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Bepaling, verschillende vormen en hoofdeigenschappen
der viriaal,

A. BEPALING EN VERSCHILLENDE VORMEN DER VIRIAAL.

§ 1. Wanneer een krachtenstelsel is gegeven, zoodat
ons de grootte en richting van iedere kracht en daarbij het
aangrijpingspunt bekend zijn, dan weten wij voor iedere
kracht (e composanten langs de codrdinatenassen .\, 1
€N Z, benevens de codrdinaten van het aangrijpingspunt
A5 ¥ oen z, Door telkens een der laatste met een der
eerste tot een produkt te combineeren, verkrijgen wij
de negen uitdrukkingen:

2 Xoe X X0 x A
y X, » Y, v £,
gl X g e g A

In drie van deze, nl. & X, v V en = Z, valt de
richting‘ van de krachtcomposante samen met de daarin
voorkomende codrdinaat van het aangrijpingspunt; in de
zes andere staan beide loodrecht op elkander. De dimensie
van al deze grootheden is klaarblijkelijk lijn x kracht
(M L? =% en is dus die, welke men sedert lang als
moment heeft gedefinicerd,  Het s waarschijnlijk naar
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aanleiding hiervan, dat Scawens het genoemde zestal
met den naam ,Drehmomente” en de drie andere, welke
blijkbaar niet dien invloed op het stelsel hebben, met
den naam ,Flichmomente” betiteld heeft. De verhande-
lingen, waarin deze benamingen voorkomen, en waarin
hij de hoofdeigenschappen dezer grootheden mededeelt,
ziln te vinden in Crerre’s Journal, Bd. XXXVIII en
XLVIL In deze verhandelingen worden vooral de eigen-
schappen nagegaan der grootheden 2 (x X 4-y }) voor
vlakke krachtenstelsels, en & (v X 4+ y }V 4 z Z)
voor stelsels in de ruimte. Zonder aan deze grootheden
eenigen naam te geven, heeft toch reeds Mosius in zijne
.Statik” de beteekenis van den vorm &' (x X'+ y V' 4z Z)
voor het evenwicht in vele opzichten in het licht
gesteld.

§ 2. Een veel grootere beteekenis, vooral voor de toe-
gepaste mechanica op natuurkundige vraagstukken heeft
deze grootheid verkregen, sedert Crauvsiwvs in 1870 in
eene voordracht in de ,Niederrheinische Gesellschafft fiir
Natur- und Heilkunde” een bewegingsvergelijking mede-
deelde, waarin de gemiddelde waarde dezer grootheid
voor een zich in stationaire beweging bevindend stelsel
optreedt. Aan de halve negatieve waarde van dit ge-
middelde, de grootheid — '/, 2 (x X + v V 4 2 Z)
heeft hij den naam: viriaal gegeven,

Toch is in deze geen eenstemmigheid gebleven, Zoo
heeft Grizwis in een verhandeling voorkomende in de
JVerslagen en Mededeelingen der Koninklijke Academie
van Wetenschappen 1884”7, ten einde de grootheid in
verband te brengen met de Kinetische energie van het
stelsel, den naam viriaal toegekend aan de uitdrukking
— L 3 (2 X+ 9. X+ 2 L)

In het werk van Dr. W. Scuerr ,Theorie der Bewe-
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gung und der Krifte” komt het woord viriaal voor als
benaming voor de uitdrukking
— S x X 4+ 9 ¥V + z Z).
Wij zullen in de volgende bladzijden eenvoudigheids-
halve met deze laatste bepaling medegaan.
Tevens zullen wij voor deze grootheid dikwijls het
teeken /7 gebruiken en dus stellen wij bij definitie
F=—-232xX+yY 4 z2)
Voor één enkele kracht is dan de viriaal bepaald door
de vergelijking
F=—@xX+9Y4: 2

Indien meerdere krachten op een punt werken, blijft

dezelfde vorm der functie bestaan, mits men dan .\", }7

en Z als de composanten der resultante dier krachten
beschouwt.

§ 3. Aan de viriaal eener kracht wordt een anderen
vorm gegeven op de volgende wijze.

Stellen » de voerstraal van het aangrijpingspunt en &
de Kkracht voor, dan is

fr‘:.; e . vV T S o jE‘.\'__,'J'}' __:':Z
('l‘ "\ +_.‘ } "']' "f’/)_“ / /\ (i’ ]\) J 7 j\’4 ’,j\).

- — » R cos (r, %)

Noemen wij de projectie van R op de voerstraal van
het aangrijpingspunt /2 en nemen /2 positief in de richting
van de verlengde voerstraal, dan is

" @ X+ Y4 22)=—rP........[0

In de benaming door Scuweins ter aangehaalder plaatse
ingevoerd is dus »/ het Flichmoment der kracht X.
Projecteeren wij daarentegen A op ecen lijn loodrecht
Op 7 door het aangrijpingspunt en noemen wij die pro-
jectie ), dan is »() het Drehmoment. Wil men deze
woorden in onze taal overbrengen, dan zou men de
Drehmomente  ,werkzame momenten” kunnen noemen,
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want alleen deze komen in de bewegingsvergelijkingen
voor. De Fliechmomente, die geen invloed op de beweging
hebben, mogen dan ,verloren momenten” genoemd worden.
§ 4. Men kan evengoed de voerstraal » projecteeren
op de richting der kracht, en zoo wij die projectie 2
noemen, dan is
— x X+ 9y Y4+ z22)=—29 R
Uit (1) en (2) volgt

—_—
{38
—

TR P
en dus liggen de uiteinden van A en /7, de oorsprong
en het voetpunt der loodlijn uit O op de lijn & neerge-
laten op een cirkel.

§ 5. Maakt men onderstellingen omtrent den aard der
krachten, dan kan men verschillende vormen voor de
viriaal afleiden.

Bestaat er ten opzichte van het stelsel een cotrdinaten-
functie, ergal genaamd —— zoodanig dat iedere compo-
sante der in een willekeurig punt van het stelsel aan-
grijpende kracht vitgedrukt kan worden door het negatieve
partiecle differentiaal-quotient van dat ergal ten opzichte
van de aan die composante gelijknamige veranderlijke —
dan zijn, indien ¢/ het ergal voorstelt:

ol ol ol

V= — ’Z:,

11{ f— 3
t‘ X \\ U Qg

en vervolgens wordt

=32 (.1,' N - y V + z Z)
) ) U ,

— 2y | s k_{] + XY 1 2 e -
d X 5 0 ')n \\ z

[s daarenboven het ergal ¢ een homogeene functie
der coordinaten, dan kan, indien £ den graad der functie
aanduidt, volgens een eigenschap der homogeene functieén
geschreven worden

' e U,
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In dit geval staan viriaal en ergal in een constante
verhouding tot elkander.

Bij constante krachten is # — 1, dus wordt

I = {Ef

Bij krachten, waar het ergal van den — 1sten graad is,

zooals bij Newrox'sche aantrekking naar den oorsprong is
F=— U

§ 6. Wordt een punt aangetrokken of afgestooten door
eene kracht, die een functie is van den afstand tot een vast
centrum, dat als oorsprong van coordinaten genomen
wordt, en welke kracht gericht is langs den voerstraal,
dan kan men die kracht aanduiden door

/\' = @ (i’)
Dan is
(," - / i (i) ({f'
en dientengevolge
) U ) ¥V
(U L
Tﬁ — i (i) '\"‘*'
0 X ¢ X
Daar nu
P2 == 21 4 y? 3}
zijn
dr _ x 7 y Or _ 3
x r'dy 'y 7

derhalve zijn
X=Z29(0),Y=29@) Z2==09 ()
r r J
waaruit volgt
F=@X4yY+22)=—r7rqg(()
Is U7 tegelijkertijd ecen algebraische homogeene functie
van den Aden graad, dan volgt uit deze vergelijking en

de laatste der vorige paragraaf:

—
el
—

a / g () ar=y p (7



De onderstelling
¢ () = O
waarbij wij aannemen, dat 2 ), — 1 is, voldoet aan de
voorwaarde, dat het ergal een homogeene functie der
coordinaten is. Hierdoor wordt

)

W= = Nt

n -1
Bedenken wij nu dat
K= n 4+ 1
dan blijkt aan de vergelijking (3) voldaan te zijn.
Dan is de viriaal

F=— Cmtz
VOOor 7 — 1
= — (Cr?
VOOr 72 = — 2
G
r

§ 7. Een anderen vorm heeft Cravsius ') aan de viriaal
gegeven door een splitsing in te voeren tusschen de uit- en
inwendige krachten. Geven wij het onderscheid door aan-
hechting van de indices ¢ en 7 aan, dan volgt uit de
beteekenis van het teeken 2, dat

— 3 Xty Ytz Z2)=—2(xXityYidz 2Z))

— 2 (x Xty Y. +220)
is, of
F = F 4+ F.

Men noemt dan /; de inwendige, 7, de uitwendige
viriaal.

§ 8. Nemen wij aan, dat de inwendige krachten werken
langs de verbindingslijnen der deeltjes, en gelijk en

tegengesteld zijn; en beschouwen wij dan eerst twee deelt-

Iy Crausius. Pogg. Ann. Jubelband.
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jes, op elkander werkende met een kracht /. terwijl wij hun
afstand 4 noemen, dan is voor het eerste deeltje dat
X ¥, 2, tot coordinaten heeft (.\72, ¥, 5,, die van het
tweede deeltje) de X-composante der kracht

. X, — X
X, =2

derhalve
Xy Xy = (‘LL)H /.

Evenzoo voor het tweede deeltje

ey

= =
en
x X = (\J;,":’l),‘z /.
3 < A
Door optelling
R
x X 4 x X = — (,‘1,'.'*’;“!_. /i
Insgelijks
iy r ( 1'« —j, )1 -
N+ Y, =—Hzh
. ; (2, — 2,)?
:I Zl I .'_',2 z‘l — /] .j__l__-f-

Summeeren wij dit over alle deeltjes der massa, dan

wordt de inwendige viriaal
Five= 3 A

§ 0. Bij vaste (onveranderlijke) lichamen mogen wij aan-
nemen, dat alle deeltjes steeds ten opzichte van elkander
in evenwicht zijn, Indien dus op het lichaam, terwijl
het in rust verkeert, een krachtenstelsel aangrijpt, dan
moeten  steeds aan ieder punt de uitwendige Krachten
met de inwendige evenwicht maken. Daardoor is aan
1eder punt de resultante van alle zoowel uit- als inwen-

dige krachten nul, en dus ook de viriaal voor ieder
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punt nul. Maar dan is ook de viriaal voor het geheele
stelsel nul, zoodat wij verkrijgen

2 d4f+ F =o
of wel

z d4f=—F.

Bij gassen mogen we als eerste benadering aannemen
dat er tusschen de deeltjes geen krachten werken; in
dat geval is

f"i — 0.

Bij - vloeistoffen ‘heeft vax per Waars in zijn Acad.
proefschrift ,Over de continuiteit van den gas- en vloei-
stoftoestand” de waarde van Z; op de volgende wijze
bepaald. Wij mogen de deeltjes in het inwendige der
vloeistofmassa als in evenwicht beschouwen. De viriaal
der op die deeltjes werkende krachten is dus nul. De
deeltjes aan de oppervlakte echter worden door de
attractie der overigen naar binnen getrokken. Deze
oppervlaktespanning mogen wij wegens de geringe dikte
van het laagje behandelen als een druk op de opper-
vlakte der vloeistof. Zij dan de grootte van dien druk
per eenheid van oppervlak N, dan werkt in een punt
x, v, z van het oppervlak een kracht — N & &, indien
d o het oppervlakte-clement voorstelt. Deze kracht is
volgens de normaal op #¢ naar binnen gericht. Laten
de richtingscosinussen dezer normaal «, #f, » zijn en de
hoek, dien de normaal met den voerstraal » maakt @&,
dan is

x Xi+ryYi+zZi= — Ndo@xa-+yf-+4zy)

= — Nrdo cos 0.
Bij summatie over het geheele oppervlak wordt dus

Fi = N I r cos & do.

Nu is echter » ¢cos & do = 3 x inhoud der pyra-

mide, die & ¢ tot basis en den oorsprong tot top heeft.
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De integratie geeft dus het totale volumen van het
lichaam. Zij dit ., dan is dus
Fii—s3N 1.

Werkt op een lichaam een uitwendige druk normaal
op de oppervlakte, en stelt p daarvan de grootte
per eenheid van oppervlak voor, zoo verkrijgt men rede-
neerende als boven, voor de viriaal van die drukkrachten

I = 3y

§ 10. Hebben wij een stelsel evenwijdige krachten, wier
gemeenschappelijke richting ten opzichte van de coordina-
ten-assen gegeven wordt door de hoeken «, 3 en ., dan
vinden wij voor de viriaal van zulk een stelsel

Ff=—XxX+9yY+ 2 2)

= — (cosa. Zx R 4-cosB. £y R+ cos y. 2 2 R)

De cobrdinaten van het middelpunt der evenwijdige
krachten worden bepaald door de vergelijkingen

X ER=ZxR, yy SR=2JyR, 3 2 R=2z N,

Zij daarenboven de voerstraal van het centrum 7, en de
hoek, dien deze maakt met de richting der krachten @, zoo is

cosa. Xx R4 cosP. 2y R cosy. 2z R

(¥, cos « Yy cos B}z cosy) R =7 cos & X R,

waaruit volgt
F=—ypr cos & & R,

De viriaal van een stelsel evenwijdige krachten is dus
gelijk aan de viriaal van hun resultante aangrijpende in
het middelpunt van het stelsel.

Voor de zwaartekracht verkrijgen wij, als ». de voer-
straal van het zwaartepunt voorstelt:

F = — r.cos 0 2 mg = — Mg r. cos 9.

§ 11, Denken wij een stelsel massapunten () inieder van
welke een massa @m aanwezig is, Door den invloed van
de in /2 aanwezige eenheid van massa ontstaat tusschen

£ enieder punt (0 twee gelijke en tegengestelde Krachten,
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Wij nemen aan, dat die krachten evenredig zijn aan de
massa’s in () en P en aan zekere funtie van den afstand.
Op die wijze grijpen in 7 een aantal krachten aan, wier
totale viriaal wij wenschen te bepalen. Evenzoo de viriaal
van het stelsel, dat door de verschillende punten () en
de daarop aangrijpende krachten gevormd wordt.

In 2 grijpt onder invloed van () een kracht aan, wier
composanten zijn

Zz
; ,(—9/1) E=— ”';'1‘ g (o) dm
g c Y = — = g (o) dm
0
0 % a .

—

li/ﬂ =X Z — 29 (o) dm.
/ ; b 0
)& :

De viriaal dezer kracht is

— (x X9V :Z):(a = iy e = by

{.l 0 o
Nu is
* = (a—a)? - (5——_}')"’ e (e AR (4)
waaruit volgt
0o _ a—x dp _ b—y p c—=2
o T e 36 @bl e

Dit invoerende, verkrijgen wij

) ) )
—(x X4 yYH422) :(a a4 S Pl ARl g (0) dm.
' Oa 04 ) c
Stellen wij nu

Iq (0) G0 (o)t s v (5)

.

dan hebben wij
q ('(r') dp dy (p)
\ 0 J Y (o)

g (o)
\\ il \\ o
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en dus

AN )
e Y S 7) — (ai vie) , ,o%0) c-ﬂ’(")) dn.
L J (14 0 l) \\ (A

En bij summatie wordt de totale viriaal der in /”aan-
grijpende krachten

Lo / (” iip_((!) Ny \l‘\”i(ﬁf) = }\_U‘_({')] dmn.
. da N oc¢ -

Hierbij hebben de integratién betrekking op het
lichaam; derhalve zijn a, &, ¢ ten opzichte dier betrek-
Kingen als constanten te beschouwen.

Laat nu g de dichtheid voorstellen in het punt (v, ¥, 2)
terwijl dv = dx dy d= is en stellen wij

/ y (o) dm = f ” wy)dedyde=U...... (6)
dan is
: ) U O U N
]‘;- b— ( . e o bl R B | I B T e s g
5 \\ a 0 D (’f ] : t\ [ (I)

(raan wij nu over tot het stelsel der punten ().
Op dm werkt een kracht ¢ (o) dm, welks compo-
santen zijn

X =222 5 (o) dm
l)

Y= {" 4 ¢ (o) dm
0

- c—2

L= Ul ({n) dm.
0

Dan is de viriaal in ():
a—x b-

. (\ X+ yY4esZ)=—|a - '}'~}- 8 (.;3)'1 (o)dm.
Uit (4) volgt:

do x—a 0p _ y—0 do _ =—¢

dx e Y 0 02 ¢



Dus

, : i ) 4 )
—(x X+ 9y9Y 4 22)= (_1- A — +z ol ¢ (o) dim.

Jdx 0y Jz
Uit (5) volgt evenals boven

do Oy (o)

n (p) — -
{7 AL ox \\‘ X
Dus ook
‘ . £R ) ) ) ) )
-(x X+ yY+tzZ)=|x— A, + 0¥ le) -+ ¥ ((l)) .
o 0 x L J 9 Jz

Vervolgens wordt bij summatie, als wij de viriaal der

op het lichaam werkende krachten / noemen,

o ( ) w (o) N Y (o) \ ql (0)
i [_r b AR S ] L.
f \ 0 x m i N v !
Of als u de dichtheid voorstelt:
N i A N \ -
F = /I / [_1‘ : l{‘ (‘f‘J ) Lo 4 0 Y (") —}f 2 L (Q]) e dx dy dz.
JJ 0 x ’ AT dz ;

Beschouwen wij ieder der termen afzonderlijk, dan is

d v (o
/ =Y --? w dx dy de.

I 3 o

o

/
{/ dydzu x tp(H)] f/lu i () dx dy dz

f;/ Xy (n) 3 ‘1 dx (Ifl' az.

Indien s het element der oppervlakte voorstelt, en
a, ,7 de hoeken, die de buitenwaarts gerichte normaal
met de assen maakt, 1s

dy dz ds cos «
f/ 11_'\' = [ e X P (o) +p, 2, 9 (0y) — - - ¢ |

/ [ uy Xy (o) cos a, r/\'l -, X, P (0,) cos a, rf.\'._, v » ]

, mX Cos [n}r/\
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In verband met (6) wordt nu

b ; . e i iy Q u
— L Xe— f-“ xcos a (o) ds- 7(,__/ Xy (y — do.
! ' . Jx
en de viriaal
Ji— / (x cos a + ¥ cos B+ zcosy)uy (@ )ds—3 U
E ) ) ) )
O i Joeoo U u
x — -+ 9 4=z —] vy (o} @v.
1 l Ox - 0 y \"

Of als 8, de hoek tusschen de normaal en 7 voorstelt,
\\ ‘N. \\ H \\ H

' “'1'&'1'} (o) /* 3 (/— (.\ = | I 10,
f}' s,y (p)ds—3 / % { O] T O'* Y (o)e

Herleiden wij nu deze laatste integraal.

de hoeken, de p met de assen

Noemen wij daartoe

maakt &, 5, £, dan zijn

o cos & x—a; p €0S ) = Y—0; @ oS L = 2—.
Door differentiatie met constante hoeken verkrijgen wij
Tl dx —0 d e/ Y - 4 - o
el i d 0 - 0 JU f/'g - 0 AT = a 0 0
waaruit volgt
) adx ] / d ) P dz
X =410 ad g! ke iin u"n o AR !:J.
dezer waarden wordt de bedoelde

Door invoering

integraal

: ) \
}|n‘d'" | 5'\“'| ‘\"”]qa{fﬂf/’(' !

dx Yy

) 4 , \
’ [\\ u a2 i T r/'j I o d ] A0} Y
o 0 d W d 0 Oz d 0

= A +
De u‘rnnlhwh-n a, b en ¢ zijn constanten ten opzichte
van de integratic. Wanneer wij nu drie gedeelten

splitsen, is het eerste
J Y

4 / \.‘tt W (\L’} a7 - a / / { “ M Y U‘l) dx dy s

» JJy O0X

\\ X .
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= 7 {/ dy dz / Y (o) %‘—L dx
Vo . Jx

= 7 ’ / dy dz [uy (0)] —a /‘;L Y Y (e) dv

0 x

[ "y (o
a / wp (o) cos a ds—a /‘u £ (Uu) dz

d 2
) \
of daar ‘__'1”_({_’)_ = dy (o)
0 x O a

Y . : .
a { 2l W) dv =a f wylo)cos wds + a J f P (o) u dv
o . da.
\ [
=3 Y (o) udv
5 @

) i
b [Eyplo)do =10y (o)cos B s+ o
. t""l' F :

3 | N '
¢ / :\ -‘: W (o) do = (“} wp (o) cos yds - ¢ Ol\( / W (p) u do

=i opt.

b | Y 77 \ 77 N 77
= ‘ [ 0 cos O, wy (o) ds -+ (ff 00 4 b 0. C= G ‘
o w . l\ ' \\ ]»' l\ &
Om £ te herleiden schrijven wij
‘du .
Vit— '.f, Le: o) dz.
. ( rl"[g oy (o) ¢

Het volumen-element &z vervangende door de uit-

drukking p* dp d ¢ verknjgen wij

B = ] ‘:,'t:; Y (o) 0® :{Q dr f:"" dt ’ 0L {'L") 0* t{i":’ d 0.
Nu is
/ 07 [\'Q)y'"‘::':‘u.’{; = ylo)o*u] —3 / wylo)e*do { o (im(’y)d’in.
. 0 . . ¢

Dus redeneerende als boven

B = / w () o cos G, ds—3 U — /.u 4y (o) ant.

R A

Indien het punt /° binnen de massa ligt, geeft de term

[qv (':\;) 0 ?'Iu.] behalve de illl(‘g’l'iiill l o (0)ocos i, ds nogr




de integraal f w (o) 0* ud v voor ¢ =o. Voor krachten,

die aan positieve machten van g evenredig zijn, of aan
de — jste, 2de of — 3de macht van p wordt deze
term nul en blijft dus buiten rekening.

Is de kracht evenredig aan p~'danis y (¢) =— '/, ¢*
en geeft deze term dus de constante grootheid '/, m u.
Bij krachten, wier negatieve exponent 5 of meer is,
wordt deze term oo.

De gevonden waarden voor A en /A in de uitdrukking

voor de viriaal substitueerende, wordt deze in verband

met (7)
- ' 3 . - AT

/5 —/ (7 cos @, —0cos,—pcosd,) p(o)p ds—1 | / 0 (({‘(,\)l//}/.
De uitdrukking » cos i, 0 cos i, - ¢ cos i, is de

projectie van den omtrek van den gesloten drichoek O ) £
op de normaal op het oppervlakte-element s en is alzoo
gelijk nul.

Ten slotte wordt

e ; I = } 0 qw({))r/ﬁf.

/

De integraal is een coOrdinaten-functie, afhankelijk van
de plaats van /) doch niet van den oorsprong.

In het bijzondere geval, dat de aantrekking plaats
heeft volgens de wet van Nuwrox, is

¢ ) = ¢ "

en
=V de potentiaal der massa in £

Dan wordt
f 0 (t‘r]d'.w : ’ L:_'H'JH
tevens is

y()= [ g de: ¢!




en dus

V= — , o~ dm

waaruit in dit bijzondere geval volgt
I —}—- F}. — e I~

In woorden: ,De som der virialen der beide stelsels
is gelijk aan de waarde der potentiaal in /2 met tegen-
gesteld teeken genomen.”

Plaatsen wij /2 in den oorsprong, dan is /') — o en dus

F=—V,

wat een zeer groote analogie tusschen viriaal en poten-
tiaal aantoont en met § 5 overeenstemt.

(eldt bijv. de wet van Wener, dan is

il do o
 (p) = — k2 —— L 2 pl ‘)
¢ (e) 0’ ([ A ¢ adi*

en dus
1 cfn."
y (p) = — | £? = '
v \e) 0 ‘ d7? [
en
~ i (/-"/." ya rf ".’:
U= |3 ["‘ di* )
Dan wordt
< - - > ( f"u
F 4 Iy U= 2 & , 0 (//‘_, dm.

§ 12. Isin 2 niet de eenheid van massa, doch een massa
dm,, en noemen wij die in () ter onderscheiding @, ,

dan is volgens boven
| f o g (o) dmn, dmn, I

r ) \ Y U
- ’ oqglo) H’H:‘l dimn, [;; Ll -1 b > 4= ¢ > )r!’ﬂ/,
) : O a AN/ de :

Maakt nu /2 ook deel uit van een stelsel massapunten,
en noemen wij de totale viriaal van het stelsel ¢J: F, ,
die van het stelsel Z: [, dan is bij integratie
O U AN ,

I ,/u g (o) dm, dm, _{‘l“' x: ll.' L e

r/U.',
N/ Je )




-

17
Maar deze laatste integraal is [, derhalve is

ﬂ+@:]

Indien de wet van Newron geldt en dientengevolge

f o g (o) dm, dm,

de wederkeerige potentiaal
e[|
it 0
is, verkrijgen wij
F,+F = .

Valt het stelsel /2 met het stelsel () samen, dan ver-
krijgen wij de viriaal der tusschen de massa’s onderling
werkende krachten; wat wij vroeger de inwendige veriaal
genoemd hebben. Deze is dan

/‘:. — '/.2 ;-{I!‘J il (0) am*,

Het cijfer '/, volgt uit het feit, dat bij het samenvallen
alle massapunten dubbel worden en dus iedere kracht
tweemaal optreedt. Bij het bepalen der inwendige viriaal
moeten wij echter deze slechts éénmaal nemen, en moet
de integraal door 2 gedeeld worden.

Vergelijken wij dit met § 8 zoo zien wij dat de hier
gevonden uitdrukking dezelfde is als de daar bepaalde
in eenigzins gewijzigden en meer uitvoerigen vorm. Y

Geldt ten opzichte der werking de wet van NEWTON

en is de potentiaal der massa ten opzichte van zich zelf:

[ 1 // :fff.:.f"

dan is ook nu

Fy=— W?

|

) In § 8 ontbreekt voor X A f de factor '/, daar in die uit
drukking 3 zich uitstrekt over de combinatieén der punten twee

b S
P

aan twee,




/3. HOOFDEIGENSCHAPPEN DER VIRIAAL.

