et d’autre de ce centre, des oscillations dont l’amplitude et la durée constantes seront cette distance c et ce temps “ : .r 158. Pour un autre exemple, considérons Ie mouvement d’un corps pesant dans Ie vide; nous su ppo-sons qu’il tombe d’une assez grande hauteur pour qu’on doive avoir égard, pendant sa chute, a lanbsp;variation de la pesanteur. Soient BAE (fig. 35)

un grand eerde vertical de la terre, D Ie point de depart du mobile dans cenbsp;plan, M sa position au bout du temps t, sur la droitenbsp;DC qui aboutit au centre C de la terre, et rencontrenbsp;en A sa surface. Appelons r son rayon CA, h la hauteur AD, X l’espace DM parcouru par Ie mobile, z sa



DYNAMIQÜE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;;i53 distance CM au centre C; en sorte qu’on ait z z=. r h — oc. La force accélératrice lt;p sera la pesanteur au point M; Ia de'signant toujours par g ^ la surface de la terre, c est-a-dire, au point A, et supposant que son inten-sité varie en raison inverse du carré de la distance aunbsp;Centre C, on aura done. nbsp;nbsp;nbsp;: g :: ^ Ou l’on tire Ž = — : au moyeii de quoi la troisi?me equation (j.) de-viendra d^x IF gr- {r h — xY' Je multiplie ses deux membres par j’int?gre cusuite; puis je determine la constante arbitraire de mani?re qu’on ait ^ = o, quand i = o; il vient dx- nbsp;nbsp;nbsp;j / IIF ~~ qui fera connaitre la vitesse acquise par Ie mobile, ^Une distance quelconque x de son point de depart,nbsp;point A, oü Ton a x = ^, cette vitesse sera la meme intensité

qu’a la surface. ct, par conséquent, moindre, comme cela devait etre, que si la gravité avait, dans toute la hauteur //,



354 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. L’ëquation précédente donne (r A — x)dx \/ {r-\-h)x — Or, en comparant celte equation difFérentielle a I’e-quation (a) du n” 7 5, on voit que si l’on construit une demi - cyclo?de DOG, qui ait son sommet aunbsp;point D et son origine au point O, situé sur la perpendiculaire CO a la droite CD, et dont Ie eerde ge-nérateur ait pour diam?tre cette droite CD égale anbsp;r 4- h; que Ton m?ne ensuite par Ie point M unenbsp;perpendiculaire MN a la droite DC, qui rencontre lanbsp;cyclo?de au point N, on aura MN V r h’ en sorte que l’ordonnée MN du point N fera connaitre Ie temps t, employé a parcourir l’abscisse DM, et ré-ciproquement. Sous forme finie, on aura en integrant, et en observant que x=:o quand tx=-0-Lorsque la hauteur Ti et, conséquemment, la dis' tance x, seront tres

petites par rapport a r, cette foiquot;nbsp;mule devra différer tres peu de celle qui répond a 1Žnbsp;pesanteur constante. En effet, on a are (cos = nbsp;nbsp;nbsp;= are (sm =nbsp;nbsp;nbsp;nbsp;,tp 4—gt; Ie sinus étant tres petit, on peut Ie prendre a la place de Tarej ce qui rend d’abord Ie second terme de la



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;aSÖ formule précédente egal au premier. On peut aussi ^^lettre ie rayon r au lieu de r-{-h — x, et réduire,nbsp;par conséquent, leur somme a 2 \/ra?; et, de cettenbsp;^?'ani?re, la formule dont il s’agit deviendra 2 rx, simplement négligeant h par rapport a r. Je me contenterai d'indiquer, comme exemple de calcul, Ie cas ou Ie mobile soumis a une pesanteurnbsp;Variable est lancé de bas en haut; et, pour derniernbsp;exemple du mouvement rectiligne, je vais consi-dérer Ie mouvement d’un point materiel attiré versnbsp;deux centres fixes, situés sur la droite qu’il décrit. i5g. Soient A et B (fig. 56), les deux centres d’atlraction, M la position du mobile au bout dunbsp;f^oips t, et D son point de depart. On suppose ,nbsp;pour fixer les idees, que le mouvement a

lieu entrenbsp;les deux centres d’attraction, et de A vers Bj faisons AD = a, BM = c — AM sorte que x soit ?espace parcouru, 2 la distance mobile au point A, a la distance initiale, et cnbsp;^a longueur de la droite AB. En supposant toujoursnbsp;attractions en raison inverse du carré des distances, et désignant, a Tunlte de distance, par anbsp;Žt b' les intensites des forces qiil émanent des een- a nbsp;nbsp;nbsp;ly^ A et B, nous aurons et ^ nbsp;nbsp;nbsp;^ pour leurs



256 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. iatensilés quand Ie mobile est en M. La force accé-lératrlce lt;p sera l’exc?s de la seconde force qui tend a augmenter l’espace x, sur la premi?re qui tend anbsp;Ie diminuerj done, a cause de dx=.dz, on aura cPz dp(a) [c-zf dz pour ce que devient la troisi?me equation (i) , et pour la vitesse du mobile au point M. En multipliant Tequation (?) par 2cfe et integrant, on a dz^ dl^ 2?!“ ?5 ? * —ygt; y étant la constante arbitraire. Pour la determiner, je désigne par k la vitesse initiale qui répond a z=ct; on aura k\ ---fquot; ^ a nbsp;nbsp;nbsp;A En retranchant cette equation de Ia précédente, il en résultera dz' dt^ S= 4quot; 2^“^—^-----') 2a* (- —(c) \c — z c — ot/ nbsp;nbsp;nbsp;\a z/ ce qui fera connaitre la vitesse du mobile, danŽ une position quelconque entre les deux points ^nbsp;et B.

izjo. II y a, sur la droite AB, un certain point C; dans lequel les deux forces d attraction sont égalesinbsp;en sorte que si Ton y placait Ie mobile, ou qunbsp;y parvint sans aucune vitesse acquise, il y denieui’^'nbsp;rait en équilibre. En appelant h la distance AC, on a



257 DYNAMIQÜE, PREMI?RE PARTIE. a'‘ w {c — hY On tire de la deux valeurs de h, dont Tune appar-tient au point C situé entre A et B, et l’auti’e a un point situ,é sur Ie prolongement de AB, du cóté dunbsp;centre de la moiudre attraction. La premi?re de cesnbsp;deux valeurs est ö-p A Appelons ƒ la plus petite vitesse initiale qu’il faut imprimer au mobile pour qu’il arrive au point C, denbsp;sorte que, parvenu a ce point, sa vitesse soit nulle;nbsp;on aura a la fois h =h, ct, en vertu de l’équation (c) et de la valeur de h, d en résultera _ nbsp;nbsp;nbsp;2A’nbsp;nbsp;nbsp;nbsp;2fl“ c — a ‘ a 2(0 6)''{d) Si la vitesse initiale k est moindre que/, Ie mobile retombera sur A; si elle est plus grande, il dépas-sera Ie point C, et ira tomber sur B. Dans Ie casnbsp;de k = ƒ, Ie mobile emploierait un temps infini

anbsp;^tteindre Ie point C, a cause qu’a une distance infi-Rinient petite de ce point, il ne serait plus animé quenbsp;dune vitesse inliniment petite, et sollicite par unenbsp;force qui Ie serait également. Si A et B sont les centres de deux spheres Wmog?nes, ou composées de couches concentrlques.



258 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. on pourra supposer que les attractions que l’on con-sid?re sont celles de ces deux sph?res; et alors leurs intensites et b’^, a Funité de distance , seront entrenbsp;elles comme leurs masses (n” lOi ). En supposant,nbsp;par exemple, que A soit Ie centre de la lune et Bnbsp;celui de la terre, et négligeant la non-sphéricité denbsp;ces deux corps, on aura rt* = -p; car la masse de la lune, conclue de sou action pour soulever les eaux de la mer, est de celle de lanbsp;terre. On aura done h = (OjioSSa) c; r.'' I 1 ; ''quot;J 'M 4-1/75 en sorte que Ie point également attiré par la terre et par son satellite se trouve, a peu prés, au dixi?menbsp;de leur distance muluelle a partir de la lune. Soit r Ie rayon de la terre ; on pourra prendre 6or pour la distance c de la lune a la terre; et si Ie

mobilenbsp;est parti de la surface de la lune, on aura en m?me 3y temps a =z= —, d’apr?s Ie rapport connu du rayon de la lune a celui de la terre. Au moyen de ces valeursnbsp;de r et a, et de a =nbsp;nbsp;nbsp;nbsp;^ 1 equation {d) devieoi ƒ? = (0,044894)^. En de'signant par g l’attraction de la terre a sa surface , on aura



aSg DYNAMIQÜE, PREMI?RE PARTIE. _ g.^a ^ pour cette force a l’unité de distance. Si done on fait (0,0,44894 ) r 1= r', en résultera ƒ* = 2g-r'. Or, l’attractioa g peut ?tre prise pour la pesanteur '^ont elle est la partie principale; par conse'quent ,nbsp;ƒ est la vitesse due a une hauteur r'; et a cause de g = 9% 80896, Trr = 20000000quot;', sa valeur est ƒ = 2568quot;-. La lune n ayant pas d’atmosph?re dont la resistance puisse diminuer la vitesse des corps partis de surface, il s’ensuit que si la terre et la lunenbsp;*^taient en repos, un coz'ps lancé.de la surface de lanbsp;luue vers la terre , avec une vitesse plus grandenbsp;*loe 2361 m?tres par seconde, dépasserait Ie pointnbsp;’legale attraction, et viendi’aittomber sur la surfacenbsp;’Ie la terre. Dans Ie mouvement de la lune autourdenbsp;la terre, la droite

AB qui va d’un centre a Tautrenbsp;Rencontre constamment la surface de la lune en unnbsp;’^l?me point, qui devrait ?tre Ie point D , d’oiz Ienbsp;Riobile serait lancé suivant la direction DB ; mais ,nbsp;pendant une seconde, Ie point D parcourt sur Ienbsp;^ei'cle décrit du centre de la terre, une longueur d’en-’'^iron 1000“ par seconde; par conséquent, la vitesse absolue du mobile sei-ait, cn grandeur et en



^tgt;0 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÉE. direction, la resultante d’une vitesse dirigée suivant DB, et d’une vitesse de looo”* perpendiculaire a DB.nbsp;Cela étant, Ie corps ne restera pas sur la droitenbsp;mobile AB; il décrira une courbe dans l’espace, lesnbsp;formules précédentes ne s’appliqueront plus a .sonnbsp;mouvement, et il ne viendra plus tomber sur la surface de la terre, comme dans Ie cas de I’inimobilitenbsp;de la lune. 142. En resolvant réquation (i) par rapport a dt, on a dt = t/ aa’c .— (aa'' — 26“ -f- cy) z -j- yz “ L’intégrale de cette formule s’exprimera toujours au moyen des fonctions elliptiques; en sorte quenbsp;l’on pourra calculer, au moyen des tables de cesnbsp;fonctions, Ie temps qui repond a une distance don-née z, et réciproquement. Mais indépendamment desnbsp;cas oü

Tune des deux attractions est nulle, il en estnbsp;d’autres pour lesquels l’intégrale de la formule pré-cédente peut encore s’obtenir sous forme finie. Cesnbsp;cas ont lieu lorsque la quantité comprise sous Ienbsp;radical est un carré parfait; ce qui exige qu’on ait(aa* — 2^“ cy-)* = 8a*cy; équation d’oü l’on tire y nbsp;nbsp;nbsp;b)\ iSg; En égalant cette valeur a celle de y du n“ vient 2 (fl by 2^“



DINAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;26^ une de ces deux valeurs de A* est celle de ƒ“; l’autre est évidemment plus grande. II s’ensuit done quenbsp;Suand aucune des deux quantites a eX b n’esl zéro ,nbsp;O?i peut exprimer Ie temps sous forme finie en fonc-tion de z, lorsque Ie mobile a recu la plus petitenbsp;'?^itesse f avec laquelle il peut atteindre Ie point C, etnbsp;lorsqu’on lui a imprimé une certaine vitesse plusnbsp;§rande que celle-la. Je substitue la double valeur de 5/ dans l’expres-*ion de dt; il vient v1 - dt = V/cz,— zodi ac — (a ? b) z’ formule que I on rendra rationnelle et qu’on inté-grera, sans difficulté^ par les regies ordinaires. La dif-' férentielle ??Adoittoujours ?tre positive; la diöéren-belle dz est positive pendant que Ie mobile s’avancenbsp;de D vers B, et negative lorsqn’il revient vers

A.nbsp;Ilans Ie premier cas, on prendra done Ie radicalnbsp;\/cz — z^ , avec Ie m?me signe que Ie dénomina-t^ur ac— (?=?: b^z, et, dans Ie second cas, avecnbsp;tin signe contraire. 143. Soit que Ton suppose b = o ou c = co, Ie ttiobile ne sera plus soumis qua l’attraction du cen-^te A. L’équation (c) se réduira a la valeur de dt qu’on en déduit s’intégrera sous forme finie, et fera connaitre t en fonction de z. Si 1’on fait ~ = o, on aura l’équation



262 TRAITÉ DE MÉGANIQÜE. pour determiner la distance z a laquelle Ie mobile s’arrétera. Dans Ie cas de 3a’‘= k*a., cette distance seranbsp;inlinie; ce qui signifie que Ie mobile ne s’arr?teranbsp;pas. II en sera de m?me dans Ie cas de lt; k^a.,nbsp;d’oü il résulterait pour z une valeur negative quinbsp;ne peut appartenir a aucun point de la droite indé-finie DB, suivant laquelle Ie mobile a été lancé. Dansnbsp;ces deux cas Ie mouvement approchera de plus ennbsp;plus de Tuniformité, a mesure que Ie mobile s’éloi-gncra de A. Quand la distance z sera devenue tres grande et Ie mouvement sensiblement uniforme, sa vitesse,nbsp;d’apr?s Tequation (e), sera a peu pres égale a \J k' — ~, ou a \/A“— en supposant qu’on a (2* = gaŽ, c’est-a-dire, en supposant que Ie corps soit parll de la surface d’une

sphere, d’un rayon a, et oünbsp;l’attraction était égale a g. Ce qui montre que la diminution de la vitesse initiale k sera d’autant plusnbsp;grande que cette force et ce rayon seront plus considerables.



263 DYNAMIQUE, PREMI?RE PARTIE. CHAPITRE III. DU MOUVEMENT CURVILIGNE. S 1quot;. Formules générales de ce mouvement. 144* Dans Ie mouvement curviligne, la courbe decrite par Ie mobile est ce qu’on appelle la trajec-toire de ce point materiel. Au bout d’un temps quel-conque t, soit M (fig. Sy) la position du mobile. Sinbsp;l’on appelle s l’arc CM de la trajectoire compris entrenbsp;Ie mobile et un point fixe C, pris arbitrairement surnbsp;^ette m?me courbe, s sera une fonction de t; en sortenbsp;^Ue l’on aura, dans un mouvement curviligne quel- eonque, s = Ff. l’on désigne, au m?me instant, par x, j, z, les ^fois coordonnées rectangulaires du mobile, ces variables seront aussi des fonctions de f, et l’on auranbsp;Žgalementx^ft, j==f't, Lorsque ces trois derni?res equations seront con^ iiues, on en déduira,

par rélimination de t, les deuxnbsp;^ijuations en x, z, de la trajectoire. Au mojennbsp;des equations de cette courbe, on déterminera s en



264 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. fonction de Tune des trois coordonnées, et, par suite, en fonction de ce qui fera connaitre la loi du mouvement sur la trajectoire. Chacune des trois equationsnbsp;prdcédentes est celle du mouvement rectiligne de lanbsp;projection du mobile sur 1’un des axes des coordonnées ; il s’ensuit done que la determination completenbsp;du mouvement curviligne d’un point materiel dansnbsp;l’espace se réduira a celle de trois mouvemens recti-lignes, qui seront les mouvemens de ses projectionsnbsp;sur les trois axes Ox, 0j~, Oz, des coordonnées.nbsp;Quand ces trois mouvemens seront uniformes, celuinbsp;du mobile sera aussi rectiligne et uniforme, et réci-proquement. 145. Pendant 1’instant dt, Ie mobile décrira l’élé-ment ds de sa trajectoire; en

négligeant, dans eet in-tervalle de temps infiniment petit, faction des forces qui Ie sollicitent, on pourra considérer son mouvement comme rectiligne et uniforme. Si done on ap-pelle V la vitesse acquise au bout du temps t, onnbsp;aura _ ds dt Si ces forces cessaient réellement d’agir a finstant que fon consid?re, Ie mobile continuerait de se mou'nbsp;voir avec cette vitesse (gt;, et suivant Ie prolongemen^nbsp;MT de félément ds, c’est-a-dire, suivant la tangent^^nbsp;a Ia trajectoire, puisque en vertu de finertie de 1*nbsp;mati?re il ne pourrait alors changer ni la directionnbsp;son mouvement ni la grandeur de sa vitesse (n* 11nbsp;On peut done considérer un point materiel qui de-crit une ligne courbe quelconque comme étant anim^-^



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;265 a t:haque instant, d’une vitesse dirigée suivant la tangente a cette courbe, et exprimée par Ie rapportnbsp;•ie son élément dilFérentiel a Vélément du temps. Eu représentant, au bout du m?rae temps t, par Pgt; q, r, les vitesses des projections du mobile surnbsp;^es trois axes des x , z, on aura aussi, dans cesnbsp;trois mouvemens rectilignes, dx nbsp;nbsp;nbsp;dfnbsp;nbsp;nbsp;nbsp;dz Mals si l’on désigne par o., ë, y, les angles que fait la tangente a ia trajectoire, ou la direction de la vi-tesse V, avec des parall?les aux axes des x, jquot;, z, onnbsp;a ( n° 17) dx nbsp;nbsp;nbsp;p drnbsp;nbsp;nbsp;nbsp;dz cos a = — , cos 6 = ^ , cos y = -y ; ds ’ nbsp;nbsp;nbsp;ds ’nbsp;nbsp;nbsp;nbsp;* ds’ d’oü Ton conclut p = Pcosa, qz=vcosë, rz^vcosy, (i) en méme temps pŽ -

p* nbsp;nbsp;nbsp;(j^nbsp;nbsp;nbsp;nbsp;7^. Le temps t croissant continuellement, sa difFéren-^ielle est toujours positive. Les vitesses p, q, r, sont positives ou négatives, selon que les coordonnées x ,nbsp;z, croissent ou décroissent. Dans les equations (1),nbsp;peut regarder la vitesse v comme une quantiténbsp;positive; le sens de cette vitesse, ou la partie MT denbsp;ia tangente a la trajectoire, suivant laquelle elle seranbsp;dirigée, se déterminei’a alors par les signes de ,nbsp;•/gt; r, qui feront connaitre si les angles a,ë,y, sont



206 TRAITÉ DE MÉCAKIQUE. aigus OU obtus. Dans Tequation p = ^, on considé- rera la vitesse comme positive ou comnie negative, selon que 1’arc s croltra ou décroitra. On appelle cornposantes de la vitesse e d’un point materiel les vitesses p, r, de ses trois projectionsnbsp;sur des axes rectangulaires; et chacune de ces troisnbsp;cornposantes est ce que l’on entend par la vitesse dunbsp;mobile, parall?lement a l’axe auquel elle répond. Ennbsp;comparant les equations (i) a celles du n° 5i, on voitnbsp;que cette composition des vitesses se fera suivant lesnbsp;m?mes regies que celle des forces. D’apr?s cette analogie, si l’on m?ne par Ie point M une droite quel-conque MA, qui fasse avec les parall?les aux axesnbsp;des SC, j, z, menées par Ie m?me point, des anglesnbsp;a, b, c, aigus ou

obtus, la composante de la vitesse V suivant cette droite MA aura pour expression générale p cos a q cos b r cos c. La quantité de mouvement (n“ 126) d’un point matériel isolé, et celle d’un corps dont tous lesnbsp;points sont animés de vitesses égales et parall?les,nbsp;se décoraposeront en d’autres quantités de cette nature, et celles-ci se réduiront a une seule, suivantnbsp;les m?mes regies que les vitesses qu’elles ont pontnbsp;facteur. 146. Au bout du temps tdt, soient p p'gt; q-{-q', r-\- r', ce que deviennent les trois compo-santes de la vitesse du mobile, parall?les aux axesnbsp;des SC, y, z 5 en sorte que p', q', r', représentent



DYNAMIQIJE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;267 les augmentations infiniment petites de vitesse qui lieu suivant ces directions pendant l’instant dt. L accroissement de vitesse suivant la droite MA sera p' cos a q' cos b -f- r cos c. , quelles que soient les quantités p', q', r', si ^on fait u' — p'? 4. 5'“ 4- r'% qu’on regarde u comme une quantité positive , pourra toujours trouver trois angles a!, ?', y', ^igus OU obtus, tels que l’on ait p'^=-u cos cl', gf' — M cos , r' = u cos y'; au mojen de quoi l’accroissement de vitesse suivant l^A deviendra u (cos a cos a' 4- cos b cos Q’ 4- cos c cos y'). plus, la quantité comprise entre les parentheses Žst Ie cosinus d’un certain angle que j’appelle a. L’accroissement dont il s’agit est done égal a u cos a jnbsp;par conséquent, u est sa plus grande valeur, et ellenbsp;^cpond a la direction de la

di^oite MA, pour la-^Uelle les angles a, b, c, sont les m?raes que a!,nbsp;, ce qui rend Ie coefficient de u égal a l’unité.nbsp;toute autre direction, l’accroissement de vi-^csse sera égal au maximum u, multiplié par Ie co-*inus de Tangle c que fait cette direction quelcon-*lUe avec celle du maximum; d’oü il résulte qu’ilnbsp;Sera nul par rapport a toutes les directions perpen-diculaires a celles de sa plus grande valeur.



268 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Quelle que soit la variation de vitesse du mobile, en grandeur et en direction, pendant l’instant dt,nbsp;il j a done toujours une certaine direction pour la-quelle Taugmentation de vitesse est la plus grande,nbsp;et qui jouit de cette propriété, que, suivant toutesnbsp;les directions perpendiculaires a celle-la, la vitessenbsp;n’est ni augmentee ni diminuee. i47* l^a direction d’une force qui agit sur un point materiel en mouvement est la droite suivant laquellenbsp;elle augmente ou diminue la vitesse acqnise, et per-pendiculairement a laquelle elle n’y produit aucunenbsp;alteration. Ainsi, quand nous disons que la pesanteurnbsp;d’un corps en mouvement dans un sens quelconque estnbsp;verticale, comme celle d’un corps en repos, nous entendons par la

que cette force augmente la vitesse verticale , et n’alt?re aucunement la vitesse horizontale. Cela étant, désignons, au bout du temps t, par U, U', üquot;, etc., les intensités des dilférentes forcesnbsp;qui agissent sur Ie point materiel dont nous considé-rons Ie mouvement curviligne; par a, b, c, a!, b', c',nbsp;d', bquot;, cquot;, etc., les angles que font leurs directionsnbsp;données avec des parall?les aux axes des oc,j, z; etnbsp;par X, Y, Z, les sommes de leurs composantes suivant ces axesnbsp;nbsp;nbsp;nbsp;j nous aurons d’abord (nquot; Sa) X = nbsp;nbsp;nbsp;Unbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;anbsp;nbsp;nbsp;nbsp;\J' cosnbsp;nbsp;nbsp;nbsp;dnbsp;nbsp;nbsp;nbsp;-f-nbsp;nbsp;nbsp;nbsp;Uquot;nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;d'nbsp;nbsp;nbsp;nbsp;

nbsp;nbsp;nbsp;nbsp;etc.? Y = nbsp;nbsp;nbsp;Unbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;U' cosnbsp;nbsp;nbsp;nbsp;b'nbsp;nbsp;nbsp;nbsp;? ?nbsp;nbsp;nbsp;nbsp;Uquot;nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;bquot;nbsp;nbsp;nbsp;nbsp;-f-nbsp;nbsp;nbsp;nbsp;etc.; Z = nbsp;nbsp;nbsp;Unbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;cnbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;U' cosnbsp;nbsp;nbsp;nbsp;c'nbsp;nbsp;nbsp;nbsp;4-nbsp;nbsp;nbsp;nbsp;Uquot;nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;d'nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;etc- Solent ensuite u, d, d\ etc., les vltesses infiniment petites que ces forces U, U', Uquot;, etc., produlraient;nbsp;pendant l’instant dt^ suivant leurs directions respe^^quot;



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;269 si cliacune d’elles agissait seule sur Ie mobile 3uimé de la vitesse i’. On verra, comme dans Ienbsp;116, que la siraultanéité de ces forces n’influeranbsp;’^'ullement sur les grandeurs et les directions des A'i-l^esses qui seront réellement produites; par consé-^went, si Ton continue d’appeler p', q', r', les quan-bte's infiniment petites dont les ’vilesses p, q, r, desnbsp;Projections du mobile sur les axes des oc^ j, z, s’ac-‘^i'oitront dans l’instant dt, ces quantites seront lesnbsp;Sommes des composantes de u, u', id, etc., suivanlnbsp;res trois axesj en sorte que nous aurons uquot; cos aquot; ???]— etc., quot; cos d’ etc., p' = nbsp;nbsp;nbsp;unbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;anbsp;nbsp;nbsp;nbsp;

nbsp;nbsp;nbsp;nbsp;u'nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;a!nbsp;nbsp;nbsp;nbsp; q' = nbsp;nbsp;nbsp;unbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;?nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;m'nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;h'nbsp;nbsp;nbsp;nbsp;-f-nbsp;nbsp;nbsp;nbsp;u r' = nbsp;nbsp;nbsp;Mnbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;cnbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;c'nbsp;nbsp;nbsp;nbsp;-j-nbsp;nbsp;nbsp;nbsp;uquot;nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;cquot;nbsp;nbsp;nbsp;nbsp;-f-nbsp;nbsp;nbsp;nbsp;etc. Mais nbsp;nbsp;nbsp;ennbsp;nbsp;nbsp;nbsp;appliquantnbsp;nbsp;nbsp;nbsp;a chacunenbsp;nbsp;nbsp;nbsp;desnbsp;nbsp;nbsp;nbsp;forcesnbsp;nbsp;nbsp;nbsp;u,nbsp;nbsp;nbsp;nbsp;u, On ^ gt; etc., ce qu’on

a trouvé (nŽ 118) pour la mesure une force d’apr?s la vitesse dont elle est capable , a aussi ? = \]dt, = \]'dt, nbsp;nbsp;nbsp;u!' =. \}quot;dt, etc; comparant les valeurs de p', q', r', a celles de X, Z , il en résulte done p' = ^dt, q' = Ydt, r' = Zdt; qui montre que l’accroissement de la composante la vitesse du mobile suivant chaque axe, dansnbsp;^justant dt, est la vitesse produite, pendant eet ins-^^nt, par la composante totale suivant ce menienbsp;^*0, des forces données qui agissent sur ce pointnbsp;iRatériel.



2,0 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Ce résultat tient a ce que les forces sont propor-tionnelles aux vitesses qu’elles impriment au mobile dans un m?me temps infiniment petit, lesquelles vi-tesses infiniment petites ne changent pas, soit quenbsp;ces foi’ces agissent isolément, soit que leurs actionsnbsp;aient lieu simulfanément. II s’ensuit aussi que si lesnbsp;forces appliquées au mobile sont, par exemple, aunbsp;nombre de trois, non comprises dans un m?me plan ;nbsp;que l’on prenne sur les directions de ces trois forcesnbsp;U, U', Uquot;, a partir de leur point d’application, desnbsp;droites de grandeurs linies qui soient enü’e ellesnbsp;comme les vitesses correspondantes u, u', uquot;; et quenbsp;Ton ach?ve Ie parallélépip?de dont ces trois droitesnbsp;seront les cótés adjacens, la

résultante de ces forcesnbsp;sera dirigée suivant la diagonale, et sa graiideur seranbsp;a celle de chacune de ces forces comme la diagonalenbsp;est au cóté correspondant. 148. Si les forces qui agissent sur Ie mobile sont indépendantes de sa vitesse et de sa position dansnbsp;l’espace, les mouvemens de ses trois projections surnbsp;les axes des cooi’données seront indépendans entrenbsp;eux; en sorte que sa projection sur chaque axe senbsp;trouvera, au bout d un temps quelconque, au m?menbsp;point, et aura la m?me vitesse que si les forces et IeŽnbsp;vitesses étaient nulles parall?lement aux deux auti’S*nbsp;axes. II n’en sera plus de m?me, en général, quanlt;^nbsp;les forces données varieront, en grandeur ou en direC'nbsp;tion, solt avec la position du mobile, soit avec

sanbsp;vitesse acquise; mais on pourra toujours détermioe*’nbsp;sa vitesse et sa position, a chaque instant, de la m?'nbsp;ni?re suivante.



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;271 Puisque toutes les forces qui agissent sur Ie mobile peuvent toujours ?tre réduites a une seule, suppo-sons que U, capable de la vitesse u, soit cette forcenbsp;'^?'ique, et désignons par e l’espace qu’elle fera par-courir au mobile pendant l’instant dt, suivant sa di-’^'^ction, indépendamment de la vitesse de ce pointnbsp;*Rate'riel au bout du temps t. D’apr?s ce qu’on a vunbsp;^ans Ie n° 114gt; nous aurons g = i iidt. ^lais, en vertu de cette vitesse acquise v et de faction •ie la force U ou de ses coniposantes, les espaces pai’-^ourus par les projections du mobile sur les axes desnbsp;^, j, z, pendant l’instant dt, seront pdt 4- 4 p'dt, nbsp;nbsp;nbsp;qdt~\-^ q'dt, rdt -H | r’dt; ^ORc, a cause de q' =Lu cos b, r' = u cos c , en ayant égard aux equations (i) et a la valeur Ž ^ gt;

on aura cc' — cc nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;O)nbsp;nbsp;nbsp;nbsp;cos anbsp;nbsp;nbsp;nbsp;-f-nbsp;nbsp;nbsp;nbsp;6nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;a, y — y- nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;amp;)nbsp;nbsp;nbsp;nbsp;cos ?nbsp;nbsp;nbsp;nbsp;ynbsp;nbsp;nbsp;nbsp;?nbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;h, 2' — z nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;conbsp;nbsp;nbsp;nbsp;cos ynbsp;nbsp;nbsp;nbsp;ynbsp;nbsp;nbsp;nbsp;enbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;c ; ^ étant l’espace nbsp;nbsp;nbsp;f^dtnbsp;nbsp;nbsp;nbsp;qui serait décritnbsp;nbsp;nbsp;nbsp;par Ie nio- R dans rinstant dt, en vertu seulement de la vi-^ Se Pj et nbsp;nbsp;nbsp;y^ ^^ ggg trois coordonnées au bout lenips t-\.clt, qui étaient cc, r, z, au bout du '^Rips t. ^ Cela posé, soient

toujoui’s M ( fig. 87 ) Ie point ^ la trajecloire dont x, j, z, sont les trois coor- u cos a P' et



272 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. données, et MT la direction de la vitesse v. Soit aussi MA celle de la force U. Prenons sur MA etnbsp;MT des droites MH et MK, égales a € et o;, etnbsp;achevons Ie parallélogramme MHM'K, dont cesnbsp;droites sonl les deux cótes adjacens. L’extrémité M^nbsp;de sa diagonale sera, en vertu des equations précénbsp;dentes, Ie point dont les coordonnées sont jc', j', OU la position du mobile au bout du temps t dt. Appelons d la vitesse du mobile au point M', laquelle vitesse sera dirigee suivant Ie prolonge-ment M'T' de la droite MM(, et aura pour valeui’nbsp;la composante de v suivant MM', augmentée de 1?nbsp;vitesse produite suivant cette direction par Tactio?nbsp;de la force U pendant I’instant dt. L’espace ? étantnbsp;infiniment petit par rapport a , il

s’ensuit quenbsp;l’angle TMM' est aussi infiniment petit; la compO'nbsp;santé de v est done cette vitesse m?me, en negfi'nbsp;geant les infiniment petits du second ordre. De plus,nbsp;si l’on désigne par ^ l’angle AMM' que fait la direction de la force ü avec Ie cóté MM' de la tra-jectoire, on aura u cos J' pour l’augmentation denbsp;vitesse qui sera produite par Taction de cette fox’ce jnbsp;11 en résultera done e' = V ? cos cT. Je fais v' dt = 00', et je prends sur M'T' une pai’d^ M'R' égale a 00'; je désigne par M'A' la direction denbsp;la foi'ce qui agit sur Ie mobile quand il est parve?*^nbsp;en M'; sur cette droite, je prends une partie ^nbsp;égale a Tespace que cette force peut faire parcoiu^*^nbsp;au mobile dans uii instant df, j’ach?ve Ie parallels-



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;273 gramme M'H'Mquot;K'; et 1’extrémité Mquot; de la diagonale sera un troisi?me point de la trajectoire. Ea commencant cette suite de constructions au point de depart du mobile, oü 1’on doit connaitre sanbsp;Vitesse en grandeur et en direction, il est évidentnbsp;^tle l’on déterminera successivement lous les pointsnbsp;*le sa trajectoire plane ou a double courbure, et, ennbsp;•^?me temps, la vitesse dont il sera animé en cha-Vü?i de ces points. Si les intervalles de temps, qu’on anbsp;supposes infiniment petits et désignés par dt, sontnbsp;seulement trés petits, on obtiendra une suite denbsp;points qui seront les sommets d’un polygone, d’au-tant moins différent de la trajectoire, que ses cotésnbsp;seront plus petits. En regardant la vitesse commenbsp;constante

sur chaque cóté, et prenant pour sa valeurnbsp;la demi-somrae des vitesses qu’on aura trouvées auxnbsp;fleux extrémités, on pourra calculer Ie temps employé a parcourir une portion quelconque du polygone ; par conséquent, on connaitra de cette mani?renbsp;la courbe décrite par Ie mobile, ainsi que sa vitesse etnbsp;position a un instant donné sur cette courbe, anbsp;tel degré d’approximation qu’on voudra; mais il vautnbsp;Riieux faire dépendre les valeurs des coordonnées dunbsp;Riobile en fonctions du temps, d’équations différen-tielles que l’on intégrera ensuite s’il est possible. i49' Ces equations différentielles du mouvement ^ürviligne sont une suite immédiate du principe éta-Mi dans Ie n° 147. dx Tt’ En effet, les composantesde la vitesse du mobile, pa-vall?les aux axes de ses coordonnées z, étant



274 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. au bout du temps quelconque t, leurs aC-croissemens , pendant J’instant dt, seront d. nbsp;nbsp;nbsp;, dz dj ; et comme chacun d’eux est du uni-d. quement a la composahte suivant l’axe correspou' dant, de la force qui agit a eet instant sur Ie mobile,nbsp;il s’ensuit qu’en appelant toujours X, Y, Z, lesnbsp;composantes de cctte force, parall?les aux axes desnbsp;coordonnees a:, j, z, nous aurons = zdt, dx d.^ — Udt, d.'^ — Ydt, dt nbsp;nbsp;nbsp;’ dtnbsp;nbsp;nbsp;nbsp;’nbsp;nbsp;nbsp;nbsp;dt OU, ce qui est la m?me chose, d^x nbsp;nbsp;nbsp;^ J Y d z , IF ~ nbsp;nbsp;nbsp;~nbsp;nbsp;nbsp;nbsp;’ dë-~ ‘ dj(^) Le probl?me consistera, dans chaque cas, a iu' tégrer ces trois equations du mouvement; et l’otinbsp;peut considérer, pour cetle integration,

le procédénbsp;du n° précédent comme une méthode générale d’ap'nbsp;proxlmation. Leurs intégrales contiendront six cons-tantes arbitraires, que Ton déterminera au mojeonbsp;des trois coordonnees du mobile a Forigine du mouvement, et des trois composantes de la vitesse initiale , c’est-a-dire, au moyen des valeurs des sD^ . , nbsp;nbsp;nbsp;dx dj dz .nbsp;nbsp;nbsp;nbsp;, quantites x, j, z, nbsp;nbsp;nbsp;qm seront donnees pour ^ = o. Ces intégrales et leurs différentielles premi?res feront easuite connaitre la position lt;3**nbsp;mobile a un instant quelconque, et sa vitessenbsp;grandeur et en direction. En éliminant entre elles



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;2,5 Ie lei?ips ^, on aura les deux equations de la tra-jectoire. Quand on saura d’avance que cette courbe plane, on pourra prendre son plan pour celuinbsp;•ies X et j, par exemple; ce qui reduira les troisnbsp;equations précédentes aux deux premi?res. i5o. Au bout du temps t, soient a, b, c, les ^Tois coordonnees d’un second point materiel, a lanbsp;position duquel on veut comparer celle du premier.nbsp;Les axes de ces cooi’donnees étant ceux des oc, j,nbsp;je fais X =z a x', j =z h y, z .= c z'-, les variables x', y, z', feront connaltre a chaque instant la position du premier point par rapport aunbsp;second; et d’apres les equations (2), on aura pour les determiner en fonctions du temps. Quand le mouvement du second point ne sera pas connu, mais que ron donnei’a

seulement lesnbsp;*^omposantes A, B, C, parall?les aux axes des coor-^ionnées, dela force qui le sollicite, on aura IF d^b ~dF d'’a dt^ = A, il en resultera dV dt^ ' d‘z' dF ;Z —C, B, pour les equations du mouvement relatif du pre-Oiier point. Si la force dont A, B, C, sont les composantes i8..?!



2,6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. agit a la fois sur les deux mobiles, ces composautes entreront aussi dans les valeurs de X, Y, Z, etnbsp;dlsparaitront de ces derni?res equations. C’est cenbsp;qui arrivera, par exemple, a l’égard des corps qulnbsp;se meuvent a la surface de la terre, et dont onnbsp;rapporte les positions a des points determines denbsp;cette surface : les forces relatives a ces points etnbsp;provenant du mouvement diurne de la terre, n’en-trent pas dans les equations des divers mouvemensnbsp;que Fon consld?re a sa superficie j et 1’on en fait com-pl?tement abstraction, en formant ces equations. Toutefois, cela ne veut pas dire que les mou-vemens que nous observons soient tous indepen-dans de la vitesse de rotation de la terre. Elle influe pour une petite partle sur

Fintensité de lanbsp;pesanteur , et , conséquemment, sur les mouvemens verticaux. De plus , quand un corps tombenbsp;d’une hauteur considerable, la vitesse de rotationnbsp;dont il est auimé a son point de depart est unnbsp;peu plus grande que celle qui a lieu au pied de lanbsp;verticale menée par ce point; d’oü il est aisé denbsp;conclure que Ie mobile dolt s’écarter un peu de cettenbsp;droite , et venir rencontrer la terre a une petite distance de son extrémité inférieure. Cette deviation ,nbsp;qui a été effectivement observée, rend sensible, pafnbsp;une experience directe, Ie mouvement de la terrenbsp;autour de son axe. Les mouvemens indépendans de cette rotation sont ceux que produit Ie choc des corps, et aussi ceu*nbsp;qui sont dus a Faction musculaire des hommes et desnbsp;animanx.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;377 ?5i. Les equations (2) sont celles du mouvement dun point materiel enti?rement libre; mais il estnbsp;facile de les ëtendre a un point materiel assujetti anbsp;mouvoir sur une sui’face donnée. II suffira pournbsp;*^€la , comme dans Ie cas de l’équilibre (n“ 36), denbsp;joindre aux forces données qui agissent sur Ie mobile , une force de grandeur inconnue, qui repré-sentera la resistance de la surface. Cette force seranbsp;?iormale a la surface donnée; je la représenterai par N,nbsp;ct par X, ju,, V f les angles qu’elle fait avec les prolon-gemens des coordonnées x,j, z, du mobile- lesnbsp;equations du mouvement seront alors(5) En représentant par L = o 1’équatlon de la surface donnée , et faisant, pour abréger, lt;iL* dh'-W nbsp;nbsp;nbsp; aura ( n” 21), en m?me

temps , cos A = V ^, cos jM cos r = V dz' Apr?s avoir substitué ces yaieurs dans les équa-dons (3), on éliminera entre elles Ie produit NV j les deux équations qui en résulteront, jointes a L=o,nbsp;servlront a déterminer cc, y, z, en fonclions de t. On



2,8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. tirera ensuite de Tune des equations (5), ou d’une combinaison quelconque de ces equations, la valeurnbsp;de NV ; et comme N doit toujours ?tre une quantiténbsp;positive, Ie signe de cette valeur fera connaitre celuinbsp;de V; au tnoyen de quoi la force normale N et Ienbsp;sens dans lequel elle agit seront compl?tement determines. Si Ie mobile est assujetti a se mouvoir sur deux surfaces données, ou sur leur courbe d’intersectlon,nbsp;on Ie considérera encore comme enti?rement libre,nbsp;apr?s avoir joint aux forces données deux forcesnbsp;inconnues N etN', normales a ces surfaces; et ennbsp;désignant par A, /a , r , les angles qui déterminerontnbsp;les directions de la premi?re par rapport aux axes desnbsp;X, z, et par A', /, les angles qui

répondrontnbsp;a la seconde, il en résultera d^x dt dP d^z de (4) = X -f- NcosA -f- N'cosA', = Y -j- Ncosft -}- N'cos/a',nbsp;= Z N cos r N' cos v' , pour les equations du mouvement. Si L==o est Tequa-tion de la surface dont N est la resistance, et qu’on représente par I/=o celle de la surface a laquellenbsp;correspond, les valeurs de cos A, cos /a, cosy, serontnbsp;les m?raes que précédemment, et celles de cos a4nbsp;cos cos y', s’en dédmront par Ie changement de ^nbsp;et L en V^ et L'. Apr?s avoir substitué les unes et leSnbsp;autres dans les equations (4), on éliminei-a les prO-duits NV et N'V'. L’équation qui en résultera, et les



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;279 equations données L = o et L' = o , serviront a determiner les valeurs de nbsp;nbsp;nbsp;z, en.fonctions de t. Cela fait , on tirera de deux des equations (4), les Valeurs de NV et N'V^ dont les signes seront ceuxnbsp;V et V'; et, de cette mani?re, on connaitz’a lesnbsp;torces normales N et N', et Ie sens dans lequel ellesnbsp;Žgissent : leur i'ésultante sera , en grandeur et ennbsp;^iirection, la resistance de la courbe sur laquelle Ienbsp;mobile est astreint a se mouvoir. iSa. Pour donner une foi’me plus simple aux equations (4), soient m la masse du mobile et tkP lanbsp;pression qu’il exercera, dans son état de mouvement.nbsp;Sur la courbe qu’il est force de décrlre. Désignonsnbsp;par fsr, lt;ar',nbsp;nbsp;nbsp;nbsp;les angles que fait la direction de cette force

avec les prolongemens, dans Ie sens positif, des coordonnées oc, j, z, de ce point; la resistance que la courbe oppose au mouvement du mobile, considérée comme une force accélératrice, seranbsp;Žgale et contraire a P; en la joignant aux foicesnbsp;données X, Y, Z, qui agissent sur Ie mobile, nousnbsp;^urons, au lieu des equations (4), d^x IF dy de de X — P coslt;3r, Y— Pcosy, \ (5) Z ?— PcOSlt;Z3-quot;, La direction de la force P n’est pas connue d priori: Ou sait seulement qu’elle est noz’male ü la courbenbsp;donnee} d’oü. il resulte que Ie cosinus de 1 anglenbsp;oompz’is entre cette direction et la tangente a la tz'a--



(6) aSo nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. jectoire doit ?tre égal a zeroj ce qui donne dx „ nbsp;nbsp;nbsp;\nbsp;nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;, dznbsp;nbsp;nbsp;nbsp;,, -y- COS -j- -j- COS (sr -i—- cos = asnbsp;nbsp;nbsp;nbsp;asnbsp;nbsp;nbsp;nbsp;ds Les angles o*, .jjrquot;, seront, en outre, lies entre eux par Féquation ordinaire cos“ lt;7ir -f- cos“ lt;ar' -f- cos“ lt;3rquot; = i. Onëliminera P, 'sr, lt;ar', rarquot;, entre ces equations, en ajoutant les e'quations (5), apr?s les avoir multipliées par ^^ nbsp;nbsp;nbsp;^; en ayant égard a Tequation (6) , et en faisant, pourabréger. dx ds on a alors dxd^x -p dj'd^y dzd'‘z _ dsd?^ En diflerentiant Tequation identique ds’- 'dë* -j- dy'' -f- dz^ de et divisant par rxds, on voit que Ie premier raembre de 1’équation précédente est la m?me cliose que ;

o?nbsp;aura done simplement d’s2ë(7) lt;p. La force lt;p est la somme des coraposantes des forces données, suivant la tangente a la trajectoire, !es-quelles composantes seront regardées conime posiquot;



DYNAMIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;281 tives Ou comme negatives, selon qu’elles tendront a 3Ugmenter ou a diminuer Tarc s décrit par Ie mobile. L’e'quation (7) signifie done que dans Ie mouvement curviligne, comme dans Ie mouvement rec-tiligne, la force qui agit sur Ie mobile dans Ie sensnbsp;de son mouvement est égale au second coefficientnbsp;différentiel de l’espace parcouru : a cause de e = ^,nbsp;on peut aussi dire qu’elle est égale au premier coefficient différentiel de la vitesse acquise e. Celte équation étant indépendante de la résistance de la courbe, convient aussi au mouvement d’un pointnbsp;matéiiel enti?rement libre et a celui d’un point maté-riel assujetti a demeurer sur une surface courbe; maisnbsp;c’est principalement dans Ie cas d’un point matériel quinbsp;se meut sur une

courbe donnée , que cette équationnbsp;pourra ?tre utile. On tirera des équations de cettenbsp;oourbe les valeurs de :v, j-, z, en fonctions de etnbsp;3pr?s les avoir substituées dans l’équation (7), il nenbsp;vestera plus qu’a intégrer cette équation du secondnbsp;Ordre entre s et t. Les deux constantes arbitrairesnbsp;*lne renfermera son intégrale se détermineront au O?oyen des valeurs de s et nbsp;nbsp;nbsp;répondent a Cest-a-dire, au moyen de la position et de la vitesse nntiales du mobile. Quand les trois coordonnées oc,nbsp;?T gt; z, auront été déterminées en fonctions de f,nbsp;fiapr?s l’intégrale de l’équation (7) , jointe aux deuxnbsp;Equations données de la trajectoire , les équations (5jnbsp;feront connattre, a un instant quelconque , les troisnbsp;oomposantes de la pression P qu’éprouvera la

courbenbsp;Žnr laquelle Ie mobile est obligé de se mouvoir.



aSa nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Oq trouvera, dans Ie chapitre suivant, une determination plus simple de cette force en grandeur et en direction. § II. Consequences principales des formules précédentes. i55. Lorsque Ie mobile est sollicité par une force dirigée vers un centre fixe, on obtient immédiatementnbsp;trois intégrales premi?res des equations (2). Pour cela, placons l’origine des coordonnées z, en ce point; représentons, en grandeur et en direction, la force qui sollicité Ie mobile, par son rayonnbsp;vecteurj et construisons Ie parallélépip?de dont cenbsp;rayon est Ia diagonale, et qui a ses trois cótés ad-jacens sur les axes des x, j-, z. Les trois coordonnéesnbsp;x,j, z, du mobile seront les grandeurs de ces troisnbsp;cótés, et représenteront les trois composantes de Ianbsp;force donnée;

en sorte que l’on aura X ; Y : Z d’oü Ton tireXy = Xx, 7aX = Xz, Yz = Zy. D’un autre cóté, les equations (2) peuvent ?tre rem' placées par celles-ci : jd^x — xdy == (Xj — Xx) dP, 1 xd*z — zd’^x =nbsp;nbsp;nbsp;nbsp;— Xz) dt\ V {d) zdy —yd‘z = {Xz — Zj) dt\ ) Or, leurs seconds membres sont nuls en vertu lt;1^*



DYNAMIQTJE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;283 equations précédentesj et comme leurs premiers Kiembres sont les diffe'rentlelles de jdx — xdj,nbsp;xdz.— zdx, zdj—jdz, on aura, en integrant, fdx — xdj — cdt, I xdz — zdx — c'dty gt;nbsp;nbsp;nbsp;nbsp;{h) zdj —jdz = d'dt; ) e, c', cquot;, étant des constantes arbltraires. 154. Pour énoncer Ie tbéor?me contenu dans ces mtégrales premi?res des e'quations du mouvement,nbsp;eonsidérons la projection AMB (lig. 38) de la trajec-toire du mobile sur Ie plan des coordonnées x etnbsp;dont les axes sont Ox et O/. Au bout du tempsnbsp;soient M la projection du mobile, OP et MP sonnbsp;abscisse x et son ordonnéejquot;; et C e'tant Ie point on cettenbsp;courbe coupe l’axe Of, appelons u Ie secteur GOM,nbsp;P l’aire COPM, q Ie triangle OPM; nous aurons u

= p — q, ? = {Xf. Si est la projection du mobile au bout du temps ^-hdt, MOM' sera Faire decrite par Ie rayon vecteurnbsp;^e cette projection pendant Finstant dt; ce sera aussinbsp;différentieile de m ou de p — q', et a cause de dp=jdx, dq-=\xdf-\-\jdx, On du ~ \ {jdx — xdj) ; aura par conséquent, la premi?re equation {b) signifie que laire décrite pendant chaque instant dt par Ie rayonnbsp;vecteur de la projection M du mobile est constantenbsp;et égale a \cdt-, done aussi Faire décrite pendant un



384 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. temps t quelconque, est proportionnelle a cette variable et égale a \ct. Les aires décriles dans ce menie temps par les rayons vecteurs des projections du mobile sur les plans des x et z, et desy et z, serontdenbsp;m?me égales a j c't et ^ d't. Concluons done que quand un point matérie! est soumis a une force constamment dirigée vers unnbsp;centre fixe, les aires décrites autour de ce point parnbsp;Ie rayon vecteur de sa projection sur un plan quel-conque passant paree m?me point, sont proportion-nellesau temps employé a les décrire. Réciproquement, lorsque cette proprlété a lieu par rapport a trois plans rectangulaires menés par Ienbsp;centre des aires, on en peut conclure que la force onnbsp;la résultante des forces qui sollicitent Ie mobile

estnbsp;constamment dirigée vers ce centre fixe. En effet, si les équations {V) sont données, on aura, en les différentiant,nbsp;j(tx—xd'j=.o, xddz—zetx^o, zd^y—jd’'z:=:zO‘,nbsp;en vertu des équations (a), qui sont celles d’un mouvement quelconque, on aura done aussi Xjquot; = Yx, Zx = Xz, Yz = Zj; par conséquent, les forces X, Y, Z, seront entre elles comme les coordonnées x,j,z, du mobile^ ce q?*nbsp;suffit pour que leur résultante soit constamment diquot;nbsp;rigée vers Torigine des coordonnées. Au i’este, cettenbsp;force peut ?tre attractive ou répulsive, c’est-a-direnbsp;qu’elle peut agir suivant Ie rayon vecteur du mobile;nbsp;OU suivant son prolongement.



DYNAMIQUE,'PREMI?RE PARTJE. nbsp;nbsp;nbsp;285 ?55. Lorsqu’un point materiel est soumis a une fofce dirigée vei’s un centre fixe, il est évident quenbsp;trajectoire est une courbe plane, puisqu’il n’y au-•?ait aucune raison pour qu’il sortit, plutót d’un cóténbsp;de l’autre, du plan passant par la direction de sa vi-tesse initiale et par Ie centre fixe. C’est aussi ce que l’onnbsp;^éduit des equations [b); car en les ajoutant, apr?s lesnbsp;avoir multipliées par z, /, x, et divisées par dt, il vient cz c'y cquot;x = o. On peut prendre ce plan pour celui des x eljquot;; 1 aire décrite par Ie rayon vecteur m?me du mobile,nbsp;éans Ie plan de sa trajectoire, sera done proportion-üelle au temps; et, de plus, Ie théor?me précédentnbsp;Se réduira a cette proportionnalité. En effet, si elle anbsp;lieu pour l’aire décrite sur Ie plan de la

trajectoire,nbsp;vlle aura lieu également pour l’aire décrite par Ienbsp;vayon vecteur de la projection du mobile sur toutnbsp;^Rtre plan; car cette autre aire n’est autre chose quenbsp;I3 projection de la premi?re sur ce plan; et nous sa-Vons (nŽ loj que la projection d’une aii’e plane a unnbsp;^'apport constant avec Faire projetée. i56. L’aire infiniment petite MOM' peut aussi s’ex-Pi'imer en coordonnées polaires. Pour cela, désignons par r Ie rayon vecteur OM, et par 6 Tangle MOxnbsp;fiRÜ fait avec Taxe des x. Décrivons du point O,nbsp;^omme centre. Fare de eerde OMN qui coupe aunbsp;point N Ie rayon vecteur OM' correspondant a Tanglenbsp;cZÖ, et qui aura pour longueur rJÖ- Le secteur circulaire MON sera égal anbsp;nbsp;nbsp;nbsp;et pourra ?tre pris pour Faire MOM^, en négligeaut Faire MNM^, infini-



286 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. ment petite du second ordre. On devra done avoir jdoc — x(fy = r'öfÖ; equation qué l’on vérifie eflectiveraent au moyen des valeurs x = rcosfi, j = rsinG, et de leurs différentielles, qui sont dxz=iCO%^ dr-\-rsmB S, nbsp;nbsp;nbsp;= sin 0 dr— rcos0ö?9, a cause que celle de Tangle 0 est ici —tZG. De cette mani?re, la premi?re e'quation {b) prendra la fornie r*c?0 = cdt, sous laquelle on Temploie ordinairement. Ou exprime de m?me en coordonnées polaires Té-lément de la courbe. En désignant Tarc CM par ff et eet élément par d(7, on aura a la fois MM' = da, MN = rd^, NM' = dr; en considérant MNM' comme un triangle rectiligne rectangle en N, on en conclura done lt;iff“ = dr* rVi0“; ce qu’on peut aussi déduire de la formule fi?ff* = dx'‘ -f- dj', au moyen des

valeurs précédentes de dx et dj. A cette occasion, nous ferons remarquer que, dai^Ž une Irajectoire plane, les composantes de la vitessenbsp;du mobile suivant Ie prolongement MO' de son rayownbsp;vecteur MO, et suivant la perpendiculaire a ce rayon,



287 DYNAMIQÜE, PREMI?RE PARTIE. soat exprimées par Car 1’angle 0'MT que fait ce prolongement avec la langente MT est complément de Tangle M du trianglenbsp;d’apr?s ce triangle, on a done cos 0'MT = f, sin 0'MT = nbsp;nbsp;nbsp;; ar nbsp;nbsp;nbsp;da- Cl en multipliant ce cosinus et ce sinus par la vitesse , dirigée suivant MT^ on aura les composantes dontnbsp;d s’agit. II est souvent utile d’en faire usage. Ellesnbsp;different des composantes et ^ de la m?me vitesse en ce que les directions de celles-ci sont fixes, et que celles des précédentes varient avec la positionnbsp;du mobile. La vitesse ^, avec laquelle Ie rayon vecteur OM decrit Tangle COM, compté a partlr d’une droite fixe, est ce qu’on appelle la vitesse angulaire du mobile. Elle Se dédult, comme on volt, de sa vitesse ^ , perpendiculaire a

OM, en la dlvisant par la longueur de ce ^3yon. Revenons maintenant aux equations diffé-centlelles du mouvement. Ajoutons les equations (5) du n” iSa, apr?s les avoir multipliées par dx, dy, dz-, en ayant égard a equation (6) du m?me numéro, et observant que dx d'‘x 4- dj dW J- dz d^z nbsp;nbsp;nbsp;? j ^nbsp;nbsp;nbsp;nbsp;- d V* quot; dl'^ 2 nbsp;nbsp;nbsp;’



288 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. il en résultera ^d.v^ = '^dx-{-Ydj-\-Zdz. nbsp;nbsp;nbsp;(c) Supposons que les expressions des forces donnëes X, Y, Z, ne renfernient explicitement ni Ie temps t,nbsp;nl la vitesse p, et qu’en considérant x, j, z, commenbsp;des variables indépendantes, cette formule (c) soitnbsp;une dififërentielle exacte; faisons, en consequence, ILdx Xdj Zdz =zd.^ (x, j, z)-, F indiquant une fonction donne'e ; en integrant I’e-quation (c) et désignant par C la constante arbitraire, nous aurons p“ = aF (x,j, z) -j- C. Pour éliminer cette constante, soient a, b, c, k, ies valeurs initiales deXfjquot;, z, v; on aura = 2F (a, c) -f- C, et, en retranchant cette equation de la prëcédente, p? =nbsp;nbsp;nbsp;nbsp; 2F (x, j, z) — 2F (rt, b, c).nbsp;nbsp;nbsp;nbsp;(d) Ce i’ësultat ëtant indëpendant de

la resistance N de la courbe, ëgale et contraire a la force P qui entradnbsp;dans les ëquations dont on l’a dëduit, il s’ensuit qu’i^nbsp;a ëgalement lieu dans Ie mouvement d’un point maquot;nbsp;tëriel enti?rement libre, et dans Ie mouvement siH’nbsp;une surface ou sur une courbe donnée. ‘t La consëquence immëdiate de cette ëquation {d) gt; c’est que la vitesse est constante et Ie mouvemen^nbsp;uniforme toutes les fois que Ie mobile n’est soUicit^nbsp;par aucune foi’ce donnëe; car alors la fonction F estII



289 DYNAMIQUE, PREMI?RE PARTIE. uulle, et Ton a v — k, soit que Ie mouvement ait lieu sur une surface ou sur une courbe donnée, ounbsp;Ie mobile soit enti?rement libre. Cette e'quatiou nous montre, de plus, que dans la supposition qu’on a faite sur la nature des forces X, Y,nbsp;l’accrolssement du carré de la vitesse du mobile,nbsp;un passant d’une position a une autre, est toujours Ienbsp;^?me, quelle que soit la courbe qu’il a décrite, etnbsp;Re depend que des coordonnées a,b, c, x, j, %,nbsp;des deux points extremes. Lorsque cette courbe seranbsp;donnée, ou seulement lorsque Ie mobile sera assu-jetti a se mouvoir sur tine surface donnée, on pren-dra pour k la vitesse du mobile tangente a cette courbenbsp;ou a cette surface. Si ia percussion exercée sur Ienbsp;tnobile a borigine de son

mouvement n’a pas cettenbsp;direction, elle se décomposera en deux autres forces,nbsp;1’une normale et bautre tangentielle; la premi?re seranbsp;détruite par la resistance de la courbe ou de la surface donnée; et c’est la seconde qui produira la vi-fesse k, et qui en déterminera Ie sens et la direction. Si bon désigne par C une constante arbitraire, bé-'jRation ^{x,j, z) = C, Sera celle d’une surface qui sera atteinte avec des vi-fesses égales par tous les mobiles soumis aux m?nies forces, partis du point dont a, b, c, sont les coor-données, suivant différentes directions et avec unenbsp;Rieme vitesse k. Lorsque, par exemple, ces mobilesnbsp;Re sont sollicités que par la pesanteur, cette equationnbsp;est celle d’un plan horizontal.



ago nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Dans Ie cas d’une courbe donnëe, on déduira de ses equations les valeurs de x, z, en fonctions denbsp;1’arc j'; en les substituant, dans 1’équation (d), et y mettant ^ ^ la place de on en tirera dt =. S dSf oil S est une fonction donnée de ; par conséquent, dans ce cas, la determination du temps en fonctionnbsp;de i’espace parcouru se trouvera réduite a rintégra-tion d^une difFérentielle donnée. Mais la suppositionnbsp;sur laquelle est fondée l’équation (d), et, conséquem-ment , cette equation, n’auront pas lieu quand Ie mobile éprouvera la résistance d’un milieu, qui est unenbsp;force dépendante de la vitesse; il en sera de m?menbsp;lorsqu’il s’agira du mouvement d’un point matérielnbsp;attiré ou repoussé par d’autres points qui seront eux-m?mes en

mouvement; circonstance qui introduiranbsp;Ie temps t explicitement dans les valeurs de X, Y, Zlt;nbsp;Dans ces deux cas, si la trajectoire est une courbenbsp;donnée, on fera usage de l’équation (c), dans laquellenbsp;ds. on mettra ^ au lieu de e, et qui se changera dans réquation (7) du nŽ iSa. i58. La formule Hdx ^dj- Zdz sera une difquot; férentielle exacte, comme on vient de Ie supposer,nbsp;toutes les fois que Ie mobile sera attiré ou repoussenbsp;par dbs centi’es fixes, et que les intensités de ces forcesnbsp;seront exprimées par des fonctions de la distance auJCnbsp;centres dont elies émanent. En effet, soient e, j, g, les trois coordonnées d’un des centres fixes, rapportées aux m?mcs axes que



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;291 T gt; z. Désiguons par r la distance du mobile a ce point; on aura r“ = (e — x)* U'—jY 4- (g — z)*; les cosinus des angles que cette droite r fait avec ^es axes menés par Ie mobile, suivant les directionsnbsp;^es oc, z, positives, seront les rapports de e—x,nbsp;f — j, g — z, a r. Si done on représente par R lanbsp;force attractive, dirigée du mobile vers ce centrenbsp;fixe, ses trois coraposantes auront pour expressions — R (ƒ—J) R (g — s) . r ’ nbsp;nbsp;nbsp;r ’nbsp;nbsp;nbsp;nbsp;r ’ et, conséquemment, la partie de ^dop-{-Ydj-Zdz qui proviendra de R sera 7 [(e -^x)dx-h (ƒ — p df ig — z) dz]. ^lais en dilférentiant la valeuv de ?’*, on a rdr = — nbsp;nbsp;nbsp;— x)dx — (/'—j) df — (g — z)dz ?, ^0 qui réduit a — Rlt;fr la quantité précédenle. Si la force qui

émane du centre fixe était repulsive, il suf-firait de changer Ie signe de cette quantité, qui de-^lendrait Rrfr, en considérant, dans tous les cas, Rnbsp;^Onanie une quantité positive. On conclut de la que si Ie mobile est sollicité par Ro nombre quelconque de forces R, R', R'', etc., quinbsp;^Hianent de centres fixes, dont les distances a ce pointnbsp;iRatériel sont r, r, rquot;, etc., on aura ^dx-gt;r^dj-\-Zdz = zpRr^r nbsp;nbsp;nbsp;R'W'qz etc,;



TRAITÉ DE MÉCANIQUE. les signes supérieurs ayaut lieu dans Ie cas des attractions, et les signes inférieurs dans Ie cas des répul-sions. Or, en supposant que cbacune de ces forces soit une fonction donnée de la distance correspondante,nbsp;tous les termes de cette valeur denbsp;seront des ditférentielles dépendantes d’une seule variable, et, par conséquent, cette formule sera unenbsp;différentielle exacte; ce qu’il s’agissait de prouver. On voit aussi par la, et d’apr?s l’équation (d), que l’accroissement du carré de la vitesse provenant denbsp;chacune des forces R, R^, R^^, etc., sera Ie m?menbsp;que si elle existait seule : a 1’égard de la force Rgt;nbsp;par exemple, eet accroissement sera exprimé parnbsp;qz 2yR(ir, en prenant i’intégrale de mani?re qu’ellenbsp;s’évanouisse pour la valeur initiale de r.

iSg. Dans Ie cas d’un point matériel pesant, qui se meut, sur une courbe donnée, dans Ie vide et saiisnbsp;frottement sur cette courbe, l’équation [d) se ré-duira a u* = A:* 2g (z — c) , en désignant par g la gravité, et prenant l’axe des ^ positives vertical et dans Ie sens de cette force, éenbsp;sorte qu’on ait ë- i: Soient ADRC (fig. Sg) la courbe donnée, B so^ point Ie plus bas, A son point Ie plus élevé, q*^*nbsp;peut n’?tre pas dans la m?me verticale que B, et Pnbsp;Ie point de depart du mobile. Flacons en ce dernic'nbsp;point l’origine des z, et supposons que la vitesse iiD“



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;agS k soit due a une hauteur h ; nous aurons c — o, nbsp;nbsp;nbsp;= 2.gh, par conséquent,P* = 2g(^ Z). II en résultera que quand Ie mobile arrivera au point B, la vitesse maxima sera la m?me que s’il futnbsp;lombé de la hauteur h, augmentée de celle du pointnbsp;n au-dessus du plan horizontal mené par Ie point B.nbsp;En vertu de cette vitesse acquise , Ie mobile s’éleveranbsp;Ie long de BCA; sa vitesse diminuera continuelle-rnent; et si l’on a k = o , elle sera nulle au point Cnbsp;silué dans Ie m?me plan horizontal que D. Parvenunbsp;au point C, Ie mobile redescendra Ie long de CB ; etnbsp;d oscillera ainsi indéliniment de D vers C, et de Cnbsp;Vers D. Lorsque la constante h ne sera pas nulle, Ienbsp;Mobile s’élevera au-dessus du point C. Si

l’élévationnbsp;dn point A au-dessus du plan horizontal qui com-Pi’end D et C, est moindre que h, Ie mobile n’at-teindra pas Ie point A; il s’arr?tera en un certainnbsp;point C'j et si l’on m?ne par C' un plan horizon-qui coupe la courbe en un autre point D', Ienbsp;*^iobile oscillera indéliniment de C' vers D', et denbsp;vers C'. Les oscillations seront toutes isochronesnbsp;d’égale durée. Cela est évident a l’égard de cellesnbsp;auront lieu dans Ie m?me sens ; el l’on voitnbsp;ŽOssi que la durée de chaque oscillation de C' versnbsp;E sera la m?me que celle d’une oscillation denbsp;Vers C^, en observant qu’un élément quelconque denbsp;couibe sera parcouru avec la m?me vitesse dans



294 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. les deux cas. Cette durée commune de toutes leS oscillations enti?res dependra de la forme de lanbsp;courbe et de la grandeur de Ji. Lorsque l’élévation de A au-dessi?s du plan horizontal passant par Ie point de depart sera égale a h, Ié mobile approchera indéfiniment du point A ,nbsp;mais ne l’atteindra qu’apr?s un temps infini. Quandnbsp;cette elevation sera plus grande que h, Ie mobilenbsp;dépassera Ie point A, et parcourra la circonférencenbsp;enti?re de la courbe donnée. Revenu au point D,nbsp;sa vitesse sera la m?me qu’a l’origine du mouvement ; d’oü l’on conclut qu’il fera une suite in-définie de revolutions, qui auront toutes une égalenbsp;durée, dépendante de la forme de la courbe et denbsp;•la grandeur de h. Si la courbe donnée

est d’abord comprise dans un plan vertical, tangent a un cylindre a base quel-conque , et qu’on enveloppe ce plan sur Ie cjlindre,nbsp;de sorte que la courbe donnée devienne une ligne anbsp;double courbure, Ie mouvement oscillatoire ou révo-lutif du mobile ne changera nullement, en suppo-sant, toutefois, que son point de départet sa vitessenbsp;initiale restent les m?mes; car alors la valeur de tnbsp;en fonctlon de s, déterminée comme il a été dit pré-tóédemment (n° iSj), ne dépendra que de celle de ^nbsp;en fonction de qui ne changera pas, quelle qnŽnbsp;soit la base du cylindre vertical sur lequel la courbenbsp;donnée sera Iracée. i6o. Dans tous les cas ou Tequation (??) a lieu, et OU Ie mobile n’est pas astreint a se mouvoir surnbsp;une courbe donnée, celle qu’il décrit pour aller d un



DYNAMIQÜE, PREMI?RE PARTIE. point donné que j’appellerai A, a iin autre pointnbsp;donné que je nommerai B, jouit d’une propriéténbsp;^’emarquable. Si Ie mobile est enti?rement libre,nbsp;^ integrale ƒvds, prise depuis Ie point A jusqu’aunbsp;point B, est plus petite que suivaut toute autrenbsp;courbe aboutissant a ces deux points; s’il est assu-jctti a se mouvoir sur une surface donnée, cettenbsp;propriété de Ia trajectoire n’a plus- lieu que relati-'Cnient a toutes les courbes tracées sur cette sur-tnbsp;face, et qui aboutissent toujours aux points A et B.nbsp;Hans ces deux cas, ds est Pélérpent diflférentielnbsp;(i’une courbe quelconque , qui répond aux coordon-nées X, jquot;, z, et e une fonction de ces trois variables et d’une constante k, donnée par l’équation (d). La demonstration de ce théor?me revient a prouder

qu’en vertu des equations du mouvement, la Variation de fvds est nulle, en supposant fixes lesnbsp;iiniites de cette intégrale : alors elle sera un mi-^nbsp;^^num OU un maximum-, et ce sera toujours Ie mini-^^uin qui aura lieu quand Ie mobile sera enti?rementnbsp;libre ; car il est évident que l’intégrale ƒi’ds: pourranbsp;^roitre indéfiniment avec la longueur de la trajec-•^oire, et ne sera pas susceptible de maximum. Or, par les régies les plus simples du calcul des Variations, on a ^.fvds =3 fS'.vds, Sgt;vds = Svds -f- vSds. H ailleurs dt étant l’élément du temps, on a ds^vdt; done Svds = \dtS.v^. Si l’on differentie Péquation {d) et que l’on remplacü



396 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. les difFérentielles dsc, dj, dz, par les variations S'x, S'j, Jz, on aura = XcTor Yjy ZcTz. En ayant égard aux valeurs de cos A , cos /jl , cos v, et observant que nbsp;nbsp;nbsp;J’z=/L. les equations (5) du n° i5i donnent Le terme NVcTL n’entrerait pas dans cette equation, si le mobile était enti?rement libre; quand il estnbsp;assujetti a se mouvoir sur la surface dont 1 equationnbsp;est L = o, ce tei’me est nul; car toutes les courbesnbsp;que Ton compare a la trajectoire du mobile devantnbsp;aussi étre tracées sur cette surface, on a cTL =0;nbsp;done on doit supprimer ce terme dans tous les cas;nbsp;et il en résulte S'vds ~ -dtS' • nbsp;nbsp;nbsp;: 2 dt nbsp;nbsp;nbsp;' dtnbsp;nbsp;nbsp;nbsp;' dt Quant au second terme v^ds de la variation de

vds ,? nous avons ds^ = dac’^ -f- dj^ -f- dz*, et, par conséquent, done, a cause de ds~ vdt, et en intervertissant, dans le second membre, 1’ordre des caractéristiques et cT?



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;297 iious auroiis = nbsp;nbsp;nbsp; ^ dlt;fy dj'z. En réunissant ces deux parties de la valeur de S'. vds, vlentS.^’ds = d(^-^Sx %Sj % cTz); *^ 011 Ton conclut d'. vds =. ^ Sx — Sj ^ d'z constante ,Tc_____ nbsp;nbsp;nbsp;, dl ' dl nbsp;nbsp;nbsp;' dl pour 1’intégrale indéfinie de S.vds. Mais les deux points extremes A et B ëtant supposes fixes, les variations Sx, J'j-, Sz, qui sj rapporten t, devront ?trenbsp;nulles j par conséquent, l’intégrale définie fS .vds ^nbsp;prise depuis Ie point A jusqu’au point B, laquelle estnbsp;égale a la variation S.fvds, se réduira a zéro; cenbsp;lt;lu’il s’agissait de démontrer. i6i. Quand ie mobile, assujetti a se mouvoir sur tine surface courbe, n’est sollicité par aucune forcenbsp;donnée , sa vitesse est constante (n° iSy); l’intégralenbsp;fvds est

done Ie prodult lt;v. Par conséquent l’arc snbsp;décrit par Ie mobile est, en général, la ligne la plusnbsp;lt;^Ourte du point A au point B; et il suit de Punifor-^ité du mouvement, que, dans ce cas, Ie mobilenbsp;d’un point a l’autre, dans un temps plus courtnbsp;9^16 s’il était forcé de décrire sur la surface donnéenbsp;loute autre courbe que sa trajectoire. Toutefois,nbsp;si cette surface est fermée de toute part, comme unenbsp;sphere, par exemple, les points A et B seront lesnbsp;oxtremités de deux arcs de grand eerde, dont l’unnbsp;sera moindre et l’autre plus grand aiie lous les arcs



298 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. de petits cercles aboutissant aux m?mes points; et Ie mobile pourra décrire Tune ou l’autre de ces deuxnbsp;portions d’un m?me grand eerde, selon Ie sens de sanbsp;vitesse initiale k tangente a la sphere. On peut presenter I’equation dilFérentielle de Ia trajectoire sous une forme qui mette en evidence lanbsp;propriété de la ligne Ia plus courte sur une surfacenbsp;quelconque, laquelle consiste en ce que son plan os-culateur en chaque point est normal a cette surface. Les forces X, Y, Z, étant supposées nulles, les equations (3) du nŽ 151 se réduisent a ^ = NCOS A, ^=NcoSjM, ^^Ncosi-. A cause que v est uné constante, et que vt = s, on a d^x ds^ d^ r d'‘zIF en prenant l’arc s pour la variable indépendante; et cela étant, on pourra remplacer les

equations précé-dentes par celles-ci: dyd^X f dx nbsp;nbsp;nbsp;dr , \ dxd^j' ? ds^ dzd^x — dxd'^z _ N /dz d^ nbsp;nbsp;nbsp;v‘‘\ds djd’z — dzd^j_N /df)? dx ds dz cos A ? cos V7\fs COSV~~COSf^), ds^ qui sen déduisent aisément. Je les ajoute apr?s les avoir multipliées par cos v, coscos A; la quantité Nnbsp;disparait, et l’ou a simplement



dxd^j — djd^x nbsp;nbsp;nbsp;. dzd'x — dxd^z apr?s les valeurs de cos A, cos jx, cos v, citées dans n° i5i, on aura done dxd^j- — djd^x d\j nbsp;nbsp;nbsp;.nbsp;nbsp;nbsp;nbsp;dzd^x — dxd^z dh ds^ nbsp;nbsp;nbsp;dxnbsp;nbsp;nbsp;nbsp;ds^nbsp;nbsp;nbsp;nbsp;dy djrd^z — dzd^j nbsp;nbsp;nbsp;dL__{ ( quot;lt;--d?— nbsp;nbsp;nbsp;^ —nbsp;nbsp;nbsp;nbsp;y-^’ pour l’équation diflerentielle seconde de la trajec-^oire. On y substituera la valeur de l’une des trols Coordonnées x, j, z, en fonction des deux autres ,nbsp;tirée de 1 equation L = o de la surface donnée,nbsp;sur laquelle cette courbe doit ?tre trace'ej on inté-gcera ensuite l’e'quation a deux variables qui en ré-Ž^ltera; puis on dëterrninera les deux constantes ar-^itraires que l’intégrale renfermera, en assujettissantnbsp;courbe a passer par les deux points

A et B denbsp;surface donnëe. L’équation qu’on obtlendra denbsp;Cette mani?re, et qui sera, comme on volt, indé-Pendante de la grandeur et de la direction de la vitessenbsp;^*iitialeA’, devra étre celle de la ligne Ia plus courtenbsp;entre ces deux points. Or, si Ton appelle ct,€,y , les angles que la nor-^^le au plan osculateur d’une courbe quelconque, point dont les coordonnées sont x, f, z, faitnbsp;^Vec leurs prolongemens dans Ie sens positif, et qu onnbsp;fesse, pour abréger, I [{dxdy—djd‘x)^ {dzd'-x—dxd-’zy-^{djd'^z—dzd‘jy'^^ zx-, h.



3oo nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQUE. nous aurons cos a = \ nbsp;nbsp;nbsp;— dzdy),cos € = ^ (dzd^x — dxd^z),cos 5/ = 1 {dxd'^j — djd^x), dapr?s les formules (5) du n° ig, oü ces m?nies angles sont repre'sente's par A, v. En vertu denbsp;l’e’quation (e), on aura done cos A cos a. cos ^ cos /u, cos y cos v = o ; ce qui montre que la normale au plan osculateui’ de la trajecloire, et la normale a la surface donnée,nbsp;sont perpendiculalres Tune a l’autre j d’ou l’on con-clut que l’e'quation (ƒ), qui appartient a la lignenbsp;la plus courte, est aussi celle de la coui'be qui a par-tout son plan osculateur normal a la surface donnée;nbsp;en sorte que ces deux lignes sont une seule et m?menbsp;courbe tracee sur cette surface, quand on les assujettitnbsp;Tune et I’aulre a passer par les m?mes

points extremes A et B. II suit de la que, quand ces deux points appar-tiennent a une des lignes de courbure de la surface donnée, cette ligne est la plus coui’te d’un point anbsp;I’autre; car son plan osculateur en un point quel-conque renferme deux normales consécutives a 1^nbsp;surface donnée, et est, par conséquent, normal anbsp;cette surface.



DYNAMIQUE, PREMI?RE PAR?IE. S III. Digression sur Ie mouvement de la lumi?re. 162. Le théor?me du nŽ 160 est connu sous la dé-öoniination de principe de la moindre action , qui vient du point de vue métaphysique sous lequelnbsp;l’a d’abord envisage, et qu’ou a depuis justemenlnbsp;^bandonné. Mais ü peut encore ?tre utile de donnernbsp;une des premi?res applications qu’on a faites denbsp;principe, celle qui est i-elative a la i’éflexion et anbsp;la i'éfraction de la lumi?re dans le sjst?me de remission. Tant qu’un rayon lumineux se meut dans un milieu d’une égale densité, sa vitesse et sa direction i'estent les m?mes; mais quand il passe d un milieunbsp;dans un autre, sa direction s’infléchit et sa vitessenbsp;change. Dans l’inslant du passage, la lumi?re décrilnbsp;^oe courbe d’une étendue inappreciable,

dont onnbsp;peut faii’e abstraction sans erreur sensible. La tra-jectoire de chaque particule lumineuse est done alorsnbsp;1 assemblage de deux droites, dont cliacune est dé-crite d’un mouvement uniforme. Ainsi, en appelant ety les longueurs de ces droites, n la vitessenbsp;la lumi?re dans le premier milieu, n' sa vitessenbsp;dans le second, on aura ny pour la valeur de l’in-?dgrale fvds, prise depuis le point de depart de lanbsp;particule jusqu’a son entree dans le second milieu,nbsp;ct n'y pour la partie de cette integrale relative aunbsp;Second milieu; par conséquent cette intégrale, pi’isenbsp;dans toute l’étendue de la trajectoire, sera expri-mée par ny-j-n'y ? et c’est cette somme qui doit



3o2 nbsp;nbsp;nbsp;traité de mécanique. ?tre tin minimum ^ d’apr?s Ie principe de la moindve action, Avant d’aller plus loin, observons que, si Ie second milieu est une substance diaphane et cristallisée, lanbsp;vitesse de la lumi?re, dans cette substance, dépendra,nbsp;en general, de la direction du rayon lumineux; ennbsp;sorte qu’elle sera constante pour un m?me rayon,nbsp;mais variable d’un rayon a un autre. Le phénom?nenbsp;de la double refraction que présentent le spath d’Is'nbsp;lande et la plupart des cristaux transparens, tient anbsp;la difFe'i’ence de vitesse des différens rayons lumineuxnbsp;qui les traversent. On doit alors regarder la vitesse n'nbsp;comme une fonction des angles qui déterminent lanbsp;direction de chaque rayon j et la loi de la refractionnbsp;depend de la

forme que l’on suppose a cette fonction.nbsp;En faisant une hypothese convenable sur cette forme,nbsp;Laplace est parvenu a déduire du principe de lanbsp;moindre action (*) , la loi de la double refraction,nbsp;de'couverte par Huyghens et confirmee par Malus,quot;nbsp;mais ce n’est point ici le lieu d'exposer cette théorie -•nbsp;nous nous bornerous a considerer le cas ou tons lesnbsp;rayons se meuvent avec la m?me vitesse, quellesnbsp;que soient leurs directions. Dans le calcul suivant;nbsp;les vitesses 7z et n' seront done regardees comme, desnbsp;quantites donnees pour chaque milieu en particulier,nbsp;et independantes de la direction des I’ayons lumiquot;nbsp;neux.nbsp;nbsp;nbsp;nbsp;! 165. Soient raaiatenant A et B (fig. 40) les deux (*) Mémoire de la premiere classe de

I’lmtitiit, pour nee 1809.



