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INLEIDING.,

In zijn ,Traité de la Lumiére” 1) Chap. I, pg. 17 en
18 houdt Huygens de volgende beschouwing :

oIl ¥ a & considerer, que chaque particule de g matiere,
dans laquelle une onde s'etend, ne doit pas communiquer son
mouvement seulement & la particule prochaine, qui est dans
la ligne droite tirée du point lumineux: mais qu’elle en donne
aussi necessairement i toutes Jes autres qui la touchent, et
qui s'opposent 4 son mouvement.

A De sorte quil faut
quautour de chaque par-
ticule il se fasse wune
onde dont cette particule
soit le centre. Ainsi si
D CF est une onde
emanée du point lumij-

. F neux 4, qui est son cen-
tre; la particule B, une
de celles qui sont com-
prises dans la  sphere

D CF, aura fait son onde particuliere X O L, qui touchera

Ponde DCF en ¢, an mesme moment. que l'onde principale,

emanée du point 4, est parvenué en D C Iy et il est clair
qu’il n'y aura que I'endroit ¢ de l'onde K (I, qui touchera

Figuur 1,

1) De volledige titel is:

Traité do la Lumiere, ol sont oxpliquéos les causes do co qui luy arrive
dans 1a Refloxion ot dans la Refraction et particuliercment dans etrange
Refraction du Cristal d'Islande, par C. H. D, Z, aveo un Discours de ln Cause
de la Pesantour, A Leide, chez Pierre van der Au, MDOXC,
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'onde D C F, scavoir celuy qui est dans la droite menée par
4 B. De mesme les autres particules comprises dans la
sphere D C F, comme bb, dd etc. auront fait chacune son onde.
Mais chacune de ces ondes ne peut estre qu'infiniment foible
comparée i l'onde D CF, a la composition de laquelle toutes
les autres contribuent par la partie de leur surface qui est
la plus éloignée du centre A.

I;on voit de plus que l'onde D (I est determinée par
Pextremité du mouvement, qui est sorti du point 4 en cer-
tain espace de temps; n'y ayant point de mouvement au de la
de cette onde, quoy quil y en ait bien dans lespace quelle
enferme, scavoir dans les parties des ondes particulieres, les-
quelles parties ne touchent point la sphere D CF.”

Dit is nagenoeg alles wab Huygens zelf zegt omtrent
zijn Zoo heroemd geworden beginsel. Er blijkt duidelijk uit
dat Huygens aannam, dat cen deel der beweging op zeker
oogenblik van A uitgegaan, Op €en later tijdstip gevonden
werd niet uitsluitend op heb oppervlak D CI', maar ook
binnen het oppervlak D C F op de deelen van de ,ondes par-
ticulieres” welke niet den bol D € F raken.

Verschillende natuurkundigen na Huygens hebben van
zijn beginsel een formuleering gegeven die meer omvat dan
Huygens zelf zegt. Het komt mij voor dat men de bedoeling
van Huygens het bestkan brengen in den vorm: , Elk deeltje
dat in beweging gekomen is, kan voor het vinden van eenig
ander golfoppervlak dan dat waarop het zelf gelegen is, be-
<chouwd worden als een middelpunt van trilling.” 1)

Fresnél 2) spreekt het aldus uit: ,Les vibrations d'une
onde lumineuse dans chacun de ses points peuvent étre re-
gardées comme la somme des mouvements élémentaires qu’y
enverraient au méme instant, en agissant isolément. toutes
les parties de cette onde considérée dans une quelconque de
ses positions antérieures.”

Dit is reeds iets meer; het geeft den grondslag van de

1y V. A. Julius Leerboek der Natuurkunde. Derde deel, derde druk

pg. 14
2) Oeuyres de Fresn el I pg. 208,



methode die Fresnel uit hetgeen Huygens gezegd heeft,
heeft afgeleid voor de bepaling van den bewegingstoestand
van een deeltje op een bepaald oogenblik.

Beer 1) houdt de volgende beschouwing naar aanleiding
van dat beginsel:

»HOrt der Punkt P mit seinem Leuchten nach einer Zeit
1" auf, so erhalten wir neben der iusseren Grenze der be-
ginnenden Lichtbewegung eine innere Grenze der aufhoren-
den. Wie jene, wird auch diese eine Kugel sein, deren Mit-
telpunkt P ist, und deren Radius sich stetizg mit der Ge-
schwindigkeit v verlingert. Nach der Zeit 77, die grosser als
T sei, wird sich daher derjenige Theil des Aethers in Bewe-
gung befinden, welcher in einer Kugelschale von den Radien
v 1" und v (7" -— T) liegt. Bei wachsender Zeit erweitert sich
diese Schale "IEICllfUImIU'. thre Dicke aber bleibt constant.

Von dem Hergange bei der Fortpflanzung des Lichtes
kénnen wir uns auch noch eine von der vorhergehenden
etwas abweichende Vorstellung bilden. Fiir die Zeit ¢ seien K,

p und A, (Fig. 2) die dus-
s sere und innere Grenze
einer Lichtwelle. Jeden

szhu Pankt der zwischen

K P K Ky und K, gelegenen
1 2 1 "
e / Aethermasse konnen
K' K % ' wir uns nun als Mit-

K S k-./ ¢, telpunkt einer neuen
TN s 3 ,J\, Lichterregung denken.

\\ / k - Nach der Zeit ¢t wird
S sich z. B. der Zustand
eines Punktes p; von
Ky auf die Punkte der Kugel ibertragen haben, deren
Mittelpunkt p, ist, und deren Radius » 1/ gleichkommt. Con-
struiren wir fiir alle Punkte von K, die zugehtrigen Kugeln
ky, so leuchtet ein, dass nach der Zeit ¢ der Zustand von K,
sich auf die Puankte derjenigen Fliche tibertragen hat, welche

Figuur 2,

1) Beer., Einleitung in die hihere Optik pg. 18, Braunschweig bij Vieweg
und Sohin 1853,
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jene Kugeln insgesammb berithrend umhiillt. Jene Kugeln
werden aber umhillt von zwei Kugelflichen, deren Centrum
der leuchtende Punkt P ist, und von denen die dussere K
den Radins » 7 + vt, die innere K;' den Radius v 7 — vt
hat; die letztere Kugel lassen wir unberiicksichtigt; von der
ersteren aber wissen wir aus dem Vorhergehenden, dass sie
wirkiich der Ort der Punkte ist, auf welche sich der Zustand
von K, nach der Zeit ¢ dbertragt. Dieselbe Construction
liefert uns fiir jeden Schwingungszustand der Welle eine
qussere und innere Fliche, von denen wir jene als den Ort
der Punkte, auf welche sich der fragliche Zustand iibertragen
hat, beibehalten. Und der Inbegriff dieser dusseren Flichen
ist der Ort, nach dem sich die urspriingliche Welle nach
Verlauf der Zeit ¢ fortgepflanzt. Die innere Grenze der neuen
Welle ist die Kugel K__f, welche die den Punkten p, der Fliche
K, entsprechenden Kugeln /&, nach Aussen hin umhiillt. Das
mitgetheilte Verfahren, von einer Welle zu einer ihrer spi-
teren Lagen iiberzugehen, wiirde auch dann anzuwenden sein,
wenn die urspriingliche Welle eine andere als kugelige Ge-
stalt besiisse. Die dem Verfahren zu Grunde liegende Vorstel-
lungsart heisst nach ihrem Erfinder das Huyghens'sche
Princip.”

Hier iwordt dus in de eerste plaats aangenomen dat, wan-
neer de beweging in P ophoudt, na een zekeren tijd de ge-
heele beweging besloten is tusschen de oppervlakken K, en
K,. Dat dit werkelijk zoo is zal ik in Hoofdstuk III be-
wijzen, maar het is zeker niet iets dat uit het beginsel van
Huygens voortvloeit. Opmerkelijk is dat Beer van de in-
wendig omhullende I\’,” eenvoudig maar zegh: ,die letztere
Kugel lassen wir unberiicksichtigt”.

Die inwendig omhullende werd dan ook door Poisson
aangehaald als een groot bezwaar tegen hetgeen Fresnel
uit het beginsel van Huygens afleidde. In een brief aan
Fresnel waarvan hij een extract heeft gepubliceerd 1) en

1) Poisson. Annales de Chim, et de Physique, t XXIT p. 270, cahier
de Mars 18235,
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die is opgenomen in de Oeuvres de Fresnel t. II pg.
206 s.s. zegt Poisson op pg. 209:

+Je vous ferai aussi remarquer que, dans le raisonnement
qui vous a conduit & la formule de la page 287 de votre
Mémoire sur la diffraction 1) rien n’exprime que le point
P 2) soit situé au dela de I'onde A4 M F, et que, s'il était situé
en dech de cette onde, le méme raisonnement appliqué mot &
mot vous conduirait & une formule semblable pour exprimer
la vitesse qu’il recoit. Il suivrait donc de vos principes que
Ponde 4 M F, méme quand elle est compléte, devrait produire
du mouvement en deca et au deld de sa position; conclusion
qui suffirait pour montrer qu'il y a un vice quelconque dans
votre maniére d’envisager la question. Et, en effet, la pro-
duction d’une nouvelle onde en avant de celle que vous con-
sidérez, et la non-communication du mouvement en arriére,
n‘ont lien qu’d raison d'un rapport déterminé qui subsiste,
dans l'onde donnée, entre les condensations et les vitesses
propres des molécules fluides, et nullement & raison de l'in-
terférence des ondes élémentaires parties de tous les points
a des instants différents.”

Het antwoord van Fresnel: 3)

,Je conviens que le principe de la composition des petits
mouvements doit s’appliquer & ce cas comme a celui que j'ai
considéré; mais si les éléments dans lesquels je concois 'onde
divisée ne peuvent pas envoyer de mouvemeént de ce coté,
méme en agissant isolément, il est clair que la résultante des
ondes élémentaires sera nulle. Je ne vois donc pas qu'il résulte
de mes principes qu'une onde doive produire des mouvements
rétrogrades,”

kan dan ook als weinig afdoende gelden.

Maar Poisson had nog meer bezwaren. In dien zelfden
brief 4) wees hij er Fresnel op dat de uitwijking die een
deeltje kreeg bij de berekeningswijze van F'resnel evenredig

15 Oeuvres de Fresnel t. 1 pg, 313,

23 P is het punt woarin Fresnel berckent de intensiteit der beweging
uitgezonden door alle deeltjes van het golifront A M F.

3) Oeuvres de Fresnel t. I pg. 219,

4) Oeuvres de Fresnel t IL pg, 208,
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was met de golflengte, wat toch vrijwel onaannemelijk mocht
heeten, of men moest onderstellen dat de invloed van een
solfoppervlak-element omgekeerd evenredig was met de golf-
lengte, wat even onaannemelijk was.

Fresnel zag zeer wel in dat het beginsel van Huygens,
zooals hij dat had geformuleerd en toegepast, niet tot uit-
komsten overeenkomende met de verschijnselen zou leiden,
indien hij aannam dat de intensiteit van de secundaire golven
in alle punten even groot was. Hij zegt: 1)

,L’'impulsion qui a été communiquée a toutes les parties de
'onde primitive étant dirigée suivant la normale, les mouve-
ments quelles tendent & imprimer & 1'éther doivent étre plus
intenses dans cette direction que dans toute autre ; et les rayons
qui en émaneraient, si elles agissaientisolément, seraient d’autant
plus faibles qu'ils s’écarteraient davantage de cette direction.

La recherche de la loi suivant laquelle leur intensité varierait
autour de chaque centre d'ébranlement présenterait sans doute
de grandes difficultés; meais heureusement nous n'avons pas
besoin de la connaitre, car il est aisé de voir que les effets
produits par ces rayons se détruisent presque compléetement
dés qu’ils s'inclinent sensiblement sur la normale, en sorte
que ceux qui influent d’une maniére appréciable sur la quan-
tité de lumiere que recoit chaque point P peuvent étre regardés
comme d’égale intensité.”

Later heeft Fresnel 2) in antwoord op een aanval van
Poisson getracht de wet af te leiden volgens welke men
moet aannemen dat de intensiteit over de verschillende punten
van een zelfde secundaire golf verdeeld is. Is M een punt van
een secundaire golf met A als middelpunt en verder C het
punt waar die golf wordt gesneden door de golffrontsnormaal
saande door 4, dan zou volgens Fresnel de intensiteit van
de secundaire golf in het punt M evenredig zijn met de cosinus
van hoek M A C, Deze cosinuswet is echter zeer weinig
vruchtbaar gebleken en aan een uitdaging van Poisson 8)

1) Oeuvres de Fresnel t. I pg. 295,
2) Oeuvres de Fresnel t. 1L pg. .

)
3) Ocuvres de Fresnel t. II pg. 226.
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om de berekening der intensiteit met behulp dier wet nu eens
uit te voeren voor een zeer eenvoudig geval, waarin de uit-
komst te voren bekend was, heeft 'resnel niet voldaan.

Trouwens het is gebleken 1) dat in een ander geval de
berekeningswijze van I'resnel tot een onjuiste uitkomst
leidde. Is P een lichtgevend punt, M een bol met P als
middelpunt en C een punt gelegen buiten A, dan vindt men
voor de phase in C, indien men deze berekent door middel van
de secundaire golven door M uitgezonden volgens de bereke-
ningswijze van IFresnel, niet wat de rechtstreeksche be-
schouwing geeft, maar een phase die ‘; grooter is. Jamin
et Bouty 2) zeggen naar aanleiding hiervan :

»,0n ne s’est pas arrété a ce résultat bizarre d’une analyse
évidemment incompléte, lequel ne parait pas susceptible d’inter-
prétation physique.”

Dit alles mag niet als een verwijt tegen Fresnel gelden;
integendeel bewijst het hoe zijn intuitie hem hielp zwarigheden
te overwinnen of tijdelijk op zijde te zetten, die een Poisson
het voortgaan onmogelijk maakten. In tegenstelling met P oi s-
son kende Fresnel aan het resultaat zijner beschou-
wingen de hoogste waarde toe; of die beschouwingen zelf
volmaakt exact waren liect hem vrij koud, want de juistheid
zijner resultaten kon hij aan het experiment toetsen. In dien
geest uit hij zich zeer kras aan het slot van boven aangehaalden
brief :

yPeut-étre direz-vous encore que je suis arrivé i des résul-
tats justes en raisonnant faux. Au reste, si cette mauvaise
maniére de raisonner me conduit a4 des vérités nouvelles,
comme je lespere, elle m’ aura procuré tous les avantages
qu'on peut retirer des bonnes méthodes, la facilité des décou-
vertes et lexactitude des résultats.”

1) Stokoes. On the Dyn, Th, of Diffraction. Transactions of the Cambr,
Phil. Soe. Vol. IX, pg. 2 (26 Nov, 1849). Math. and Phys. Papers Vol, II,
pE. 244,

W. Voigt Zur Fresnel'schen Theor, der Diffractionsersoheinungen, Wied,
Ann, 3, pg. 533, 1878,

2) Jamin et Bouty, Cours de Physique, Paris 1887, t. III. 8. pg. 365,
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Maar wel blijkt hieruit dat het beginsel van Huygens
in zijn meer eenvoudigen vorm of zelfs in den vorm, waarin
Fresnel het bracht, physisch onjuist is.

Daarom kwam het mij niet onbelangrijk voor in de eerste
plaats de voortplanting van een holvormige verstoring aan
een wiskundig onderzoek te onderwerpen. Daarmede zal ik
mij bezig houden in het derde hoofdstuk van dit proefschrift
en daarbij gelegenheid vinden om Poisso n’'s opmerking be-
treffende het terugloopen der golven en evenzoo Stokes’
zonderling resultaat te weerleggen.

Wij zullen daar doen zien dat, indien het punt A gedurende
eenigen tijd middelpunt van verstoring is geweest, er eenigen
tijd later alleen beweging bestaat binnen een deel der ruimte
besloten tusschen twee bollen met A als middelpunt, en dat
de voorstelling, die Beer zich vormt van de voortplanting
van een bolvormige verstoring, (zie pag. 3) juist is; dat nl.
indien op zeker oogenblik alleen beweging wordt gevonden
hinnen de bolschaal K, Ky (zie figuur 2) er ¢ sec. later alleen
beweging binnen de bolschaal K, K bestaat. Indien men aan
de secundaire golven physische beteekenis toekent, zou slechts
een deel der energie aanwezig binnen K, K; binnen KK!
worden teruggevonden en dus ook buiten die schaal beweging
moeten bestaan volgens de wet van behoud van arbeidsver-
mogen. Kennen wij dus physische beteekenis toe aan die
secundaire golven en aan de beschouwingen van Huygens,
dan komen wij in strijd met de wet van behoud van arbeids-
vermogen. Dit geeft ons recht te zeggen, dat het beginsel van
Huygens tot strijd voert met de web van behoud van
arbeidsvermogen en derhalve physisch onjuist 1s.

Hiervan echter mogen wij den genialen grondlegger van de
theorie der golfbeweging geen verwijt maken, vooreerst toch
was hem de wet van het behoud van arbeidsvermogen onbe-
kend en bovendien moet men naar mij voorkomt aan zijn
beschouwingen geen physische maar slechts een meetkunstige
beteekenis toekennen. Van die beschouwingen toch zegt
Huygens in onmiddellijke aansluiting met voorstaande aan-
haling: ,Et tout cecy ne doit pas sembler estre recherché
avec trop de soin, ni de subtilité ; puisque l'on verra dans la
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suite, que toutes les proprietez de la lumiere, et tout ce qui
appartient a sa reflexion et & sa refraction, s’explique prin-
cipalement par ce moven.”

De hier bedoelde verklaringen der wetten van terugkaatsing
en breking nu bestaan slechts in zijn bekende meetkunstige
constructies van den teruggekaatsten en den gebroken straal
van een vlakke verstoring door een vlakke grenslaag. Huy-
gens heeft die beschouwingen naar mij voorkomt alleen
gehouden om die constructies te motiveeren. Daar, waar
Fresnel door Poisson in het nauw gedreven physische
beteekenis hecht aan de secundaire golven en b.v. gaat
spreken over de verdeeling der intensiteit over die golven,
beginnen de onjuistheden en wijkt hij mijns inziens van
de voorstellingen van Huygens af,

Hoewel het dus zeer te betreuren is dat Huygens zelf
geen scherpere formuleering aan zijn denkbeelden heeft ge-
geven, zijn hem dunkt mij de onjuiste resultaten door anderen
daaruit afgeleid niet toe te rekenen, maar heeft men slechts
het recht aan zijn beginsel meetkunstige beteekenis toe te
kennen, n.l. in zooverre het ons de grens der beweging leert
vinden en ons een middel aan de hand doet om uit een vorig
golffiront een volgend te construeeren. Wij hebben er zijn
geniale beperking in te bewonderen dat hij zelf dat ook deed.

In Hoofdstuk III zal ons blijken dat slechts voor etherbe-
wegingen van oneindig kleine golflengte de golffrontsconstructie
van Huygens voor bolvormige en vlakke golven geheel
juist is.

Toen ik deze quaestie had onderzocht, deed zich als van-
zelf de vraag aan mij voor: hoe staat het met de golffronts-
constructie van Huygens voor golven van willekeurigen
vorm? Daartoe had ik dus het volgende vraagstuk te be-
handelen: indien gegeven is dat een gesloten opperviak A
golffront is voor een beweging die zich voortplant naar buiten
toe, is dan de uitwendig omhullende van bollen met gelijken
straal beschreven om alle punten van 4 voor die beweging
ook een golffront? De behandeling van dat vraagstuk maakt
in eenigszins gewijzigden vorm den hoofdinhoud uit van
Hoofdstuk IV,
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Tegenwoordig duidt men met den naam beginsel van
Huygens dikwijls aan een theorema door Kirchhoff afge-
leid en dat ons in staat stelt om uit een golfbeweging die op
eenig oogenblik gegeven is, de beweging na een willekeurig
tijdsverloop af te leiden. Toen ik zooeven het beginsel van
Huygens physisch onjuist noemde, bedoelde ik daarmede
natuurlijk geenszins dat theorema van Kirchhoff hetwelk
in den laatsten tijd volmaakt streng bewezen is. Integendeel,
van dat theorema dat de oplossing van alle vraagstukken over
golfbewegingen in een isotroop medium impliciet bevat, zalik
juist gebruik maken om het physisch onjuiste in het beginsel
van Huygens en in de formuleering ervan door Fresnel
aan te toonen.

Met de afleiding en de bespreking van dat theorema heb ik
mij bezig gehouden in Hoofdstuk I, terwijl in Hoofdstuk II
eenige algemeene besprekingen van eolfbewegingen worden
gehouden.

Ten slotte wil ik nog opmerken dat ik nergens heb inge-
voerd de voorwaarde dat de golflengte der heweging oneindig
Kklein is. Doet men dit wel, dan worden de berekeningen veel
eenvoudiger, maar dan gelden de beschouwingen slechts (bij
benadering) voor lichtbewegingen en verliezen nagenoeg geheel
haar beteekenis. Hoewel ik dus in het vervolg de nomenclatuur
voor lichtbewegingen gebruik, kunnen op etherverstoringen
van eindige golflengte de verkregen resultaten evengoed worden
toegepast. Juist voor sulke electromagnetische golfbewegingen
verkrijgen zij naar mij voorkomt hun beteekenis en met het
oog daarop’is het datik de voortplanting van etherverstoringen
heb bestudeerd.



HOOFDSTUK L

KIRCHHOFF’S FORMULEERING VAN HET BEGINSEL
VAN HUYGENS.

1. POTENTIAALFUNCTIE EENER (GOLFBEWEGING.

e o o o e Y

In de volgende beschouwingen zullen we ons voorstellen
te doen te hebben met een goltheweging in den homogenen
en isotropen ether. Zulk een golfbeweging wordt beheerscht
door drie van de codrdinaten x, y en z en van den tijd ¢
afhankelijke functies U, V en 17, die moeten voldoen aan de
part. diff. verg.

P A
'3 fl = ° L Q, (1)

waarin @ een constante is voor den ether en .\ de bekende
notatie is voor den operator

2 32 L
, o -

3 xs el ,.',‘.'. Jz=

Indien we ons plaatsen op het standpunt van de elastici-
teitstheorie van het licht en derhalve den ether beschouwen
als een elastisch onsamendrukbaar medium en licht als een
zich daarin transversaal voortplantende verstoring, dan wordt
een lichtbeweging bepaald door de ontbindingsuitwijkingen u,
v en w van een etherdeeltje langs de codrdinatenassen en dan
worden die functies w, v en w uit bovengenoemde functies
U, ¥V en W afgeleid door middel van de vergelijkingen:



oV sW

U = —_
9z aq -
e W U

VR~ g
82 3z (2)
U eV

W = 31_j 3 = i

Indien dus U, ¥V en ¥ gegeven zijn, dan wordt in de
elasticiteitstheorie van het licht een lichtbeweging door de
vergelijkingen (2) volkomen bepaald en omgekeerd, indien de
lichtbeweging gegeven is, dan kunnen de dan gegeven functies
u, v en w steeds worden geschreven in den vorm (2), terwijl
de daarin voorkomende functies U, V en IV voldoen aan de
dift. verg. (1). Voor iedere lichtbeweging is dus in de elasti-
citeitstheorie voldoende de bestudeering van die functies U,
V en W die onderling onafhankelijk zijn maar moeten voldoen
aan (1).

Aanvaarden we de electromagnetische lichttheorie en be-
schounwen we derhalve den ether als een electrisch en mag-
netisch polariseerbaar medium en licht als de voortplanting
daarin van electrische en magnetische schommelingen, dan
wordt de electromagnetische toestand van den ether en dus
de lichtbeweging bepaald door de volgende twaalf functies van
X, i, zen t: '

¥, 9, 3, de ontbondenen van het electrisch moment per

volume eenheid ;

g, M, N, de ontbondenen van het magnetisch moment per
volume eenheid ;
X, Y, Z de ontbondenen van de electrische kracht;

L, M, N, de ontbondenen van de magnetische kracht.
Evenals #, » en w hangen ook deze functies van drie functies

{7, V en W af en worden daaruit afgeleid door middel van de
vergelijkingen :



a sV e W 1 X
—T — = —_—— A\ ="1"1TJC’
2z QY :
_?__aTV_ag ,},247;)
SGT 3z’ 7N
3 2U oV 74 3
—_— = —— — - '] A= 3T —
: 3 Y 3.x ¢
3 U ¢ & 2
= —Adue>", L= d et
ul' ll.(
A lf ())'\
M= —dvple=ns BM = et
&t it
oW N
N=—Adpe—, ﬁrménjt—-
th l[l

Hierin zijn ¢ en u constanten voor het medium, die in den
vrijen ether gelijk 1 worden en 4 is de constante, waardoor
men van het electromagnetische naar het electrostatische maat-
stelsel overgaat, zoodanig dat in eenheden van het C. G. S,
stelsel ongeveer

Al e L X
3.1010

Evenals in de elasticiteitstheorie is dus ook hier, indien [/,
vV en W gegeven zijn, een lichtheweging geheel bepaald en
omgekeerd, indien de lichtbeweging gegeven is, dan kunnen de
electrische en magnetische ontbindingskrachten en ontbindings-
momenten steeds worden geschreven in den vorm (3). Ook
hier is dus voor iedere lichtheweging de bestudeering der func-
ties U, V en 1V voldoende.

Terwijl echter in de elasticiteitstheorie de functies u VvV
en 1V moeten voldoen aan (1) maar onafhankelijk Zijn van
elkaar, moeten in de electromagnetische lichttheorie de
functies U, ¥ en 17" behalve aan (1) ook nog voldoen aan
de betrekking:

el V oW

J
+ 5t g =0, )

en zijn hier dus niet onafhankelijk van elkaar.
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Daar in de elasticiteitstheorie U, ¥ en W onafhankelijk van
elkaar zijn, kunnen we daar eens onderstellen :

—N
V=0, (5)
Wa=R0%

waarin ¢ voldoen moet aan (1). Door de beweging (5) samen
te stellen met twee andere dergelijke bewegingen, waarvan
voor de eene U en ¥ en voor de andere U/ en W nul zijn,
keeren we tot het algemeene geval terug. Omgekeerd kan
een willekeurige lichtheweging steeds in drie zulke bewegingen
ontbonden worden. In plaats van de vergelijkingen (2)krijgen
we dan:

ta— ()3 J

.. 7.

i P (6)
TR

W= —.
2y

In de electromagnetische lichttheorie moeten U, V en 1V
voldoen aan (1) en aan (4); dit is het geval zoo we stellen:

3y agy |
U = LR
02 L).:'/
3 3
4 b (p.’ [ q ]
= sy a8z | (1)
a o2
T aq 24y
= e ;
ay e a /

terwijl ¢, ¢, en ¢, voldoen aan (1), maar onafhankelijk kunnen
zijn van elkaar.

De beweging (7) kunnen we splitsen in drie bewegingen
door beurtelings twee der functies g, ¢, en ¢, gelijk nul te
stellen.

We blijven dus algemeen, indien we één dezer bewegingen
bestudeeren, b.v.



U= 0,
V=—29%
®)
y__ 00
W = i

waarin ¢ een oplossing is van (1). Dan worden de vergelij-
kingen (3):

X 22 2 ¥
UL RS Xt
|.3 v G.JI

D & q ) I )

¢  oxay’ T

Bl Esisio : 3

- = 42 = 44 ?