§ 13. Zij [F, de viriaal ten opzichte van den oorsprong,

dan is
F=—23@xX+yY+:22)

Om nu de viriaal ten opzichte van een punt O,
(x,, %, 2 ) te bepalen, kiezen wij x,, %, , %, als oorsprong
van een nieuw coordinaten-stelsel. Wanneer nu de
richtingscosinussen van de nieuwe X-as «, §, y zijn, die
van de nieuwe Y-as «, g, 7/, die van de nieuwe Z—as
«’, 8", 7/, hebben wij de volgende betrekkingen

x=2x, + ax' + o’y + «' 2

y=m5 + 8% + 8y + 877

e=12 + yx + 7y + 77
waaruit
A=a (x—x,) + 8 ) + 7 C 2,)
y =« (x—2x) + 8 ) + 7 E—=)
=o' (x—=,) 4 p’” (=—27)"+ ¥y (z—z,)

Verder zijn
X =aX 4+ 8 Y 4 y L
V' =« X + Y y Z
2! =" X+ 'Y 4 7 2
Zij nu
F=—3FX sy Y + 7 Z)
dan is
F,=—23 [(x—2) X 4+ (9—'1) V 4+ (z—=z,) Z]
of wel
= F 4 2 #4450 V 4 2, 2).
Door invoering van de grootheden
A= X, B=3Y, C=2=2

wordt dit

F,.=F 4+ Ax, + By Gz,



=a (L, oy
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De hoeken zijn uit de uitkomst verdwenen; van daar
de eigenschap:
wDe waarde der viriaal is alleen afhankelijk van de
plaats van het punt, dat men als oorsprong kiest, niet
van de richtingen der coordinaten-assen.”
Dit blijkt ook uit de uitdrukking van § 3 namelijk
T o TN iey (2‘, ).
Schrijven wij de vergelijking in de gedaante
o=/ A4y B+ 2 C)
200 zien wij, dat de viriaal in O gelijk is aan de viriaal

(e

in O, vermeerderd met de viriaal van de resultante der
krachten aangrijpend in het punt O, genomen ten opzichte
van (0.

Op de drie grootheden
= Sy L—2Y) M=2(zX—x L), Ny=2(x F—yX)
dezelfde transformatieén toepassend, worden voor den
nieuwen Oorsprong
 C+5, B) -8 (MM, 14-x, C) 4 y (Ny-—x, B+9, 4)
a' (Ly—y, C+- 2, B) + B/(My—sz, A+x, C) + y'(Ny—x, B4y, A)
a (Ly—y, C 4z, B)+ B/ (My—z, A+ 2, C) + y(Ny—2x, B+ 3, A).

I
in dus
L Y CH4-2, B)*+- (M,

v—2y A2, C)* - (Ny—-x; B9, A)* (8)
€n ook deze grootheid is onafhankelijk van de richting
der codrdinaten-assen.

8 14. Vragen wij voor welke punten in de ruimte de
viriaal nul is, dan vinden wij deze meetkundige plaats

ut de vergelijking

Ax 4+~ By 4 Cz + £ 0.

Dit stelt ecen plat viak voor, welks normaal met de
assen hoeken maakt, wier cosinussen evenredig zijn aan
A, B en C

Bij krachtenstelsels, die in cen plat vlak gelegen zijn,

y
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vinden wij op dezelfde wijze een meetkundige plaats
van de gedaante
Ax + By + F, =o.
Het vlak noemt men hoofdvlak; de lijn hoofdlijn
der virialen.

~

S = T (Y S v 1q 3 T 1 e e '
§ 15. Volgens § 13 is de viriaal in een punt x,, y,, z,

L
bepaald door de vergelijking
F=F + dx;, + By, 4+ Cg,.
Daaruit blijkt, dat voor alle punten van het vlak
Ax + By 4+ Cz + (F,—F)=o0
de waarde der viriaal constant is. Dit vlak is even-
wijdig aan het hoofdvlak.

Bij vlakke stelsels verkrijgen wij op dezelfde wijze
lijnen van constante viriaal, evenwijdig aan de hoofdlijn.
Hun vergelijking is

Ax 4+ By + (&, —F) 0.
§ 16. Indien we ons drie punten x,, ¥, z,, X555 L

Xy, Va2, voorstellen, gelegen in een rechte lijn, hebben
wij uit het voorgaande de drie vergelijkingen

. p . | )
:/” : 41_11 - /)'-]l ,¥‘
I Iy + Ax, + By, + Cg,
r, Iy + Ax; 4- By, +

Door vermenigvuldiging resp. met a,—a,, x,.—a

G Z)
Ce

g Ly

x—x,, daarna met 4.—,, ¥,—» I 4, en ook met
2,2, %,—%5, %—3, en in het oog houdend dat

Xy—X, X —X, X, —2

Y1i—, - by Va Ya—)
en dat

Y —%, _ X —X, Xy

2 —2,  Z— A

verkrijgen wij
15 (%,



LLegt ‘men nu het punt x,, 7,, 2, in het hoofdvlak en
de beide andere punten aan weerszijden evenver van dat
vlak verwijderd, dan zijn:

/-2 =10 £ X X, — X Kg s Va——Vs —N—Vs1 2 r— =

] —— =

2 3 ; YNy » By—By = Z(—D,.
Na invoering hiervan worden de drie vergelijkingen
F=—F

Ergo, de virialen op gelijke afstanden van het hoofd-
vlak aan weerszijden genomen zijn gelijk en tegengesteld
in tecken.

Legt men a in het hoofdvlak dan is /2

|? ."'l ) ‘-“l ’ i —t 1
en verder
4 2 TEd L S et A e
F, Xy—X, Yo 2, —2;

Of: de virialen ten opzichte van punten aan dezelfde
zljde van het hoofdvlak verhouden zich als de afstanden
van die punten tot het hoofdvlak.

Bovenstaand bewijs dezer eigenschappen is volgens
Scuwrins.  FEen  eenvoudiger bewijs is het volgende:
Kiezen wij het hoofdvlak tot X)-vlak, hetgeen wij doen
door in de vergelijking daarvan, n.l

Ax - /::1' -}~ Gz - /'” — 0
de grootheden
A 5 . /"‘“ = 0= N

te  stellen.  IHierdoor wordt de viriaal in de punten

3 - b
j e Rz,
F, Rz,
Dus
Qs I '
cn voor
i F O g

Voor vlakke krachtenstelsels gelden dezeltde eigen-

schappen ten opzichte van de hootdlijn.




§ 17. Als wij een enkele kracht 7 beschouwen, aan-

grijpend in een punt %, %,, 3, is hare viriaal
fy=—@F X+ Ytz 2)

Het blijkt dus dat het hoofdvlak door het aangrijpings-

punt gaat. De negatieve viriaal is dan
— F, = Pr cos (Py)

Het moment van die kracht ten opzichte van den

oorsprong is
G = Fr sin (Py7)

Zoo blijken moment en negatieve viriaal elkander in
zekeren zin aan te vullen.

Indien het aangrijpingspunt op de richting der kracht
verplaatst wordt blijft ¢ constant. Zulks is niet het geval
met /7

§ 18. DBij vlakke krachtenstelsels kan men het stelsel
terugbrengen tot een resultante A welks composanten op
de assen A en /7 zijn en een koppel G, = 2 (x )y X))

Dit koppel is nul voor alle punten der centraal-as, die
tot vergelijking heeft

5 x .(’f_'}' (l‘“ = 0.
De hoofdlijn der virialen (zie § 14 bldz. 20) is,
Ax —E /,’:}' 1 /':I 2 0.

Deze twee lijnen staan alzoo loodrecht op elkander en
de coordinaten van hun snijpunt zijn
7, AL, - AG, 4 BF,

/o3 v Y i .

Dit punt noemt men het middelpunt (astatisch centrum)

X¢

van het stelsel. Ten opzichte daarvan zijn het moment
en de viriaal van het stelsel beide nul.

Herleidt het systeem zich tot een koppel, dan zijn A
en /7 ieder gelijk nul. Zoo wij alsdan de waarde van het
koppel ten opzichte van het punt x,, 9, als oorsprong

(7, noemen, zoodat (8)
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d

G =Gy — 2% B+ 4
is, dan zijn (§ 15)
G, = G, en Iy = F,
Dus: én het koppel én de viriaal zijn voor het geheele
vlak constant.
Dan zijn, als x,,», en x,,%, de aangrijpingspunten der
koppelkrachten zijn
F=— [(x,—%)) X+ (5—2) ¥
G = [(x,—x,) ¥ — (—2,)X]
of als 2 de grootte der krachten en A, A, de afstand
hunner aangrijpingspunten is, terwijl hun verbindingslijn
een hoek « met de richting van /22 maakt
= __;l ,JJ, P cos «
G= A A,. P sin e

Valt A, A, met de richting van /7’ samen, dan is het

stelsel in evenwicht, want dan is
(=0
en 1s
= A,

Derhalve een constante grootheid. Eerst wanneer -,
en o, samenvallen is ook /['=o.

§ 19. Bij krachtenstelsels in de ruimte hebben wij
behalve drie krachten <1, 72, € ook de drie koppels
L=3(yZ—=X) M=2( Xex Z), N= 2 (x Y—y X).

De vergelijkingen van de centraal-as, de lijn, waarvoor
de as van het resulteerend koppel met de resultante
samenvalt, kunnen ongeveer naar Scurrt ,, Theorie der
Bewegung und der Krifte” Th. I, Cap. IV, § 10 afgeleid
worden op de volgende wijze:

Daar ¢,
nemen wij een evenwijdig coordinaten-systeem, dan is

onafhankelijk van «, i, », enz is, (8. § 13)

voor een willekeurigr punt a7, v, © als oorsprong
L = L—Cy+ Bz; M, = M—Az+ Cx; N=N—Bx+Ay.
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Daar G, evenwijdig aan R (de resultante) moet zijn, is
Ly M, V' (
AL =B -
en dus
CM—BN, =o.
Na invoering
(B*+ C) 2—A4 (By+ C2)=BN—CM
of
Rix—A (Ax + By + Cz) = BN—C M.
Een vlak door den oorsprong, evenwijdig aan het
hoofdvlak der viriaal heeft tot vergelijking
Ax + By 4+ Cz=o0
Noemen wij het snijpunt van dit vlak met de centraal-as
£, n, £, dan verkrijgen wij
At 4+ By + Ct=o0
en
Rt = BN—CM.
Dit in bovenstaande vergelijking gesubstitueerd geeft
K2 (x—F) A(Ax + By -4 Csz)

of
x—%  Ax4By4 C:z
A T R*
De vergelijkingen van de centraal-as zijn derhalve
x—& et i ST
yZ | Vi - e

waarin
Rt =BN—CM; Ry= CL—AN;
R —=AM-BL.
Hieruit ])]ijkt dat deze ]ijn loodrecht staat op het

hoofdvlak der viriaal. De codrdinaten van hun snijpunt zijn

. AF

R*

BF . CF
R’ " > /\J:'

¥ =5
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§ 20. De hiervoorgaande eigenschappen kunnen met
behulp van de methode der quaternions op eenvoudige
wijze behandeld worden. Is namelijk # een vector, die
een kracht voorstelt, aangrijpende in een punt welks
vector « is, dan is het werkzame moment (].)I'ohmmnont)
ten opzichte van den oorsprong P« g en het verloren
moment ([f]iu]“n”n]p]]f} _\1(( ﬁ' Dat beide grnnthc'dvn
elkander aanvullen behoeft bij deze wijze van voorstelling
geen nadere uiteenzetting, Samen vormen zij het product
« 3 dat het totale moment van § ten opzichte van den
oorsprong moge genoemd worden.  Verder is

R=S8e—="2 Vin S gi—"2 S 3

De vergelijking van de centraal-as laat zich gemak-
kelijk afleiden uit de eigenschap, dat voor een punt van
die as het resulteerend werkzame moment als vector
met k moet samenvallen, Stelt dus y den vector van cen
punt der centraal-as voor, dan moet
7) B =)R

l
—
—_
-
A

zijn,  Nu is

dus moet
y R = G—VF yR.
Opereert men hierop met Sk dan verkrijgt men

y R* Sar

Derhalve

Vyr =6—R"1SGR R Vgr-!
waaruit volgt als vergelijking der centraal-as

p Var™!'- xR
Een stelsel is reduceerbaar tot een enkele resultante,
als men maken kan, dat
G Iy O

of met § R n]n'l't't'l‘l'll(]_ als

SR G O B e o D)
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Voor een punt y is de viriaal
F, =2 S(a—y)f =r—Syr.

De viriaal is constant voor alle punten y, waarvoor
S 7 R = F—F, = const. = —n T R* = nRr?
S(y—nR)R = o,

Dus in een vlak loodrecht op r. De lengte der loodlijn
uit den oorsprong op dit vlak is klaarblijkelijk
AR ]"I
7% LR = e
Het hoofdvlak vinden wij door »

o

, = o te stellen; de
hierbij behoorende waarde van # noemen wij A, dan is
:
T r
en de vergelijking van het hoofdvlak
S (y—p R) R=0

7 TR =

of

AR AV G i e e ST ()

Verder is
P o I
n T'r y 'R 4 =
/ ! 'R

of

F, = (p—n) R

In woorden: de virinal ten opzichte van een wille-
keurig: punt is evenredig aan den afstand van dat punt
tot het hoofdvlak.

Substitucert men de waarde van y uit de vergelijking
van de centraal-as in (10), dan vindt men voor den
vector van het snijpunt p,:

SR y, TR [ pR?
of

(Ill\

of omdat p
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De viriaal in de Statica.

. ASTATISCH EVENWICHT..
«. Viakke lkrachlenstelsels.

§ 21. Wanneer een stelsel krachten aangrijpt aan een
stelsel punten, die onderling onveranderlijk verbonden zijn,
en het krachtenstelsel is in evenwicht, dan zal in het alge-
meen, bij een willekeurige verplaatsing van dat stelsel
het evenwicht verbroken zijn. Nu kan iedere verplaatsing
van een systeem beschouwd worden als een voortgaande
verschuiving, gevolgd door een draaiing om een zekere
a5, die men bij een vlak systeem loodrecht op het vlak
van het stelsel denkt. De verschuiving heeft op het
evenwicht geen invloed, de draaling cchter wel.

Laten wij nu de voerstralen der aangrijpingspunten
om een punt in het vlak dat wij als oorsprong kiczen
cen hoek ¢ draaien, terwijl de krachten in grootte en
richting constant blijven, dan zijn de coordinaten van ecn
punt . y N g‘.-\\'()1‘|[g-;1 _1"_ 1" on \\'ij hvhlu-n de ]H't['l‘l{kiﬂg‘l‘ll

v’ v CoS q N St g

7\" — _\‘,f'}.’ i '; _]' cos .
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Voeren wij de volgende bekortingen in:
SX_—A; T V=03 (xYV—yX)=6G—Z(xX+4+yY)=F.
Nu hebben wij na de draaiing
= (2 }'—.]" X)=Z xYcosp—=Zy1 TSI p—2x Xsing— Sy Xcosg
G = F SJ.H. p —;— (r cos P '
S X4y Y)=—2aXcoso+2ZyNsing—ZxYsing—2y¥cosg
' = Fcos P - (7 sin q.
Daar echter het stelsel voor de draaiing in evenwicht

was, zijn

dus
F=IF sin g
/“/ - /" (7AY IT'

Het stelsel is derhalve aequivalent geworden aan een
koppel, waarvan het moment is /7 stz ¢, LEen draaiing
van go° of 270% zou dus dit moment zijn grootste positieve
of negatieve waarde geven nl. + /7; terwijl een draaiing
van 180° het stelsel op nieuw in evenwicht gebracht
zou hebben. Een draaiing over een rechten hoek
had het resulteerend koppel gelijk gemaakt aan de
oorspronkelijke viriaal.

Een stelsel zal alleen dan bij een willekeurige draaiing
in evenwicht blijven als /7= o.

Daar volgens § 18 de wviriaal van een in evenwicht
zijnd stelsel constant is voor alle punten van het vilak,
blijkt het, dat deze voorwaarde onafhankelijk is van den
oorsprong van coordinaten, dat dus het resulteerend
kn])]n-l enkel afhangt van de grootte van den hoek van
draaiing, en derhalve alleen dan het stelsel in astatisch
evenwicht is, als ook de viriaal van het oorspronkelijk
_‘\ll‘l'ﬂ‘! L[’l']ijk nul 1'\

De viriaal verandert bij draaiing van 180% van teeken.

ve .o O . 0 " e g .
Bij draaiing van go® of 270% wordt de viriaal gelijk + ¢
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dat is, gelijk het oorspronkelijk koppel. Bij astatische
stelsels is de viriaal steeds nul.

§ 22. Indien het stelsel niet in evenwicht is, kan men
vragen of het mogelijk is het door bijvoeging van een
kracht in astatisch evenwicht te brengen en zoo ja,
waar die kracht dan zal moeten aangrijpen

Noemen wij de composanten dier kracht X, en )| en haar
aangrijpingspunt x,, 3, dan moet dus voor willekeurige g

A+ X, =o0
B+ Y =o0

(/ o _\*’ v ]*I ) 2] q L (7 i X, )" Yy ’.l ) cos g 0.

1
Het evenwicht zal dus bewaard blijven, als

P, X,—y, V; = F+ Az, + By, =o0

|
G4x YVi—y X = G Bx + Ay, =o.

Maar volgens § 18 zijn dit de vergelijkingen van de

centraal-as en van de hoofdlijn der viriaal. De gevraagde
kracht is dus hiermede bepaald zoowel in grootte en
ri"i'““#:' als ten opzichte van de plaats van het aan-
"H"“ijl’i”_‘-:'hplltlt (het snijpunt der juist genoemde lijnen).
In § 18 gaven wij aan dit punt den naam middelpunt.
Daar dit punt in ecigenschappen overeenkomt met het
middelpunt van evenwijdige krachten, wordt deze naam
gerechtvaardigd. Voor de coordinaten vonden wij
BG—AF AG - BF
| A* 32 ' N r:l 2

[ndien wij een systeem evenwijdige krachten hebben,

A

die alle een hoek ¢ met de N-as maken, zijn
A=cosg. 2P, B=sing. 2 '
G=sing. XxP—cosqp.2Y Ir's
F=-—cosqg.2xP—sing. 2yl
en worden de coordinaten van het astatisch centrum
>N DX VA s

0 52 y 4T RSV
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Dit zijn juist de coordinaten van het middelpunt der
evenwijdige Krachten.

§ 23. Ware echter het oorspronkelijk stelsel aan een
koppel aequivalent of in evenwicht, dan zijn

A=A =0

en onverschillig of & al dan niet nul is, toch worden
de codrdinaten van het astatisch centrum ~; terwijl de
grootte der kracht nul wordt. Een stelsel, dat zich tot
een koppel herleidt, is dus niet door toevoeging van
een enkele kracht astatisch te aequilibreeren, wel echter

door twee krachten. Rekenende als boven, hebben wij

(G+x Y, +x,Y, —3 X, —y, X,) cos ¢

= ]|_ ( /“ ,1'] '\'l .~ .1—..,. .\’.-. _’)'l j ’ -"]'2 } -‘.{ ) -'I}}'.l’ " p— 0.
Uit de eerste twee
X,=—X, X;: Y, en dus P, = P,

(Gesubstitueerd in de derde

(r : (.1'| X,) }’l (.'_']'i .'}'.2') .\-l — v

F—(x x,) X (g —2,) ¥y =o0.
Wij hebben dus ter bepaling van zes onbekenden
slechts twee vergelijkingen. Daaruit zien wij, dat een
dergelijk  krachtenstelsel op een oneindig aantal wijzen
met behulp van twee krachten in astatisch evenwicht te
brengen is. Tevens moeten die twee krachten een koppel
vormen, waarvan zoowel het moment als de viriaal gelijk
en tegengesteld moeten zijn aan het moment en de viriaal
van het gegeven krachtenstelsel. Is het oorspronkelijk
stelsel alzoo in evenwicht, dan moet de arm A A, van
het koppel met de richting der beide krachten samenvallen.
§ 24. Monius heeft aangetoond, dat, wanneer men bij een
vlak krachtenstelsel alle krachten naar een willekeurige

richting ontbonden heeft en men dan van het daardoor
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ontstane stelsel parallel-krachten het centrum zoekt, de
mmztkundigc plztats van dat centrum een Vvoor ieder
stelsel bepaalde lijn is, onafhankelijk van de richting
volgens welke men de krachten ontbonden heeft. Hij
geeft aan die lijn den naam centraallijn. Om de
vergelijking dezer lijn te vinden, kunnen wij de krachten
naar twee willekeurige richtingen ontbinden, van ieder
dezer stelsels het centrum zoeken en vervolgens de lijn
bepalen, die door die centra gaat. Wij kiezen voor de
eenvoudigheid de codrdinaten-assen als richtingen.

Dan is het centrum der \-composanten (¢, )

P 2y X
ICI } ’ ﬁl — ‘ I
Dat der }-composanten (a,, ()
2xY Ty Y
G ="n (- 7

De vergelijking der centraallijn, die door deze beide

pPunten gaat, is

IR
X ooy &Ky i (8]
|54 ﬁ1 lr;'.! ;
Of
| y l /)'
la 22X 2x2Y |[=o0
y 29X 2y Y

Kiest men deze lijn zelve als richting, langs welke
men  de gegeven krachten ontbindt, zoo vindt men op
deze lijn een punt als centrum dier ontbondenen.

Dit punt is het centraal-punt.

Kiezen wij dus de centraal-lijn als X-as en het centraal-
punt als oorsprong , dan moeten
o B, = p’._ =@, =0
2n, of wel




Dus dan worden
(=R s onRia=—— 1}

In dit codrdinaten-systeem is nu de vergelijking van

de centraal-as
Bx—Ay—Z2x Y=o
en de vergelijking van de hoofdlijn der viriaal
Ax <+ By=o,

Op de centraallijn liggen, gelijk wij gezien hebben,
twee merkwaardige punten, het centraalpunt en een
tweede punt, dat wij verkrijgen, door de ontbondenen
van alle krachten te vormen volgens een richting lood-
recht op den centraal-lijn, en van die ontbondenen het
middelpunt te bepalen. In het centraalpunt snijden
elkaar volgens het bovenstaande de centraallijin en de
centraal-as; in het tweede punt, de centraalliin en de
hoofdlijn der virialen. Deze twee punten vormen alzoo
met het astatisch centrum een rechthoekigen drichoek,
die aan het laatstgenoemde punt zijn rechten hoek heeft.

§ 25. Indien in de vergelijking van de centraallijn de
onderdeterminanten :

A 2 A Vi rX 2x V|

{e} O} | 8]

’

3y X 3yV| |ZxX ZxV |3y X gV

zijn  wordt de centraallijn onbepaald, maar dan zZijn

-

= a; en B g, en vallen deze punten met het

astatisch centrum samen. Is het stelsel tot een koppel

reduceerbaar, dan zin A= =0 en de drie lijnen
komen alle op oneindigen afstand,

[s het stelsel in astatisch evenwicht, dan worden al
deze lijnen onbepaald.

B. Krachtenstelsels tn de ruimte.

§ 26. Wij voeren de volgende notatieén in:

2X= A4 >¥Y=275 2L=C

_—




2 == Zy ¥Y—a vy Z=a,,
2z X=a,, 2z¥=a, 2zlZ=a,,
Ayo—ay, =L ay—a,=M a,—a,;=N

1 { - Py |
(a,, + a,, + aq,) = 1

A+ B*4- C*=R* L4 M+ N*= G*
Y 27. Bij een stelsel evenwijdige krachten, wier rich-

tingscosinussen «, g, » mogen zijn, hebben wij
=i el B=p823P, &=, 2 T R=2XP,

LESY 2YP—f 33 P, M—u 3zP—y IxP, N=@ XxP—a 2y P,
/e («2x P+ 33y P+ y2z22P)
Substitueeren wij deze waarden in de gevondene voor
het snijpunt der centraal-as met het hoofdvlak der viriaal

(zie § 19) dan worden deze
R x 2x P, Ry >y, Rz gl

Maar dat zijn juist de coordinaten van het astatisch

tentrum der krachten.

§ 28. In het algemeen heeft een krachtenstelsel geen
astatisch centrum.

Projecteert men alle krachten op onderling evenwijdige
lijnen, wier richtingen door «, #, ; bepaald worden,
dan kan men van die projecties, die een stelsel even-
Wijdige krachten vormen, het centrum bepalen.  Zijn de
coordinaten daarvan weder x, v, z; dan is de projectie
van een kracht /22 op de gegeven richting

«a X 4+ 3V 4 2

i

N men vindt

. [ A 1T e
K 2 Gy 1283 TV %>
) [ ]
/\." s ”‘.'I it u':: J Qaq
1 » |
/\J = o« “':'»l 2 "|..'_‘ 1= J Qaqe

Elimineert men hieruit «, 3, y, dan verkrijgt men als

nl(ft'[l\‘_“n\tig‘. 1ll-it£1\ der centra het viak




A

X a, i, Q4

—)

Y G,y G,

ta

Aoy Ay g,
Dat vlak is door Mopws centraal-vlak genoemd.
Voor het geval, dat men tot projectie-richting de rich-

ting der resultante van het stelsel kiest, worden

A LS 2
“=x =R =g
en men vindt dan een punt in het centraalvlak:
Aa, +Ba,+Ca,, Aa, - Ba,, 4 Cya,,
Xo = foe »Jo s '
Aay, + Ba,, + Ca,,
2 = Ve

Dit punt is het centraalpunt van het stelsel,

Ontbindt men de krachten naar drie loodrecht op
elkander staande richtingen, waarvoor men de coordi-
natenassen neemt, en zoekt de centra dier stelsels, dan

vindt men eveneens het centraalvlak. Die centra zijn

. iy , a4y, @y

S L F2 (i
“‘I.’ ' f’]l ”’ul

Y2 i 2 5’ 2 5’
4 . iy i,

: Ve B e
3 c'* 73 ( 3 (

Hierdoor een vlak brengend komt men op het centraal-
vlak terug.

Kiest men dit als N F-vlak, dan zijn

44 O, a4, (8] @y, O,

Dan bepalen de X- en }-composanten in het vlak de

Cf'ntril;l”ijll, en, zoo men die dan als X-as kiest, moeten

@, 0, a., . 0.

Neemt men nu het

centrum der aan de centraallijn




(oY)
wn

evenwijdige composanten, zoo vindt men het centraal-
punt der centraallijn.
Kiest men dit als oorsprong, dan is

~ )
gy =

€1
D=, Gys 500 V= a1 =03,

Het hoofdvlak der viriaal gaat dus door den oorsprong.

119

De  snijlijn van dit vlak met het centraalvlak heeft dan
tot vergelijkingen
Ax 4 By 0, A=A
Als de minores ten opzichte van de eerste kolom van
den  determinant nul zijn, is het centraalvlak onbepaald
en men heeft een stelsel vlakken, die echter allen de
centraallijn bevatten. In dat geval zjn de vergelijkingen

dier lijn

1 | V£ 1 A 5
voa, a, 0} X dyy Ay 0
Y "!.'l .'.i'.,: : ”‘I ff:.(‘

Eindelijk kan het gebeuren, dat ook deze lijn onbe-
paald wordt, dan hebben wij niets dan een centraalpunt,
Tot dit einde mocten

G141+ Q14 28,4 @yy +Qyq ¢ Gqq oy +gq + Uqq A: B: C,

§ 20, Wij zullen nu de onveranderlijk aan elkander
\,“]_h““d“n ,g,m-,;'rijlliIHI“I’“‘”"” der krachten van een stelsel
laten draaien om ecen as door den oorsprong en zien,
welke \'q'l'.llltll'l'illg"|1 dit in het stelsel ‘k"!'l'f‘l.