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;3o3 points extremes de la trajectoire. Supposons que la surface de separation des deux milieux soit plane, etnbsp;Rienons par ces deux points uu plan qui la coupenbsp;suivaut la droite CD. Soit encore AEB une ligne bri-see au point E, qui représente la projection de lanbsp;l^’ajectoire sur ce plan. Menons par les points A, B,nbsp;?'j les perpendiculaires AF, BG, HEK, a la droitenbsp;Puisque la position des points A et B est don-Rue, les trois droites AF, BG, FG, sont connues;nbsp;*Rais la position du point E, et les angles AEH etnbsp;bEK sont inconnus, et doivent ?tre determines par lanbsp;Condition du minimum. Nous supposerons done AF = a, BG = Ó, FG=c, AEH = .r, BEK = a7'; les triangles rectangles AFE et BGE donneront EE = fl tang a:, EG = ? tang j?';

par conséquent, on aura a tang jc -j- lgt; tang a?' = c. (a) Le rayon lumineux traverse la surface de sépara-bon des deux milieux en un point dont E est la projection sur Ie plan de la figure. Si nous appelons z la distance de ce point inconnu au point E, y sera l’liy-Poténuse d’un triangle rectangle dont z et AE serontnbsp;les deux petits cótés, et j' Thypoténuse d’un autrenbsp;Giangle qui aura z et BE pour ses deux petits cótés;nbsp;btais en considérant les triangles AEF et BEG, on a



6“ 3o4 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQÜE. on aura done= v/ cos“ X ' Si l’on substitue ces valeurs dans la quantité nj-\- i 11 en i’esultera une fonction da z, x, x', qui devi'? ?tre un minimum par rapport a ces trois variables; dont les deux derni?res sont Hees entre elles par I’e- quation (a). 11 faudra done d’abord que la dlfferen- tielle de cette fonction, prise par rapport a z, soit e'gale a zéro; d’oü Ton conclut dr nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;, dr'nbsp;nbsp;nbsp;nbsp;nznbsp;nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;nz n-f n' ^ =--h -7- = O. dz nbsp;nbsp;nbsp;dznbsp;nbsp;nbsp;nbsp;ynbsp;nbsp;nbsp;nbsp;J Or, on ne peut satisfaire a cette condition qu’en pre' nant z =: o; ce qui nous apprend que Ie rayon luquot;nbsp;mineux travei’se au point E la surface de separationnbsp;des deux

milieux, et, par conséquent, 'qu’il ne sortnbsp;pas du plan perpendiculaire a cette surface, nienŽnbsp;par les points A et B. En faisant done z = o, on aura simplement nbsp;nbsp;nbsp;11nbsp;nbsp;nbsp;nbsp;nanbsp;nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;n'b nr = - -r ; cos X cos X et en égalant a zéro la différentielle complete cette quantité, il vient na sin xdx nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;nb sin x'dx' cos“ X nbsp;nbsp;nbsp;cosŽ x'nbsp;nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;i mais en differentiant aussi 1 equation (a), on a, m?me temps, adx nbsp;nbsp;nbsp;bdx cos' X cosŽ X ~T~



DYNAMIQÜE, PREMI?RE PARTIE. dx' 3o5 si 1’on élimine ^ entre ces deux e'quations, on troüve (b) n sin X ?=. r? sin x\ ^elle-ci et l’équation (a) détermineront les valeurs X et x' qui répondent au minimum de ny -|- n'j'.nbsp;Apr?s avoir calculé la valeur de on construira Ienbsp;point E, en prenant EF = a tang x; ensuite on tlreranbsp;^es droites AE et BE, et la ligne brisée AEB sera lanbsp;*'oute que suit Ie rayon lumineux pour aller du pointnbsp;A au point B. L’angle AEH compris entre la normale EH a la Surface de separation des deux milieux, et Ie rayonnbsp;incident AE, est ce qu’on appelle Yangle d'incidence;nbsp;i’angle BEK, compris entre Ie prolongement ER denbsp;cette normale et Ie rayon réfracté BE, se nommenbsp;Wangle de refraction. Ces deux angles ont été dési-§nés par x eX. x'. Ainsi l’équation (6)

fera connaitrenbsp;i angle de refraction quand Tangle d’incidence seranbsp;^ontiéj et Ton voit, d’apr?s cette equation, que Ienbsp;Žinus de Tangle de refraction est au sinus de Tanglenbsp;incidence dans un rapport constant. C’est, en etfet, la loi connue de la refraction ordi-’laire, dont la découverte est due a Descartes. Le Rapport des deux sinus depend de celui des vitessesnbsp;^ ot n' relatives aux milieux que Ton consid?re, et,nbsp;pour cette raison, il varie avec les diffërentes sortesnbsp;milieux transparens. 164. Si le rayon lumineux, au lieu de penétrer ‘ians le second milieu, est réfléchi a la surface de sé- I. 20



3o6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. paration, sa vitesse sera coastante dans toute I’eten-due de la trajectoire, qui est alors comprise en ehtier dans un ra?me milieu. L’inlégrale f vds sera donenbsp;égale a la longueur totale de ia trajectoire, multi-pliée par cette vitesse constante; par conséquent, cettenbsp;longueur devra ?tre un minimum, en vertu du principe de la moindre action. Supposons done, corame dans Ie numéro précédent, que la surface de séparation soit plane. Soient A et B ( fig. 40 deux points extremes de la trajectoire ; menons par ces points un plan perpendiculaire a cette surface, qui la coupe suivant CD : chaquenbsp;particule de iumi?re ira du point A au point B, ennbsp;suivant une ligne brisée AEB, la plus courte de toutesnbsp;celles qui se réfléchissent sur la surface de

separation.nbsp;Or, il est d’abord évident que cette ligne sera comprise dans Ie plan perpendiculaire a cette surface - carnbsp;toute autre trajectoire serait plus longue que sa projection sur ce plan. De plus, il est aisé de prouver,nbsp;sans aucun calcul, que la plus courte ligne briséenbsp;est celle qui fait deux angles égaux avec la droitenbsp;CD, c’est-a-dire que si l’on a AEC = BED, la ligne AEB sera plus courte que toute autre ligne brisée AE'B, dont Ie point E' appartient, ainsi quenbsp;E, a la droite CD. En elFet, abalssons de A la perpendiculaii’e AF sur cette droite; prolongeons-la d’une quantlté AT égalenbsp;a AF, et tirons ensuite les droites A'E et A'E'. Lesnbsp;deux angles AEC et A'EC seront égaux; done les



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;do’j •^eux angles A'EC et BED Ie seront aussi, a cause •ie 1 equation précédente; par conséquent, Ia lignenbsp;A'EB sera droite : on aura done A'E BE lt; A'E' -h BE'; , a cause de A'E = AE et A'E' = AE', il en ré'^ ^ullera AE BE lt; AE' BE'; qu’il s’agissait de prouver. Si l’on él?ve au point E la perpendiculaire EH sur la droite CD, AEH et BEH sex’ont les anglesnbsp;d’incidence et de reflexion du rajon lümineux quinbsp;Va du point A au point B. Ces angles seront égaux,nbsp;puisqu’ils sont complémens des angles égaux AEGnbsp;et BED; d’oü ii résulte la loi connue de laréflexion.nbsp;de la 1 umi?re, qui consiste en ce que Tangle de ré-flexion est toujours égal a Tangle d’incidence. i65. Lorsque Ton admet la théorie de Témission la lumi?re , les lois de la réflexion et

de la ré-ffaction se déduisent de Texpression du carré de lanbsp;Vitesse d’un point soumis a des forces d’attractionnbsp;i58), d’une mani?re plus directe quen faisantnbsp;Usage du principe de la moindre action. Cette question nous offrant un exemple du mouvement d’unnbsp;point rnalériel, intéressant par la nature des forcesnbsp;Sue Ton y considere, et par son application a lanbsp;?*hysique, nous allons en exposer la solution dans lenbsp;uas ordinaire, oil les deux milieux que traverse lanbsp;tümi?re ne sont pas cristallises. Dans cette théorie, on suppose chaque partieule 20..



3o8 nbsp;nbsp;nbsp;traité de MÉCANIQÜE. lurnineuse soumise a I’attraction de tous les points matériels du milieu qu’elle traverse, et l’on regardenbsp;cette force conime une fonction inconnue de lanbsp;distance, dont on sait seulement qu’elle décroitnbsp;avec une extréme rapidité quand la distance aug-mente, de sorte qu’elle devient tout-a-fait insensible d?s que la distance a une grandeur^ sensible.nbsp;Ainsi, par exemple, désignons par r la distancenbsp;du point attiré au point attirant, par cl une lignenbsp;de grandeur linie, mais insensible, et par e la basenbsp;des logarithmes népériens. Une force de cette nature r pourra ?tre représentée par Ae A ëtant son in-tensité relative a une distance r infiniment petite. D?s que cette distance aura une grandeur sensible?nbsp;et sera, conséquemment,

un tres grand multiplenbsp;de a, cette fonction n’aura plus aucune valeur sensible. Tant qu’un rayon lumineux se meut dans un milieu homogene et d’une densite' constante, les attractions qu’il éprouve se détruisent, et son mouvement est rectiligne et uniforme. Mais supposons qu’il soit parvenu en un point M (lig. 42) situé ^nbsp;une distance insensible de la surface CD, qui sé-pax'e deux milieux différens, et que nous suppose-rons horizontale pour fixer les ide'es; de ce poin^nbsp;M, abaissons sur CD une perpendiculaire MP,nbsp;menons ensuite, dans Ie milieu supérieur, deu^nbsp;plans C'D' et ' parall?les a CD, dont la distancenbsp;mutuelle soit égale a MP, et dont Ie premier passenbsp;par Ie point M; il est évident que les attractions



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;309 'sxercées sur Ie rayon lumineux au point M, par les deux couches du milieu supérieur, qui sont comprises, l’une entre CD et C^D', Taufre entre C'D'etnbsp;seront égales et conti’aires; elles se détrui-^ont done, et Ie mobile ne sera sollicité que parnbsp;l^attraction de la partie du milieu qu’il traverse,nbsp;Supérieure a Cquot;D'', et par l’attraction totale du milieu inférieur. Ces deux forces seront perpendicu-laires a CD; elles varieront avec la distance MP sui-^snt des lois inconnues, mais telles que chacunenbsp;*le ces forces sera insensible quand MP ne Ie seranbsp;pas, et qu’elles atteindront leurs maxima lorsquenbsp;Cette distance sera nuIJe, ou que Ie mobile seranbsp;parvenu a la surface de separation des deux milieux. Au bout du temps i, je représente

par z la distance MP, et par Z et Z' des fonctions inconnues de qui expriment les forces accélératrices provenantnbsp;’lus attractions du milieu inférieur et de la partienbsp;1’autre milieu, supérieure a C'D'. La force ac-^^lératrice totale , tendanle a diminuer z, sera lanbsp;différence Z — Z'; par conséquent, on aura, dans Ž niilieu supérieur, Ie Z' = o, (r) pour Péquation du mouvement vertical d’une parti-^üle lumineuse. Lorsque ce mobile aura traversé la surface CD en ^n point E, et qu’il aura pénétré dans Ie milieu inférieur jusqu’en un point M', tel que la perpendicu-



Sió nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. laire MT' a CD soit aussi représentée par z, il est aisé de voir que la force accélératrice qui tendra a dimi-nuer cette variable sera alors la difference Z' — Zjnbsp;en sorte que 1’on aura y Z' - Z = o, (=) pour l’équation du mouvement vertical dans Ie nii-^ lieu inferieur. Quant au mouveinettt horizontal ou parall?le a CD, il sera uniforme, et la vitesse horizontale ne changeranbsp;pas en passant d’un milieu dans l’autre; car les forcesnbsp;attractives de chaque milieu se dëtruisent parallelednbsp;ment a CD, et, dans ce sens, un rayon lumineu^?:nbsp;n’est soumis a aucune force accélératrice. Ainsi, ennbsp;appelant k la vitesse de la lumi?re en un point A dnnbsp;milieu supérieur, situé a une distance sensible de CD,nbsp;et a Tangle aigu que la direction de

Cette vitesse faitnbsp;avec la verticale, on aura, a un instant quelconque,nbsp;k sin a, pour la vitesse parall?le a CD. Si Ie rayon lu''nbsp;mineux pén?tre, d’une quantité sensible, dans Ie nn^nbsp;lieu inférieur, et qu’on représente par V et a' ce quŽnbsp;deviennent k et a en un point A' de ce milieu, situŽnbsp;a une distance sensible de CD, on pourra égalemcntnbsp;représenter la vitesse horizontale du mobile pa**nbsp;k' sin a'; en sorte que Ton devra avoir sin a = k' sin a!. nbsp;nbsp;nbsp;(3) On voit aussi, a priori, que la trajectoire du nio' bile sera une coürbe plane et verticale; il ue resteranbsp;done plus qua déterminer sa vitesse perpendiculairŽnbsp;h. CDj, soit dans Ie milieu supérieur, soit dans Ie nnquot;*



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;3ii iieu inférieur, a une distance quelconque z de cette surface CD.nbsp;nbsp;nbsp;nbsp;“ i66. Je désigne cette vitesse par u, de sorte qu’on • dz^ pour les deux milieux. En multipliant ^equation (i) par 2dz, integrant et désignanl par c constante arbitraire, on aura, dans Ie milieu supérieur , M* = c nbsp;nbsp;nbsp;2fTJdz — 2fTidz. Je supposerai que ces deux intégrales s’évanouissent svec z, et je représenterai par h et Ji letrrs valeurs anbsp;üne distance sensible de CD. II sera permis d’étendrenbsp;ces intégrales h et depuis zéro jusqua l’infini; car,nbsp;au-dela d’une valeur sensible, les fonctions Z et Z',nbsp;et par conséquent les parties correspondantes denbsp;fZdz et fT/dz', sont nulles ou insensibles par hypothese. On pourra done écrire, si l’on veut. 7Idz.

/gt;!:o nbsp;nbsp;nbsp;/-?O', z*. K=f^ tailleurs, pour une valeur sensible de z, on a = k' cosŽ at; on aura done alors ;t*cos*at = c 2^' — 2h; en éliminant c de la valeur générale de ?*, il en *’ésultera ttŽ cos* a.-^ 2h — 2^' nbsp;nbsp;nbsp;2f7/dz — 2f7dz, eu un point quelconque M. Je représente par A:, la vitesse du mobile au point de la surface CD, et par a, Tangle que fait sa



3ia nbsp;nbsp;nbsp;TRATTÉ DE MÉGANIQÜE. direction avec la verticale. On aura en ce point M* = A:*cos*'?!; et comme il répond a jz=o, lesnbsp;deux derniers termes de la formule précédente s’é-vanouiront, et elle se rëduira a k\ cos* a, = k* cos* a-\- ih — 2^'. nbsp;nbsp;nbsp;(4) Pour que Ie rayon lumineux atteigne la surface de separation des deux milieux, il faudra done que Ie se'nbsp;cond membre de cette equation soit une quantité positive, OU qu’on ait A' lt; A -4- 4^* cos* ct. Si cette condition n’est pas i’emplie, ce qui exi-gera que l’attraction du milieu supérieur surpasse celle du milieu inférieur, la vitesse verticale du mobile s’épuisera avant qu’il ait atteint Ie plan CD. II ynbsp;aura done un point de la trajectoire oii la tangentenbsp;sera horizontale. Parvenu en ce point, Ie mobile ré-

trogradera; les deux branches de cette courbe, abou-tissantes en ce m?me point, seront semblables, puis-qu’elles seront décrites en vertu de forces égalesnbsp;pour la m?me valeur de z; et, pour une grandeui’nbsp;sensible de cette distance z, ces deux branches senbsp;changeront en des Ugnes droites qui feront des angles égaux avec la verticale, ou, autre ment dit, lesnbsp;angles de réflexion et d’incidence seront égaux. Si, au contraire, fattraclion du milieu inférieur surpasse celle du milieu supérieur, et que la condi^nbsp;tion précédente soit remplie, Ie rayon lumineux péquot;nbsp;nétrera dans Ie second milieu avec une vitesse perpendiculaire a CD, qui sera déterminée par l’équa-tion (^). Dans cette hypothese, on aura, d’apr?s



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;3i3 ?’écfuation (2) relative a ce milieu , = k\ cosŽ ot, 2 fZdz — 2 fTJdz, supposanl toujours les intégrales nulles quand ^ == o. A une distance sensible de CD, on anbsp;= A'* cosŽ a!; on aura done k'* cosŽ a! = k\ cosŽ a, -f- 2^ ?— 2^'; en éliminant k\ cosŽ a, au moyen de l’e'quation (4), d en résultei’a V* cosŽ a! s= A:Ž cosŽ a 4^ — 4^ • nbsp;nbsp;nbsp;(5) Pour que Ie rayon lumineux, apr?s avoir traversé la Surface CD, pén?tre jusqu’a une profondeur sensiblenbsp;dans Ie milieu inférieur, il sera done nécessaire etnbsp;d suffira qu’on alt h' lt;C. h ^ /fŽ cosŽ ct. Cors done que K, quoique moindre que ^ -f-j^Žcos“a, Žurpassera néanmolns ^nbsp;nbsp;nbsp;nbsp;^ cosŽ a, Ie mobile ne Pénétrera dans Ie milieu inférieur que jusqu’a une distance insensible au-dela de

CD; il rentrera ensuitenbsp;dans Ie milieu supérieur; et les deux branches de sanbsp;^?'ajectoire seront semblables de part et d’autre dunbsp;point oü il commencera a rétrograder. Par consé-^I'lent, la lumi?re sera réfléchie, comme dans Ie casnbsp;pi'écédent, en faisant Tangle de réflexion égal a 1 angle d’incidence; en sorte qu’il y a deux cas distinctsnbsp;de reflexion dans la théorie que nous considerons. i6y. Supposons malntenant que ni lun ni 1 autre de ces deux cas n’ait lien , de sorte que Ie rayon



3i4 nbsp;nbsp;nbsp;TRAITÉ DE MÉC'ANIQUE. lumineux soit réfract?. D’apr?s l’équation (3), OR aura sin* a' = k' sin* a ; et en ajoutant membre a merabre [’equation (5) et celle-ci, il en résulterak'^ =k- nbsp;nbsp;nbsp;— 4A';nbsp;nbsp;nbsp;nbsp;(6) ce qui montre que [’augmentation du carré de la vitesse du mobile, en allant du point A du milieunbsp;supérieur au point A' du milieu inférieur, sera in-dépendante, comme cela devait ?tre ( nquot; iSy), dnnbsp;chemin qu’il aura suivi. On tire aussi des équations (5) et (6) stn a.(7) V/^“ -f- 4 (A — A') formule qui renferme la loi du rapport constant dn sinus de réfraction au sinus d’incidence, et qui donoenbsp;la valeur de ce rapport en fonction de la vitesse k denbsp;la lumi?re dans 1’un des deux milieux, et de la difference h — h' de leurs pouvoirs réfringens h et

h'-Si Ie milieu inférieur est terminé par deux plansnbsp;parall?les, et qu’il y ait au-dessous Ie m?me miliennbsp;qu’au-dessus, l’expérience prouve que la lumi?re gt;nbsp;apr?s avoir subi deux réfractions et traversé les denlt;nbsp;faces du milieu intermédiaire, repreud une direction parallele a celle qu’elle avait dans Ie milieu supérieur. C’est aussi ce qui résulfe de l’équation {'])gt;nbsp;car si l’on désigne par aquot; Tangle que Ie rayon In-mineux fait avec la verticale, apr?s ?tre sorti dn



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;3i5 intermediaire, il faudra, pour determiner sin aquot;, échanger entre elles, dans cette equation, lesnbsp;quantités h et h', et y raettre k', a!, aquot;, au lieunbsp;^ , a, aJ. On aura done Sill ct sin lt;*' nbsp;nbsp;nbsp;—Tl)' quot;Ou bien, en vertu des equations (6) et (7), sin ctquot; _ nbsp;nbsp;nbsp;\/k^ l^{h—h') sin ct sm ct ?Ce qui donne , effectivement, Le phénom?ne de la dispersion, qui provient d’üne valeur différente de Tangle de refraction al, pour lesnbsp;cayons diversement colorésdont se compose un m?menbsp;rayon de lumi?re incidente, peut étre attribué, d’a-pr?s la formule (7), solt a une Inégalité de leur vi-lesse k, soit a une action differente de chaque milieunbsp;*ur ces différens rayons, d’oii il résulterait des valeursnbsp;inégales de h — h'. 168.

Toutes choses d’ailleurs égales, cette équa-bon (7) rnontre que le rapport du sinus de refraction sinus d’incidence doit changer avec Ia vitesse de ia lumi?re. Or, si Ton consid?re une étoile situéenbsp;^ans le plan de Técliptique, il y a une époque dansnbsp;lannée ou la vitesse de la terre s’ajoute a celle de lanbsp;lumi?re, et une autre époque oü la premi?re vitessenbsp;se retranche de la seconde; ce qui rend la vitesse denbsp;la lumi?re, relativement a un milieu qui se meut



3i6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. avec la terre, sensiblement plus grande dans Ie premier cas que dans Ie second. Le rapport dont il s’agit devrait done aussi ?tre different a ces deux époques;nbsp;mais des experiences tres précises de M. Arago ontnbsp;pi’ouvé qu’au conti’aire ce rapport ne varie pas d’unenbsp;mani?re sensible pendant toute l’année, et, de plus,nbsp;que sa grandeur est la m?me pour le soleil et pournbsp;les diverses étoiles d’oü la lumi?re est partie. Quelle que soit la théorie de la lumi?re que Ton adopte, eest toujours un fait trés remarquable, quenbsp;la composition de la vitesse propre de la lumi?renbsp;avec celle de la terre, qui se manifeste dans le mouvement apparent des étoiles, connu sous le nomnbsp;aberration^ n’ait cependant aucune influence appré-clable

sur la réfractlon de la lumi?re qu’elles nousnbsp;envoient a dlfférens jours de l’année. Dans le vide, le mouvement de la lumi?re directe OU réfléchie est uniforme, et sa vitesse indépendantenbsp;de la source dont elle émane. La grandeur de cettenbsp;vitesse est telle, que la lumi?re parcourt en 495,34 secondes la distance moyenne du soleil a la terre ; cenbsp;qui donne 3og5o myriam?tres par seconde. Un rayon lumineux, lancé du soleil ou d’une étoile, doit éprouver dans sa vitesse, comme toutnbsp;autre projectile, une diminution due a sa pesanteurnbsp;vei’s cet astre, e’est-a-dire, a I’attractlon en raison inverse du carré des distances a son centre , que 1?nbsp;masse du corps exerce sur chaque parti cule maté-rielle de la lumi?re; mais cette diminution est unenbsp;fraction trés petite de la vitesse

finale de la lumi?re.nbsp;Ainsi, par exemple, l’intensité de la pesanteur a la



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;317 surface du soleil étant vingt-sept fois et demi l’inten-site' de la pesanteur terrestre, comnie on Ie verra par suite, et Ie rayon du soleil étant égal a 11 o rayonsnbsp;la terre, on conclut de ce qu’on a vu dans Ie n” i43,nbsp;'?ue la vitesse de la lumi?re, pour ?tre de 3og5o my-fiam?tres par seconde a une grande distance du so-^Žil, a dü ?tre plus grande d’un peu moins de deuxnbsp;Riillioni?mes seulement, en partant de sa surface.



CHAPITRE IV. 169. La pression qu’un point niatéri?l exerce suv une courbe qu’il est force' de de'ci’lre, nest pas lanbsp;méme que qiiand il est en équilibre sur cette courbe.nbsp;L’ëtat de mouvement donne naissance a une pressionnbsp;particuliere qu’on appelle force centrifuge, pareenbsp;qu’on l’a d’abord considérée dans Ie cercle oü ellenbsp;est dirigée suivaut Ie prolongement du rayon, etnbsp;tend continuellement a eloigner du centre Ie mobilenbsp;sur lequel elle agit. C’est cette force que nous allonsnbsp;considérer dans une courbe quelconque. Soient et MM' (fig. 43) deux éle'mens consë-cutifs et égaux de la courbe donnée, H et H' leurs milieux, MT et M'T' leurs prolongemens. Leur plannbsp;et Tangle TMT' scront Ie plan osculaleur et Tanglenbsp;de contingence de la courbe au point M; et si

Tonnbsp;m?ne dans ce plan la droite MO, qui divise TanglŽnbsp;MyMM' en deux parties égales, elle représentera 1*nbsp;direction du rayon de courbure en ce m?me point Mlnbsp;en sorte que Ie centre de courbure sera Ie point önbsp;de cette droite. Appelons ds Téle'meut M^I de 1^nbsp;courbe, lequel sera aussi égal a HMH'; soient, eDnbsp;outre. S' Tangle infiniment petit TMT', et p Ie rayoOnbsp;de courbure MO, nous aurons (n“ 18) ds



DYNAMIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;Sig Cela posé, faisons d’abord abstraction des forces '^Onnées qui peuvent agir sur Ie mobile, et suppo-Žons qu’au bout du temps t, il arrive au point M avecnbsp;vitesse v. S’il était enti?rement libre, il conti-RRerait a se mouvoir sur MT avec la m?me vitesse;nbsp;^3is, par hypothese, il est force de décrire unenbsp;^Rurbe donnée; ce qui change la direction de sonnbsp;Riouvement, qui devient MT'. Or, si Ton él?ve surnbsp;la perpendiculaire MK, comprise dans Ie plannbsp;R^culateur et en dehors de la concavilé de la courbe,nbsp;RR pourra substituer a la vitesse dirigée suivantnbsp;^T, deux autres vitesses, Tune égale a v cos J' etnbsp;dirigée suivant MT', l’autre égale a e sin J' et di-dgée suivant MK; et alors l’efFet de la courbe seranbsp;’ie détruire la

derni?re de ces deux vitesses, pournbsp;Re laisser subsister que Ia premi?re, ou, autrementnbsp;^’t, eet elTet se réduira a imprimer au mobile unenbsp;''Resse égale et contraire a c sin cT. La courbe donnéenbsp;Žtant done remplacée par un polygone infinitésimal,nbsp;resistance consiste a imprimer au mobile, a chaquenbsp;^RinmetM de ce polygone, une vitesse iofiniment pe-^Re esincT, dirigée en sens contraire de MK. Pour assimiler compl?tement cette résistance a RRe force niotrice ƒ qui agit incessamment sur Ienbsp;R^obile, nous pouvons supposer que la vitesse sind'nbsp;produite pendant que ce point materiel va denbsp;en H', et prendre dt pour la durée de cette ac-bon. Nous pouvons aussi négliger, dans eet inter-Yalle de temps, Ie changement de direction de cettenbsp;ibvee, et la supposer, par

exemple, parall?le a lanbsp;’Iroite MO, Alors la force accélératrice corre.spon'*



320 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. dante aura pour mesure, comme chacune des forces U, U', Uquot;, etc., du n° 147, la vitesse v sin cT qu’ellenbsp;produit pendant l’inslant dt, divisée par dt; et ennbsp;appelant m la masse du mobile, il en résultera mv sin ^ dt pour la valeur de f. Done , en remplacant sin ?T par cT, mettant pour cf sa valeur pre'cédente, et observantnbsp;que ds=. vdt, on aura ƒ La pression que la courbe éprouve, et qui est uniquot; quement due a l’état de mouvement du point maté''nbsp;riel qui la décrit, ou la force centrifuge qui agitnbsp;sur ce mobile, est égale et contraire a cette force f-II s’ensuit done qu’au point quelconque M, de 1Žnbsp;courbe donnée, la force centrifuge est comprise danSnbsp;Ie plan osculateur, et dirigée en dehors de la concavitynbsp;de cette courbe

, suivant Ie prolongement MN de soonbsp;rayon de courbure, et que son intensité est en raisonnbsp;inverse de ce rayon, et en raison directe de la mass^nbsp;du mobile et du carré de sa vitesse. 170. Cette vitesse étant v sur Ie cóté M,M, et devc' nant v cos cT sur Ie cóté suivant MM', il s’ensuit qnŽnbsp;sa grandeur nest point altéi’ée par la courbe; car onnbsp;peut négliger la quantité v{i — cos J'), infinimentnbsp;petite du second ordre, de laquelle il ne pourrai*nbsp;résulter qu’une diminution infiniment petite de vl'nbsp;tesse, sur une partie de la courbe de grandeur finie-Le mouvement sur une courbe quelconque est doncnbsp;uniforme qvand le mobile n’est sollicité par aucunC



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;Sai force ^onnée. Cest ce qu’on a déja vu daas Ie n'* iS'j; Wajs nous voyons de plus que ce résultat tient a cenbsp;Sue Tangle de contingence est inliniment petit, etnbsp;Su’en un point oii deux courbes différentes se cou-peraient sous un angle fini, Ie mobile eprouveraitnbsp;Uue perte linie de vitesse, en passant d’une courbe anbsp;1 autre ; laquelle perte serait égale a sa vitesse primi-, multipliée par Ie sinus verse de eet angle. Lorsque Ie mobile est sollicité par une ou piusieurs forces données, sa vitesse varie a raison des compo-Žantes de ces forces tangentes a la trajectoire, et leursnbsp;^uinposanles normales exercent, comme dans Tétatnbsp;repos, une pi’ession sur cette courbe qu’il fautnbsp;joindre a la force centrifuge. Soit, en general, inK la

résultante des forces don-Ue'es qui agissent sur Ie mobile, quand il est parvenu point M. Décomposons cette force motrice ennbsp;'^eux autres, Tune tangen te et Tautre normale a lanbsp;eetoire, que nous représenterons par mT et toQ ;nbsp;fo premi?re sera la force qui fera varier la vitesse, etnbsp;fo seconde produira la partie de la pression indépen-'^ante de Tétat de mouvement du mobile. En pre-^ant, par la regie du parallélogramme des forces, la ^^sultante de niQ et de ia force centrifuge fou~, on ^'^ra, en grandeur et en direction, la pression totale ^Ri aura lieu au point M de la courbe donnée. Cettenbsp;foi’ce , divisée par la masse du mobile, ou la résul-foute des forces accélératrices Q et —, devra co?nci- e avec la force P du n° iSa. C’est en effet ce que ^^Ous allons verifier. 21



322 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. lyi. Je reniplace les equations (5) de ce numéro par celles-ci, qui s’en déduisent immédiatement, dsde nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;\dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;/nbsp;nbsp;nbsp;nbsp;i dsdP nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;\dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;/’nbsp;nbsp;nbsp;nbsp;f drd‘z—dzdy dy dz ^(dj „ dz nbsp;nbsp;nbsp;aI dsde nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;\dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;Jnbsp;nbsp;nbsp;nbsp;] Quelle que soit la variable indépendanle , on a dxdy—dyd^x 7? d ^ dx'^ dx d/} dt on a , en ,m?me temps, dx ds dx d. dx‘ ds^ ds'- dt^ * ds df ds dt ?’ a cause de p = ^, il en résultera d ^

dx^ dx (dxdy- — dyd^x), dxdy—dyd^x ds^ dsdd nbsp;nbsp;nbsp;'' ds’^ ds et Ton trouvera de m?me, dzd^x — dxd^z nbsp;nbsp;nbsp;( dzd^x — dxd^z ) dsdt’‘ dyd^z — dzd‘ynbsp;dsdt’^ ds^ ( dyd^z — dzd'‘y ) ds^ Eu désignant par q, q', q”, les angles que la forc^ Q fait avec des parall?les aux axes des oc ^ j, z gt;nbsp;observant que X, Y, Z, sont les composantes suivaotnbsp;ces parall?les de Q et de la force tangentielle T, oo



DYNAMIQUE, PREMI?RE PARTJE. 3s!3 aussl , dx Y=T ^ 0005 5-', Z=rT^ Qcosyquot;; dz ds ds au luoyen de ces valeurs et des prece'dentes, les ’^'?uations (i) deviendront Jj^dyd'x) ds^ — dxd'^z) ds^ quot;~^yd^z-dzd^f)_nf^-^^ dx , dj \ ^/dx _cos^_--cos^J_P(^_r dz nbsp;nbsp;nbsp;dx Ts^^^'^-Ts COS?sr • ds^ cosq ds cosq •ylt;i'O-KI' dr quot;ds^ dx -cos sr Or, si l’on appelle y, y’, y”, les angles que la direc-^*oia de la force centrifuge, c’est-a-dire Ie prolonge-RientMN du rayon de couibure MO, fait avec des pa-*'all?les aux axes des x, f, z, menées par Ie point M, x', j', z’, les coordonnées du centre de courbure 0,nbsp;^*1 aura X. ?z'=p cos y^', ?x'=fgt;cosy, j—j'=pcosy, en combinant les equations (2) avec les formules du , on en déduira sans difficulté, dx ~dj /dx ds \ds dz /dz dsKds^^^'^nbsp;dz /dz 'ds\ds'^^'^'^~

dx/dx ds cosq ''\__ds\ds-Pf^ ds \ds /dr „ dz ,\ dx/dx ^—COS'ÜT ——COST j——. cos^ -,?__n r Cdz .ds \ds dx ^dz ds dr —V- cos q ds dr — - cos Ž , nbsp;nbsp;nbsp;dx ,,\ dj/dj „ dl COSw')]?



l1 I'.;; 'i' '? H'. f 324 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Mais a cause que les forces P et Q sont perpendi-culaires a la tangente de la trajectoire, on a dx ds dx dz ds COS 'Ž' “fquot; ^ COS nbsp;nbsp;nbsp;cos lt;Zcr''=o; ce qui réduit les coelBciens de Q, dans les trois équaquot; lions prëcédentes, a — cos q, — cos q', — cos qquot;, etnbsp;ceux de —Pa — cos -ar, — cos for',nbsp;done enfin ?coslt;z?r ; on aura — nbsp;nbsp;nbsp;cos y -\-Q cos q = P cos lt;ar, — nbsp;nbsp;nbsp;cos 7' Q cos q' =P cos lt;ar', — nbsp;nbsp;nbsp;cos yquot;-h Q cos qquot; = P cos (srquot;, oü l’on voit, comme il s’agissait de Ie ve'rifier, que la force P est, en grandeur et en direction, la résul- tante des deux forces — et Q. P 172. Quaud Ie mobile sera seulement assujetti a se mouvoir sur une surface donnée, il faudra

quenbsp;ia résultante des forces motrices mQ et , qui est déja perpendiculaire a sa trajectoire, soit, de plus, f ovruale a cette surface. En appelant done inN cettenbsp;résultante, et désignant par cd et 4 les angles, aigusnbsp;OU obtus, que font ses deux composantes avec unenbsp;nartie déterminée de la normale a la surface, au poin*nbsp;oü se trouve Ie mobile, on aurap? == db (^Q cos ft) -f. cos 4 y



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;325 La force N agira suivant cette partie de la- normale Ou suivant son prolongement, selon que Ia quantiténbsp;comprise entre les parentheses sera positive ou negative; et pour que N soit toujours une quantité positive , on prendra Ie signe supérieur dans Ie premiernbsp;et Ie signe inférieur dans Ie second . Cette forcenbsp;iiccélératrice N devra ?tre égale et contraire a cellenbsp;ijui entre dans les equations (3) du n° IDI et, en ^ffet, celles-ci ne différant des equations (5) du n° 162 fu’en ce qu’elles contiennent N, A, ?, r, au lieu denbsp;“^P, 'Z?r, fsr', esrquot;, on en déduira, par l’analjse précé-liente, des composantes de la force N, qui serontnbsp;^gales et contraires a celles que l’on a trouvées pournbsp;ia force P. Dans ce m?me cas d’une surface

donnée, si Ton dé-S'gne par agt;' et 4^' ies angles que les forces mQ et 'p font avec un axe mené par Ie point ou se trouve ie mobile, tangent a cette surface et perpendiculaire a ia trajectoire, de sorte qu’on ait eOS“ ö) -f- cos“ amp;)' =r T , cos*4 -H COS'-xj-^ = I ) 'i faudra que la somme des composantes de ces deux i^erces suivant eet axe tangent, soit égale a zéro,nbsp;Puisque leur résultante est noi'male au m?me pointnbsp;'ie la surface; on aura done Q cos -j--cos -J/' = o; equation qui pourra servir a determiner l’inclinai-^On -nI.' du plan osculaleur de la trajectoire sur Ie plan tangent a la surface donnée.



326 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Lorsque Ie mobile ne sera soumis a aucune force donnée, ou, plus généralement, lorsqu’il ne seranbsp;soumis qu’a une force tangente a sa trajectoire, onnbsp;aura Q=o; il enrésultera done cos-4/'= o et'=90°;nbsp;en sorte que Ie plan osculateur de cette courbe sei’anbsp;constamment perpendiculaire a la surface donnée-Cette propriété étant, en general, celle de la lignenbsp;la plus courte entre deux points donnés sur cettenbsp;surface, c’est cette ligne que Ie mobile décrira, ainsinbsp;qu’onl’adlt précédemment (n° 161); mais maintenantnbsp;nous vojons, en outre, qu’une force tangenle ^nbsp;la trajectoire, telle qu’un frottement contre la surfacenbsp;donnée, ou la résistance d’un milieu, ne fera pas de-vier Ie mobile, de la ligne la plus courte

entre sonnbsp;point de départ et son point d’arrivée. 175. Enfin, si Ie mobile est enti?rement libre, faudra que la composante normale a la trajectoire 1nbsp;de la force motrice /?R qui Ie sollicite, fasse équi' libre a sa force centrifuge puisque dans ce cas n’y a pas de courbe ou de surface donnée qui puisse détruire la résultante normale de ces deux forces.nbsp;faudra done, en premier lieu, que Ie plan osculateüi’nbsp;de la trajectoire soit celui qui passe par la tangent^nbsp;et par la direction donnée de la force wR; en app^quot;nbsp;lant ö Tangle que cette direction, en un point qiic^''nbsp;conque, fait avec Ie rayon de courbure MO,nbsp;faudra, en outre, que eet angle soit aigu pournbsp;la composante normale de la force mK agisse en sen*nbsp;contraire de la force centrifuge qui est dirigée

siDquot;nbsp;vant MN et cela étant, on devra avoir



Sar DYNAMIQUE, PREMI?RE PARTIE. (a) R cos ? Quand la force accélératrice R, a laquelle Ie mobile soumis, sera une force centrale dirigée vers unnbsp;point connu, et que l’observation aura fait connaitre lanbsp;^Ourbe qu’il decrit autour de ce centre fixe, on pourranbsp;oe'duire de l’équation de cette courbe, Ie rajon denbsp;oourbure ƒ et Tangle 6 qu’il fait avec la direction denbsp;force R; on déduira aussi, de cette equation et denbsp;proportionnalitë des aires aux temps ( n° i55 ),nbsp;^’expression de la vitesse u en un point quelconquenbsp;de la trajectoire; par conséquent, Téquation (a) dé-terminera la valeur de R, ou la loi de la force centralenbsp;qui fait décrire au mobile la courbe donnée. C’estnbsp;de cette inani?re que Newton a découvert la loi de lanbsp;force dirige'e vers Ie centre du soleil,

qui fait décrirenbsp;^ chaque plan?te une ellipse dont ce point occupe unnbsp;des foyers; mais on verfa, dans la suite, qu’en par-^^ot des m?mes données, cette détermination peutnbsp;Ž offectuer par un calcul plus simple. 174* Huygbens, a qui Ton doit la mesure de la ^orce centrifuge, Ta déduite de la considération dunbsp;*Oouvement circulaire; et quoique cette méthode soitnbsp;^^oins directe que la précédente, je crois cependantnbsp;'itile de Texposer ici en peu de mots. Soit M ( fig. 44 ) on point matériel attaché a un point fixe C par un lil inextensible CM; supposonsnbsp;qu une percussion lui imprime une vitesse a, dans unenbsp;direction perpendiculaire a la longueur du lil; et,nbsp;poiu' simplifier la question, supposons aussi qu’aucune



328 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. force motrice donnée n’agisse sur Ie mobile. Ce point materiel va décrire un cei’cle AMB, dont Ie centrenbsp;et Ie rayon seront Ie point fixe et ia longueur du fil-Pendant ce mouvement, Ie fil qui retient Ie mobilenbsp;e'prouvera, dans Ie sens de sa longueur, une certainenbsp;tension qui n’est autre chose que la force centrifuge.nbsp;En appliquant au mobile une force égale a cette tension et constamment dlrigée vers Ie centre fixe, onnbsp;pourra faire abstraction du fil, et considérer Ie mobile comme enti?rement libre. C’est done en vertu denbsp;cette force centrale, dont la grandeur est inconnue,nbsp;combinée avec la vitesse a, que Ie eerde sera décrlt. II s’ensuit d’abord que les secteurs circulaires dé-crits par Ie rayon du mobile, seront

proportionnels au tenips (nŽ i55); ce qui exige que les arcs denbsp;eerde parcourus Ie soient aussi. Le mouvement circulaire sei’a done uniforme; et si i’on désigne parnbsp;l’arc décrit dans le (ernps ^, on aura .y = ut. Soient m la masse du mobile, ma. la force centrale, et, conséquemment, a la force accélératrice qu’ünbsp;s’agira de determiner. Quelle que soit cette force, onnbsp;peut la regarder comme constante en grandeur etnbsp;en direction pendant un intervalle de temps infiquot;nbsp;niment petit; ainsi, pendant que le mobile décrdnbsp;l’arc de eerde infiniment petit MM', la force a seranbsp;supposée constante, et parall?le au rayon CM qoinbsp;aboulit a rorlglne de eet are •, d’ou nous concluonsnbsp;que si le mobile n’étalt pas animé de la vitesse a, 1^nbsp;force centrale lui ferait

parcourir , dans un temps io'nbsp;finiment petit, le sinus verse MN, ou la projectionnbsp;sur CM de l’arc MM' qu’il décrit réellement. Or,



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;329 toute force accélératrlce a pour mesure Ie double de ^ cspace infiniment petit qu’elle est capable de fairenbsp;pai courir a un mobile dans un temps infiniment pe-fit, divisé par Ie carré de ce temps ( nŽ i?8 ) ; sinbsp;•^onc on appelle e Ie sinus verse MN, et t Ie tempsnbsp;Žmplojé a décrire l’arc MM', on aura 2e ^ais en désignant eet are par ix, et Ie rajon CM r, on a prenant l’arc au lieu de la corde; dlt;jnc a cause de ar, 011 aura Cette valeur de a est done celle de la force centrifuge rapportée a l’unité de masse, dans un eerde décrit un mouvement uniforme. On en conclut immédia-^ement que cette force, dans une courbe quelconque,nbsp;^Ura pour mesure Ie carré de la vitesse divisé par Ienbsp;*’3yon decourbure; car la trajectoire ayant

deuxélé-*^iens consécutifs communs avec son eerde oscula-f^Ur, on peut supposer que, pendant un temps in-f'uiment petit, Ie mobile se meut circnlairementnbsp;^utour du centre de courbure, et qu’il a conséquem-^lent la force centrifuge qui convient a ce mouve-’Reni. En multipliant par m cette force accélératrice ,nbsp;Žn aura la m?me valeur que pour la force designee,nbsp;par ƒ dans Ie nquot; i6g.



33o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. 175. Pour comparer la force centi’ifuge dans Ie eerde a la pesanteur, supposons que la vitesse a soitnbsp;celle qui serait due a une hauteur h, de sorte qu’onnbsp;ait ~ o.gh (n° i3o), en désignant par g la gravilénbsp;il en résultera a ih g nbsp;nbsp;nbsp;r ’ ce qui montre que la force centrifuge est a la pesan-teur, comme Ie double de la hauteur due a la vitesse du mobile est au rajon. Si Ie mobile est un corps dont les dimensions soient tres petites par rapport a sa distance au point C,nbsp;on pourra considérer, dans toute son élendue, la va-leur de a comme a trés peu prés constante, et prendre Ie rapport - pour celui de la force centrifuge s provenant du mouvement circulaire, au polds dn corps sur lequel elle agit. Quand Ie mouvement n’aura

pas lieu dans un plan horizontal, la vitesse du mobile, la force centrifuge et la tension du fil attaché au point C, serontnbsp;variables. Supposons que Ie mobile se meuvedans unnbsp;plan vertical; désignons par 2gh Ie carré de sa vitesse,nbsp;quand il se trouve dans Ie plan horizontal passant pai’nbsp;Ie point C; et, a un instant quelconque, appelonsnbsp;z sa distance a ce plan , regardée comme positivenbsp;lorsque Ie mobile sera situé au-dessous, et commenbsp;négative quand il aura passé au-dessus; nous auronsnbsp;a eet instant 2g{h. -j- z) pour Ie carré de sa vitesse awg- [h z) (nquot; i5g ), et - pour la force centrifuge* Pour avoir la tension totale du lil, il faudra ajou-



DYNAMIQUE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;33j ter a cette force la composante du poids du mobile suivant Ie prolongement de son rayon, la- ^uelle composante est egale a ^ comme il est aisé Ie voir. Done, en appelant 6 la tension totale du a un instant quelconque , nous aurons mg (aA -j- 3z) Cette force exprimera aussi la pression que Ie point C éprouvera a chaque instant, suivant la directionnbsp;rayon qui aboutit au mobile. Elle atteindra sonnbsp;Maximum, lorsque Ie mobile sera au point Ie plusnbsp;lgt;as du eerde , oü l’on a z = r, et son minimum,nbsp;lorsqu’il sera au point Ie plus élevé, oü l’on a 2;=—r. Si h est moindre que nbsp;nbsp;nbsp;la tensiondeviendrane'gative Se changera en une contraction pendant une partje du mouvement: il faudra alors que Ie fil soit inflexible pour que Ie

mouvement circulaire ait lieu. neglige , dans ce calcul, Ie poids et la force centrifuge du lilj ce qui suppose sa masse trés petite par *'apport a celle du mobile. On verra , par la suite ,nbsp;Comment on y devrait avoir égard si cela était nécessaire. 176. Revenons au mouvement circulaire et uni-fl^rnie, et désignons par T Ie temps que Ie mobile Cfftploie a parcourir la circonférence enti?re. On aura et gt; par conséquent.



332 TRAITÉ DE MÉCANIQÜE. ct ce qui montre que la force centrifuge est en raison directe du rayon du eerde, et en raison inverse dunbsp;carré du temps d’une revolution enti?re. Lorsqu’un corps solide tourne au tour d’un axe fixe, tous ses points décrivent, dans Ie m?me temps,nbsp;des cercles dont les plans sont perpendiculaires anbsp;l’axe, qui ont leurs centres dans eet axe, et pournbsp;rayons les perpendiculaires abaissées de chaque pointnbsp;sur ce m?me axe; par conséquent, les forces centrifuges de ces différens points sont entre dies commenbsp;ces perpendiculaires. Ainsi, par exemple, la forcenbsp;centrifuge des corps placés a la surface de la tei’re, etnbsp;qui tournent avec die autour de l’axe des poles, estnbsp;proportionnelle aux rayons des parallhles qu’ils dé-crivent;

et, de plus , cette force est dirigée en chaquenbsp;lieu de la terre suivant Ie prolongement du rayonnbsp;du parall?le qui aboutit en ce point. 177. La force qui précipite les corps vers la terre, et que nous appelons pesanteur, est due prin-cipalement a l’attraction du spbéro?de terrestre surnbsp;ces corps. Mais quelle qu’en soit la cause, il est tou-jours certain que la force centrifuge diminue cettenbsp;tendance des corps pesans ; en sorte qu’excepté aUnbsp;pole, oixla force centrifuge est nulle , la pesanteurnbsp;est partout moindre que si la terre n’avait pas denbsp;mouvement de rotation. A I’équateur, la force centrifuge et la pesanteur sont dirigées cn sens contrairenbsp;Tune de l’autre; la pesanteur y est done égale a



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;333 1 exc?s de l’attraction de la terre sur la force centri-; par conséquent, on a § étant cette pesanteur, G l’attraction terrestre , ou pesanteur qui aurait lieu si la teiTe était immobile,nbsp;^ Ie rayon de l’équateur, et T Ie temps de la rota-bon de la terre. Le second terme de cette formule étant tr?s’ petit par rapport au premier, on a, a tr?s pen pres, ^Our convertir en nombre la fraction onpourra prendre le rayon du méridien au lieu du rayon r de ^équateur, dont il est peu différent; on aura alors 27rr = 4opooooo“. prenant la seconde pour unité, et négligeant, ^ans ce calcui, la petite variation de la pesanteur anbsp;surface de la terre, on a aussi (nŽ 115 )g = 9”gt;öo896. a d’ailleurs ( n° 111 )T = 86i64; de la on conclut, a tr?s peu prés, I aSg’ 4a-‘r



334 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Ainsi, a Tequateur, la pesanteur est diminuée de par Ie mouvement de rotation de la terre autour de soa axe. Si ce mouvement devenait plus rapide, Ienbsp;temps T diminuerait, et la force centrifuge diffëreraitnbsp;moins de la gravité. En observant que 289 est Ienbsp;carré de 17, on volt qu’il suffirait que la rotatiounbsp;eut lieu en un dix-septi?me de jour, pour quenbsp;force centrifuge a l’équateur fut égale a la gravité;nbsp;alors la pesanteur j serait égale a zéro, et les corpsnbsp;abandonnés a eux-m?mes y demeureraient en équi'nbsp;llbre. Dans ce calcul, nous avons seulement eu égard ^ la force centrifuge provenant du mouvement de rotation des corps pesans autour de l’axe de la terre;nbsp;et, en effet, on concoit que Ie mouvement de

translation autour du soleil, qui est commun a tous ceSnbsp;corps, a la terre et a son axe, ne saurait influer suiquot;nbsp;leur tendance a s’écarter de cette droite mobile. ERnbsp;imaglnant, par exemple, un fil parall?le a l’équateur;nbsp;attaché a eet axe et aboutissant a un corps situé a 1^nbsp;surface, il est évident que sa tension ne changera au-cunement par Eeffet d’un mouvement qui emportera^nbsp;a la fois, l’axe, Ie fil et Ie corps, sans changer leur*nbsp;positions relatives. 178. La force centrifuge diminue la pesanteur eR tons les points de la surface de la terre; mais d’un^^nbsp;quantité molndre qu’a l’équateur, soit paree qi^nbsp;allant de l’équateur au pole la force centrifuge de-croit, soit paree que Tangle qu elle fait avec la verti-quot;nbsp;cale augniénte. En appelant toujours r

Ie,rayon de



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;335 ^’squateur, et dësignant par jx la latitude d’un lieu ^uelconque de la terre, et par ?Ie rayon du parall?lenbsp;^orrespondant, on aura négligeant la non-sphéricilé du globe terrestre, Wangle sera celui que Ie prolongement de m, ou lanbsp;•direction de la force centrifuge, fait avec la verticale;nbsp;coniposante verticale de la force centrifuge s’ob- bendra done en multipliant son intensité nbsp;nbsp;nbsp;par quot;Os ft; ce qui donne cos°f? Pour la diminution de la pesanteur due a la rota-bon de la terre; et, d’apr?s ce qui pre'c?de, cette 'loantité aura pour valeur cosŽ fi “289 ' Ce serait la toute la diminution que la pesanteur ^prouverait, si la terre e'tait une sph?re homogene : serait proportionnelle au carré du cosinus de la ^^btude; et la diminution totale

du pole ou Ion anbsp;^ == 90“, a l’équateur ou l’on a /t = o, s’éleverait a Mais la terre est un sphéro?de aplatl a ses poles; 1 attraction qu’elle exerce sur les corps places a sa sur-dimlnue, pour cette raison, en allant du pole a ^óquateur; cette diminution, en chaque point de lanbsp;ŽOrface, est aussi proportionnelle au carré du cosinusnbsp;be la latitude; elle s’ajoute a celle qui est produite



336 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANTQUE. par la force centrifuge, et par cette addition 1Ž coefficient ^ augniente et devlent ~ h peu prés. C’est done cette fraction ^ qui exprimera, comme nous l’avons déja dit (n* 117 ), I’accroissement'’ total du poids d’un corps transporté de l’equateur au pole.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;33-; ^'’quot;‘\^'W%lt;WVVK'X'V\^-V\\-VWW%/V\VVVMW\'WVWWV''W\'W\lt;VVWVWVgt;-VV\'WWV'^^-%V\^iVV*/W\'WVW\VV\rVVgt; CHAPITRE V. EXEMPLES du MOUVEMEXT D5UN POINT MATERIEL SUR UNE GOURDE OU SUR UNE SURFACE DONNEE. § P*^. Oscillation du pendule simple. 179. Un pendule est, en ge'néral, nn corps solide pesant, qui oscille autour d’un axe fixe et horizontal.nbsp;Mals pour comparer plus facilement entre elles lesnbsp;tlurées des oscillations de dilTerens pendules et les in-tensités correspondantes de la pesanteur, les géo-?ti?tres ont imagine un pendule ideal qu’on appellenbsp;pendule simple, et qui consiste en un point materielnbsp;pesant, suspendu a un point fixe par l’intermédiairenbsp;*l’un fil

inextensible et inflexible, dénué de pesanteurnbsp;m?me de densité, et dont la longueur est celle denbsp;^e pendule. On verra, dans un autre cbapitre, qu’il j a tou-jours un pendule simple dont les oscillations coincident, et pour leurs durées et pour leurs amplitudes, ^vec celles d’un pendule quelconque; et nous mon-fierons comment la longueur du premier peut senbsp;determiner d’apr?s la forme et les dimensions du second. Nous ferons voir aussi que eet accord ajantnbsp;^ieu entre les mouvemens de deux pendules dans Ienbsp;Vide, il subsistera également dans uu milieu resistant. 1. 22



338 nbsp;nbsp;nbsp;TRAITÉ J)E MÉGANIQUE. quelle que soit la fonctiou de la vitesse qui exprime la resistance. Ainsi, il suf?ira de considérer Ie mouvement du pendule simple, soit dans Ie vide, soit dan.snbsp;un milieu resistant; et c’est ce qu’on va faire dans cenbsp;premier paragraphe. i8o. Soient C (fig. 4^) Ie point de suspension, CB la verticale passant par ce point fixe, et CA lanbsp;position initiale du pendule. Supposons que Ie pointnbsp;materiel qui Ie termine parte du point A avec unenbsp;vitesse k perpendiculaire a CA, et dirigée dans Ie plannbsp;des droites CA et CB; il est evident qu’il ne sortiranbsp;pas de ce plan vertical, et qu’il y dëcrira des arcs denbsp;eerde dont C est Ie centre et CA Ie rayon. Au bout du temps quelconque l, soit M la position du mobile ; des points M et A , abaissons

sur la verticale CB, des perpendiculaires MP et AD, et faisons CP = z, CD = c. En désignant par g la gravité et par u la vitesse d? mobile au point M, nous aurons, dans Ie cas du videnbsp;(n° i5g), u” = A* -f. 2g-(z — c); y et si 1’on appelle s l’arc AM décrit par Ie mobile, dn sorte qu’on ait ^ = u, on en de'duira dt = ds l/Aquot; 2g'(3 — c) * Dësiguons par fl Tangle MCB, qui sera positif quand Ie pendule se trouvera a gauche de CB, coninie 1Žnbsp;droite CA, et négatif lorsque Ie pendule sera a droite



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;339 de la verticale. Soit aussi a Tangle ACB, ou la va-^eur initiale de 6. On aura , nbsp;nbsp;nbsp;r \nbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;av s = a(c-6), 1- = nbsp;nbsp;nbsp;= en représentant par a la longueur CM ou CA du pendule. On aura, en m?me temps, z = a cos 6, c = a cos a; et au moyen de ces valeurs, celle de dt deviendra - . (.) \/k- aga (cos ? — cos CL ) Telle est done la formule qu’il s’agira d’intégrer exactement ou par approximation. 181. II n’y a qu’un cas dans lequel Tintégration sous forme linie soit possible, c’est lorsqu’on a A:* = 2ga (I cos a); Ce qui a lieu quand Ie mobile part du point A avec Ia vitesse qu’il aurait acquise en tombant d’une hauteur égale a EDj E étant Ie point Ie plus élevé dunbsp;eerde qu’il décrit. En faisant 6 =

2^1,, et observant que I -f- cos 24 = 2 cos* 4 , On a alors dt= -v/? J’int?gre, je détermine la constante arbitraire de sorte qu’on ait 4 = quand lt; — o , et je metsnbsp;? ö a la place de 4 gt; d vient 22..



Iri hi 340 TRAITÉ DE MÉCANIQUE. - loe 2 V §? o (i-f-sin jö) (i—sin ja)’ Si Ie point A co?ncidait avec Ie point E, on aa-rait 0. = nbsp;nbsp;nbsp;) ce qui rendrait infinie cette valeur de t, quel que fut Tangle 0. Cela signifie que Ie mobile rie quitterait pas Ie point E; et en eflfet, dans ce cas, sa vitesse initiale seiait nulle, et la tangentenbsp;au point E étant horizontale, il y demeurerait ennbsp;équilibre. Le point B répondant a 9 s= o, on aura, dans tout autre cas,v/j log? -f- sin j a 00. pour Ie temps que le mobile emploiera a parcourir 1’arc AB. Avec sa vitesse acquise en ce point, il s ele-vera sur la demi-circonférence BA'E; mais, d’apr?snbsp;ce qu’on a vu dans le n“ ?5q, il devra employer unnbsp;temps infini pour atteindre le point E : c’est ce qui anbsp;lieu effectivement; car en faisant 0 = — tt , on anbsp;t Quelle que

soit la vitesse initiale k et Tangle ot, la formule (i) pourra s’intégrer par les fonctions ellip'nbsp;tiques; en sorte que le temps des oscillations ou desnbsp;revolutions du pendule se calculera toujours aunbsp;moyen des tables numériques de ces fonctions;nbsp;mais, dans la pratique, on a seulement besoin denbsp;connaitre la duree des oscillations tres petites, qnenbsp;nous nous bornerons a considérer. 182. Pour que le pendule ne fasse que de petites



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;341 oscillations de part et d’autre de la verticale CB, il faudra que Tangle et et la vitesse k soient peu consi-*^érables; on pourra toujours rendre cette vitessenbsp;tout-a-fait nulle, en faisant parlir Ie mobile d’unnbsp;point un peu plus élevé que A, c’est-a-dire, en aug-Oientant convenablement Tangle et; on ne nuira donenbsp;pas a la généralité de la question en supposant k = 0‘,nbsp;Ce qui réduit Téquation (i) a-v/i(2) dt 2 COS0 •2COSrt ei Par les formules connues, on a cos 6 = 2 cos a = I —--h —— etc. 2 nbsp;nbsp;nbsp;1.2.3.4 Les angles et et 0 étant trés petits, par hypothese, je négligé leurs quatri?mes puissances ; il en résultenbsp;Ž*niplement , nbsp;nbsp;nbsp;/ anbsp;nbsp;nbsp;nbsp;de dt =. — 1/---==. Ln integrant et observant que 0 = at quand i = o ,

en déduit (cos = 1); / arc ^^ou Ton tire 9=?cos?y/f, nbsp;nbsp;nbsp;sin^ \/f. Ces formules montrent, conformément a ce qu’on ^ déja vu (n” iSg), que Ie pendule fera une suite in-



342 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. définie d’oscillations égales et isochrones de part et d’autre de 1? verticale CB: il reviendra, avec une vi-tesse nulle, au point A oü Ton a ^ = ol, toutes les fois que nbsp;nbsp;nbsp;sera un multiple de vrr, et au point A', situé a la m?me hauteur que A et ou Ton a 6 = — et, toutes les fois que 6 sera un multiple impair de 'TT. En appelant T Ie temps qu’il emploiera anbsp;aller de Tun de ces points extremes a l’autre, e’est-a-dire, Ie temps d’une oscillation enti?re, on av/i- Les durées des deux demi-oscillations, Tune descen-dante et l’autre ascendante, seront égales entre elles et a i T. En general, a deux instans séparés par un temps égal a T, Ie pendule occupera, des deux cótés de lanbsp;verticale CB, des positions égaleraent éloignées denbsp;cette droite,

et sera animé de vitesses égales et con-traires; car si Ton met i T a la place de t, dans les valeurs de 6 et ^, on voit qu’elles ne font que changer de signe. Le pendule coincide avec la verticale quand on a ö =: o, OU lt; égal a un multiple impair de A T; il e?nbsp;résultedi et, par conséquent,? a \/ga,



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;343 pour la vitesse du mobile au point B. En appnlant b hauteur DB de son point de depart au-dessuanbsp;de B , on aura h = a (I — cos a) = j ast*, ^ cause que Ton négligé la quatri?me puissance de et. A^bstraction faite du signe, la vitesse acquise au pointnbsp;plus bas sera done e = s/^gh; Ce qui est, comme eela devait ?tre, la vitesse due a la hauteur b. i85. La valeur de T est, comme on voit, indé-pendante de 1’angle a; elle subsistera encore , et sera figoureusement exacte, quand cette amplitude a seranbsp;Oafiniment petite. Si done on écartait Ie pendule in-btiiment peu de la verticale, il eraploierait pour y ^Cvenir un temps fini et égal nbsp;nbsp;nbsp;Dans ce iRouvement, Ie mobile uécrirait un espace infini-*Rent petit dans un temps fini; ce qui vient de

ce que 1’intensité de sa force accélératrice serail infinimentnbsp;petite. En eff’et, cette force est la pesanteur décora-Posée suivant la tangente a la trajectoire; or, dansnbsp;létendue de Fare infiniment petit qui aboutit au pointnbsp;Ic plus bas de cette courbe, la tangen te fait avec lanbsp;''crticale un angle qui diff?re d’un droit d’une quan-hté infiniment petiu ; Ie cosinus de eet angle, parnbsp;Icquel 11 faut multiplier Ja pesanteur pour obtenir sanbsp;conaposanle, est done Infiniment petit; par consé-fioent, cette composanle est anssi infiniment petite



344 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. On peut ëtendre ce rësultat aux oscillations d’u? point materiel pesant sur une courbe quelconque,nbsp;dont Ie plan osculateur au point Ie plus bas B estnbsp;vertical; car dans une ëtendue infiniment petitenbsp;courbe coincide avec son eerde osculateur, et, dansnbsp;une étendue seulement tres petite, elle s’en écarténbsp;trés peu; d’oü il suit que C étant Ie centre de cenbsp;eerde, la durée des oscillations trés petites sur lanbsp;courbe, de part et d’autre de son point B, est lanbsp;m?me que pour un pendule simple dont C serait Ienbsp;point de suspension, et qui aurait pour longueur Ienbsp;rayon de courbure GB correspondant a ce point B-Les oscillations trés petites ont done une m?me du-rée indépendante de leur amplitude, sur toutes lesnbsp;courbes

verticales qui ont la m?me courbure a leurnbsp;point Ie plus bas. Lorsque Ie plan osculateur en cenbsp;point n’est pas vertical, il faut remplacer dans lanbsp;valeur de T la gravité g par sa composante daii-snbsp;ce plan, laquelle est égale a gsini, en appelant inbsp;l indinaison du plan donné sur un plan horizontal- i84- Quand l’angle a a une grandeur linie et seu-lement trés petite, la valeur précédente de T n’est qu’approchée. En elFet, si l’on conserve les quatri?mes puissances de a et de 0 dans les valeurs de cos a. et cos 0, etnbsp;qu’on les substitue dans la formule (2), on aura dt , ƒ a nbsp;nbsp;nbsp;d? §? \/a“ — A ce degré d’approximation, il faudra prendre— _v (a* 6‘)]' i: 1 ^ nbsp;nbsp;nbsp; 0^);



345 DYNAMIQÜE, PREMI?RE PARTIE. aura done./f f... fL, V g- ( a“ 4- e“) dS 241/*“ dt formule qui s’int?gre par les i’?gles connues. En integrant depuis 0 = a jusqua 6= — a, pour avoir durée T d’une oscillation enti?re, on tronvenbsp;g ^ qui montre que cette durée est un peu augmen-tee par la grandeur de l’amplitude. II en résulte que si l’on appelle n Ie nombre des Oscillations infiniment petites d’un pendule quelcon-^ue dans un temps donné, et n' Ie nombre des os-edlations du m?me pendule et dans ie m?me temps,nbsp;^Rand leur amplitude a est seulement tres petite, onnbsp;3ura Car Ie nombre n' doit diminuer dans Ie m?me rap-port que la durée de chaque oscillation est augmen-tóe par la grandeur de cette amplitude. i85. Quoiqu’on ait soin, dans les différens usages pendule, de faire en sorte que

l’amplitude desnbsp;Oscillations soit .tres petite, ce qui rend toujours suf-Psante la correction relative a la grandeur de ? qu’onnbsp;^*ent de déterminer, il est bon , néanmoins, de con -Raitre la série convergente par laquelle on peut ex-primer la durée d’une oscillation, quelle que soit sonnbsp;^oiplitude. 1



346 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Pour cela, soient ar et C les sinus verses des angles 6 et a, de sorte qu’on ait 1 — cos G = ar, I — cos a =z C; on aura, en meme temps, dx S = La formule (2) deviendra 2 V ;?• dx S \/ ?x — 2r“ 4^ 1 —3 ar ’ et, pour en déduire la durée {T d’une demi-oscillaquot; tion, il faudra inte'grer depuis x = ^, qui répond anbsp;fl = a, jusqu’a x = o, qui répond a G = o. Or, en développant par la formule du binomc; on a / I V 5 nbsp;nbsp;nbsp;, I j; , 1.3 ? .3.5nbsp;nbsp;nbsp;nbsp;. (i--x), =iH------7 t-H--r-RQ etc.; \ nbsp;nbsp;nbsp;2 /nbsp;nbsp;nbsp;nbsp;22nbsp;nbsp;nbsp;nbsp;2.4 4nbsp;nbsp;nbsp;nbsp;2.4.6 8nbsp;nbsp;nbsp;nbsp;' série dont Ie terme général est 1.3.5...2/1—1 /nr\quot; 2.4.6. ..2nnbsp;nbsp;nbsp;nbsp;\7 / * et qui sera toujours convergente, a cause que x est

constammenl moindre que a. Si done on intervertitnbsp;l’ordre de Pintégration, ce qui est permis en changeant en m?me temps Ie signe de dt; qu’on fessenbsp;ensuite, pour un nombre quelconque n ou zéro, x''dx = A„



DYNAMIQUE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;347 qu’on double la valeur de - T, il en résultera 2 *a I 1-3.5 I, quot; V ^ ^o -. - A, ^ A.-r.. 5 A3 2.4.6 ’ 8' etc. y Les valeurs des intégrales définies A,, A,, A?, ^3gt; etc., sont liées entre elles de mani?re que Tunenbsp;elles étant connue, il est facile d’en de'duire suc-cessivement toutes les autres. En effet, on a, identi-^l^eraent, r x*dx _ r{x—lS)x^~'dx nbsp;nbsp;nbsp;f r x''~'dx t/Cx—x“ nbsp;nbsp;nbsp;J \/Sx — x'‘nbsp;nbsp;nbsp;nbsp;4/?x—x'* r^—|S)xquot;“‘lt;ix nbsp;nbsp;nbsp;- -- --—=—x''~'i/Sx—x’‘-4~(n—i)/xquot; ‘yCx—x'‘dx, V Zx—x-” __ r x““' dx r x^dxfx* *\/Cx nbsp;nbsp;nbsp;J ’^oii Ton conclut {in—i)C r xquot; 'lt;/x J t/?x—X“ par conséquent, r^xquot;rfx V I /]??quot; nbsp;nbsp;nbsp;——- deux limites x=o et x=S, on a \‘'éx—x*=o; passant aux intégrales

définies, on aura done,nbsp;^ ^pr?s cette derni?re équation, A. = _ (in — I )Z



348 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Si Ton fait successivement n—i, —2, =5, etc.gt; dans cette formule, on en déduit A. ?Ao, A„,K = y SA, 4 nbsp;nbsp;nbsp;2-4 A, = I ?A. nbsp;nbsp;nbsp;e?A., etc.; par conséquent, nous aurons, généralement. - A, ; A. = - .3.5. 2.4.6...2n et quant a ia valeur de A,, on aura A nbsp;nbsp;nbsp;C ^ dxA. = / nbsp;nbsp;nbsp;.nbsp;nbsp;nbsp;nbsp;= 'ji. J o Zx X ' I En substituant les valeurs de A^, A,, A^, etc. / dans celle de T, il en résulte pour la série qu’il s’agissait d’obtenir, et qui est es' sentiellement convergente , puisque ^ ? est toujoufSnbsp;moindre que l’unité. Si I’on négligé la quatri?me puissance de cc, oo aura Q = \ a.;\\ faudra réduire la série a ses deo^cnbsp;premiers termes, et la valeur de T co?ncidera avecnbsp;celle du numéro précédent. 186. Considérons

actuellement Ie mouvement di* pendulesimple dansun milieu résistant. En conservaw^nbsp;toutes les notations précédentes, la com posante dc



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;34g pesanteur suivant la tangente MT sera gsinG, a ‘^^use que Tangle que cette droite fait avec la verti-cale MN est complément de Tangle MCB ou ö. Dé-Ž^gRons par V la force accélératrice prOvenant de lanbsp;Resistance, laquelle est dirigée en sens contraire denbsp;Roette composante g sin 9, et appelons s Tarc AM ;nbsp;^%uation du mouvement sera ( n“ i52 ) dt V. (3) On pourra faire différentes hypotheses sur la va-Reur de V en fonction de la vitesse du mobile; Ie plus simple est de la supposer proportiounelle a cettenbsp;^Rtesse, de sorte que Ton ait V—?-^ k dl’ ^RR désignant par k une vitesse constante et donnée. ^RR a aussi a (a — 9), sin 9 = 9 — | etc.; ^R done 9 est, comme précédemment, un tres petit et que Ton négligé sa troisi?me

puissance,nbsp;’^'luation (3) deviendra de k dtS * nbsp;nbsp;nbsp;\ RRRR intégrale complete est 'ik 9 == ^ c cos^y quot;fquot; ŽRRR nbsp;nbsp;nbsp;Ž ^RR représentant par c et c' les deux constantes arbi-



35o nbsp;nbsp;nbsp;traité de MÉCANIQUE. traires, par e la base des logarithmes népériens, ct faisant, pour abre'ger, Je determine c et c' par les conditions ö = a et quand lt; = o j ce qui donne gt; lt;^\/ga “Xyh. Par conséquent, on aura 0 = ?(cosiy et, en différentiant, pour les formules qui font connaitre, a un instant quelconque, la position du pendule et sa vitess^nbsp;angulaire. A la fin de chaque oscillation, on a — = o; ce q*^‘ a lieu toutes les fois que ty nbsp;nbsp;nbsp;est un multiple de T*quot;' II s’ensuit done que les oscillations sont isochrones gt; cornme dans Ie vide, et qu’on aT = - v/-,y y g pour la durée d’une oscillation enti?re; en sorte qu’ellŽ est augmentée, par la resistance du milieu, dansnbsp;rapport de l’unité a la fraction y.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;35i Quant aux amplitudes des oscillations, elles di-*^uiuent continuellement a cause de l’exponentielle -~Si “ En appelant a„ l’amplltude de la n*'quot;' oscillation, c’est-a-dire, en supposant qu’on ait 6 = (— *iRand t = wT, il en résultera •iyk a, = ae 1^0 qui montre que les amplitudes successives forment Hoe progression géométrique décroissanle, dont Ie Vga i'apport est e nbsp;nbsp;nbsp;. les Toutefois, ce mouvement oscillatoire suppose que gt;soitune quantile réelle; et, enelFet, c’est ce quinbsp;Ž lieu dans les experiences du pendule, qui n’a jamaisnbsp;Hoe longueur extr?mement considerable, et dont lanbsp;ilensité est toujours tres grande eu égard a celle de 1’airnbsp;il se meut: la vitesse k étant proportionnelle aunbsp;i'^pport de la premi?re

densité a la seconde, elle estnbsp;ti'?s grande par rapport a j Vga , et, conséquem-lient, y est une quantité réelle qui diff?re peu denbsp;* Rnité. Si, au contraire, on avait -ik •lt; Vga, y seraitnbsp;iiRaginaire et de la forme 6 V — i , en désignantnbsp;€ une quantité réelle; par les formules connues, Sinus et cosinus qui entrent dans l’expression de 0 changeraient en exponentielles; et cette transformation faite, on verrait que Tangle 0 ne pourrait de-l^enir nul qu’apr?s un intervalle de temps infini; en ^Orte que Ie pendule approcherait indéfiniment de la



35a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. verticale CB, saus pouvoir la dépasser ni m?nie Fattelndre rigoureuseraent. IV 187. A mesure que les amplitudes des oscillation^ diminuent, l’expërience pi’ouve qu’elles approcheotnbsp;de plus en plus de dëcroitre dans l’air en progressionnbsp;gëométrique: elles s’en écartent peu, par exemple gt;nbsp;lorsque l’angle a. est d’un tiers de degré ou au-des-sous. L’expérience montre, de plus, que ce décrois'nbsp;sement est trés lent; ainsi, dans une experience denbsp;Borda, oü il avait lieu sensiblement en progressionnbsp;géométrique, l’amplitude ne se réduisait qu’aux deuXnbsp;tiers environ, apr?s 1800 oscillations. En appliquantnbsp;l’expression de a eet exemple, on aura done It. tSoov V' lyk gt;logf = 5.(0,40546); el, par conséquent, 18003-!/§•? _ ik ma?s

on a ii en résultera done (i8oo)“7r* (i — gt;“) = nbsp;nbsp;nbsp;(ogt;4o546)*; d’oü Ton tire nbsp;nbsp;nbsp;^y z= r,00000000257... , OU a tres peu pres 5. = i ; ce qui permet de négligé' la resistance de l’air dans Ie calcul de la valeur denbsp;On peut done adraettre que quand les oscillation*



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;353 sont ir?s petites, la resistance de l’air est propor-lionnelle a la vltesse, comme nous venons de Ie ŽUpposer, et que cette resistance n’influe pas sensi-^lement sur leur durée. Mais lorsque les amplitudesnbsp;Žont un peu conside'rables, l’observation montrenbsp;elles ne décroissent plus en progression géoine-l^que; en sorte qu’il devient nécessaire de faire unenbsp;^utre hjpoth?se sur la loi de la resistance. i88. Supposons cette force proportionnelle au ^arré de la vitesse , et prenons V — ^ nbsp;nbsp;nbsp;• dt?' ’ ^ étant une vitesse constante et donnée qui sera tou-JOurs tres grande; en sorte que si l’on fait ^ sera une tres petite fraction. A cause de ds——ad^, ^ Equation (5) deviendra C4) dH g . t,

nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;di'^ --r - sin a = ^ a dt' 'a nbsp;nbsp;nbsp;.nbsp;nbsp;nbsp;nbsp;dt^^ la multipliant par ar/Q, integrant et faisant rd6'‘J ? dé'' __ djr I gt; 'dt' ^ ? dB de dé aurons djr ^'luation lineaire du premier ordre, dont I’integrale Complete est 23



354 TRAITÉ DE MÉCANIQÜE. 2.g ( sin 6 — ft cos 9 ) ^ j = Cé (I f^) a c étant la constante arbitraire et e la base des loga- rithrnes népériens. Je la differentie par rapport a 0 / X nbsp;nbsp;nbsp;1-nbsp;nbsp;nbsp;nbsp;1 dr .. • db f?0 , ag'fcos 6 -f- ft sin 9) (* et je remets ~ au beu de ^; il vient — /ice ce qui est une integrale premi?re sous forme finie de 1’équation (4)- Pour determiner c, je suppose qu’on ait, comnie précédemment, ^ = o quand 0 = ?t; il en re-sultera 2^(cos ct -f- f4, sin u) — Par conséquent, on aura, a un instant quelconque, 2^^[cos0-j-//j.sin6—(cosa A*;sinoL)enbsp;nbsp;nbsp;nbsp;^].{5) Au point Ie plus bas, oii l’on a 6 = o, on aura done a^di^ ~df ' [i — (cos a,-\- fj, sin a )e —fta. pour Ie carré de la vitesse acquise, laquelle est eviquot; demment moindre que dans Ie vide. En vertu de cette

vitesse, Ie mobile montera l’arc BA' jusqu’en un point A,, moins élevé que A gt; et pour lequel on aura ^=o. Si Ton désigne par — la valeur correspondante de 9, il en résultera?'



355 DYNAMIQUE, PREMI?RE PARTIE. ( cos et, — fjt sin et, = ( cos et-{-ft sin et)e~ si Ton développe les exponentielles suivant les puissances de et qu’on négligé Ie carré de cettenbsp;ft’action tres petite, on aui’a cosa,—;;t(sinoc, — a,cos?,)=cosa yu(sina—acosa). La valeur de a, que l’on tirera de cette équation, dif?érera trés pen de et; je fais done et, = at — cT , etnbsp;je négligé Ie carré de cT et Ie produitytCiT ; il vient ?T sin a = 2 /gt;t ( sin at — a cos at); en sorte que Ion aura at at. ( sin et — tt cos et) , pour la grandeur de ö, abstraction faite du signe, a fin de la premi?re oscillation. Ce résultat ne suppose pas les oscillations trés pe-Ptes; inais si elles sont assez petites pour qu’on puisse uégligerla quatri?me puissance de et dans cette va-^cur de at,, elle se réduira a et, et Parvenu au point A, ,

Ie mobile redescendra, et il ^Ontinuera ainsi a osciller de part et d’autre dunbsp;point B, jusqu’a ce que les amplitudes de ses oscilla-Pons soient devenues sensiblement nulles. Si l’onnbsp;^ppelle oto 1’ampHtude de Ia seconde demi-oscillationnbsp;^scendante , il est évident qu’elle se déduira de a,,nbsp;comme on a déduit de ?; en sorte que l’on aura 23..



If TRAITÉ DE MÉCANTQUE. a, = a, — 2fi^, etc. ?3 p: !?? :• • i % i tl: t: ' I Et de ra?me , si a^, a^, etc., sont les amplitudes successives des autres demi-oscillations ascendautes,nbsp;on aura “--^ ' nbsp;nbsp;nbsp;*4nbsp;nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;?3-- ce qui montre qu’elles ne de'croitront plus en progression géométrique, comme dans le cas de la resistance proportionnelle a la vitesse. 189. Pour determiner le temps qui repond a un angle 6, il faudra intégrer la valeur de dt tirée denbsp;I’equation (5); ce qui sera toujours possible par lanbsp;methode des quadratures, quand les valeurs nume-riques de a, ,a, 0, seront donnees. Mais dans le casnbsp;des petites oscillations, on peut obtenir, en serie convergente , la valeur de 0 en fonction de ^, et récipro-quement. Je supposerai toujours la vitesse

initiale du mobile égale a zéro ; la valeur de 0 a un instant quelconque,nbsp;sera une fonction de t et a qui devra se réduire a zéronbsp;dans le cas de a = o; je la représenterai done paiquot; 6 = a0, -j- a“0^ 4- nbsp;nbsp;nbsp;-f- etc.; Ö3) etc., étant des coefficiens indépendaos de a. En substituant cette série dans lequation (4) gt;nbsp;de'veloppant les deux membres suivant les puissancesnbsp;de a, et égalant ensuite les coefficiens des m?mesnbsp;puissances, on formera une série d’équations dilfoquot;nbsp;rentielles du second ordre, qui serviront a déterniiquot;



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;367 les inconnues 0,, 6,, Ö3 ? etc. De plus, pour qu’on * f\ nbsp;nbsp;nbsp;d? 3it 0 = a et ^ = o, quand i = o et quel que soit a, faudra que les valeurs initiales de 0^, 03, etc.,nbsp;^, etc. f soient toutes nulles, et que celles de öi et ~ soient l’unité et zéro ; et c’est d’apr?s ces conditions qu’on déterminera les constantes arbitraires ^ui seront contenues dans les intégrales completes denbsp;cette suite d’équations. De cette mani?re, on calcu-lera autant de termes que l’on voudra de la sérienbsp;précédente. Nous bornerons l’approximation au carrénbsp;de a, et nous négligerons Ie cube et les puissancesnbsp;Supérieures de cette quantité. Alors, on a simplement dH^ dë’dH nbsp;nbsp;nbsp;dH, — = a -j- cx^de nbsp;nbsp;nbsp;de ' sin d?^d? en

substituant ces valeurs dans l’équation (4), et Žgalant les coefFiciens de a et de a* dans ses deuxnbsp;•Tfiembres, il vient o. d^.~di: En intégrant la premi?re de ces deux equations, et determinant les deux constantes arbitraires , de sorie



358 TRAITÉ DE MÉCANIQUE. di. ait G, = O et — == O quand f = o, noiis quon aui’onsG, = cos i \J^- II en résultera ^=|sia=‘?y/| = if(i_cos2lt; y/f); la seconde e'quation deviendra done?=? 0 - nbsp;nbsp;nbsp;v/f)' et l’on aura9,= -^cosi^f J;4 ^/4COs 2^y/f, pour son integrale assujettie aux conditions Ga = o et — = O, quand ? = o. Au moyen de ces expressions de G, et G., cellŽ de G devient \JhŽ=(““T)'=“V! T 7i“'=* ' nbsp;nbsp;nbsp;Jnbsp;nbsp;nbsp;nbsp;i a cause de e = — 'Jt’ ^ura, en meme temps, s/i’ v=(a.—~^\/gas\n nbsp;nbsp;nbsp;sina^ et ces formules feront connaitre la position et la vi' tesse du mobile a un Instant quelconque. jgo. Si nousremplacons, dans la derni?re, sina^^a



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;SSg par 2sin^ cos ^ y/f gt; 1’équation v = 0, qui a liéu a la fin de chaque oscillation, prendra la forme (,_| |!cosiy/f)sin^ y/f = o. L’angle a étant trés petit, Ie premier facteur ne peut ?tre nul j Ie second est zéro toutes les fois que est un multiple de II s’ensuit done que l’in- tervalle de temps qui s’écoule entre deux vitesses Bulles et consécutives, ou la durée T d’une oscilla-lion enti?re, est eu sorte que la resistance de l’air, proportlonnelle au ^rré de la vitesse, n’influe aucunement sur cettenbsp;^urée. Cependant, elle augmente Ie temps que Ie mobile ^aiplole a atteindre Ie point B. En effet, en Ie dési-ë^ant par t', et faisant ö = o, on a(.-a;)c„s,V! f =?cos.*'v/! = lt;gt;- plus petite valeur de y/^^ qui satisfasse a cette ^•luation diff?re tres pen de ^nbsp;nbsp;nbsp;nbsp;; soit done t' \

/- = ~ TT cT ; négllgeant Ie carré de ?T et Ie produit aSquot;, on aura J' =



36o nbsp;nbsp;nbsp;traité de M?CANTQUE, et, par conséquent,\/l (gt; TT 2gt;7irJ La resistance de l’air augmente done la durée de ia premi?re demi-oscillation descendante, dans Ie rapport de I -f- ^ a l’unité; et puisqu’elle n’influe pas sur la durée de l’oscillation enti?re, il faut qu’elle di-miiiue, dans Ie menie rapport, la durée de la demi-oscillation ascendante. En substituant cette valeur de t' dans celle de v, et négligeant Ie cube de a, il vient= (i — d’ou l’on conclut que la vitesse acquise au point Ie plus bas est diminuée par la résistance de l’air, dans Ie rapport de i — ~ 'a Funité. Si l’on désigne par — a, la valeur de 0 qui a lieu a la fin de la premi?re oscillation enti?re, et qui i^é- pond a t \J^ = TT, on aura et comme précédemment. Ces difierens résultats sont indépendans de la gran--deur du

coefficient ^ de la résistance, et supposeo* seulement l’angle et trés petit; ils conviennent égale-ment au mouvement du pendule dans un fluide aeriquot;nbsp;forme et dans un liquide, pourvu que Ie coefficient



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;36 r ^ soit determine pour chaque milieu en particulier. Dans Ie cas de a. trés petit, il est inutile d’exa-^litier l’hjpoth?se d’une resistance proportionnelle cube OU a une puissance supérieure de la vitesse jnbsp;il n’en pourrait résulter, dans les valeurs de 6nbsp;f, que des termes dépendans des puissances de anbsp;supérieures au carré, que l’on a regardés comme né-gligeables dans les calculs précédens. En rapprocliantnbsp;^^e qu’on vient de trouver de ce qui a été dit dans Ienbsp;187, on en conclnt done que la résistance de l’airnbsp;*1 niflue pas sur la durée des trés petites oscillationsnbsp;öu pendule, pour lesquelles on négligé la correctionnbsp;relative a la grandeur de l’amplitude (n” i84}- Quandnbsp;On tient compte de cette correction, la résistance

anbsp;One petite influence, a cause qu’elle fait varier lesnbsp;otnplitudes pendant la durée du mouvement. ?gi. Il ne suit pas de la que la durée des oscilla-bons d’un corps pesant, quelque petite qu’on la suppose , soit la m?me dans l’air que dans Ie vide; car oo fluide, par la pression qu’il exerce sur Ie mobile,nbsp;augtnente cette durée en diminuant la pesanteur.nbsp;^abord, on sait par l’expérience, et nous démon-b'erons dans VHjdrostatique, qu’un corps en repos,nbsp;piongé dans un fluide, y perd une partie de sonnbsp;Poids, égale au poids du fluide dont il occupe lanbsp;P|ace. Ainsi, P étant Ie poids de ce corps dans Ienbsp;^'de, P' son poids dans l’air, O Ie poids d’un volumenbsp;quot;^sir égal a celui du corps, on aF P _ n. appelant f Ie rapport de la densité de l’air a celle



362 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. du corps, g la gravité dans Ic vide, g' ce que cette force devient dans Fair, et in la masse du corps, on a aussi n = Pf, P = mg, P' = mg'; on aura done g' = g{i ~ f). Or, si Ton désigne par T et T' les durées des petites oscillations dun niéme pendule qui-re'pondent auxnbsp;deux forces accélératrices g et g', on aura T' V/i —T=vi- et, par conséquent, T' = Soit aussi a' la longueur du pendule soumis a Ia gra^ vité g', qui fait ses oscillations dans Ie m?me tempsnbsp;que Ie pendule soumis a Ia gravité g et dont la longueur est a; il faudra qu’on aitnbsp;dou Fon tire fl' = rt(i — ƒ?). Done, par la seule considération de la perte de poids a Fétat de repos, la durée des oscillations dans Fairnbsp;se trouve augmentée dans Ie rapport de Funité anbsp;I — p pour un

meme pendule, et la longueur dnnbsp;pendule simple se trouve diminuée dans Ie rappor*nbsp;de T — pa Funité pour une m?me durée.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;363 De plus, M. Bessel a fait voir, par l’expérience, lt;lue la perte de poids qu’un m?me corps éprouvenbsp;dans Tair n’est pas la m?me, quand il est en repos etnbsp;iorsqu’il a un mouvement oscillatoire. Elle augraentenbsp;dans Ie second cas; et il en résulle qu’il faut, dansnbsp;les formules précédentes, multiplier p par un facteur ƒ plus grand que 1’unité, et dependant de lanbsp;forme du mobile. Je suis parvenu a ce m?me résul-tat dans un M?moire sur les Mouvemens simultanésnbsp;d’un pendule et de Vair environnant (1) j et, d’apr?snbsp;Oion analyse, on a f^=^\ quand Ie pendule consiste,nbsp;comme celui de Borda, en une sphere suspendue anbsp;1’extrémité d’un fil tres mince, dont la longueur estnbsp;trés considerable par rapport au diam?tre de

cettenbsp;Sphere; en sorte qu’alors il faut augmenter de moitiénbsp;la correction relative a la densité de l’air, que l’onnbsp;taisait subir, avant i’observation de M. Bessel, a lanbsp;durée des petites oscillations et a la longueur dunbsp;pendule simple. Dans tous les cas, Ie coefficient f estnbsp;^Oujours indépendant de la densité du pendule, ainsinbsp;de la densité et de la nature du fluide dans le-^uel il oscille, de mani?re qu’on peut toujours Ienbsp;determiner par Texpérience, en comparant les du-^ees des oscillations de deux pendules de m?me formenbsp;^t de densités différentes, dans un m?me flu?de, ounbsp;Žien d’un m?me pendule dans deux flu?des différens,nbsp;f^ls que l’air et l’eau, par exemple. 192. Maintenant, soit n Ie nombre des oscillations Infiniment petites qu’un pendule quelconque 1 Mémoires de

VAcadémie des Sciences, tome XI.