: Prdz : ©)

-g = 0; I = 0.

n { a2 n m

W = A ue S el ] :‘lrr'“,
@ i)-e

N =—A4Adue — - N =4nx :
ey at I

Volgens beide lichttheorieén kan dus iedere lichtbeweging
worden gesplitst in drie andere, die elk door één functie ¢
worden beheerscht, welke alleen onderworpen is aan de voor-
waarde dat zij moet voldoen aan (1).

In de elasticiteitstheorie kunnen we door middel der ver-
gelijkingen (6) en in de electromagnetische lichttheorie door
middel van (9) voor een dezer drie bewegingen alle lichtvec-
toren berekenen. De bestudeering van één functie ¢, die aan
(1) voldoet, is dus volgens beide theorieén voldoende.

Von Helmholtz gebruikt in zijn ,Vorlesungen iber
die Blectromagnetische Theorie des Lichts” de uitdrukking
,Wellenpotential”. Ik zal die uitdrukking overnemen en
de functic ¢ aanduiden met den naam ,potentiaal der
golfbeweging”.

Fen willekeurige lichtbeweging heeft dus volgens het boven-
staande drie potentialen, maar kan steeds worden gesplitst in
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dric bewegingen waarvoor telkens twee der potentialen nul
zijn. Met de bestudeering van eeén dezer drie bewegingen
en dus met de bestudeering van één potentiaal kunnen
we volstaan.

2 AFLEIDING EN BETEEKENIS VAN KIRCHHOT 'S TORMULEERING

VAN HET BEGINSEL VAN HUYGENS.

Door Kirchhoff 1) is een theorema afgeleid, dat gewoon-
lijk wordt genoemd de formuleering van het beginsel van
Huygens door Kirchhoff, en dat ons in staat stelt om
nit de waarde, die een functie, welke voldoet aan de diff.
verg. der golfbeweging (1), op een gesloten oppervlak s heeft,
te berekenen de waarde dier functie in eenig punt binnen s
gelegen. Daartoe moet binnen s de ether continu zijn ; binnen
s mogen dus geen vreemde lichamen of lichtbronnen zich be-
vinden. Bij de afleiding van dat theorema wordt van het
beginsel van Huygens geen gebruik gemaakt en evenmin
volgt de juistheid der golffrontsconstructie van Huygens er
onmiddellijk uit. Daarom komt het mij voor, dat er weinig
reden bestaat, om dat theorema te noemen de formuleering
van het beginsel van Huygens. Waarschijnlijk heeft het dien
naam gekregen, omdat als basis der hestudeering van licht-
verschijnselen in den isotropen ether het beginsel van Huy-
gens door dat theorema kan worden vervangen.

Kirchhoff leidt zijn theorema op de volgende wijze af:

Indien U en V twee functies zijn van «, ¥ en z, die met
haar eerste diff. quot. naar =, y en z binnen een geheel be-
grensde ruimte (welke nit verschillende gescheiden deelen kan
bestaan) eenwaardig en continu zijn; indien dz een element
van die ruimte is en ds een element van haar oppervlak s
(hetwelk eveneens uit verschillende gescheiden deelen kan
bestaan); en indien N de normaal is op het oppervlak s naar

1y Kirchhoff Sitz. Ber. d. Kin. Acad. d. Wissensch. zu Berlin vom 22
Juni 1882 pg. 641. Wiedem. Ann. Bd. 18 pg. 663, 18835
Gesamm. Abhandl. von Kirehho ff, Nachtrag pag. 22,
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binnen toe getrokken, dan is volgens het theorema van Green

ﬁzs(w‘; o) ]}zr (VAU-UAYV).

Hierin stelt Kirchhoff U= ¢, terwijl ¢ een functie is die
voldoet aan de diff. verg. der golfbeweging (1).

Van 7, welke functie we zoo aanstonds nader zullen be-
palen, neemt Kirchhoff aan dat zij ook aan (1) voldoet.

Het theorema van Green gaat dan over in:

r av ;e L3 729 eV
jrl‘q ({II - W_I ‘_DIV) = 7(];2 Lt’{ll’(l ?{—fp t’t)'

Vermenigvuldigen we beide leden met df en integreeren over
t tusschen de negatieve en positieve grenzen — ¢ en ¢'/, dan is

,,,,Q',._q AV S (U P avV
]ilti.f?s q vV U"v') = — [_.l(h (l 5 = )] (10)

Kirchhoff stelt nu

v — I (rq + gj)’
T
waarin 7, de afstand is van eenig punt @, v en z tot een
willekeurig vast punt o. Deze onderstelling is geoorloofd,
want dan voldoet. V" aan (1) voor elken vorm van /7.
etreffende /' onderstelt Kirehh off:

I* F(C) en I (C) zijn oneindig klein voor iedere eindige
positieve of negatieve waarde van £;

20 F(©), 15 nooit negatief, wat ook & moge Zijn;

FSLFEAdE =1, (I1)

indien we deze integraal nemen van een ecindige negatieve tot
een eindige positieve waarde van &

Zij nu gegeven een ruimte geheel begrensd door een opper-
viak s, waarbinnen de ether homogeen is en waarbinnen geen
lichtbronnen voorkomen. Het punt o kiezen we binnen die
l'uimtn Dan is binnen die ruimte ¢ continu en eindig en ook

" behalve in het punt o, waar oneindig groot wordt.

We mogen dus (10) toepassen op de rnimte begrensd door s en

<)
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een oneindig klein bolletje met straal F, dat we om het punt
o leggen. Van dat bolletje zij d/S een oppervlakteelement.
Verder kiezen we ' zoo groot, dat voor de geheele ruimte s
_de uitdrukking r, — at’ negatief en eindig Dblijft.
Onder die voorwaarden komen in de rechterzijde van (10)
3V : M
slechts waarden voor van V en <7 2 vaarin 7, + at eindig
positief of eindig negatief is, en die dus oneindig klein zijn.
Van de vergelijkingen (10) blijft dus slechts over:

sk el '[)' - e o V pe a L
]dtﬁls (955 — V- %) [H[!S N e )
44 = A

In de tweede integraal is
F (R -+ at)
R 2

1 1 s F(R+ u!)

—— m FR+a)+ 7 —p

V

=

V

o
2

aN

=

2 |
I

w| w

Noemen we nu doe een ruimtehoekelement, waarvan het

punt o hoekpunt is, dan is

aSi= Redo

en dus
A oV LA
’d'\ (v 55 —Vsm)
aI'(R + at R
= ftlﬁ z—* pl'(R+at) + Bg (f:].'! 22 I 5 (j’\f F(R 4 f[.f):)

of daar [ oneindig klein is:

» f +
[rﬂﬁ' (I’Il :Z J\[ - - l]’ L: :i;) —— ’ H’l"i (]l“ f" (” l’) : — fl; 1T t“w” I"(U.!) 3

waarin ¢, voorstelt de waarde van ¢ in het punt o op den
tijd ¢.
Nu is volgens (11)

Ifu Mot = s

VISR
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en tot de waarde dezer integraal hebben alleen bijgedragen

de elementen in de buurt van ¢

I

f(zt ¢, (D) F(at) =

== {1} dus

1
(.; 'PO (”) 1

waarin g, (0) voorstelt de waarde van ¢ in het punt o op

tijd ¢ = o.

De tweede integraal uit (12) wordt dus

2
anN

]rlf {riS (p Sy e— I

irv

4 o
) =——0,(0).

Thans gaan we de eerste integraal van (12) transformeeren
na omkeering der integraties wordt zij

J 3 ]_7
frfs ‘(E!. (*I SN
- o/ 7"
hierin 1s
X f o
/.f”VL‘I /‘(”](’ AN
Vi IV To

=

aN ~

roQ

3N

)

1 ((3114)
ar, \eN/j—_nr'

differentiatie gesteld moet

e o . . e
terwijl in =% na uitvoering de
i aN
worden t = — "'. Stellen we dus
{
e qi
- f(t
AN (0,

dan wordt

Vervolgens is

aV _ 3 F(r, + al)
aN o N Yo
1
|'J
v s
F(r, 4+ at) = i

1 81, - 9

aN ot E(re +at),

ar,
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en dus
1

s e W
oV 11 ANl e 3 F(r, + at)
f(H PFN” aNa'’ (—Ld) Tar, aN f} TR i

wat door partieele integratie van de laatste integraal overgaat in

1
S R v\ 18T g
]‘(?t p - _AT = 2 i\; ?1: p (— (_’[) + ;r— =5 \ i ] (TI, s ﬂt) _
LV S 0 ¥ =T

So DL ST f P P+ at)dt.

aATo e J\T

De tweede term is nul omdat /7 voor een eindig argument
verdwijnt en delaatste term herleidend volgens (11) krijgen we:

i 'J]
G 2¥ _md oy L an (o
y PaN =~ &N a / i atr, 3N \ 2t/ —_=

Derhalve wordt (12) :

[dh[ YN a ’f’:) T a® ]:,, 2)1{ (_"?)‘. o oa :';; /.(_ ’rT)] 4: 7 (0) = ©.

Verleggen we nu den tijdsoorsprong, zoodat het oorspron-
kelijke aanvangspunt het tijdstip / wordt, dan is

i T, To d 7T ) . 4 o r
a0 fae L (=7 - -2 7(=%)
T Po (1) [" | a N il = are N 3 r /1 = ‘
Merken we nu nog op datb
o 1 ; 7‘.,) (f T
== (] - ) —
rr) ! r“) 1 L) 7, ¢ " ( il - ‘, “)
Iy ) — — : ’
aN / ( a ar, &N el d N rd ‘

)

indien  we onder den operator ‘\,in hot tweede lid dezer
o A
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5 7, o
vergelijking verstaan den operator - TR dan kunnen we
3L a7,

ons resultaat in den vorm brengen :

1
g, (1) = A f.re ds,

waarin

L re\ N (13
aN 7o o / (5_ u) »
terwijl / de beteekenis heeft:

fo) =229,

aN

Indien we dus de potentiaalfunctie ¢ eener golfbeweging op
een gegeven oppervlak s kennen benevens haar diff. quot. op
dat oppervlak naar den tijd en naar de normaal op het opper-
vlak, dan geven de vergelijkingen (13) ons de potentiaalfunctie
in eenig punt o binnen s gelegen.

De vergelijkingen (13) vormen de zoogenoemde formuleering
van Kirchhoff van het beginsel van Huygens.

Om de vergelijkingen (13) te kunnen interpretecren merken
we op, dat indien de functie ¢ alleen afhangt van » en van
t, de diff. verg. (1) te integreeren is en dat dan haar meest
algemeene oplossing den vorm heeft:

e : 1*‘(1— (") + 1 o (N )

In die onderstelling hebben we te doen met bolvormige
colven en 7 is do afstand tot het middelpunt der golven.

De eerste term stelt voor de potentiaal van een bolvormige
colfbeweging die zich van het middelpunt verwijdert, en de
tweede term stelt voor de potentiaal van een bolvormige
golfbeweging die zich naar het middelpunt toe beweegl.

Dus de tweede integraal uit Kirchhoff's theorema n.lL

[ (=) as
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stelt voor de potentiaal die in het punt o wordt verwekt
door bolvormige golven die uitgaan van alle elementen van
het oppervlak s, indien

) ds

=S

voorstelt de potentiaal door een element ds verwekt in een
punt op afstand » van ds gelegen.

Om ook de eerste integraal te kunnen interpreteeren, stellen
we ons voor op het oppervlak s een soort dubbellaag van
positieve en negatieve middelpunten van verstoring. Met een
negatief middelpunt van verstoring bedoelen we een punt, dat
bolvormige golven uitzendt, waarvan de potentiaal negatief'is.
De afstand der lagen zij dN. Van de beweging verwekt door
een bolvormige golf uitgaande van een element d s der buitenste
laag zij de potentiaal in eenig punt op afstand » van dat
element gelegen

r
a

— 4 N

en in datzelfde punt zij de potentinal verwekt door het bij-
behoorend element der binnenste laag

=2y [ 4

B e il ~r 4N

dN aN

De potentiaal door beide elementen te samen verwekt in

dat punt is dan gelijk aan de som dezer beide potentialen

(want de diff. verg. der golfbeweging is lineair), en dus gelijk
aan

7y
7l

ds - ;
P i\‘r To

zoodat de eerste integraal uit Kirchhoff’s theorema, n.l.

T‘ll
18 7 (t TN )

I oN To V tf""



kan worden opgevat als de potentiaal der beweging verwekt
in het punt o door positieve en negatieve middelpunten van
verstoring, die in een dubbellaag van de boven omschreven
aard zijn gerangschikt op het loppervlak s en bolvormige golven
uitzenden.

De vergelijkingen (13) kunnen we derhalve aldus uitspreken :

ITeder golfbeweging binnen een gesloten ruimte
waarin het medium continu en isotroop is en
waarbinnen zich geen middelpunten van versto-
ring bevinden, kan worden opgevat als te worden
verwekt door bolvormige golven die worden uit-
gezonden door middelpunten van verstoring, die
deels in een enkelvoudige deels in een dubbellaag
gerangschikt zijn op het oppervlak s dat die ruimte
omsluit.

De vergelijkingen (13) leeren ons dus de potentiaal door een
willekeurige golfbeweging verwekt, berekenen uit de potentiaal
van denkbeeldige bolvormige golven. Wat betreft de golfbe-
weging binnen s mogen we dus voor de werkelijke middel-
punten van verstoring genoemde denkbeeldige middelpunten
van verstoring substitueeren die gelegen zijn op s.

Ook Huygensen IFresnel maakten in hun beschouwingen
van secundaire bolvormige golven gebruik ; maar terwijl zij
die bolvormige golven als werkelijk. bestaande voorstelden en
als wordende uitgezonden door ieder deeltje dat in beweging
sekomen is krachtens de beweging die het in werkelijkheid
heeft, moeten de secundaire golven waarmede we Kirch-
hoff's theorema interpreteerden als geheel denkbeeldig worden
beschouwd : physisch toch is het bestaan van zulk een dub-
bellang van positieve en negatieve middelpunten van verstoring
niet denkbaar en in ieder geval is van zulk een dubbellang
op het oppervlak s in werkelijkheid geen sprake.



3. MATHEMATISCHE BEZWAREN IN TE BRENGEN TEGEN DE WLIZE
WAAROP KIRCHHOFF ZIJN FORMULEERING VAN HET
BEGINSEL VAN HUYGENS AFLEIDT, EN
EXACTE AFLEIDING DAARVAN.

Tegen de wijze waarop Kirchhoff zijn formuleering van
het beginsel van Huygens heeft afgeleid, zijn bezwaren in
te brengen.

In de vergelijking (10) pg. 17 vervangt Kirchhoff de
functic ¥ door

F(r, 4+ at)

Ta

Daar V eenwaardig en continu moet zijn binnen de ruimte
s waarover de integratie wordt uitgevoerd, moet dat ook met
F' het geval zijn.

De mogelijkheid nu, dat er een functie /' bestaat dic con-
tinu is binnen die ruimte en tegelijkertijd voldoet aan de
voorwaarden genoemd op pag. 17, is zeer twijfelachtig.

I (£) toch moet voor een eindige positicve of negatieve
waarde van £ oneindig klein worden en tevens moet J /' (8)d L
genomen tusschen cen eindige positieve en een eindige
negatieve grens gelijk aan 1 zijn. Men wordt daardoor wel
genoodzaakt aan te nemen dat /' (€).in de buurt van § = o
oneindig groot wordt. En daar verder voor C eindig I (€)
oneindig klein is ondersteld, moet /' (£) indien men T van o
laat toenemen tot een eindige waarde, hoe klein ook genomen,
veranderen van oneindig groot tot oneindig klein. Br is reden
om aan bte nemen dat aan dezen eisch niet door een continue
functie kan worden voldaan. Hoe het zij, voor de mogelijkheid
dat er een functie bestaat die aan dien eisch voldoet en die
in de buurt van het punt ¢ = o wel continu blijft, heeft men
ceen voldoenden waarborg.

Kirchhoff zelf geeft 1) een voorbeeld van zulk een functie
[ en kiest den vorm:

1) G. Kirehhoff. Vorlesungen iiber Mathematische Optik, pg. 24, 1891,
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- poo —Hg
11’ = — c .

83}
Indien w hierin een oneindig groot positief getal voorstelt dan
voldoet 77 (£) aan de haar gestelde eischen, zooals eenvoudig
Is na te gaan. Maar dan is

2 I () 263 — Wil
e e G
ot V% .
ot 1
en stellen we hierin £ = = dan
n
o I (£) 2put —1
- —— I e— [ i,
at V w
. v et L = ek (D) . _ T
Voor p oneindig groot is dus in het punt ¢ = on-
2L ‘u

eindig groot en dus /'(¢) discontinu.

Nemen we aan dat p niet oneindig groot IS, maar zeer
grool, dan is /7 () wel continu maar dan voldoet /' (£) niet
meer aan de eischen op pg. 17 genoemd.

De bezwaren tegen de invoering van de functie ' boven
genoemd blijken dus op Kirchhoff’s voorbeeld van toopas-
sing te zijn. Bovendien zou men de invoering eencr functie,
die aan zulke bijzondere voorwaarden moet voldoen, en in het
cindresultaat niet meer voorkomt, als overbodig en misplaatst
kunnen beschouwen.

Omdat Kirehhoff’s theorema den grondslag nitmaakt van
mijn onderzoekingen en een volmaakt exact bewijs dus ge-
wenscht voor mij is, zal ik van de vele andere afleidingen dio
van dat theorema zijn gegeven er enkele bespreken.

Von Helmholtz staat in zijn ,Vorlesungen iiber die
Electromagnetische Theorie des Lichts” zeer lang bij het be-
ginsel van Huygens stil. Bij de afleiding van Kirechhoff's
theorema volgt hij Kirchhoff nagenoeg geheel. Voor de
functie /" kiest hij echter een ander voorbeeld n.l,



waaruit volgt

2 F(@) _ _ 1 2cl
1S ® (*+
stellen we hierin { = ¢, dan
(2 () B 1
{ 9 ;: s'_ _ T C‘E .

Gemakkelijk is na te gaan dat voor ¢ oneindig klein £ (©)
QK (D)

aan de gestelde eischen voldoet, dat dan echter -

in het punt { = ¢ oneindig groot wordt en dat daar derhalve
F(z) discontinu is. Onderstellen we zooals Helmholtz doet,
¢ niet oneindig klein maar zeer klein dan Dblijft ¥ () wel
continu, maar voldoet niet meer aan de eischen van pg. 17.

Terwijl dus in de oorspronkelijke afleiding die Kirch hoff
van zijn theorema gaf, aan de continuiteit van /" moest worden
getwijfeld, is in zijn latere afleiding, waar hij voor I een
bepaald voorbeeld kiest, evenals in de afleiding van von
MHelmholtz de discontinuiteit van /' en dus het niet meer
vervuld worden der drie voorwaarden aan F oppg. 17 gesteld,
aan te toonen.

Het komt me voor, dat tegen de invoering van iederen
anderen vorm, dien men voor [’ zou kunnen Kiezen, dezelfde
hezwaren zouden zijn in te brengen.

Poincaré (lecons surla théo;ie mathématique de la lumicre,
professées 1887—'88) bespreekt evenals von Helmholtzhet
beginsel van Huygens zeer uitvoerig. Op zeer eigenaardige
wijze leidt hij een formuleering van dat beginsel af. Zijn for-
muleering is minder algemeen dan die van Kirchhoff en is
zeer eenvoudig uit die van Kirchhoff af te leiden, hoewel
hij onafhankelijk 1) van Kirchhoff heeft gewerkt.

1) Aan het slot der voorrede van geneemd werk, die gedateerd is December
1888 zegt Poincard: dans le chapitre relatif & la diffraction j'ai développd
des idées que je eroyais nouvelles. Je n'ai pas nommé Kire hhvoff dont le
nom aurait di étre cité & chague ligne, 11 est encore temps de riéparer cet
oubli involontaire. Je m’empresse de le faire en renvoyant aux Bitzungshe-
richte Juni 1882,
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Poincaré tracht te vinden de algemeene oplossing der
diff, verg.

[5]

[y
=

= @Ay, (1)

¢

(=5

en beschouwt als zoodanig een functie van a, ¥, z en ¢, die
identiek aan (1) voldoet en voor ¢ = 0 overgaat in een arbi-
2
ol
een andere arbitraire codrdinatenfunctie overgaat.
e ¢
t

(o4

traire codrdinatenfunctie, terwijl evenzoo voor f=o0 in

beschouwt Poincaré

Die aanvangswaarden van ¢ en

als gegeven en hij tracht dus het volgende vraagstuk op te
lossen : indien van een golfbeweging gegeven zijn de aanvangs-

e §
waarden van ¢ en j— , vraagt men de waarde van ¢ in

functie van de coordinaten en den tijd te bepalen.
Rl Y,
Daar de aanvangswaarden van ¢ en T; gegeven zijn, is

de beweging van alle deeltjes op tijd nul bekend. Volgens de
beschouwingen van Huygens zullen dan op den tijd ¢ alle
deeltjes bolvormige golven verwekt hebben, waarvan de stralen
zijn r = at, en dus zal een deeltje x, », 2z op den tijd £alleen
bereikt worden door bolvormige golven die uitgezonden zijn
door de deeltjes, welke gelegen zijn op een bol met straal » = « ¢
om het punt @, y, z als middelpunt. Noemen we a', v, 2’ do
codrdinaten van een element ds van dien bol en houden we
in het oog, dat voor bolvormige golven wier potentiaal slechts

. 5
van 7 en t afhangt, de oplossing van (1) den vorm heeft = | dan
-

brengt de voorstelling van Huygens er ons toe om te onder-
zocken of aan (1) voldaan wordt door

F(x o 2
o (Y= f ELE) gy, (14)

waarin /' is een nog nader uit de initale gegevens te bepalen
coordinatenfunctie, terwijl die integraal moet worden genomen
over het oppervlak van een bol met straal » = ! om het
punt z, », z als middelpunt,
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Om te onderzoeken of (14) voldoet aan (1), merken we op
dab bij een differentiatic van (14) naar de codrdinaten de straal
r=at van den integratiebol standvastig blijft, maar het
middelpunt van den bol oneindig kleine translaties dx, dy,
dz verkrijgb. Dan krijgt dus ieder punt op den integratiebol
translaties dz', dy’, dz2', die juist gelijk zijn aan dx, dy en
dz; derhalve

en dus
2= @1 g‘: P15 it,‘,“ “3-’ ik + I iy o* F’ ds
az2 | oy ' 9a ) ([9a2T 9y ST
of
. .I"
i ’ t. (15)

Bij differentiatic naar ¢ krijgt de straal » =af cen aan-
oroeiing. Het middelpunt van den bol blijft op zijn plaats, maar
het element ds verplaatst zich in de richting van den straal.
Om die differentiatie naar ¢ te kunnen uitvoeren, noemen we
ds het ruimtehoekelement, waaronder het element ds uit het
middelpunt van den bol wordt gezien, dan is

ds = r*do

i = []"J'Hrl'i.

Geven we nu [ een aangroeing df, dan krijgb » eene aan-

eI

3 i1 3l 7
groeiing dr = adl en [ een aangroeing - - dr, terwijl do

L‘: e
daarbij constant blijft. Voor (16) is dus de operator gelijk-
) O

waardig met a . , zoodab



29

Q¢ 2 2 I
ey Prdod = @ "do + ar | — do .
e 9’_{]“:’ f)”r? | e

" 3 L : .
waarbij we wel moeten onthouden dat ,‘?7__ kortheidshalve is
geschreven voor ‘

2/ 3x eF 23y | oF 3¢
dx or oief i 9z 3dr

Nu is het volgens het theorema van Green:

3 F ;
[‘37: ds = [-”.\.]"(Er,

waarbij de laatste integraal moet genomen worden over het
volume van den bol, waarvan dr een element is. Waaruit
volgt :

zoodal

3(] fe S i
F:I = qa ] Fdg - ’[\ Pde.

Differentieeren we deze verg. nog eens naar ¢, dan

-

2 .o a? [ a* 2 .
PL o qf — do—= | A Fdr 4 — 3 , dr

o 1% arT ¥ 7

e at o/

1

of in verband met (17)

~ 2 q u" 3 !
o )3 v C
- | A Fdx.
3 ’-_3 g k} T

!

Nu beduidt

o

L A

- ] A Fdx
:

de aangroeiing die f A I dr verkrijet, indien we » cen aan-
groeiing d» geven, en is dus gelijk aan de waarde van [ A Fdr
genomen over het volume van den bolschil besloten tusschen
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de boloppervlakken 7 en 7 + (i

73 van die bolschil is ds dr
eén volumeeclement, dus

'?—. s [ AN Fri’.r)dr — f,_ Fds dr,
d 7 (l s )

of

5 rfo_\F(h,
of

~
C

o f Fdr —.I AFds;

zoodat we ten slotte hebben gevonden

p = "f“f' Gt (18)

waaruit in verband met (15) volgt, dat (14) een oplossing is
ran (1).

De oplossing (14) is echter nog niet de oplossing die Poin-
caré zoekt. want deze moet twee arbitraire functies bevatten.
Om een tweede particuliere oplossing te vinden merken we

. - t)
op dat indien ¢, eene oplossing 1s van (1), ook _3-?7" aan (1)
oldoet. Uit de oplossing (14) volgt derhalve als tweede op-
lossing .

2 I (2! oy &

19
. (19)
waarin we het recht hebben voor F
kiezen dan de functie /' in (14)

cen andere functie te
Nu is weder

L) P
Pa = 7

.

2 2 -
; ro=; aar= EY; ’ Firdo = a 5 [ Iyrdo
of

(20)
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Daar (1) lineair is zal ook de som van (14) en (20) vol-
doen aan (1), zoodat we krijgen als oplossing

21 Wi oI
p = j ds | a [(J‘, + r = 7_]) da |

7 C
of

7 r

g = ] (S )G (@21)

Deze oplossing bevat twee arbitraire coordinatenfuncties en

15 dus de oplossing, die Poincardé zoekt. Daar Poincaré
2q

de aanvangswaarden van ¢ en f; als gegeven beschouwt,
o3P

moeten we /' en [ nog daarin gaan uitdrukken. We duiden

: amp
die aanvangswaarden aan door (g), en( s )

at /o
We kunnen (21) in den vorm schrijven :
5 ] 1 l3 ]"‘ 7
¢ = {(7 F+ alk, 4 ar JT)u".rr ; (21)

en laten we hierin £ en dus = tot nul naderen, dan

(), = dwa Hy ey
en dus

1
P = = (), . (22)

4 a
Om ook /' te berekenen gaan we de vergelijking

l],l t) -"'
P ml ~ds T ’ .'rl.a'

aqp 3 I-/',.dh‘ " L",__ , f'.t Dam

a't ol

nu is



en volgens (18)

zoodat

waardoor we krijgen

‘ » SN :
e aj Fds -} ru-] 5‘5-?—_ do + a? :[ Ido .