/lj dan door ch‘;l.tiiﬂ_'-.!' om de as (/ /? het punt A in A7
gekomen en zij

MPM =g,
coordinaten A/ : v >
- M v fdx ytdy 2443
7720 § Y .

dan Z1jn




z 3

=x -1, 4=,

E - L1y ;

_:}1- r : — 7] A l*."_- 7 | z.

”“. : """.‘ - . -
,/}/ De richtingscosinussen van
.r i

0 F Zijﬂ }., I P,

/O X De lijn A7’ 7 staat loodrecht

op OF en Om.

T Dus

hdx - " J_‘)' + a2 =0
EAx - n J,]’ + L4z =0
(42)* + (49)* 4 (d42)*=: 4 ml.

Hieruit
1 x 49
s oy v E A
2 il
V@l —ry)? + (G E—)L)?
2 mid

Hieruit

A%




=
~J

waaruit weder

_f'.{\f?' i{_ A X _.i, » ‘VI -\' = .,l i — {'fi A f‘_")'

— v dx- r'zfg" Ady+4 L4z 2(rx—~2),
s —) tol 42 2 (Ay —u x).
udx—Aidy 4 clg : dz= 2 (A /
Oplossend

- - ; o )y 20 4 wetg & 24,
/’ X = 2 ‘\“,”'_{ ; ) (I“-_g _‘%_ J':).\- | ) " -y (‘.‘;’ _] 1 | v | S ., 5

[ 5]

9 y o {.’, "f‘
dy —, stn2 ] : ()' w4 ety ([ ) x—(A* 4+ »?)y 4 (.“ y— A CIf 5 ] =12

ra

3

A | : “a A |
stn 23 '.f r w cle ' }.\' —;4 'gi V=t A ({:-" ]_1 (A* == n)e (-
Door deze draaiingen zijn de veranderingen van £, 47,

1\" on /
4L = X Zdy > YAdz,
A M > Xdz > La4x,

AN = > Yadx 23 Y I_‘.'.
a > Xdx . & )ll > Zde.
Na substitutie |
' 2 y Ly el -
]. '.':3_\',?-,!."_'“ ) / (}': L u?) 4 i A ;)1 @ a (}. ==y :I:\ _:)
s | « \ 5 I ‘ )

o l/ ’ " n'}-’{."ll ] = (@4 Ayy ) 0 0 ! (/7 dy, IJ‘.-'"{., =10
|2 J A .

2 ,\';.,1.1 1l

| .f . q]
AT g { = - n 1% | / g ’. ” |“ ( ‘gl .‘
A 2 sipr ¥ | N (v + 22 + a4, (A w?) 3o {f l 55

q
\ . - | /'- _a ) ) ‘w-{”. 7 g ,
@y, (1-'1( . !_{.‘-.’é; / ) ! (a,, a, ) A { -’ an 55




—2 s

: (,
ayy (1 —wetg?

Voeren we nu in

Dan

Hiermede zijn

1 Eiled W ! L5,
i, / —f-‘ a,, U iq 3 ‘f,
(f']} ] a,, u 74 1

hebben wij
ok Vo e : it [y sk |
2§17~ § 1 8 "y ¥ (b= A ( I elg E i ("]

. .'I ' - - {
238in- : : ‘”)’ ('ff;-' Vo L I ( /' (‘/:."' ‘ 0 :.'
25\ 2 2 )
o ol i A - {
281n- " : 7 r'/_."" /. i‘} Mo ¥ ( /"¢ lo J i) : .

2 .\/'H"'J :' Ao w1ty F 0 cle ] :

bij een gegeven draaiing om een gegeven

as de veranderingen bepaald

2

§ 30.
gegeven

elimineert

i
A

(}." - ('/f;""(].f/. | (;'.'r: t= 1 r‘/_;"" A A4 ll v

Men

zijn, krachten 4,

kan ook omgekeerd als

1L, Ad0M, 4N

u, v, ¢ te bepalen. Daartoe

men uit de drie eersten

# en y, dan komt er

G
o { /f.;’ 2

}. l l’"f‘/.,'\’ ¥ 0 l

n l.’f;" 4 /’ \: .

Stelt men nu

b to AT

dan worden de drie eerste vergelijkingen

for I
» 2 'S >

AAL Fud M-y AN)—F—s.




a—Ls— 1, \4 Lclg L tvdM—y zf."\'] = 0,
2 R 2 "‘]/"".I."l’ FAAN v A /.): 0,

7 yS ': ,].\'.".{;\' ) wdLl f],?/) 0.

Telt men deze op na ze respectievelijk met 4, u, »

vermenigvuldigd te hebben, zoo geeft dit

@ b |'; W=y A 1_, (Ad L+ [ A M A .I,\'irffq £ O,
Hieruit komt
A EHEDIE Y L o o i o LR,

I'Il(]ii\ﬂ men  de waarden voor «, B, 7 3 terug sub-
stitueert, wvindt men ter 1n\]1;|1ing der onbekenden
S, ¢, A, u, », waarbij de betrekking (A* -+ u* - »?) 1

bestaat, de vier vergelijkingen

@ =)+ (a,, -+ Yy AN p+(a,— hyd M)y —"|, A Leg T=o,
@ Yy ANY A (@, — ) u-t @y 4 o A L) v — Ty .I.l/f‘.{’g"{ 0,
u’“ 1 "'/‘l S 7 I_..f/.‘]! (a,, §) » |;‘I.\.'.&‘ |{ o,

(‘/‘ | I.'"/,l). ' Ii/ I__f.l/)‘u 1 \.\- I: I,\.‘H' L/ _\\)‘,’f\r' 0.

Hieruit moeten cerst A, u, » €n g geclimineerd worden,
dan g bepaald en daaruit door lineaire vergelijkingen de
Overige onbekenden,

De vergelijking voor s is

a, Ky a., '-_Al‘\' Gy '_,.].l/ '_.,.ff. |
a, '_..I.\' a. g Aqq 1 ", 1L 1;.1.]/'

: .

Ay, 'V, dM a,,—',dL By — S AN
L4yY. AL MAY,dM N+, dN F+s

Hieruit vindt men vier waarden voor .
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De verandering der viriaal is dan gemakkelijk uit
4 F—=-—2 (F+5) te berekenen.
§ 31. Wanneer wij nu het bijzondere geval nagaan,

dat het stelsel in evenwicht is, en wij dan een draaiing

zoeken, waarbij dit evenwicht behouden is gebleven,
moet in onze vergelijkingen

T i ey SV e 1 = 0; dM =o0; 4N —=o0:
en dus

”_I - ('I]', y (."_, — rf__,,‘, ”I.! = rf‘: :

gesteld worden, stellen wij verder

- |
a, — S (1 a,, ‘
@, a., 5 a@,, — 1B
; 4 1" a€,, a,, §
dan worden de vergelijkingen
(@, —s)r+a,u~+a, v=o0
a.,hr+(a,, S)u-+a,, r—=o
@y b+a,u+ (a,,—S) v=o0
( a 5) /) 0
Stellen wij als eerste geval D niet = o, dan moet

s zijn,  Gesubstitueerd in de drie vergelijkingen

maakt ze onmogelijk, tenzij men ze eerst met lg ’ vermenig-
vuldigt, want dan kunnen ze door i 0 voldaan worden.
Doch dit is de oorspronkelijke stand.

Het tweede geval is /) — o,

Men kan het coordinatenstelsel

200 [c'::’g'l'l], dat
rf! — :!7' h’” {
wordt. Dan is
&) (a,, $) (a.. s) (a. 5).

Verder hebben wij dan

(a

i $)h Bh A

19 M — ek (e, Sy O
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De wortel s—a,, geeft L=1, =0, v=0, g=m,
de wortel s —a,, geeftl—o0, u=1, v=0, g=nm,
de wortel s —a,, geeft l—=o0, u=o0, r=1, g=m

De evenwichtsstanden worden alsdan door draaiing om
een der coordinaten-assen over een hoek van 180 uit
elkander afgeleid. De bij iedere stand behoorende viriaal,

zoo die bij den oorspronkelijken stand

FI = — (4, 4 @y ar ”n:\.)
1s, wordt
F, = — (4 a;, — a,, — ay,),
F,=—(—a, -+ @y ”-’\3‘)‘
f"‘ — (S 2 rI“\.

§ 32. Heeft de vergelijking

(F4+s)D=o
twee gelijke wortels s /" dan kan men s /in D
substitueeren. Doen wij dit tevens in de andere verge-
lijkingen, zoo verkrijgen wij

(a - )AL+ a,p -+ ay v n.J

a., b~ (a,, " ) 4 Ayq wh- (14)
ay, A4 a,, u+4(a,, 4 £)v=o0, ‘
en
n‘” o r.’l . iy
l a, Byq a dyq . o
@y a @aa =1 /

De onderlinge onafhankelijkheid der drie vergelijkingen
Voor 4, my, » 18 zoodoende voor alle waarden van g ge-
Waarborgd; deze grootheid is bovendien uit de rekening
gevallen, Bij iedere willekeurige draaiing om de zoo be-
baalde as blijft dus het evenwicht bewaard. Het stelsel
IS ten opzichte van dien as astatisch.

Zulk een as noemt Monws een evenwichts-as.

Een stelsel bezit dus een evenwichts-as of niet, naar-

Mate 4 al of niet IS ER
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De waarde s = — /' geeft verder in (13)
i == %)

Indien dus een stelsel draait om een evenwichts-as,

blijft de viriaal constant. En omgekeerd, indien bij
draaiing volgens willekeurigen hoek om zekere as de
viriaal van een in evenwicht verkeerend stelsel constant
blijft, is die as een evenwichts-as. Wil men echter weten
of een gegeven as evenwichts-as kan zijn, dan moeten
hy w, v aan elke der drie vergelijkingen (14) voldoen.

Dan is van zelf 4=o0. Vraagt men of de Z-as bijv.

evenwichts-as kan zijn, dan hebben Wij

of wel
P A A —a) Pl A 0, Z(xX+9Y) 0.

§ 33. De grootheden %, u, » zijn evenredig aan de
coordinaten van een willekeurig punt der evenwichts-as.
Vervangen wij ze door x, A, zoin (1), dan stellen deze
vergelijkingen drie platte vlakken voor, die door den
oorsprong gaan; en de conditie A — o zegt, dat die drie
vlakken door een zelfde lijn gaan. Deze lijn is dan de
evenwichts-as. Indien echter
(@11 +L£):a142 04 =a,,:(a,, 4 [)ia,y == agy s ayy (@gq 1)
wordt die evenwichts-as onbepaald. Men komt tot deze
verhoudingen, zoodra men vraagt, wanneer een stelsel
twee assen tegelijk bezit.

Er volgt uit

(@, + F) a,, Bia Gy 5
l-'!‘_-, . /) a,, g Bys;
{n’.::: ! /")r!l;, a3 gy

Substitueert men dit in (14), dan herleiden alle drie




zich tot de vergelijking

X YV z
-+ | 0.

2y yy yq
Iedere lijn in dit vlak is dan evenwichts-as.
Zal een stelsel ten opzichte van drie assen in astatisch
evenwicht zijn, dan moet voldaan worden aan de volgende

twaalf voorwaarden:

A s b= 0, ( 0,
rI“ 0, 4 O, a, O
(r,,l 0, (1 S 0 r!“ Q5
(L LXs [ 9% O3 Tyq 0

In dat geval is het stelsel in evenwicht ten opzichte
van iedere willekeurige as door den oorsprong. Het 15
m., a. w. volkomen astatisch,

§ 34. Is A niet = o, dan heeft het stelsel geen
evenwichts-as door den oorsprong.

Momus heeft echter aangetoond, dat een in evenwicht
zijnd stelsel door toevoeging van twee gelijke en tegen-
gestelde krachten steeds astatisch ten opzichte van een
willekeurig gegeven as kan gemaakt worden. Laten de
composanten  dier krachten en hun resp. aangrijpings-
punten gegeven ."ijll door

A A X v Y5 4y
ll'.]ll' i 1:‘.\':‘_1
200 hebben wij dus eerst

X, 25 ¥, Yss Z VA
en worden de nieuwe waarden van a,, , @,,, €NZ die wi)

met accenten zullen aangeven

s

il - ’ " - ’ : . ’

’H n'” (x, _1-14_\: 7 AR P \‘\)__ i, 4 (Vy 'll\!/f;,.

o ‘ : , ‘ R ) Fat N
a i (91—, @'y =ay+(—N) Y, @a3=0331" D1 .H)/-,.x'

a’ 2 o o ) = ' b RTE
TS (2, . ) X ; “";; ayy+ (Vy—) } o 43—y (24 2 \/,’._..

Het nieuwe stelsel moet in evenwicht zijn, dus
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Maar daar het oorspronkelijk stelsel in evenwicht is,
zijn
y, = t?:l " (!]3 = gy, (?23 P— "’::-_'-

Uit deze volgt

_"." S RNy R f (e -7

P’

2

XS Y, 7

3

De krachten moeten derhalve gericht zijn langs de
lijn, die hun aangrijpingspunten verbindt.

Voor de viriaal van het nieuwe stelsel vinden wij

Fl=F—(x, —x,) X, — U —n) ¥, — (2, —2) Z,

of wel

= — Py —f-1 LT e ({1 %)
Noemen wij de cosinussen der hoeken, die » en &

met de assen maken «, 3, ;, dan zijn

R ) e > A ! ) v
X, =P «, Y, =P8, Z, Loy
a—f =7ra, —y=1rf, z—z=ry,

Alles in aanmerking genomen, worden onze verge-
lijkingen (14)
la,, + F—- Fry (a*—1)] 2 (@, — £, a3 u - 4, —F,ay]lv=0
(@ ,—F, « 310 4- [a,,+ F £ By —1)]u - [ag,—F,8 7] v

[a;, — Iy ] tla,,—F, 8 7Jut-[ay,-
Of wel

(@, )\ Ay = Ayy = /"._,(-r'*' gy bl “pPpu-t+ayy),

a ., ph AL (rt_,._, - /) Bt Ayq p = / (e I‘)' A “:" QTR 1"" yr),

a, ) - Aygq -1-(a,, ) pr= /"_, (a y A= "J' i~ ,""’ Iy
«* - ,'j': ! ,'"'.' 1, A " o I

De aangrijpingspunten zijn uit de berel

{ening wegge-
vallen, terwijl voor de

grootte der krachten en den
afstand hunner aangrijpingspunten alleen 7, in de verge-
lijkingen voorkomt. Als men dus een koppelarm ge-

vonden heeft, voldoen alle daaraan evenwijdige lijnen ,
mits de viriaal slechts een bepaalde waarde hebbe.
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Stellen wij verder

« b +- ﬁ " yE— I3
(@, 1 Ay L4 @y, U -|- gy V= a 1,
ay, h+(ay, +Fluta,v=04, ......(16)

.y L+ dyq, M i (a,., A ¢ A,

Dan zijn
a £, (e x L),
bd=F,((x—un),
c 4 / (; % »).
Vermenigvuldigen resp. met 4, «, » en optellen geeft
(@hbudcr)d=F, (x*—1).
Id. met «, g, 7
aa+ o3+ cy 0.
tenzij = o; in dat geval echter was de lijn 4, u, »
reeds vooruit evenwichts-as, wat niet verondersteld is.

Met a, 6, ¢ en optellen

A / (a 4 - /f‘jl ¢ )
of wel
A
e . . (17)
ah- o i } ¢ !

verder nog
1 " (a / %-/f.u l { 1')"
€n daaruit «, g, ;.
Vragen wij bijv. hoe groot de viriaal moet zijn, en
hoe de krachten gericht moeten wezen, opdat de Z-as

evenwichts-as worde, Dan moet

/ 0, " O ' I
Dit peeft
dy, ad, a b A, (a,, + F)=cd,
18 11, + al, - (a,, 4 £)*
)2 / / ai, + a (@, 4+ £7)
: ( (a,, 4+ F) ay, £
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§ 35. Een stelsel dat niet in evenwicht is kan steeds
door toevoeging van twee krachten in evenwicht gebracht
worden, zoodanig dat dat evenwicht ten opzichte van
een gegeven as astatisch is.

Laten /7, en £, de beide krachten zijn aangrijpende

in de punten x,, %,,2 en x,,%,, 2, en stellen wij
/ | - r ] . & / ' 3 - 1 3 = ’ - r = ',
ayy=ay+ 24X +x,X,, oy =ay 4y X+, X, ay =ay+2,X 42,2
) | 3 - . " ] ’ - . - F) [ - = "
aia=a a2, Xi-tx, X, a s =yt Y- X, @.,= 6,12 Vi+2, ¥y
aly ST W et e e e
ays=a,,+x Z-\-x, Z,, a,,= a,,- iDLy, Oy =05,12 L)1 2, Z
Fr=F4 F, i x, X, —y Y, 2, Ly —x, X, —y, Y;—z, AL
dan moet voldaan worden aan de vergelijkingen
_.:J‘ l ‘\'l \ O, r'fll_: n".”.
B4 Y, +F, 0, G (Lixars
cCH4 Z2 + Z, O, ey AP
/ | V) y / 4
({l“ i / ) 2 ril_lﬁt a T Qs
”‘Il’} - (a x | ’lf‘]." r.”_,'J' 0,
a, hta,u+ (@, +F)y =o.

Het blijkt, dat wij slechts negen vergelijkingen ter be-
paling van twaalf grootheden hebben. Het vraagstuk heeft
dus een oneindig aantal oplossingen. Voeren wij nog in
Yo — Y yis
u®=f B y" L
dan kunnen x,,v,, 2, gedclimineerd worden.

[ndien wij nu de lijn » evenwijdig aan de gestelde
evenwichts-as willen maken dan noemt Mosivs zulk een
as hoofdas van het stelsel. Zoo wij deze beperking
invoeren, geeft dit

« A, K TS 7 r.

Deze waarden substitueerend en a,,v,,2,, X, , }]
«, , 7 elimineerend, verkrijgen wij
(@, r M s “ )4 (44 i ) = (@3 ¥, C)» O

y, A)h--(a,, F4-2 C4+x, A)u {- (3,5 —:
20 YA+ (ag,— 2, B)u 4 (a3, +-F+ 2, A9, B)v =0,
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terwijl uit de vergelijkingen o', —a,,” enz. volgt:

(r.'._,_:" — @y, -9, (el Z, 7)Y 4 4 {({;:l a; . - 2 A 4 X ) i
- 3 ] B 4 .
- (_fll.i -~y — X, 5 = V{ 1) . 0.
Voert men verder in
Zu—yr=%§8, xyr—zgh=9, yArA—2u=C, .. (18)
Z0O 18
A& ey » L O
en wij verkrijgen
/)): (..'JJ' 1 (rf“ ! /)} ! Qg W= Gyq ¥V (),‘
C&— AL 4-a,, - (a,, Fyp4-a, r==o0,
- B — : - . (1Q)
,!l‘. BE A qy A Byq W1 \Gay /) » n,.
E4+ B CL L4 M u N .
Uit deze door eenvoudige omwerking
@,, v \@q49 /“1_13 U 7 dyy /- "'l'-.”: (g 1 /“llu '

(A4 A= /”.” | (,\_‘: O
iy, A2 4 gy }'.” = \ay L T (@
(A2 4 /a'.u - lea' o]

1 /\ / Py, wi a J'.'I

@y, FL)hp ay,u*+ a,u Ayy h2— (Ao |- L) b tt—Aya b
(A L= /n’_n LGyt 0.
En verder door eliminatic van £, y, & uit deze en de

vier vergelijkingen (19)

(G Cay +4L) A4 (C ay, Aay, - BAM)u?
t(da,,—Ba,+ CN)r?*4-(Cayy—Bay, +Alay,—a,)ur
} [l.Iu'I-, (‘re':_. 1 /l'lr.F,“l r.’Flﬁl J' I

:-‘/:“"_'l '[“'I.
en uit de drie eerste van (10)

(A (a,, +F)4-Bay, | Cag,)h +-(Aay, +Blay, +F) 4 Cayy)

: (lﬁ.zll "_;"’;." Oo5i ; [:n)

21
! : /"";: ; (‘UI‘, ) v 0 . (-‘l)

"‘;rll 13

\'t‘l‘\'.'m_'.;‘l'n wij 4, u, r, door x, v, 2 dan stelt de verge-
lijking (20) een kegelvlak voor en (21) een plat vlak,
De top  van den kegel ]ij.,'l in den oorsprong, het

I'lilll" viak gaat door den QOrsprong. [ir bestaan dus
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2 hoofdassen, 1 hoofdas of geen hoofdassen naar mate
deze vlakken elkander snijden, raken of buiten den
oorsprong geen punt gemeen hebben. De grootheid »
is uit de berekening gevallen en kan dus willekeurig
gekozen worden.

§ 36. Ter nadere beschouwing der vergelijkingen
kiezen wij het centraal-vlak als XJ-vlak, de centraal-lijn
tot X-as en het centraalpunt der centraal-lijn tot oorsprong.
Dan zijn (§ 28)

&, =0, 4,y =0, dy, =0, 44 =0, 44 =0, 4,5, =0,

22 d3

Ly SR =y O RV =T 7 SO A ()

)

en de vergelijkingen (20) en (21) worden

A y, A3 —L- ((_,'rfl s /),‘.IITI)<“1 v|*- |:,‘f yq Vit a4 i ('.'.'] 7) pd
A i, Lov - (/)’ ay, A i, 3) . =0

Aa, u+ (Ada, -+ Bay,)r = o.

Het platte vlak blijkt door de X-as te gaan. De beide
hoofdassen en de centraallijn zijn dus evenwijdig aan
eenzelfde vlak.

Stcllen we 2, o dan 1s uit (18)

E= -y 0, y =% ¥,

maar bij dit coordinaten-stelsel is ook
Ay— BE = o,
dus
A X, i /1”\'1 0.

De doorgangen der hoofdassen door het centraal-vlak
liggen in de snijlijn van dat vlak met het hoofdvlak
der viriaal

Men kan ook vragen hoe het codrdinaten-stelsel gelegd
moet worden, opdat de Z-as een der hoofdassen worde.
Daartoe moet aan de vergelijkingen (20) en (21) voldaan

worden door de waarden

A= 0, =0 ) M i 1 XS 'I'I Q.
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Dus moeten

Th = 1EL Tl ={ak G, 4+ F=o0, SN =i (o}

13 23
of anders geschreven
2xL=0, IyL =0, TxAX+yY)=o0, Zx¥V—yX)=no,

Leggen wij deze vergelijkingen naast die van § 22,
dan zien wij, dat, wanneer wij een Krachtenstelsel projec-
teeren op een vlak, dat loodrecht staat op een der
hoofdassen van het stelsel, deze hoofdas juist door het
astatisch centrum van het geprojecteerde stelsel gaat,

De  hoofdassen hebben dus voor een stelsel in de
ruimte dezelfde beteekenis als het astatisch centrum voor
een vlak krachtenstelsel.

§ 37. Is het krachtenstelsel herleidbaar tot een enkele
resultante, zoo 1s

AL 4+ BAM 4 CN=o.

Kiezen wij dan het hoofdvlak der viriaal tot X }V-vlak
en de centraal-as tot Z-as, dan hebben wij
A 0, 5 a, C=£RK, L o, M=o0, [I=o0,

en dus ook

Dientengevolge Zijn

1 ' S a., (/) ' 1 il

23 o2

@y, (u” %) yy W2 u"_}.; - (@, u’”)}._ld 0
gy Agq &+ Ayy ) (8]

Door eleminatie van » verkrijgen wij de vergelijking

Aoy ) (U*—A%) — (G’ a* .+ a? a’,,)hu=o0

@y ay, 'J i 14 il

a1 2
en daaruit ter bepaling van u/A (de tangens van den hoek,
dien de projectieén der hoofdassen met de .V-as maken)

.‘.' .- a -ll i "-,; -%— ( :ll (2 :'.'.' . _ll{ I 0.
Al Biq (s gy gy /

Deze \'l'['_k'"'“j]\'illf-\" heeft steeds twee reéele wortels,
De projectieén der hoofdassen op het hoofdvlak der
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viriaal staan loodrecht op elkander. Verder blijkt uit
de vierde vergelijking van (19)
£ = o,
en derhalve
M h— X, u— 0,
De beide hoofdassen ontmoeten dus de centraal-as.
Men kan daarom hunne projectieén als codrdinaten-assen
nemen. In dat geval worden de vergelijkingen der

hoofdassen zelve

1
| O p i ) A —
Qg1 X 1~ Q33 86— }r\)(” g1 @y @ag)s Je=U5
en
1 2 :
Ay3 Y + 845 2= R (@yy 35 —a .'!)’ Ad=—it) g

In dit stelsel is de vergelijking van het centraal-vlak
@y Ayy) X+ (g @y gy Gyy) ) 110 gy a‘,)z=

- i 4
g @y, Ay Ay yq @794 Ayq 4 l‘_'\'

22 /

Het blijkt dat de doorgangspunten der hoofdassen aan
deze vergelijking voldoen.
§ 38. Reduceert het stelsel zich tot een koppel, dan
hebben we in onze vergelijkingen te stellen
A= O L, o, C O
Dit geeft in (10)
(ay, LY A4-a,, u- a4 ¥ =0,

1
o ;. | (h’ 4 ] [“

a1 4 ) i + a I o)
dgy b+ @y, p 4 (g, + £) v =0,
L 7 M - N v 0.

Er moet dus voldaan worden aan de beide voorwaarden

It a ayq a f- 7 yq 4

he A0 (. 0 en a, oo = L7 st 0.

N
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[ndien wij het vlak van het resulteerend koppel tot
X V-vlak kiezen, zijn
/1 0, ,I/ =)

en dus
waaruit volgt
Zoo er assen bestaan loopen zij dus evenwijdig aan

het vlak van het resulteerend koppel.

Ter bepaling dient ieder der drie vergelijkingen

(e, b ) L dyy M O,
ay 4 A (dy, ) = 0,
n'” / = (lqq M Q.

De voorwaarde voor het bestaan der hoofdassen is nu

a TS Tk VR R e mef ek F

i1 13+ a1 a

Deze vergelijkingen geven maar één oplossing en daar

£, 5,0 uit de berekening weggevallen zijn, kunnen dus
alle lijnen evenwijdig aan die richting tot hoofdas ge-
nomen worden,

§ 39. Zijn alle krachten evenwijdig aan een zelfde
vlak, zoo kiezen wij dat tot X )-vlak, dan is steeds

74 o en dus

'fl: Q, r'c'.-,: 0, if‘.“ 0, (‘ O

/A a A a N i a

12 ? ;) ! 113 al*

Het centraalvlak wordt dientengevolge onbepaald en

de vergelijkingen der centraal-lijn (§ 28) worden

1 A Vi I A V43
| r-’l] n’l 0, e r."11 rll‘ 0
) tyy a,, S g ¢ S

Kiezen wij de projectie dezer lijn op het [\ }J=-vlak tot

X-as, dan zijn verder
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en worden de vergelijkingen (20) en (21)
(Bag, —Aay,) (A +pH)+(day,— Ba,)hv=o0,
(Ada,, + B F)u—=o;

waaruit
- v Ba,, — Aa, ay,
#=—0 met A=o0 of —=—-31
/, Bla; — A a,
De eerste oplossing geeft de hoofdas
— ‘i’,, --|— f)’ (.’“ - A a, ., s /}’ "U
A* o A* L B?

