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??? INLEIDING. In zijn â€žTrait?Š de la Lumi?¨re" i) Chap. I, pg. 17 en18 houdt Huygens de volgende beschouwing: â€ž11 y a ?  consid?Šrer, que chaque particule de la matiere,dans laquelle une onde s\'etend, ne doit pas communiquer sonmouvement seulement ?  la particule prochaine, qui est dansla hgne droite tir?Še du point lumineux; mais qu\'elle en donneaussi n?Šcessairement ?  toutes les autres qui la touchent, etqui s\'opposent ?  son mouvement. ^ De sorte qu\'il faut qu\'autour de chaque par-ticule il se fasse uneonde dont cette particulesoit le contre. Ainsi siD C F est une ondeeman?Šo du point lunii-neu.K A, qui est son cen-tre; la particule B, unede celles qui sont com-^"\'S"*"" prises dans la sphero DGF., aura fait son onde particuli?¨re K G L, qui toucheral\'onde D G F en C, au mesme moment que l\'onde principale,eman?Še du point A, est parvenuO en DGF; et il est clairqu\'il n\'y aura que l\'endroit G do l\'onde KGL qui touchera 1) Do vollcdigo titol is: Traito do la Lumioro, o?š sont uxpliqut\'oH loa cnusoH tlo oo qui luy arriveÂ?dans lu Ucfloxion ot

dans la Itofraction ct particulioroniunt dans l\'ctranRÂ?Kofraction du Cristal d\'Islande, par C. II. I). Z, avec un Discours do lu Cnusodo la Pesantour. A Loido, olioz l\'iorro vnn der An, MDCXC.



??? Tonde DGF, s?§avoir celuy qui est dans la droite men?Še parA B. De mesme les autres particules comprises dans lasphere DGF, comme bb, dd etc. auront fait chacune son onde.Mais chacune de ces ondes ne peut estre qu\'infiniment foiblecompar?Še ?  l\'onde DGF, ?  la composition de laquelle toutesles autres contribuent par la partie de leur surface qui estla plus ?Šloign?Še du centre A. L\'on voit de plus que l\'onde DGF est d?Štermin?Še parl\'extrerait?Š du mouvement, qui est sorti du point A en cer-tain espace de temps ; n\'y ayant point de mouvement au de l? de cette onde, quoy qu\'il y en ait bien dans l\'espace qu\'elleenferme, s?§avoir dans les parties des ondes particuli?¨res, les-quelles parties ne touchent point la sphere DGF.\'\' Dit is nagenoeg alles wat Huygens zelf zegt omtrentzijn zoo beroemd geworden beginsel. Er blijkt duidelijk uitdat Huygens aannam, dat een deel der beweging op zekeroogenblik van A uitgegaan, op een later tijdstip gevondenwerd niet uitsluitend op het oppervlak DGF, maar ookbinnen het oppervlak DGF o^ de deelen van de â€žondes par-ticuli?¨res" welke niet den bol D CJP raken.

Verschillende natuurkundigen na Huygens hebben vanzijn beginsel een formuleering gegeven die meer omvat danHuygens zelf zegt. Het komt mij voor dat men de bedoehngvan Huygens het best kan brengen in den vorm: â€žElk deeltjedat in beweging gekomen is, kan voor het vinden van eenigander golfoppervlak dan dat waarop het zelf gelegen is, be-schouwd worden als een middelpunt van trilling." i) Fresn?Šl spreekt het aldus uit: â€žLes vibrations d\'uneonde lumineuse dans chacun de ses points peuvent ??tre re-gard?Šes comme la somme des mouvements ?Šl?Šmentaires qu\'yenverraient au m??me instant, en agissant isol?Šment, toutesles parties de cette onde consid?Šr?Še dans une quelconque deses positions ant?Šrieures." Dit is reeds iets meer; het geeft den grondslag van de 1) V. A. JuliuB. Leerboek dor Nnhiurkundo. Dordo dool, dorde drukpg. 14. 2) Oeuvres dc F r o s n o 1. I pg. 293.



??? methode die Fresnel uit hetgeen Huygens gezegd heeft,heeft afgeleid voor de bepaling van den bewegingstoestandvan een deeltje op een bepaald oogenblik. Beer i) houdt de volgende beschouwing naar aanleidingvan dat beginsel: â€žH??rt der Punkt F mit seinem Leuchten nach einer ZeitT auf, so erhalten wir neben der ?¤usseren Grenze der be-ginnenden Lichtbewegung eine innere Grenze der aufh??ren-den. Wie jene, wird auch diese eine Kugel sein, deren Mit-telpunkt P ist, und deren Radius sich stetig mit der Ge-schwindigkeit V verl?¤ngert. Nach der Zeit T, die gr??sser alsT sei, wird sich daher dei-jenige Theil des Aethers in Bewe-gung befinden, welcher in einer Kugelschale von den RadienvT und v{T\' â€” T) liegt. Bei wachsender Zeit erweitert sichdiese Schale gleichf??rmig; ihre Dicke aber bleibt constant. Von dem Hergange bei der Fortpflanzung des Lichtesk??nnen wir uns auch noch eine von der vorhergehendenetwas abweichende Vorstellung bilden. F??r die Zeit ^ seien Z,p und A\'j (Fig. 2) die ?¤us- sere und innere Grenzeeiner Lichtwelle.

JedenPunkt der zwischenKl und Kl gelegenenAethermasse k??nnenwir uns nun als Mit-/ telpunkt einer neuenLichterregung denken.Nach der Zeit t wirdsich z. B. der Zustandeines Punktes vonK^ auf die Punkte der Kugel /.*, ??bertragen haben, derenMittelpunkt j-Jj ist, und deren Radius v t gleichkommt. Con-struiren wir f??r alle Punkte von Ki die zugeh??rigen Kugelnso leuchtet ein, dass nach der Zeit t der Zustand von Jv,sich auf die Punkte derjenigen Fl?¤che ??bertragen hat, welche 1) Uoor, Einleitung in die huhoro Optik PR. 18. llraunsohwoig bij Viowpgund Solln 1853.



??? jene Kugeln insgesammt ber??hrend umh??llt. Jene Kugelnwerden aber umh??llt von zwei Kugelfl?¤chen, deren Centrumder leuchtende Punkt P ist, und von denen die ?¤ussere K[den Radius v T vt, die innere K[\' den Radius v T â€”vthat; die letztere Kugel lassen wir unber??cksichtigt; von derersteren aber wissen wir aus dem Vorhergehenden, dass siewirklich der Ort der Punkte ist, auf welche sich der Zustandvon Ki nach der Zeit t ??bertr?¤gt. Dieselbe Constructionliefert uns f??r jeden Schwingungszustand der Welle eine?¤ussere und innere Fl?¤che, von denen wir jene als den Ortder Punkte, auf welche sich der fragliche Zustand ??bertragenhat, beibehalten. Und der Inbegrilf dieser ?¤usseren Fl?¤chenist der Ort, nach dem sich die urspr??ngliche Welle nachVerlauf der Zeit t fortgepflanzt. Die innere Grenze der neuenWelle ist die Kugel wefche die den Punktender Fl?¤cheKl entsprechenden Kugeln ki nach Aussen hin umh??llt. Dasmitgetheilte Verfahren, von einer Welle zu einer ihrer sp?¤-teren Lagen ??berzugehen, w??rde auch dann anzuwenden sein,wenn die urspr??ngliche Welle eine andere als kugelige Ge-stalt

bes?¤sse. Die dem Verfahren zu Grunde liegende Vorstel-lungsart heisst nach ihrem Erfinder das Huyghens\'scheP rincip." Hier ^ordt dus in de eerste plaats aangenomen dat, wan-neer de beweging in P ophoudt, na een zekeren tijd de ge-heele beweging besloten is tusschen de oppervlakken K^ enKi. Dat dit werkelijk zoo is zal ik in Hoofdstuk Hl be-wijzen, maar het is zeker niet iets dat uit het beginsel vanHuygens voortvloeit. Opmerkelijk is dat Beer van de in-wendig omhullende K[\' eenvoudig maar zegt: â€ždie letztereKugel lassen wir unber??cksichtigt". Die inwendig omhullende werd dan ook door Poissonaangehaald als een groot bezwaar tegen hetgeen Fr e sneluit het beginsel van Huygens afleidde. In een brief aanF res nel waarvan hij een extract heeft gepubliceerd i) en 1) Poisson. Annales do Chim. et de Physique, t. XXII p. 270, Cahierdo Mars 1823. t



??? die is opgenomen in de Oeuvres de Fresnel t. II pg.206 s. s. zegt Poisson op pg. 209: â€žJe vous ferai aussi remarquer que, dans le raisonnementqui vous a conduit ?  la formule de la page 287 de votreM?Šmoire sur la diffraction i) rien n\'exprime que le pointP 2) soit situ?Š au del?  de l\'onde A M F, et que, s\'il ?Štait situ?Šen de?§?  de cette onde, le m??me raisonnement appliqu?Š mot ? mot vous conduirait ?  une formule semblable pour exprimerla vitesse qu\'il re?§oit. Il suivrait donc de vos principes quel\'onde A M F, m??me quand elle est compl?¨te, devrait produiredu mouvement en de?§?  et au del?  de sa position; conclusionqui suffirait pour montrer qu\'il y a un vice quelconque dansvotre mani?¨re d\'envisager la question. Et, en effet, la pro-duction d\'une nouvelle onde en avant de celle que vous con-sid?Šrez, et la non-communication du mouvement en arri?¨re,n\'ont lieu qu\'?  raison d\'un rapport d?Štermin?Š qui subsiste,dans l\'onde donn?Še, entre les condensations et les vitessespropres des mol?Šcules fluides, et nullement ?  raison de l\'in-

terf?Šrence des ondes ?Šl?Šmentaires parties de tous les points?  des instants diff?Šrents." Het antwoord van Fresnel: 3) â€žJe conviens que le principe do la composition des petitsmouvements doit s\'appliquer ?  ce cas comme ?  celui que j\'aiconsid?Šr?Š; mais si les ?Šl?Šments dans lesquels je con?§ois l\'ondedivis?Še ne peuvent pas envoyer de mouvem?Šnt de ce c?´t?Š,m??me en agissant isol?Šment, il est clair que la r?Šsultante desondes ?Šl?Šmentaires sera nulle. Je ne vois donc pas qu\'il r?Šsultede mes principes qu\'une onde doive produire des mouvementsr?Štrogrades," kan dan ook als weinig afdoendo gelden. Maar Poisson had nog meer bezwaren. In dien zelfdenbrief wees hij er Fresnel op dat do uitwijking die eendeeltje kreeg bij de berekeningswijze van Fresnel evenredig n Oouvres do KrcHiiol t. I pg. 313. \'i) P is het punt waarin Kroancl h??rckcnt do intensiteit dor beweginguitgezonden door iillo doeltjes van liot golffront .1 M h\\ 3) Oeuvros do Frosnoi t. 11 pg. 219. 4) Oeuvrca do Frosnoi t. II. pg. 208.



??? 6 was met de golflengte, wat toch vrijwel onaannemelijk mochtheeten, of men moest onderstellen dat de invloed van eengolfoppervlak-element omgekeerd evenredig was met de golf-lengte, wat even onaannemelijk was. F res nel zag zeer wel in dat het beginsel van Huygens,zooals hij dat had geformuleerd en toegepast, niet tot uit-komsten overeenkomende met de verschijnselen zou leiden,indien hij aannam dat de intensiteit van de secundaire golvenin alle punten even groot was. Hij zegt : i) â€žL\'impulsion qui a ?Št?Š communiqu?Še ?  toutes les parties del\'onde primitive ?Štant dirig?Še suivant la normale, les mouve-ments qu\'elles tendent ?  imprimer ?  l\'?Šther doivent ??tre plusintenses dans cette direction que dans toute autre ; et les rayonsqui en ?Šmaneraient, si elles agissaient isol?Šment, seraient d\'autantplus faibles qu\'ils s\'?Šcarteraient davantage de cette direction. La recherche de la loi suivant laquelle leur intensit?Š varieraitautour de chaque centre d\'?Šbranlement pr?Šsenterait sans doutede grandes difficult?Šs ; mais heureusement nous n\'avons pasbesoin de la conna?Žtre, car il est ais?Š de voir que les

effetsproduits par ces rayons se d?Štruisent presque compl?¨tementd?¨s qu\'ils s\'inclinent sensiblement sur la normale, en sorteque ceux qui influent d\'une mani?¨re appr?Šciable sur la quan-tit?Š de lumi?¨re que re?§oit chaque point P peuvent ??tre regard?Šscomme d\'?Šgale intensit?Š." Later heeft Presnel 2) in antwoord op een aanval vanPoisson getracht de wet af te leiden volgens welke menmoet aannemen dat de intensiteit over de verschillende puntenvan een zelfde secundaire golf verdeeld is. Is M een punt vaneen secundaire golf met A als middelpunt en verder G hetpunt waar die golf wordt gesneden door de golffrontsnormaalgaande door A, dan zou volgens Fresnel de intensiteit vande secundaire golf in het punt ilf evenredig zijn met de cosinusvan hoek M A G. Deze cosinuswet is echter zeer weinigvruchtbaar gebleken en aan een uitdaging van Poisson ^J) 1) Oeuvres do F r o s n o 1 t. I pg. 295. 2) Oeuvres do Frosiiol t. II pg. 221. 3) Oeuvres de F r c s n o 1 t. II pg. 22G. *



??? om de berekening der intensiteit met behulp dier wet nu eensuit te voeren voor een zeer eenvoudig geval, waarin de uit-komst te voren bekend was, heeft Fresnel niet voldaan. Trouwens het is gebleken i) dat in een ander geval deberekeningswijze van Fresnel tot een onjuiste uitkomstleidde. Is P een lichtgevend punt, M een bol met P alsmiddelpunt en C een punt gelegen buiten dan vindt menvoor de phase in O, indien men deze berekent door middel vande secundaire golven door M uitgezonden volgens de bereke-ningswijze van Fresnel, niet wat de rechtstreeksche be-schouwing geeft, maar een phase die ~ grooter is. Jaminet Bout y 2) zeggen naar aanleiding hiervan: â€žOn ne s\'est pas arr??t?Š ?  ce r?Šsultat bizarre d\'une analyse?Švidemment incompl?¨te, lequel ne para?Žt pas susceptible d\'inter-pr?Štation physique." Dit ailes mag niet als een verwijt tegen Fresnel gelden;integendeel bewijst het hoe zijn intu??tie hem hielp zwarighedente overwinnen of tijdelijk op zijde te zetten, die een Poissonhet voortgaan onmogelijk maakten. In tegenstelling met

Pois-son kende Fresnel aan het resultaat zijner beschou-wingen de hoogste waarde toe ; of die beschouwingen zeltvolmaakt exact waren liet hem vrij koud, want de juistheidzijner resultaten kon hij aan het experiment toetsen. In diengeest uit hij zich zeer kras aan het slot van boven aangehaaldenbrief: â€žPeut-??tre direz-vous encore que je suis arriv?Š ?  des r?Šsul-tats justes en raisonnant faux. Au reste, si cette mauvaisemani?¨re de raisonner me conduit ?Ži des v?Šrit?Šs nouvelles,comme je l\'esp?¨re, elle m\' aura procur?Š tous les avantagesqu\'on peut retirer des bonnes m?Šthodes, la facilit?Š des d?Šcou-vertes et l\'exactitude des r?Šsultats." 1) Stokos. On tlio Dyn, Th. of Dillruotioii. Trnnsiictiona of thu Cambr. rhil. Soo. Vol. IX, pg. \'2 (20 Nov. 1819). Math, and l\'hys. l\'npora Vol. II,pg. AV. Voigt. Zur Frcsnersclicn Thuor. dor Diirruotionserschcinungon. Wicd.Ann. 3, pg. 533. 1878. 2) J a ni in et IJouty, Couru do Physique. Paris 1887. t. III. 3. pg. 3??5.



??? 8 Maar wel blijkt hieruit dat het beginsel van Huygensin zijn meer eenvoudigen vorm of zelfs in den vorm, waarinFresnel het bracht, physisch onjuist is. Daarom kwam het mij niet onbelangrijk voor in de eersteplaats de voortplanting van een bolvormige verstoring aaneen wiskundig onderzoek te onderwerpen. Daarmede zal ikmij bezig houden in het derde hoofdstuk van dit proefschriften daarbij gelegenheid vinden om Poisson\'s opmerking be-treffende het terugloopen der golven en evenzoo Stokes\'zonderling resultaat te weerleggen. Wij zullen daar doen zien dat, indien het punt A gedurendeeenigen tijd middelpunt van verstoring is geweest, er eenigentijd later alleen beweging bestaat binnen een deel der ruimtebesloten tusschen twee bollen met A als middelpunt, en datde voorstelling, die Beer zich vormt van de voortplantingvan een bolvormige verstoring, (zie pag. 3) juist is; dat nl.indien op zeker oogenblik alleen beweging wordt gevondenbinnen de bolschaal K2K1 (zie figuur 2) er t sec. later alleenbeweging binnen de bolschaal iT^/fj bestaat. Indien men aande secundaire golven physische beteekenis toekent, zou slechtseen

deel der energie aanwezig binnen K-,Ki binnen ICR[worden teruggevonden en dus ook buiten die schaal bewegingmoeten bestaan volgens de wet van behoud van arbeidsver-mogen. Kennen wij dus physische beteekenis toe aan diesecundaire golven en aan de beschouwingen van Huygens,dan komen wij in strijd met de wet van behoud van arbeids-vermogen. Dit geeft ons recht te zeggen, dat het beginsel vanHuygens tot strijd voert met de wet van behoud vanarbeidsvermogen en derhalve physisch onjuist is. Hiervan echter mogen wij den genialen grondlegger van detheorie der golfbeweging geen verwijt maken, vooreerst tochwas hem de wet van het behoud van arbeidsvermogen onbe-kend en bovendien moet men naar mij voorkomt aan zijnbeschouwingen geen physische maar slechts een meetkunstigebeteekenis toekennen. Van die beschouwingen toch zegtHuygens in onmiddellijke aansluiting met voorstaande aan-haling : â€žEt tout cecy ne doit pas sembler estre recherch?Šavec trop de soin, ni de subtilit?Š; puisque Ton verra dans la



??? suite, que toutes les proprietez de la lumiere, et tout ce quiappartient a sa reflexion et a sa refraction, s\'explique prin-cipalement par ce moyen.\'.\' De hier bedoelde verklaringen der wetten van terugkaatsingen breking nu bestaan slechts in zijn bekende meetkunstigeconstructies van den teruggekaatsten en den gebroken straalvan een vlakke verstoring door een vlakke grenslaag. Huy-gens heeft die beschouwingen naar mij voorkomt alleengehouden om die constructies te motiveeren. Daar, waarFresnel door Poisson in het nauw gedreven physischebeteekenis hecht aan de secundaire golven en b.v. gaatspreken over de verdeeling der intensiteit over die golven,beginnen de onjuistheden en wijkt hij mijns inziens vande voorstellingen van Huygens af. Hoewel het dus zeer te betreuren is dat Huygens zelfgeen scherpere formuleering aan zijn denkbeelden heeft ge-geven, zijn hem dunkt mij de onjuiste resultaten door anderendaaruit afgeleid niet toe te rekenen, maar heeft men slechtshet recht aan zijn beginsel meetkunstige beteekenis toe tekennen, n.1. in

zooverre het ons de grens der beweging leertvinden en ons een middel aan de hand doet om uit een voriggolffront een volgend te construeeren. Wij hebben er zijngeniale beperking in te bewonderen dat hij zelf dat ook deed. In Hoofdstuk III zal ons blijken dat slechts voor etherbe-wegingen van oneindig kleine golflengte do gollFrontsconstructievan Huygens voor bolvormige en vlakke golven geheeljuist is. Toen ik deze quaestie had onderzocht, deed zich als van-zelf de vraag aan mij voor: hoe staat het met de goll??ronts-constructie van Huygens voor golven van willekeurigenvorm? Daartoe had ik dus het volgende vraagstuk te be-handelen: indien gegeven is dat een gesloten oppervlak Agolffront is voor een beweging die zich voortplant naar buitentoe, is dan de uitwendig omhullende van bollen met gelijkenstraal beschreven om alle punten van A voor die bewegingook een golffront? De behandeling van dat vraagstuk maaktin eenigszins gewijzigden vorm den hoofdinhoud uit vanHoofdstuk IV.



??? 10 Tegenwoordig duidt men met den naam beginsel vanHuygens dikwijls aan een theorema door Kirchhoff afge-leid en dat ons in staat stelt om uit een golfbeweging die opeenig oogenblik gegeven is, de beweging na een willekeurigtijdsverloop af te leiden. Toen ik zooeven het beginsel vanHuygens physisch onjuist noemde, bedoelde ik daarmedenatuurlijk geenszins dat theorema van Kirchhoff hetwelkin den laatsten tijd volmaakt streng bewezen is. Integendeel,van dat theorema dat de oplossing van alle vraagstukken overgolfbewegingen in een isotroop medium impliciet bevat, zal ikjuist gebruik maken om het physisch onjuiste in het beginselvan Huygens en in de formuleering ervan door Fresnelaan te toonen. Met de afleiding en de bespreking van dat theorema heb ikmij bezig gehouden in Hoofdstuk I, terwijl in Hoofdstuk IIeenige algemeene besprekingen van golfbewegingen wordengehouden. Ten slotte wil ik nog opmerken dat ik nergens heb inge-voerd de voorwaarde dat de golflengte der beweging oneindigklein is. Doet men dit wel, dan worden de berekeningen veeleenvoudiger, maar dan gelden de beschouwingen

slechts (bijbenadering) voor lichtbewegingen en verliezen nagenoeg geheelhaar beteekenis. Hoewel ik dus in het vervolg de nomenclatuurvoor lichtbewegingen gebruik, kunnen op etherverstoringenvan eindige golflengte de verkregen resultaten evengoed wordentoegepast. Juist voor znlke electromagnetische golfbewegingenverkrijgen zij naar mij voorkomt hun beteekenis en met hetoog daarop\' is het dat ik de voortplanting van etherverstoringenheb bestudeerd.