St L8

Stellen we hierin £ en dus- 7 gelijk nul, dan

(iff )U = 4qgal

en dus

1 3
F= — (“’) : 23

dga \ at/o e,
Door middel van (22) en (23) zijn de onbekende functies /' en
Fy uitgedrukt in de als gegeven beschouwde functies (gq), en

o .
( ; ) en gaat (21) over in
et ’a

1 (81 o 1 1 a(g v
()fl (" Y Z 1',) ) ’ ‘ ( q’)n '|" T! (l]})n ‘{' v (q) J d-\'.

;1;.‘ {rr.rm at ar 5

Deze integraal moet worden genomen over een bol met straal
r—at om het punt =z, », 2. We zullen daarom voor de
duidelijkheid schrijven:

_ ';1 P 1 eg ]. ' '
Fre=o s rin.lf,”- 37 = ¥ 1l [ ds. (24)

Dit is de formuleering door Poincaré aan het beginsel
van Huygens gegeven; zij leert ons de lichtheweging in
cenig punt op den tijd £ kennen uit de lichtbeweging op den
tijd nul op een bol met straal » — af om dat punt beschre-
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ven. Uit Kirchhoff’s formuleering is zij gemakkelijk af te
leiden. Volgens dat theorema (verg. 13) is

Ta 0

t——?—"
g, (1) = ﬁf( : LL)—%— f(f-—r(—:);dS,

waarin

Nu heeft in

s
e
3 q( u.)

aN r,

é - G?“ 3
de operator de beteekenis ~ % —°—. derhalve

o N aN ér,
A ‘ 1 ap\ @, 1 o p } s
@, (1) = — 1 [ 2P 'g{) aN ! 7o AN | i

fe=f— Ta
a

Passen we Kirchhoff’s theorema in dezen vorm toe op een
bol met straal 7 = at’ beschreven om het punt o, dan is
r=7r,=at" en daar N de normaal is op 8 naar binnen ge-
trokken, wordt

(24 3 3
N T (ol | BGE ar, 4
dus
] (o ] J ] s
¢ LA Wi md e
r=0 4 T, f e ar ai LAy ’t 1
e L} al’
of als we hierin stellen ¢/ t, dan is

b =L fle 1 op 1 se), .
=0 4dm ) |® ar ot r Lrjr .

)
=i r==al

en dit is juist de formuleering van Poincaré.
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Poincarés formuleering is dus niets anders dan een
speciaal geval van het theorema van Kirchhof f en minder
algemeen.

Poincaré vermeldt niet de voorwaarden waaronder (24)
zeldt, maar uit zijn afleiding kunnen we die voorwaarden gemak-
kelijk voor den dag brengen. Stilzwijgend neemt hij aan, dat
de functies /7 en F, en haar differentiaalquotienten naar de
conrdinaten continu en eindig zijn op den integratiebol: verder
heeft hij om het verband tusschen die functies met (¢). en

‘? |#>

( 5 t) op te sporen den straal van dien integratiebol tot nul

laten naderen. De continuiteitsvoorwaarden van F, I} en haar
differentiaalquotienten moeten dus ook binnen dien bol ver-
vuld zijn, wat bovendien ook nog geeischt wordt door de
toepassing van het theorema van Green.

De voorwaarden waaronder Poincaré’s theorema geldt
zijn dus dezelfde als voor dat van Kirchhoff, nl dat open

: : : ap :
binnen den integratiebol ¢ en ;— met haar afgeleiden naar de
e/

coordinaten continu en eindig zijn. Physisch gesproken : binnen,
op en op oneindig kleinen afstand van den integratiebol mogen
geen vreemde lichamen of lichtbronnen voorkomen.

Men zou kunnen meenen, dat de particuliere oplossing

I (! gt
g (Zyzt) = ]]-(J'—:I‘ ) ds

in het punt 7 = o oneindig wordt; dit is niet zoo, want stellen
we in die integraal ds = r*ds en laten we dan r en dus {
tot nul naderen dan vinden we

g, (@yz0) = I:.l T F] =0

=0

Tivenzoo blijft de tweede particuliere oplossing in het punt

r — o eindig; zij heeft in dat punt de waarde 4 wa Iy of

wel (¢), .
Van de eerste oplossing ligh dus het particuliere daarin, dat
de aunvangswaarde van de potentiaal nul is, en van de tweede
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oplossing, dat de aanvangswaarde van het differentiaalquotient
naar den tijd van de potentiaal nul is, want

en dus
(s oz F
2 P2 — | — ds ,
ot at r
of volgens (18)
‘_3 0 a= A ]
qi:“ = e AN ]‘1 f{f’:ﬁ' 3
ot 2

of

9
lq“-t = Py 7 oy
= = a [.\]lvrlcr.

Stellen we hierin ¢ en dus » gelijk nul, dan :

=[4nmgﬁp]-:m
r
-

Terwijl ik dus niet geloof, dat tegen de exactheid van
Poincaré’s afleiding iets is in te brengen, komt het mij
echter voor, dat hij geen recht heeft zijn oplossing de alge-
meene oplossing van dediff, verg. der golfbeweging te noemen.

Door toepassing n.l. van het beginsel van Huygens leidt
Poincaré twee particuliere oplossingen van (1) af, In beide
oplossingen ligt dus het principe opgesloten dat de waarde van
@ in eenig punt op tijd ¢ alleen df‘lmngt van de beweging op
tijd o op een bol met straal » = af om dat punt beschreven.
Alleen in de onderstelling, dat dat principe juist is, is Poin-
caré’s oplossing de algemeene te noemen, en verdienen de
fum-tim I en I"., die expliciet niet afhangen van ¢ en waarin
Voa® 4+ y? 422 = r2, den naam arbitraire functies.

A ]_)11011 zou men geneigd zijn te meenen, dat de beweging
op tijd ¢ in eenig punt niet alleen zou afhangen van de be-
weging op tijd nul op een bol met straal » .- af om
dat punt beschreven, maar ook van de beweging op tijd nul
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in alle punten binnen dien bol. Het bewijs dat dit niet zoo
is ontbreekt bij Poincaré; zooals Poincaré de verg, (24)
heeft afgeleid mag zij dus niet de algemeene oplossing van
(1) worden genoemd, maar slechts een formuleering van het
beginsel van Huygens.

Ten korte en zeer elegante afleiding van Kirchhoff’s
theorema geeft Gutzmer 1); zonder van een hulpfunctie
gebruik te maken leidt hij op volmaakt exacte wijze dat
theorema in zijn algemeene gedaante af.

Volgens het theorema van Green (pag. 17) 1s

oU oV : T =
f(V_é’N_U ‘?_N') ds = f(UL‘- V— VAU)dz. (25)

5 1 A
Stellen we hierin U= = waarin 7, voorstelt den afstand
0

van eenig punt @, 7, z tot een vastpunt o binnen s gelegen,
dan is U overal continu en eindig behalve in het punt o.
Daarom leggen we om dat punt een bolletje met straal I
en mogen dan het theorema van Green toepassen op de
ruimte besloten tusschen s en dat bolletje.
Noemen we van dat bolletje d S een opperviakteelement,
dan is daar 2 oneindig klein is

1
o U =v]o. el Vo [ ’
fV O -‘[wazs e mfd..% i

waarin ¥V, voorstelt de waarde van ¥ in het punt o.
Fn indien we even een polair hulpcoirdinatenstelsel in-
voeren 7, ¢, ¢ met het punt o als corsprong, dan is

. 3 'P' i ATl 2.‘1 ] a V ) - :
’UEN d S I f = 3R RPsind do dy

s 0 a

W 27
; = £ 7] AT
¥ ]{ f 53 R dsdo,

Si'g

1) Gutzmer. Jonrnal fiir die Mathematik, Crelle. Bd, 114 pg. 335,
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» V A ey, T :
op het bolletje eindig is, is voor R = o

n dus, daar °
2 ! a R
2V
j 18 = !
fU I S = 1

Zoodat (25) wordt:

1
o

] r r.rf 1 3 V’ H 1 1
e {2 O SENGE S
tw Vo daN 7y, @8N ris VA Ty dz, (26)
waarin de eerste integraal alleen genomen moet worden over
het oppervlak s en de tweede over de ruimte besloten
tusschen s en het bolletje £.

Nu is

en dus
o Al
Il/ N ’_ (i T = 0.

Noemen we verder d«" een volumeelement van het bolletje
en voeren we weder hetzelfde codrdinatenstelsel r, 9, ¢ in
dan 1s

i Adm AR

l , : | [ )
I = J rli’:-v[ ] [ AVrisind dod dr dy
- '“ - . . '.

0 0 [

Daar [ oneindig klein is, mogen we 2 V als een constante
beschouwen, dus

%) 3

-I ) T ,._‘.
[-?_ AVdy = RAV f Ih‘lll ddy dr d P

X 0

en ook deze integraal verdwijnt voor R — o.
De laatste integraal in (26) is dus gelijk aan

&l
l'_: NAFdiTe,

To
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en deze integraal mogen we uitstrekken over de geheele
ruimte door s omsloten. Derhalve

Ll
=
s 1 8V L .
o . SR NCR e s — AL Lr. =Rl 9]
4EVO—I(V3'N r, 31\1)(38 [ ro‘/_‘Vdr ) (-—7)
terwijl de eerste integraal genomen moet worden over het
oppervlak s en de tweede over de ruimte door s omsloten.
Van dit theorema, dat in de potentiaaltheorie 1) een ge-
wichtige rol speelt, gaat Gutzmer uit.
Hij stelt hierin
. To
V=g¢g (xyz t——) :

(i

waarin ¢ (xy zt) is de potentiaalfunctie of meer in het alge-
meen ieder functie die voldoet aan (1).

¥V is dus de functie die we krijgen indien we in ¢ in
plaats van ¢ schrijven t—?-(g—.

Binnen s moet V' en dus ook ¢ continu en eindig zijn
evenals haar eerste diff. quot. naar a, ¥ en z. Physisch
gesproken: binnen s, op s, of op oneindig kleinen afstand
buiten s, mogen zich geen lichtbronnen of vreemde lichamen
bevinden.

Dan wordt (27)

o Lon(- D)
/ L U Bo 1) = \ 0 : ( ok '7:”) 1 (L
.1 ZT‘P(IU ,’jﬂ o [) .lea N t] t a r, o 1\‘, I(IS T
1 r,.)
= =l i L 28
[ O (t—2) v (28)
Noemen wij nu kortheidshalve
aq(t) aq(l) aq(t) :
. aIw — {pl (i) 3 Lqi” - =, (Pz (t) 3 - ;z — ‘!"Jl ((‘) ¥
a2q (1 a2 (1) : a%q (1)
T =m®, i =m0, P =),

1) Green. An Essay on the application of Math. Anal. to the Theory of
Flectr, and Magnet. 1828 art. 8 eq. (3) — Mathem. papers p. 27.



dan is

T,
A2 I'J ft — ‘—’) » oy ko)
a (i’ 7',,) 2
e S |
dx2 P (L 7

Houden we nu in het oog, dat

2ri\2 ) 2 ¢
()
ox a 1
en dat
)
=
0 r, H

dan volgt hieruit

Sl (e

&)

ar,;

Vereenigen we hiervan de eerste
van

dan is

“ 0
{ o i
o
Sq t— — ) s
F ( a/ 93,
(L 3t a x®
==

,-ﬂ
I.; {‘;
9 (")
: = .
drie termen door middel
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) 2 2 (e 20 o) 2
T a a ot f!“ al o D2 al 3y
Al (= { ”)
+ g (¢ o ar, 1 v ( )) 2 9 "”( a
P\"— %) 8z — @ 5 (e s a at re
of
/ T’n)
A\ (£ ?',,) 2 9 d ([ Tu) 2 9 q]( i a
R\ e G a oy, v al/  a at T,

De laatste integraal uit (28) wordt derhalve

‘I‘I

5 p Qlt— )
i ( r,,) 2 @ gl. d r, ( al ) vay
— AN lt— dr = — — I — - J(f-—u )A« - dr. (29
To £ 4 " or, | al o )
Nuis dz — r,* dr, de,wanneer dr een ruimtehoekelement

is met het punt o tot hoekpunt, en dus

T Ta
a ) ( —_— 0) y aap (L - )
A t U @,

1 a
— — ——dr = |do > ro ATy
o ’.‘J
. - 0

To ar,

waarin 2 voorstelt den afstand van een element van het

oppervlak s tot het punt o, of als we particel integreeren:

dq \l— L) ) v ol
fl -'f (J u) dr ~'[{ﬂ6 Ly (i-—- —g—)—*}] :}.(t —- t';)rl r, do = |
- foe = B~ [ =T

.



4

41

Hierdoor gaat (29) over in

[ TR )
nu is
Rido = — cos (NR)ds = — 2 ds
oN !
dus

il ( r, 2 9
—Ag(t—=") dr =
jra ¥ a LE a it f

We kunnen in het tweede lid £ vervangen door r,, dan

q (t —-i) flf

e
1 7‘) 2 9 .
el ) —AQ Y rheT E = is
[?'a 0 (t = d 7 ('f = I

waardoor (28) overgaat in

a ]L 2 i (t oo 7'.;) a P (( = 'ﬁl)'
T ( ‘0 1 4 { To (f 7'”) I « 2 o1, t
7 i 2. 1) = - R — e —= la
P (o Yo 2a t) /] { aN ¢ 7t To aN ar, 3N at H.:\
Nu is
7‘" }'U
J — SRR ==
i (t “) v .r',,) | Y (f ”) r, |
N 2 /( /e at N
indien de functie j hierin de beteekenis heeft
: Sl
f (i =224
en dus
1 i
| " 2 y r | ¢ ¥ ({ . r'!) 3y | r ’
L J.u o ’cﬂ ! e $ : , ’ T ") . = 7 ‘ ( i = o
P&y ) ) ] { o N I’( it ar, ol N r,./ : a ,d ’

Dit is Kirchhoff’s formuleering van het beginsel van
Huygens. Het theorema van Kirchhoff blijkt dus niets
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anders te zijn dan een transformatie van het theorema
(27), indien we daarin stellen
o
= cyz t— -—)
V ‘P( Y 3
terwijl ¢ moet voldoen aan de diff. verg. (1) der golfbewe-
ging en binnen, op en op oneindig kleinen afstand buiten s
continu en eindig moet zijn evenals haar diff. quot. naar de
coordinaten.
Deze afleiding van Kirchhoff’s theorema is volmaakt
exact.

Eindelijk zal ik nog bespreken een bewijs door Beltrami
van Kirchhoff’s theorema gegeven. Op verschillende wijzen
heeft hij dat theorema afgeleid !).

Het bewijs dat ik hier laat volgen heeft het eigenaardige
dat Beltrami daarin een algemeener theorema afleidt,
waaruit door een eenvoudige substitutie Kirchhoff’s theo-
rema direct volgt.

Indien de coirdinatenfunctie ¥V eindig en continu is binnen
een ruimte s waarvan ds is een oppervlakteelement en dz
een volumeelement, terwijl N de normaal is naar binnen
gerekend, dan geldt zooals we bewezen het theorema (27).

Nu is, indien we partieel integreeren volgens de methode
van Green:

1
- ]
-I- 32 ;; '1 ‘3 lr ‘s.:’ I; - T(-
— —dT = —i|= cos (Na)ds — dr
] .a 3 x4 ’.n o ( ) oxr X
"l 8V o 1 aV ax {
= — = et 38 h e e, o UE
ro 8@ AN red 82 ar,
en dus :
L v 2l (3 V ez ! avVv ay : avVv a ;) l
e P ar = — -1- ¥ e e—— s
.” T‘“ exr o i\r ) y a l\r 2 Z a ‘(\F
rl gV az , 8V ay oV azy .
R e e i dr
A ax 9T a 1y o ?'“ 0% o7,

1) Beltrami. Rendiconti d. Reale Acad. dei Lincei 1892 1° semestre pg. 99,
Qo

Rendiconti d. Reale Acad. dei Linecei 1895 2° semestre pg. 29 ¢n pg. b1,
Rendiconti d. Reale Instituto Lombardo serie 11 vol. XXII 1889,
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1 1 K 1 avV
=l e [ R /
.{To AVdr f,_n Sy 48 ilzaler, dr.

Door dit te substitueeren in het theorema (27) krijgen we

1
v reV 1 _
47V, = fl/ ?_%: ds — I 8: ) 7472 (30)

Dit is het theorema van Gauss hetgeen door Beltrami
als uitgangspunt wordt gekozen.

Beltrami stelt zich voor een coirdinatenfunctie U, waarin
behalve de letters @, y en z ook nog de letter », voorkomt.
Spreken we nu af door het symbool & aan te duiden een
differentiatic naar de grootheden w, y, z en 7, voor zoover
ze expliciet in U voorkomen, dus een differentiatie naar
de letter, dan

) (ﬁ U) 02U | 0*U  oar, 0 [ 0*U 52

dx ‘)z d a? dz dr, 9 0 x® 0% 00 91rs

verder

2 (1 'T,”") _1®U 1 ®U sz 193U sa

Yo 02 o 022 ' ro dwdr, ar rd Sgwt aly, ¢

3
oo 0

Sommeeren wij deze vergelijking over z, ¥ en 2, dan

3 (’1 0 (._f) ] ’l U+ Tlg 3 ((?_”) Nk {;'J

2% \ry 00X o o (@ 7o N1y 07, 5 F

L+

ey ; 0* GRS | .
waarin A aanduidt den operator —— 4 . 4+ _ — . Of
(5 H i 0 _r;- 0 <

1 o (U—: b U) + .y ( 14 H) y 1 (.w u_ ”)__(,_ (31)

. -l - - Ty
1‘”'! ar, “d Ta ax \ry 01, To MO 12

Nu stellen we in (30)

ol
=U ~-r, 22,
¢ U y

0T,

V

terwijl we aannemen, dat O/ en haar eerste afgeleiden naar
@y y en z eindig en continu zijn binnen s, dan wordt (30)



1
a ) T
- YU\ " r "o dU\dz
AT U= e )L S M e (e
42 (U 7 f"\ Tg) L? J‘.V rZS jarl}( ' - J ].fi) TU:{
d (th\van, .t e al\dr
4 7 Uu —-L{—a—?’; (T':) aN s _fé’?‘a (U— L _h.l_',_,) ’-;'02’

wat door middel van (31) overgaat in

b= [ () Sy oo [ G0 0) + e 3, (50

Nu is, wanneer we een bekende notatie volgen

2 (10U ds o U ‘U,
A e e Jhe— . T cos(Now)=—| — ds ,
f;ir ox (rﬂ 0 l:) f?.u 3z Co ( f) .'I T ds 3

waarin

v {5 U a I

— i - -
! oz N’

waardoor we krijgen

A _ ({0 (U\or Ul '{'rir :)*’_l'__ T 29
ol J {07, (r“) oN To jda Tu r, (0 2o { ) (92)

Duiden we nu aan door U, wat er wordt van g, indien we

- ]’l‘l ”
daarin ¢ vervangen door t—wu , zoodab

5 To
U ¢ (.r‘., Y, %, L — “) '

terwijl ¢ een oplossing is van de dift. verg. (1) der golfbe-

weging, dan is

J !’: 1 J ’4"

dr, a at’

ot U 1 282U

dr,? a2 3 (* '

.
0



dus

t)" U ) 1 agq,\

drg  a* o’

Nu is volgens de notatie, die we zooeven aannamen

2 7] y2 2 |
(o AL R ALE LS
J a2 0y? d 2
of
s 32 ) 32 ) 52 i
U= T3, o S
a 2 a y? d g4

Volgens de diff. verg. (1) is derhalve

Nu is volgens onze vroegere notatie

o ql
anN’

en dos

hEN B
— — AU = o.
09,
Daardoor valt de volumeintegraal uit (32) weg en we
houden over
4 i ('J‘r: a %o f)
o _‘-".,) o e fn)
il 3 q (.f JER AN T oq (J Yzl a o | :
: — S— prs - (rs .
| ( 0 l'” Tn J J\’ o ‘S HH o) 1’\’ 5 ;
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en derhalve

‘)1 e(}i Tﬂ

- - 1 or '( _E) 1 7

da g (2, Y0 2 t) = s_-f.‘f (__E')____ R L (___ 0
NS TD0, f{aNrpt a ar, 3N at r,,ft a

Dit is het theorema van Kirchhoff.

We zien dus dat Kirehhoff’s theorema is te beschouwen
als een speciaal geval van het theorema (32) door Beltrami
afgeleid. Voor functies die voldoen aan de diff. verg. (1) der
golfbeweging is Beltrami’s theorema onmiddelijk in dat
van Kirchhoff om te zetten.

Ten slotte kunnen we nog opmerken, dat, aangezien Kirch-
hoff’s theorema geldt voor ieder functie die voldoet aan de
diff. verg. (1), we dat theorema niet alleen mogen toepassen
op de potentiaalfunctie eener golfbeweging maar even goed op
de ontbindingsuitwijkingen en op de electrische en magne-
tische ontbindingsmomenten en ontbindingskrachten. Het is
n.l. eenvoudig in te zien, dat al die lichtvectoren aan de
diff. verg. (1) voldoen, daar de potentiaal ¢ een oplossing
moet zijn van die diff. verg.




HOOFDSTUK IL

ALGEMEENE BESCHOUWINGEN OVER GOLI-
BEWEGINGEN.

1. PHASEOPPERVLAKKEN. PHASESNELHEDEN. VOORTPLANTINGS-

SNELHEID VAN DE GRENS EENER GOLFBEWEGING.

We kunnen eens onderstellen dat de potentiaal ¢ eener
golf beweging den vorm heeft

p = y sin y, (33)

waarin y eny niet periodische, maar overigens willekeurige
functies zijn van @, 7,2 en . Deze vorm zal blijken algemeen
genoeg te zijn voor de potentiaal van trillende bewegingen.
Daar ¢ moet voldoen aan de diff. verg. (1) der colfbeweging,
zal er tusschen y en y een verband moeten bestaan, dat
we vinden door (33) te substitueeren in (1) en dat we later
zullen bespreken,
We zullen noemen

7 de amplitude der potentiaal,

y de phase der potentiaal,

en verder »* aannemen als maat voor de intensiteit van
de potentiaal. Met dit laatste wordt natuurlijk niet bedoeld
dat z* evenredig zou zijn met de energie der beweging.

Door middel van de vergelijkingen (6) en (9) zijn te bere-
kenen alle grootheden die een lichtbeweging bepalen, zoowel



48

in de elasticiteitstheorie als in de electromagnetische licht-

theorie.
In de elasticiteitstheorie zijn volgens (6) de ontbindingsuit-

wijkingen:

P = =— — . =
éz dz
3¢ 9 :
w= " = "% gin Yy + cos Y,
=1 e C oy
waaruit eenvoudig is af te leiden:
% =0,
Y
- —~ 5 e / —
‘9 = ‘__3 “ o 2
PR l/(“)”%"(/ )3111 w +arctg —— — =y,
C & o % C
| a2
2 rp)
: el R S e /
/ — @) sy 8 Yyye . c 1
= l/( ‘f)-r(z J) sin {y + arctg — L,
e 1 2y ’ S a9y
. 2y
of, indien we stellen:
é |}"
I/ 22y (4 27) LT
; - ~') T . "l Y -} arctg = - =
oz
e |_f'
R \ 9 BE7 o 7 e
I e 2YP\* v Ay
I/ ( 1) i (Z - —’) ¥ 1 - arc tg —
29 a1y - 3 i
oY
dan wordt (34)
( = l),
v = g sin (g — ), ;

w = y, SIN 1, .

(36)
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De ontbindingsuitwijkingen hebben dus Juist denzelfden
vorm als de potentiaal; zij voldoen evenals de potentiaal aan
de diff. verg. (1) der golfbeweging, maar zijn niet onafhan-
kelijk van elkaar, daar tusschen v en w het verband bestaat:

;3 (3} e 1w

1 e

y = as

, (37)

i+

We kunnen dus voortaan v of w beschouwen als een
geheel willekeurige functie van den vorm y sin ., die aan
geen andere voorwaarden is gebonden, dan dat zij een op-
lossing moet zijn van (1). De bijbehoorende waarde van w
of » moet dan ook een oplossing zijn van (1) en met » of w
samen voldoen aan (37).

In de electromagnetische lichttheorie worden uit de poten-
tiaal ¢ de electrische en magnetische ontbindingsmomenten
en ontbindingskrachten berekend door middel van de verge-
lijkingen (9). Daar de electrische en magnetische Kkrachten
gelifk zijn aan de momenten vermenigvuldigd met een con-
stante, knnnen we met de berekening der momenten volstaan.

Stellen we weder als boven:

el q -3 . 3 q %
2 — S1n 1!'1 eI Y = ¥ Sin Yy
dan vinden we volgens (9)
3 24! S Yy
—— _/,. sin i = L1 Pl COS '!’ — /-_ sin Yry — %2 P2 COS ),
v 8.2 ) y 3 1
J x.’ ol el |l|'
RE B VA e COS Ity
24 )
¥ /-’l " . s l!fl 2 .
= - T -8 Yy - 2 3 COS i1y
= 0 y
2] A
KIS _ Yy
—— ¥ 5 alk c f
at m tl!,! | 11 2t COS ’
L’ 7‘_' ‘\.I l’l, co
e e e 12 by — A ;
L_J t l ] " 9 /r" : t H ‘f 9 .

=
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X z']/(
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is af te leiden

In\® 2 o | ) 2 .
_Tfj_) - (Z1 3121) sln?[;.1+al'ctg f“_ e \
: 3 Yoo
2z
Yy
N2 e k
E ['3) ( d 'r”‘.’.) ) : ey (
4 (ya=L2) sinyypsf-arctg ——— — 7
3‘1] I‘- C"’?j {!-+ = ifi F),
2y
2 Yl
3 an\ 2 a 2 12
L fﬂ) -L ( C—l_u) i1 Stl_ ‘ oridl s 62 }
= AV sm{ Ity 4+ arc tg e (0
2w
. 1(38)
> a PR o y a (
TR Al e
ﬂ:'_)? + ( g I‘"')qull‘ap +arc tg — Sy :
T T ARAS ERT S R : dp )’
d
3 , 2
3 » 3 2 AN 3 1 )
0 Luu)qw L
4 | — sin |y -+ arce tg - - (s
..Jf, ] /,‘l C.’t ( ;1 T ) iZI— ’
ot
a1y
: . . 5 12— ]
C x-_.])b (. Fe l}“.‘)‘)' ‘ T - C { ey
;3 t -{— (2 —G—f S1I f ra - arc tg o I"
' ot

Stelt men
(85) dan zijn de electrische en magnetische momenten uitge-
drukt in 7 en . '
In de vergelijkingen (36) en (38) komen alleen voor uit-
drukkingen van den vorm Zsin We zullen daarin steeds

hierin

de waarden van Zi, %2, yy en y, uib

de uitdrukkingen v6oér en onder den sinus de namen

amplitude en phase geven en het kwadraat van de am-
plitude weder aannemen als maat voor de intensiteit.

Onder phaseoppervlakken zullen we verstaan opper-
vlakken, wier vergelijking men verkrijgt door de phase gelijk
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te stellen aan een constante, en daarin aan ¢ cen vaste
waarde te geven.