364 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. ferait dans Ie vide pendant un temps donné t. Pour déduire ce nombre, pai’ la regie du n° i84gt; de celuinbsp;des oscillations tres petites qui est dc-nné par Tob-servation , et afin d’avoir égard a la variation desnbsp;amplitudes pendant ce temps t , on a coutume denbsp;prendre pour Tangle a la moyenne des amplitudesnbsp;extremes qui sont aussi donnees par Tobservation-Cela etant, la duree T d’une oscillation infinimeotnbsp;petite de ce pendule sera T = I; et Terreur que Ton pourra commettre sur la mesure du temps r aura d’autant moins d’influence sur cettenbsp;valeur de T , que le nombre n sera plus considéquot;nbsp;rable. D’apres la forme et les dimensions du coi’psnbsp;oscillaut, on déterminera, par la formule qui ser3nbsp;donnee

dans un autre chapitre, la longueur du pen'nbsp;dule simple, dont le mouvement est le m?me quenbsp;celui de ce corps; on reduira cette longueur, comnienbsp;on vient de Texpliquer tout a Theure, a ce qu’ellenbsp;serait dans le vide ; et si on la designe par a apresnbsp;cette reduction, et qu’on represente par g la graquot;nbsp;vite dans le vide, on aura TT d’oii Ton tire{a) C’est au moyen de cette formule que Ton deter-mine avec nne extreme precision , en chaque beu



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;365 la terre, la mesure de la pesanteur, ou la vitesse g *1^6 les corps pesans acqui?rent en tombant vertica-lernent dans Ie vide, pendant une unite de temps,nbsp;^apr?s l’expérience faite par Borda, a l’Observatoirenbsp;Paris, avec un pendule d’environ 2 metres denbsp;longueur, on a a = oquot;',993855, pienant la seconde pour unite; et l’on en con-clut g — nbsp;nbsp;nbsp;80896, ce Keu de la terre, c’est-a-dire, a une latitude 48? 5o' 14quot;. M. Bessel ajant fait osciller successivement des '^orps de toutes sortes de mati?res, tels que des mé-de l’ivoire, du marbre, des pierres métëori-’?Res, etc., a constarnment trouvé des valeurs de gnbsp;ŽŽosiblement egales; les plus grandes differences,nbsp;part et d’autre de la valeur moyenne, s’élevantnbsp;^ Peine a

un cent-milli?me de cette valeur, et pou-^^tit ?tre attribuëes aux erreurs inevitables de l’ob-^^i’vation. II ne peut done rester aucun doute surnbsp;parfaite égalité de l’attraction exercée par la tei’renbsp;tous les corps, quelle qu’en soit la nature, quinbsp;Ž^iit situés en un m?me lieu de sa surface; car cettenbsp;^S^lité résulte de celle des valeurs de la pesanteurnbsp;^ gt; puisque cette force est l’exc?s de l’attraction ler-lestre sur la composante verticale de ia force cen-^dfuge, commune a tous ces corps. *9^- En considërant la surface de la terre comme Ž Pvolongement du niveau des mei’S en équilibre,



366 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. on démontre, dans la Mécanique celeste, que la va' riation, a cette surface, de la longueur du pendulenbsp;simple qui fait chaque oscillation dans une unitenbsp;de temps, est proportionnelle au cosinus du doublénbsp;de la latitude; en sorte qu’en désignant par A cettenbsp;longueur en un lieu dont la latitude est , on doitnbsp;avoir 7\. — ll\ — a cos a'vf/); nbsp;nbsp;nbsp;(?) / et amp;) étant des constantes determine'es par l’obser' vation. On démontre aussi que Ie coet?icient oa estnbsp;lié a l’aplatissement du sphéro?de terrestre par l’é-quation20) cf = |r, dans laquelle on appelle S' eet aplatissement, de sorte que Ie rayon de l’équateur et celui du polenbsp;soient entre eux comme i-f-cf et l’unité, et oü ToOnbsp;désigne par r Ie rapport de la force

centrifuge a 1^nbsp;pesanteur, qui a lieu a l’équateur, et dont la valeotnbsp;est (nŽ 177 ) 289 La formule [IS) est, en effet, confirmee par Xe%' périence quand on fait abstraction des circonstanceSnbsp;locales qui peuvent influer, comme on Ie verranbsp;la suite , sur l’attraction de la terre et sur la longueiR’nbsp;du pendule. li’enserable des observations faites a dii^nbsp;férentes latitudes donne Ž = 0,002588 ce qui suppose S a trés peu prés égal a r. La con^’'



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;367 tante I est la valeur de A correspondante a 4 = 45“; diff?re peu de celle qui repond a la latitude de I*aris; et, d’apr?s celle-ci, on a oŽ,gg3855 = Z [i o,002588.sin (7° nbsp;nbsp;nbsp;28quot;)] gt; ‘l’oii 1’on tire l = o“,gg35i2. Si l’on fait n = i et t = 1 dans la formule (a); 'lüe l’on y mette successiYement Z et A a la place denbsp;et qu’on désigne par p et les valeurs correspon-'lantes de g, on aurap = quot;ttH , 'Ti = 7r“A; On aura donep = 9“,80557 , , a une latitude quelconque, lt;jzr = p(i — 0,002588 cos 24)- Žn observant que cos 24 == 2 cos* 4 — I? voit que la diminution de la pesanteur , en allant pole a lequateur, sera proportionnelle au carrénbsp;cosinus de la latitude, conformémenl a 1 enoncénbsp;'iü n° 178. En transportant un m?me pendule en différens

Eeux de la terx’e, on voit, par l’équation (a), que lesnbsp;Oombres n de ses oscillations, dans un m?me temps r,nbsp;^arieront proportionnellement a la racine carrée denbsp;gravité. Ainsi, par exemple, une horloge réglée,



368 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQUE. a Paris, sur Ie mouvement diurne de la terre, et transportée ensuite a i’equateur, retardera sur cOnbsp;mouvement. En appelant n et 7i' les nombres des oS'nbsp;cillations de son pendule en un jour sidéral dansnbsp;ces deux lieux de la terre, on aura I — 0,002588 -{- 0,002588 sin ('jquot; 4o' 28quot;)7z= 86164, nbsp;nbsp;nbsp;n'=.n\J~^ et, par conséquent, n' 86057 j en sorte que Ie retard sera d’environ 127 secondes en 24 heures. C’est l’observation de ce retai’d qui a miŽnbsp;en evidence, pour la premi?re fois, la variation denbsp;la pesanteur a la surface de la terre. § 11, Mouvement sur la cjclo?de. 194. Soit ABC (fig. 46) la trajectoire d’un poiid matérie! pesant, dont Ie plan est vertical. Supposonsnbsp;que ce mobile parte da point quelconque

D, sansnbsp;vitesse initiale, et qu’il soit en M au bout du temps t)nbsp;des points D et M abaissous des perpendiculairesnbsp;et MP sur la verticale passant par Ic point B, qR*nbsp;est Ie plus bas de la courbe; en faisant EP = z,nbsp;désignant par v la vitesse acquise au point M, et p^*'nbsp;g- la gravlté, nous am-ons (nŽ iSp) e = V'ag'Z, si Pon suppose que la pesanteur soit la seule force qtR agisse sur Ie mobile. Soit aussi s l’arc BM; comnie i^nbsp;décroit quand Ie temps augmente, on aura



3% DYNAMIQUE, PREMI?RE PAR?IE. ds si 1’on fait EB = PB en résultera ds (O - lt;luel]e que soit la courbe donnée. Cette courbe étant, par hypothese, une cyclo?de, oq aura (n° ']5') s* = /^ax, en désignant par a Ie diani?tre BF de son eerde gé-Rérateur, On aura done , en integrant, dx hx — zx - k\ t ^^ = are ^cos = n’ajoute pas de constante arbitraire, afin qu’on ait o a Torigine du mouvement, ou quand x= h.nbsp;Si 1’on appelle t' Ie temps que Ie mobile emploie anbsp;^tteindre Ie point B qui répond a x = o, on aurav/? = are (cos I ) = TT.et. par conséquent, /T / ag' 24



370 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Ce temps est, comme on voit, indépendant de h hauteur h du point de depart D du mobile, au-des-sus du point Ie plus bas Bj en sorte que cette pro-priété, qui a lieu par approximation dans loutes lesnbsp;courbes pour une hauteur h trés petite, est rigou-reusement vraie dans la cyclo?de, quelle que soitnbsp;cette hauteur, toujours moindre que a ou BF. II eonbsp;resulte que tous les mobiles, partis en m?me tempsnbsp;de differens points de la cyclo?de, arriveront en m?menbsp;temps a son point le plus bas. On aura '^ \/~ pour le temps d’lme oscillation en- ti?re de part et d’autre du point B; or, on voit que ce temps est celui des oscillations tres petites du pendule dont la longueur aa est le rayon de courburenbsp;de la cyclo?de en ce point (11° 72); ce qui

s’accoi’denbsp;avec le resullat du n° i83, relatif a la duree des pe-tites oscillations sur une courbe quelconque, laquellenbsp;duree est la m?me, dans le cas de la cyclo?de, quenbsp;celles des oscillations d’une amplitude quelconque. igS, Le temps que le mobile emploie a parcourif Fare DB de la cyclo?de est encore indépendant de 1^nbsp;longueur de cet arc, quand le mouvement a lieu danSnbsp;un milieu resistant, et que la resistance est suppose^nbsp;propOrtionnelle a la premiere puissance de la Vitesse. En efl’et, represenlons cette force par ^ , comnRi dans le n“ 186; la composante de la pesanteur sniquot; dx vant la tangente MT est nbsp;nbsp;nbsp;en observant que ^ est le cosinus de Tangle TMN que fait cette droitŽ



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;371 Žvec la verticale MN; la force qui agit au point M, Žt qui tend a diminuer Fare BM ou sera done la difierence nbsp;nbsp;nbsp;par conséquent, ou aura pour 1 equation du mouvement s lt;? /(far nbsp;nbsp;nbsp;((\ , ds nbsp;nbsp;nbsp;k) ’ , ce qui est la m?me chose, — .y = o, o.a nbsp;nbsp;nbsp;’ . g ds de^ k dF ^ cause de ab Je suppose qua l’origine du mouvement, ou ^uand t==o, la vitesse v soit nulle, et quon aitnbsp;'^ = a; en determinant les deux constantes arbi-ti'aires d’apr?s ces conditions, et faisaut , pour reger , 1 )* ^ Ritégrale de l’équation précédente sex’a ( n° 186)? = a(co5(5-\/? 43-“““‘3'V/?)‘' done on appelle t' Ie temps qui répond au point B a s = o, on aura cos t ^^luation d’ou 1’on tirera une valeur de t indepen-dante de a; ce qu’il s’agissait de

trouver. 24..



372 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Si la resistance est tres petite, ou la vitesse k tres grande , on aura y=ii,a trés peu pr?sj etTequa'nbsp;tion précédenfe donnera‘Wi \/ iga TT uk ce qui montre qu'e Ie temps t' est un peu augmente par cette re'sistance. ig6. Prolongeons la droite BF jusqu’en O, d’une quantité égale a BF j ce point 0 sera Ie centre de lanbsp;cyclo?de au point B ; et si l’on trace les deux demi'nbsp;cyclo?des O A et OC, tangentes aux droites OB et AC,nbsp;et ayant OF pour diam?tre de leur eerde générateuigt;nbsp;OA sera la développante de AB, et OC celle de BCnbsp;(nŽ 72); par conséquent, un fd d’une longueurnbsp;constante OB ou 2a , attaché au point 0, et qui s’en-veloppera successivement sur les deux courbes OAnbsp;et üC, tracera par son autre extrémité la

cyclo?denbsp;ABC. Cela fournit un moyen de construire un pendule cyclo?dal. Pour cela, supposons que les courbes OAnbsp;et OC solent tracées en relief, et que OB soit uunbsp;fil inextensible et parfaitement flexible, attaché aUnbsp;point fixe 0; attachons aussi un corps pesant a soUnbsp;autre extrémité B, puis écartons ce fil de la posi'nbsp;tion verticale, de sorte qu’il s’enveloppe, en tout ounbsp;en partie, sur Tune des courbes OA et OC , et que sanbsp;partie non enveloppée soit une droite tangenle anbsp;cette courbe : en abandonnant ensulte Ie mobilenbsp;a lui-m?me, 1’extrémilé inférieure du fil décrira Ianbsp;courbe ABC; et, d’apr?s Ie n“ 194? la durée des



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;373 Oscillations de ce pendule, dans Ie vide , sera rigou-*’eusement, et constamment indépendante de leur amplitude. Mais ce mojen ne serait susceptible d’aucüne precision dans la pratique; et, d’ailleurs, Tisochro-Risme des grandes oscillations n’aurait plus lieu dansnbsp;lair, la resistance de ce fluide n’étant point alorsnbsp;Proportionnelle a la simple vitesse. 197. On appelle tautochrone toute courbe sur l^quelle un point matérie! pesant parvient toujoursnbsp;*lans un m?me temps au point Ie plus bas, quel quenbsp;solt Ie point de cette courbe d’oü il est parti. Ainsi,nbsp;dans Ie vide, la cyclo?de est une courbe tautochrone ;nbsp;et, de plus, on va voir qu’elle est alors la seulenbsp;Courbe de cette esp?ce. Si Ton appelle t' Ie temps que Ie mobile emploie

Ž aller , sans vitesse initiale, du point D au point Ienbsp;plus bas B, sur une courbe quelconque ADB , lanbsp;Valeur de t'\/2g sera donnée par l’intégrale de lanbsp;Idrmule(i), prise depuis x=:^jusqu’a x=o, ou ,nbsp;qui est la m?me chose, depuis a?=o jusqu’a 3c=h,nbsp;changeant Ie signe de cette formule; on aura done pour trouver la courbe tautochrone, il s’agit de determiner s en fonctlon de x, de mani?re que cettenbsp;Valeur de t' \/2g soit indépendante de h. Or, je suppose cette fonction inconnue dévelop-pée suivant les puissances ascendantes de x , de sorte *?u’on ait



374 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUË. s = Ax* nbsp;nbsp;nbsp;-|- Cxy etc.; A, B, C, etc., S,y, etc., e'tant des coefificiens et des exposans indéterminés. Comme l’abscisse x et l’arc snbsp;ont leur origine au m?me point B, on devra avoirnbsp;en m?me temps x — o et^=o; il faut done quenbsp;tousles exposans a, €, y, etc., soient positifs , etnbsp;qu’aucun deux ne soit zéro. On voit aussi, a priori,nbsp;que Ie plus petit d’entre eux devra étre moindre quenbsp;l’unité; car Ie point B étant, par hjpoth?se, Ie plusnbsp;bas de la courbe demandée, la tangente y est horizontale OU perpendiculaire a l’axe des x; ce qui exige qu'on ait ^ = oo , quand x = o. En prenant la différentielle de cette série, et la substituant a la place de ds dans la formule précé-dente , il vient ,_ ('hoc'^-^dx

nbsp;nbsp;nbsp;f'^xy—'dx ,.V?f=A._/„ ^ ^Jo nbsp;nbsp;nbsp;71^ Je fais x~hx' et dx — hdx'; les limites des inté-grales relatives a cette nouvelle variable x' seront zéro et l’unité; on aura, par exemple. ƒ: i-i ri x'‘^-'^dx' J o y' I — x' ^dx \/ h—X et si nous faisons, pour abréger, = A', nbsp;nbsp;nbsp;r^-?' = B', etc. , Jo Vl-X' nbsp;nbsp;nbsp;J o \/i — x'nbsp;nbsp;nbsp;nbsp;’ il en résultera rgt;-? etc.



DYWAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;SyS est important d’observer qu’aucune de ces inté-^‘?ales A', B', C', etc., ne peut ?tre nulle; car les valeurs des difFérentielles dont elles sont les sommes (n° i3)nbsp;^e changent pas de signe entre les limites des inté-gi’ations : ces valeurs sont toutes positives, et parnbsp;conséquent aussi celles des intégrales. Maintenant, il est évident que la valeur de i ne peut ?tre indépendante de h, a moins que tous lesnbsp;kermes de la série précédente ne soient nuls, excepténbsp;Celui dans lequel l’exposant de h est zéro, ou qui cépond a un des exposans a. , amp; ,y, etc., égal a Supposons que ce terme soit Ie premier, ou qu’onnbsp;üit a =-. Pour que Ie second terme disparaisse, il faudra que Ie produit ?BB' soit nul; ce qui exige ’Ine B soit zéro, puisque ? et B'

ne Ie sont pas. Onnbsp;Yerra de m?me que les autres coefficiens C, D , etc.,nbsp;Žont aussi égaux a zéro; de sorte que 1’équation denbsp;tautochrone se réduit a celle-ci : j = nbsp;nbsp;nbsp;ou = A“x, ’lui appartient a une cyclo?de, dont la base est horizontale et dont Ie soramet est au point B que Ie *Oobile atteint toujours dans Ie menie temps. En désignant par a Ie diam?tre du eerde généra-Icür, on aura A'‘ = 4^, et par conséquent V/?g- = A' \Ja. ^ cause de a = i, on a d’ailleurs A' = 7r\ ƒ' 1 nbsp;nbsp;nbsp;dx' o x' —



?i 3^6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. on aura done TT comme dans Ie nŽ ig4- ig8. C’est encore la cyclo?de que l’on trouve quand on cherche la brachjstochrone dans Ie vide, c’est-a-dire, la courbe AMB (fig. 4.7) qu’un point materielnbsp;pesant doit suivre pour aller dans Ie temps Ie plusnbsp;court, sans vitesse initiale, du point donné A aunbsp;point B aussi donné. Pour determiner cette courbe, soient x, j., z, les trois coordonnées rectangulaires du point M ou senbsp;trouve Ie mobile au bout du temps t; soit aussi ^nbsp;l’arc AM qu’il a parcouru. En supposant que l’axe deSnbsp;X soit vertical et dirigé dans Ie sens de la pesanteur?nbsp;et désignant par ot la valeur de x au point A, la vi' tesse ^, acquise en M, sera la vitesse due a la hauteur X — et-, en représentant la gravité par g, oU aura

done J = V2g(x — c?); dt et en faisant, pour abréger. de sorte qu’on ait ds=udx, il en résultera udx \/2gdt = —^ Y X — a Done, en appelant ^ la valeur de x au point B, et ^



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;877 Ie temps que Ie mobile emploiera a aller du point A point B, nous aurons Ainsi, il s’aglra de determiner la courbe pour la-quot;^uelle cette integrale est un minimum; mais, pour plus de ge'néralité, je considererai l’intégrale U = J' Hudx , dans laquelle X est une function donnëe de ce qul Rous servira, par la suite, a rësoudre un autre pro-lgt;l?me du m?me genre : dans celui dont il s’agit Riaintenant, on prendra (x — a)quot;^ pour X. 199. De'signons par i une quantlté constante et in-dniment petite, et par S'j et cfz deux fonctions arbi-traires de x, assujetties seulement a la condition d’etre nulles pour x = a et pour a; = et de nenbsp;pas devenir infinies pour les valeurs intermédiairesnbsp;de X. Solent U' et u' ce que deviennent U et m lors-^u’on y met 9^

icT/ et z H- iS'z a la place de et z,nbsp;de sorte qu’on ait U' = f^lLu'dx; J CL integrale qui répondra a une autre courbe AM'B, passant, comme la courbe demandée AMB, par les points A et B, et s’écartant in liniment peu decelle-cl. ]V^nbsp;nbsp;nbsp;nbsp;. '^'Ous aurons aussi U' = f^lL{u'—u)dx;



378 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. et, d’apr?s la propriété de la courbe AMB, il faudra que cette difference U' — U soit positive, quelles quenbsp;soient les valeurs de (fy et J'z, et quelque signe qu’otxnbsp;donne a i. Or, en dëveloppant la difference u' — unbsp;suivant les puissances de i, et désignant par ié'u Ienbsp;premier terme de son développement, Ie premier fl terme de celui de U' — U sera iJ'^lLS'udx; d’ou Ton conclut qu’on devra avoirnbsp;' Q XcTm^/jc = o, (a) sans quoi la difference U' — U changerait de signe ennbsp;m?me temps que i. Cette condition est commune au minimum et au maximum de IJ. Quand elle sera remplie, la difference U' — U sei’a, en general, infiniment petite dunbsp;second ordre; elle aura Ie m?me signe que Ie coefficient de dans son développement; par

conséquent,nbsp;il y aura maximum ou minimum, selon que ce coefficient sera négatif ou positif. Mais, comme il est évident que Ie temps t' n’est pas susceptible d’un maxi'nbsp;mum, ce coefficient sera certainement positif dansnbsp;Ie probl?me de la hrachjstochrone, et il suffira denbsp;satisfaire a la condition exprimée par l’équation (a)- La quantité icTw n’est autre chose que la différen-tlelle de u, prise par rapport a y et z, et dans la-quelle leurs accroissemens so?t représentés par i^f et ^cTz. En supprlmant Ie facteur i, commun a iJ'i‘'nbsp;et a sa valeur, on aura done I dj dSj u d x dx . nbsp;nbsp;nbsp;1 IIJ uaj l dz d?'Z ^ ^ ’ nbsp;nbsp;nbsp;??nbsp;nbsp;nbsp;nbsp;ii dx dx ’



DYNAMIQUE, PREMIERE PARTTE. nbsp;nbsp;nbsp;379 sorte que l’équation (a) deviendra ƒ ““ *7“ ;— LiJL '”T^ ƒ ~ nbsp;nbsp;nbsp;; titXgt; ?? — 'J* J X u clx dx nbsp;nbsp;nbsp;J a u dx ax Mais en infe'grant par partie, et observant que les ^uantités Jy et J'z sont nulles, par hypothese, auxnbsp;limites x=:aetx = €, on a •amp; rex J a U ^ X dz d^z dx dx dxf:?f: dx \u dxj dx S'zdx; Ce qui change l’équation précédente en celle~ci : CTd-f) 'f i) dx i'Z dx ?? o. cTj et cTz étant des fonctions arbitraires de x, cette integrale ne peut ?tre nulle, a moins que lanbsp;S^antité comprise sous Ie signe /* ne Ie soit elle-^l?rne j par consciquent, on aura /X nbsp;nbsp;nbsp;?fe\ \u dx) ^ nbsp;nbsp;nbsp;dx) {h) S'% — o. --jy dx dx 200. Si la courbe demandée AMB et la courbe ^Uelconque AM'B doivent ?tre trac?es sur une surface

donnée dont l’équation soit L = o, il faudra quenbsp;les valeurs de^ et z en fonctions de a?, qu’il sagit denbsp;determiner, et ces valeurs augmentées de iSy et /cTz,nbsp;satisfassent successivement a cette equation; d’ou l’on



38o conclut TRAITÉ DE MÉCANIQUE. au moyen de quoi Ton éliminera, de Tequation [b), Tune des deux quantiles iS'j et S'z: I’autre s’en ira eonbsp;m?nie temps, et Ton aura \u dxjlt;rs) dx dx It Cette derni?re equation et L = o seront, dans ce cas, les deux equations de la courbe demandée, etnbsp;pourront servir, par exemple, a determiner la courbenbsp;de la plus vite descente sur une surface donnee. Si, au contraire, le minimum de U doit avoir lieu entre toutes les courbes qui aboutissent aux points Anbsp;et B, et ne sont assujetties a se trouver sur aucunenbsp;surface particuliere, les quantiles jy et serontnbsp;arbitraires et independantes entre elles. 11 faudranbsp;done que leurs coefficiens soient séparément nulsnbsp;dans I’equation (b), qui se decomposera ainsi eOnbsp;deux autres, savoir : /X

dz\ dj) dx dx e’est ce cas que nous nous bornerons a conside'rer-En integrant et désignant par a et a! les deu^ constantes arbitraires, nous aurons^dj u dx a, - X ^ u dx(^)



DYNAMIQUE, PREMI?RE PARTIE. Žt, par conséquent, qui montre que la courbe demandée sera plane comprise dans un plan perpendiculaire a celui desnbsp;T et Pour simplifier, je prends Ie plan de cettenbsp;^ourbe pour celui des x et j; on aura alors et l’on aura seulemeut a considérer Ia premi?re equation (c), qui deviendra Xf/r = n \/dx‘ dy’‘; el’oü Fon déduit adx {d) dj = V/X“ ne restera done plus qua intégrer cette formule, '^e qui dépendra de la forme de la fonction X, et en-^'lite a determiner a et la nouvelle constante arbi-^•'aire, introduite par cette integration, d’apr?s lanbsp;'^^ndiiion que la courbe demandée passé par les deuxnbsp;points donnés A et B. 20i. Avant d’aller plus loin, soit c une constante ^Uelconque, et supposons qu’on mette X-f-c a lanbsp;place de X dans les formules précédentes.

L’inté-



382 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. grale ü deviendra et la valeur de jy, qui la rend un minimum, sera don-née par l’équation 7 nbsp;nbsp;nbsp;adxnbsp;nbsp;nbsp;nbsp;, .^ ~ ~VW W^^' nbsp;nbsp;nbsp;^ Or, cette somme d’intégrales que U repre'sente étant un minimum, en considérant toutes les courbes quinbsp;aboutissent aux points A et B, il est évident quenbsp;premi?re integrale sera un minimum, en considérant seulement, parn?i toutes ces courbes, celles qui répondent a une m?m^nbsp;valeur de la seconde integrale. Cette remarque fort simple permet d’étendre intquot; médiatement aux probl?mes de maximum ou de ird'nbsp;nimum relatif, les solutions des probl?mes de maxi'nbsp;mum OU de minimum absoluj nous en verronsnbsp;application par la suite. Comme ici la seconde

integrale contenue dans Ü est la longueur de la courbe cherchée, il s’ensuit quŽnbsp;l’équation (e) servira a déterminer, entre toutes Ie*nbsp;courbes d’égale longueur, ou isopérim?tres, celJe qu'nbsp;répond au minimum ou au maximum de la premi?renbsp;integrale. En appelant l la longueur donnée et con^^nbsp;mune a toutes les courbes, on aura



DYNAMIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;383 ’Condition a laquelle on satisfera au moyen de la constante indéterminée c, qu’on a introduite dans la for-wiule (e). 202. Appliquons actuellement la formule {d') a la ^ourbe de la plus vite descente. A cause deOil aura aloi’S ^ a{x — (j) — {x — a.y dj = mettant —^ a la place de a. Or, cette equation \/ a ’iifférentielle est celle d^une cyclo?de (nŽ 72 ) dont la ^ase est horizontale et pa.sse par Ie point de depart Anbsp;mobile, et dont ie eerde générateur a a pour dia-Ri?tre j ce qu’il s’agissait de trouver. En integrant, on ay nbsp;nbsp;nbsp;. arc^cos=^~^^~*^—^—\/ a{x—a) — (x—?)%• étant la constante arbitraire qui représente la va-lenr de j correspondante a x = ct. Si l’on de'signe C' celle qui répond a X=C, on aura ^ '-a'=ia arc^cos=^—— (S—?)“•

coordonnées a et a', € et C', des points A et B, ^ORt données; cette derni?re equation déterminera lanbsp;^Restante a; et la valeur précédente de J ne renfer-^era plus rien d’inconnu. Au moyen de la valeur de dj, on a



384 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. “=\/' ?-. ^ on aura done (n° ig8) €\/^= f^.____ nbsp;nbsp;nbsp;__ a a ^/a(x — a) — (x — ay* et, par conséquent, j*_4 y ^ nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;22t\ ' = V5-=‘quot;=(™Ž=--:—J’ pour Ie temps Ie plus court que Ie mobile puisse employer a passer du point A au point B. Si ces deux points sont situés dans une méme ver' ticaie, on aura ?' = a'; condition a laquelle on sa'nbsp;tisfera en prenant a = oo ; car on a / nbsp;nbsp;nbsp;a — zC nasnbsp;nbsp;nbsp;nbsp;/. a\/ai^a) — {Q—^\, are f cos =---J = are I sin = ~—----?-L) et, dans Ie cas de ?!= co , eet are peut ?tre remplace par son sinus, ce qui réduit a zéro la valeur précé'nbsp;dente de — o.'. En méme temps, la valeur de ƒnbsp;réduit a ?t'; en sorte que Ie mobile ne s’écarteranbsp;de la direction

verticale. La valeur de t' deviendi’anbsp;aussi / a 2 v/c V ag' ce qui est effectivement Ie temps qu’il doit employer a parcourir ia hauteur € — a, du point A au-dessu^nbsp;du point B. V/ a — ar -f- a.^ t'-. 't.y. La détermination de la ligne de la plus vite deS'



DYNAMIQÜE, PEEMI?RE PARTIE. nbsp;nbsp;nbsp;385 cente étant un probl?me de pure curiosite, je me sujs borné a en considérer Ie cas Ie plus simple, ce-^?ii oü Ie mouvement a lieu dans Ie vide, et oü lesnbsp;points extr?mes sont donnés. Si ces points A et B nenbsp;Žont pas fixes et donnés, mais qu’ils soient seulementnbsp;?ssujettis a se trouver sur des courbes données DAEnbsp;et FBG, OU sur des surfaces aussi données, la bra-ebystochrone, dans Ie vide, sera encore une cyclo?de,nbsp;et, d’apr?s les régies du calcul des variations, onnbsp;Pourra déterminer, dans tous les cas, les coordon-oées de ces deux points. Dans uh milieu resistant,nbsp;eette ligne sera une autre courbe, dont on obtient,nbsp;par les regies de ce calcul, Féquation difierentielle,nbsp;d-Cpendante de la loi de la

resistance par rapport a lanbsp;Vitesse du mobile. Pour tout ce qui concerne Ie cal-Vül des variations, je renverrai au Mémoire sur cenbsp;^’^jot, que j’ai inséré dans Ie XIIŽ volume de l’Aca-démie des Sciences. § III. Mouvement sur une surface donnée. ao3. Pour donner un exemple du mouvement ^’un point materiel sur une surface donnée, je re-Pi'ends Ie pendule simple du n° 179; mais je suppose qu’apr?s l’avoir écarté de la verticale CB (fig. 45),nbsp;^t l’avoir transporté en CA, on lui imprime uiie vi-^Žsse qui ne soit pas dirigée dans Ie plan verticalnbsp;?^CB. Le pendule sortii’a alors de ce plan, et Ie pointnbsp;Riatériel qui le termine se mouvra sur Ia surfacenbsp;One sphere décrite du point C comme centre, avecnbsp;Rn rayon égal a la longueur a de ce pendule. Lanbsp;i

•,nbsp;nbsp;nbsp;nbsp;2.5



386 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. percussion qui sera exercée sur ce mobile, a Torigine du mouvement, se décomposera en deux forces,nbsp;1'une dirigée suivant AC ou suivant sou prolonge-ment, qui sera détruite par ia resistance du pointnbsp;axc C, l’autre perpendiculaire a AC, qui produiranbsp;1 vltesse initiale du pendule, que je i’epre'senterainbsp;ar k. Je supposerai que Ie mouvement a lieu dansnbsp;o vide; en sorte que la gravlté solt la seule force ac-élcratrice donnée qui agisse sur Ie mobile. Cela pose, au bout du temps t, soit CM la position du pendule; et désignons par x, j, z, les coor-dönnées rectangulaircs du point M. Solent aussi la masse du mobile, et zuN Ia tension inconnue dunbsp;dl CM, dirigée suivant son prolongement. En pz’C-iiant Ie point C pour l’origine des coordonnées

x,nbsp;', z, les composantes de la force accélérati’ice N suivant leurs prolongemens seront |i-. N, -N. gt;, si Ton applique au mobile une force égale et :ontraire a N, oa pourra ensuite Ie considérer commŽnbsp;anti?rement libre, et faire abstraction du fil CM;nbsp;lonc en supposant l’axe des z positives, vertical et di'nbsp;igé dans Ie sens de la pesanteur, les trois équationsnbsp;du mouvement seront dyo. H- -N = o, ' /? nbsp;nbsp;nbsp;' -N — * a (0



aura les trois e'quations qui devront servir a determiner Xfj-, z, en fonctions de t. 204. J’ajoute les equations (r), apr?s les avoir Riultipliées par x, j-, z; il vient xd^x ydy zd'^z ----H N? — gz = o. ?lt;n différentiant l’équation de la sphere, une pre-Rii?re fois, on a xdx -f- jdj -f- zdz = o, nbsp;nbsp;nbsp;(a) et, i\ne seconde fois, ^d^x -j- yd*j 4- zd'^z = — dxf — dj'^ — dz'. done on représente par \gt; la vitesse du mobile au ^out du temps i, de sorte qu’on ait dx^-]- df^-t- dz?- _dd ~ nbsp;nbsp;nbsp;' en résultera Žt, en effet, la tension /nN doit ?tre la somme *^e Ia force centrifuge et de la composante poids du mobile suivant Ie prolongement du ^'^yon CM. 3^5..



388 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQUE. J’ajoule aussi les equations (i), apr?s les avoir multipliées par dx, dj, dz; Tinconnue N disparaitnbsp;en vertu de l’équation (2), et Ton a xdz. dxd'‘x -|- dj dj dzd^z ~dë En integrant et désignant par b la constante arbitraire , on aura done dx'^ dj^ d? 2gz b. (5) La valeur initiale du premier membre est paf conséquent, si Ton désigne par y celle de z, onnbsp;aura k- — 2gy = b, et, a un instant quelconque , igt;’‘ = A'* 2g-(z — y); ce que nous savions déja. Enfin, je multiplie la seconde equation (i) par dc, et j’en retranche la premi?re, multipliée par j;nbsp;qui donne dy dt^ d^x o; ^-dF done, en integrant et désignant par c la constantŽ arbitraire, nous aurons xdj — jdx = cdi. (4) De cette mani?re, la solution du probl?me ne depend plus que des trois équations

difierentielles (3), (4), qui sont du premier ordre, et dont la prŽ'



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;389 *?gt;i?re a déja poui' integrale l’équation de la sph?re. On peut séparer les variables, et réduire la questionnbsp;3üx quadratures par Ie calcul suivant. 2o5. L’ëquation (2) donne xdx jdj — — zdz', ^n élevant au carré ses deux membres et ceux de ^equation (4), et ajoutant ensuite les equations ré-sultantes, il vient (x* ^‘) {dx' dj'') = z'dz' c'dt*. Je mets a' — z' au lieu de x* -\-j', et j’élimine dx* dj' au moyen de I’équation (5); il en ré- sulte {a' — z') [(agz b) dt' — nbsp;nbsp;nbsp;= z'dz' c'dt*; ^oii l’on tire (5) adz Désignons par r Ie rayon vecteur de la projec-bon du mobile sur Ie plan horizontal des x et j*, par -gt;1, Tangle que fait ce x'ayon avec Taxe des x;nbsp;^^ns aurons = r cos -J,, jy =: r sin 4 gt; ^dj —jdx = nbsp;nbsp;nbsp;1 Ž cause de r'z=a' — z', Téquation (4) deviendra

(?“ —- z'‘)d~\gt; ~ cdt ., en y nietlant pour dt sa valeur précédente, on



(6) (6) ago en déduira TRAITÉ DE MÉCANIQUE. d4==- cadz (a“ ~ Z^) nbsp;nbsp;nbsp;(9.g-2 -f 6) — t Les intégrales de ces expressions de dt et d-^ fe-ront connaitre les expressions de f et -vp en fonclions de z; elles se réduiront toujours aux fonctions ellipquot;nbsp;tiques, et ne pourront s’obtenir sous forme finie qucnbsp;quand la quantité du troisi?me degré par rappoi’tnbsp;a z, renfennée sous Ie radical, aura un facteur double-La valeur de et l’équatlon de la sphere détermiquot;nbsp;neront la trajectoire du mobile; la valeur de t ennbsp;fonction de z, ou de z en fonction de t, fei’a ensuitenbsp;connaitre la position du mobile, a chaque instant?nbsp;sur cette courbe. La constante b est connue d’apr?s les valeurs don' nées de k et y. On déterminera les constanles arbi'nbsp;traires qui seront

introduites par les integrations de dtnbsp;et lt;^4 y d’apr?s les conditions ^ = oet4 = o? quandnbsp;z = ^, dont la seconde suppose qu’on place l’axŽnbsp;des oc dans Ie plan vertical ACE, d’oü part Ie pen'nbsp;dule. II ne restera done que la constante c a déter'nbsp;miner. Or, la vitesse v du mobile étant perpendicu'nbsp;laire au rayon CM de la sphere sur laquelle il sŽnbsp;meut, si on la decompose en deux, Tune perpendi'nbsp;culaire au plan vertical MCE, et l’autre comprisŽnbsp;dans ce plan, la premi?re composante sera la vitesSŽnbsp;de la projection horizontale du mobile, perpendlcn'nbsp;laire a son rayon vecteur r; en la de'signant parnbsp;on aura done (n” i56)



DYNAMIQUE, PREMI?RE PARTIE. bien, eu vertu de Tequation (4), 'ionc, si l’on appelle ? l’angie que la vitesse initiale k fait avec la perpendiculaiie au plan ACB, de sortenbsp;'lu’on ait m = A'cos? a Torigine du mouvement, ilnbsp;6n résullera k \/a’‘ cos é. Lorsque la vitesse k sera mille, on aura c = o, ^ = — 2gy, et, par conséquent, dt = __ V' 9.g V (a“ — z‘) (z — y) Ce qui coincide avec la valeur de dt du n° i85, en observant que a — z e? a — y sont ce qu’on a appelénbsp;et aQ dans cette valeur. 206. Considérons spécialement Ie cas oü Ie pen-*iole a été tres peu écarté de la verticale CB, et a *'ccu une tres petite vitesse initiale. Supposons cettenbsp;''^ifesse horizontale, et, par conséquent, perpendiculaire au plan ACB, de sorte qu’on ait ? = o. Dési-göons par C une fraction trés petite, et faisons sa. ^oienl aussi a et ö

les angles ACB et MCB; en négli-gcanl leurs quatri?mes puissances, on aura y:=:a — l nbsp;nbsp;nbsp;z~a — jaö*, h — 2ga -f- ga (a.“ -f- ë*) , cŽ = ga}ct^Z';



392 nbsp;nbsp;nbsp;TRAITjS DE MECANTQÜE- et les formules (5) et (6) deviendront= -v/ U) dt S aCdS ö“) (6’ — C“)'(a) ev/(a“_ r) (?^ — C') I/angle '\|, fera connaitre la position du plan vertical MCB, dans lequel Ie pendule se trouve a chaque instant; il pourra croitre indéfiniment. L'angle 6 dé-terminera, aussi a chaque instant, la position dunbsp;pendule dans ce plan variable; on Ie regarderanbsp;comme uné quantite' positive , et les positions dunbsp;pendule, égaleraent éloignées des deux cótés de lanbsp;verticale CB, repondront a un m?me angle 6 et anbsp;des valeurs de 4 qui différeront entre elles de i8o°* D’apr?s la valeur de ^, tirée de la premi?re equation (a), on voit que Tangle 0 seratoujours compris entre a et ë. Si Ton a ^ = a, on aura constammentnbsp;0 = a; en divisant les equations (a)

Tune par Tautre,nbsp;on a, dans tous les cas,''4 = dans Ie cas de 0 = ar= on aura done4 = * v/f; par conséquent, Ie pendule décrira alors uniforme-' ment un cóne droit a base circulaire, et Ie temp* d’une revolution enti?re sera 27r y/-, c’est-a-dire;



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;398 Ie m?me que celui d’une double oscillation dans Ie plan vertical ACB. Ainsi, deux pendules de m?menbsp;^ongueur a, qui partiralent ensemble de la m?menbsp;•?roite CA, I’un sans vitesse initiale et l’autre avecnbsp;Rne vitesse perpendiculaire au plan ACB et égale anbsp;Ž ga, revlendraient ensemble a cette droite CA. 207. On peut écrire la valeur dt sous la forme : dt 6d3 g- t/Ca”' ——(23^ — Je fais, pour simplifier, 2G* — a* — amp;’?— (a* — Q^)oc, nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;—amp;’^)da:; le radical devient ? (a“ — nbsp;nbsp;nbsp;) \/i — jc*; et il en I'e’sulte dt I la dx 8 V I—x^ ^ cause de0 = a eta?=i, quand tz=.o, on tire de la réciproquement, x — cos 2t \^/ aura done, a un instant quelconque, 0* = ^ (a‘ -h ?“) ^ (a*— e*) cos 2f v/f i qui montre

que le pendule fera dans le plan va-*''ab!e MCB, des oscillations isochrones dont les ex-



394 nbsp;nbsp;nbsp;TRAITÉ DE M?CANIQÜE. trëmités rëpondront a 9 = aetöz=C, et dont la du- rée sera ^ tt v/| , OU moitié dune oscillation dans Ie plan fixe ACB. Je substitue cette valeur de 6* dans l’équation (lgt;) ; en observant que cos 2t il en résulte cos^t— \/f CC^dt cos“i ^sin'? ^-et, a cause de 4 == o quand t = o, on en conclut a tang = ? tang i \J Cela étant, Ie mouvement du plan MCB ne sera plus uniforme comme dans Ie cas de a = ^ • mais on voÜnbsp;que ce plan effectuera successivement les quatre quartsnbsp;de sa revolution enti?re, dans des temps e'gaux entre eux et au temps - tt \J^, pendant lequel Ie pendule fait une oscillation dans ce plan variable. On tire de cette derni?re equationv/i cos’ t cos* 4 = sin’ 4 sin* t ^-:osV cos’ t cos'



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;SgS OQ a aussi a:* = ( a* — z*) cos“ = a’ 6’ cos‘ gt;4/, ^* = ( a* — z“ ) sin“ lt;4, = nbsp;nbsp;nbsp;6‘ sinquot; , ^’apr?s la valeur approchée de z; done, a cause de 6* = a* cos“ ^ \/f nbsp;nbsp;nbsp;t \/\y ftous auronsa:* = cos*^^ jrŽ = aŽ?Ž sinŽ^ , f quot;t] par conse'quent, x’ r“ nbsp;nbsp;nbsp;, ^ ’ Ce qui fait voir que la trajectoire de la projection du ftiobile sur Ie plan horizontal passant par Ie point C,nbsp;est une ellipse qui a son centre en ce point, et l’unnbsp;ses axes dans Ie plan ACB , d’oü part Ie pendulenbsp;^Vec une vitesse perpendiculaire a ce plan.



TRAITÉ DE MÉCANIQUE. rW'iVV%W\ W'.lt;WWVgt;'VW\iV''\'VV^gt;W^'VVVW\iVV\/W\lt;Wgt;(Wgt;iWX'VWVVVVV\lt;V\'VW?'V\A'Wgt;W\i\iV%V\'XiV\gt;'VV''VV?'''''*CHAPITRE VI. EXEMPLES DU MOUVEMENT D’UIV MOBILE ENTIEREMENT LIBBE. § I'”'. Mouvement des projectiles. 208. Dans ce paragraphe, nous nous occuperons particuii?rement des projectiles de l’artillerie, quinbsp;sont lancés avec de grandes vitesses, et soumis a lanbsp;pesanteur et a la re'sistance de l’air. Faisons d’abord abstraction de celte resistance , ef considérons un point materiel pesant qui part dunbsp;point 0 ( fig. 48 ), avec une vitesse a dirigée suivanlnbsp;la droite OA. II est évident que Ie mobile ne sortiranbsp;pas du plan vertical passant par cette droite. Soitnbsp;OMD sa trajectoire dans ce plan, laquelle sera

tan-gente a OA. Dans ce m?me plan, menons deux axesnbsp;Ox et Ojr, Ie premier horizontal, et Ie second vei’quot;nbsp;tical et dirigé en sens contraire de la pesanteur. Pre'nbsp;nons ces axes pour ceux des coordonnées; au boutnbsp;du temps quelconque t, soit M la position du mobile,nbsp;X son abscisse OP, et^ son ordonnée PM. Désignonsnbsp;par g la gravité. Enfin , appelons ctl’angle aigu AOXnbsp;que fait la vitesse initiale a avec 1’axe Oa?, de sortenbsp;que ses composantes soient a cos a suivant eet axe,



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;397 a sin a suivant l’axe Oj : Tangle ct serait négatif, la droite OA était située au-dessous de Ox. D’apr?s ce qu’on a vu dans Ie n“ 148, les mouve-^ens des projections du mobile sur les deux axes Ox et seront indépendans Vun de Tautre; Ie mouvementnbsp;sa projection horizontale sera done uniforme et dunbsp;^ la vitesse a cos a, et celui de sa projection verli-^^le sera du a la vitesse initiale a sin ct et a la forcenbsp;Constante g agissant en sens contraire de cette vitesse;nbsp;p3r consequent, on aura tasia a. X t a cos a, Žt si Ton élimine ?, el qu’on suppose la vitesse a due a ^te hauteur h, de sorte qu’on ait a = \/2gh, il ennbsp;*'ésultera j = xtangt^--^^^, poui' Téquation de la trajectoire. Cette courbe est done une parabole qui a son grand ^Xe vertical; son

sommet, determine par Téquation 5^ = o, répond a X = 2^ cos a sin a, J = A sinŽ a; elle rencontre T'axe Ox en un second point B , tel 'l'i’en appelant b la distance OB, on a b = sin fit cos at = oh sin 2ot. Cette distance b est ce qu’on appelle 1 amplitude du Dans Ie vide, son maximum répond, comme on



SgS nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. voit, a a = 45quot;, et il est egal a 2^, c’est-a-dire, double de la hauteur due a la vitesse initiale. En appelant v la vitesse du mobile au bout du teraps t, et substituant les différentielles des valeurs préce'-dentes de a? et^ dans I’équationnbsp;il en résulte ar 2agtsiaa -j- Le temps que Ie mobile emploie a arriver au point B en décrivant la courbe OCB, est le m?me que s’ilnbsp;décrivait la droite OB avec la vitesse a cos a; il estnbsp;done h nbsp;nbsp;nbsp;4^sin? et a cause de h = , il en résulte gt — 2a sin ce qui donne v' ?=. oT. La vitesse en ce point B est done la m?me qu’au point 0; elle est dirigée suivantnbsp;la tangente BE, et l’angle de chute EBa? est aussi 1Žnbsp;m?me que Tangle de projection M)x. Si le mobile, au lieu d’étre un point materiel, est un

corps solide, de forme et de dimensions quel^nbsp;conques, on verra par la suite que ces equations dunbsp;mouvement parabolique devront ?tre rapportées unbsp;son centre de gravité. 209. La vitesse a étant donne'e, si Ton demande quel doit ?tre Tangle a pour que le mobile atteigne unnbsp;point determine, dont les coordonnées serontnbsp;et j- = y, on mettra ces valeurs dans Téquation denbsp;la Irajectoire, et Ton aura



399 ?? DYNAMIQUE, PREMI?RE PAR?IE. gt; = ^*“8“ - 4?^' pour determiner a. En faisant tanga = z, cos’a ^ette e'quation devient Itji'y “Pquot; nbsp;nbsp;nbsp;— L^h^z -f- ^’s’ 2= o OU l’on tireg’. Cette double valeur de s ou de tang a. nous montre ^u’on peut atteindre un but donnë, en tirant sousnbsp;^eux directions difFërentes, tant que surpassenbsp;que ces deux directions se re'duisent a unenbsp;*'0ule, lorsque ces deux quantités sont égales j et qu’onnbsp;^0 peut atteindre Ie but, sous aucune direction,nbsp;^Oand est moindre que /\]iy gt; !, I' Ainsi, en tracant dans Ie plan vertical qui passe P^** la direction initiale du mobile, la parabola dontnbsp;^ Equation est/^hy *^Žtte courbe divisera Ie plan en deux parties, telles Hoe tous les points de la partie exterieure seront ga-*^^utis de toute atteinte, que ceux de la pai

tie inté-pourront ?tre atteints de deux mani?res difFë-*'outes, et ceux de la ligne de separation, d’une ina-^^?re seulement. ^10. La théorie du mouvement des projectiles



4oo nbsp;nbsp;nbsp;TRAITÉ DE MËCANIQUE. serail done trés simple, si l’on pouvait négliger la resistance que l’air oppose a leur mouvement; maisnbsp;dans Ie cas des grandes vitesses dont nous nous occu-pons spécialement, cette force est beaucoup tropnbsp;considerable pour qu’on en puisse faire abstraction :nbsp;elle change enti?rement la forme de la trajectoire etnbsp;les lois du mouvement sur cette courbe, ainsi qu’oonbsp;va Ie voir. Quelles que soient la forme et les dimensions da projectile, on fera voir, dans un autre chapitre, qaŽnbsp;son centre de gravité aura Ie m?me mouvement qu’uRnbsp;point materiel pesant, dont la masse serait celle dunbsp;mobile,qui aurait une vitesse initiale donnée en graO'nbsp;deur et en direction, et auquel on appliquerait eunbsp;outre, parall?lement a elles-

m?raes, les forces prOquot;nbsp;venaöt de la resistance et du frottement de l’air, quinbsp;s’exercent a la surface de ce corps solide. On verra aiisstnbsp;que la force motrice qui résultera de ces resistancesnbsp;transporle'es au centre de gravité, pourra quelquefo*^nbsp;faire sortir ce point du plan vertical mené par la diquot;nbsp;rection de la vitesse initiale; mais ici nous supposequot;nbsp;rons que ce cas n’ait pas lieu, et que la force motric^nbsp;dont il s’agit soit constamment tangente a la trajeCquot;nbsp;toire du centre de gravité. Cela posé, pour former les équations de son mouquot; vement, conservons toutes les notations précédentes^nbsp;et supposons qu’elles se rapportent maintenant a la dquot;nbsp;gure 49) od la trajectoire OMD n’est plus une paraquot;nbsp;bole. Soit, en outre, ^ l’arc OM

décritparle inobdŽ au bout du temps t, et R la force motrice provenaot de la résistance de Fair, qui sera dirigée suivant 1^



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;4oi partie MT de la tangente en M. Les cosinus des angles que fera cette droite MT avec des axes menés par Ie point M suivant les directions des x et des positives, seront dx et dj ds nbsp;nbsp;nbsp;appelant m la Riasse du projectile et g la gravitc, nous aurons done R dx m ds ‘ pOur les equations du mouvement de son centre de gi’avité. Je prendrai pour ce projectile une sphere homogene ou composée de couches concentriques dont chacune sera homogene; en appelant D sa densiténbsp;Rioyenne et r son rajon, on aura alors 4iTDr^ Je supposerai aussi, conformément aux hypotheses genéralement admises, la force R proportionnellenbsp;carré de la vitesse du centre de gravité, a la surface du projectile, et a la densité de Pair; il en ré-ŽRltera nf

ds^ Wr d?’ P étant cette densité, et n un facteur numérlque qui ilevra ?tre déterminé par Texpérience. Cette expression satisfalt a la condition de Phomogénélté des S’aantltés; car ^ et Ie rapport de ^ a r sont deux ^Rantités de Ia m?me nature que la gravité g, et les facteurs n et g- sont des nombres abstraits. Pour 1. nbsp;nbsp;nbsp;26



4o3 nbsp;nbsp;nbsp;traité de méganiqüe. plus de coramodité, je ferai de sorte que - soit une ligne donl la longueur sera donnée, et que je regarderai comme constante, en faisant abstraction du changement de densité de 1Žnbsp;masse d’air que traverse Ie projectile. 211. En mettant a la place de ^ , sa valeur c ^? les deux equations du mouvement deviennent , nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;dx (0 -dë nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;^t-dtnbsp;nbsp;nbsp;nbsp;= ^ nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;C-nbsp;nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;^ = o. dt^ nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;dtnbsp;nbsp;nbsp;nbsp;dlnbsp;nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;^ L’intégrale de la premi?re est en observant qu’on a ~ = a cos et, au

point 0 oU ^? = 0, et désignant par e la base des logarithmes né-quot; périens. La forme de la seconde ne diffërant de cellŽnbsp;de la premi?re que par son dernier terme , je faisgt;nbsp;pour l’intégrer, dj- nbsp;nbsp;nbsp;dx di ~ P 'dt’ p étant une nouvelle inconnue. En substituant cette valeur de dans la seconde equation (i), et ayantnbsp;égard a la premi?re, il vient



4o3 DYNAMIQUE, PREMI?RE PARTJE. dx dp dt dt nbsp;nbsp;nbsp;ë- quot;?e divise cette valeur par Ie carré de ^ ou de sa va-^eur précédente; il en résulte dt ' dlél nbsp;nbsp;nbsp;s - a?- cos“ ct ?-n considérant^ et p comme des fonctions de x, on aura dr dx ^ dt dt dl} _ dx nbsp;nbsp;nbsp;dp dt ' dt nbsp;nbsp;nbsp;dx Si done on fait toujours a“ = 2gh., I’equation précédente deviendra o.h COS’^ ct ce sera l’équation difFérentielle de la trajectoire. On a identiquement \/i -f- p* dx — ds; multipliant membre a membre ces deux derni?res Žlt;luations, on aura done 2.h COS“ et ’ ds *^011 il suit, en integrant et désignant par y la constante arbitraire ,PVr f- ]og(p s/7 ^)=y-^;^^egt;'’. (5) I*our déterminer y, on fera, a la fois, .y = o et a6..



4o4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAINIQUE. p = tang et; ce qui donne —-—|-tanga^/1-f-taag“?-)-log(lang? i-(-tang“?)j zeil cos' !t ma?s, pour abréger, je conserverai ^ a la place de cette valeur. D’apr?s les equations précédentes, on a dx——2^cosVe““quot;r/jo, djz=pdx, gdt^——dxdpi en éiiminaut FexponentieUe au moyen de l’équa-tion (3) , nous aurons done dp P V ? V'quot; log (p -f- \/1 -\-p')—v ’ cdr = —=__^_-=__, p\/1- -/?“ lo^Xp V i pO—y’ \/cgdt =----^gt; (4) [y—pV i p'—logCp l/1 formules qui ne sont point intégrables sous forme fiquot; nie : dans la derni?re, on regardera Ie radical commŽnbsp;une quantité positive, paree que l’angle dont p eslnbsp;la tangente diminue quand Ie temps augmente. 2 12. Sil’on appelle co eet angle, c’est-a-dire, l’incb' naison MTj: de la tangente a la trajectoire, sur l

ax^nbsp;horizontal Ox, on aura 7 nbsp;nbsp;nbsp;dod p = lang?, dp = —. Les valeurs Ae x, j, t, déduites des equations (4)' seront de la forme fCLdco; l’inte'grale etant prisenbsp;de mani?re qu’elle s’évanouisse au point 0 ou 1 o?nbsp;a co — ct, et n designant une fonction donnée de o)-



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;4o5 On calculera ces trois valeurs, pour chaque point M, par la méthode des quadratures (n'’ i5). De cettenbsp;niani?re, on pourra construire la trajectoire parnbsp;points, et 1’on connaitra Ie temps t que Ie mobilenbsp;eniploiera a décrire chaque are OM, dont la longueur s sera donnée par l’équation (3), Quant a lanbsp;vitesse du mobile au point M, on aura dx'^ nbsp;nbsp;nbsp;de Žt, par conséquent, (5) cv' y —p t/ 1 -I- nbsp;nbsp;nbsp;— log (p I P“) En étendant ces intégrales jusqu’a tó = o, on dé-terminera l’abscisse et l’ordonnée du point C, Ie plus élevé de la trajectoire. Si Ton donne ensuite a ? desnbsp;Valeurs négatives, on déterminera les points de lanbsp;branche descendante CBD de la trajectoire. Quandnbsp;On sera parvenu a une valeur — a! de

?, pour la-'luelle l’ordonnée ƒ de la trajectoire sera nulle, lanbsp;Valeur correspondante de x exprlmera l’amplitudenbsp;^^n jet OB, qui ne sera plus double de l’abscisse dunbsp;point C, comme dans Ie cas du vide, et dont Ienbsp;Maximum, par rapport a a, répondra a un anglenbsp;*^oindre que 45quot; et dépendant de la grandeur de lanbsp;Vitesse initiale. L’angle a! ou EBo.' et la vitesse aunbsp;point B différeront aussi de a. et a. Ainsi, toutes les cii’constances du mouvement se-?’Onf connues, et la solution du probl?me est compléte, sauf la longueur des calculs numériques qu’il faudra exéciilcr dans chaque cas, lorsque les valeiirs



4o6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. des trois constantes h , c, contenues dans les formules précédentes, seront données. 213. Le mouvement du projectile sur la branche descendante de la trajectoire, approche de plus e?nbsp;plus d’etre vertical et uniforme. En effet, soienta?,, nbsp;nbsp;nbsp;t,, les valeurs t, qui répondent au sommet C; transpoiions Tori-gine des coordonne'es en ce point, et faisons X = 27, x', J = J, — nbsp;nbsp;nbsp;t — t, t'-, en sorte que x' et j' soient Fabscisse et Fordonnée du point quelconque M' (fig. 5o) de la branche descendante, rapportées a Faxe horizontal Cx' et a Faxenbsp;Cf' qui est dirigé dans le sens de la pesanteur,nbsp;et que t représente le temps employé a parcourirnbsp;Fare CM'. Soit aussi p' la tangente de Fangle M'T'x^nbsp;que fait la langente a la

courbe en M' avec Faxe Cx'*nbsp;Nous aurons n' — ^ nbsp;nbsp;nbsp;— n- ^ ~ dx' ~~ P’ et a cause de log( v/i -\-p'quot; — p') = — Iog(p'-h X/i la premi?re equation (4) deviendra cdx' = ^ ,nbsp;en faisant, pour abréger, y p'sf-i log(p' L’angle aigu M'T'x' pouvant approcher continuelle^ ment d’un angle droit, la variable p' croitra indéfimquot;



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;407 Attent; mais il n’en sera pas de m?me a l’égard de a?'.Pour tres grandes valeurs de p\ on pourra mettre p' a ]anbsp;place de s/i-j-p'^; et en négligeant y log 2 parnbsp;*'3pport a p'“, on aura P' = nbsp;nbsp;nbsp; ilogp'*. Oü simpleraent P' = p'*, en observant que Ie loga-rithme d’une quantitétr?s gi-ande p'“, et, a plus forte raison, ^logp'*, est tres petit relativement a cettenbsp;lt;luantité : on aura done, pour ces valeurs de p', cp ? en integrant et désignant par C une quantité constante , et il en re'sultera I cp lt;^e qui montre que les valeurs de x' ne croitront pas *ndéfinimenl avec celles de p'. Cela ëtant, soit= 'r c J o ? sera une ligne de grandeur linie, qu’on pourra ^alculer par la méthode des quadratui’es; et si l’onnbsp;Pfend sur Ca:' une partie CA égale a cette

ligne,nbsp;1^ verticale AB menée par ce point sera une asymptote de la partie CD de la trajectoire j en sorte quenbsp;^0 mouvement du projectile sur cette branche des-cendante, approchera indéfiniment de la directionnbsp;Verticale. Observons, de plus, que pour les trés grandes



4o8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. valeurs de p', les deux derni?res equations (4) se réduiront ac4r'-='^, nbsp;nbsp;nbsp;= d’ou il résultera par consequent, Ie mouvement final et vertical dunbsp;projectile sera uniforme; ce qu’il s’agissait de dé-monlrer. La vitesse de ce mouvement sera celle qu’unnbsp;corps pesant acquiert en tombaut dans Ie vide, d’une hauteur égale a et eest aussi ce que l’on conclut de la formule (5), en mettant —p' au lieu de p, et considérant ensuite p' comme une tres grande quan-tité. En faisant, dans la premi?re equation (4), ^ = tango,, et, pour abréger, [y—tangav/i tang’a—log(tanga -f- \/i-f-tang“?)]cos“a=^i on en déduira 3C,?:, = -( ndoó, cj o pour l’abscisse du point C. Si done on prend sui' Ox (fig. 49) gt; point F, tel que l’on ait OF =: nbsp;nbsp;nbsp; 5, la

verticale FG, menée par ce point F, sera Fasympquot; tote de la branche descendante de la trajecloire.



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;409 214. Soit ON leprolongement de la trajectoire OCD; Ie point de depart du mobile étaut 0, Ie mouvement Qaura pas lieu sur cette partie de la courbe; mais onnbsp;peut, néanmoins, désirer d’en connaitrela forme. Or,nbsp;Ou la construit par points, au mojen des deux premi?resnbsp;formules (4), en y donnant a p des valeurs positivesnbsp;et plus grandes que tang a j et il est aisé de s’assurernbsp;^ju’elle a aussi une asymptote , mais qul n’est pasnbsp;Yerticale, comme celle de la branche descendante. Pour cela, j’observe que, d’apr?s la valeur de y du n” 211, il y a toujours un angle ë aigu , etnbsp;^ a, qui est tel que p = tang € rend nul Ie de'no-minateur commun de ces deux formules, c’est-a-dire,nbsp;Un angle S qui satisfait a l’équation gt;— tangS \/

i nbsp;nbsp;nbsp;—log (tang C-f-1/ i-f- tang*C) = o. (6) Oela étant, on voit par la valeur de dp, tirée de ?une OU l’autre des deux premi?res equations (4) ,nbsp;^ue Pabscisse x et l’ordonnée j croissant indélini-Uient, abstraction faite du signe, dans cette pai’tienbsp;OW de la courbe, la quantité p cesse de croitre, lors-lt;lu’elle diff?re infiniment peu de tang^j en sorte quenbsp;P ne peut jamais dépasser ni méme atteindre rigou-i'eusement cette valeur p=taiigë; ce qui signifienbsp;’lue la branche de courbe ON a une asymptote quinbsp;ooupe Ie prolongement de l’axe Ox sous Tanglenbsp;On déterminera sa distance au point 0 de la mani?renbsp;suivante. Je m?ne par Ie point 0 un axe qui fasse, avec Ie prolongement de Oa:, un angle égal au complément de ^f et qui soit, par conséquent, perpendiculaire a



I.*) l'* iÜ'' 4io nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. l’asymptote de ON. J’appelle u I’abscisse d’un point quelconque de la courbe, comptée sur eet axe a par-tir du point 0; les coordonnées de ce point, par rapport aux axesOx et Oy, ëtant toujours x etj-, ou auraQ. = j cos lt; X sin En differentiant et mettant pour dx et dj' leurs va-leurs données par les deux premi?res equations (4), il vient edu (tang?— formule dans laquelle on donnera a p des valeurs plus grandes ou plus petites que tanga, selon qu’ünbsp;s’agira d’un point de la partie ON ou de la parlie OMnbsp;de la courbe. On peut retrancher de son dénomina-teur Ie premier membre de l’équation (6) , multipliénbsp;par cos ?; et si l’on fait, en outre, cos a p = tang co, dp et, pour abréger. tang^ \/1-f-tang*? log(tang?-(- ^/i-f-tang*^) —tangojy/

i-|-tang“(?—logftangw y/i-j-tang’ a))z=Ü, il en résultera (tang S — tang ai)die cü cos? cos“? du Or, en faisant r • COsCJei. (tang ? — tang a) da: ü COS'* a



DYNAMIQÜE, PREMI?RE PAR?IE. nbsp;nbsp;nbsp;4ii ^ sera une ligne de grandeur finie, que l’on calcu-par la méthode des quadratures, et qui exprimera Valeur de u relative a l’asymptote de ON, c’est-Ž“dlre, la longueur de la perpendiculaire abaissée dunbsp;point O sur celte droite , qu’il s’agissait de determiner. Cette droite asjmptotique aura pour equation j cos X sm sorte que si l’on prend sur Ie prolongement de Cj? un point H tel que I on ait OH = r, ^ asymptote de la branche ON sera la droite HK,menée par Ie point H, et faisant avec Ie prolongement de Oxnbsp;Un angleKHO supple'ment de C. Les deux asymptotesnbsp;?^GetHK, prolong ées au-dessus de l’axe Ox, se rencon-b’eronten un point L, de mani?re que la courbe en-b?re sera comprise dans Tangle KLG, dont Ie complé-Uient est Tangle S

determine' par Téqualion (6). 2i5. Lorsque Tangle de projection AOx ou a est tres petit (fig. 5i), Ie projectile ne s’él?ve qu’a unenbsp;petite hauteur au-dessus de l’axe horizontal Ox,nbsp;*Uené par son point de depart. Or, dans ce cas, onnbsp;Peut obtenir, avec une approximation sufFisante,nbsp;^ e'quation en x et yquot; de la partie OCB de la tra-jectoire, situee au-dessus de Ox; et méme on peutnbsp;utendre cette equation jusqu’a un point D, dont lanbsp;elistance a cet axe n’est pas tres considerable. En effet, dans toute cette partie OCB, ou méme GCD de la trajectoire, la fangente a cette courbenbsp;Žera presque horizontale, et la quantite p trés petite;



4TRAITÉ DE MÉCANIQÜE. en négligeant Ie carré de p, on aura done ds = dx, s = X , et 1’équation (2) deviendra dx dx^ nbsp;nbsp;nbsp;zhcos'‘a En integrant deux fois de suite, et determinant les constantes arbitraires de mani?re qu’on ait ^ = tangnbsp;etjgt;^ = o, quand x = o, il vient (e“ y X tang a — 2CX 8c“ h cos“? pour l’équation approchée de la trajectoire, qu’il s’a-gissait d’obtenir. En développant l’exponentielle qu’elle renferme , réduisant et faisant ensuite c = o,nbsp;elle devient l’équation exacte de cette courbe dansnbsp;Ie vide. D’apr?s 1 equation gdt‘ = — dxdp du n” 2t2, et Ja valeur précédente de ^, on aura dt = et, par conséquent, Y agh cos a C \/ 2gh cos cc ce qui fait connaitre Ie temps t que Ie mobile em' ploiera a parcourir une portion quelconque OMnbsp;la courbe OCD. 216. Siipposons

que Ie projeclile vicune tomben



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;4i5 Sur Ie terrein en un point D; représentons par A l’a-baissement de ce point au-dessous du plan horizon-mené par Ie point O, ou la perpendiculaire DQ Ž 1’axe Ox; soient aussi l la distance OQ, et t Ienbsp;^^uips employé a aller du point 0 au point D j nousnbsp;Surons, a la fois, X — l, j = — X, t = en remplacant, pour plus de simplicité, cos“ a par bunité dans les formules précédentes, il en résultera iel — I , {d) ^c’^h (A Z tang a ) = eŽ'' • I. -TC\/ igh = equot;' — Lors done que les deux constantes Zt et c seront 'ionnées, et qu’on aura mesuré Tangle a et TéleVa-bon A du point 0 au-dessus du terrein, ces équa-bons feront connaitre la portée horizontale l, et lanbsp;*iürée T du trajet du projectile. Réciproquement,nbsp;^Uand on connaitra a,, X, l, r, par

des mesures di-^Žctes, ces equations pourront servir a determiner Ienbsp;Coefficient c de la resistance, et la hauteur h due a lanbsp;^'tesse initiale. En éliminant h, on a 4(A Z tang a) (equot;’ — i )* = nbsp;nbsp;nbsp;— 0 gt;nbsp;equation d’oü Ton tirera la valeur de c : Tune desnbsp;4eux précédentes donnera ensuite immédiateroent lanbsp;Valeur de h. 11 existe encore de Tinc?rtitude sur les grandeurs portées et des vitesses initiales. D’apr?s Lombard,nbsp;Pour un canon de 34 chargé au tiers du polds dunbsp;boulet, la vitesse initiale est de 4^3 metres par se-L.



44 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. conde; et pour un canon de 12, dont Ja charge est aussi Ie tlei’S du poids du pi’ojectile, cette vitesse s’e-leve 3494 ni?tres. Suivantle m?me auteur, les poi’te'esnbsp;correspondantes et relatives a A = o , sont yoo metres dans Je premier cas , en supposant oc — 1Žnbsp;et 660 metres dans Ie second cas , en supposant1°5' 36quot;. Au lieu du temps t, on pourrait employer a 1^ de'terminatiou de ^ et de c, une seconde portee dnnbsp;m?me canon a une elevation differente au-dessus dnnbsp;terrein. Ainsi, en supposant que Ie poids du projectile, celui de la charge et l’angle a ne soient pas changes, les quantités h et c resteront aussi les m?mes; ctnbsp;si A et / deviennent X' et V, on aura :icV — Sc^h {X' y tang a) d’ou il re'sultera (A Z tang o.) (e*Ž'' — 2cl' — i) = (a'

Z' tang et) ( e'*'quot;' — 2cZ — i) , nbsp;nbsp;nbsp;(Zgt;) en ?liminant h au moyen de la premi?re equation (ci)-liCS auteurs de Balistique ne sont nuJlement d’accofd sur la grandeur du nomJjre n qui entre dans l’eXquot;nbsp;pression du coefficient c , savoir ( n° 210 ), D’apr?s une the'orie tres imparfaite de la re'sistancc des fluides, ce nombre n serait|; mais toutes les expc'nbsp;riences Ie donnent plus petit, et Lombard Ie fait égalnbsp;a L’équation (b) fournirait Je moyen Ie plus sus-



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;4i5 ^^ptiblede precision pour la determination de c, en ^’^pposant bien connu et invariable, Tangle de projection et. § II. Mouvement des plan?tes. 217, Les lois du mouvement des plan?tes autour soleil sont connues sous la denomination de Lois Kepler, paree qu’elles ont été d?couvertes par eet ^stronome, qui les a déduites de i’observalion. Ellesnbsp;^ent au nombre de trois, dont void les énonce's : ?“. Les plan?tes se meuvent dans des courbes Planes, et leurs ravons vecteurs d?crivent, autournbsp;du centre du soleil, des aires proportionnelles aunbsp;^etiips. 2°. Les orbites, c’est-a-dirc, les trajectoires des plan?tes, sont des ellipses dont Ie soleil occupe unnbsp;des foyers. 5°. Les carrés du temps des revolutions des pla-*^ctes autour du soleil

sont entre eux comme les cubes des grands axes de leurs orbites. Toutc leur importance davait pas d’abord été com-P’ise; c’est Nevvton qui en a montré Tusage pour determiner la force qui retient chaque plan?te dansnbsp;orbite, c^est-a-dire, la direction de cette force etnbsp;Variations de son intensité, soit d’une position anbsp;autre d’une m?me plan?te, solt d’une plan?te anbsp;autre. On verra, en effet, dans ce paragraphe,nbsp;chacune de ces trois choses est une conséquencenbsp;^'^Cessaire des trois lois du mouvement planétairenbsp;Ton vient d’énoncer.



4*6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAKIQUE. Ces lois se rapporten! au mouvement du centre de gravité de chaque plan?te; c’est Ie mouvement de cenbsp;point que nous allons considérerj et quand il seranbsp;question de la position ou de la vitesse d’une plan?te^nbsp;il faudra entendre la position ou la vitesse de soonbsp;centre de gravité, 218. Soient AMBD (fig. Bs ) Tellipse décrite pa*’ une plan?te, AB son grand axe, C son centre , 0 etnbsp;O' ses deux foyers, O celui qui est occupé parnbsp;centre du soleil, B Ie périhélie ou Ie point de l’oi’bitenbsp;Ie plus rapproché de 0, A Vaphélie ou Ie point Ie pli^*nbsp;éloigné du soleil. Au bout du temps t qui sera compté a partir dn passage de la plan?te a son périhélie, soit M sa posi''nbsp;tion sur l’orbite. Désignons par r son rayon vcc'nbsp;teur OM, et par G

Tangle MOB que Ton appelle, ennbsp;Astronomie, Vanomalie vraie. Le secteur décritnbsp;ce rayon pendant Tinstant dt sera -j rŽ ( n° i56}gt;nbsp;d’apr?s la premi?re loi de Kepler, on aura done = cdt; nbsp;nbsp;nbsp;(i) c étant une constante égale au double de Taire decree dans Tunité de temps, et ^ ct le double de Fairenbsp;décrite dans le temps quelconque t. Soient aussi 0'M: C0 = C0' — ae. a. D’apr?s une propriété de Tellipse, on aura r r' = 2a; dans le triangle ü'MO, on a aussi



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;417 r'* = r* -f- 4'’^e cos 9 si l’on élimine r' entre ces deux equations, il vient a(l — e“) 1 -f- e cos 0 ’(2) pour l’e'quation de la trajectoii’e. Pour toutes les plan?tes connues avant ce si?cle, ^eoccentricité e est une fraction trés petite; celle denbsp;1’orbite de la terre est e = o,oi6855i8, Ou, a peu pres, un soixanti?me. La plus grande était Celle de Mars, qui surpasse neuf centi?mes; c’e'taitnbsp;done pour cette plan?te que Ie mouvement elliptiquenbsp;devait ?tre Ie plus différent du mouvement circulairenbsp;oxcentrique, que l’on adoptait avant Képler; et c’est,nbsp;oq effet, dans les observations de Ticho-Brahé, relatives a cette plan?te, que Képler a reconnu d’abordnbsp;la différence de ces deux mouvemens. Si l’on déve-loppe les valeurs de r et 9, en

séries ordonnées sui-''^ant les puissances de e, au mojen de réquatiou desnbsp;aires proportionneiles au temps, jointe a celle de lanbsp;^•'ajectoire elliptique ou a celle de la trajectoire circulaire excentrique, on trouve que pour un mémenbsp;^cnips t, les développemens correspondans a cesnbsp;deux courbes , ne différent que dans les termes quinbsp;dependent du carré ou des puissances supérieuresnbsp;de e; cii’constance qui rendait, a Tépoque de Ké-Pler, la différence des deux mouvemens trés difjiciienbsp;^ découvrir, 2ig. Si l’on appelle T Ie temps de la révolulion 1,nbsp;nbsp;nbsp;nbsp;27



4i8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. d’une plan?te , et qu’on fasse ITTY ’ celte constante n sera la yitesse moyenne angulairC; et nt Ie mojen mouvement de la plan?te. Imaginons un astre fictlf dont Ie mouvement soit uniforme, et qui parte du périhélie et ach?ve sa revolution en m?me temps que cette plan?te; sonnbsp;rayon vecteur d?crira Tangle nt, pendant que celuinbsp;de la plan?te d?crit Tangle 0; Tangle 0 — nt, comprisnbsp;a une époque qnelconque entre ces deux rayons, estnbsp;ce que les astronomes appellent Vequation du centre ?nbsp;il est positif, et la plan?te préc?de Tastre fictif?nbsp;en allant du périhélie a Taphélie; Ie contraire a lieunbsp;en revenant du second point au premier. Le maxiquot;nbsp;mum de Téquation du centre dépend de ia grandeurnbsp;de

Texcentricité. En prenant le jour moyen pour unité de temps, o* meltant 360° au lieu de 27r, on a, relativement a 1^nbsp;terre, T = SGSi, 266374, nbsp;nbsp;nbsp;n — 0° 5g'8quot;. Cette valeur de T est la durée de Tannée siderale gt; OU Tintervalle de temps qui s’écoule entre deux retours consécutifs du soleil a une m?me étoile, dauSnbsp;son mouvement apparent autour de la terre. L’inter-valle compris entre deux retours consécutifs a uonbsp;m?me équinoxe, est plus court, a cause que les pointsnbsp;équinoxiaux ont sur Yécliptique un mouvement retrograde, OU en sens contraire de celui du soleiT



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;419 En prenant 5oquot;,224^7 nbsp;nbsp;nbsp;precession annuelle en 1800, et observant que Ie rayon vecteur du soleil emploie oboi4i58, a de'crire ce petit angle, il ennbsp;re'sulte 365'',2422i6, pour la longueur de l’année équinoxiale au commencement de ce si?cle. L’année siderale est constante; ttiais la precession des equinoxes varie un peu, et,nbsp;par conséquent aussi, l’année équinoxiale : sa longueur diminue d’a peu pres une demi-seconde parnbsp;si?cle. 220. La constante c aura pour valeur Ie double de la surface de l’ellipse divisé par T ; en observant que Ie demi-petit axe est a \/ \ — e“, et la surface 7ra^\/1 — e^, on aura done V/1 — C = ---• Au moyen de cette valeur et de celle de n, l’équa-bon (i) devient e*dt. r’‘(B = na'sj i E'équation (2) donne

dB 6 = arc^cos lt;21/1 — e“ rfr a( I — nbsp;nbsp;nbsp;) — r')- r\/ nbsp;nbsp;nbsp;— (r—a) par conséquent, on aura nadt rdr



420 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Pouv intégrer ces formules, faisons r = a (I — e cos ); nbsp;nbsp;nbsp;{aj nous aurons dr = ae sin u , ndt = (i — e cos u) du; a cause der=lt;2(i — e) au point B, il faudra que Tangle u soit nul en ce point oü Ton a aussi ? o ; ennbsp;integrant, on aura done nt — u — c sin u. nbsp;nbsp;nbsp;[b) En mettant pour r sa valeur dans celle de c?9 , et observant que cos u — cos* -j ? — sin* ^ u, il en résulte \/1 — equot; dud^ et si Ton fait I — e. cos’ i u e sin* du= 2dz, tanggt;=:z, cette valeur devient 7fl 2 y/1 — e* ” nbsp;nbsp;nbsp;, _ e4-(i e)z*‘ En integrant et observant que 6 et ? sont zéro ert na?me temps, c’est-a-dire, au point B, on aura aQ = are (tang = z d’ou Ton conclut tang 16 = nbsp;nbsp;nbsp;tang Am, (c) en remettant pour z sa valeur.