??? HOOFDSTUK L KIRCHHOFF\'S FORMULEERING VAN HET BEGINSELVAN HUYGENS. I. Potentiaalfunctie eener Golfbeweging. In de volgende beschouwingen zullen we ons voorstellente doen te hebben met een goltbeweging in den homogenenen isotropen ether. Zulk een golfbeweging wordt beheerschtdoor drie van de co??rdinaten x, y en z en van den tijd tafhankelijke functies ?•7, V en W, die moeten voldoen aan depart. diff. verg. ^ = (1) waarin a een constiinte is voor den ether en A do bekendenotatie is voor den operator Indien we ons plaatsen op het standpunt van de elastici-teitstheorie van het licht en derhalve den ether beschouwenals een elastisch onsamendrukbaar medium en licht als eenzich daarin transversaal voortplantende verstoring, dan wordteen lichtbeweging bepaald door de ontbindingsuitwijkingenV en w van een etherdeeltje langs de co??rdinatenassen en danworden die functies v en w uit bovengenoemde functies??", V en W afgeleid door middel van de vergelijkingen:



??? (2) 12 w sv s W dz Sy \' dW SU dx Sz \' SU a F sx \' Indien dus U, V en W gegeven zijn, dan wordt in deelasticiteitstheorie van het licht een lichtbeweging door devergelijkingen (2) volkomen bepaald en omgekeerd, indien delichtbeweging gegeven is, dan kunnen de dan gegeven functiesu, V en w steeds worden geschreven in den vorm (2), terwijlde daarin voorkomende functies U, V Qn W voldoen aan dediff. verg. (1). Voor iedere lichtbeweging is dus in de elasti-citeitstheorie voldoende de bestudeering van die functies U,V en W die onderling onafhankelijk zijn maar moeten voldoenaan (1). Aanvaarden we de electromagnetische lichttheorie en be-schouwen we derhalve den ether als een electrisch en mag-netisch polariseerbaar medium en hcht als de voortplantingdaarin van electrische en magnetische schommelingen, danwordt de electromagnetische toestand van den ether en dusde lichtbeweging bepaald door de volgende twaalf functies vanX, y, z en t : 3F, 5), de ontbondenen van het electrisch moment pervolume eenheid; P, de ontbondenen van het magnetisch moment per volume eenheid; X, Y, Z, de ontbondenen van

de electrische kracht; L, M, N, de ontbondenen van de magnetische kracht. Evenals v en lo hangen ook deze functies van drie functiesU, V en W af en worden daaruit afgeleid door middel van devergelijkingen: u =



??? 13 3Â?i a F aWd z dy ?ŠTT 1 f ^i ff TV aU 3X dZ Y = 4 TT P 1 f 3f dU ffVdy s X Z = 47r 3 } f A L = 47r 2 ! aT\' M = in m aW 4 TT Hierin zijn f en constanten voor het medium, die in denvrijen ether gelijk 1 worden en ?„ is de constante, waardoormen van het electromagnetische naar het electrostatische maat-stelsel overgaat, zoodanig dat in eenheden van het C. G. S.stelsel ongeveer A = 3.10\'O â€? Evenals in de elasticiteitstheorie is dus ook hier, indien U,V en JV gegeven zijn, een lichtbeweging geheel bepaald enomgekeerd, indien de lichtbeweging gegeven is, dan kunnen deelectrische on magnetische ontbindingskrachten en ontbindings-momenten steeds worden geschreven in den vorm (3). Ookhier is dus voor iedere lichtbeweging de bestudeering der func-ties C7, V en IV voldoende. Terwijl echter in de elasticiteitstheorie de functies C/, Ven W moeten voldoen aan (1) maar onafhankelijk zijn vanelkaar, moeten in de electromagnetische lichttheorie defuncties ??, V en W behalve aan (1) ook nog voldoen aande betrekking: (3) 3Udx dVd y dWd z O, en zijn

hier dus niet onafhankelijk van elkaar. (4)



??? 14 Daar in de elasticiteitstheorie U, Ven TF onafhankelijk vanelkaar zijn, kunnen we daar eens onderstellen : (5) U = q>,V = O,IF = O, waarin q> voldoen moet aan (1). Door de beweging (5) samente stellen met twee andere dergelijke bewegingen, waarvanvoor de eene ??" en F en voor de andere U en W nul zijn,keeren we tot het algemeene geval terug. Omgekeerd kaneen willekeurige lichtbeweging steeds in drie zulke bewegingenontbonden worden. In plaats van de vergelijkingen (2) krijgenwe dan : = O, (C) d q> 77 (7) In de electromagnetische lichttheorie moeten U, V en Wvoldoen aan (1) en aan (4); dit is het geval zoo we stellen: U =V =\\V = 3cpi ez 3 qt dX az \' aq\' dx \' terwijl <pi en gi voldoen aan (1), maar onafhankelijk kunnenzijn van elkaar. De beweging (7) kunnen we splitsen in drie bewegingendoor beurtelings twee der functies ip, tp, en (j^i gelijk nul testellen. We blijven dus algemeen, indien we ?Š?Šn dezer bewegingenbestudeeren, b.v. w =



??? (2) 15 f; = O,V = â€” 3z W = _ 5 qp waarin <f een oplossing is van (1). Dan worden de vergelij-kingen (3): X = 47r _ (fC?– fp f ?„?? exdy \'(p axsz^ V 4 ^1 = 4 tt â€” 1 f 3 n â€” 1f (9) 2 = O, 2 Z = 47. = O, M = 4 TT - , Sicp = A â€” A fi f â€” ^ = N = iTT ay at\' Volgens beide lichttheorie??n kan dus iedere lichtbewegingworden gesplitst in drie andere, die elk door ?Š?Šn functie <]pworden beheerscht, welke alleen onderworpen is aan de voor-waarde dat zij moet voldoen aan (1). In de elasticiteitstheorie kunnen we door middel der ver-gelijkingen (6) en in de electromagnetische lichttheorie doormiddel van (9) voor een dezer drie bewegingen alle lichtvec-toren berekenen. Do bestudeering van ?Š?Šn functie Â?p, die aan(1) voldoet, is dus volgens beide theorie??n voldoende. Von Helmholtz gebruikt in zijn â€žVorlesungen ??berdie Electromagnetische Theorie des Lichts" do uitdrukkingâ€žWellenpotential". Ik zal die\'uitdrukking overnemen ende functie cp aanduiden met den naam â€žpotentiaal dergolfbeweging". Een willekeurige lichtbeweging heeft dus volgens het

boven-staande drie potentialen, maar kan steeds worden gesplitst in



??? 16 drie bewegingen waarvoor telkens twee der potentialen nulzijn. Met de bestudeering van ?Š?Šn dezer drie bewegingenen dus met de bestudeering van ?Š?Šn potentiaal kunnenwe volstaan. 2. Afleidingen beteekenis van Kiechhoff\'s formuleeringvan het beginsel van huygens. Door Kirchhoff 1) is een theorema afgeleid, dat gewoon-lijk wordt genoemd de formuleering van het beginsel vanHuygens door Kirchhoff, en dat ons in staat stelt omuit de waarde, die een functie, welke voldoet aan de diff.verg. der golfbeweging (1), op een gesloten oppervlak s heeft,te berekenen de waarde dier functie in eenig punt binnen sgelegen. Daartoe moet binnen s de ether continu zijn ; binnens mogen dus geen vreemde lichamen of lichtbronnen zich be-vinden. Bij de afleiding van dat theorema wordt van hetbeginsel van Huygens geen gebruik gemaakt en evenminvolgt de juistheid der golflfrontsconstructie van Huygens eronmiddellijk uit. Daarom komt het mij voor, dat er weinigreden bestaat, om dat theorema te noemen de formuleeringvan het beginsel van Huygens. Waarschijnlijk heeft het diennaam gekregen, omdat als basis der

bestudeering van licht-verschijnselen in den isotropen ether het beginsel van Huy-gens door dat theorema kan worden vervangen. Kirchhoff leidt zijn theorema op de volgende wijze af: Indien ?œ en V twee functies zijn van r, y en die methaar eerste diff. quot. naar ??-, y en z binnen een geheel be-grensde ruimte (welke uit verschillende gescheiden deelen kanbestaan) eenwaardig en continu zijn; indien dr een elementvan die ruimte is en ds een element van haar oppervlak s(hetwelk eveneens uit verschillende gescheiden deelen kanbestaan); en indien N de normaal is op het oppervlak s naar 1) Kirchhoff. Sitz. Bor. d. K??n. Acad. d. Wissonsoh. zu Berlin vom 22Juni 1882 pg. 641. Wiedem. Ann. Bd. 18 pg. 6G3. 1883.GoBamm. Abhandl. von Kirchhoff, Nachtrag pag. 22.



??? 17 binnen toe getrokken, dan is volgens het theorema van Green =f\'lr(VAU-UAV). Hierin stelt Kirchhoff U=(p, terwijl (p een functie is dievoldoet aan de diff. verg. der golfbeweging (1). Van 7, welke functie we zoo aanstonds nader zullen be-palen, neemt Kirch hoff aan dat zij ook aan (1) voldoet.Het theorema van Green gaat dan over in: J V\'^^iV 5iV/ Â?^\'J ^ ^ C>t/ Vermenigvuldigen we beide leden met dt en integreeren overt tusschen de negatieve en positieve grenzen â€” t\' en t", dan is â€? (10)-t\' Kirchhoff stelt nu waaiin râ€ž de afstand is van eenig punt x, ?/ en z tot oenwillekeurig vast punt o. Deze onderstelling is geoorloofd,want dan voldoet V aan (1) voor eiken vorm van F. Betreffendo F onderstelt Kirchhoff: l/* en F\' (C) zijn oneindig klein voor iedere eindigepositieve of negatieve waardo van C; 7\'\'(C), is nooit negatief, wat ook C moge zijn; 3V /.\'(C)(U = 1, (11) indien wo deze integraal nomen van oen oindigo negatiovo toteen eindige positieve waardo van C- Zij nu gegeven een ruimto geheel- begrensd door een opper-vlak s, waarbinnen de ether

homogeen is en waarbinnen geenlichtbronnen voorkomen. Het punt o kiezen wo binnen dieruimto. Dan is binnen dio ruimto cp continu on eindig on ookV behalve in het punt o, waar V oneindig groot wordt. We mogen dus (10) toepassen op de ruimte begrensd door s en 2



??? 18 een oneindig klein bolletje met straal B, dat we om het puntO leggen. Van dat bolletje zij clS een oppervlakteelement.Verder kiezen we f zoo groot, dat voor de geheele ruimte s. de uitdrukking râ€ž â€” at\' negatief en eindig blijft. Onder die voorwaarden komen in de rechterzijde van (10) d V slechts waarden voor van F en , waarin Vo at eindig 3 t positief of eindig negatief is, en die dus oneindig klein zijn.Van de vergelijkingen (10) blijft dus slechts over: In de tweede integraal is F(R at) V = Jl â– JN It SR Noemen we nu da een ruimtehoekelement, waarvan hetpunt O hoekpunt is, dan is dS = R^da en dus of daar B oneindig klein is: f^\'^ i\'^\' - F ^ = -l\'^ZÂ? 7\'\'(a/) = ^ 4TT n J\'i^O , waarin (pâ€ž voorstelt de waarde van 9 in het punt 0 op dentijd t.Nu is volgens (11) fdt F (at) =J _/\'



??? 19 en tot de waarde dezer integraal hebben alleen bijgedragende elementen in de buurt van ^ = o, dus r\'" 1 Jdi q>At)F(at) = â€”cpo(.o), waarin (pdo) voorstelt de waarde van (f in het punt o op tijd t = O. De tweede integraal uit (12) wordt dus Thans gaan we de eerste integraal van (12) transformeeren;na omkeering der integraties wordt zij 5 V hierin is J â€ž sN J râ€ž aro â€” I â€”I a terwijl in na uitvoering der differentiatie gesteld moetaN worden t = â€” â€”. Stollen wo dusct dan wordt jN arâ€ž \' V a/ Vervolgons is aV d F (râ€ž a O 5 iV sN râ€ž s-L



??? 1 20 en dus f\' aV / 1 dro f\'\' dF(ro at)^â€ž wat door partieele integratie van de laatste integraal overgaat in - 9 (--) â€” U Â?O ?•- a ^ \\ a! avo a N J J_^, 1 i\' TT a â€” ^ ^ 7 , a V To 1 / râ€ž\\ , 1 a Vb fi % r^ Fira at)dt. an aN J_^.at ^ ^ ^ De tweede term is nul omdat F voor een eindig argumentverdwijnt en de laatste term herleidend volgens (11) krijgen we: J_ aV râ€ž 1 / ro\\ 1 arâ€ž {9 q>\\ J_ / M__1 drâ€ž /a (p\\ a l a/ a^n aN \\ ?ˆ Derhalve wordt (12): \' J r\' râ€ž 1 / râ€ž\\ 1 arâ€ž /aq>\\ 1 . / râ€ž\\ "1 in ?’ Verleggen we nu den tijdsoorsprong, zoodat het oorspron-kelijke aanvangspunt het tijdstip t wordt, dan is 1 A r,\\ C 7 r M ^ au (i! 1 rl, râ€ž\\\' Merken we nu nog op dat (. \\ a râ€ž aN "^v a) nrâ€ž aN 1 a â€”ro at aN râ€ž indien we onder den operator in het tweede lid dezer ^ aN



??? 21 3 7* d vergeliiking verstaan den operator â€”~ . -, dan kunnen we ^ ÂŽ aN dVo ons resultaat in den vorm brengen: To(0= cZs, waarin Q = dN To terwijl f de beteekenis heeft: \\/ (18) Indien we dus de potentiaalfunctie <p eener golfbeweging opeen gegeven oppervlak s kennen bonevens haar dift\'. quot. opdat oppervlak naar den tijd en naar de normaal op het opper-vlak, dan geven de vergelijkingen (13) ons de potentiaalfunctiein eenig punt 0 binnen s gelegen. De vergelijkingen (18) vormen de zoogenoemdo formuleoringvan Kirclihoff van het beginsel van Huygens. Om de vergelijkingen (13) te kunnen interproteeron merkenWO op, dat indien do functie <p alleen afhangt van r en vant, do dift". verg. (I) to integreeron is en dat dan haar meestaigemeene oplossing den vorm heeft: In dio onderstelling hebben wo te doen mot bolvormigegolven en r is do afstand tot hct middelpunt der golven. ?œG eerste term stelt voor do potentiaal van een bolvormigegolfbeweging dio zich van hot middelpunt verwijdert, en dotweede term stelt voor do potentiaal van een bolvormigegolfbeweging dio zich naar hot

inlddelpunt toe beweegt. Dus do tweede integraal uit Kirchhoff\'s theorema n.1. .f^/O-^)\'"



??? 22 stelt voor de potentiaal die in het punt o wordt verwektdoor bolvormige golven die uitgaan van alle elementen vanhet oppervlak s, indien ds voorstelt de potentiaal door een element ds verwekt in eenpunt op afstand r van ds gelegen. Om ook de eerste integraal te kunnen interpreteeren, stellenwe ons voor op het oppervlak s een soort dubbellaag vanpositieve en negatieve middelpunten van verstoring. Met eennegatief middelpunt van verstoring bedoelen we een punt, datbolvormige golven uitzendt, waarvan de potentiaal negatiefis.De afstand der lagen zij dN. Van de beweging verwekt dooreen bolvormige golf uitgaande van een element ds der buitenstelaag zij de potentiaal in eenig punt op afstand r van datelement gelegen , 1 â€” ds - dN en in datzelfde punt zij de potentiaal verwekt door het bij-behoorend element der binnenste laag ds--j-^y ds r dN dN dN. dN De potentiaal door beide elementen te samen verwekt indat punt is dan gelijk aan de som dezer beide potentialen(want de diff. verg. der golfbeweging is lineair), en dus gelijkaan ds â–  ^ dN To zoodat de eerste integraal uit Kirchhoff\'s theorema, n.1. _ 3 N To ?’ ds



??? 23 kan worden opgevat als de potentiaal der beweging verwektin het punt o door positieve en negatieve middelpunten vanverstoring, die in een dubbellaag van de boven omschrevenaard zijn gerangschikt op het [oppervlak s en bolvormige golvenuitzenden. De vergelijkingen (18) kunnen we derhalve aldus uitspreken : Ieder golfbeweging binnen een gesloten ruimtewaarin het medium continu en isotroop is enwaarbinnen zich geen middelpunten van versto-ring bevinden, kan worden opgevat als te wordenverwekt door bolvormige golven die worden uit-gezonden door middelpunten van verstoring, diedeels in een enkelvoudige deels in een dubbellaaggerangschikt zijn op het oppervlak s dat die ruimteomsluit. De vergelijkingen (18) leeren ons dus de potentiaal door eenwillekeurige golfbeweging verwekt, berekenen uit de potentiaalvan denkbeeldige bolvormige golven. Wat betreft de golfbe-weging binnen s mogen we dus voor de werkelijke middel-punten van verstoring genoemde denkbeeldige middelpuntenvan verstoring substitueeren die gelegen zijn op s. Ook Huygens en Fresnel maakten in hun

beschouwingenvan secundaire bolvormige golven gebruik; maar terwijl zijdie bolvormige golven als werkelijk, bestaande voorstelden enals wordende uitgezonden door ieder deeltje dat in beweginggekomen is krachtens de beweging die hot in werkelijkheidheeft, moeten de secundaire golven waarmede we Kirch-hoff\'s theorema interpreteerden als geheel denkbeeldig wordenbeschouwd: physisch toch is hot bestaan van zulk een dub-bellaag van positieve en negatieve middelpunten van verstoringniet denkbaar cn in ieder geval is van zulk een dubbellaagop het oppervlak s in werkelijkheid geen sprake.



??? 24 3. Mathematische bezwaren in te brengen tegen de wijzewaarop Kirchhof f zijn pormuleering van hetbeginsel van Huygens afleidt, enexacte afleiding daarvan. Tegen de wijze waarop Kirchhoff zijn formuleering vanhet beginsel van Huygens heeft afgeleid, zijn bezwaren inte brengen. In de vergelijking (10) pg. 17 vervangt Kirch hoff defunctie F door Fjro at)ro Daar V een waardig en continu moet zijn binnen de ruimtes waarover de integratie wordt uitgevoerd, moet dat ook metF het geval zijn. De mogelijkheid nu, dat er een functie F bestaat die con-tinu is binnen die ruimte en tegelijkertijd voldoet aan devoorwaarden genoemd op pag. 17, is zeer twijfelachtig. F (C) toch moet voor een eindige positieve of negatievewaarde van C oneindig klein worden en tevens moet f Fgenomen tusschen een eindige positieve en een eindigenegatieve grens gelijk aan 1 zijn. Men wordt daardoor welgenoodzaakt aan te nemen dat F (C) in de buurt van C = ooneindig groot wordt. En daar verder voor C eindig F (C)oneindig klein is ondersteld, moet F (C) indien men C van olaat toenemen tot een eindige waarde, hoe klein ook genomen,veranderen

van oneindig groot tot oneindig klein. Er is redenom aan te nemen dat aan dezen eisch niet door een continuofunctie kan worden voldaan. Hoe het zij, voor de mogelijkheiddat er een functie bestaat die aan dien eisch voldoet en diein de buurt van het punt C = o wel continu blijft, heeft mengeen voldoenden waarborg. Kirchhoff zelf geeft i) een voorbeeld van zulk een functieF en kiest den vorm : 1) G. Kirohh(^ff. Vorleaungon ??bor Mathomntiucho Optik, pg.\'24. 1891.



??? 25 V 1- Indien f* hierin een oneindig groot positief getal voorstelt danvoldoet F (X) aan de haar gestelde eischen, zooals eenvoudigis na te gaan. Maar dan is -JT\' en stellen we hierin C = â€” dan f* 3 F (O _ _i Voor oneindig groot is dus in het punt C = â€” O"- eindig groot en dus F{1;) discontinu. Nemen we aan dat /t niot oneindig groot is, maar zeergroot, dan is F (C) wel continu maar dan voldoet F (C) nietmeer aan de eischen op pg. 17 genoemd. Do bezwaren tegen do invoering van do functie F bovengenoemd blijken dus op Kirchhoff\'s voorbeeld van toepas-sing to xijn. Bovendien zou men do invoering eenor functie,die aan zulke bijzondere voorwaarden moet voldoen, on in hoteindresultaat niot meer voorkomt, als overbodig en misplaatstkunnen beschouwen. Omdat Ki rchhoff\'s theorema den grondslag uitmaakt vanmijn onderzoekingen on een volmaakt oxact bewijs dus ge-wenscht voor mij is, zal ik van do volo andero alleidingon diovan dat theorema zijn gegeven er onkolo besproken. Von Holmholtz staat in zijn â€žVorlosungen ??bor dioElectromagnetischo Thoorio dos Lichts" zeer lang bij

hot be-ginsel van Huygens stil. Bij do alleidingvan Kirchhoff\'stheorema volgt hij Kirchhoff nagenoeg goheol. Voor dofunctie F kiest hij echter een ander voorbeeld n.1. ^"(0 = T



??? 26 waaruit volgt ^ _ 1 2c C .n stellen we hierin ?‡ = c, dan _ _ 11I n Uc ^ Gemakkelijk is na te gaan dat voor c oneindig klein F (Oaan de gestelde eischen voldoet, dat dan echter 9 ?‡ in het punt ?‡ = c oneindig groot wordt en dat daar derhalveF (O discontinu is. Onderstellen we zooals Helmholtz doet,c niet oneindig klein maar zeer klein dan blijft F (C) welcontinu, maar voldoet niet meer aan de eischen van pg. 17. Terwijl dus in de oorspronkelijke afleiding die Kirchhoffvan zijn theorema gaf, aan de continu??teit van Z\'"* moest wordengetwijfeld, is in zijn latere afleiding, waar hij voor F eenbepaald voorbeeld kiest, evenals in de afleiding van vonHelmholtz de discontinuiteit van F en dus het niet meervervuld worden der drie voorwaarden aan F op pg. 17 gesteld,aan te toonen. Het komt me voor, dat tegen do invoering van ioderenanderen vorm, dien men voor F zou kunnen kiezen, dezelfde bezwaren zouden zijn in te brengen. Â? Poi ncar?Š (le?§ons sur la th?Šorie math?Šmatique do la lumi?¨re,profess?Šes 1887â€”\'88) bespreekt evenals von Helmholtz hetbeginsel van Huygens zeer uitvoerig. Op zeer eigenaardigewijze leidt hij

een formuleering van dat beginsel af. Zijn for-muleering is minder algemeen dan die van Kirchhoff en iszeer eenvoudig uit die van Kirchhoff af to leiden, hoewelhij onafhankelijk i) van Kirchhoff heeft gewerkt. 1) Aiiii hot slot dor voorrcdo viin goiiocmd wcrk, dio gcdatcord ia Deceinbcr1888 zcgt Poinoar?´: diinÂ? lo clmpitro rolatif ?  la diflraction j\'ai d?´voloppi!des id?Šos que jo croyaifl nouvollos. Jo n\'ai pas noninus K i r c h h o f f <lont lonom aurait d?? Â?\'tro cit?´ ?  cliaquo ligno. Il ost onooro tonips do r?Šparer cctoubli involontaire. Jo m\'cinprcsso do lo fairo en renvoyant aux Sitzungsbo-richto Juni 1882. .



??? 27 Poincar?Š tracht te vinden de algemeene oplossing derdiff. verg. d^ cp = (1) dt^ en beschouwt als zoodanig een functie van x, y, z en t, die identiek aan (1) voldoet en voor t = o overgaat in een arbi- ^ ^ (ptraire coordinatenfunctie, terwijl evenzoo â€”^ voor t = o in dt een andere arbitraire coordinatenfunctie overgaat.Die aanvangswaarden van cp en beschouwt P o i n c a r?Š 51 als gegeven en hij tracht dus het volgende vraagstuk op telossen: indien van een golfbeweging gegeven zijn de aanvangs-waarden van (p en , vraagt men de waarde van rp in (3 t functie van de co??rdinaten en den tijd to bepalen.Daar de aanvangswaarden van (p en gegeven zijn, is 3 t do bewoging van alle deeltjes op tijd nul bekend. Volgens debeschouwingen van Huygens zullen dan op den tijd t alledeeltjes bolvormige golven verwekt hebben, waarvan de stralenzijn r = at, en dus zal een deeltje x, y, z op den tijd halleenbereikt worden door bolvormige golven die uitgezonden zijndoor do deeltjes, welko gelegen zijn op een bol met straal r = a fom het punt x, y, s als middelpunt. Noemen we y\', z\' doco??rdinaten van een

element ds van dien bol en houden wein het oog, dat voor bolvormige golven wier potentiaal slechts F van ?-on^ afhangt, do oplossing van (l)don vorm heeft, dan brengt do voorstolling van Huygens or ons toe om to ondor-zooken of aan (1) voldaan wordt door cp.ixyzi)^ jli^l^- ds, (M) waarin F is een nog nader uit do initalo gegevens tobepulenco??rdinatonfunctie, terwijl die integraal moot worden genomenover het oppervlak van eon bol mot straal r = at om hotl)unt X, y, z als middelpunt.