Dit is een “_]ﬂ ]oodrecht op het vlak der krachten.
De andere as is
x(Bay —Aay,)+z2(Aa, — Ba,,)+a,, ay,—a,, a,, = o.
Dit is de centraal-lijn zelve.
De vergelijking van het hoofdvlak der viriaal wordt
Ax+ By = a,,.
De eerste hoofdas ligt dus geheel in dit vlak.
Waren toevallig nog a,, — o en a,, — o, dan wordt de
tweede hoofdas (centraallijn)
ry 0, 2 0.
Dit is het geval bij een vlak krachtenstelsel.
§ 40. Voor het geval de krachten slechts een centraal-
punt bezitten, valt het centraalpunt van het stelsel met
het centraalpunt der centraallijn samen en zijn

III:HIJ:HIII ”'.'l:d

ke (e Geihass Gty A:B:C
of als men de coordinaten van het middelpunt (astatisch

centrum) van het systeem x , y,, z, noemt

a, Xo Ly Byy =Ny A, By A,
- ) ) -

Biq = Xy B3, Qyg = Yy B, dy, g

@13 % C @3 Yo C, A3 zy C.

Dan kiezen wij dat punt als oorsprong, waardoor
/, — .]/ O, ;\' 0, /",_u
worden. In de vroegere vergelijkingen dit invoerende,

worden 4, u, » onbepaald en &-- y =10 - o,
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Alle lijnen door het middelpunt kunnen hoofdas zijn.
De centraal-as en het hoofdvlak der viriaal gaan door
het astatisch centrum. Men kan, door in dat punt één
bepaalde kracht aan te brengen, het stelsel astatisch
aequilibreeren,

L. STANDVASTIGHEID VAN EVENWICHT,
w., D¢ evenwichisfunctie.

§ 41. Wanneer een zich in evenwicht bevindend stelsel
krachten uit den evenwichtsstand gedraaid wordt, hebben
wij gezien, dat in het algemeen het stelsel aequivalent
wordt aan een koppel. De krachten zullen trachten
alsdan het evenwicht te herstellen en in dat geval wordt
het evenwicht standvastig genoemd of zi) zullen
trachten het stelsel nog verder van den evenwichtsstand
te verwijderen, in welk geval het evenwicht wankel-
baar genoemd wordt.

leschouwen  wij eerst een koppel, zijnde een stelsel
van twee gelijke en tegengestelde krachten 2, en o
resp. aangrijpende in de punten A, en «,. Dit koppel
heeft twee evenwichtsstanden. Bij beide valt de arm
van het koppel samen met de richtingslijn der krachten,
In de eene stand trachten de krachten de aangrijpings-
punten van elkander te verwijderen; in de tweede daaren-
tegen trachten zij de aangrijpingspunten elkander te doen
Naderen. In het eerste geval is volgens boven het even-
wicht standvastig; in het tweede wankelbaar,

Graan wij nu na, wat er is van de viriaal van het
koppel in die twee gevallen.

De waarde dezer grootheid is

£ b I d S




In het eerste geval valt de richting van P, samen
met die van de lijn 4,4, en is dus & negatief. In het
tweede geval is de richting van P, tegengesteld aan
die van A, A, en is /7 positief. Dus 1s het evenwicht

standvastig of wankelbaar naarmate [ negatief of positief

is. Is F/ — o dan is volgens vroeger het evenwicht
astatisch.
§ 42. In § 21 hebben wij gezien, dat, als een 1n

evenwicht verkeerend willekeurig vlak stelsel een hoek g
uit den evenwichtsstand gedraaid wordt, het acquivalent
wordt aan een koppel &', zoodat
G = F sing,
terwijl de viriaal
I = Fceos g

geworden is. Leggen wij nu naast dit stelsel een koppel
en construeeren wij krachten en koppelarm daarvan zoo-
danig, dat zijn moment en zijn viriaal resp. gelijk & en
F zijn, dan zullen het stelsel en het koppel beide in
‘oderen stand aan elkander aequivalent zijn; dus ook in
de evenwichtsstanden. In dat geval echter moet volgens
boven bij standvastig evenwicht / negatief en " = 0
zijn, en bij wankelbaar evenwicht /¥ positief en "= o.
s nu voor de gegeven evenwichtsstand /7 negatief, dan
moet dus bij standvastig evenwicht g o, bij wankel-
baar g v zijn. Dus als /° negatief 1s, is de aanvangs-
toestand die van standvastigheid. Is /7 positief, dan moet
voor standvastig evenwicht g x, voor wankelbaar
| o zijn, terwijl dan de aanvangstoestand die van
wankelbaar evenwicht is. In verband met § 21 zien wij
dus. dat het evenwicht van een willekeurig vlak stelsel
standvastig, astatisch of wankelbaar is, naar gelang de
viriaal negatief, nul of positief 1s.

§ 43. Volgens § 34 kan een stelsel in de ruimte, dat
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in evenwicht is, steeds ten opzichte van een wille-
keurige as astatisch gemaakt worden door toevoeging
van een koppel waarvan de viriaal /, is. Keeren wij
de krachten van dat koppel om, dan wordt zijn viriaal — /.
Dit koppel is dus bij draaiing steeds aequivalent aan het
stelsel en dit laatste in standvastig of wankelbaar even-
wicht naarmate / positief of negatief is. Volgens (13) is
F' = F -+ F,. Hierin is /7 de viriaal van het stelsel
vermeerderd met de bijgevoegde krachten zoodanig, dat
bij draaiing om 4, u, v, die as een evenwichts-as wordt.
Daaruit volgt dat /7 constant is, maar daarom behoeft
/' nog niet het tegengestelde teeken van /7 te bezitten;
dit zou slechts het geval zijn, als /" nul was De viriaal
van het gegeven krachtenstelsel geeft dus door haar
teeken geen kenmerk voor de standvastigheid van het
evenwicht, Er bestaat echter ecen andere functie, die
Monius gevonden heeft, welke zulks wel doet,

Uit vergelijking (17)

: A
T _
- anr-- 0nu C
\‘ulg‘t
. A°
a =

waarin dan
S=(ad+bu-tcr)d
of in verband met (16)
S=(a,; + F)A* -+ (a3, + F) u* -t (ay; 4 F) v?

: A
20,0 V1 2044, Ay 20, A .

Nu blijkt ons hieruit dat een stelsel in standvastig of

wankelbaar evenwicht verkeert al naardat .5 negatief of

positief 1s,
Tusschen beide toestanden ligt het geval, dat .S — o is,

Schrij\'(-n \I‘LJ lliln VvOOr )_’ ey I lll' dHilr”ll'dl_‘ L“.’('Tll‘(!(ligl!
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grootheden x,y,z, dan wordt dit uitgedrukt door de
vergelijking
(a,, + F) x>+ (a,, + F) y*+ (a5, + F)2°
+2a,, y2+2a,, X2+ 24, X y=—0.

Maar dit is de vergelijking van een kegelvlak, dat de
assen van standvastig en die van wankelbaar evenwicht
van elkander scheidt.

Voor assen op dit kegelvlak gelegen, is, zoo 4 = o is,
F7, niet bepaald maar toch constant, doch voeren we de
waarde 4= o in (16) in, zoo zien wij dat dan de lijn
A,u,r een evenwichtsas is en dus het stelsel om die
as astatisch is.

Is 4 7¢ o, dan is op het kegelvlak 7, — cc.

In dat geval is #* = 1 en dus is de arm van het
koppel gericht langs de draaiingsas. Dit evenwicht waar
bij draaiing een koppel ontstaat, dat op de draaiing
zelve geen invloed heeft, doch de draaiingsas tracht te ver-
plaatsen, heeft Mopius het neutrale evenwicht genoemd.

[Laat men bij voorbeeld het stelsel om de Z-as draaien,
dan zijn 4 = u = o0 en » i en vinden wij

AR Ty y fl
en het evenwicht is standvastig, zoo .S negatief is. Nu is
S = xX+4yY)
en wij zien dus dat de standvastigheid samen hangt met
het teeken der viriaal van de projectie van het krachten-
stelsel op een vlak loodrecht op de draaiingsas,

§ 44. Men kan de coOrdinaten-assen zoo kiezen, dat
zij samenvallen met de assen van het kegelvlak .S = o.
Dan verdwijnen na transformatie uit die vergelijking de
termen die produkten van twee der grootheden x, v,z
bevatten, en de vergelijking van het kegelvlak wordt

0,
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waarin ¢, , ¢,, ¢, wortels zijn van de vergelijking

1 3
(@, + F)—c¢ @, @y, ‘
a ., (@y, +£)—c¢ dys == 0FN(22)
@31 @93 (@33 +£)—c |
De evenwichtsfunctie wordt in dat geval
S=c¢ A ¢y u*4-¢y v

Ziin nu ¢, ¢, en ¢ allen negatief, dan is het even-
wicht voor alle assen in de ruimte standvastig. Zijn zjj
allen positief, dan is het evenwicht voor alle assen
wankelbaar. In alle andere gevallen is het evenwicht
voor sommige assen standvastig, voor andere wankelbaar,
terwijl beide soorten door het kegelvlak gescheiden
worden.

§ 45. De functie .S kan soms in de gedaante van de
som van twee vierkanten geschreven worden; en wel
zoodra bovenstaande vergelijking (22) een wortel nul

heeft. Dit zal het geval zijn, zoodra

a, - /' 4 q,
.y tlyq f|~ a dy — 0
Agy @3 ayy + L

is. Maar dan heeft het stelsel een evenwichtsas, die de

gemeenschappelijke snijlijn is der vlakken

(a2, )X 48,45 gy = o
G4 X+ (344 - F)y 4 a,, 2= 0.
Aqy X - Qg3 Y 1 (A3 - ) s o.

Als wij aannemen, dat ¢, verdwijnt, hebben wij
.\" (o ;." { a‘_l " .

Zijn ¢, en ¢, beide negatief dan is het evenwicht voor
alle assen standvastig. Zijn beide positief dan is voor
alle assen wankelbaar. Is een van beide negatief, zoo
hebben wij

S—=mrd—prut=(mh-}nyu)(mk— np)




De kegel is dus overgegaan in de beide vlakken
mx +ny —=o en mx —ny= 0,
die elkander loodrecht snijden en wier snijlijn door den
oorsprong gaat (de Z-as). In twee tegengestelde qua-
dranten is het evenwicht voor alle assen standvastig, in
twee andere voor alle wankelbaar. In welke hangt van
de waarden van m en 2 af. Voor assen in een der twee
vlakken gelegen is het evenwicht neutraal, alleen voor
de snijlijn (de evenwichtsas) is het evenwicht astatisch.
Reduceert .S zich tot een enkel quadraat, dan vallen
de beide vlakken samen en het evenwicht is standvastig
of wankelbaar naarmate de coéfficient van dat quadraat
negatief of positief is.
Voor alle assen gelegen in dat vlak, welks verge-
lijking (zie § 33) wordt aangeduid door
X 0y 4

|
= = 0,

dya @ a

2 31 12

is het evenwicht astatisch.
p. Maxima en minitma bij het evenwicht.

§ 46. Niet alleen het teeken der viriaal heeft in de
vragen betreffende het evenwicht een groote beteekenis,
maar ook de waarde zelve der viriaal kan dienen om
den aard van het evenwicht nader te karakteriseeren.
Beschouwen wij daartoe in de eerste plaats weder een
vlak stelsel. In § 21 hebben wij gevonden, dat bij
draaiing over een hoek g

¥t [ cos g (7 sitn .

Was het stelsel voor de draaiing in evenwicht, dan is

(+ = o en dus
/’V / cos .
Bij standvastig evenwicht moet dit negatief zijn, bij

wankelbaar positief, maar dan is ook bij het standvastig
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evenwicht de waarde van / minimum en bij het wankel-
baar evenwicht maximum.
[Tet maximum en het minimum vallen alzoo samen
met de evenwichtsstanden van het stelsel en bepalen deze.
Was het stelsel niet in evenwicht, dan is
/’" [ cos it (7 sin q
en is volgens de regels der maxima en minima die
waarde van / maximum of minimum, welke behoort bij
de waarde van g, waarvoor
Fsing t Geosg =0
is. Doch § 21 zegt ons ook, dat
I sing 4 G cos g = G
Wij zien derhalve, dat gedurende de draaiing  het
maximum of minimum in die gevallen voorkomt, waar
G’ 0
d. w. z. zoodra de resultante van het stelsel door den
oorsprong gaat, want dan wordt de vergelijking van de
centraal-as
5 x Ay = o,

§ 47. In de ruimte wordt een in evenwicht zijnd

stelsel, zoo het uit dien stand gebracht wordt door
draaiing om een as A, u, ¢ OvVer een hoek ¢ aequivalent
aan een koppel.

Uit de formule (12) § 20 zien wij, dat de verandering
van de viriaal bij die draaiing is

q

I t— k‘\h’.""‘:). @ up -t vy [} 0 clg

Was het stelsel oorspronkelijk in evenwicht, dan waren

L. 0, M=o0, N=o0

en

derhalve

o 2 st 4 :l « - M ‘-)' - vy as




Nu is

F=F4+ 4 F,

waaruit volgt

F'=(F+AratuB+vy)cosp— (ka4 u B+rvy),
en dus zoo /7 positief is, maximum voor ¢ — o en mini-
mum voor ¢ =z en zoo / negatief is, juist omgekeerd;
maar dus in beide gevallen is /' maximum bij wankel-
baar en minimum bij standvastig evenwicht.

§ 48. Is het systeem oorspronkelijk niet in evenwicht,
dan is

A =2 .w'u-'li :/ « +uf vy + Iy (')'f'/.f',"'t' e

Nu stelt 0 de projectie voor van den as van het resul-
teerend koppel & der krachten in den oorsprong, wan-
neer die as op de draaiingsas 4, u, » geprojecteerd wordt.

In dat geval wordt
i Ao + u ‘i -y y)cosqp—10 -”.”q — (A« uf4vy)
en dus maximum of minimum voor de waarde van g
voldoende aan de vergelijking

deosp+ (F4-ha-d-uf 4 vy)sing=o.

Wanneer wij nu bij de vergelijkingen (12) 2, M, N
optellen, vinden wij
L'=(1—cosq)(uy —rp—20)+4(a +AF)sing 4 L,
M = (1 cos ) (v« A ¥ i ) | (‘.f o /Y sin ¢ 4 M,
N = (1 COS f b ('f ot v ) =(y 4= ) sin P - N,

Vermenigvuldigen wij deze vergelijkingen resp. met
.y w, v en tellen ze daarna op, dan verkrijgen wij

0= —4¢ (i cos ) + (F -} 4 a4 uf vy sin q -+ 0

= dcosip (L4 had u B4y sing
en wij zien daaruit, dat /7 maximum of minimum wordt
zoodra o, dat wil zeggen, voor die waarde van ¥,
waarbij de as van het resulteerend koppel loodrecht op

de draaiings-as is komen te staan.
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§ 49. Wanneer een krachtenstelsel om een vaste as
draait en wij de draaiingshoek als onafhankelijk variable
beschouwen, zijn

ax d V - dz

- =Uus— Y, =——px— Az, — =1y —ux,

H’ gy I h{q (I’q

en, zoo de krachten als onveranderlijk beschouwd worden

dL _ [.dy_ 5 ds)_ . e
u’:,- — ) ”’I {X'J = ) Q4 b Qeq /. oo =t U 4,
of wel met de beteekenis van § 29
d I . n aM . dN
—_ - A7, =3 4 ul, e WY
t/c; w d q s o d it
d /" > "\-tlll' I 1 f/_'l' | /HJC
(/ {’ (/ 1’ I’/ll’ (/l,
= (g, r oy - Byg — ) qq 4. g4 Wy, )
A ).
ll"l]‘

Hieruit volgt: / is maximum of minimum, zoodra
0 = o0, d.w,z in geval van evenwicht. / is constant,
als voortdurend 0 = o, d.w. z bij astatisch evenwicht.

L, Men N zijn tegelijk constant, wanneer tegelijk

« 4+ AF o, i.; | i o 0, Fi - — 0;
of voluit geschreven
(fIH { /)f i I, u E dyq V 0,
@y A= (834 L) 1 a3y =0,
Gyy A+ Gygpu+ (a5 + £7) v = 0.

Wegens het verband tusschen 4, w en » kan dit alleen

plaats hebben, wanneer

ay - & @y, ;3
| iy dyq o dy4q (u]
ay, % (yq == 1
[n evenwichtstoestand zijn a,, = a,,, @y, = @y, Ayy = dy,

en deze determinant gaat over in de determinant A van

§ 32. Toch is dit slechts schijnbaar dezelfde, want in
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§ 32 behoefde de voorwaarde

ligging vervuld te zijn. De

komende differentiaal-quotiente
vervuld zijn dezer voorwaarde.

maals, zoo verkrijgen wij na eenvoudige herleidir

BL_ de | df
d g d d g
a* M rfj d I
tiAF - (fq_ L d i
a*N dy , drF
tf I_I-I-T f'f’}' oy (/ :;7 -
d*F d o 5
4 e — —d‘? = (e« A
In geval van evenwicht wor
dr*F
do*

slechts voor één bepaalde

beteekenis der hier voor-
n vordert het voortdurend

Differentieeren wij nog-

g
;!‘}f——r"j~‘ J.ﬁ,
— hy—ud,
- /(J’ SN v o0,
-+ %j‘ + Vi, ).

dt deze laatste uitdrukking :

¢

.

er dus is /' maximum of minimum naar gelang S positief

of negatief is.

Indien wij
bepalen, vinden wij
ENE dy d ":' . dD
d g’ Wt d “ i | =1 o
en dus
dr .l dlL d*M __
Zo*  do d¢*
d> F

h{I[T‘
Hieruit volgt:
eenvoudig in de twee eerste

dat wanneer tegelijk &ZL/d

L een eonstante is, want dan zijn alle verder

ook nul

quotienten

Hierdoor

nu nog de derde differentiaal-quotienten

| u T y 7
A — A L ﬁ AP v
xa— AL

d M a*N d N

t/ 1' ! r/ ||' 3 af 'J 1

dlr
H] f‘

dat alle volgende differentiaal-quotienten

]
en &*Ljdqy?

cunnen uitgedrukt worden;
gelijk nul zijn,
e differentiaal-
onderscheid

wordt het



(o)
-
FX]

tusschen de beide determinanten weer opgeheven; want
zoodra in een bepaalde stand « +4 /7, §+ u/f, y 4o 17
en d allen gelijk nul zijn, worden ook de tweede diffe-
rentiaal-quotienten = o dus L, A/, N en /7 constant, en
omdat d = o is, tevens L = J/ — N = o. Dientengevolge
wordt ook weder .S = o, wat alles met het vroeger
behandelde overeenstemt. Tevens blijkt uit onze verge-
lijkingen, dat Z, A7, N en [F allen voldoen aan de

differentiaal-vergelijking

dry _ duy
de>  dg
Hiervan is de algemeene integraal
d ] ‘ . ;
= ¢ Sin(yp- €,) = WS- 71 Cos g
(fl, -
en dus
) = nt cos gy 4 n st g 4 const.
Yo - const.

Ay m (1 Cos ) |- n stn i

2 sin?t ( m 4 ncly? )

0] . y

Uit de algemeene waarde van y volgt:

d w ) 'r/"ap}

n, LN = .

d i Jo _n”q “ o

Zoo verkrijgen wij
. ol 7? {
Ad 2 sint! (" ‘J‘) 1 ay cle AN
2 J 14 g=Jo (flll 0 2

Substitueeren  wij hierin  voor y achtereenvolgens

L, M, N en F, dan komen wij op de waarden van § 29

in juiste overeenstemming terug.
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C. BEHANDELING MET QUATERNTONS.
«. Afleiding der grondvergelykingen.

§ s0. De uitdrukking «; = ¢ « ¢~ stelt voor de waarde
van den vector « in een stand verkregen door draaiing
van dien vector « om de as van het quaternion ¢, terwijl
de grootte der draaiing den dubbelen hoek van ¢ bedraagt.
Hebben wij nu een stelsel constante krachten § aan-
grijpende in de punten « en laten wij die vectoren «
draaien om den as van ¢ den dubbelen hoek van ¢, dan
blijfft 2 g aan zichzelf gelijk. Maar het quaternion «
wordt nu
f(,’v P' — !7 (74 yh ! l-)).
Gebruik makende van de eigenschap
g=3S5¢+ V¢
en van de betrekking

=y L ¢y 1
TS 7)

7

verkrijgen wij:
Sagf=2(T7)-*(Sy + Vg) a (Sg— V7) B
= (7y) ’gr’.\'y‘l"’ Suf+Sg Vg laf—SqgXa Vg —2 Vg Vy ﬁ;
Stellen wij nu

g =, Vg=vp

en, daar wij voor g een versor mogen nemen,
T'g=1,

dan hebben wij, daar

(Sg)*— (Vg)*=(T¢q)?,
de betrekking

2 {_J" IS
En derhalve
.l'(:,r. l)' w?* X o ‘f -| woe X rcp’ '.'n'_\.'ug ‘)' — 0« l_»ﬁ.

Nemen wij van beide zijden het scalar- en het vector-
gedeelte; zoo verkrijgen wij

ALY wuy ﬁ o (."t"' S i‘; ; W .(;[, (74 .‘f - .S« 0 i‘; ,‘\':_r 0 l'j)




en

SVayp=Z(w*VaB+wVoaB—wu Veof—Voan 2).
g1 \ i ~ i S (5 4 §

§ 51. Ter herleiding dezer uitdrukkingen maken wij

gebruik van de volgende formulen:

Saof=Sfao=—Spaff=—5p V« 3,
Voaf = 0.5« B—aSof+pS0«,
Ve 0 ")1 — 7 .qg i’“)‘ — 0 S Il', - 51' ,_\‘g «,
Soapf = So Va of=2S50aSp B—o*Saf,
I“Q wo IJJ - l"vl" S op -+ ['g I e 0 {)' q

=0Sapf -+ VoaSop 4 Vo Soc.
terwijl wij nog de volgende herleiding toevoegen:

Sap=.JS5 f «,

af—Vaf=0ca Via=0a+ e 7,
S f—0p Ve F=ofa-to lMaf,
o« f— o IMa = !—y fat Vo Ve 2,
0 S« f—adp p4850« o IV« h—
oSaf—pFSoa+ «So B4 Vo Ve ?,
IP" Y 0 = « S 0 *.;' —|— I'g I « ['!‘ ~
en daar
.\.n I'{‘ Iru I“}' — )

15, wordt

Vo Soa=TVFopaSopf-401l0 N« 7.

Door invoering van al deze herleidingen verkrijgen wij :

. v . v . . ] v . - . - v v
20 =wr3SafBl20 S0 2 Val —22S50a.SoB402385aB
/il | - ) L S N .
°n
SV =wS Vafl+0So3Vep 2790 X SNog nSeal)
‘Al \ i < 5 \ \ Ll X \
231 o D0 ":' 0 ]-y > Va l-”‘

§ 52. Denken wij ons nu een vlak krachtenstelsel
zoodanig, dat alle vectoren loodrecht staan op den vec-
tor £ en dus de as van het quaternion ¢ evenwijdig aan
£ is, dan hebben wij
Y 0, Sk f=o Ul Veaf 4

[.!v 0 = f{ ’




en zoo
e 0=17,
>0Siug bi— w3 Saft+2w7 2T Ve i 4720kt 2 Sa g
en
SVaf=w3Vaf—r* T Vaf +2wrk>S«f.
Indien wij nu aannemen, dat het stelsel in evenwicht
is en na de draaiing weder in evenwicht zal zijn, hebben

wij in deze formule te stellen:

S Vap=2 Vaff =o0
en dus
SSa;f=wTSaft+r*rrZSafp
o—=2wr2 S« (3.

Wij hebben alzoo drie gevallen:

1¢; r=17Vg=o0;
dus geen draaiing, en daar
e _%_ rt =1,
2Sap=2 Sl !
Loiy == .\..y = 0,
b T “e y . O
dat is: hoek ¢ = —, dus een draaing van 180" ¢n daar
)
A."'" —d T §
SRL = J— b 3L 9
H.SH:;")' E 4-—-.\!’(‘}.
3= S Sa "'J‘ i) s

de draaiing is onbepaald, doch steeds zijn X Sa i oen
2 Ve« p beide gelijk nul en dus
S afl =0,

Wanneer wij nu « ¢ het totale moment der kracht [
ten opzichte van den oorsprong noemen, hebben wij de
stelling:

JIndien een vlak krachtenstelsel in astatisch evenwicht |
is ten opzichte van een zeker punt in zijn vlak, dan is
het resulteerend quaternion der totale momenten der

krachten ten opzichte van dat punt voortdurend gelijk nul.”




§ 53. Is het vlakke stelsel niet in evenwicht, doch
vraagt men het in astatisch evenwicht te brengen door
middel eener kracht 3, aangrijpende in het punt «,,

zoo moet voldaan worden aan de voorwaarden:

8, +2p=o0,
I‘rrl ,";'! 4+ 3 Vea {f — ek
S a 3, +2 S« f=o,
of wel
g, +r=o0,
]’((‘ i;i —l— G = 0,
Sa, B, +F = o.

Optelling van de beide laatsten geeft:

o] i | Rt
a b +¥+c=o.

\

Maar
Dus

of opereerend met 7 ( ) r!
@, =FR™!4 VGr™!
zijnde het snijpunt  van centraalliin  en hoofdlijn der
virialen (zie verg. 11).
§ 54. Keeren wij terug tot de formulen voor stelsels
in de ruimte aan het einde van § 51 en voeren wij cen

functie ¢ » in, die wij bepalen door de vergelijking

Po= o (e S 0 l; 0 Y ‘-J'J.
dan is
,\.;\a o - _\,‘(,\\'c‘n ( .\'r\: .,,' — “." '\‘”k”
on
Vogeo 2 Fpadpf.

