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INLEIDING.

Het is reeds eenige jaren geleden, dat de studie van het
standaardwerk van STIELTJES over de naar hem genoemde
kettingbreuken (Annales de la Faculté des Sciences de Toulouse,
T. VIII et IX, 1894 et 1893) mijne belangstelling voor deze tak
der wiskunde deed ontwaken. Het ontbreken echter van cen
leerbock over de algemeene leer der kettingbreuken maakte
destijds verdere studie in die richting hoogst bezwaarlijk. Die
gaping in de rij der leerboeken werd in 1913 op hoogst ver-
dienstelijke wijze aangevuld door het werk van Prof. Dr. OSKAR
PERRON ,Die Lehre von den Kettenbriichen™.

Het is dit werk, waaraan dit proefschrift zijn oorsprong dankt.

In 't kort zijn de resultaten van mijn onderzoek de volgende:

Het eerste hoofdstuk geeft, aan de hand van een kettingbreuk
van STIELTJES, een merkwaardig soort polynomen, die in eigen-
schappen groote overeenkomst vertoonen met de geheele getallen,
zooals b.v. de ontbinding in factoren aan den cenen kant, en de
deelbaarheid der getallen aan den anderen kant. Hierdoor wordt
ecen nieuw verband verkregen tusschen de Getallenleer en Analyse.

In het tweede hoofdstuk heb ik een algemeen bewijs trachten
te geven voor de mogelijkheid der ontwikkeling eener functie,
die voldoet aan de voorwaarden van DIRICHLET, naar de naderings-
noemers eener kettingbreuk van STIELTJES. (Vergel. PERRON,
blz. 382, waar dit probleem gesteld wordt).

Onder de polynomen, die aldus als ontwikkelingselement ge-
bezigd kunnen worden, vallen de in het eerste hoofdstuk behan-
delde polynomen, verder dic van LEGENDRE, van ABEL (vergel.
Prof. Dr. A. A. NjLAND, diss. 1896; Prof. Dr. W. KAPTEYN,
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Versl. Kon. Ac. v. W. 27 Mrt. 1913), van HERMITE (vergel.
Versl. Kon. Ac. v. W. 10 April, 12 Mei, 17 Juni ’14). In deze
bijzondere gevallen was het bewijs der ontwikkeling reeds ge-
geven, zij het dan ook in elk geval langs anderen weg. Een
derde hoofdstuk is nu aan de functies van ABEL en HERMITE
gewijd, door hen saam te vatten tot eene algemeenc polynoom-
soort met twee veranderlijken, dat afgeleid kan worden uit de
uitgebreide kettingbreuk van LAGUERRE, die behoort tot de
groep der kettingbreuken van STIELTJES.
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HOOFDSTUK 1.

De Z,-polynomen.

§ 1. De eenvoudigste kettingbreuk, die men zich denken kan,
is zeker wel de volgende:

.

1) RN e A F('r)_’f-rﬁ—f‘}l =+ ad'inf.

Zij behoort tot die merkwaardige groep kettingbreuken, die
voornamelijk door de werken van STIELTJES op den voorgrond
zijn gebracht. Dit blijkt het gemakkelijkst door middel van de

ot I
substitutie x| —.

Na eene bekende herleiding vindt men:

i (I D { I { I { ;
2] ~ A0 —):----- +—+—=—4+—+=2+... ad inf.
(: £ e TR T T
De algemeene gedaante van een kettingbreuk van STIELTJES
is toch:
b e b i i _ -
[t e e e B a d min s (\V.era el S PR I nTNe 0 2)
612 " [6y " |6z by T |05

met reéele, positieve &'s.
De groote eenvoud van bovenstaande kettingbreuk F(I;) blijkt
uit de waarden der &’s: h
Op =1 (DE=R2 S SRR )

Uit het periodiek karakter volgt, dat in het convergentiegebied

1) P, beteckent: PERRON: ,Die Lehre von den Kettenbriichen”, Teubner, 1913,
I
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(d.i. het gcheele complexe vlak, met uitzondering van de nega-

P(3)=—5+31 144

Het zijn de noemers van de opeenvolgende naderingsbreuken

tieve, reéele as)

van deze kettingbreuk, die ik in dit hoofdstuk zal behandelen.
In afwijking met de gebruikelijke notatie, schrijf ik in . dit
hoofdstuk, voor de naderingsnoemer J5; liever B;.1, waardoor
de eigenschappen van een polynoom By overeenkomen met die
van zijn index, en niet met die van 't getal v - I.
Bij de kettingbreuk

1T il x| | :
—_ = ,'—nr— g EXsl :
2—!—21/1-}—41 F Il—i— ad inf.

behooren dan de volgende noemers:

(B) B, =0
B =1
B, =1
By=1-"12%
B,=1+2x
B, =1+3x+2"
By =1+4x+34°
B, =1+5x+6x"+2°
By=1+6x+ 102244 2°
By, =1+7x+ 152+ 102° + 24

By=1+8x+21x"+202°+ 52

Bii—1 +9x+ 28 2+ 35 2% + 15 2% + 2°

I+ 102+ 3642+ 56x° + 35 x4 628

Bia=1+ 112+ 45 %"+ 84 2%+ 702 + 21 2° 4 2°

B,,= 1+ 12 x + 55 #* + 120 2° 4 120 2+ 562° 4+ 7 2°

Bjy=1+ 134 + 66 2% 4 165 2% + 210 2% + 126 % 4 282" + &7
etc. etc.

>
=3

De graad van By, s v—1I

van' By s sy

; : : o (A=
4) in het algemeen is de graad van 5, gelijk ——zﬁI‘J.
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De algemecne gedaante van het polynoom B, 11 (x) is:

5) . B +1(’~)—I+(J_I- )-r-{_(yzz)xzﬂ—(y_;B):r“r--.

Bewijs: Door directe berekening overtuigt men zich gemak-
kelijk van de juistheid der formule voor kleine v-waarden.

Nemen we dus de formule als juist aan voor v = &V, dan moet
zij slechts bewezen worden voor v =N+ 1.

Hiertoe maak ik gebruik der recurrente betrekking

6) ........... BN_|_1:BN—|—.’L’.BN_1
BN=1+(N?2);:+(N:3):¢3+.. +(J;:f)xp—l+...
xBy—1= x+(lvrs)-r2—k-- 'F(j;r:‘z)-t‘”—1+---
ik
S S R
want (N P)zNﬁ_P J(N—p—1).. (N—2p+3)(N—2p+2)
rh= 2 (p—2) (2—1)
( )= (V— p N—p—1).. (N—2p+3)
Pia 2 (2 —2)
o (B PO
:(Af—;b—i—l)(f\.’— )(j\.f_._}‘,-—])...(N-——zp-l—s):(j\f_p%1)
(— 0! 2—1 /

Hiermede is ook de juistheid der coéfficienten van de termen
van den hoogsten graad aangetoond, daar mcn ,formeel” de
polynomen met termen van dezelfde gedaante kan verlengen.

Behalve de zoo even gebruikte recurrente betrekking (6) heeft
men de volgende ,hoofdformule”, die de ecrste als bijzonder
geval omvat.

Volgens PERRON pg. 18 form. 36" geldt, bij elke kettingbreuk,
de betrekking:



+

B4 Buypry—1=DBpry—14 Bayp_a
+(— 1)~ @1 Gugo Bugs oun Quip By—1, 248 Ba1)

In ons geval wordt deze formule:

7) 5oty 0g Bﬁ'Bx+i3+7"_-Bl3+y Bﬁ-i-ﬁ'?"(""‘ I)B—l x# B? B,

want B, , = B,. Verder is de eerste index met ¢één verhoogd
in aansluiting met de nieuwe notatie.

Volledigheidshalve kan ik hieraan de naderingstellers toevoegen.
Indien A, behoort bij B, (index één hooger) heeft men de vol-
gende waarden:

A, =1

A =0 =.1‘BD
A, =z 1 = x5,
Ayi=tx:1 == e},
Ai=xz(1+2) = 2B

ELCS
Aangezien voor de A’s dezelfde recurrente betrekking geldt als
voor de B’s, zoo is algemeen:

) R et e b ... A 4 1=28,,

waarmee de studie der tellers teruggebracht is tot die der noemers.