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;421 Ces ti’ois equations (d), (b), (c) , expriment, sous forme finie, les valeurs de r, nt, G, au moyen de lanbsp;Variable auxiliaire u, qu’on appelle Vanomalie excen-trique. En eliminant u entre elles, on aura les deuxnbsp;coordonnées polaires r et G de la plan?te en functionsnbsp;du temps, sous forme de séries ordonnées suivant lesnbsp;puissances de l’excenti’icité, qui seront, par conséquent, tres convergentes dans Ie cas des anciennesnbsp;plan?tes. Apr?s qu’on aura formé ces séries, on ynbsp;pourra remplacer les puissances de cos nt qui se trou-Veront dans Ie développement de r, et celles de sin ntnbsp;que renfermei’a Ie développement de G — nt^ par desnbsp;Cosinus et des sinus des multiples de nt. Si l’on con-coit qu’on ait ensuite ordonné ces

développemens dunbsp;vayon vecteur et de l’équation du centre suivant lesnbsp;cosinus OU sinus des multiples croissans de nt, onnbsp;pourra déterminer directement, par I’analyse sui-Vante, les valeurs des coefficiens de ces deux sériesnbsp;fonctions de l’excentricité. 221. Je fais ^Ao-|-A,cosn^-|-A,cos2nf-f-.. .-|-AjCOS m?-f-etc., Ö‘~-7z^=B,sinn^-j-B?sinnbsp;nbsp;nbsp;nbsp;. .-f-B, sin m^-|-etc.; ^0, A,, Aa, etc., B,, Ba, etc., et généralement A_j , étant les coefficiens qu’il s’agit de déterminer.nbsp;Si i et i' sont deux nombres entiers positifs et dif-rnbsp;fci’ens, on aura, en effectuant les intégrations, cos int cos i'nt d. nt = o f sin int sin i'nt d- nt f fiTf *



433 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. et dans Ie cas de i = i', on trouvera 1 cos’ int d . nt z=z -tt, onbsp;nbsp;nbsp;nbsp;a ' /sin’ int d . nt = -tt. onbsp;nbsp;nbsp;nbsp;a Ces derni?res formules ne s’appliquent point a i= o; dans ce cas, Ia premi?re integrale est égale a tt , etnbsp;la seconde a zéro. Cela étant, je multiplie Ie développement de /’ par cos int d.nt, et celui de ö — nt par sin int d.nt‘,nbsp;puis j’int?gre depuis nt = o jusqu’a nt =w. Toiisnbsp;les termes s’évanouissent, excepté ceux qui ont Ainbsp;oil B, pour coefficient, et Ton en conclut Ai = - \ r cos int d.nt, o Bi = nbsp;nbsp;nbsp;/nbsp;nbsp;nbsp;nbsp;(0 — nt) sin intd.nt. fFj O Dans le^cas de i~o, on aura, en particulier, Ao = - ƒ rd.nt, c’est-a-dlre qu’il faudra réduire a moitié la valeur générale de Af. En mtégrant par partie, et

obser'nbsp;vant que 0 — nt est zéro aux deux limites nt = o etnbsp;nt — TT, l’expression de Bj pourra ?tre remplaceenbsp;par celle-ci: Bi = J cos int d(^ — nt). Je substitue a la place de r, nt, 0, leurs valeuis



i! DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;423 €11 fonctions de u, tirées des equations (a), (d), (c); 9 cause de d.nt di du = 1 — e cos U , du I — e cos u €t paree que m = o et u-=.Ti répondent a nt = o et ntz='7t, il en résultera Ai= — / (i — e cos uY cos (iu — ie sin u) du, V J o BI. r? r /--r , nbsp;nbsp;nbsp;.,-1 cos(/? — ies?nu) J i—-\ nbsp;nbsp;nbsp;Ivi—e’—(i—ecosM)*J—^;--'du-, 1'^ } Q nbsp;nbsp;nbsp;I G OOS U formules qui feront connaitre les valeurs numéri-ques des coefFiciens A,- et B, , soit par la méthode . des quadratures, soit par la reduction en séries.nbsp;Pour cette réduction, on aura, par Ie théor?me denbsp;Taylor, quot;i/ nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;\ I--^sin'M ^^sin'in—etc.Jcosiu ^zesinM— ~ sin^M etc.^sinzw; fit et il en résultera pour A, et B; des séries d’inté-grales

relatives au, dont les valeurs exactes s’ob-lieudront toutes, soit immédiatenient, soit par des formules connues; en sorte que Ton pourra prolon-ger ces développemens de A; et B; aussi loin qu’ounbsp;^oudra. On pourra ménig obtenir leurs termes gé-Oeraux en fonctions de i et de e ; mais ce n’est pointnbsp;^ei Ie lieu d’insister da vantage sur ce sujet, qui ap-partient spécialement a rAstronoaiie. Relativement a i



4a4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. a ' Ao = nbsp;nbsp;nbsp;^ (i — e cos uydu = a(i -f- Ae“), en ne prenant que la moitié de la valeur de Ai, qui répond a j = o : c’est Ie seul des coef?klensnbsp;Ao, A,, A,, etc., B,, B,, etc., dont on puisse ob-tenir la valeur exacte. 222. Si Ion appeile v la vitesse de la plan?te aU bout du temps et cT 1’angle que fait sa directioonbsp;avec Ie prolongement de son rayon vecteur r ou OM^nbsp;on aura (n“ i56) drquot;^ 4-df' ~dl' V COS J' = r En éliminant dt au moyen de l’équation (i), on a = nbsp;nbsp;nbsp;t'coscr= En vertu de l’équation (2), on a aussi I I e cos r dX r a{i — e”) ^ di nbsp;nbsp;nbsp;a{i — e^) ^ d’oü il résulte a* (I — e*)“ (^* == (i 2e cos 0 e“) c“, et, par conséquent, cŽ /aa \ nbsp;nbsp;nbsp;(!) al/i — e“ ,i\ — 1), COSd'=-i_=; (d) ? (I —? 3 \ ^

nbsp;nbsp;nbsp;/nbsp;nbsp;nbsp;nbsp;/ia ce qui montre comment, dans Ie mouvement elHp' tique, la vitesse et la direction du mobile en chaque



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;425 point se déterminent au moyen de son rayon vecteur. I^’apr?s la valeur de c du n° 220, celle de peut aussinbsp;olre écrite ainsi : /2a nbsp;nbsp;nbsp;\ = -fT (— — l)- Ces formules, jointes a celles des numéros préce-•^ens, font connaitre compl?tement Ie mouvement d’une plan?te dans Ie plan de sou orbite; mais quandnbsp;On veut considërer a la fois les mouvemens de deuxnbsp;Ou de plusieurs plan?tes, il est nécessaire de rappor-ter la position de chacnne d’elles a un autre plan,nbsp;qui est ordinairement Ie plan de Yécliptique ou denbsp;l’orbite de la terre. 223. Soient NON'(fig. 53) l’intersection du plan de l’orbite d’une plan?te avec un plan passant parnbsp;Ie centre 0 du soleil, OE une droite menée dans cenbsp;Second plan , OM' la projection

du rayon vecteur OMnbsp;de la plan?te sur ce m?me plan. Désignons par ynbsp;^inclinaison des deux plans, par o. Tangle NOE, parnbsp;^ Tangle BON que fait Ie rayon vecteur OB aboutis-sant au périhélie avec la droite ON. Ces tfois anglesnbsp;y, ü), devront ?ire donnés, et ils déterminerontnbsp;^e plan de Torbite et la position de Tellipse dans cenbsp;plan. Soient aussi lt;p et 4 les angles variables MOM' M'OE, que fait Ie rayon vecteur OM avec sa projection OM', et cette projection avec la droite OE, ^esquels angles détermineront, a chaque instant, lanbsp;direction du rayon OM aboutissant a la plan?te. Cela posé, considérons Tangle tri?dre qui a son sonimet au point O, et dont les trois ar?tes sont OM,nbsp;OM', on. L’anomalie vraie, ou Tangle MOB, élant



426 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. toujours Q, les trois faces de eet angle tri?dre seroo^ MON = MOB BON = G o), M'ON = M'OE — NOE = 4 — ?, MOM'= (p- la premi?re sera opposée a un angle droit, et 1^ troisieme a Tangle D’apr?s les premi?res régies denbsp;la Trigonometrie sphérique, on aura done sin ip = sin y sin (G nbsp;nbsp;nbsp;gt; tang (4 — a) = cos y tang (9 o?) ; et Tangle G étant connu en fonction de t, par ce préc?de, chacun des angles cp et 4 Ie sera aussi,nbsp;moyen de ces formules. Lorsque Ie plan donné sur lequel on compte Tangle 4 est Te'cliptique, et que la droite OE, a partir denbsp;laquelle on compte eet angle, dans Ie sens du moo'nbsp;vement de la terre, est celle qui va du soleil a Téqoi'nbsp;noxe du printemps, les angles 4 et tp s’appellent

1^nbsp;longitude et la latitude de la plan?te que Ton consid?re*nbsp;La droite NON' est la ligne des noeuds de^son orbite;nbsp;elle entre dans Themisph?re boreal quand eJle travers^nbsp;Ie plan de Técliptique au point N, ce point est Ie noeii*^nbsp;ascendant ^ et N' Ie nceud descendant. Selon que 1“*nbsp;plan?te se trouve dans eet h?misph?re ou dans Thequot;*nbsp;misph?re austral, la latitude (p est positive ou oŽ'nbsp;gative, et Tangle MON, ou G -f- est plus grandnbsp;ou moindre que i8o°. L’angle lt;p s’étend depuis —• 9°nbsp;jusqua goŽ, et Tangle MON, ainsi que la longitudenbsp;M'OE, depuis zéro jusqu’a 56o°.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;427 Si Toa rempiace Ie point 0 par Ie centre de la terre, que l’on prenne l’équateur pour Ie plan donnénbsp;lequel on compte l’angle 4quot;, et pour origine denbsp;^et angle la droite OE qui va de ce centre au premiernbsp;point du signe aries, les angles 4/ et cp seront alorsnbsp;^dscemion droite et la déclinaison de la plan?te. Ennbsp;^ppliquant les formules pre'cédentes au mouvementnbsp;Apparent du soleil autour de la terre, on aura a=o,nbsp;y expriraera Vobliquité de l’écliptique, et Ton devranbsp;prendre pour 9 ? la longitude de eet astre; d’oii ilnbsp;*'esulte qu’en la de'signant par X, on aura sin ^ = sin y sin A, tang 4^ = cos y tang A , en m?me temps, . nbsp;nbsp;nbsp;sin y tanf! sm(p = —-- y cos^ y -f- tang“ Les plus grandes déclinaisons boreale et

australe ré-pondent a A = 90° et A = 270% et sont =i-y- Cet ^ngle y est aussi celui que fait l’axe de rotation de lanbsp;lerre avec la perpendiculaire au plan de Tecliptique; est soumis a rme petite inégalité qu’on appelle la Mutation, dont la période est d’environ 18 ans, et Ienbsp;'^ajciinum de gquot;,4 seulement. Sa valenr moyenne, aunbsp;‘Commencement de 1800, était y =z 25° 2^'55quot;; ^lle dirninue de o'',456g2 par année. 224. Dans tout ce qui precede, on n’a point eu ^gard a la force qui agit sur chaque plan?te, dont Ienbsp;‘Rouvement a été determine d’apr?s les données de



4a8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCARIQUE. i’observation, et saus recourir aux principes de Djnamique; il s’agit maintenant de determiner leSnbsp;lois de cette force , ainsi qu’il a été dit précédem^nbsp;ment (n° 217). II suit de la premi?re loi de Képler que la force qui retient chaque plan?te dans son orbite est constam-ment dirigee vers Ie centre du soleil; quoique cettenbsp;consequence nécessaire de la proportionnalité des ai'nbsp;res au temps ait été déduite des équations du mouquot;nbsp;vement dans Ie n° i55 , il ne sera pas superflu d’ennbsp;donner ici une demonstration synthétique. Soit M,M (fig. 54) Ie cóté de la trajecloire que 1^ mobile décrit pendant un temps r infiniment petit-Arrivé au point M, si aucune force n’agissait sur cenbsp;mobile, il décrirait, dans un autre temps r,

unenbsp;partie Mm du prolongement MT de M,M, égale anbsp;M,M; ma?s, a cause de la force a laquclle il est soU'nbsp;mis, il se transporte, dans ce second instant, eonbsp;un autre point M'. Soit MK la direction de cettenbsp;force au point M; pendant ie temps r, on pourranbsp;supposer qu’elle reste parall?le a elle-m?me, et alorsnbsp;si Fon tire la droite mM!, elle sera parall?le anbsp;(n° 148). Or, si C est Ie centre fixe autour duqudnbsp;Ie rayon vecteur CM décrit des aires proportionquot;nbsp;nelles au temps, les ti’iangles M,CM et MCM', quinbsp;sont les aires décrites dans deux instans égaux, se-ront équivalensj mais les triangles M,CM et MCn^nbsp;Ie sont aussi, puisqu’ils ont leurs sommets au m?mŽnbsp;points C, et leurs bases M,M et Mm égales et surnbsp;une m?me droite ; les

triangles MC/n et MCM' sontnbsp;done équivalensj et comme ils ont une m?me base



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;429 11 fajji qyg la droite mM' qui joint leurs som-soit parall?le a cette base; par conséquent, droite MK, parall?le a 7nM', coincide avec MC.nbsp;^Onc, en chaque point M de la trajectoire, la di-^^ctioa MK de la force sera celle du rajon vecteurnbsp;; ce qu’il s’agissait de démontrer.nbsp;Réciproquement, si la force qui agit sur Ie mobile , au point quelconque M, est dirigée suivantnbsp;^C, la droite toM' sera parall?le a ce rayon vecteur,nbsp;deux triangles M'CM et MC?n seront équivalens, gt; par conséquent aussi, les deux triangles M'CM M,CM. Les aires décrites par Ie rayon vecteurnbsp;^Rtour du point C, en deux instans consécutlfs etnbsp;^gaux, étant égales, et cela ayant lieu dans toutenbsp;^étendue de la trajectoire, si la force qui agit surnbsp;mobile

est constamnient dirigée vers ce point, ilnbsp;?''ensuit que les aires décrites en temps égaux se-^Out égales, et, en des temps quelconques, propor-^lonnelles a ces temps. aa5. Soit, comme dans Ie n° 218, M la position la plan?te au bout du temps t (fig. 52 ). Con-^^tvons toutes les notations de ce numéro, de sortenbsp;'iRe r et G soient Ie rayon vecteur OM et Tanglenbsp;^OR; désignons, en óutre, par x et j' les deuxnbsp;'^oordonnées rectangulaires OP et PM, rapportées anbsp;axes Ox et Oy, dont Ie premier passe par Ienbsp;P^rihélie B; nous aurons x = rcos0, y = rsin6, x* ^oit aussi R ia force accélératrice, inconnue en graii-qui agit sur la plan?te. Cette force est diri-



43o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. gée, comme on yient de Ie voir, suivant Ie rayon vecteur, et elle agit du point M vers Ie point 0gt;nbsp;a cause que la trajectoire tourne sa concavité dnnbsp;cóté du soleil; les cosinus des angles qu’elle fait avec les prolongemens de ^ et y sont done — quot; r seront — nbsp;nbsp;nbsp;; par conséquent, les equations du mouvement dy _ d^x IF— R-, r '(0 dt: En appelant toujours v la vitesse au point IV?: nous aurons c _ — et, en différentiant, -d.V^ = ^ dx -j- ^ dj; par conséquent, si l’on ajoute les equations (l) apr?s les avoir multipliées par dx et dj, et si Tonnbsp;observe que xdxjdj = rdr, il en résultera \d.v^ = — RJr. Mais, dans Ie mouvement elliptique, on a (nŽ 22F} _ 2^ e en faisant on aura done



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;431 qui niontre que la force qui agit sur chaque pla-^ete suit la raison inverse du carré de la distance au Centre du soleil. La grandeur de cette force est fx a l’unité de dis-^^nce; soit ju' ce qu’elle devient pour une autre pla-•^ete, dont Ie demi-grand axe et Ie temps de la resolution seront représente's par a' et T'; on aura '^e m?nie a- Or, d’apr?s la troisi?me loi de Képler, on a u’oü il résulte a 'J’a Par conséquent, a l’unité de distance, et, générale-*^ent, a la m?me distance du soleil, la force accélé-Satrice R est la m?me pour deux plan?tes diffé-Sentes. La force motrice de chaque plan?te est done indé-Pcndante de sa nature particuli?re, et proportionnelle ^ Sa masse, comme les poids a la surface de la terre.nbsp;J^Ue varie d’une plan?te a une autre

suivant la m?menbsp;que d’une position a une autre de la m?me pla-’^cte; et si deux plan?tes étaient situées a la m?menbsp;distance du soleil et abandonnées a elles-m?mes ,nbsp;^ans vitesse initiale, elles tomberaient d’un m?menbsp;Mouvement vers eet astre, et l’atteindraient dans Ienbsp;*sieme intervalle de temps.



432 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Ainsi, les trois lois de Képler nous font connaifr^ compl?tement la force qui retient les plan?tes dansnbsp;leurs orbites : la loi des aires proportionnelles aunbsp;temps nous fait voir que cetle force est constammentnbsp;dirigee vers Ie centre du soleil; celle du mouvementnbsp;elliptique, ou l’expi'ession de la vitesse qui se déduitnbsp;de cette loi et de la précédente , nous montre que soUnbsp;inlensité varie, pour une m?rne plan?te, en raisonnbsp;inverse du carré des distances au soleil; enfin, nousnbsp;concluons de la loi des carrés des temps des revolutionsnbsp;proportionnels aux cubes des grands axes, qu’a éga-lité de distance au centre de eet astre, l’intensité denbsp;la force motrice est proportionnelle aux masses denbsp;cbaque plan?te , et

indépendante de sa nature parti^nbsp;culi?re. 226. Newton a étendu aux com?tes, dans leui’ mouvement autour du soleil, et aux satellites autoui’nbsp;de leurs plan?tes respectives, les lois de Képler et Ie*nbsp;consequences qui s’en déduisent relativement a 1^^nbsp;force qui agit sur ces mobiles. Les com?tes, dans leur mouvement, ne different des plan?tes qu’en ce qu’elles ne sont pas constamquot;nbsp;ment visibles, a raison de l’éloignement de leurs aphŽ'nbsp;lies; ce qui rend ti’?s difficile la determination denbsp;leurs orbites. Néanmoins, il j a maintenant troi’’nbsp;com?tes dont on connait les orbites et les temps denbsp;leurs révolutions, presque aussi exactement que pooi’nbsp;les plan?tes. A l’égard des autres com?tes, on calculenbsp;leur mouvement par approximation, en prenaiit pouinbsp;la

trajectoire, dans la petite étendue on chaque co-m?te est visible, une parabole dont Ie fojer est au



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;433 centre du soleil, et supposant toiijours les aires dd-ci'Ues par Ie rajon vecteur autour de ce point, pro-portionnelles au temps pour chaque com?te. Ce cas est compris dans les formules précédentes du mouve-Rient elliptique, en j faisant 00 a(i — e) z= b; ^ désignant la distance perihdlie OB, qui est une lt;]uantite finie. Les masses des com?tes sont tres petites par rapport a celles des plan?tes et paraissent d’une tout Sütre nature. En vertu de la troisi?me loi de Kdpler,nbsp;^es forces motrices de deux com?tes, ou d’une com?tenbsp;ct d’une plan?te, a la m?me distance du soleil, sontnbsp;entre elles coinme leurs masses respectives, et leursnbsp;forces accdldratrices sont dgales; il en est de m?me anbsp;Regard de plusieurs satellites d’une

m?me plan?te,nbsp;Rtais non pas relativement aux satellites de deux pla-Retes differentes, ou a un satellite et une plan?te; carnbsp;loi des carrés du temps des revolutions propor-^•onnels aux cubes des grands axes n’a lieu que pournbsp;corps qui tournent autour d’un m?me centre :nbsp;Rons ferons connaitre par la suite Ie rapport qui existenbsp;cotre les forces motrices de deux satellites apparte-R?int a des plan?tes differentes, et entre celles d’unenbsp;PLn?te et d’un satellite. Ajoutons encore que dans ces derniers temps on ^ ctendu les lois du mouvement elliptique aux étoilesnbsp;doubles, dans lesquelles un mouvement révolutif denbsp;^une des étoiles autour de l’autre a été reconnu, etnbsp;leurs positions relatives, calculées d’apr?s cesnbsp;t.nbsp;nbsp;nbsp;nbsp;28



434 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. lois, se sont accordées aussi bien qu’on pouvait I’es- péi'er avec leurs positions observées. 337. Examinons actuellement les alterations que la resistance d’un ether tres i’are répandu autour dunbsp;solei!, pi’oduirait dans Ie mouvement elliptique desnbsp;plan?tes. Leur non-sphériciléparfaiteetle frottenientnbsp;du fluide conti’e leur surface, pourraient faire sortir I0nbsp;centre de gravité du plan de son orbite : on feranbsp;abstraction de ces deux circonstances; et il ne s agiranbsp;que de former les equations du mouvement de cenbsp;point, en ayant e'gard , a la fois , a la force centi’alenbsp;en raison inverse du carré de la distance, et a unenbsp;force tangentielle provenant de la resistance dunbsp;milieu. Je supposerai, comme dans Ie mouvement des

projectiles dans l’air, cette resistance proportionnell^nbsp;au carré de la vitesse, a la densité du milieu et a 1*nbsp;surface de chaque plan?te; la force aoeéléi-atrice quinbsp;en résultera sera , en outre, en raison inverse de 1^ masse du mobile; je la représentcrai par p ~ , en de- siguant par ds l’éléraenl de la trajectoire, et par P un coefficient trés petit et proportionnel, pour uuenbsp;m?me plati?te, a la densité du milieu. En observantnbsp;que cette force agit en sens contraire de la vitesse dunbsp;mobile, et représentant toujours la force principalenbsp;dirigée vers Ie centre du soleil, par a l’unité de distance el par ^ a la distance r, les équations (i) de-vront ?tre remplacées par celles-ci;



DYNAMIQUE, PREMI?RE PARTJE. d^x /ux _ ds dx 1 dt^ ‘ nbsp;nbsp;nbsp;^ di dt ^nbsp;nbsp;nbsp;nbsp;( ^ nbsp;nbsp;nbsp;_ _ o — ^ I dt'^ nbsp;nbsp;nbsp;^ dl dt' ) En employant les coordonnëes polaires, duit, sans tlifficulté, ces autres equations (3) d{dr'^ -f. nbsp;nbsp;nbsp;j I '---- d.r^d^ = — pr’^d^ds, qui en sont une transformation. 228. Lorsqu’on négligé leurs seconds membres, les ?quations (2) se réduisent a (4) d^x , fiX nbsp;nbsp;nbsp;d^r ftr nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;-3F r’=°’ et les equations (5) a celles-ci: nbsp;nbsp;nbsp;= d.r^d^ = o.(5) de On satisfait a ces equations f5) au moyen des for-•^ules (a), (b), (c), du n° 220; ces formules n’en sont pas les intégrales completes, paree qu’elles ne con-tiennent que deux constantes arbitraires a et e; maisnbsp;1’on fait attention que les

equations (5) ne renfer-*Rent pas explicitement les variables 6 et t, et qu’ellesnbsp;^nntlennent seulement leui’s dlfférentielles dB el dt,nbsp;Žn en conclut que les formules du numéro cite de-Yi'ont encore .satisfaire a ces equations, en ajoutantnbsp;des constantes quelconques a f et ö. De cette mani?re,nbsp;^f^s intégrales compl?tes des equations (5), et, par 28..



436 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQDE. conséquent, des equations (4), seront exprimées par ce sjst?me de formules : - e cos m) , e sin u, nt ^ tang4(Ö — ft)) =(m) tang Tm; a, e, 6, ft), étant les quatre constantes arbitraires, et M une constante liée a a par I’equation ahi’- = fA, qui resulte de ^ nbsp;nbsp;nbsp;~nbsp;nbsp;nbsp;nbsp;1’élimination de T. Le zéro de la variable u répondi’a toujours a la plus petite valeur de r, ou au périhélie B (fig. Sa).nbsp;Pour M =: o, on aura 0 = ft); de sorte que 0 repré-sentera maintenant Tangle MOE, compté a partirnbsp;d’une droite OE, qui fait un angle BOE :;= oo, avecnbsp;OB. La valeur de 0 en série sera de la formenbsp;0 := nt É -bquot; 6i gt; en désignant par Ö, sa partie périodique, ordonnée suivant les sinus des multiples croissans de —ft)-Get angle

0 sera la longitude vraie de la planete daiisnbsp;le plan de son orbite, au bout du temps t quelconque; exprimera sa longitude mojenne au m?me instant, sa longitude moyenne a lepoque d’oix Tonnbsp;compte le temps t, et amp;) la longitude de sou périhélie-229. Cela posé, quand on connait les intégralesnbsp;completes d’un systerne d’équations différentiellesnbsp;comme les équations (4), on en déduit les Intégralesnbsp;d’un autre syst?me d’équations différeutielles, telles



DINAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;43'j 'Jue les equations (2), qui ne different des premi?res que par de tres petits termes, au moyen d’une me'-tfiode dont les géom?tres ont fait les plus heureusesnbsp;applications a la Mécanique celeste, et que je vaisnbsp;exposer a l’occasion du probl?me qui nous occupe. Les valeurs de x eij, qui satisfont aux equations (4), sont de la forme : f{t, d, e, amp;gt;), y .— F(L nbsp;nbsp;nbsp;) J et F indiquant des fonctions données. Pour que ces Valeurs satisfassent encore aux equations (4), j’y con-sid?rert, e, e, agt;, comme de nouvelles variables qu’ilnbsp;s’agira de determiner. Mais ces inconnues étant aunbsp;Uombre de quatre, et les equations (2) seulement aunbsp;nombre de deux, je peux prendre a volonté deuxnbsp;equations auxiliaires; et je fais,

en conse'quence, da dF ib) ‘!lda fje '‘?di f-ckgt; = o, , nbsp;nbsp;nbsp;, dF, , dF, . dF, , da-{- nbsp;nbsp;nbsp;-r de -j- -r- dcü z= o, da nbsp;nbsp;nbsp;denbsp;nbsp;nbsp;nbsp;dinbsp;nbsp;nbsp;nbsp;d d uu, autrement dit, j’égale a zéro les parties de dx €t dj-, provenant des variations de a, e, e, cj.De cette doe d'Y' uiani?re, les valeurs completes ^ nbsp;nbsp;nbsp;^ sont ^implement dx df nbsp;nbsp;nbsp;dj- dF dt ~~ dl ’ nbsp;nbsp;nbsp;dlnbsp;nbsp;nbsp;nbsp;dl' En différentiant de nouveau, on a dy de dy dt dt^ dtda dt dt y d^F , d^F da dt^ ' df dtde dt d^F de dtdi dl dy da, dtda dt * dldadt dtde dt dtdi dt ‘ dtdm.dt



438 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Or, par hypothese, les valeurs précédenles de X et j satisfont aux equations (4), en y i’egardant a,nbsp;e, i, co, comme des constantes arbitraires, on a done dl- ^ nbsp;nbsp;nbsp;~ o? dt\^ jj. — par conséquent , si Ton substitue les valeurs com- CC pl?tes de et dans les equations (2), on aura d^f di , nbsp;nbsp;nbsp;dfnbsp;nbsp;nbsp;nbsp;^ df , J—y- d{Z~l~ -y-j- de-\- y -J di~ dlda nbsp;nbsp;nbsp;dtde dtdt ds dx , dtda {c) d'F ??“F ,d^ dquot;F nbsp;nbsp;nbsp;dsdj —- da-\- —r- de4- -3—^ de4- —— da = — f nbsp;nbsp;nbsp;dt- dlda dtde dtdi dlda nbsp;nbsp;nbsp;'dtdt et ce syst?me des quatre equations (h) et (c) servira a determiner a, e, e, co, en fonctions de t. 25o. Cette substitution de quatre equations diffé-rentielles du premier ordre, aux deux

equations (2), qui sontdu second ordre, n’aurait, en general, au-cun avantage. Mais les valeurs de da, de, di, do,nbsp;qu’on tire des equations ilo) et (c), auront pour facteur Ie coef??cient p de la resistance, qui est unenbsp;tres petite quantité; les parties variables de a, e,nbsp;e, GO, seront done aussi trés petites; et si l’on négligé Ie carré de p, on pourra considérer a, e, e, co,nbsp;comme des constantes, dans les expressions de da,nbsp;de, dé, doo; ce qui réduira aux quadratures Ie calculnbsp;des parties variables de a, e, e, co. Pai' la méthodenbsp;des approximations successives, on obtiendra ainsinbsp;des valeurs de ces quantités, ordonnées suivant lesnbsp;puissances de p et aussi exactes que l’on voudra;nbsp;nous nous arr?terons a la premi?re puissance de p.



DYNAMIQUE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;439 Les equations (a), apr?s qu’on y aura substitué ^es valeurs variables de a, e, g, co, feront connaitre,nbsp;lt;^omme dans Ie cas du mouvement elliptique, les va-leurs de r et ö en fonctions du temps. La trajectoirenbsp;Sera encore une ellipse, mais dont les éle'mens varie-ront continuellement. Si l’on suppose que Ton cons-tfuise a chaque instant Tellipse constante qui rëpondnbsp;3ux valeurs des élëmens a ce m?me instant, les or-données x et j, et leurs dif?ërentielles dx et dj', se-J’ont communes, en vertu des equations (b), a cettenbsp;ellipse et a la trajectoire, qui sera, par conséquent,nbsp;courbe de contact de toutes les ellipses constantes.nbsp;Par la m?me raison, la vitesse du mobile etsescom-posantes auront les mémes expressions,

etseront dé-terminées par les formules (d) du n° 222, dans Ienbsp;•nouvement elliptique et dans Ie mouvement altérénbsp;par la resistance du milieu. 23t. Observons qu’on a identiquement nt = f ndt -f- ftdn; comprenant ftdn dans l’inconnue g, on pourra done écrire ainsi : fndt -|-6 — co z=z u — e sinw, (d) la seconde equation (a). Alors, en m?me temps qu’on changera, dans les equations du mouvement ellip-^ique, les constantes a, e, e, co, dans leurs valeursnbsp;Variables, il y faudra remplacer nt par l’integralenbsp;fndt, que nous supposerons nulle quand tz=zo.nbsp;P'S quantité n qu’elle renferme se déduira de a, au



440 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. moyen de la formule n — donnée par l’équation ahi' = du n“ 228. Cette integrale fndt exprimera Ie moyen mouvement denbsp;la planete (n° 219), altéré par la resistance du milieu;nbsp;et, de cette maniere, la différentielle du moyen mouvement sera ndt, dans Ie mouvement trouble commenbsp;dans Ie mouvement elliptique. Aupérihélie, l’angle ö —? estégal a zéro ou a uo multiple de 56o°; envertude la premi?re equation (0);nbsp;il en sera de m?me a l’égard de Tangle u-, done, pendant Tintervalle de temps compris entre deux passagesnbsp;consécutifs de la plan?le a son périhélie, la quantiténbsp;fndt -f- 6 ^—ca augmentera de 36o°; ce qui servira anbsp;determiner eet intervalle, quand on connaltra n, ?, ogt;nbsp;en fonctions de t, Le temps de la

revolution, ou Tin-tervalle compris entre deux retours consécutifs de lanbsp;plan?te au m?me point fixe, sera celui qui répondra anbsp;un pareil accroissement de sa longitude vraie 0. 232. Nous pouvons remplacer les equations {h) et (c) par d’autres équations équivalentes, desquelleSnbsp;il sera plus facile de déduire les valeurs de da, degt;nbsp;dé, dca. Pour cela, obsei’vons que si une equation quelquot; conque (p(nt, r,^,a, e, g, co) = o, a lieu dans le mouvement elliptique, elle subsistera encore dans le mouvement altéré par la résistance du



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;441 ^^ilieu, en j regardant a, e, e, a, comme des va-i'iables déterminées par les e'quations (b) et (c), et y mettant fndt a la place de nl. La difFérentielle denbsp;la fonction (p sera done nulle, soit qu’onla prenne,nbsp;dans Ie premier cas, par rapport a nt, r, ö; soitnbsp;^ü’on la prenne, dans Ie second cas, par rapport anbsp;fndt, r, G, a, e, i, ggt;; or, r et 6 étant des fonctionsnbsp;X et j, leurs difFérentielles sont les m?mes dansnbsp;W deux cas, en vertu des equations (^); par consequent, en supprimant, dans la difFerentielle com-r pl?te de lt;p, la partie nbsp;nbsp;nbsp;qui est séparément nulle, on aura dlt;p da da ^ de -f d, dip ~ doü — O. da de de Cela posé, apr?s avoir mis dans Tequation (2) du n° 218, G—Cd a la place de G, on en déduit r -j-

recos(G—cc) = a(i —e’); différentiant, comme il vient d’etre dit, on aura done ^cosGr/.e cosö r sinGc?.e sin gj = d.a(i — e*). (e) de dif?érentie de méme la premi?re equation (a) et 1 equation (d); ce qui donne (i—ecosu)da — a cos ude-j-ae sin udu = o, dé—dü) -f- sinz^e — (i — e cos ii)du = 0, considérant u comme une fonction de lt;2, e, s, o. d’éliniiue du entre ces deux equations; il vient



442 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. . nbsp;nbsp;nbsp;2 tansf 5 ? I 7-TT— f nbsp;nbsp;nbsp;sinu =nbsp;nbsp;nbsp;nbsp;- , I tang“ i M ' nbsp;nbsp;nbsp;I tang' ^ u cosu (i —eco%uYda-{-a{e—cos u)de-\-ae sin m (dé—da))=^o-Mais, en mettant dans les formules — tang° ; u a la place de tang 1 n sa valeur donnée par la troi-si?me equation (d), on a e cos (6 ? \/(i — e“) sin (9 — a), I e cos (9 — a) ’ ___^ I -f- ecos(lt;i—a) ’ Sin u ?? COS U' au raoyen de quoi réquation précédente devient , , nbsp;nbsp;nbsp;aesin(^'—dj, ^nbsp;nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;, rs acos(fl—d)de-\-------{di — da)—o. (j) (i — e^)da I J-ecos(6—?) V/1 — e Ceque nous disons relativement a l’équalion (p = o, s’applique également au cas oü la function cp renferm^nbsp;les différentielles premi?res de r et 6. Ainsi,

l’on agt;nbsp;dans Ie mouvement elliptique, 2|t? r dr^ 4- r^d)^ d? ?^d^ = \/iJLa[ I — e“ )dt, en mettant \/fA.a au lieu de dans la valeur r“c?0 du n° 220 : or, les différentielles dr et lt;/6, ainsinbsp;que ret 6, restant les m?mes lorsque a, e, é, a, dequot;nbsp;viennent variables, il s’ensuit que ces deux équatioo-'’nbsp;subslsteront encore dans cette hypothese ; cela étant;nbsp;en comparant leurs différentielles completes aux équa'nbsp;tions (3) du n” 228, on en conclut (g)d. - = 2p (- — - ')ds, a nbsp;nbsp;nbsp;^ \r aj 'd. \^a[I — e“) = — p \/a[i — e‘jds.



DYNAMIQUE, PREMJ?RE PARTJE. nbsp;nbsp;nbsp;443 Maintenant, on tirera facilement des quatre equations (e), (ƒ), (g), les valeurs de da, de, di,da)-, en y niettant pour r sa valeur, savoir. a{ I I e cos (9 — a)’ de les exprimer en functions de l’angle 0 seule-^lent, on trouve [i 2e cos (6 — ? ) e*]ds, (h) = — ap [e -t- cos (0 — a )']ds, ^doj = — 2p sin ( 0 — co ^ds, 5(0-^)] [i-}-e cos (0 — a)'] (i \/ I valeur de ds qu’on devra substltuer dans ces for-*^üles, est ds = r on y substituant celle de r, elle devient ds _ a{i — e-) y/t 2e cos (6 — ( [i e cos (9 — )y On intégrera les seconds membres des equations (h), y considérant a, e, s, co, comme des consJantes,nbsp;Žinsi qu’il a été dit prece'demment; et quand Ie coef-'^ient p sera donné en function de r, et consequem-^ont de 6, on en déduira, par la methode des qua-fatures

ou par la reduction en série, les valeursnbsp;'Variables de a, e, €, co, qui devront ?tre substituéesnbsp;les equations du mouvement elliptique.



444 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. 235. Si i’excentricité e est une trés petite fraction^ les formules (^), réduites a leur partie principale?nbsp;deviendront , de~ — 2pa cos (6 — a )c?9, edco ~ — 2pa sin (0—co)d^, dé=2pae sin (0—co)d^7 et l’on jpourra considérer Ie coefficient p cowme conS' tant. En integrant et désignant par d'a, cTe, cTö,nbsp;les parties variables de a, e, e, ggt;, on aura done ?fa = — 2pa“0, (fe = — 2plt;2sin(0 — co), eiS'co — 2pacos(0 — co),nbsp;cT? = — 2paecos(9— co). Si l’on exprime par cTra la partie correspondante de nr OU de nbsp;nbsp;nbsp;de sorte qu’on ait ay a 3v/|? Sn z=i — Sa, ‘ y/ a il en résultera Sn = 3prt?0. On voit done que l’effet de la resistance d’un mi' lieu trés rare sur Ie mouvement d’une plan?te trés pe'^nbsp;excentrique, serait de faire décroitre

indéfinlnjent IŽnbsp;grand axe, d’augmenter de m?me la vitesse angu'nbsp;laire n, et de produire dans chacune des trois quaO'nbsp;tite's e, co, e, une inégalité dont la période est la méco^nbsp;que la revolution de cette plan?te. Non-seuleraent 1^nbsp;mouvement angulalre s’accélérerait de plus en pluŽ ’nbsp;mais m?me la vitesse absolue; car elle est a peu pr^Ž



DYNAMIQÜE, PREMI?RE PARTIE. '^gale a an-, son accroissement est done aS'n-^uantité positive et e'gale a fa“n9. En négligeant tout-a-fait Texcentricité, on a done on désigne par S'r et cTÖ, les parties du rayon ^ecteur et de la longitude qui proviennent de la ré-^stanee du milieu, on aura, au m?me degré d’ap-proximation, Sr = — 2pa‘Q, SQ = IpaQ*. En vertu de eette diminution eontinuelle du rayon ^ecteur, qui seleverait a 4'^fa’‘ a ehaque revolutionnbsp;la plan?te, elle finirait nécessaireraent par alteindrenbsp;surfaee du soleil. Au reste, s’il existe dans Tespaee un ether qui in-sur Ie mouvement des astres, e’est sur les eom?tes eette influenee peut ?tre sensible, a eause de lanbsp;belitesse de leur masse, et paree que, toutes ehosesnbsp;'iailleurs égales, Ie eoef??cient p est en raison inversenbsp;la

masse du mobile. Et, en effet, on n’a reeonnunbsp;l'^squ’a présent aueune traee d’une résislanee de Té-dans Ie mouvement des plan?tes et des satellites ;nbsp;*^ais d’apr?s les ealeuls de M. Enke, eette resistancenbsp;Parait influer d’une mani?re appreciable sur Ie mou-^^nieut de la com?te récemment découverte, dontlanbsp;^’evolution est d’environ 1200 jours.



TRAITÉ DE MÉCANIQÜE. § III. Mouvement d’un point materiel soumis a unc force centrale. 446 14! 234. Le probl?me que nous allons résoudre est rinverse de celui du paragraphe precedent : on sup'^nbsp;posait alors la trajectoire et la loi du mouvementnbsp;données par Vobservation , et il s’aglssait de determiner en gi’andeur et en direction, la force a laquellenbsp;ce mouvement étalt du; maintenant, on supposenbsp;qu’une force constante dirige'e vers un centre fixe, etnbsp;donnée en fonction de la distance du mobile a cenbsp;point, est appliquëe a ce mobile, et l’on propose d’eWnbsp;conclure la trajectoire et la loi du mouvement. Cette courbe DMB (fig. 55 ) sera comprise dans le plan passant par Ie centre fixe C, et par la directionnbsp;DA de la vitesse initiale. Je m?ne dans ce plan et pa*’nbsp;le

point C, deux axes rectangulaires Csc et Cj, dootnbsp;le premier passe par le point de depart D du mobile^nbsp;et qui seronl les axes des coordonnées. Au bout dnnbsp;temps t, compté depuis ce depart, je suppose que Icnbsp;mobile soit en M, et je désigne par oc et j ses coor-données CP ét PM , par r son rayon vecteur CM,nbsp;par R sa force accélératrice, dirigëe de M vers C dnbsp;donnée en fonction de r; les equations du mouvemc*'*nbsp;seront d^r 'di^ 'd? -•Ta 'rgt;(*) et si la force R était dirigëe suivant le prolongement de CM, il suf?irait de changer les signes de leurs seconds membres.



DYNAMIQÜE, PREMI?RE PARTJE. nbsp;nbsp;nbsp;447 On en déduit immëdiatement les deux intégrales Premi?res -= — 2 fYi.dr h, xdj —jdx — cdt, dx^ dy^ lesquelles el c sont les constantes arbitraires j si l’on appelle 9 l’angle MCx, de sorte qu’on ait X = r cos 9, nbsp;nbsp;nbsp;/ = r sin 9, -Cs intégrales deviendront r'd^ = cdt, nbsp;nbsp;nbsp;- = — 2fKdr h; (2) ^’oü l’on dédiiira des valeurs de dt et c?9, de la forme dt = frdr, d^ = Vrdr, 'l'i’il ne s’agira plus que d’intégrer exacteraent ou par approximation. En éliminant dt entre les equations (2), on a f:1 — -f- 2fKdr — h, nbsp;nbsp;nbsp;(3) Pour l’équation diflféreutielle de la trajectoire. Si Ton appelle V la vitesse du mobile au point M, on aura = b — 2fKdr-, en représentant par S' l’angle que sa direction fait ^Vec MC , ses composantes seront e cos S = dr

nbsp;nbsp;nbsp;-IN esmcP = r^^,^üivant MC et suiyant MH perpendiculaire a ce rajon ^ccteur.



448 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Les deux constantes b el c, el celles qui serout in-troduites par l’inte’gratiön des valeurs de dt et c/G, se détermineront d’apr?s la position et la vitesse inltialesnbsp;du mobile. Pour cela, je représenterai par j/la distancenbsp;initiale CD, par a Tangle CDA qui pourra ?tre aigi^nbsp;Ou obfus, et par h la hauteur due a la yitesse initiale;nbsp;desorteque cette vitesse soitnbsp;nbsp;nbsp;nbsp;en appelant g la gravilé. Si Ton suppose que Tintegrale f^dr, qwi entre dans les formules précédentes, soit nulle quan^lnbsp;r — y, on aura d’abord b = 2ghj d’apr?s la valeur de v'. En vertu de Téquatlon r*t/G — cdt, la valeur de v sin ?T est la m?me chose que par conséquent, nous aurons c y S/igh sin a. Quant aux deux autres constantes arbitraires, on leS détermlnera de

mani?re qu’on alt 6 = 0 et r = 7nbsp;quand t — o, et Ie probl?me sera compl?tementnbsp;résolu. 355. Lorsque la force R est proportlonnelle a 1* distance 7’, les variables x et jr sont séparées dans leSnbsp;equations(i), et Ton n’a pas besoln de recourlr auJ^nbsp;coordounées polaires et aux equations (2). Soient, en ef?ét, k la valeur de R qui répond ^ r=-y, et- R= V sa valeur générale. Les équations (i) deviendront



449 DYNAMIQÜE, PREMI?RE PARTJE. d^x _ kx d'^j' nbsp;nbsp;nbsp;kj ~dt‘ nbsp;nbsp;nbsp;^dFnbsp;nbsp;nbsp;nbsp;' leurs intégrales completes seront ^ nbsp;nbsp;nbsp;^ y j — B cost \J~ -f. B'sin t \/^7 A , A', B, B', étant les quatre constantes arbitraires. I*our les determiner, on a, d’apr?s les suppositionsnbsp;précédentes, •^=7? nbsp;nbsp;nbsp;V/^g^'cosa,nbsp;nbsp;nbsp;nbsp;Vapsina, fjuand t = o; d’oü il résulte\ =z y, h'\J^z= — s/agAcosa, B = o, B'y/^ “ y/agAsina, , par conséquent, x^y(cost)J^ - ^^cosasin^ V ^^V y• Ces formules nous montrent que les revolutions du Piobile autour du point C seront isochrones, et leur durée commune égale a xjt \JOn en déduit5.sin?siu?y/^ =jr .r sin a -f- j pos a; /k y sm acos^ \J - \. 29



45o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. d’oü il résulte ^ly nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;^ jT* (^ sm a J cosot,)* = y’‘ sia* a, pour l’equation de la trajectoire, qui est, comme on voit, une ellipse dont Ie centre est au point C. Pournbsp;quecette ellipse soit un eerde, il faut qu’on ait a=go‘’nbsp;et ky = 2gh. Dans ce cas, Ie mouvement est uniforme;nbsp;car, d’apr?s les valeurs de x et , on a dx dl \/yk sin t\^ — nbsp;nbsp;nbsp;= \/yk cos t^—; ce qui donne s/yk pour la vitesse v. La force cen-quot; trale R et la force centrifuge — sont constantes et o y toutes deux égales a k. Si la force R est repulsive au lieu d’etre attractive, comme on l’a suppose, il faudra changer k en —- ^nbsp;dans les formules précédentes. La trajectoire seranbsp;alors une hyperbole, et Ie mouvement cessera d’etrenbsp;révolutif.

256. Prenons actuellement la force R en raison inverse du cube des distances, et i’eprésentons-la parR = r-' k étant toujours sa valeur au point D. Nous aurons, dans cette hypothese,2fMr = igt;(. - ty a cause que l’intégrale doit s’évanouir quand r = 7'



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;45i En ajant égard aux valeurs de et c, et faisant yd. __ dz dd dö’ 1’équation (3) deviendra * V nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;= * ^3“ nbsp;nbsp;nbsp;\ 2.gh sin‘?/ sin-* a hy sinquot;* ? Ee coefficient de pourra ?tre positif ou négatif; je l^ais done ky ag-A sin“ lt;e é’oü il résulte cot* a rfc re*, dz^ nbsp;nbsp;nbsp;. o dn ? z“ d?-‘ par conséquent, ndzndQ = nbsp;nbsp;nbsp;/----. ycot^a zt 71quot; qz 7iquot;z‘ Dans Ie cas des signes supérieurs, on aura ^9 = arcrsin= 77^ - ; ~ ^—arcfsin = 77==-V\ nbsp;nbsp;nbsp;ycoVit n^/ \nbsp;nbsp;nbsp;nbsp;V^cot’?-j-7iV’ dans Ie cas des signes inférieurs, 7i9 = log 4- V/cOt=a — 77quot; 77?z'quot; 77 -}- COt CC observant qu’on ar = 57etz=i quand 0 = o. De la premi?re valeur de re9, on tire rez — cot et sin 770 re

cos re0. ap..



453 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Le maximum de z ou Ie minimum de r répond a la valeur de 0, tirëe de l’ëquation = ou tang ?0 = ^ cot a , pour laquelle on aura cot“ a. Au-dela de cette valeur de 0, le mobile s’éloignera indéfiniment du point C , et son rayon vecteur r seranbsp;inlini, pour la plus petite valeur de 0 tirée de Féqua-tion z = o, OU tang n? = — n tang a; valeur que 0 ne pourra atteindre qu’apr?s un temps infini. En mettant a la place de r, la valeur de - dans z la premi?re equation (a), on en déduira sans difficulfé, t en fonction de 0. Dans Ie cas de la valeur logarithmique de ?0, oo aura , en passant aux nombres et désignant par e 1?nbsp;base des logarithmes népériens , - - —. ........ nz Vcot” a — n* n“z“ = (n -f- cot a) e j d’ou Ion tirez =- = —(n cotaje --(? —cota e ; ce qui monü'e que r

diminuera indéfiniment; en sorte que le mobile décrira une spirale autour du



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;453 point C, el atteindra ce point apr?s un nombre infini revolutions. Si r 'on fait a = 90°, pour simplifier, on aura 2y n9 —?8' e e pour I’equation de cette spirale. La premi?re equation (2) devientV^dt = [e e J €t, en integrant, on a f nfl nt \/2gh z=r ^ -n9 flB nbsp;nbsp;nbsp;-7z6 e e aSy. Pour dernier exemple, supposons, comme dans la nature, la force R en raison inverse du carrénbsp;des distances; de sorte qu’on ait R = ^‘. fRdr=ky(,-l)-, ^ étant l’intensité de cette force au point D, pour ^^quel I’integrale est supposee nulle. Si Ton fait - — p, 2ky — b = Q, ^equation (3) de la trajectoire deviendra d’oii r on tire



454 ?RAIT? DE MÉCANIQUE. cdp En integrant et dësignant par a la constante arbitraire, on aura done 0 = nbsp;nbsp;nbsp;-j- arc (cos = .nbsp;nbsp;nbsp;nbsp;• ce qui donne ky*r = c* — rS/Tdy^—c^Q cos (0 — co), (a) en meltant co -\-7r a la place de co, afin que ca soit la valeur de 0 qui répond a la plus petite valeui’nbsp;de r, c’est-a-dire, au point de la trajectoire ou Ie mobile est Ie plus rapproché de C. Pour en déduire 1’équation de cette courbe en co-ordonnées rectangulaires, je fais x' =2 r cos(0 — co), j' = rsin(0 — co); x' et y seront les coordonnées du mobile rapportées a des axes Cx' et Cj', tels que l’on ait x'Cx = co;nbsp;on aura x'* y^ = r*; et en élevant au carré les deux membres de l’équa-tion (a) de la trajectoire, elle deviendrak^yy^ Cc’‘x'^ = nbsp;nbsp;nbsp;- 2C^x' s/ky- Or, sous cette forme, on voit

qu’elle appartient a une section conique, qui sera une ellipse, une pai^aquot;nbsp;bole OU une hyperbole, selon que Ia constante C seranbsp;positive, nulle ou negative. On voit aussi que, dans



DYNAMlQüE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;455 tous les cas, Ie point C sera un foyer de cette courbe; Car, d’apr?s Tequation (?), Ie rayon vecteur r est unenbsp;fonction lineaire de l’abscisse oc'; ce qui n’a lieu, dansnbsp;les trois sections coniques, que quand l’origine desnbsp;coordonnées est un de leurs foyers. A cause de ^ nbsp;nbsp;nbsp;on aura ? = nbsp;nbsp;nbsp;— 2gh; d s’ensuit done que Ie signe de et, par conse'-quent, la nature de la section conique qui sera dé-Crite par Ie mobile, ne dëpendra que de sa distance et de sa vitesse initiales, et nullement de la directionnbsp;de cette vitesse; en sorte que différens points matérielsnbsp;partantd’un m?me point D, avec des vitesses égales ,nbsp;décriront tous des sections coniques de m?me nature,nbsp;quelles que soient leurs

directions initiales. Si l’onnbsp;par exemple, k — g, la courbe de'crite sera unenbsp;ellipse, une parabole ou une hyperbole, selon quenbsp;1^ hauteur due a la vitesse initiale sera moindre quenbsp;, égale a cette distance, ou plus grande. 258. Dans Ie cas de l’ellipse, Tequation (a) montre que la plus grande et la plus petite valeur de r, ré-Pondent a 0=g? 7!' et ^=co; en les désignantnbsp;par a{i e) et a(i —e), de sorte que a soit Ienbsp;demi-grand axe et e l’excentricité, on aura done {ky‘ — nbsp;nbsp;nbsp;— c*é’) a( I e) =nbsp;nbsp;nbsp;nbsp;,(kygt; \/ty‘^ — clt;) rt(i ce qui est la m?me chose, e) = ky’‘ -?a(i —c) = kyquot;quot; ~ é) = c%— clt;,s/k^y‘^ — clt;.



456 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQüE. En ajontant ces equations et les multipliant membre a membre, il vient amp;a = ky', nbsp;nbsp;nbsp;— e*) = c*. Si Ton y met pour ? et c leurs valeurs C = 2(ky — gh) , c = y \/zgh sin a, on en déduit = gt; == 2 \/gh(ky—gh)s\ncf^ ( yk \/i — ce qui fait connaitre Ie demi-grand axe et l’excentri' cite. On déterminera Tangle o en faisant, a la fois,nbsp;6 = o et r=: y dans Téquation (a). Ainsi, les dimensions de Tellipse et la position de son grand axe serontnbsp;compl?tement déterminées, d’apr?s la position, la vi'nbsp;tesse et la direction initiales du mobile. Quant a sonnbsp;mouvement sur cette courbe, il est connu par les formules (a), (b), (c), du n° 220. Le carré de la vitesse a un instant quelconque est, d’apr?s la formule (4) du nŽ 234 gt; OU , ce qui est la m?me chose,

il cause de la valeur qu’on vient de trouver pour et en faisant ky^ =:/a, de sorte que fJi soit ici comm^nbsp;dans la formule du n“ 225, Tintensité de la forcrnbsp;centrale a Tunité de distance.



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;457 239, II ne sera pas inutile de considérer en parti-*^ulier Ie mouvement parabolique que Ton prend, par approximation, pour celui des com?tes pendantnbsp;durëe de leur appai’ition. A cause que l’on a, dans ce cas, ?=o ou ky—gh, les equations (h) donnent a — zo et e = i; ce qui anbsp;effectivement lieu dans la parabole. La formule (c) senbsp;i'e'duit a appelant u la vitesse dans un eerde du rajon On aurait, en vertu de la m?me formule, par conséquent, a distance égale du solell, la vitesse d’une com?te est a celle d’une plan?te qui décrirait unnbsp;oercle, comme est a i. En général, les equations {b) donnent kya(i — e) (i e) = 2ghy sin’^ct, On élevant au carré les deux membres de la derni?re , ot les multipliant ensuite par ceux de la premi?re.

Sinbsp;'louc on appelle p la plus courte distance de la co-R^?te au soleil, de sorte qu’on ait p — a{i — e), ot qu’on fasse ky = g/i et e = i, on aura p = y sin* a; 00 qui détermine la distance péribélie, au moyen de



458 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. la distance et de la direction initiales du mobile, que l’on suppose connues. Je fais^ = o et ky = gh dans l’équation (a), et j’j mets pour c* sa valeur sghy’quot; sin’^ a; elle devient r z= 2y sin* a, — r cos ( 0 ?— co) ; d’oü il résulte (d) I cos ( Ö - ÜI ) ’ pour l’équation de la trajectoire. Si Ton y fait 9 = o et j' = y, on en déduit y(i -f- cos G?) = 2p, COSTCO z=z sin a; ce qui determine Tangle co que fait Ie rayon vecteur du périhélie avec celui qui aboutit au point de departnbsp;du mobile. Je substitue les valeurs de c et de r, dans la premi?re equation (2) du n° 234, et je fais, pour abrégeiv y)/ gh il en résulte r---vT = ” S/^dt. [i cos(ö — ?)]’ nbsp;nbsp;nbsp;^ En observant que I cos ( 0 — co) — 2 cos* i ( 0 — co), et faisant0 — ö = 24, d9 = 2(^4,



*i’oü l’on tire, en integrant et de'signant par e Ia constante arbitraire, 6 — (3 eot* a) cot a. En appelant t' Ie temps écoulé depuis Ie depart du niobile jusqu’a son passage au périhélle, on aura a lanbsp;fois t = t', nbsp;nbsp;nbsp;0 = rj, 4 = 0, ^t, par conséquent, t' = i \/ 2 Cela étant, désignons par T Ie temps compté a partir ^e l’instant de ce passage, de sorte qu’on aitnbsp;Rous aurons [3 4- tang* 1(0 — ?)] tang i (0 — nbsp;nbsp;nbsp;^ ;nbsp;nbsp;nbsp;nbsp;(e) en résolvant cette equation du troisi?me degré, on aura done tang 1(0 — ? ) en fonction de T, et, par



46o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE, suite, r et 6 a un instant quelconque : Ie temps t sera positif apr?s Ie passage au périhélie, et négatif avantnbsp;ce passage. A cause de ghy — ky^ = nbsp;nbsp;nbsp;\/y sin a = \/p, la valeur pre'cédente de n est la m?me que v/i? elle est done, d’apr?s l’équation a?rf = ^ du n° 228; la vitesse moyenne angulaire d’unp plan?te dont Ienbsp;demi-grand axe serait égal a p; et si Ton appelle ^nbsp;celle de la terre et l son demi-grand axe, de sortenbsp;qu’on aitnbsp;on en conclura pVp’ pour la valeur de n. 240. Cette analyse montre qu’en considérant la determination du mouvement d’une com?te, coinroe un pi'obl?me de dynamique , et supposant, en consequence , que sa position, sa direction et sa vitessenbsp;initiales soient connues, on peut déduire de

ceSnbsp;données, la distance p du sommet de la parabole anbsp;son foyer, l’instant du passage du mobile par ce sommet OU la valeur de t', et la position de l’axe de'pen-dante de Tangle les equations (c), (d), (e), fon^



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;46 f Žnsuite connaitre la vitesse de Ia com?te et sa position sur sa trajectoire a un instant quelconque; et oomme Ie plan de cette courbe est celui qui passe parnbsp;lo centre du soleil et par la direction de to vitessenbsp;'oitiale, il s’ensuit que Ie mouvement est compl?te-Rient determine. Mais Ie probl?me astronomique estnbsp;^lifférent. Lorsqu’on découvre une com?te, les observations ne donnent pas immédiatement Ie plan de sonnbsp;^rbite, sa distance au soleil, sa vitesse et sa direction, ^ 1’instant oü elle apparait; en sorte qu’en prenant sa position a eet instant, pour son point de depart, lesnbsp;'^onstantes y, h, u, ne sont pas données comme dansnbsp;Ie probl?me pre'c?dent. La question consiste alors anbsp;^éduire des observations, les

valeurs de cinq quan-lités, savoir : I’inclinaison de l’oi'bite et la longitudenbsp;son noeud ascendant sur Ie plan de Tecliptique, cenbsp;'iRi déterminera Ie plan de l’orbite ; la longitude dunbsp;Périhélie et sa distance au soleil, d’ou il résultera lanbsp;position de l’orbite dans son plan; et, enfin, Ie tempsnbsp;'^orrespondant au passage de la com?te par son péri-^ólie. Lorsque ces cinq inconnues sont d?terminées ,nbsp;equations (c), [d), (e), représentent, comme pré-'^?demment, Ie mouvement de la com?te dans sonnbsp;plan. Or, chaque observation de la com?te donnenbsp;^On ascension droite et sa d?clinaison; trois observations fournissent done six données, et, par consé-SOent, six equations qui sont plus que suf??santesnbsp;Pour determiner les cinq inconnues; et cela permetnbsp;ilo remplacer

deux de ces equations par leur combi-’^aison la plus propi’e a dimmuer l’influence des er-i’oiirs des observations. Les valeurs approchées des



463 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQUE. cinq élémens qu’on vient d’enumërer ëtant ainsi con-clues de trois observations faites a Tëpoque de l’ap^ paritiort, les observations subsëquentes servent en-suite a cotriger ces premi?res valeurs et a vërifier lesnbsp;formules {d) et (e). Nous ne poüvons qu’indiquer ici ce probl?me d’aS' tronomie ^ dont il existe diffërentes solutions.



CHAPITRE VU. 241' points matérielsde tons les corps s’attirent ^utuellement, en raison directe des masses, et inversenbsp;carré des distances. Cette grande loi de ia nature, que Newton a dé-couverte, est une consequence nécessaire de 1 observation et du calcul. On peut voir, en eft’et, dans VEcc-position du Sjst?me du Monde , comment, en partant de Texpérience, on est conduit, sans aucune hypo-di?se et par une suite de raisounemens rigoureux, aunbsp;principe de ^attraction universelle. Les développe-*tiens de ce principe sont i’objet spe'cial de la Méca-^éqiie celeste. Dans ce chapitre , nous nous borneronsnbsp;^ en exposer succinctement les principales consé-'Jüences. 242. La force qui letient les plan?tes dans leurs ^rbites, est la résultante de Tattraction exercée parnbsp;^ous les points

matériels du soleil sur tous ceux denbsp;^haque plan?te. Vu la petitesse des dimensions dunbsp;^oleil et des plan?tes par rapport aux distances qui lesnbsp;^sparent, on concoit que ces attractions peuvent ?trenbsp;*'cgardées, avec une approximation sufiisante, commenbsp;des forces parall?les et égales dans toute l’étenduenbsp;d’une m?me plan?te ; leur résultante est alors égalenbsp;^ leur somme, et la distance restant ia m?me, la



464 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANTQÜE. force motrice de chaque plan?te est proportionnelle au produit de sa masse et de celle du soleil; ce quinbsp;devient encore plus exact, a cause de la forme a peunbsp;pres sphérique de ces deux corps, iorsqu’ou prendnbsp;pouj leur distance celle de leurs centres de gravitynbsp;(nquot;99)* liif' Supposons done , pour exprimer numériquement 1’intensité de cette force, que Fon prenne une certain^nbsp;distance, par exemple, celle du soleil a la terre gt;nbsp;pour unite line'aire; choisissons une masse et un ioquot;nbsp;tervalle de temps determines pour unites de ces deu^^nbsp;sortes de quantités ; et prenons enfin pour unite denbsp;force, comme dans Ie n” ii8, la force accélératricenbsp;constante qui produit dans 1’unitéde temps uneVitessenbsp;égale a Funité de

longueur. Concevons maintenao*'nbsp;deux corps dont les masses soient égalesa celle qu’on ^nbsp;prise pour unite, et qui soient places a une distancenbsp;Fun de Fautre égale a Funité linéaire; soit y la forcenbsp;attractive de Fun des deux corps sur Fautre, eest-'nbsp;a-dire , Ie rapport numérique de sou intensité a cell^nbsp;de la force choisie pour unité ; soient aussi M et innbsp;masse du soleil et celle de la plan?te : la force HiO'nbsp;trice de la plan?te sera ƒ Mm, a Funité de distance, deviendra , a la distance quelconque r. La grandeur de Ia quantité que nous désignon* paryi depend du pouvoir attractif dont la mati?re estnbsp;douée ; ce pouvoir est Ie m?me , a égalité de masse etnbsp;de distance, pour tous les corps de la nature; rien,nbsp;jusqu’a présent, ne fait soupeonner qu’il augnientenbsp;OU

diminue avec Ie temps ; et nous avons üeu de 1^'



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;465 penser qu’il a été et qu’il restera constamment Ie 245. La force motrice de la masse M, due a l’at- tfaction de m, est aussi représentée par“^^, de ma- R??re que la reaction de chaque plan?te sur Ie solell est égale et contraire a Taction de eet astre sur la pla- *i?te; mais la force motrice , agissant sur les *ieux masses M et m, leur imprimera a chaque inslaat des vitesses infiniment petites qui sont récipro-lt;lüement pi’oportionnelles a ces masses, ou , autre- Rient dit, leurs forces accélératrices sont et 11 en résulte que si ces deux corps sont abandon-?iés, sans aucune vitesse initiale, a leur attraction mu-luelle , ils s’avanceront Tun vers Tautre en parcou-^ant, dans Ie m?me temps, des espaces qui seront en *’aison inverse de leurs masses; ils se

joindront aunbsp;Centre de gravité de M et m, qui partage leur distancenbsp;P?'lmitive en deux parties réciproquement propor-lionnelles aux masses. En general, si la plan?te est projetée dans Tespace ^Rivant une direction qiielconque, et qu’on proposenbsp;*10 determiner son mouvement apparent autour dunbsp;^Žntre du soleil, regardé comme un point fixe, ilnbsp;laudra concevoir que Ton imprime a chaque instantnbsp;^ eet astre, une vitesse infiniment petite, égale etnbsp;'-entraire a celle qu’il recoit de 1’attraction de ia pla-'^?te ; mais, afin de ne point altérer Ie mouvementnbsp;^elatif de ces deux corps, il faudra, en méme temps,nbsp;^^^primer cette vitesse a la plan?te; ce qui revient a 3o I.



466 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. lui appliquer une force accélëratrice égale et contraire a celle du soleil; done, dans Ie mouvement dont il est question, la force accélératrice de la plane te m sera constamment dirigée vers Ie soleil M, et égale a la somme des deux forces et ; si done on Areut l’exprimer par ^ , comme dans Ie n” 225, faudra prendre ^ == ƒ ( M rn ). Ainsi, Ton devra substituer cette valeur dans les différentes équations du mouvement elliptique qu oonbsp;a données précédemment; par conséquent, l’équatloo O? du nŽ cité donnera (0 _ nbsp;nbsp;nbsp;4’*'^/(M m)’ T étant loujours Ie temps de la révolution de la pi?' n?te, et a Ie demi-grand axe de son orbite. Le rapport qui dépend, comme on voit, de 1Ž quantité rn , différera done, pour deux plan?tes don* les masses sont inégales; ensorte

qu’on nepeut pas supnbsp;poser qu’il soit rigoureusement le m?me pour toutesnbsp;les plan?tes, Cependant les observations qui condoi'nbsp;sent a la troisi?me loi de Képler, prouventque ce mp'nbsp;port est sinon exacteraent, du moins a tres peunbsp;constant; il en faut done conclure que les masses desnbsp;plan?tes sont trés petlfes par rapport a celle du soleil;



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;467 ce qui fait que Ie rapport du carré du temps au cube de la distance moyenne varie tres peu en passant d’une plan?te a une autre. La masse de Jupiter, la pi us considerable de toutes, est effectivementnbsp;nioindre qu’un milli?rae de la masse du soleil. 244- C’cst pour cette raison que l’atlraction mu-tuelle des plan?tes ne produit que des perturbations, Ou trés lentes, on trés peu considerables, dans Ie mouvement elliptique du a Fattraction du soleil. En effet,nbsp;les masses de deux plan?tes étant m et la forcenbsp;??iotriee dirigée de Tune vers Fautre, est ex prim ée par ' , h la distance p ; la force accélératrice de /n fm provenant de Fattraction de rn^, sera done comme la distance p ne devient jamais trés petite par rapport a la distance r de m

au soleil, il s’ensuit quenbsp;Si est une trés petite fraction de M, Ie mouvementnbsp;de m produit par Fattraction solaire devra étre fortnbsp;peu modifié par Fattraction de m^. Les perturbations planétaires peuvent done ?tre déterminées par la méthode de la variation des cons-tantes arbitraires, que nous avons expliquée précé-demment (n“ 229). Elles sont de deux esp?ces. Lesnbsp;Rues consistent en des inégalités périodiques généra-Icment trés petites, dont les périodes comprennentnbsp;des multiples peu considérables, en général, des ré-Volutions de la plan?te troublée et de la plan?te per-lurbatrice. Cependant, lorsque leurs moyens mou-Veniens approchent d’etre commensurables, ces périodes peuvent devenir beaucoup plus longues, et3o..



468 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. les inegalités beaucoup plus sensibles, Ainsi, les moyens mouvemens de Saturne et de Jupiter ëtantnbsp;a peu prés entre eux comme 2 et 5, Laplace a trouvenbsp;qu’il rësulte de l’attraction muluelle de ces deux pla'nbsp;n?tes, une inégalité dont la période est de 929 aus, etnbsp;dont Ie maximum est d’environ 48' dans la longitudenbsp;de Saturne, et d’a peu prés 20' dans celle de Jupiter. Les autres perturbations des planétes sont: iquot;, les mouvemens progress!fs du périhélie et des noeuds denbsp;leurs orbites, dans lesquels ces points parcourent la cir-conférence entiére, en des temps extrémement longsnbsp;qui peuvent surpasser un millier de siécles; 2°. lesnbsp;variations séculaires qui affectent les excentricitésnbsp;et les inclinaisons de ces orbites, ainsi

que les longitudes moyennes des planétes, dont les périodes sontnbsp;semblables aux précédentes, et dont les amplitudes,nbsp;peu considérables , ne sont pas encore bien connues. Mais tandis que ces divers élémens du mouvement elliptlque varient simultanément en vertu de l’attrac-tion planétaire, ii est trés remarquable que cette forcenbsp;n’al tére aucunement les grands axes des orbites et lesnbsp;moyens mouvemens des planétes, qui seront lesnbsp;m?mes a toutes les époques, ainsi que les temps desnbsp;revolutions, liés aux grands axes par l’équation (i)*nbsp;Toutefois, les variations séculaires des longitudesnbsp;moyennes en produisent de semblables dans les in-tervalles entre deux retours consécutifs a un m?menbsp;point fixeelles sont insensibles dans Ie mouvementnbsp;des planétes, mais

non pas dans celui des satellites,nbsp;et particuliéi'ement dans Ie mouvement de la lune,nbsp;qui s’accélére, pourc-ette raison, de si?cle en si?cle.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;469 La force accélératrice qui provient de l’attraction u’une plan?te ?n^siir uiie autre plan?le/n, étant indé-pendante de la masse m et proportionnelle a la massenbsp;on concoit que les perturbation^ dues a cette forcenbsp;et obsei’vées dans Ie mouvement de m autour du so-leil, peuvent servir a determiner Ie rapport de lanbsp;ttiasse rtii a celle de eet astre. Ainsi, par exemple,nbsp;d’apr?sla grande inégalité de Saturne, produite parnbsp;1’action de Jupiter, on a trouvé la masse de cettenbsp;dei’ni?re plan?te égale a 7^0 de celle du soleil. Nousnbsp;mdiquerons tout a l’heure un autre mojen de cal-culer la masse des plan?tes, quand elles sont accom-paguécs dun ou plusieurs satellites. Les com?tes, a cause de la petitesse de leurs masses, öe

produisent aucun effet appréciable sur les plan?tes;nbsp;niais leurs mouvemens sont troublés par les attractionsnbsp;planétaires, et l’on détermine aussi par la méthodenbsp;du n” 229, leurs perturbations, qui influent considéra-blement sur les époques de la réapparition de chaquenbsp;com?te, c’est-a-dire, sur l’intervalle de temps comprisnbsp;Cötre deux passages consécutifs a son périhélie. 245. Soient m' et m les masses d’un satellite et de sa plan?te, et r' la distance de leurs centres; la forcenbsp;löotrice du satellite, dirigée vers Ie centre de la pla- X nbsp;nbsp;nbsp;.nbsp;nbsp;nbsp;nbsp;. ,nbsp;nbsp;nbsp;nbsp;fm m' ynbsp;nbsp;nbsp;nbsp;,. Rete , sera aussi exprimee par - nbsp;nbsp;nbsp;- a cette distance ^; Ie coefficient ƒ étant Ie rnéme que précédemment. Öans son mouvement apparent

autour de la plan?te,nbsp;la force accélératrice du satellite aura pour expression p-,, en faisant u' cr: j ( Hl -}jr )• nbsp;nbsp;nbsp;'



470 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Je représenterai par a' Ie demi-grand axe de Tor-bite du satellite, et paf T' Ie temps de sa revolution; en appliquant l’équatioa (i) a son mouvement, on aura T*“ _ a'’ nbsp;nbsp;nbsp;ƒ (nbsp;nbsp;nbsp;nbsp; m! )’ et si I on divise ces deux equations membre a membre, afin d eliminer Ie coefficient ƒ, il en rësultera m -f-M w ? Or, si l’on excepte la lune, les masses des satellites sont tres petites par rapport a celles de leurs plan?tesnbsp;respectives : la masse dun satellite de Jupiter, parnbsp;exemple, n’est pas un dix-milll?me de celle de cettenbsp;plan?te; on peut done mettre 7nk la place de tn 7nnbsp;danscette derni?re equation j et comme a, a', T, T^nbsp;sont des données de l’observation , elle pourra servir anbsp;determiner Ie rapport de m a

M. C’est de cette ma-ni?re que Newton a trouve’ pour la masse de Jupitei’; de celle du soleil; ce qui diff?re peu de la fraction -7-5 qn’on a obtenue depuis par un autre mojen-2/^6. L’attraction mutuelle des satellites d’utic m?me plan?te, quand elle en a plusieurs, et Tin?ga-lité d’action du soleil sur chaque satellite et sur sanbsp;plan?te , produisent dans les mouvemens ellipticnbsp;ques des satellites , des perturbations analogues ^nbsp;celles que nous venons d’indiquer pour les plan?tes-Les perturbations provenant de l’action re'ciproquenbsp;des satellites, font connaitre les rapports de leursnbsp;masses a celle de la plan?te, dont l’attraction prodndnbsp;leur mouvement elliptique. Mais ce mojen manquant



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;471 pour la lune, on y supplée par d’aulres considéra-Pons, parmi lesquelles je vais indiquer Faction de oe satellite sur les eaux de la mer. Soient C ( Gg. 56) Ie centre de la terre, A celui de lalune,Mun pointquelconque du sphéro?de terrestre;nbsp;faisons CA = a, AM = p, CM = r, et appelons A 1’angle ACM j nous aurons p‘ := 0.“ — 2Cir cos A -f- r*; et si nous abaissons du point M la perpendiculaire MB sur la droite AC, nous aurons aussi MB = rsinA, AB = a — rcosA. Au point M, la force accélératrice provenant de Fattraction de la lune et dirigée suivant MA, aura pour valeur en dësignant par m' la masse du .'I' i Satellite, et par ƒ Ie m?me coefficient que précédem-Oaent. I^es composantes de cetle force suivant la pei’-pendiculaire MB et la parall?le MD a la droite AC, seront done

fm'r sin A fm' dt. ym'rcos A f ' f nbsp;nbsp;nbsp;f Je substitue la valeur de p dans ces quantités; et ?a plus grande valeur de r, c’est-a-dire, Ie rayon dunbsp;globe terrestre, étant, a peupr?s, un soixanti?menbsp;de a , je ne'glige Ie carré de r; en faisant alors fm'r sin A — (p'^ ?“ nbsp;nbsp;nbsp;^ 'nbsp;nbsp;nbsp;nbsp;ar seront les deux composantes de Fattraction lunaire ser



473 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. •f ' lt;p nbsp;nbsp;nbsp; lt;p'. Tous les points de la terre sont done C6 sollicltés parall?lement a CA par une force constante et égale gt; et, en outre, par des forces lt;p et ((gt;' dont la résultante varie en grandeur et en direction) d’un point M a un autre, et est nulle au centre C. / f Or, il est évident qu’en vertu de la force'^, la masse enti?re de la terre se portera vers la lune, d’un mouvement commun a toutes ses parties, sans que les points de la partie fluide changent de position relative;nbsp;e’est done aux forces lt;p et lt;p' appliquées aux differensnbsp;points de la mer, que seront dus le Jluoc et le refluxnbsp;produits par Taction de la lune. La masse du soleil étant M, et a sa distance a la terre, si Ton désigne, en outre, par /4,nbsp;que deviennent

A, (p, lt;p', relativement a cet astre;nbsp;on aura’ de m?me ,_ ifWr cos ft pour les composantes de la force provenant de Taction du soleil, qui concourent au phénom?ne des marées. En les comparant aux forces cp et lt;p', on vodnbsp;que pour un point de la mer, dont le rayon vecteui’nbsp;r fait le m?me angle A ou avec le rayon vecteur denbsp;la lune ou du soleil, les actions de ces deux astres,nbsp;qui produisent les oscillations de la mer, sont entrenbsp;elles comme leurs masses, divisées par le cube denbsp;leurs distances au centre de la terre. Or, on concodnbsp;que, toutes choses d’ailleurs égales, les grandeurs dc



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;4^3 ces oscillations doivent ?tre entre elles comme les forces correspondantes; si done on. désigne par co Ienbsp;i'apport de la marëe lunaire a la inarée solaire, dansnbsp;On m?me lieu de la terre et pour des positions sem-tlables des deux astres, on auranbsp;equation dans laquelle on prendra pour a et a lesnbsp;distances moyennes de la lune et du soleil a la terre,nbsp;et d’oü l’on tire m' nbsp;nbsp;nbsp;a? M— nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;O) -3 —, m nbsp;nbsp;nbsp;a^m en appelant in la masse de la terre. D’apr?s les lois difFérentes que suivent les marées lunaire et solaire, on peut, effeclivement, distinguernbsp;les unes des autres, et determiner leur rapport ennbsp;ehaque lieu de la terre. La moyenne d’un grandnbsp;Uombre dobservations, faites dans

Ie port de Brest,nbsp;donne (1) ct) nbsp;nbsp;nbsp;2,3553, pour la valeur de ce rapport. La distance a est, a trés peu prés, 400 fois la distance cl, et la masse M,nbsp;comme on Ie verra tout a l’heure, aussi a trés peunbsp;prés, 355ooo fois la masse m. Au moyen de ces va-leurs, on trouve, d’aprés la formule précédente, lanbsp;tUasse de la lune égale a ^ de celle de la terre. Indépendamment des oscillations de la partie fluide 1 Mécanique celeste, tome V, page 206.



474 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. de la terre, les actions du soleil et de la lune produi-sent encore, dans Ie mouvement du sphëro?de ter-restre autour de son centre de gravité, a raison de sa non-sphëricitë, des perturbations que nous feroosnbsp;connaltre lorsqu’il sera question du mouvement denbsp;i’Otation d’un corps solide. 247- On peut remarquer que la composante des forces (p et cp', suivant Ie prolongement ME du rayonnbsp;CM, est (p' cosA — lt;p sin A; en sorte que sa valeur est (2 cos“ A C’est la diminution de la pesanteur au point M, pro-duite par Faction de la lune. Or, en supposant que M appartienne a la surface de la terre, et désignant pai’nbsp;g la gravité en ce point, on a aussi fin = gr^, a ti'?snbsp;peu prés; d’ailleurs, Ie maximum de 2C0s“A — sin”Anbsp;répond

a A=o, et est égal a 2. La plus grandenbsp;valeur de cetle diminution de pesanteur sera donc ; quantité a peu prés égale a un huit-millioni?me de g, en prenant 60 pour Ie rapport Pour que Fin- fluence de Faction lunaire sur la longueur du pen' dule a secondes fut appréciable, il faudrait done pou'nbsp;voir porter Fexactitude jusqu’a la seconde décimalnnbsp;au-dela des cent-milli?mes, oü Fon s’arr?te ordinaire'nbsp;ment dans la mesure de sa longueur. Cette influencenbsp;produirait, dans la raesure du temps, une inégalité re-glée sur Ie mouvement de la lune, dont Ie maximin^^nbsp;ne s’éleverait qu’a un demi-centiéme de seconde ennbsp;un jour.



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;475 248. Abstraction faite de la foi’ce centrifuge due a rotation de la terrc, la pesanteur que nous obser-''ons a sa surface est la résultante des attractionsnbsp;^xercées par tous les points du sphéro?de sur chaquenbsp;point materiel, laquelle résultante ne dépend que denbsp;position et de la masse de ce point, et nullementnbsp;la nature du corps auquel il appartient; c’est, ennbsp;efFet, ce que l’expérience a pleinement confirmé.nbsp;L’intensité de cette force doit diminuer a mesurenbsp;lt;?u’on s’él?ve au-dessus de la surface de la terre; etnbsp;o est aussi ce qui résulte des observations du pendule,nbsp;faites a différentes hauteurs. De plus, la pesanteurnbsp;terrestre, diminuée dans Ie rapport du carré dunbsp;fayon de la terre au carré du rayon de l’orbile lunaire, doit ?tre la

force accélératrice qui retient lanbsp;^?ne dans son orbite. Or, la distance du satellitenbsp;otant, a peu pres, 60 fois ie rayon de la terre, ilnbsp;^ensuit que la lune, si elle n’avait aucune vitesse,nbsp;devrait tomber vers la terre, de la m?me quantité ennbsp;nne minute qu’un corps quelconque, dans Ie vide ,nbsp;nii une seconde a la surface de la terre. Cette quantité n’est autre chose que Ie sinus verse de l’arcnbsp;^ne la lune décrit sur son orbite en une minute ,nbsp;a tres peu pres, Ie carré de eet are dlvisé parnbsp;^0 diam?tre de cette courbe; et comme la clrcon-férence de l’orbite est Go fois celle de la terre, onnbsp;On conclut que la quantité dont il s’agit est égale a 4o millions de metres, multipliés par gt; on dé- S’gnant par n Ie nombre do minutes que contieut Une révolution lunaire. II faut done, d’apr?s la va-



4^6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. leur de la gravité g qu’on a trouvée par rexpe-rience du pendule, que ce produit soit a tres peo prés égal a 4“j90; on trouve, effectivement, 4“?^^nbsp;pour sa valeur, en observant que n = 5g343.nbsp;dif?’érence serait encore moindre , en ayant égard anbsp;diverses circonstances dont nous avons fait abstraction pour simplifier la demonstration. La pesanteur terrestre est done un cas particulier de l’attraction universelle; et, pour cette raison gt;nbsp;l’on appelle aussi cette force générale la pesanteurnbsp;OU la gravitation universelle. 249quot; A cause que la terre s’écarte peu de la forme sphérique, l’attraction qu’elle exerce sur un point fm de sa surface est a peu pres comme celle d’une sphere, en désignant par m sa masse, par r son rayon, et par J Ie

coefficient de l’attraction universelle. Cette valeur approchée doit ?tre tout-a-fai*^nbsp;exacte pour les points appartenant a un certain pU'nbsp;rallhle; et, d’apr?s la théorie de l’attraction des sphe-ro?des peu différens d’une sphere, ce parall?le estnbsp;celui dont Ie carré du sinus de la latitude est Sui’nbsp;ce parall?le, la pesanteur a pour mesure 9“,7938^nbsp;(n“ igS); mais, pour l’égaler a l’attraction terrestre,nbsp;il faut préalablement l’augmenter de la composantenbsp;verticale de la force centrifuge, laquelle composante est égale, sous ce parall?le, a la fraction 3-^ de 1* gravité (nquot; 178). Done, en faisant g = (9quot;479586) (i 3^) = 9”,81645,



0' DTNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;477 pourra regarder cette valeur de la gravité, ainsi ^?iodifiée, comme égale a Fattraction de la terre, etnbsp;poser Féquation frn8 = En la multipHant membre a membre par Féqua-*’on (i) du n° 243, appliquée au mouvement de la ^orre autour du soleil, on en conclutnbsp;•Orniule qui va servir a determiner Ie rapport de lanbsp;Riasse de la terre a celle du soleil. Si Pon concoit un triangle rectangle qui ait pour base Ie rayon de la terre, et pour hauteur sa distancenbsp;soleil, le petit angle oppose a la base est la paral-du soleil, que Fon determine directement parnbsp;observations astronomiques, et que Fon peutnbsp;^üssi déduire d’une certaine inégalité produite dansnbsp;^0 mouvement de la lune par Faction du soleil, quenbsp;^on appelle Finégalité parallactique. La

grandeur denbsp;parallaxe varie avec le rayon de la terre et sonnbsp;^loignement du soleil auxquels elle repond; pour lanbsp;'^'Stance moyenne a et pour le rayon r qui aboutitnbsp;parallele dont le sinus de la latitude est \/a, sanbsp;^^leur est 8quot;,60. On a, par consequent, ^ = tang 8quot;, 60, a = (23g84)/’. S nbsp;nbsp;nbsp;A ous ce meme parallele, et en prenant pour * ^pktissement de la terre, on a r = 6364551“, ii'l



4-j8 nbsp;nbsp;nbsp;traité de MÉCANIQUE. pour son rayon. Le temps de sa révolution autour du soleil, exprimé en secondes, est T = (86400) (365,256574). Au moyen de ces valeurs et de celle de g, qui sup' pose aussi qu’on a pris la seconde pour unite denbsp;temps, on trouve 354592' aSo. Le soleil est une sphere d’un rayon égal * 110 fois celui de la terre; on cormait done le rapportnbsp;des volumes Je ces deux corps et celui de leurs masses Jnbsp;d’oii l’on conclut immédiatement le rapport de leurSnbsp;densités moyennes : celle du soleil est, a peu prés gt;nbsp;le quart de la densité de la terre. A la surface de eet astre, l’attraction est expi’i' mee parnbsp;en appelant R son rayon. A cause de n nbsp;nbsp;nbsp;Z'” R = nor, g — cette quantité est la rn?me chose que g-M (i io)“m ’ et elle a pour valeur

{-2^,5) g, d’apr?s celle de —. La durée de la rotation du soleil autour de sow m axe étant de 25gt;,5, la force centrifuge a son équateuf n est que ie sixi?me de cette force a Tequateur de 1^



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;4^9 terre. En négligeant done la diminution qu’elle pro-düit dans la pesanteur a la surface du soleil, on voit Ie poids d’un corps a cette surface est 29 fois etnbsp;miemie Ie poids du rn?me corps a la surface de lanbsp;^erre , et que les corps y parcourent a peu présnbsp;*35 metres dans la premi?re seconde de leur chute.nbsp;En appliquant successivement l’?quation (i) dunbsp;245 a la terre et a une autre plan?te, et supposantnbsp;'lue les quantit?s in, a, T, relatives a la terre, de-^lennent m,, a,, T,, par rapport a la plan?te, on ennbsp;*^onclura 77Zj m par 1 elimination de ƒ. Connaissant la valeur de a par l’observation de la parallaxe solaire, ou autre-iRent, ainsi que la masse in de la terre et la dure'e Tnbsp;de l’année syd?rale, cette equation servira a déter-Riiner la valeur

du demi-grand axe a, d’une plan?tenbsp;quelconque, loi’sque sa masse m, et Ie temps T, de sanbsp;''evolution seront donnés. Le procédé du n° 240nbsp;Pour determiner cette masse, suppose seulement qu’onnbsp;eonriaisse une valeur approchée du demi-grand axe. 251. L’attraction exercée a la surface de la terre Par une masse considérable, telle qu’une haute mon-tagne, fera dévier les corps pesans de la directionnbsp;''erticale, et le prolongement du fil a plonib n’iranbsp;plus rencontre!’ le ciel au zénith. II s’en écartera ennbsp;Sens contraire des deux cótés opposés de la mon-tagne; en sorte que si tout est semblable de part etnbsp;d’autre, pour la forme de la montagne et pour l’éloi-gQement du fil a plomb, la distance angulaire des



48o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. deux étoiles par lesquelles son prolougement ira passer, sera double de sa deviation. Cet effet a etc observe, par les astronomes, au Pérou et en Écosse; mais, a cause que les masses des plus hautes monta-gnes sont encore ti’?s petites, eu égard a la rnasse de lanbsp;terre, les deviations dont il s’agit sont aussi trés pcunbsp;considerables, et ne s’él?vent qu’a de petits nombresnbsp;de secondes. Voici un example du calcul de la deviation du fil a plomb, due a l’attraction d’une massenbsp;donnée. Soit A (fig. 5'j') Ie centre d’une sphere homogene, suspendue a l’extrémité d’un fil inextensible et inflexible, dont l’autre bout est attaché aru point fixe C;nbsp;soit aussi 0 Ie centre fixe d’une autre sphere homogene qui agit sur Ia premi?re. Le fil CA s’écartei’a

denbsp;la verticale CB sans sortir du plan passant par celtenbsp;droite et la ligne CO; et, dans sa position d’équi-libre, il faudra que la résultante du póids de la premi?re sph?re et de Fattraction de la seconde viennenbsp;passer par le point fixe C. Or, ces deux forces se-ront appliquées au point A , Fune suivant Ia verticale AD, Fautre suivant la droite AO; et elles ten-dront a faire tourner le fil CA en sens opposés aulournbsp;du point C. Pour que leur résultante passe par 1Žnbsp;point 0, il faudra done que leurs momens, par rapquot;nbsp;poi’t a ce m?me point, soient égaux (n° 46) J par conséquent, si 1’on appelle P et Q le poids de la premi?renbsp;sph?re et Fattraction totale de la seconde, et que I’onnbsp;désigne par p et q les pez’pendiculaires CE et CF,nbsp;abaissées du point C sur les

prolongemens denbsp;et de OA , on aura



DYNAMIQDE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;481 Vp ~ Qq, pour réquation d’ëquilibre qui devra servir a determiner Ia deviation inconuue BCA. J’appelle .x eet angle, y Tangle donné BCO , a et c les distances aussi données CA et CO, et lanbsp;distance inconnue AO; nous aurons = rt’ -f- c* — 2ac cos (y — x), et, en outre, ac sin('y - x) :lt;3SmX. * nbsp;nbsp;nbsp;asinfv—x) sinCOA =-q- J- nbsp;nbsp;nbsp;^ Appelons aussi in la masse de la terxe, ln^ celle de la sph?re mobile, in' celle de la sph?re attirante. En dë-signant toujours par y Ie coefficient de Taltractionnbsp;Rniverselle, et représentant par r Ie rajon de lanbsp;terre, les forces motrices P et Q auront pour valeurs Jmntt fm'm, et si f est la deusité moyenne de la terre, f' celle de la sph?re attirante, et r' son rayon, on aura aussi Au moyen de ces differentes valeurs,

Téquation Pp = se cbangera en celle-ci : sin X — nbsp;nbsp;nbsp;sin (y — x), oil il ne i’estera plus qu a mettre la valeur dey pour en déduire ensuite celle de x. I. nbsp;nbsp;nbsp;3i



483 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Je supposerai, ce qui a lieu généralement, la longueur CA du fil a plomb tres petite par rapport a Ia distance CO. En négligeant a par rapport a Cnbsp;dans les valeurs de j, on aura simplement = c ;nbsp;d’oü il résultera sin X frc’‘ sin (y — x) La densité p' et Ie rajon r' de la sphere attiranle restant les ni?mes, la valeur de x que l’on tirera denbsp;cette equation sera d’autant plus grande que la distance c sera plus petite, et que Tangle y approcheranbsp;davantage d’?tre un angle droit j et comine c ne peutnbsp;pas ?tre moindre que Ie rayon r', il s’ensuit qu’onnbsp;aura Ie maximum de deviation du fil a plomb quenbsp;puisse produire Tattraction d’une sphere donnëe, ennbsp;prenant c = r' et y = go°; ce qui réduit Téquationnbsp;prëcëdente a tang XLL r' Si

Ton suppose, par exemple, p' = p, et qu’on de-mande quel doit ?tre Ie rayon r' pour que la deviation X s’él?ve a une seconde, on aura r' =? r tang \'''t et, a cause que la circonférence 27rr de la teri'e est denbsp;4o millions de metres, il en résultera r'=:3o“,856...-Alnsi, une sphere homogene d’environ 3i metres denbsp;rayon, et d’une densité égale a la densité moyennenbsp;de la terre, ne produit qu’une deviation d’une seconde au plus dans la direction du fil a plomb; etnbsp;pour qu’elle la produise, il faut qu’elle touche Tex-trémité inférieure de ce fil, et que son centre soit



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;483 situé dans ]e plan horizontal passant par cette ex- Irémité. 252. Cette moyenne densité de la terre, conclue de la deviation du lil a plomb que produit l’attrac-lion des montagnes, a éte évaluée a quatre ou cinqnbsp;Ibis la densité de l’eau. Cavendish l’a trouvée égale anbsp;cinq fois et demie cette densité, en la déduisant denbsp;1’attraction exercée par deux globes de plomb denbsp;buit pouces anglais de diam?tre, qu’il a su rcndre sensible par Ie moyen de la balance de torsion. Sans en-trer ici dans tous les détails de cette belle expérience,nbsp;des diverses precautions qu’elle exige, et des calculsnbsp;qu’il faut faire pour en déduire un résultat exact , jenbsp;vais seulement indiquer les points principaux de cesnbsp;Calculs (^). La balance de torsion est I’instrument Ie

plus exact que nous ayons pour servir a la mesure des forcesnbsp;trés petites. Coulomb , a qui 1’invention en est due,nbsp;i’a surtout empJoyée a mesurer les forces d’attractionnbsp;ct de répulsion des corps électrisés; et, pour cettenbsp;raison, elle est aussi connue, en Physique, sous Ienbsp;uom de balance électrique. Elle consiste principale-Uient en un lil métallique trés délié, vertical, attachénbsp;^ un point fixe, et a l’extrémité duquel est suspendunbsp;Rn levier horizontal. Supposons ce levier formé d’unenbsp;bge trés mince ACA' (fig. 58 ), partagée en deuxnbsp;parties égales a son point d’attache C, et terminée (?*‘) On trouve dans le 17' cahier du Journal de l’?coIe J^oljtechnique une traduction exacte du mémoire de Cavendish.