Dan worden onze vergelijkingen:

F=w'r 42w .\'J_a G 2 D L g': Iy

’ i e -
G WG+ 0D0G 2 70
i ~ ~

iy o —‘f.il.; 0 l‘lr'l‘li"
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of wel, zoo wij de veranderingen van r en G met A4 r
en 4 ¢ aanduiden:
A E =S G ol 0 N RERS R RN (2 3)
YV dc=p0Seoc— Vogo—wpe......(24)
Deze laatste vergelijking, zijnde eene tusschen vec-
toren is aequivalent aan drie scalar-vergelijkingen.
§ 55. Nemen wij nu aan, dat het stelsel in evenwicht
is, en dat dat evenwicht door de draaiing niet verstoord
worde, dan moeten wij G — 4 6 = o stellen, waardoor

wij verkrijgen

IR— 255 0qo,.
o= FVeqo+twye.
Wij hebben weder drie gevallen:
1¢ geval:
Lo—21 Vg=0,
dat is: geen draaiing en 4 F = 0;
2¢ geval:
w—=Sg=—o0 en Vpgpp=o0,
dus een draaiing van 180" om een as bepaald door de
vergelijking 7p g 0 = 0. Daar w= o is, is in dit geval
T{J = 1,
3¢ geval:
go=o0 zonder dat 7'¢p=o,
7’0 en w blijven onbepaald, dus: astatisch evenwicht
ten opzichte van een as bepaald door ¢ = o.

Dan is
Ar =0, dus =%

De beide laatste gevallen hangen af van de verge-
lijkingen ¢ o =o0 en Vo g o=o0, wier algemeene op-

lossing: wij hier zullen invoegen.
B. Oplossing der liniaire veclor-vergelyking.

§ 560 DBij de oplossing der liniaire vector-vergelijking

Pe==7
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waarin p een onbekende vector is, treedt herhaaldelijk
de geconjugeerde functie ¢’ op. Dit is eene functie,
die met ¢ verbonden is door de vergelijking
Sﬁ po = S 0 q-, 0,
waarin ¢ en ¢ geheel willekeurige vectoren voorstellen.
In geval
is, noemt men de functie ¢ een aan zich zelf gecon-
jugeerde.
Volgens Tarr ,Quaternions” § g2 is
o SAupr=VurSho+VvdSuo4+TVoluSrp.. (25
waarin 4, u, » drie willekeurig te kiezen niet-complanaire
vectoren voorstellen, In dat geval is
poShur=q VurSkotq VeASuo4qgViuSrp . (26)
Stellen wij in (25) successivelijk o = g Vp v, ¢ 7y 1,
g VAu, dan verkrijgen wij achtereenvolgens:
g Vur Shpuy=VurShoVur = VedSugVur - ViaSvgp Vur,
Pup S(Vur)y’ A=V AS(Vur)g '.u»|~ FhuS(] wr) 'y,
=V urSurg b4+VedSurqg nd Vi Swrvqg'r,
pVedShuv="pur.Sriqg A=V pd Sy hg’ ud1VhuS v g v,
pViuShur=Vur Shpug b 4+VedShung w4 ViuShug v
Stellen wij nu
Surg' A Sho+Srdg' ASup 4 Shug bSvrp=A485hur,)
Suvg wShotSrdg wSue +Shpg'nSvo—=85kuy f . (27)
Surg’ p S Ao Srdg’ v Supt+ShugrSvo=CShur, !

dan zijn A, & en € scalars en na substitutie vinden wij
uit (26)
po S iy A fr‘u ) ] B1Vyd- l Gl Mol wi (28)
Bedenken wij nu, dat uit (25) volgt
ySAuy= VurShy- Vvl Sy 4 Vi BaS vy,
200 \'m'krij.q‘(-n \\'ij ter npln.\.\ing‘ der \'l'l';{t‘ﬁjkil];:‘

?Q 7
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door substitutie onzer gevonden waarden de vergelijking:
l:.'f S ;') I'"lu v+ (5B —.8 L ,) Pk —}— !_'(:'-—-4.5'1' ,":} Vi [t= 0.

Daar %, u, » drie gegeven niet-complanaire vectoren

zijn, moeten

AT AR

D=y n

€ =Yg,
zijn. Gesubstitucerd in (27) verkrijgen wij het stelsel
van drie liniaire vergelijkingen tusschen scalars, waaraan

de oorspronkelijke vector-vergelijking aequivalent is: n.l

Suvg'hSho+SrdhghSuot+ShugtSrvo=5hyShur,

»r\'lll 14 f]-’ltt -S‘}f 0 —5— Y v ; q "u."\'.u 0 —%- 57 1 qflu .S‘J' 0= .S"u 7 .S';, e, ‘ e (31'))

Suvgv Sho+Srhg v Suot+Shug'v.Svo=SryShur,

Uit deze drie vergelijkingen vinden wij S20, Suo en
Syp en vervolgens uit de vergelijking (25) de waarde
van go.

Een geschikte keuze der vectoren 4, u, » kan in bij-
zondere gevallen deze vergelijkingen nog vercenvoudigen,

Zoo kan het soms voordeelig zijn voor 4, u, » drie
loodrecht op elkander staande eenheidsvectoren te nemen;
in dat geval zijn

Vuyr=1~4, Vv A= NGl A huy=—1

i

en wij vinden voor onze vergelijkingen:

ShohSho+ShouSpuo+ShgvSro=-—5iy,

SuphShot+SugpguSpuo+SpgprSvo=—Suy,

Sy g ABSA 0 ~|- Sy gou A o -—’- Sy g Srvo=—S» 7y
terwijl

o=—2AS2p wSuwo—prSro
C1n
po=—™»Ar—Bu—Cv

wordt.

§ 57.° In het algemeen echter hadden wij
g o ST ny = A ’.I” v ‘l— BV yh -+ C 7k Iz
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en de vergelijkingen (27
Ware nu gegeven de vergelijking :
po =0,
dan moeten wij in onze vergelijkingen (29) y = o stellen,
maar dan wordt er slechts aan voldaan door de waarden

Sho—=o0, Y= S0 =10
- " ~ -

en dus

n— 0,

tenzij de determinant
i .S'_u v :;-/ i Sy / '[-, ) AYY ) 10 w’ A
"s — | .\"u v quf " /i) v J.. qu’.rr Y ; ut q-, 1t — 0

.
v "

Suwrvqg'e Sy dg'y Shug'y
worde, in welk geval de vergelijkingen (29) van elkander
afhankelijk zijn. Deelt men ze dan door 77¢ dan blijven
in die vergelijkingen slechts de scalars:
SR (_f"g, S Uo, Sl 'Q
ter bepaling over en tusschen deze grootheden bestaat
een betrekking, want uit (25) volgt
UpShpur = Vaurs AUp+VedSuUp4 ViuSy Up
en door dit in het vierkant te verheffen vinden wij
~(Shur)=(Fur)? (SAU) (Ve W) (Sulo)* - (Fhw)* (Se Up)?
4 2.5 o Su UpS. 1 uy Ved+4-2S5ul 0.8 UpS. Al P u
d-2.850UpSv UpS. 1 V.
Ten einde S nader uit te werken, maken wij gebruik
van de formulen
SadSBy—SaySpd=S5.Vaff Vyo,
V.VaB Vy=—fSafy,
dSapy aSByr0+3SyradtySafd,
waardoor wij ten slotte verkrijgen
S=O2un)*Se Lo ug r
De waarde van 7'p blijft echter onbepaald, zoodat

ingeval
-‘\‘ GJ’ }. ll" IH I", y =0




is, alle vectoren van één bepaalde richting aan de verge-
lijking voldoen, terwijl hun lengte onverschillig is.
Lossen wij namelijk de vergelijkingen (29) voor dit
geval op, dan vinden wij uit de twee eerste bijv.
STAL LT o e S 8 E o R S v (0 :
S S e T TS G f L
Uit de eerste en derde komt hetzelfde, alleen met het
verschil, dat in de noemers ¢’ 4 ¢/ u vervangen wordt
door ¢’ » ¢'4 Uit de tweede en derde vergelijking
wordt dit ¢'u¢'». Toch is dit onderscheid slechts
schijnbaar, want uit de betrekking:
S g’ ug' v=o0
volgt
UVg no'v=UVp'vog’'A=UVq¢ Lq p
§ 58. Uit de vergelijkingen:
g o S ny = _(’1 I"r'u r —I— &3 f'yi' 2. —]— C I'? i
en
o SAhuv="VurSho+VedSpuo+ ViuSvp
volgt door vermenigvuldiging:

-

SogoShur)y =AVur) Sho 4+ B(Ved)*Suo + C (Vi Sve
4 (HSvo -+ (:"ﬁ"u Q).\'. [EST N ) T ((.’.\'). 0 —]-—-‘f.\’r 0).S. A 1 I",rt V
+(ASpuo+LS50)S. Vaur Vi

en
Vogpo Shuv=LBSro—CSup)d(CShop—A85vo)u
F(ASuop 5.5 0) .
Daar de vectoren 4, u, » niet complanair zijn, kan dus
aan de vergelijking
Vegeo=o0 of go=g0
alleen voldaan worden door de vergelijkingen
A 5 A C

‘\. ; Q V;'\"rlrg .‘5. v {_;.
Stellen wij nu de waarde dezer breuken = ¢ dan wordt

A=gSkp, B=gSuop, C=gd5vg,....(31)




~I
e

maar is ook

poSturv=g(VurSho+ VviSus+ ViuSro)

en is volgens (25) voldaan aan
po=2L90 Of (:lf —{,") g — 0.

Ter bepaling van ¢ verkrijgen wij door combinatie
van de vergelijkingen (27) en (‘_;1) drie homogene verge-
lijkingen in Sio, Suo, Srp nl

(Suvg’h—gShur)Sho+Svdg Suo+Shug 2Srp=o0,
Su }'I", 1 S 0 -} (Srhdg'n —g'.\'l wr)Suo-- I5EA [l q"lu Syp=o0,] (32)
Suvg v Sho-+S» Lo v Suo4-(Shu q-'r —= hur)Se 0 =0,

In dit geval moet hunne resultante nul zijn, zoodat ¢

bepaald wordt door de derdemachtsvergelijking :

Suvg'h—gShuy Svdg'h Shug'
_S'.“ P "u .S'J' ?., IJIJ i --_.”"A'\'}. ny .(\'}..H i} ’,u = 0,
.'\'.u ;-q-' y Ay np’ Vv Ay wagr .{‘".\‘}. v
of uitgewerkt evenals boven met § is geschied:
gi—myg*tmg—m=o.......(33

waarin

m Shpuv=.S8¢" Lq ng'»

my Shpr=58(Lqg n g r¢ hug v o' wr) . (332)
myShuy=8Auq¢' v+dg pr+qg tur) ‘

Door substitutie der waarden van ¢ in (32) verkrijgen
wij alzoo naar mate de vergelijking (33) ¢én of drie
recele wortels heeft, één of drie richtingen in de ruimte,
volgens welke de operatie ¢ den vector ¢ niet van richting
doch slechts van lengte doet veranderen,

Verder verkrijgen wij

Soge =g,
zoodat bij iedere waarde van g cen afzonderlijke waarde
van .No ¢ o behoort.,

§ 59. Zijn alzoo g, &, & de waarden van g en
0, 0,,0, de resp. waarden van p dan wordt identiek

17523
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voldaan aan de drie vergelijkingen :
(p—g1) e =0, (f = -)”_' =0, (¢—g&)es=o0. . (34)

De vectoren o, 0,, 0, vormen den hoofd-drievlakken-
hoek van de functie ¢ p.

Evenzoo kan men met ¢ den geconjugeerden drie-
vlakkenhoek bepalen.

Opdat nu een der wortels ¢ =o zij, moet de verge-
lijking (33) of de daaraanvoorafgaande determinant door
& = o voldaan zijn, dus moet

E—="0WR 0L S5 =10

Of wel, voor dien vector moet

(nfi ==l —=1let

Deze beschouwingen leiden allen tot dezelfde voor-

waarde
S¢ by’ neg’ v=o.

Uit de vergelijkingen (29) kan, door y = o te stellen,
die vector bepaald worden.

Daar iedere vector o == x 9, +vo, -} 20, 1s, kan men
op o successievelijk de operatieén ¢ — g, 9 — &, , ¢ —&;
toepassen.

Dit. geeft:

(p—g)o=2(p—&) o+ (p—9&) e +2(0—8) 0

Uit (34)

0= (.'f' —£1) 0 r b (;'f ".4'.'.') ¢ + 2 (g _".4'.::) 03+
Aftrekkend
(q.——ff)n_‘l' ---"’)n -1—]( —-".[f_. 4.

En hieruit
(r—&2) r—&3)e=2 (g1 —&s) (p—&2)es +2 (§2—&:) (9 —&1)o,-

Derhalve

(,"[' — & ) ('." = .t;r.‘:) 0= (";rl 5 c’wr'w ) (lf'i"i & ) Y ’
(I!‘ £ ) (l[- — '.-I,"] ) Qi =Y. (,{"3 ) (5 L \'[.rl ) 0 ( (3'—1)
('J‘ == ) (‘J =2 (£ — & )(“ 3
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o

Opereeren wij op deze respectievelijk met ¢ — g, ,
p——y, p— 5, z00 geven alle drie:
(p—&)(0—g)(@—&)e=o0.......(36)
De operatieén (p—g,) enz. ontnemen dus aan cen
vector ¢ achtercenvolgens zijne composanten volgens de
kanten van den hoofddrievlakkenhoek.

Daar ¢’ de geconjugeerde functie is, hebben wij

Sa(pg—ge=Sope—gSao,
= Spo¢'c0—gSpa,

— My (qn' — ) 0%
Nu volgt uit
(p—&1)e =0,
Solg gi)o =S50 (g —geo=o

Dus staat (¢* — g,) ¢ loodrecht op p,, evenzoo (p"—g,) o
loodrecht op ¢,. Dus staat (¢ —g,) ()" —g,) 0 = no’,
loodrecht op het vlak door o, en p,, dus zijn de beide
drievlakkenhoeken complementair.

Is nu ¢’p=qgo, dan is de functic aan zich zelf ge-
conjugeerd, dan zijn de wortels g, 0,,¢, steeds recel
en dus ook de vectoren o,,0,,0,; want ware dit niet

het geval, laat dan

-'{l,/" E «{r’.‘: I g - 1 cn [’,: -I‘ I\”.: l £ =t

een wortel zijn, dan zou
i "",.' + 0 [ | '”') (-ql; '|'."\’,‘: l . 1){"-"'.‘ 1 U'.: l | 1)
zijn en dus

poy =800 —g&H05 gy =g50,+&50%,
verder
'\.'.";: I 'JJ_' -8 ’;’ ’\‘[’,.: f"'_' .§",.‘:'-'."::'\‘ "‘.i"."l f":: x _."."_' ‘\.f.',.‘: UI.' 3 .#,:: '\":.;

.§";: {’,’h-i '|' i";-;} ‘\‘{".' ) i',.t "‘.{":: ] ’-”‘.‘ O,
Nu is o’2 4 o2 steeds negatief en dus moet ¢/, = o

of wat hetzelfde is, de wortels recel zijn.




Verder moet dan
Seo (9 —81)e=0,

So (9—2, Y(p—g,)o=0 en Sy, (:'I‘ —£1) (p—g,) e=o0.
Alzoo staat (p—g,) (p —g,) 0 of g, , loodrecht op g, en g,.

§ 6o. In de vergelijking (36) zijn g,,2,,¢; de wor-
tels van
g —my, g* + m, g — m = o.
Wij kunnen derhalve (36) ook schrijven

(p* —m, ¢* +m, ¢ —m)o=o,
of wel symbolisch
gt —m, ¢+ m, 9 —m = o.

Dit is de symbolische derdemachtsvergelijking van
Hayizron (Elements of Quaternions § 346—3606; Lectures
on Quaternions § XCVII).

Opereeren wij hierop met ¢~

en zetten de termen
om, dan is
mag— ' = m, —m, g+ ¢>
Hiermede is de inverse functie uitgedrukt in directe
functieén en dus de vergelijking qgo=y of p= ¢~ ', op
de eenvoudigste wijze opgelost, want wij zien hieruit,
dat alsdan
mo=m, 7y —mM ¢y +e*y ... co...(37)
Ware nu gegeven y = o, dan zijn tevens ¢ y = ¢* 7y =0
en de vergelijking geeft p = o0 of m = o welke laatste
voorwaarde dezelfde is als S¢' A ¢ ng"v = o.
Maar uit de vergelijkingen (30) volgt, dat dan de op-
lossing 1s
Up=UViugdv=UVyri'b=UV¢ Lo n .. (38)
Is tevens 'm, = o, zoo geeft dit in verband met (33.)
Viugv=Vyvgdb=V¢lyp=o
of

U b=Uq¢g'u=Uqg ».
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ggende in het vlak, dat

<

Maar dan voldoet iedere p li
bepaald wordt door
.‘)'g q" i :‘YQ q.’ u ::.S‘{J q’ ¥i— OL i s s ety (:jt))
Als laatste geval hebben wij, dat ook nog m, = o of
q-' — q/ = q" ¥y = 0.
Dan is p geheel onbepaald.
Hiermede is de liniaire vector-vergelijking opgelost.
De oplossing van de vergelijking 7o ¢ 0 = o volgt nu
uit de derdemachtsvergelijking (33). Deze geeft ¢, o, 0.,
terwijl uit (33) volgt:
o, =Ulp—g) p—4&)e J
s =-Ulp—g) @ —£)ot ... viiii(40)
0y — Uy 'c(»"l) (¢ — &) \

waardoor de bijbehoorende eenheidsvectoren gevonden zijn,

i
-

§ 61. Indien nu ¢ ¢ een aan zich zelf geconjugeerde
functie is, heeft de vergelijking 7p g 0 = o drie reéele
wortels. De er aan voldoende drie vectoren staan onder-
ling loodrecht, terwijl de tensors onbepaald Dblijven.
Stellen wij ze nu door z, 7 en £ voor, dan verkrijgen
wij uit (25)

e 1 S1p0—78570 2SS ko,
Verder is dan identiek
gr=4g 1, 9] =817 gR=g, k
en alzoo uit (27
Ad=—g S, B=—g, 870, C=--g3,Ske.
Daardoor wordt
Po= &1 .87 0 -+ & _/l‘\‘./.i' 'i" &3 RSk 4

Ook verkrijgen wij

w
1
Oy
"
>

en
Veogo=1(g,—&)S7eSke+7(g—&)Ske Sty
l ,ﬂ (‘5"" _\‘r’r: ) Y 1- 0 .‘\'l/-r‘r -




terwijl nog
Sege=2g (S70)* +£ (S70)* +£ (Ske)* =4 . (41)

Deze uitdrukking is een functie van den tweeden
graad in ¢. Laat men o alle mogelijke richtingen en
lengten aannemen, dan zal .50 ¢ o ook verschillende
waarden verkrijgen. Voor constante waarden van fe zal
dus het uiteinde van o steeds eindigen in een oppervlak
van den tweeden graad. Geven wij nu /% verschillende
waarden dan verkrijgen wij op deze wijze een stelsel
oelijkvormige oppervlakken, wier hoofdassen alle samen-
vallen volgens de vectoren 7, 7 en £ Indien nu g, &,
en g, gelijke teckens hebben, zijn alle oppervlakken
ellipsoiden. Zij zijn positief wanneer de hoek tusschen

|

T : ‘ 17
o en o grooter dan —, negatief wanneer die hoek <=
- - -

-

1s.

n |

Zijn twee der grootheden g aan elkander gelijk, dan zijn
de oppervlakken omwentelingslichamen om den vector
van de derde grootheid als as. Is een der grootheden
g nul en zijn de beide andere gelijk van teeken, dan
zijn de oppervlakken elliptische cylinders, die den vector
waarvoor ¢ ¢ = o is tot as hebben.

Daar wij veronderstellen, dat g, =g, <, is, zullen,
indien de teckens ongelijk zijn, g, en g, van teeken ver-
schillen, Dan vormen de oppervlakken een stelsel hyper-
boloiden, gedeeltelijk met één, gedeeltelijk met twee
mantels, welke gescheiden worden door de gemeen-
schappelijke asymptotische kegel .So ¢ ¢ = 0. Hoe die
twee soorten ten opzichte van de assen geplaatst zijn,,
hangt van het teeken van g, en van de operatie ¢ af.
Is dan ¢, = o, dan worden de hyperboloiden hyperbaolische
cylinders, gescheiden door twee elkaar volgens de j-vector
snijdende vlakken, voor welke 5S¢ ¢ ¢=o0. Voor de

J-vector zelve is dan g g = ¢ 7= o. Zijn twee der groot-
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heden g gelijk nul, zoo worden de oppervlakken een
stelsel evenwijdige platte vlakken loodrecht op den
vector van de derde grootheid. Voor iederen vector in
één dier vlakken is dan steeds g o =o. Zin alle groot-
heden ¢ = o, dan is voor iederen vector in de ruimte de

vergelijking g o = o vervuld.
gelyring q ¢

7. Voortzetling der belandeling van hel astalisch
evenzicht,

§ 62. Wij zullen nu de gevonden resultaten op het
vraagstuk van het evenwicht toepassen.

et tweede geval van § 55 eischte tot behoud van
het evenwicht een draaiing van 180" om een as, die
bepaald werd door de vergelijking Fogo=—=o0 of g p=g .
De vergelijking (33) bepaalt de drie waarden van g,
welke hieraan voldoen; en met behulp van (32) vindt
men de bij iedere waarde van ¢ behoorende waarden van
Sho, Sup en Sy Hierdoor worden de richtingen
der vectoren bepaald. Wij weten uit § 55, dat wij
eenheidsvectoren hiervoor nemen moeten. Eenvoudiger
wordt dit doel bereikt uit de vergelijkingen (40).

In ons geval was

po=2(«Spef—poSap)
en dus
.\'ﬁ Ppp = >y (.')‘IT i« ‘\‘ ¢ l)' - .‘\'n' o ,\‘ (1 (ﬂ = -\' o |||’ iy
waaruit volgt, dat de geconjugeerde functie is
go=X@PSNoe—0S« ).
Volgens § 51 is
2RSoa=2aSof+4 Voa
en derhalve
@t+ao)e=z290+cc
Dit is ecen bijzonder geval van de algemeene eigenschap
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Tarr ,Quaternions” § 174), dat iedere niet aan zich zelf
geconjugeerde liniaire vector-functie van een aan zich
zelf geconjugeerde verschilt door een term van de ge-
daante V¢ 0.

Hebben wij nu zooals in § 55 met een stelsel te doen
dat in evenwicht is, dan is ¢ = o en dus in dat geval

¢ 0= q o

Zoodat dan de functie aan zich zelf geconjugeerd blijkt
te zijn.

De vergelijkingen bepalen nu een stelsel van drie
loodrecht op elkander staande eenheidsvectoren, die wij
7,7, & kunnen nocmen, zoodat de eigenschappen van § 01
op ons stelsel van toepassing worden. Stellen wij dus
A=1, u=j, » =~ zoo vinden wij

& 1= 1 =3 (a Sz 8 — 2.5« )

en door met .S te opereeren
= —3Saf+Stad ¢ @),
2 — 2 (.\' 74 ‘r:: “] .\'_/‘ 7 ,\“,'. #),
Fa=—2(Sap SkaSEkp).

En alzoo in verband met (41)
Sigi=r+=2857aS52f,
S7p)j=F~+42 S7aS8578,

Skpk=r+4+ 2 SkaSkp.

Na zulk een draaiing is de viriaal geworden: — zie

o
o

o

|

V(g['g'(‘]ijking (.3 3)

Ff =— (4225 1dS18),
Ff =— (422 .‘1'_/‘ adS70),
vy — — (F —}— 2 3.5kaSk “; i}

dan zijn
XS7a .‘f.’..;)’ —3x X, :..\"/l(( .\‘jlf — Y, 2SkalSk =2z v



el |

waarmede onze resultaten overgaan in de waarden in
§ 31 door £, F,, F, aangegeven.
§ 63. Indien nu een der wortels bijv. &, gelijk nul is,
is voor dien wortel
Stpi=—g, =0

en wij komen daarmede op het derde geval van § 55

3 .

want dan zijn voor dien vector tegelijk
Sopo—o0 en o = e
en dus
P o= 0.

Daar in dit geval 7'p gerekend wordt niet nul te zijn,
wat op het eerste geval zou terugvoeren, maar onbe-
paald blijft, mogen wij de vergelijkingen als door I'p ge-
deeld achten en alzoo p - Up beschouwen,

Volgens § 57 is er alleen in dat geval een oplossing
mogelijk, wanneer voldaan is aan de voorwaarde

a\rql A q-’ i I” A —l 0] Ui- i 0.

Dit is tevens de voorwaarde, opdat de vergelijking
Vogo 0 een wortel o hebbe, zoodat de beide be-
schouwingen tot dezelfde voorwaarde aanleiding geven.

[Kiezen wij nu voor A4, u, » drie onderling loodrechte
eenheidsvectoren, dan wordt de voorwaarde (daar ¢ = ¢)

.\'q; A Jouaqr 0.

Ot bij instelling der waarde van g
S e SAp ASwfd). 2aSup wSa ), 2aSrp rSaf)

Stelt men hierin

t Xt4 974z k,
- Z &,
=1, u=y, ==,

f=X14 Y,

dan gaat deze uitdrukking over in de in § 32 berekende.
Hiermede is in quaternions de voorwaarde voor het

bestaan van een evenwichtsas gevonden, Iin de as zelve

)
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wordt bepaald uit de voor ons geval luidende verge-
lijkingen (38): ‘
o=UVougv=UVgrgph=UVglopu.
Of bij de invoering der waarde van g
Urzx (e« Sufd —u Saf) 2 (x Sy —v Sap),
pr— 0 VE(eSef—» St | 3). Z(aSAL — A .S af),
\TVE(SL—rSap) 2(ced ‘uf—uSap),

Daar in dit geval Sogo = 0 is, hebben wij ook hier
gt J ]

RE— N1

Alzoo X .S a, 8 is constant, & Vg f = o.

Wij zien uit het voorgaande, dat bij draaiing om een
as van astatisch evenwicht het resulteerend quaternion
der totale momenten ten opzichte van een punt dier as
voortdurend tot een scalar gedegenercerd blijft, welks
waarde constant is. Deze waarde behoeft echter niet
zooals voor een vlak stelsel (§ 52) nul te zijn

[s behalve m ook m, = o, dan voldoet volgens § 6o
iedere vector, die ligt in het vlak bepaald door een der
drie vergelijkingen :

3 0 q ;v — b 0 u = .S'{J QY- 0.

Dit is het geval van § 32.

[s tevens m, = o dan wordt yp onbepaald. Het stelsel
is alzoo in astatisch evenwicht ten opzichte van den
oorsprong. De vereischten hiervoor zijn in quaternions:

= 0% g h=—0, ou =0, py—0.