Uit (36) volgt, dat de phaseoppervlakken van de ontbin-
dingsnitwijkingen » en w verschillend zijn, en dat er dus in
het algemeen geen oppervlakken bestaan, waarop op hetzelfde
oogenblik zoowel de phase van » als de phase van w con-
stante waarde heeft. De phaseoppervlakken der ontbindings-
uitwijkingen vallen samen, indien haar phases gelijk zijn of
een standvastig verschil hebben. Is dit het geval dan kan
men spreken van phaseoppervlakken der uitwijking; deze
bestaan dus slechts in bijzondere gevallen,

Uit (38) blijkt, dat er in ‘talgemeen evenmin oppervlakken
bestaan, waarop op eenzelfde oogenblik alle drie de electrische
ontbindingsmomententen constante phase hebben; voor ¥ is
er zelfs in het algemeen geen sprake van phaseopperviakken.
We kunnen wel de beide termen, waaruit ¥ hestaat, afzon-
derlijk beschouwen en voor ieder van die termen van phase-
oppervlakken spreken. In het bijzondere geval, dat deze heide
phaseoppervlakken met elkaar samenvallen en 00k samen-
vallen met de phaseoppervlakken van D en 3 (waartoe noodig
is, dat de phases van X, D en 3 gelijk zijn of constante
verschillen hebben), kunnen we aan die oppervlakken den
naam phaseoppervlakken van het electrisch moment (of van
de electrische kracht) geven.

Ook de phaseoppervlakken van de magnetische ontbindings-
momenten blijken volgens (38) in 't algemeen verschillend te
zijn. Vallen ze samen, dan kunnen we Ze noemen phaseop-
pervlakken van het magnetisch moment (of de magnetische
kracht).

Ons doel is na te gaan of de constructie van H uygens
juist is. Daartoe zouden we moeten onderzoeken of de om-
hullende van bollen die met, gelijken” straal zijn beschreven
om alle punten van cenzelfde phaseoppervlak van de poten-
tiaal, van de nitwijking of van het electrisch of magnetisch
moment, weder een nieuw phaseopperviak oplevert,

We zagen dat voor de beweging waarvan (33) de potentiaal
is, zoowel voor de uitwijking als voor de electrische of mag-
netische momenten, in het algemeen geen phaseoppervlakken
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bestaan, Daarom zullen we niet de juistheid van de constructie
van Iuygens gaan onderzoeken voor die phaseopper-
vlakken, maar voor de phaseoppervlakken van de potentiaal,
van de ontbindingsuitwijkingen en van de electrische en
magnetische ontbindingsmomenten (of krachten).

Stel dat @ (zy 2 ¢) de phase is van de potentiaal, van een
der ontbindingsuitwijkingen, of van een der electrische of
magnetische ontbindingsmomenten, dan heeft, het phaseopper-
vlak daarvan tot vergelijking

@ (ryzt) = Constant,

indien we hierin ¢ als standvastig beschouwen.

In een punt van dat oppervlak richten we een normaal op
van lengte d N; de uiteinden van die normaal noemen we de
punten P en @ en de coidrdinaten dier punten x, ¥, z en
ridx, y+dy, z+ dz; dan is

3 v 8.0 e o el ay a0 a: y
@(Q, f+f]f) — () (1“, f) e '—3 di ':-[ — 3;*\*' ! 3 ‘/' 2 ;\r -+ 3z 3 N.:-I dN.

t o
Kiezen we hierin df zoodanig dat

a6 2l oz alk 2y al 9z
5t " TLazx oN + &y @éN 3z &N 2 ’

dan is volgens de vorige vergelijking de phase in ¢ op tijd
¢+ dt gelijk aan de phase in P op tijd £. We kunnen dus
zeggen dat in d¢ secunden de phase zich in de richting van
de normaal op het phaseoppervlak voortbeweegh over een
afstand d N, indien dt¢ en d N zin verbonden door de
laatste vergelijking. De phasesnelheid, die we zullen aan-
duiden door de letter @', kunnen we dus definieeren door de

formule :




of

RNC)
ot
S0

oN

(39)
indien we ter afkorting stellen

e 9 é (f_) & c ) 'f/ + e @ oz }
3N  aéx &N dy 3N 3z oN'

hierin beteekent dan a’ de phasesnelheid langs de normaal
op het phaseoppervlak in die richting waarin we d N positief
noemen ; daarvoor zullen we steeds die richting kiezen,
waarin de phase zich voortbeweegt.

Door middel van (39) kunnen we berekenen de phasesnel-
heid van de potentiaal, van de ontbindingsuitwijkingen of van
de electrische of magnetische ontbindingsmomenten (of krach-
ten) door in (39) voor @ in te voeren de phase der potentiaal
of van een dezer lichtvectoren.

Zal de constructie van Huygens voor de phaseopper-
vlakken gelden, dan moet de phasesnelheid voor ieder phase-
oppervlak standvastig zijn, of duidelijker gezegd dan moet (39)
voor a' een waarde opleveren die constant is of die een
functie is alleen van 6.

Indien «' gelijk is aan de constante @ uit de diff. verg.
der golfbeweging, eerst dan mag de constructie van H uygens
worden toegepast met bollen van straal 7 — at, zooals bij de
elementaire verklaring van de verschijnselen van terugkaat-
sing, breking en buiging ze wordt toegepast op de golfopper-
vlakken der beweging. Onder golfoppervlakken moeten ver-
staan worden de zooals we zagen slechts in bijzondere gevallen
voorkomende phaseoppervlakken der uitwijking of der mo-
menten.

Ons onderzoek naar de juistheid der constructie van Huy-
gens komt dus neer op de berekening van de phasesnelheid
a' door middel van (39).

Tot nu toe gebruikte ik de uitdrukking voortplantings-
snelheid der verstoring opzettelijk niet. Voor het een-
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voudigste soort bolvormige golven dat zich I at denken, n.l
dat waarvan de potentiaal den vorm heeft 4 - sin m (r —at),

waarin A4 enm constanten zijn, zijn reeds de phasesnelheden
der potentiaal, der ontbindingsuitwijkingen en der ontbindings-
momenten verschillend, zooals we zullen zien. We zouden
dus niet weten aan welke van al dezer phasesnelheden we
den naam voortplantingssnelheid der verstoring zouden moeten
geven. Bovendien komt het mij voor, dat in het deel der
ruimte, waar alle deeltjes reeds in verstoring zijn, het geen
zin heeft te spreken van de voortplantingssnelheid der ver-
storing en deze al zeer moeilijk te definieeren zou zijn.

Anders is het gesteld aan de grens der beweging.

Indien een deeltje P gelegen is in het oppervlak, dat de
beweging op tijd ¢ begrenst en ¢ is een deeltje gelegen op
de grensnormaal in P opgericht terwijl P @ = d N, en indien
de grens der beweging op tijd ¢+ d¢ het deeltje @) bereikt,

dan moeten we onder -!l—: verstaan de voortplantingssnelheid
van de grens der verstoring in het punt P. Het is deze
snelheid die bepaald is voor lichtbewegingen door I'izeaus
Foucauld, Romer, Bradley e.a. en die zooals we zullen
zien stepds gelijk is aan de constante @ uit de diff. verg.
(1) zoowel voor lichtbewegingen als voor electrische golfbe-
wegingen van grooter trillingsperiode.

In de elasticiteitstheorie van het licht onderscheiden
we dus: .

1¢ de voortplantingssnelheid van de grens der beweging,

2¢ de phasesnelheid van de potentiaal,

3¢ de phasesnelheid van de ontbindingsuitwijkingen.

In de electromagnetische lichttheorie onderschei-
den we:

1¢ de voortplantingssnelheid van de grens der beweging,

9¢ de phasesnelheid van de potentiaal,

3¢ de phasesnelheid van de electrische ontbindingsmomenten
of l\mchuen,

¢ de phasesnelheid van de magnetische ontbmdm"smo-

menten of krachten.




2. HARMONISCHE GOLFBEWEGING VAN ONEINDIG

KLEINE TRILLINGSPERIODE.

Gewoonlijk worden slechts bestudeerd potentialen van den
vorm

-

= sin g;-r (rEzat)s (40)

waarin 7 is de afstand van eenig punt tot een vast punt,
het middelpunt der beweging, a de constante uit de diff.
verg. der golfbeweging en € en A constanten samenhangende
met de intensiteit en de periode der beweging.
Voor dezen vorm van ¢ is in onze notatie
v .
1= p =" Gta

9 3 hns
T 271
Yy = -H} (r-tat) — arctg —— ,

v

I

”J[
- _(,'.: 'l/"] N (2:;-)3, i (’*:/ l/1+ (37 ,")2.

Ly J
: ST . . s
Onderstellen we dat ST oneindig groot is, dus dat we

ons op een afstand van het middelpunt der beweging be-
vinden die oneindig groot is t.o.v. 4, dan wordt

A s T
o=ty = 2T (rtan— T,
Cz 2ar ) Cy 2nar
A 73 TS kY = 3 )

Verder worden dan de in (38) onder het teeken arctg
voorkomende uitdrukkingen alle positief of negatief oneindig
groot, want de tellers dier uitdrukkingen bevatten alle een
diff. quot. van v, en v, en daarin Lreudtf‘)‘; " als factor op
later gaan we dit uitvoeriger na.

In die onderstelling kunnen we dus in (38) voor alle arc tg

T 1 T
in de plaats zetten + ., of — . zoodat de phase van de

- -
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electrische en magnetische ontbindingsmomenten en krachten

gelijk wordt aan - ; (r + at) vermeerderd of verminderd met

eenige malen 3

el

21 P :
Als —— oneindig groot is vallen dus de phaseoppervlakken

van de potentiaal en van alle ontbindingslichtvectoren samen,
en de phasesnelheid is dan voor alle gelijk.

Die samenvallende phaseoppervlakken worden dan golffron-
ten of golfoppervliakken genoemd en de phasesnelheid,
die volgens (39) gelijk is aan «, heet dan de golffrontssnel-
heid of wel de voortplantingssnelheid der verstoring.
Daar echter in het gebied gelegen binnen de grenzen der be-
weging alle deeltjes reeds in verstoring zijn, lijkt mij binnen
dat gebied die laatste naam ook hier minder gelukkig gekozen.

Gouy !) heeft er het eerst op gewezen, dat de onder-
stelling 2;”-' oneindig groot en de daaruit voortvloeiende ver-

eenvoudiging van de uitdrukking der phase zelfs voor licht-
bewegingen niet steeds is geoorloofd. In het focus n.l is

Qar I ¢ . : te3 gy
" eelitk aan nul en dus de phase der ontbindingsuitwijkingen
gell) S JKINZ

gelijk aan
27
-t Lai),
terwijl op een afstand van het focus, die t.o.v. Z oneindig
groot gesteld kan worden, de phase gelijk is aan

2m , T
&0 (rtat)——-.

—

Dit phaseverschil o heeft hij door zijn bekende elegante proeven

gedemonstreerd.
De verklaring daarvan is voor geluidsgolven gegeven door
Gouy en voor lichtgolven door V. A. Julius. Laatstge-

1) Gouy. C. R. T. 110, p. 1251, 1890; ibid. T, 111, p. 353 et p. 910, 1890,
Ann, de Chim. et de Phys. 6e série, T. 24, p. 145, 1891,
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noemde toonde tevens aan 1) dat voor cilindrische golven dit
phaseverschil gelijk is aan Z

Het is gemakkelijk in te zien, dat wanneer in den alge-
meenen vorm der potentiaal ¢ = ysiny, de diff. quot. van
Y Naar &, y, z en t zeer groot zijn t.o.v. de diff. naarz, y,

Zen ¢ van y, alle phaseoppervlakken van (36) en (38) samen-
O -

vallen. Deze onderstelling is analoog met de onderstelling '“———}.”—
oneindig groot of 2 oneindig klein t.o. v. 7.
Het is vooral met het oog op electrische trillingen, dat ik
de onderstelling A oneindig klein t.o.v.7 niet overneem.
Bovendien zullen we voor de potentiaal niet den specialen
vorm (40) aannemen, maar de vergelijkingen (33) tot (38) in
haar algemeenen, vorm behouden.

3. STATIONAIRE GOLFBEWEGINGEN. VORM DER POTENTIAATL.

S'I‘ANII\’.\STH_?HEIII VAN HET TRILLINGSGETAL.

In de elasticiteitstheorie van het licht noemt men een zoll-
beweging stationair, indien eenzelfde deeltje telkens na een-
zelfde tijdsverloop met dezelfde snelheid in hetzelfde punt
van zin baan terugkeert. Amplitude en trillingstijd van de
ontbindingsuitwijkingen moeten dan van den tijd onafhan-
kelijk zijn; deze voorwaarde is noodig en voldoende. Hieruit,
volgt dat de amplitude een functie moet zijn alleen van de
coirdinaten en de phase een functie van de codrdinaten en
den tijd, die lineair is in den tijd.

Voor een stationaire golfbeweging waarvan de potentiaal
den vorm (33) heeft moeten dus de ontbindingsuitwijkingen »
en w den vorm hebben

F=f(xyz) sin |fi(xyz + th(xyz)!. (41)
In analogie hiermede kunnen we in de electromagnetische

lichttheorie een golfbeweging stationair noemen, indien de

1) Vo A Julius. Arch. Néerl, T. 28, p. 226—244,
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electrische en magnetische ontbindingsmomenten (en krachten)
den vorm (41) hebben.

Nu moeten de ontbindingsuitwijkingen en ontbindings-
momenten even goed aan de diff. verg. der golfbeweging vol-
doen als de potentiaal zelve, dus:

—a® A F,

Nu is
AF O M i t Sh o g2y,
S~ L sinffi+th] (3t cos[fit thi,

e o2 ] 3 /i Afai\2
'._ 12 ::Q/u —f('_:/],7 -I_tﬂfu):sllllf1+tfil

e T 1 T ax
(o of f°f ofa\ | & 2\l e 1 £ 4
+ 2 ”;(:rl U ) i f(“: 1 3;:-2):‘“0'“"“‘ +ihl;
dus:
ar = [7-r{=(E)+2es38 28 v s (CBYJuiniri + o

\

waarin door & wordt aangeduid een som die zich symme-
trisch over @, y en z uitstrekt. Verder is:

2 [ 9 eyl £ 970 T we g KT
Tk — 2 fsin | fy + L ;

zoodat we Krijgen:

~

AT i gy G!‘.2| ‘:! :!.,' 2 v "“;l'.! !r 1 P . A" !
[‘“/—"“‘(si) +ox AR e () ~+?=”'-’] S {7+ b
s e 18 21 S./gsala +frALT L 108 L il =
“=9zxax ' T 9z x fAahTt] /* (’Ohjfl s fz‘ 0.

Geven we aan z,yenz vaste waarden en laten we i regel-
matig toenemen dan bewegen zich sin |/, -+¢/i| en cos|fi + /i
periodisch tusschen — 1 en + 1. Ln daar voortdurend boven-



staande verg. gelden blijft, moet dus:
o 3 f1\2 L3R A e 3fa\2) . 4 ...
Af—flx (_3{}) +2ty HEL ey (L) L S

en

2

w| o

8~

w | w
5

» 3 |

1 ¢ 3 "J{..’

z 2t sy as AL+ ifAfR=o.

Deze beide vergelijkingen moeten doorgaan voor ieder

waarde van ¢ Volgens de coéfficient van ¢ uit de eerste
verg. moet dus:

5 (_Jf-) =0,
o

waaruit volgt:

3 fa S fa 3Ly
ox L Tk 4 Y Folbeer Uit
en dus:
f.' o (\1

waarin € een constante is.
Onze beide diff. verg. worden daardoor:

AL 0 “)
A . v | > . !I = '4" 1
S (G = = 0

a

en ) (42)

DESnls L N i

X A

Voor een stationaire golfbeweging hebben dus de ontbin-
dingsuitwijkingen, de ontbindingsmomenten en de ontbindings-
krachten den vorm:

F=[fyz) sin|fifxyz) + Ot Iy (43)

terwijl / en f; moeten voldoen aan (42).
Uit (43) blijkt dat de trillingstijd dier functies hetzelfde is
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voor alle deeltjes, want de trillingstijd d. w. z. de aangroeiing
die we aan ¢ moeten geven om de phase een aangroeiing 2 w
te doen verkrijgen is gelijk aan 2(? en dus onafhankelijk
zoowel van de coordinaten als van den tijd.

De onderstelling (41) dat de trillingstijd onafhankelijk is
van den tijd, brengt dus met zich dat de trillingstijd dan
noodzakelijk bovendien onafhankelijk moet zijn van de
codrdinaten.

Als dus door een lichtbron (of electrizche verstoringsbron)
een stationaire golfbeweging wordt uitgezonden, is op grooten
afstand van die bron de trillingstijd juist dezelfde als in de
nabijheid ervan. Gaat een stationaire golfbeweging door een
focus dan is in het focus de trillingstijd juist dezelfde als er
buiten; de trillingstijd is van de veranderingen in
de amplitude onafhankelijk.

Indien we aannemen dat een willekeurige golfbeweging mag
worden beschouwd als te zijn de opvolging van een reeks
stationaire bewegingen, dan mogen we die stelling unitbreiden
voor een willekeurige golfbeweging. Zij is met de experi-
menten in overeenstemming,.

We gaan thans onderzoeken welken vorm we aan de po-
tentiaal moeten geven, opdat de beweging stationair zij, m. a. w.
opdat de ontbindingsuitwijkingen en de ontbindingsmomenten
den vorm hebben:

F=/[f(xyz) sin ;/1 (xyz)+ Ct l
of wel

F = B, sin Ot + f,co0s Ct, (44)

]

indien

By=fcosfi en (= [sinf;

g; en 3, zijn dan periodische codrdinatenfuncties.
Daar de electrische momenten den vorm (44) moeten hebben
zal volgens (9):
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& 2 32
P 1= = pysin Ut 4 3, cos Ot

?) - o2 F 5 : sl a) 2l

c oz ay = (33810 C"¢ + f4cos C' ¢,
3 2

) =g At .\ :
i = (3580 C" ¢ + (ycos C'' ¢,
& oL Jd & y

waarin gy, f,.. .p; functies van 2, y en z zijn en C, (" en
C'" constanten; de functies ¢ en de constanten C zijn echter

niet onafhankelijk van elkaar, want:

o :3 o [~ a Pc‘ ) \':' K e
: (‘))z (") en ( )4_;,(,1)_)“:_ (3)=n;
o2 & Sy é axr & a1 {_ 2z F
dus:
\.3"'..!)(. . ~. bol "')'] 1 o ,r‘,,_' . . ‘?P“. -, L
—— 8in 0" ¢ + cos 't = ZE8gin O ¢ + Zt% cog 0! ¢, (45)
3Z or 2 31 \
en
LJ '}) . e 31 LJ ;f .
“lsin 0t + <2 cos 0 + 23 gin ¢r ¢ +
ok em Qi
(46)
LJ {;1 sJ J‘_’, : L'} }.’
ar f cos ' t + J{ sin C''t + )f‘ cos Ot =o.
n". O Az ]

Indien deze vergelijkingen (45) en (46) gelden voor ieder

waarde van f, dan zijn daardoor de functies g ende constan-

ten C zoo bepaald, dat X, 9 en 3 den door (9) vereischten

vorm hebhen.
De verg. (45) heeft de gedaante:

Asinat + Bceosat A'sina't en B'cosa't. (47)
Differentieeren we deze verg. tweemalen naar ¢ en deelen
we de aldus verkregen verg. door (47), dan vinden we:

2 2
at=laldy



en dus

waardoor (47) overgaat in:
(AT 4') sin al + (B— B') cos at = 0;

indien deze verg. zal gelden voor ieder waarde van f dan
moet zoo 4, A’, B en B’ onafhankelijk zijn van ¢:

A= 1T A" en B = B.
Zal dus (47) gelden voor ieder waarde van ! en zijn 4, 4/,
B en B’ onafhankelijk van ¢, dan volgt daaruit:
al =1 a, )
Al = + 4, i (48)

1= Ji

Derhalve volgt evenzoo uit (45):

0=+ 0,
3 d [_}T
"/ v ) = ?
CIE= R O a1

fol ﬂ‘, e r};l 3 ~ a ()",'

- - — i : 3 l",'.' == Li:. - )

2 3z ! of : az > (4{))

e ll’f"‘ a ﬁl - O e (25

. = 5] —

o oz ! ! 21 )
" 2 s
P'l'n = - l_[ °

Door het, stel (49) gaat (46) over in:

d l-;l : Y a —’,? a2 ("7 . " a2 .-‘:‘«‘ A
“lginCt+ “2cosCt + ——s8in {4 - 2 cos C' £+
aa axr a = ay*
» 3 2
45 ETgin C' ¢ + ——l-_' cor CUft'=l0,
a :2 J2¢

of



63

=4 g . 2 “,_.
Cllgngg 1 02 cos Cf — —
La,]’_' _3..).
= a2 2t " o2 22 2
_— ( ) r’,rf —i_ -_:g |)"" |11 (/ t = (—3 '/2 + __), = P“ 08 cf t .
- il s o B

Evenals uit (47) volgt (48), zoo volgt uit deze laatste ver-
gelijking daar zij moet gelden voor ieder waarde van ¢ en de
cotfficienten van sin. en cos. van ¢ onafhankelijk zijn :

¢ =+,

a LJ {3.“
£ 1 Pt ey e
o =+ 0, b
13 22 N —f &2 a2 ) :
o {)] —( % < Y 2 sy - 54 ‘._:
3 ar 8 y‘.! s :‘2)1 A ()f: ‘ J ‘?]3 F a2 ! (l)O)
3
P If}.! nA ol a2 ; Bs < l' lglj
& Fi Y e LR 3 a
e x c 1= o 8=
a2 2 )
0 i ;
o=y
(32 (3 T tts 3 g2/ P10
Uit (49) en (50) volgt:
] "')‘! »
Pa = . P9 »
= i o dady
~
[ D} P — o= o
Ci= 0, BN — P10
dady
v ] =3 ( L}'} I GJ ) ]
J, = b A 8 'Y
I -4 3y 2 52! P 2 et a2 ,
- Bs o s
o x5Ee
Yo 2 )
Lo (o0
!}2 PR (3 ks * 2 z¥ {}In, g — ks 3
' g (OB 210 3
S &

zoodat:

&' a2 2 A a2 o \
— ( Hji-' e 3 ».2) L ( )y e 2] «2) {'t (o 81D C't ar Ik’l“““s Cl) )

'3 o C &%/ v v 5%
Y, & a2 e -
= = 525 ) (i  ady (-F (3 8in C't [ cos Ct),
3 &? &2 :
- — T y T (_-_t 1-;3; 81n (‘! "]‘ l')l[u COS ('t) .
& [ = A L= A /o A
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en hieruit volgt:
¢ = 1 8ysin Ct + pycos Ct.

Dezen vorm waarin $, en g, willekeurige periodische coor-
dinatenfuncties zijn, moet de potentiaal hebben, opdat de
electrische ontbindingsmomenten zijn van de gedaante (44).
Het is eenvoudig in te zien dat als ¢ dien vorm heeft ook
de magnetische ontbindingsmomenten en de ontbindingsuit-
wijkingen den vorm (44) zullen verkrijgen en ook voor deze
vectoren is gemakkelijk te bewijzen evenals we het boven
deden voor ¥, 9 en 3 dat die vorm van ¢ daartoe nood-
zakelijk is.

We kunnen dus zeggen :

Opdat een lichtheweging stationair zij, moet zoowel in de
elasticiteitstheorie als in de electromagnetische lichttheorie de
potentiaal ¢ den bovenstaanden vorm hebben, en als ¢ dien
vorm heeft dan is de beweging stationair.

Daar f, en p;, willekeurige periodische coordinatenfuncties
zijn, kunnen we voor ¢ ook schrijven:

¢ = asin Ct + p cos Ct.
Dan krijgen we:
a2 52 52 a2 . a2 a2 ‘
— (Rﬁ i ) ¢ =— (—L - *) a Sin C!,—( — 4+ —) P cos Ct,
C’ .7/‘3 ! ‘_’J 32 & yﬂ e :-" o :1’1- o 2=
32 2.2 5 al
: it - - esin C'L -} (.cos Ot
g dy dx 3y dxady
a2 52 . o2 ,
il = = asin C'f - [+ cos C't,
d3x 3z drdz 3 £
0,
52 e @ .
= g9 =0— wacosCt— C—— [sinCt,
!9 Z 1.3 t t-3 & L; Z i
32 ) - e *
= = g = — 00— w«cosCt+ C - fsinCt.



Stellen we deze uitdrukkingen samen door middel van de

vergelijkingen:

Asina—f~Bcosa:]/A'l+ B‘-’sin:a-l—urctg%,
ré

en

Adsina— Bcosa = 1/ 4* L Rigin : d— arc tg B

dan krijgen we

De trillingstijd al dezer lichtvectoren

'311‘!

\
o2p | 226 |
N VA :(!)?_"3:‘--; T arg\r <l £ 2 y* T o )
¢ (13 TERNETTY (8 y2 T a :-') .m( e Piu -{—792“ "_"ﬂ",
é 3;,1 o 22
32{3
) /1 a%a \2 123 \2 3x 3
= ]/ ( A T ) i ( ‘_.’,) 81n ‘Ct -+ arctg _ﬁ_,_,;L)
& dx s Ui o ( a‘,_“ - , !
' sxdy
a2
3 / 2a \t [ a2g \* . ( raz | \
—— = l ( = ) _}.( { ) sin ) C't 4- arete - - A
& daae 2%dz R R ‘(5
3 2 ez f’(.)l)
!
rE
~ = 0,
o &
Q1N Ve - A f =
A= C '/ - “)’ 22} gin )0t —aretg 22— !
B Vee/ TGy BRI Sores =Ry
=
el (19
N e =
".'- 74 -Jﬂ e 7i 2 . t g o 1/ ?
e} ' ( ) Sk (* L) 8in ¢ Ut —aretg —— — 4!
Alh‘ 2y ; 3y 59 p i ' /
d y'

.. T
18 -*Ci.

Voor een stationaire golfbeweging is dus de trillingstijd
zoowel van de electrische en magnetische ontbindingsmomenten
en krachten, als ook van de potentiaal zelve en van de ont-

bindingsuitwijkingen (zooals eenvoudig is
zelfde.

uit te rekenen) het-
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Ook voor X bestaan hier phaseoppervlakken.

De phase van de potentiaal, van de ontbindingsuitwijkin-
gen, van de electrische en van de magnetische ontbindings-
momenten en krachten is echter ook hier in ’t algemeen
verschillend.

Definieeren wij de golflengte van de potentiaal, van de
ontbindingsuitwijkingen, momenten en krachten als te zijnde
normale afstand van twee phaseoppervlakken, waarvoor de
phase een verschil 2z heeft (voor eenzelfde waarde van i),
dan zijn dus de golflengten der potentiaal en der ontbindings-
uitwijkingen, momenten en krachten verschillend en voor al
deze grootheden bovendien afhankelijk van de codrdinaten
maar onafhankelijk van den tijd.

Bij een stationaire beweging is dus voor alle lichtvectoren
de trillingstijd gelijk aan dezelfde constante, de golf-
lengte echter is wel onafhankelijk van den tijd, maar is
voor elk dier lichtvectoren gelijk aan een andere codrdinaten-
functie.

Door voorbeelden zullen we dit in het volgend hoofdstuk
nader toelichten.

4. VERSCHIINSELEN AAN DE {RENZEN VAN EEN STATIONAIRE

GOLFBEWEGING.