484 nbsp;nbsp;nbsp;TRAITÉ DE MÉGAISIQUE. par deux spheres d’un petit diam?tre, dont les centres sont A et A'. Du point C comrae centre, et d’un rayon égal a CA, décrivons Ie eerde horizontalnbsp;BAB'A', dont nous diviserons la circonférence en unnbsp;grand nombre de parties égales. Lorsque Ie leviernbsp;tournera autour du point C, ses extrémités A et A^nbsp;parcourront cette circonférence, et les points de division auxquels ils répondront a chaque instant fe-ront connaitre les arcs qu’ils auront décrits. Tant quenbsp;Ie fil de suspension qui aboutit au point C n’est pasnbsp;tordu, Ie leviet’ reste en repos dans une certaine position. Je suppose qu’il réponde alors a la ligne BCB';nbsp;si l’on vient a Tecarter de cette ligne, pour Ie mettrenbsp;dans une autre position quelconque ACA', Ie fil

denbsp;suspension sera tordu sur lui-m?me, et cette torsionnbsp;tendra a ramener ce levier vers la ligne BCB'. Pournbsp;Ie retenir dans la direction ACA', supposons que l’onnbsp;applique a ses deux extrémités des forces égales etnbsp;contraires, dirigées dans Ie plan horizontal, et per-pendiculaires a sa longueur; la valeur commune denbsp;ces deux forces sera la mesure de la force de torsionnbsp;qui leur fait équilibre. Or, les expériences de Coulomb ont prouvé que Ie fil de suspension restant Ienbsp;m?me, cette force de torsion est proportionnelle anbsp;Tangle BCA; en prenant done Tangle droit pournbsp;unite, appelant h la force de torsion qui répond ?nbsp;cet angle, et désignant par Ö Tangle BCA, cettenbsp;force, dans la position ACA' du levier, sera égalenbsp;a /zQ : ainsi, dans cette position, la

torsion du fi^nbsp;de Suspension équivaudra a deux forces égales a h^tnbsp;horizoulales, perpeudiculaires a ACA', appliquées



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;485 8UX points A et A', et tendantes a ramener Ie le-vier a la ligne de repos BCB'. Cela posé, approchons du levier deux sph?res ho-niog?nes d’une m?me mati?re, d’un m?me diam?-tre, et symétriquement placées de part et d’autre de la ligne BCB^ Soient 0 et 0^ leurs centres si-tués dans Ie plan horizontal qui contient Ie levier,nbsp;a égale distance de C , et sur une droite OCO^ menéenbsp;par ce point. L’attraction de ces deux corps va écar-ter Ie levier de la ligne BCB'; et, ;) cause que toutnbsp;est semblable autour du centre C, la droite ACA'nbsp;tournera autour de ce point, qui restera immobile.nbsp;A mesure que Ie levier s’écartera de la ligne denbsp;repos, la force de torsion augmentera. II existe unenbsp;position dans laquelle cefte force ferait équilibre

anbsp;l’attraction des deux sph?res; mais comrae Ie leviernbsp;atteint cette position avec une vitesse acquise, il lanbsp;dépasse, et il oscille , de part et d’autre, a la ma-tii?re d’un pendule horizontal. L’observation faitnbsp;connaitre la durée d’une oscillation enti?re. En comparant la longueur de ce pendule a celle d’un pendule ordinaire qui oscillerait dans Ie m?me temps,nbsp;on en conclut Ie rapport de la force d’attraction denbsp;ohaque sphere a Ia pesanteur; et, par suite, on anbsp;Ie rapport de la masse de cette sphere a celle denbsp;la terre. L’équation qui sert a determiner ce rapport est facile a former, ainsi qu’on va Ie voir. 253. Les deux sph?res mobiles dont les centres sont en A et A', étant sollicitées par les m?mes forces, etnbsp;ajant Ie m?me mouvement autour du point fixe C,nbsp;il sufFira de considérer Ie

mouvement du centre de



486 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Tune d’elles, du poiut A, par exemple; soient done comme dans Ie probl?me precedent, CO = BCO = y, CA a. appelons m' la masse de la sphere attirante dont Ie centre est en O , et/ Ie coefficient de l’attraction uni-verselle; au bout d’un temps quelconque t, désignonsnbsp;par 6 Tangle ACB, et par z la distance AO, nousnbsp;aurons 0“ — 2ac cos (^y — ö ); et la force accélératrice provenant de l’attraction di- rigée sulvant AO sera Je la decompose en deuX autres forces, Tune dirigée suivant Ie prolongemeot de CA, et Tautre perpendiculaire a CA. Cette derni?re ftTt composante sera egale nbsp;nbsp;nbsp;sin CAO, c’est-a-dii’e, a sin ( 5/ — 6 ), en y mettant pour sin CAO sa valeur déduite du triangle COA. Si Ton retranche de cette composante tangente a la

trajectoire, la forcenbsp;de torsion /zö qui lui est directement opposée, et s'nbsp;Ton observe que Tarc BA décrit par Ie mobile est ega^ a flö , on aura •^3- sin ( y — e ) — Ztö , pour Téquatlon du mouvement ( n“ iSa ). L’attraction de la masse m' etant une tres petite force, Tangle 0 dont elle écarté Ie Ie vier ACA' de sa



tf. DYNAMIQUE, PREMI?RE PARTIE. ligne de repos sera tres petit. En appelant b la distance BO, OU la valeur de z qui répond a ö = o, denbsp;sorte qu’on ait -f- cŽ — zac cos y, et développant suivant les puissance de G, il vient ^ z= nbsp;nbsp;nbsp;— [(““ o cos T/ — 7.ac—acsin°y] ^ -f-etc. Si done , on fait, pour abre'ger , fm’c [(agt;4- c*) COS y — zac — ac sin*;.] lt;-p- h—g', fm'c sin ~ et qu’on négligé les puissances de G supérieures a la premi?re , l’équation du mouvement deviendra _ f K? nbsp;nbsp;nbsp;(r\ ^ 3? = d’oü l’on tire, en intégrant, G = ^ -f- A: cos nbsp;nbsp;nbsp;^^nbsp;nbsp;nbsp;nbsp;^ ) i A et k’ étant les deux constantes arbitraires. D’apr?s cette valeur de 6, Ie plus petit et Ie plus grand écart du levier ACA', a partir de la ligne BCB',nbsp;seront ? ^ et ? — A; et, si l’on tire la ligne DCD',nbsp;lelie que

Tangle BCD solt égal 'a ë, Ie levier fera, denbsp;part et d’autre de cette droite, des oscillations égalesnbsp;6t isochrones dont Tamplltude sera la constante k:



488 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. on déterminera Tangle ? par Texpérience, en mesu-rant Ie plus petit et Ie plus grand écart du levier, et prenant, pour eet angle, la demi-somme de ces va-leurs extremes de ö. La droite DCD' qui répond a 6=^nbsp;est la position du levier dans laquelle il demeureraitnbsp;en équilibre , s’il y parvenait sans vitesse acquise. Lanbsp;durée de chaque oscillation enti?re du levier, de partnbsp;et d’autre de cette ligne, sera Ie temps pendant le- quel Tangle t nbsp;nbsp;nbsp;augmentera de 180°; en Ie désignant par T, on aura done et cette durée T sera aussi donnée par Tobservation. Maintenant, si Ton appelle g la gravité, et l la longueur du pendule simple qui fait ses oscillationsnbsp;infiniraent petites dans Ie temps T, on a ( n° 182 )tT = - s/]: on aura done ga

par conséquent, a cause de nous aurons, finalement. CaP m clr^ sin y ’’ m étant la masse de la terre et r son rayon.



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;489 Tout es les quantités contenues dans cette formule sont connues dans chaque experience; elle serviranbsp;done a calculer Ie rapport de la masse m' a celle denbsp;la terre; et connaissant, en outre, les volumes de cesnbsp;deux corps et la densité de m', on en conclura la den-sité moyenne de la terre. 254- On démontre, dans la Mécanique celeste, que pour la stabilité de l’équilibre de la mer, il estnbsp;Re'cessaire et il suffit que la densite' moyenne de lanbsp;terre surpasse celle de l’eau. C’est paree que cettenbsp;condition est remplie, que les forces provenant desnbsp;actions simultanées du soleil et de la lune ne produi-sent que de petites oscillations ; si elle ne l’e'tait pas,nbsp;et que la terre, par exemple, en conservant sa densité moyenne, fut recouverte par

une mer de mer-cure, Faction des moindres forces étrang?res aunbsp;sphéro?de terrestre, produirait, dans ce fluide, unnbsp;i^ouvement progressif, de sorte que la mer, aunbsp;lieu d’osciller, parcourrait la surface enti?re de lanbsp;terre. On prouve aussi, par diverses considerations, que la densité des couches concentriques du sphéro?denbsp;terrestre doit croilre en allant de la surface au centre;nbsp;d’ou il résulte que sa densité moyenne doit surpassernbsp;celle de la couebe superficielle; condition qui senbsp;trouve effectivement remplie ; car si Fon excepte lesnbsp;métaux, qui sont en petite quantité dans cette couche.nbsp;les densités des autres mati?res dont elle est formée,nbsp;sont toutes beaucoup moindres que cinq fois et de-mie la densité de Feau. Mais il importe d’observernbsp;que eet accroissement de

densité ne suppose pas Fexisgt;



490 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. tence de mati?res enti?rement differentes de celles que nous vojons a la surface , et dont la densltenbsp;propre serait excesslvement grande: on peut admettrenbsp;que toutes les couches de la terre sont formées d’unenbsp;m?me mati?re, un peu compressible, ou d’un mélange de differentes mati?res, comme a sa surface;nbsp;et dans cette hypothese, qui parait la plus naturelle ,nbsp;leur accroissement de densité serait dü a la condensation produite, dans chaque couche, par la pressionnbsp;des couches supérieures, qui va en augmentant denbsp;la surface au centre. Dans l’intérieur de la terre, la loi de l’attraction dépend de la loi inconnue des densités; en dehors,nbsp;elle varie sur Ie prolongement de chaque rayon, anbsp;peu pres en raison inverse du

carré de la distancenbsp;au centre; et d’un rayon a un autre, elle éprouve ennbsp;m?me temps une variation proportionnelle au carrénbsp;du cosinus de Tangle que chaque rayon fait avec Taxenbsp;de figure du sphéro?de terrestre. II résulte de cettenbsp;derni?re variation qu’a égale distance du centre de lanbsp;terre , la force appliquée au centre de la lune et pro-venant de i’attraction de ce sphéro?de, n’est pas lanbsp;m?me dans toutes les directions du rayon vecteur;nbsp;en sorte qu’on peut considérer cette force commenbsp;étant composée de deux autres, Tune provenant denbsp;la partie sphérique de la terre et qui est constante ounbsp;ne varie qu’a raison de la distance a son centre, Tautrenbsp;due au renflenient de la terre a Téquateur et quinbsp;varie avec la direction du rayon par rapport a

Taxenbsp;des poles. Laplace a déterminé la petite inégalité ennbsp;longitude et en latitude, que cette seconde force



DYNAMIQÜE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;491 produit dans Ie mouvement de la lune 5 on concoit C[ue sa grandeur dolt dépendre de l’applatissementnbsp;de la terre; et en la comparant a celle que l’ob-servatioii a donnée , on en conclut un applatisse-nienty—, peu différent de celui qui résulte de l’en-semble des mesnres du pendule et des degrés dunbsp;ttiéridien. A la surface de la terre, la variation de la pesanteur provenant de celle de rattraction et de la force centrifuge , suit la m?me loi qu’a une distance quelconquenbsp;du centre , c’est-a-dire qu’elle est proportionnelle,nbsp;comme nous l’avons déja dit ( n° 178 ), au carré dunbsp;cosinus de Ia latitude. Mais pour vérifier cette loi parnbsp;les mesures du pendule a secondes, il faut que lesnbsp;oscillations ne soient pas observées pres d’une mon-fagne ;

car, en m?me lemps que la composante horizontale de son attraction écarté Ie pendule de Ianbsp;Verticale, dans sa position d’équilibre, la composantenbsp;Verticale de cette force diminue la pesanteur, et,nbsp;oonséquemment, la longueur du pendule simple. Ennbsp;évitant cette cause d’anomalie, on Irouve encorenbsp;qu’en certains lieux la longueur du pendule a secondes s’écarte de la loi de variation donnée par lanbsp;théorie : ce qu’on dolt attribuer a ce qu’en ces lieux ,nbsp;la densité du terrein, dans une étendue et une pro-londeur considerables, est plus grande ou plus petitenbsp;que la densité générale de la couche superficielle;nbsp;d’oü il résulte une augmentation ou une diminutionnbsp;de la pesanteur totale, et, par conséquent, de lanbsp;longueur du pendule simple, qui est proportionnellenbsp;a son

intensité. Le pendule est done aussi uu instru-



493 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. ment de Ge'ologie, qui annonce, par ses anomalies, des variations d’une grande étendue dans la naturenbsp;du sol. Au reste, il faut observer que la lol du décroisse-ment de la pesanteur, proportiounel au carré du cosinus de la latitude , en allaut du pole a l’équateur, suppose qu’on prend pour la surface de la terre Ienbsp;prolongement du niveau des mers; et comme lesnbsp;lieux des conlinens oü se font les observations s’él?-vent a des hauteurs différenles au-dessus de ce niveau,nbsp;il est nécessaire de rédulre les longueurs observées,nbsp;a celles qui auraient lieu a ce niveau-m?me surnbsp;chaque verticale. Cette reduction se fait ordinaire-ment en augmentant la pesanteur et la longueur dunbsp;pendule a secondes , dans Ie rapport du carré de

lanbsp;distance du lieu de l’observatlon au centre de la terre,nbsp;au carré de cette m?me distance diminuée de la hauteur de ce lieu au-dessus du niveau des mers; ce quinbsp;revienl a négliger l’attraction de la couche de terrenbsp;comprise entre la surface du continent et Ie prolon-gement de la surface des mers. On va voir, dans Ienbsp;numéro suivant, que cette correction est trop grandenbsp;de pres de moitié. 255. Soient AM'B ( fig. 5g ) la surface d’un continent,DAMBE Ie niveau des mers et son prolongement, et C Ie centre de la terre; soient aussi M' Ie lieu denbsp;l’observatioa, et M Ie point oü Ie rayon CM' rencontre ce prolongement; M'M sera la hauteur donbsp;point M au-dessus de la surface des mers, que jenbsp;représenterai par h, et qui sera donnée par un nivel-lernent ou par des mesures

barométrlques. Si M' était



DYNAMIQUE, PREMI?RE PARTIE. nbsp;nbsp;nbsp;493 tres voisin de la mer, la pesanteur pourrait ?tre un peu diminuée et sa direction un peu dérangée, a causenbsp;lt;}ue la densité de l’eau est moindre que celle du terrein; mais je supposerai que cela n’aitpas lieu, et jenbsp;supposerai aussi qu’autour du point M' la surface dunbsp;terrein soit horizontale ou sensiblement perpendiculaire au rayon CM', et que sa densité soit uniforme.nbsp;II s’agira de calculer Tattraction exercée au point M',nbsp;par la coiiche AM'BM, élevée au-dessus du niveaunbsp;des mers. Dans ce calcul, on poura faire abstractionnbsp;de la courbure de cette couche et de la variation denbsp;sou épaisseur, ou, autrement dit, on pourra consi-dérer l’épaisseur de cette couche comme constantenbsp;et égale a h, dans toute l’étendue oü son

attraction peut ?tre sensible. Je représenterai par c Ienbsp;rayon de cette étendue, et par p' la densité de lanbsp;couche. ?i, S *i| Cela posé, soit K un point quelconque de la couche attirante; désignons par zet j ses distances a la surface du terrein et au rayon CM'; et décrivons deuxnbsp;Surfaces cylindriques qui aient MM' pour axe com-Riun, et dont les rayons soienty^ etj-^dj. Le volumenbsp;compris entre ces deux surfaces aura ZTrjdj pournbsp;Igt;ase et dz pour hauteur; et si on le décompose ennbsp;anneaux horizontaux d’une épaisseur infinimentnbsp;petite, le volume de l’anneau qui répondra au pointnbsp;K sera i'Kjdjdz, et sa masse i'tt^ydjdz. L’attractionnbsp;de eet anueau sur un point matériel situé en M' senbsp;réduira a une force dirigée suivant MM', qui seranbsp;égale a la soinme des composantes verticales

des attractions de tous ses points; et comme, pour le



494 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQUE. point quelconque K, on a KM' = nbsp;nbsp;nbsp;cos KM'M =nbsp;nbsp;nbsp;nbsp;, la force accélératrice provenant de l’attraction de l’anneau entier, aura pour valeur ^Ttff'yzdj’dz (JT' ƒ étant tOTjjours Ie coefficient de l’attraction uni-verselle. Par conséquent, pour avoir l’attraction de la couche que nous considérons, il faudra intégrei’nbsp;cette formule depuis z = o jusqu’a z — h, et de-puis ƒ = o jusqu’a = c j ce qui donne k' = nbsp;nbsp;nbsp; h —nbsp;nbsp;nbsp;nbsp;k^), en désignant celte force par k'. Mais, en general; l’épaisseur verticale de la couche attirante est petite, eu égard a son rayon horizontal; si done onnbsp;négligé h* par rapport a c“, on aura simpleraent k' ~ T.Trf^'h. Soit k l’attraction exercée au point M par la pai’-tie de la terre qui se termine au

niveau des merS; et r Ie rayon CM; cette attraction au point M' de-viendra kr^(7 ly- En désignant la pesanteur et la composante verticale de la force centrifuge par g et ^ au point M, et



49^ DTNAMIQUE, PREMI?RE PARTJE, par g' et y' au point M', on aura done k' — y'. kr 7gt; ë =(r ;o“ Je développe Ie premier terme de g' suivant les puissances de h, puis je retranche g' de g, et je négligé Ie carré de h et la petite difference y*— y; il vient ë — ë — ~r--^ • A cause de la petitesse du facteur - , on peut faire 4: = g' dans Ie premier terme de cette formule; dans la petite quautité k', on peut aussi supposer4^p.A_ 3 nbsp;nbsp;nbsp;6 ’ ^n désignant par p la densité moyenne de la terre, et Prenant pour son volume; il en résultera alors k' par conséquent, , nbsp;nbsp;nbsp;/nbsp;nbsp;nbsp;nbsp;Inbsp;nbsp;nbsp;nbsp;2?nbsp;nbsp;nbsp;nbsp;Ofl A\g = g (^I -f - - — j. C’est done par Ie facteur compris entre les parentheses, el non par Ie facteur i nbsp;nbsp;nbsp;comme on a coutume de ie faire, qu’on devra

multiplier la pesan-teur g^ qui a lieu sur un continent, a une hauteur h ^n-dessus du niveau des mers, pour la réduire a ce



496 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. niveau. On peut, en general, évaluer p' a la moitie de p, et prendre, en consequence, i ^ pour ce facteur. A Paris, Télévation k du point de TObser-vatoire oü se trouve Ie barom?tre, est de 63 m?tres; d’oü il résulte que la gravité et la longueur du peo'nbsp;dule a secondes y sont moindres qu’au niveau desnbsp;mers, dans Ie rapport de l’unité a i,ooooi25.



\V^\V?^VV^lVV^lVV\(V^'^^W^W^,\\^lW^^.V^'Wgt;W^/VVX'V'V^'WVVV^'V\/VWWV\V\^^V\\'V\^V\XLITRE TROISI?ME.STATIftUE,SECONDE PARTIE.CHAPITRE PREMIER. DE L’EQUILIBRE D’ÜN CORPS SOLIDE- 256. II ny a pas de corps solide, dans la nature, qui Qe soit plus ou nioins compressible, et qui ne changenbsp;de forme lorsqu’il est soumis a des forces qui se fontnbsp;equilibre. Mais quand le corps solide que nous al-lons considerer aura pi’is la forme convenable, onnbsp;pourra regarder les points d’application des forcesnbsp;qui le sollicitent comme un systeme de forme invariable ; et c’est a cet état que repondront les coordon-Uees de ces difiërens points, qu’on supposera con-Uues, et qui entreront dans les equations d’e'quilibre. Soient M, M', Mquot;, etc., ce systeme de points ma-teriels. Pour

chaque point on aura sept quantiles a considerer, savoir, ses trols coordomiees, la forcenbsp;qui le sollicite, et les trois angles qui en deterrai- I.



498 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. nent la direction. Je de'sigaerai par P Ia force qui est appliquée au point M, et dont la direction sera lanbsp;droite MD (fig. 6o); par x, j, z, les trois coordon-ne'es OG, GH, HM, du point M, rapportées aux axesnbsp;rectangulaires Ox, 0/, Oz j et par o., €, y, les anquot;nbsp;gles aigus ou obtus que fait la droite MD, avec deSnbsp;parall?les a ces axes, menées par Ie point M. Relatiquot;nbsp;vement aux autres points M', Mquot;, etc., je représente-rai les quantités analogues par les ni?raes lettres avecnbsp;des accens. Cela posé, avant de chercher les conditions d’équi^ libre des forces données P, P', Pquot;, etc., nous allonsnbsp;transformer ce sjst?me de forces en trois autres, dontnbsp;l’un sera compose de foi’ces parall?les a l’axe Oz, unnbsp;autre de forces

parall?les a l’axe Oj' et dirigées dansnbsp;Ie plan des x et j', et Ie troisi?me de forces dirigéesnbsp;suivant l’axe Ox. Décomposons chacune des forces P, V'gt; Pquot;, etc. , sans changer son point d’application , ennbsp;trois forces parall?les aux axes des x, j, z; P cos at gt;nbsp;P' cos a', P'' cos atquot;, etc., seront les forces parall?les anbsp;1’axe Ox; P cos S, P' cos P^' cos bquot;, etc., les forcesnbsp;parall?les a Faxe Oj; P cos y, P' cos y', Pquot; cos yquot;, etc.?nbsp;les forces parall?les a 1’axe Oz; et Fon pourra d’abordnbsp;remplacer les forces données par ces trois groupes denbsp;forces parall?les. Sans altérer le syst?me de forces que Fon consi' d?re, ii est permis dappliquer en im m?me pointnbsp;deux forces égales et contraires. J’applique done annbsp;point M deux forces parall?les a Faxe Oz, égales

etnbsp;opposées, et que je représente par g et — g. Je coni'



STATIQIIE, SECONDE PARTTE. nbsp;nbsp;nbsp;499 pose la force g qui agit sulvant MC, avec la force P cos ?t, dirigée suivant MA parall?le a Ox; soientnbsp;Me la direction de leur résultante, et K Ie point ounbsp;son prolongement vient rencontrer Ie plan des x etnbsp;Je transporte son point d’application en ce point K,nbsp;puis je la decompose en deux forces parall?les auxnbsp;axes des x et z; ce qui reproduit les forces P cos ctnbsp;el g ; ma?s la force P cos a. est maintenant dirigéenbsp;Suivant la projection sur Ie plan des x et y, de sanbsp;premi?re direction; et la force g est appliquée, per-pendiculairement a ce plan, au point K de cetle projection, dont les coordonnées sont faciles a déter-Jiiiner. En effet, H étant la projection du point M sur Ie plan des x et^, ses coordonnées seront x et^, et Tonnbsp;aura j- et

x — KH pour celles du point K, puisquenbsp;ces deux points appartiennent a une m?me parall?lenbsp;a l’axe des x. Or, en considérant Ie rectangle KNMH,nbsp;dont Ia diagonale KM est la direction de Ia résultantenbsp;des forces g et P cos a, qui agissent suivant les cótésnbsp;KN et KH, on a la proportion P cos ct. HM KH d’oü Pon tire zP cos KH = a cause de HM = z. Les coordonnées du point d’application K de la force g, dans Ie plan des x et ^ ^ sont done zP cos ct j et X — 32..If



5oo nbsp;nbsp;nbsp;TRAITÉ DE MÉCAlvIQÜE. En opérant de la m?me mani?re sur les forces P cos C et —§?; la premi?re sera transporter dans Ienbsp;plan des oc et J suivant la projection de sa premi?renbsp;direction, et les coordonn?es du nouveau point d’ap-plication de la force — g, dans ce m?me plan,nbsp;seront cc. , zP cos S I - et On transportera par Ie m?me mojen toutes les forces P'cosa', Pquot;cos a!', etc., P'cos ?', Pquot;cos?quot;, etc.,nbsp;dans Ie plan des a: et j-; chacune de ces forces agiranbsp;suivant la projection sur ce plan, de sa direction primitive, qui pouvait ?tre au-dessus ou au-dessous denbsp;ce m?me plan; et Ton aura de plus autant de couplesnbsp;de forces g' et — g', gquot; et —gquot;, etc., qu’il j a denbsp;points M', Mquot;, etc. Les coordonn?es des points

d’apquot;nbsp;plication de ces derni?res forces, dans Ie plan des Xnbsp;etj, se de'duiront de celles qui répondentaux forcesnbsp;g et —g, en accentuant les lettres a:, j-, z, g, T, 258. Malntenant, par une semblable operation, faite sur les forces P cos a, P' cos a', Pquot; cos a,quot;, etc.,nbsp;parall?les a l’axe des x, et comprises dans Ie plan desnbsp;X et,jquot;, on les transformera en deux groupes denbsp;forces, dont Fun se com posera de forces parall?les anbsp;l’axe 0/, et 1’autre de forces dirig?es suivant l’axe Ox-Axnsi, au point H (fig. 6i), oü agit la force Pcos ^nbsp;suivant la direction HF, j’applique des forces parall?les a Oj et représente'es par h et — h; je composenbsp;la force k, dirig?e suivant HB, avec la force Pcos^Inbsp;je transports Ie point d’application de leur résultante



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;5oi au point Q, oü Ie prolongement de sa direction UK vient rencontrer l’axe Ojc; puis je la decompose sui-vant les directions rectangulaires Qx et Qjquot;, ce quinbsp;veproduit en ce point Q les forces P cos a et k. D’ail-leurs, on aura GQ : GH P cos a : k; et, a cause de OG = x et GH —J, on en conclura OQ JC j- Pcos a pour l’abscisse du point Q. La force P cos ct, dont la direction e'tait HF , sera done remplacée par une force P cos a, qui agiranbsp;suivant l’axe Ox, et deux forces ^ et — h, perpen-diculaires a eet axe, et appliquées a des points Q et Gnbsp;dont les positions sont connues. II en sera de m?menbsp;a 1’égard des autres forces P' cos al, Pquot; cos aquot;, etc.,nbsp;parall?les a l’axe des x, et comprises dans Ie plannbsp;des X et JE, qui seront aussi

remplacées par desnbsp;forces P^ cos a , Pquot; cos aquot;, etc., dirigées suivant lanbsp;droite Ox, et par des couples de forces h' et — A', Wnbsp;ct —etc., parall?les a l’axe O/. aSg. Nous vojons done que par ces deux ope'ra-dons successives, les forces données seront transfor-uiées, comme on l’avait dit, en trois groupes de forces, dirigées suivant l’axe des x, perpendiculaires anbsp;cet axe et comprises dans Ie plan des x et je , et perpendiculaires a ce plan. Dans cette transformation, la force quelconque P se trouvera remplacée par six autres forces, qui seront: !°. Les trois forces Pcos^, g, —g, parall?les a



TRAITÉ DE MÉCANIQÜE. 1’axe des z, et dont les points d’application sur Ie plan des jc el ont pour coordonnées rapportéesnbsp;aux axes Ox et Oj, savoir : celui de la premi?re, X //^ el j; celui de la deuxi?me, x— —etjr; celui de la troisi?rae, x et r -h S' 2°. Les deux forces P cos ? — /i et h, parall?les a l’axe desjT^ comprises dans Ie plan des x etj-, et qu’onnbsp;peut supposer appliquées a l’axe des x; la premi?renbsp;a la distance x du point 0 ^ et la seconde a la distance COS Ci h 3°. La force P cos ci, dirigée suivant l’axe des x, et dont on pourra transporter Ie point d’application en 0. 260. II est facile actuellement de former les equations d’équilibre des forces données P, P', Pquot;, etc., OU des trois groupes de forces qu’on vient de leurnbsp;substituer. On doit d’abord remarquer que eet équilibre ne peut

exister, a moins qu’il n’ait lieu séparémentnbsp;dans chacun de ces trois groupes de forces. En effet,nbsp;si les forces parall?les a l’axe des z ne se détruisaientnbsp;pas enlre elles, et que cependant I’equillbre de toulesnbsp;les forces donn?es fut possible, on pourrait, sansnbsp;troubler eet équilibre, rendre fixe une droite tracéenbsp;dans Ie plan des x et j-; mais alors les forces comprises dans ce plan seraient détruites, soit par’cenbsp;qu’elles renconlreraient eet axe fixe, soit a causenbsp;qu’elles lui seraient parall?les. On pourrait done lesnbsp;supprimer; et, cela fait, l’équilibre serait rompu ,nbsp;contre Tlijpoth?se, puisque j icn n’emp?cherait plus



5o3 STATIQUE, SECONDE PARTIB. les forces perpendiculaires au plan des et^ de faire tourner Ie corps solide autour de l’axe lixe; par conséquent, Féquiiibre est impossible tant que ces der-ni?res forces ne se détruisent pas séparément. Celanbsp;étant, on verra de m?me que Tequilibre ne peut existernbsp;entre les forces comprises dans Ie plan des jc et jquot;,nbsp;sans que les forces parall?les a l’axe des / ne se détruisent entre elles; car s’il avait lieu, et que cettenbsp;condition ne fut pas remplie, on fixerait un point denbsp;l’axe des x, qui détruirait toutes les forces dirigéesnbsp;suivant cette droite : rien n’emp?cherait plus lesnbsp;forces perpendiculaires a cette droite, de faire tournernbsp;Ie syst?me autour de ce point; en sorte que l’équilibrenbsp;se trouverait détruit par l’addition d’un point fixe, cenbsp;qui

serait absurde. o ? b que leur somme soit nulle; ce qui Cela posé, si Ie corps solide que nous considé-rons est enti?rement libre, il faudra d’abord (n'Sy), pour réquilibre des forces parall?les P cos y, P'cos y',nbsp;Pquot; cos y, etc., g et — g, g' et — g', gquot; etnbsp;—^nbsp;nbsp;nbsp;nbsp;etc donne P cos y -j- P' cos y' -f- Pquot; cos yquot; -f- etc. = o. 11 faudra, en outre, que les somiaies de leurs mo-Diens par rapport au plan des x et z et a celui des Jquot; et z, qui sont parall?les amices forces, soient aussinbsp;Huiles. Or, par rapport au premier plan, on a yP cos y -f. yp' cos y' -|- jy-quot;Pquot;cos yquot; -f- etc. , pour la somme des momens des forces P eos y , P' cos y', Pquot; cos yquot;, etc.; celle des momens des forces



5o4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. g; g'. gquot;gt; elc., est gy g'j' gVquot; etc. 5 et la sorame des momens des forces — g, — g', — gquot;, etc., a pour valeur / nbsp;nbsp;nbsp;, zPcosfv // I , z'P'cosC'n — g nbsp;nbsp;nbsp;— g (/ —- etc., d’apr?s les coordonne'es des points d’application de ces diverses forces. On a done, en ajoutant ces troisnbsp;sommes et réduisant, P( j^cos y-— z cos €) P'( ƒ cos y'—z'cos C') etc.= o; et Pon trouvera de m?me, en formant la somme des momens des m?mes forces, par i’apport au plan desnbsp;et z, et Pégalant a zéro, P(xcos^—zcosa) P'(a7'cosy—z'cos a') etc.=o. Quant aux forces P cos ? — h, P' cos ?' — h', Pquot;cos?quot; — hquot;, etc., et h, h', hquot;, etc., pai’all?les anbsp;1’axe des f, et toutes comprises dans Ie plan des xnbsp;eljquot;, il n’y aura que

deux equations d’équilibre (n° Sj)-il suffira que leur somme soit égale a zéro, ce quinbsp;donne P cos € P' cos €' Pquot; cos Cquot; etc. = o, et que la somme de leurs momens, par rapport au plan des j et z, soit aussi égale a zéro. Or, pafnbsp;rapport a ce plan, la somme des momens des premi?res forces est X (P cos C — x' (P' cos — h') etc. = o f



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;5o5 celie des momens des forces h , h!, li’, etc., est, en ni?me temps,4 nbsp;nbsp;nbsp;_ SLSp) 4'nbsp;nbsp;nbsp;nbsp;- Ki?li) etc., d’apr?s leurs distances a l’axe des j j par conse'quent, en egalant la somme totale a zéro, on aura P(jc cos C-—jco% a) P'(x'cos€'—'jy'cos ct') -J- etc.=: o. Enfin, pour 1’équillbre des forces dirigées sui-Vant l’axe des x, il suffira que leur somme soit iiulle; d’oii il résulte P cos a -]- P' cos a' -|- P^' cos a!' -f- etc. = o. Telles sont les six equations nécessaires et suÜi-santes pour Féqullibre d’un corps solide enti?re-nient libre et sollicité par des forces quelconques, qu’il s’agissait d’obtenir. 261. En faisant, pour abréger, P cos o, P' cos af Pquot; cos af' etc. = X, P cos C P' cos amp; Pquot; cos ?” 4- etc. = Y, P cos -J- P' cos y' Pquot; cos y”

etc. = Z, P(a?cos € —^jcosa) P'(x'cos?'—j'cosa')4-etc.=L , P( z cos a—xcos5/) P'(/cosa'—^2:'cos;!/')4-etc.=M, P( jr cos y — z cos ?)4-P'(j^Yos}/'—z'cos §') -j- etc. =N, ces équations d’équilibre deviendront X = o, Y=o, Z = o, L=:o, M = o, N = o. (i)nbsp;On peut rernarquer que ces quantités L, M, N, ainsi



5o6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. que Z, Y, X, se déduisent les unes des autres par Ia régie du n° 22. Ces six equations renfernient des conditions d’équi-libre communes a tons les sjsternes de points maté-riels; enti?rement libres; car, quelle que soit la nature d’un pareil sjst?me, ou Ia liaison mutuelle des pointsnbsp;qui Ie composent, il est évident qu’on ne troubleranbsp;pas leur équilibre en rendant leurs distances in-variables, sans changer leurs coordonnées, ni lesnbsp;forces qui les sollicitent. Par conséquent, les équa-tions d’équilibre d’un sjst?me de forme invariable,nbsp;qui ont lieu entre ces quantités , doivent encorenbsp;subsister pour tout autre sjsl?me; mais alors elles nenbsp;sont plus suffisantes; et il j faut joindre d’autres conditions speciales pour chaque sjst?me en

particulier,nbsp;qui serviront, comme on Ie verra par la suite, a dé-terminer les positions relatives de ses différens pointsnbsp;dans Fétat d’équilibre. 262. Quand les forces données sont toutes paral-l?les entre ellcs, les angles qu’elles font avec chacun des axes O2?, Oj, Oz, sont égaux ou supplémen-taires, selon que ces forces agissent dans Ie m?menbsp;sens OU en sens contraire; on peut les supposernbsp;égaux, en considérant, en m?me temps, commenbsp;positives les forces qui agissent dans un sens, etnbsp;comme négatives celles qui agissent dans Ie sens op-posé (n* 11); on aura done alors /=:?quot;, etc., nbsp;nbsp;nbsp;etc.,nbsp;nbsp;nbsp;nbsp;etc.; au mojen de quoi les tx’ois premi?res équations (0 se i’éduisent a une seule, savoir ;



S?ATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;607 P F _f- Pquot; etc. = o, et les trois autres devnendront(Pj: P'a:' Pquot;a:quot;-|-etc.)cosf = (Pj'-i|- P'j-'-i- Py-|-etc.)coslt;z, (Pz -f-P'z' -h Pquot;zquot; etc.)cosa= P'x'-{-P''xquot;~{- etc.)cosy,nbsp;(Pj- py Py'4-etc.)cosy=(Pz PV Pquot;zquot; etc.)cos(r. Mais les equations d’équilibre des forces parall?les étant seulement au nombre de trois, il faut que cesnbsp;trois derni?res equations se reduisent a deux ; et, ennbsp;effet, si on les ajoute apr?s les avoir multipliées parnbsp;cos ^, cos amp;, cos a, on trouve une e'quation iden-tique j en sorte que Tune d’elles est une suite desnbsp;deux autres. Quand toutes les forces données sont comprises dans un m?nie plan, on peut prendre ce plan pournbsp;celui des x e\j; alors les angles y, y', yquot;, etc., sontnbsp;droits, et les

coordonnées z, z', zquot;, etc., égales anbsp;zero; ce qui fait évanouir la troisi?me et les deuxnbsp;derni?res equations (1). Dans ce cas particulier, commenbsp;dans Ie cas des forces parall?les, il j a done seulementnbsp;trois equations d’équilibre, qui sont X = o , Y — o, L = o. 263. Lorsque les forces données ne se font pas équilibre, on peut demauder la condition qu’ellesnbsp;doivent remplir pour avoir une résultante unique,nbsp;et quelle est cette i’ésultante. Pour répondre a cette question, je désigne par R cette force; par a, b, c, \es angles que sa directionnbsp;fait avec des parall?les aux axes Ox, Oj, Oz, menées



5o8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. par un de ses points, qu’on prendra pour son point d’application, et dont les coordonnées, rapportees anbsp;ces m?mes axes, seront reprësentées parnbsp;nbsp;nbsp;nbsp;, s,- Cette force, prise en sens contraire de sa direction, fera équilibre aux forces données. Les equations (i)nbsp;auront done lieu en joignant a P, P', Pquot;, etc., unenbsp;force egale et contraire a R; par consequent, onnbsp;aui’a X=:Rcosa, Y = Rcos^, Z=:Rcosc, (2) et, en outre, L = R (.r, cos h — j-, cos a), M = R (z, cos a — a?, cos c), N = R (jr, cos c — z, cos b), c’est-a-dire, en vertu des trois premi?res equations, Xj, — Yx, 4- L = o, ) Zx, — X;z, -f- M = o, nbsp;nbsp;nbsp;(5) Yz, _ Zjr. -f- N = o. ) Les coordonnées x,, jquot;,, z, , pouvant appartenir a un point quelconque de Ia droite suivant

laquelle estnbsp;dirigée Ia résultante, ces trois derni?res équationsnbsp;seront celles de ses projections sur les trois plans desnbsp;coordonnées. Pour que cette droite existe, il faudranbsp;done qu’elles se réduisent a deux; or, en les ajoutantnbsp;apr?s les avoir multipliées par Z, Y, X, les trois variables X,, Tquot;,, z,, disparaissent, et l’on a ZL YM XN = o; nbsp;nbsp;nbsp;(4) par conséquent, il sera nécessaire et il suffira que



STATIQUE , SECONDE PARTIE. nbsp;nbsp;nbsp;509 cette equation (4) soit satisfaite pour que les forces donnécs aient une résultante unique : quand ellenbsp;aura lieu, cette force sera déterminée, en grandeurnbsp;et en direction , par les equations (2). Si les trois sommes X, Y, Z, des composantes pa-rall?les aux axes des a;, j, z, sont nulles, lequa-lion (4) sera satisfaite; mais alors la résultante sera Une force infiniment petite, située a une distance in-finle des points d’application des forces données, ou,nbsp;plus exactement, ces forces se réduiront a deux,nbsp;égales, parall?les, agissant en sens contraire, et nonnbsp;réducfibles a une seule (n“ 44)- Lorsque les trois sommes L, M, N, sont nulles, l’équation (4) sera aussi satisfaite; et 1’on voit, parnbsp;les equations (3), que la résultante passera par l’ori-

gine des coordonnées. 264. Quand la condition exprimée par l’équa-tion (4) ue sera pas remplle, on j pourra satlsfaire cn joignant aux forces données une force conve-Uable. Je supposerai, pour plus de simplicité, qu’ellenbsp;passé par l’origine 0 des coordonnées; je la repré-senterai par Q, et par A, (/,, y, les angles qu’elle faitnbsp;avec les axes Ox, O7, Oz. Les quantltés L, M, N, nenbsp;^Langeront pas par l’addition de cette force, et lesnbsp;sommes X, Y, Z, augmenteront des termes Qcos A ,nbsp;Qcbs^, Qcos V. L’équation (4) deviendra done o; Q^Lcosv -t-Mcos/A-f-NcosXj-j-liZ-f-MY-j-iNZ en sorte qu’on j satisfera d’une Infinité de mani?res différentes, au moven de la force Q et des angles A,nbsp;I-’-) V, relatifs a sa direction.



i:‘:f p' ir 5io nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE, La résultante R des forces Q, P, P', Pquot;, etc., et sa position, se détermineront au moyen des equations (2) et (5), dans lesquelles on mettra X-t-Qcos A,nbsp;Y -f- Q cos Z Q cos V, au lieu de X, Y, Z. Lesnbsp;forces données P, P', Pquot;, etc., pourront done ?trenbsp;remplacées par cette résultante R et uné force égalenbsp;et directement contraire a la force Q; d’ou l’on con-clut que quand des forces données ne sont point ennbsp;équilibre, ni réductibles a une force unique, onnbsp;peut toujours les réduire*, d’une infinite de ma-ni?res différentes, a deux forces seulement, qui nenbsp;seront pas comprises dans un m?me plan, sans quoinbsp;elles se réduiraient a une seule, contre l’hypoth?se.nbsp;C’est d’ailleurs ce qu’on volt immédiateraent par

lanbsp;transformation du 11° 25^; car les forces données P,nbsp;P', Pquot;, etc., pourront ?tre remplacées par la résultante des forces parall?les a l’axe des z, et par cellenbsp;des forces comprises dans Ie plan des ac et j-; et l’onnbsp;pourra ensuite transformer, sans difficulté, ces deuxnbsp;résultantes en deux autres forces, d’une infinité denbsp;rnani?res différentes. En cherchant la condition poui'nbsp;qu’elles se rencontrent, on trouvera l’équation (4) gt;nbsp;x-elatlve a l’existence d’une résultante unique. 265. Si l’on consid?re deux corps solides A et A' (fig. 62), qui se touchent en un point K el s’appuientnbsp;l’un contre l’autre, et si l’on suppose qu’ils soientnbsp;solllcités par des forces données, il sera facile de dé-dulre de ce qui préc?de les conditions de leur équilibre. Pour cela, je suppose que les six

quantités X , Z, Ti, M, N, du n” 24, se rapportent au corps A, et



S?ATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;5n je désigne par X', Y', Z', L', M', N', ce qu’elles de-viennent relatlvement a A'; j’appelle nbsp;nbsp;nbsp;, z,, les eoordonnées du point K rapportées aux m?mes axes que celles qui entrent dans ces div-^erses quantites;nbsp;par Ie point K, je ni?ne une droite HKH' perpendiculaire au plan tangent commun aux deux corps; jenbsp;feprésente par a, d, c, les angles que fait la partie KHnbsp;de cette droite, comprise dans A , avec des parall?lesnbsp;aux axes des oc, j, z, menées par ce m?me point K :nbsp;toutes ces quantites sont données, et il s’agira de for-Uier les equations d’équilibre auxquelles elles doiventnbsp;satisfaire. Or, Ie corps A exercera sur A', dans la direction KH', une pression inconnue que je représenlerai parnbsp;Hjil en ëprouvera, en m?me

temps, une resistancenbsp;egale et contraire a cette force normale. Si done onnbsp;joint aux forces données qui agissent sur A une forcenbsp;H dirigée suivant KH, on pourra ensuite faire abstraction de A'; et, de m?me, si Ton joint aux forcesnbsp;appliquées a A' une force R dirigée suivant KH', onnbsp;pourra aussi considérer A' isolément. II résulte de lanbsp;et des equations (i) qu’on aura pour Féquilibre denbsp;Ces deux corps les douze equations suivantes : ^ R cos fl o, Y-f-R cos A o, Z —f—RcOS nbsp;nbsp;nbsp;o, —Rcosa=o, Y'—Rcos^=o, Z'—Rcosc=:o, L -f- R (a?, cos h — j-, cos a) — o, M -j- R (z, cos a — a:^ cos c) — o, N Rfjr,cosc — z, cos ?) =o, L' —R(x,cos? —j^coamp;a) =o, M' — R(z, cos a — x.cos c) —o, — R(j,cosc — z, cos b) =o.



5i2 nbsp;nbsp;nbsp;traité de mécanique. qui se réduiront a onze par Telimination de R. Apres que ces onze equations d’équilibre auront été véri- fiées. Tune des précédentes fera connaitre la valeui’ de R, qui devra ?tre une quantité positive pour que les deux corps s’appuient réellement l’un contre 1’autre. Ces douze equations donnent immëdiatement X. -j— = o, Y -f- nbsp;nbsp;nbsp;o, Z -f- TI =: Of L IV = o, M M' = o, N N' = o; ce qui résulte aussi des conditions d’équilibre communes a tous les sjst?mes enti?rement libres, conim^ celui des deux corps A et A' (n° 261). On trouvera pareillement les equations d’équilibre d’un nombre quelconque de corps solides, dont plu-sieurs s’appuient l’un contre l’auti'e; et il est aisé denbsp;voir que Ie nombre de ces équations sera égal a si3inbsp;fois celui des corps, moins Ie

nombre de leursnbsp;contacts, 266. Les équations d’équilibre d’un corps solide assujetti a des conditions données doivent ?tre comprises parmi celles d’un corps enti?rement libre; carnbsp;l’équilibre de celui-ci ne serait pas troublé, si on l’as-sujettissait a ces conditions particuli?res; en soi’tŽnbsp;qu’aucune nouvelle equation d’équilibre ne peut ?trenbsp;introduite par ces conditions. Mais, au contraire, uuenbsp;OU plusieurs des équations (i) deviendront super'nbsp;flues; et il s’agira de déterminer, pour les différeusnbsp;cas qui peuvenl se présenter, celles dc ces équationsnbsp;qui resteront nécessaires. C’est ce que nous allonsnbsp;faire successivement dans ce numéro, en supposaut



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;5i3 toajours qu’on ait rem placé les forces données P, P', Pquot;, etc., par les trois groupes de forces du n” aSg. 1°. Si Ie corps solide qui doit rester en équilibre renferme un point fixe, on prendra ce point pournbsp;l’origine 0 des coordonnées. Les forces dirigées sui-vant l’axe Ojc seront détruites par ce point; ce quinbsp;fera disparaitre l’équation X = o. Pour l’équillbrenbsp;des forces parall?les a l’axe 0/ et compi’ises dans Ienbsp;plan des x et j, il ne sera plus nécessaire qu’on aitnbsp;Y = o, et il suffira que leur résultante coincide avecnbsp;l’axe Oj-, OU que la somme L de leurs raomens, parnbsp;rapport au plan desj^ et z, soit égale a zéro. Enfin,nbsp;pour l’équiHbre des forces parall?les k l’axe des z, l’équation Z = o ne sera plus nécessaire ; il suffira

quenbsp;leur résultante coincide avec l’axe Oz; ce qui exigeranbsp;que les sommes de leurs momens, par rapport auxnbsp;plans desj^ et z, et des x et z, qui sont les quantilesnbsp;?— M et N, soient égales a zéro. Ainsi, dans ce premier cas, les trois équations d’é-quilibre qui resteront nécessaires seront L = o, M = o, IN = o. ft Elles signifient, effectivement, que les forces données ont une résultante unique, et que cette résultante vient passer par Ie point fixe 0. Cette force exprimera, en grandeur et en direction, la pres-sion exercée sur ce point, et sera déterminée parnbsp;les équations (2). 2°. Supposons que Ie corps solide soit retenu par nn axe fixe, au tour duquel il est assujetti a tour-ner, sans pouvoir glisser dans Ie sens de sa lon-I.nbsp;nbsp;nbsp;nbsp;33 i



54 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. gueur. Prenons eet axe pour celui des z‘, les forces parall?les a cette droite Oz ne pourront produlrenbsp;aucun mouvement, et les trois equations Z = o,nbsp;M = o, N = o, relatives a leur équilibre , ne se-ront plus nécessaires. Les equations X=o et Y=onbsp;ne Ie seront pas non plus pour Tequilibre des forcesnbsp;comprises dans Ie plan des x et j; en sorte que;nbsp;dans ce cas, il n y aura plus qu’une seule equationnbsp;d’équilibre, qui sera L = o , c’est-a-dire , P(a:cos^—cos ct)-p P'(a:'cos f —_/'cosct') etc. = o. (5) jVIais si Ie corps avait la liberté de glisser Ie longnbsp;de l’axe fixe, il faudrait en outre, pour emp?chernbsp;ce mouvement, que la somme Z des forces parall?les a Oz fut égale a zéro; et il y aurait alors lesnbsp;deux équations d’équilibre Z = o , L = o. La

pression que l’axe fixe éprouvera perpendicu-lairement a sa direction sera la résultante des forces comprises dans Ie plan des x et jquot;, déterminée, ennbsp;grandeur et en direction, par les deux premi?resnbsp;équations (2), et passant par Ie point O, en vertnnbsp;lt;le l’équation (5). Les forces parall?les a eet axenbsp;tendront en m?me temps a Ie faire tourner sur luiquot;nbsp;m?me. En comparant les quantités M et N a L, on con-dut de leur composition que l’équation d’équilibre autour de l’axe Oy sera M = o, et qu’elle seranbsp;N = o autour de l’axe Ox. II en résulte aussi qnenbsp;la condition d’équilibre autour d’un point fixe con-



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;5j5 Siste en ce que TequiHbre ait lieu successivemcnt autour de trois axes fixes et rectaugulaires, mene'snbsp;arbitral rem ent par ce point. Par consequent, si 1’e'-quiiibre existe autour de trois axes rectangulairesnbsp;qui se coupent en un m?me point, il aura aussinbsp;lieu autour de toute autre droite passant par cenbsp;point. 5°. Je suppose que t.rois ou un plus grand nombrc de points non en ligne droite, appartenant au corpsnbsp;solide, soient assujettis a demeurer sur un plan fixenbsp;dont la position est donnée; et je prends ce plan pournbsp;celui des jc et j'. Les forces parall?les a l’axe des znbsp;ne pouvant produire aucun mouvement, les equations relatives a leur équilibre n’auront pas lieu ;nbsp;mais les trois equations X = 0, Y=:0, L=:0, qui

répondent aux forces comprises dans Ie plan des ur et ƒ, seront necessaires pour emp?cher Ie coi’ps denbsp;glisser ou de tourner parall?lement a ce plan fixe. La force Z exprimera la pression totale que Ie plan fixe éprouvera. Si Ie corps est seulement posé sur cenbsp;plan, de sorte qu’il s’agisse, par exemple, dun po-ly?dre dont une face soit en contact avec Ie plan desnbsp;X et jr, il faudra que Ie signe de Z soit tel, que cettenbsp;foi’ce appuie Ie corps contre ce plan. II faudra, ennbsp;outre, que cette résultante des forces parall?les anbsp;l’axe des z vienne percer Ie plan des ar et jr dans 1’é-tendue de la base du corps, sans quoi elle Ie dëta-cherait de ce plan, en Ie faisant tommer autour denbsp;1’un des cólés de cette base. Or, si l’on appelle x, et 33-, i



5i6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. j't les coordonnées du point oü cette résultante rencontre Ie plan des jc et j-, ses momens par rapport aux plans des uC et z et des j- et z seront Zj', et Zjc, ;nbsp;ils devront ?tre égaux aux sommes des momens desnbsp;composantes par rapport aux m?mes plans; et, d’a-pr?s les valeurs de ces deux sommes qu’on a trouvéesnbsp;précédemment (nquot; 260), on auraZx. = — M, Zjr, = N. 11 faudra done verifier, dans chaque cas particulier, que les valeurs de x, et jr,, tirées de ces equations,nbsp;appartiennent a un point de la base du corps; condition d’équilibre qui ne peut étre exprimée par desnbsp;equations, non plus que celle qui est relative au signenbsp;de Z. 4°. Si les points du corps assujettis a rester sur Ie plan fixe des a: et j- sont seulement au nombre

denbsp;deux, OU bien s’ils sont tous situés sur une m?menbsp;dx’oite, on prendra cette ligne pour l’axe des jquot;; la ré-*nbsp;sultante Z devra alors rencontrer Ie plan des n? et ƒnbsp;en un point de eet axe ; et, indépendamment deSnbsp;ti’ois équations du cas précédent, on aura cette qua-ti’i?me équalion d’équilibre M = o. 5°. Enfin, lorsque Ie corps solide ne touchera Ie plan fixe des jc et j- qu’en un seul point, oü l’on pla*nbsp;cera l’origine O des coordonnées, on verra, sans difquot;nbsp;ficulté, que les équations d’équilibre seront au noiW'nbsp;bre de cinq, savoir :X = o, Y = o, L = o, M = o, N = o, La force Z expriraera toujours la pression exercée sur



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;517 Ie plan fixe au point 0, et devra avoir un signe con-venable. Ce résultat coincide avec celui du numéro précédent; car si Ion suppose Ie corps A' fixe et ter-miné par un plan, que l’on prenne ce plan pour celui des x et jr, et Ie point K (fig. 62) pour origine des coordonnées, on devra faire, dans les équa-tions de ce numéro, a?. = o, jr, = o, z, = o,nbsp;ö = 90’, h ?= go“; ce qui réduira aux cinq equations précédentes, un pared nombre des six équationsnbsp;relatives a l’équilibre du corps A. lia sixi?me de ceamp;nbsp;équations deviendra, en m?me temps, R 4- Z = o , en supposant qu’on ait c — o , ou que la partie KH de la normale soit l’axe des z positives; par conséquent, la pression exercée sur A', qui est égalenbsp;et contraire a la resistance R, sera la

force Z en.nbsp;grandeur et en direction. On peut remarquer, d’apr?s cette énuméralion des fiii?érens cas d’équllibre, que les nombres d’équa-tions relatives a un corps solide g?né par des obstacles fixes peuvent étre tons ceux qui sont inférieurs au nombre six , correspondant a un corpsnbsp;enti?rement libre. 267. L’équation (5) relative a l’équilibre autour de 1 axe des z supposé fixe , ne contient ni lesnbsp;composantes parall?les a eet axe, des forces don-nées P, P', Pquot;, etc., ni les coordonnées parall?lesnbsp;J'n m?me axe, de leurs points dapplication M,nbsp;Mquot;, etc.; en sorte que lequilibre ne serait pas



5i8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAPflQUE. trouble, si Ton remplacait ces forces et leurs points d’application par leurs projections sur Ie plan desnbsp;X et jr; ce qu’on démontrerait d’ailleurs facilementnbsp;a priori. Soient done Q, Q', Qquot;, etc., les forces P , P^ Pquot;, etc., projetées sur Ie plan des x et j-, c’est-a-dire, décomposées parall?lement a ce plan et trans-portées aux projections des points M, M', Mquot;, etc.,nbsp;sur ce m?me plan. Dësignons par q, q', qquot;^ etc.,nbsp;les perpendiculaires abaissées de l’origine des coor-données, süpposée fixe, sur les directions des forcesnbsp;Q, Q', Qquot;, etc.; et, pour fixer les idees, supposonsnbsp;que Q, Q', Qquot;, tendent a faire tourner, dans Ie m?menbsp;sens, autour de cette origine, et que Qquot;', Q'% etc. ,nbsp;tendent a faire tourner dans Ie sens

oppose. Pournbsp;l’équilibre de toutes ces forces, 11 faudra, d’apr?s Ienbsp;n° 4??nbsp;nbsp;nbsp;nbsp;ait QY nbsp;nbsp;nbsp;— etc. — o, (6) en considérant q, q', qquot;, q'quot;, etc., comme des quan-tite's positives, aussi bien que Q, Q', Qquot;, Q'quot;, etc. ; par consequent, cette equation devra co?ncider avecnbsp;l’équation (5) ; ce qu’on yérifie, en effet, de la ma-ni?re suivante. Soient H (fig. 63) la projection du point M, OG et HG ses coordonnées x et jr, HA. la direction de 1?nbsp;force Q, A et les angles que fait cette droite avecnbsp;des parall?les aux axes Ox et 0/, menées par Ienbsp;point H. Par Ie point 0, menons deux autres axesnbsp;0.r, et Ojquot;,, Ie premier suivant la direction HA, etnbsp;Ie second perpendiculaire a cette droite et tel que



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;Sig Tangle J'Oj-, soit aigu ou obtus en m?me temps que xOjc, ; appelons x, et j, les coordonnées OF etnbsp;FH du point H, rapportées a ces nouveaux axes; nousnbsp;aurons, com me on sait, o?. cos/A cos A , jri=j'cosA-XCOSfl. Or, la perpendiculaire OK ou q, abaissée du point 0 sur HA, devant ?tre une quantité positive, on aura ^ = rt = dr (cos A — x cos fj.'), selon que Tordonnée jTi sera positive Ou negative, OU, ce qui est la m?me chose, d’apr?s Ie sens qu’ounbsp;a suppose a l’axe Oj,, selon que la force Q tendra anbsp;faire tourner, dans un sens ou dans Ie sens oppose,nbsp;autour du point 0. On a d’ailleurs Q = P sin , et, de plus (n° 8) cos a = sin 5^ cos A, cos ? = sin^cosjw; il en résultera done = db P(^cosa — a:cos^). Les forces Q' el Qquot;

tendant, par hjpoth?se, a faire tourner dans Ie m?me sens que Q, on aura de m?me QY = ? (y cos ct' — x'cos C), QY = dr Pquot;(y'cosaquot; — xquot;cosamp;')-, et les autres forces Qquot;', Qquot;, etc., tendant a faire tour-oer en sens oppose, on aura, au contraire,



Sao etc. TRAITÉ DE MÉCANIQUE. qz P'quot;(j-quot;'cos nbsp;nbsp;nbsp;— xquot;'cosCquot;'), =p P*’(^'^cos a'^ — ar'* cos ?*’), On prendra done, en m?me temps, les signes supérieurs OU les signes inférieurs dans toutes ces valeurs; et en les substituant dans l’équation (6), elle devien-dra l’équation (5); ce qu’il s’agissait de vérifier. 268. Le corps en équilibre étant toujours soumis a la pesanteur, il faudra comprendre parmi les forcesnbsp;données P, P', P''', etc., son poids applique suivantnbsp;la verticale a son centre de gravité. Supposons, parnbsp;exemple, qu’il s’agisse d’un corps pesant posé sur unnbsp;plan incline et soutenu par une seule force. La figure 64 représente une section du corps passant parnbsp;le centre de gravité G, et perpendiculaire au plan inclinequot; ; la longueur de ce plan est AB, sa

base BC, etnbsp;sa hauteur AC. On place l’origine 0 des coordonnéesnbsp;sur la verticale GH passant par le centre de gravité gt;nbsp;et l’on prend les axes Oz et On? perpendiculaire etnbsp;parall?le a AB : le troisi?me axe Oj, qui n’est pasnbsp;représenté, serait perpendiculaire au plan de la fiquot;nbsp;gure. La force P sera le poids du corps, la verticalenbsp;GH sa direction, et HOa? l’angle a. On aura, en outre, x~o , j- = o, € = 90°. En prenant done Pnbsp;pour la force donnée qui soutient le corps pesant, lesnbsp;équations d’équilibre du troisi?me cas du n“ 266 sŽnbsp;réduiront a Pcosa-j-Pcosa^=o, P'coso'=o, P'(a:'cosC'—j^eoset') — D’apr?s les deux derni?res, on aura É' = 90“ et



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;Sai y = o; ce qui moatre d’abord que la force P' devra ?tre comprise dans Ie plan des a? et z; et, en effet,nbsp;cela est évidemment nécessaire pour que celte forcenbsp;et Ie poids du corps aient une résultante unique,nbsp;perpendiculaire au plan incliné. Je supposerai que 0nbsp;soit Ie point oü la direction de P' rencontre la verticale GH, et je représenterai par OD celte direction.nbsp;L’angle a' ou DOx devra ?tre obtus pour satisfaire anbsp;la premi?re des trois équations précédentes; j’appel-lerai lt;ƒ' Tangle aigu DOx' que fait Ia force P' avec Ienbsp;prolongement de Oa?, de sorte qu’on ait cos a' = — cos cT. L’angle a. ou HOa: est Ie complément de Tinclinaison ABC du plan; en désignant la hauteur AC par h, etnbsp;la longueur AB par l, on aura done h

cos CL ?= d’oü il résultera finalement -j- =c V cos ?r ; equation d’équllibre qui fera connaitre Tune des deux quantités P' et S', quand Tautre sera donnée. Lorsque, par exemple, la force P' sera parall?le au plan incliné, on aura S = o, ct, conséquem-raent, P' : V :: h : l, Ou, ce qui est la ra?me chose , P' = P sin i,



522 nbsp;nbsp;nbsp;TRAITE DE MÉCANIQUE. en appelant i l’inclinaison du plan. Si I on appelle Q la pression que Ie plan éprouvera, et qui sera, dansnbsp;ce cas, la composante du poids P suivant la perpendiculaire Oz , on aura, en m?ine temps, Q =: P cos L 269. On fait ici abstraction du frottement qui s’a-joute a la force P' parall?le au plan incline, pour em-p?cher Ie corps de glisser Ie long de ce plan. Si cette force P'est nulle, Ie frottement seul peut retenir Ienbsp;corps tant que l’inclinaison i n’a pas atteint une cer-taine limite. En de'signant par A cette limite, c’est-a-dire, Tangle i qui a lieu lorsque Tequilibre va com-mencer a se rompre, et supposant qu’a eet instant Ienbsp;frottement est une fraction f de la pression, il faudranbsp;que la force /Q fasse exactement équilibre a la cora-posante P sin A du poids du

corps, parall?le au plannbsp;incline. Par conséquent, on aura, a la fois, Q = P cos A, y Q = P sin A; d’oii Ton tire ƒ = tang A ; ce qui fera connaitre la valeiir de f, dapr?s Tobser-vation de Tangle A, sous lequel Ie mouvement commence , et qu’on appelle Vangle du frottement. Toutes eboses d’ailleurs égales, Texpérience prouve qfra Tinstant qui préc?de la rupture de Tequilibre, Ienbsp;frottement est proportionnel a la pression; en sortenbsp;que Ie coefficient f et Tangle A sont indépendans denbsp;la pression Q , et par suite du poids P. Ce coefficientnbsp;varie avec la nature du corps et Ie poli des sur-



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;SaB faces: on a aussi remarqué qu’il n’atteint Ie maocirnum de sa valeur qu’apr?s que Ie contact du corps et dunbsp;plan a eu lieu pendant un certain temps, différentnbsp;pour les corps de nature diverse; et ce n’est quanbsp;partir de ce maximum que Ie frottement est propor-tionnel a la pression. En admettant cette loi expérimentale, il en ré-sulte que si plusieurs corps de méme nature, et dont les surfaces ont Ie m?me poli, sont places sur un plannbsp;horizontal, et qu’apr?s un certain temps on inclinenbsp;ce plan graduellement, tous ces corps commencerontnbsp;a glisser sous un m?me angle A, quels que soient leursnbsp;poids et I’etendue de leurs surfaces en contact avec lenbsp;plan. 270. Lorsqu’un corps est posé sur un plan horizontal, la pression

exercee par son poids P se disti’i-hue entre les points d’appui de ce plan; mais quand leur nonibre surpasse trois, cette distribution semblenbsp;d’abord indéterminée; ce qui presenterait une diffi-culte que nous allons examiner. Pour fixer les idees, supposons que ce plan horizontal soit la surface d’une table dont les pieds sont Verticaux. Dans ce plan, menons deux axes rectan-gulaires O2? et Oj- (fig. 65). Soient C la projection dunbsp;centre de gravité du corps sur ce plan, et A, A',nbsp;Aquot;, etc., les points de ce m?me plan qui repondentnbsp;aux pieds de la table. Designons par x,nbsp;nbsp;nbsp;nbsp;x et j-, x' et j', xquot; ety', etc., les coordonnees de ces points C, A , A', Aquot;, etc., rapportees aux axes Ox et Oj-.nbsp;Pour que la table ne soit pas renversee, il faudra quenbsp;le point C soit situé

dans l’intérieur du poljgone



524 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. AA'Aquot;A'quot;etc. Cette condition etant reinpiie, Ie poids P applique au point C se décomposera en forcesnbsp;parall?les, dirigées dans Ie sens de la pesanteur, etnbsp;passant par les points d’appui A, A', Aquot;, etc., les-quelles forces seront les charges que les pieds de lanbsp;table auront a supporter. Soient Q, Q', Qquot;, etc., cesnbsp;charges inconnues; d’apr?s la théorie des forces pa-rall?les, nous aurons P = Q Q' Q'' etc., P.ic, = Qj: nbsp;nbsp;nbsp;Cl'x' nbsp;nbsp;nbsp;nbsp;etc. Pj, = Qj -j- Qy -1- Qquot;/' -f- etc. Or, s’il n’existe que trois points d’appui A, A', A'V ces trois equations sufiiront pour determiner lesnbsp;charges Q, Q', Qquot;- mais s’il y en a trois ou un plusnbsp;grand nombre, Ie probl?me sera indéterminé, et l’onnbsp;pourra prendre a volonté les

valeurs de toutes lesnbsp;inconnues, moins trois, pourvu qii’il n’en résulte,nbsp;pour ces trois inconnues, que des valeurs positives. Cette indetermination aurait lieu, en effet, si la table était rigoureusement inflexible; mais cela n’ar-rive jamais; et, quelque peu flexible qu’on la suppose, elle se déformera un tant soit peu et se com-priraera inégalement dans ses differentes parties. Or,nbsp;la figure quelle prendra et la quantité dont elle seranbsp;comprimée en chaque point dépendront non-seule-ment du poids P, mais aussi du nombre et de la disposition des points d’appui A, A', Aquot;, etc.; et l’unenbsp;et 1’autre, ainsi que la pression qui aura lieu en cha-cun de ces points, seront compl?ternent déterminéesnbsp;dans chaque cas particulier. Toutefois, cette déter-



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;SaS mination est un probl?me trés difficile, dont Ia solution générale n’a pas encore été donnée, et qui ap-partient a la Plijsique mathématique. Nous nous bornerons ici a remarquer que tout est nécessaire-iiient déterminé dans la nature, et que quand quel-que chose nous semble indéterminé, c’est que nousnbsp;avons fait abstraction de quelque donnée du pro-bl?rae, c’est-a-dire, de quelque propriété de la ma-ti?re, comme Ie degré de flexibilité de la table, dansnbsp;la question présente.



5^6 TRAITÉ DE MÉCANIQÜE. \'\AfVV^'VV%/VVVVVgt;/VV\iVVX'VVVVVgt;(VVVV\A(VV\lt;VVVVVVVVgt;iVV\A/VNiVV*'VVVVVVVV\'VVVVVgt;'V\'\V\^'VV''V'V\'VV''V\'gt; VA''*'quot;''CHAPITRE n. THEORIE DES MOMEIVS. 271. Les momens que nous allons considérer daiiS ce chapitre sont ceux dont il a été question dansnbsp;n° 42- Ainsi, Ie moment d’une force P est ]e pro-duit de cette force et de la perpendiculaire pnbsp;abaissée du centre des momens sur sa direction. Sinbsp;done ce centre est C ( fig. 66) , et que la force P sodnbsp;représentée par la droite MA prise sur sa dii’ection gt;nbsp;son moment aura pour expression Ie double dunbsp;triangle CAM qui a pour base cette force et son soni'nbsp;met au point C. D’apres cela, le théor?me du n° 4^'nbsp;relatif au moment de la resultanle de

deux forces gt;nbsp;n’est plus qu’une proposition de Ge'ometrie facilŽnbsp;a demonti’er. En efFet, soieut MA et MB les deux composantes; la diagonale MD du parallel ogramme MADB sei’^inbsp;leur résultante; et le point C étant en dehors denbsp;1’angle AMB et de son oppose au sommet, il s’agii'*^nbsp;de prouver que le triangle CMD est la somme de^nbsp;triangles CMA et CMB. Or, on a d’abord CMD =: CMA CAD MAD; en abaissant du point C une perpendiculaire CE sur la droite MB, qul rencontre en F sa parallele AD, ounbsp;aura CMB = iMB.CE, CAD = iAD.CF;



STATIQUE, SECONDE PARTIE. a cause de Diais Ie produit MB.EF est la surface du parallélo-gi'amme MADB, ou Ie double du triangle MAD; on ^ura done CAD = CMB — MAD, Ce qu’il s’agissait de démontrer. La figure suppose que la droite EF soit la diffé-•“ence des perpendiculaires CE et CF; elle pourrait Žti'e leur somme, et l’on modifierait sans difficulténbsp;demonstration précédente pour l’appliquer a eetnbsp;^utre cas. On prouvera aussi, de la m?me mani?re,nbsp;^le Ie triangle CMD est Ia difference des trianglesnbsp;A et CMB, quand Ie point C est placé dans l’anglenbsp;^MB OU dans son oppose' au sommet. 372. Par Ie centre des momens (fig. 67), menons plan quelconque; projetons sur ce plan la droitenbsp;qui représente la force P en grandeur et en direction; soit Q la force représentée de m?me par la pi’o-jection A'B' de AB; Ie

moment de la force P sera Ienbsp;double du triangle CAB, et celui de la force Q Ienbsp;double du triangle CA'B'; par conséquent, Ie centrenbsp;^es momens restant Ie m?me, Ie moment de la projection d’une force sur un plan passant par ce point.



528 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. est la projection, sur ce méme plan, du moment de cette force. Si l’ou appelle H Ie moment de la force P, et K celui de sa projection Q; que I on él?ve sur les plans de ces deux momens des perpendiculaires CD et CE, etnbsp;qu’on appelle cl' Tangle DCE, eet angle sera aussi Tin-clinaison de H sur K, et Ton aura ( nquot; lO ) K = H cos cT. Pour une m?me force P, Tangle cT et Ie moment H changeront avec la position du point C sur la droite CE;nbsp;mais cette droite restant la m?me, Ie produit H cos cTnbsp;ne variera pas; car K ou Ie triangle CA'B' ne feranbsp;que se déplacer parall?lement a lui-m?me, sanSnbsp;changer de grandeur. 273. Au lieu d’une seule force, conside'rons u? syst?me de forces quelconques P, P', P'^, etc.

Soieotnbsp;H,H', Hquot;, etc., leurs momens par rapport au point Cnbsp;(fig. 68). Désignons par cT, eT', J'quot;, etc., les anglesnbsp;que les perpendiculaires CD, CD', CDquot;, etc., au^nbsp;plans de ces momens, font avec un m?me axe CE;nbsp;par Q, Q', Qquot;, etc., les projections de P, P', Pquot;, etc.;nbsp;sur Ie plan mené par Ie point C et perpendiculaire ^nbsp;eet axe; et par K, K', Kquot;, etc., les pi’ojections de H;nbsp;H', Hquot;, etc., sur ce m?me plan. Nous aurons K = H cos cT, K' = II' cos cf', Kquot; = Hquot; cos etc- Si Ton voulait seulement connaitre les aires dc* projections d’apr?s celles des surfaces projetëes,nbsp;faudrait coiisidërer les inclinaisons cf, cP', cfquot;, etc.;nbsp;comme des angles aigus; mais dans les usages que



STATIQUE, SECONDE PAR?IE. nbsp;nbsp;nbsp;Ssg *iOus ferons des projections des momens, nous regar-^erons ces angles comme aigus ou obtus, ou, autre-Dient dit, nous prendrons pour les droites CD, CD', CDquot;, etc. , les parties des perpendiculaires aux plansnbsp;des momens H, H', Hquot;, etc., qui font des angles aigusnbsp;Ou obtus avec l’axe CE, selon que les projections Q,nbsp;Q', Qquot;, etc. , des forces P, P', P*, etc., tendront anbsp;faire tourner autour du point C, dans un sens con-'''enu, ou dans Ie sens oppose. Ainsi, dans la figure,nbsp;les angles DCE, D'CE, Dquot;CE, étant aigus, et les anglesnbsp;Ö'quot;CE, Dquot;'CE , etc., étant obtus, cela suppose que lesnbsp;forces Q, Q', tendent a faire tourner dans unnbsp;Ui?rae sens, et les forces Qquot;', Qquot;', etc., dans Ie sensnbsp;oppose. Les droites CDquot; et

CDquot;' étant Ie prolonge-Oaent Tune de 1’autre, cela signifie que les forces Pquot;nbsp;ot P'quot; sont comprises dans un m?me plan passant parnbsp;lo point C, mais qu’elles tendent, alnsi que leursnbsp;projections Qquot; et Q'quot;, a faire tourner en des sens op-Posés. En appelant S la somme des valeurs positives ou 'R%atives de K, K', Kquot;, etc., nous aurons S = H cos ƒ -|- H' cos cT' Hquot; cos cfquot; etc.; abstraction faite du signe, S sera la somme des mo-*Oens des forces Q, Q', Qquot;, etc., qui tendent a faire lourner dans un sens , moins la somme des momensnbsp;de celles qui tendent a faire tourner dans Ie sensnbsp;opposé; d’apr?s Ie théor?me du n° 47 gt; 1^ quantiténbsp;=t: S exprimera done Ie moment de leur résultantenbsp;^ui tendra a faire tourner dans Ie sens des forces quinbsp;répondent aux angles aigus

?T, cf', cTquot;, ou aux angles I. nbsp;nbsp;nbsp;34 ’é if''jii 'ilÉ * ? vl?.:,



TRAITÉ DE MÉCANIQÜE. , etc., selon que la valeur précédente 53o obtus cT'quot; de S sera positive ou negative. Si Fon change a la fois toutes les droites CD, CD', CDquot;, etc., dans leurs prolongemens, les anglesnbsp;S', ?Tquot;, etc., se changeront dans leurs supplémens,nbsp;et S deviendra — S. II en sera de m?me lorsqu’onnbsp;remplacera 1’axe CE par son prolongement CE'. La somme S, comma chacune de ses parties, sera inde'pendante de la position du point C sur 1’axe CE;nbsp;elle ne dependra que du sjst?me des forces P, P',nbsp;Pquot;, etc., de la position de eet axe et de sa directionnbsp;perpendiculaire au plan de projection. Dorénavantnbsp;nous appellerons cette quantité S Ie moment desnbsp;forces P, P', P', etc., par rapport a Faxe CE. 2'74- D’api'?s cette definition, les trois

quantités L, M, N, du n“ 261 , seront les momens des forces Pgt;nbsp;P', Pquot;, etc., par rapport aux axes des coordonnéesnbsp;positives de leurs points d’application. Pour Ie faire voir, soit Q la projection de la force P sur Ie plan des x etj, et q la perpendiculaire abais^nbsp;sée de Forigine des coordonnées sur sa direction, denbsp;sorte que son moment par rapport a ce point ait Qlt;?nbsp;pour valeur. Supposons que la force Q agisse de Anbsp;vers B ( lig. 69), et que AC et AD soient les coor-donnees x et jy de son point d’application A, rappor-tees aux axes rectangulaires Ox et Oj. Soient aus.si ^nbsp;et fjt. les angles BAC' et BAD' que fait la force Q avecnbsp;les prolongemens de x et jr; les composautes dirigéesnbsp;suivant AC' et AD' seront Q cos X et Q cos jx, et leui’Snbsp;momens par rapport

au point O, j-Q cos A et xQ cos/*;nbsp;d’apr?s la figure, elle tendrout a faire tourner en sens



STATIQUE, SECONDE PARTIE nbsp;nbsp;nbsp;531 contraire Tune de l’autre, et la force Q, dans Ie sens de Q cos [Jt,; on aura done Qq = jcQ cos f* — jrQ cos A. En examinant les differentes positions que peut avoir Ie point A, et les diverses directions qu’on peutnbsp;supposer a la force Q, il est aisé de voir que cettenbsp;equation subsistera quels que soient les signes de x,nbsp;j, cos A, cos , pourvu que la force Q, transportéenbsp;au point E ou F, oü sa direction rencontre l’axe des xnbsp;Ou des j', tende a faire tourner l’axe Ojc des x positives, dans Tangle des n? et jr positives, et, consé-quemment, Taxe 0/ des jr positives, en dehors de eetnbsp;angle, comme cela est indiqué par les fl?ches ^ et /,nbsp;Si Ie contraire avait lieu, c’est-a-dire, si la force Q,nbsp;ainsi transportée , tendait a faire tourner Taxe desnbsp;positives, dans

Tangle des jc et j- positives, et, parnbsp;conséquent, Taxe des a? positives, en dehors de eetnbsp;angle, on aurait = jr'Q cos A — a:Q cos yw-, quels que soient aussi les signes de x, jr, cos A, cos jw, II suit de la que si S est Ie moment des forces P, P', Pquot;, etc., par i’apport a Taxe des 2 positives, et que Tonnbsp;regarde les angles cT, cP', ?Tquot;, etc., du numéro précédent, comme aigus ou obtus, selon que les projectionsnbsp;Qgt; Q j etc., de ces forces tendent a faire tournernbsp;Taxe des a: positives, dans Tangle des coordonnées jcnbsp;et jquot; positives, ou en dehors de eet angle, on aura S = Q (x cos JU. —j- cos A) Q' (x' cos ju' —y cos A'; -P Qquot; fxquot; cos //,quot; —j'quot; cos Aquot;) nbsp;nbsp;nbsp;etc. ;34..



532 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. x', j', X', (w'j nbsp;nbsp;nbsp;Xquot;, fjt!'; etc., étant ce que de- viennent x, J, X, tt, relativement aux forces Q', Qquot;, etc. Soient, de plus, ct,C,y, al, C', y'; aquot;, nbsp;nbsp;nbsp;yquot;; etc., les angles que font les directions des forces P, P', Pquot;, etc., avec des parall?les aux axes des x, j, znbsp;on aura Q = Psiny, Q'=^P'siny', Qquot; = Pquot;sinyquot;, etc., cosa =r silly cos A, cos ??'= sin y'cosA', cosa.quot;=sinyquot;cosAquot;, etc.,nbsp;cosS=slnycoS|K, cos^=siiiy'cos/?', cosoquot;=sinyquot;coS|?quot;, etc.; et d’apr?s ces valeurs, celle de S co?ncidera avec la quantité L du n° 261. Ainsi L est Ie momentdes forcesnbsp;P, P', P', etc., par rapport a l’axe des z positives; etnbsp;selon qü’il est positif ou riégatif, ce syst?me de forcesnbsp;tend a faire

tourner Ie plan des x etz positives autournbsp;de eet axe, dans l’angle tri?dre des coordonnées positives, OU en dehors de eet angle. Maintenant, si Ton substitue respectivement les axes desz, x,j, positives, a ceux des x,j, z, positives, L se changera dans M; il s’ensuit done que Mnbsp;est Ie moment des forces P, P', Pquot;, etc., par rapport anbsp;Faxe desjquot; positives, et que, selon qu’il sera positif ounbsp;ne'gatif, ce syst?me de forces tendra a faire tourner Ienbsp;plan des z et j' positives autour de eet axe, dans Tangle tri?dre des coordonnées positives, ou en dehors denbsp;eet angle. Cela fait, si Ton remplace de m?me les axesnbsp;des z, X, j, positives, par ceux desj', z, x, positives,nbsp;Mse changera en N; par conséquent, N sera Ie momentnbsp;des forces P, P', P^', etc., par rapport a

l’axe des xnbsp;positives; et suivant qu’il sera po.sitif ou ne'gatif, ce



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;533 syst?me de forces tendra a faire tourner Ie plan des^ et X positives autour de eet axe, dans Tangle desnbsp;coordonnées positives, ou en dehors de eet anglenbsp;tri?dre. Les ti’ois quantités L, M, N, sontdonc, comme on Ta dit, les raomens d’un ni?me sjst?me de forcenbsp;par rapport aux trois axes des coordonne'es positivesnbsp;de leurs points d’application; et les signes de leurs va-leurs, telles qu’elles sont écrites dans Ie nquot; 261, ré-pondent a un sens de rotation connu, autour denbsp;chaque axe suppose fixe. 2y5. La pi’emi?re valeur de Qy du numéro précédent, est la m?me chose que = xP cos ^ nbsp;nbsp;nbsp;cos a. En appelant H Ie moment de P par rapport a Torigine des coordonnées, et S' Tangle compris entre une par-?nbsp;tie de la perpendiculaire au plan de ce

moment etnbsp;Taxe des z positives, on aura done ( nŽ 272 ) H cos cT = P ( ^ cos S — j- cos a,) ; Ce qui suppose que cette partie de la perpendiculaire au plan de H, soit celle qui fait un angleaigu ou obtusnbsp;avec Taxe des z positives, selon que la quantité comprise entre les parentheses est positive ou négative. Soient cT, et S^ les angles que fait la m?me partie de cette perpendiculaire avec les axes desjquot; et des xnbsp;positives; on aura de m?me H cos tP, H cos Si P ( z cos o. P(j cos y X cos y ), z cos C ).