§ 2. Evenals elk polynoom, zijn ook alle B’s bepaald door hun
wortels en eene constante. Deze laatste grootheid is onmiddellijk
vastgelegd door de algemeene formule:

ie A e B Bi{o)I=113

De eigenschappen van een polynoom 2, zijn dus terug te vin-
den in die van zijn wortels.

Eigenschap 1: Geen enkele wortel van een polynoom 7, is
positief recel.

Dit volgt onmiddellijk uit de algemeene gedaante (5) der po-
lynomen. Elke coéfficient toch is positief.

1) Bz, ontstaat uit e, door den index van alle hierin voorkomende grootheden

- J ré Ty | n’\_
ay en &g, met A te verhoogen, als de kettingbreuk is &y -} (—(,:J |- ;‘- -+ l;— + —.
1 '3
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Eigenschap II: Alle wortels van elk polynoom 7, zijn re€el,
De wortels van elk paar polynomen 75,_, en 75, liggen afwisse-
lend en wel z66, dat B, de grootste (of kleinst negatieve) wortcl
bezit.

Bewijs!): De juistheid der stelling blijkt onmiddellijk voor
kleine waarden van v, bv.:

By,=1+4x % ="
Bi=1+2x 2 W=—1%
Bi=1+4+3z+2* xO0=—}% -1V, -fz"“’]:—{f—%V&

Nemen we dus aan, dat de wortels van 5,_3 en 5,_; elkaar
op de reéele as afwisselen, en dat 7,1 de grootste wortel bezit,
dan moet nu bewezen worden, dat hetzelfde geldt voor de wor-
tels van 5,_, en 5,.

Gemakshalve kunnen we een grafische voorstelling maken, door
te stellen:

Pv—a=2DB,_3(x); pa=DB,_1(x); y=258 (%)

Noemen we de wortels van B, (¥) =0:— 2% dan is volgens
Eig. I, indien x;® reéel is, ;Y > o.

De reéele waarden 2;#~% en a3~V zijn door hun index ¢
gerangschikt volgens opklimmende grootte.

10). Nu is: By—g (0)=By—1(0)= B, (0)=+ 1> 0.

1) Vergel, StieLtjes. Ann, de Toulouse, T. VIIL 1894,



Volgens (6) is:

By (—xn"— V) =58, (— 2= — H¥—D B, _s(— =)
of
B,(— - =— 2=V B, _a(—mn®—Y).

Nu is #*—V>o0en B,_s(— n*—D)>o, want 5, s (0)=1>0,
en er is, volgens hypothese, nog geen wortel — x;# —® gepasscerd,
dus

B,(0)>o0 en B,(— n¢—)<o.
d. w.z. tusschen o en — m®—D ligt minstens één wortel van
By iz)=.0; i
Verder is, volgens (6):
B, (-— xl("" ':)) — B, _1 {——' 1’1(”_3)) < 0.

Uit B, (—x”~ V) <0 en B, (— m*—%) <o volgt, dat tusschen
— =YV en —un®*"*o0 2 4 .. wortels van 5, liggen.

Passen we nu (6) toe, voor ¥ = — xg?=1

B, (—x— D) =— 2=V, B, _g (— x¥ V).

Bekend is, dat By_a(— x®~ V) <o, dus B, (— x,0t~V)>o0.

Brengt men dit in verband met B, (— ¥~ ) <o dan blijkt,
dat er minstens ¢één wortel van B, ligt tusschen — =% en

e 27;,(""41).
Zoo voortgaande vindt men steeds minstens ¢én wortel van
= v—1
B, tusschen o en — x*—V en tusschen —a;" =% en ——x_,-v_]_l .

Wij moeten nu twee gevallen onderscheiden, nml.
A, v=2p.

B, (¥) = o bezit, volgens (4), ¢ — I wortels, evenals B, 1 (x) = 0.

Volgens bovenstaande redencering behoort bij elke wortel van
B,_1(x¥)=o0 cen interval, waarin een wortel van B, (¥) gelegen is,
want 5,_s (¥) = 0 bezit slechts p —2 wortels. Hiermee zijn dus
alle wortels gevonden, en hun ligging voldoet aan de genoemde

eigenschappen.

Bealy=—2 1/ —a1%

B, (x) = 0 bezit, volgens (4), # wortels, terwijl By —1 en B, s
er beide pw — 1 bezitten.

Evenals onder A, liggen er g — 1 wortels in de intervallen

(o, — e, (— PG Rk RSSET YD) BRI ( ’(:-'p&—-l), ——,1-‘“” ).

H_"L.u——‘l ‘w=1
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Er blijft nog één wortel van B,_o over, die volgens de ge-
maakte onderstelling omtrent de ligging der wortels van 5, o

A @u—1 =

en B,_1, voorbij de wortel —-.tf#"_l ) gelegen zal zijn. We kun-

nen nu bewijzen, dat de @’ wortel van B, ligt in het interval
Ap—1

(_ 'ALF 15 'I’)

Bspy1(— @) = (— o)* met ’t tecken van (— 1)¢ ==¢.
By (— ») = (— »)*~1, teeken : —e.
By, —1(— ) heeft tot teeken : —e&.

(2 eL

204 } komt overcen met dat van

Het teeken van By, (—:
B, (— ), dus met — ¢, omdat er nog geen wortel gepasseerd is.
Volgens (6) is verder:

(@r—1 L2e=D

- ¥4 ~1ra fgf.l-——ll . 3 =
dus ook 't teeken van By, (— ¥, ) is — ¢, terwijl dat van

B, 41(— o) overeenkomt met dat van + . d. w. z. de @’ wortel
@p—1

e , — »).

van By, 1 (¥)==o0 ligt in 't interval (—x

Eigenschap III: In het negatieve interval (0,—&) heeft

geen der polynomen cen wortel liggen.

11) Bewijs: Allereerst is B, (—— i) =

want

ete.

SRS
[

I
4

Nemen we dus de juistheid van (11) aan voor v < 7, dan moet
nog aangetoond worden, dat (r1) dan ook geldt voor v=17+ I.
Volgens (6) is

Biy1(¥)=Bi(x)+xBi— (x¥) dus voor x = —-:1
Bi 11 (—— 1) = _,‘f._,_ — fI*.' . 3 —_.—I,— = ’—i—l
4 AR 2}
Hicermede is aangetoond, dat elke 5, in 't punt x = —-i posi-
tief is, evenals in het punt r =0, want B, (0) = - 1. Dit wil

echter voor de wortels zeggen, dat 2, (%)== OMINERE interval



I o
O’—Z géén of een even aantal wortels bezit. Nemen we nu

aan, dat B;(r) het polynoom met den kleinsten index is, dat
twee of meer wortels in bedoeld interval heeft, dan zal B; 1 (%)
volgens eig. II minstens één wortel daar hebben liggen. Dit nu
strijdt met de hypothese, dat # de kleinste index is, waarvoor

T I
het bijbehoorende polynoom een wortelpaar tusschen o en — —
heeft. Het getal % is dus niet aan te wijzen, of geen enkel poly-

. I
noom bezit wortels tusschen 0 en — —.

Opmerking 1. De mogelijkheid, dat het polynoom Z5j;_; niet
zou bestaan, is natuurlijk uitgesloten. De formules B leeren on-
middellijk, dat %= 4.

: I ;

Opmerking 2. Het punt ;t:=~—:L begrenst het wortelgebied

werkelijk, want volgens (I1) is:

lim B, (— l) = 0.
4

v =00

Eigenschap IV. Het deel van de reéele as, waarop alle
wortels van de polynomen B, liggen, wordt ter rechterzijde

,werkelijk” begrensd door het punt x:h;f ter linkerzijde is
echter geen eindig grenspunt aanwezig.

Bewijs: Volgens de voorgaande eigenschappen kunnen de
wortels uitsluitend gelegen zijn in ’t reéele interval (-- {I}, - oo)

of in een gedeelte daarvan. Dit laatste nu wordt door eig. IV
ontkend.
Er is dus te bewijzen, dat er steeds een 5, gevonden kan

‘ I b
worden, die een wortel heeft > —-——¢ en z00 ook een B, die
4

een wortel heeft << — 2, als &V een willekeurig groot, maar con-
stant getal is.

Het eerste gedeelte volgt uit de Opm. 2, Eig. IIL

Het tweede gedeelte kan als volgt bewezen worden:



Volgens form. (5) is:

B,+1(x)=:+(”—I‘)_r+("'j2)x2+(”_3'3).r3+...