??? 28 Om te onderzoeken of (14) voldoet aan (1), merken we opdat bij een differentiatie van (14) naar de co??rdinaten de straalr = at van den integratiebol standvastig blijft, maar hetmiddelpunt van den bol oneindig kleine translaties clx, dy,ds verkrijgt. Dan krijgt dus ieder punt op den integratieboltranslaties dx\', dy\\ dz\\ die juist gelijk zijn aan dx, dy endz; derhalve d qii _ rdF ^ dx ~ J 9Â?\' T â–  9Vi ^ r^^\' ds dx\' J r en dus of (15) Bij diflerentiatie naar t krijgt de straal r = at een aan-groeiing. Het middelpunt van den bol blijft op zijn plaats, maarhet element ds verplaatst zich in de richting van den straal.Om die differentiatie naar t to kunnen uitvoeren, noemen woda het ruimtehoekelement, waaronder het element ds uit hetmiddelpunt\' van den bol wordt gezien, dan is ds == r^d(f en \'Pi = jFrda. Geven we nu t een aangroeing dt, dan krijgt r eene aan. 5 /<\' groeiing dr = adl en F een aangroeiing â€” dr, terwijl da d r g daarbij constant blijft. Voor(16) is dus de operatorâ€”r gelijk-waardig met a^ ~ , zoodat



??? 29 = a-^Jrrda = nj F da arj ^^ da . dF waarbij we wel moeten onthouden dat - kortheidshalve is sr geschreven voor 3 F d^ iJ^ dF de dx d r dy 9 r Yz W\' Nu is het volgens het theorema van Green: waarbij de laatste integraal moet genomen worden over hetvolume van don bol, waarvan dr een element is. Waaruitvolgt: 9 Â?Pi _dt (17) zoodat f^da -^[AFdr.Differentieeren we deze verg. nog eens naar t, dan d f^ of in vorband met (17)dl\' Nu beduidt 9 Ta â€ž , = 7 Jaf. dr do aangroeiing dio ?’ A F dr verkrijgt, indien we r oen aan-grooiing dr geven, en is dus gelijk aan de waarde van ?’ A Fdrgenomen over het volume van den bolschil besloten tusschon



??? 30 de boloppervlakken r en r dr; van die bolschil is ds dre?Šn volumeeleraent, dus ^ jj jAFds di of j I^AFdr j dr = ^^JAi^ds of I^AFdr = JAFcIs-, zoodat wo ten slotte hebben gevonden ^ = (18) waaruit in verband met (15) volgt, dat (14) een oplossing isvan (1). De oplossing (14) is echter nog niet de oplossing die Poin-car?Š zoekt, want deze moet twee arbitraire functies bevatten.Om een tweede particuliere oplossing te vinden merken we op dat indien cpi eene oplossing is van (1), ook aan (1) s t dr voldoet. Dit do oplossing (14) volgt derhalve als tweede op-lossing (10) JTj--T- \' waarin wo het recht hebben voor F^ oen andere functie tekiezen dan de functie F in (14).Nu is weder d r F, d r d r <7-2 of â€? = (20)



??? 3] Daar (l) lineair is zal ook de som van (14) en (20) vol-doen aan (1), zoodat we krijgen als oplossing of ? = ?’ (f ^ ^ . (21) Deze oplossing bevat twee arbitraire co??rdinatenfuncties enis dus de oplossing, die Poincar?Š zoekt. Daar Poincar?Š de aanvangswaarden van qj en als gegeven beschouwt, T? t moeten we F en F^ nog daarin gaan uitdrukken. We duidendie aanvangswaarden aan door (<p)a en (-f ) â€? ^ d t \' O We kunnen (21) in den vorm schrijven: = ?’ (rF -f aF, -f ar da , (21) en laten wo hierin t en dus r tot nul naderen, dan s {q>)o = \'inaFt , en dus = At, â€? (22) 4 TT rt Om ook F te berekenen gaan wo do vergelijkingdifferontieeren naar /, dan dep c> CF, , (\'Fy , nu IS 77 ?’7 = 77 = ^?’\'



??? 32 en volgens (18) dt^ zoodat waardoor we krijgen ^ = ajpda arj\'^da n^-r?’ AF^da .Stellen we hierin ^ en dus-r gelijk nul, dan (IJL) =.4naF \\ at fo en dus F = m) . (23) ?Šna \\ dt \'O ^ Doormiddel van (22) en (23) zijn de onbekende functies FmFi uitgedrukt in de als gegeven beschouwde functies {(p)â€ž en ) en gaat (21) over in t O = 1 r(J_(ll) 4--l(â€ž), l-^W,;Â?. \' ^ \' ATi J^ar \\ at\'O r^^r/Â? I y ar )â€? Deze integraal moet worden genomen over een bol met straalr z= at om het punt x, ?/, z. Wo zullen daarom voor deduidelijkheid schrijven: (24) ^ r{l aqi 1 a(j) 1 ) , ^ J1 - -jt 7--Tr \\ t^o Dit is do formuleering door Poincar?Š aan het beginselvan Huygens gegeven; zij leert ons de lichtbewcging ineenig punt op den tijd t kennen uit de lichtbeweging op dentijd nul op een bol met straal r = at om dat punt beschre-



??? 33 ven. Uit Kirchhoff\'s formuleering is zij gemakkelijk af teleiden. Volgens dat theorema (verg. 13) is waarm Nu heeft in aN râ€ž ^ ^ T d de operator de beteekenis -vr â€”i derhalve^ dN dN drc ^ a Passen we Kirchhoff\'s theorema in dezen vorm toe opeenbol met straal r = at\' beschreven om het punt o, dan isr =ro = a t\' en daar N de normaal is op s naar binnen ge-trokken, wordt dN ar ai-o \' dus Uo ^ Â?r ^ r of als we hierin stollen t\' = dan is V=o 4 nJ jr2 ^ ar dt ^ r dr \'en dit is jnist de formuleering van Poincar?Š.



??? 34 Poincar?Š\'s formuleering is dus niets anders dan eenspeciaal geval van het theorema van Kirchhoff en minderalgemeen. Poincar?Š vermeldt niet de voorwaarden waaronder (24)geldt, maar uit zijn afleiding kunnen we die voorwaarden gemak-kelijk voor den dag brengen. Stilzwijgend neemt hij aan, datde functies F en F^ en haar differentiaalquotienten naar deco??rdinaten continu en eindig zijn op den integratiebol; verderheeft hij om het verband tusschen die functies met (9)0 en op te sporen den straal van dien integratiebol tot nul \\ d t 0 laten naderen. De continuiteitsvoorwaarden van F^ F^ en haardifferentiaalquotienten moeten dus ook binnen dien bol ver-vuld zijn, wat bovendien ook nog geeischt wordt door detoepassing van het theorema van Green. De voorwaarden waaronder Poincar?Š\'s theorema geldtzijn dus dezelfde als voor dat van Kirchhoff, n.1. dat open binnen den integratiebol 9 en met haar afgeleiden naar de d t co??rdinaten continu en eindig zijn. Physisch gesproken : binnen,op en op oneindig kleinen afstand van den integratiebol mogengeen vreemde lichamen of lichtbronnen voorkomen. Men zou kunnen

meenen, dat de particuliere oplossing rFCx\'y\'z\') ,<Pi = j r in het punl r = 0 oneindig wordt; dit is niet zoo, want stellenwe in die integraal ds = r^da en laten we dan r en dus ttot nul naderen dan vinden we cpi(xy zo) = An rF = 0. Jr=ot=o Evenzoo blijft de tweede particuliere oplossing in het puntr = 0 eindig; zij heeft in dat punt de waarde 4 na Ft ofwel ((f>)o. Van de eerste oplossing ligt dus het particuliere daarin, datde aanvangswaarde van de potentiaal nul is, en van de tweede



??? 35 oplossing, dat de aanvangswaarde van het difFerentiaalquotientnaar den tijd van de potentiaal nul is, want a CF, en dus _ fEidt ~ af\' J r of volgens (18) = -Caf dt rj (II2) =\\ dt K Of Stellen we hierin t en dus r gelijk nul, dan : Ana^AF^r = 0. râ€”ot=o Terwijl ik dus niet geloof, dat tegen do exactheid vanPoincar?Š\'s afleiding iets is in te brengen, komt het mijechter voor, dat hij geon recht heeft zijn oplossing de alge-moene oplossing van de diff, verg. der golfbeweging to noemen. Door toepassing n.1. van het"beginsel van Huygens leidtPoi ncar?Š twee particuliere oplossingen van (1) af. In beidooplossingen ligt dus het principe opgesloten dat de waardo vanqp in eenig punt op tijd t alleen afhangt van de beweging optijd 0 op een bol met straal r â€” at om dat punt beschreven.Alleen in de onderstelling, dat dat principe juist is, is Poin-car?Š\'s oplossing de algemeene te noemen, en verdienen dofuncties F en Fi, dio expliciet niet afhangen van ion waarin1/ XÂ? -f t?Ÿ z^ = r^ den naam arbitraire functies. A priori zou men geneigd zijn to meenen, dat de bewegingop tijd t in eenig punt niet alleen zou

afhangen van de be-weging op tijd nul op een bol met straal r â€” at omdat punt beschreven, maar ook van do beweging op tijd nul ds ds , Fl ds,



??? 86 in alle punten binnen dien bol. Het bewijs dat dit niet zoois ontbreekt bij Poincar?Š; zooals Poincar?Š de verg. (24)heeft afgeleid mag zij dus niet de algemeene oplossing van(1) worden genoemd, maar slechts een formuleering van hetbeginsel van Huygens. Een korte en zeer elegante afleiding van Kirchhoff\'stheorema geeft Gutzmer i); zonder van een hulpfunctiegebruik te maken leidt hij op volmaakt exacte wijze dattheorema in zijn algemeene gedaante af.Volgens het theorema van Green (pag. 17) is = (25) Stellen we hierin ?? â€” â€”, waarin rÂ? voorstelt den afstand To van eenig punt x, y, z tot een vast punt o binnen s gelegen,dan is U overal continu en eindig behalve in het punt o. Daarom leggen we om dat punt een bolletje met straal Een mogen dan het theorema van Green toepassen op deruimte besloten tusschen s en dat bolletje. Noemen we van dat bolletje dS een oppervlakteelement,dan is daar B oneindig klein is waarin FÂ? voorstelt de waarde van F in het punt o. En indien we even een polair hulpco??rdinatcnstelsel in-voeren r, qi met het punt o als oorsprong, dan is r 3 V r^ C^^ l d V = \'fl TT .27t ^y ^ --y, firn d

D- dm, O Jl 1) Outzmor. .Ioiirii.ll f??r dio Matlionmtik. Crollo. Ild. 11Â? pff. m



??? 37 5 V en dus, daar ~ ~ op het bolletje eindig is, is voor R = o Jlo 5 F -- \' dS = o .dN Zoodat (25) wordt: 1^_ (26) waarin de eerste integraal alleen genomen moet worden overhet oppervlak s en de tweede over de ruimte beslotentusschen s en het bolletje li.Nu is â€? en dus r 1 dz = O . Noemen wo verder dz\' een volumeolemont van het bolletjeen voeren we weder hetzelfde co??rdinatenstelsel r, xO-, q) in,dan is JjAV(lr\'=J ?’ J yAVf\'mniy diy dr d,p . Daar li oneindig klein is, mogen wo A V als oen constantebeschouwen, dus Jj^ AVdT\' = liAV ?’ J^-??in d dr dij, , en ook deze integraal verdwijnt voor li = o.Do laatste integraal in (26) is dus gelijk aan



??? 38 en deze integraal mogen we uitstrekken over de geheeleruimte door s omsloten. Derhalve terwijl de eerste integraal genomen moet worden over hetoppervlak s en de tweede over de ruimte door s omsloten. Van dit theorema, dat in de potentiaaltheorie i) een ge-wichtige rol speelt, gaat Gutzmer uit.Hij stelt hierin 7= waarin (f){xyzt) is de potentiaalfunctie of meer in het alge-meen ieder functie die voldoet aan (1). . V is dus de functie die we krijgen indien we in (p in T plaats van t schrijven i-- Oj Binnen s moet V en dus ook cf. continu en eindig zijnevenals haar eerste diff. quot. naar a:, y en z. Physischgesproken: binnen s, op s, of op oneindig kleinen afstandbuiten s, mogen zich geen lichtbronnen of vreemde lichamenbevinden.Dan wordt (27) .al ^ jy, O = ?’ j <p(t- - --^^ j de - (28) Noemen wij nu kortheidshalvea Cf (O d qj (O .. d IJl (O ff. -dir = \' "i^T" ^^^\' -JT- \' d\'cpCt) _ , s\'^jt) _ g\'XO = ^ a) 1) Groon. An K^aj\' on tho nppliontion of Mnth. Aniil. to tho Tlicory ofElectr. and Magnet. 1828 art. 3 oq. (3) - Mathom. papers p. 27.



??? 39 dan is 3râ€ž 5a; ~ "Pi V a/ a dt d x \' - <Pn J - gt g^ 4. 1. V / _ J_ \\ o2 5 <2 Vdx/ a dt ??x" â€? Houden we nu in het oog, daten dat # Aro= - , \' w dan volgt hieruit J^^/t-\'j!) ^^(pJt-^) a ( dl dx dt 52/ <?< \'d s \\ Â?2 dfi au dt Vereenigen wo hiervan do eerste .drie termen door middelvan dan is



??? 2 40 arâ€ž dt d^At-\'j) a/ aro V a\' dro ^^ \\ af du  Tt TZ. a{ dt dX dt dy dt dZ Voegen we hiervan de eerste en laatste term samen, dan dy V a! dz a dt . ) a dt n of A .(f 2 5a / 2 5 g) De laatste integraal uit (28) wordt derhalve Nu is cZr = ro^ drâ€ž rfir, wanneer dr een ruimtehookolementis met het punt o tot hoekpunt, en dus ?’ -aTT^ = ?’ ?’ - --a.r \' waarin li voorstelt den afstand van ccn element van hetoppervlak s tot hot punt o, of als we partieel integreeren:



??? 41 Hierdoor gaat (29) over in j r" \\ a\' a dt J af nu is R^da = â€” cos (NIl)ds = â€” ^ ds , dus dr = - -j -J^- We kunnen in het tweede lid li vervangen door rÂ?, dan waardoor (28) overgaat in ^ , C[ , râ€ž\\ 1 \'^V a! dVo Â?/ , -^i^oy.^.i) ---- -^^- Nu is dcpll-^ , V g/ _ /â–  //_M__L V dN a) a dt dN indien do functie ?’ hierin de boteokenis heeft on dus 1 Dit is Kirchhoff\'s formuleering van hot beginsel vanHuygens. Het theorema van Kirchhoff blijkt dus niets



??? 42 anders te zijn dan een transformatie van het theorema(27), indien we daarin stellen V = (p[xys i-^) , terwijl qp moet voldoen aan de diff. verg. (1) der golfbewe-ging en binnen, op en op oneindig kleinen afstand buiten scontinu en eindig moet zijn evenals haar diflF. quot. naar deco??rdinaten. Deze afleiding van Kirchhoff\'s theorema is volmaaktexact. Eindelijk zal ik nog bespreken een bewijs door Beltramivan Kirchhoff\'s theorema gegeven. Op verschillende wijzenheeft hij dat theorema afgeleid i). â€? Het bewijs dat ik hier laat volgen heeft het eigenaardigedat Beltrami daarin een algemeener theorema afleidt,waaruit door een eenvoudige substitutie Kirchhoff\'s theo-rema direct volgt. Indien de coordinatenfunctie V eindig en continu is binneneen ruimte s waarvan ds is een oppervlakteelement en dreen volumeelement, terwijl N de normaal is naar binnengerekend, dan geldt zooals we bewezen het theorema (27). Nu is, indien we partieel integreeren volgens de methodevan Green: 1 a â€” r â€” -s dr = â€” I- â€” cos (Nx) ds â€” ---â€” d Jrâ€ž ax^ \'\' Jrâ€ž ax ^ ^ J ax ax - -fl tZ ds fâ€” â€” â€” drJro dx aN ^ ax dro ^ en dus ri A Tr

7 r\\ (aV a X . aV a y av a z\\ , j_ A Fc^r = (- ^ - y!^ - ds n ,a_v ^^Siv tl il\\ dr\\ax aro dyar^ az arj 1) U O 11 r a m i. Ilendiconti d. Ucalo Acad. dei Lincoi 1892 T Bcincstro pg. 99.]{endiconti d. Iloalo Acad. dei Lincei 1895 2Â° scmostro pg. 29 on pg. 51.liendiconti d. Ilealo Instituto Loinbardo sorio II vol. XXII 1889.



??? 43 of TIattj /"i^^j.ri^i^j â€” A VdT = â€” â€” â€”^ ds-i- â€” dr. Door dit te substitueeren in het theorema (27) krijgen we ^ 1 4nK= fv â€”4: ds - -1- dr . (30)j dN J ^ ^ Dit is het theorema van Gauss hetgeen door Beltramials uitgangspunt wordt gekozen. Beltrami stelt zich voor een co??rdinatenfunctie C/, waarinbehalve de letters a:, ?/ en ^ ook nog de letter To voorkomt.Spreken we nu af door het symbool ("J aan te duiden eendifferentiatie naar de grootheden x, y, z en Vo voor zooverze expliciet in (7 voorkomen, dus een differentiatie naarde letter, dan ax^\'iix\' ~ iSz ??n ~ dx\' (Sx ?–râ€ž \'d ro \' verder Â? (1 LL) = J_ ^ _L "^\'JL _ 1 \'UI ^^ dx\\ro i)x\' ~ >0 Sx^ ro liX dra ^^o râ€ž~ ??x d râ€ž Sommeeren wij deze vergelijking over x, y en s, dan -La n (UI) â€”} ^ \\ro ??xf 7-0 ^ ^ ro{d r, 5 ( JrÂ? ?? 7\'â€ži waarin A ;ianduidt don operator ^ -^o , of - ^ t ?–V) ??i??^^ - A =0. (31)Nu stellen wo in (30) D To terwijl we aannemen, dat U en haar eerste afgeleiden naaric, y en 5 eindig en continu zijn binnen s, dan wordt (30)



??? 44 1 d â€” 4 . t,. = r(c/ - .. as- {V - r, If jv brJdN J dro^ dr/To\' A TT C S (U\\ d ro ^ ra f.j ?– U\\ dr wat door middel van (31) overgaat in, rr C\'^ (U\\drâ€ž , , rdv/?–\'-U ^ \\ r ,, a /I i)U\\ Nu is, wanneer we een bekende notatie volgen dT2 â€” {~ â€”)=_/â€” V cos (Nx) = â€” - ds , J ax\\ro ??x\' J n dx J rg waarm u = V " ??x- aN\' . waardoor we krijgen Duiden we nu aan door U, wat er wordt van q,, indien we T daarin i "vervangen door t--, zoodat it U = (p (x,y,z, i â€”, terwijl q een oplossing is van do dill\'. verg. (1) dor golfbe-weging, dan is d IJ__1 a U d Â? 3 t \' a\'-U * i)rj " a^ af\' \'



??? 45 dus S\'U _ 1 a^cp ?? ~ 5 <2 ^ Nu is volgens de notatie, die we zooeven aannamen S^U d^U d^U of ^ Volgens de diff. verg. (1) is derhalveiPU - AU O. Daardoor valt de volumeintegraal uit (32) weg en wohouden over 4 TT (Jl (a-O IJo Zo t) =To /3N To ~??x \'\' Nu is volgens onze vroegere notatie en dus 3 (p {xyz t â€” ^^ _ d X Tx oN ri\'-\'i) en â–  -r;----y â€”i??" = - \' - ??) .. N-l^.JN......â€”rt------



??? 46 en derhalve 1 / t \\ ^ J\\dN aj ar^ 3 N dt râ€ž \' \\ al) Dit is het theorema van Kirchhoff. We zien dus dat Kirchhoff\'s theorema is te beschouwenals een speciaal geval van het theorema (32) door Beltramiafgeleid. Voor functies die voldoen aan de diff. verg. (1) dergolfbeweging is Beltrami\'s theorema onmiddelijk in datvan Kirchhoff om te zetten. Ten slotte kunnen we nog opmerken, dat, aangezien Kirch-hoff\'s theorema geldt voor ieder functie die voldoet aan dediff. verg. (1), we dat theorema niet alleen mogen toepassenop de potentiaalfunctie eener golfbeweging maar even goed opde ontbindingsuitwijkingen en op de electrische en magne-tische ontbindingsmomenten en ontbindingskrachten. Het isn. 1. eenvoudig in te zien, dat al die lichtvectoren aan dediff. verg. (1) voldoen, daar de potentiaal qp een oplossingmoet zijn van die diff. verg. y\'



??? HOOFDSTUK II. ALGEMEENE BESCHOUWINGEN OVER GOLF-BEWEGINGEN. 1. pliaseoppervlakken. pliasesnelheden. voortplantinqs-snelheid van de grens eener qolfrewegino. We kunnen eens onderstellen dat de potentiaal cp eenergolfbeweging den vorm heeft (]P = X sin V\', (33) waarin x ??n y niet periodische, maar overigens willekeurigefuncties zijn van x, y, z en t. Deze vorm zal blijken algemeengenoeg te zijn voor de potentiaal van trillende bewegingen.Daar 9 moet voldoen aan do dii??". verg. (1) der golfbeweging,zal er tusschen ^ en i/Â? een verband moeten bestaan, datwe vinden door (33) te substitueeren in (1) en dat we laterzullen bespreken.We zullen noemen X amplitudo der potentiaal,V\' de phase der potentiaal, en verder aannemen als maat voor de intensitoit vando potentiaal. Mot dit laatste wordt natuurlijk niet bedoelddat y^ evenredig zou zijn met de energie der beweging. Door middel van de vergelijkingen (0) en (9) zijn te bere-kenen alle grootheden die een licbtbeweging bepalen, zoowel



??? 48 in de elasticiteitstheorie als in de electromagnetische hcht-theorie. In de elasticiteitstheorie zijn volgens (6) de ontbindingsuit-wijkingen : u = O , - _ ^ f - _ ^ l a ui sm Ti; â€” Y â€”- cos -wa z ^ a z ^ V = a z a (f a y . , a lp w = â€”~ = â€”L. sm w y â€”- cos xp , ay ay ^ ay waaruit eenvoudig is af te leiden:u = O . (34) a lil Ut -1- are tg --7t a l az U. ay 7. (35) (3G) a wl â€” ^ay \' ay\' ^ of, indien we stellen: a xji77 V\'i , azarff dan wordt (34) n â€” O, V = sin (Â?/\', -tt), * w = \'f^ sm .