Stel dat een of meer verstoringsbronnen A in stationaire
beweging verkeeren en dat op tijd ¢ de beweging die A
hebben verwekt in het omgevend medium, wordt begrensd
door een oppervlak S, zoodanig dat de deeltjes op S op tijd ¢
hun beweging beginnen. Op tijd is dan rust buiten S en
binnen S is beweging. Op tijd ¢, is dus ook op S rust en de
deeltjes op S hebben dan nog geen arbeidsvermogen van A
ontvangen. Van dat oogenblik af deelt de golfbeweging door
A verwekt aan de deeltjes op S voortdurend arbeidsvermogen
mede. Dit arbeidsvermogen dragen zij voor een deel over aan
de verder gelegen deeltjes, maar ze behouden zelf ook een
gedeelte, waardoor de som van hun arbeidsvermogen van
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plaats en van beweging langzamerhand grooter wordt. Gedu-
rende het begin van hun beweging dragen de deeltjes op S
dus minder arbeidsvermogen over dan zij ontvangen. De golf-
beweging die dan het oppervlak S passeert, verhoogt dus de
energie van de deeltjes op S.

Na eenigen tijd echter, b.v. op tijd #, is de beweging van
de deeltjes op S stationair geworden, d.w.z. ze keeren dan
telkens na eenzelfde tijdsverloop met dezelfde snelheid in het-
zelfde punt van hun baan terug. De som van hun arbeids-
vermogen van plaats en van beweging blijft dan standvastig;
de golfbeweging die dan het oppervlak S passeert, verhoogt
de energie van de deeltjes op S niet meer.

We stelden ons hier op het standpunt van de elasticiteits-
theorie van het licht en spraken van de beweging der
etherdeeltjes; het is echter duidelijk dat in de electromagne-
tische lichttheorie een analoge redeneering kan worden ge-
houden; ook hier wordt door de verstoringsbronnen aan den
ether arbeidsvermogen medegedeeld en wel in den vorm van
een electrische en een magnetische polarisatie.

Volgens beide theorieén hebben we dus het recht te zeggen :

le. Een golfbeweging die zich voortplant in de buurt van

de voorste grens der beweging en wel in dat deel,
waar de beweging nog niet stationair is geworden, ver-
liest bij haar \f;oortbuwoging een deel van haar arbeids-
vermogen of m.a.w. ondergaat een dem ping.

2¢. In het deel der ruimte dat zoover van de grenzen der

beweging verwijderd is, dat deze daar stationair is ge-
worden, plant een golfbeweging zich voort zonder
arbeidsvermogen te verliozen.

Het woord demping moet hierbij goed worden opgevat; niet
de beweging van eenzelfde deeltje dat in de buurt der voorste
grens ligt ondervindt een demping, integendeel de energie
en dus de amplitude van zulk een deeltje neemt toe; maar
de golfbeweging die door de bronnen A wordt uitgezonden,
ondervindt in de buurt der voorste grens een demping,
omdat zij het arbeidsvermogen van de deeltjes die zij passeert
verhoogt.,

In de buurt van de achterste grens van een stationaire
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golfbeweging heeft juist het omgekeerde plaats. Om dat inte
zien stellen wij dat op zeker oogenblik f, de bronnen A op-
houden een golfbeweging uit te zenden. De deeltjes op
grooteren afstand van 4 en die zoover van de voorste grens
verwijderd zijn dat hun beweging stationair is, zullen dan
pas ophouden een stationaire beweging te hebben nadat dit
het geval is met de dichter bij 4 gelegen deeltjes ; het onder-
ling verband toch tusschen de uitwijkingen en de snelheden van
alle in stationaire beweging verkeerende deeltjes is zoodanig,
dat er voortdurend arbeidsvermogen van deeltje op deeltje
in de richting van de bronnen af wordt overgedragen, zonder
dat (zoolang als de bronnen arbeidsvermogen Jeveren) daarbij
het arbeidsvermogen dier deeltjes toe- of afneemdt.

Dat overdragen van arbeidsvermogen van deeltje op deeltje
bliift voortgaan ook nadat de bronnen A hebben opgehouden
arbeidsvermogen te leveren; het gevolg daarvan is dat de
voorste grens der beweging door blijft gaan met zich voort
te planten juist als toen de bronnen nog wel energie leverden.
Daar dus voortdurend arbeidsvermogen wordt overgedragen
in de richting van de bronnen af, zal noodzakelijk het arbeids-
vermogen van de deeltjes in de buurt dier (niet meer energie
leverende) bronnen afnemen, en weldra zullen de deeltjes die
aan die bronnen grenzen in rust zijn gekomen.

Het is hieruit duidelijk, dat we op zeker oogenblik #;
nadat de bronnen hebben opgehouden energie te leveren,
kunnen onderscheiden vier oppervlakken Si, Si, S; en Sy,
zoodanig dat S, de voorste en S de achterste grens der
beweging vormt, dat tusschen S; en S; de beweging stationair
is en dat tusschen S, en S, evenals tusschen S; en S de
beweging niet stationair is. Het arbeidsvermogen der deeltjes
tusschen S; en S, dus der deeltjes in het voorste niet
stationaire gebied neemt toe totdat de beweging dier deeltjes
stationair is geworden; het arbeidsvermogen der deeltjes
tusschen S: en S; dus der deeltjes in het achterste niet
stationaire gebied neemt af totdat die deeltjes tob rust- zijn
gekomen.

Indien we een galvanische keten op tijd 7i sluiten dan
heeft pas op tijd 7, de stroom zijn volle sterkte verkregen,
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daar er gedurende dat tijdsverloop een deel van het arbeids-
vermogen dat door de batterij wordt geleverd aan het
omgevend medium wordt overgedragen en dit maakt tot een
magnetisch veld. Verbreken we nu op tijd 7% den keten, dan
is eerst op tijd 7, de stroomsterkte nul geworden; het
arbeidsvermogen dat het magnetisch veld op tijd 7% bezat
onderhoudt den stroom gedurende den tijd 7, tot Ti. De
tijdgrenzen 7y, 7, T, en T, zijn eenigszins met de ruimte-
grenzen .S, S, S; en S; te vergelijken.

Hoe we in de uitdrukking van de potentiaal eener begrensde
door stationaire bronnen verwekte verstoring rekening kunnen
houden met die verschijnselen in de buurt der grenzen,
zullen we later doen zien. Daarbij zullen we ons laten leiden
door het aangehaalde beeld van den extrastroom. Die grens-
verschijnselen maken dat ook op de grenzen der beweging de
potentiaal, de onthindingsuitwijkingen, ontbindingsmomenten
en krachten continue functies blijven, zooals voor de toepas-
sing van Kirchhoff’s theorema noodzakelijk is.

Bij niet stationaire golfbewegingen zullen zich aan de
grenzen dergelijke verschijnselen voor moeten doen; ze zijn
daar echter niet zoo scherp te omschrijven. De deeltjes in
de voorste grens moeten in beweging worden gesteld on
dragen dus minder arbeidsvermogen over dan zij ontvangen;
de deeltjes in de buurt der achterste grens dragen arbeids-
vermogen over zonder dat hun door de bronnen nieuw
arbeidsvermogen wordt toegevoerd en komen daarom tot rust.
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BOLVORMIGE GOLIFBEWEGINGEN.

1. EENIGE VORMEN VAN POTENTIAALFUNCTIES VAN BOLVORMIGE

GOLVEN.

e

De cenvoudigste onderstelling die we voor holvormige
golven kunnen maken is, dab de potentiaal ¢ behalve van
den tijd alleen een functie is van den afstand #» tot het
middelpunt der golven. Kiezen we dat middelpunt tot oor-
sprong van cotrdinaten dan kunnen we de diff. verg. der
golfbeweging

Rl e
e = g*/\Q (1)
transformeeren tot
"32 \ “ 32 IE
—7E) M ARSI e (r ). (52)

Hiervan is de algemeene oplossing
1 5 1 i
P= Fy(r+at)+ - Fy (r—at), (53)

waarin F, en F, arbitraire functies zijn. De eerst term van
@ heeft. blijkbaar betrekking op een convergeerende en de
tweede op een divergeerende golfbeweging.

De uitdrukking (53) is de eenvoudigste vorm van de poten-
tinal van bolvormige golven. Daar ¢ hier slechts afhangt van



ren toen dit dus ook met haar phase het geval zal zijn, is
ook de phasesnelheid der potentiaal een funtie alleen van »
en ¢ en dus naar alle richtingen dezelfde.

Uit (53) zijn andere meer ingewikkelde potentialen van
bolvormige golven af te leiden.

Indien we nl. (1) differentieeren naar = krijgen we:

3% (3 3 g
UL
dt* \ox (o
; S (@
Is dus ¢ een oplossing van (1), dan voldoet ook en
3 X
o 2 a a !
evenzoo zijn dan ook <% °9 on X oplossingen. Door

ay' az at
ieder dezer oplossingen weder naar «, 7, zen ¢ te differentieeren
vinden we weder nieuwe oplossingen, enz. Verder zullen
sommen dezer oplossingen ook weder oplossingen zijn, daar
(1) lineair en homogeen is.
Uit de oplossing

i i
U= F(r—at) (54)
kunnen we dus vooreerst afleiden de oplossing
'1 1
Py = — = F(r—at)
of (55)
Qg == e B — Y el e B (o — 1)
I'.J—““,r;;- it) 3 U iy
Noemen we & den hoek dien » maakt met de Z as en 7
den hoek tusschen het Z .\ vlak en het vlak gaande door #
en de 4 as, dan is
& = r co8 y Bin o
en dus
I’ I . X
Qq = (_ = + T)cus 7 8In (H6)

waarin /' en F' zijn geschreven voor Fr—at) en F'(r— at).
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De beweging (56) is reeds veel ingewikkelder dan (54);
haar potentiaal is niet onafhankelijk van de richting. In het
Y Z vlak is cos y = o, langs de Z as is sin & = o, terwijl
langs de X as zoowel sin o als cos 7 afzezien van het teeken
hun grootste waarde hebben. In de punten waar de X as
den bol snijdt heeft de potentiaal afgezien van het teeken
haar grootste waarde en neemt van die punten als polen
beschouwd naar het aequatorvlak Y Z af. Aan beide zijden
van den aequator heeft de potentiaal verschillend teeken en
is op den aequator zelf nul. Met grooter worden van 7 nemen
beide termen waaruit (56) bestaat af, maar de eerste het
snelst. Ver van den oorsprong behoeven we dus slechts de
laatste term in aanmerking te nemen en de eerste is over-
wegend in de buurt van den oorsprong.

Door (55) nog eens naar x te differentieeren krijgen we de
oplossing

1 3 a2 3t x?
D B SRy e
» 7o ?-'l 7 r.’!

of

F,N+GF 3 I’

Py =——5 +-

oy
73 3 iz v ) cos? 7 sin g, (57)

De eercste twee termen zijn van y en ¢ onafhankelijk en
stellen dus een deel der potentiaal voor, dat zich naar alle
zijden met gelijke phasesnelheid en intensiteit uitbreidt. Het
tweede deel wordt vermenigvuldigd met cos®y sin®&; deze
richtingsfactor is nooit negatief, bereikt zijn maximum 1 op
de X as en is in het Y Z vlak nul. Het deel der potentiaal
door de laatste termen van (57) voorgesteld, is dus langs de
X as het grootst en neemt van daar naar het Y Z vlak af
tot, nul. In het Y Z vlak overheerscht het eerste deel: het
laatste overweegt voor grootere waarden van 7 in de buurt
van de A as.

Op deze wijze voortgaande kunnen we potentialen van
steeds ingewikkelder vorm afleiden. Door (55) naar ¥ te diffe-
rentieeren krijgen we b.v. de oplossing



Nu is
T = r cos y sin & en Yy = r sin y sgin ¢,

dus

QR o
- (r)?_i ”:_ - %) gin 7 cos 7 &in? & . (H8)

De richtingsfactor heeft hier al weer ingewikkelder vorm.
Langs de X, Y en Z as is de potentiaal nul en zij bereikt
haar maximum voor & = 900 en 7 = 45% dus in het .\ Vvlak
midden tusschen de .Y en VY as in.

Von Helmholtz 1) noemt verstoringen als waarvan (56),
(57) en (58) de potentialen zijn, »Zusammengesetzte Kugel-
wellen”.  Strikt genomen zijn van al deze golfbewegingen de
potentiaalphaseoppervlakken niet bolvormig. Ik zal ze echter
toch met den naam bolvormige golfbewegingen aanduiden.

We kunnen in (54) het — teeken door het + teeken ver-
vangen en mogen dus in (56), (b7) en (58) hetzelfde doen ;
zij worden dan de potentialen van convergeerende bewe-
gingen.

) Von Helmholtz Vorlesungen iiber die Electromagn, Theorie des
Lichts, Hamburg und Leipzig 1897,
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2 PHASESNELHEDEN VAN EENIGE SOORTEN VAN BOLVORMIGE

STATIONAIRE GOLFBEWEGINGEN.

Als eerste voorbeeld kunnen we kiezen een speciaal geval

van (54) n.l

gin 2740 —

v

(1, r—al
T —. (59)

waarin @ is de phase der potentiaal.
In ons geval is dus

r—atl
gi=go ey

dus
De phasesnelheid van de potentiaal (69) is dus gelijk aan a.

Als tweede voorbeeld kiezen we

8 (C r—at :
= I —gin 27 LG 3 ):; (60)

e & { 0

deze potentiaal is van den vorm (56).
. . 2w :
Stellen we ter afkorting = m, dan 18

o . Cme ;
— 5 sinm (r—at) + ——= cosm (r—at),

q —



of

£ e i ( 1
[ =y V' 1+ m? 2 sin:m(ru—at)——arctg-mr :
Hier is dus

6 = m(r—at) — are te mr,

N0 o ENC) 20 and y2
= — ma ——e s e T
8t : N 3y 1 4 m2p2?
dus:
2 )
i 1
A — = qa (1 P q)
@ a6 ( + mep2/
a I\T
of
! = 14 A% Gl
A = Qa - ;1*—772'?.'2 . () )

De met (60) overeenkomende convergeerende beweging heeft
tot potentiaal

J | (.Jr r -i— Nt' §

s P ALARS ety ak B
P = 3 |7 fin2m i 1 (62)

daarvoor vindt men evenzoo voor de phase:
0 = m(r-4 at) — arctg mr,

é M 3 ) a m3 y8
-— _E. = Ma y = —

é 8N ar 14 m2e2?

en dus

A==y (1 - r )

4t

Dit is juist dezelfde uitdrukking als (61). Zoowel van (60)
als van (62) stelt dus (61) voor de phasesnelheid der potentiaal.

Voor r oneindig groot t, o, v. 2 is de phasesnelheid gelijk
aan a@; voor r oneindig klein t.o.v. 1 is de phasesnelheid
oneindig groot.
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Bedroeg die snelheid overal @ dan zou de phase der poten-
tiaal tusschen twee punten gelegen op afstanden [i; en I,
voor en achter het focus een vermeerdering verkrijgen
m (R, + R.); nu echter bedraagt de phasevermeerdering
tusschen die punten

m (R, + Ro) - arctgm R, + arctgm R, .

De phasevermeerdering die het gevolg is van die grootere
phase snelheid is dus

arctg m R, 4+ arctg m R,.

Zijn m R, en m R, zeer groot, d. w. z. I en B,y zeer groot
t.0.v. 4, dan wordt die phasevermeerdering dus gelijk aan
x. Die phasevermeerdering komt overeen met een wegvoor-
/8

-L)'

via
sprong — of
m

Nemen we thans eens aan dat de potentiaal den vorm
heeft

82 (O . o r—at
— — sin2mw — 1
axaylr /s

¢ = (63)

wat een bijzonder geval is van den vorm (58).

. 2w /
Stellen we weder ter afkorting = = dan vindt men

v

O smr

f 5/ F—ata—— % ain! —are f
P = 5V (E—m? r2)? 4= (3 m r)? SInm (r—at)—arc tg:}__wﬂ s

Hier is dus

smr
@ = m(r—at) — arctg 5

) —mir??

waaruit men vindt :

a

— = — ma,

2l

a2 F) ENG) mo

a N ar 94 3mirt 4 mirt’
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en dus
; 9 -1 Bm2r2 L ogpi oyt
= — -
m?* ri
of

Tl = [1 + — J—] . (54)

Voor de met (63) overeenkomende convergeerende bewe-

ging is

._32 \ N 7 -]— a fj 3
P = —— —8in2x L " (515
h dzaylr 1 (i),
Men vindt hiervoor
. Smr
6 = m(r+ at) — arctg TR

waaruit voor de phasesnelheid der potentiaal weder de
waarde (64) volgt.

Voor » oneindig groot t.o0.v.3 is de phasesnelheid weer
gelijk a; voor » oneindig klein t.o0.v. 2 is zij weer oneindig
groot.

De door die grootere phasesnelheid (grooter dan a) ver-
kregen phasevermeerdering bedraagt tusschen twee punten
gelegen op afstanden R, en R, voor en achter het focus Voor
de gecombineerde potentiaal (63), (65) :

uy Smr &1 Nl Smr #a
23 —mir |, "8 —mir ],

Is m R, oneindig groot, d. w. z. R, oneindig groot t. o. v. 2,
dan is

y ? ’ Vs P
3mr M Smor m dmr 7]
arce tg — = | arc tg - , + | arctg - — |
S—m“rt |, S—m*ril, S—miri |/

m?2

Zijn R, en R, beide oneindig groot t.0.v. 4 dan wordt de
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geheele phasevermeerdering derhalve 2 a; deze phasevermeer-
dering komt overeen met een wegvoorsprong A.

We vinden hier dus de dubbele phasevermeerdering en den
dubbelen wegvoorsprong als bij het vorige voorbeeld.

" Ten slotte zullen we nog berekenen de phasesnelheid der
potentiaal

JANE GRS ri—al
: gin 2 !
x

qj=.._,,3 P ; s

c &L

(66)

2 :
Stellen we weder - =m, dan vindt men:

v

(e e e Lo mr (3at—r?) |
o=ty V (Bat — vt —m2a2rd)? 4 (B —r¥)2m?r? sm:m (r—at) — arctg 59 :;(-7-‘-‘_,;—”-1‘_,;1-‘._,";.31'

Hier is

mr (3 a2 —1r?)

O = m(r—at)—aretg g o—a——s—2—
) m(r—at) re tg T i gy )

en dus

Hier zijn de phaseoppervlakken der potentiaal geen bollen,
want in @ komt behalve 7 en ¢ ook x voor. Hier is dus niet

=) a )
N~ @ r

a
a

a0
Om == te berekenen hebben we volgens (39)
dd

a6

s N

6 ax a0 5 Y

r 8N ey aN 8z &N

of

20 l/(a i-f)'-'l__(é_i-J)'-‘Jh (a r_-‘J)'—'
'3—‘,\‘; = -—-— i — ] - .

1%
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Nu is

3 ) 36 or 0
T

> gy k
ok cx J

indien we door o aanduiden een differentiatio naardeletter
@, d. w. z. een differentiatie waarbij we alleen naar z diffe-
rentieeren voor zoover w als zoodanig in 6 voorkomt; verder:

NG a0 ar & 3t ar
St L en — = e e
ay ar 3y a3 ar &z

Dus:

=V (Y (1952090 =

r dr ar oz r°

Voert men deze differentiaties uit dan vindt men:

L Ve D P s g e Mo — Gt 4 bat
<3J\"Lﬁ (r)l"—‘r-—__.gn_r,) _{ mie? (S.L”—j) .
en dus
36
al — ‘q_i_ =i (Ba?—r2—m222y D om2e? (B2 — )2
F °0 M)yt Qg — —2r82 L omd 2% — Gm2ad 4 hat
3 N
Stellen we hierin # = 7 cos «, dan:
(3(‘0 20— 1 —m2y2 (»nq-u) - m? 1‘(r;(0H “.__1)
a' == (] —

mAr? Y 14 2mird cosd a— 2 cost + i ricost @« —Gmiricosba - Heosta

Voor mr oneindig groot, dus » oneindig groot t.o.v. A is

a = a;

voor m 7 oneindig klein, dus » oneindig klein t. o, v. 2 is

a = ca.

Behalve van # hangt hier de phasesnelheid der potentiaal
ook af van de richting «, dus van den hoek, dien » maakt
met de .\ as.

In het YZ vlak is cos « = o, dus daar is

RiN=r (1 4 r—n%r_s)’

(67)
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of

a (1 r 44:7,_4);

dit is juist de uitdrukking (61).
Langs de X as is cos « = 1, dus daar is

(2-——-m~r)3—l—4m re
mir? (2—m*r?)

o=

De phasesnelheid der potentiaal is dus oneindig groot in
den oorsprong (het focus) en ook in de twee punten gelegen
op de X as waarvoor m*r? = 2.

Voor de met (66) overeenkomende convergeerende golfbe-
weging is
82 (C r+at)

\
— gin2mw —
a2 lr Al

(65)

Hiervoor vindt men weder :

() = m(r+ at)—arctg ;—
J (ZEijas Jat—r? —mizir? )

zoodat de phasesnelheid der potentiaal (68) weder gelijk is
aan de uitdrukking (67).

Voor de gecombineerde beweging (66), (68) is de phasever-
meerdering der potentiaal tusschen twee punten gelegen op
afstanden [, en R, voor en achter het focus, boven wat zij
zou zijn indien de phasesnelheid was a, derhalve:

; . n
?Hi‘(u.l"'—-?‘ " 'mr(h- r) R
arc tg 5 arc tg 37 s
3 3

12— 1t —m? x? r? — T4 —mi x4 r*
of
fll 92 ”-)
mr(3costa —1) m 1 (3 cos? @ — 1)
1Y G et - arctg 5 =
3costa —1 — miricos? e Bcogtea — 1 —m*ricosta |, .

Onderstellen we m [, oneindig groot en cos « = 1, dan is:

o 0 \ h] 9 pe—s 2
mr (3 cos® e« — 1 mr m Smr
arc tg -— (3 & ) arc tg - 5 ] + I:.ch tm) « =
3cogta—1 — m?r? ! 0os? —m*rd, —mAr? g/ 2
!H
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Zijn m Ry en m R, beide oneindig groot dan wordt dus

voor cos « — 1 de geheele phasevemndering gelijk aan 2 .
De wegvoorsprong is i.

Tot nu toe hebben we slechts berekend voor eenige voor-
beelden de phasesnelheid der potentiaal en we hebben
gezien dat deze zeer verschillende waarde kan hebben, maar
dat in de onderstelling dat 2 oneindig klein is t. o. v, r, Zij
steeds gelijk wordt aan a.

We zouden thans voor die verschillende voorbeelden
kunnen gaan berekenen de phasesnelheden van de ontbin-
dingsuitwijkingen en van de electrische en de magnetische
ontbindingsmomenten en ontbindingskrachten.

Daarvoor worden die berekeningen echter zeer uitvoerig
en daarom zal ik slechts de phasesnelheden vermelden voor
ons eerste voorbeeld

Al

s ¥ —at -
P = —gn2x ——— (59)

=

(9]
. . . . s el o
Men vindt indien men weder ter afkorting stelt L= me

g AR (_,':l/.] 4+ m2r? gin! m (r—at)—arctemy — ol
3z  pd =1 M ) I’
1 ('q - |
A ;’ V1 + m? rigin 'na(r-—at)m:m‘, temr !,
ay r3 ' !
3‘-, (P el ! ‘J' () % Ty TS T T T T TV Y 7% T 2\
N Pl l/lr-—ﬂrl;w—»-m-r‘-(r-’—.r:v');--{~ mer (rf—ga)?
(% - L 1,

o, mr (r?—23 z?)
sin! m (r— at) —arc te e . 7
ll' ?I(! l‘If) 1 ”-'7“"'“—3_1‘3-—-Hl"l"‘(?"—"f‘!)

22 Czy. oz ( omr |
LS N L re 2 29\ oy 0y r a1 . e ——
: 3—mr)? . (; ‘sinm (r—at) —aretg ———
TR ys YV EB—mTr ) Bmr) sinjm ( ) B3
a%p Caz Smr

_ "
. = — l"(::—uz?r'—')'ﬁ.y(.‘:mr)-mn,m(r —at)— aretg
T os e

6
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Lo

g = o,

m 3?2 Cmaz T T
AL = a‘” ';)? = /1 4+ m?r2ein *,m(r—at) — arcigmr— F;:

e i : \ 4]

) RN Omai) ., s s |

L = — el = YV 14+ m2r2 sin | m(r—at)—arctg mr + A4
Ape ay ot 7 | o1

Indien. men A oneindig klein onderstelt t.o.v.7r endus m 7
oneindig groot, dan worden de phases al dezer lichtvectoren

7T

selijk aan m(r — at) + & 5

en al de phasesnelheden worden

dan gelijk aan «. Maakt men die onderstelling niet, dan zijn
de phasesnelheden grooter dan a. De hieruit voort vloeiende
wegvoorsprong tusschen twee punten gelegen voor en achter
het focus op afstanden die t. o. v. 2 oneindig groot zijn,
bedraagt voor de ontbindingsuitwijkingen en de magnetische
ontbindingsvectoren = en voor de electrische ontbindings-
vectoren 2.

Voor lichtgolven waarvan (59) de potentiaal is, kan men
dus zeggen, dat op eenigen afstand van het focus alle phase-
snelheden gelijk zijn aan @. In de buurt van het focus 1s
echter voor ieder waarde van A de phasesnelheid grooter
dan a.

3. VoERM DER POTENTIAAL EENER BEGRENSDE BOLVORMIGE

GOLITBEWEGING.

Indien we onderstellen dat van een bolvormige diver-
seerende verstoring de potentiaal een functie is alleen van
r en van f, dan is haar meest algemeene vorm:

i :
p = Flr—a. (54)

Indien de golfbeweging plaats heeft in den vrijen ether dan
moet /' bovendien nog voldoen aan zekere continuiteitseischen,
die in de elasticiteitstheorie en in de electromagnetische
lichttheorie verschillend uitvallen.

-
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In de elasticiteitstheorie is een physische eisch waaraan
¢ voldoen moet, dat overal waar geen vreemde lichamen of
lichtgevende punten aanwezig zijn, de uitwijkingen en de
snelheden der etherdeeltjes eindige en continue functies zijn
van den tijd. Volgens de vergelijkingen (6) hangen de ont-
bindingsuitwijkingen der beweging waarvan (54) de potentiaal
is, samen met ¥ en ' en dus de ontbindingssnelheden met
Fr en I, Zal dus (54) in de elasticiteitstheorie voorstellen
de potentiaal van een golfbeweging in den vrijen ether, dan
moeten I7, I en I’ gindige en continue functies zijn.

In de electromagnetische lichttheorie hangen de electrische
en de magnetische momenten en krachten eener golfbeweging
waarvan (54) de potentiaal voorstelt, volgens de vergelij-
kingen (9) samen met I, & en F' en dus de snelheden deger
vectoren met F', '/ en /', Zal dus (64) in de electromag-
netische lichttheorie voorstellen de potentiaal van een golf-
heweging in den vrijen ether, dan moeten F', F'" en Fv
eindige en continue furicties zijn,

Stellen we ons na voor dat de beweging waarvan (54) de
potentiaal is, wordt begrensd door twee boloppervlakken om
het. middelpunt van verstoring hetwelk we kiezen als oor-
sprong van codrdinaten, dan zullen in beide theorieén op tijd
t = o de lichtvectoren en hun snelheden binnen een ruimte
S omsloten door twee bollen met stralen i en r, om het
middelpunt van verstoring van nul verschillen en overal daar
buiten nul zijn.