<

Onderscheiden we nu de twee gevallen:

LS =208

12q) Bg#!_l(.r):l+(zu—”I)x—l—(z'uq_z);rﬂ-l-..—k( ‘uﬁ p)iz:

“

B, v=2p—1.

120) Bopm1+(zn—2)z+ LR oy (20 pp_l).w
(e + 1) (0 — 1)

=R k=1
3 7

+

Uit 124 volgt voor de som der w wortels van By 1.

(2p+1)
R © (e + 1)
13(2) .......... }_‘ _— _0_
lll

(2 ) _- ,
I i obr oeaarn 3>, _ (= 1)6(;;.4 1).
w—1

Volgens eig. Il zijn nu de g — 1 eerste wortels van By, 11
¢én voor ¢één kleiner dan de w— 1 wortels van By,, wat hun
absolute waarde betreft. Hieruit volgt:

& ('%:F_I) e ME) - 1-“"'”"*‘”

2 (5] T

2 ) - 1) (2 3
of ceetn (1) (et

@p41) 2 :
14) en — St E
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Kiest men dus p z60, dat (v + I)((Sz[JL—[_I_)>.Z\.f, dan hebben

alle polynomen met index >2p¢ 43 ¢én of meer wortels links
van — /V liggen.
Opmerking: Een onderste grens voor —xf’““” is:
_ sy eEt)
b 2

§ 3. Gemakshalve voer ik de volgende definitie in.

Definitie. Een wortel van de vergelijking B, (z)=cosheet
primitief, indien hij nict samenvalt met één der wortels van

een polynoom met kleineren index.

Het is duidelijk, dat elke B, minstens ¢cén primitieve wortel zal
bezitten van af v = 3, nml. de grootste (kleinst absoluut gemeten).
Eigenschap V. Is —ux, een wortel van B, (¥) =0, dan is
deze waarde ook een wortel van alle vergelijkingen By (x) =0

Bewijs:
Bekend is:
B,=o0.
By =1
Bz —= I3
By(— ) =1—7
B, (—x)=1—2x,
By(— xp) =1 — 34+ %"

B, _1(—x))= C, -1, eene bepaalde constante.

By(—7,)=0— 1 bymetifi=—c= C)—1%p
Byyi(— xp) = By (— xp) — % By—1(— %p) = — Co—1%p=1 B.
Byrs (= 5) — By 1 (— 28 — % By(— ) = — Cimr 2= By
Byis(—x)=—C—1%+ Cy=1%st — ey
ctc.
Byyq(— %)= = /1 By
etc.
Bay_1(— %)= = Ve Gy
Byy(—2x,)=0 == el

Bsy 41 (— %) = — N Co—14,=f;* By

cte.
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Bgv (-—— xp) — 0] etc.
Bgv (— :’t—“u) —_ O. q' c. d-

Een en ander is afhankelijk van het periodieke karakter van
de kettingbreuk.

't Voorgaande geldt voor elke wortel van 5, (¥) =0, m.a.w.
B, is een factor van alle polynomen 75,.,.

Opmerking: Is — x, een primitieve wortel van 7, dan blijkt
uit het bewijs, dat — x, slechts cen wortel is van die B-functies,
wier index een veelvoud van v is.

Eigenschap VU: By, (v) bezit B, (x) tot factor.

Deze stelling is een bijzonder geval van de algemeene eig. V.
Men kan haar ook als volgt bewijzen:

Bewijs: Volgens de hoofdformule (7) is:

IF))"; . Bx+l’;_|..7= Bﬂ‘}'? . Z)]“+‘3 "}‘ (— I)'e'_-] }1—'3 v B,y. j))“.

Nemen we: 83=2, a=v— 1 en y =v — I, dan is:

a9 9 )
_B,gyz B,+1~—-—,‘E . B,,._L
= (48,4_1 — j))v—l) (]J,,, aki] + x By_.l)-
IS) of ])’3,2.8,,.%1;,4‘]-!—.‘1‘])?»._1 %.

Tevens is hiermede een nieuw bewijs gevonden voor de alge-
meene eigenschap V. Het is toch steeds mogelijk 75, uit te
drukken in twee voorafgaande polynomen, bv. By, = g (¥) 5, +
+ Jt (¥) B,,. Beide bevatten den factor B,, dus moet deze ook
voorkomen in 5, ,.

Gaan we weer uit van de form. (7):

Ba.Baypyy=DBaty Baypt+ (— 1)1 2P, B, B
NOOIRR == — Vs

0 '
B, . Bsy= By, +(— 1)~ 2 B2

of, gebruik makende van (15):
16) By, =B, (Byyr1+x By + (— 1)t
Nemen we nu & =B =v ; ¥ = 2¥, Z0O iS:
B,. By, = B3y.Bay+(— 112 By, . B,
17) Buw=B,|\ B, 1+xBy W (By 142 By_1) +2(—1) 1ol
ete.
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Opmerking: Terwijl het cerst gegcven bewijs een dieper in-
zicht geeft in het wezen der stelling (b.v. wat betreft de primi-
tieve wortels), doet het tweede bewijs tevens de explicicte vorm
van den anderen factor kennen.

We hebben toch de volgende

Eigenschap VI: Schrijven we voor (— 1 —1x: X, en voor
Byir+xBy,_1:X,, dan is
18) ............ B‘L, = et DF«'
als D, de p° naderingsnoemer is van de kettingbreuk:

‘/,Yj ik )i'] ‘_Y'I 1
lLXz l‘Yz Xy

Bewijs: D, =1

IBH = AT (de index is weer met één verhoogd).
D= G
D,=X}+2X X,
Dy=X*+3X X'+ EX =
tc.

De coéfficienten van deze polynomen zijn dezelfde als bij de

B, functies, en Di 1=, D+ X, D

ad inf.

JY[] i A

-----

]

Nu is: B, = 6,1 =B, D
By, = By X, =B, D, . v (15)
By = By} X2+ X, ¢ =B,Dy o0 (16)
Byy= B, X,° + 2 X, Xa =By i et (17)

De formule (18) is dus juist voor kleine waarden van . Nemen
we haar als geldig aan voor p = %, dan moet nog de juistheid
aangetoond worden voor & = k+ 1.

De betrekking (7)

Be-Bavpgry=DBity - Bazotl— 1)E=15 %8B, B,
geeft voor x=—vy,B=v en y=(k—1I)v:
" RB,. Bai1yy= By By + (— T} et Bi—1yy Bys
of B +1nyv= Biy X, + (— 1) =2 Bu—1y
= By Xy + B —1» A€

Nu is reeds B, = B, Di en B —1yy = B, Di_1

dus /)}[;-+ 1y = B, = .zYz Dy + ){'1 IPFi '5 = B, Diy1 q. €. sl
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Opmerking 1. De verkregen [, groepeert de overblijvende

py—1I ¥ — I o Al ==
e B wortels in groepen van wortels.
2 2 2

Opmerking 2. Vooral deze eigenschap doet nieuwe eigenschap-

pen uit de Getallenleer vermoeden.

Bij de algemeene formule (18)
=it i)
verdient ’t geval v = 2 afzonderlijk vermeld te worden.
Be=1, dus Bz, = D),

Nu is Xij=—2* , X,=1+4+2x
zoodat de kettingbreuk is:
Y |t e e |
0" li+2x |t+2x |1422 °°

Kiest men nog X, = x, dan ontstaat de kettingbreuk
; P PR

T 142x |1+2x

die door contractie ontstaat uit 7 (x), en dus dezelfde waarde

heeft als de.oorspronkelijke kettingbreuk. Haar naderingsbreuken

Agp

j’);.’ ;u-

zijn

In het algemeen heeft men de volgende:
Eigenschap VIL Zij X,=x8,_, X, =(—1)"12,
X,= By 11+ x B, dan is de kettingbreuk
X, Xl
1/\’2 \Xa

Bewijs: Mogen de naderingsbreuken der nieuwe kettingbreuk

19) . . G (2) =X+ -+- +... ad inf. = B, (x) F ().