??? 49 De ontbindingsuitwijkingen hebben dus juist denzelfdenvorm als de potentiaal; zij voldoen evenals de potentiaal aande diff. verg. (1) der golfbeweging, maar zijn niet onafhan-kelijk van elkaar, daar tusschen v en w het verband bestaat: ^" 4^=0, (37) dy de We kunnen dus voortaan v of w beschouwen als eengeheel willekeurige functie van den vorm i sin v, die aangeen andere voorwaarden is gebonden, dan dat zij een op-lossing moet zijn van (1). De bijbehoorende waarde van wof v moet dan ook een oplossing zijn van (1) en met v of xosamen voldoen aan (37). In de electromagnetische lichttheorie worden uit de poten-tiaal cp de electrische en magnetische ontbindingsmomentenen ontbindingskrachten berekend door middel van de verge-lijkingen (9). Daar de electrische en magnetische krachtengelijk zijn aan de momenten vermenigvuldigd met een con-stante, knnnen we met de berekening der momenten volstaan. Stellen we weder als boven: "JJ " 5(1 sin V\'i en ^ = y, sin rf>, , dan vinden we volgens (9) d \'/i . cÂ? ??/\'i d fl . d n>i â–  = - sm ./-, - X, :-cos .//, â€” sm â€” Xi -, 7 cos V\'2 , c z iT 3 c

y c y 5) d \'t l . d I/\' > = -^ J-sm./\'.  , 3 d t\\ â€? d 1/\'| -ffsm,/\'.  z.y^cos./\'. , Â? = 0, ^^ = V\'.  cos V\'. , d Y i . d l/\' j



??? 50 waaruit eenvoudig is af te leiden dyj,d z llL3 z 9 \'/\'2 i. ^ Vi/\'2 are tg--^^--TT ^ li f ^ dx \' \' d X \' dy d rlhdx \'/x V\'2 are tg III \' ^ x \\ )m V\', are tg dx { = O, VM are tg iJtldt l\\ dt tlhdt JL Afii tl il\'.2 are tg â€”--n I dt stelt men hierin de waarden van Zi, X2, t/\'i en v\'2 uit(35) dan zijn de electrischo en magnetische momenten uitge-drukt in \'/ en i/\'- In de vergelijkingen (30) en (38) komen alleen voor uit-drukkingen van den vorm 1 sin >/\' We zullen daarin steedsaan de uitdrukkingen v????r en onder den sinus de namenamplitude en phase geven en het kwadraat van de am-plitude weder aannemen als maat voor de intensiteit\' Onder phaaeoppervlakken zullen we verstaan opper-vlakken, wier vergelijking men verkrijgt door de phase gelijk



??? 51 te stellen aan een constante, en daarin aan t een vastewaarde te geven. Uit (36) volgt, dat de phaseoppervlakken van de ontbin-dingsuitwijkingen V en w verschillend zijn, en dat er dus inhet algemeen geen oppervlakken bestaan, waarop op hetzelfdeoogenblik zoowel de phase van v als de phase van lo con-stante waarde heeft. De phaseoppervlakken der ontbindings-uitwijkingen vallen samen, indien haar phases gelijk zijn ofeen standvastig verschil hebben. Is dit het geval dan kanmen spreken van phaseoppervlakken der uitwijking; dezebestaan dus slechts in bijzondere gevallen. Uit (38) blijkt, dat er in \'t algemeen evenmin oppervlakkenbestaan, waarop op eenzelfde oogenblik alle drie de electrischeontbindingsmomententen constante phase hebben; voor cE iser zelfs in het algemeen geen sprake van phaseoppervlakken.We kunnen wel de beide termen, waaruit cÂ? bestaat, afzon-derlijk beschouwen en voor ieder van die termen van phase-oppervlakken spreken. In het bijzondere geval, dat deze beidephaseoppervlakken met elkaar samenvallen en ook samen-vallen met de

phaseoppervlakken van en 3 (waartoe noodigis, dat de phases van ??, en 3 gelijk zijn of constanteverschillen hebben), kunnen we aan die oppervlakken dennaam phaseoppervlakken van het electrisch moment (of vande electrische kracht) geven. Ook de phaseoppervlakken van de magnetische ontbindings-momenten blijken volgens (38) in \'t algemeen verschillend tezijn. Vallen zo samen, dan kunnen we ze noemen phaseop-pervlakken van het magnetisch moment (of de magnetischekracht). Ons doel is na te gaan of de constructie van Huygensjuist is. Daartoe zouden we moeten onderzoeken of de om-hullende van bollen die met gelijken\' straal zijn beschrevenom alle punten van eenzelfde phaseoppervlak van de poten-tiaal, van de uitwijking of van het electrisch of magnetischmoment, weder een nieuw phaseoppervlak oplevert. We zagen dat voor de beweging waarvan (33) de potentiaalis, zoowel voor de uitwijking als voor de electrische of mag-netische momenten, in het algemeen geen phaseoppervlakken



??? 52 bestaan, Daarom zullen we niet de juistheid van de constructievan Huygens gaan onderzoeken voor die phaseopper-vlakken, maar voor de phaseoppervlakken van de potentiaal,van de ontbindingsuitwijkingen en van de electrische enmagnetische ontbindingsmomenten (of krachten). Stel dat Q{xy zt) de phase is van de potentiaal, van eender ontbindingsuitwijkingen, of van een der electrische ofmagnetische ontbindingsmomenten, dan heeft het phaseopper-vlak daarvan tot vergelijking Q {X7jzt) = Constant, indien we hierin t als standvastig beschouwen. In een punt van dat oppervlak richten we een normaal opvan lengte diV"; de uiteinden van die normaal noemen we depunten P en Q en de co??rdinaten dier punten x, y, z enX dx, y dyz dz-, dan is Q{(it-\\-dt) = 0(p,o I? t 3 Q dx d O d y dN. ^ dy dN Jz dN_ dx dN Kiezen we hierin dt zoodanig dat dO dz 1\'dz\' TN dQ df) , dx\'d\'N d y\'d\'N dN=o, -f , dx~ dan is volgens de vorige vergelijking de phase in Q op tijdt dt gelijk aan de phase in P op tijd t. We kunnen duszeggen dat in dt secunden de phase zich in de richting vande normaal op het phaseoppervlak voortbeweegt over

eenafstand dN, indien dt en dN zijn verbonden door delaatste vergelijking. De phase snel held, die we zullen aan-duiden door de letter a\', kunnen we dus deflnieeren door deformule: dQdt a\' = dQ dO djdz d \'N dx dN dN



??? 53 of 3 0 f a t " =--70-\' dN indien we ter afkorting stellen a0 _ ax a9 ay aQ az a N ~ ax aN ay aN az a N \' hierin beteekent dan a\' de phasesnelheid langs de normaalop het phaseoppervlak in die richting waarin we clN positiefnoemen; daarvoor zullen we steeds die richting kiezen,waarin de phase zich voortbeweegt. Door middel van (39) kunnen we berekenen de phasesnel-heid van de potentiaal, van de ontbindingsuitwijkingen of vand?¨ electrische of magnetische ontbindingsmomenten (of krach-ten) door in (39) voor (â– ) in te voeren de phase der potentiaalof van een dezer lichtvectoren. Zal de constructie van Huygens voor de phaseopper-vlakken gelden, dan moet de phasesnelheid voor ieder phase-oppervlak standvastig zijn, of duidelijker gezegd dan moet (39)voor a\' een waarde opleveren die constant is of die eenfunctie is alleen van 0. Indien a\' gelijk is aan de con.stante a uit de diff. verg.der golf beweging, eerst dan mag de constructie van Huygensworden toegepast met b??llen van straal r = at, zooals bij deelementaire verklaring van de verschijnselen van terugkaat-sing, breking cn

buiging zo wordt toegepast op de golfopper-vlakken der beweging. Onder golfoppervlakken moeten ver-staan worden do zooals wo zagen slechts in bijzondere gevallenvoorkomende phaseoppervlakken der uitwijking of der mo-menten. Ons onderzoek naar de juistheid der constructie van Huy-gens komt dus neer op do berekening van de phasesnelheida\' door middel van (39). Tot nu toe gebruikte ik de uitdrukking voortplantings-snelheid der verstoring opzettelijk niet. Voor het een- (39)



??? 54 voudigste soort bolvormige golven dat zich laat denken, nd.dat waarvan de potentiaal den vorm heeft â€” sin m (r â€” a t), waarin A enm constanten zijn, zijn reeds de phasesnelhedender potentiaal, der ontbindingsuitwijkingen en der ontbindings-momenten verschillend, zooals we zullen zien. We zoudendus niet weten aan welke van al dezer phasesnelheden weden naam voortplantingssnelheid der verstoring zouden moetengeven. Bovendien komt het mij voor, dat in het deel derruimte, waar alle deeltjes reeds in verstoring zijn, het geenzin heeft te spreken van de voortplantingssnelheid der ver-storing en deze al zeer moeilijk te definieeren zou zijn.Anders is het gesteld aan de grens der beweging.Indien een deeltje P gelegen is in het oppervlak, dat debeweging op tijd t begrenst en Q is een deeltje gelegen opde grensnormaal in P opgericht terwijl PQ^clN, en indien de grens der beweging op tijd i-f-rfi het deeltje Q bereikt, d N dan moeten we onder verstaan de voortplantingssnelheidvan de grens der verstoring in het punt P. Het is dezesnelheid die bepaald is voor lichtbewegingen door FizeauÂ?Foucauld, R??mer, Bradley e.

a. en die zooals we zullenzien steeds gelijk is aan de constante a uit de diff. verg.(1) zoowel voor lichtbewegingen als voor electrische golfbe-wegingen van grooter trillingsperiode. In de elasticiteitstheorie van het licht onderscheidenwe dus: 1Â° de voortplantingssnelheid van de grens der beweging,2" de phasesnelheid van de potentiaal,3ÂŽ de phasesnelheid van de ontbindingsuitwijkingen.In de electromagnetische lichttheorie onderschei-den we: 1ÂŽ de voortplantingssnelheid van de grens der beweging,2" de phasesnelheid van de potentiaal,3ÂŽ de phasesnelheid van de electrische ontbindingsmomentenof krachten, 4ÂŽ de phasesnelheid van de magnetische ontbindingsmo-menten of krachten.



??? 55 2. Harmonische golfbeweging van oneindigkleine TRILLINGSPEBIo\'dE. Gewoonlijk worden slechts bestudeerd potentialen van denvorm waarin r is de afstand van eenig punt tot een vast punt,het middelpunt der beweging, a de constante uit de diff.verg. der golfbeweging en O en A constanten samenhangendemet de intensiteit en de periode der beweging,Voor dezen vorm van qi is in onze notatie 2 71 _ ^^ Z = v\' T ^^ - " ^ \' -/\', = = Y (r Â? Â?0 - \'-vro tg , 2 TT Onderstellen we dat -y- oneindig groot is, dus dat we ons op een afstand van hot middelpunt der beweging be-vinden dio oneindig groot is t. o. v. )., dan wordt 2 TT TT ./., = i/.j = (r aOâ€” ,Cz 2 TT r . _ Â?]/ Zi == ^a pi â€” j.3 p â€? Verder worden dan do in (38) 9nder het teeken are tgvoorkomende uitdrukkingen alle positief of negatief oneindiggroot, want de tellers dier uitdrukkingen bevatten alle een 2 TT ?\' diff. quot. van V\'i en t/>i en daarin treedt â€”als factor op;later gaan wo dit uitvoeriger na.In die onderstelling kunnen we dus in (38) voor allo are tg in de plaats zetten -h ^ of â€” ^, zoodat de phaso van do



??? 56 electrische en magnetische ontbindingsmomenten en krachten 2 TT â€? gelijk wordt aan ~ {rÂ?at) vermeerderd of verminderd meteenige malen ^. Als oneindig groot is vallen dus de phaseoppervlakken van de potentiaal en van alle ontbindingslichtvectoren samen,en de phasesnelheid is dan voor alle gelijk. Die samenvallende phaseoppervlakken worden dan golffron-ten of golfoppervlakken genoemd en de phasesnelheid,die volgens (39) gelijk is aan a, heet dan de golffrontssnel-heid of wel de voortplantingssnelheid der verstoring.Daar echter in het gebied gelegen binnen de grenzen der be-weging alle deeltjes reeds in verstoring zijn, lijkt mij binnendat gebied die laatste naam ook hier minder gelukkig gekozen.Gouy 1) heeft er het eerst op gewezen, dat de onder- 2 TT r stelhng â€”oneindig groot en de daaruit voortvloeiende ver-eenvoudiging van de uitdrukking der phase zelfs voor licht-bewegingen niet steeds is geoorloofd. In het focus n.1 is ^ TT T -- â€” gelijk aan nul en dus de phase der ontbindingsuitwijkingen A gelijk aan -p- {r:??.at), terwijl op een afstand van het focus, die t. o. v. 7. oneindiggroot gesteld kan worden,

de phase gelijk is aan Dit phaseverschil ^ heeft hij door zijn bekende elegante proeven gedemonstreerd. De verklaring daarvan is voor geluidsgolven gegeven doorGouy en voor lichtgolven door V. A. Julius. Laatstge- 1) Gouy. C. U. T. 110, p. 1251, 1890; ibid. T. 111, p. 33 ot p. 910, 1890.Ann. de Ciiim. et dc Pliys. Ge s?Šrie, T. 24, p. 115, 1891.



??? 57 noemde toonde tevens aan i) dat voor cilindrische golven ditphaseverschil gelijk is aan Het is gemakkelijk in te zien, dat wanneer in den alge-meenen vorm der potentiaal <p = ^ sin i/>, de diff. quot. van1/1 naar x, y, z m t zeer groot zijn t. o. v. de diff. naarrc, y,z en t van i, alle phaseoppervlakken van (36) en (38) samen- 2 TT r vallen. Deze onderstelling is analoog met de onderstelhng â€”jâ€”oneindig groot of l oneindig klein t. o. v. r. Het is vooral met het oog op electrische trillingen, dat ikde onderstelling l oneindig klein t. o. v. r niet overneem. Bovendien zullen we voor de potentiaal niet den specialenvorm (40) aannemen, maar de vergelijkingen (33) tot (38) inhaar algemeenen, vorm behouden. il. Stationaire golfbewegingen. Vorm der potentiaal. Standvastigheid van het trillingsgetal. In de elasticiteitstheorie van het licht noemt men een golf-beweging stationair, indien eenzelfde deeltje telkens na een-zelfde tijdsverloop met dezelfde snelheid in hetzelfde puntvan zijn baan terugkeert. Amplitude en trillingstijd van deontbindingsuitwijkiiigen moeten dan van den tijd onafhan-kelijk zijn; deze

voorwaarde is noodig en voldoende. Hieruitvolgt dat de amplitude een functie moet zijn alleen van doco??rdinaten en de phase een functie van de co??rdinaten enden tijd, die lineair is in den tijd. Voor een stationaire golfbeweging waarvan de potentiaalden vorm (33) heeft moeten dus do ??ntbindingsuitwijkingen ven w den vorm hebben F = nxyz) sin  t r,{x y z)\\. (41) In analogie hiermede kunnen wo in do electromagnetischelichttheorie een golfbeweging stationair noemen, indien do 1) V. A. Julius. Arch. Nuorl. T. 28. p. 22Gâ€”244.



??? 58 electrische en magnetische ontbindingsmomenten (en krachten)den vorm (41) hebben. Nu moeten de ontbindingsuitwijkingen en ontbindings-momenten even goed aan de diff. verg. der golfbeweging vol-doen als de potentiaal zelve, dus: 3i F ^ = a^ A F. 3 f\' Nu is: dus: af = cosj/; tf2\\, waarin door - wordt aangeduid een som die zich symme-trisch over X, y en s uitstrekt. Verder is: zoodat we krijgen:- A f- 2 < 14 I?‰ (l^f; ^ Sin 1A. < /w â€? â€? Geven we aan x, y en 2 vaste waarden en laten we t regel-matig toenemen dan bewegen zich sinj/i ^/ij en cosj/i i/:^}periodisch tusschen â€” 1 en 1. En daar voortdurend boven-



??? 59 staande verg. gelden blijft, moet dus: en li ff- lilf /-A A (/-A/i = 0. Deze beide vergelijkingen moeten doorgaan voor iederwaarde van t. Volgens de co??ffici??nt van t^ uit de eersteverg. moet dus: -(iir-. waaruit volgt: SU df^ en dus: /i = C, waarin C een constante is.Onze beide dill". verg. worden daardoor: (42) en Voor een stationaire golfbeweging hebben dus de ontbin-dingsuitwijkingen, de ontbindingsmomenten en de ontbindings-krachten den vorm: F = r{xyz) sinj/i(.r2/5)  (43) terwijl f en fi moeten voldoen aan (42). Uit (43) blijkt dat de trillingstijd dier functies hetzelfde is



??? 60 voor alle deeltjes, want de trillingstijd d. w. z. de aangroeiingdie we aan t moeten geven om de phase een aangroeiing 2 ir te doen verkrijgen is gelijk aan en das onafhankelijk zoowel van de co??rdinaten als van den tijd. De onderstelling (41) dat de trillingstijd onafhankelijk isvan den tijd, brengt dus met zich dat de trillingstijd dannoodzakelijk bovendien onafhankelijk moet zijn van doco??rdinaten. Als dus door een lichtbron (of electrische verstoringsbron)een stationaire golfbeweging wordt uitgezonden, is op grootenafstand van die bron de trillingstijd juist dezelfde als in denabijheid ervan. Gaat een stationaire golfb?Šweging door eenfocus dan is in het focus de trillingstijd juist dezelfde als erbuiten; de trillingstijd is van de veranderingen inde amplitude onafhankelijk. Indien we aannemen dat een willekeurige golfbeweging magworden beschouwd als te zijn de opvolging van een reeksstationaire bewegingen, dan mogen we die stelling uitbreidenvoor een willekeurige golfbeweging. Zij is met de experi-menten in overeenstemming. We gaan thans onderzoeken welken vorm we aan de po-tentiaal moeten geven, opdat de beweging

stationair zij, m. a. w.opdat de ontbindingsuitwijkingen en de ontbindingsmomentenden vorm hebben: of wel indien F = f[xuz) B\\n\\fi{xyz)^Gt\\ P = sin Ci fJ, cos C^ . (44) = en =/"sin A ; fJi en (h zijn dan periodische co??rdinatenfuncties. Daar de electrische momenten den vorm (44) moeten hebbenzal volgens (9):



??? 61 c=?? q> f 32 qp e Â?>3; 3y 3 ff2 q, ?Š 3X 33 = sin G\'t (Ji cos C\' t,. = 1^5 sin C"t (5c cos C"^, waarin /5i, i?^.. ./??g functies van x, y en z zijn en G, C\' enC" constanten; de functies en de constanten G zijn echterniet onafhanlielijk van elkaar, want: en ^(A) Â?m Â?{L)=o-, (46) dus: sin C\'t cos G\' t = sin G" t i\'^Â? cos G" t, (45)3z 3z ay dy en sin C t cos C i -f sin G\' t 3 X 3X ay cos C\' t sin G-t ^^^ cos G"f = o. 3y 3Z 3Z Indien deze vergelijkingen (45) en (46) gelden voor iederwaarde van t, dan zijn daardoor de functies (> en de constan-ten G zoo bepaald, dat ??, 5) en 3 den door (9) vereischtenvorm hebben. De verg. (45) heeft de gedaante: ^ sin ai B cos at = ^\'sina\'ien B\'cos a\'t. (47) Differentieeren we deze verg. tweemalen naar t en deelenwo de aldus verkregen verg. door (47), dan vinden we: Â?2 = a\'2.



??? 62 en dus a\' = jh O; waardoor (47) overgaat in: {A^^A\') sin ai (B â€” B\') cos at = o; indien deze verg. zal gelden voor ieder waarde van t danmoet zoo A, A\', B en B\' onafhankelijk zijn van t: A = Â? A\' en B = B\'. Zal dus (47) gelden voor ieder waarde van t en zijn A, A\',B en B\' onafhankelijk van t, dan volgt daaruit: Â?\' = O , A\' = Â? A, (48) B\' = B. Derhalve volgt evenzoo uit (45): C"= Â? G\' , C" = C\', ^ Ih. = -f- Ih (49) of: ay - dZ \' dz \' I /??Â? = dZ Door het stel (49) gaat (46) over in: llLsmCt Ih cos Ct flh sin C\' l ?œlL" cos C\' l dx dx dif dy\'^ of



??? 63 dx sx Evenals uit (47) volgt (48), zoo volgt uit deze laatste ver-gelijking daar zij moet gelden voor ieder waarde van t en deco??ffici??nten van sin. en cos. van t onafhankelijk zijn: C\' = Â? C,Jx\' ~ Uit (49) en (50) volgt: C\' = Â? C, C"= C,= zoodat: C\' = Â? C,of: =  !(50) i^io, , 3 X 3 e \' 3 X â€?? V Si = 3 X 3 y i?Â? = Â? 32 i^o = 3 X 3 e f = - -A) = - (tTÂ? T?)  \' T- = j ffy = 7x3 y   \' sin C( /iJioCos Ct); 52 qp = 3 X 3 Z 3 X 3 z e



??? 64 en hieruit volgt: cp = Â? 1^9 sin Gt [ho cos Gt. Dezen vorm waarin /??g en ^jo willekeurige periodische co??r-dinatenfuncties zijn, moet de potentiaal hebben, opdat deelectrische ontbindingsmomenten zijn van de gedaante (44).Het is eenvoudig in te zien dat als cp dien vorm heeft ookde magnetische ontbindingsmomenten en de ontbindingsuit-wijkingen den vorm (44) zullen verkrijgen en ook voor dezevectoren is gemakkelijk te bewijzen evenals we het bovendeden voor en 5 dat die vorm van (p daartoe nood- zakelijk is. We kunnen dus zeggen : Opdat een lichtbeweging stationair zij, moet zoowel in deelasticiteitstheorie als in de electromagnetische lichttheorie depotentiaal <p den bovenstaanden vorm hebben, en als g> dienvorm heeft dan is de beweging stationair. Daar ^g en ^lo willekeurige periodische co??rdinatenfunctieszijn, kunnen we voor cp ook schrijven: (p = a sin Ci (i cos Gt. Dan krijgen we: 7/2 ^ 3 zy yÂŽ \' \\d if d e^l\' \' f "7""" dx ?¨ y ax dy ...........a X ay A. = m = -li- Â?sinC^ V- (i cos Ct, f ax a B ^ a X a z a x a e \' S = O, JK = W acosCtâ€” â€” (j, = ----- Â?8inCÂ?4- Af^f a z a t ^ a z a z \' ^ - ^ nl. = - G Â?co9C<

G (?•RinCl. Afi( s y a i \' ^ y ^ y



??? 65 Stellen we deze uitdrukkingen samen door middel van devergelijkingen: B] \' Ij i yl sin a 4- ^ cos a = YA \'^ -f B^ sin | a are tg â€”j, H- en ^ sin a â€” 5 cos a = YA^ B^ sin | dâ€” are tg ,dan krijgen we - = Â?in !c< arctg Jf^\'f d y"^ d Â?2 sinic^ arctg-i^l,f ^ \\a X dyJ ^ X ay) j j\' 5 X a y \\ A51) i- = \'( Bin j arctg j, f \\d X 31! ^ \\d X 3 ef ( )\' 3 X 3 z Â? =0, 3 B = VW^m I "i- -"! â€? â–  De trillingstijd al dezer liclitvectoren is ^. Voor een stationaire golfbeweging is dus de trillingstijdzoowel van de electrische en magnetische ontbindingsmomentenen krachten, als ook van de potentiaal zelve en van de ont-bindingsuitwijkingen (zooals eenvoudig is uit te rekenen) het-zelfde." 5



??? 66 Ook voor 3B bestaan hier phaseoppervlakken. De phase van de potentiaal, van de ontbindingsuitwijkin-gen, van de electrische en van de magnetische ontbindings-momenten en krachten is echter ook hier in \'t algemeenverschillend. Definieeren wij de golflengte van de potentiaal, van deontbindingsuitwijkingen, momenten en krachten als te zijn denormale afstand van twee phaseoppervlakken, waarvoor dephase een verschil 2 n heeft (voor eenzelfde waarde van t),dan zijn dus de golflengten der potentiaal en der ontbindings-uitwijkingen, momenten en krachten verschillend en voor aldeze grootheden bovendien afhankelijk van de co??rdinatenmaar onafhankelijk van den tijd. Bij een stationaire beweging is dus voor alle lichtvectorende trillingstijd gelijk aan dezelfde constante, de golf-lengte echter is wel onafhankelijk van den tijd, maar isvoor elk dier lichtvectoren gelijk aan een andere co??rdinaten-functie. Door voorbeelden zullen we dit in het volgend hoofdstuknader toelichten. 4. Verschijnselen aan de grenzen van een stationaire golfbeweging. Stel dat een of meer verstoringsbronnen A in stationairebeweging verkeeren en

dat op tijd U de beweging die zijhebben verwekt in het omgevend medium, wordt begrensddoor een oppervlak S, zoodanig dat de deeltjes op -S op tijd tihun beweging beginnen. Op tijd is dan rust buiten <S enbinnen S is beweging. Op tijd i, is dus ook op S rust en dedeeltjes op S hebben dan nog geen arbeidsvermogen van Aontvangen. Van dat oogenblik af deelt de golfbeweging doorA verwekt aan de deeltjes op S voortdurend arbeidsvermogenmede. Dit arl^eidsvermogen dragen zij voor een deel over aande verder gelegen deeltjes, maar ze behouden zelf ook eengedeelte, waardoor de som van hun arbeidsvermogen van