534 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Si done on fait, pour abréger, (a:cosS—jr cos ?c)“-{-(-2cosa—x cos nbsp;nbsp;nbsp;cosy—zcosSy=p'‘, et qu’on regarde p comme une quantite' positive, il en résulteraH Pp, a cause de cos” d' 4- cos* d', cos* iTa = I; par conséquent, on aura cos d' = ^ (jc cos ë — jquot; cos a ), cos cT, ~ ^ ^ nbsp;nbsp;nbsp;y) gt; cos cTa = ^ (jr cos y — z cos ë), pour determiner sans ambiguité les trois angles ƒ, cT,, d\. L’angle cT sera aigu ou obtus, comme on Panbsp;suppose, selon Ie signe de a? cos ë —/ cos a, et lesnbsp;angles cT, et cT,, selon les signes de z cos a — x cos ynbsp;et j cos y — z cos ë. On vérifiera aisément ces formules. En efl?t, re-présentons l’équation du plan qui comprend l’origine des coordonnées et la force P, par Am 4- Bt? 4- Cxv = o; u, V,

w, étant les coordonnées courantes. Les coor-données du point d’application de cette force étant Xy j, z, il faudra qu’on ait Kx 4~ Bjf 4“ Cz ==: o j



535 STATIQUE, SECONDE PARTIE. de plus les equations d’une droite menée par l’ori-gine des coordonnées et parall?le a cette force, seront V cos a. = u cos ?, w cos a == u cos y; et comme cette parall?le est aussi compi'ise dans Ie plan que Ton consid?re, il en r?sultera cette secondenbsp;equation de condition : A cos a B cos ? C cos ;/ = o. De ces deux equations, on tire ^ nbsp;nbsp;nbsp;cos f — j' cos a ) T'cosy — zcosS ’ g A ( z cos os — X cos y ) jquot; cos y — z cos S ’ et en substituant ces valeurs dans réquation du plan, elle devient *'(j'COS y—z cos s) l'(z cos ct—x cos y)-\-w(x cos C—-J^COSos)=:0. Or, d’apr?s les formules connues ( nŽ 17 ), les cosinus des angles cT, cTj, que fait la normale a ce plan avec les axes des u, e, w, qui sont aussi ceuxnbsp;des^, ƒ•gt; auront pour valeurs les formules qu’ilnbsp;s’agissait de verifier.

En vertu de Féquation ?L=:Tp, la quantité p est la perpendiculaire abaissée de rorigine des coordon-?nbsp;nées sur la direction de la force P. C’est aussi ce quinbsp;se v?rifiei’a sans difficulté, en prenant Ie pied de cettenbsp;perpendiculaire pour Ie point d’application de P; car,nbsp;si l’on appelle r Ie rayon vecteur de ce point, qui seranbsp;alors cette perpendiculaire, et A , /a, r, les angles que



536 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. fait sa direction avec les axes des oc,j, z, on aura 3c = r cos A, j = r cos jx , z = r cos y; et en substituant ces valeurs dans celle de p’^, et ayant égard aux equations ( n°“ 6 et 9 ) cos“ o?. cos“ C cos'* y = I , cos'* A -j- cos'jt* -j- cos'* V = 1 ,nbsp;cos a. cos A cos C cos fX cos y cos V == o, on trouvera OU 276. Les momens d’un m?me syst?me de forces par rapport a différens axes, jouissent de propriétésnbsp;remarquables qui sont une consequence immediatenbsp;de celles des projections des surfaces planes sur diffé-rens plans, que nous allons maintenant exposer. Soient Ox, O7, Oz, trois axes rectangulaires qui se coupent en un point O ( fig. 70 ). Menons par cenbsp;point trois autres axes Ox', Oy', Oz', aussi rectangulaires. Pour determiner les

directions de ces nouveauxnbsp;axes par rapport aux premiers, faisons xOx' — nbsp;nbsp;nbsp;a.,nbsp;nbsp;nbsp;nbsp;j'Ox'nbsp;nbsp;nbsp;nbsp;= ë ,nbsp;nbsp;nbsp;nbsp;zOx' =nbsp;nbsp;nbsp;nbsp;y , xoy = nbsp;nbsp;nbsp;joynbsp;nbsp;nbsp;nbsp;= ?',nbsp;nbsp;nbsp;nbsp;zoy =nbsp;nbsp;nbsp;nbsp;y, xOz' = nbsp;nbsp;nbsp;aquot;,nbsp;nbsp;nbsp;nbsp;jrOz'nbsp;nbsp;nbsp;nbsp;=r Qquot;,nbsp;nbsp;nbsp;nbsp;zOz' =nbsp;nbsp;nbsp;nbsp;y”- et considérons a, ë, y, etc., comme étant neuf angles donnés, aigus ou obtus. Leui’s cosinus seront liésnbsp;entre eux par six equations. En considérant successi-yenient les trois droites Ox', Oj-', Oz', on aura d’abord



STATIQUE, SECONDE PARTIE. cos“ a -j- cos“ ^ nbsp;nbsp;nbsp;-1- cos* ynbsp;nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;i , cos* a' -j- cos* ë' nbsp;nbsp;nbsp; cos* y' =z=nbsp;nbsp;nbsp;nbsp;i , cos* clquot; cos* ëquot; cos* yquot; — I ; et a cause que x'Oy', x'Oz', j'Oz', sont des angles droits, on aura aussi cos at cos at! cos ë cos ë' cos y cos y' z= o, ) cos a cos cos ë cos ?'H- cos y cos yquot; — o , \ (2)nbsp;cos at! cos at!'cos ë'cos ëquot; cos y' cos yquot; z= o. ) Les neuf angles a, a!, atquot;, etc. , de'termineront ré-ciproquement les directions des premiers axes Ox, Oj, Oz, par rapport aux seconds Ox', Oj', Oz'. Denbsp;cette maniere on aura d’abord cos* OL cos* a! nbsp;nbsp;nbsp; aquot;nbsp;nbsp;nbsp;nbsp;==nbsp;nbsp;nbsp;nbsp;I,nbsp;nbsp;nbsp;nbsp;) cos* ë cos* ë' nbsp;nbsp;nbsp; cos*

ëquot;nbsp;nbsp;nbsp;nbsp;=?nbsp;nbsp;nbsp;nbsp;i,nbsp;nbsp;nbsp;nbsp;gt;nbsp;nbsp;nbsp;nbsp;(3) cos* y cos* y' nbsp;nbsp;nbsp;-}- cos* yquot;nbsp;nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;1,nbsp;nbsp;nbsp;nbsp;' et, en outre , cos a cos ë cos a' cos ë' cos at!' cos ëquot; = 0 cos CL COS y cos at! cos y' cos aquot; cos yquot; = 0nbsp;nbsp;nbsp;nbsp;(4) cos ë cos y -h cos ë' cos y' cos ëquot; cos yquot; = 0;) equations qui seront equivalentes aux six précédentes, et pourront leur ?tre substituées. Soit a l’aire d’une surface plane terminée par un contour quelconque, et située dans un plan passantnbsp;par Ie point 0; par ce point, élevons sur ce plannbsp;une perpendiculaire OD, et faisons xOD = jOD = q', zOD = q’. Ces trois angles aigus ou obtus , détermineront la di-



538 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAINIQÜE. rectlon de OD et celie du plan de a ; s’ils se changent tous les trois dans leurs supplémens, la droite ODnbsp;se changera dans son prolongement, et Ie plan de cinbsp;restera Ie méme. Appelons aussip, p', p', les projections de a sur les plans pOz, JcOz, xOp, nous aurons ( n° lo )p — a cos q, p' z= Cl cos q', pquot; z= a cos Solt y enfin, b la projection de a sur un quatri?ine plan, qui sera, si Ton veut, Ie plan j-'Oz', et c Tanglenbsp;x'OD; on aura aussi h =? a cos c, et, d’apr?s la formule (2) du n° c), cos c — cos q cosnbsp;nbsp;nbsp;nbsp;cos cq' cos Q cos qquot; cos y ; (5) d’ou Ton conclut b = p cos a p' cos ? pquot; cos y; nbsp;nbsp;nbsp;(6) equation qui fera connaitre la projection d’une aire a sur un plan quelconque, lorsque Ton connaitra

sesnbsp;projections sur trois plans rectatigidaires. Comme Tequatlon (5) n’a lieu qu’en tenant compte des signes des cosinus qu’elle renferme, il s’ensuitnbsp;qu’il faut de m?me avoir egard , dans Tequation (6),nbsp;aux signes des projections p, p', p”, et les considérernbsp;comme des quantite's positives ou negatives, selon quenbsp;la perpendiculaire OD au plan de a fait des anglesnbsp;aigus OU obtus avecles axes Ox, Ojr, Oz. 277. Cela posé, considérons de méme un nombre quelconque d’aires planes a, a', d', etc., sltuées dansnbsp;des plans différens; projetous toutes ces aires sur les



STATIQÜE, SECONDE PAR?IE. nbsp;nbsp;nbsp;SSg trois plans xOj, xOz,jOz, et ajoutons ensemble les projections faites sur un m?me plan, en ayant égard anbsp;leurs signes, ainsl qu’il vient d’etre dit. Soient A, A',nbsp;Aquot;, les trois sommes qu’on obtiendra de cette nia-öi?re; soit aussi B la somme des projections de a, o!,nbsp;oquot;, etc., sur Ie plan y'Oz'; en formant pour chacunenbsp;de ces aires, une equation semblable a l’équation (6),nbsp;et ajoutant ensuite toutes ces equations, on aura B = A cos a -}- A' cos ? Aquot; cos y- Représentons encore par B' la somme des projections de a, a!, aquot;, etc., sur Ie plan x'Oz'. II est évident que la valeur de B' se déduira de celle de B, par la substitution de l’axe Oj' perpendiculaire a cenbsp;plan, a l’axe Ox' perpendiculaire au plan j'Oz', c’est-a dire, en mettant dans la formule

précédente a', C,nbsp;y', au lieu de a,C,y‘, ce qui donne cos y B' = A cos a.' -f-É cos iC Si l’on représente de méme par Bquot; la somme des projections de a, a!, d', etc., sur Ie plan x'Oy', sanbsp;Valeur se déduira de celle de B, en y substituant d',nbsp;Squot;, yquot;, au lieu de a, ë, y, d’ou il résulteraBquot; = A cos d' B cos ?quot; -{- C cos / De ces valeurs de B, B', B'', et en ayant égard aux equations (5) et (4), on tire réciproquement A = B cos a -f- B' cos d -f- Bquot; cos d', ) ^'=BcosS-i-?B'cosS' Bquot;cosC'', [nbsp;nbsp;nbsp;nbsp;(7) A*s=: B cos y B^ cos y' -1“ B* cos y'. )



54o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Ces diffërentes equations nous montrent que les projections des surfaces planes sur difFérens plans,nbsp;suivent les mémes lois que celles des lignes dröitesnbsp;sur des droites diffërentes. 378. En faisant la somme des carrés des valeui’S d.e B, B', Bquot;, il vient, d’apr?s les equations (5) et (4) gt; B* B'* Bquot;* = A* A'“ A'%' (8) ce qui fait voir que la somme des carrés de ces trois quantités B, B', B', ne varie pas avec la directionnbsp;des trois plans rectangulaires de projection auxquelsnbsp;elles se rapportent. Dans Ie cas particulier oü toutesnbsp;les aires a, d, aquot;, etc., .sont dans un m?me plan,nbsp;cette somme n’est autre chose que Ie carré de l’airenbsp;totale a H- d aquot; etc.; et si l’on prend ce plannbsp;pour celui des axes Oj' et Oz, par

exemple, onnbsp;aura évidemment A cc —jquot; Cl nbsp;nbsp;nbsp;d etc. ^ A o ynbsp;nbsp;nbsp;nbsp;o. Cherchons actuellement ce que la méme somme représente dans Ie cas général ou les aires a, dynbsp;a’y etc., sont situées dans des plans quelconques. L’équation (8) donne B = v/A? A'* -I- A'” la somme B, qui varie en passant d’un plan de projection a un auti’e, est done la plus grande possible, quand on a B^ = o et B*^ z= o; et alors elle est égale 3nbsp;y/A* -1- A'“ Aquot;Ž. Ainsi , la quantité constantenbsp;dont il s’agit représente, dans Ie cas général, la plus



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;541 grande somme des projections sur un m?me plan, des aires planes que I on consid?re dans l’espace. ayg. Le plan^'^Oz' qui répond acette plus grande projection, jouit de propriéte's imporlantes en mé-ranique, que nous ferons connaitre dans la suite denbsp;Ce traité. Sa position est facile a determiner, d’apr?snbsp;^es equations B' = o et Bquot; = o, qui le caracté-Hsent. En effet, les equations (7) se réduisent alors a A == B cos a , A' = B cos C, Aquot; = B cos y ;nbsp;d’oü Ton tire A cos a =cos ;li t^Ors done que l’on connaitra les sommes A, A', Aquot;, ^^cs projections sur trois plans rectangulaires j-Oor,nbsp;xOjquot;, choisis arbitrairement, on pourra immé-'^iatement determiner la direction du plan j'Oz' de lanbsp;plus grande projection, au mojen des trois angles et,nbsp;^ gt; y, qui

se rapportent a la droite Ojc' perpendiculaire a ce plan. Quant a sa position absolue dans l’es-pace , il est évident qu’elle est indéterminée ; car lesnbsp;Projections de chacune des aires a, a!, aquot;, etc., et,nbsp;par conséquent, la somme de ces projections, sont lesnbsp;Ri?mes sur tous les plans parall?les. 280. La somme des projections des aires a, a',



542 nbsp;nbsp;nbsp;TrxAITÉ DE MÉCANIQÜE. aquot;, etc., est egale sur tous les plans également inclines sur celui de la plus grande projection. Pour Ie demontrer, prenons Ie plan perpendiculaire a la droite OD; désignons par C la somme des projections de a, a', a”, etc., sur ce plan; soient tou-jours q, q', q’, les angles que cette droite OD fai*nbsp;avec les axes Oa?, O7, Oz, et c Tangle oc'OJ) qui mesure Tineiinaison de ce plan sur celui de la plus grandenbsp;projection. On aura, d’apr?s ce qu’on vient de trou-ver ( n” 277 ), C — A cos 5 -j- A' cos q' -j- Aquot; cos q”. En substituant B cos a, B cos ^, B cos y, h la place de A, A', Aquot;, on aura done 0 = 11 (cos ot cos q cos ? cos q' cos y cos qquot;), OU bien, en vertu de la formule (5), C = B cos c t et, en mettant pour B sa valeur. C = vquot;A' 4- A'”* H-

Aquot;* cos c; par conséquent, la valeur de C est la m?me pour touS les plans qui font Ie m?me angle c avec Ie plan j'O^nbsp;de la plus grande projection. Cette valeur diminue a mesure que Tangle c ap-pi’oche de 90°; elle est nulle pour tous les plans pei’-pendiculaires a j'Oz'. 281. Poiii' appliquer maintenant a la théorie deS momens ces propositions relatives aux projectionsnbsp;des surfaces planes, il suffit de supposer que les airesnbsp;a, a', aquot;, etc., sont les doubles des triangles qui ontnbsp;pour sommet commun le point 0, et pour bases les



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;543 droites qui représentent, en grandeur et en direction, les forces P, P^ P^ etc., que l’on a considérées Précédemment. Leurs momens L, M, N, par rapportnbsp;aux axes Oz, Oy, Ox, des coordonnées positives denbsp;icurs points d’applicatlon ( n“ 274 ) seront alors lesnbsp;Sommes des projections de a, d, aquot;, etc., sur les plansnbsp;, xOz, /Oz; et voici les consequences qui résul-tent des propositions qu’on vlent de démontrer : IŽ. En appelant E ie moment des forces P, P', ?*quot;, etc., par rapport a un axe passant par Ie point O,nbsp;*lui fait avec les axes Ox, O/, Oz, des angles e, e', ? ,nbsp;^igus OU obtus , on aura E = N cos ? -|- M cos ?' L cos squot;. 2quot;. Parmi toutes les directions autour du point 0, de l’axe du moment E, 11 en est une pour laquelle cenbsp;tnoment est Ie

plus grand possible et ëgal anbsp;-{- MŽ N“. Par rapport a tout autre axe, passant toujours par le point 0 et perpendiculaire a ce-^nl du plus grand moment, le moment E est zéro, il est egal a v L“ -f- IVP NŽ cos S', relativement a Un axe qui fait Tangle S avec celui du plus grandnbsp;Rioment. 3°. Enfin, si Ton appelle a, ?, les angles que fait Taxe du plus grand moment passant par le point 0,nbsp;avec les axes On?, 0/, Oz, des momens N, M, L , etnbsp;que Ton designe par G la grandeur de ce plus grandnbsp;moment, on aura cos •a .'I •!?mi



544 TRAITÉ DE MÉCANIQUE.. et, en m?me temps, G = v/L-* M* N*; d’oüil résulte qu’en prenantsur les axes Ox, Oj', OZf a partir du point 0 , des droites propoi’tionnelles auXnbsp;momens N, M, L, et achevant Ie parallelepipedsnbsp;dont ces droites seront les trois cótës adjacens, lanbsp;longueur de sa diagonale représentera la grandeur dunbsp;plus grand moment, et cette droite sera l’axe de cenbsp;moment principal. Ces théor?nies remarquables sont dus a Euler. lis établissent une parfaile analogie entre la compositionnbsp;des momens et celle des forces; analogie qui tient anbsp;ce que les forces étant représentées par des lignesnbsp;droites, les momens sont exprimés par des surfacesnbsp;planes, qui se projeltent sur des plans différens, de lanbsp;m?me mani?re que les lignes sur des droites

diffé-rentes ( n° 277 ). 282. Le point 0 et Ie syst?me des forces P, P', P', etc., étant donnés, j’appellerai moment principalnbsp;de ces forces, leur plus grand moment G. Si Ionnbsp;transporte toutes ces forces parall?lement a elles-m?mes, en ce point 0, elles auront une résultantenbsp;que je désignerai par R, et dont les composantes,nbsp;suivant les axes Ox, Oj-, Oz, seront les trois quantitésnbsp;X, Y, Z, du n° 261. La considération de cette résultante et du moment principal, fournit un énoncénbsp;tres simple des résultats du chapitre précédent. Pour 1’équilibre des forces P, P', Pquot;, etc., appli-quées a un corps solide enti?rement libre, il suffira que la résultante R et le moment principal G soient



STATIQÜE, SECONDE PARTIE. égaux a zéro; car, a cause de= X* Y* Z*, G* = L“ M* 4- N*, les equations R=:o et G = o, entraineront les six equations d’équilibre du nŽ 261. On en peut conclure que pour qu’un sjst?me de forces fasse équilibre a un autre, il est nécessaire etnbsp;il sui?it : 1°. que les résultantes R qui ont lieu dansnbsp;ces deux syst?mes soient égales et contraires; 2Ž. que,nbsp;pour un méme point O, leurs momens principauxnbsp;soient égaux et répondent a des axes dirigés en sensnbsp;contraire, on dont l’un soit Ie prolongement de l’auti’e.nbsp;La résultante R et sa direction, Ie moment principalnbsp;et Ia direction de son axe, resteront les m?mes,nbsp;dans lOutes les transformations qu’on peut faire subirnbsp;a un méme syst?me de forces, et, généralement,nbsp;pour deux syst?mes de forces équivalens. Soient

a,b , c, les angles que la force R fait avec les axes Ox, Ojquot;, Oz, on aura COSC = 5quot;. lx ? R , nbsp;nbsp;nbsp;-------R Soient aussi ro l’angle compris entre sa direction et 1’axe du moment principal; a, €, y, étant les anglesnbsp;^ue fait eet axe avec Ox, Ojquot;, Oz, nous aurons cos G) = cos a cos a ~j- cos b cos € cos c cos y, OU , ce qui est la méme chose, ZL YM XN cos ? =-- RG II s’ensuit done que la condition d’une résultante I.nbsp;nbsp;nbsp;nbsp;35



546 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. unique qui est exprimée ( n° 265 ) par l’équation o, XN YM ZL consiste en ce que l’axe du moment principal G et la direction de la resultante R doivent se couper a anglenbsp;droit. C’est ce qu’on verifie, en elFet, en observantnbsp;que si les forces P, P', Pquot;, etc., dans leur veritablenbsp;position, out une résultante unique, cette force doitnbsp;?tre égale et parall?le a R, et que son moment parnbsp;rapport au point 0, doit aussi ?tre Ie moment principal G; en sorte que l’axe du moment principal estnbsp;alors perpendiculaire a cette résultante transportéenbsp;au point 0 parall?lement a elle-m?me; mais ce rai-sonnement ne suffirait pas pour prouver que réci-proquement, quand l’équation précédente a lieu , lesnbsp;forces données ont une résultante unique.

285. Je transporte Ie point 0 en un autre point quelconque quej’appelle 0,; jedésignepar a?,, j-,, z,,nbsp;les coordonnées de 0,, rapportées aux axes Ox, Oj,nbsp;Oz, et par L,, M,, N,, ce que deviennent L, M,nbsp;N, relativement a ce point 0, : les valeurs de cesnbsp;derni?res quantités se déduiront des premi?res ( nquot; aöt ) , en y mettant x — x,, jr — a la place de x, jquot;, z ; et il en résultera L, nbsp;nbsp;nbsp;= L -j- X^, — Yx,, (a) M, nbsp;nbsp;nbsp;— M Zx, — Xz,, N, nbsp;nbsp;nbsp;= N Yz. - Zj.. Ces formules montrent que quand P, P', P', etc., se réduisent a des forces égales, parall?les et dirigéesnbsp;en sens contraire, mais non directement opposées.



STATIQUE, SECONDE PARTJE. nbsp;nbsp;nbsp;547 auquel cas on a X = o, Y = o , Z = o , les quantités L,, M,, N,, sont indépendantes des coordonnées dunbsp;point 0, j en sorte que la grandeur du moment principal et la direction de son axe ne varient pas avecnbsp;la position de ce point. En effet, quelque part quenbsp;soit placé Ie point 0,, il est évident que l’axe dunbsp;moment principal des deux forces parall?les qu’onnbsp;peut substituer aux forces données P, P', Pquot;, etc.,nbsp;est la perpendiculaire a leur plan; et nous savonsnbsp;d’ailleurs (n° 48) que la somme des inomens de cesnbsp;deux forces qui sera Ie moment principal des forcesnbsp;données, est uue quantité constante. Dans tout autre cas, Ie moment principal change avec la position du point 0,; et l’on peut demandernbsp;quel dolt étre ce point, ouces points,

s’il y en a plu-sieurs, pour lesquels ce moment est un minimum.nbsp;En Ie désignant généralement par G,, c’est-a-dire,nbsp;cn faisantG.‘ = L.“ M.? -h N.% Qous aurons = (L Xj-.-Yx. )^ (M Zr.—X5,)’-i- (N Yz,-Zj.)'. Si l’on égale a zéro ses trois differences partielles par rapport a x,, jquot;,, z,, afin de determiner sa valeurnbsp;minima, et si l’on observe queN%-I- IVP* R? On obtient trois équations qu’il est facile d écrlre sous celte forme : 35..lil



548 TRAITÉ DE MÉGAINIQUE.= X ( Xo:, Yj. Zz. ) YL — ZM, R?j. = Y (Xx. Yjr. Zz.) ZN - XL,nbsp;R=z. = Z (Xa:. Yjr, Zz.) XM— YN. Or, si l’on ajoute ces trois equations apr?s les avoir multipliées par X, Y, Z, on trouve une e'quationnbsp;identique; il s’ensuit done que l’une d’elles estunenbsp;suite des deux autres ; et comme les coordonnéesnbsp;ne s’y montrent qu’au premier degré, ellesnbsp;appartiennent a une ligne droite qui est Ie lieu desnbsp;centres des momens, par rapport auxquels Ie moment pi’incipal est au minimum. II n’est pas ne'cessairenbsp;d’examiner lequel a lieu du maximum ou du minimum; car il est évident que la valeur de G, croit in-définiment avec les variables x,, z,, et n’est pasnbsp;susceptible de maximum. 284- En éliminant la quantile Xjt, -j- Yj, -f- Zz,, entre les equations

précédentes, prises successivementnbsp;deux a deux, on trouve R“ MY -4- LZ) quot;R^Xj.--Yx.-p L = nbsp;nbsp;nbsp;, Xz.- -M = {h) Y(NXYz. - Z^. N = equations qui appartiendront aux projections sur les trois plans des coordonnées du lieu des centres desnbsp;momens principaux minima. On en déduitG, — NX -h MY LZ Rnbsp;nbsp;nbsp;nbsp;'(^)



STATIQUE, SECONDE PARTIES. nbsp;nbsp;nbsp;5^9 pour la valeur du moment principal minimum, qui est ainsi la m?me pour tous les centres O,. Si l’on appelle a,, nbsp;nbsp;nbsp;les angles que l’axe du moment G, fait avec des parall?les aux axes Ox, Oj, Oz, menées par Ie point O,, on aura G.’ cos cos a, = gt;? = a' cos quel que soit Ie centre des momens ; et, d’apr?s les equations (d), {b), (c), il en resultera, en particulier, pour un point (?, appartenant a la droite dé-terminée par les equations {b), X nbsp;nbsp;nbsp;Ynbsp;nbsp;nbsp;nbsp;7j cos ot, — nbsp;nbsp;nbsp;, cosnbsp;nbsp;nbsp;nbsp;^ , cos y, — ^ j ce qui moutre que les axes de tous les moraens prin-cipaux minima, dont la valeur commune est donnée par la formule (c), sont parall?les enti’e eux et a la direction de la force R. 'lil Quand les forces données ont une

résultante unique, il est évident que la plus petite valeur denbsp;G, dolt avoir lieu lorsque Ie point O, est prls sur sanbsp;direction ; ce qui rend cette valeur égale a zéro. Ré-clproquement, si la valeur de G, est nulle par rapport a un point 0,, on en conclura que les forcesnbsp;données P, P', Pquot;, etc., ont une re'sultante unique, passant par ce point; car si elles se rédui-saient a deux forces non comprises dans un m?menbsp;plan , on pourrait faire passer Tune d’elles par Ienbsp;point 0,, et rédulre leur moment principal a celuinbsp;de lautre force, lequel ne serait pas zéro, contrenbsp;l’hjpotb?se. On conelut de la que la condition néces-



55o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQüE. saire et suf?isaiite pour que les forces données aient une résultante unique, consiste en ce que leur moment principal puisse ?tre égal a zéro. Ce momentnbsp;étant alors un minimum, la condition dont il s’agitnbsp;sera exprimée par l’équation LZ MY NX = o, d’apr?s la formule (c); et Ie point 0, auquel il se rapporto , appartenant a cetle résultante, les équations de la droite suivant laquelle elle est dirigée, seront Xjt-, — Xx, L = o, TiX^ —= Xz, -|- M = o, Yz. — Zr. N = o, en vertu des équations (h). Ces résultats coincident avec ceux du n° 265 qu’on a trouvés par d’autres con-sidévations.



CHAPITRE III. EXEMPtES DE E EQUIIIBRE D UN COUPS FLEXIBLE. § I“. ?quilibre du poljgone funiculaire. 285. On appelle, en géne'ral, machine funiculaire, tont assemblage de cordes liées entre elles par desnbsp;nceuds fixes, ou simplement passées dans des an-iieaux qui peuvent couler Ie long de ces cordes. Lenbsp;nombre des cordons qui viennent aboutir a un m?menbsp;Doeud peut ?tre quelconque; mais pour simplifier lanbsp;question , nous supposerons que chaque nmud n’as-sernble jamais que trois cordons; et, en premier lieu,nbsp;iious exclurons les anneaux mobiles. Prenons done une corde pai’faitenient flexible et d’une longueur quelconque , dont A et B (fig. 71)nbsp;soient les deux extrémités. Soient M, M', Mquot;, elc.,nbsp;différens points de cette corde ; attachons a ces pointsnbsp;des cordons MC,

M'C',nbsp;nbsp;nbsp;nbsp;etc., suivant lesquels agiront des forces données P, P', Pquot;, etc.; appliquons aussi au point M une force donnée H , agissant dansnbsp;la direction du cordon MA , et au dernier des pointsnbsp;M, M', Mquot;, etc., une autre force donnée K, dirigéenbsp;A-^ers le point B. Dans l’état d’équilibre, cette cordenbsp;flexible formera un polygone dont les somniets seront m'i



55a nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. les points A , M , M', Mquot;,... B, et que nous appelle-rons spécialement un poljgone funiculaire. II s’agit de trouver les conditions que les forces données H,nbsp;P, P', Pquot;, ... K, doivent remplir pour que eet équi-libre soit possible, et de determiner la figure du poljgone qui convient a eet état. Pour trouver ces conditions, je pars de ce principe évident que si 1’équilibre existe, chacun des cordonsnbsp;MIVP,nbsp;nbsp;nbsp;nbsp;etc., doit etre tiré, a ses deux extrémités, par des forces égales, dirigées suivant ses prolonge-mens; car si ces deux forces n’avaient pas la m?me direction que Ie cordon, rien ne les emp?cherait de Ienbsp;faire tournerj et si elles n’étaient pas égales et con-traires, elles feraient avancer Ie cordon suivant sanbsp;direction. II s’ensuit

d’abord que la résultante des deux forces H et P, appliquées au point M, doit co?ncider avec Ienbsp;prolongement MD du coi’don M'M. On peut donenbsp;transporter Ie point d’application de cette force aunbsp;point M' situé sur sa direction ( n° 4i ) gt; ^n la com-posant ensuite avec la foi’ce P', appliquée a ce point,nbsp;il faudra que cette seconde résultante, qui sera cellenbsp;des trois forces H, P, P', coincide avec Ie prolongement M'D' du cordon Mquot;M'; et, par conséquent, ilnbsp;sera permis de la transporter au point M*. Je prendsnbsp;encore la résultante de cette force et de Pquot; qui agitnbsp;en ce m?me point Mquot;; j’ai, de cette mani?re, la forcenbsp;qui tire Ie cordon Mquot;M'quot; a son extrémité Mquot;, et quinbsp;doit ?tre dirigée suivant son prolongement Mquot;Dquot;. •nbsp;Cette force est,

comme on voit, la résultante desnbsp;forces H, P, P', Pquot;; un raisonnement semblable prou-



STATIQUE, SECONDE PARTJE. nbsp;nbsp;nbsp;553 veralt que la force qui tire Ie m?me cordon a son ex-Irémité nbsp;nbsp;nbsp;et qui doit co?ncider avec son autre pro- longement WW, est la résultante des forces P™, P'',. .K ; ces deux résultantes sont done égales etnbsp;directement opposées; et, conséquemment, la résultante de toutes les forces données H, P, P', Pquot;____K, doit étre égale a zéro. Onparviendraitévidennnentau m?me résultat, en considérant les forces qui agissentnbsp;aux deux extrémités de tout autre cóté du poljgone. Ainsi, les forces appliquées au poljgone funicu-laire doivent étre telles qu’en les transportant en iin m?me point parall?lement a elles-m?mes, elles s’jnbsp;fassent équilibre; ce qui donne, comme on sait,nbsp;trois équations entre les grandeurs de ces forces et lesnbsp;angles que font leurs

directions avec trois axesnbsp;mctangulaires menés par ce point. Ces équationsnbsp;sont ( n° 55)H cos a nbsp;nbsp;nbsp;K cos e -j- P cos a-|-P'cosa'-{-etc.= o, )Hcos5-|-Kcosy-|-Pcos^-f-P'cos?'-|-etc.=o, / (a) H cosc-f-Kcosgf-t-Pcos^H-P'cosy-l-etc. = o; ' a, e, a, a', etc., désignant les angles relatifs a l’un des axes; b, f, ?, C', etc., les angles relatifs a unnbsp;autre axe; et c, g, y, y', etc., ceux qui répondentnbsp;au troisi?me. a86. Lorsque les forces H, P, P', Pquot;,... K, et les directions des cordons par lesquels elles agissent, nenbsp;satisferont pas a ces équations, il sera impossiblenbsp;qu’elles se fassent équilibre par Je mojen du poljgone funiculaire, quelque figure qu’on lui donne ;nbsp;mais toutes les fois que ces équations seront satis-



554 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQüE. faites, on pourra donner au polygone une figure telle que l’e'quilibre ait lieu. Les grandeurs et les directions des forces H, P, P', Pquot;,. . . K, étant don-nées, cette figure est déterminée, et sa constructionnbsp;résulte de la suite de compositions de forces que nousnbsp;venons d’indiquer. En eflfet, connaissant les directions des cordons MA et MC, par lesquels agissent les forces H et P,nbsp;on dëterniinera la grandeur et la direction de leurnbsp;resultante. Sur Ie prolongement de cette direction, anbsp;partir du point M, je porte la longueur donnée dunbsp;cóté MM'; cela fait, j’applique au point M' la resultante de H et P suivant la ligne M'M, et la force P'nbsp;suivant la direction donnée du cordon M'C'. Je prendsnbsp;la résultante de ces deux forces, et sur Ie

prolonge-rnent de sa direction, a partir du point M', je portenbsp;la longueur donnée du cóté M'Mquot;. Maintenant, jenbsp;fais au point Mquot; une construction semblable a cellenbsp;que je viens d’indiquer pour Ie point M; j’appliquenbsp;en Mquot; la derni?re résultante sur Ie cóté Mquot;M', et lanbsp;force Pquot; suivant !a direction donnée du cordonnbsp;Mquot;Cquot;; je compose eusui'te ces deux forces en unenbsp;seule, et, sur Ie prolongement de celle-ci, je portenbsp;la longueur donnée du cóté Mquot;M'. Je continue ainsi jusqu’a ce que je sois parvenu au dernier des namds M, M', Mquot;, etc., qui sera, je suppose, Ie point M'', de sorte que M”'B soit Ie derniernbsp;cóté du polygone. Sa direction est connue, puis-qu’elle représente celle de la force extréme K, qui estnbsp;donnée par hypothese. II faudra

done que la direction prolonge'e de la résultante des deux forces appli-



O: STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;555 tjuées au point. Mquot;', suivant Ie cóté nbsp;nbsp;nbsp;suivant Ie cordon M”C*% coincide avec la dii’ection donnée du cóté M^B. C’est, effectivement, ce qui arriveranbsp;toujours; car, d’apr?s notre construction, la forcenbsp;dirigée suivantnbsp;nbsp;nbsp;nbsp;n’est autre chose que la résul tante des cinq forces H, P, P', Pquot;, Pquot;', Iransportées au point M*^ parall?lement a leurs directions; en lanbsp;composant avec la force P‘% dirigée suivantnbsp;on aura la résultante de toutes les forces données ,nbsp;moins la force K; or, en vertu des e'quations (a),nbsp;qu’on suppose satisfaites, cetle résultante est égale etnbsp;directement opposée a la force K (nŽ 55). Si l’on m?ne par Ie point A, les trois axes auxquels se rapportent les angles a, e, ?, a', etc., f, Q,nbsp;6', etc. y c,

g ,y,y', etc., les cooi’données de chacunnbsp;des sommets du polygoue, rapportées a ces axes, se-ront les projections sur ces ruémes axes de la partienbsp;du poiygone comprise depuis Ie point A jusqu’a cenbsp;sommet. On pourrait les calculer, en fonctions de cesnbsp;angles, des longueurs des cótés du poiygone et desnbsp;forces données; les formules générales que l’on ob-tiendrait de cette mani?re serviraient, dans chaquenbsp;cas, a construire directement tous les sommets dunbsp;poiygone, ou seulement un ou plusieurs de cesnbsp;points; mais il est plus simple de determiner succes-sivement, et les uns au moyen des autres, lesnbsp;diflférens cótés du poiygone, ainsi qu’on vient denbsp;l’indiquer. 287. Quand les forces données remplissent les conditions exprimées par les équations (?), et qu’on a fait prendre au

poiygone la figure propre a l’équi-



556 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. libre, l’lntensité commune des deux forces égales et confraires qui tirent chacun des cótés suivant sounbsp;prolongement, est la tension que ce cordon éprouve;nbsp;il est done important, dans la pratique, de calculernbsp;cette tension, et de s’assurer, par l’expérience, qu’ellenbsp;ne dépasse pas celle qu’un cordon du m?me dia-ni?tre et de la m?me mati?re peut suppoi’ter sans senbsp;rompre. Or, d’apr?s ce qu’on vient de voir, cette tension variera d’un cótë a l’autre du polvgone; la tensionnbsp;du cóté MM' sera egale a la résultante des forces Hnbsp;el P, OU a celle des forces P', Pquot;, P'quot;,. .. K; la tension du cóté M'Mquot; sera égale a la résultante des forcesnbsp;H, P, P', OU a celle des forces Pquot;, Pquot;',. . . K; et ainsinbsp;de suite. II sera done

aisé, dans cliaque cas particulier, de déterminei’ les tensions qu’éprouvent tousnbsp;les cótés du poljgone en équilibre, lorsque les grandeurs et les directions des forces H, P, P', Pquot;,... K,nbsp;seront toutes données. Si les points extrémes A et B du polygone sont fixes, les forces H et K représenteront a la fois lesnbsp;tensions des cordons qui aboutissent a ces points etnbsp;les pressions que ces points éprouvent. Dans ce cas,nbsp;les valeurs de H et K, et des angles a, h, c, e, J, g,nbsp;qui déterminent les directions des deux cótés extremes du polygone, ne seront plus données ; mais onnbsp;aura buit équations pour déterminer ces buit incon-nues, savoir, les équations (a), les équations (n° 6)nbsp;cos“a cosŽó cos'c=i, cos'e cos'*ƒ-}- cos“ g ^ gt;nbsp;et trols équations résultant de ce que la position

desnbsp;deux points fixes A et B est donnée. Ou formera



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;557 celles-ci en calcnlant les valeurs des trois coordonnées de l’un de ces points, rapportées a des axes passantnbsp;par l’autre point, c’est-a-dire, les projections du po-^ygone entier sur ces trois axes, et les egalant auxnbsp;Valeurs données de ces m?mes coordonnées. La determination de ces huit iuconnues sera géné-ralement tres compliquée; mais apr?s que Ie polj-gone funiculaire aura pris de lui-rn?me ia figure propre a 1’équilibre des forces appliquées a ses som-Diets, on obtiendra sans difliciilté les tensions de sesnbsp;différens cótés; ce qui sut?ira pour la pratique. Ainsi,nbsp;cn décomposant la force P appliquée au point M ennbsp;deux autres forces dirigées suivant les prolongemensnbsp;des cótés AM et MM', les composantes, données im-Diédiatement par la regie du

parallélogramme desnbsp;forces, seront les tensions d? ces deux cótés. Celle quinbsp;3gira suivant Ie prolongement de AM devra ?tre égalenbsp;^ Ia force agissant suivant ce premier cóté, loi’sque Jenbsp;point A sera fibre; et quaud il sera fixe, elle expri-^era la pression exercée sur ce point. Pareillement,nbsp;composantes de la force P' suivant les prolonge-^ens de MM' et M'Mquot;, expriraeront la tension denbsp;MM', déja connue par la décomposition de P, et cellenbsp;du cóté adjacent M'Mquot;; et ainsi de suite. 288. Les cordons qui forment les différens cótés d un poljgone funiculaire sont toujours un peu ex-tensibles; chacun d’eux s’allonge d’une petite quan^nbsp;tité, en raison de Ia tension qu’il éprouve dans I’é-^at d’équiiibre; et lorsque cette tension est connue,nbsp;On peut calculer rallongement correspondant. En effet,

1’expérience prouve que tant que la



558 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQUE. tensioQ d’un fil homogene et d’une épaisseur constante nappi’oche pas de la force nécessaire pour Ie rompre, son allongement est proportionnel a sa longueur et a la tension qu’il éprouve; il varie d’ail-leurs, d’un fil a un autre, avec l’épaisseur et la rna-ti?re du fil. Cela étant, je suppose que I on attache a unnbsp;point fixe un fil de la m?me épaisseur et de la m?menbsp;mati?re que Ie cordon AM, et que 1’on suspende a sonnbsp;extrémité inférieure un poids donné n, tres grandnbsp;par rapport a celui du fil. Soient l et Z(inbsp;nbsp;nbsp;nbsp;ses longueurs avant et apr?s la suspension du poids O; cette quantité sera une fraction tres petite, indé-pendante de l et proportionnelle a O, en négligeantnbsp;Ie poids du fil; en sorte que si, dans une autre expé-rience, les

trois quantités Z, fl, sont l', (sr', 11', onnbsp;aura wn'l?r ’ quels que soient Z et Z'. Or, il est évident qu’un fil attaché a un point fixe et tiré a son autre extrémité par une force dirigée suivant son prolongement, estnbsp;dans Ie m?me état que s’il était tiré par cette m?menbsp;force suivant ses deux prolongemens. Si done on ap-pelle T la tension du cordon AM, et si l’on supposenbsp;qu’il se soit allonge dans Ie rapport de i-j-T a l’unité,nbsp;on aura ?siT “n ’ pour délerminer eet allongement; et il en sera de m?me pour tous les autres cótés du poljgone-



STATIQUE, SECONDE PAR?IE. nbsp;nbsp;nbsp;559 289. Soit que les points extr?mes A et B du poly-gone soient fixes, ou qu’ils soient libres, si l’un ou plusieurs des noeuds M, M', Mquot;, etc., sont remplacésnbsp;par des anneaux, cette circonstance donnera lieu anbsp;de nouvelles conditions d’équilibre. Supposons, parnbsp;^xemple, que Mquot;soit un anneau mobile qui puissenbsp;glisser Ie long du cordonnbsp;nbsp;nbsp;nbsp;il est clair que dans ce mouvement la som me des distances M'Mquot; et IVlquot;M'quot;, du point Mquot; aux points M' et Mquot;', restera constante. Or, si Tequilibre existe, eet état nenbsp;Žera pas trouble en rendant fixes ces deux derniersnbsp;points; mais alors Ie point Mquot; sera dans Ie mémenbsp;Oas que s’il e'tait astreint a demeurer sur la surfacenbsp;d’un ellipso?de de revolution, dont M' et

Mquot;' sontnbsp;les deux foyers, et dont Ie grand axe est égal a lanbsp;longueur donnee du cordonnbsp;nbsp;nbsp;nbsp;done ce point fie peut rester en équilibre (n° 36), a moins que la Idrce P'' qui lui est appliquée ne soit perpendiculaire a cette surface; d’oii il suit, d’apr?s une pro-priété connue de l’ellipse, que la direction de cettenbsp;force doit couper en deux parties ëgales Tangle desnbsp;deux rayons vecteurs Mquot;M' et Mquot;M'quot;. Lors done qu’en executant la construction du 286, on sera parvenu a un anneau mobile tel que Mquot;, et que Ton aura pris la re'sultante desnbsp;deux forces dirigées suivantnbsp;nbsp;nbsp;nbsp;et Mquot;C'', dont Ie prolongement sera Ie cóté nbsp;nbsp;nbsp;si Ton trouve que les angles Cquot;Mquot;M' et Cquot;Mquot;Mquot;' ne sont pas ëgaux entre eux, il en faudra conclure que

Tëquilibrenbsp;o’existe pas. En general, il faudra que la directionnbsp;du coi’don Mquot;Cquot;, attaché a un anneau mobile, ne



56o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. soit pas donnée d’avance , afin qu’on puisse, en la determinant d’une mani?re convenable, remplir lanbsp;condition de l’ëgalité des deux angles M'Mquot;C' etM'^ivr'Cquot;. Observons que dans letat d’ëquilibre, les tensions des deux cótës adjacens a un anneau mobile serontnbsp;ëgales entre elles; cela rësulte de ce que ces deuxnbsp;cótës font des angles ëgaux avec la direction de lanbsp;force appliquëe a eet anneau, et que leurs tensionsnbsp;sont les composantes de cette force suivant leursnbsp;propres directions; mais cette ëgalitc de tension peutnbsp;aussi étre considërëe comme évidente en elle-m?me,nbsp;puisque les deux cótës Ie long desquels l’anneau peutnbsp;glisser ne forment qu’un cordon , qui doit nëces-sairement ëprouver la m?me tension dans

toute sounbsp;ëtendue. 290. Ce que nous disons a l’ëgard d’un anneau oblige de glisser Ie long d’un fil considérë commenbsp;inextensible et parfaitement flexible, peut s’ëtendrenbsp;a tous les points d’un sjst?me de points matërielsnbsp;en ëquilibre. Quelle que soit la liaison de ces pointsnbsp;entre eux, on ne troublera pas eet ëquilibre ennbsp;fixant tous les points du sjst?me, exceptë un seul.nbsp;Or, si la liaison de ce point avec les autres est tellcnbsp;qu’il puisse encore dëerire une surface ou seule^nbsp;ment une ligne courbe autour de ces points fixes,nbsp;il est évident que Ie point mobile sera dans Ie m?inenbsp;cas que si la surface ou la ligne courbe existait reel-lement; par conséquent, la direction de la forcenbsp;qui lui est appliquëe doit ?tre normale a cette surface ou a cette ligne.



1. S?A?IQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;561 ConcluoQs done que dans tout sjst?me de points matériels en équilibre, la force appliquée a chacunnbsp;de ces points est perpendiculaire a la surface ou anbsp;la ligne sur laquelle ce point serait oblige de Tester, si tous les autres points auxquels il est He'nbsp;étaient regarde's, pour un moment, comme desnbsp;points fixes. Quand cette condition, relative a la direction des forces et a la liaison des parties du sjst?me, n’estnbsp;pas remplie, on peut ?tre certain que l’équilibrenbsp;n’existe pas; mais elle ne suffit pas a elle seule pournbsp;assurer Tequilibre du sjst?me. 291. Si toutes les forces qui agissent sur un polj-gone funiculaire suspendu aux deux points fixes A et B, sont des poids donnés, il résulte de la construction du n° 286, que ce poljgone tout entier

seranbsp;contenu dans Ie plan vertical passant par ces deuxnbsp;points; et cela est d’ailleurs évident en soi-m?me,nbsp;puisqu’il n’j aurait aucune raison pour qu’il s’écartatnbsp;de ce plan plutót d un cóté que de l’autre. En pre-öant alors la perpendiculaire a ce plan pour l’axenbsp;auquel répondent c, g, y, y', etc., tous ces anglesnbsp;seront droits, et la troisi?me équation (a) disparaitra;nbsp;^es deux autres se réduiront a H cos a -j- K cos e = o, H cos -j- K cos ƒ n en supposant que les angles a, e, a, ?•', etc., répondent a un axe horizontal, et les angles b, J.\ etc., a un axe dirigé dans Ie sens de la pesan- 36 •!iS i Il \gt;M i’lii



562 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. teur, et en representant par H la somme des poids F, P', Fquot;, etc., appliques au polygone. L’équilvbre de ce polygone ne sera pas trouble si l’on rend sa forme invariable; par conséquent, lanbsp;force n devra étre égale et directement opposée a lanbsp;résultante des forces H et K, En vertu des équa-tions (amp;), elle est déja égale et contraire a cette résultante; il faudra done encore qu’elle passe par Ienbsp;point 0 ( fig. 72 ), oü les prolongemens des cordonsnbsp;extremes AM et BN viennent se couper, et qu’onnbsp;peut prendre pour Ie point d’appllcation communnbsp;aux deux forces H et K. Ainsi, dans l’état d’équilibre,nbsp;la résultante n des forces verticales F, F', Fquot;, etc.,nbsp;sera dirigée suivaut la verticale OD; et, cela étant,nbsp;on aura les proportions

(nquot; 29) sin AOB, sin AOB, sin BOD sin AOD qui feront connaitre les tensions des cordons ex-tr?mes, ou les pressions H et K exercées sur les deux points fixes A et B, quand on aura mesuré les anglesnbsp;AOD et BOD 292. On peut faire sur les tensions des cordons qui supportent un poids donné , la menie remarque quenbsp;l’on a déja faite a 1’égard des pressions éprouvées pal’nbsp;les points d’appui d’un plan horizontal sur lequel uonbsp;poids est placé (n'‘ 270). Supposons que les trois cordons attachés aux points fixes A, B, C (fig. 73), se réunissent au point M, etnbsp;qu’en ce point un poids F soit suspendn et agisse sui-vant la verticale MD. Prenons un point D' sur Ie pro-



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;563 longement de cette droite, et construisons Ie paral-lélépip?de dont MD' est la diagonale, et qui a ses trois cótés adjacens MA', MB', MC', sur les directionsnbsp;des trois cordons. Si Ton représente la force P par lanbsp;droite MD', ses composantes suivaut ces directionsnbsp;seront repre'sentées par les droites MA', MB', MC', etnbsp;elles exprimeront les tensions des trois cordons MA,nbsp;MB, MC, OU les charges des trois points fixes A, B,nbsp;C, lesquelles se trouveront, dans ce cas, compl?te-ment dëterminëes. Mais, lorsque les cordons abou-tissant au point M seront au nombre de quatre , ounbsp;en plus grand nombre, on pourra decomposer lanbsp;force P d’une infinite de mani?res différentes, suivantnbsp;leurs directions; en sorle que leurs tensions et lesnbsp;charges

des points fixes ne seront plus de'terminees,nbsp;€t une ou plusieurs d’entre elles pourront étre nullesnbsp;ou prises arbitrairement. Or, cette indéterminationnbsp;aurait réellement lieu dans la question abstraite, oiinbsp;1’on n’a tenu aucun compte de l’extensibilite' des cordons; mais elle n’existe plus d?s qu’on a e'gard anbsp;cette propriété de la mati?re : alors tous les cordonsnbsp;s’allongeut un tant soit peu; leurs extensions dependent de leur nombre et de leurs positions relatives;nbsp;et si 1’on mesurait ces petits allongemens, on ennbsp;pourrait conclure la tension de chaque cordon, ounbsp;la charge de chaque point fixe qui a réellementnbsp;lieu. Ainsi, en supposant que Ie cordon AM, par exem-ple, se soit allonge dans Ie rapport de i cf a runité, et sachant, d’ailleurs, qu’un cordon de meme mati?renbsp;et de m?me

diam?tre s’allonge dans Ie rapport de3G..



564 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜË. I ?z?T a I’unite, quand on le suspend verlicalement a un point fixe, et qu’on attache le poids P a son ex-tréniité inférieure, on en conclura (n° 288) que lanbsp;tension éprouvée par ce cordon, ou la charge que supporte le point A, est égale au produit - P. a: t Si Ton désigne par lt;20-' et cT', lt;arquot; et cTquot;, etc., ce que deviennent les fractions ?zs- et cT relativement aux cordons MB, MC, etc., et par y, y', yquot;, etc., les anglesnbsp;aigus que font les cordons MA, MB, MC, etc., avecnbsp;la verticale MD', il faudra qu’on ait - cos y -j—v cos y -|--cos y ' -f- etc. = i, • nbsp;nbsp;nbsp;•7X-'nbsp;nbsp;nbsp;nbsp;•nbsp;nbsp;nbsp;nbsp;••XPnbsp;nbsp;nbsp;nbsp;?nbsp;nbsp;nbsp;nbsp;' afin que la somme des composantes verticales de toutes les tensions soit égale au poids

P. En proje-tant les niemes cordons sur un plan horizontal menénbsp;par le point M, et désignant par ca, cd', 0)quot;, etc., lesnbsp;angles que les projections de MA, MB, MC, etc.,nbsp;font avec une droite MO tracée arbitrairement dansnbsp;ce plan, on aura aussiiT . nbsp;nbsp;nbsp;.nbsp;nbsp;nbsp;nbsp;y . ~ sin 5/ sin ? sin y' sin a’ -[- etc. = o, - sin y cos a nbsp;nbsp;nbsp;sin y' cos co' -f- etc. = o, pour exprimer que la résultante de toutes les tensions est une force verticale. Quand il n’y a que trois cordons, ces trois equations suffisent pour determiner les rapports de leurs ^ ?quot; tensions au poids P, ou les valeurs de - , —,, -r,, au ^ nbsp;nbsp;nbsp;quot;sr fZir 7S-bL



STATIQÜE, SECONDE PAJRTIE. nbsp;nbsp;nbsp;565 nioyen des angles que ces trois cordóns font avec la verticale MD', et des angles compris entre les plansnbsp;de cette droite et de leui’s directions. Quand 11 n y ennbsp;a que deux, leurs directions et cette verticale sontnbsp;comprises dans un m?me plan; ce qui reduit a unenbsp;seule les deux dernl?res equations. § II. Equilibre d’un Jil flexible. agS. Considerons dabord un fil pesant, homogene et d’un diam?tre constant; supposons-le parfaitementnbsp;flexible et attache' par ses extrémite's A et C (fig. 74)nbsp;a deux points fixes; et proposons-nous de determinernbsp;la courbe ABC qu’il forme dans son état d’équilibre.nbsp;On nomme cette courbe la chainette; elle est évi-demment comprise dans Ie plan vertical passant parnbsp;les deux points fixes A et C • car il n’y

aurait aucunenbsp;raison pour quelle s’en écartat plutót d’un cóte quenbsp;de l’autre. IjifJ I 'ii '1!' lil ?i Par un point 0, menons dans ce plan deux axes rectangulaires Ox et Oj, qui seront ceux des coor-données positives; prenons Ox horizontal et dirigénbsp;du cóte' du point A, et Ojr vertical, dirigé en sensnbsp;contraire de la pesanteur, et passant par Ie point B,nbsp;Ie plus bas de la courbe. Soient x et j les coordon-rnbsp;nées OP et PM, rapportées a ces deux axes, d’unnbsp;point quelconque M de la chainette, et ^ I’arc BMnbsp;aboutissant en ce point et comptë du point B; et de^nbsp;signons par x', s', ce que deviendront x, j, s ,nbsp;relativement a un autre point de cette courbe , telnbsp;que I on ait / gt;



566 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. \gt;'} 1)1.' Si V on appelle p Ie poids dc Tunité de longueuf du fil, lorsqu il est couché sur un plan horizontal,nbsp;p {s' — s) sera, dans eet état, Ie poids d’une longueurnbsp;s' — s du m?me fil, puisqu’on Ie suppose homogenenbsp;et d’une epaisseur constante. Quand il sera suspendunbsp;aux deux points fixes A et B, ses diffërentes partiesnbsp;s’allongeront inégalement, a raison de leurs tensionsnbsp;respectivesj et, en méme temps, leurs densitës ounbsp;leurs épaisseurs diminueront de rnani?re que leursnbsp;masses ne changent pas; par conse'quent, Ie poids denbsp;cette longueurs'—s ne sera plus exactement Ie m?menbsp;qu’auparavant; ma?s si la mati?re du fil est tres peunbsp;extensible, et qu’on négligé les petites dilatations denbsp;ses parties, on pourra

encore prendre p{s'—s) pournbsp;Ie poids correspondant a l’arc MM' de la chainette. Soient, en outre, T et T' les forces inconnues qni agissent a ses extrémités M et M', et proviennent denbsp;ce que ces points sont lies aux parties CM et AM' denbsp;cette courbe. En joignant ces forces au poidsp{s'—s),nbsp;on pourra considérer MM' comme enti?rement libre;nbsp;par conséquent, si l’on représente par a ét ? les angles que fait la direction de la force T avec les prolon-gemens des coordonnées x et de son point d’appliquot;nbsp;cation, et par et' et C' les angles analogues relativementnbsp;a la force T', nous aurons T cos a T' cos a.' = o, nbsp;nbsp;nbsp;) T cos b -j- T cos C' nbsp;nbsp;nbsp;—s), gt; (fl) T(a:cos^ —jrcos a.) T'(x'cosf'—j'cos a') = p{s'— j)a:,,) pour l’équilibre de ces trois forces comprises dans un méme

plan ( nquot; 262 ) ; x, étant l’abscisse hori-



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;567 zontale du centre de gravité de l’arc MM'. Elles au-ront lieu, quelle que soit la longueur de eet are : si on la suppose infiniment petite, on pourra né-gliger, dans ces equations , les quantités infinimentnbsp;petites du second ordre; inais il faudra conservernbsp;les quantités du premier ordre; ce qui n’emp?cheranbsp;pas qu’on ne doive considérer la force T commenbsp;e'tant dirigée sulvant la partie MH de la tangente ,nbsp;a l’extrémité M , et la force T', suivant la partienbsp;M'H' de la tangente , a l’autre extrémité M'. Pour Ie faire voir, prenons sur MM' un point m tel que l’arc Mm soit infiniment petit du secondnbsp;ordre; ce qui permettra de négliger Ie poids denbsp;cette partie de la chainette. Si l’on fixe Ie point m,nbsp;1 equilibre ne sera pas trouble; or, Ie fil étant suppose

parfaitement flexible , il n'y aurait rien quinbsp;emp?chat la force T de faire tourner l’arc M/w au-tour de in, si elle n’était pas dirigée suivant sonnbsp;prolongement MH. On verra de m?me que la force T'nbsp;doit ?tre dirigée suivant M'H'. D’apr?s cela, nous aurons dx nbsp;nbsp;nbsp;anbsp;nbsp;nbsp;nbsp;dy cos a = — nbsp;nbsp;nbsp;cos ecos a' = -r? et en négligeant les infiniment petits du second ordre , ces derni?res valeurs seront iM ?'k f' ''L gt;'[•1 'fel cos S' ds nbsp;nbsp;nbsp;ds ds nbsp;nbsp;nbsp;* On peut aussi prouver qu’on a T' = T -j- dT. En



568 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. effet, la quantité T est une fonction des coordon-nées du point quelconque M auquel elle répond, qui devient, conséquemment, T dT au point M';nbsp;en ce point, elle exprime la force qui agit sur lanbsp;partie supérieure AM' de la chainette, suivant lanbsp;direction M'H^, prolongement de H'M'. Or, si ivHnbsp;est un point de la courbe dont la distance a M' estnbsp;infiniment petite du second ordre, la force qui agitnbsp;en m' sur la partie km', sera la m?me, en grandeur et en direction, que celle qui agit en M' surnbsp;AM'; par conséquent, la partie Wm' de la chainette est tirée en sens contraire, suivant M'H' et m'H,,nbsp;par des forces T' et T rfT, qui doivent ?tre égalesnbsp;pour que M!m' demeure en équilibre. Cela posé, je substitue cesdifférentes valeurs dans les deux

premi?res équations (a), et j’y fais /—s—ds;nbsp;elles deviennent o, d.Tamp; = pds. d.T dt--- nbsp;nbsp;nbsp;---ds — '--- Quant a la troisi?me, elle prendra la forme en y négligeant les infiniment petits du second ordre, ce qui permet de remplacer ir, par oc dans son second membre. Or, cette equation est la m?menbsp;chose que dx ds — pxds ; et, comrae on voit, elle est une suite des deux au-



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;569 tres. EfFectlvement, Ie probl?me ne peut dépendre que de deux equations, puisqu’il n’j a que deux in-connues et T a determiner en fonctions de ar ; lanbsp;premi?re, pour connaitre l’équation de la courbe, etnbsp;la seconde, pour savoir quelle est la tension en unnbsp;point quelconque M, c’est-a-dire, la grandeur desnbsp;forces égales qui tirent Télément M/n suivant ses deuxnbsp;prolongemens. 294. L’intégrale de la premi?re equation (b) est Tp = c, as en désignant par c la constante arbitraire. Au point B, on a ^ = I et T = c; si done on représente la ten- ds sion en ce point Ie plus bas, par Ie poids d’une longueur A du lil, on aura c—ph, et, en un point quelconque, La seconde equation (b) deviendra done (fy dx ds; hd. d’oü Ton tii’e en observant qu’on a, en m?me temps,

nbsp;nbsp;nbsp;= o et dv = o au point B. Ces e'quations feront connaitre immédiatement l’arc s el la tension T, lorsque l’or-donnée aura été détermin?e en fonction de x.



\\[ O ' TRAITÉ DE MÉCANIQUE. En mettant dans l’équation précédente, ^ la place de ds, sa valeur on en deduit ds — dx\J 1 dxhd.^f dx V ?gt; dx- En inte'grant et observant qu’on ax = oet ^ = o au point B, on en déduit 4Iog(f v/, g), et, par conséquent, e étant, a l’ordinaire, Ie base des logarithmes népé-rlens. Je multiplie cette equation par dx- il en résultel/, _L.^ _ V dx- dx ’ on auradone ds dy ??= ^G^ e ^dx,iQ _ e~^)dx:



571 STATIQUE, SECONDE PARTIE. d’oü Ton tire / X nbsp;nbsp;nbsp;.r\nbsp;nbsp;nbsp;nbsp;\ (c) s = -\?^ — e V , h ^ , comme plusJ en observant que ^ = o et x = o, ati point B, et prenant l’origine 0 des coordonnées a la distance hnbsp;au-dessous de ce point, de soi’te qu’on zh j = hnbsp;qnand x == o. Ces equations (c) donnent nbsp;nbsp;nbsp;dx haut. La seconde est l’equation de la chainette, sous la forme la plus simple; elle monlre que cette courbenbsp;est symétrique de part et d’autre de son point Ienbsp;plus bas. La valeur pre'cédente de T deviendra en sorte que la tension en un point quelconque M est exprimée par Ie poids d’une longueur du fil, e'gale anbsp;la perpendiculaire MP abaissée de ce point sur lanbsp;droite horizontale, passant par Ie point 0. C’est aunbsp;point B que cette tension est la plus petite; et sa

valeur en ce point est ph, comme on l’a suppose. 2g5. II ne reste plus qu’a determiner la constante h qui entre dans ces formules. L’expression de jr fera en-suite connaitre la figure de la chainette; mais pournbsp;que sa position soit connue dans Ie plan verticalnbsp;passant par les points A et C, il faudra aussi déter-



5-; 2 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQUE, miner la distance de Taxe Oj a l’un de ces points fixes. Pour cela, je m?ne par Ie point A une horizontale qui coupe Taxe Qj en un point Q, et par Ie point C,nbsp;une verticale qui rencontre cette horizontale au pointnbsp;D. La position du point C, par rapport au point A,nbsp;étant connue, les distances AD et DG seront données.nbsp;Je les représente par a et ; je désigne aussi par k lanbsp;distance AQ; en sorte qu’on alt AD = a, DC = 6, AQ = ^, 0B = ^; a el b étant des quantités données, et A: et A les deux inconnues qu’il s’agira de déterminer. J’appellerai K la distance QD, l la longueur don-née de la courbe ABC , g el g' ses parties AB et BC, f la fl?che BQ; on aura g 4- k k' = a, en regardant k' et g' comme des quantités positives OU négatives, selon

que Ie point C appartiendra aunbsp;prolongement de AB o? a AB menie. Les ordon-nées des points A et C seront ^ ƒ et h-{-f — b, ennbsp;considérant aussi la quantité h comme positive ounbsp;comme négative, selon que C sera au-dessous ounbsp;au-dessus de la droite horizontale, menée par Ienbsp;point A. Si 1’on fait dans les équatlons (c), d’abord et ensuite = — k'



= Ke*- e V, S /=H/ e V, 2 2^ *1 /? ? g =He*-? V. * /-6 = ^(e‘ e' Žt, par conséquent, — (e — e ) = n, nbsp;nbsp;nbsp;(^Z) 2cfc en faisant, pour abréger, a nbsp;nbsp;nbsp;— Zgt;“^ V Cette quantité ti étant composée de quantltés don-nées, l’équation (^Z) fera connaitre la valeur de a, et par suite celle de h. En general, cette equation senbsp;i:ésoudra par des essais; et l’on en déduira la valeurnbsp;numérique de a d’apr?s celle de n, aussi exactementnbsp;qu’on voudra. Si n diff?re trés peu de Tunité, lanbsp;Valeur de a sera tres petite; en développant alors



5^4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. les exponentielles, et négligeant Ia quatri?me puissance de a , on aura simplement a‘‘ = 6(n—? i)-Si nous faisons aussi k' nous aurons k = ^ a h€, k' = \ a -et la valeur précédente de h deviendra •xh (?)r^) (/ _ r' ce qui fera connaitre la valeur de C, d’apr?s celle de h, et, conséqueminent, les quantiles k et k'. Lenbsp;signe de k' décidera de quel cóté de Oj', le point Cnbsp;sera placé. Le cas le plus simple aura lieu quand les points fixes A et C seront situés sur une m?me droile horizontale.nbsp;On aura alors h = o; i’équation (e) donnera ^ = o,nbsp;et, par suite, k=:k' — \a, comrne cela doit ?tre.nbsp;On aura, en m?me temps,nbsp;ce qui fera connaitre les tensions aux points A et C gt;nbsp;OU les charges que ces points fixes auront a supporter,nbsp;apr?s que

la valeur de h aura été calculée. Dansnbsp;le cas general, ces tensions extr?mes se déduirontnbsp;des valeurs de j, correspondantes a x — knbsp;X = — k'. 296. Parmi toutes les courbes de m?me longueur,



S?ATIQUE, SECONDE PAR?lE. nbsp;nbsp;nbsp;575 qui aboutissent aux points donnés A et C, la chainette est celle dont Ie centre de gravité est Ie plus bas. En eflet, menons par Ie point A ( fig. yS ) un axe horizontal kj', et un axe Kx' vertical et dirigé dansnbsp;Ie sens de la pesanteur. Soient x' et j' les coordon-nées d’un point quelconque M, rapportées a ces axes.nbsp;En appelant x, la distance du centre de gravité d’unenbsp;courbe quelconque AMC, a l’axe kj', nous auronslx. -1- dx b étant la valeur de x' qui répond au point C , et ? désignant la longueur donnée de celte courbe, denbsp;sorte qu’on aitI = f' v/i Or, d’apr?s la formule (e) du n“ 201 , la courbe dans laquelle la premi?re integrale est un maximum entrenbsp;toutes les courbes de m?me longueur, a pour equationnbsp;différentielle v/(x'- cr- c et c' étant des

constantes arbitraires. En intégrant et observant que les variables x' etf' sont nulles ennbsp;m?me temps, il vient fl? ?4 l'i i ff'tai ji' M'ifi!? Hl \/(x' cY — X -f f = c' log et, par conséquent, H- c 4- Vc-r' H- Cf — “1



576 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. en faisant, poni’ abréger, On tire de la jc' c — \/{a:' c)“ — c'” = y' e ‘ , en faisant aussi c — \/c* — c'* = y' On aura doney _y x'-i-cz=^ye‘‘' -i-^y e nbsp;nbsp;nbsp;(ƒ) pour l’équation de la courbe qui jouit de la propriëté demandëe. Au point C, on aurab c — -^ye’=' [ye a étant la distance donnée de ce point a l’axe Kx', de sorte qu’on ait a la fois x' — b et j' — a. Cettenbsp;equation particuliere et la longueur l de la courbenbsp;servironl a determiner les deux constantes c et c'. Maintenant, pour faire co?ncider Tequation (ƒ) avec celle de la chainette, désignons par s une constantenbsp;indéterminée, et changeons les coordonnées x' ety^nbsp;en d’autres, telles que l’on aitnbsp;de mani?re que ces nouvelles coordonnées x et ƒnbsp;soient dirigées en sens contraire

de y et x!, et rap-portées a une autre origine. Par ce changement, 1’é-ii



577 STA?IQUE, SECONDE PARTIE, qnation (ƒ) deviendra — iye Dëterminons la quantité e, en posant Tequation = y'?~~ et désignons par — A , la valeur commune de ces deux quantite's égales, de sorte qu’on ait 6 nbsp;nbsp;nbsp;i y e'^ = — h, y' e = — h. €omme on a yy' = c'*, il en résultera h = c'; et l’équation précédente de la courbe deviendra Ce qui coincide avec la seconde equation (c) que nous avons trouvée pour la chainette. 297. Si la force verticale qui agit sur chaque élément du fil suspendu aux points A et C ( fig. 74 ) ? au lieu d’etre proportionnelle a la longueur de 1’élé-mentcamp;r, est proportionnelle a sa projection horizontale dx, la seconde équation (b) deviendraf/.T ^ = pdx] p étant une constante donnée qui représente Ie poids d’un prisme dont la hauteur est l’unité lineaire. Ennbsp;vertu de la premi?re

équation (b), qui ne changeranbsp;pas, on aura toujours ~ nbsp;nbsp;nbsp;T ds I. nbsp;nbsp;nbsp;37



578 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. en désignant par h une ligne de longueur inconnue, et par ph un poids e'quivalent a la tension au point B,nbsp;Ie plus bas de la courbe. II en résultera doneM. f dx d’ou l’on tire ihj = dx en placant l’origine des coordonnées x eij au point B. Dans ce cas, la courbe sera, comme on voit, unenbsp;parabole qui aura son sommet au point Ie plus bas ;nbsp;et l’on aura T = p\/T? pour la tension en un point quelconque. En employant les notations du n° 296 , on aura , aux points A et C, 2^ = k*, nbsp;nbsp;nbsp;— h) z= k'^, et a cause k-\-k' ~ a, on en conclura 2^ = a(k — k'); ce qui fera connaitre k, k',f, quand on aura determine h, dont la valeur se déduira de la longueur l du fil. On aura, en effet, hl ce qui donne, en effectuant l’intégration par les regies ordinaires,



STATIQUE, SECONDE PARTIE.2/iZ=^“log nbsp;nbsp;nbsp; k Ž \/'h^^k'^—h' nbsp;nbsp;nbsp;1 I y I En supposant, pour plus de simplicite , les deux points A et C dans une m?me droite horizontale, onnbsp;aurah = o, k = k' = jU-, l’équation précédente se réduira a hl = log ^ nbsp;nbsp;nbsp;-f k\/h^ A- et l’on en déduira, par des essais, la valeur approchée de h, lorsque les valeurs numériques de Z et k serontnbsp;données. Cette inconnue h se déterminera plus facllement quand la longueur l de la courbe diffërera tres peunbsp;de sa projection a] ce qui rendra Ia valeur de h trésnbsp;grande par rapport a a. On aura alors, en series tresnbsp;eonvergentes, w nbsp;nbsp;nbsp;_ i . etc log nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;6 J^z-r- etc. Au moyen de ces valeurs, l’ëquation précédente de-vient, a trés peu prés, h-(l — 2k) = ^k^i

d’oii Ton tire öl/za4\/3(Z-?) n-P'Öl



58o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. On a choisi eet exemple, paree qu’il trouve une application utile dans la eonstruetion des ponts sus-pendus, oii il est important de ealeuler la tension denbsp;la chaine de suspension et la charge de ses pointsnbsp;d’appui. 298. Supposons actuellement que tons les points du lil soient sollicités par des forces quelconques. Hnbsp;formera, en general, une courbe a double courbure;nbsp;les equations d eqnilibre de chacun de ses élémensnbsp;seront au nombre de trois; et, en supposant toujoursnbsp;Ie fil parfaitement flexible, on obtiendra ces equations par les considerations que nous avons exposéesnbsp;en détail dans Ie n'’ agS. De cette mani?re, on trouve dx IL é ds = o, ds (0 d.T ^ -f- Y eds — o, dz X, nbsp;nbsp;nbsp;y, z, étant les coordonnées

rectangulaires d’unnbsp;point quelconque M de la courbe, ds l’élément dit?é-rentiel de sa longueur, é Ie produit de la densité dunbsp;fil et de la section perpendiculaii’e a sa longueur quinbsp;ont lieu au point M, de sorte que eds soit Télémentnbsp;de la masse du fil; T la tension en ce m?me point,nbsp;OU la force, de grandeur inconnue, qui tire eet élément ?ds suivant chacun de ses prolongernens; X, Y, nbsp;nbsp;nbsp;Z , les forces rapportées a 1’unité de masse et pa-rall?les aux axes des x,y, z, qui répondent au point Mnbsp;et seront des fonctions données de ses trois coordonnées.



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;58. En vertu de la tension T, Telenient ds aura éprouvé rine extension et la quantité g une diminution, tellesnbsp;que la masse ids n’ait pas change; en désignant donenbsp;par ds' et i, ce que ces quantités étaienl dans l’élatnbsp;naturel du fil, on aura ids = i'ds'; et en supposant l’extension proportionnelle a la force qui la produit (n° 288), nous aurons, en m?me temps, ds ( I -{- coT )ds'; (ö étant un coefficient trés petit, dependant de la ma-ti?re et de l’épaisseur du fil au point M. Quand Ie fil sera homogene et d’une épaisseur constante dansnbsp;toute sa longueur, d et Ž seront des quantités cons-tantes; mais, en general, ces deux quantités pour-ront ?tre regardées comme des functions données denbsp;1’arc^', compté d’un point determine du fil et aboutis-sant au point M.

299. Si Ie fil, de nature quelconque, est seulement soumis a la pesanteur et suspendu verticalement a unnbsp;point fixe que j’appellerai A, les deux derni?res equations (i) disparaitront, et la troisi?me se réduira a dl gidx = 0, 'ly en prenant l’axe des x vertical et dirigë dans Ie sens de la pesanteur, et désignant cette force par g. Jenbsp;place au point A l’origine des x, et j’appelle Q lanbsp;valeur de T qui répond h x = o , c’est-a-dire , lanbsp;charge que ce point aura a supporter. Au point quelconque M , on aura



582 TRAITÉ DE MÉCANIQUE.T = Q — gfidx; 1’integrale étant nulle en ni?me temps que x. Appelons B Fextrémité inférieure du fil; atta-clions en ce point un poids P, et désignons par l la longueur de AB. II est évident que P sera la tensionnbsp;au point B; on aura done, en m?me temps, x~l,nbsp;et T = P ; ce qui donne idx. Q = r sf‘ et, par conséquent, T = T? g 1^ amp;dx —gf idx. Or, Ie second et Ie troisi?me terrne de cette formule sont les poids du lil entier et de sa partie AM; ilnbsp;s’ensuit done que la tension au point M est Ie poidsnbsp;de la partie BM, augmenté du poids P; ce qui estnbsp;d’ailleurs évident. La loi de l ailongement du fil dans toute son éten-due, dépend de sa nature et de son épaisseur. Je suppose , par exemple, qu’il soit homogene et partout d’une m?me épaisseur, ce qui rendra

constant Ienbsp;coefficient En appelant x' la longueur de la partie AM, avant que Ie lil soit tendu, laquelle longueurnbsp;devient x par reffet de la tension, et mettant, ennbsp;consequence, dx' et dx au lieu de ds' et ds, dansnbsp;l’équation (2), on aura dx = ( I -f- ?T ) dx'. Soient aussi l' la longueur totale du fil avant son al-



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;583 longement, et p son poids entier. Le poids de la par- p{l' — x') tie BM sera et la tension au point M aura pour valeur T = P p{l' — x' En la substituant dans l’équation précédente, integrant et observant qu’on a jc' = o et jc — o au point A, ii vient aip ( 2.1'a:' — nbsp;nbsp;nbsp;) se caYx' 2I' pour Fallongement de la partie AM. On en déduit lallongement total en faisant.37'= Z' et x = l;ce quinbsp;donneZ-Z' = ?Z'(P i/gt;); en sorte que pour avoir egard au poids du fil dans le calcul de eet allongement, il faut ajouter la moitiénbsp;de ce poids a celui qui est attaché a son extrémiténbsp;inférieure. 3oo. Dans le cas général, j’ajoute les équations (i), •nbsp;nbsp;nbsp;nbsp;•nbsp;nbsp;nbsp;nbsp;dx d 'y dx • apr?s les avoir multipliées nbsp;nbsp;nbsp;’ Is ' ds ’ résulte m : lil ^?T

amp;{\jdx 'idj 4- Zdz) = o, a cause de(3) dx^ nbsp;nbsp;nbsp;. dz^ ds^ nbsp;nbsp;nbsp;ds‘^ dz dzJ nbsp;nbsp;nbsp; fS; lt;i. f y rf. y= o. ds nbsp;nbsp;nbsp;ds fiignbsp;nbsp;nbsp;nbsp;ds ds ds Si l’on supppse le fil homogene et son épaisseur cons-vm 1'i



584 nbsp;nbsp;nbsp;TBAITÉ DE MÉCANTQUE. tante, et qu’on négligé la petite dilatation de seS élémens, la quantité e sera constante; de plus, lanbsp;formule -\-Ydj -f- Zöfe est, en general, la dif-férentielle exacte d’une fonction des trois variablesnbsp;oc, j, z, considérées comme indépendantes; en fai-sant done H.dx -f- ^dj' Ztdz = — d.lt;p [Xfjquot;, z ), nous aurons dT = id.(^ [x, y, z), et, par conséquent, T = ?(|) ( x,j, z), en comprenant la constante arbitraire dans la fonction lt;p. Cette constante disparaitra dans la difference des valeurs de T relatives a deux points du fil; ilnbsp;s’ensuit done que sans avoir determine la figure d’é-quilibre, on connaitra Taccroissement de la tensionnbsp;d’un point a un autre ; en sorte qu’il suffira que lanbsp;tension soit connue en un point determine, pournbsp;qu’elle Ie soit

aussi dans toute la longueur du fil. Quant a la courbe formée par Ie fil, elle sera de' -lerminée par deux des trois equations (i), ou par deux combinaisons quelconques de ces trois equations, dans lesquelles on substituera la valeur préce'-dente de T; en sorte qu’il faudra genéralement inté-grer Ie syst?me de deux equations différentielles dunbsp;second ordre pour connaitre cette courbe. Son rayonnbsp;de courbure au point quelconque M s’exprimera aunbsp;moyen de la formule différentielle suivante, qui n’es.t



S?A?IQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;585 que du premier ordre, et qui suppose seulement con-?iue la direction de la tangente en ee point. Les equations (i) peuvent ?tre remplacées par celles-ci : qui sont la méme chose que dxd*j — djd^x — (Xnf/ dzd^x\dxy^, ids‘‘ dxd’^z = {^dx — Xlt;^z) nbsp;nbsp;nbsp;, V (4) djd'z — dzdy — (Ydz — en effectuant les differentiations et prenant Tarc s pour la variable indépendante. Or, si Ton appelle pnbsp;Ie rajon de courbure au point M, on a (n° i8)p ------------------r'. {(dxdy— dfd^xf-^ (dzd\v — dxd‘zy-\- {djd'^z — dzd'’xYy^ d’apr?s les equations precédentes et la valeur de T, on aura done lp (^ . Jgt; z) ds 'lm [(X4r — Yetr)^ (Ldx — xdzy {Ydz — ?dxyy Dans Ie cas de la chainette, on anbsp;X = o, Y=: — g, Z = o, (p öy (5):



586 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. en prenanl les axes et l’origine des coordonnées que supposent les equations (c) du u“ 2g4- On aura done ce qu’il est aisé de verifier, d’apr?s ces equations. 3oi. Appliquons ces formules au cas d’un fil tendu sur la surface d’un corps solide, et supposons, pournbsp;plus de simplicité, qu’il ne soit soumis a aucunenbsp;force donnée, de sorte que la seule force qui agissenbsp;sur ses diflerens points soit la resistance inconnue dunbsp;solide sur lequel il s’appuie. Au point quelconque M du fil, soit la grandeur de cette force appliquée a l’élément éds du fil, et dont les trois composantes serontnbsp;nbsp;nbsp;nbsp;, Xids, Ti'tds sa direction sera normale a la surface du solide, et dirigée de dehors en dedans. La pression qui aura lieu sur la partie du solide

correspondant anbsp;ds sera égale et contraire a cette force de ma-ni?re que N exprimera la mesure de la pression rap-portée a l’unité de longueur. En appelant x, /-t, v , les angles que fait la pax’-tie extérieure de la normale en M avec des paral-l?les aux axes des oc, j, z, menées par ce point, on aura éX = NcosA, €Y = Ncos/*, 6Z=Ncosv. De plus, si L = o est l’équation de la surface du solide, et qu’on fasse, pour abréger , -|“ dz-) '



587 STATIQUE, SECONDE PAllTIE. on aura aussi (11“ 21) quot;IT ^Tj nbsp;nbsp;nbsp;'\T :V . cos V = y^, cos A = V -7-, cos ^ =V — dx’nbsp;nbsp;nbsp;nbsp;dj’ en prenant convenablement Ie signe de V. Cela étant, nous aurons Xdx Ydj- Zdz = NVc?L = O; ce qui rendra nulle la valeur de dT donnée par l'equation (5). La tension sera done la m?me dansnbsp;toule la longueur du fil, quelle que soit la formenbsp;du corps solide. Je supposei’ai sa valeur donnée, etnbsp;je la représenterai par /c. Si Ie fil est attaché parnbsp;une de ses extrémités a un point du corps, et qu’unnbsp;poids considérable, par rapport a celui du fil qu’onnbsp;a négligé, soit suspendu verticalement a son autrenbsp;bout, ce poids sera la tension k et la pression quenbsp;Ie point fixe éprouvera. Si Ie fil est fibre par sesnbsp;deux bouts, et que des

poids considérables y soientnbsp;suspendus, ils exprimeront les tensions extremes;nbsp;par conséquent, ils devront étre égaux, et chacunnbsp;d’eux sera la tension /c. Enfin, si les deux bouts dunbsp;fil sont supposés fixes, sa tension A se déduira denbsp;son extension, qui sera constante dans toute sa longueur. 3o2. Je désigne par A', ju', v', les angles que fait la perpendiculaire au plan osculateur au point M ,nbsp;avec des parall?les aux axes des oc, j, z. Le ra jonnbsp;de courbure en ce point étant p , on aura (n° ig)



588 nbsp;nbsp;nbsp;TRAITÉ DE MÉGANIQUE. dxd^j — djd'^x ds^ dzd'‘x — dxd^z ds^ dj'd^z — dzd'^j ds-' Si done on ajoute les equations (4) apr?s les avoir multipHe'es par cos v, cos /x , cos A, et qu’on aitnbsp;égard aux valeurs de X, Y, Z, qui ont lieu dansnbsp;Ie cas que nous considérons, il en résultera cos V cos /~h cos/U cos ju' cos A cos A' = o; par conséquent, les normales a la surface du corps solide et au plan osculaleur de la courbe formée parnbsp;Ie fil, en chaque point M , sont perpendiculairesnbsp;Tune a l’autre; ce qui est la propriété caractéristiquenbsp;de la ligne dont la longueur est un minimum ou unnbsp;maximum sur une surface donnée (n** i6i). H s’ensuitnbsp;done qu’un fil tendu sur un corps solide, trace, ennbsp;général, la plus courte distance d’un point a un autrenbsp;sur la

surface. A la rigueur, il est possible que cettenbsp;distance soit, au contraire, un maximum; ainsi,nbsp;par exemple, deux points donnés sur une spherenbsp;sont les extrémités communes a deux arcs de grandsnbsp;cercles, dont l’un est la plus courte distance entre cesnbsp;points, et l’autre la courbe plane la plus longue; or,nbsp;il est évident que réquillbre du fil tendu sera rigou-reusement possible sur ces deux arcs de eerde, puis-qu’en Ie placant sur l’un des deux, il n’j aurait aucunenbsp;raison pour qu’il s’en écartat plutót d’un cóté que



STATIQÜE, SECONDE PARTJE. nbsp;nbsp;nbsp;589 de l’autre; mais sur Ie petit arc Tequilibre sera stable, et sur Ie grand il ne sera qu’instantané, denbsp;sorte qu’il ne pourra subsister, pJijsiquemeni, qu’anbsp;l’aide du frottenient du fil contre Ie corps solide. Si l’on substitue encore les valeurs de ?X , éY, éZ, du numéro précédent, dans la formule (5), on aura , /dz nbsp;nbsp;nbsp;dy \=“~1 k a cause de €?gt; (^jc, j, z) — k. En m?me temps, on a dx^ ds^ dr^ nbsp;nbsp;nbsp;dz^ A-------- T ~ (/!?“ nbsp;nbsp;nbsp;ds'^nbsp;nbsp;nbsp;nbsp;’ COS* A cos* IJL cos* r = I; la normale a la surface du corps et la tangente a la courbe du fil, en chaque point M, étant perpen-diculaires Tune a l’autre, on a aussi dx nbsp;nbsp;nbsp;, 4Tnbsp;nbsp;nbsp;nbsp;, dz ds ^cosA ^cos^ -cosrirroj or, au mojen de ces trois derni?res équations,

on ré-duit sans difficulté Ie coefficient de N, dans la précé-dente, a l’unité. On a done simplement ce qui montre que la pression rapportée a l’unité de longueur, exercée par un fil tendu sur la surfacenbsp;dun corps solide, est égale, en chaque point M, anbsp;la tension divisée par Ie rayon de courbure du fil, '?M



5go nbsp;nbsp;nbsp;TRAITÉ DE MÉG^NIQUE. c’est-a-dire, par Ie rayon de la section normale a la surface et tangente a la courbe du fil. 3o3. Ces résultats seront modifies par Ie frotte-raent du fil centre la surface du corps sur lequel il s’appuie. Pour rnontrer comment on doit avoir egai'dnbsp;a cette force dans Tequilibre d’un fil flexible, je vaisnbsp;considérer l’e'quilibre d’un cordon ABMCD (fig. 76) ,nbsp;dont la partie BMC est appliquee sur la gorge d unenbsp;poulie fixe, et qui est tiré, suivant les prolonge-mens BA et CD de cette partie, par des forces don-nées. La poulie et la droite AB seront supposées ver-ticales; la force agissant suivant BA sera un poids k,nbsp;et je représenterai par F celle qui agit suivant CD.nbsp;Les tensions qui ont lieu aux points B et C suivantnbsp;les tangentes BA et CD, auront

A: et F pour valeurs.nbsp;Je supposerai aussi, pour simplifier la question, quenbsp;la poulie soit circulaire; j’appellerai c son rayon, etnbsp;je prendrai son centre 0 pour l’origine des coordon-nées ; l’axe des z sera perpendiculaire a la poulie,nbsp;l’axe des j' vertical et dirigé de bas en baut, l’axenbsp;des X horizontal et passant par Ie point B. Enfin, jenbsp;fixerai au point C l’origine de 1’arc s aboutissant aunbsp;point quelconque M du cordon, de sorte qu’on aitnbsp;CM = ^. Cela posé , si Ie frottement était nul, il faudrait qu’on eut A = F dans Ie cas de l’equilibre; mais , anbsp;raison du frottement, Tequilibre peut subsister tantnbsp;que la difference de ces deux forces A et F n’a pasnbsp;dépassé une certaine limite. Concevons done que l’é-quilibre soit sur Ie point de se rompre dans Ie sensnbsp;du poids A; ce

qui suppose qu’on ait A gt; F. A eet



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;Sgi instant, Ie frotlement du cordon contre la poulie, qui a lieu au point quelconque M, sera dirigé, sui--vant la partie MH de la tangente, en ce point. Je re-presente par ^ son intensité, et, comme prëcedem-itient, par N la resistance normale qui a lieu au m?menbsp;point M, suivant Ie prolongement MO' de MO, denbsp;mani?re que f^ds et ^ch soient les forces tangente etnbsp;normale qui agissent sur l’élément ids du cordonnbsp;aboutissant au point M, et que ^ et N reprësententnbsp;ces m?mes forces, rapportées a l’uriité de longueur.nbsp;Si l’on m?ne par ce point M des parall?les Mx' etnbsp;aux axes Ox et Ojy, cai aura J'cos j-'MH = ^, cosje'MO' == j cosaj'MH = '•'MO'; COSX : de la on conclut 6X = — —?r pour les valeurs de gX et ?Y qu’il faudra substituer dans les

equations (i). La force éZ sera évidemmentnbsp;nolle; la troisi?me equation (i) disparaitra , et lesnbsp;deux premi?res deviendront , „ lt;/a: nbsp;nbsp;nbsp;l^xdsnbsp;nbsp;nbsp;nbsp;ftjds d. i -j—-----: ds nbsp;nbsp;nbsp;cnbsp;nbsp;nbsp;nbsp;c ds d.T '?Üj'ds nbsp;nbsp;nbsp;/zxds ? - -T— - O. c nbsp;nbsp;nbsp;c Le point M appartenant a la circonfe'rence de la poulie, on a X* -|-_7* = c*, xdx 4- jdj = o ;



592 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. au mojen de quol les deux equations précédentes peuvent ?tre chaugées en celles-ci : ^ nbsp;nbsp;nbsp;= o ,nbsp;nbsp;nbsp;nbsp;I Mais ^ [ jdoc — ocdj) est la difFérentielle du secteur décrit par Ie rayon OM, a partir d’une ligne fixenbsp;(11° i56), qui sera OC, par exemple. Ce secteurnbsp;étant circulaire et répondant a Tarc s, sa valeur estnbsp;on a done jdx — xdy = cds. D’ailleurs, on a aussi xd. ~ jd.— — dx ds dx ds. ogt; ds dj , dj dx 7 d^ ^‘d^ , d.- ds ds ce qui réduit les equations (6) a T = cN , dT = fA,ds; d’ou l’on tire cdN = fids. La pression qui a lieu au point M, sur la gorge de la poulie, est égale et contraire a la force N; si donenbsp;on suppose Ie frottement proportionnel a la pression (n“ 269}, on aura/.=/N; f étant un coefficient constant qui dépendra de Ia



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;5g3 nature des deux surfaces en contact. On aura done/:dN = y^Nds, et, en integrant, N = Aequot;?; A dëslgnant la constante arbitraire, et e la base des logarithmes népe'riens. On aura, en m?me temps, Jf nbsp;nbsp;nbsp;gt; T = Ace ^ , fjL = AJe . Au point C, on a j = o et T = F ; on a done A = -; et si l’on appelle l la longueur de l’arc CMB, on aura sz=l et T = ^, a son autre extrémité B. Nous aurons done finalementfi nbsp;nbsp;nbsp;fiN = ie% T = Fe% en un point quelconque M, et, de plus,k = Fe^, pour l’ëquation d’équilibre. En représentant par F' Ie frottement total qui a lieu dans toute la longueur de CMB, on aura F'= fjids = F^e-^ —i), et l’équation d’équilibre pourra s’écrire ainsi; Si nous faisons i. II .'h41 38



TRAITÉ DE MÉCANIQUE. ü ^ =f, 594 nous aurons F' /'Fgt; ƒ' = oil Ton vojt fiue ie frotteraent total F' est égal a ia plus petite des deux forces A: et F, multipliée parnbsp;un coefficient J', qui varie non-seulement avec lanbsp;quantité ƒ, ma?s aussi avec 1 etendue l du contactnbsp;et Ie rayon c de la poulie. La difference des forcesnbsp;A: et F, a l’lnstant ou réqullibre se rompt, fera con-naitre la valeur de F', et leur rapport, diminué denbsp;runlté, sera la valeur du coefficient J', d’oü Tonnbsp;pourra ensuile dédnire celle de J. Lorsque F sera unnbsp;poids, ainsi que k, on devra, pour plus d’exacti-tude, comprendre dans ces poids A: et F, ceux desnbsp;parties verticales BA et CD du cordon. 5o4- D’apr?s les trois equations (i), il est facile de verifier que les six equations générales de l’équi-libre (n° 261) ont lieu dans Ie

cas d’un fil parfaite-ment flexible. Pour cela, j’appelle K et K' les deux extrémités du fil, et Z sa longueur; et je fixe au point K Tori-gine de fiarc s. En intégrant les premiers membresnbsp;des equations (i), depuisle point KJ usqu’au point K',nbsp;on aura[Tg] ƒgt;** = o.