~

2 |
§ 64. De vergelijkingen van § 56 kunnen ook dienen
ter oplossing van het algemeene geval
2 Vgug ll'; — e 4y
welke vergelijking wij getransformeerd hebben tot de
gedaante (zie verg. (24)):

'2 A G ru\;.\'a‘ui ['91‘ 0 wapw,
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Stellen 4, u, », drie onderling loodrechte eenheids-vec-
toren voor, dan zijn
II* 1;} — - ,.c'l j- = [)’ n — C V¥

o =—ASAp S uwp—p.Sy 0.

y

Stellen wij voor g hierin ¢ of 4 ¢, dan vinden wij
G=—ASAc—uSuc—pSya,
Ad6=—AShdc—uSudc —v.Svda
en nog is
Vogo—=(CSuop BSvo)dh+(ASvo—CSA o) u
(OS24 A8 n 0) .
Substitueeren wij nu in onze vergelijking (29) deze waar-
den, zoo verkrijgen wij bij splitsing
'!.\‘}..IH ,\'{.J(;.\‘}. 0 - ((“.\"u{;‘ /b'.\'p:p) w A,
’: .\"u G = ‘\'[uc;,\';{ 0 - (‘-f‘\' v GaSid (i:] w
'_I.\'J'.f(; _.\.J\Jl}.\.}'ij-i-(/)‘.\'.].y _[.\'g({a) wl,
Dit zijn de drie scalar-vergelijkingen, waaraan (z4)
aequivalent is, Door /£ en C te elimineeren verkrijgen wij
ll;! (0?4 (S A r‘l]") SAda - ' Y ) 0N o wSve)Sudac
- ’.: (\ ) 0 Sy 0 { Ul .\"u ) Sy da LA 0 .\'1) G o A,
Opereeren wij op (24) met Sp, dan verkrijgen wij
hoede+Sec+wSoge = o0
en in verband met de waarde voor J G verkrijgen wij
door eliminatiec van 4 en ' en daarna van & en
(SApd—Soqo).SA o+ (SAgu Uy Sv dc)Sup

U Sudc)Syp+SSidae = o,

3

1 ll.\'f-'. p ¥y

|'.\' i1 .’ ) l‘l .\' y ’ G) .\' .‘ tl f {.\- .{f i Ill .\' 0 !;‘ [J’ .\' .u r‘i

~ (‘.\‘.u (Y E '.., SA oA G).S 0 : .\'Ir( A a %
(Sy gk Yo Sudac)Sio (S v g Uy Shda)Sup
(.5 p p ¥ AY 0gpe) S 0 '_I Svda Q5

(.\..I-',l’. ' I_l,\'l-, ‘I:.].\'}, 0 ! ':"“.”("} I;'\‘.‘""'.‘)'\'.”'"

|7(.\IJ'I; 1 l‘,-\‘f..llr'.\.J'l‘J :. [|'.\'|\j o 0.




Deze vergelijkingen zijn homogeen in .5 Lo, Spo,Sro
en w, en dus moet
Sigr—Sogo, Shopu-t- If,l._S',r Adc, Shor— A 2.51;1 Adc, Sidcg,
‘.'q‘-“ ph—1, Svd6, Supp— Soqo, Sugv+1,S24a, Sudc,
\Srpht V,Sude, Svou— ,.Shdc, Svgr—Sogo, Svda,
|Sic+ Y, Shda, Suc U Sude, Sva+',Svdc, Segeo.l

' v

:O'

welke vergelijkingen volkomen dezelfde zijn als die van

§ 30. Door substitutie van de hieruit gevonden waarden
van .Sp ¢ o vinden wij de bij iedere draaiing behoorende
waarde van 4 r uit vergelijking (23).

§ 65. Uit het derde geval van § 55 is alzoo gebleken,
dat, wanneer o een eenheidsvector voorstelt, samenvallende
met de draaiingsas, een constant krachtenstelsel bij
draaiing om die as alleen dan voortdurend in evenwicht
zal zijn, als voldaan is aan de drie voorwaarden

> l")’ —Qy > Vea I)l — 0O, gpo=0.

De §§ 34—40 toonden aan op welke wijze krachten-
stelsels, die niet aan drie voorwaarden voldeden, konden
veranderd worden door toevoeging van twee krachten
zoodat zij er wel aan voldoen. Om die gevallen volgens
de hier gebruikte rekenmethode na te gaan, stellen wij
de krachten g, en 3, en de vectoren hunner aangrijpings-
punten «; en a,. Dan moet- voldaan worden aan de
vergelijkingen

2346+ 0,

SR e :‘5 *iu V(:‘l ijt --*— I‘ru] p‘.‘ - o)
g0 -+ tty .\'{1 ijl { (, LY ) ‘)’.., 0 (LY a, ljl -—;-- oy «, ()'3).
[s ons bekend, dat het stelsel in evenwicht is, dan zijn
=0 en 2 Ve 0,
dus
P".‘ - i;l

en stellen wij
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zoo is aan de tweede vergelijking voldaan.
De derde wordt:

go=x(r'—7Soy),

waaruit
Vogo=—xaVoySoy, Sego=xp**—x(Sey)?
( ?"Q i {Jl)") — f"v{_) ¥ .Q'{J }']"‘, — — a{ [vl‘l ;')“'.

Uit deze beide vergelijkingen:
(Fogop)?
;_\'i‘ <J {.' '

X {,‘g. 0 ;')1 o

'

Verder is F, = S, 8, + S a, £, oy

dus
. - (Vo it 0)?
A8 { — i1 1= P .‘ =
vpe ¢ x | D 0q o
(I"f‘) i J‘J)I-i C (.50 p 0)? ( J'Q il 0)?
I, ; SN o - = 2 ~L
.\ 'L’ (I l‘u ] 3 ,\ Li l"} i’
S (X )
o] 0o ’
Maar r, = x y = —xa (1y)?
en derhalve
x(So ) (Vege)
XG> = (50):

l'lf

.
oo
7o

So Uy is de cosinus van den hoek, die y met p maakt,

Ay 0 {./"',' —

& ')

dus de grootheid, die in § 34 met x is aangegeven.
Uit de formule (17) aldaar is /, bekend, welke groot-
heid in § 43 uitgedrukt is in de grootheden 4 en .S
Wanneer wij nu bedenken, dat
Sogpo=2(SoalSpp 0 Sap)
en  wij, teneinde dit tot gewone codrdinaten over te
brengen, de volgende vormen invoeren:
ea=xt+97-4 2 &,
=Xt Y54 Z 4k,

i At ‘{“ It _/- ! v A




dan wordt na uitwerking
Sopo =S8
en
go— 4.

De eenvoudigheid en natuurlijkheid der Haamrron’sche
symbolen, zooals zij hier voorkomen, is treffend. Om in
§ 34 en § 43 de resultaten duidelijk en eenvoudig te
formuleeren, waren naar Mopius de grootheden A4 en .
ingevoerd, maar scheen hun keuze alleen door den bij-
zonderen aard van het vraagstuk bepaald te zijn.

Bij de behandeling met quaternions is de invoering
dier functieén totaal overbodig geworden, daar de functie
¢, die door hare eigenschappen het geheele vraagstuk
van de draaiing van krachtenstelsels beheerscht, ook nu
alleen voldoende is om deze oplossingen in hun een-
voudigste gedaante te geven.

De in de 8% 4145 behandelde evenwichtsfunctie is
geen andere dan de reeds herhaalde malen opgetreden
grootheid .S o ¢ 0.

In § 44 zagen wij, dat door een geschikte keuze van
het coordinatenstelsel de evenwichtsfunctie kon geschreven
worden:

¢ M+ ¢y u* 4 ¢ v

In § 61 vonden wij (verg. (41))

Sogo=g (Sto)* +g,(570)" + &5 (Sko).

51
Is nu
o =At - uy -+ vk,
dan is
Yl — g )
en dus
b =817 € = &> Oy — 837

Zoo blijkt, wanneer wij de mechanische eigenschappen

uit de 8§ 41—45 ter vergelijking leggen naast de meet-




kundige eigenschappen in § 61, dat de cerste als het
ware de vertaling zijn der laatste.
Voor den kegel van het neutrale evenwicht vinden wij
in deze symbolen alzoo
S O qpo =0,
§ 66. Zoo het gegeven stelsel niet in evenwicht is,
schrijven wij onze vergelijkingen
R4 f3, +f8,=0,

4

G ——}— T'tcl ﬁl ,,{4 | /4 xy |

pot+a Sof, +aySof, =08 3, +Sa,f,)

3, — 0,
Om nu de hoofdassen te vinden, elimineeren wij met
behulp van de eerste vergelijking 3, en stellen tegelijkertijd

o, - o« - x 0 5

-

a9
] ‘1! Q.

G Vea, R 4 2 Vg

Om x te elimineeren opereeren wij met So., dus

'\".”; = .\'y I'rt, R b Sor T e (u‘)

De derde vergelijking wordt

PO=w« SPR Oy R v v v v ... (0)
Opereerende met SR
S R ppg=0,
CI[-
Sog'rR=o0.

Dus een plat vlak (het vlak van verg. (21)).

Passen wij op de resultante r de H]lt'%‘.ilil' ¢" toe, zoo
wordt ® normaal op dit vlak. De operatie ¢ op de hoofd-
assen toegepast stelt ze loodrecht Oop R,

Opereeren wij op () met 7 () r dan verkrijgen wij

Vipo)r = IMa, R Sp R VorSa R
en hierop met S o
.\';‘a f'[u; n) R -\‘-'3 f'ul )RS 0 R,
of ingevolge (a)

SRogo D oGS OR O,

het kegelvlak (20) van § 35.
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Indien wij alle krachten § projecteeren op de richting
0 is de groote van zulk een projectie — .S¢ . De vector
7 van het middelpunt der aldus geprojecteerde krachten
wordt gegeven door de formule

¥ .,(;Q Ria—>iry .S‘:_J 3
en dus 1s
v \' OR— @O -{ﬁ o x

=(@+7Fe
en omgekeerd
, (¢ +7)" "y Se R =
Opereerende met .S r
SRp4+8v-'y=1.

Dit nu is in quaternions de vergelijking van het centraal-
vlak; want ¢ is geélimineerd, zoodat wij de meetkundige
plaats van de uiteinden der vectoren y verkregen hebben.

Uit § 20 verg. (10) is de vergelijking van het hoofd-
viak der viriaal

SR y=F,
Uit (&) volgt
Ir 0 'i' 0 -R‘ ((I R — ((I -\‘f\l R
en dus als boven opereerend
SrR(p 4+ Sa, )", = 1.

Opdat «, dus voldoe aan de vergelijking van het

centraalvlak moet «, voldoen aan

Sa, R =¥
d. w. z. aan de vergelijking van het hoofdvlak der viri-
aal. M. a. w.: de beide hoofdassen $nijden de snijlijn van
het centraalvlak met het hoofdvlak der viriaal. (Zie § 306).

§ 67. Is het stelsel herleidbaar tot een enkele resul-
tante, dan is (g)

DIRG=—10,

Dan kiezen wij het snijpunt van de centraal-as met
het hoofdvlak tot oorsprong en moet volgens (11)

FR™'4- Far~'=o0
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en daar ook Sr-'G alsdan —o is, zijn dus

F—Gi—0.
Maar in dat geval is ook
q.’ — (P,
of de functie ¢ is een aan zich zelf geconjugeerde.
De vergelijkingen van het vlak en van den kegel
worden dan
DR p o — O0— S 0 PR,
SRrRpqgo=o.
Aan deze laatste wordt voldaan door de voorwaarde
l —LJ p ti — 0O
_en door te stellen
Hieruit volgt dat de kegel gaat door de drie loodrecht
op elkander staande vectoren 7, 7, £, die wortels zijn van
Vogo-—=0 en door den vector r. Daar het vlak
SR@o=o0 loodrecht op r staat, moet dit den kegel in
twee reéele snijlijnen snijden. In dit geval zijn dus de
hoofdassen steeds reéel. Door op hunne vectoren de
tll)(‘l‘;ltil' ¢ toe te passen komen ze loodrecht op R te staan.
De substitutieén
po = ! ; /)’ 1t ( i
Srpop=—ASRA—BSrRu—CSrvp,
Sropgpo (BSrop—CSup)SrRA4-(CSLo—ASrp)SRu
| (.‘l'.'\“u 0 A.S A g).\'lt v,
voeren wij ter berekening in. Zoo wij daarbij stellen
y {'l{,
dan zijn
SRA=SRu=0en rR=y 'R
en gaan onze vergelijkingen over in
CITRr 0,
(AS uon BSAp) TR 0%
of un ;
Gi=10,
ASpp=8LS Ao
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of, de waarden van A, & en € invoerend
Shor Sio+Spgpr Suo+SvgrSro=o,
Shou(Sho)* +SuguShoSuo-+SvrgnShoSvo
=SLglShoSuo+(Sugh)(Suo)*+SrglSupSro.

En met inachtneming der eigenschap ¢ = ¢ of

Sopgr=S8r¢o0,
verkrijgen wij nu eliminatie van Sw»p
Supupr[(Sio)* —(Suo) | =(Shgugr Sugreh)SioSuo.

Kiezen wij nu u zoodanig, dat
. .Stu Pureoyv =0,
dan wordt aan de vergelijking voldaan door

S g —"03=Cl] .S'.u g = O.

De projectiéen der hoofdassen op het vlak 4 u (het
hoofdvlak der virialen) zjn dus u en 4, en staan dus
loodrecht op elkander (zie § 37). Om de bij Sip=—o0
behoorende hoofdas te vinden, hebben wij achtereen-
volgens:

AS' it l, V ,%' I IJ —I— .\' V (, 14 .g' 14 I_? = ¢ }8

v .‘\- vy @V v
.\ '“ tp —— - - I .Ri y I‘i.
‘k‘ ‘.l'( q' Vv
IEn daar
o= ASho—uSup r.Svo,
0 - X (.” S qp v Y wap ,
De vergelijking («) is in ons geval
-\'{l ”f(l ¥V Q,
x5 u f’rcl vSreor xSy f'rcl T .\"u qy = 0.
Daar .Sy Ve, » 0 15, is 00k.Su Ve, v =0, en derhalve
I oy ¥ Xy ).,
«, Vo -|ﬁ zv.

(resubstitueerd in (4) ceeft
| i Sy iy qpr ‘\..“ v i 'R (6% .\"rt g j 20 oy ).
Opereerende met .5 u

Shougpr =17TRr (YSugr4zSrqv).
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Dus vinden wij slechts één betrekking tusschen 4y en 2,
Voor —z schrijven wij &, dan wordt de hoofdas:

a TRSupr=uSlopugr +2wSrepr—p.§S w0 v).

Evenzoo de andere

«a TRSApr =45 u grohtx2(ASrpr v .84 o).

§ 68. Het geval van § 38, dat het stelsel zich tot cen
koppel laat reduceeren, laat zich als volgt behandelen.
In dit geval is r==o0, zoodat wij de operaticén Sr en
() r niet hadden mogen toepassen. Wij moeten dus
terug naar de vergeljkingen (¢) en (4) van § 66, welke
nu worden

Y 0 (G Q5
p o 0O,
Deze laatste splitst zich nu in

A O D=0 (€= (o}

Daar So 6 = o is, staat p en dus de hoofdas (zoo er een
1s) loodrecht op ¢. Daar ¢ een liniaire functie is, komen
er geen twee oplossingen, doch daar «, uit de bereke-
ning is gevallen, voldoen alle evenwijdige lijnen.,

Kiezen wij den vector »|l ¢, dan wordt S» 0 O, en
dit in de drie andere ingevoerd, geeft

S J 44574 0+ SAqusSu 0 o)
SuwgphSho +SuguSuop=o,

AT, i AnSA 0 Sy i u .'\"u i 0,

Deze drie vergelijkingen stemmen overeen, zoodra

Y

Shphogu=Spuphrogu=Srqglgu=o0
en dan geeft bijv. de derde vergelijking de hoofdas
s =2 (AScpu—puScypl)
§ 60. Zijn alle krachten evenwijdig aan een bepaald

viak, dan kiezen we van de drie vectoren Ay u, v de
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laatste loodrecht op dat vlak, dus
Sy f=o,
SR
R=—ASAR—u.Sur,
Suc=Sul Va =2 S« 8,
— 3 Svhaf=28rvViaf,
=IZSvASaf—2Sva S +2Spp.Sha,

= A A l)'.

|

o,

En derhalve
AS‘ HG=— .S' } ql P = Y Y / 3
evenzoo

.S‘ }. G — ,S'.u q" Py = ._\‘ Yapou.

Hierdoor wordt de vergelijking van het vlak, daar
pv—-—1UVPF, .')7. pr —=—o, ;\‘.u Ppr=—O0O,
(S2ph SArR4+ SupdSur)Sho
+(ShpuSArR+SupuSur)Sup=o0,
en die van den kegel: '
(SAcSAR+SucSur)[(Sho) 4+ .Suop)?
FIUSve—Suph)SAr+(Shgh—Srgr)Sur]ShoSro,
+[(StgutSve)Surt(Svpr—Supu) SLr]SupSro=o.
Een der twee oplossingen is

g f)} 0= 0, S.u 0 = 0,
of
0 = r.

-~

(resubstitueerd in (4) op bladz. 87 geeft
qp -y S a; R,
of
F = .S. oy R.
Maar dan is ook
S, + x ¥R ¥,
Aan de vergelijking van het hoofdvlak der viriaal

N YRR

wordt voldaan door

r=a +xv,
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dus deze hoofdas ligt geheel in dat vlak (zie § 30).
§ 70. Indien voor een stelsel gegeven is
o=, SR 0—0p oY @, R,
volgt uit de formulen
Slhae=.57» Q@ u— ‘S‘.“ pv,
SHG=SAlpr—Sv» { oy
AV e S_lt q A : .‘\'). P,

2 =Shgh+ SugutSrgr,

dat alsdan

G= Va,R en Fr=Sa,R.

, tot oorsprong, dan worden

Kiezen wij dan «
G — 0, F=—O0, p U ‘ Q.
De vergelijkingen zijn nu voor alle p voldaan, terwijl

w, = «, =— o wordt. Dus alle lijnen door «, kunnen

1 U
hoofdassen zijn.

Het punt «, is dan het middelpunt van het krachten-
stelsel.

Daar een functie ¢ p negen scalar-constanten bevat,
komt de gegeven voorwaarde overeen met negen voor-
waarden uitgedrukt door scalar-vergelijkingen. De eene
vergelijking voor ¢ ¢ representeert in quaternions alzoo

de negen voorwaarden uit § jo.




HOOFDSTUK IIIL
De viriaal in de Dynamica,

. DYNAMICA VAN EEN PUNT.

w. Afleiding der vergelyking van ViLLarceav en CLAUSIUS.

§ 71. Uit de identicke vergelijking
r/(_l’:} e @ x
al Cdl
volgt door te differenticeren
d* (x%) (r‘!’ ek [ 1_:/".1‘
dl A7 S oY s
en door vermenigvuldiging met ', . en omzetting der
termen

7 (r/ AF X m ey M (e ,1-'-’)’
AL A gl Tk dil?
of zoo wij &*xd(* vervangen door .\
” (r/ cA R X d* (m .1"'}J
vas - 7
evenzoo
adt : I s (i
o (;/ Ak o 7 4 a* (mz?)
dil ! ‘l AL
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en door optelling dezer vergelijkingen
. (-2 i -2 F %
myt=F-1 'lf—rg;u;ii—} o el WL RS (1 2)
Deze vergelijking werd door Cravsius en VILLARCEAU
ongeveer gelijktijdig gepubliceerd. Door Crausius in
Poggendorff’s Annalen, Bd. 141; in de Gottinger Nach-
richten 1871; in Clebsch Mathem. Annalen e. a. m.:
Yvox Viccarceau in de Comptes Rendus: Tome 7s5.
Een geheel andere afleiding der vergelijking komt voor
bij Scurrr  , Theorie der DBewegung und der Kriifte”

Th. II, Cap. XII.

vy
A4
ok " YN
MY
{ ;
\\// _Exp'
q f U4 2
£ Y
f
r’ ’
Yol ga [
0 e %

Laten A7, 47 en A7 drie opeenvolgende punten der
baan zijn. Dan is A/7407° de richting der snelheid in
M, MM die der snelheid in 477, Zij de grootte der
snelheid in Mo =M A, in M v — M A,

Ontbinden wij dan die snelheden in hunne compo-

santen langs en loodrecht op de respectieve voerstralen,

dan is
/ .
MB—yr—<=
di
en zoo wij den conischen hoek 470 A d u noemen:
0 f/ i
MM ( ¥ e

[Evenzoo aan het punt A7
MB =9, en MC .
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Trekken wij dan A" D — en || /5 en eveneens

M F— en || M C, dan is de totale versnelling de resul-
tante van
DBt en F (Y.
Trek dan D £ 1| op M ', dan is D B’ de resultante van
D Een EB
D B’ geeft dus een composante evenwijdig aan de voer-
1 r '

straal: £B —d &L
straal: Ak r{f/

, en eene loodrecht op de voerstraal:

/85D — % d .

Trekken wij verder /G L vlak M7 A7 O, dan is
S FM G —=dos de hoek, die het vlak O A7 A7 maakt
met het vlak O 47N, Trekken wij dan verder G/ 1L 1" C
dan geeft /7 C

: v 7
1¢: een composante L O M M’': F G =r (f "; o,
‘
; 4
2¢: een composante | 7: G /7 - ptt du,
dli

: du
3¢: een composante /7 C=—d (1‘ {1, ;J
\ 2

Nemen wij nu de bij elkander behoorende deelen samen,

dan verkrijgen wij als composanten der totale versnelling g

el gr = M’LI 4 et 43 (li—'—‘- y
(f fz 11"/ i
" . (Z’ r t‘/'u t[".u
R R Ty B
e. o dudao
P ="77 It

Verder hebben wij door ontbinding der snelheid

. ff}_‘"‘ L9 ':f.u)“'




a7

({H . . . .
De waarde van =L uit g, hierin gesubstitueerd geeft
(/

‘ ar\? a*r
— — -—l_. £, ——— qy
(d f) AT 1Y

”71()..!) s

2
1

1

Of wanneer wij met » vermenigvuldigen:
g a*(mr*
mo*=F4 1, e )

= A

waarmede de vergelijking teruggevonden is.
8 72. Schrijft men in de vergelijking ', m 2* = 7, dan
verkrijgen wij
o d(mr?)
/ -

o

2 I'=F+41Y, 7

)

welke een betrekking tusschen de kinetische energie en
de viriaal geeft.

Voert men daarentegen de centripetaalkracht in, n.l,

P - mo*

L
i

Z00 18
W PRy
o= R d* (mr?)
E Yodar?
Bezitten de krachten een ergal, welks negatieve par-
s g
ticele differentiaalquotienten de kracht-composanten be-
palen, dan is (§ 35)

. ) U N Y {7
FPex— 1y 4z
dx "0y A\

Is nu & een homogeene functie van den Aden graad,

dan is

en dus

~J
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U, verkrijgen wij hieruit

s A (mr?
E:_._t};_cf_%_li__(_ J

en daar 7'= FE

2 aE
of
el 28 1 d*(mr?)
D=
of
R @ (mr?)
2= 2 k £+ diAE

En uit de beide laatsten of uit de wet der energie

E=T+ } 7.

Zoo verkrijgen wij bij aantrekking naar een centrum
volgens de wet van Newron, in welk geval £ = —1 is:

d* (m 7?)

E=1 U

AN
2 "
r AR d* (mr?)
o — ~F 9 9 3
N
2 . d
7 W d* (m r7)
- - ) i-_ ..‘ .
altl
Is het ergal een homogeene functie van den 2den
graad, dan is £- 2 en gaan de drie formulen over

in de eene
d* (mr*) __ 7
Py 4 E.

mr*=2LE+¢ t+c,.

3. Tocpassing der vergelipking op de vrye beweging van
een punt.
g -3 Passen wij deze vergelijkingen toe op de vrije
3 73 AS5C J : geljringe > O] ]
beweging van een punt.
Beweegt het punt 47 zich langs een rechte lijn, als dan
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het voetpunt der loodlijn uit den oorsprong het punt .4
is en 4 M — x, dan hebben wij

r*= (0 4)* 4 x?
en dus

2 T— F4 1 (M2
i
=l mvr - mag,

als ¢ de versnelling voorstelt.

[s dus # constant dan is ¢ = o en dus /7— o.

[s « constant dan is /- mx «.

Beschrijft 17 op A A7 de projectie van een gelijkmatige
cirkelbeweging, van welke cirkel ¢ de straal moge zijn,
dan zijn

X = acosi, ) — a sin o a9
' al
en wordt, zoo 7 de tijd voorstelt, verloopende tusschen

twee gelijke phasen der beweging

d ) 3l
dil r
Achtereenvolgens verkrijgen wij hieruit:
9 =—2mat ‘s,
G el =2 7 BTk i,
d* (m x?) 8a*ma*cos 2 &
t/ /.‘ "'_‘ ]
e o wt e at sint O
2 L'=may* ‘ 4
73
/e } w* ma*cos* G 4 mimat
s 74 ’
U / fal b 2 wim x? 2n*ma® cos* 0
: ¢ 23

cn dus
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§ 74. Bij de parabolische baan hebben wij
X =17, oS «.l,
y=g,sma.t— ", g,
waarin 7, de aanvangssnelheid en « de hoek, dien deze
met den horizon maakt, voorstellen, en dus

mr: = m it (’ : —guSstna.l + -’)

en hieruit
d*(m r"
De viriaal is

m(zov: —6g7v,s1tna.t+ 381

F=mgy=mg(v,sma.t—"), gt*.
Daar de kracht constant is, is de oraad van /: - 1,
! S

zoodat wij verkrijgen

==l
De viriaalvergelijking is
7 A d*(mr?)
= L d 12 )
of na substitutie
T="moy —mgo,sina.t+ ", mgt
= '/}, - 1
. En tevens is (§ 72)
T o drmr?)
= Ty l 4 ,,,,,{/,:,
i

en dus verkrijgen wij
= 1 " he—, A
=3 mol =1,
§ 75. Ter toepassing op centraalbeweging gaan wij
uit van de vergeljking

of zoo wij »—!
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Verder is
@’ (r’) _ 2%’ (f/ :}]2 4 Hemh) a8
art — 4ot \di. a0 dE
ao”") __ A
a0

¥ : —T,
ali
1S, 1S
(! i ¢ &
=5 — a—CP"
d!? 7l 5
€n

a* 0 @ 0 v os AR
A T = T T L
d7* “v adt =L ad &
Dus is
(f”(f"“) - ( (r/ U)u a*p ]
at—= 2 ¢ = S|,
d d Yd ot
Nu volgt uit de viriaalvergelijking
: 1* (m 72)
R A RS\
5 a7
Iin derhalve

/" = mc? 0 ({J -*- —

d 02)

Als wij nu invoeren
F=mro@r)=mo "¢
dan komen wij op de bekende vergelijking
- ) s ( I a? r\)]
pwr)=c " p~lp -+ L
I ( ¢ ~ i/ ‘;) 1

Bedenken wij, dat

zoo zien wij, dat
2 Al J -3 12
. m v - /N 2 wp W 0 a@d”p
/‘, — -|- { (rl‘ E ]{' [” } ]
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en alzoo
mc > do)? a* o
r = ——J)(k 4 2)p? E |5 20— ],
L 2.&{<1+')9 +’r(fin] I 2ere|

Stellen wij nu

en dus

k=mn-41
dan wordt de energie der centraalbeweging
; 3\ (I’ N 2 ({2 n
| 1 ~ S
72—+ 3) 051 (72 1= 1 -+ 20 .
( J) = { q} ) (({ N { s (2’ -’}" :
i ] — - )

o* T2 lo+=—
> [ Tdo

- : I :
§ 76. Voor cirkelbeweging, ¢ = const = —, wordt dit
>

¥/ 7T
m I :

" 2(mF )

= Mmoo 4 3

2 7 - I

rt 1

Voor elliptische beweging om het middelpunt is

Ay Yy
2 1 —&“cos” {r
A e et g e
. b
d o etcos & sin O
a0 b (l g2 CO53 .‘P)"’z'
d* o e2 (1 — 2 cos* 0) - ¢ cos* O
, dar o (1 — ¢&*cos? n")r"‘
En daaruit wordt:
2
~ It (2—¢ - 1 : -
b f— .,)me’)‘:' (2 —e&*)ma’
2 (1 —&?) 2™ :

Voor elliptische beweging om het brandpunt, waarvoor

I Ql— £ cos O

n=——2,p 4 :
(l{ 0 & . 9
-— s
d /7 i
{!: 0 & )
= - cos i
ad v’ , 4
verkrijgen wij
2
ot L] (1==e2) s ms __mm

(l

b
\}.
]
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Bij parabolische beweging om het brandpunt is ¢ = |

en dus
E=o.