??? 67 plaats en van beweging langzamerhand grooter wordt. Gedu-rende het begin van hun beweging dragen de deeltjes op Â?Sdus minder arbeidsvermogen over dan zij ontvangen. De golf-beweging die dan het oppervlak Â?S passeert, verhoogt dus deenergie van de deeltjes op S. Na eenigen tijd echter, b.v. op tijd t^, is de beweging vande deeltjes op S stationair geworden, d. w. z. ze keeren dantelkens na eenzelfde tijdsverloop met dezelfde snelheid in het-zelfde punt van hun baan terug. De som van hun arbeids-vermogen van plaats en van beweging blijft dan standvastig;de golfbeweging die dan het oppervlak S passeert, verhoogtde energie van de deeltjes op S niet meer. We stelden ons hier op het standpunt van de elasticiteits-theorie van het licht en spraken van de beweging deretherdeeltjes; het is echter duidelijk dat in de electromagne-tische lichttheorie een analoge redeneering kan worden ge-houden; ook hier wordt door de verstoringsbronnen aan denether arbeidsvermogen medegedeeld en wel in den vorm vaneen electrische en een magnetische polarisatie. Volgens beide theorie??n

hebben wo dus het recht te zeggen: lo. Een golfbeweging die zich voortplant in de buurt vande voorste grens der beweging en wel in dat deel,waar de beweging nog niet stationair is geworden, ver-liest bij haar voortbeweging een deel van haar arbeids-vermogen of m. a. w. ondergaat een demping. 2e. In het deel der ruimte dat zoover van de grenzen derbeweging verwijderd is, dat deze daar stationair is ge-worden, plant een golfbeweging zich voort zonderarbeidsvermogen te verliezen. Het woord demping moet hierbij goed worden opgevat; nietde beweging van eenzelfde deeltje dat in do buurt der voorstegrens ligt ondervindt een demping, integendeel de energieen dus de amplitude van zulk een deeltje neemt toe; maarde golfbeweging die door de bronnen A wordt uitgezonden,ondervindt in de buurt der voorste grens een demping,omdat zij het arbeidsvermogen van de deeltjes die zij passeertverhoogt. In de buurt van de achterste grens van een stationaire



??? golfbeweging heeft juist het omgekeerde plaats. Om dat in tezien stellen wij dat op zeker oogenblik t% de bronnen A op-houden een golfbeweging uit te zenden. De deeltjes opgrooteren afstand van A en die zoover van de voorste grensverwijderd zijn dat hun beweging stationair is, zuUen danpas ophouden een stationaire beweging te hebben nadat dithet geval is met de dichter bij A gelegen deeltjes; het onder-ling verband toch tusschen de uitwijkingen en de snelheden vanalle in stationaire beweging verkeerende deeltjes is zoodanig,dat er voortdurend arbeidsvermogen van deeltje op deeltjein de richting van de bronnen af wordt overgedragen, zonderdat (zoolang als de bronnen arbeidsvermogen leveren) daarbijhet arbeidsvermogen dier deeltjes toe- of afneemt. Dat overdragen van arbeidsvermogen van deeltje op deeltjeblijft voortgaan ook nadat de bronnen A hebben opgehoudenarbeidsvermogen te leveren; het gevolg daarvan is dat devoorste grens der beweging door blijft gaan met zich voortte planten juist als toen de bronnen nog wel energie leverden.Daar dus voortdurend arbeidsvermogen wordt overgedragenin de

richting van de bronnen af, zal noodzakelijk het arbeids-vermogen van de deeltjes in de buurt dier (niet meer energieleverende) bronnen afnemen, en weldra zullen de deeltjes dieaan die bronnen grenzen in rust zijn gekomen. Het is hieruit duidelijk, dat we op zeker oogenbliknadat de bronnen hebben opgehouden energie te leveren,kunnen oriderscheiden vier oppervlakken Si, /Sj, S^ en Suzoodanig dat de voorste en S\\ de achterste grens derbeweging vormt, dat tusschen Si en S3 de beweging stationairis en dat tusschen S\\ en S-i evenals tusschen S^ en S^ debeweging niet stationair is. Het arbeidsvermogen der deeltjestusschen Si en Si dus der deeltjes in het voorste nietstationaire gebied neemt toe totdat de beweging dier deeltjesstationair is geworden; het arbeidsvermogen der deeltjestusschen St en S^ dus der deeltjes in het achterste nietstationaire gebied neemt af totdat die deeltjes tot rust-zijngekomen. ^ Indien we een galvanische keten op tijd Ti sluiten danheeft pas op tijd T-i de stroom zijn volle sterkte verkregen,



??? 69 daar er gedurende dat tijdsverloop een deel van het arbeids-vermogen dat door de batterij wordt geleverd aan hetomgevend medium wordt overgedragen en dit maakt tot eenmagnetisch veld. Verbreken we nu op tijd Tz den keten, danis eerst op tijd Ti de stroomsterkte nul geworden; hetarbeidsvermogen dat het magnetisch veld op tijd ?•3 bezatonderhoudt den stroom gedurende den tijd T^ tot T^. Detijdgrenzen Ti, T^, ??s en Tn zijn eenigszins met de ruimte-grenzen Si, Si, 83 en S\\ te vergelijken. Hoe we in de uitdrukking van de potentiaal eener begrensdedoor stationaire bronnen verwekte verstoring rekening kunnenhouden met die verschijnselen in de buurt der grenzen,zullen we later doen zien. Daarbij zullen we ons laten leidendoor het aangehaalde beeld van den extrastroom. Die grens-verschijnselen maken dat ook op de grenzen der beweging depotentiaal, de ontbindingsuitwijkingen, ontbindingsmomentenen krachten continue functies blijven, zooals voor de toepas-sing van Kirchhoffs theorema noodzakelijk is. Bij niet stationaire golfbewegingen zullen zich aan degrenzen dergelijke

verschijnselen voor moeten doen; zo zijndaar echter niet zoo scherp to omschrijven. De deeltjes inde voorste grens moeten in beweging wordon gesteld endragen dus minder arbeidsvermogen over dan zij ontvangen;do deeltjes in de buurt der achterste grens dragon arbeids-vermogen over zonder dat hun door de bronnen nieuwarbeidsvermogen wordt toegevoerd en komon daarom tot rust.



??? HOOFDSTUK III. BOLVORMIGE\' GOLFBEWEGINGEN.1. Eenige vormen van potentiaalfuncties van bolvormige golven. 3 t^ De eenvoudigste onderstelling die we voor bolvormigegolven kunnen maken is, dat de potentiaal cp behalve vanden tijd alleen een functie is van den afstand r tot hetmiddelpunt der golven. Kiezen we dat middelpunt tot oor-sprong van co??rdinaten dan kunnen we de diff. verg. dergolfbeweging = a^Acp (1) transformeeren tot ^ = ^ (52) Hiervan is de algemeene oplossing cp = i F, (r aO ^ (r-at) , (53) waarin Fi en F<i arbitraire functies zijn. De eerst term vancp heeft blijkbaar betrekking op een convergeerende en detweede op een divergeerende golfbeweging. De uitdrukking (53) is de eenvoudigste vorm van de poten-tiaal van bolvormige golven. Daar cp hier slechts afhangt van



??? 71 r en t en dit dus ook met haar phase het geval zal zijn, isook de phasesnelheid der potentiaal een funtie alleen van 7\'en t en dus naar alle richtingen dezelfde. Uit (53) zijn andere meer ingewikkelde potentialen vanbolvormige golven af te leiden. Indien we n.1. (1) dilferentieeren naar x krijgen we: d x) ax Is dus (f een oplossing van (1), dan voldoet ook en s cc evenzoo zijn dan ook en oplossingen. Door a y a z at ieder dezer oplossingen weder naar x, y,zQnt te differentieerenvinden we weder nieuwe oplossingen, enz. Verder zullensommen dezer oplossingen ook weder oplossingen zijn, daar(1) lineair en homogeen is.Uit de oplossing \'Pi /^XÂ?--Â?Â?) (54) kunnen we dus vooreerst afleiden do oplossing <p2 =-7^ - F(r â€” ai) ^ a X r ^ \' (55) of i\'X\'-- Â?O y,F\'(T-at). Noemen wo den hoek dien r miuikt met de Z as cn /den hoek tusschen het Z X vlak en het vlak gaande door ren de Z as, dan is X = r cos / sin en dus / li\' p\\\'f\'i - (â€”-p â€”) f^oB y ein {y, (56) waarin F en F\' zijn geschreven voor F{râ€”at) en F\'{r-at).



??? 72 De beweging (56) is reeds veel ingewikkelder dan (54);haar potentiaal is niet onafhankelijk van de richting. In hetYZ vlak is cos / = o, langs de Z as is sin = o, terwijllangs de X as zoowel sin {)â–  als cos afgezien van het teekenhun grootste waarde hebben. In de punten waar de X asden bol snijdt heeft de potentiaal afgezien van het teekenhaar grootste waarde en neemt van die punten als polenbeschouwd naar het aequatorvlak YZ af. Aan beide zijdenvan den aequator heeft de potentiaal verschillend teeken enis op den aequator zelf nul. Met grooter worden van r nemenbeide termen waaruit (56) bestaat af, maar de eerste hetsnelst. Ver van den oorsprong behoeven we dus slechts delaatste term in aanmerking te nemen en de eerste is over-wegend in de buurt van den oorsprong. Door (55) nog eens naar x te differentieeren krijgen we deoplossing â€” j.3 ^ j.5 ^ j.1 ^ \' j.2 ^ f.3 ^ \' Of F F\' IZ F 3 F\' F"\\ - V T") (57) De eerste twee termen zijn van / en ?? onafhankelijk enstellen dus een deel der potentiaal voor, dat zich naar allezijden met gelijke phasesnelheid en intensiteit uitbreidt. Hettweede deel wordt vermenigvuldigd met

cos^/ sin^O\'; dezerichtingsfactor is nooit negatief, bereikt zijn maximum I opde X as en is in het YZ vlak nul. Het deel der potentiaaldoor de laatste termen van (57) voorgesteld, is dus langs deX as het grootst en neemt van daar naar het YZ vlak aftot nul. In het YZ vlak overheerscht het eerste deel; hotlaatste overweegt voor grootere waarden van r in de buurtvan de X as. Op deze wijze voortgaande kunnen we potentialen vansteeds ingewikWder vorm afleiden. Door (55) naar y tediffe-rentieeren krijgen we b.v. de oplossing



??? 73 d y \\ r^ r^ /r 9 r \\ rÂ? rV - ^ CiE. 3 F F"\\ Nu is X = r cos â€?/ sin en y = r sin sin O-, dus ?ŸF 8 F\' F" r??F \'?“F\' , F"\\ fi De richtingsfactor heeft hier al weer ingewikkelder vorm.Langs de Z", Y en Z as is de potentiaal nul en zij bereikthaar maximum voor n = 90" en / = 45" dus in het JC F vlakmidden tusschen de X en Y as in. Von Helmholtz i) noemt verstoringen als waarvan (56),(57) en (58) de potentialen zijn, â€žZusammengesetzte Kugel-wellen". Strikt genomen zijn van al deze golfbewegingen depotentiaalphaseoppervlakken niet bolvormig. Ik zal ze echtertoch met den naam bolvormige golfbewegingen aanduiden. We kunnen in (54) het â€” teeken door het teeken ver-vangen en mogen dus in (56), (57) en (58) hetzelfde doen ;zij worden dan do potentialen van convergeeronde bewe-gingen. 1) Von Holmli??ltz. Vorloaungcn ??ber dio Klootromngn. ??hoorio dot)Lichta. Huinburg und Leipzig 1897.



??? 74 2. Phasesnelheden van eenige soorten van bolvormigestationaire golfbewegingen. Als eerste voorbeeld kunnen we kiezen een speciaal gevalvan (54) n.1. C . O r â€” at(f) = â€” sin 2 tt â€”^â€” . (59) De phasesnelheid a\' der potentiaal vinden we volgens (39) uit , d ta\' â€” â€” 9Q \'?? N waarin 0 is de phase der potentiaal.In ons geval is dus Q = 2n â€”^â€” , a 0 _ _ ^ Â?_0 _ ^ _ TT" TN ~ dr ~ l \' dus a\' = a. De phasesnelheid van de potentiaal (59) is dus gelijk aan a.Als tweede voorbeeld kiezen we deze potentiaal is van den vorm (56).Stellen we ter afkorting ^ = m, dan is Cx . . Cm X . (j) = â€” sin m(r â€” at) H--â€” C??8m(r â€” at),



??? 75 of Cx___ (f = -j V 1-l-m^ r^ B?•ii Â?i(r â€”a<) â€”arctg mr T Hier is dus 0 = wj (r â€” at) â€” are tg mr,d O 3 Q d Q m3 Â?-2 t \' d N d r 1 m^r^\' a\' = = â€” ma, dus: 5 & TW - " m^rÂ?)\' 3N of = â€? (61) De met (60) overeenkomende convergeerende beweging heefttot potentiaal daarvoor vindt men evenzoo voor de phase: 0 = m(r at) â€” are tg mr , 3 e 3 0 3 (â– ) m^ fS â€” ma. dt \' 3N 3r l en dus Dit is juist dezelfde uitdrukking als (61). Zoowel van (60)als van (62) stelt dus (61) voor de phasesnelheid der potentiaal. Voor r oneindig groot t. o. v. X is de phasesnelheid gelijkaan a; voor r oneindig klein t. o. v. X is de phasesnelheidoneindig groot.



??? 76 Bedroeg die snelheid overal a dan zou de phase der poten-tiaal tusschen twee punten gelegen op afstanden Ri en B-,voor en achter het focus een vermeerdering verkrijgenm (Ei Bi)] nu echter bedraagt de phasevermeerderingtusschen die punten m (Ri -f i?2) are tgm Ri -f are tgm R^. De phasevermeerdering die het gevolg is van die grooterephase snelheid is dus are tg m Ri are tg m R^. Zijn m Ri en m Bi zeer groot, d. w. z. Bi en B2 zeer groott. 0. v. l, dan wordt die phasevermeerdering dus gelijk aann. Die phasevermeerdering komt overeen met een wegvoor- sprong ^ of A. Nemen we thans eens aan dat de potentiaal den vormheeft (C . â€ž r â€” oA] (jp =- â€” 8m2 7r â€”â€” , (63) dx ay i r wat een bijzonder geval is van den vorm (58).Stellen we weder ter afkorting ~ = m, dan vindt men Cxv________â€? i / X 3Â?ir i 9 = -f (3 m r)^ smjm (r-at)- are tg Hier is dus i STTir(:/ = m(r-a/) â€” are tg ^ _ , waaruit men vindt:a0 - = â€” ma, a if 5ri a 9 af-) rri^r aN ar 9 -l- 3 m^r- m* rÂ? \'



??? 77 en dus 9 3 7n2 r2 TO^ r* i ~4 a\' = a m\' r of m â€? 1 (64) a\' = a Voor de met (63) overeenkomende convergeerende bewe-ging is (O . n r ai) w = - â€” sm 2 TT â€”â€” . d xdxj [r X Men vindt hiervoor ^ ^ . .s . Smr 0 = m (r aO - are tg ^^^ , waaruit voor de phasesnelheid der potentiaal weder dewaarde (64) volgt. Voor r oneindig groot t. o. v. I is de phasesnelheid weergelijk a; voor r oneindig klein t. o. v. A is zij weer oneindiggroot. De door die grootere phasesnelheid (grooter dan a) ver-kregen phasevermeerdering bedraagt tusschen twee puntengelegen op afstanden Ri on Jij voor en achter het focus voordo gecombineerde potentiaal (63), (65): (65) 8 m r K\'l \'6 mr r are tg 8 â€” vi\' r -Â? arc tg g- -JÂ? L. Is m Ri oneindig groot, d. w. z. Ry oneindig groot t. o. v. X,dan is - , 8mr are tg .5-- ÂŽ ??â€”m^r- 8mr 1 8mr 1\' are tg are tg n- Jo in> Zijn i?i en Ri beide oneindig groot t. o. v. >, dan wordt de



??? 78 geheele phasevermeerdering derhalve 2 n; deze phasevermeer-dering komt overeen met een wegvoorsprong ).. We vinden hier dus de dubbele phasevermeerdering en dendubbelen wegvoorsprong als bij het vorige voorbeeld. Ten slotte zullen we nog berekenen de phasesnelheid derpotentiaal 52 j c . â€ž r â€” at]9 = ^r^ â€” sm 2 TT â€”-â€” . (66) Stellen we weder ^ = m, dan vindt men: n____; jn f f Q ^_i (f> = -^ViSx\' â€” f\' â€” m\'x^rY (3aj2 â€”r2)2 7n2r2sinjw(r â€”aO-arctg = â€” ma. Hier is 0 = m(r â€” at) â€” tvrctg â€ž-r-r,-â€ž , .. , en dus d t Hier zijn de phaseoppervlakken der potentiaal geen bollen,want in 0 komt behalve r en t ook x voor. Hier is dus niet d 0 _ 3 (â– )d N ~ 3 r\' Om to berekenen hebben we volgens (39) 3 0 30 3x 90 3 y d03e TTT "TTt "X" 3 N 3 x 3 N 3 y dN ^ 3 e 3 N of *



??? 79 Nu is i!^ - IL ^ dx ~ er dx () X \' indien we door ?? aanduiden een differentiatie naar de let terX, d. w. z. een differentiatie waarbij we alleen naar x diffe-rentieeren voor zoover x als zoodanig in ÂŠvoorkomt; verder: d G) d (â– ) d r d 9 d ?– d r en d y d r d d z dras Dus: d 9 89 X d r 8x r \' Voert men deze differentiaties uit dan vindt men: d 9 _ ni^r^ ]/>â€?* â– {â– \'Im\'^r-x^ â€” \'lr\'^x\'^ m^x^ â€” iSrn\'^^\' hx\'^JN~ (3- Hâ€”wi\'-\'x\'-! r\'Y -f m^ r\'C?¨x\'^â€”r\'^y \' en dus d_9 , ^__^ ^ (Ba;"â€”fi â€” 4- tnir\'i (Sx^â€”r^__. " ~ fJ? Vr* -f 2 m\'^ Wx* â€” 2 r\'^ a;Â? â€” ?? m\'^ ir" 5x^\' d N Stellen we hierin x = 7\' cos Â?, dan :_ ^__(3cos2n â€” cos^ay m^r^(3cos^Â? â€” _ n??^r\'^Y 1-f 2wÂ?\'\'\'r\'\'\'co8^Â?â€” 2cos"^a -f ??/iVcos"Â?â€”GÂ?Â?\'\'\'r\'\'\'cos"Â?-|- ??cos*Â? "Voor mr oneindig groot, dus r oneindig groot t. 0. v. P. isa\' = a; voor m r oneindig klein, dus r oneindig klein t. 0. v. X is a\' = 00. Behalve van r hangt hier de phasesnelheid der potentiaalook af van de richting Â?, dus van den hoek, dien r maaktmet de Xas.In het YZ vlak is cos Â? = 0, dus daar is



??? 80 of dit is juist de uitdrukking (61). Langs de Xas is cos Â? = 1, dus daar is , _ (2 â€” rrfi 4 m^r^ " ~ " m2r2(2 â€”771^2) â€? De phasesnelheid der potentiaal is dus oneindig groot inden oorsprong (het focus) en ook in de twee punten gelegenop de X as waarvoor w^ r\'^ = 2. Voor de met (66) overeenkomende convergeerende golfbe-weging is -ild x"- C . O r ar, â€” sm 2 TT â€”- . r I ! (68) 9 = Hiervoor vindt men weder: 0 = OT (r -h a O â€” are tg 5â€”5-\\-, â€ž â€ž , zoodat de phasesnelheid der potentiaal (68) weder gelijk isaan de uitdrukking (67). Voor de gecombineerde beweging (66), (68) is do phasever-meerdering der potentiaal tusschen twee punten gelegen opafstanden Ri en voor en achter het focus, boven wat zijzou zijn indien de phasesnelheid was a, derhalve: Â?20 r 3 of TO r (3 _ r2) .2 a;2 r\'i J ^ L\'\'^^ÂŽ 3 a;2 â€”, â€” m^ x\' f^ J < mr(3co82Â?-l) -]"2 are tg are tg â– m - , 7nr(3eo82Â? - ]) are tg nâ€”7,â€”-^.7-5â€”â€” Jo 3 cos2 a â€” 1 â€” m\'^ r\' 0092 a Onderstellen we rtiRi oneindig groot en cos Â? = 1, dan is: mr(3cos2Â? â€”T) r ^arc tg y ^ _ ^ _ â€žj., C082Â?J â€ž 3 m r , 2 771 r â–  are tg ^ Vt ^ nri 2-m2r2



??? 81 Zijn mRi en mR-^ beide oneindig groot dan wordt dusvoor cos Â? = 1 de geheele phaseverandering gelijk aanDe wegvoorsprong is a. Tot nu toe hebben we slechts berekend voor eenige voor-beelden de phasesnelheid der potentiaal en we hebbengezien dat deze zeer verschillende waarde kan hebben, maardat in de onderstelling dat l oneindig klein is t. o. v. r, zijsteeds gelijk wordt aan a. We zouden thans voor die verschillende voorbeeldenkunnen gaan berekenen de phasesnelheden van de ontbin-dingsuitwijkingen en van de electrische en de magnetischeontbindingsmomenten en ontbindingskrachten. Daarvoor worden die berekeningen echter zeer uitvoerigen daarom zal ik slechts de phasesnelheden vermelden voorons eerste voorbeeld C . â€ž r â€” at(jP = -j;- Bm 2 TT â€”â€” . (59) 2 JJ. Men vindt indien men weder tor afkorting stolt â€” = m: K \'t =0, = â€” â€” -Vrn\'r\'m\\\\m{râ€”al) â€” nro tg wr â€” 7rj, d Z T ( ) V) = = ^l/i tn^rJsin jÂ?Â?(râ€”aÂ?)â€”arctg7nrj, d y T ( ) $ cl2fP C ____â€”â€”-- â€” â€” ^ = 1/jri â€”3x2â€” x^)!-Â? -f mÂ? r-Â? (Â?â€?â– \'-3 xO\'-Â? V 3 z O y T \\ sin in (r â€” at)

â€” txro tg -,, - ,, ..7-, â€”sr â€” tt , ( ^ \' ^ r\'â€”3x2â€”m2r^(r2â€”x^) ) J) ^2(1) Cxy.,^-;- . ( / .X 1 > = Jrh = -W  (3mr)2 smjwi(r-aO-arctg3 , ^ = Jxh = ^ n3-m2r2)2 (3mr)2 sin|m(r -Â?O" -rctg G



??? 82 P O, =--= m\'-^r^ sin m(r-at)-aicigmr 3 1, a f j.3 \' ^ O 2\' yl/tf d ij d t Indien-men l oneindig klein onderstelt t.o.v.r en dus tnroneindig groot, dan worden de phases al dezer lichtvectorengelijk aan m(r â€” at) k^ en al de phasesnelheden worden dan gelijk aan a. Maakt men die onderstelling niet dan zijnde phasesnelheden grooter dan a. De hieruit voort vloeiendewegvoorsprong tusschen twee punten gelegen voor en achterhet focus op afstanden die t. o. v. l oneindig groot zijn,bedraagt voor de ontbindingsuitwijkingen en de magnetischeontbindingsvectoren n en voor de electrische ontbindings-vectoren 2it. Voor lichtgolven waarvan (59) de potentiaal is, kan mendus zeggen, dat op eenigen afstand van het focus alle phase-snelheden gelijk zijn aan a. In de buurt van het focus isechter voor ieder waarde van "K de phasesnelheid gi\'ooterdan a. .1. Vorm der potentiaal eener begrensde nolvormioe golfbeweging. Indien we onderstellen dat van een bolvormige diver-geerende verstoring de potentiaal een functie is alleen vanr en van i, dan is haar meest algemeene vorm: 9 = i F {r-at). (54) Indien de golfbeweging plaats heeft in den vrijen

ether danmoet F bovendien nog voldoen aan zekere continu??teitseisclien,die in de elasticiteitstheorie en in de electromagnetischolichttheorie verschillend uitvallen.