In de elasticiteitstheorie hangen die uitwijkingen en snel-
heden samen met I, F' en I'; daar moeten dus binnen S
de functies #, 1" en pvs voor ¢ = o een eindige en continue
waarde hebben en daar buiten overal nul zijn, waaruit volgt
dat voor ¢ =0 ook op de bollen 7 en 7y de functies /| 1" en
£ gelijk nul moeten zijn,

In de electromagnetische lichttheorie zijn de eischen waar-
aan I* voldoen moet nog zwaarder. Daar moeten I, I, I gn
F"" voor ¢ = o binnen S een eindige en continue waarde
hebben, buiten S nul zijn en dus ook nul zijn op de bollen
rroen ra.

Volgens Fourier’s theorema is de nitdrukking
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ik (0
—f(la ff(.u)COSa(;r—-,u)(lgu
0
0 c

tusschen de grenzen ¢<ax<d gelijk aan f(z) en buiten die
grenzen overal nul.

Maken we van dit theorema gebruik dan kunnen we aan-
toonen dat ¢ aan de haar gestelde eischen voldoet zoo we
haar schrijven in den vorm: '

L e i (
Q= — d.afF () cos & (r—at—pu)du; (69)
=t TTJ, ry

mits bovendien F voldoet aan de continuiteitseischen,
d. w. z dat in de elasticiteitstheorie F, F' en I door de
geheele ruimte eindig en continu zijn, en voor £ =0 op de
bollen 7, en 7 gelijk zijn aan nul, terwijl in de electromag-
netische lichttheorie diezelfde voorwaarden gelden voor I
Ft, F'* en F'',

Aan die eischen voor F kunnen we voldoen door te stellen

F(r—at) = G(r—al) f(r—at), (70)

waarin / de waarde is die /' verkrijgt op erooten afstand
ran de grenzen (zie het laatste gedeelte van Hoofdstuk I1),
terwijl & een factor is die samenhangt met de verschijnselen
aan de grenzen, welke we aldaar bespraken, en dien we zulk
een vorm zullen geven dat /' aan de haar cestelde eischen
voldoet.

Uit (70) volgt:

L]
F''=Gf + Gf, 2
e = Gf + 2G'f + Gf*, (71)
Fr= G*f+ 8G '+ 8G'f + G[". 5
( moet dus voldoen aan de volgende voorwaarden:
Elasticiteitstheorie, Flectromagn. Lichttheorie,
aan de grenzen: (i =0, G' =0, G"=0, G=o0,G =0,G =0, (.'"'::n.)(,‘,g)

vervandegrenzen: G =1, G'=0, G" =o. G=1,G'=o0, G"=0, G" = 0.
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Aan die eischen voldoet ' zoo we stellen in de elastici-
teitstheorie :

= [1 — G "‘”_7"):'" [1 et (”')]“, (73)
en in de electromagnetische lichttheorie :

a_ l:l s (rﬁad——?'l)]“ [1 _ o @(—rita .!)]‘"', (74)

zooals eenvoudig is na te gaan; «, en «, stellen voor con-
stanten.

We zouden voor ¢+ ook wel andere vormen kunnen kiezen
en willen door de voorbeelden (73) en (74) slechts aantoonen
dat we aan ¢ geen onmogelijk te vervullen eischen stelden,

Indien in een gesloten keten van weerstand » en codfficient
van zelfinductie 7 een electromotortsche kracht £ werkzaam
wordt, dan is na ¢sec. de stroomsterkte gelijk aan i, indien:

3 r

o e (1—0—1,").

T

Voor zeer groote waarden van f is
o

In de uitdrukking voor de stroomsterkte treedt hier dus op
&
. —_——t .
de factor 1 —e™ L °. We wezen aan het eind van het
vorige hoofdstuk op een zekere overcenkomst die bestaat
tusschen het verschijnsel van den extrastroom en de ver-

schijnselen aan de grenzen eener golfbeweging. Naar. analogioe
i

van den factor 1 —¢ 7 ¢ zijn de uitdrukkingen (78) en

(74) gekozen.

In ’t vervolg nemen we echter voor geen bepaalden
vorm aan, maar onderstellen slechts dat ¢ voldoet aan de
vergelijkingen (72).

Volgens (71) hebben we dan:
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Elasticiteitstheorie, Electromagn. Lichttheorie,
aande grenzen: ['=o0, I''=o0, F'"=0, F=o0, F'=0, F'=0, F"=0, .
| (75)
ver vande grenzen: =/, F'=[, =% A 18 A = T = s

G doet dus slechts in de buurt der grenzen zijn invloed
gevoelen.

Als ( aan (72) en dus /' aan (75) voldoet, is gemakkelijk
aan te toonen dat (69) de potentiaal voorstelt van onze
begrensde bolvormige verstoring, terwijl aan de continuiteits-
eischen voldaan wordt.

Uit (69) volgt n.l

T et e
Pry= “-f(l | F()cosa(r—pdp, (76)
=0 T 7 o 1

en dus is volgens Fourier’s theorema:

1 iy
PRt (), indien » < r< 1
t=0

dit is juist den vorm door (54) geeischb, terwijl buiten die

grenzen

(pr_z’_ﬁ 0
=0

Daar verder volgens (75):
F(r) =0 en F (ry) = o
blijft ¢,_, aan de grenzen continu
{=0

Verder volgt uit (69):

= W
(‘; P ) e Ay P, — ')TJI i) aJ/"(p) asine (r—at—u)du,
Jo ry

9. vy S
I A v = iy
{=t

wat door partieele integratie wordt:

- o == ra ] ‘
_rp) | — — ‘;r'zq' —r— n‘_}‘__,‘f;(lu 3[/"(”)6'05 u(‘f‘—({i—.u}]r——‘]:""(y)cos w(r—at— p}d.‘"'
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of, daar volgens (75), (1) =o0en F(r,)=o:

a |_ € AT 3
(‘;_LE) o “‘Ihr , da (,u cow(z —at—u)dpu, (77)
=t =
en dus
3 (p T v =S ri
f r t=a o
=0

Volgens Fourier's theorema is dus:

a ‘-p X 4 €T Y . . - -~
) =l + (), indien n<rn;
ST e, :

¥ )
=0

dit is juist de vorm die door (54) wordt geeischt, terwijl
buiten die grenzen

o A u) (!
Daar verder volgens (75), ' (r,) = o0 en I (ry) = o, blijft ( r :)
ook aan de grenzen continu. e

Geheel dezelfde bewijsvoering geldt voor den juisten vorm

v - 5 S @ 3
en de continuiteit van (J’) en( :’) , zoodat we zien
Y ey L e—
{=0 =0

dat de eerste diff. quot. van ¢ naar de cotrdinaten (en daar-
mede de ontbindingsuitwijkingen) voor ¢ —= o door (69) in den
juisten vorm en op continue wijze worden voorgesteld.

Voor de overige diff. quot. van ¢ verloopt. het bewijs
hiervan geheel analoog. Zoo is b.v. volgens (69):

(57),_

[u’ « {[‘ @) @Sin a(r —at — w)dp

l‘

wat door partieele integratie en door van (75) gebruik te
maken kan worden getransformeerd tot :
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(ﬂ) =— — ctu a’” (weosa(r—at— u)du
DI p-
t=t

en dus:

(3_;1) . %Jf (,lf,~; (u)cos e (r—p)d .

r=r
(=0

De continuiteit en juisten vorm hiervan zijn eenvoudig te
herkennen.
Verder volgt uit (77):

(= =) =y

r:—92z° x[(3Q 2 _9x2 P .
g Pr=r (V,J) nr 7l [‘l’- « ]lf’ (p)cos a (r —at—
§ (=t I'fr oo vor,
[==] ra
I
| Tomimans ¥ — —
= frla [f (1) asina(r—at— u)du.
Voegen we de cerste en derde term samen door middel
van (77) en herleiden we de laatste integraal door partieele
integratie, waarbij we van (75) gebruik maken, dan:
o P, (= = P
o r2—3x% (3 z3 M ¥
(.. rp) =— ( q) + —|da F1(u) cos e (r— at — p) du,
A e oo I A SR Y £ PN L
1=t "=t :
en dus:
(= =]

Aty

2t g 777;_~*i-‘_——3‘.4:'-' 3 I ol Y7 () COS o (= 1) d
(3;!:‘3) _77 rt ( 31), v ! Tt 7':..]”: ) ]]”(J)[‘Uh “(i ‘“)( #

—

¥ oy
i=o0 =0

Volgens Fourier’s theorema is dus

(29) 2232 r@+ L P @]+ PO

ma -
o r=r
{=0

o B 13 ‘ ; 2%
indien n < r < r., terwijl buiten die grenzen (”2) =0,
CW ey
o

!
en ook op die grenzen volgens (75) de continuiteit van

.
(gqj) is gewaarborgd. Gemakkelijk kan men er zich van
CL™ y—y

=0

w) e




89

>

. LJ‘! [} sl
overtuigen, dat bovenstaande vorm van (5—‘[) Juist dezelfde

= r—r

is als door (54) wordt geeischt. t=o0

Geheel op analoge wijze kan men aantoonen dat volgens
de vergelijkingen (75) in de elasticiteitstheorie de le en 2e
diff. quot. van (69) naar @, 7, z en ¢ den vorm hebben door
(54) geeischt en dat zij overal, ook op de grenzen, continu
blijven. In de electromagnetische lichttheorie kan men door
middel van (75) hetzelfde aantoonen voor de le, 2e en 3e diff.
quot. van (69). In beide theorién blijft dus van de lichtvec-
toren en hun snelheden door de geheele ruimte de continuiteit
gewaarborgd, zoo men voor de potentiaal den vorm (69) stelt,
terwijl daarin ¥ den vorm (70) heeft, waarin ¢ voldoet aan
de vergelijkingen (72). In beide theorién is dus de notatie
geheel dezelfde; alleen zijn de voorwaarden (72) waaraan @
moet voldoen, in de electromagnetische lichttheorie iots
zwaarder dan in de elasticiteitstheorie.

Aan het slot van Hoofdstuk I merkten we op dat de ont-
bindingsuitwijkingen, ontbindingsmomenten en ontbindings-
krachten evengoed aan de diff. verg. (1) der golf beweging
voldoen als de potentiaal. We kunnen dus ook onderstellen
dat één dezer lichtvectoren den vorm (54) heeft (waarbij dan
is ondersteld dat de andere lichtvectoren in passenden vorm
zijn gegeven). Dan moet dus door de geheele ruimte (ook op
de grenzen der beweging) die lichtvector en zijn snelheid
eindig en continu zijn. We kunnen daartoe dien vector weder
schrijven in den vorm (69), terwijl we daarin voor /' stellen
den vorm (70) en men ziet gemakkelijk in dat dan @ voldoen
moet aan de voorwaarden :

aandegrenzen: @G =0, (' = 0; | ol
v ! (I“HJ
ver van de grenzen: (= 1, (' = ¢,

Aan die voorwaarden kunnen we bh.v. voldoen  door te
stellen :

G — [I ol , (,-_(:r__,.l)] l:l e 0ty (ry—1 - ”r):l, (7”)

waarin e« en «, weder constanten zijn.
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Een tweede begrensde verstoring die we door middel van
Fourrier's theorema wiskunstig zullen voorstellen heeft een
potentiaal van den vorm:

g |1 | R

= ,TF(r—a-t).‘ (H5)

of indien » en & weder dezelfde heteekenis hebben als op
pg. 71

>\l pr—ap| (8

=V r—a ) | O ))

‘ 3
@ = cos 7 sin & | §

of

Ty — T (s
@ = €08 ¥ sin & :— : (rﬂ ) + ! (,r ﬂ): . (H6)

We onderstellen weder dat op tijd £ = o deze beweging beslo-
ten is binnen een ruimte S begrensd tusschen twee bollen
met stralen 7, en 7, om het middelpunt der golven. De
physische eisch die daardoor aan ¢ wordt gesteld is, dat
buiten S alle lichtvectoren en hun snelheden nul zijn, dat
binnen S zij een vorm hebben met (55) overeenkomende en
dat zij op de bollen 7, en 7, gelijk nul zijn. In de elasticiteits-
theorie hangen de lichtvectoren en hun snelheden samen met
¢,q¢' en ¢’/ en dus volgens (56) met I, I, I"" en ["'"; in de
electromagn. lichttheorie hangen zij samen met ¢, ¢', ¢'" en ¢’
en dus volgens (56) met £, I, I/, I"'" en """, Stellen we
derhalve evenals zooeven

Fir—at)y=G@r—al)f(r—at), (81)

dan moet ¢ voldoen aan de volgende voorwaarden:

Elasticiteitstheorie, Ilectromagn. lichttheorie,
aan de grenzen: (=0, (=0, (=0 == 0 G=o0, G=0, G=0, G"=0, G"=0, J (533)
ver van de grenzen : G=1, G'=o0, G=0, G'=0; G=1, ‘=0, G"=0, (i"=0, G"=0. ﬁ

Aan die eischen kunnen we voldoen door in de elastici-
teitstheorie voor. G te stellen den vorm (74) en in de elec-
tromagn. lichttheorie :
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i [1 il (’"‘“‘_"‘)T [1 — e A “”]4. (83)

Volgens (81) en (82) hebben we dan :

Elasticiteitstheorie, Electromagn. lichttheorie,

aande grenzen: [F=o, I''=o, = I =0 K=o, F'=0, F"=o, I =0, N} —p, )

84
5( )

]

' van de grenzen: F={, F'=f, F'=f", F"=f" F=Ff F=f F=f" == e

G doet dus weder alleen in de buurt der grenzen zijn
invloed gevoelen.

Door middel van Fourier's theorema moeten we nu woder
gaan uitdrukken dat buiten S de potentiaal, alle lichtvectoren
en hun snelheden gelijk zijn aan nul en daar binnen in over-
eenstemming zijn met (55).

Daar voor ¢ = o de potentiaal besloten moet zijn binnen S
en deze voorwaarde onafhankelijk is van 7 en &, kunnen
we volgens (80) stellen :

1 (= =]

ry
é |
du!
g . '

SNl
a T_;"T b (7')1 — ‘,”. [f]u

Door middel van de identiteit

—

() : COS a(r — pu)d u. (55)

-

1 R
T PO=| 35l F@fde

Y oo

volgt hiernit

1S (W
3 F(r) - -""‘./ (Ig.l

(= =]

= =] nly

3
da ] S ()| cos a (g —w)dpe.  (86)
0 AL

au'u

Deze vorm geeft er aanleiding toe te stellen :

r—ial 5, oo

[ r—at AT sl =
P B —a0 =S50 a0 fau [l 10| eosele—w du,  (s7)

Yoo Vo '

en dus

3 | 1 J at W=l L0 o3 3 | I '
oy Fe—ad =2 [de [da [ sl P cosalo—p)dy
Voo LS /] vory

as, Leng !j da l 9.1 () : COS e (r — at—pu) d u. (88)

,-7-7 2 !
.1?‘0 , dulu
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Ik zal aantoonen dat voor ¢ —= o de uitdrukking (56) den
initialen toestand van onze begrensde verstoring volledig en

: e . 2 (1
continu voorstelt, indien we daarin voor . ; =5 ' (r— at)i

den vorm (88) in de plaats stellen terwijl ' voldoet aan (84)
en dat dan alle lichtvectoren en hun snelheden voldoen aan
de physische eischen en den vorm hebben in overeenstem-
ming mef (56).

Indien we in (88) stellen ¢ = o krijgen we den vorm (85) terug.
Volgens het theorema van Fourier is dus %g;l— F(r- a d);
voor ¢ = o buiten de ruimte S gelijk nul en volgens (84) blijft
haar continuiteit op de grenzen van S bestaan.

Stellen we dus de uitdrukking (88) in (56) dan heeft ¢ den
juisten vorm en blijft aan de grenzen continu. Ditzelfde
moeten we nu ook nog voor de afgeleiden van (88) aantoo-
nen. Het is gemakkelijk in te zien dat het bewijs daarvoor
geheel analoog is aan dat wat we gaven voor den vorm (69).

Voor het le diff. quot. naar @ hebben we b.v.

3 3 1 x 3 |
d 3 | 3 | a | : i
—_— — F(r—atl)| = -I"'(r —at
ax 37.!,. ( Jl r .37"?' ( )\)
en dus
P ¥l A2 271
o) e \1 -\, &I ..)aﬂ',! Pl |l - | y
Lt T ey ot e f , = () cose (o — u)d u
gz arlr ( | rar do |da o w'p )| lo —u)dy
oo o 1

z at o e (1
s .”f,gu ] S () | cosa(r—at — u)d g
. o airy ‘

roat A5 (1 |
; = () cosa(r—at —u) du
B o ..[rlul Al (1) | ( )
vo Jn

e

£ P

= T3 4
€T r—da L 11 1 | v
e T I'(u) esine(r—al—p)dp.
35l }_j(ﬂa [ 3l (1) e ( myd|
0 v r g

Indien we hierin voor de eerste integraal haar waarde uit (88)
invoegen, krijgen we in het tweede lid drie gelijke integralen.
Voegen we die drie samen en herleiden we de laatste inte-



93

graal door partieele integratie (waarbij we van (84) gebruik
maken), dan vinden we:

d a1 2z 51 )
3z arl 7 (" —at), T arly 2 (r—at)
da ]' (1) iCOS «(r — at — w)d
ra a
-I— ~ /(? t[ l’ (u) oS & (r— at— u) d u.
Stellen we hierin ¢ — 0, dan
2] e ] ‘-)J' Pel 1
My — e = rnifgmd
[L‘-‘.r ar r M=, = r:arly F(n)
2z VAN
e — ([a/ [' u) COS e (1 — u)dd
Tre °,u
v 0 4
T e 1 a2 t‘l 4 |
-{— ;:)-. (l (14 f :?.l‘_t_“;' ““' f’ (IH.) \ COS «c ('I' — l“)(z ",

Buiten de ruimte Sis deze uitdrukking volgens het theorema
van ourier en volgens (85) gelijk nul. Op de grenzen van
S is zij volgens (85) en (84) gelijk nul. Binnen S heeft zij de
waarde :

é é (1 2.1' a |1 |' 22 a ‘] | x 91 |I i
I=R(r—at)} | = —22 F(r) 4 - I + , (!
[&".J'&r'?‘ ( )i t=0 12 0rly () 2 arly ()‘ rordly ()‘
o7 i [
— 1= F(r){.
3y ar

Hieruit blijkt dat ook het eerste diff. quot. naar = van
de uitdrukking (88) aan alle eischen vnhloot Voor de hoogere
diff. quot. is het bewijs van den Juisten vorm van (88)
geheel analoog. 'We hebben dus bewezen dat (65) de poten-
tiaal eener begrensde beweging voorstelt, indien we daarin

o
voor - 2: I (r — cz{); den vorm (88) stellen, terwijl /' vol-

doet aan de voorwaarden (84). Door de vergelijkingen (81),
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(82) en (83) hebben we doen zien dat die voorwaarden aan
I geen onmogelijk te vervullen eischen stellen.

We kunnen ook onderstellen, dat niet de potentiaal, maar
dat een der ontbindingsuitwijkingen, ontbindingsmomenten of
ontbindingskrachten den vorm (55) heeft. Dien lichtvector
kunnen we dan weder schrijven in den vorm (88), terwijl we
daarin voor I” stellen den vorm (81) en men ziet gemakkelijk
in dat & dan moet voldoen aan de voorwaarden:

aan degrenzen: G =o, @' =0, G =0, | (89)
Qe
vervandegrenzen: G =1, G' =0, G/ =0, | y

Aan die eischen kunnen we voldoen door h.v. te stellen:

G = [1 e ("_"t—’”'}:r [1 S ’”)]2. (50)

4. BEREEENING VAN DE VOORTPLANTINGSSNELHEID DER GRENS
VAN EEN DBOLVORMIGE GOLFBEWEGING DOOR MIDDEL VAN

HET THEOREMA VAN KIRCHHOFF.

We nemen aan, dat de deeltjes binnen een klein bolletje A
gedurende eenigen tijd een lichtbeweging hebben uitgezonden,
en dat vervolgens de beweging binnen 4 en daarbuiten ge-
heel aan zich zelf wordt overgelaten. Op zeker oogenblik daarna
zullen dan alleen in beweging zijn de deeltjes binnen een deel
S der ruimte, besloten tusschen twee bollen met 4 als mid-
delpunt en met stralen »; en 7. (2 > 7). Dat oogenblik kiezen
we als aanvangspunt van tijdstelling.

We gaan nu onderzoeken, wat er is van de lichthbeweging
op tijd t=1¢"in eenig punt B, welks afstand tot 4 we p
noemen. We zullen aantoonen dat er in B alleen beweging
is, indien

"4 al <prtat.

Voor de potentiaal der lichtbeweging binnen S nemen we
aan den vorm :

q. :?1 F(r — at). (54)
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Zooals we zooeven bespraken moet dan ¢ worden geschre-

g’

ven inden vorm (69), terwijl
we hierin voor /' den vorm
(70) stellen, waarin & moet
voldoen aan de voorwaarden
(72).

Om uit de beweging op
tijd nul te bepalen de be-
weging op tijd ¢, constru-
eeren we om het punt B
een bol met straal»’ —a ¢ .
Wanneer dan ¢ is de poten-
tinalder beweging, dan weten
we, dat deze op tijd ¢ in
het punt B volgens het

S' theorema van Kirehhoff
in den vorm (24) gelijk is
Fra. 3 aan s
1 (1 e¢ 1 29 1
Vi = S AL el U - ) (i-\' 21)
Il' P [{“"' 5t " ¥ 3 B i r ! }.h_-.a ’ {

welke integraal moet worden uitgestrekt over den bol  om
B, dien we den integratiebol zullen noemen.

- ' v 38 a ] Qil

Op den tijd = o zijn ¢, —"t en 7 overal nul behalve

e ar

binnen de ruimte S. We behoeven dus de integraal (24) slechts
uit te strekken over het deel van den integratiebol gelegen
binnen S.

Op alle elementen ds van den integratiebol, waarop 7 de-

zelfde waarde heeft, heeft ook de uitdrukking

; 1 3 Us 1 a3 1 ’

( ar! -‘-; ! iy ] 3]"’_ Sl pr2 7 s d

dezelfde waarde. We kunnen dus als element ds in (24) kiezen
het stuk van den integratiebol, dat is gelegen tusschen twee
naastliggende platte vlakken loodrecht stuande op A4 B. Dat
stuk zal het vlak van teekening tweemaal snijden ; een dier
snijplaatsen duiden we aan door de letter I,
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Noemen we nu £ DB A = «, dan is
ds = 2xr”?sineda.

Verder is

W]

rP=7r?4 p*—2pricosea.

Differentieeren we deze vergelijking naar « en houden 77
constant, dan is

rdr = prisine dea,

en dus

I
|
1

ds

1 (r o9 ap 1 |
o D = Lty Sty S by 01
Pres 2pfu @ o Tt il L)

waarin &, en R, voorstellen de kleinste en de grootste waarde
die » op den integratiebol bezit.

Om (24) of (91) te mogen toepassen moeten ¢ en haar af-
geleiden naar w, 7, z en ¢ voor {=o binnen en op den inte-
gratiebol eindig en continu zijn. In het vorig deel van dit
hoofdstuk toonden we aan dat we daartoe ¢ moeten schrijven
in den vorm:

‘Pr = -[dafr 1) COS @ ( (r—at—u)du. (69)

Onder in acht neming der vergelijkingen (70) en (72) leidden
we daaruit af, dat tusschen de grenzen », en 7, en dus ook
tusschen de grenzen I, en k,:

1 .
== F( (92)
L)/ jo— ]
t=0 ¥ .
aq S L Yy 93
((9[ )1 "1'-- o F I (T) - ( )
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Verder is binnen die grenzen :

3 r]') T .'L‘(e fp) . ‘,i_ig - ._L_?-_Q o |
(37 AT pa ) ya LS
i=o t=a
en dus
‘9(?') 1 F 1 Y. (o
ok = — _F(r - (r).
(9?‘ L T PO+ )
i=o0

Vervolgens is :
M=p*4+r?—2psr cosa.

Differentieeren we deze verg. naar ' en houden daarbij «
constant, dan is

ar r—pceosa 't g2 p2

o ” o 9yl = )
zoodat
i = i) iy _LJ T o ‘{ ?" ;
(3 r’) »p-— ('-T—J_:)r < "JI‘ | \ F(j) _{‘ I ’( ) r (“I)
tr ] i==p

Substitueeren we (92), (93) en (94) in (91) dan krijgen we:

1 Ity 7"'_’—1— 7"-"-—]12 y 1 r'2 ;_7-___} ?
t!n;- = 2};[ \('_] 4 - ) ].f(?‘)+ (,_, - T )[.(,.') dr,
i E .||

)

( 2rr!

L5, T [(r—r) =Ds I ( r")_lrr'?
U :
’; £ 4pr’ ]f-: ar &

1 —— =T iy ~
("[” L dpr! I:( r) / ](?)] (9o}

‘ i

Betreffende de ligging van B hebben we de volgende ae-
vallen te onderscheiden -

PSry + 1,

De geheele integratiebol ligt dan buiten het deel § De
integraal (24) is dan nul. In A is dan op tijd ¢ de potentiaal
nuly in £ is dus op tijd ¢ geen lichtbeweging.
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28 r+rlp 1.

De integratiebol snijdt dan wel den bol 75, maar niet den
bol 7y. Het punt B ligt dan in het deel S’ der runimte besloten
tusschen de bollen 7, + at’' en ry, + at'. Fig. 3 stelt deze
ligging van B voor. Dan is

R =p—1r en Ry, =1a.
Daar I (r.) volgens (75) gelijk is aan nul, is volgens (95)

_ =1 (p—2rP—p® o .
Vo =dpr  p—r L)

by = L Fp—r),

i A
of
L )
Prp="7 F(p—at).
t=t’

Ligt dus B binnen S dan heeft ¢ op tijd t" daar juist de
waarde, die direct uit (54) volgt.

B¢ nlpln+r.

In dit geval ligt B tusschen S en S in, en de integratie-
bol snijdt beide begrenzingen van S. Dan is

=y en At —0"3"

Daar volgens (75) zoowel I (r;) als I7 (ry) gelijk is aan nul,
wordt dan (95) aan beide grenzen nul. In B is dan op tijd
t' de potentiaal nul. In B is dan geen lichtbeweging.

4¢ ppL<) JCE

In dit geval ligh B binnen S. Er kunnen zich nu vier ge-
vallen voordoen :

a. re — . < p, terwijl ook r, 4+ ' < p.

S en S vallen dan voor een deel samen en in dat deel ligt
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B. De integratiebol snijdt dan », wel, maar », niet. Dan is
RI = 1)——?"’ en Ry = T,

-

en we hebben dan evenals in het tweede geval
1
=t p

b. re — ' T p, terwijl r, L B3

Dan ligt B buiten S en de integratiebol snijdt zoowel 7
als 7. Dan is:

B =1 en Ry = 1y,
en evenals in het derde geval is dan in B geen lichtheweging.
() rn—r" >p, terwijl r, 4+ . < p.