S G
G (v) voorgesteld worden door ¥ dan moet bewezen worden, dat
P

o iy (x) lim L

A
®=o0 [)P’- ﬂ‘::()f;[)‘i‘

S . A :

F(r)= lim Vil bestaat in het geheele complexe vlak, behalve op
k=co Lk
: 3 : I

de negatieve reéele as, links van T
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sl ek L vehy
Hier is dan lim == lim =—.
k= Ok !L;—_DO By_v

We kunnen nu aantoonen, dat

& Auy
Eﬁ: it E’i voor elke w-waarde.
Volgens de vorige eig. VI is reeds
T2frge
D, = —f?,,_
zoodat er overblijft te bewijzen:
)} o a0 G0 Sk Co—=dpr—* B,,—1 (volgens 8).

In de cerste plaats geldt deze betrekking voor g =1
Cl=Xa—%B 1
en in de tweede plaats ook voor g = 2

C2:'XO (Bv-%-'l -+ '1:]))'-'—-1) + (__. I)V-—l 1Y
— 1 % ])Jv——l (Bv+1 + x -Bv—-l) - (__ I)V—l xv—-l l‘.

Uitgaande van (7) is:
Bp.Bavory= Doty Buosp+(—1f! 2* B, . B,
voor B=v—1 , &=V , g =—"]
By_1+Bay=DBy. Byy—1+ (— 1) »—15,
of, volgens (15)

B,o1.B( Byt B,_1)=ByBay—1+ (— = 1B,
of Bg,_lzl},_l(b’,+1+A‘B,_])+(—~ )it
substitucerende is

C,=2x def =it
Nemen we dus aan, dat
Co= Buy—1 VOOr = th
dan moet nog bewezen worden, dat ook
Cpo+1 =% Blao+- 171

Nu is: C!‘0+1 — (.U,+1 —+ X B,,_}) Cu, + (—-— I)‘“"l Y C,.LQ-I
of
Cpo-kl =¥ = (]))v +1 +x Bv-—l) H,u.o'/-—l o r (‘_ I)y—lfﬂ ];{Mu—])v—l %
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Ter berckening van de 2° factor in het tweede lid, heeft men:
Bg.Butpiy=DBpty - Baypt+(— 1)~ 2P . By. B,

voor B=v,y=v,a=(p,—I)y—1I.

Dan is:

By . By +1yy—1=Bay. Buyy—1+ (— 1)~ 12" . By . By —1yv—1.
of volgens (15)

By +1y—1=(By+1+ 2 By_1) Buay—1+ (— 1) =1 2. B, 1)y —10

Substitueerende is dus:

Crat1 =28y, 1)y =1,

Hieruit volgt, dat

C dpwy
ZI0Y oo o o G T z—i = B,. };{:v voor elke w-waarde
o G . Ay
dus G (z) =lim — = 5, lim 13—“ =ER Rra (),
p=o Dy p=co Buy
§ 4. Eigenschap VIII. Wanneer een wortel — 2, van By,

tevens primitieve wortel is van een 5,, dan is N een veelvoud
van v en /7, is een factor van By

Bewijs: Reeds uit de opmerking bij eig. V blijkt, dat de
primitieve wortels van 7, = o uitsluitend en noodzakelijk wortels
zijn van die polynomen, wier index een veelvoud van v is, dus
N = p.v volgens de term ,uitsluitend” en ,elke” wortel van
5, is tevens wortel van By volgens de term ,noodzakelijk”.

Eigenschap IX. Twee polynomen 75, en 5, hebben geen
gemeenschappelijken factor (G.G.D = 1), indien de G.G. D (w.v)
gelijk is aan 1 of 2.

Bewijs: Zoo er een gemeenschappelijke factor is, zij dezc
x + x,, dan is — z, een wortel van 5, en van B,

Zij verder Fa het polynoom, waarvoor — x, primitieve wortel
is (» kleiner dan of gelijk aan de kleinste van de waarden z en v).
Uit de voorgaande eigenschap volgt dan, dat = p'A en ¥y =42
en tevens, dat 5, een gemeene deeler is van 5, en 7,

Men ziet: de G.G.D (n.v) = A, terwijl A = 3 is, want /5, moet
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minstens één factor bezitten. Dit nu is in strijd met het gegeven.
Opmerking verdient, dat het eenige even priemgetal 2, hier
heel natuurlijk, eene bijzondere plaats gaat innemen.

Eigenschap X. Is »— G.G.D (p.v), dan is Ba de G.G.D
van B, en B,

Bewijs: Volgens eig. V is B, zoowel een factor van B, als
van B5,, want p=uw r en v — 4/ . Deze factor zal nu G.G.D
zijn, zoo B, cn B, buiten B, geen factor ge_mecnschappelijk
hebben. Bestond deze factor nu wel, dan zou dit, volgens het
bewijs van eig. IX leiden tot een gemeenschappelijke deeler B,
met p ="M env= . 5!, Nu was gegeven, dat de G.G.D(u,v)=2;
dus is A/ een deeler van 2. Het feit echter, dat 2 een veelvoud
van A/ is, zegt, dat B, een factor is van B, m.a.w. de ver-
onderstelde nieuwe factor komt reeds in B, voor.

N.B. De wortels van elke B, zijn enkelvoudig.

Eigenschap XI: Indien v =2% . $,“ - % <+ pir#k, dan is
B.J:Bg““ . Bi”e“l . B},z-'éz ..... Bp;l.“k 5 P,.
als py » P2+ -+ PE de priemfactoren van ¥ voorstellen.

Bewijs: Aangezien v ecn veelvoud isvan 2%, p%, pa* -.. DKk
sullen de polynomen PBoxo , Bp a1 s By e oo Bz als factoren van
B, moeten optreden. Tevens is het onmogelijk, dat de enkel-
voudige wortels daarbij dubbel geteld zouden worden, daar de
indices der factoren relatief priem zijn.

Opmerking verdient, dat P, pniet uitsluitend” de primitieve
wortels van £, bevat, maar ook nog andere b.v. de primitieve

varn ngo ) %1 etc.
A it

§ 5. Eigenschap XII. Het aantal primitieve wortels van
B, = o0 voor p=p* 15

7 I W (p%) _—_-ﬁ_uj.g—-:l-—) (p is een priemgetal).

Bewijs: We onderscheiden twee gevallen:

Bgﬂt —t Bﬁ;“—l » Qg:{_
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Bi=~: is de grootste factor van By«, die een volledige B-functie
vormt. Zij bevat geen enkelen primitieven wortel van Sz, Deze
zijn alle bevat in (Oy«. Bovendien kan (O geen andere wortels
bevatten, daar deze dan tevens wortels van een 7, zouden zijn,
met A een deeler van 2% en < 2%, d.w.z A zou ook deeler van
2#=1 moeten zijn, of B, is factor van Fyz—1.

Letten we nu op den graad van bovenstaande vergelijking,

dan is:
& a—1 _
[#54]- [ wee
pz—1 P @ —1 m——
oh W (2%) = (S L) e s (L)
2 2
@ = 3.
2°—l(2—1) :
Voor =2, is W (2% = =-fT—, dus de formule is

ook juist voor z = 2.
B. p = 3, maar is een priemgetal.

Voor @ =1, zijn alle wortels primitief, dus

2

Zij nu « = 2, dan is

[))Pae — j_;j”z—-l -, ~.i"i
Evenals bij p = 2, bevat Oy« juist de primitieve wortels, dus

@ @ —1 __

“

Eigenschap XIII. Het aantal primitieve wortels van B, = o,
als v=7p% p4, is
22)) . o W(p . py* )Z”/’o"‘ LT (P — 1) (2 — 1)
Bewijs: Zij 1% #, =1, dan is
jJ’PO -'J'l‘nl == ])]])u“')—l-]il Qi’l‘-

O/ bevat de primitieve wortels van de Z-functies, die tot
2
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index hebben p % en g% py ="V. Alle andere wortels van B, zijn
) 1 J
reeds begrepen in By#—1.4 -

De vergelijking van den graad wordt nu:

[P hot] |2 VAT W pe) + W)

I'V(ﬂoa"-f’l) — %Po%'fjl — AT Lot =20 Co=t (Pu“‘“ln (eig. XI1I)

SR

Do (Poas 1) (py— 1).