??? 83 In de elasticiteitstheorie is een physische eisch waaraan(]D voldoen moet, dat overal waar geen vreemde lichamen ofhchtgevende punten aanwezig zijn, de uitwijkingen en desnelheden der etherdeeltjes eindige en continue functies zijnvan den tijd. Volgens de vergelijkingen (6) hangen de ont-bindingsuitwijkingen der beweging waarvan (54) de potentiaalis, samen met F en F\' en dus de ontbindingssnelheden metF\' en F". Zal dus (54) in de elasticiteitstheorie voorstellende potentiaal van een golfbeweging in den vrijen ether, danmoeten F, F\' en F" eindige en continue functies zijn. In de electromagnetische lichttheorie hangen de electrischeen de magnetische momenten en krachten eener golfbewegingwaarvan (54) de potentiaal voorstelt, volgens de vergelij-kingen (9) samen met F, F\' en F" en dus de snelheden dezervectoren met F\', F" en F\'". Zal dus (54) in de electromag-netische lichttheorie voorstellen de potentiaal van een golf-beweging in den vrijen ether, dan moeten F, F\\ F" en F\'"eindige en continue furicties zijn. Stellen we ons nu voor dat de beweging waarvan (54) depotentiaal is,

wordt begrensd door twee boloppervlakken omhet middelpunt van verstoring hetwelk we kiezen als oor-sprong van co??rdinaten, dan zullen in beide theorie??n op tijdi = O de lichtvectoren en hun snelheden binnen een ruimteS omsloten door twee bollen met stralen Vi en r^ om hetmiddelpunt van verstoring van nul verschillen en overal daarbuiten nul zijn. In de elasticiteitstheorie hangen die uitwijkingen en snel-heden samen met F, F\' en F"; daar moeten dus binnen Sde functies F, F\' en F" vogr t = o een eindige en continuewaarde hebben en daar buiten overal nul zijn, waaruit volgtdat voor t = o ook op de bollen Vi en r.j de functies F, F\' enF" gelijk nul moeten zijn. In de electromagnetische lichttheorie zijn de eischen waar-aan F voldoen moet nog zwaarder. Daar moeten F, jP\', i\'\'" enF\'" voor t = O binnen S eon eindige on continuo waardehebben, buiten S nul zijn en dus ook nul zijn op de bollenVi en Vn. Volgens Fourier\'s theorema is de uitdrukking



??? 84 â€” {da f f (fi) COS a (x â€” fi) d^Jo Jc tusschen de grenzen c<.x<id gelijk aan f{x) en buiten diegrenzen overal nul. Maken we van dit theorema gebruik dan kunnen we aan-toonen dat 9 aan de haar gestelde eischen voldoet zoo wehaar schrijven in den vorm: (69) â€” \\da fF{n)cosa{râ€”atâ€”ii)d[i-,i=t nrj^ mits bovendien F voldoet aan de continu??teitseischen,d. w. z. dat in de elasticiteitstheorie F, F\' en F" door degeheele ruimte eindig en continu zijn, en voor t â€” 0 op debollen Tl en r^ gelijk zijn aan nul, terwijl in de electromag-netische lichttheorie diezelfde voorwaarden gelden voor F,F\', F" en F\'". Aan die eischen voor F kunnen we voldoen door te stellen F(r â€” at) = G(r-at) f(râ€”at), (70) waarin f de waarde is die F verkrijgt op grooten afstandvan de grenzen (zie het laatste gedeelte van Hoofdstuk II),terwijl G een factor is die samenhangt met de verschijnselenaan de grenzen, welke we aldaar bespraken, en dien we zulkeen vorm zullen geven dat F aan de haar gestelde eischenvoldoet. Uit (70) volgt: F\' = Crf -f fi/". * \\ V\'= G\'f 2(rr Gf\', \' i (71) F\' = G\'"f 30" r 3G\'r Gf\'. ) G moet dus voldoen aan do volgende voorwaarden:

Elasticiteitstheorie, Electromagn. Lichttheorie, aan de grenzen : G = 0, G\'= 0, G\'0, (; = 0, G\'= 0, G\'â€” 0, G" = 0, ver van de grenzen : G = l, G \' = 0, G\' = 0, G = 1, G \' = 0, G" = 0, G "= 0.]



??? 85 Aan die eischen voldoet G zoo we stellen in de elastici-teitstheorie : â€” Â?1 (r-at â€”Tl)\' 2 , (73) 1 â€” c 1 â€”e en in de electromagnetische lichttheorie: \\_â€”Â?2(r2â€”r aty _ â€”a^(r-at~rj > (74) G = zooals eenvoudig is na te gaan; Â?i en stellen voor con-stanten. We zouden voor G ook wel andero vormen kuimen kiezenen willen door de voorbeelden (73) en (74) slechts aantoonendat we aan G geen onmogelijk te vervullen eischen stelden. Indien in een gesloCen keten van weerstand en co??flicientvan zelfmductie L een electromotorfsche kracht E werkzaamwordt, dan is na isec. de stroomsterkto gelijk aan i, indien: r Voor zeer grooto waarden van t is E In do uitdrukking voor de stroomsterkto treedt hier dus opâ€” de factor i â€” e L . Wo wezen aan het eind van hetvorigo hoofdstuk op een zekero overeenkomst dio bestaattusschen het verschijnsel van den extrastroom en de ver-schijnselen aan de grenzen eener golf beweging. Naar. analogie van den factor 1 â€”c L zijn do uitdrukkingen (73) on(74) gekozen. In \'t vervolg nemen wo echter voor G geen bepaaldenvorm aan, maar onderstellen

slechts dat G voldoet aan dovergelijkingen (72).Volgens (71) hebben we dan:



??? 86 Elasticiteitstheorie, Electromagn. Lichttheorie, aan de grenzen: F = o, F\' â€” o, F" = o, F = o, F\' = o, F" = o, F" = o, â–  I (75) ver van de grenzen: F=f,F\' = f\\F"^f, F = f, F\'= f\', F\'= f", F"" = f". ) G doet dus slechts in de buurt der grenzen zijn invloedgevoelen. Als G aan (72) en dus F aan (75) voldoet, is gemakkelijkaan te toonen dat (69) de potentiaal voorstelt van onzebegrensde bolvormige verstoring, terwijl aan de continu??teits-eischen voldaan wordt.Uit (69) volgt n.1. [da f F i^i) cos Â? (r â€” fi)dfi, (76) t=0 Jo Jr. en dus is volgens Fourier\'s theorema! â€” F (r), indien r, < r < r^;t=0 ^ dit is juist den vorm door (54) geeischt, terwijl buiten diegrenzen \'Pr=r= Ot=0 Daar verder volgens (75): F (Tl) = 0 en F (ra) = o blijft aan de grenzen continut=0 Verder volgt uit (69): /Ll) = -^ cp^^-Â?-JdAFif^)asma{r-at-f.)d[^, \\dx\'r=.r ^ i=t ^Jo J r,t=t wat door partieele integratie wordt: t=t



??? 87 of, daar volgens (75), = o en F{r^) = o: oo Y 2 (f|) _=â€”(77) râ€”r i/o J r. t=ten dus J^Zj Â?"i Volgens Fourier\'s theorema is dus: _ = - ^ ^ w ^ \' \'â€?i < < ; dit is juist de vorm die door (54) wordt geeischt, terwijlbuiten die grenzen (-il) =0.<=0 Daar verder volgens (75), F{i\\) = o on F (r.^) = o, blijftook aan de grenzen continu. ^^ Geheel dezelfde bewijsvoering geldt voor den juisten vormon de continu??teit van (â€”\\ en (â€”) , zoodat wo zien i=0 1=0 dat de eerste diff. quot. van 9 naar de co??rdinaten (on daar-mede de ontbindingsuitwijkingen) voor t â€” 0 door (69) in denjuisten vorm en op continue wijze wordon voorgesteld. Voor de overige diff. quot. van qp verloopt hot bowijshiervan geheel analoog. Zoo is b.v. volgens (69): (If) _ = ^ F" r-r ./ 0 Jr, wat door partieele integratie en door van (75) gebruik tomaken kan worden getransformeerd tot:



??? 88 OO V (iJ[:) =â€” fdu fF^(fi)cosa(r~at- \\dt r==r -^fJo Jrx en dus: OO Y JL fda fF\'(}i)cosu{r-^i)dii. t=o \' De continu??teit en juisten vorm liiervan zijn eenvoudig teherkennen. Verder volgt uit (77): r-r l-t r-r J â€ž J r, ~7F73F\'{fx)usma{râ€”atâ€” . J O ^ Tl Voegen we de eerste en derde term samen door middelvan (77) en herleiden we de laatste integraal door partieeleintegratie, waarbij we van (75) gebruik maken, dan: t=t i=i "en dus: <=0 1=0 "Volgens Fourier\'s theorema is dus 5 f\'x l<=0 indien r, < r < rj, terwijl buiten die grenzen = o, ^dX râ€”r 1=0 , en ook op die grenzen volgens (75) do continu??teit vanis gewaarborgd. Gemakkelijk kan men er zich van \\=0



??? 89 overtuigen, dat bovenstaande vorm van (-X) juist dezelfde is als door (54) wordt geeischt. Geheel op analoge wijze kan men aantoonen dat volgensde vergelijkingen (75) in de elasticiteitstheorie de Ie en 2cdiff. quot. van (69) naar x, z en t den vorm hebben door(54) geeischt en dat zij overal, ook op de grenzen, continublijven. In de electromagnetische lichttheorie kan men doormiddel van (75) hetzelfde aantoonen voor de Ie, 2c en 3c diff.quot. van (69). In beide theori??n blijft dus van de liclitvec-toren en hun snelheden door de geheele ruimte de continu??teitgewaarborgd, zoo men voor de potentiaal den vorm (69) stelt,terwijl daarin F den vorm (70) heeft, waarin G voldoet aande vergelijkingen (72). In beide theori??n is dus de notatiegeheel dezelfde; alleen zijn de voorwaarden (72) waaraan Gmoet voldoen, in de electromagnetische lichttheorie ietszwaarder dan in de elasticiteitstheorie. Aan het slot van Hoofdstuk I merkten wo op dat de ont-bindingsuitwijkingen, \'ontbindingsmomenten en ontbindings-krachten evengoed aan de dilf. verg. (1) der golfbewegingvoldoen als de potentiaal. Wo kunnen

dus ook onderstellendat ?Š?Šn dezer lichtvectoren den vorm (54) heeft (waarbij danis ondersteld dat de andere lichtvectoren in passenden vormzijn gegeven). Dan moet dus door de geheolo ruimte (ook opdo grenzen der beweging) dio lichtvector en zijn snelheidoindig en continu zijn. We kunnen daartoe dien vector wederschrijven in den vorm (69), terwijl we daarin voor F stellenden vorm (70) en men ziet gemakkelyk in dat dan G voldoenmoet aan de voorwaarden: aan de grenzen: G = G\' =â–  0] } . ver van de grenzen: G = G\' = 0. \\ \' Aan die voorwaarden kunnen wo b.v. voldoen door tostellen: G = Â?,(r â€”a<â€”r,)-l r^ _ â€” (ri â€”r Â?0 waarin Â?i en Â?i weder constanten zijn. . (70)



??? 90 Een tweede begrensde verstoring die we door middel vanFourrier\'s theorema wiskunstig zullen voorstellen heefteenpotentiaal van den vorm: il^CÂ?--Â?Â?)! (55) â€? of indien / en O- weder dezelfde beteekenis hebben als oppg- 71 (p = cos / sin y- jy F(r â€” aQ j (80) Of (fj = co8/sm{>-1----1---^ . (56) We onderstellen weder dat op tijd t = o deze beweging beslo-ten is binnen een ruimte S begrensd tusschen twee bollenmet stralen n en r^ om het midd^punt der golven. Dephysische eisch die daardoor aan (f< wordt gesteld is, datbuiten S alle lichtvectoren en hun snelheden nul zijn, datbinnen S zij een vorm hebben met (55) overeenkomende endat zij op de bollen ri en r2 gelijk nul zijn. In de elasticiteits-theorie hangen de lichtvectoren en hun snelheden samen met(p,(p\' en 9" en dus volgens (56) met F, F\\ F" en F\'"-, in deelectromagn. lichttheorie hangen zij samen met 9, tj/, 9" en 9"\'en dus volgens (56) met F, F\', F", F\'" en F"". Stellen woderhalve evenals zooeven F{râ€” at) = G{r â€” at)f{r â€” at\\ (81) dan moet G voldoen aan de volgende voorwaarden: Elasticiteitstheorie, Electromagn. lichttheorie, aan de grenzen: G = o,

11\'=0, (l\'â€”o, = (l=o, (r\'=o, (r=o, (l"\'=o, (!"\'=zo, } ver van de grenzen: = G\' = o, 0"=o, (^"=0-, = U\'=o, Ct"=o, G"=o, (Vâ€”o. \\ Â? Aan die eischen kunnen we voldoen door in de elastici-teitstheorie voor<> G te stellen den vorm (74) en in de elec-tromagn. lichttheorie:



??? 91 \\ _ â€”(^lir^â€”r aty â€” Â?1 (râ€”at â€” riY . (83) G = 1 â€” e Volgens (81) en (82) hebben we dan: Elasticiteitstheorie, Electromagn. lichttheorie, aan de grenzen: F=o, F\'â€”o, F"=o, F"\'=o, F=o, F\'=o, F"=o, F"=o, F"\'=o, ^ ^g^^ er van de grenzen: F=f, F=f\\ F"=f\\ F"=n l\'"=r- i G doet dus weder alleen in de buurt der grenzen zijninvloed gevoelen. Door middel van F o u r i e r\'s theorema moeten we nu wedergaan uitdrukken dat buiten S de potentiaal, alle lichtvectorenen hun snelheden gelijk zijn aan nul en daar binnen in over-eenstemming zijn met (55). Daar voor i = o de potentiaal besloten moet zijn binnen Sen deze voorwaarde onafhankelijk is van / en O-, kunnenwe volgens (80) stellen: a ,1 I m} = jl ir(^) j cosÂ?(r-/0(i/.. Door middel van de identiteitvolgt hieruit Dezo vorm geeft or aanleiding toe to stellen: (85) (80) (87) on dus OO O Â?/ f\'i * oo 1*1 fduf /\'\'(/.)}cosÂ?(r-at-fi)d (88)



??? 92 Ik zal aantoonen dat voor i = o de uitdrukking (56) deninitialen toestand van onze begrensde verstoring volledig en 5(1 } continu voorstelt, indien we daarin voor â€”j â€” F{r â€” at) j den vorm (88) in de plaats stellen terwijl F voldoet aan (84)en dat dan alle lichtvectoren en hun snelheden voldoen aande physische eischen en den vorm hebben in overeenstem-ming met (56). Indien we in (88) stellen t = o krijgen we den vorm (85) terug. 5(1 ) Volgens het theorema van Fourier is dusâ€”| â€”P(r- aty^ voor t = O buiten de ruimte S gelijk nul en volgens (84) blijfthaar continu??teit op de grenzen van S bestaan. Stellen we dus de uitdrukking (88) in (56) dan heeft (p denjuisten vorm en blijft aan de grenzen continu. Ditzelfdemoeten we nu ook nog voor de afgeleiden van (88) aantoo-nen. Het is gemakkelijk in te zien dat het bewijs daarvoorgeheel analoog is aan dat wat we gaven voor den vorm (69).Voor het Ie diff. quot. naar x hebben we b.v. â€” F(r â€” at) = - ---â€” F(r- ^ ^ r a r d r \\ r ^ at) 9x d r { r en dusd d dx dr ^ ^^ Jo Jr.^f^ f\'X at r" d (1 . cosÂ?(?\'â€”atâ€”/t) d[i X râ€”atrÂ°Â° r*"\' 5 ,1 â€ž. . ^ ^ . , Indien wo hierin voor do eerste

integraal haar waardo uit (88)invoegen, krijgen we in het tweede lid drie gelijke integralen.Voegen we die drie samen en herleiden we de laatste inte-



??? 93 graal door partieele integratie (waarbij we van (84) gebruikmaken), dan vinden we: r ^ /) J.2 gj. J. \\ J J a U C â€”!â€”-^(/O !cos a{r â€” at â€”.Â?) dfi , jr. \' \'-ffÂ?/O i/ r, ,ri g2 ^ X râ€”at, - F{^i)\\cosa{râ€”atâ€”ii)d[i.fi ) dx dr r irr Stellen we hierin t = o, dan dx dr r ^ dx dr r ^ rÂ? er\\r ^ Buiten de ruimte Â?S" is deze uitdrukking volgens het theoremavan Fourier en volgens (85) gelijk nul. Op do grenzen vanS is zij volgens (85) en (84) gelijk nul. Binnen S heeft zij dowaarde: 2a; 5 \' 1 J , 2x d i 1 J , x ^Â? j 1= -Ti Tjb^\' Â?i J71 r^*-\') ? JP Hieruit blijkt dat ook het eersto diff. quot. naar x vande uitdrukking (88) aan alle eischen voldoet. Voor de hoogerediff. quot. is het bewijs van den juisten vorm van (88)geheel analoog. We hebben dus bewezen dat (55) de poten-tiaal eener begrensde beweging voorstelt, indien wo daarin 5(1 I voor â€” j-F(r â€” ai)j don vorm (88) stellen, terwijl F vol-doet aan do voorwaarden (84). Door de vergelijkingen (81), 2ÂŽ 71 r\'



??? 94 (82) en (83) hebben we doen zien dat die voorwaarden aanF geen onmogelijk te vervullen eischen stellen. We kunnen ook onderstellen, dat niet de potentiaal, maardat een der ontbindingsuitwijkingen, ontbindingsmomenten ofontbindingskrachten den vorm (55) heeft. Dien lichtvectorkunnen we dan weder schrijven in den vorm (88), terwijl wedaarin voor F stellen den vorm (81) en men ziet gemakkelijkin dat G dan moet voldoen aan de voorwaarden: aan de grenzen: Cr = o, G\' = O, G" = o, jver van de grenzen: G = l, G\'=o, G" = o, j Aan die eischen kunnen we voldoen door b.v. te stellen: G =  (90) 4. Berekening van de voortplantingssnelheid der grensvan een bolvormige golfbeweging door middel vanhet theorema van kirchhopf. We nemen aan, dat de deeltjes binnen een klein bolletje Agedurende eenigen tijd een Hchtbeweging hebben uitgezonden,en dat vervolgens de beweging binnen A en daarbuiten ge-heel aan zich zelf wordt overgelaten. Op zeker oogenblik daarnazullen dan alleen in beweging zijn de deeltjes binnen een deelS der ruimte, besloten tusschen twee bollen met A als mid-delpunt en met stralen n en r^ (ri

>ri). Dat oogenblik kiezenwe als aanvangspunt van tijdstelhng. We gaan nu onderzoeken, wat er is van de lichtbewegingop tijd t=zt\' in eenig punt B, welks afstand tot ^ we ^noemen. We zullen aantoonen dat er in B alleen bewegingis, indien at\' <Cp < rj -f a . Voor de potentiaal der lichtbeweging binnen S nemen woaan den vorm : -at). (54)



??? 95 Zooals we zooeven bespraken moet dan qp worden geschre-ven in den vorm (69), terwijlwe hierin voor F den vorm(70) stellen, waarin G moetvoldoen aan de voorwaarden(72). Om uit de beweging optijd nul te bepalen de be-weging op tijd t\' , constru-eeren we om het punt Been bol met straal r\' =aV .Wanneer dan (p is de poten-tiaal der beweging, dan wetenwe, dat deze op tijd t\' inhet punt B volgens hettheorema van Kirchhoffin den vorm (24) gelijk isaan: af B y P (24) ^9 . 1 ^ 9 I 1 IJÂ? TT ?¤-p  \' welke integraal moet worden uitgestrekt over den bol r\'B, dien we den integratiebol zullen noemen. Op den tijd t = o zijn qp, -flF en overal nul behalve^ \' dt dr binnen de ruimte S. We behoeven dus de integraal (24) slechtsuit te strekken over het deel van den integratiebol gelegenbinnen S. Op alle elementen ds van den integratiebol, waarop r de-zelfde waarde heeft, heeft ook de uitdrukking om il Â?Â? 4. 1 lar> dt r\' dr\' l(=0 dezelfde waarde. We kunnen dus als elementrfs in (24) kiezenhet stuk van den integratiebol, dat is gelegen tusschen tweenaastliggende platte vlakken loodrecht staande op A B.

Datstuk zal het vlak van teekening tweemaal snijden; een diersnijplaatsen duiden we aan door do letter D.



??? 96 Noemen we nu L D B A â€” a, dan is ds = 2nr\'\'^?Šnada. Verder is = r\'2 â€” 2 r\' cos Â? . DifFerentieeren we deze vergelijking naar Â? en houden r\'constant, dan is rdr = pr\' sin Â? da, en dus , 2nrr\' ,ds = - dr. V Door dit te stellen in (24) krijgen we = L tl 2pJÂ?Ja dt d(f) dr t=0 (91) r fr\'P dr\' waarin Ei en R2 voorstellen de kleinste en de grootste waardedie r op den integratiebol bezit. Om (24) of (91) te mogen toepassen moeten cp en haar af-geleiden naar a;, y, z en t voor t = 0 binnen en op den inte-gratiebol eindig en continu zijn. In het vorig deel van dithoofdstuk toonden we aan dat wo daartoe <p moeten schrijvenin den vorm: 1 -L i du F(fi)cos a (r â€” ai â€” /i)d,u .T^Vo Jri (69) Onder in acht neming der vergelijkingen (70) en (72) leiddenwe daaruit af, dat tusschen de grenzen r, en r-i en dus ooktusschen do grenzen Ri en Bi: (92) m (93) <=0 (in) t^o



??? 97 Verder is binnen die grenzen : r r x\'^^^ \' rÂ? â€? ^ \' ,-3 ^ >\' j\' Â?â– =r t=o /=0 en dus <=0 Vervolgens is: r2 = p2 _ r\' cos a . Differentieeren we deze verg. naar r\' en houden daarbij Â?constant, dan is 3 r _ r\' â€” p cos a _ r\'2 r^ â€” jo^a r^ ~ r 2rr\' zoodat <=0 /=0 Substitueeren we (92), (93) en (94) in (91) dan krijgen wo: Betreffende de hgging van B hebben we de volgende go-vallen te onderscheiden: De geheele integratiebol ligt dan buiten het deel S. Dointegraal (24) is dan nul. In B is dan op tijd t\' de potentiaalnul; in 7> is dus op tijd t\' geen lichtbeweging. 5



??? 98 2Â? Â?"i < P < Â?"a ??"\' â€? De integratiebol snijdt dan wel den bol ra, maar niet denbol ri. Het punt B ligt dan in het deel S\' der ruimte beslotentusschen de bollen Vi at\' en r-i -[-at\'. Fig. 3 stelt dezeligging van B voor. Dan is El = p â€” r\' en R^ = r^ . * Daar F {ri) volgens (75) gelijk is aan nul, is volgens (95) 4 p r\' p 1 (p-2r02-j>2 \'Pr=p - -- KV â€”r ), 1 Fip-r\'), 1=1\' I of Ligt dus B binnen S\' dan heeft cp op tijd t\' daar juist dewaarde, die direct uit (54) volgt. 3Â° ra < p < r, r\'. In dit geval ligt B tusschen S en S\' in, en do integratie-bol snijdt beide begrenzingen van S. Dan is = Tl en R2 = ra. Daar volgens (75) zoowel F (rj) als F (r.j) gelijk is aan nul,wordt dan (95) aan beide grenzen nul. In B is dan op tijdt\' de potentiaal nul. In B is dan geen lichtbeweging. 4Â° r, < < ra. In dit geval ligt B binnen S. Er kunnen zich nu vier ge-vallen voordoen: a. Ti â€” p, terwijl ook Ti r\' <Z P â€? S en S\' vallen dan voor een deel samen en in dat deel ligt



??? 99 B. De integratiebol snijdt dan r^ wel, maar Vi niet. Dan is El = p â€” r\' en R2 = r-i,en we hebben dan evenals in het tweede geval h. Ti â€” r\' < p, terwijl r, r\' > p . Dan ligt B buiten S\' en de integratiebol snijdt zoowelals Tl. Dan is: i?i = r^ en R-i = r^,en evenals in het derde geval is dan in B geen lichtbeweging.c. Ti â€” r\' > p , terwijl rj r\' . <". p . Dan ligt B in het deel van S en S\' dat samenvalt, en deintegratiebol ligt geheel binnen S. Dan is: iZj = p â€” r\' en R^ = p r\',zoodat (95) wordt: 4pr\' 1 \'Pr=v = <=<\' i Of i=V i\' Dan heeft dus (p in het punt B juist de waarde, dio directuit (54) volgt. d. ri â€” r\' p , terwijl ook r, -f r\' > ;;. Dan ligt B buiten S\' en de integratiebol snijdt rj niet, maarTl wel, zoodat J?, = r, en Ri = p r\' ,