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;5g5 les quantités comprises entre les crochets re'pondant au point K, et celles qui sont renfermées entre deuxnbsp;parentheses, au point K'. Indépendamment des forcesnbsp;X, Y, Z, qui agissent dans toute la longueur du fil,nbsp;je suppose que des foi’ces particuli?res, données ennbsp;grandeur et en direction, soient appliquées a ses deuxnbsp;bouts: j’appelle k celle qui agit au point K, et a, C, y,nbsp;les angles que fait sa direction avec des parall?les auxnbsp;axes des ac, j, z, menées par ce point; et je de'signenbsp;par k', a!, Q', y', les quantités analogues relativementnbsp;au point K'. Ces forces k et k' seront les tensions extremes, en grandeur et en direction- et d’apr?s lesnbsp;parties des tangentes en K et K', avec lesquelles leursnbsp;directions devront

co?ncider, nous aurons gt;(7) [43=-*-- (?‘4)=*'-*'’ nbsp;nbsp;nbsp;= les equations précédentes deviendront done k cos a -1- k' cos a' -f- ƒ nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;onbsp;nbsp;nbsp;nbsp;, i k cos amp; -\-k' cos amp; -f- j' Yeds = Ž nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;(^) A: cos ^ -j- k^ cos y' j' Z?c^y = o ; j et elles expriment, comme on voit, les conditions d’équilibre renfermées dans les trois premi?res equations (i) du n* 261. En observant qu’ou a identiquement 38..



596 xd TRAITÉ DE MÉCANIQUE. zd-T dx— d.T(^ dx ^dsj’ rrf.T|_^.T|=rf.T(r|- d.T(x^ — —f^)ids = o, Jc J) (zX —xZ) ids —o, dz on déduira des equations (i) du n° 298 dj Si done on intégre ces quantités nulles depuis Ie point K jusqu’au point K', et que l’on désigne par a,nbsp;b, c, les valeurs de x, j, z, relatives a K, et parnbsp;a', b', c', celles qui répondent a K', on aura, ennbsp;ayant égard aux equations (7) , A(lt;2cos?—ócostc)-{-A'(a'cosS'—d'cosie')-j-j' C^Y—jlL)ids-~o kiccostt—lt;2cosy)-l- A'(c'cos?'—a'cosy)J-J^ (zX— xZ)ids =: o \ (9^ k{bcosc—ccosb)-t-k'{b'cosc'—c cos’^')-\-J' (jZ—zY)ids=z o ; j ce qui exprime les conditions dequilibre relatives aux momens des forces données, qui sont renfer-mées dans les trois derni?res equations (i) du n° 261-3o5. Ces equations (8) et (9) serviront, en general, a determiner les

coordonnées a, b, c, a', b', c',nbsp;des deux points extremes K et K'; toutefois, il y aura



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;597 des cas oü une partie de ces quantités devra rester iodéterminée. Si, par exernple, les forces donnéesnbsp;qui agissent sur Ie fil sont la pesanteur et d’autresnbsp;forces indépendantes des coordonnées de leurs pointsnbsp;d’application, il est évident que la position absoluenbsp;du fil dans l’espace ne pourra pas étre déterminée :nbsp;on pourra alors prendre arbitrairement les trois coor-données de l’un des points K et K'; les equations (g)nbsp;détermineront les trois coordonnées de 1 autre point;nbsp;et, pour que l’équilibre soit possible, il faudra quenbsp;les forces données satisfassent aux equations (8). Lorsque l’un des points K et K' sera fixe, Ie premier par exemple, les equations (8) et (g) auront encore lieu, pourvu que l’on regarde la force k comme

incounue, en grandeur eten direction, et représentantnbsp;la pression que Ie point K aui’a a supporter. Dans cenbsp;cas, les valeurs de rt, b, c, seront données j les equations (g) détermineront celles de a', b', c', et les équa-tlons (8) feront connaitre les trois composantes de lanbsp;force k. Quand les deux points K et K' seront fixes etnbsp;donnés de position, on connaitra leurs coordonnées,nbsp;et les équations (8) et (g) serviront a déterminer, ennbsp;grandeur et en direction, les pressions k et k' exer-cées sur R el Dans tous les cas, soit que les coordonnées de K et K' aient été données, solt qu’on les ait déduites desnbsp;équations (8) et (g), on assujettii’a la courbe forniéenbsp;par Ie fil a passer par ces deux points; ce qui serviranbsp;a déterminer les quatre constantes arbitraires qiaenbsp;renfermeront les

intégrales compl?tes dp ses deuxnbsp;equations différentielles du second ordre. Quanta Ia lil 1 tl il



SgS nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQTJE. constante arbitraire que contiendra la fonction (p du n° 3oo, on déduira sa valeur de la longueur donnéenbsp;du fil, c’est-a-dire, de Tequation l,/:V' ? dans laquelle on regarde j- et z comme des fonctions de X. De cette maniere, Ie probl?me sera compl?le-ment résolu. § Ili. Équilibre dune \ierge ëlastique. 3o6. Nous entendons par cette denomination une verge droite ou courbe, dont on ne peut changer lanbsp;courbure sans y appb’quer une ou plusieurs forces, etnbsp;qui reprend sa forme naturelle d?s que ces forces ontnbsp;cessé d’agir, tandis qu’au contraire un fil parfaite-ment flexible conserve, sans Ie secours d’aucunenbsp;force, la courbure qu’on lui a fait prendre, et n’eslnbsp;ëlastique que dans Ie sens de sa longueur. Pournbsp;qu’une verge soit ëlastique

par rapport a la flexion ,nbsp;il faut qu’elle soit formëe d’une mati?re fort peu extensible et contractible j mais cela ne sviffit pas : ilnbsp;faut encore que les dimensions de son ëpaisseur,nbsp;quoique trés petites par rapport a sa longueur, aientnbsp;cependant une grandeur convenable ; car, quelle quenbsp;soit la mati?re de la verge, on peut toujours dimi-nuer assez son ëpaisseur pour qu’elle n’ait plus au-cune tendance sensible a reprendre la figure dont onnbsp;l’aëcartëe, et qu’elle soit ainsi l ëduite a l’ëtat d’u? fifnbsp;parfaiteraent flexible.



STATIQÜE, SECŠNDE PARTIE. nbsp;nbsp;nbsp;599 Lorsqu’une verge elastique est écartëe de sa forme naturelle par des forces données, chacun des filetsnbsp;iongitudinaux dont elle se compose peut éprouvernbsp;trois effets différens : chaque partie, d’une longueurnbsp;aussi petite qu’on voudra, peut ?tre contractée ou dila-lée, sa courbure naturelle peut ?tre augmentée ou di-minuée, et cette partie peut avoir été tordue sur elle-m?me. La tendance de cliaque partie a reprendre sonnbsp;état natui’el, depend des attractions et repulsions mu-tueiles qui ont lieu entre les molecules de tous lesnbsp;corps et ne s’étendent qua des distances insensibles.nbsp;Le calcul des forces totales qui en r?sultent etdoiventnbsp;faire e'quilibre aux forces données, appartient a lanbsp;Physique matliématique : je renverrai, pour

eet ob-jet, a mon Méraoire sur Véquilihre et le mouvementnbsp;des Corps élastiques (^). Dans ce Traité , on for-mera les équations d’équilibre d’une verge élastlque,nbsp;en partant de principes secondaires qui sont géné-ralement admis. On appelle, en particulier, lame élastlque un pa-ralléléplp?de rectangle d’une petite épaisseur, que 1’on courbe dans Ie sens de sa longueur, de ma-ni?re qu’il se trouve compris entre deux surfacesnbsp;cylindriques, dont les ar?tes sont égales a sa iargeur.nbsp;Cette dimension peut avoir une grandeur quelconque;nbsp;en la dlvisant par des plans tres rapprochés et per-pendiculaires a sa direction, la lame sera pai tagée ennbsp;verges élastiques rectangulaires. Jacques Bernouillinbsp;a déterminé, le premier, la figure de la lame élas- 1 ii 1 Mémoires de l’ Académie des Sciences,

toiue VlJI.



6oo nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. tique en ëquilibre, d’apr?s des considerations que nous allons développer, et qui serviront ensuite hnbsp;la solution compléte du probl?me, dans Ie cas d’unenbsp;verge élastique quelconque. 307. Conside'rons une lame élastique encastrée par une de ses extrérailés, c’est-a-dire, fixée de ma-ni?i'e que l’un des deux petits rectangles qui la ter-minent perpendiculairement a sa longueur, ne puissenbsp;prendre aucun mouvement. Supposons qu’on la plienbsp;dans Ie sens de sa longueur au moyen d’une forcenbsp;appliquée a son autre bout, et qui sera la seulenbsp;qui agisse sur la lame. Pour que la lame prennenbsp;une figure cylindrique , comme on vient de Ie dire,nbsp;il faudra qu’elle soit terminée, a son extrémité li-bre, par un rectangle inflexible, au milieu

duquelnbsp;on appliquera la force donnée, dans un plan perpendiculaire a la largeur de la lame. Toutes lesnbsp;coupes longitudinales ou perpendiculaires a cettenbsp;largeur seront égales; celle qui renferme la direction de la force donnée est représentée par la figure 77 ; et les courbes AMB et A'M'B' sonl les sections des deux surfaces cjlindriques de la lame, quinbsp;formaient ses deux faces planes dans son état naturel. On suppose que tous les points qui appartenaient, dans eet état, a une m?me perpendiculaire a cesnbsp;deux faces, sout encore situés, apr?s que la lamenbsp;a été pliée, sur une méme normale aux deux surfaces cjlindriques ; ce qui est, effectivement, conforme a ce qu’on observe dans son changement denbsp;figure. II en résulte que si MM' est une normale a



STATJQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;6oi la courbe AMB, elle sera aussi perpendiculaire a A'M'B', et contiendra tous les points de la lame quinbsp;étaient situés priraitivenient sur une des perpendi-culaires a ses deux faces; il s’ensuit aussi que si 1’onnbsp;decompose la lame, dans son état naturel, en filetsnbsp;longitudinaux, et que la courbe CND représente unnbsp;de ces filets apr?s Ie changement de figure, elle cou-pera a angle droit en N la normale MM'. Soit 7n un point de ia courbe AMB, infiniraent voi-sin de M; menons la normale znnz/d aux trois lignes AMB, CND, A'M'B', qui les coupe en zn, zz, zzz'; lesnbsp;prolongemens de MNM' et mnm' se rencontreront ennbsp;un point 0, qui sera Ie centre de courbure communnbsp;a ces trois courbes. Appelons p Ie rajon de courburenbsp;du filet mojen,

ou egalement éloigne' de AMB etnbsp;A'M'B'; er la partie de ce filet comprise entre ces deuxnbsp;normales MNM' et mnm' •, u la distance du filet quel-conque CND au filet mojen, et er' la longueur denbsp;Nzz. En considérant cette distance u comnie positivenbsp;OU cornme negative , selon que CND se trouve, parnbsp;rapport au filet moyen , du cólé de la convexité AMBnbsp;de la lame, ou du cóté de sa concavité A'M'B', Ienbsp;rayon de courbure NO de CND sera ëgal a p-j-u, etnbsp;les longueurs infiniment petites ir' et er seront entrenbsp;elles comme p -j- u et p, de sorte que Ton aura a' z= (T -h —. e En se courbant, les filets longitudinaux auront éprouvé de tres petites extensions ou contractions,nbsp;et les longueurs 7' et rr, qui étaient égales auparavant,



6o3 nbsp;nbsp;nbsp;traité de MÉCANIQUE. seront devenues inégales. Designons pavj leur grandeur primitive, et faisons ö’ —= nbsp;nbsp;nbsp;-f-cT'); cT et J ' étant de tres petites fractions, positives ou negatives, selon que Ie filet moyen et Ie filet CND se seront allonges ou raccourcis. La fraction - est aussi suppose'e tres petite; si done on négligé Ie produitde cT et -, on aura P BT.. ce qui montre que quand Ie filet moyen n’aura pas cliangé de longueur, les filets situés du cóté de lanbsp;convexité se seront tous allonges, et les filets situésnbsp;du cóté de la concavité se seront tous raccourcis, lesnbsp;uns et les autes proportionnellement a leurs distancesnbsp;au filet moyen. Cela posé, rendons invariable la forme de chacune des deux parties de la lame qui répondent a AMM'A'nbsp;et Bmin'B', et que nous

appellerons H et K, pournbsp;abréger. La partie H sera immobile; la partie K seranbsp;tii’ée vers H , ou en sera repoussée, par la tendance denbsp;la partie intermédiaire M/uzjr'M' a reprendre son étatnbsp;naturel et redevenir une tranche d’une épaisseurnbsp;constante y. Le filet Nra de cette tranche tendra a senbsp;contracterou a se dilater, selon qu’il aura été allongénbsp;OU raccourci, c’est-a-dire, selon que la quantité cf'seranbsp;positive ou négative. La partie K sera done tirée dansnbsp;le premier cas, et poussée dans le second cas, par une



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;6o3 force appliquëe au point n ; or, on suppose que cette force, provenant de faction de Nn, est proportion-nelle a la quantile cT' et normale a mnin , comme si cenbsp;filet ]Nn était isolé. En adoptant cette hypothese, je représenterai par ?cf' la force dont il s’agit, rapportëe a l’unite' de surface , et, conséquemment, par cL^'Adu la force normale exercée sur 1’élément transversal de la surface K,nbsp;qui répond au point n; a étant une constante de'pen-dante de la mati?re de la lame, A salargeui', et ?,du fairenbsp;de eet élement. Si done on désigne par as I epaisseurnbsp;de la lame, et qu’on représente par T la force totale quinbsp;tirera ou poussera K, selon qu’^elle sera positive ounbsp;negative, on aura I j ,^'du, el, en mettant pour S' sa valeur, T = aaA?cT. Soit,

en outre, Ie moment des forces normales a ia surface de K, pris par rapport a faxe transversal éga-lement éloigné des deux faces de la lame; nous auronsnbsp;üussi jLi == ctX ^'udu , et, par conséquent, On voit par la , i”. que la Ibrce T, qui tend a con-tracter ou a dilater une tranche quelconque de la lame, est proportionnelle a 1 extension positive ouné-



6o4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. gative du filet mojen, et indëpendantedesacourbure; 2°. que son moment /a est, au contraire, indépen-dant de cette extension, et en raison inverse du rayonnbsp;de courbure; 3°. que la mati?re et la largeur de lanbsp;lame restant les m?mes, la valeur de T est propor-tionnelle a son épaisseur, et celle de au cube denbsp;cette dimension. Quand Ie filet moyen n’a pas change de longueur, on a J' =: o et T = o; les forces parall?les qui ti-i’cnt OU poussent K se rëduisent a deux, ëgales etnbsp;contraires, mais non directement opposées, dont Ienbsp;moment, par rapport a l’axe transversal perpendiculaire a ces forces, est toujours égal a pi. Cettenbsp;quantité jlc est ce qu’on appelle Ie moment de ?é-lasticité, lequel est proporlionnel, en chaque point,nbsp;a

la courbure de la lame, on a l’angle de contin-gence de son filet moyen. 3o8. II est facile actuellement de former les equations d’équilibre de cette lame. Dabord, si Ton appelle T'nbsp;ce que devient la force T au point M, on voit que lanbsp;tranche infiniment petite qui rëpond a M/n/ra'M', seranbsp;tirëe ou poussëe, d’im cótë par cette force T', et denbsp;l’autrc par une force égale et contraire a T; et puis-que , par hypothese , aucune force donnëe n’agit surnbsp;cette tranche, il faudra done qu’on ait T' = T. Ainsinbsp;la force T est constante dans toute la longueur de lanbsp;lame, et, par conséquent, égale a la composantenbsp;suivant cette longueur, de la force donnée qui agitnbsp;a son extrémité libre. La dilatation cT sera aussi constante , proportionnelle a cette force, et positive ounbsp;negative

scion que celfe force tendra a allonger ou a



STATIQÜE, SECONDE PAR?IE. nbsp;nbsp;nbsp;6o5 contracter les filets longitudinaux. Elle n'aura aucune influence sur la figure de la lame; mais quand onnbsp;1’aura niesurée, elle pourra servir a determiner lanbsp;valeur de la constante a, relative a la mati?re de lanbsp;larne. En représentant par 'Zër nn poids équivalent anbsp;la force qui tire la lame dans Ie sens de sa longueur,nbsp;et par co l’aire de chaque section transversale de lanbsp;lame, on aura ‘Z?r = oLcoJ', a. = — ao ?: co = aA?, Pour déterminer la figure de la lame, menons par Ie point A, dans Ie plan du filet moyen, deux axesnbsp;rectangulaires Aoc et Ajr, dont Ie premier sera tangentnbsp;a la courbe AMB, et représentera la direction de lanbsp;lame dans son état naturel, et dont Ie second seranbsp;tourné du cóté de sa concavité. Soient x et j- lesnbsp;coordonnées

rapportées a ces deux axes, d’un pointnbsp;quelconque du filet mojen •, a etb, celles de son extré-mité libre, que nous prendrons pour Ie point d’applica-tion de la force donnée qui tient la lame en équilibre;nbsp;PetQ les composantes de cette force, snivant les pro-longemens de a et ^),Par ie point qui répond a x etj,nbsp;menons l’axe perpendiculaire au plan de la figure,nbsp;auquel répond Ie moment désigné par^, et faisonsnbsp;une section perpendiculaire au filet mojen. Pournbsp;l’équilibre de la partie de la lame comprise entre cettenbsp;section et son extrémité libre, il faudra que Ie moment ajouté aux momens de P et Q, par rapportnbsp;au m?me axe, donne une somme égale^a zéro, en ayantnbsp;égard au sens dans lequel les forces dont ix est Ie mo-



6o6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQÜE. ment, et les forces P et Q, tendent a faire tourner cette partie de la lame ; on aura de cette mani?re P (? —j) — Q(fl! — a:)z=o. En prenant l’abscisse x pour la variable indepen-dante, et observant que la lame est convexe vers l’axe Ax, on aui’a• fj p dx^ ? V ^ dx-J ’ oil Ton regardera Ie radical comme une quantité positive. Si done on substitue cette vaieur dans celle de et celle-ci dans l’équation précedenle, et qu’onnbsp;fasse, pour abre'ger,?| aX? = amp; , il en résultera V dx'^) pour réqualion de la courbe forme'e par la lame élastique en dquilibre. Son integrale contiendra deux constantes arbi-ti’aires que l’on déterminera par les conditions J—s et ~==o, quand.x = o, ou, si ronveutj^=o et ^ = o, pour cette vaieur de x, a cause de la dx petitesse de ?. En

faisant ensuite x =za et j=x b dans cette integrale, on aura une equation en a et b,nbsp;que l’on joindra a celle qui résultera de la longueurnbsp;donnée de la lame; on aura alors les deux equationsnbsp;nécessaires pour determiner ces inconnues a amp;ib-, et



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;607 la courbe élastique proprement dite, sera compl?te-nient déterminée. 3og. Si Ia larne, au lieu d’etre encastrée, est enti?rement libre a sou extrémité A, il faudra pournbsp;la maintenir en équilibre, appliquer a cette extrémiténbsp;une force dont les composantes soient égales et con-traires a P et Q; en prenant l’extrémité correspon-dante du filet mojen pour son point d’application,nbsp;il faudra, de plus, que la résultante de P et Qnbsp;vienne passer par ce point; ce qui exigera qu’onnbsp;ait Qa= P {b — g). Cette equation sufTira, quand la lame sera rete-nue par un axe fixe, passant par cette extrémité du filet mojen, et dirigé dans le sens de sa lar-geur. Si elle est simplement posée sur un plan perpendiculaire a sa longueur, qui ne I’empeche pas denbsp;tourner autour de I’arete d une

de ses deux faces , ilnbsp;faudra que le frottement de cette arete coutre lenbsp;plan, ou une autre force, emp?che la lame de glisser La lame n’étant point encastrée, la direction de son plan tangent en A ne sera plus connue; si 1’onnbsp;place toujours en ce point I’origine des coordonne'esnbsp;X etf, on aura encore j = amp; ouj=o, quandnbsp;X = o; mais on ne pourra plus prendre I’axe des xnbsp;sur la tangente en A , dont la direction ne sera pasnbsp;donnée a priori. Get axe sera alors la direction donnée de la force P, et l’équation o, quand devra ?tre remplacée, pour la détermination des coustantes arbitraires, par l’équation précédente, il m 1|



6o8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. relative aux momens des forces P et Q, qu’on pourra réduire a Qa = Vb. 3io. Supposons qu’on ait P = o; en sorte que la lame soit pliée par une force Q perpendiculaire anbsp;sa direction primitive; ce qui est, par exemple, Ie casnbsp;d’une lame horizontale, encastrée par un bout, et anbsp;l’autre bout de laquelle on suspend un poidsdonné Q. Je fais dans ce cas c étant une ligne dont la longueur donnée sera gé-néralement trés grande, a moins que Ie poids Q nenbsp;soit aussi trés considerable. L’équation (i) de-viendra z= a — X-, nbsp;nbsp;nbsp;(2) et en integrant de maniére qu’on ait ^ = o quand x — o, on aura On en dëduit {o ax — nbsp;nbsp;nbsp;dx v/ ^c’^ — {•gt;.ax — x'^-y ds étant l’élément différentiel de la courbe. Ces formules s’intégreront

exactementparle moyen desfonc-tions elliptiques; mais a cause de la grandeur de c, ona. s = x f a trés peu prés, et l’on peut réduire a



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;609 ~ i nbsp;nbsp;nbsp;? la valeur A.e dj •, d’oü l’on tire 6c“/ = 3ax* — a?Ž, poiir l’équation de la courbe. La lame s’écartera peu de la direction horizontale; l’abscisse a pourra ?tre prise pour sa longueur, elnbsp;1’ordonnée b exprimera son plus grand écart. A causenbsp;de 5Qc* = si l’on fait asA : aurons ; G), comme précédemment, nous ttca^b = dans Ie cas de = ö et ^ = b. II en re'sulte done que la nature de la lame restant la m?me, la quan-tité b dont elle fléchira sera proportionnelle au poidsnbsp;Q et au cube de la longueur a, et en raison inversenbsp;du carré de son épaisseur € et de l’aire co de sa sectionnbsp;tranversale. Si Ton substitue pour aŽ sa valeur ^ dunŽ 3o8, et qu’on appelle h Tallongement total de la lame, produit par un poids lt;Ztr, on aura ha^Q 11 En supposant ?zsr

= Q, on en conclura que si un m?me poids Q, applique a l’extrémité libre d’unenbsp;lame élastique, agit successivement dans ie sens de sa 39 i



6io nbsp;nbsp;nbsp;TRAITÉ DE MÉCAJSTQÜE. longueur et perpendiculairement a sa longueur, l’extension h et la flexion h, supposées trés pelitesnbsp;par rapport a la longueur a, seront entre elles commcnbsp;les carrés de l’épaisseur et de cette longueur. 5i 1, Quelles que soieat les forces P et Q, on olgt; liendra toujours une integrale premi?re de l’équa-lion (i) en la réduisant a la forme de l’équation (2)nbsp;par la transformation des coordonnees. Nous nousnbsp;bornerons a considérer Ie cas oü la lame, appuyéenbsp;contre un plan et nou encastrée, s’écarte peu de sanbsp;forme naturelle. Ce sera, par exemple, un ressortnbsp;posé sur un plan horizontal par son extrémité inférieure A, et chargé d’un poids donné a son extrémité supérieure B. On suppose qu’en se pliant sousnbsp;cette charge, Ie

ressort s’écarte trés peu de la verticale AB, et que dans toute sa longueur, la tangentenbsp;a la courbe qu’il forme dans son état d’équilibre,nbsp;fait un trés petit angle avec cette ligne droite. Lanbsp;figure 78 représente différentes formes qu’il peutnbsp;prendre dans eet état. Prenons pour axes des oc et des j , la verticale Ax dirigée en sens contraire de la pesanteur, et l’hori- zontale Ajquot;. La quantité ^ sera trés petite, par hypothese ; nous négligerons son carré dans 1’équa-lion (i); on aura aussi Q = o , puisque la force qui agit a rextrémité B est verticale; en vertu de l’é-quation Qa — Yb du n° SoQ, il s’ensuivra Z? = o;nbsp;et comme Ie poids P sera dirigé de B vers A, il fau-dra changer Ie signe de cette force dans l’équation (1),nbsp;qui la suppose dirigée en sens contraire. De cette



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;6n niani?re, cette equation deviendra simplement dx'^ en faisant, pour abre'ger, C =z ^ ucoe^ = ^— V. On représente ici par co Faire de la section du ressort, perpendiculaire a sa longueur; par e sanbsp;demi-épaisseur, dans Ie sens oü il est plié; et parnbsp;a une quantité dépendante de la mati?re dont il estnbsp;formé. Ces trois quantités sont supposées constantes,nbsp;et par suite c est une ligne de grandeur constantenbsp;et donnée. A cause que Fon a.f=o, quand j?==o, on déduit de cette equation j z=k ^x nbsp;nbsp;nbsp;drnbsp;nbsp;nbsp;nbsp;Trhnbsp;nbsp;nbsp;nbsp;TTX — , nbsp;nbsp;nbsp;= — COS —; c nbsp;nbsp;nbsp;axnbsp;nbsp;nbsp;nbsp;cnbsp;nbsp;nbsp;nbsp;cnbsp;k étant une constante arbitraire qui doit étre nulle ounbsp;tres petite par rapport a c. If Quand

on aura k = o, Ie ressort restera droit, et sa longueur AB sera un peu diniinuée par la pressionnbsp;du poids P. Lorsque ce coefficient k ne sera pas nul,nbsp;Ie ressort se pHera; au point B, on aura ^ etnbsp;J —nbsp;nbsp;nbsp;nbsp;en dësignant par i un nombre entier, il faudra done qu’on ait IC . pour la valeur de a ou de AB. Si Fon appelle l la longueur du ressort, on aura aussi 'M 39-



6i2 TRAITÉ DE MÉGANIQÜE.' = ƒ I v/' ? nbsp;nbsp;nbsp;/.V' quot;?^lt;^'’’-7'^ ’ k en négligeant la quatri?me puissance de -, et met-tant pour a sa valeur, 11 vient i = ic (i ^-?y, d’oü i^on tire 2C (5)s/l- Ainsi Ie coefficient k sera nul ou exprirae' par cette formule. 512. Voici les consequences remarquables qui se déduisent de ce résultat. 1°. Tant que l sera moindre que c, la formule (3) sera imaginaire pour toutes les valeurs du nombrenbsp;entier on ne pourra pas prendre Ie coefficient knbsp;different de ze'ro, et Ie ressort ne sera pas plie' par Ienbsp;poids P. 2°. Soit paree qu’on aura augmenté la longueur du ressort, soit paree qu’on aura dlminué la quantity c en faisant croitre Ie poids P, supposons que lnbsp;surpasse c; la valeur de k, différente de zéro et quinbsp;i’épond a ? = i, sera réelle, et Ie ressort pourra

?trenbsp;plié par ce poids. En désignant par f une fractionnbsp;tres petite, el faisant OU aura 1=1^ a =? € ,



STATIQUE, SECONDE PARTIE. Vëquation de la courbe du ressort sera done (gt;i'3 y =: fa SI sin OU Ton voit qu’elle ne coupera pas la verticale entre les deux points A et B. 3°. Le rapport ^ continuant a croitre, s’il vient a surpasser 2, la valeur de A qui répond k i ~ 2 sera réelle, et le ressort pourra prendre une figure différente de la prece'dente. En désignant par f’ une fraction tres petite, et faisantI' nous aurons ? = 2, d’oü il résultera l = 2C(l -|- nbsp;nbsp;nbsp;, 2C, k = f'ay r = sin 2?rX ce qui montre que, dans ce cas, la courbe coupera la verticale au milieu de AB, qui répond a x=.\a. 4'quot;. En continuant ainsi, on voit que si l surpasse un peu ic, et qu’en désignant par lt;p une trés petitenbsp;fraction, on aitH- -J-), on pourra prendre ic. (pa j ce qui donnera lt;pa sin I'jrx



Gi4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. equation d une courbe qui coupera la droile AB en un nombre i 1 de points équidistans, y comprisnbsp;A et B. Lorsque l surpasse un multiple de c d’une quantile qui n’est pas tres petite, la valeur de k, donnée par la formule (3), cesse d’etre tres petite par rapport a c; et celle de ^ n’étant plus alors une tres petite fraction, la figure du ressort ne peut plus ?tre détermine'e par l’analjse précédente. II faut observer que, dans tous les cas, la figure rectiligne,nbsp;qui répond a A: — o , est possible ; mais elle n’estnbsp;stable et nécessaire que quand l est moindre que c. 3i5. On entend par la force dun ressort, suppose vertical pour fixer les idees, Ie plus grand poids qu’il peut supporter sans fléchir. Ce poids Pnbsp;est determine par l’équation c=l, qui donne p _ ctas oü

l’on voit que, loutes choses d’ailieurs égales, la force d’un ressort est en raison inverse du carré denbsp;sa longueur. Le ressort étant un parallélépip?de rectangle, on voit aussi que si l’on essaie de plier suc-cessivement les faces adjacentes, sa force sera pro-portionnelle au carré de Tépaisseur perpendiculaire anbsp;la face qu’on voudra plier. Quant a la grandeur absolue de P, on la calculera en mettant dans la formule précédente la valeur denbsp;a,, que l’on déduit soit de 1’extension h de ce ressort,nbsp;soit de sa flexion h, qne produirait un poids 'Z?r; or,



STA?IQUE, SECONDE PARTIE. d’apr?s les n°“ 3o8 et 5io, et a cause de acT;nbsp;a = l^ ces valeurs sontnbsp;nbsp;nbsp;nbsp;? zrl vil 6.5 : k et CL tV Tb ’ pai’ conséquent, on auraP = TT'Zrg TT'Srl 3i4- Les résultats du n° 807 s’étendent aisément a une verge élastique, lorsqu’on la suppose droite ounbsp;a simple courbure dans son état naturel, et qu’en lanbsp;pliant elle reste encore a simple courbure et n’éprouvenbsp;aucune torsion. On prendra, dans ce cas, pour Ie filet mojen, celui qui passe par les centres de gravité de toutes les sections perpendiculalres a sa longueur, lesquellesnbsp;pouiTont ?tre constantes ou variables, pourvu qu’ennbsp;chaque point leurs dimensions soient tres petites parnbsp;rapport au rayon de courbure de ia verge. Soit lt;xgt;nbsp;l’aire de Tune de ces sections, faite par un point quel-conque du

filet moyen ; décomposons agt; en élémensnbsp;perpendiculaires au plan de ce filet; et soit vdu l’airenbsp;de Télément qui répond a la distance u de ce m?menbsp;filet; la variable u pouvant ?tre positive ou negative,nbsp;et V désignant une fonction donnée de u. Soientnbsp;aussi A et — k' les valeurs extremes de u; nousnbsp;aurons= cti, la seconde equation resultant de ce que l’origine de la variable u est Ie centre de gravité de a.



6i6 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Désignons par er, o-', nbsp;nbsp;nbsp;^ eT', ƒgt;, les m?mes quanti- tés que dans Ie nŽ 5oj, et par y, y', r, ce qu’étaient cr, er', f, dans l’e'tat naturel de la verge élastique; onnbsp;aura, pour les deux états de cette verge, y—y ^, nbsp;nbsp;nbsp;e;=cr -, et, pour Ie passage de lun a l’autre, cr = 5/(i-J-ƒ) , nbsp;nbsp;nbsp;(7'= y (i eT'). Si dönc on négligé les produits ^ et —, on en dé-duira valeur qui coincide avec celle du numéro cité, dansnbsp;Ie cas 'de la veree naturellement droite, oü 1’on anbsp;r = co. Soit encore T la somme des forces perpendiculaires a O) qui tirent ou poussent Tune des deux parties denbsp;la verge, séparées par cette section normale. Appe-lons (z Ie moment de ces forces par rapport a l’axenbsp;passant par Ie centre de gravité de ft), et

perpendiculaires au plan du filet moyen; d’apr?s l’hjpoth?senbsp;du n° 307, on aura T = nbsp;nbsp;nbsp;fj. — CL j^^^^'vudu y CL étant une quantité dépendante de la mati?re de la verge, qu’on suppose constante dans l’étendue denbsp;chaque section co, mais qui pourra varier d’un pointnbsp;a un autre du filet moyen. En substituant pour cT'



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;617 sa valeur précédente, et faisant, pour abréger, fl. vu^du 'k il en résultera T = awcT,G-O- aaq' /4; Quand la verge élastique sera a double courbure , dans soa état naturel ou apr?s son changement de figure, la force T aura encore la m?me expression; denbsp;plus, Ie filet mojen étant toujours celui qui passenbsp;par les centres de gravité de toutes les sections nor-males, et en dësignant par r el f ses rayons de courbure en un m?me point, avant et apr?s ce changement , on pourra prendre cette expression de fjt, pournbsp;Ie moment de I’élasticité par rapport a un axe passant par ce point et perpendiculaire au plan oscula-teur du filet mojen ; mais il faudra, en outre, avoirnbsp;égard a la torsion de la verge, comme nous Ie feronsnbsp;tout a l’heure. 3i5. En comparant celte

valeur de k celle du n° 307, on voit que l’équation diffe'rentielle secondenbsp;de la courbe plane formee par Ie filet mojen d unenbsp;verge élastique qui n’a éprouvc auciine torsion, nenbsp;différera de celle qui répond a la lame élastique pro- au prement dite, qu’en ce qu’elle contiendra - — lieu de ^, et la quantite' q k la place de la demi- épaisseur s. Si la verge est homog?ne, et qu’elle soit, dans son état naturel, un prisme ou un cjlindre al- -I



6i8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Jonge, les trois quantités a, agt;, q, seront constantes, et Ton aura r = co . On en conclut que la flexionnbsp;d’une verge naturellemenl droite, produite par unnbsp;poids Q perpendiculaire a sa direction, et la force denbsp;ce ressort, se déduiront des valeurs de 6 et P trou-vées dans les n°Ž 3io et 5i3, en j mettant ^ a la placenbsp;de ?. Par cette substitution, l étant la longueur denbsp;cette verge, on aura OU, ce qui est la m?me chose. vu* du. 3P Pour deux verges dlfférentes, mais de m?me longueur, les flexions produites par un m?me poids seront done en raison inverse des forces de i’essort; en sorfe qu’il suffira de comparer entre elles les grandeurs de ces forces, dans les dlfférentes hypotheses surnbsp;Ie contour de la section normale. Supposons que la section

normale soit un triangle isoc?le, et qu’on veullle plier la verge, de mani?renbsp;que la face correspondante a la base de ce triangle de-vienne une surface cylindrique, concave ou convexe.nbsp;Soient a et c la base et la hauteur de ce triangle.nbsp;Dans Je cas de la convexité, vers laquelie sont diri-gées les valeurs positives de u (n“ Soy), nous aurons ,, 2 lt;2 /2 , \A' = 5C, nbsp;nbsp;nbsp; et il en résultera



^•4 STATIQÜE, SECONDE PARTTE. 619 36^ Dans Ie cas de la concavité, on aura k = \c,nbsp;nbsp;nbsp;nbsp;= d’oü Ion conclut Ti^aac„3 ce qui montre que, dans ce second cas, la force du ressort est triple de celle qui a lieu dans Ie premier. Si la section normale est un carré représenté par ƒ*, et qu’il s'agisse de plier Ie ressort, de sorte quenbsp;deux de ses faces opposées deviennent des surfacesnbsp;cylindriques, on aura. f p ~ 'j’ nbsp;nbsp;nbsp;I2Z“ * Si elle est un eerde dont Ie rayon soit k, nous au-rons k' = kf c = 2 \/A“ — et en supposant faire de la section normale égale dans les deux cas, de sorte qu’on ait ƒ“= onnbsp;voit que ia force de ressort qui a lieu dans Ie premiernbsp;cas surpasse celle qui ré pond au second, dans Ie rapport de TT h 5. Supposons encore que Ie ressort cylindrique soit un tuyau creux, dont les

surfaces concentriques, in-térieure et extérieure, aient g et g' pour rayons.nbsp;Pour avoir la force de ce ressort, il faudra mettre 1 ; I, I



620 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. successivement g et g' a la place de k daus la derni?re valeur de P, et retrancher les rësultats l’un de l’autre;nbsp;ce qui donne P = (g? gq (g-'? — gq 4/“ Si Paire TT [g’^ — de la section normale est égale a ttAŽ, on aura donep _ nbsp;nbsp;nbsp;4- ag-') 4/“ nbsp;nbsp;nbsp;’ d’oü l’on conclut que Ie volume, la longueur et 1? matiere étant les m?mes, la force d’un ressort creuxnbsp;est plus grande que celle d’un ressort plein, dans Ie rapport de i ^ a l’unité; 2g étant Ie diam?tre intérieur, et ttA:* Faire de la section normale. 3i6. Formons maintenant les equations d’équi-libre d’ une verge élastique quelconque, dont tous les points sont sollicités par des forces données. Appelons A et B les deux extrémités du filet moyen. Soienta?,y^, z, lestrois coordonnées

rectangulairesd’unnbsp;point quelconque M de Cette courbe, s Fai’C AM, conbsp;la section normale de la verge faite par Ie point M,nbsp;y sa densité en ce point, et, conséquemment, ycodsnbsp;la masse d’une tranche infiniment mince de la verge.nbsp;Désignons par ILyaids, Yyoods, Zycods, les forces données qui agissent sur cette masse parall?lement auxnbsp;axes des x, j, z, de sorte que X, Y, Z, soient cesnbsp;forces rapportées a l’unité de masse. La somme denbsp;leurs composantes, suivant la tangente en M aunbsp;filet moyen, et tendant a augmenter 1’arc s, sera



621 S?ATIQUE, SECONDE PARTIE. ds Representons aussi pai' T la force provenant de l’ac--tlon d’une partie de la verge sur la partle adjacente, appliquëe a Tune des faces de la tranche ycads, perpendiculaire a et tendant a diminuer ou a aug-menter l’arc seloii qu’elle est positive ou ne'gative.nbsp;L’autre face de yccds sera tirée ou poussée en sensnbsp;contraire par une force égale a T -f- dT; par conséquent, pour l’équilibre de cette tranche, il faudraquenbsp;la force dT soit égale et contraire a la force tangen-tielle donnée, ou qu’on ait c?T —j— yco nbsp;nbsp;nbsp;—|- ''idjf —'Zidz^ = o j (a'j ce qui s’accorde avec l’équation (3) du nŽ 3oo. A cause du peu d’extensibilité de la mati?re de la verge, on pourra prendre, dans cette équation (a),nbsp;pour ^ et ? la densité et la section normale de lanbsp;verge au point M, dans son

état naturel. Si ces deuxnbsp;quantités sont constantes, et que la formule comprise entre les parentheses soit une différentiellenbsp;exacte, on obtiendra, par l’intégration immédiate, lanbsp;valeur de T; i;t, paree que Ton a T=aŽ?f (n° 307),nbsp;on en conclura la dilatation positive ou negative denbsp;Télément ds, qui se sera allonge dans Ie rapport denbsp;I eP a 1’unité ; mais cela ne fera pas connaitre lanbsp;dilatation de la section normale ?, ni Ie changement de densité de la verge au point M. Or, d’apr?snbsp;ce que j’ai fait voir dans Ie Mémoire cité au commencement de ce paragraphe, l’allongement ou Ie rac-



632 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. courcissenient de ds est toujours accompagné d’une diminution ou d’une augmentation de co, mais telle,nbsp;que Ie volume mds variera dans Ie m?me sens quenbsp;ds, et la dcnsité y, en sens inverse. II s’ensuit quenbsp;quand une verge homogene, prismatique ou cjlin-drique, est attachée par un bout, et tirée a son autrenbsp;extrémité par une force dirigée suivant Ie prolonge-ment de sa longueur, elle éprouvera, a la fois, unenbsp;extension et une augmentation de volume, propor-tionnelles a cette force j ce qui a eté effectivementnbsp;confirmé par rexpé'rience. Réciproquement, si cettenbsp;verge est posée verticalement sur un plan horizontal,nbsp;et chargée d’un poids a sa partie supérieure, qui nenbsp;la fasse pas plier, elle se raccourcira , et, en

m?menbsp;temps, son volume sera diminué proportionnelle-ment a la grandeur de ce poids. Siy. Prenons sur l’arc AM du filet mojen un point m infiniment voisin de M; par ce point m , faisonsnbsp;une section normale; et concevons que la partie denbsp;la verge comprise entre cette section et Textrémité A,nbsp;soit rendue tout-a-fait immobile, et que la partienbsp;comprise entre l’autre bout B et la section faite parnbsp;Ie point M, devienne seulement de forme invariable.nbsp;Cela étant, cherchons les conditions d’équilibre denbsp;cette seconde partie, que nous appelierons K. En vertu de la torsion de la verge, les points de la tranche comprise entre les deux sections normalesnbsp;faites par M et m, serontsollicités par des forces quinbsp;tendront a détordre ses différens filets longitudinaux,nbsp;et agiront dans

des plans perpendiculaires a Mm,nbsp;c’est-a-dire, a la tangenle en M au filet moyen. Ces



S?ATIQUE, SECONDE PAR?IE. nbsp;nbsp;nbsp;628 forces tendront a faire tourner K autour de cette droite, en sens contraire de la torsion. Soit t leurnbsp;moment par rapport a cette droite, que l’on ap-pellera Ie moment de la torsion de la vei'ge, cor-respondant au point M. Si Fon m?ne par ce pointnbsp;des parall?les aux axes des x, j, z, et si l’on observe que Faxe de cc moment fait, avec ces droites, des angles dont les cosinus sont ~on en conclura (n° 281) dx di^ ~~ pour les momens par rapport a ces trois parall?les, des forces qui agissent sur K dans Ie sens de la torsion, D?signons par //., Ie moment de 1’élasticité relatif au point M, c’est-a-dire, Ie moment des forces dont Tnbsp;est la somme, par rapport a un axe mené par ce pointnbsp;et perpendiculaire au plan osculateur du filet mojen;nbsp;r et p étant les rayons de

courbure en ce m?me point,nbsp;dans 1’état naturel et apr?s Ie changement de formenbsp;de la lame, et ^ de'signant une quantité positive, dependant de la mati?re et de la section normale aunbsp;point M, nous aurons (nŽ 3t4) et si Fon appelle ƒ, g, h, les angles que l’axe de ce moment fait avec les parall?les aux axes des x,j^z,nbsp;mencs par Ie point M, les momens de Félasticit? parnbsp;rapport a ces trois droites seront



624 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. fA COS f, JX COS g , fX COS h. Soient M' un point quelconque de 1’arc MB; z', ses trols coordonnëes; s' l’arc AM', et y*, a', X',nbsp;Y', Z', ce que deviennent y, co, X, Y,Z, relati-venient a M'. En appelant Zla longueur totale du filetnbsp;moyen, et faisant ƒ1 - x) nbsp;nbsp;nbsp;- X'(y-nbsp;nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;z„ ƒquot; nbsp;nbsp;nbsp;[X'nbsp;nbsp;nbsp;nbsp;(z'nbsp;nbsp;nbsp;nbsp;— z)nbsp;nbsp;nbsp;nbsp;— Z'(x' — x)'\y’co'ds’nbsp;nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;Y^, ƒ' nbsp;nbsp;nbsp;[Z'nbsp;nbsp;nbsp;nbsp;(/nbsp;nbsp;nbsp;nbsp;-y)nbsp;nbsp;nbsp;nbsp;-nbsp;nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;X,. ces nbsp;nbsp;nbsp;trois quantitésnbsp;nbsp;nbsp;nbsp;X^, Y^,

Z^,nbsp;nbsp;nbsp;nbsp;serontnbsp;nbsp;nbsp;nbsp;lesnbsp;nbsp;nbsp;nbsp;momens des forces donnëes qui agissent sur K, par rapport aux axes menés par Ie point M, suivant les directionsnbsp;des X, j, z. Enfin, supposons que des forces particuli?res agissent a Textrérnité libre de K; représentons par P, Q, R, les sommes de leurs composantes parall?lesnbsp;aux axes des x ,j,z, et par a', b', c', les coordonnëesnbsp;du point d’application de leur résultante; leurs momens par rapport aux m?mes axes que Z^, Y,, X^,nbsp;seront Q (?' nbsp;nbsp;nbsp;— ?^)nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;Pnbsp;nbsp;nbsp;nbsp;(Zgt;'nbsp;nbsp;nbsp;nbsp;— jr), P (c' nbsp;nbsp;nbsp;— z)nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;Rnbsp;nbsp;nbsp;nbsp;{a!nbsp;nbsp;nbsp;nbsp;— x), R nbsp;nbsp;nbsp;-

J)nbsp;nbsp;nbsp;nbsp;-nbsp;nbsp;nbsp;nbsp;Qnbsp;nbsp;nbsp;nbsp;(^'nbsp;nbsp;nbsp;nbsp;- et si l’on dësigne par a, h, c, les coordonnëes de lextrémité B du filet moyen, on pourra remplacernbsp;ces momens par



STATIQUE, SECONDE PARTIE. Q (a — nbsp;nbsp;nbsp;3c) — P (?nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;j)nbsp;nbsp;nbsp;nbsp;-h P (c — nbsp;nbsp;nbsp;z) — R (anbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;jc)nbsp;nbsp;nbsp;nbsp;4-nbsp;nbsp;nbsp;nbsp;Q', R (^ - nbsp;nbsp;nbsp;J) — Q (^nbsp;nbsp;nbsp;nbsp;-nbsp;nbsp;nbsp;nbsp;^;)nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;P', en faisant, pour abréger, Q (a' _ nbsp;nbsp;nbsp;fl) _ P (b'nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;b)nbsp;nbsp;nbsp;nbsp;z=:nbsp;nbsp;nbsp;nbsp;R', P (c' — nbsp;nbsp;nbsp;c) — R (?'nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;a)nbsp;nbsp;nbsp;nbsp;z=nbsp;nbsp;nbsp;nbsp;Q', R nbsp;nbsp;nbsp;_ Q (c' — c) = P'. Généralement, les coordonnées a', b\ c', seront distinctes de a, h ,c, paree que les forces

extremesnbsp;P, Q, R, ne seront pas appliquées immédiateraent anbsp;la verge élastique, et qu’elles agiront aux extre'mite'snbsp;de bras de levier. Soit que ccs forces aient ou nonnbsp;une résultante unique, les quantités P', Q', R', serontnbsp;leurs momeus par rapport a des axes menés par Ienbsp;point B, parall?lement a ceux des ac, j, z,; si donenbsp;on suppose qu’on ait en ce point dx nbsp;nbsp;nbsp;t — = cos a , ds Pf dz nbsp;nbsp;nbsp;i cos fc , ds ~ nbsp;nbsp;nbsp;‘nbsp;et qu’on fasse P' cos a' Q' cos Q' -f- R' cos y' = L, cette quantité L exprimera Ie moment des forces ex-trémes par rapport a la tangente au point B (n“ 281); d’ou l’on peut déja conclure que L sera Ie momentnbsp;de la torsion extréme, oü la valeur de r relative a cenbsp;m?me point. Cela posé pour lequilibre de la partieK de la verge 1. 4Ž



626 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. élastique, il faudra que la somme des momens par rapport a chaque axe, de toutes les forces qui agis-sent sur ses différentes tranches et a ses extrëmités ,nbsp;soit égale a zéro; ce qui donne ces trois équations doe cos/— X^ P' R(igt; ~j')—Q(c — jz) — o, i {h) dy fi cosg- — r ^ -f- nbsp;nbsp;nbsp; Q' -f P (c — z) R(a — x) dz ft. cos h — T — -i- nbsp;nbsp;nbsp;-{• Q(? — x) — P(6 —J-) — o.' ds 5i8. D’apr?s les formules du n” ,19, on a ^_ dj-d^z — dzd^y c?s J — nbsp;nbsp;nbsp;, cos g dzd^x — dxd'‘z 7 dxdquot;r — drd^x cos h — ------; gt;,ds^ nbsp;nbsp;nbsp;’ gt;.ds^ étant la racine carrée de la somme des carrés des trois numérateurs. II en résulte fid^z d.fjL cosg = dzd.^^^ —dxd. xds-^ ’ fid^x xd.s^ /id'y d.fz cos h = dxd. dyd xds' Xds^ et, par conséquent, '^^d. fx,

cos j nbsp;nbsp;nbsp;d. fx cos g ^ d.f/, cos h =. o. On a d’ailleurs



627 STATIQUE, SECONDE PARTIE. dx'^ nbsp;nbsp;nbsp;dj'^nbsp;nbsp;nbsp;nbsp;dz^ ds'^ nbsp;nbsp;nbsp;ds'‘nbsp;nbsp;nbsp;nbsp;dJ-^ dx j nbsp;nbsp;nbsp;dxnbsp;nbsp;nbsp;nbsp;djnbsp;nbsp;nbsp;nbsp;, djnbsp;nbsp;nbsp;nbsp;dz jnbsp;nbsp;nbsp;nbsp;dz Cl nbsp;nbsp;nbsp;*nbsp;nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;“Tquot;nbsp;nbsp;nbsp;nbsp;'y~nbsp;nbsp;nbsp;nbsp;Cl*'Tquot;nbsp;nbsp;nbsp;nbsp;“T~nbsp;nbsp;nbsp;nbsp;T Clnbsp;nbsp;nbsp;nbsp;=:nbsp;nbsp;nbsp;nbsp;O. ds nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;'nbsp;nbsp;nbsp;nbsp;dsnbsp;nbsp;nbsp;nbsp;ds Si done on ajoute les diffe'rentielles des equations {b), apr?s les avoir multipHees parnbsp;nbsp;nbsp;nbsp;on aura, en réduisant, dr = ^ d\ ^ dX, dZ.; mais a cause que les quantités soumises a

l’inte'gration dans les expressions de X^, Y^, Z^, s evanouissent anbsp;la limite / = ^, il suffit (n” i4) de difFérentier sousnbsp;les signes / par rapport 'a x, f, z, pour obtenir lesnbsp;valeurs denbsp;nbsp;nbsp;nbsp;dX.^,nbsp;nbsp;nbsp;nbsp;dY^, dZ^; on anbsp;nbsp;nbsp;nbsp;done simplement dX^ — nbsp;nbsp;nbsp;dznbsp;nbsp;nbsp;nbsp;Y'y'oü'ds'nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;dj Z'y'cü'ds', dY^ =z= nbsp;nbsp;nbsp;dxnbsp;nbsp;nbsp;nbsp;Z'y'co'ds'nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;dz J'^X'y'co'ds', dZj^ nbsp;nbsp;nbsp;djnbsp;nbsp;nbsp;nbsp;J'nbsp;nbsp;nbsp;nbsp;X'y'a'ds'nbsp;nbsp;nbsp;nbsp;—nbsp;nbsp;nbsp;nbsp;dx J’^Y'y'co'ds'; et en substituant ces valeurs dans l’e'quation precé-dente, elle se réduit adr=xo. Ainsi Ie moment de ia torsion est constant dans toute la longueur d’une verge

élastique en equilibre,nbsp;quelles que soient les forces qui j sont appliquées. Sa valeur sera done partout la m?me qua chacun des deux bouts de la verge; et il est facile de verifiernbsp;qu’au point B, on a t = L, comme on l’a dit plusnbsp;haut. En effet, en ce point, on a, x — a, j 7= h,4o..



628 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. z= c; les intégrales X^, Y^, Z^, s’évanouissent, et les equations (b) deviennent T cos aJ = IJL cos ƒ P', T cos = jjL cos g -|- Q', T cos y' z=. fjL cos h -{- A cause que la normale au plan osculateur du filet moyen et la tangente a cette courbe, sont perpendi-culaires Tune a Fautre, on a, en ce m?me point B, cos a' cos/’ 4- cos ë' cos g cosy' cosh — o; en ajoutant done les equations precédentes, apr?s les avoir multipliées par cos a', cos ?', cos y', la quantiténbsp;IJL disparaitra , et, d’apr?s la valeur de L, on auranbsp;X = L. Le moment de la torsion peut seul se déduire des equationsd’équilibre; quanta la torsion elle-m?me,sanbsp;grandeur est variable le long de la verge, lorsque lanbsp;mati?re ou la section normale varie d’un point a unnbsp;autre. Si la verge est

homogene, et que la section normale solt constante, la difference des angles de torsionnbsp;est la m?meaux extrémltës de deux parties de la verge,nbsp;d’égales longueurs, et proportionnelle aux longueurs,nbsp;quand elles sont diffërentes. Supposons, pour fixernbsp;les idees, qu’une verge homog?ne, prismatique ounbsp;cyllndrique, soit encastrée par un bout, et qu’onnbsp;applique a son autre extrémlté deux forces égales,nbsp;parall?les et contraires, agissant a distances égales elnbsp;de deux cótés differens; cette verge restera droite;nbsp;ma?s elle se tordra sur elle-m?me, proportionnelle-ment a sa longueur et au moment de ces deux forces



Ml STATIQUE, SECONDE PAR?IE. nbsp;nbsp;nbsp;629 par rapport a son filet moyen, lequel moment sera la valeur de la quantité L. J’ai trouvé, en outre, dans Ienbsp;Mémoire déja cite (nŽ 3o6), que si la section normalenbsp;de cette verge est un eerde, la quantité de la torsionnbsp;sera proportionnelle, toutes choses d’ailleurs cgales,nbsp;a la quatri?me puissance de son diara?tre; ce quinbsp;est conforme a l’expérience. 319. Deux des equations (b), ou deux coinbinai-sons quelconques de ces equations, apr?s qu’on y aura substitué la valeur de fx et mis L a la place de t,nbsp;serviront a determiner la figure de la verge en équi-libre. Si elle est droite dans son état naturel, et quenbsp;toutes les forces quiy sont appliquées soient comprisesnbsp;dans un méme plan , les trois equations (b) se rédui-ront a une seule, qui sera

celle de la courbe planenbsp;formée par Ie filet moyen. Prenons Ie plan de ces forces pour celui des x etj; nous aurons z = o, cosfz= o, cos g = o, c = o, c' = o, R = o, cos y' = o;nbsp;d’oü il résultera X^=o, Y^ = o, P' = o, Q' = o, t = L==o; •i-nl ' 'ri' SInbsp;?f; et les deux premi?res equations [b) s’évanouiront. C A cause de r = od , la valeur de jj, se réduira a - ; on aura aussi cos ^ = d= i ; ma?s en ayant égard au sens de Faction de T sur la partie K de la vergenbsp;(n” 3i4), il est aisé de voir qu’il faudra prendrenbsp;cos h = — 1 dansla troisi?me équation (^), qa



f‘ [ Y'ix' - x) - X'(r' -J) 4- R'4- Q(a nbsp;nbsp;nbsp;_ P(^,nbsp;nbsp;nbsp;nbsp;= ct Ton remarquera qu’en conservant les notations du n° 3i4, Ic coefficient ë aura pour valeur //c Lorsque les forces X et Y seront nulles, cette equation (c) co?ncidera avec l’équation (i) du n° 3o8, en observant que dans celle-ci, les forces P et Qagissentnbsp;a l’extrémité m?me de la verge, ce qui rend nul leurnbsp;moment R'. Dans tousles cas, on fera disparaitre parnbsp;des differentiations, les intégrales contenues dansnbsp;cette equation (c), qui se changera par la en unenbsp;equation différentielle du quatri?me ordre. La figure de la verge étant déterrainée par l’équa-tion (c), il faudra en outre que les forces données qui y sont appliquées, satisfassent aux conditionsnbsp;d’équilibre du n” 261 , qui se reduisent a trois, anbsp;cause que

ces forces sont toutes comprises dans unnbsp;m?me plan. Désignons done par D et E les sommesnbsp;des forces particuli?res qui agisseut a 1’extrëmité Anbsp;de la verge, pai’all?lement aux axes des x et j,nbsp;et par F' leur moment par rapport a ce point A ,nbsp;de mani?re que D, E, i', soient a l’ëgard de cenbsp;point, ce que P, Q, R', sont relativement a l’autrenbsp;extrémité B; les trois equations dont il s’agit se~nbsp;ront



STATIQUE, SECONDE PARTIE. /I ^'y ads'=o, E Q ƒ J ry'^'ds' = o, nbsp;nbsp;nbsp;y F' 4-R' Q(? — x) — P(^—jr) nbsp;nbsp;nbsp;[Y'(x'— X) — X'(J — J)] y'm'ds— o, oü 1’on mettra pour x Qt j les coordonnées du point A. Lorsque les deux bouts de la verge seront enti?re-ment libres, les forces extr?mes et leurs momens seront donnés. Si la verge est encastrée a son extré-mité A, les forces D et E, ainsi que leur moment F', seront indélerminés; mais on connaitra les valeurs de .r, jr, relatives a ce point A. Si la verge est seulement retenue par Ie point fixe A, les forces D et E seront encore indéterminées; leur résultante seranbsp;égale et contraire a la charge de ce point d’appui,nbsp;dont elle exprimera la résistance, et l’on aura F'= onbsp;pour leur moment : on connaitra alors les valeurs de X et j, mais non plus celle de Les

m?mes re- marques s’appliquent au point B. 320. Supposons, par exemple, que la verge soit homogene et naturelleraent prismatique ou cjlin-drique; ce qui rendra constantes les trois quantitesnbsp;y, u), ë. Supposons, en outre, qu’elle ne soit sou-mise qu’a des forces perpendiculaires a sa longueur,nbsp;qui l’écartent trés peu de sa position primitive; etnbsp;prenons pour l’axe des x, Ie filet raoyen dans cette



632 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. position; on aura alors D = o. X = o. P = ce qui fait disparaitre la premi?re equation (d). En négligeant Ie carré de ^; on aura aussids =id3C, i = nbsp;nbsp;nbsp;. et l’équation (c) se rédulra a^ ^ = nbsp;nbsp;nbsp;fy{cc'-x)ds'. (e) En la différentiant une premi?re fois, on a On a aussi (n° i4) d.f^^X'ds' = — Yds; en différentiant une seconde fois, et mettant dx au lieu de ds, on aura done{ƒ) Les quatre constantes arbitraires que contiendra rintégrale complete de cette derni?re equation , senbsp;détermineront d’apr?s les conditions relatives auxnbsp;deux bouts de la verge, et en observant que la va-leur de^ tirée de cette equation devra satisfaire auxnbsp;deux précédentes pour toutes les valeurs de x. Or,nbsp;l’équalion (ƒ) resultant des deux autres par la difl’é-



’1 STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;633 rentiatton, il suflfira, pour cela, que cette valeur de^ satisfasse a celles-ci pour une vaieur particuliere de oc;nbsp;il suffira done qu’on ait?S=-Q, fe) pour x — a-, conditions qui résultentde l’e'quation (e) et de sa diffërentielle premi?re, en y donnant a xnbsp;cette valeur particuliere. Si l’on y donne a o; la valeur relative au point A, et qu’on ait égard aux equations {d), on aura :E: dx ^' mais ces equations n’expriment pas de nouvelles conditions distinctes de celles que renferment les equations [d) et (g), que l’on pourra, si Ton veut, rem-placer par Ie syst?me des equations (g) et [li). Sai. Ces formules compreunent Ie cas de la verge pesante. Alors, je suppose Ie point A fixe, et j’y placenbsp;l’origine des coordonnées x et jr; je suppose aussinbsp;que l’axe des x, qui

représente la direction naturelle de la verge, soit horizontal; je prends l’axe desnbsp;j positives dans Ie sens de la pesanteur, et je repre'-sente cette force par g. On aura Y = g, et Tintégralenbsp;de l’équation (ƒ) sera ?y = ^ ^4 C^3 C'x^ -h C'x; nbsp;nbsp;nbsp;(i) C, C', Cquot;, désignant trois constantes ai’bitraires, et la quatri?rne étant nulle, a cause qu’on a == o etnbsp;y = o au point A.



634 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. Supposons Ia verge encastrée a cette extrémité; 11 faudra qu’on alt aussi ^ = o quand. x = o ; d’oü 11 résulte Cquot;= o. Supposons, en outre, que Ie poids Q solt attaché immédiatement a l’autre extrémité B,nbsp;de sorte que son moment R.' soit zéro; en verlunbsp;des équations (g), qui répondent a ce point, ou a ar on aura -f- 6Ca -j- aC' = o, gyeea 6C = — Q. Je tire de la les valeurs de C et C'; je les substitue dans l’équation (i), dont je supprime Ie terme Cquot;ar;nbsp;j’appelle /jf Ie poids de la verge , de sorte qu’on altnbsp;^ z= gyctgt;a ? 11 vientëj: qx^ 24^ équation qui coincide avec celle du n° 5io, quand on négligé Ie poids de Ia verge, et qu’on y met Qc‘nbsp;a la place de ë. Dans les deux cas de Q = o et ^ == o, on a pour l ordonnée du point B, qui exprime la

flexion totale de la verge. En supposant Q = 9, on volt donenbsp;que les flexions produites par un poids Q suspendunbsp;a rextrémité libre d utie verge horizontale encastréenbsp;par son autre bout, et, par ce m?me poids, répartinbsp;uniformément sur toute la longueur de cette verge,nbsp;sont entre elles comme 8 est a 5.



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;635 322. Si Ie point B est fixe comme Ie point A, et sllué sur la m?me horizontale, il faudra qu’on aitnbsp;j=o quand x — a-, ce qui change l’équation (i)nbsp;en celle-ci:= ifa nbsp;nbsp;nbsp; Cx (x“—a*) C'x(x — a); (2) q étant toujours Ie poids de la verge. La determination des deux constantes C et C' pre'sentera les cas sul vans. 1°. Quand la verge est encastrée a ses deux bouts, il faut qu’on ait ^ — o pour x = o et pour x = a;nbsp;on tire de la 12 et l’équation (2) devient Cj = qx^ {x — ay En appelant f la fl?che de la courbe forraëe par cette verge, c’est-a-dire, la valeur dejr qui re'pond a sonnbsp;milieu, ou a x —on aura qa? 16.24-^' 2’. Si la verge est slmplement retenue par les points fixes A et B, les charges de ces points d’appui serontnbsp;les forces E et Q, prises en

sens contraire de leurs directions, et leurs momens F' et R' seront nuls (n” 31 g).nbsp;En verlu des premi?res e'quations (g) et (A), on aura



636 nbsp;nbsp;nbsp;TilAITÉ DE MÉCANIQUE. d'y' nbsp;nbsp;nbsp;^ = o pour == o et pour x = a ?, d’oü l’on conclut C = — -u, C' = o. On aura alors _ qx ia — x) (a“ ax — x'‘) _ 24a nbsp;nbsp;nbsp;' et la fl?che y sera 5qd^ 16.24 c’est-a-dire, quintuple de celle qui avait lieu dans Ie premier cas. D’apr?s les derni?res equations (g) etnbsp;(^), on aura aussi E = Q = — ?q; valeurs qui ont aussi lieu dans Ie premier cas, et qui sent évidentes en elles-m?mes. 3°. Enfin, lorsque la verge est encastrée a son extremité A, et seulement retenue a son autre bout,nbsp;dj-nbsp;nbsp;nbsp;nbsp;d’‘y on a ^ = O pour x — o, et ^ = o pour x — a-, ce qui donne p _ pi _ . ^ ~ nbsp;nbsp;nbsp;48’ ^ ~ 16 ’ au mOjen de quoi l’équation (2) devient ^nbsp;nbsp;nbsp;nbsp;qx^ {a — x) (3a — ix) ~~ nbsp;nbsp;nbsp;48^nbsp;nbsp;nbsp;nbsp;• Les

secondes equations (g) et Qi) donnent, en m?me temps, Q = — nbsp;nbsp;nbsp;E = —



S?ATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;637 ce qui montre que Ie poids de la verge se partage inégalement entre les deux points d’appui, et que lanbsp;charge de l’extrémité encastrée est plus grande quenbsp;celle de l’autre, dans Ie rapport de 5 a 5. 325. En supposant toujours les points A et B fixes et situés sur une in?me horizontale, et la verge homogene et prismatique, considérons Ie cas ou lesnbsp;autres points sont charg,és de poids inégalement dis-tribués dans toute la longueur. Soit done ymY (px étant une fonction donnée qui s’évanouit quand X — O et quand xz=a, et q désignant Ie poidsnbsp;total, ce qui suppose a. J' (pxdx Cette fonction lt;px pourra ?tre continue ou discontinue , c’est-a-dire que son expression analjtique pourra changer une ou plusieurs fois entre les valeursnbsp;extremes 27 =

oet2? = a;ou, autrement dit, si onnbsp;la représente par l’ordonnée d’une ligne dont x soitnbsp;l’abscisse, cette ligne pourra se composer de plusieurs poi’tipns de courbes differentes. Si 1’on désignenbsp;par sT une ligne d’une longueur aussi petite qu’onnbsp;voudra, nöus pourrons supposer, par exemple, quenbsp;lt;px soit zéro depuis x == o jusqu’a xnbsp;nbsp;nbsp;nbsp;— ?T, et depuis X = I ö 4- cf j usqu’a x~a, de sorte que cette fonction n’ait de valeurs differentes de zéro que dansnbsp;une tres petite étendue S' de part et d’autre de x=\a. :t-1'



638 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. Ce cas sera celui d’un poids q agissanl au milieu de la verge élastique , que nous examinerons tout anbsp;l’heure en particulier. Quelle que soit la fonction (px, continue ou discontinue , pourvu qu’elle soit nulle pour x~o et pour X —a, on aura, depuis x — o jusqu’a x~anbsp;inclusivement, n%x gt; , sm -- ;nbsp;nbsp;nbsp;nbsp;(a) 2 _ / nbsp;nbsp;nbsp;• riTTCc' , ,nbsp;nbsp;nbsp;nbsp;,\ - 2 f / Sin (pjc djc'j n étant un nombre entier et positif, et la caracléris-tique 2 indiquant une somme qui s’étend a toutes les valeurs de n, depuis n=.\ jusqu’a n — xgt;. Cette formule est due a Lagrange, qui l’a donnée dans les anciens Mémoires de l’Académie de Turin (*); nous lanbsp;démontrerons plus bas. En en faisant usage , 1’équa-tion (ƒ) devient 2 sin px'dx'^ sin ; o pour jr = odir et en

integrant et observant que j et pour X —a, on aura -\-x{a —-x) [Cx -4- C' (lt;2 — x)]; nbsp;nbsp;nbsp;{b) C et C' étant des constantes arbitraires que l’on dé-terminera comme dans les trois cas du numéro précédent. 324- Examinons en détail Ie cas oü Ie poids q est C*quot;) Tomé III, page aöi.



• STATIQÜE, SECONDE PAR?IE. nbsp;nbsp;nbsp;639 suspendu au milieu de la verge, c’est-a-dire, Ie cas oü, comme on vient de Ie dire, la fonctiou lt;pa:' estnbsp;nulle pour toutes les valeurs de x' qui différent unnbsp;tant soit peu de a. On pourra alors faire x' = \ a dans Ie facteur sin que renferme l’inte'grale relative a x' cenbsp;qui donnera r sin (px'dx' = sin — f\x'dx'=as\n—, et fera disparaitre tous les termes de la somme 2 qui répondent a des nombres pairs n. Je designe par i unnbsp;nombre pair ou impair; je fais n=i2.i—et j’étendsnbsp;la somme 2 a toutes les valeurs de i, depuis i=\ • nbsp;nbsp;nbsp;•nbsp;nbsp;nbsp;nbsp;Anbsp;nbsp;nbsp;nbsp;1nbsp;nbsp;nbsp;nbsp;•nbsp;nbsp;nbsp;nbsp;— l)7rnbsp;nbsp;nbsp;nbsp;, jusqua i=cc . A cause de sin-—— — — ^ 1 equation (b) devient ?j = x(a — x) \Cx -i-C' (a — xj] _

nbsp;nbsp;nbsp;2nbsp;nbsp;nbsp;nbsp;sin 7F^ nbsp;nbsp;nbsp;{11—i)^nbsp;nbsp;nbsp;nbsp;a Mais d’apr?s une formule connue, on a, comme on Ie verra plus bas, 2 nbsp;nbsp;nbsp;sin (21—1) a—O'* nbsp;nbsp;nbsp;'nbsp;nbsp;nbsp;nbsp;' ft) (2/— 1)) nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;24nbsp;nbsp;nbsp;nbsp;32 ’ pour toutes les valeurs de co, depuis ? = o jusqu’a Sidonc on anbsp;nbsp;nbsp;nbsp;on fera ft) = — et l’on 2 nbsp;nbsp;nbsp;a aura (-1)' '(21—1) sm (21 - x)'7S-X= 9^



64o TRAITÉ DE MÉCANIQUE. si, au contraire, on a a: gt; - a, on fera agt; = nbsp;nbsp;nbsp;~; 2 nbsp;nbsp;nbsp;a et comme on a sin on en conclura (2? —i) iT [a— x) Sin (21— l) VX (21—1)4''“' a nbsp;nbsp;nbsp;960^nbsp;nbsp;nbsp;nbsp;•^)nbsp;nbsp;nbsp;nbsp;3a’(anbsp;nbsp;nbsp;nbsp;a?)]. De cette mani?re, nous aurons Tune ou l’autre de ces deux equations ; Sin = x{a—x)[C.r C'(a—a:)]— ^ nbsp;nbsp;nbsp;—Za'‘x) Sj — x(a—a:)[Car C'(ii—ar)]— ^ [4(ti—x^—3d‘{a—a:)]. II ne restera done plus qu’a determiner les cons-tantes C et C' dans les trois cas suivans :(-) IŽ. La condition dj- —:o pour a:==o et pour xz=a, qui a lieu quand la verge est encastre'e a ses deux extréniités, donne C' = C = — -I. 10 Les equations (i) deviendront dj au milieu de la verge, on aura nbsp;nbsp;nbsp;o, comme aux extre'mités ; et la fl?che ƒ,

ou l’ordonnée correspon-



STATIQÜE, SECONDE PARTJE, dante a x — j a, sera4:^' c’est-a-dlre, double de celle qul avait lieu dans ie premier cas du nquot; 322. En vertu des secondes equations (g) et (k), on aura aussi Q = E = _ A comme cela devait ?tre 2Ž. Dans Ie cas de la verge simplement retenue par ses deux bouts, oü l’on doit avoirnbsp;; O et pour x = a , il en résultenbsp;C = o , C' = o,nbsp;et, par conséquent,(3a“x — 4^Ž),~ 1.— 40 La tangente au milieu de la courbe est horizontale, et les valeurs de Q et E sont —^q, comme dans Ie premier cas; mais la fl?che ƒ a pour valeurj “ p:?’ en sorle qu’clle est quadruple de la précédente, et plus grande dans Ie rapport de 8 a 5, que celle dunbsp;second cas du nquot; 322. Si l’on m?ne une tangente a lanbsp;courbe élastique, par l’un ou l’autre des points Anbsp;et B; que Ton appelle a son

inclinaison, et qu’on I. nbsp;nbsp;nbsp;4i



642 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. dësigne par j' l’ordonnée verticale du point de cette droite qui répond a l’abscisse égale k \a, on aura tang a := -gL , f = l a tang a j d’ou l’on conclut f = f ƒ• Dans Ie second cas du n° 522, Ie rapport de ƒ' a jf sc- 5“. Enfin, si la verge est encastrée a Textrémité A et seulement appuyée a l’autre bout B, on auranbsp;drnbsp;nbsp;nbsp;nbsp;I d’T ^ = O pour X = o, et = o pour a? = ; on en déduira r' _ ? r _ _ . ^ nbsp;nbsp;nbsp;“ T6’nbsp;nbsp;nbsp;nbsp;^ ~nbsp;nbsp;nbsp;nbsp;32’ et les equations (i) deviendront ~ J Qj = ^ nbsp;nbsp;nbsp;—i5axŽ i2fl*ar—lo?). Elles donnent pour x — ~ a, la m?me valeur de ƒ, savoir ^ — 7?^' . ~ 8.96.^’ mais ce n’est pas la plus grande ordonnée. On aura aussi5q



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;643 en sorte que Ie poids q se partagera dans Ie rapport de 11 'a 5 entre les points d’appui A et B. SaS. Nous allons maintenant démontrer la formule de Lagrange, citée pre'ce'demment. Pour cela, considérons la quantité I — 1 — 2^ cos Ö nbsp;nbsp;nbsp;' qui est une fraction rationnelle par rapport 'a h, et dans laquelle Q désigne un angle reel. Son développe-ment suivant les puissances de h sera I -p 2^ cos S -f- a.li^ cos 29 nbsp;nbsp;nbsp;cos 39 3^* cos -f- etc. ; ce qu’on peut aise'ment verifier; car si l’on multiplie cette série infinie par Ie dénominateur i —2^ cos 6 ^“nbsp;de la fraction, on retrouve son numérateur, en observant qu’on a 2 cos cos 6 = cos (n-f-1)9 -f- cos {n — i)9, quelque soit Ie nombre n. Si h est moindre que Tunité, abstraction faite du signe, cette

série sera convergente , et la fraction sera rigoureusement égale a sonnbsp;développement prolongé a l’infini; a cause deI — 2^ cos 9 nbsp;nbsp;nbsp;= (I ~ hy -f- 4^ sin* 19, nous aurons done, dans cette hypothese, --rx~ - =: I 4- 22Aquot; cos ?9; la somrae 2 s’étendant a toutes les valeurs du nombre entier n, depuis n= 1 jusqu’a ?= 00 . Quelles quenbsp;soient la fonction ƒ9 et la constante réelle a, on aura4...