Dan ligt B in het deel van S en S" dat samenvalt, en de
integratiebol ligt geheel binnen S. Dan is:

B =p—y en Ry = p4 o,

zoodat (95) wordt :

1 12—p2 )—2 ’-——)3
Vr=p = gpr [’ E-F(p+1r) — 2 p_) L= Fp— ’J]

=t 4pr' Lp+r
1

Py = — F(p—1o!

Prep =3 £ (0 —1"),

of

1
—y = — F(p—all).

Dan heeft dus ¢ in het punt # ]ulst de waarde, die direct
uit (54) volgt.
d. rp— ' > p,  terwijl ook "n 4>,

Dan ligt B buiten S’ en de integratiebol snijdt r, niet, maar
1 wel, zoodat

Ii,l = cn ]l?_g =p ‘*‘ r! y
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en dan wordt (95) daar I (r)) = 0:

B 1 p*—p2 oy
(P:;g— Ipr ";P)"_WF(P-F Yy
of
P,_, =0

In B is dan geen lichtbeweging.

He p <1 en  p > r,—r.
Dan ligt B buiten S' en binnen 7. De integratiebol snijdt
dan 7y en 7, zoodat

R] = Ol Rg — 3

en evenals in het derde geval is dan in B geen lichtbeweging.

6 p < rp—rl, terwijl p > —r'.
Dan ligt B buiten S’ en binnen 7. De integratiebol snijdt
dan den bol 7,, maar niet den bol 7, zoodat

S Ry = p + 7'

Evenals in het vierde geval sub d wordt dan de uitdruk-
king (95) nul. In 2 is dan geen lichtheweging.

e pl ry—r.

Dan ligt B buiten S en binnen 7. De integratiebol ligh
dan geheel buiten het gebied S, waar op tijd £ =0 beweging
is. De integraal (24) is dan nul. In B is dan geen lichtbe-
weging. |

Hieruit blijkt dus, datin B op tijd ¢’ alleen lichtheweging is,
indien B is gelegen binnen het deel S’ der ruimte, begrensd
door twee bollen met stralen 7, + at’ en ra 4 @ " beschreven
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om A4, en dat ¢ binnen & juist den vorm heeft die direct
uit (54) volgt.

Het blijkt dus dat de potentiaal ecener begrensde bolvormige
verstoring van vorm (54) niet alleen op tijd ¢ = o continu en
eindig wordt voorgesteld zoo we haar schrijven in den vorm
(69), maar ook op ieder oogenblik daarna. Het isn.l. duidelijk
dat voor £ = # de uitdrukking (69) buiten de grenzen

ritail < r<r,-tFat

dus buiten de grenzen van & gelijk is aan nul, op die gren-
zen nul is, evenals haar afgeleiden naar u, ¥, 2 en t endaar-
binnen met haar afzeleiden den vorm heeft overeenkomende
met (54).

Kirchhoff's theorema stelde ons dus in staat het in de
inleiding besproken vraagstuk door Poisson gesteld op te
lossen, n.l. te bewijzen, dat een golfbeweging door een middel-
punt van verstoring A4 uitgezonden en op zeker oogenblik
tusschen twee holopperviakken om A begrensd, alleen zich
voortheweegt in de richting van 4 af, maar zich niet naar
4 terug beweegt.

De voorstelling die Beer zich vormde van de voortplanting
eener bolvormige begrensde verstoring is dus juist, waaruit
volgt zooals we in de inleiding bespraken dat we aan de ele-
mentaire golven van Huygens geen physische beteekenis
mogen toekennen, daar dit ons tot strijd zou voeren met de
wet van behoud van arbeidsvermogen, wel echter een m oot
kunstige n.l. als constructiemiddel om voor vlakke en bol-
vormige golven uit een vorige grens een volgende grens af te
leiden.

Het resultaat door Stokes verkregen (zie inleiding) n.l,
dat, indien men de beweging door middel der elementaire
golven van Huygens volgens 'resnel’s rekenwijze bepaalt,
men een phaseverschil : vindt met de phase, die direct uit

de bewegingsvergelijking volgt, moet worden beschouwd als
een gevolg van de onjuiste formuleering door Fresnel aan
het beginsel van Huygens gegeven. Maakt men gebruik van
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Kirchhoff’s formuleering dan treedt zooals we zagen dat
phaseverschil niet op.

We stelden ons in het voorgaande voor, dat een diver-
geerende golfbeweging, welker potentiaal slechts een functie
was van r en van ¢ en dus den vorm (54) had, besloten was
op tijd ¢ = o tusschen twee holoppervlakken 7y en 7, Geheel
hetzelfde onderzoek kan men instellen voor een convergee-

rende golfbeweging, welker potentiaal dan den vorm heeft

:; F(r + at), Men vindt dan, dat de beweging op tijd ¢’ is be-

grensd door twee bolopperviakken met stralen 7, — at’ en
r.— at’ en dat haar potentiaal binnen die ruimte weder juist
denzelfden vorm heeft. Ook van deze golfbeweging is dus de
voortplantingssnelheid van de grens gelijk aan a.

In het vorig gedeelte van dit hoofdstuk leidde ik ook nog
den vorm af, waarin de potentiaal eener begrensde verstoring
geschreven moet worden, opdat zij de gedaante hebbe

2 \1 nl { =
v =35 Gy Fo—eb|. (59

In het vorig hoofdstuk zagen we dat de phasesnelheid @
der potentiaal van een zeer specialen vorm dezer beweging n.l.

83 (C . o r—ual
= - gin 27 60
P=%2 U'r i ) (60)
op grooten afstand van de grens celijk is aan o' indien
A?
a =a (1 A+ 7) ; 61
4 i ® (61)

Het onderzoek naar de voortpluntingssnelheid van de grens
dezer beweging (55) is echter overbodig, daar we in het vol-
gend hoofdstuk een algemeener geval zullen behandelen.

In het vorig deel van dit hoofdstuk merkten we reeds op,
dat de aldaar gegeven formuleeringen van de potentialen van
begrensde bolvormige golfbewegingen even goed konden worden
beschouwd als te zijn formuleeringen van een der ontbindings-
nitwijkingen, onthindingsmomenten of ontbindingskrachten, met
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dat verschil, dat dan de eischen aan @ gesteld minder zwaar
werden. Geheel dezelfde redeneering, als boven is gehouden
voor de potentiaal, kan dus worden gehouden indien men
overal voor het woord potentiaal leest ontbindingsuitwijking,
ontbhindingsmoment of ontbindingskracht. Dit zou eigenlijk eerst
het bewijs zijn, dat de voortplantingssnelheid van de arens
der beweging gelijk is aan a. Dat bewijs kan echter als
overbodig worden beschouwd, door uit den vorm, waarin we
de potentiaal eener begrensde golfbeweging schreven, reeds
direct blijkt, dat de grenzen der lichtvectoren met de grenzen
der potentiaal samenvallen.



HOOFDSTUK LV,
WILLEKEURIGE GOLFBEWEGINGEN.

1. VOORTPLANTINGSSNELHEID VAN DE GRENS EENER WILLE-

KEURIGE GOLFBEWEGING.

In het tweede hoofdstuk hebben we golfbewegingen be-
sproken waarvan de potentiaal den vorm heeft

g = z sin ¥, (33)

waarin £ en u met periodische, maar overigens willekeurige
functies zijn van x, 7, 2 en f. Daar phase en amplitude hier
geheel willekeurige functies zijn, is de bestudeering van dezen
vorm (83) voldoende algemeen. Een willekeurige trillende be-
weging kan worden ontbonden in bewegingen waarvan (33)
de potentiaal is.

De phasesnetheid o/ van de potentiaal (33) definieerden we
door de formule

e A ' (39)

en we zagen dat reeds voor bolvormige golven deze in het
algemeen van « verschilt, en afhangt van den afstand tot het
middelpunt der golfbeweging en voor de potentiaal (66), welker
phaseoppervlakken niet bolvormig zijn, nog bovendien van de
richting.

We kunnen dus wel dadelijk zeggen dat voor golven, welker
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potentiaal den vorm (83) heeft in het algemeen de phase-
snelheid der potentiaal niet gelijk zal zijn aan @, maar zal
afhangen van den vorm der potentiaalphaseoppervlakken

y = Constant.

De phasesnelheid der ontbindingsuitwijkingen en van de
ontbondenen der magnetische en electrische momenten en
krachten zal behalve van ¢ ook nog afhangen van 7, want de
phase dezer lichtvectoren is zoowel van y als van y afhan-
kelijk.

De constructie van Huygens geldt dus voor de phase-
oppervlakken van willekeurige golfbewegingen niet. We komen
nog nader op de waarde dezer phasesnelheden terug in het
volgend deel van dit hoofdstuk en zullen ons thans gaan
bezighouden met de snelheid waarmede de grens der beweging
(33) zich voortbeweegt.

Op de grens der beweging moeten in de elasticititeitstheorie
de ontbindingsuitwijkingen en de ontbindingssnelheden nul
zijn, en in de electromagnetische lichttheorie moet dat het
geval wezen met de ontbindingsmomenten en krachten en de
snelheden daarvan.

Om aan die eischen te voldoen stellen we :

g = G 4 sin y, (96)

waarin - we naar analogie van het vorig hoofdstuk zullen
onderstellen dat ' een functie is van .

Volgens de bovengenoemde grensvoorwaarden moet dan €
voldoen aan de volgende eischen :

Elasticiteitstheorie, Electromagn. lichttheorie,
aan de grenzen : G=o0, G'=0, '=0, G=o, (’=0, i'=0, (i"=o, )(‘”.)
ver van de grenzen: (=1, ('=0, ("=uy; Gi=1, i'=o0, '"=0, (I"=0,

In het vorig hoofdstuk namen we aan dat de bolvormige
verstoring begrensd werd door een bol, evenzoo onderstellen
we dat op tijd £ =# de grens der beweging (96) gevormd
wordt door het oppervlak
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y @,y,2t) = 4, (95)

waarin 4 cen constante is.

Dat de vergelijjkingen (97) aan G geen onmogelijke eischen

stellen kunnen we door een voorbeeld laten zien. In de elasti-
citeitstheorie zouden we kunnen onderstellen :

o LI, 3

G __:1 - e« (W A):

)

en in de electromagnetische lichttheorie :

— « (Y —A)l'll

G =1—c¢ ‘

We willen weten met welke snelheid de grens zich voort-
beweegt en gaan daartoe bepalen welk oppervlak de grens
vormt op eenig later oogenblik.

In een punt P van het opperviak w(z,y,2t" )= A4, of
kortweg wvan het oppervlak A (zie fig. 4), richten we op een
loodlijn P O naar dat deel van de ruimte, waar op tijd ¢ geen
beweging is, en we beschrijven om O een bol met een straal
o, die oneindig weinig grooter is dan de afstand O P. De
grootheid p — O P stellen we in onze berekeningen een oneindig
kleine grootheid van de eerste orde. In de onderstelling dat
het oppervlak 4 in de buurt van 2 zijn bolle zijde naar buiten
keert of duidelijker gezegd, dat de hoofdkrommingsmiddel-
punten van het oppervlak A in het punt P beide zijn gelegen
op het verlengde der lijn OF aan de zijde van I’, wordt de
bol ¢ door het oppervlak A gesneden volgens een oneindig
klein gesloten lijntje waarbinnen P ligt.

Duiden we nu aan door ¢, , de waarde van ¢ op tijd
(=1'4i"
. .o 0 y >3
t' 4+ ¢ in het punt O, terwijl '/ = f{, dan is volgens Kirch-
(

hoff’s theorema

1 ‘ l 2 q 1 éq 1 0
a ) lap 0* e

0 A
1=t4f" 1

welke integraal ‘we moeten nemen over dien bol o = at".
Door de invoering van den factor ¢ is de continuiteit
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van ¢ en haar eerste afeeleiden binnen en op den integratie-
bol gewaarborgd.

be os - 2 Qq

Op tijd ¢ zijn op dien bol overal @, S ! en ..\’

ai )
halve op het stukje o van den bol dat binnen A ligt. We be-
hoeven onze integraal dus slechts over dat stukje o uit te
strekken.
We kieZen nu een constante B die zoo groot is, dat het
potentiaalphaseoppervlak

nul, be-

y @yz ) = B,

hetwelk we het opperviak 2 zullen noemen, raakt aan den
integratiebol. Het raakpunt noemen we het punt ). Verder
zij het oppervlak D welks vergelijking is

Y (xyz ¢) = D (100)

gelegen tusschen de oppervlakken 4 en B in. Door aan de
constante D verschillende waarden te geven tusschen 4 en B
in, zal het oppervlak D zich bewegen tusschen de oppervlak-
ken 4 en B. De snijpunten van de liijn. @ O met het grens-
oppervlak 4 en het bewegelijk oppervlak D duiden we aan
door de letters P en 7. Als vlak van teekening is gekozen
A het osculeerend vlak van
een der hoofdkromtelijnen
van het oppervlak A in
het punt 2. € zij het bij-
behoorend  krommings-
middelpunt. De punten €,
@, T, P en O liggen dan
B in het vlak van teekening,
D De doorsnede van 4 met
het vlak van teekening
is dan in de buurt van
P een cirkel met € tot middelpunt. De continuiteit van
brengt mede, dat ook de opperviakken 2 en D als doorsneden
met het viak van teekening lijnen opleveren die in de buurt
van T en () als cirkels met O als middelpunt kunnen worden
beschouwd.

A

Fia, 4.
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Duiden we nu aan door de letter N een stuk van de nor-
maal @ O gemeten van ¢ af in de richting van @ naar ¢, dan
kunnen we als element ds van den integratiebol kiezen een
gedeelte van o gelegen tusschen twee potentiaalphaseopper-
vlakken op afstanden V en N + d N van I3 gelegen.

Op zulk een element is

14 > 1 ‘? EF T
Y (zyz ') = B + N.

aN
Verder is
AP ‘;\?’, N,
indien
N, =QP
Zoodat
b S v (N—N)). 101)

Thans gaan we in onze integraal d N in plaats van ds als
onafhankelijk veranderlijke invoeren en moeten daartoe ds
gaan uitdrukken in d N en bekende grootheden.

Daartoe nemen we aan een codrdinatenstelsel waarvan O
de oorsprong is, de lijn OP de Z as en de hoofdsneden van
A in het punt P het ZY en het Z.X vlak zijn. Duiden we
nu aan door z, den afstand van O tot het snijpunt van een
potentiaalphaseoppervlak met de Z as, dan is z—z, in de
buurt van P oneindig klein en we mogen dus de vergelijking
van dat oppervlak voor zoover we deze in onze integraal
noodig hebben schrijven in den vorm:

1 2 1 -
2 — 2 = ra- - O3 L2, (102)

waarin

[0 S
r,
LR o

B ==

o1
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De verg. van den integratiebol is

09 = ;l“2 + ‘1/2 + '22.

Noemen we nu « den hoek tusschen o en de Z as dan is «
steeds klein, en is verder @ de hoek tusschen het o 7 en
het 7.\ vlak dan is:

&
|
s

Sin e« cos i,

[l
>

Sin e sin &,

-

Z = p COS«.

e . ) 1 N
0C0Sa —z, = = ro’sinfacos® & + — fo%sin?asin? o,

~ !

Lo
t

Nu is « oneindig klein van de 1° orde : derde en hoogere
machten van « verwaarloozend vinden we:

]' b 1 i 9 f ] ‘ ‘ ]
¢ — 5 06 —2,= 1o a’cos’ & + - lo*a®sin?{
of
2 (o — 2) = o [:g +1r0'cos® & + {0 sin? .‘P;] :

We zoeken ds en dit is de differentiaal van het opperviak
door een potentiaalphaseopperviak nit den hol gesneden, dus

de differentinal van
2 it
8§ = {33 {d {) f.;'in « ( (/9
v oo

v 0

of als we weder derde en hoogere machten van « verwaar-
loozen :

.

— 4 rcos? & + £ sin? &
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of na integratie :

: s R
Nuis ¢ —z,= N, verder zijn it; = :Ten R = 7 indien 2, en K,
zijn de hoofdkromtestralen van de phaseoppervlakken welke

s snijden. We mogen R, en R, als constant beschouwen,
dus:

2'.'TN - Izi Rg
SEE —gn o] i
l/(l_+ 717,) (j i 1) (o + Lty) (0 + 1)
0 R’/ Vo R,
en dus
; R, R,
= 7 e
ds = 2mg dN '/ Gt k) e+ k)’
of wel :
s = g'rrg k dl\*r, (103)
waarin
L i 4 L')l jl’-_:
= l/ 7({;--;_“.1) (g -_~|—~ [f-_-) i L)

Op o is L als constant te beschouwen.
Door (108) gaat onze integraal (99) over in:

EpeEm 2w oo
i) :")[ gl ] fp'fz N.
el L “J N=o f a @ t ap 0 s.’ g

~ 5

Nu is:

p = G ysiny,

J ‘P ~y e ]}l q 2 1 s r 3w
o= ((,,f == ¥t ( 3;) sin 4 G ¥ = £r COS v,
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e AL . CRT
:;{)-z(ﬁ x-l—(;——)bm;—{—(c o
dus:
S (L2 1 Loy op e
( ( — -t " Lig 3 ]
(p?_”ﬂ’u = ‘)f I: { (!9!’ r-’ n)+ ’(Olf +a at i 39,) s%lll i

LW y
+ ,(a = c?\)cos :p] f:»i\'

Op de grens zijn volgens (97) zoowel G als (4 gelijk nul. In
de buurt der grens is dus vo]%ns de ontwikkeling van
Taylor (f oneindig klein t.o.v. "y derhalve mogen we

verwaarloozen tegenover

@y (o2 1 2

a 9t 30,

zoodat we krijgen

k N=X,; v? L Y 1 e g,lr I iy -
Fo '-‘,H,,I_; 2[\' (s ¥ 81w - (4 P COS ! y(ﬂ ot - - {"){(g;\ !

t={

Nu mag op «

. Jap oy
/ ,(1 - oY)
=\ o @ 0/

als constant worden beschouwd, zoodat

' 1 ay 2wy
7 }n'-K / (:L 3t + a y) L 3 s ~
- o N=0
a N =i
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waarin

beteekent de waarde dezer uitdrukking in het punt @ op den

tijd .
Of :
1ay ey )
; . 3 -[— i N=N;
. :TL‘I(“ et - 89)) l:lGSinw(t——;.]\ \.
i 2 ! ) L
| eéN =t

)

Voor N = N, bevinden we ons op de grens en daar is ¢ = o
voor t=t'. Aan de bovenste grens is dus |(/sing¢|, . gelijk
nul. Aan de benedenste grens bevinden we ons in het punt
(). zoodat :

1 e i LRl '
L feF 203 % sin '
. = — - - ———— 7 & Sl Y .
iy 2| oy ‘ |
a v =t
¢
1 a2y |, Sy . ey
Onderstellen we vooreerst dat i niet gelijk is
A C cJ0

aan nul. In dat geval is op tijd ¢ + ¢/ in O lEuwcging blijkens
bovenstaande uitdrukking. Hadden we den straal ¢ van den
integratiebol niet gelijk gemaakt aan af’, maar gelijk aan
(‘)i’, dan zou geen enkel deel van den
integratiebol binnen de grens 4 hebben gelegen. Waaruit volgt
dat onmiddellijk vdor het tijdstip f 1t in O de beweging
is begonnen. Op den tijd ¢’ -+ ¢'* ligt dus het punt O in de
onmiddellijke nabijheid van de grens der beweging. Met andere
woorden: om uit de grensop tijd ¢ te bepalen de grens op tijd
t' 41"/, mag men de constructiec van Huygens met straal
o — at'’ toepassen. Uit bovenstaanden vorm voor ¢g.,

4"

4
blijkt dan verder dat de phase in O op tijd # 4 " gelijk is

at'’ terwijl ¢'"" <t —
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aan de phase in @ op tijd # . O en () liggen op dezelfde nor-
maal N op afstand «#'/. Dus Y is in de buurt der grens een
functie alleen van & en ¢ en heeft zulk een vorm dat, als we
aan ¢ een vermeerdering ¢’/ geven en aan N een vermeerde-
ring at'’, die functie niet verandert. Dus moet noodzakelijk in
de buurt van de grens y een functie zijn van N—at, zoodat

2 U S Y
_"j{ = y! en —} = — (1 lf!'.
d JV Gt
Verder is op o:
:‘?-T‘lf — _._le_| o wt IP”
é “) fol i\r
dus:
1 o l,"' tJ f", \
a ot S0 e Uy
e
\ 3 j\" 1=l

1 el U 2 ;'p
—— 0
(r n.) f, “ L}
Stellen we hierin
\.‘ ;}l \.3 ;r(r
a0 e N
dan krijgen we:
& I'.f' & l,“
at. e

waaruit blijkt dat v tot argument heeft N 4+ at. In dit geval
is in O op tijd ' + ¢/ geen lichtbeweging ; het argument van
w  wijst aan, dat in dit geval het oppervlak v — 4 de
achterste grens der beweging vormt, terwijl voor het
argument N-—at dat oppervlak de voorste grens vormt.

bl
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Indien we terugkeeren tot hetb vorige geval en voor
Po—s schrijven g, , dan krijgen we:

t=t"+t" =L "

Po =k {G y sin yly ;
=t

=1"
daar verder

Yo = Yo s
=1 =11

en (¢ een functie is van v, is

T S
dus:
T =N k oy, siny, .
t=t-4-1" i=1"+t" 1=t i='4-1*
Hieruit volgt
il o AL
of
- D
Z:; 11" =5 '}f? ¢ I/ (R '1:1:) (I;‘:.' +0)° L)

Nu zijn R, en R, de hoofdkromtestralen van het potentiaal-
phaseoppervlak in () en dus Ity + ¢ en R, + o de hoofdkromte-
stralen in het punt ©, want zooals we zooeven aantoonden
mogen we de constructie van Huygens toepassen om uit;
de grens op zeker oogenblik de grens op een later oogenblik
te bepalen.

De laatste vergelijking kunnen we dus schrijven in den
vorm

b 1/61_(’2 (:u — l A 1/’('1 0:.11(‘: 3
=i g={'

'.L.("

indien p; en o, zijn de hoofdkromtestralen van het grensop-
perviak.
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Dus:
1 ]/9_192 = b

waarin 4 een constante is voor alle punten gelegen op een-
zelfde normaal op eenig grensopperviak.
Schrijven we de laatste verg. in den vorm

A

0102

(105a)

/:-I/

dan blijkt hieruit dat men y voor een punt der grens kan
vinden, indien men voor eenig ander punt gelegen op dezelfde
grensnormaal y kent op het oogenblik waarop dat punt in
de grens, ligt benevens de hoofdkromtestralen van de grens in
dat punt.

Indien we onderstellen dat de beweging stationair is, dan
is y onafhankelijk van . Weten we dus y op eenig oogenblik
dan kennen we y geheel. De betrekkingen (105) en (105a)
gelden dan niet alleen voor de grens, maar voor het geheele
gebied waar beweging is.

Onderstellen we dat »* een maat is voor de energie der
beweging en dat deze zich met snelheid a voortbeweegt in
een richting loodrecht op de grens, dan zijn (105) en (105a)
eenvoudig af te leiden uit de wet van behoud van arbeids-
vermogen,

Zij n.l. een oppervlak 4 de grens op eenig oogenblik en B
de grens dt sec. later dan is zooals we bewezen de loodrechte
afstand der oppervlakken overal dezelfde n.l. dn = adt. Beschou-
wen we nu een element van A4 groot o en richten in elk punt
van de lijn die o omsluit loodlijnen op, dan snijden deze een
stukje o' uit B. Noemen we p, en p, de hoofdkromtestralen
van 4 in o, dan zijn die van B in o' gelijk aan o, + dn en
0; ++ dn en dan is eenvoudig in te zien :

2 S 1102 ST
@' " (or=dn) (pa+ dn)’

Nemen we nu y* aan als maat der energie, en merken we
op dat volgens de wet van behoud van arbeidsvermogen de
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energie op o aanwezig na dt sec. op o' moet worden terug-
gevonden, dan is in verband met de vorige vergelijking :

19
7 = __} 0

I & N
2 (o +dn) (

0+ dn)’

=

waarin ' is de waarde van y in o', of

4

‘(’l 02
or + dn) (e -+ dn)

Hieruit volgen (105) en (105a) onmiddelijk. De onderstellingen
waarin we die verg. hier afleidden zijn echter zeer gewaagd,
en deze afleiding mag dan ook alleen ter controle dienen.

In het voorgaande onderstelden we, dab de functie (), die
den vorm (96) had, de potentiaal was der beweging. We
kunnen even goed aannemen, dat (96) een der ontbindingsuit-
wijkingen, ontbindingsmomenten of ontbindingskrachten voor-
stelt. De geheele redeneering van dit, hoofdstuk blijft. dan
dezelfde ; alleen worden dan de eischen (97), waaraan (7 thans
moest voldoen, wat minder streng evenals we dat in
Hoofdstuk 1I bespraken.

2 DE DIFFERENTIAALVERGELIJKING DER GOLFBEWEGING VOOR

-

FUNCTIES VAN DEN VORM (7 SIN yi.

Zoowel de potentiaal als de ontbindingsuitwijkingen, ont-
bindingskrachten of ontbindingsmomenten moeten voldoen aan
de diff. verg.

2(p

= a? /\ Q. (1)

L

-—

e l.2

Indien dus zooals we in dit hoofdstuk onderstelden, deze
functies den vorm hebben

g = Gy sin oy,
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dan zal er tusschen (¢, y en w krachtens (1) een verband
moeten bestaan, dat we nu nog zullen gaan bespreken.
Dan wordt

;-)l,l)—s.?(-?— S (’aﬂ . ! 2
T (ow & x Aani :15 R oz G54
en
26 (9 l}l)2 el 2y o, 0 oy @ 7 337 3 4;1)3} .
- y o — 9 — —= (s '——('-(-—— s
2l d'ﬂ e Mie) / o J l;t’ 3 w2 / 5 I lP o2 8. 1 & 2 ! A oz s g
Jg (PR, L g oL 2y 2ty
F=| =7 : -_l( e . COS
[ QY ‘3 AL Al + A 3 ,-’5(’0 Y
Dus
. LA C Sotlg=e! . (4] Bt Ly el g R Ty e (b f (LR .
lpiz"' sz/ T R LIRS Y~ ox da e "=\ g sblll 12
‘ 2 2 ;;,)3 dyay '
B L B g, ] s L3 B 10 nh L s L L PP AY Ta ]
e i = (a P B % o Qe | RS
e

2 lp)‘.! ald a2 1 dlf quy @ 7 3-_-./ (s " __,’
SR O e B P e (€ Lot
J / a t? r ayat at WL AV t) \sm W

._‘*). t)’(r'("‘ 'l")l_' 9] -JZ ) l,'l Y. 3-’[!!) N
i {“[ 2y N3t + 26 33'38'+('l at:’LOhi;.