??? 100 en dan wordt (95) daar F (r,) = o : of \'fr=p = Oi=t\' In B is dan geen lichtbeweging. 5Â? P < r, en P r^ â€” r\'. Dan hgt B buiten S\' en binnen n. De integratiebol snijdtdan Ti en zoodat Ri = Tl en B2 = Tien evenals in het derde geval is dan in B geen lichtbeweging. ?Ÿc P â€” terwijl p > Â?"i â€” Dan ligt B buiten S\' en binnen Vi. De integratiebol snijdtdan den bol rj, maar niet den bol ra, zoodat . Ri = Tl i?2 = i? -F r\'. Evenals in het vierde geval sub d wordt dan de uitdruk-king (95) nul. In B is dan geen lichtbeweging. 7" P <C. ri - r\'. Dan ligt B buiten S\' en binnen r^. De integratiebol ligtdan geheel buiten het gebied S, waar op tijd t = 0 bewegingis. De integraal (24) is dan nul. In B is dan geen lichtbe-weging. Hieruit blijkt dus, dat in B op tijd t\' alleen hchtbeweging is,indien B is gelegen binnen het deel S\' der ruimte, begrensddoor twee bollen met stralen at\' en ?2 at\' beschreven



??? 101 om A, en dat q binnen S\' juist den vorm heeft die directuit (54) volgt. Het blijkt dus dat de potentiaal eener begrensde bolvormigeverstoring van vorm (54) niet alleen op tijd t = o continu eneindig wordt voorgesteld zoo we haar schrijven in den vorm(69), maar ook op ieder oogenblik daarna. Het is n.1. duidelijkdat voor t = t\' de uitdrukking (69) buiten de grenzen ri at\' < r <r^ at\' dus buiten de grenzen van S\' gelijk is aan nul, op die gren-zen nul is, evenals haar afgeleiden naar x, ?/, ^ en i en daar-binnen met haar afgeleiden den vorm heeft overeenkomendemet (54). Kirchhoff\'s theorema stelde ons dus in staat het in deinleiding besproken vraagstuk door Poisson gesteld op tolossen, n.1. te bewijzen, dat een golfbeweging door een middel-punt van verstoring A uitgezonden en op zeker oogenbliktusschen twee boloppervlakken om A begrensd, alleen zichvoortbeweegt in de richting van A af, maar zich niet naarA terug beweegt. De voorstelling die Beer zich vormdo van de voortplantingeener bolvormige begrensde verstoring is diis juist, waaruitvolgt zooals we in de inleiding bespraken dat we aan

de ele-mentaire golven van Huygens geen physische beteekenismogen toekennen, daar dit ons tot strijd zou voeren met dewet van behoud van arbeidsvermogen, wel echter een meet-kunstige n.1. als constructiemiddel om voor vlakke en bol-vormige golven uit een vorige grens een volgende grens af teleiden. Het resultaat door Stokes verkregen (zie inleiding) n.1.dat, indien men\' do beweging door middel der elementairegolven van Huygens volgens F r o s n o I\'s rekenwijze bepaalt, men een phaseverschil ^ vindt met de phase, dio direct uit do bewegingsvergelijking volgt, moet worden beschouwd alseen gevolg van de onjuiste formuleering door Fresnel aanhet beginsel van Huygens gegeven. Maakt men gebruik van



??? 102 Kirchhoff\'s formuleering dan treedt zooals we zagen datphaseverschil niet op. We stelden ons in het voorgaande voor, dat een diver-geerende golfbeweging, welker potentiaal slechts een functiewas van r en van t en dus den vorm (54) had, besloten wasop tijd t = o tusschen twee boloppervlakken ri en ro. Geheelhetzelfde onderzoek kan men instellen voor een convergee-rende golfbeweging, welker potentiaal dan den vorm heeft ^ F{r-\\-at). Men vindt dan, dat de beweging op tijdÂ?\'is be-grensd door twee boloppervlakken met stralen n â€” at\' enra â€” at\' en dat haar potentiaal binnen die ruimte weder juistdenzelfden vorm heeft. Ook van deze golfbeweging is dus devoortplantingssnelheid van de grens gelijk aan a. In het vorig gedeelte van dit hoofdstuk leidde ik ook nogden vorm af, waarin de potentiaal eener begrensde verstoringgeschreven moet worden, opdat zij de gedaante hebbe In het vorig hoofdstuk zagen we dat de phasesnelheid a\'der potentiaal van een zeer specialen vorm dezer beweging n.1. op grooten afstand van de grens gelijk is aan a\' indien Het onderzoek naar de voortplantingssnelheid van do

grensdezer beweging (55) is echter overbodig, daar we in het vol-gend hoofdstuk een algemeener geval zullen behandelen. In het vorig deel van dit hoofdstuk merkten we reeds op,dat de aldaar gegeven formuleeringen van de potentialen vanbegrensde bolvormige golfbewegingen even goed konden wordenbeschouwd als te <zijn formuleeringen van een der ontbindings-uitwijkingen, ontbindingsmomenten of ontbindingskrachten, met



??? 103 dat verschil, dat dan de eischen aan G gesteld minder zwaarwerden. Geheel dezelfde redeneering, als boven is gehoudenvoor de potentiaal, kan dus worden gehouden indien menoveral voor het woord potentiaal leest ontbindingsuitwijking,ontbindingsmoment of ontbindingskracht. Dit zou eigenlijk eersthet bewijs zijn, dat de voortplantingssnelheid van de grensder beweging gelijk is aan a. Dat bewijs kan echter alsoverbodig worden beschouwd, door uit den vorm, waarin wede potentiaal eener begrensde golfbeweging schreven, reedsdirect blijkt, dat de grenzen der lichtvectoren met de grenzender potentiaal samenvallen.



??? HOOFDSTUK IV. WILLEKEURIGE GOLFBEWEGINGEN. 1. Voortplantingssnelheid van de grens eener wille-keurige golfbeweging. In het tweede hoofdstuk hebben we golfbewegingen be-sproken waarvan de potentiaal den vorm heeft 9 = X sin V\', (33) waarin X en ip met periodische, maar overigens willekeurigefuncties zijn van x, z en t Daar phase en ampUtude hiergeheel willekeurige functies zijn, is de bestudeering van dezenvorm (33) voldoende algemeen. Een willekeurige trillende be-weging kan worden ontbonden in bewegingen waarvan (33)de potentiaal is. De phasesnelheid a\' van de potentiaal (33) definieerden wedoor de formule 3N en we zagen dat reeds voor bolvormige golven deze in hetalgemeen van a verschilt, en afhangt van den afstand tot hetmiddelpunt der golfbeweging en voor de potentiaal (66), welkerphaseoppervlakken niet bolvormig zijn, nog bovendien van derichting, \' We kunnen dus wel dadelijk zeggen dat voor golven, welker



??? lor, potentiaal den vorm (3B) heeft in het algemeen de phase-snelheid der potentiaal niet gelijk zal zijn aan a, maar zalafhangen van den vorm der potentiaalphaseoppervlakken i/\' = Constant. Dp phasesnelheid der ontbindingsuitwijkingen en van deontbondenen der magnetische en electrische momenten enkrachten zal behalve van i/< ook nog afhangen van x, want dephase dezer lichtvectoren is zoowel van i als van i}) afhan-kelijk. De constructie van Huygens geldt dus voor de phase-oppervlakken van willekeurige golfbewegingen niet. We komennog nader op de waarde dezer phasesnelheden terug in hetvolgend deel van dit hoofdstuk en zullen ons thans gaanbezighouden met de snelheid waarmede de grens der beweging(33) zich voortbeweegt. Op de grens der beweging moeten in de elasticititeitstheoriede ontbindingsuitwijkingen en de ontbindingssnelheden nulzijn, en in de electromagnetische lichttheorie moet dat hetgeval wezen met de ontbindingsmomenten en krachten en dosnelheden daarvan. Om aan die eischen te voldoen stellen we: (p = G ! sin V\', (96) waarin we naar analogie van

het vorig hoofdstuk zullenonderstellen dat G een functie is van i/Â?. Volgens de bovengenoemde gronsvoorwaarden moet dan Gvoldoen aan de volgende eischen: Klasticiteitstbeorie, Klectromagu. lichttheorie, aan de grenzen: (\'r = o, (i\' = o, (!\'=u, (i = o, (!\'=o, (i"=o, (i"=o,ver van de grenzen: = (i\'=o, <l\'=o; (1 = 1, (S\'=o, (l\'=o, (i"=o. ] In het vorig hoofdstuk namen we aan dat de bolvormigeverstoring begrensd werd door een bol, evenzoo onderstellenwe dat op tijd t = t\' de grens der beweging (96) gevormdwordt door het oppervlak



??? 106 (x,y,z,l\') ^ A, (98) waarin A een constante is. Dat de vergelijkingen (97) aan G geen onmogelijke eischenstellen kunnen we door een voorbeeld laten zien. In de elasti-citeitstheorie zouden we kunnen onderstellen : en in de electromagnetische lichttheorie: We willen weten met welke snelheid de grens zich voort-beweegt en gaan daartoe bepalen welk oppervlak de grensvormt op eenig later oogenblik. In een punt P van het oppervlak x\\) (cc, y, z,t\' ) = A, ofkortweg van het oppervlak A (zie fig. 4), richten we op eenloodlijn P O naar dat deel van de ruimte, waar op tijd t\' geenbeweging is, en we beschrijven om O een bol met een straalP, die oneindig weinig grooter is dan de afstand O P. Degrootheid qâ€”OP stellen we in onze berekeningen een oneindigkleine grootheid van de eerste orde. In de onderstelling dathet oppervlak A in de buurt van P zijn bolle zijde naar buitenkeert of duidelijker gezegd, dat de hoofdkrommingsmiddel-punten van het oppervlak A in het punt P beide zijn gelegenop het verlengde der lijn OP aan de zijde van P, wordt dobol Q door het oppervlak A gesneden volgens een oneindigklein gesloten lijntje

waarbinnen P ligt. Duiden we nu aan door q&o^o do waarde van (f op tijd t\' 4- t" in het punt O, terwijl t" = â€”, dan is volgens Ki rch- (X hoff\'s theorema \'(laÂ?p l d W li, /nnx {a(> dt Q dQ Q^ 1 4 TT welke integraal Ve moeten nemen over dien bol q - at".Door de invoering van den factor G is de continu??teit



??? 107 van q> en haar eerste afgeleiden binnen en op den integratie-bol gewaarborgd. Op tijd t\' zijn op dien bol overal tp, en nul, be- d t O Q halve op het stukje 0 van den bol dat binnen A ligt. We be-hoeven onze integraal dus slechts over dat stukje a uit testrekken. We kieken nu een constante B die zoo groot is, dat hetpotentiaalphaseoppervlak V\' {xyz t\') = B, hetwelk we het oppervlak B zullen noemen, raakt aan denintegratiebol. Het raakpunt noemen we het punt Q. Verderzij het oppervlak D welks vergelijking is (100) B c ^ \'ir B D Fio, 1. t/i [xyz t\') = D gelegen tusschen de oppervlakken A en B in. Door aan doconstante D verschillende waarden te geven Â?tusschen A en Bin, zal het oppervlak D zich bewegen tusschen de oppervlak-ken A en B. De snijpunten van de lijn Q O met het grens-oppervlak A on het bewegelijk oppervlak D duiden we aandoor de letters P on T. Als vlak van teekening is gekozenA het osculeerend vlak van een der hoofdkromtelijnenvan het oppervlak A inhot punt P. O zij het bij-O bohoorend krommings-middelpunt. De punten C,Q, ??; P on O liggen danin hot vlak van

teekening.Do doorsnede van A mothet vlak van toekoningis dan in do buurt vanP eon cirkel met C tot middelpunt. Do continu??teit van i/Â?brengt mode, dat ook do oppervlakken /> en D als doorsnedenmet het vlak van teekening lijnen opleveren dio in do buurtvan T on Q als cirkels met G als middelpunt kunnen wordonbeschouwd.



??? lOS Duiden we nu aan door de letter N een stuk van de nor-maal Q O gemeten van Q af in de richting van Q naar O, dankunnen we als element ds van den integratiebol kiezen eengedeelte van u gelegen tusschen twee potentiaalphaseopper-vlakken op afstanden N en N d N van B gelegen. Op zulk een element is i/. {xyz t\') = B ^ lY. Verder is indien Nl = Q F. Zoodat (101) Thans gaan we in onze integraal dN in plaats van ds alsonafhankelijk veranderlijke invoeren en moeten daartoe dsgaan uitdrukken in dN en bekende grootheden. Daartoe nemen we aan een co??rdinatenstelsel waarvan Ode oorsprong is, de lijn OP de Z as en de hoofdsneden vanA in het punt F het ZY en het ZX vlak zijn. Duiden wenu aan door den afstand van O tot het snijpunt van eenpotentiaalphaseoppervlak met de Z as, dan is zâ€”z^ in debuurt van P oneindig klein en we mogen dus de vergelijkingvan dat oppervlak voor zoover we deze in onze integraalnoodig hebben schrijven in den vorm: = (102) waarm 3\'\'-z ^ y-z



??? 109 De verg. van den integratiebol is p2 = yÂŽ 22. Noemen we nu Â? den hoek tusschen p en de -Z" as dan is Â?steeds klein, en is verder O- de hoek tusschen het q Z enhet ZX vlak dan is: X = Q sin Â? cos ,y = Q sin Â? sin , Z = Q cos tt . Dus gaat (102) over in: e cos Â?f â€” 2Â? = ^r ()2 sin\'Â? cos^ ^^ -J-\' sin2Â? sin\'^ (y. Zi 2?¨ Nu is a oneindig klein van de 1ÂŽ orde: derde en hoogeremachten van Â? verwaarloozend vinden we: P â€”(, Â?2â€”Zo = -^r cos\' 4 ^ P^ sin\' (f of 2 (p â€” 2â€ž) = [o -f r e\' cos\' t\'> < ()\' sin\' . Wo zoeken ds en dit is de differentiaal van het oppervlakdoor een potentiaalphaseoppervlak uit den bol gesneden, dusde differentiaal van = fd O Tsin Â? d Â?; ./ O Â?\'O of als wo weder derde en hoogere machten van Â? verwaar-loozen : (e-2o) do Â? = = ^ ----------------, - r cos\'^^ i sin\'i>



??? 110 of na integratie: 2 TT (e â€” Zo) s = Nu is Qâ€”Zo = N, verder zijn = -en = ^, indien R^ en R^ T t zijn de hoofdkromtestralen van de phaseoppervlakken welkeff snijden. We mogen Ri en R^ als constant beschouwen,dus: en dusof wel: ds = 271 QJcdN, (103) waarin Op ff is k als constant te beschouwen.Door (103) gaat onze integraal (99) over in : k {I 3 (p 3 cp 1 J (a ^^ dQ Q )i=f Nu is: (p r= G I sin i/\',



??? III (^\'77    cos i/<; a q> dus: Op de grens zijn volgens (97) zoowel G als G\' gelijk nul. Inde buurt der grens is dus volgens de ontwikkeling vanTaylor G oneindig klein t.o.v. G\'; derhalve mogen we ^n ^^ a a t ao/ â€? Q " \' aai a Qiverwaarloozen tegenover ^ V a 3 t dol\' zoodat we krijgenNu mag op a i /JL Â?1\' 4. ll\\ a t a C\'A=<-als constant worden beschouwd, zoodat ylLll iJt)\\ a s t a (>) a xpTn I J-^ (O Bin ip) (IN,J A\'=o l=t>Q - "2



??? 112 waarin . (Jl il 4. ^^Va d t a o) 3 i/f 1=1\' beteekent de waarde dezer uitdrukking in het punt Q op dentijd t\'.Of: . 4- 3 t 3 pi iGsinV\'!,^, J y=o f=t\' r 3 lp Tn Voor Nl bevinden we ons op de grens en daar is G = ovoor t = t\'. Aan de bovenste grens is dus \\G sin cp\\ gelijknul. Aan de benedenste grens bevinden we ons in het puntQ, zoodat: k 1 t f 3 xp a 3 t 3 (, 2 3 V\' a n ^ G t sin ifi <P()=i> = Ir^C Onderstellen we vooreerst dat - - niet gelijk is a 3 t 3 Q ^ \'\' aan nul. In dat geval is op tijd t\' l" in O beweging blijkensbovenstaande uitdrukking. Hadden we den straal q van deninfegratiebol niet gelijk gemaakt aan af\', maar gelijk aan at\'" terwijlf" <C.t"â€”dan zou geen eokel deel van den a integratiebol binnen de grens A hebben gelegen. Waaruit volgtdat onmiddellijk v????r het tijdstip i\' 1" in O de bewegingis begonnen. Op den tijd t\' -f t" ligt dus het punt O in deonmiddellijke nabijheid van de grens der beweging. Met anderewoorden; om uit de grens op tijd t\' te bepalen de grens optijdt\' i", mag men de constructie van Huygens met straalQ = at" toepassen. Uit bovenstaanden vorm voorblijkt dan verder dat de phase in O op tijd t\' t" gelijk is



??? 113 aan de phase in Q op tijd t\' . O en Q liggen op dezelfde nor-maal N op afstand at". Dus t/\' is in de buurt der grens eenfunctie alleen van iV en i en heeft zulk een vorm dat, als weaan t een vermeerdering t" geven en aan N een vermeerde-ring ai", die functie niet verandert. Dus moet noodzakelijk inde buurt van de grens i/\' een functie zijn van Nâ€”at, zoodat = â€” at/\' 5 V\' , en 5 t Verder is op (t : d 1/\' = - jir = - â€? d lpTJ dus: -L ??\' j- \'â– "/\'i a 3 t = â€” 2 t=vQ 3N Onderstellen we thans â€” iJL ^ ilf\' â€” Oa 3 t 30 ~ \' stellen wo hierin c>Â?/) _3i> ~ 3 lp3 N dan krijgen wo: 3 t/, TT 3 lp3 N\' = n waaruit blijkt dat yÂ? tot argument heeft N at. In dit gevalis in O op tijd t\' -f t" geen lichtbeweging; het argument vanxp wijst aan, dat in dit geval het oppervlak r/\' = deachterste grens der beweging vormt, terwijl voor hetargument Nâ€”at dat oppervlak de voorste grens vormt. 8



??? lU Indien we terugkeeren tot het vorige geval en voor schrijven , dan krijgen we: t=t\' r t=i\' i" n - ^ X sin H>\\q â€?t=i> r t=f daar verder V\'q = n>o en G een functie is van t/Â?, is ^^Q = 1=1\' t=i\' iÂ? dus: T\'?? = ^ 7.q sin V\'o t=f l\' t=i- i- t=V l=f l\' Hieruit volgt â– /.O =â–  ?•Q t=i\' i" t=f of Nu zijn i?i en de hoofdkromtestralen van het potentiaal-phaseoppervlak in ^ en dus i?i e en Jij e de hoofdkromte-stralen in het punt O, want zooals we zooeven aantoondenmogen we de constructie van Huygens toepassen om uitde grens op zeker oogenblik de grens op een later oogenblikte bepalen. De laatste vergelijking kunnen we dus schrijven in denvorm 1=1\' * indien qi en Qi zijn de hoofdkromtestralen van het grensop-pervlak.



??? 115 Dus: z Vqi Pa = ^ 1 waarin A een constante is voor alle punten gelegen op een-zelfde normaal op eenig grensoppervlak. Schrijven we de laatste verg. in den vorm â–  l = (105a) y QiQi dan blijkt hieruit dat men i voor een punt der grens kanvinden, indien men voor eenig ander punt gelegen op dezelfdegrensnormaal / kent op het oogenblik waarop dat punt inde grens, ligt benevens de hoofdkromtestralen van de grens indat punt. Indien we onderstellen dat de beweging stationair is, danis / onafhankelijk van t. Weten we dus y op eenig oogenblikdan kennen we y geheel. De betrekkingen (105) en (105a)gelden dan niet alleen voor de grens, maar voor het geheelegebied waar beweging is. Onderstellen we dat xÂŽ een maat is voor de energie derbeweging en dat deze zich met snelheid a voortbeweegt ineen richting loodrecht op de grens, dan zijn (105) en (105a)eenvoudig af to leiden uit de wet van behoud van arbeids-vermogen. Zij n.1. een oppervlak A de grens op eenig oogenblik en lide grens dt sec. later dan is zooals wo bewezen de loodrechteafstand der oppervlakken overal dezelfde n.1. dn

= adi. Beschou-wen we nu een element van A groot w en richten in elk puntvan de lijn die w omsluit loodlijnen op, dan snijden deze eenstukje w\' uit J{. Noemen we qi en qi do hoofdkromtestralenvan A in w, dan zijn die van B in w\' gelijk aan -{-dn en ()j -f dn en dan is eenvoudig in te zien:jf^ _ __ w\' ((?! -r dn) (q2 -i- dn)\' Nemen we nu n,an als maat der energie, en merken weop dat volgens de wet van behoud van arbeidsvermogen do



??? 116 energie op co aanwezig na dt sec. op w\' moet worden terug-gevonden, dan is in verband met de vorige vergelijking: Qi f  dn) {q-?? dn) \' waarin y\' is de waarde van / in co\' , of y, = y IZZZZZUl^lZZZZ . (ei dn) ((.2 dn) Hieruit volgen (105) en (105a) onmiddelijk. De onderstellingenwaarin we die verg. hier afleidden zijn echter zeer gewaagd,en deze afleiding mag dan ook alleen ter controle dienen. In het voorgaande onderstelden we, dat de functie Q, dieden vorm (96) had, de potentiaal was der beweging. Wekunnen even goed aannemen, dat (96) een der ontbindingsuit-wijkingen, ontbindingsmomenten of ontbindingskrachten voor-stelt. De geheele redeneering van dit hoofdstuk blijft dandezelfde ; alleen worden dan de eischen (97), waaraan U thansmoest voldoen, wat minder streng evenals we dat inHoofdstuk II bespraken. t. De DIFPERENTIAALVEBaELIJKING der oolfbkweoinn voorFUNCTIES VAN DEN VORM G y SIN J/i. Zoowel de potentiaal als de ontbindingsuit-wijkingen, ont-bindingskrachten of ontbindingsmomenten moeten voldoen aande diflf. verg. 52 (p = a^ A 9. (1) Â? Indien dus zooals we in dit hoofdstuk

onderstelden, dezofuncties den vorm hebben f]P = y sin V\',



??? 117 dan zal er tusschen G, i en ip krachtens (1) een verbandmoeten bestaan, dat we nu nog zullen gaan bespreken.Dan wordt {d G 3 lil 1\\ â€? r, ^ V\' =---^G â€” sm VÂ? Cr Y â€” cos V\' Tx] a X en x\' aii\' 3 ayp a X a X ^ ax\' \'\'\\3x\'\\ ^ i (^y y 4- 2 f/ ^ y cos v- . ( 3 lp ^3 X\' 3 X 3 X 5 xM Dus: A [a^ir (3xp\\\'- aG aG . / 3 uiV) . ^ = U. X (r}) X ^ V. 2 ^ jf (-â–  A , - O\', {s>n â€ž I2, .^i!\'V 2,, V ft  !cos â€ž,, {\'- 3 xp ^3 X\' a X3 X \' ] \'\' en = Iti? ^ i JT)  77 r\' \'\' 772 -\'\' ^ (rr) 1 \' f a^> ^3 11 ^ a t 3 t ^ * 5 p ^ De diff. verg. (1) wordt dus: ... [oÂ?1!i V 1 . O (V lx {. l \'^\'\'l\'ll =0. (106)



??? 118 Deze diff. verg. bestaat uit twee termen waarvan de eenesin lp en de andere cos tp als factor heeft. Geven we aanX, y, z en t aangroeiingen dan bewegen zich sin t// en cos t//periodisch tusschen â€” 1 en 1. Voor al die waarden van sin xpen cos lp moet (106) blijven gelden, waaruit volgt dat haarbeide termen nul moeten zijn, dus: ^ (T?^ - p " U) r TT, - ^) \\ 9 X d X a^dtdi ^ a? d e\' (107) en ^ -TAJTI \\  s x-^\' 3 t a t\\ ( 1 52.;, ] Deze diff. verg zijn in het algemeen onhandelbaar; voortwee bijzondere gevallen zijn er belangrijke gevolgtrekkingenuit te maken. A. Vooreerst kunnen we onderstellen, dat de bewegingstationair is. We bevinden ons dan niet in de buurt vande grens. In hoofdstuk II beredeneerden we dat voor eenstationaire beweging de functie rp = X sin lp . (33) den vorm krijgt F ^ f{xyz) sin | {x y z) tf. (.r y z) | (11) De vergelijkingen (107) worden dan en



??? 119 Dit zijn dezelfde vergelijkingen als we hebben gevonden inhet derde deel van hoofdstuk IL Uit de eisch dat zij moetengelden voor ieder waarde van t, leidden we toen reeds af devergelijkingen (42) en bovendien f^ = C. De laatste verg. zegtdat van een stationaire beweging van vorm (33) het trillings-getal overal hetzelfde is, zooals we daar hebben besproken. De vergelijkingen (42) kunnen we ook den vorm geven: A ty/^vA- C\'2 , (108) 2 V = 3 X d X indien we in het oog houden dat hierin de functies â– /, on ipden vorm hebben: I f {xyz), \'/\' = A  Gt. Do phasesnelheid van (33) is volgens (39) 51/\' 3 i 3 1/\' TN a 1/\' Tn waarni 3 i;i 5 X 3 {jl 3 1/ 3 lp <? ?? Tx Tn Tlj TN TT TN\' Nu is = 3 i|i 310 3.V zoodat



??? 120 en dus volgens (108) : 5 _ , -|/"A 7 Verder is ^ VÂ? _ ^Tt - zoodat we krijgen : \'L Door deze uitdrukking voor a\' kunnen we de phasesnelheideener stationaire beweging berekenen indien we alleen deamplitude x kennen; door (39) leerden we haar vinden alleenuit de phase Voor een paar bewegingen zullen we door middel van (109)de phasesnelheid eens berekenen. 1Â? (p = ^ sin m (r â€” at). Hier is Z = dus A z = 0, en dus volgens (109) : a\' = -t a q) A e sin (mxâ€”Ct), f waarin A, B en m constanten zijn. .70



??? 121 Laten we de constante A weg, dan is y = c dus Ay â€žâ€”L = m^--^ . y Stellen we dit in (109), dan wordt â€” VI Door middel van (39) vinden we voor a\' dezelfde waarde.3 \\ A . , ) of â– 1 X (f> =  VI- r* 8in j are tg mr â€” vi (r â€” at) j. Hier is C =â–  via, en laten we de constante A weg, dan is Hieruit vindt men A X _ _ "1^(1 m- r\') >Â?* â€” - - - (^r^m^r-^y Stolt men deze waarden van G en in (100) dan wordt Â?\' = i- Â? (l . In hoofdstuk III vonden wo in verg. (61) deze zelfdewaarde van a\' door middel van de formule (39).