§ 77. In § 72 zagen wij, dat als het ergal een homo-
geene functie van den — 29 graad is, wij de betrekking
hebben:

d* (mr*) 7
dEy A

Hebben wij nu bovendien met een centraalbeweging
te doen, dan gelden ook voor dat geval bovenstaande
formulen. Dan wordt de viriaalvergelijking

muo*=2L+mrqg(r).

Daar er een ergal bestaat, geldt dus het theorema der
levende kracht, dat in differentinalvorm voor ons geval
wordt

d(Y,mov*y4maq(r)dr =o.

Door eliminatie van ¢ (») uit beide vergelijkingen ver-
krijgen wij:
r d(z?) .

2
- 7

2 I
2 dr m
Integreeren wij deze liniaire differentiaal-vergelijking
van de 1¢ orde, dan is 't resultaat
" a 2 /£
v = — -} )
7.4 i
waarin @ de integratie-constante voorstelt,

. Door substitutie verkrijgen wij verder

'!‘;‘}. : = :.,ri! en g (7) :.!:u'

De ]lit'l‘])ij optredende kracht moet dus omgekeerd even-
redig aan de derde macht van den afstand zijn. Verder
is in verband met bovengenoemde formulen

9 -
vl (”,., -I— d’r‘l "} I 2.5 -I'n‘ [J._,
b a o m




Substituceren wij dit in de vergelijking (43), dan

komt er
a — .
Alzoo is de differentiaalvergelijking der baan
do)* 2 F u—¢? 2
= = = — 0 £,
d o m c* ¢

Eerste geval: ¢* < u.
Stel dan
oLy w—c?

e ((2. i - — l.")J"'
Wi c* c”

en de vergelijking wordt :

do

et — - - -
| aT+ B2 o2

log e«

Indien wij de integratie-constante &, = 3

stellen
dan is de integraal
« i -0 0
g = e ﬁ — J )
2 ")
en de vergelijking der baan
{r -—— 3 0
2[3:.1rf¢(¢rﬁ e ! ;
Drukt men met behulp van de perkenwet:

r2d 0= cdt
7 in / uit door & te elimineeren, dan vindt men

. 2/ . ‘ 2
L {/ 3 !‘,) T2 (f . f”) TG
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waarin in dit bijzonder geval de integraal-vergelijking

uit § 72 overgaat.

Tweede geval: ¢2 = u.
£

i c*—u . .
Stellen wij dan —— = — 2, zoo vinden wi1j achtercen-
73
volgens
do
add = — —
l f"-l 'l)"!il"
»
9 e L RSt 2o
L v, = — arc sin
P «

en dus de baan
« 7 Sin P) ('(} 5 "}‘u‘ = i'}

en verder

. 2 I 1 m (c? "
pi— = ! —1f,| 4+ — ).

Derde geval: ¢*= u.
Dan wordt de baan de hyperbolische spiraal:

/ 7
v {} — \ & .
2 B

terwijl ten slotte », in / uitgedrukt, wordt:

(AR Rl
(o= /3
) m

§ 78. Uit de bekende vergelijkingen
vp=c
en
mot .
- U /-
volot
m et :
. f U= E (-‘!)
2 p*
Nu is

U/ - , weg (7) dr




fr=—mrq(r)

en dus
4
AT — R
=
door differentiatie van (@)

7 ¢ ar

derhalve
™ ctrdp .
P dr
= (z-’fl 7 5
Nu 1s e als A de kromtestraal voorstelt, en zoo-
ar \
doende wordt
A Caras
- PR
Noemen wij de centripetaal-kracht /72, dan is
p—" v*  mc?
R Rp?
en dus
F=_0p
of

15— [y

Uit de vergelijking: (zie boven)

i (!._' ”.
K=mcio (n»-- -‘,_)
h N i f(’ £Fae

volgt, dat /= o wordt voor

of voor
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De integratie dezer differentiaalvergelijking geeft
pi— Acos @ *}- B st i,

of door met » te vermenigvuldigen

Ax 4 By = 1;

£ is alleen gelijk nul bij beweging op cen rechte lijn.

£ is constant voor de centraalbeweging,

. d*p ya
{] {] —‘E' —

d 02 7.cr

a* 0 a

da?r et 0 2

d p)* 2 I V; A
v o o B S
20 a8 e—e 6.

Zoodat de differentiaalvergelijking dier beweging wordt:
(/ n
[ 2 I .
/ slogo—o*+-¢

7 cs -

waarvoor

(I’  — =

y-  Toepassing der vergelyking op de gedwongen beweging

van ecen pund,

§ 79. Wordt een punt gedwongen zich op een ge-
geven kromme lijn te bewegen, en is dan A% de tangen-
ticele composante der weerstand, N die der normale en
o de hoek, dien de voerstraal met de normaal maakt,
dan wordt de virtaalvergelijking:

. . , d* (mr?
muo* =F - r Recosoa—rNcos(r,N)-} 1/, ( -

R
De werkende kracht kunnen wij ons tevens gesplitst
av

denken in een tangenticele composante w en een

dl
normale. Deze laatste geeft met NV de centrepetaalkracht

mao? - - il "
Na invoering van deze wordt de viriaalvergelijking.,
0 ¥
(
. dv 3. L motr oy @ mr?)
MY — — 7 (m R cos o - cos (r,p) -+

dl 0 b Rgn
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Uit beide vergelijkingen volgt:

: / morr dv
F——?';Vcos(r,i\f) cos (7 r:)m)’llz—iﬁtﬁ
‘ di
en daaruit

Va—

- ; v 2 Tr :
N cos (7, N)— m ZZ cos ﬁ] +——cos(r,p).

: ' di S
Lossen wij hieruit 7" op, dan is

0 { A7 : e ]
=40 =1 | NVeos (7, N)—m -~ cosa f

7 2 7//
CC?.S‘ ,n)

.

Als wij het geval bcschouwon, dat de krachten een
ergal hebben, dat door de homogeene functie ¢/ van den
kden graad wordt voorgesteld,

V4
en door optelling der beide laatste vergelijkingen ver-
krijgen wij voor de energie
0 2{'(7.\"()"”1]' dv
25 ) = | m ——=coso—Ncos(r,N
lr k J 2 O [ f,

2 cos | n)

-~
Y —
b e

8o. In geval niet de lm;m zelve voorgeschreven is,
doch slechts een oppervlak gegeven is, tot hetwelk de
beweging van het punt zich beperken moet, dan is de
normale weerstand NV steeds gericht langs de normaal
op het oppervlak. Maakt dan de kromtestraal der baan
o een hoek y met de kromtestraal & der normale snede,
die met de baan de raaklijn gemeen heeft, dan is volgens
het theorema van Meunier
0 = Rcos y
en dus

R 2 " dv |
% ')}c‘(}j" ¥ - 7 €05 (7,0 ] 4 R (m (// cosc—Ncos(r,N)

2 cos (7, o)
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Uit drie van de hoeken (7, N), (,0), 7 en 6 is de
vierde te bepalen, daar zij tot een zelfde drievlakken-
hoek behooren,

Jeschrijft het punt een geodetische lijn, zoo is

y =0, (r,0)=(r, N) en v = constante, dus
3 - = 20057 . ;
F=7r Ncos (7, N) — cos (7, V)
KA
en dus
2 N 1 - y
0 — ! L : 9 RN,

2 7 cos (7, V) B2

Is er geen werkende kracht, dan is

o
/‘ — 0,

en derhalve
E— Y, RN =T.

Hiermede is het vraagstuk voorkomende bij Girneri
»Cours de Mécanique Analytique” Deuxiéme Edition pag.
232 N 7 in ruimeren zin opgelost,

§ 81. Is het oppervlak een bol met den oorsprong in
het middelpunt, dan zijn

(r,V)=0, o6===, /(7,0)=0, y=0, p—pr=pR

en dus

~ yar L B2
F=—1Y, RN A '
Stellen wij weder
F=}U,
dan is
E=—1Y RN ” =14

en daaruit volgt

N=\




voor £ = — 2 is NN constant. Derhalve is U van de

gedaante
r_o« b i h) L & —}~i.

4 y? g2 Ve el xy

§ 82. Is gegeven, dat het punt zich op een bepaalde

kromme lijn moet bewegen, dan is in de formulen

T2l \ dv . -
Pt == i 0)—7 (h’! e C0S 0 — NI COS (r, V ))
0 di .

cn

(9’ i 2Eo iy ' 4o (w ‘!/,/ cos a — N cos (7, N)]

¥ /»; 4

N !
]‘ — N S — - — ——
B ]

2 cos (:}‘ y 0)

o bekend als kromtestraal der baan. Maar nu moet de

richting van NV bepaald worden.
Bij vlakke banen valt NV langs ¢ en verkrijgen wij,
omdat alsdan tevens
T

{7 '_J) — (}‘_, N ) — = o (5
is |
| i ("2% . :_;‘; g (rye) + \] 7 cos (7, 0),
& ‘ : I-) F £ ( r”‘;]/r( DY i— \;-
=t E f e\ e — 4

Is de baan een cirkel, dan komen dezeltde vormen als

voor de beweging van cen punt op een bol voor den dag.

d.  Transformatie der cerste vergelyking., Tweede

vergelyking van CrLausius,

§ 83. Crauvsws heeft de vergelijking (42) nog een
kleine maar belangrijke transformatie doen ondergaan,
s s

De vergelijking (42) luidde:
d*(mr?*)
dit

mort=r4",




LI

. Integreert men deze na vermenigvuldiging met &7

van £, tot 7, dan verkrijgt men

¢ t
r F— le Lo r®
vrdt=[Fdi+ 1, {(22r]) () |
l;m dt ./](/ Y, 77 ), aE )8
I ‘o .

Hebben wij nu met een periodiesche beweging te doen,
dan is na afloop eener periode, waarover een tijd 7 ver-
loopt =1/, 47 en worden de waarden der beide diffe-
rentiaalquotienten in het tweede lid aan elkander geljjk.
Deelt men nu tegelijkertijd door 7, zoo verkrijgt men voor
de Dbeide integralen de gemiddelde waarden der zich
onder het teeken bevindende functién. Duidt men die
middelwaarde aan door een dwarsstreep er boven, dan
wordt de vergelijking:

m vt 3

Hebben wij niet met zuiver periodische bewegingen te
doen, maar met zulke, waarbij de voerstraal » van het
zich bewegend punt steeds kleiner dan cen bepaalde
grootheid Dblijft, en binnen die grens toch voortdurend
van grootte verandert, nu eens aangroeiend, dan weer
afnemend, dan noemt Cravsivs zulk een beweging
stationair. Nemen wij dan de tijd maar lang genoey
dan mag op den duur toch de vergelijking gelden en wij
verkrijgen zoo de stelling van Cravsius:

»Bij stationaire beweging is de gemiddelde kinetische
energie gelijk aan de halve gemiddelde viriaal,”

§ 84. Naastdeze heeft Cravsius nog een tweede vergelijking
afgeleid en in Poggendort’s Annalen Bd. 142 S. 433 mede-
gedeeld.  Wij zullen daarvan de volgende afleiding geven,
| Denken wij ons dat de beweging van het punt door

de een of andere oorzaak veranderd wordt. Deze ver-
andering kan een plotselinge zijn, zoowel van plaats, als

van snelheid of werkende kracht of uit combinatieéin
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hiervan bestaan, maar zij kan ook geleidelijk plaats
hebben. De oneindig kleine veranderingen hierdoor ont-
staande geven wij aan door het teeken der variatie J,
dan is de variatie der levende kracht

fj _’[1': () i;f ('.t:/‘: _%_J'/'_» _} ) 512)

— m (‘Z"" 5 2% 1.2Y 5% + @z _”(5)_
dt dt " dit df  dt d¢

Beschouwen wij nu een gedeelte der baan, hetwelk in
den tijd 4, tot 4 (4 — 4, = ¢) doorloopen wordt, dan
kunnen wij ons voorstellen, dat niet alleen de punten
der baan x,,v,,2, en x,,%,,2 verplaatst worden, maar
dat ook de tijd 7z verandert, en zoo wij rekenen, dat de
verandering reeds voor den tijd 7, kan ingetreden zijn,
de wvariatieén zich dus ook tot den veranderlijke / uit-
strekken. Voeren wij nu een onafhankelijk veranderlijke
¢ in verbonden met / door de vergelijking

/ = - /(i — 1- ('} -_—"(l )]

dan blijft ¢ bij de variatie onveranderd.

Uit deze betrekking volgt alzoo

dl =1 r‘fqn

0/=0%4 4 (¢ - Fg) O 2.
Differentieeren wij nu de variatie 0 x dan verkrijgen wij
ddx  ddx dy
(fl’ UJ l{‘ ([1{
en omdat ten opzichte van de onafhankelijk variable ¢,
0 en & verwisseld mogen worden
dox = f‘/“{_‘ p (L\' ) t
d? dil dqg t dg
S {K_,_ﬁ:f = (rf.‘l-‘ d f)
& dt dy
da i\ ax

e y
drl I u’/l !

=¥oid
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en dus
ddx __ddx | dx
=" - —= 0 (log1).
di di -%rtf/‘({}g!)
In bovenstaande vergelijking ingevoerd geeft
7= [r_f_\ :Q’i;l' aL dy doy +- dz dd:z '
dt di dt di di dit
dx? | dyr  dz? .
_— 'z —— - — 3 o e
4 ‘a’/'—' TaE T 7a) s
Vermenigvuldigen wij met &/ en integreeren van g,
tot ¢, of wat hetzelfde is van 7, tot 4 zoo verkrijgen
wij, daar door partieele integratie

e
1s, vervolgens
b ¢
Ihac=cil i s pl
it | U
of (0 o0 orfrennien o
Im‘ll’ic'n wij slechts met één punt te doen ”huhbt:n. is

Nemen wij dan verder ¢ = ¢,, en deelen door 7, waar-

door wij weder de middelwaarden verkrijgen, dan wordt

(1" B i
- 0 2
at

lr

Lkl gy
57— m dllbr dy

X - Y 4 -
;\di r o bt

L]

- (-\' Jdx - Yo iy -+ Z 0 z) —mv? 0 /(i‘.'," 1
3ij gesloten banen nemen wij voor ¢, — ¢, een ge-
heele omwenteling, alsdan verdwijnt de eerste term rechts
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en wij verkrijgen na omzetting de vergelijking van Crausius:
] gelijking

= — TIESEN— — . \
—(Xdx+ YVidy+Zoz)= — 00 - mv*dlogi . (45)
Het eerste lid dezer vergelijking stelt de arbeid voor
der kracht, die het punt in beweging brengt, bij de
verplaatsing der baan, gemiddeld genomen. Indien
men den tijd maar lang genoeg neemt, mag de verge-
lijking ook voor stationaire bewegingen gelden. Hebben
de krachten een ergal, dan wordt de vergelijking
= — — . :
0 U=—0dv*+muv*dlog .

Bevat het ergal een of meer constanten, die bij de
verandering der baan ook veranderen, dan moeten in
deze vergelijking die grootheden als constant blijvend
beschouwd worden,

Bij combinatie der beide vergelijkingen van Crauvsrus
verkrijgt men: (43) en (bldz. 111)

(Xdx+ Yoyt Zoz)=",0 4+ Fdlogi
§ 85. Crauvsivs geeft in de Math. Annalen van Crenscu
en Neumany bd. IV een toepassing dezer vergelijkingen
die wij hier in gewijzigden vorm willen mededeelen. Wij
nemen gesloten banen, dan is dus

. — [y, 0 2* k ]
dU=mo2|, 0 log 1),
“ ml v
Rl ,
=mv* ('), 0 log v* 4 d log 1),

=mv*d log 1|/ p2

Stel nu

Q ||
b

==, !
Z00 1S
0 U=muv*dlogh.
De linkerzijde is een volkomen variatie, dus ook de

rechterzijde, dus is m 2* functic van 4 en dus is  een
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functie van 4, alzoo

LE=11i(4)3
O =7 (L) 0L,
L (A)d A= m;-’af_)',
Co="1,1 (),
verder 1s
/ - ]
= =]/ 2
l AoEp J(R)

Vil
1{ )1
F= U % 5

en dus
E=/f()+ 12/
Indien nu de kracht, volgens welke het punt aange-
trokken wordt, m /7 (r) is, dan stellen wij
//Jf (\,.‘} dr = I (»).
Dan is m /7(r) het ergal en dus
m . F(r) = f(2).

Om den vorm der functie /(1) te vinden, maakt
Cravsius gebruik van de cirkelvormige baan waarvoor »
constant is, want /(4) is onathankelijk van den vorm
der baan, In dit speciale geval is

i) =7 (1)

S
11}
-,
—
=
»
~
-3

»
STRAN -
nt .t (: ;r] J(h),

£(2) mn 7 | A )
1 27




Stelt men nu in

en dus
70)

2

E—=

Bij cirkelbeweging
vergelijking van § 76

Bij eliminatie van
komt er

it 1

Wi

4
“

Voor # — 1 worden

het algemeen o =

2
i)

,?.
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A :
—, dan is
elTL

S () =m F (1)

£(0),
o O ({)K) .

/o
27T ———
\r/ F/ ({J' L]

m ! /‘f{l) -i— ]_2 0 Y (l‘})

Voor F7(r)=ur* met uitsluiting van 7= — 1 ver-
krijgen wij
o ('}-f'] —_ Va{( — Nt I
i -1
;h‘ 1 — g1
i R— u {‘H 4 5
. | [ =l
P =21 u “{l 2,
o (- 3)

1)
is g =7 en komen wij dus op de
bladz. 102 terug.

¢ uit bovenstaande vergelijkingen

"
/e
Y

]
m

_2(n41)
T u(n43)°
-1
-3 g

1
T TR
o

deze :

I=—n

, 2(n+-1) /:‘) 2 {1+ 7))
"

-

s




en voor # — — 2

——ss 1 20y
e e e e
?
o u
" — 7 u
et = — )
2 STo0as %
y
f"’ — R {)j:_
"

Op pag. 102 was gevonden voor de elliptische baan om

het centrum:
- H "
E="(2—¢*)maqgl

en dus wordt

en
2nima’
v

Evenzoo voor elliptische beweging om het brandpunt

‘ el
T — 3
2a
dus
— 1 I
el - .
0 i
waaruit volgt
wi* =g x*a’ (39 wet van KerrLer).

De perkenwet en de wet der energie ziin in dit geva
L d 0 - " i
.2 — ¢ en I., 7,.’ — * 1 o =

d fr B A r 3 o
Bij integratie blijkt dan dat

e ( a 2 u
P = = \;‘ 1 -} [ | (’."."‘ -t '
‘u .“ ,‘ﬂ

S

/

en dus
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Verder door eliminatie van u

2Tt mat

L=
72
€n
TR m vz
a r 2a

]
Of, zoo wij de potentiecele energie bij het begin door
/3, aangeven

- . g — 3 o J7
1y i g = 3

/5. DYNAMICA VAN EEN STELSEL.

w. De vergelykingen van ViLLarceau en Crauvsius

voor stelsels.

§ 86, In § 71 vonden wij

= ("u’.r)'-' S d* x 4t a* (m x?)
dit ) B R A
dy)* d*y | 4 &2 (my?
m|\-—=| =—ym—= e
(_12’/} 5 d f"+ sdrt
- ({f ,J’ oA E A a2 2 di(niz)
A T T S
my?—- ﬁ(r i - vom i) +zm G :] 1y @mr?)
© R e N P R
en voor meerdere punten
5 2 gy — © e 1 ".rf':’}’ i S d? :') ¥ (/i.l m 2’_"
A it (_'1 daTdgatigal T h—n
: ol 22X -
De bewegingsvergelijkingen leeren wel, dat X m lf ;.-,-_*.E'.'\.
ks
. d*y Vms ma B Ay ok
Emo==2Y, Tm-——- =2 7Zis, en mede, dat de kop-
d 1* gt

wels ten opzichte van den oorsprong der coordinaten van
I I

iy = o
de krachten m =, = enz. gelijk zijn aan de koppels der

h
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krachten X" enz., maar omtrent de virialen dier krachten
leeren de bewegingsvergelijkingen ons niets. Uit de
vroegere onderzoekingen weten wij reeds, dat de viriaal
van in evenwicht verkeerende stelsels niet gelijk nul

AR A enz.

behoeft te zijn, en het gaat dus niet aan

. te stellen. Dit blijkt vooral ook uit het theorema van

p’Avempert, dat wel zegt, dat de verloren krachten in
' cen stelsel evenwicht met elkander maken, maar nog
volstrekt niet, dat zij nul zijn. Ten opzichte van de
viriaal is dit ook niet hetzelfde. Wanneer wij daaren-
tegen onder de krachten X .\\' enz, niet alleen de uit-

wendige krachten rekenen, die de beweging bepalen,

doch ook alle inwendige krachten en reactieén, die ten
| gevolge van de beweging optreden, dan mogen wij die
gelijkstelling  wel invoeren. Alleen in dat geval is het
dus geoorloofd de viriaalvergelijking volgens Crauvsivs

te schrijven

Onder de zelfde beschouwingen wordt ook voor oe-

middelde waarden

R
De vergelijking (44) luidt bij summatie over meerdere
punten
! / / i i
¥y = S .'r,\'h - Vr_\'l\ hlf(""\v-f._ = o N Jner
J)"/J/u"q 2> ”'d'/ A 7/ A 792 ...H.";‘ dtd log
To T To
i 7 /
% a*y a*z
v Jod B e Sl 5
._,w!(”,f_,i.l | 700 (//1"’ ]u’/
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Maar volgens het theorema van pD’ALEMBERT is

¢

B A LT s e (B
./.. X m” d J ”"g,r dy| Z— {,w- L;d’f—o.
Z

0

Door aftrekking verkrijgen wij

q L
.-_/ 0 71dy=2m % = o T"{_Lf/‘)‘ —} \_’ = mvrdtd log 1,
o Fo 4y T gy
'[J‘
g / 2(Xox+ Vdy+ Zaz)de
" T

In deze vergelijking stellen 3 .Y, enz. alleen de uit-
wendige krachten voor. Integreeren wij tot f, en nemen
wij aan, dat bij ¢, en ¢, 4 en £ onveranderlijk zijn en
evenzoo x,,%,,%, en x,, %, s dan wordt het eerste lid

der rechterzijde der vergelijking nul en daar alsdan 7

constant is, verkrijgen wij

i

/{ay‘+-;*nva_r~k1'aj-4-;fa:)pf/:<n

"ll
en deze vorm is geen andere dan het principe van
Hawmrron  zonder de onderstelling eener krachtfunctie,
Indien er een krachtfunctie of liever een ergal bestaat,
wordt de vergelijking

S [ (T— U)dt = o.
Geldt het principe der energie, zoo is

rj T k] () (.-": (8)
en derhalve




of wel

0 f Smvds = o.
Ya

Dit is het principe der kleinste werking.

Ingeval de totale energie der beweging veranderen
kan door uitwendige invloeden, doch wij aannemen dat
/ de onafhankelijk veranderlijke is, dan hebben wij,
daar dan dz=o0 is

! £
|8 Tdt=3m };‘ et bl [0 Udt,

: at dl At e

/ 0 g

en daar
d '/'—]— 0 U =0F,

is ook

! )
o [ : 1x dy dz
Y [T — BE)=3m!|==38x Y3y 22521,
‘_" \Zz " gz Tty
% ‘o
Bij banen met vaste eindpunten en gesloten banen is dus
ot
0| (27— E)dt = o,
=

l]f
207 = 0 .

Voor gesloten banen met veranderlijken omloopstijd
verkrijgen wij op dezelfde wijze
l_’l
/ { 70 log (7'3)*—0 /'.'E d = o,
To
[n geval van stationaire beweging daarentegen, valt
ook wel het eerste lid ter rechterzijde weg, doch dan
verkrijgen wij na deeling door 7 de vergelijking van
Crausius
0 =—X2(Xox+4 Yy 20z)—Xmv*dlogi,




of wel

— X(X0x+ Voy+ Z202) =32 3097 4 Smv2 5 log i,

In deze vergelijking behoeft in het eerste lid bij
vaste onveranderlijke lichamen de som alleen over de
uitwendige krachten genomen te worden, daar bij zulke
lichamen voor de zich in evenwicht houdende imwendige
krachten

(Xdx-+ Yoyt Ziz)=

is, ingevolge het principe der virtueele snelheden.

Cravsius heeft deze vergelijking voor stelsels in statio-
naire beweging tot basis genomen voor een afleiding van
de tweede hoofdwet der mechanische warmtetheorie.

(Zie Pogg. Ann. Bd. 142. S. 433

§ 87. Dezelfde schrijver heeft in Pogg. Ann. Jubelband
verschillende transformaticén der vergelijking medege-
deeld van welke eenige hier plaats mogen vinden,

Als de codrdinaten van het zwaartepunt door Xey Vey Ze
en de relatieve coordinaten van een punt ten opzichte
van dat punt door &, y,¢{ voorgesteld worden zijn,

x=x+E y=y+y, z=i+E,

en dus
2mxt =m(x, + E)?=Zm(x% 4 2 2. £ 4 E?),
Maar

LMmMxXE=x.Fmt—= o,
Derhalve ook
Smxt=Mzx*4 3 mkE2

Op dezelfde wijze

S ({_\‘ T (d’l _‘_ x (r)’i:].'
4 (w] I\77 =i

Ook
2 x XK= b P X | P 5 X.