(SR

We hebben toch, dat, als V en N van dezelfde pariteit zijn,

[E:l] = ﬁ”:l] VitV
2 2 o o=l

Is toch V=2n-+1, N/ = 2 ' + 1, dan is:

T N —

A I] [2 n:l 2. Evenzoo [1 : I] — 2/, dus
[N— I] [ J — 1] NT=V/\s

- — = n—n = L

Is N=12n en N' = 2 n/, dan is:

[V—-—I:l [zu—— ["v ~—I:|
et S | B e T Hiv e 20 0| ==l | = n'— 1, dus
[N— 1] N = 1] TN
=== -- e P — ;-—

Nu zijn py%p, en poo— 1 p, alleen dan niet van dezelfde pa-

dat dan:

riteit, als p,=2 en &, = I.
Hier is N=2n , N'=2n +1

T N — |
dus ﬁ_] —ﬂ[ ]—— n—1—n :?,Nﬁf\"’—-*lg.

In dit speciale geval moet dus 't tweede lid met '/, vermin-
derd worden. Dit kan men nu 't eenvoudigst zoo doen, door
voor den nu optredenden term 117(2) de formeele waarde te nemen,
d.i. W (2)= -f(zz- Y =£ inplaats van de juiste waarde (2) =o.

Het gegeven bewijs geldt nu in elk geval,
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I.2

Voorbeeld : W(6) =

—_ 1}

5]

de tweede en laatste wortel behoort bij B,.
/)’f'ud“-f"f — B?jf”ﬁl'?ﬁa i Qvib‘u.

O/ bevat de primitieve wortels van By« , Bz, en By ,., dus

xn 2 o — 1
[ -2 I] [}"n ;i?_!_ :|_|_ W)+ W(py . p,)+ W (pe. £,2)

of volgens 't voorgaande gedeelte:
S 120 =2 B Py 1) — W (p ) =W p. 1)
dus W(pye. 219) =22~ . 21 (0 — 1) (2 — 1.

Nemen we aan, dat de juistheid der stelling bewezen is, voor

@, = n, dan zal zij ook gelden voor z, = » 4 1, want

])’!den .plu +1 = [))],“du— 1 -1, ny)".

.}i‘

Nu bevat O, al de primitieve wortels der 2’s met indices

;
207 2 o™ <Py 5 D07 e P py" en pite pt L

ao 3 pem g — 1 L P— 2
[_f’“ Sy | L el T )+ B W (pip) +

+ IV (p. p,)
4 4 I
of ¥ (ﬁuxu'plm) T 2 %f’u%‘f)lm — 25! =2 T (P — 1)\

"
al

= ::) pllz\.f](plli I)(Pl ; I)p == o __p“mng] /’ el (’.f’ll )( I)'

=1

—

Lol
Il

Eigenschap XIV: Het aantal primitieve wortels van 2, = o,

als v=p %, p 8, Hm, . 55, is
22) W(y)= éﬂna"_l'f’lm Tl 2 (P — 1) (py— 1) s (pr— 1)

=;(I_;)(——} (= )=§¢m

0’

als @ (v) de functie van EULER aangeeft, mdlcntor genoemd.



20

Bewijs: Het bewijs is reeds geleverd voor £#=0 en I (eig.
XII en XIII).

Nemen wij nu #= 3 met ¢, =T en &, =1, dus v = p,* . P1 - Pa-

Nu is: B Ba=1a b OF
waarbij Oy de primitieve wor tels bevat van 55,z , Bpso g s B « ps
en Byfa. pi - psy QUS lettende op den graad:

[ff—f—““" A = m_~£] T [&_’j_ﬁ._gg ] + W(p=) + W(pe™ ) +
+ IV (])u% '1"}.) + ”7 (an" ‘Pl 'j"l)‘
of  W(petpr-p) ==t o — 1y — 12— 1

Nemen we nu aan, dat de formule geldt voor v =, . p\*'- 11
dan geldt zij ook voor ¥ = p,* S oy Ay
We hebben weer':

) >
])v = ])W,,“"—I ¥ ']’1“' +1, , Q‘_Po_

O, bevat uitsluitend de primitieve wortels van:

)
]’IJ ’ “) Py 2 ])P"dn .i': g voes j)IJﬂu s jj:‘+]

>
j)p"““ - }ul“1+l « Va

BP“:LD P, !gp‘]“u . P, Py [ .BPI:I-; o p“: Dy 10 ..
dus, lettende op den graad, 1
Zy a|+1. T “ﬂtl——] ey +1
-Zb_'L_g‘____ p”-_#_] ? A e e P _Pg i :| i W (f,"ccs)

2

..4

a:—i—'l

>, (g2 +2, W(po. p pa)+ W(pet2:)+ W (poo- P pa)e

n—-l J n=1
Berekening leert:
. I
Wip,s 01 i f’z) = f’nd"_l 4 (20— 1) (j)l — 1) (Pz — 1).
Tevens is dus nu:

”"’r(f’n“u',pl 'Piaz):—; puxﬂﬂ_l 'pz“:_] (ﬁu_l )(/)l = I) (ﬁl— I)'

Ten slotte nog het bewijs voor &= 3, # = 2 ¢ Rg = 2.

4 — 4 o 2 2
v=py™ . p\" P2
b} e ) " % o
b, = ])1,”a..—1 e va :

0O, bevat uitsluitend de primitieve factoren van:



B0 Bz Bpgte . g

-1 o

’ @
f)ﬁuuu .2 jUUa:" LpL.pa ])H‘JNO fl-

B 2

a ) a2
po®e . pa Bpu““ .m .paz ])pu““ TR P

)

dus de graadvergelijking wordt:

[ﬁu“" -Plzz'ff"az_' f:l — Iipu“u—l p‘:: _j,22_ I] + W (p™)

Q

b

\? W (pye.p.") + W o) + X W (g™ - 21" - 22)

n-—l n:l

+ W(pe™ 222 + W(pg™ - 21 -2.)) + W(p™ . £,* - p27).

Berekening leert nu:

W (g 02257 = 5 =" by -22 (b — 1) (21— 1) (22— 1).

700 voortredencerende, kan het bewijs geleverd worden voor
hoogere exponenten en meerdere factoren.

§ 6. Gaan we nu de overige niet-primitieve wortels van 7,
nader bestudeeren. Onder hen zullen er misschien voorkomen,
die uitsluitend tot één /-polynoom met kleineren index behooren.
Deze wortels kunnen we secundaire of wortels van de 2° orde
noemen.

In 't algemeen gaan we uit van de volgende

Definitie: Onder de ,orde” van een wortel van 5, =0
verstaat men het aantal A-functies met een index, kleiner dan of
hoogstens gelijk aan v, waarvoor bedoelde wortel ook wortel is.

Een primitieve wortel van £, =0 heeft dus een orde gelijk

aan ¢én.

Eigenschap XV. Is & een willekeurige deeler van v, dan
: : v
bezit B, =o0 I (d) wortels van een orde e
4
Bewijs: Elke wortel van 7, is tevens primitieve wortel voor
cen polynoom 75, terwijl dan & een deeler van v moet zijn (v
zelf medegerekend als deeler). Omgekeerd is elke primitieve
wortel van A; ook wortel van B, Beschouwen we nu alle pri-
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mitieve wortels van elke 5, (4 deeler van v), dan hebben we
juist alle wortels van #,, ieder éénmaal geteld, in formule

— - — I
23) e X W) =[Z—

declers v

waarbij natuurlijk 1/ (1) = I (2) = o genomen moct worden.
Verder is elke primitieve wortel van 5; tevens en uitsluitend

cen wortel van cen B-polynoom met index: & , 2d , 3d , ... of

v . v
—i,d:v, wanneer we ons bepalen tot indices < .
(

oy 3 - v
Hun aantal is 2 M.a.w. er zijn 1V (d) wortels van een orde 7
4 7

§ 7. Om een beter inzicht te verkrijgen in het onderling ver-
band der wortels der verschillende polynomen, zal ik hen in
teekening brengen').

Zooals reeds bekend is, liggen alle wortels op de negatieve
reéele as. Ter verduidelijking, teeken ik nu meerdere X-assen
onder elkaar, zé6danig, dat de correspondeerende punten elk
hunner in één loodlijn op hun gemecenschappelijke richting komen
te liggen. Dit sluit in zich, dat de eenheidsmaat in alle overeen-
komstige punten dezelfde is. Zonder hiermede in strijd te komen,
kan ik verder de eenheidsmaat laten afnemen met °t grooter
(absoluut genomen) worden van de abscis. Hierdoor wordt ver-
kregen, dat in de omgeving — i}, waar de meeste wortels liggen,
de X-assen op grootere schaal worden voorgesteld. Een en ander
is analoog met cene afbeelding na eene transformatie, bv.