??? 122 4Â° Nog een andere oplossing van de diff. verg. der golfbewe-weging is A. y q) - â€” are tg - F{r â€” at). T X Een speciale vorm hiervan van gedaante (33) isA = â€” arc tg j sin m(r â€” at). Hier is C = m a, en laten we weder de constante A weg, dan is 1 . y \'/ = â€” arc tg - .\'\' r X Men vindt l\\ y = O. Volgens (109) is dus rt\' = a, welke waarde van a\' door (39) direct wordt geleverd. B. Thans zullen we de diflf. verg. (107) nog behandelen in de onderstelling dat we ons bevinden in de buurt van de grens der beweging. Op de grens zelf zijn, indien Â?p voorstelt de potentiaal der d G s^G beweging, volgens (97) G, -- en gelijk aan nul, en daar wordt dus aan de verg. (107) voldaan zonder dat aan i of ipeenige eischen worden gesteld.In de buurt der grens is zooals we reeds opmerkten, volgens de ontwikkehng van Taylor, G oneindig klein L o. v.------on 1? i/\' -onemdig klem t. o. v. â€” 3 lp 3 V\'-



??? 123 In de buurt der grens is dus volgens de laatste der verge-lijkingen (107) Nu is weder en dus d tp TT , a\' ---- -t" a. Tn Een golf, die zich in de buurt der grens bevindt, heeft duseen phasesnelheid a. Indien de grens wordt gevormd door eenphaseoppervlak volgt hieruit dat de grens zich met snelheida voortbeweegt in een richting loodrecht op de grens. Deconstructie van Huygens mag dan worden toegepast om uitde grens op eenig oogenblik de grens op een volgend opper-vlak af te leiden. Door (110) gaat de eerste der verg. (107) over in: of daar G oneindig klein is t. o. v. aif \'â€?V \' U^ a fi ^ 3 X a X a\' a t a t We kunnen eens onderstellen dat evenals in het gebiedwaar de beweging stationair is, ook aan de grens hot trillings-getal onafhankelijk is van den tijd on dus â€”-\'J = o. Nemen we I? verder aan dat ook aan de grens -â€” = o, waartegen geen 1? t



??? 124 direct bezwaar is, daar door den factor G met de dempings-verschijnselen aan de grens voldoende rekening wordt gehou-den, dan wordt de laatste vergelijking: en (110) gaat dan over in: Om deze beide verg. te interpreteeren noemen we qi en q^de hoofdkromtestralen van het oppervlak xp {x^ y,z) = G en gaan - -f - uitdrukken in diflf. quot. van xp.Q\\ QiStellen we ter atkorting: aip _ 5 X P. aip _iy ~ (h \' 3ip _3 z L, d^ipTy^ - M, 3^ip _5 22 .d^xp _Sy dz d^vp _3z dX 3 Up _dx Sy en noemen-we verder Ki en K. de wortels van: I {Mâ€”K){Nâ€”K)-L"- I (N-K){L â€” K)-2[>i |\\ {L â€” K) (iUâ€” K) â€” JV\'2 j -f 2 Q ?„ ! M\' N\' â€” L\' (L - K) |-f 2 ?„ P { iV\' ?’>\' - W CMâ€” K)\\ 2PQ\\L\' W â€” lY\' (iVâ€”/(T) { = o; dan is: 1/P-\' TR\' VP\' Q\'\' R-or- -^^^- en^ c\'. = -^^---. 1) J 0 ac h i m 8 tft 1. Anwendung der Ditl\'. und Intogr. Kochnung auf diealgem. Th. der Fliichon und der Linil-n doppelter Krilnjiuung.



??? 125 Uit deze vierkantsverg. volgt:^r^ , â€”f^Qli\' iV)â€”L)â€” 2 QRL\' 4 2RPM> 2PQN\' - (^K, JU)- â€”WVorzf-R\'- en dus: __ /j. 1 \\ _ â€”P^]\\l-rN)â€”QHN L) â€” R2(^L M)-\\-2QRL\' 2EPM\' 2PQN\'\\n, oJ ~  Q2 of: /I 1 \\ va;/ yga;/ gj^_ay 3 s a y 3 e Indien we (112) differentieeren naar x, naar y en naar s,die drie vergelijkingen respectievelijk vermenigvuldigen met Z-lL enen vervolgens samentellen, vinden we3 x 3 y 3 z .3 2 V th (fJl)^ . 2 -i- â€”\'\' ^ = O " 3 x\'^ \\3 xJ ^ 3y 3e 3 y S z \' zoodat Cl i>i V O X \' Hieruit volgt door middel van (111) 2 V Â?J( fj: = _ ,  1), 3X3% * \\a x\' V\'i (\'/ 2 vil ^ = y (1 1) ^ 3X 3 N - ^ W), (>/ \' We namen aan, dat het oppervlak v zijn bolle zijde naar buitenkeert en naar dio richting telden wij N. Volgens de wet van



??? 126 behoud van arbeidsvermogen zal dan de intensiteit der bewegingin de richting van iV afnemen. Indien q, = y sin ip voorstelteen der lichtvectoren dan is -jr een maat voor de intensiteitder beweging. Dan is jr de ampUtude en derhalve essentieel positief, zoodat negatief is. Het toeken vervalt dus inbovenstaande verg. zoodat a N 2 \\qi \' Qi\' of Ql Qi\' Daar zijn bolle zijde naar buiten keert worden Â?i en Â?2geteld in dezelfde richting als iV, zoodat: ^ Ig X = - Ar Cs C\'i a N ^ ~ 2 a Nof y Q1Q2 waarin A een grootheid is die onafhankelijk is van N en dusconstant langs eenzelfde normaal op de grens. Keert het oppervlak i/Â? zijn holle zijde naar buiten, dan is â€”^j. positief, zoodat a TN Z _ 1., /I , IVN- 2 ^ qJ\' in dit geval worden echter (>[ en geteld in tegengesteldenzin als N, zoodat ook nu: a la ?¤lv 1 aN\\n. \' nJ \' aN 2 aN \\ \' qJ waaruit weder volgt: A (.\'i (.\'2



??? 127 Dit is onze verg. (105a) die we reeds bespraken in het eerstedeel van dit hoofdstuk. We bewezen dus dat de grens eener golfbeweging diebeheerscht wordt door functies van den vorm 9 = y sin i/.,zich met snelheid a voortplant in de richting loodrecht op degrens, dat dus de constructie van Huygens op de grensvan toepassing is en dat eindelijk in het grensgebied y boven-staanden vorm heeft. Daar i ondersteld is van t onafhankelijkte zijn zal % ook ver van de grenzen denzelfden vorm hebben. Tegen bovenstaande bewijsvoering is wel het een en anderin te brengen. We hebben n.1. aangenomen zonder bewijs, dat in de grens = 0 en = constant, en verder zou men dl d t kunnen betwijfelen of ook voor het grensgebied de diff. verg-(106) uiteen valt in de vergelijkingen (107). In het grensge-bied zijn n.1. Cf, T\'lp oneindig klein en de redeneering waardoor we uit (106) het stel (107) afleidden, wordt daar-door bedenkelijk. Daarom is aan de afleiding dezer stellingen die ik in heteerste deel van dit hoofdstuk gaf, de voorkeur te geven. Ikvermeld de laatste methode slechts, daar deze tot controlekan

dienen.



??? CONCLUSIES. i. Indien men onder golfoppervlaiiken van een golfbewegingwelker potentiaal den vorm heeft if y, sin 1// (33) verstaat oppervlakken, waarop de phase van elk der drieontbindingsuitwijkingen (elasticiteitstheorie v. h. hcht) of welde phase van elk der drie electrische of magnetische ontbin-dingsmomenten (electromagn. lichttheorie) overal gelijke waardeheeft, dan bestaan golfoppervlakken in het algemeen niet. Zelfs voor de meest eenvoudige bolvormige golven, die zichlaten denken, n. 1. voor die welker potentiaal den vorm heeft C . O r-at 9 = â€” sm 2 TT â€”, bestaan geen oppervlakken waarop elk der drie electrischeontbindingsmomenten overal gelijke phase heeft.



??? 129II. Bij de voortplanting van een golfbeweging welker poten-tiaal bovenstaanden vorm (33) heeft, moeten de volgendesnelheden worden onderscheiden: 1ÂŽ de voortplantingssnelheid van de grens derbeweging; 2ÂŽ de phasesnelheid van de potentiaal; 3ÂŽ de phasesnelheden van elk der drie ontbin-dingsuitwijkingen (elasticiteitstheorie v. h. licht); 4ÂŽ de phasesnelheden van de electrische ont-binding s vectoren (electromagn. â€?lichttheorie); 5ÂŽ de phasesnelheden van de magnetische ont-bindingsvectoren (electromagn. lichttheorie). Al deze snelheden zijn in het algemeen verschillend. Dophasesnelheden zijn zoowel afhankelijk van de phase alsvan ^0 amplitude; zij kunnen uit de phase berekendworden door middel van de formule (39) on uit de amplitudedoor middel van do formule (109). III. Bij eon stationaire golfbeweging (waaronder wo verstaan een golfbeweging waarvoor de amplitudo en de trillingstijd van elk deeltje van den tijd onafhankelijk is) van den vorm (33) is de trillingstijd van alle deeltjes dezelfde. Het is dus onmogelijk door concentratie van een golfbeweging haar tril- 0



??? 130 lingstijd te veranderen; in een focus en op grooten afstanddaarvan is de trillingstijd juist dezelfde. IV. Indien in den vrijen ether zich een golfbeweging voort-plant die op zeker oogenblik is begrensd tusschen tweephaseoppervlakken n. 1. een voorste en een achterste grens,dan treden in de buurt dier grenzen bijzondere verschijnselenop, die we in het 4Â° deel van Hoofdstuk H bespraken enaanduidden met den naam dempingsverschijnselen. Met die dempingsverschijnselen heeft men bij de bestu-deering van de voortplanting eener begrensde golfbewegingrekening te houden en doet men dit, dan kan door middelvan het theorema van Fourier de potentiaal van eenbegrensde golfbeweging worden geschreven in een vorm diedoor de geheele ruimte continu en eindig is. V. Indien een bolvormige golfbeweging op tijd t begrensdwordt door twee boloppervlakken met stralen r, en ra om hetmiddelpunt der beweging en haar potentiaal heeft den vorm m dan wordt zij op tijd 14-1\' begrensd door twee bolopper-vlakken met stralen ri^Lat\' enr^l^at\' om dat middelpunt,enbinnen die grenzen heeft haar potentiaal weder denzelfden vorm.



??? 131VI. Het door Stokes en door Voigt berekende phaseverschil(zie inleiding) treedt derhalve niet op, en hun resultaat z moet worden beschouwd als een gevolg van Fresnel\'sonjuiste opvatting en onjuiste mathematische formuleeringvan het beginsel van Huygens. Kent men, zooals Fresnel deed, physische beteekenis toeaan de elementaire golven van Huygens, dan eischt\'zooalsPoisson opmerkte (zie inleiding), bij een divergeerende bol-vormige golfbeweging de inwendig omhullende dier elementairegolven een naar het middelpunt terugloopende golfbeweging, diein werkelijkheid niet optreedt; bovendien kan dan niet al hetarbeidsvermogen krachtens do golfbeweging op tijd t aan-wezig tusschen de bollen rj on r.,, op tijd t t\' worden terug-gevonden tusschen de bollen n 4- ai\' en r-i at\'. Terwijl dus de elementaire golven van Huygens geon p h y-sische beteekenis hebben, mag men zo echter wol oenmeetkunstige beteekenis toekennen on zo volgens do 5Â°conclusie gebruiken als constructiemiddel om uit eon voor-gaande grens van een bolvormige golfbeweging do grens opeenig later oogenblik

to bepalen. VH. Indien van een golfbeweging welker potentiaal den vorm(33) heeft, do voorste grons o[) zekor oogenblik t\' wordt go-



??? 132 vormd door het oppervlak U\' t\') = Constant, dan wordt t sec. later de grens gevormd door het uitwendigomhullend oppervlak van alle bollen met stralen r = at omalle punten van die eerste grens beschreven. Hierin is a deconstante uit de diff. verg. der golfbeweging. VHI. Voor alle punten gelegen op een normaal op de grens derbeweging (33) geldt de betrekking X y QiQi = Constant, waarin x is de waarde der amphtude op het oogenblik datdie punten liggen in de grens en waarin en q2 zijn dehoofdkromtestralen van het grensoppervlak in die punten. Neemt men aan dat y^ een maat is voor de energie derbeweging en dat die energie zich met snelheid a voortplantin een richting loodrecht op de grens, dan is die betrekkingook af te leiden door toepassing van de wet van behoud vanarbeidsvermogen. IX. De phasesnelheden van de potentiaal en van de verschil- Â? lende ontbindingslichtvectoren zijn afhankelijk van den vormdier oppervlakken en in de verschillende punten van eenzelfdephaseoppervlak in het algemeen verschillend. Om uit een



??? 183 bekend phaseoppervlak een ander af te leiden mag dus deconstructie van Huygens niet worden aangewend. En verder, indien een punt A op zeker oogenblik ligt inde buurt van de voorste grens der beweging, dan zullen dephaseoppervlakken van de potentiaal en van de verschillendeontbindingslichtvectoren, waartoe A op dat oogenblik behoort,een anderen vorm hebben dan de phaseoppervlakken waartoeA op eenig later oogenblik behoort. Hoe de phasesnelheid samenhangt met den vorm van hetphaseoppervlak (of er b. v. een verband bestaat tusschen dekromming van een phaseoppervlak in eenig punt en dephasesnelheid in dat punt), en wat het verband is tusschenden vorm van het phaseoppervlak gaande door A op zekeroogenblik dat A ligt in de buurt der grens, en den vorm vanhet phaseoppervlak waartoe A behoort eenigen tijd later,zou nog aan oen nader onderzoek kunnen worden onder-worpen. De meeste dezer conclusies zijn zooals ik reeds in de in-leiding vermeldde voor lichtbewegingen van minder belangen moeilijk experimenteel te controleeren. Het is dan ookvoornamelijk

met het oog op olectromagnetische golf-bewegingen van grooter trillingstijd (grooter golf-lengte) dat ik het voorgaande onderzoek heb ingesteld.
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??? STELLINGEN. L De elementaire golven van ITuygkns hebben geen physischedoch slechts meetkunstige beteekenis. n. Men behoort to onderscheiden do snelheid waarmede degrens eener veratorinp; zich voortbeweegt en do j)hnsesiu)l-iieden dier verstoring. TIT. De snelheid dor grens oener golfbeweging is slechtsafhankelijk van don aard van het medium, haar pliase-snelheden hangen bovendien af van den aard der beweging. IV. Bij do voortplanting van oen golfbeweging in den vrijenether veranderen in hot algemeen haar phasesnelheden wol,maar de trillingstijd blijft standvastig.



??? 136Y. By een voortgaande trillende beweging is het verbandtusschen de uitwijking en de snelheid der deeltjes zoodanig,dat zii elkaar voortdurend energie overdragen in de richtingvan de verstoringsbronnen af. liet voortbestaan van datverband als de bronnen hebben opgehouden energie televeren geeft er verklaring van dat er geen golven naardie bronnen terugloopen (i). VI. De bewering (2) dat de aarde in een eeuw 22 sec. bijeen juisten chronometer achterblijft, mist voldoenden grond. VII. De moeilijkheden die volgens Hertz zich voordoenbij de mechanische verklaring der draaiende beweging vaneen steen aan oen touw, zijn denkbeeldig. VTIT. De strijd over het verschil tusschen een .rotatie en eentranshitie (\'\'Â?) is liet gevolg daarvan, dat men verzuimd heeftop to merken, dat men bij een rotatie steeds heeft to makenmet een versnelling, maar bij een translatie niet altijd. (1) Cf. aanhaling van POISSON, Inleiding pg. 5. (2) Thomson en tXit, Theor. Phys. Â§ 820, IIkhtz. Oos. W. I pg. 225, ete. (3) IlEUTZ, Ges. W. III. pg. ?Ÿ en 7. (4) Zio 0. O. E. Mach, Dio Mechanik in ihror Entwiokelung ; Kiipittdl 2, Â§ (i.



??? 137 IX. De samenstelling van krachten door middel van parallelo-gramconstructie kan niet worden bewezen, maar behoort alshypothese te worden aanvaard (i). X. De lichtverschijnselen door Boys aan kwartsdraden opge-merkt (2) zyn volledig te verklaren uit interferentie vanden door den draad direct teruggekaatsten en den tweemaalgebroken straal. XI. Het sissen van den electrisclien lichtboog wordt veroorzaaktdoor de directe \'aanraking van de zuurstof der lucht metde kom van do positieve koolstaaf. XII. Kathodcstralon zijn banen van geladen stoflelijke deeltjes. XIII.. Do eischen door Kiuciiuokf (>\') aan oen functie F (C)gesteld: 1Â° (C) is coiiliiiii voor iodoro waanio van C, 2Â° F (C) = O vo(.r C eindig, f F (C) (i C = 1 nis nuMi dio inlograal nocnil, Inssclicn oenoindig?? negiiticvo cn ccn eindigÂ? positieve waarde van zijn onvervulbaar. (1) V. A. Jui.ius, Boscliouwingon ovor do grondslagen dor Natuurkundo. (2) Boys, Nature. Vol. 40. pg. \'247. 1889. (3) Kusciiiiokk, Sitz. Bor. d. K??n. Acad. d. Wissonsoh. zu Borlin vom 22Juni 1882 pg. G4I. Wicdom. Ann. Hd. 18 pg. CG3. 1883. flos. Abh. von

KntciiiiOKF, Nachtrag pg. 22.



??? 138 XIV. Ten onrechte beweert Jamin (i) dat de evolute van eenhyperbool of ellips tot evolventen heeft een stelsel hyper-bolen of ellipsen. XV. Van het postulatum door Gauss gesteld bij de afleidingvan zijn foutenwet kan zoomin de juistheid als de onjuist-heid worden aangetoond. Het bewijs dat o. a. Berthand (2) geeft van de onjuist-heid er van, is foutief. XVI. Het paradoxale antwoord der kansrekening, dat bij hetspel van St. Petersburg de waarde voor A om met /i tespelen oneindig groot is, spruit voort uit de onderstellingdat B aan zijn verplichtingen zou kunnen voldoen. Bezit B een kapitaal 2\'", dan is eenvoudig te berekenendat de waarde van dat spel voor A niet oneindig groot is,maar gelijk is aan 1- u XVII. Daar men niet weet of het massa-middelpunt van dekomeet van Encke in rust is t. o. v. do kern, bestaat ergeen reden om ter verklaring van de verkorting van denomloopstijd dier kern aan te nemen dat dio komeet bijhaar beweging een tegenstand ondervindt. (1) Jamin et Bout y\' Cours do Physique, Optique G?Šomctriquo pg. 72 cn 74.(Paris 1887). (2) Beutrand, Calcul des Probabilit?Šs Â§ 143.



??? XVIII. 139 Onderzoekingen van J. J. Thomson over kathode-stralen maken het waarschijnlijk dat de atomen van deverschillende scheikundige elementen verschillende aggre-gaties zijn van deeltjes van dezelfde soort. XIX. De moleculairgowichten van gassen en de atoomgewichtenvan de elementen waaruit deze zijn opgebouwd, kunnenlangs physischen weg met gelijke of grooter nauwkeurig-heid worden bepaald dan langs chemischen. XX. Allo vaste lichamen hebben kristallijno structuur. XXI. Aan (le geschiedenis der natuurwetenschappen on aando kritiek van haar grondslagen en methode behoorde aanonze universiteiten een afzonderlijke leerstoel to wordengewijd. XXII. Het beeld waarin volgers van jSIaxwell (Louentz,V. A. JuLlUS) zijn theorie aanschouwelijk hebben gemaakt,kan bij het onderwijs in do leer van hot magnetisme endo elcctriciteit aan een hoogere burgerschool zonder ver-meerdering van moeilijkheden de verouderde voorstellingenvervangen.



??? XXIII. 140 By het onderwijs in natuurkunde mag slechts dan ge-bruik worden gemaakt van projectiebeelden, indien directeaanschouwing geheel onmogelyk is. XXIV. Ten onrechte meent Friedrich Ego (i) dat de slotcon-clusies van zijn â€žKritik der exacten Forschung": â€žAlle Naturgesetze sind bloss einfache, empirischeRegeln, die sich f??r die Systematisirung der bekanntenThatsachen als brauchbar erwiesen haben. Ihre Giltig-keit f??r die Zukunft ist und bleibt immer problema-tisch. Vorhersagungen mittelst derselben sind daherebenfalls nur von problematischem Wert. Alle Theoriensind nur willk??rliche Gesch??pfe unserer Vernunft ohnejeglichen anderen als systematisirenden und vielleichtheuristischen Wert. Denselben eine wirkliche Bedeu-tung zuzuerteilen ist th??richt und nur die Folge einermangelhaften Kenntniss der Grundlagen und des Zweckesunserer Forschung," etc. iets inhouden dat niet reeds vroeger door anderen is uit-gesproken. (1) Fuiedkicii Ego, Kritik der oxacton Forsoliung; E.J.Brill, Loidoii 1897.
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