644 done aussi TRAITÉ DE MÉCANIQÜE. Soit g une quantité positive et infiniment petite; cette equation subsistera encore en y faisant A=i—g,nbsp;puisqu’elle a lieu pour toute valeur de h moindre quenbsp;i’unitë. Pour toutes les valeurs finies de w, on aurakquot; z= {i — gY = i ; pour des valeurs infinies de eet exposant, Aquot; pourra dilFérer de l’unité, mais en integrant par partie ,nbsp;on a Jfd cos n(ö — ct)d6-=z - fi sin n{6—a) — - J'^ sin n(8 — o)S; en sorte que si ƒamp; ne devient point infinie, entre les li-mites 6 = o et G = '7r, ni pour ees limites, l’intégrale ƒ6 cos n (G — a )6?G , qui multiplie kquot;, s’évanouira pour n = cc ; d’oü il résulte qu’on pourra toujours reujplacer A” par l’unité sous Ie signe 2. Au nuraéra-teur de la fraction comprise sous Ie signe ƒ, on auranbsp;?—^' = 2g, en négligeant g‘ par rapport a

ag;nbsp;dans Ie second terme du dénominateur, on pourranbsp;mettre Punité au lieu de A ou i — g; et, de cette ma-ni?re, nous aurons /?cosn(?—a)d6 — l Onbsp;nbsp;nbsp;nbsp;J Onbsp;nbsp;nbsp;nbsp;J Og/m.(0 4sin* r(9 — ?) Le coefficient de sous cette derni?i’e integrale est infiniment petit, excepté pour les valeurs de G 1''! ri



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;645 infiniment peu difierentes de a, qui rendent son dé-nominateur infiniment petit; c?tte integrale est done infiniment petite ou nulle, tant que la differencenbsp;fl — a est une quantité tinie; ce qui aura lieu dansnbsp;toute l’étendue de l’intégration , lorsqu’on supposeranbsp;a lt; o, OU a gt; TT; done toutes les fois que la cons?-tante a, tombera en dehors des limites zéro et onnbsp;aura Tequation 2y'’^/6cos ?(6 — a)c?0c=o. (2) Si, au contraire, on a a gt; o et lt;; tt, il y aura des valeurs de ö qui différeront infiniment peunbsp;de a; en faisant done a. u, cfö = du, l’intégrale dont il s’agit s’évanouira encore pour les valeurs finies de ?, mais non plus pour les valeursnbsp;infiniment petites de cette vai’iable, positives ou negatives j a l’éga.rd de celles-cl, on aura ƒ6 s=ya, sin ? (9 —

a) = i m; par conséquent, Ie second membre de l’équation (i) devlent^ J g* ? ? ' lorsque a. tombe entre zéro et tt. Or, cette intégrale étant nulle pour toute valeur de u qui n’est pointnbsp;infiniment petite, nous pouvons maintenant l’étendre,nbsp;sans en altérer la valeur, a des valeurs quelconquesnbsp;de u, positives ou negatives, et la prendre, si nous



646 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. voulous, depuis ? = — 00 jusqu’a u=za2 : on aura alors fl gdu et finalement Ifym sj’/i cos n (Q — cc)d6 = Trfet.. (3) Ce raisonnement conviendra encore au cas oü a coincide avec une des deux limites ze'ro ou -tt ;nbsp;mais si l’on a a = o, on ne pourra donner a u quenbsp;des valeurs positives, et seulement des valeurs negatives , si Ton a a = TT, afin que dans ces deuxnbsp;cas, la variable 6 qu’on a faite égale a a-|-M, ne sorlenbsp;pas des limites de l’intégration. De cette mani?re,nbsp;l’intégrale relative k m se trouvera réduite a la moitiénbsp;de sa valeur, ou a et si l’on représente parnbsp;€ ei y les valeurs de fct qui répondent a ct = o etnbsp;a il en résultera (4) cos nbsp;nbsp;nbsp;Tfë, ^J' nbsp;nbsp;nbsp;-^yj' J^öcos nbsp;nbsp;nbsp;i TTj/.j Maintenant faisons Ttdx' et soit

aussiA-i) = La quantité x étant positi ve et moindre que la cons-



STATIQUE, SECONDE PARTIE. irx a tanle a, mettons a la place de a, — dans l’ëqua- tJon (2) et ^ dans Tequalion (3); en observant que les limites relatives a x' seront zéro et a, nous aurons — nbsp;nbsp;nbsp;/ ipx dx - S f cos —--— dx ~ o , nbsp;nbsp;nbsp;1 9.aJ o nbsp;nbsp;nbsp;O- J onbsp;nbsp;nbsp;nbsp;anbsp;nbsp;nbsp;nbsp;_ 1 nbsp;nbsp;nbsp;/j ' . ?nbsp;nbsp;nbsp;nbsp;- Tnr(x' — x) . ,nbsp;nbsp;nbsp;nbsp;r — nbsp;nbsp;nbsp;I ax dx -j— s / 0x cos —--dx = aa:; 1 ?y aj o nbsp;nbsp;nbsp;a J onbsp;nbsp;nbsp;nbsp;anbsp;nbsp;nbsp;nbsp;J I II i et en retrancbant ces deux equations Tune de i'autre, il vient 2 _ / C'? nbsp;nbsp;nbsp;, • n^x' j ,\nbsp;nbsp;nbsp;nbsp;. HTcx(px sm—^ ax j sm~ = px; ce qu’il s’agissait de trouver. 326. Cette formule représente les valeurs de la fonction lt;px, pour toutes les valeurs de la

variablenbsp;X, qul sont positives et moindres que a, et m?menbsp;pour X = o et x = a, lorsque lt;px sera nulle pournbsp;ces valeurs extremes. II est important d’observer quenbsp;la série indiquée par 2, finira toujours par ?tre convergente: car pour de trés grandes valeui’s de n, l’in-tégrale relative a x' deviendra une trés petite quan-tité, qui diminuera de plus en plus a mesure quenbsp;n augmenlera, et qui sera tout-a-fait nulle pournbsp;n = co , comme on 1’a vu plus baut au mojen denbsp;l’intégration par partie. Cette remarque est nécessairenbsp;et suffit pour justifier l’emploi cju’on fera de la formule précédente. Les ditférentes formules par lesquelles on peut ainsi représenter en séries de quantités périodiques,nbsp;toujours convergentes^ des portions de fonctionsarbi-



648 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. ti’airte continues ou discontenues, se déduisent des equations (5), que nous venons d’etablir. Je menbsp;contenterai de donuer ici deux de ces formules, quinbsp;nous seront utiles dans la suite; pour de plus grandsnbsp;développeraens sur cette mati?re, je renverrai a mesnbsp;Mémoires sur Ig Calcul integral, qui font par tienbsp;du Journal de VÉcole Poljtechnique, et oü l’on trou-vera une théorie compléte de ce genre de transformations. Apr?s avoir ajouté les equations (5) et retranché la premi?re de la seconde, j’y mets 2I au lieu de a,nbsp;puis X Z et a?' -f- / a la place de x et x', et ensuitenbsp;(px et lt;px' au lieu delt;p(x -(- Z) et (p(x'-j- l); les limitesnbsp;des intcgi’ales relatives a x' deviennent ? Z, et cesnbsp;equations sont remplacées par celles-ci : n7r{x-\- /) ? 1 f

nbsp;nbsp;nbsp;r ? r.7r(x -\-l) ,nbsp;nbsp;nbsp;nbsp;. (px— y 2 ^ nbsp;nbsp;nbsp;^ (px sin-2 dx jsiu Partageons chaque somme S en deux autres, dont Tune se rapporte aux nombres n pairs, et l’autre auxnbsp;nombres n impairs. Pour cela, soit i un nombre en-tier quelconque; et faisons successivement ? = ar,nbsp;n =: aZ'^?— i; nous aurons cos arV (a: /) ^ nbsp;nbsp;nbsp;.. irrxnbsp;nbsp;nbsp;nbsp;azx (x -j- /)nbsp;nbsp;nbsp;nbsp;i^x - =(—?J cos-^-, sm ^—. =(_,)ism—, (21-1)5'''* --^1 =-(-l)*COS ,sm- COS' al 2Z al al et de m?me pour les sinus et cosinus compris sous



649 STATIQUE, SECONDE PAR?IE. les signes Jj par conséquent, on aura \ ri nbsp;nbsp;nbsp;, I ^nbsp;nbsp;nbsp;nbsp;tnbsp;nbsp;nbsp;nbsp;,\ ia-x co^-j-dx jcos . iV nbsp;nbsp;nbsp;' ? (2?—iW' , ,\ . (2i-i)'X-X i'KX ? (6) \ nbsp;nbsp;nbsp;/nbsp;nbsp;nbsp;nbsp;, . i'xx:' A . iV (px= - 2 (J sin —j- dx J sm — I _/ nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;(31— l)5ra:' ,nbsp;nbsp;nbsp;nbsp;(3t— 1) a-J? (fo ICOS-') cos- •2.1 les sommes 2 s’étendant a toutes les valeurs de i, depuis j = i jusqu’a i=co. Ces équations aurontnbsp;lieu pour toutes les valeurs de x qui sei'ont comprisesnbsp;entre les llinites ? l. Cela posé, si la fonction (px est telle que 1’on ait (p (— x) = — lt;px, il en résultera J ^x dx ==o, / ^x cos—2“ dx =0, J ^x cos^— dx =0, et, en outre, y ^ ^ lt;px' sin ~ dx' = 2ƒ'ƒ lt;px'sln nbsp;nbsp;nbsp;dx', y ^ ^?px'sin - nbsp;nbsp;nbsp;—

2y tpx' sinnbsp;nbsp;nbsp;nbsp;. au moyen de quoi la seconde équalion (6) co?ncidera avec la formule (a), en y changeant a en Z; et lanbsp;premi?re se réduira a (7) 2/ Hl lt;px=^2 (^y ^ ip^'sm L__/__?fx'jsm---- Si, au contraire, la fonction (px est telle que l’on ait lt;p ^—. x)~lt;poc f on aura



65o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. J' ^ lt;p.r'sin ——o, (px'sia ‘^dx'~ o; et les autres intégrales pourront s’étendre seulement depuls a? = o jusqu’a x — l, en doiiblant les résul-tats. La seconde equation (6) renlrera dans l’équa-tion (7), en y raettant l — a? au lieu de a?, et lt;par anbsp;la place de ep (Z — x). La premi?re e'qualion (6)nbsp;deviendra tpx=jJ‘ lt;px'dx'~{-^ 2 ^lt;pa:'cos —^ cfx'^cos*^. (8) Ces formules (7) et (8) représenteront les valeursde lt;px, depuis x — o jusqu’a x ~l; celles qui s’en dé-duiront, en les différentiant par rapport a x, ex-primeront, dans Ie méme intervalle, les valeurs de La formule (7) suppose (px — o pour x = o, etnbsp;nbsp;nbsp;nbsp;quand x — l-, la formule (8) exige que l’on ait = o pour a? = o et pour x—l. Lorsque ces conditions ne sont pas remplies, ces formules ou leurs

différentielles n’ont pas lieu pour les valeurs extremes de X. 327. R?clproquement, les formules de ce genre font connaitre les sommes des nombreuses series pé-riodiques que Ton a obtenues par différens moyens.nbsp;Ainsi, par exemple, pour en dëduire la somme denbsp;la série dont on a fait usage dans Ie n“ 824, j’a-joute les equations (2) et (3), apr?s avoir mis —amp;nbsp;a la place de a dans la premi?re; il en résulte



ii STATIQÜE, SECOUDE PAR?IE. nbsp;nbsp;nbsp;65i J'’' nbsp;nbsp;nbsp; aS ^ƒ fl cos n BdQ^ cos na. = vrja. Je prends ensuite y ö = ö; on a alorsrVöcosnerfö= quantité nulle pour tous les nombres pairs, et égale a —nbsp;nbsp;nbsp;nbsp;°nbsp;nbsp;nbsp;nbsp;^ pour n = zi — i. L’équation précé- dente devient done cos (2?- l) ct {21—ly la somme 2 s’étendant a toutes les valeurs du noinbre entier i, depuis /= i jusqu’a co . En multipHant par da et integrant, on en déduit ^ sin (az — i) a tt . nbsp;nbsp;nbsp;. ^ - “)“• On n’ajoute pas de constante arbitraire, paree que les deux membres de cette equation sont nuls, soitnbsp;pour a = o, soit pour a = 7f, en sorte que cettenbsp;equation a lieu pour toutes les valeurs de a, depuisnbsp;a = o jusqua a — tt inclusivement. Si Ton y faitnbsp;a = -i -tt ft), on aui’a sin (ai •— i) a. = — (—

i)‘cos faz — i) gt; et, par consequent, . (— i)' cos (at — l)a (21 —



653 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. depuis ö = — ~7F jusqua o? =: nbsp;nbsp;nbsp;jg rnulti- plie par dat et j’int?gre de nouveau; il en ré- sulte (— i)*sin (ai — i)i (at—i)4 ce qu’il s’agissait d’obtenir. 528. Si l’on met 2a au lieu de tz, et ensuite x'-}- a etnbsp;nbsp;nbsp;nbsp;a la place de x et jc', dans la seconde equation (5), et qu’on fasse (p (a x) =iFx , on aura l^x—— f Fx'dx'-j~~'S: r ?x’cos^^ —~dx', l\aj —a nbsp;nbsp;nbsp;' a.a J —anbsp;nbsp;nbsp;nbsp;nanbsp;nbsp;nbsp;nbsp;' pour toutes les valeurs de x comprises entre ?a. En faisant ThTT u. — z=. rif. na cette equation pourra s’écrire ainsi : Fx — —jquot; Yx'dx'-^ nbsp;nbsp;nbsp;?x'cosu(x'— u étant un multiple de ?, et la somme 2 s’éten-dant a toutes les valeurs de u, depuis u = e jus-qu’a u = GO . Or, si la constante ci devient infinie, Ia difference e des

valeurs consécutives de u de-viendra infiniment petite, et la somme 2 se chan-gera en une integrale prise depuis ?=s, ou u=o,nbsp;jusqua w = co. En faisant done a=co et i. — du,nbsp;mettant Ie signe f au lieu de 2, et supprimant Ienbsp;premier terme de la formule pre'cédente, nous au*



???



654 TRAITÉ DE MÉCANIQÜE. (WVVV\ 'VMaiVgt;/Wgt;'VV\iVV\?VVVW\iWgt;/W\(W\'W''VVMVVVWMW\'VVWWVWVV\/VWVVX'Wgt; wx-vv 'Vy^iVWVV^ \/\MWSCHAPITRE IV. PJMIXCIPE BES VITESSES VIBTUELtES. 329. Dans les cas les plus simples de l’ëquilibre des machines, la puissance et la resistance sont récipro-quement pi’oportionnelles aux espaces que leurs pointsnbsp;d’application dëcriraient simultanément, si l’équilibrenbsp;venait a se rompre. Pour que ce rapport ait toujoursnbsp;lieu, il faut prendre les espaces infiniment petitsquinbsp;seraient décrits dans Ie premier instant, et les rem-placer par leurs projections sur les directions desnbsp;forces. II a été remarqué depuis long-temps dans lesnbsp;machines simples; Jean Bernouilli Fa ensuite étendu,nbsp;par induction, a un syst?me quelconque de

pointsnbsp;matériels sollicité par des forces données; et, sous lanbsp;denomination de principe des vitesses virtuelles, ilnbsp;est ainsi devenu Ie principe general de Féquilibre.nbsp;Nous Ie démontrerons dans toute sa généralité,nbsp;apr?s Favoir vérifié sur les exemples suivans. I*. Soient (fig. yp) A, A', Aquot;,... une suite de poulies contenues dans une m?me chape, et formantnbsp;une inoujle fixe, et B, B', Bquot;,... une autre suite denbsp;poulies aussi contenues dans une méme chape, etnbsp;formant une moufle mobile. Supposons qu’un fil soitnbsp;attaché a Ia poulie inférieure de la moufle fixe, et s’en-roule successlvement sur toutes les poulies, en passant alternativement d’une moufle a Fautre. A Fex-



STATIQUE, SECONDE PAllTIE. nbsp;nbsp;nbsp;655 Irëmité libre de ce fil, suspendons un poids P qui fasse ëquilibre a un poids R suspendu a la poulie inférieure de la moufle mobile. La tension du fil seranbsp;la m?me dans toute sa longueur, et égale au poids Pjnbsp;de plus, si les diam?tres des poulies sont trés petits,nbsp;eu égard a la distance qui sépare les deux moufles ,nbsp;les cordons qui vont de 1’une a l’autre seront sensi-blement parall?les et verticaux : la force qui soutientnbsp;Ie poids R sera done égale a la somme de leurs tensions, OU a n fois Ie poids P, en appelant n Ie nom-bre de ces cordons; par conséquent, dans l’état d’é-quilibre , on aura R = nP. Or, si l’équilibre se rompt, et que Ie poids R monte OU descende d’une quantité a, tous les cordons quinbsp;aboutissent a la moufle mobile se

raccourciront ounbsp;s’allongeront de cette m?me quantité. La longueurnbsp;totale du fil devant rester la m?me, la partie a la-quelle est attaché Ie poids P s’allongera ou se rac-courcira de n fois cette quantité a,; done, eu dési-gnant par ? la quantité dont Ie poids P s’él?veranbsp;ous’abaissera, on aura S=nx, et, conséquemment. Ra = P^ ; ce qui renferme Ie principe qu’on vient d’énoncer. 2°. ABC (fig. 8o) représente la roue d’un treuil, et A'B'C' rintersection du plan vertical de cette rouenbsp;et de la surface du cjlindre; O est Ie centre commonnbsp;de ces deux circonférences, et AOC et A'OC' sont leursnbsp;diam?tres horizontaux. Un fil s’enroule sur la roue,



656 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. et s’attache a i’un de ses points 5 un autre fll, attaché a l’un des points du cylindre, s’enroule de m?me sur sanbsp;surface. On suspend un poids P au premier fil, et unnbsp;poids R au second j ces deux poids tendent a fairenbsp;tourner Ie treuil en sens contraire, et sont supposesnbsp;en équilibre. Cela posé, si Ton applique au point C'nbsp;deux forces R' et Rquot;, verticales, égales et contraires,nbsp;réquilibre ne sera pas trouble; si, de plus, ces forcesnbsp;sont égales a R, la force Rquot; et Ie poids R se ferontnbsp;équilibre, puisqu’il n’y aurait pas de i’aison pour quenbsp;leur action simultanée fit tourner Ie treuil plutótnbsp;daas un sens que dans Ie sens opposé; il faudra donenbsp;qu’il y ait aussi équilibre entre Ie poids P et la forcenbsp;R', perpendiculaires a AOC', et qui

agissent aux extré-mités de ce levier, dont 0 est Ie point d’appui. Done,nbsp;en appelant r Ie rayon AO de la roue, et r' Ie rayonnbsp;OC' du cylindre, l’équation d’équilibrc sera Pr = Rr', a cause de R'=R. Maintenant, si l’équilibre se rompt, et que Ie poids R monte ou descende d’une quantité a,nbsp;tandis que Ie poids P descendra ou montera d’une quan-.nbsp;tité €, il est évident, par la nature de la machine,nbsp;qu’on aura ?r' = ar-, d’oü l’on conclut pg =r Ra , conformément a l’énoncé du principe qu’il s’agissait de vérifier. 5°. Supposons qu’une vis verticale soit chargée d’un poids R a sou extrémité supérieure ; qu’unenbsp;roue horizontale, ayant son centre dans l’axe de



STATIQUE, SECONDE PAETIE nbsp;nbsp;nbsp;657 cette vis, soit adaptée a son extrémilé inférieure; qu’un fil soit enroulé sur cette roue et attaché parnbsp;un bout a sa circonférence, et qu’on applique a sonnbsp;autre bout une foi’ce horizontale F qui agisse sui-vant une tangente a la roue, et fasse équilibre aunbsp;poids R. On pourra, si Ton veut, placer sur la direction de cette tangente une poulie fixe et verticale, plier le fil sur cette partie, et remplacer F parnbsp;ua poids P égal a cette force et attaché a l’extré-mité libre de la partie verticale du fil. En appelantnbsp;h la hauteur du pas de la vis, et c la circonférencenbsp;de la roue, on aura Pc = d’apres la condition connue de I’e'quilibre dans cette machine. Les deux poids R et P tendront a fairenbsp;tourner la vis en sens contraire; si Pequilibre vient anbsp;se rompre, 1’un

de ces poids montera, et Fautre des-cendra; et si le poids R s’abaisse ou s’él?ve d’un pasnbsp;^ de la vis, le poids P s’élévera ou s’abaissera d’unenbsp;hauteur égale a la circonférence c de la roue; d’ou ilnbsp;résulte quen appelant, en général, a et ë les espaces parcourus simultanément par les deux poids Rnbsp;et P, on aura ac = ëh, et, par conséquent, P^ =. Ra, conformément au principe dont nous nous occupons. 4°. Considérons encore deux poids P et R posés sur deux plans incline's, et attachés Fun a Fautre parnbsp;un fil passant sur une poulie fixe, située en haut desnbsp;deux plans qui sont adossés 1’un a Fautre. La fi-1.nbsp;nbsp;nbsp;nbsp;4quot;



658 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAISIQUE. gure 8i repre'senle une section verticale de ce sjs- t?me; AC est la longueur du plan sur lequel est posé Ie poids R, BC celle du plan qui supporte Ie poids P, AB une droite horizontale, et CD une verticale qui représente la hauteur commune des deux plans. Faisons AC b, CD = h ; BC la composante de R suivant CA sera R“gt; et celle de P suivant CB aura P | pour valeur. Pour 1’équi- llbre, il faudra que ces deux cornposantes solent égales; en sorte que l’on aura Va = R^. Si 1’équilibre se rompt, et que Ie poids R glisse d’une quantité y sur Ie plan CB, Ie poids P glissera de lanbsp;m?me quantité, mais en sens contraire, sur Ie plannbsp;AC; et en appelant a la hauteur verticale dont Ienbsp;poids R se sera élevé ou abaissé, et ? celle dont Ienbsp;poids P se

sera abaissé ou élevé, il est aisé de voir quenbsp;l’on aura r, — nbsp;nbsp;nbsp;e — yh. —— nbsp;nbsp;nbsp;-nbsp;nbsp;nbsp;nbsp;tgt; -—- j y a ' nbsp;nbsp;nbsp;b ^ d’ou il résulte P? = Ra , comme dans les exemples précédens : mais ici a et ^ sont les projections vertlcales des espaces décrifs si-multanément par les poids R et P, tandis que , dansnbsp;Ie cas précédent, a et ^ étaient ces espaces m?mes.



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;659 330. nbsp;nbsp;nbsp;D’apr?s ce qu’on a vu dans Ie n” 49, deuxnbsp;forces qui se font équilibre par fintermédiaire d’unnbsp;levier quelconque, sont en raison invei’se des espacesnbsp;infiniment petits, projetés sur leurs directions res-pectives, et que peuvent décrire en m?me tempsnbsp;leurs points d’application. Cet énoncé est celui quinbsp;convient a tous les cas. Ainsi, en appelant P et Pi lanbsp;puissance et la re'sistance en équilibi-e par l’interme'-diaire d’une machine quelconque, supposant qu’ounbsp;imprime un mouvement infiniment petit a cette machine, et désignant par ë et o, les projections sur lesnbsp;directions de ces forces, des espaces qui seront décritsnbsp;en m?me temps par leurs points d’application, onnbsp;aura toujoursP? = Qa ; a quoi il faut d’ailleurs

ajouter que Tune des projections devra tomber sur la direction m?me de la force correspondante, et l’autre sur son prolongement,nbsp;ainsi que cela a lieu dans Ie levier. Dans la pratique, il suffira que Ie mouvement im-primé a la machine soit seulement trés petit. En me-surant les longueurs des projections ^ et a, on en con-clura immédiatement Ie rapport de la puissance a la re'sistance, sans rlen connaitre de la composition particuliere de la machine. 331. nbsp;nbsp;nbsp;Non seulement cet enonce' convient a unenbsp;machine quelconque, mais il s’e'tend aussi a un noni-bre quelconque de forces en e'quilibre. Soient done, ennbsp;general, M, M', Mquot;, etc. (fig. 82), un syst?me denbsp;points matériels lies entre eux de telle mani?re qu’on4...



66o nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. voudra; supposous que des forces P, P', P', etc., agissent sur ces points, suivant les directions MA,nbsp;M'A', Mquot;Aquot;, etc.; faisons subir a ces points des dé-placemens infiniment petits et compatibles avec lesnbsp;conditions du syst?me, de sorte qu’ils soient trans-portés en N, N', JNquot;, etc.; projetons N, N', Nquot;, etc.,nbsp;sur les droites MA, M'A', Mquot;Aquot;, etc, ena, a!, d', etc.,nbsp;et posons Ma = p, M'fl' = /?', Wd' = p', etc. En considérant ces projections p ,p', p', etc., comme des quantitds positives ou ne'gatives, selon qu’ellesnbsp;tombent sur les directions des forces correspondantes,nbsp;OU sur leurs prolongemens, nous aurons Pp. P^p^ ^'p' etc. = o, lofsque réquilibre aura lieu; et réciproquement il y aura cquilibre , quand cette equation

subsistera pournbsp;tous les déplacemens compatibles avec les conditionsnbsp;du syst?me. Les droites infiniment petitesMN, M'N', Mquot;Nquot;, etc., sont ce qu’on appelle les vitesses virtuelles des pointsnbsp;M, M', Mquot;, etc.; denomination qui pi'ovient de cenbsp;qu’elles sont considérées comme les espaces qui se-raient parcourus simultanément par les points du syst?me , dans Ie premier instant oü Tequilibre vien-drait a se rompre. On doit observer que Ie principe des vitesses virtuelles , contenu dans la formule qu’on vient d’écrire, donne seulement les conditions d’équi-libre qui peuvent ?tre exprimées par des equations.



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;66i mais non pas celles qui sont relatives a la direction de certalnes forces, et a I’etcndire dans laquelle ellesnbsp;doivent rencontrer un plan fixe (n* 266). Les mou-vemens compatibles avec les conditions du systbme,nbsp;qui donnent lieu a des equations d’équllibre, sontnbsp;ceux dont les mouvemens dlrectement contralresnbsp;sont egalement possibles. Mais, par exemple, si ufinbsp;point materiel est posé sur un plan fixe, Ie mouvement sera possible dans ce plan, stiivant chaque direction et suivant la direction contraire; et perpendi-culairement a ce plan, il ne pourra avoir lieu que dansnbsp;une seule direction. Or, la consideration des mouvemens dans Ie plan, donnera lieu aux conditions d’é-quilibre qui s’expriment pardes equations, et la consideration du mouvement

perpendiculaire détermi-nera seulement la direction de la force normale, quinbsp;dolt ?tre contraire a celle du mouvement possible.nbsp;Dans 1’énoncé du principe des vitesses virtuelles,nbsp;on suppose implicltement que chacun des mouvemens compatibles avec les conditions du syst?me, etnbsp;Ie mouvement directement contraire, sont egalementnbsp;possibles; en appliquant successivement l’équationnbsp;précédente a ces deux mouvemens, les quantités p,nbsp;p', pquot;, etc., changeront toutes de signe, et il n’ennbsp;résultera qu une seule equation d’équilibfe. Si la force P, est la résultante de plusleurs forces données Q, Q', Qquot;, etc., et qu’on représente par q,nbsp;q', qquot;, etc., les projections de MN sur leurs directions,nbsp;on aura (n° 54) Pp Qq (yq' Q-Y' etc.;



662 nbsp;nbsp;nbsp;TIUI?É DE MÉCAISIQUE. en sorte qu’on pourra remplacer dans 1 equation pré-cédente, Ie tenue Vp relalif a la force P, par cette somme de termes de la m?me nature, qul rëpondentnbsp;a ses composantes; et de m?me, par rapport auxnbsp;forces P, P', P*^, etc., si elles sont aussi les résultantesnbsp;de plusieurs autres forces. Le principe des vitesses virtuelles, dans Ie cas d’nn point isolé en?quilibre, est, comme on 1’a v? dansnbsp;le nquot; Sg, une consequence de cette derni?re equation , soit qu’il s’agisse dun point enti?rement libre,nbsp;OU qu’il soit assujetti a demeurer sur une surface OU sur une courbe donnde. II s’agit actuelle-ment de dëmontrer ce principe ge'néral, dans le casnbsp;d’un syst?me quelconque de points matérielsM, M',nbsp;M'^ etc. 552. Supposons ces points

lies entre eux par des verges inflexibles ou par des lils flexibles, dont lesnbsp;uns soient fixement attachés a ces points, tandis quenbsp;d’autres les traversent comme des anneaux mobiles.nbsp;Dans Ce dernier cas, ces points ou anneaux ont la li-berté de glisser le long des fds qui les traversent, etnbsp;que l’on suppose, pour cela, parfaitement flexibles. Apr?s qu’on a applique les forces données P, P', Pquot;, etc., aux points M, M', Mquot;, etc., et que l’équi-libre s’est e'tabli, il est clair que les fils qui joigneutnbsp;ces points deux a deux, éprouveront cbacun une tension particuliere, c’est-a-dire, que chacun de cesnbsp;lils sera tiré a ses deux extrémités par des forces égalesnbsp;et contraires, dirigées suivant ses prolongemens,nbsp;ainsi qu’on l’a déja dit dans le cas du polygone funi-culaire (n” 285).

L’intensité de cette force sera la me-



S?ATIQUE, SECOi^DE PAIITIE. nbsp;nbsp;nbsp;663 sure de Ia tension inconnue que ce fil éprouve. TJn lil qui ne serait pas tendu, ne contribueraitnbsp;pas a l’e'quilibre, et l’on pourrait en faire abstraction. La tension peut varier d’un fil a un autre ; mais s’il s’agit de deux fils qui sont Ie prolongement l’un denbsp;l’autre a travers un anneau, la tension est la m?menbsp;dans ces deux parties d’un ni?me fil qui doit néces-sairement éprouver une égale tension dans toute sanbsp;longueur (289). Ainsi, par exemple, si M est unnbsp;anneau traversé par Ie filnbsp;nbsp;nbsp;nbsp;la tension de MM^ sera égale a cel Ie de MM . Lorsque plusieurs fils viennent se croiser dans un m?me anneau , la tension est la raéme dans les deuxnbsp;parties de chaque fil, et peut varier d’un fil a l’autre.nbsp;Si done, outre Ie fil M'MMquot;, il passe

encore un filnbsp;dans l’anneauM, la tension sera la m?menbsp;dans les deux parties MM'quot; et MM‘''de ce dernier fil,nbsp;et, en général, elle sera différente de celle des deuxnbsp;parties MM'et MM'', du premier fil. Et si un autre fil,nbsp;tel que MM’, vienl aboutir au m?me anneau M au-quel il soit fixenient attaché, ce fil aura sa tensionnbsp;particuliere, généralement différente de toules cellesnbsp;des autres fils qui aboutissent au m?me point M. Observons encore que si M' est un anneau ainsi que M, et que Ie fil Mquot;MM', apr?s avoir traversénbsp;l’anneau M, passe encore par l’anneau M' pour allernbsp;aboutir au point M'quot;, la tension sera la m?me dansnbsp;les Irois fils Mquot;M, MM', M'M'quot;; car alors ces troisnbsp;fils n’en font qu’un seiil Mquot;MM'M'quot;. En général, lors-qu’un fil est partagé en plusieurs parlies,

par des an-



664 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. neaux mobiles, la tension est la m?me dans toutes ces parties. A l’égard des verges inflexibles, quand l’équilibre existe, elles sont tirées ou poussées dans Ie sens denbsp;leur longueur, par des forces égales et contraires,nbsp;agissant a leurs extrémités. L’intensité commune denbsp;ces deux forces, pour chaque verge, est la mesurenbsp;de la tension ou contraction qu’elle éprouve. S’il ennbsp;existe une ou plusieurs dans Ie syst?me, qui ne soitnbsp;ni tendues, ni contractées, elles sont inutiles a l’e'qui-libre, et l’on peut les supprimer. Ainsi, dans ce quinbsp;va suivre, nous supposerons tousles liens physiquesnbsp;qui existent dans ie syst?me, tendus ou contractésnbsp;suivant leurs longueurs par des forces inconnues. L’avantage du principe des vitesses

virtuelles est de donner Te'quation d’équilibre dans chaque cas particulier, sans qu’on ait besoin de calculer ces forces in*nbsp;térieures; mais comme la demonstration que nousnbsp;allons donner est fondée sur la conside'ration de cesnbsp;forces, de grandeur inconnue, voici Ia notationnbsp;dont nous ferons usage pour les représenter. Nous désignerons par \jn, ??'], la tension ou Ia contraction du fil flexible ou inflexible qui joint deuxnbsp;points quelconques M et M' du syst?me. De cettenbsp;inani?re [m,nbsp;nbsp;nbsp;nbsp;\_m', /nquot;], etc., repr?senteront les tensions ou contractions des fils qni joignent M et Mquot;, M' et Mquot;, etc. 555. Nous aurons aussi a considérer les variations infinimentpetitesqu’éprouventles distances des pointsnbsp;M, M', Mquot;, etc., pris deux a deux, soit quand 1’unnbsp;de

ces points change seul de position, soit quand ils



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;665 sont deplacés simultanérnent. Alois, nous désignerons par (/ra, /ra') la distance de deux points quelconquesnbsp;M et M'j en sorte que (/ra, /raquot;), (/re', /raquot;), etc., soientnbsp;de m?me les distances de M et Mquot;, M' et Mquot;, etc.nbsp;Nous emploierons la caractéristique , pour indi-quer les variations de ces distances , relatives au dé-placement du point M; la caractéristique ƒ/, pournbsp;indiquer celles qui ont lieu quand eest Ie point M'nbsp;qui se déplace; la caractéristique J'/', pour indiquernbsp;les variations provenant du déplacement de Mquot;; etnbsp;ainsi de suite. Enfin, nous réserverons la caractéristique cT, sans aucun accent, pour indiquer la variation de la distance de deux points, resultant de leursnbsp;déplacemens simultanés. Puisqu’on suppose, par

exemple , que M a été transporté de M en N et M', de M' en N', nousnbsp;aurons ?T (/ra, /ra') = MM' — NN', (/ra, /ra') = MM' — NM', J'/(/ra, /ra') = MM' — MN'; II est important d’observer que la variation totale, indiquée par cT, est égale a la somme des variations partielles, indiquées par et J'/^ de manl?re qu’on a, pour deux points quelconques,eP' (/ra, /ra') = (/ra, /re') -j- J'/(m, ///'); équation qui résulte de ce que les déplacemens de M et M' sont infininient petits, et qui n’a lieu que dansnbsp;cette hypothese. En effet (/ra, m') est une fonction desnbsp;coordonnées de ces deux points; ces variables pren-



666 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. nent des accroissemens infiniment petils, positifs ou négatifs, quand M et M' sont transportés en N et N';nbsp;or, en rejetant les puissances de ces accroissemensnbsp;supérieures a ia premi?re, il est évident que l’accrois-sement total d’une fonction quelconque de ces coor-données, est égal a la somme des accroissemensnbsp;partiels qui seraient dus a la variation de cliaquenbsp;coordonnée isolément; par conséquent, la vai’iationnbsp;totale de (/Ti, in'), indiquée par la caractéristiquenbsp;doit ?tre égale a la somme de ses variations partiellesnbsp;qui répondent a et cT/. 534. Tout ce qui préc?de étantadmis, considé-rons Ie point quelconque M, auquel est appliquée la force donnée P. Ce point est lié aux autres par lesnbsp;Ills MM', MMquot;, etc.; il est done tiré

ou poussé, dansnbsp;Ie sens de chacun de ces fils, par une force égale a lanbsp;contraction ou a la tension que ce lil éprouve; ennbsp;sorte qu’outre la force donnée P, Ie point M est encore soumis a Paction d’autant d’autres forces qu’il ynbsp;a de fils aboutissant a ce point. Apres qu’on a eu égardnbsp;a ces forces intérieures, il faut faire abstraction des filsnbsp;qui Kent M aux autres points du sjsteme, et le consi-dérer comme un point isolé, autour duquel les forcesnbsp;[m, ??'], \rn, mquot;'], etc., et la force P, doivent se fairenbsp;équilibre. Si M est un point fixe, il n’en résulteranbsp;aucune equation de condition; mais s’il est enti?re-ment libre, ou s’il est seulement assujetti a rester surnbsp;une surface ou sur un courbe donnée, on aura enlrenbsp;ces forces Péquation des vitesses virtuelles, déja dé-montrée

pour Péquilibre d’un point matériel isolé. Pour former cette équation, prenons un point K



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;667 üifiuiment voisin de M, et appartenant a la surface OU a la courbe sur laquelle ce point M est astreint anbsp;demeurer, s’il nest pas enti?rement libre. Soientnbsp;p, t, t', f, etc. , les projections de MN sur les directions des forces P, \jn, 7?'], \in, 7n''], [m , mquot;^], etc.;nbsp;nous aiirons (n” Sg), Pp -I- [m, m'']. t-f- [jn, /raquot;]. i'-f- [m, razquot;']. f-gt;[- elc.= o. Mais, a cause que la ligne MN est infiniment petite, il est aisë de voir que sa projection sur la ligne MM'nbsp;n’est autre chose que la diffe'rence des deux distancesnbsp;MM' et NM'; car si l’on abaisse du point N (fig. 85)nbsp;la perpendiculaire NH sur MM', la droite MH seranbsp;cetle projection, et Ion aura MH = MM' — HM'. Or, on a aussiHM' = v/(NM')‘ — (NH)“ = NM', en nëgligeant les infiniment petits du second ordre j on

aura doneMH = MM' — NM'. D’apr?s les notations convenues, cette equation est t = (S'! (m, ??i) ;nbsp;et l’on aura de ni?me t'= nbsp;nbsp;nbsp;mquot;), tquot; = cT, (/ra, ?j'quot;) , etc.; par conséquent, 1 equation dequilibre deviendraPp-j- [/ra, /ra']. J'(m, /?/')-l-[/ra, nbsp;nbsp;nbsp;iii!') nbsp;nbsp;nbsp;• lt;^1 (jn, m'quot;) etc. =: o.



668 nbsp;nbsp;nbsp;TRAITÉ DE MÉC/^NIQÜE. En considérant les autres points M', Mquot;, M'quot;, etc., du sjst?me, on aura pour chacun d’eux une equation pareille a celle-ci; ces equations seront Py-f- lm', m]. J'Xm', m) [m', mquot;]. J'/ nbsp;nbsp;nbsp;mquot;) ~h [m', mquot;']. J'/ (m', m'quot;) -f- etc. = o, P''p''-4- nbsp;nbsp;nbsp;ni\.S'l’(in'', m) [mquot;, m''].nbsp;nbsp;nbsp;nbsp;m') [inquot;, mquot;'2. lt;ƒƒ' (mquot;, m'quot;) etc. = o, lm’quot;, m].nbsp;nbsp;nbsp;nbsp;rn) m}.nbsp;nbsp;nbsp;nbsp;m') lm’quot;, nbsp;nbsp;nbsp;iri') -f- etc. = o; p’, pquot;, p'quot;, etc., étant les vitesses virtuelles de M', Mquot;, Mquot;', etc., projetées sur les directions des forces donnéesnbsp;P', Pquot;, P'quot;, etc., qui agissent sur ces points matériels. Ajoutons toutes ces equations: en obsei'vant que [m, m'] et {m, m') sont la m?me

chose que lm', in\nbsp;et {m\ in), et de m?me pour toutes les notations sem-blables; et en substituant la variation totale de chaquenbsp;distance a la somme de ses variations partielles, nousnbsp;aurons Vp V’p P'gt;quot; Py''-t- etc. ?(?) -\-\ni, mquot;] nbsp;nbsp;nbsp;mquot;) \m', m'quot;].nbsp;nbsp;nbsp;nbsp;m'quot;) etc. -l-[7wquot;, m'quot;] nbsp;nbsp;nbsp;mquot;) etc. -{-etc. =; o 355. Jusqu’iciles d?placemens MN, M'N', M’^N^ytC. (fig.82), sont inde'pendans entre eux; el l’e'quation (a)nbsp;suppose seulemcnt que ces points n’ont pas quitté lesnbsp;surfaces oules courbes données, sur lesquelles ils sontnbsp;obliges de rester; mais si nous supposons, en outre,nbsp;qu’en vertu de ces d?placemens, les points du syst?me



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;669 qui sont joints par une verge ou un fil tendu, ont conserve les m?mes distances respectives, nous aurons tT(m, m') = o, ?T {m, m!') = o, (rn', iv!') = o, etc., et l’e'quation {a) se redui ra a celle-ci ;Pp P'p' py py -f. etc. = o, (b) qui est précisément celle du principe des vitesses vir-tuelles (n° 351). Si dans les déplacemens des points M, M', Mquot;, etc., ceux qui sont des anneaux ont glissé Ie long des filsnbsp;qui les traversent, l’equation (b) aura encore lieu,nbsp;pourvu que les longueurs totales de ces fils n’aientnbsp;pas varié. Supposons, par exemple, que M est un an-neau qui a glisse' Ie long du fil M'MMquot;; alors on n’anbsp;plus séparémentnbsp;nbsp;nbsp;nbsp;— o et J'(m,TOquot;)=o, mais on a toujours S'{m, m') d'(m, mquot;) — o, puisque la longueur totale du fil reste

constante. Mais, dans ce cas, les tensions \jn, m'] et [m, /nquot;]nbsp;des deux parties de ce fil sont égales; les termes quinbsp;renferment ces tensions dans 1 equation (a) peuventnbsp;done s’écrire aiusi : \jn, m'].[cf(m, m') S'{pi, mquot;)'], et, par conséquent, ils se détruisent. En general, on concoit que si un fil flexible passe a travers un nombre quelconque d’anneaux, les tensions égales de ses différentes parties disparaitront de



670 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAISIQUE. 1 equation (a) toutes les fois que la longueur totale ilc ce fil ne varlera pas. Concluons done, enfin, 1°. Que l’équation resultante du principe des \’i-tesses virtuelles a lieu pour tous les mouvemens in--finiment petits qu’on peut donner a un corps solide, llbre OU g?né par des obstacles fixes; car dans tousnbsp;ces mouvemens les distances respectlves des points denbsp;ce corps sont invariables. 2°- Que cette equation a aussi lieu pour tous les mouvemens infiniment petits que peut prendre unnbsp;sjst?me de points ou d’anneaux lies par des filsnbsp;flexibles, pourvu que ces fils restent droits ou tendus. Quand cette condition n’est pas remplie, lesnbsp;tensions ne disparaissent pas toutes dans l’équa-tion (a), et, conséquemment, l’e'quation (d) n’a plusnbsp;lieu.

356. 11 faut encore démontrer que, réciproque-ment, quand l’équation (ó) a lieu pour tous les mouvemens infininient petits qu’on peut faire prendre au sjst?me des points M, M', Mquot;, etc., les forces don-nées P, P', Pquot;, etc., sont en équilibre, ainsi que nousnbsp;l’avons énoncé précédemment (n° 331}. Supposons pour un moment que l’équilibre n’ait pas lieu. Les points M, M', Mquot;, etc., ou une par-tie d’entre eux, se mettront en mouvement, et,nbsp;dans Ie premier moment, ils décriront simultanc-ment des droites telles que MN, M'N', Mquot;Nquot;, etc. ;nbsp;on pourra done réduire tous ces points au repos , en leur appliquant des forces convenables,nbsp;dirigées suivant les prolongeraens de ces droites, en



STATIQUE, SECONDE PARTJE. nbsp;nbsp;nbsp;671 sens contraire des mouvemens produitsj pai’ conséquent, si nous désignons ces forces inconnues par R, R', Rquot;, etc., réquillbre aura lieu entre les forces P,nbsp;P', Pquot;, etc., R, R', Rquot;, etc.; en sorte que r, r',nbsp;rquot;, etc., désignant les vitesses virtuelles projetées surnbsp;les directions de ces nouvelles forces R, R', Rquot;, etc.,nbsp;on aura, d’apr?s Ie principe des vitesses virtuelles quinbsp;vient d etre démontré, Pp P'p'4.py etc.H-R/' R'r'-f-R'V'-f- elc.=o, OU simplement Rr -f- R'r' RV' etc. = o , nbsp;nbsp;nbsp;(c) en vertu de I’equatlon (b), qui a lieu par hjpoth?se. .11 Cette equation (c) existant pour tous les mouvemens infiniment petits compatibles avec les conditions du systeme des points M, M^, Mquot;, etc., nous pouvons choisir pour leurs vitesses

virtuelles les espaces réellement décrits MN, M'N', Mquot;Nquot;, etc., dansnbsp;un m?me instant; mais comme ces lignes sont comp-tées sur les prolongemens des directions de R , R',nbsp;Rquot;, etc., il s’ensuit que toutes les projections r, r',nbsp;rquot;, etc., seront negatives fn” 351), et égales, abstraction faite du signe, a ces m?mes lignes MN, M'N',nbsp;Mquot;Nquot;, etc. Alors, tous les termes de l’équation (c)nbsp;étant de méme signe, leur somme ne peut ?tre nulle,nbsp;a moins que chaque terme ne soit se'parément égal anbsp;zéro ; on aura done R.MN = o, R'.M'N' = o, Rquot;.MW=o, etc. Or, pour que Ie produit R. MN soit nul, il faut



673 nbsp;nbsp;nbsp;TRAITÉ DE MÉCAWIQUE. qu on ait, ou R = o, ou MN = o; ce qui signifie , dans l’un et l’autre cas, que Ie point M ne peutnbsp;prendre aucun mouvement: il en est de m?me a l’e'-gard de tous les autres points; par conséquent, Ienbsp;sjst?me entier est en équilibre; et c’est ce que nousnbsp;nous proposions de démonti’er. 537. Lorsqu’il sera question des fluides, nous fe-rons voir, en partant de leur propriété fondamentale, que Ie principe des vitesses virtuelles a aussi lieu dansnbsp;i’équilibre d’un syst?me de forces dont les actions senbsp;transmettent par l’interraédiaire d’un fluide contenunbsp;dans xm canal ou dans un vase de forme quelconque.nbsp;De cette manl?re, la demonstration du principe general de réqullibre aura toute l’étendue que l’on peutnbsp;désirer; car les verges

inflexibles, les fils tendus, lesnbsp;fluides contenus dans des canaux, sont les différent esnbsp;sorles d’in termédiaires qu’on peut établir entre desnbsp;points matériels, séparés les uns des autres, pournbsp;transmettre l’actlon des forces de l’un de ces pointsnbsp;a un autre; et si d’ailleurs, parmi ces points, il y en anbsp;qui soient immobiles, d’autres parfaitement llbres, etnbsp;d’autres assujettis a rester sur des surfaces ou sur desnbsp;courbes données, on aura Ie syst?me de points matériels Ie plus général qu’on puisse avoir besoin de con-sldérer. Toutefois, je vais donner une autre demonstration du m?me principe, que l’on doit a Lagrange,nbsp;et qui repose sur des notions plus elémentaires quenbsp;la précédente; elle est fondee sur Ia possibilité denbsp;remplacer toutes les forces appliquées a un

syst?menbsp;quelconque de points matériels, par un seul poidsnbsp;agissant corame on va d’abord l’expliquer.



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;673 338. Si un point M ( fig. 84) est sollicité par mie force P dirigée suivant la droite MA, on peut d’abordnbsp;supposer que cette force soit appliquée au point A,nbsp;et agisse au mojen d’un cordon MA attaché a ce pointnbsp;M. On peut ensuite remplacer ce cordon par un fil quinbsp;s’enroule alternativenient sur une moufle fixe et surnbsp;une moufle mobile, et soit attaché par l’un de sesnbsp;deux bouts a Tune ou a l’autre de ces deux moufles;nbsp;celle qui est fixe répondant au point A, et celle quinbsp;est mobile au point M. En suspendant verticalemenfrnbsp;un poids K a lextrémité libre du fil, la tension seranbsp;égale a K dans toute sa longueur. Si les dimensionsnbsp;des poulies sont regardées comme infiniment petites,nbsp;les tensions de toutes les parties de ce fil,

qui abou-tissent a la moufle mobile, auront la m?me direction ; en appelant i leur nombre, leur résultante seranbsp;égale a iK, et agira sur Ie point M suivant la direction MA; par conséquent, si l’on a ?K = P, onnbsp;pourra remplacer Faction de la force P par celle dunbsp;poids K. ?^1 II en sera de m?me a l’égard des autres forces P', Pquot;, etc., appliquées a des points M', Mquot;, etc., suivantnbsp;des directionsM'A', Mquot;Aquot;, etc.; chacune d’elles pourranbsp;?tre remplacée par un poids égal a un sous-multipledenbsp;son intensité, agissant comme on vient de Fexpliquernbsp;pour la force P. De plus, il est aisé de voir qu’onnbsp;pourra toujours faire passer successivement, commenbsp;Ie représente la figure 85, un seul et m?me fil surnbsp;toutes les moufles fixes en A, A', Aquot;, etc., et surnbsp;toutes les moufles

mobiles attachées aux points M,nbsp;M', Mquot;, etc. Supposons done que i, i', ?', etc., sontnbsp;1. 4^ m



6^4 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQÜE. des nambres entiers, et qu’on ait (d) etc. iK = P, i'K = P', /quot;K = Pquot;, En suspendant verticalement Ie poids K a l’extré-mité libre de ce fil , Ie sjst?me des forces doniiées P, P', Pquot;, etc., se trouvera reniplacé par ce seulnbsp;poids, dont faction sera transmise aux points M,nbsp;M', Mquot;, etc., par Tintermédiaire de ce fil, et desnbsp;moufles fixes et mobiles. A la vérité, les equations (d)nbsp;supposent les forces P, P', P'', etc. , commensura-bles; mais cette hypothese est toujoui’s admissible,nbsp;puisque leur commune mesure K peut ?tre un poidsnbsp;aussi petit qu’on voudra, et m?me infiniment petit, si cela est nécessaire. 339. Concevons actuellement qu’on imprime aux points M, M', Mquot;, etc., un mouvement qui soitnbsp;compatible ayec les

conditions du syst?me, ainsi quenbsp;Ie mouvement directement contraire; soient N,nbsp;N', Nquot;, etc., leurs positions apr?s un temps infiniment petit; et appelons, comme précédemment, p,nbsp;p', pquot;, etc., les projections de MJN, M'N', Mquot;Nquot;, etc.,nbsp;sur les directions de P, P', Pquot;, etc., ou sur leursnbsp;prolongemens. Le point N étant projeté en a sur la droite MA , chacun des cordons qui vont de A a M sera rac-courci d’une quantité AM — AN, pour laquelle onnbsp;pourra prendre Ma, en négligeant les infinimentnbsp;petits du second ordre; ce cordon serait, au contraire , allonge de Ma, si le point a tombait surnbsp;le prolongement de AM; d’oü 1’on conelut qu’a raison du déplacement de M, le poids K descendra



STATIQÜE, seconde PARTIE. nbsp;nbsp;nbsp;67 5 dans Ie premier cas, et montera dans Ie second, d’uae quantité égale au produit de Ma et de i • cenbsp;qui revienl a dire, d’apr?s Ie signe de p (n° 531), quenbsp;la variation positive ou negative de sa hauteur verticale sera exprimée par ip, a raison de ce seul dépla-cement. II en sera de m?me par rapport a tous les au-trespointsM', Mquot;, etc.; par conséquent,si l’on désignenbsp;par ^ une quantité infiniment petite, qui représente,nbsp;selon qu’elle sera positive ou negative, la quantité totale dont Ie poids K descendra ou montera, par suitenbsp;des déplacemens simultanés de tons les points du sjs-t?me, nous aui’ons iquot;pquot; etc. il Or, Ie poids K tendant a descendre, et étant la seule foi’ce qui agisse sur Ie sjsf?me, il est évidentnbsp;que rien ne Femp?chera de produire

Ie mouvementnbsp;que nous considérons, si celte valeur de ^ est positive; et que, si elle est négative, rien n’emp?cheranbsp;Ie poids K de produire Ie mouvement directementnbsp;contraire, qu’on suppose également possible, et pournbsp;lequel ^ changera de signe. Pour que l’équilibre aitnbsp;lieu, il est done nécessaire que f soit zéro. Récipro-quement, Ie poids K ne pouvant produire aucunnbsp;mouvement quelconqiie, sans descendre d’une quan-llté infiniment petite dans Ie premier instant, il s’en-suit qu’il ii’en produira aucun, et que 1 equilibre auranbsp;lieu, si Ton a ^ —o, pour tous les déplacemens desnbsp;points M, M', Mquot;, etc., infiniment petits et compatibles avec les conditions du syst?me. Maintenant, si l’on roultiplie par K Tequation 43..



e-e TRAITÉ DE MÉCANIQUE. etc. =: o nécessaire et sufEsante pour I’equilibre, et qu’on alt égard aux equations [d), elle se changera dans l’équa-tion {b) du principe des vitesses virtuelles, qu’il s’a-gissait d’obtenir. 340. Cette demonstration ne suppose pas Ie principe prealablement démontré pour un point materiel isolé. Si Ie syst?me se réduit a un seul point M au-quel sont appliquées les forces P, P', Pquot;, etc., don-nées en grandeur et en direction, on substituera anbsp;leur. action simultanée celle dun seul poids K,nbsp;comme dans Ie n“ 358; et, dans Ie cas de l’équilibrenbsp;de ces forces, Ie principe des vitesses virtuelles se dé-duira de cette substitution par Ie raisonnement qu’onnbsp;vient de faire : or, ce principe fournlra immédiate-ment les equations d’équilibre du point M, assujettinbsp;a rester sur une

surface ou sur une courbe, ou en-ti?rement libre (n° 39). Dans ce dernier cas, en con-sldérant Tune des forces données comme étant égalenbsp;et contraire a la résultante de toutes les autres, onnbsp;en déduira les regies de leur composition et de leurnbsp;décomposition, et Ie théor?me du parallélogrammenbsp;des forces. En appliquant ce principe a l’équilibre denbsp;trois forces parall?les, dont l’une est, par conséquent , égale et contraire a la résultante des deux autres, on en conclura également les régies de la composition et de la décomposition des forces parall?les. On déduit aussi, sans dilFiculté, du principe general des vitesses virtuelles, les equations d’équilibre



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;677 d’un corps solide euti?rement libre, que nous avons trouvées d’une autre mani?re dans Ie n” 260. En elFet, nous pouvons d’abord supposer que tous les points de ce corps de'crivent des droites égalesnbsp;entre elles et parall?les a l’un des axes des coordon-nées. En appelant h la longueur de ces droites, et a,nbsp;a', aquot;, etc., les angles que leur direction communenbsp;fait avec celles des forces données, nous aurons ; h cos atquot;, etc., p=.h cos a, p = h cos pour les vitesses virtuelles des points M, M', Mquot;, etc., du corps solide, projetées sur les directions des forcesnbsp;P, P', Pquot;, etc., appliquées a ces points; done, en subs-tituant ces valeurs dans l’e'quation [b), et supprimantnbsp;Ie facteur h, comme a tous les termes, on aura 1’é-quation d’équilibre P

cos et P' cos et' Pquot; cos etquot; -}- etc. = o. En consideVant successivement les mouvemens du corps parall?lement aux deux au tres axes des coor-données, on obtiendra de m?me les deux autres equations d’équilibre semblables a celle-la. Nous pouvons aussi faire tourner ie corps autour de l’un des axes des coordonnées. Pour former Pé-quation qui correspondra a ce mouvement, je re-présenterai les coordonnées des points M, M', M', etc.,nbsp;et les angles que font les directions des forces P, P',nbsp;Pquot;, etc., avec celles de ces coordonnées, par les m?mesnbsp;lettres que dans Ie n° 260. En supposant que Ia rotation ait lieu autour de i’axe des z, chacun de cesnbsp;points dccrira un are de eerde parall?lc au plan des



6^8 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. oc etj, qui aura pour rayon la perpendiculaire abais-se'e de ee point sur eet axe. De plus, par la nature du corps solide, Tangle décrit par cette perpendiculairenbsp;sera Ie m?me pour tons ses points. Si done on Ie suppose inliniment petit, qti’on le designe par co, et parnbsp;r, r', rquot;, etc., ies distances des points M, M', Mquot;, etc.,nbsp;a Taxe des z, on aura rce,nbsp;nbsp;nbsp;nbsp;rquot;/?, etc., pour leurs vitesses virtuelles; et en appelant aussi lt;ƒ, cT', S'quot;, etc., les angles aigus on obtus que font les directions denbsp;ces vitesses avec celles des forces P, P , P'^, etc., ilnbsp;en resultei'a p z= m cos S, p' =ragt; cos S', p' — rquot;agt; cos cTquot;, etc., pour les projections de ces raemes vitesses sur les directions de ces forces on sur leurs prolongemens.

Soient, en outre, a,h,c, les angles compris entre la direction de la vitesse rco et des paralleles aux axesnbsp;des X ,j, z, menees par le point M; les memes angles relatifs a la direction de la force P étant a, ^nbsp;on aura cos S=- cos a cos a-f-eos b cos ^-f- cos c cos y ; raais a cause que la vitesse no est tangente en M, au eerde du rayon r qui a son centre dans Taxe des z,nbsp;il est aise de voir qu’on a X nbsp;nbsp;nbsp;Y o. cos ? = ziz -, cos a = zp p, cos c et, par consequent, p = rco cos S — dz(x cos € -r f cos a) co On aura de m?me



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;679 p' = dtz (,r' cos ?' — j- cos ci.')cD, p' := rt: {jcquot; cos ?quot; — y cos aquot;) agt;,nbsp;etc. Les sigaes dépendront du sens de la rotation; et 1‘on devra prendre, a la fois , les signes supérieurs ou lesnbsp;signes inférieurs dans toutes ces valeurs : en les subs-tituant done dans l’équatlon (i) et suppi-imant Ie facteurnbsp;nbsp;nbsp;nbsp;commun a tous les termes, nous aurons p(cccosQ—cos a)-4-p^(a?cos—•ƒ' cos a^)-)-etc.=^o. Celte équation d’équllibre est celle des momens par rapport a l’axe des z, autour duquel Ie mouvement a eu lieu; on obtiendra de la m?me mani?renbsp;les équafions des momens par rapport aux axes desnbsp;a: et des^, en faisant tourner successivement Ie corpsnbsp;solide autour de ces deux droifes. 341. On peut donner a l’équation (ó),

une forme différente qui en rendra les applications plus faciles. Pour cela, soient z, les coordonnées du point M dans sa position d’équilibre ; a? efx,nbsp;nbsp;nbsp;nbsp;-f- dy , z-^ J^z, ce qu’elles deviennent quand on transporte ce point matériel dans une position N infiniment voi-sine; X, Y, Z, les composantes de la force P suivantnbsp;les prolongemens des .xquot;, z, dans Ie sens positifjnbsp;ces quanlltés infiniment petltes cTa?, dy, d'z, serontnbsp;les projections de la vltesse virluelle MN sur les directions de X, Y, Z ; etp étant toujours sa projection §urnbsp;la direction de P, on aura (nŽ 331)Pp = Xdbr Ydl;r ZcTzw



68o nbsp;nbsp;nbsp;TRAITÉ DE MÉCAMIQÜE. En désignant par les ni?mes lettres avec des accens, les quantités analogues qui répondent aux points M',nbsp;Mquot;, etc., on aura aussi p'p' = X'cTor' 4- Y'jy' 4- Z'cTz', py =nbsp;nbsp;nbsp;nbsp;4-nbsp;nbsp;nbsp;nbsp;4- etc.; et si Ton ajoute ces equations et la pre'ce'dente, on pourra écrire Pj? py 4 Pquot;pquot; 4 etc. = 2 (X-h; 4 nbsp;nbsp;nbsp;4 Z^z) ; la somme 2 s’étendant a tons les points M, M', Mquot;, etc., du syst?me, et se composant, par conséquent, d’un nombre de parties semblables, égal anbsp;celui de ces points. De cette mani?re, 1’équation (?)nbsp;prendra la forme : 2(Xcr.r 4 nbsp;nbsp;nbsp; Zcfz) = o, (e) qu’il s’agissait de lui donner. Or, quelle que soit la liaison des points du syst?me, on peut toujours l’exprimer par une ou plusieursnbsp;equations

entre leurs coordonnées. Soient done L,nbsp;L', Lquot;, etc., des fonctions données de j?, jr, z, x',nbsp;y, etc., OU d’une partie de ces coordonnées; et sup-posons que ces équations soient L = o, L' = o, Lquot; = o, etc. (ƒ) Les déplacemeris simultanés de tous les points du syst?me devant ?tre compatibles ayec les conditionsnbsp;auxquelles il est assujetti, il faudra que les coordonnées X,J, z,nbsp;nbsp;nbsp;nbsp;etc., deM, M', Mquot;, etc., et les coordonnées .r4^x, nbsp;nbsp;nbsp;x'-j-J'x', eic.,.



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;68i de N, N', Nquot;, etc., satisfassent successiveraent a ces equations ; par conséquent, en négligeant les infinx-ment petits du second ordre, nous aui'ons :0, dL —i— . nbsp;nbsp;nbsp;_ dz nbsp;nbsp;nbsp;' dx' — J-jc -I- —' d'r :0, ^(?-) dx dV . nbsp;nbsp;nbsp;, dl!' .nbsp;nbsp;nbsp;nbsp;, dLquot; .nbsp;nbsp;nbsp;nbsp;, dLquot; r, , . , nbsp;nbsp;nbsp;?^cTz-f-^d'or etc.—o, etc. Si l’on change en m?me temps Ie sens des déplace-mens de tous les points du syst?me, les signes de cTa?, ciy, S'z, S'x', etc., changeront tous a lafois, etnbsp;ces equations seront encore satisfaites; en sorte quenbsp;Ie mouvement infiniment petit auquel elles répon-dront, et Ie mouvement dii’ectement conti’aire, sontnbsp;également compatibles avec les conditions données,nbsp;comme Ie

suppose implicitement Ténoncé du principe des vitesses virtuelles (nquot; 55i). Cela posé, au moyen de ces équations (g), on éli-minera, dans chaque cas, de l’équation (e), un nombre des quantités cTx, ?'j, cTz, (S'x', etc., égal a celui des équations (ƒ); celles de ces quantités qui res-teront ensuite dans Ie premier membre de l’équationnbsp;(e), seront indépendantes entre elles; on devra donenbsp;égaler séparément leurs coefficiens a zéro; ce qui four-nira toutes les équations d’équilibre du syst?me, dontnbsp;Ie nombre sera égal a trois fois celui des points maté-riels M, M', Mquot;, etc., moins Ie nombre des équationsnbsp;(/).Loi'sque les positions de ces points, c’est-a-dire,nbsp;les valeurs de leurs coordonuées x, /, z, x', etc.,



682 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. seront données, il faudra que les composantes des forces P, P', P'', etc., satisfassent a ces equationsnbsp;d’équilibre; quand, au contraire, on donnera cesnbsp;forces en grandeur et en direction, et que les positions des points du sjst?me seront inconnues, cesnbsp;m?mes equations, jointes aux equations (ƒ), servi-ront a determiner toutes leurs coordonnées. 542. Les equations (e) et (g-) étant linéaires par rapport a lx, J'z, J'x', etc. , Téliminationnbsp;d’une partie de ces quantite's pourra se faire, d’apr?snbsp;la méthode connue, en ajoutant ces equations apr?snbsp;avoir multiplié les equations (g) par des facteurs indé-terminés, et en égalant a zéro, dans cette somme, lesnbsp;coefficiens de celles des quantités J^x, Jy, J'z,nbsp;J'x', etc., qu’on voudra éliminer. Les coefficiens

desnbsp;quantités restantes devant ensuite ?tre aussi égaux anbsp;zéro, il s’ensuit qu’on devra égaler a zéro les coefficiens de toutes les quantités J'x, Jy, Jz, Jx', etc.,nbsp;indistinctement, dans la somme dont il s’agit; d’oü ilnbsp;i-ésultera un nombre d’équations égal a celui des coordonnées, entre lesqueiles il restera, dans chaque cas,nbsp;a éliminer les facteurs indéterminés, pour avoir lesnbsp;équations d’équilibre du syst?me. En désignant par A, A', Aquot;, etc., les facteurs par lesquels on multipliera les équations (g), on aura,nbsp;par ce procédé,nbsp;dL dx {h)o, rj , .dh ^ nbsp;nbsp;nbsp;^,dh'nbsp;nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;^ Z nbsp;nbsp;nbsp;^ A -f etc. = o,



S?ATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;683 pour les equations provenant des coefficiens de cTa:, jy, cTz 5 on aura de m?me X' A-jt x'§; Aquot;g: etc. = 0, , lt;iL I nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;,,,dLquot;nbsp;nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;, 37 nbsp;nbsp;nbsp;= O’ pour celles qui proviennent des coefficiens de J'a.'', Jy, J'z'; et ainsi de suite. Au lieu d’éliminer simplement A, A', Aquot;, etc., on pourra tirer de ces equations les valeurs de ces in-connues; nous allons expliquer comment on en dé-duira ensuite, en grandeur et en direction , les forcesnbsp;provenant de la liaison des points du syst?me, quinbsp;agissent sur tous ces points et font équilibre auxnbsp;forces donne'es P, P', Pquot;, etc. La de'termination denbsp;ces forces inconnues est une partie importante dunbsp;probl?me de

l’équilibre, dont la solution complete etnbsp;générale se trouvera ainsi comprise dans l’ensemblenbsp;des équations (ƒ), {h), {h'), etc. 545. Si l’on suppose que tous les points du syst?me, moins Ie point M, soient rendus fixes, lequilibre nenbsp;sera pas trouble'. En vertu de Fe'quation L = o, Ienbsp;point M sera alors astreint a se mouvoir sur la surface dontL = o est l’équation, et dans laquelle lesnbsp;coordonnées o?, j-, z, seront seules variables. Or, ennbsp;désignant par ut, la résistance de cette surface, laquellenbsp;sera dirigée suivant xine des deux parties de la normalenbsp;en M, on pourra remplacer cette sui'face, ou l’équa-



684 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. tion de condition L=:o, par cette force inconnue. De m?me, on pourra remplacer L'=o par unenbsp;force normale a la surface qui répond a cette equation ; Lquot; = o par une force normale a la surfacenbsp;correspondante; et ainsi de suite. Done, en joignantnbsp;a la force donnée P, ou a ses composantes X, Y, Z,nbsp;ces forces normales ^, ^4,^, etc. , on pourra en-suite considerer Ie point M comme enti?rement librenbsp;et isolé. Par conséquent, si 1’on désigne par a,b, c,nbsp;les angles que fait la direction de la force fJt. avecnbsp;des parall?les aux axes des cc,j, z, menées par Ienbsp;point M; par a,, b^, c^, les m?mes angles relatifs anbsp;la force jtA,; et ainsi de suite, nous aurons X-i-ju. cos a jtt, cos nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;ö,-[-etc. = o , Y ? ? JU. cos

nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;cosnbsp;nbsp;nbsp;nbsp;?a etc.=o , Z cos c -|-M, cos c,-f-jMj cos etc. = o, pour les trois equations d’équilibre du point M. De plus, si l’on fait, pour abréger,*' = \/(?) (^) Š ^



685 STATlQüE, SECONDE PARTIE. I nbsp;nbsp;nbsp;dLnbsp;nbsp;nbsp;nbsp;, I ^ZLnbsp;nbsp;nbsp;nbsp;idL cos a -j-, cos o = nbsp;nbsp;nbsp;^ , cosc = - ^ , II nbsp;nbsp;nbsp;dxnbsp;nbsp;nbsp;nbsp;y djrnbsp;nbsp;nbsp;nbsp;ydz dV 1 lt;ZL' I dh' nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;I aonbsp;nbsp;nbsp;nbsp;1 cos nbsp;nbsp;nbsp;coso,= - T—, cosc,=-^ , * v,dx ’ nbsp;nbsp;nbsp;yi dj ’nbsp;nbsp;nbsp;nbsp;'nbsp;nbsp;nbsp;nbsp;11^ dz ’ I dV nbsp;nbsp;nbsp;jnbsp;nbsp;nbsp;nbsp;I dLquot;nbsp;nbsp;nbsp;nbsp;, dLquot; COS - -T- , cos Oa = - J-, cos --^ , quot;? y.dx^ nbsp;nbsp;nbsp;y, dj’nbsp;nbsp;nbsp;nbsp;^ v^dz’ etc. ; (0 ce qui changera les trois equations d’équilibre en celles-ci : •jf- etc. = o, I fA dL I dL nbsp;nbsp;nbsp;dL ‘ y dx y, dx ^ Va dx ^ dL j dL nbsp;nbsp;nbsp;dluY — 4- nbsp;nbsp;nbsp;4- ' y dj

nbsp;nbsp;nbsp;’i dj ' -f- etc. = o, ?Lquot; , * etc. = o. fi dL dz Or, en les comparant aux trois equations (g^) avec lesquelles elles doivent ?tre identiques, on en con-clut fX = vK, /M-, = nbsp;nbsp;nbsp;)Wa = v^Aquot;. etc. Ainsi, par rapport au point M, les forces prove-nant de sa liaison a vec d’autres points du syst?me, sont exprimées par les produits rA, v,A', v^Aquot;, etc.; cesnbsp;forces devant ?tre des quantités positives, on don~nbsp;nera aux radicaux v, r,, etc., les m?mes signesnbsp;qu’aux quantités A, A', Aquot;, etc., et leurs directionsnbsp;seront compl?ternentdéterminéesparleséquations(i}. Si Ton appelle de m?me nbsp;nbsp;nbsp;/a/, etc., les forces provenant de la liaison du syst?me, qui agissent sur Ie point M' et sont normales aux différentes surfaces



686 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. sur lesquelles il est oblige de se mouvoir, quand tous les autres points M, Mquot;, M'quot;, etc., sont rendusnbsp;fixes, on trouvera pareillement /a' = /A, nbsp;nbsp;nbsp;= v/A',nbsp;nbsp;nbsp;nbsp;/// = vjx”, etc., en faisantpour abre'ger.j (?j etc. On obtiendra de ni?me les expressions des forces relatives aux points Mquot;, Mquot;', etc. 344- En comparant les valeurs de et /a', on a fjiv’ — fjJv; de sorte qu’elles sont entre elles comme les quantite's ret /. Lors done que deux points materiels MelM'nbsp;sont lies entre eux, et, si Ton veut, a d’autres pointsnbsp;en nombre quelconque, par une equation L = o,nbsp;il en resulte, dans I’etat d’equilibre, des forces/* etnbsp;jjtJ appliquees a M et M', dont les grandeurs sontnbsp;entre elles comme v et v', et qui font ayec les axesnbsp;des

coordonnees , des angles dont les cosinus sontnbsp;pour la force /*, et



687 STATIQUE, SECONDE PARTJE. I dL v' dj * I dh v' dz' * pour la force f/J. Le sens et la grandeur de ces forces depend du signe et de la grandeur d’une quantile A quinbsp;se deduit, dans chaque cas, des equations d’equilibre. La consideration des surfaces sur lesquelles chacun des points d’un sjst?me conserve la liberte de senbsp;mouvoir, lorsque tous les autres sont supposes fixes,nbsp;determine les directions norniales des forces provenantnbsp;de la liaison de ces mobiles, pour chacune des equations par lesquelles cette liaison est exprimee(n° ago);nbsp;mais on n’en peut conclure aucun rapport entre lesnbsp;forces relatives a deux points materiels lies par unenbsp;m?rae equation; et c’est le principe des vitesses vir-tuelles, ou les equations (Ji), (/7), etc., qu’on en anbsp;de'duites, qui fait connaifre

ce rapport a priori, dansnbsp;le cas de réquilibre. 345. Pour donner une application de ces formules, reprenons lexemple du polygone funiculaire quenbsp;nous avons déja considëré dans le § P’’ du cha-pitre précédent; et supposons que les points materiels M, M', Mquot;, etc. , soient les sommets successifsnbsp;de ce polygone. Si Ton appelle I, V, V, etc., les longueurs donnees des cotes MM', M'Mquot;, Mquot;M'quot;, etc., les equations (ƒ),nbsp;seront, dans ce cas, Ijz= \/(x — nbsp;nbsp;nbsp;—z'p—/=o, u= nbsp;nbsp;nbsp;2quot;) — ^o, etc.;



688 TRAITÉ DE MÉCANIQUE. d’oii il résultera dL X — x' d\I _ dh’ __x' — x“ etc.. dx' l gt; dx' ~~ nbsp;nbsp;nbsp;dxquot; — l' * dh dh' dh’ _y—y' etc.. dj‘ 1 gt; dj' djquot; i’ ’ dh _z — z' dh’ dh’ z' •— zquot; etc.; dz l ’ dz dd' l’ ? et toutes les autres differences partielles de L, L', Lquot;, etc., qui entrent dans les formules précédentes, se-ront égales a ze'ro. En considérant les deux points M et M', on auraA, oü l’on prendra les signes supe'rieurs ou infe'rieurs, selon que la valeur de A sera positive ou negative.nbsp;On conclut de la et des equations précédentes, que lesnbsp;points M et M' seront sollici lés par des forces égales etnbsp;contraires, dirigées suivant la droite MM' ou suivantnbsp;ses prolongcmens, et dontla quantité A, abstractionnbsp;faite du signe, sera la grandeur commune. II en seranbsp;de m?me a l’égard des points M' et

Mquot;, Mquot;etMquot;', etc.;nbsp;en sorte que dans Tétat d’équilibre, les quantités A,nbsp;A', Aquot;, etc., exprimeront les contractions ou les tensions des cótés successifs MM', M'Mquot;, Mquot;M'quot;, etc.nbsp;Commeonaura, d’apr?s les équations (/),u--- nbsp;nbsp;nbsp;,cosc=?^-, cos cos a = 3= et qu on devra prendre les signes supérieurs ou inférieurs, selon que la valeur de A sera positive ou né-gative, on en conclut, par exemple, que la forceap-



STATIQÜE, SECONDE PARTIE. nbsp;nbsp;nbsp;689 pliquée au point M sei’a dirigée de M vers M', et ex-primera une contraction du cóté MM', quand cette valeur sera negative, et que cette force agira dans Ienbsp;sens oppose et exprimera une tension, lorsque la valeur de A sera positive. L’un ou l’autre de ces deuxnbsp;cas sera possible, si les cótés du polygone sont desnbsp;verges inflexibles, jointes par des charni?res; et Ienbsp;second cas pourra seul avoir lieu, si les cótés sontnbsp;des fils flexibles. Les equations (h), (h'), {K'), etc., pourrout s’écrire ainsi ; V _^ .V _ nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;, Y _ Hf— j) 1 _ nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;, A (z' — z)z = X'H-Y' Z' nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;- —r— a' {x''—x') Aquot;(a:'quot;—a:quot;) Yquot; l ’ A (j;' — x) a' {xquot; — x') l ~ l'

gt;? (y -- jr) _ (jrquot;—y) / nbsp;nbsp;nbsp;~ l' ' A (z' — z) _ a' (zquot; — z') V' Zquot;-|- etc. Les trois premi?res montrent que la tension A sera la résultante des forces X, Y, Z. En les ajoutant aux 44



690 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. trois suiv antes, on aura Y -h Y' ce qui fait voir que la tension A' sera la résultante de X', Y', Z', ef des forces X, Y, Z, transportées aunbsp;point M', parall?leraent a elles-m?mes. En continuant de m?me, on aura pour la tension d un cóténbsp;quelconque la menie valeur que dans Ie n” 287. Le nombre des sommets M, M', Mquot;, etc., étant désigné par n, celui des equations précédentes seranbsp;3?, et celui des tensions A, A', Aquot;, etc., égal anbsp;n — I. En éliminant ces quantités, on aura donenbsp;‘}.n I equations d’équilibre , lesquelles, jointes auxnbsp;n — I longueurs données l, l', ?', etc., des cólés dunbsp;polygone, suffiront pour determiner les 3ra coordon-nées de ses sommets, et, par conséquent, sa figurenbsp;d’équilibre. Mais ce calcul n’aurait aucune utilité;

etnbsp;il vaut mieux, comme nous l’avons fait dans lenbsp;n° 286, tracer successivement les cótés du polygone funiculaire, d’apr?s les grandeurs et les directions données qui agissent a ses dif?’érens sommets. 346. Daós le cas d’un syst?me quelconque de points malériels M, M', Mquot;, etc., si les forces données, qui sont appliquées a ces points, proviennent denbsp;leurs attractions ou répulsions mutuelles, et de forcesnbsp;semblabies qui émanent d’un ou plusieurs centres,



STATIQÜE, SECONDE PARTIE. 691 on aura Zdz)=d(p{x,j, z, x\y, z', etc,); (p dësignant une foaction donoëe des coordonnées de M, M', Mquot;, etc., dépendante de la loi de ces forcesnbsp;par rapport aux distances. En effet, a l’égard des forces provenant des centres fixes, cela résulte de ce qu’on a vu dans Ie n° i58.nbsp;Supposons, en outre, que U exprime faction mu-tuelle de M et M', qui sera attractive, pour fixernbsp;les idees. Soit aussi u leur distance muluelle, denbsp;sorte que U soit une function donnée de ?, et qu’onnbsp;aitu' = y — xY {j' — jY ~~ Les cosinus des angles que fait la droite MM' avec des droites menées par Ie point M, suivant les directionsnbsp;des 3C,j, z, positives, seront x' — X x'—X nbsp;nbsp;nbsp;^ . en les multi pliant par U, on aura les composantes de cette force appliquée au point M

et dirigée suivantnbsp;MM'. Celles de la m?me force U, appliquée au pointnbsp;M' suivant la direction M'M, seront égales et con-traires; et de la on conclut [(X — X) {dx — dx') [X'—J) nbsp;nbsp;nbsp;d/) iz'—z) {dz—dz'y], u pour la partie de la somme 2 qui pi’ovient de faction et de la reaction de M etM'. Or, en diflérentiant la valeur de on a



692 TRAITÉ DE MÉCANIQUE. uduz^[x'—x){dx'—dx)-^{jr'—j){dj'—dj)-\-{:^—z){dz—dz) ; ce qui réduit la quantité précédente a — Mdu, c’est-a-dire, a la diöerentielle d’une fonction de u, II en sera de m?me pour les parties de la somme 2 provenautnbsp;des actions mutuelles des autres points du sjst?me;nbsp;par conse'quent, sa valeur enti?re se coaiposera denbsp;terraes qui seront tous des diflérenlielles exactes, etnbsp;cette valeur sera aussi la differentielle d’une fonctionnbsp;donnée des coordonnées de tous ces points. En vertu de l’équation (e), cetle fonction, que nous représentons par lt;p, sera un maximum ou unnbsp;minimum, relativement aux valeurs des coordonnéesnbsp;qui répondent a une position d’équilibre du sjst?me;nbsp;et, réciproquement, si l’ou determine Ie maximumnbsp;ou Ie minimum de la fonction ip, en

ajant égard auxnbsp;equations (ƒ) qui peuvent étre données entre lesnbsp;coordonnées, les valeurs qu’on obtiendra pour ces variables répondront a des positions d’équilibre. Onconclutde la que quandle sjst?me des points M, etc.,esten mouvement, de sorte que leurscoordonnées , et, par suite, la quantité (p, soient des fonc-tions du temps, cette fonction lt;p atteindra son maximum ou son minimum, toutes les fois que Ie sjst?menbsp;passera dans une position oü il resteralt en équilibre,nbsp;si les points qui Ie composent n’avaient pas de vitessesnbsp;acquises. 347. 11J aura entre Ie maximum et Ie minimum de la quantité cp une difference essenlielle, a laquelle ilnbsp;imporle d’avoir égard, et que nous allons expliquer. On dit que l’étatd’équilibre d’un corps ou d’un sjs-



STATIQÜE, SECONDE PARTJE. nbsp;nbsp;nbsp;GgS t?me de corps est ^toiZe_,lorsqu’en écartant un tant soit peu ces mobiles de leurs positions, ils tendent a y re-venir, en faisant de petites oscillations que les fi’Otte-mens et les resistances des milieux finissent toujoursnbsp;par éteindre ou rendi’e insensibles.L’equilibre est nonnbsp;stable OU instantané, lorsque Ie corps ou Ie syst?menbsp;de corps qui est dans eet état, tend de plus en plus anbsp;s’en eloigner, et linit par chavirer, d?s qu’on l’en anbsp;un peu écarté. En ne supposant aucun frottement quinbsp;puisse, jusqu’a un certain point, retenir les corps dansnbsp;leurs positions, ce second état d’équilibre est un casnbsp;purement mathématique, qu’on ne saurait jamais observer, puisque la moindre force perturbatrice suffi-rait pour Ie détruire. Cela posé, les équations

fournies par Ie principe des vitesses virtuelles, ou, ce qui est la méme chose,nbsp;par la condition du maximum ou du minimum de lanbsp;fonction lt;p, sont communes a ces deux états; mals Ienbsp;maximum convient a la stabillté, et Ie minimum anbsp;l’équilibre instantané; et c’est, en efFet, ce que nousnbsp;ferons voir dans un autre chapitre, oü nous considé-rerons la nature du mouvement qui a lieu lorsqu’unnbsp;syst?me de points matériels a été tres peu écarté dunnbsp;état d’équilibre quelconque. En attendant, nous aliens donner des exemples de ces deux états d equi-llbre dans Ie cas d un syst?me de corps pesans, et fairenbsp;connaitre d’abord une propriété de son centre de gra-vité. 348. Supposons done que la pesanteur soit la seule force appliquée aux points M, M', Mquot;, etc., lesquelsnbsp;seront les centres de

gravité de coi’ps dont nous



094 nbsp;nbsp;nbsp;TRAITÉ DÉ MÉCANIQUE. représenterons les poids par lt;2lt;r, nbsp;nbsp;nbsp;lt;w'', etc. En prenant la pesanteur verticale et dirigée dans Ie sens de cette force, nous aurons Z = lt;ar, Z' = mr', Tl' z= (srquot;^ etc.; les autres composantes seront toutes nulles, et il en i’ésultera d(p = esrdz ftff'dz' -f- ^“d'!? etc. Mais en appelant H la sommedes poids (b-, lt;ar', (bquot;, etc., et z, l’ordonnée de leur centre de gravité, verticale etnbsp;dirigée dans Ie sens de la pesanteur, on a aussi (n° 64) riz, = esrz (Zër'z' (zs-'zquot; etc.; on aura doned(p = rifife,, cp = c riz,; c étant une constante arbitraire. Or, on conclut de Ia, 1°. que Tordonnée z, est la quantité qui devra ?tre un maximum ou un minimum,nbsp;lorsque Ie sjst?me sera en équilibre, et réciproque-nient; a°. que Ie maximum Ae z, répondra au cas denbsp;l’équilibre stable, et

son minimum au cas de l’équi-libre instantané. Ainsi, la condition d’équilibre d’un syst?me quel-conque de corps pesans, consiste en ce que ie centre de gravité du sjst?me entier soit Ie plus bas ou Ie plusnbsp;haut possible; Ie plus bas quand l’équilibre est stable,nbsp;et le*plus haut quand il n est qu’instantané. 54g. D’apr?s ce théor?me, si une chaine pesante , attachée par ses deux bouts a des points fixes, est en



STATIQUE, SECONDE PARTIE. nbsp;nbsp;nbsp;6g5 équilibre, son centre de gravitc' sera Ie plus bas possible; ce qui s’accorde avec Ie résultat du n° 2g6. Si un point materiel pesant est posé sur une courbe, et qu’en plusieurs points la tangente soit horizontale,nbsp;Tordonnée verticale du mobile, comptée dans Ie sensnbsp;de la pesanteur, sera un maximum dans ceux de cesnbsp;points oil la courbe est concave par en haut, et un minimum dans ceux oü elle tourne sa concavité par ennbsp;bas; par conséquent, les premiers seront des positions d’équilibre stable, et les derniers des positionsnbsp;d’équilibre instantané. Si Ton pose un ellipso?de homogene et pesant, sur un plan fixe horizontal, son centre de gravité, ounbsp;de figure, sera Ie plus bas possible lorsque 1’ellipso?denbsp;touchera Ie plan fixe par l’une des

deux extrérnilésnbsp;du plus petit de ses trois axes; et alors Fequilibre seranbsp;stable. Quand il Ie touchera par Tune des extrémitésnbsp;du plus grand de ses trois axes, son centre de graviténbsp;sera Ie plus haut possible; et Tequilibre ne sei’a qu’ins-tantané. Enfin, si Ie point de contact est une extré-mité de Faxe moyen, Félévation du centre de graviténbsp;sera un minimum pour une partie des sections dunbsp;corps, et un maximum pour les auti'es sections; parnbsp;conséquent, 1 equilibre sera stable ou non stable, se-lon que les déplacemens auront lieu dans Ie sens desnbsp;premi?res sections ou dans Ie sens des derni?res. Toutnbsp;cela étant évident, a priori, peut servir de vérifica-tion au théor?me du numéro précédent. Supposons encore qu’on ait versé dans un vase deux liquides homog?nes et pesans. Si la

surfacenbsp;de separation et celle qui termine Ie liquide supé-



696 nbsp;nbsp;nbsp;TRAITÉ DE MÉCANIQUE. rieur sont toutes deux horizontales, et que ce liquide soit celui qui a la moindre densité, Ie centre de gravité de ces deux liquides sera Ie plus bas possible ; car il est aisé de voir qu’en inclinant ou cour-bant Tune ou l’autre des deux surfaces, on éleveranbsp;toujours Ie centre de gravité du sjsl?nie. Ces deuxnbsp;surfaces étant toujours horizontales, si Ie liquide Ienbsp;moins dense est au-dessous de l’autre, on verra denbsp;m?me que Ie centre de gravité du syst?me sera Ienbsp;plus haut possible. Par conséquent, pour lequilibrenbsp;de deux liquides superposés, il est nécessaire et ilnbsp;suffit que chacun d eux soit terminé par un plannbsp;horizontal; mais, pour la stabilité, il faut, de plus,nbsp;que ce soit Ie liquide Ie plus dense qui occupe lanbsp;partie inférieure du vase. Quand la

diflerence desnbsp;deux densités est peu considérable, il est possible,nbsp;avec beaucoup de précaution, de faire surnager Ienbsp;liquide Ie plus dense; mais eet équilibre non stablenbsp;ne peut se maintenir assez de temps, pour ?tre ob-servé, qu’a raison du frottement des deux liquidesnbsp;contre les parois du vase. FIN DD PREMIER VOI.DME.
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