Verder gebruik ik de volgende notatie: — x,* is de & wortcl
van /3,
Als eerste wordt de absoluut kleinste genomen, die nadert tot

. . — 1
— 1, en verder volgens de grootte %). Steeds is ,{-g[:f’ 5 :'

Op de bovenste of cerste X-as stip ik nu uitsluitend de ligging
1) Zie uitslaande plaat achteraan.
2) Hier en in 't vervolg wordt met de grootte steeds de absolute waarde bedoeld.
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van al de eerste wortels aan, op de tweede X-as uitsluitend den
tweeden wortel van elk polynoom etc., in ’t kort op de /4° X-as
wordt alleen de £° wortel van elk polynoom aangegeven, zoo
deze bestaat. Schuift men de assen weer ineen, dan is men tot
cene gewone afbeelding terug.

Op eenzelfde X-as kunnen nu geen twee wortels samenvallen,
daar, volgens eig. II, de %2 wortel van 7,, bij 't grooter worden
van v, maar bij constante %, afneemt'), in de teeckening dus
naar rechts schuift.

De evengroote wortels, op verschillende assen, liggen op dezelfde
loodlijn.

Verder is in de teekening het negatieve teeken weggelaten,
evenals de bovenindex (rangorde). Deze toch stemt overecen met
den rang van den regel (X-as), waarop de wortel is geplaatst.

Onmiddellijk blijkt, dat op den %™ regel, alle getallen grooter
dan 2 # als benedenindex juist in rangorde éénmaal voorkomen.
Van af B:;41 toch bezitten alle polynomen een £ wortel.

Eigenschap XVI: De wortelindices (aan den voet) van twee
gelijke wortels verhouden zich als de rangorde van die wortels,
in de bijbehoorende polynomen.

Bewijs: Gaan we uit van den p’* wortel van 4,. Eenvoudig-
heidshalve nemen we vooreerst aan, dat deze wortel een primitieve
voor /3, is, d. w.z. in de teekening is x,” het hoofd van een kolom.

Alle wortels, die gelijk zijn aan — 2,7 en dus in dezelfde kolom
voorkomen, zullen volgens de opmerking bij eig. V, uitsluitend
behooren tot polynomen met indices, die veelvouden van v zijn,
Kiezen we er ¢één uit, bv. met index zv, dan moet bewezen
worden, dat de rangorde van den gelijken wortel van 5, , gelijk
1S aan 2up.

Dit leidt tot het volgende vraagstuk:

Gegeven: B,(—4)=o0
Y
/)’,,v(—.l”y) = 0
e T
'tv i 'tuv o
Gevraagd: J-

1) Hier en in 't vervolg wordt mel de grootte steeds de absolute waarde bedoeld,
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Dit vraagstuk kan opgelost worden met behulp van het uit-
gebreide theorema van STURM. (Vergelijk bv. LOBATTO’s Algebra
pg. 210).

De te onderzoeken functie X is nu 5,,, terwijl voor de hulp-
functiess 1A et im0 Ve Far 1o Ve el sdefpol yiiomen
B T e e S R NS e et e O E AR RUn nentoe-
nomen worden.

Hiertoe moeten deze A-functies aan de volgende vier voor-
waarden voldoen:

1%, Twee opeenvolgende functies 5, en By 2 worden niet nul
voor eenzelfde waarde van zx.

De G.G.D van m en m + 2 is 1 of 2, dus 5, en 5, 13 hebben
geen gemeenschappelijken factor, volgens eig. IX. (Vergel. 4°).

2% Als voor een waarde van x de functie 75, nul wordt, ver-
krijgen de voorafgaande en de volgende functies B, 1o en 5,2
tegengestelde teekens.

Zij die waarde — 1. Volgens form. (7) is:

_B{g.b)“_-l_‘g_,_,y —— f)’lg.n_.}».[),a;_.(; -+ (— l)'g'—].,’l’ﬂ.b)?.f)’z.

i
Nemen we nu 3=2, ¥y =2, &=m — 2, dan is:
[’);J . ];m = ])-1 . j))m — —fg . [3‘};,;_—2 of voor ¥ = — ety
2 - A s
24) v - viv oo s Baye(— Yu)=—2u B —a(— an)

waaruit blijkt, dat 5, _» en 5,42 in teeken verschillen voor
X = — Xy

3%. De laatste functic 7, (voor nv oneven) of B, (voor ny
even) behoudt voor elke waarde van x hetzelfde tecken, want
1] i s F 8]
]’l = 1= l’z‘

4% Als —x,, een wortel van de vergelijking k) =ity
vormen de teekens van B,, en B,,_2 voor 1= —x,,— o eene
variatie, en voor r = — x,, 3 ecne permanentie, waarbij 3 cen

zeer kleine positieve grootheid voorstelt.
Analoog aan eig. IT kan, met behulp der formule

28) o« cv o Begs(@)=(1+422) Beyso(x)—2*Ba(4)

bewezen worden, dat de wortels van elke twee opeenvolgende
B-polynomen eener rij, hetzij met even, hetzij met oneven index,
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afwisselend gelegen zijn, en wel z66, dat de & met den grooteren
index den kleinsten (absoluut gemeten) wortel bezit.

c}y.ﬂh

+/

by

Uit de teckening blijkt ten duidelijkste, dat aan deze 4° voor-
waarde voldaan wordt bij elken wortel van 7,,.

De beschouwde reeks polynomen zijn dus Sturmsche functies,
waarmee we nu 't aantal wortels van /,, =0 gelegen tusschen
o en — a/ — & kunnen bepalen.

Voor x=o0 vertoont de rij nicts dan permanenties, want
/J’v (O) = 1.

Het verschil in aantal variaties bij de substituties r=— 2,7 —3
en x=0 is dus juist het aantal variaties in de rij na de sub-
stitie & = — a ¥ — 3,

Dit aantal kan nu als volgt bepaald worden.

Volgens form. (7) is:

];ig. ])’a +ALy = J’)'I-g fos f)‘a B - (— l)ﬁ""l aP ‘ /)‘7 - f)‘d.

Nemen we a=g¢gv , ¥y =2 , dan is:

/’)[3- j;-?v B 42 = /'),I':? + 2 . /’J-.rv-ﬁ-ﬁ '*" (_' I)ﬂml et 1;1,; ye

Nu is — 1" een wortel voor elke vergelijking /Z,, = 0, dus
By (—ar —3) neemt, met 3, af tot elke willekeurige kleine
waarde, zoodat bij benadering

byvipta /’_)ﬁ+ 2
Byvep B
Moge nu j}a@{ + 1 of — 1 beteckenen, naarmate a positief of

negatief is, dan is
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Byyrpss | Bayal
e

qv -+ ]jﬁ ] (B #O .
d. w. z. vertoonen twee polynomen 5 en B s ccn variatie voor
cen benaderde r-waarde, die een wortel is van de vergelijking
B,—o, dan is dit ook het geval met de functies By, +p €n
Bryyptse.

Een tweede belangrijke betrekking, wat het teeken betreft,
vindt men als volgt:

Bg.Buspiy=DBptyBavet(— 1)f=taf. B,. By

voor - a=v—y , B=19;
2 B Py B A e P T e s B
dus voor t—=—x, +3d<L0, is
%1}7'31'-%7%:—%1’)‘!—7-87%
of
27 FoR ot VB, Lo l=—18, il S [r=— & 9).

In het volgende is het argument van de A-functies steeds
—— T 0.

We kunnen nu de volgende gevallen onderscheiden:
A. v is even, gelijk aan 2 p.

Men kan de reecks der A-functies B, , B, ... Ba, als volgt in
n-groepen vereenigen.

Eenvoudigheidshalve schrijf ik alleen den index:

o , 2 ; A 270 2q+2,. ., 20—2,21
2u,2p+2,20+4,...,28+2g9,28+29+2,..-, 40 —2,4(
4, A+ 2, 4044, 40+2g,40+29+2,...,6p—2,0u

co 2P+ 2, 2P0 42942, ..

2(n—1)py.n- e, 20 —2,20 4.