Vormt men deze drie vergelijkingen eveneens voor




de codrdinaten-assen, dan verkrijgt men door optelling

Smrii—=Mre* .lmn'l, )

= mo* ”'—l-.l ] (40),
S Xt-9YHz X) reReos(re, R) +-2(8 N-y V4L /\\
waarin ¢ de relatieve voerstraal, @ de relatieve snelheid,
7. de voerstraal van het zwaartepunt, A de resultante
van het krachtenstelsel voorstelt.

Ook wvoor het massacentrum geldt de identieke ver-

gelijking
o (RS (:z’_\', A dia
2 dt) Trar
Dus ook
dxc:\* d* x M d*x.?
(1) e M
Na s %7 + 3 “ae
Volgens een viqvnsthup van het massacentrum is
d* x
A — 22 == 2 X,
8 r/ 7 "a T :
Derhalve
AL i M A et
—_ L XAk ~
ot |{H ) e by
en alzoo ook
: Wy Miadires
Mot =—r:Rcos (re, R) - : (”,/... T e (47

Indien men de waarden (46) in de viriaalvergelijking

substitueert en gebruikt maakt van (47), verkrijgt men

AT 23 mp?
= mw? TEX+ 9 Y4C2L)+ T % £
= n”/‘

zoodat de viriaalvergelijking voor relatieve codrdinaten

(48)

ten opzichte van het zwaartepunt volkomen dezelfde ge-
daante heeft als voor absolute coordinaten.

In de vergelijking (47) treedt een viriaal op, die men
verkrijgt, wanneer alle krachten naar het zwaartepunt

als aangrijpingspunt verlegd worden. De inwendige




124

krachten, die paarsgewijze gelijk en tegengesteld zijn,
heffen elkander in dezen vorm op. Maar daar de inwen-
dige krachten in de volledige vergelijking optreden, moeten
zij dus in (48) tot hun volle bedrag gebleven zijn. Dit
volgt ook uit de eigenschap dezer krachten, dat z1j ten
opzichte van ieder punt der ruimte in evenwicht zijn ,
want dan moet volgens § 13, omdat 4 — (ol T8 — (3},
C=o0 zjn, de waarde van de viriaal onafhankelijk van
den oorsprong der codrdinaten zijn. In § 8 vonden wij
voor de inwendige viriaal
o= O3l

waarin / de grootte der krachten tusschen twee deeltjes
en 4 hun onderlingen afstand aanduidt. Zoo verkrijgen
wij de viriaalvergelijking voor een stelsel gesplitst in de
beide vergelijkingen
oy e g R M d* r?
My.2=— 7. Rcos (7¢, !'\__J -4 > AR
a* > mp*

A
waarin nu de uitdrukking X (8 X -} 4 }7 ¢ Z) alleen

Smw=3df—ZEX+9Y+L2)+Y,

over de uitwendige krachten behoeft genomen te worden.
Wordt het stelsel op eenigerlei wijze in zijne beweging
belemmerd, dan moeten de daarvoor noodige krachten
als uitwendige in rekening worden gebracht,
De algemeene viriaalvergelijking verkrijgt bij deze
splitsing de hiermede overeenkomstige gedaante
Emoi=XAf—3(x X4y VY422 41 L 2mr
. : r at?
of zoo wij voor de uitwendige viriaal /7, schrijven
A mr?
TR
§ 88. Ten einde de veranderingen, die de uitwendige

2mt=3df4+F +,

.

viriaal ondergaat nader te beschouwen, differentieeren
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wij deze grootheid ten opzichte van den tijd. Dan wordt

d-’,/*}_ ( dx dy ‘(' dX Y Na’Z
dt !f4_jdf%—/df e dfi’f// s ditl)i

Ingevolge de regels der differentiaal-rekening wordt

het eerste lid gevonden door in het eerste lid der rech-
terzijde de krachtcomposanten constant te laten, in het
tweede lid daarentegen met de codrdinaten der aangrij-
pingspunten aldus te handelen.

Voeren wij dan de drie centra in, die in § 28 beschouwd
werden en dienen kunnen ter bepaling van het centraal-
vlak, dan hebben wij

H2X=2x2X, WnWIXy=3yY, 237=—3:z7.

Differentieéren wij deze met constante codrdinaten der
aangrijpingspunten, dan wordt:

.'l'ltlr.f.'.\.-- A, 2, AP — .:'.t‘rf )}, Zq d3 Z- AYLF ek

Nemen wij verder aan, dat de krachten een ergal {/
bezitten, dan hebben wij:

A vdx . dy | . dz aly
= (‘\ il : r'/-." L /r// dl
en dus verkrijgen wij:
dle dU L aXX dXY @ dXZ
di ~ dt [ N S R e

Bezit het krachtenstelsel een centrum, welks codrdi-

naten x4, s 2,
dF. dU ( adX \l X azx - dxZ
dt —d? ST F- A OSF F G e P TT

De uitwendige viriaal blijft constant, zoodra

dl axX a2l axzZ
({’} =g .\.l f/n! —{_.]".' (f/ a5 T (/{’, y

§ 8g. Uit de \'vrg'vlijkim:'

d U dx LAy | L dz

d /! = \(// l*) rf.fwr,{d'/

laat zich in geval van beweging om een vast punt nog

zijn, dan wordt deze uitdrukking:
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eenige gevolgen afleiden. In dat geval namelijk zijn
dx dy dz
A gz —ry, il A AN e = LY== GX.
Voeren wij deze in, dan verkrijgen wij
au

=Y —yZ)+g@Z—2X)+7(qX—xT]

of, zoo wij de composanten van het resulteerend koppel
door (., Gy, (G- voorstellen:
fj i — —$Ge— g Gy —7G.

Noemen wij nu de projectie van het resulteerend koppel
op de momentane of de constante draaiingsas 0, dan is
dU—=—dwdl

[s dus gedurende de beweging voortdurend d — o dan is
{7 constant. Dit geschiedt in twee gevallen: 1¢ wanneer de
as van het resulteerend koppel steeds loodrecht op de
draaiingsas staat, 2¢ wanneer het krachtenstelsel steeds
ten opzichte van de draaiingsas in evenwicht is. Heeft
een zoodanig evenwicht gedurende de beweging op som-
mige oogenblikken plaats, dan zal op die oogenblikken
het ergal Of maximum Of minimum zijn. Dit maximum
of minimum kan ook intreden, zoodra de as van het
resulteerend koppel loodrecht op de draaiingsas staat.
Wij zien dus, dat de eigenschappen in de §§ 4649 voor
de viriaal afgeleid, voor ieder krachtenstelsel ten opzichte
ran het ergal gelden. Zijn de krachten in grootte en
richting constant, dan is /% — {/, waarmede het verband
aangetoond is. Bij een krachtenstelsel als in § 11 be-
handeld is, is zoodra /2 in den oorsprong ligt /7 - U
en gelden dus eveneens deze eigenschappen, met dit
verschil, dat alsdan met een maximum van /; een mini-

mum van {/ correspondeert en omgekeerd.
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. ZToepassing der vergelykingen op eenige stelsels.

]

§ go. Bij de draaiing van een lichaam om een vast
punt moeten wij in de \-'iriua1\-'01';;‘01ijking

n’ zmr?
= rf/‘ L
daar alle voerstralen constant in grootte blijven, de

2mvut =2 4f- x X +yYVY4:z2))!

laatste term nul stellen en wordt dus de vergelijking
2df=2T—F,

Vermenigvuldigt men de EuLer’sche bewe INESVerge-
g 9 gmg 8

lijkingen
:::{/: (C—B) gr = G.,
/:ﬁf +(A—C) rp— Gy,
G :;; (B —A) pg — G,

resp. met A, ¢, 7 en telt men ze op, dan verkrijgt men

n"/‘ wy dg . . dr

- = Ly d
e O R Ol w &l

of daar
al/ 0w d/
is, door intvq‘mlit‘
Ap* - Bg* |- Cr* 2 {7 -} constante,
en dus
'+ U 7y + U, o
Hierdoor vinden wij voor & A/ de beide uitdrukkingen:
SAdf=Ap*+ Bg*+ Cri— 1
en
2df=2(E—U)—F,
Onder het teeken /7 is de reactie van het vaste punt
niet begrepen, daar men dit punt tot oorsprong kiest,

en dus de viriaal van de in dat punt aangrijpende kracht
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nul wordt. Als men een ander punt tot oorsprong kiest,
zou deze viriaal niet nul zijn, maar een zekere waarde
/” hebben. Doch dan zou, ingevolge § 13 bladz. 19,
7, met dezelfde waarde verminderd worden, en de
waarde der grootheid X 4 7 dezelfde blijven, want
E_ U-==17T is van de keuze van den oorsprong onaf-
hankelijk. Daar nu 2 4/ de inwendige viriaal voorstelt,
blijkt het, dat deze voor alle punten der ruimte als
corsprong constant is, wat geen bijzonderheid is, daar
wij van deze krachten aangenomen hebben, dat zij twee
aan twee gelijk en tegengesteld zijn en dus het stelsel
dezer krachten steeds in evenwicht is. Toch blijkt uit
dezelfde vergelijkingen, dat 2 4/ ten opzichte van den
tijd niet constant is. ‘Wanneer wij dus een vast lichaam
beschouwen als cen aggregraat van massapunten, die op
onderling onveranderlijke afstanden blijven, dan zijn de

verschillende 4's constant en bij differentiatie vinden wij

ISyt d{ i T diﬁ ({_j'
dl adil itk
of daar
dF. dU [ . dX ay daz
i dit [" 77 Va7 T f)
df dU | (. dX dY dZ
s =T et 277 )

De inwendige krachten blijven constant: 1¢ wanneer

er geen uitwendige krachten zijn, want dan zijn
J=r.—0
en dus
i) =42 E—2T;

deze krachten zijn grooter naarmate de snelheid der be-
weging grooter is;

»¢ wanneer het ergal een homogeene functie van

den — 2den graad is.
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Bij constante krachten 1is

U=r,
SAf=2E—3le=2E£—3 .
[s het ergal een homogeene functie van den —— 15" graad,

dan is
SAf=2FE—U=2 K4 F,

en derhalve
Sdf—I,= 2 L.

In dit geval is het verschil van uit- en inwendige
viriaal constant.

Voor een zich vrij bewegend lichaam kan men aan de
relatieve viriaalvergelijking, die voor een vast lichaam luidt
Smuw=34f—2EX4 VY4 Z),
dezelfde beschouwingen vastknoopen en verkrijgt men

analoge resultaten,

Wij zien dus, dat bij de beweging van een vast lichaam
er tusschen de verschillende deeltjes reactieén ontstaar
onafhankelijk van den aard der krachten, die ook in
rust tusschen de deeltjes onderling werken, doch enkel
afhankelijk van den aard der beweging en de op het
lichaam werkende uitwendige krachten. Daar zij steeds
in evenwicht zijn, worden zij slechts door het niet nul
zijn der viriaal verraden. Op den aard der beweging
hebben zij geen invloed.

§ g1. Crausius en Vicrarceau hebben beide reeds in
de eerste verhandelingen over hunne vergelijkingen de
toepassing gegeven op een stelsel van een groot aantal
massapunten, waartusschen geen krachten werken, doch
die onder een uitwendigen oppervlakte-druk staan. Daar
voor zulk een stelsel X mz* wegens het groote aantal
als constant mag beschouwd worden, kan zoowel de
volledige als de gemiddelde vergelijking gebruikt worden
Beide geven dan (zie § 0)

T =3, po.
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Voor een massa, die in een stadium tusschen gas en
vloeistof wverkeert, kan men dan met vax per Waars

schrijven

T =3 (N+pwz,
waarin &V en p als in § g voorkomen.
§ g2. Werken op de deeltjes geen uitwendige krachten,
doch alleen inwendige, die evenredig zijn aan de massa's
en een zekere functie der onderlinge afstand, dan is

]2

volgens 2 = 2 .
JZ 5 .2
’ . q a2 M7
myr = 1 ” oq (o) A -+ J 2
]l ¥ d l*

Maar dan geldt het theorema der levende kracht, en

e

S
N

s

dus is
Y Zmo* 4+ W' = constante = E,

(){
X muv* N w (o) dm* = 2 I,
en dus

A3 mrt 0 5 72”'{}1{9)1/”{: /-/‘!3 q (‘J)f/m‘."

adit* : b
of
2 % .2 i
: - =4 k- [ 2w @) 4o g ()} dm

[s nu g (p) =", dan is volgens (5)

I
W lo): yn -+ 1
PG 7=t 1 ¢
en daaruit
a: = mr: ST A SN UY if . .
e B -3 NQ""- Ydm?*.
ks n-+1 .

Voor 7 — 1 wordt dit
d* X mrt - i - "
= 4 I - 2”9'{1’#{'.

dl*
Voor 2
a* X mrt 7 /'r'f/m"’
A Lk = ) o

4 L2 3 1Lk

|




en daar £ = 7} W'

-y B2 mr?
F pins b dt*
Voor stationaire beweging, zooals het zonnestelsel,

7'=—1 !

bereikt X z7* bij afwisseling zijn maximum- en minimum-
ar*xmr?

Fra
negatief is. /7 schommelt dus om de waarde van

', 7' heen.

waarden, zoodat nu eens positief, dan weer

Voor # = —— 3 verkrijgen wij
a* X mr* /;
TR

(}i.
Emri=2L1+¢ 14 ¢,

zoodat het polaire traagheidsmoment van het stelsel een
quadratische functie van den tijd is. Dit laatste geval
omvat de oplossing der opgaven N ¢ en 10 uit GiLperr,
»Cours de Mécanique” Il Ed. page 261. De daar be-
doelde constante blijkt viermaal de totale energie der
beweging te zijn.

§ 03. Als voorbeeld van toepassing der gemiddelde
viriaalvergelijking op een veranderlijk stelsel kiezen wij
de trillende snaar. Daarvoor geeft de vergelijking

‘ 5 : ) “
Smvie=—Imy,
(1)
Volgens de bewegingsvergelijking is
2 1
Oy 9 N 94

== a

' Jx?
verder is m — / dx. Voeren wij deze in, dan ver-

krijoen wij

% ‘f 5
.}//H”/ (.1' I\ 1

~
|

P A Fe




De algemeene integraal der bewegingsvergelijking is

7 == o0 -
. - M 7madad « 72T a
W— 3 ozl | B PR clB e R LW e et | B
7 ; 7 0 ;

7n =0

waarin
/
20 (S . 7T
A = = ! Jf(6)sin—-adao
Zn (1] ’ /
en
e
2 & 72T
/S s () sin o do.
nam/, /

In deze uitdrukkingen stellen /f(s) en /' (s) de waarden

0y
van y en —— voor /=0 voor. Wij hebben dus
(%
e e 72 1T naa
4 7l y g . T " 7
) ) —— gq & RSN [/f,,.:m &r + s /),
| J ,‘L-'"' / ni="0 / v / / i
|
2 { ’ ad
f Stelt nu 7 = de periode voor en bedenken wij, dat
| (e

tdl 0

T
{' cos nmwa ,cos pwa
'51}1 ™7 S1720 ]

is, zoolang 2 en p verschillend zijn, of men het product
van een sinus en een cosinus heeft, zoo verkrijgt men

. , T =
2, gl A= nT o N a op et o
= k\——j,,: 22 & nisint X (Au' f cos a-/---f/f /))n'; sin? ; - ldt
0X n =0 i Vi

[ o 77
. X n?sint /' x (.‘I,Ei By J

Hieruit leiden wij af
7

]/rt'”'”f ol . a7
)."/ S ; x dx

o 0




en zoo wij de grootheid 7, — = éim’ncre,rn, verkrijgen wij
(7

|

= 2 =g 23

n=20 Ta

= n

e

n=m ‘
% "‘In? + ZJ‘)u':
- 52

Daar iedere term der reeks aan een partiaal-toon der
snaar beantwoordt, laat zich deze formule ook gebruiken
ter berekening der relatieve intensiteit der boventonen
ten opzichte van den grondtoon.

§ 04. Len belangrijke toepassing van de tweede ver-
gelijking van Crauvsius op een veranderlijk stelsel, vinden
wij in een vraagstuk der hydrodynamika. Werkt namelijk
op het volumen-element &u, welks dichtheid ¢ moge
zijn, de kracht Xodu, Yodu, Zpdu, en het drukkings-

) ) )
-\‘ﬁff;l, \/sff.u. = OF

verschil — -du en zij o de hoeksnel-
Ja dy 0z

heid bij draaiing om de Z-as, dan vinden wij

A ) ) A '
d t--/-)‘ﬁ.rf])/)J.v‘|—\iﬁ-ﬁ:- 0 XO0x— oV dy—0 20z =

A oy Jdz
! , 0 d i ] (_(0"' (x4 -%--_1’:)} -+ 0 H"u o (x* k[— _1"'} ) /({{r .

[s nu o constant dan is ook 7 constant en mogen wij
de dwarsstreepen weglaten. Nemen wij daarbij aan, dat
de krachten X, ¥, Z een ergal ¢ hebben, dan wordt
de vergelijking;

dptod U=",0"pd (1" - »?)
en dus
5 o U 120“)':(‘.:‘}_",2)_*(..

Voor vlakken van gelijken druk, zooals de vrije opper-
viakte, geldt dus de vergelijking:

]... (rJ"l (.\': } .1'] U=c.

Dit resultaat heeft Scuern , Theorie der Bewegung und
der Krifte” IV Th,, Cap. 1X, § 10, langs anderen weg

gevonden,
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§ 95.- Wij hebben in § 86 afgeleid voor een stelsel,
welks energie veranderlijk is, de vergelijking:

[ (78 log (T4)* — 0 E)dy =o.

Deze vergelijking geldt voor gesloten banen. Hierin
stelt 0 Z de verandering der totale energie voor. Alzoo was
VE—=07T—3(Xdx+4 Yoy+ Z0z)

Behooren tot de op het stelsel werkende krachten
] zoowel uit- als inwendige en hebben de inwendige tot
l ergal Ui, terwijl wij van de uitwendige krachten aan-
| nemen dat zij in het algemeen geen ergal bezitten, dan
l stelt toch voor die krachten X (Xeda - Y. dy 4 Z: dz2)
i de arbeid voor. die zij op het stelsel nitoefenen. Verricht
: het stelsel uitwendigen arbeid, dan is de arbeid dier
; nitwendige krachten negatief. Nemen wij dit geval in
de formule op, dan wordt
| S(Xdx+ Yedy+ Z:82)=—0 W
en verkrijgen wij

de=d0T4d Ui+ 0 W.

Daar echter o 7 in het algemeen niet de differentiaal
van een ergal is, kan bovenstaande vergelijking nict
geintegreerd worden, voor dat dx, 0y en 0z bekend zijn.

Nemen we de inwendige energie /; dan wordt dit

JE=0E=0W. ... ....../(49)

Verder volgt uit de vergelijking

/ 1 70 log (T'7)*— 0 /:“ de =0,
70 log (1'7)"—0 L.

3ij de tweede vergelijking van Crauvsius, onder aanname

van veranderlijke energie, bij beide leden o 77 optellend,
verkrijgt men, terwijl dezelfde beschouwingen als boven
gelden, de analoge vergelijking

70 log (1T1)* — 0 £,




Is het nu mogelijk dat na verschillende veranderingen
log (T°1)* weder dezelfde waarde kan terugkrijgen, dan is
h) /r":""l‘;/‘-!-}g een exacte variatie en wordt dus voor zulk
een periode

;' 0.2 g
T

De vergelijkingen (39) en (50) zijn mechanisch analoog

OIS RN TR SRR (X )

aan de beide hoofdwetten der warmteleer.

Voor het heelal, waarvoor wij aannemen dat § /2= o
is, is ook 0 II"— o0 en dus, zoo de deelen van het heelal
zich niet oneindig ver van elkander verwijderen kunnen, ook

d log (11)* = o,
of
7'!. = constante.

§ 96, Gaan wij nu aan het einde onzer beschouwingen
gekomen, deze na, dan zien wij, dat bij de bestudeering
van krachtenstelsels, de viriaal eene belangrijke functie
is, om hunne samenstelling te leeren kennen, Wij hebben
gezien dat de leer van het astatisch evenwicht en de
daarmede samenhangende der standvastigheid van het
evenwicht er gecheel door beheerscht worden,  Voor
vlakke stelsels vonden wij astatisch evenwicht, zoodra
de viriaal nul wordt, voor stelsels in de ruimte, zoodra
de viriaal der projectie van het stelsel op een vlak lood-
recht op de draaiingsas nul is.  De evenwichtsfunctie .Y
is  juist de viriaal dier projectiec.  Wij hebben tevens
gezien, dat er bij verschillende soorten van krachten een
nauw verband bestaat tusschen viriaal en ergal en dat
bij standvastige krachten deze grootheden aan elkaar
gelijk worden. In de dynamica is de viriaal een gemak-

kelijk uit de gegevens van het stelsel te bepalen functie
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en de vergelijkingen van Cravsiws en VILLARCEAU geven
daardoor dikwijls een eenvoudig middel ter bepaling der
levende kracht. Ook het ergal kan dikwijls eenvoudig
in de viriaal uitgedrukt worden en zoo verkrijgt men,
zooals wij in de §§ 75—78 voor centraalbeweging
afgeleid hebben, belangrijke formulen ter bepaling der
totale energie. Of wel, de formule geeft een betrekking
tusschen de energie en de reactieén, die bij de bewe-
ging optreden, zooals wij in de §§ 70--82 aangetoond
hebben. Het eigenaardige der viriaalvergelijking, dat Zi]
cen verband aangeeft tusschen drie grootheden: de levende
kracht, de viriaal en het polaire traagheidsmoment, maakt,
dat zij, zoo een dier grootheden bekend is, zonder
integratic een betrekking tusschen twee gewoonlijk 1n
mechanische vergelijkingen niet samenkomende grootheden
geeft. In de werken van Cravsivs en in het proefschrift
van vaN DER Waars kan men de beteekenis der verge-
lijking voor natuurkundige toepassingen, waarmede Wwij
ons minder hebben bezig gehouden, herhaaldelijk vinden.
Al moge nu YvoN DE VILLARCEAU overdrijven, waar hij
zimne vergelijking als een nieuw principe der mechanika
betiteld, toch bliikt het, dat er met die vergelijking een
belangrijke betrekking gewonnen 15

[n de $§ 20 en 50--70 is tevens getracht een toepassing
te geven van de methode der quaternions op mechanische
vraagstukken. Vergelijking met de behandeling  dier
vraagstukken volgens de methode der Cartesische coor-
dinaten, heeft ook hier de zooveel grootere eenvoudig-
heid der Hawrrox'sche methode duidelijk aangetoond,
Tevens is hier ingevoegd een oplossing van de lineaire
vector-vergelijking langs meer elementairen weg, dan de
door den uitvinder der quaternions gegevene. Moge het

mij gelukt zijn, hiermede een bijdrage gegeven te hebben,
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die leiden kan tot een grootere waardeering, dan die
waarmede de quaternions tot nog toe in ons vaderland
beschouwd werden. Ik twijfel niet of bij meerdere kennis
zullen deze steeds meer in toepassing gebracht worden,
daar de voornaamste hinderpaal voor hunne invoering
wel daarin gelegen is, dat de meeste wiskundigen te
weinig  geoefend zijn in het gebruik dier symbolen. De
zelfde onbekendheid is waarschijnlijk de oorzaak, dat de
voorstanders dier methode uit vrees van niet verstaan te
worden, nog zoo weinig in hunne werken ervan gebruik
hebben gemaakt. Toch zijn de voordeelen groot genoeg
om te vertrouwen, dat die tegenstand met der tijd ver-

dwijnen zal.







STELLINGEN.

Het gebruik van imaginaire punten en lijnen in de

analytische meetkunde is van groote waarde.

11.

De methode van p’Avevserr ter oplossing van liniaire
differentiaal-vergelijkingen  met  constante  coéfficienten

heeft hare zwakke zijde in het geval van gelijke wortels,
I11

De theorie der @-functieén is geen voldoende basis

voor de theorie der elliptische functieén,
V.

De definitie van differentiaal voorkomende bij Haasiwron

.,I‘:I"”]"“l.“ (]i (ll[.’l{l']’”il]”,\" ]’l‘ll)]( ll[. l‘]l. II y 1. I.

N=— o "

d / (x) Lim 7 :1 (.1" ? “J'l} /'1‘1‘;‘: .

is ook in de gewone analyse boven de gebruikelijke te

verkiezen,




V.

De gewone quaternions kunnen niet als complexe
(imaginaire) grootheden beschouwd worden, wel de
biquaternions.

VI.

Voor sommige wiskundige toepassingen wordt het ge-

bruik van quaternions dringend gevorderd.
VII.

De theoretische mechanica moet hare voornaamste uit-

breiding van de leer der functieén verwachten,
VIIIL.

De theorie der wrijving vormt een onderdeel der

rationeele mechanica.
IX.

De verdeeling der energie in kinetische en potenticele

energie, behoort in de mechanica gehandhaafd te worden,

X,

De beste definitie van massa verkrijgt men uit den
volgenden regel, aangegeven door Dr. . Macu in die
Mechanik in ihrer Entwickelung,” Seite 227:

»Das Massenverhiltniss zweier Korper ist das negatieve
umgekehrte Verhiiltniss der gegenseitige Beschleuni-

gungen,
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XL

’

Met de definitie kracht = massa X versnelling
worden dan de principes der traagheid en der gelijkheid

van actie en reactie overbodig.
NXIL

Het uitdrukken van de eenheid van massa in die van
lengte en tijd verdient eerst dan aanbeveling, zoodra
men  een algemeen geldende wet voor de werking der

stofdeeltjes ten opzichte van elkander kent.
XIIL.

De redeneering, volgens welke I“resyen aan de ver-
schijnselen van het gepolariscerde licht bij totale reflectie
zijn grondformulen tracht te doen beantwoorden, is mathe-

matisch onjuist, en verklaart alzoo die verschijnselen niet.
XIV.
De bezwaren welke . Kerrerer |, Theoretische Optik”

(Braunschweig 1885, Seiten 79 u, 80) tegen de dispersie-

theorie van Hermnovrrz opwerpt, zijn ongegrond.
XV.
De electrodynamische grondstelling van Cravsis ver-
dient niet de voorkeur boven die van Wenek.
XVIL

De  wijze, waarop W. Siemens de kracht der stormen
uit het principe der energie zockt te verklaren, is onvol-

doende.
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XVII.

De meerdere of mindere betrouwbaarheid der begin-

selen, waarop de methode der kleinste quadraten berust,
kan slechts door de ervaring aangetoond worden.

X VIIL

Ter bepaling van den afstand der zon is de zooge-

naamde physische methode de meest aanbevelingswaardige.
XIX.

De physische toestand der zon kan bij den tegenwoor-

digen stand der wetenschap niet verklaard worden.
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