De diff. verg. (1) wordt dus:

. ‘ RS 1 2y\*) afy \ 1 22 1|
— ; e — - . . Nl =
T ’:) ! ( 5] .IT) ”".! (C’ ! ) ’ Ir / 2 l!' { £ ‘; ”‘.' FREL \
aly (S 2 ey 1 24 o) ( ] 82
E ry P il v iy = L ’ N
f ay ( g Ja Gt st a8l H 3 r( / a3 (2 \] sl y
3(:" 2 y\? 1 (ay\? ( @7 0w 1 9y oy
L. - N\ b .‘!7 ) (l . 1l SR = )
i ot / : ‘;J(— (LQ a1 ) (L'(La ’ ) , IS | 'a:l S 3 7 ”.'.' ;] { ‘;)t \

LAl L =y .
"Z(‘-’!"'*_» 2 (| COSp = o, (106)
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Deze diff. verg. bestaat uit twee termen waarvan de eene
sin w en de andere cos w als factor heeft. Geven we aan
@, 1, ¢ en ¢ aangroeiingen dan bewegen zich sin w en cos
periodisch tusschen — 1en + 1. Voor al die waarden van sin
en cos w moet (106) blijven gelden, waaruit volgt dat haar
beide termen nul moeten zijn, dus:

‘92 (’ C !P 2 ]. Slf" 2? LJ(' _]. La'llrll
i _(,)\_}_ ( ) i ot T o
RS ! du (L'-'(et)}—i_/ _:»t,u( ¢ o St*')
oG Pyop 12y ewl  q(ag_ L o00)_
+25";"?~3;ﬂ.9;r.-—(I-“Et@tﬁ—i—"_‘ a? a t* =0
en [ (107)
é’(r“v (9 'J,p)‘l 1 (3 1;1)33 o (7 gy Sy ey 1 94 2y
91};{ 3 at\at S-i—u'f‘:?m?:n fL“JtJH
ol 1oty
i (r/ oYy — T 8135”0

Deze diff. verg zijn in het algemeen onhandelbaar ; voor
twee bijzondere gevallen zijn er belangrijke gevolgtrekkingen
nit te maken.

A. Vooreerst kunnen we onderstellen, dat de beweging
stationair is. We bevinden ons dan niet in de buurt van
de grens. In hoofdstuk 11 beredeneerden we dat voor een
stationaire beweging de functie

p = 9 sin i (‘:‘,:-j)

den vorm Krijgt .

F = f(eyz)sin {fi{xy2) + th@y2)| (41)
De vergelijkingen (107) worden dan

N (2 2h @l » w[Pfa\2) . 1 5 pa
Af—fIZ(E2Y + etz 5, 55 T2 (52) 1+ fi =0,

¢ L C

el
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L

[2

Xrax

- of 2h oL
23 —0 0>
O v o L

+~[AL+ LA fL=o.

W

Dit zijn dezelfde vergelijkingen als we hebben gevonden in
het derde deel van hoofdstuk II. Uit de eisch dat zij moeten
gelden voor ieder waarde van /. leidden we toen reeds afde
vergelijkingen (42) en bovendien f, = C. De laatste verg. zegt
dat van een stationaire beweging van vorm (33) het trillings-
getal overal hetzelfde is, zooals we daar hebben besproken.

De vergelijkingen (42) kunnen we ook den vorm geven:

DAy—y | (i""’)2 — =0 ‘

cx a
. (108)
v ey aq 1
9 x }f;i’_*__x,_\.t:;:u‘l
exT

indien we in het oog houden dat hierin de functies y en v
den vorm hebben :

1= [ @y2), Yy = f1 (kyz) + CL.

De phasesnelheid van (33) is volgens (39)

oy
al = — AL
Rl
SN
waarin
RNl ayp dx Q2 dy d Y o2
3N  osa aN ' oy N ' 9z oN'
Nu is
e i
o £ ’ o &
, = 7 .
JN l / \,(3 '!')""
/ - \.: 4
zoodat
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en dus volgens (108):

Verder is

zoodat we krijgen :

) R (109)

T —= 3
J AR
p a=

G:’_

Door deze uitdrukking voor «' kunnen we de phasesnelheid
eener stationaire beweging berekenen indien we alleen de
amplitude y kennen; door (39) leerden we haar vinden alleen
uit de phase .

Voor een paar bewegingen zullen we door middel van (109)
de phasesnelheid eens berekenen.

18
¢ = = sin m(r —at).
=

Hier is

dus

en dus volgens (109):

i L/;ll: - E—;

p = Ade sin (m x — C't),

waarin 4, B en m constanten zijn.
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Laten we de constante 4 weg, dan is

7 [
Yy P ml— -
¢ a3

Z =
dus
N 19
Sk = g — ~£,, ;
/ S

Stellen we dit in (109), dan wordt

a’:j_—c.

m

Door middel van (39) vinden we voor o dezelfde waarde.

i a | .‘1 % y |
3e ¢ = 55| Hom (r—at) [
of
dx /1 | Sl min i " /
PR=t V1 - n® r% sin jarctgmr —m (r—at) |,
Hier is
C =mnma,

en laten we de constante 4 weg, dan is
& £ / L g .9
y = -3 V14 m2r2,

Hieruit vindt men

Q. m? (1 -+ m*r?) 4+ m' 2
—7_ & (1 4 m?r2)? ‘

A

Stelt men deze waarden van ¢ en =% in (109) dan wordt
L
1
o =t (14 L),
= mer<

In hoofdstuk III vonden we in verg. (61) deze zelfde
waarde van @' door middel van de formule (39),
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Nog een andere oplossing van de diff. verg, der golf bewe-
weging 18

@ = —;4 arc tg < F(r—at).

Een speciale vorm hiervan van gedaante (33) is

A TP
y = — are tg = slnm (r — al).
¢ = g, ( )
Hier is
C=ma,

en laten we weder de constante 4 weg, dan is

1
y = - -arctg';’i.

Men vindt

Loy = o

Volgens (109) is dus
welke waarde van «’ door (39) direct wordt geleverd.

B. Thans zullen we de diff. verg. (107) nog behandelen
in de onderstelling dat we ons bevinden in de buurt van de
arens der beweging.

Op de grens zelf zijn, indien ¢ voorstelt de potentiaal der

d G G
beweging, volgens (97) G, ; "en E - gelijk aan nul, en daar
I‘ I'J'
wordt dus aan de verg. (107) voldaau zonder dat aan y of
eenige eischen worden gesteld.

In de buurt der grens is zooals we reeds opmerkten, volgens
: : , . : . CAE
de ontwikkeling van Taylor, ¢/ oneindig klein t: 0. v. en
3 U
= My
EXE T : a4y
~— oneindig klein t. 0. v. —.
Jy gy
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In de buurt der grens is dus volgens de laatste der verge-
lijkingen (107)

S ‘r")g ik (__‘:'_’) — ) (110)

or a= Thid ]

Nu is weder
= (3_1;_1)2 . (3 1{:7)2
. (S H 3 I\T

en dus

Een golf, die zich in de buurt der grens bevindt, heeft dus
een phasesnelheid «. Indien de grens wordt gevormd door een
phaseoppervlak volgt hiernit dat de grens zich met snelheid
@ voortheweegt in een richting loodrecht op de grens. De
constructie van Huygens mag dan worden toegepast om uit
de grens op eenig oogenblik de grens op een volgend opper-
vlak af te leiden.

Door (110) gaat de eerste der verg. (107) over in:

=]

' at 5 G( L8y 5 AL 5D 2,
(Po—h)eatllats e _Lesan o (Ao

a* o (¢ Iy 1= 3x da azdt ot 12 9 18
3 yon sLrus J (s
of daar ¢/ oneindig klein is t. 0. v. :
RATL

v u’ 3 ) q’ :3 e ./ ;“ l!’
‘ A\ Y — — — ,_,_: l. et 4 R
,: ( ’l u.'l "" ) + X 3 as t ot gs

We kunnen eens onderstellen dat evenals in het gebied
waar de beweging stationair is, ook aan de grens het trillings-
;2'|IF -

: (’ = 0. Nemen we

.

getal onafhankelijk is van den tijd en dus

Y
verder aan dat ook aan de grens 7= 0 waartegen geen
S
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direct bezwaar is, daar door den factor ¢ met de dempings-
verschijnselen aan de grens voldoende rekening wordt gehou-
den, dan wordt de laatste vergelijking :

. ey oy
1Ay +23° { — =0, (111)

en (110) gaat dan over in:

8 )]

> (28 - !;; . (112)

o I

Om deze beide verg. te interpreteeren noemen we ¢, en g,
de hoofdkromtestralen van het oppervlak v (z,y,2) = C en

gaan ! 4+ ! uitdrukken in diff. quot. van .

{)1 Q_J

Stellen we ter atkorting: ')

e P a1 B Y - ;
§7 3 ) o = i,
3 & 3y 0z
3= 22 RN )
;-; = L, — = M, = .‘ =NG
o L= A o 2°
12 - 39
et 1] ] R
W Ty I N S
dy oz s AP xSy

en noemen-we verder KA, en K, de wortels van :
P2 (M—EK)(N—K)—L" | 4+ @ (N—K)(L—K)— 2’2 |
+ R | (L—K)(M—K)—N'"*| +2QR|M'N' — L' (L—K) |
+2RP\ N'L' — M (M—K) | +2PQ| L .Uf_Nf(Lv—f(): — 0;
dan is:

VP24 Q- R VP Q4 R

en 01'=—
K,

fi =

1) Joachimstal. Anwendung der Diff, und Integr. Rechnung auf die

algem. Th, der Flichen und der Linitn doppelter Kriimmung.
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Uit deze vierkantsverg. volgt :

1 gy — P2 N)— QU (N + L)—RAL+M)+2QRI/ + 2RP M+ 2P QN
—(G+1G)=—"—""—""— P2 _}_'Qz J- R2

en dus:

b ( i), _1) _ =P M+ N)—@Q(N+L)— R(L+ D)+ 2QRI/ + 2RP M 2P QN
= P+ Q@ By

f 2 3 2 2 32
— Ay ( 97‘;,) e ( Z'ﬁ) 2t o sl AR )
(1 ‘} 1 o \ag dx/ 9 z? dyade 8y 9=z
e 7 y_j) ( ] ( 3 ‘.f")"' ,1,':
, = s.: HA "‘

Indien we (112) differentieeren naar 2, naar ¥ en naar 2

die drie vergelijkingen respectievelijk vermenigvuldigen met
S 3 ,
S " en , . en vervolgens samentellen, vinden we
S cy v 2
9 0 A B
S U (3 IJI])H Sy syl e clT) 0,
@ &= N3 1 dy ez dy &z

zoodat,
1 1 2\ 1z

) 1 7 ' d 2’
d l/ A (‘ l!')
~3

[ SO

~

Hieruit volgt. door middel van (111)

2222200 ST ),

T i
[ i / \'II

v e Talgty)

et

We namen aan, dat het oppervlak v zijn bolle zijde naar buiten
keert en naar die richting telden wij N. Volgens de wet van

~
v

ﬁ
e
ts
;

|

o
=

?
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behoud van arbeidsvermogen zal dan de intensiteit der beweging
in de richting van N afnemen. Indien ¢ = 4 sin y voorstelt
een der lichtvectoren dan is y* een maat voor de intensiteit
der beweging. Dan is y de amplitude en derhalve essentieel

positief, zoodat v negatief is. Het -+ teeken vervalt dus in

aN
bovenstaande verg. zoodat
G e, B (L i+ 1)
) AT 2 ?l iy
of
el ] 1 (1 1)
e [ — — —_— —
SN e L 2 01 0

Daar 1w zijn bolle zijde naar buiten keert worden g, en o,
geteld in dezelfde richting als 1V, zoodat :
P2 1

e ;
SPAERNE =850 ST (Ig o1 + 1g 02)

of
A

l/ ) Da
R N

L =

waarin 4 een grootheid is die onafhankelijk is van N en dus
constant langs eenzelfde normaal op de grens.
Keert het oppervlak w zijn holle zijde naar buiten, dan is

° % positief, zoodat

=31 (ot e

¢ 1y
in dit geval worden echter o, en o, geteld in tegengestelden
zin als N, zoodat ook nu:

waaruit weder volgt :
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Dit is onze verg. (105a) die we reeds bespraken in het eerste
deel van dit hoofdstuk.

We bewezen dus dat de grens eener golfbeweging die
beheerscht wordt door functies van den vorm ¢ — 7 sin
zich met snelheid @ voortplant in de richting loodrecht op de
grens, dat dus de constructie van Huygens op de grens
van toepassing is en dat eindelijk in het grensgebied y hoven-
staanden vorm heeft. Daar ; ondersteld is van ¢ onafhankelijk
te zijn zal y ook ver van de grenzen denzelfden vorm hebben.

Tegen bovenstaande bewijsvoering is wel het een en ander
in te brengen. We hebben n.l. aangenomen zonder bewijs, dat
in de grens J; — 0 en 13—'—’:
kunnen betwijfelen of ook voor het grensgebied de diff. verg:

(106) uiteen valt in de vergelijkingen (107). In het grensge-

T q 3 (ll \.:2

bied zijn n.l. G, : en
c Y

waardoor we uit (106) het stel (107) afleidden, wordt daar-

door bedenkelijk.

Daarom is aan de afleiding dezer stellingen die ik in het
eerste deel van dit hoofdstuk gaf, de voorkeur te geven. Ik
vermeld de laatste methode slechts, daar deze tot contrile
kan dienen.

= constant, en verder zou men

G et . :
, oneindig klein en de redeneering
e

AL



CONCLUSIES.

Indien men onder golfoppervlakken van een golfbeweging

welker potentiaal den vorm heeft
¢ = y Sin y (33)

verstaat oppervlakken, waarop de phase van elk der drie
ontbindingsuitwijkingen (elasticiteitstheorie v. h. licht) of wel
de phase van elk der drie electrische of magnetische ontbin-
dingsmomenten (electromagn. lichttheorie) overal gelijke waarde
heeft, dan bestaan golfoppervlakken in het algemeen niet.
Zelfs voor de meest eenvoudige bolvormige golven, die zich

laten denken, n.l. voor die welker potentiaal den vorm heeft

U r— al
,;.. /- %

bestaan geen oppervlakken waarop plk der drie electrische

ontbindingsmomenten overal gelijke phase heeft.
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Bij de voortplanting van een golfbeweging welker poten-
tiaal bovenstaanden vorm (33) heeft, moeten de volgende

snelheden worden onderscheiden:

1 de voortplantingssnelheid van de grens der
beweging;

2°de phasesnelheid van de potentiaal;

3° de phasesnelheden van elk der drie ontbin-
dingsuitwijkingen (elasticiteitstheorie v. h. licht);

4° de phasesnelheden van de electrische ont-
bindingsvectoren (electromagn. lichttheorie);

b de phasesnelheden van de magnetische ont-

-
o

bindingsvectoren (electromagn. lichttheorie).

Al deze snelheden zijn in het algemeen verschillend. De
phasesnelheden zijn zoowel afhankelifk van de phase als
van de amplitude; zij kunnen uit de phase berekend
worden door middel van de formule (39) en uit de amplitude

door middel van de formule (109).
I11.

Bij een stationaire golfbeweging (waaronder we verstaan
een golfbeweging waarvoor de amplitude en de trillingstijd
van elk deeltje van den tijd onafhankelijk is) van den vorm
(33) is de trillingstijd van alle deeltjes dezelfde. Het is dus

onmogelijk door concentratie van een golfbeweging haar tril-
0
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lingstijd te veranderen; in een focus en op grooten afstand

daarvan is de trillingstijd juist dezelfde. |
IV.

Indien in den vrijen ether zich een golf beweging voort-
plant die op zeker oogenblik is begrensd tusschen twee
phaseoppervlakken n.1. een voorste en een achterste grens,
dan treden in de buurt dier grenzen bijzondere verschijnselen
op, die we in het 4° deel van Hoofdstuk IL bespraken en
aanduidden met den naam dempingsverschi] nselen.

Met die dempingsverschijnselen heeft men bij de bestu-
deering van de voortplanting eener begrensde golf beweging
rekening te houden en doet men dit, dan kan door middel
van het theorema van Fourier de potentiaal van een
begrensde golfbeweging worden geschreven in een vorm die

door de geheele ruimte continu en eindig is.

V.

Indien een bolvormige golfbeweging op tijd ¢ begrensd
wordt door twee boloppervlakken met stralen =, en 7, om het

middelpunt der beweging en haar potentiaal heeft den vorm
1 5
[pRE=re F (r 1 at),

dan wordt zij op tijd ¢+ ' begrensd door twee bolopper-
vlakken met stralen =, - at’ enr; at’ om dat middelpunt, en

binnen die grenzen heeft haar potentiaal weder denzelfden vorm.
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Het door Stokes en door Voigt berekende phaseverschil
77:— (zie inleiding) treedt derhalve niet op, en hun resultaat
moet, worden beschouwd als een gevolg van Fresnel’s
onjuiste opvatting en onjuiste mathematische formuleering
van het beginsel van Huygens.

Kent men, zooals Fresnel deed, physische beteekenis toe
aan de elementaire golven van Huygens, dan eischt "zooals
Poisson opmerkte (zie inleiding), bij een divergeerende bol-
vormige golfbeweging de inwendig omhullende dier elementaire
golven een naar het middelpunt terugloopende golf beweging, die
in werkelijkheid niet optreedt; bovendien kan dan niet al het
arbeidsvermogen krachtens de golfbeweging op tijd ¢ aan-
wezig tusschen de bollen »; en »,, op tijd ¢+ ¢ worden terug-
govonden tusschen de bollen # 4 at’ en », + at'.

Terwijl dus de elementaire golven van Huygens geen phy-
sische beteekenis hebben, mag men ze echter wel een
meetkunstige beteekenis toekennen en ze volgens de H®
conclusie gebruiken als constructiemiddel om uit een voor-
gaande grens van een bolvormige golfbeweging de grens op

eenig later oogenblik te hepalen.

VIL

Indien van een golfbeweging welker potentiaal den vorm

(33) heeft, de voorste grens op zeker oogenblik ¢ wordt ge-
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vormd door het oppervlak

Yy (z,v,z, ') = Constant,
dan wordt ¢ sec. later de grens gevormd door het uitwendig
omhullend opperviak van alle bollen met stralen » = af om
alle punten van die eerste grens beschreven. Hierin is a de

constante uit de diff. verg. der golfbeweging.

VIII.

Voor alle punten gelegen op een normaal op de grens der

beweging (33) geldt de betrekking
y V 0,0. = Constant,

waarin y is de waarde der amplitude op het oogenblik dat
die punten liggen in de grens en waarin g, en g, zijn de
hoofdkromtestralen van het grensoppervlak in die punten.

Neemt men aan dat 4* een maat is voor de energie der
beweging en dat die energie zich met snelheid a voortplant
in een l'ichi;ing loodrecht op de grens, dan is die betrekking
ook af te leiden door toepassing van de wet van behoud van

arbeidsvermogen.
IX.

De phasesnelheden van de potentiaal en van de verschil-
lende onthindingslichtvectoren zijn afhankelijk van den vorm
dier oppervlakken en in de verschillende punten van eenzelfde

phaseoppervlak in het algemeen verschillend. Om uit een



bekend phaseoppervlak een ander af te leiden mag dus de
constructie van Huygens niet worden aangewend.

En verder, indien een punt A4 op zeker oogenblik ligt in
de buurt van de voorste grens der beweging, dan zullen de
phaseoppervlakken van de potentiaal en van de verschillende
ontbindingslichtvectoren, waartoe 4 op dat oogenblik behoort,
een anderen vorm hebben dan de phaseoppervlakken waartoe
A op eenig later oogenblik behoort.

Hoe de phasesnelheid samenhangt met den vorm van het
phaseoppervlak (of er b. v. een verband bestaat tusschen de
kromming van een phaseoppervlak in eenig punt en de
phasesnelheid in dat punt), en wat het verband is tusschen
den vorm van het phaseoppervlak gaande door A op zeker
oogenblik dat A ligb in de buurt der grens, en den vorm van
het phaseoppervliak waartoe A behoort eenigen tijd later,
zou nog aan een nader onderzoek kunnen worden onder-

worpen.

De meeste dezer conclusies zijn zooals ik reeds in de in-
leiding vermeldde voor lichtbewegingen van minder belang
en moeilijk experimenteel te controleeren. Het is dan ook
voornamelijk met het oog op electromagnetische golf-
bewegingen van grooter trillingstijd (grooter golf-

lengte) dat ik het voorgaande onderzoek heb ingesteld.






STELLING EN.

De elementaire golven van HuvGexss hebben geen physische

doch slechts meetkunstige beteekenis.
I1.

Men behoort te onderscheiden de snelheid waarmede de
orens eener verstoring zich voortheweegt en de phasesnel-

heden dier verstoring.
{ve |

[11.

De snelheid der grens eener golfbeweging is slechts
afhankelijk  van den aard van het medium, haar phase-

snelheden hangen bovendien af van den aard der beweging.
V.

Bij de voortplanting van een golfbeweging in den vrijen
other veranderen in het algemeen haar phasesnelheden wel,

maar de trillingstijd blijft standvastig.
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V.

Bij een voortgaande trillende beweging is het verband
tusschen de uitwijking en de snelheid der deeltjes zoodanig,
dat zij elkaar voortdurend energie overdragen in de richting
van de verstoringsbronnen af. et voortbestaan van dat
verband als de bronnen hebben opgehouden energie te
leveren geeft er verklaring van dat er geen golven naar

die bronnen terugloopen (1).
VI.

De bewering (2) dat de aarde in een eeaw 22 sec. bij

een juisten chronometer achterblijft, mist voldoenden grond.
VII.

De moeilijkheden die volgens Hurtz (9) zich voordoen
bij de mechanisehe verklaring der draaiende beweging van

oon steen aan een touw, zijn denkbeeldig.

VIII.

De strijd over het verschil tusschen een rotatie en een
translatie (%) 1s het gevolg daarvan, dat men verzuimd heeft
op te merken, dat men bij een rotatie steeds heeft te maken

met een versnelling, maar bij een translatie niet altijd.

(1y Cf. aanhaling van POISSON, Inleiding pg. 5.

2y Tromsox en TArr, Theor. Phys. § 820, Hertz, Ges, W. I pg. 225, ete.
(3) HErTZ, Ges. W. IIL. pg. 6 en T.

(1) Zie o. a. E. Mach, Die Mechanik inihrer Entwickelung ; Kapittel 2, § 6.
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IX.

De samenstelling van krachten door middel van parallelo-
gramconstructie kan niet worden bewezen, maar behoort als

hypothese te worden aanvaard (1).
X.
De lichtverschijnselen door Bovs aan kwartsdraden opge-
merkt (2) zijn volledig te verklaren uit interferentie van

den door den draad direct teruggekaatsten en den tweemaal

gebroken straal.
XL

et sissen van den electrischen lichthoog wordt veroorzaakt
door de directe aanraking van de zuurstof der lucht met

de kom van de positieve koolstaaf.
XTI.

Kathodestralen zijn banen van geladen stoffelijke deeltjes.
1] Q !

XTII.

De eischen door Kircnmnorr (%) aan een functie /7 (€)
cesteld :
¢ I (E) is continu voor iedere waarde van ‘C,
9c [ (:) = 0 voor & eindig,
g2 / I (E) fd T = 1 als men die integraal neemt tusschen cen
eindige  negatieve en  een  eindige  positieve  waarde  van E_.',

zijn onvervulbaar.
(1) V. A. Juriws, Beschouwingen over de grondslagen der Natuurkunde,
(2) Boys, Nature. Vol. 40, pg. 247, 1880,
(3 Kipennorr, Sitz. Ber. d. Kon., Acad. d. Wissensch, zu Berlin vom 22
Juni 1882 pg. 641. Wiedem. Ann. Bd. 18 pg. 663. 1883,

Gies. Abh, vox Kircunorr, Nachtrag pg. 22
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XIV.

Ten onrechte beweert Jawin (1) dat de evolute van een
hyperbool of ellips tot evolventen heeft een stelsel hyper-

bolen of ellipsen.
XV.

Van het postulatum door Gauss gesteld bij de afleiding
van zijn foutenwet kan zoomin de juistheid als de onjuist-
heid worden aangetoond.

Het bewijs dat o.a. BERTRAND (%) geeft van de onjuist-

heid er van, is foutief.
X VL

et paradoxale antwoord der kansrekening, dat bij het
spel van St. Petersburg de waarde voor A om met b te
spelen oneindig groot is, spruit voort uit de onderstelling
dat B aan zijn verplichtingen zou kunnen voldoen.

Bezit B een kapitaal 2m, dan is eenvoudig fe berekenen
dat de waarde van dat spel voor A niet oneindig groot is,
maar gelijk 15 aan ;" + I

X VII.

Daar men niet weet of het massa-middelpunt van de
komeet van ENCKE in rust is t. 0. v. de kern, bestaat er
geen reden om ter verklaring van de verkorting van den

omloopstijd dier kern aan te nemen dat die komeef bij

haar beweging een tegenstand ondervindt.
(1y Jayix et Boury, Cours de Physique, Optique Géométrique pg. 72 en 74.
(Paris 188T7).

(2) BerTrRAND, Calcul des Probabilités § 143,
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X VIII.

Onderzoekingen van J. J. THoMsoN over kathode-
stralen maken het waarschijnlijk dat de atomen van de
verschillende scheikundige elementen verschillende aggre-

gaties zijn van deeltjes van dezelfde soort.
XIX.

De moleculairgewichten van gassen en de atoomgewichten
van de elementen waaruit deze zijn opgebouwd, kunnen
langs physischen weg met gelijke of grooter nauwkeurig-

heid worden bepaald dan langs chemischen.
XX.
Alle vaste lichamen hebben kristallijne structuur.
XXI.

Aan de geschiedenis der natuurwetenschappen en aan
de kritiek van haar grondslagen en methode behoorde aan
onze universiteiten een  afzonderlijke leerstoel te worden

gewijd.

X XII.

Het beeld waarin volgers van Maxwenn  (LORENTZ,
V. A. Jurnius) zijn theorie aanschouwelijk hebben gemaakt,
kan bij het onderwijs in de leer van het magnetisme en
de electriciteit aan een hoogere burgerschool zonder ver-
meerdering  van moeilijkheden de verouderde voorstellingen

vervangen.
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XXIII.

Bij het onderwijs in natuurkunde mag slechts dan ge-
bruik worden gemaakt van projectiebeelden, indien directe

aanschouwing geheel onmogelijk is.
XXIV.

Ten onrechte meent Friepricu Eco (1) dat de sloteon-

clusies van zijn ,Kritik der exacten Forschung”:

,Alle Naturgesetze sind bloss einfache, empirische
Regeln, die sich fiir die Systematisirung der bekannten
Thatsachen als brauchbar erwiesen haben. Thre Giltig-
keit fiir die Zukunft ist und bleibt immer problema-
tisch. Vorhersagungen mittelst derselben sind daher
ebenfalls nur von problematischem Wert. Alle Theorién
sind nur willkiirliche Geschipfe unserer Vernunft ohne
jeglichen anderen als systematisirenden und vielleicht
heuristischen Wert. Denselben eine wirkliche Bedeu-
tung zuzuerteilen ist thiricht und nur die Folge einer
mangelhaften Kenntniss der Grundlagen und des Zweckes

" ote.

unserer Forschung,
iets inhouden dat niet reeds vroeger door anderen is uit-

gesproken.

(1, Friepricn Eco, Kritik der exacten Forschung; I3, J. Brill, Leiden 1897,
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