Gemakkelijk is nu aan te toonen, dat de variaties (en dus ook
de permanenties) kolomsgewijze gerangschikt zijn, d.w.z. vertoonen
By, en By, .y eene variatie, dan is dit ook 't geval met elk paar

p J
Bipu+2q €0 Bapurag+e.
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Hiertoe substitucere men in (26)

_zﬁ_gﬁ-f—ﬂl
lByyip ) By )

| Byvtptel

slechts g =72 en 8= 2¢, dan komt:

{ Boyutagral  (Baggal|

. | S

j Baputeg | ' By -‘\

Volledigheidshalve is de index o er bij geplaatst, waarbij we
dan 75, 5, als een permanentie hebben te beschouwen, opdat
het aantal te berekenen variaties hetzelfde blijve. Dit is trouwens
in overeenstemming met het feit, dat de geheele eerste kolom
met de tweede slechts permanenties vertoont.

Volgens de redenecering, gevolgd onder 4° is

(Brgu(=%—3) | __ |
U B (— 2 —3) ) '

en volgens 2"

is: A GH S SRR
|

| B2t |

dus, deelende is: | B
By

=4 I.
qp
Het tellen van het aantal variatics in de rij 5, , By, ... B,
voor v == 2 ¢ is hiermee teruggebracht tot 't tellen van dit aantal
tusschen de functies:
Bov R ety e, 1 e

Het totale aantal variaties is dan » maal zoo groot.
Bepalen we nu 't aantal variaties in de eerste groep:

{Bap i « 1 Bv—al ... .18t « 1844 . ) By
s . J‘r)’y l 3 '
Al dadelijk is 5 .= — 1, want van B, liggen er p wortels
L LDy—g
rechts van — 1 —3 en slechts p—1 van A,_s, in verband

met | B, (0){ =+ 1=1{8,-2(0){.

Deze cerste variatic heeft ons tevens gebracht op den p— 1"
regel van de figuur, want de p — 1° wortel van 7,_. kwam ter
sprake, en met deze rangorde gaan we verder. Ter linkerzijde

= 1Y s
van den wortel — 27", ligt de p — 1° wortel van 5,_,, hetzij
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rechts van de lijn — 2 — 3, hetzij links. In beide gevallen ligt
echter de p° wortel van B,_4 links van — xp —>», want clke
k¢ wortel wordt grooter (absoluut gemeten) als de index van €
polynoom Kkleiner wordt.

pa=1 : v
Nemen we nu aan, dat — 2 & rechts van — x,# — 8 ligt, dan

liggen er, tusschen O en — xp—3, p—1 wortels van By=¢;
i]))v—-fll Bv—d-(o)
evenals van B,_2, dus f‘—~‘= 1, want ook ———==~11.
] y—2 !By—ﬂ, + ] BV_Q(O) +

\B — 6 n—1
Zoo zal eveneens | ]," 2Ol =
| Oy —4

lijn — x,» — o gelegen is.

rechts van de

Is nu 7,_2s de laatste B-functie met even index, waarvan de
(p — 1)° wortel rechts van de lijn — x,? — 3 ligt, dan zullen 5, — 25
en B,_s,—3 de tweede variatie vertoonen.

Het aantal wortels van By a5 tusschen O en — x — 3 is nog
p — 1, maar dat van B,_q. slechts p — 2, maar ook niet minder.
Dit laatste volgt uit 't feit, dat de p —2° wortel van B, _2;—2
rechts van den p— 17 wortel van 5, _2, ligt, dus a fortiori van
de lijn — 27 — 9, dus

(Buyosil=3 | _ | Bumsims =)
‘]’va—ﬂs(o ; ]))52'#—25-—2(0) s-
Verder is weer 5oy —2s (0){ = %B_I,._:,,_J(O)%
of
| Boy—2s—2 ; T
JI}EJ—Q;R S :

Vanzelf zijn we met deze nieuwe variatie cen regel hooger
gekomen, want de p — > wortel kwam ter sprake. Ligt ook de
p—2° wortel van gy _25—4¢ NOZ rechts van — yp—23, dan is
d By 25— 4| =} Bay—2s

V. Zi) Buyy—gs—21 de laatste functie, waar-
voor de p — 2¢ wortel ter rechterzijde gelegen is, dan is
o =1

) ) |
;[):?'J—';E.v-—i’t-—ﬂ{ — %]:';_‘v—;‘s—ff(

terwijl de p — 3° wortel van Boy—as—21—3 rechts van — 1,/ — 3
ligt. Tevens zijn we genaderd tot de wortels met een rangorde
p— 3, dic alle gelegen zijn op de naastvolgende A-as.
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Het is duidelijk, dat op elken regel één variatie komt, dit zijn
totaal p variaties, zoodat het totale aantal wvariaties in de rij
B,.B,....B,, np bedraagt.

De waarde van y in dit geval is dus #up.

N.B. In de figuur is deze redenecering gemakkelijk te volgen,
dopratesnemen;sE=—"128 5 H— 1131

Opmerking: Het bewijs blijft gelden, ook al ligt de scheidings-

lijin — x,” — 9 links van de vertikaal — x,, mits men slechts in
plaats van de uitdrukking ,links van de lijn — a7 — 3" leze
,nhiet rechts van de lijn — 2,72 —3".

B. v is oneven, gelijk aan 2 i
» €] e
1% n is even.
We kunnen nu de # functies als volgt groepeeren:

0, 2,,.24—2 y2 e ey dfly2(2001-1)
2(::;,:,5-5- 1),2(2p+1)+2..2(2p+1)+2z-2,.,4(24+1)-2,4(2p 1)

4(zp+1),4(2p+1)+2,.. Bt

I O LR R T T T

* & s = 8 s s = o oa L L |

(r—2)(2p+4+1),.... « oy n(2pt1)

Evenals onder A, blijken de variaties kolomsgewijze gerang-
schikt te zijn, de eerste en tweede kolom vertoonen niets dan
permanenties, de laatste en voorlaatste niets dan variaties. We

n " g
hebben dus — groepen, met elk een aantal variaties, dat overeen-

komt met dat van de rij:
0,2,4,«,2%,[20+1(0)],242,..4p—2,4p,2(2r+1)(0).

De index 2z -} 1 is er bij geplaatst, om 't midden van de rij
aan te geven. De nul beteckent, dat de bijbehoorende # functie
voor — 1/ — § nagenoeg nul wordt.

Volgens form. (27) zijn nu de teekens in deze rij symmetrisch
tegengesteld, of 'taantal variaties in de eerste helft is gelijk aan
dat in de tweede helft.
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Het totale aantal variaties is dus 2 maal zoo groot als dat in
de rij: ])’gp+2 ’ Bg,_n, B,q,#_-g, aleie fig, Bg.

Ook hier vindt men p variaties, dus y =1np.
2", n is oneven.

Nu is de groepeering als volgt:

1 3,2p—1,20T1, 2,:4—{—3,..,2(2,&«:4—1)*-1 ,2(2@ 1)+ 1
2(2(.a+1)+1,2(z,u,+1)+3,.. ,3(2r+1), ..,4(2;44—1)—-—1,4(2@—%1)‘{—1.
4(2;&+1)+1,4(2@+1)+3,.. ,5(2+1), ..,6(2(1.—{41)»—1,6(2,5&—{—1)-{-[.
(n—1)(2p—+1) + Iyee--eeicc (2 @+ 1)

Ook hier zijn de variaties kolomsgewijze gerangschikt cn is
clke volledige regel symmetrisch tegengesteld in teeken. Verder
is { Bougr =1} Bap+s |, want Bayu 1 €n B3, +3 hebben hetzelfde
aantal wortels rechts van de lijn — x# — o liggen. :

Men komt dus tot 2 groepen, dic alle hetzelfde aantal variaties
bezitten als de rij:

i ratin Lt 00 ST By . b

Dit aantal is weer g, dus ook hier is y =u 2.

Opmerking. Het bewijs zou eenvoudiger geweest zijn, indien
de polynomen niet in groepen waren gerangschikt. Hiermee zou
echter de groote symmetrie, die volgens het gegeven bewijs
bestaat, niet te voorschijn zijn getreden.

Gemakkelijk kan de gemaakte beperking, n.m.l dat ¢één der
twee gelijke wortels het hoofd van cen kolom is, opgeheven
worden.

Mogen de te beschouwen wortels zijn:

Y z
—— ent — 4,
nv n'v

waarbij y en z de onbekende rangorde aangeven.
Resumeerende, moct dan bewezen worden, dat

gy a=ny: n' v
als —,, =%

‘ny 'y

Bewijs: Zij —«, de wortel, die het hoofd vormt van de
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kolom, waarin beide wortels voorkomen. Volgens een reeds meer-
malen gebruikte eigenschap is dan #v en z’v een veelvoud van
©, of daar we » en ' als relatief priem mogen beschouwen, is
vy een veelvoud van .

Zij = (#=="TN0iS28OfE3 TN

Volgens de zooeven bewezen stelling, hebben we dan de even-
redigheid :
L ruv=yp.:y
f ¢ i
O f—=Nnp. —=n.P.N
J L) 7/
Evencens:
e n V=N
of S==mis ey
dus g ie— Al =1 VN &V S Tt e Do

Opmerking: Steeds is @ > 2.

Definitie: Onder den rang van een kolom verstaat men de
rangorde van den regel, waarop het hoofd van de kolom voor-
komt, d. w. z. de rangorde van dien wortel in het bijbehoorend
polynoom.

Onmiddellijk volgt uit de voorgaande eigenschap:

Eigenschap XVII. De rangorde van de kolom van een
wortel van den p™ regel is steeds een deeler van 2 (1 en p mede-
gerekend).

Eigenschap XVIII. Een primitieve wortel is steeds het
hoofd van een kolom. De rangorde van wortel en kolom is
dezelfde.

§ 8. De ontbinding in factoren.

Beginnen we met de polynomen /2s,.
Volgens form. (15) is

f,;:_», — ])’,3 /’)v 10y} + x /)),,_1 :

Volgens (5) is de eerste factor

B, =1 + (y —I 2\) x - (V : 3) x2 | (y iy 4) 4.,

3
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Voor den tweeden factor vindt men

e e

3).1:3—}—.
3
By — 1--‘v'—l-(vj3)2“3%-(v74).r“+...

28) B.,_H-i—;rb,,]_.l—f-# Z-= ( I3)ﬁ:”+i(w;4)x-”'+z(y;5).1:“-{-...

3 rdad[:\t

Gaan we nu over tot het algemeenc geval:
2
By= B, .= B:.P.
dan 1s:

o (T (T Y (T

3

I

“‘i‘kw_o) ((J- 3)1’ +( 44)'1’3+";Jil+“1"'+“2"’24"J‘”’ﬁ"'p‘.\'

Na vermenigvuldiging ¢n gelijkstelling der coéff. van gelijk-
namige machten van 1, volgen de betrekkingen:

ri=—pm ot () =)
=g ueern ()4 (57 =050)
A P G E G A G G
“=i\y)
a,=g(“46) etc

Deze formules zijn zeker juist, zoolang de coéficient @, =1
nog bij de berekening gebruikt wordt.
Dit houdt echter op, zoodra de macht van x gelijk aan

L —
[L,_k-]_i i wordt. Dank zij den vorm der coc¢fficienten kunnen

we B, formeel met de volgende termen verlengen:
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= [*w]*s e
[paﬁl

N
w—1/° p

zoodat we de coéfficienten tot en met @,_, kunnen berekenen:

2

a=a=N—p

30) 3 _a(a.—p-—-— I)

a ___(a——pa)
a,z.—l_#’ml Iu_z

Deze formules zijn toereikend in ’t geval NV = 2 .

Ten einde de volgende coéfficienten @,, @, y1,.. te bepalen,
kunnen we A, met nog meerdere termen verlengen, van over-
eenkomstigen bouw. Deze termen bezitten niet meer een nulfactor,
a—p—1

) in @, een tweede
pe— 1

oy LA
waardoor behalve de voortzetting —-(
73

correctie-term optreedt.
Berekening leert :

oy A CSSEARNY
G @ ( m— I )_'( 1
e Ul T
-1 f.\'.'{“l 72 ! I
_a cz-—pbms) AT 3) o T
5 amﬁwrz( SRS ) E 1)“2( als b=a—2p=N—3
a a—‘u—4) 5’(5 4
a e +(—I )+ —
wa= (T8 ) o2 (0F)
=& (8—2p) . 0 (6=
fanl 2#-“1(2;4“2 =4 ,u+[(,u~—2)
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Vervolgens komt er:

gl s () "(2—2[4—1) 1. b (b-p-T e
= ( 2p—1 ,+( 7 @ ( pw—1 )+( L
. a ’a—z,u.—z) = b (b-e-2\,; b
) L 2{4+1( 2 +H I)F(J.—H (z, )+( ) I
32
e a-21-3\, 5 b (b-e-3 21_6((‘—3)
a””+‘—2pc+2< 2u-41 )T( 1) (4&—{-2\ w1 )+ : 2T
AN Gttt AT L0 (bmpma) L pel(CT4
ag""‘g_zp,-ﬂ( 2p+2 )H 1) fL+3( ©w+2 )H ) #3(\ 2 )
etc. etc,,
terwijl a=N—t
a2 N
e o e N D
d—=c—2p=N—7F
etc.
Voorbeelden:
Blz.—1+10x+361 + 8623+ 3520 + VEae—
1 =10 y=0. Ni=12, a=0.
\ | 6 6 6— 6 (6—4) (6—
B:z=%l+4x+3x2“ ‘I A= Cim Pty -l'—-()"ﬂ"(——j) ,1-‘3{'
1 2 .
=%I-i—4.t—|—3:n,‘{14—61’—1‘-91“‘)‘%—2.‘1‘3{.
20 By 4 © =3 y=4. a=—q. [)_—:3,
9.,99=3 > [9(9—4)_{9%) ] ,
By, = il-{-*t 21-{— 1,-1—2 } A= P a4
+[9 (9—35) (9- 9—6)(9—» 3_]_1_4%:
; 3 1
(1 +x)(r+ 91,-1 27 2 + 29 & S 6 24)
30  Bae =12y y = 6. g ="10. b= 6. =2
B r_[.%..-‘{,%() 8 ‘2_’_?__7__91‘3_}_.7‘_6.5_.4:’1’44-_6;_5-4_.3'2’1—5
) 1.2.3.4 TR TS

i e 4 Her s . (10 (10—4) (10—5) 6) .
_1'1+[r+(\2 I +1)r (? T 41)"'+

+ (_12 (10—s3) (10—0) (10—7) o 9
4 I . 2 - 3 2
* (I_o ([0_—6) (10_7) (IO-—S) (10—9—) -+ é -————(6—_4) (Q'_"j) .2_) 3 |
5 [ . 2 . 3 . 4_ 3 B 2 - .
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§ 9. De behandelde polynomen staan in nauw verband met
de transcendente functies sinz O en cos n Q.
Bekend is:

: : ‘n— 2
sinn®=snd iz”"l cos"—1 o — ( : ) (2 COS Cp}u—a 13

-4 (‘n—: 3) (2cos@)*—% — (” ; 4) (2cos@)y'—T+ ... :

L

of

SR oo i ) = s
i (nzs)mﬂ* (”_3.4)(1—4:(%3'%—...
= B, (-—- ﬁ%&?ﬁf) =Rpa()Emctri=——— IEB[%?;D

. I
Doorloopt 2 't wortel-interval -+-4—t0t — w, dan doorloopt @

b.v. de waarden van o tot 7/,.
Met behulp van deze transcendente functies zijn sommige
eigenschappen zeer eenvoudig te bewijzen.
Nemen we, als voorbeeld eigenschap XVI:
sin 7z @

De wortels van :
2"—1lsin @ cos*—' Q

zijn dezelfde als die van

- P " " : kE

sinn®. Ze zin: nQ = Lx, £ willekeurig geheel, dus @ = — 7.
g8 ’ Y 2

We hadden aangenomen, dat o <@ < 7/,, dus

/ I—I
$3.:—'}T met /{ I, 2, RIREE =
n

LIS

De wortels van 't polynoom 7, (x) zijn dan

1 I
—xh met rftem— =
4c0s* Py 4 cos? -7
't getal £ geeft dus de rangorde aan.

Zij nu van een ander polynoom 7B, de #'¢ wortel gelijk aan
— 2,5, daniis
-rn‘. B -ru'k

2

dus ook Pt == Dy



k y 4
of — =%
n n
of kel =n:n h.t.b.w

Evenzoo is

n . n(n—
cosnd =2""'cos"P— = 2r—3cos"—* Q@ + = ( 3) 2n—5 cos"~* Q@
I

7

— E(” - 4) 2¢—7cos*=%0 + ﬁ(" = 5) as=39cost= Qi

B2, 4\ 3
) of i?f‘i‘?,,_.l_l_f‘_ andlT L +f(”—3)__;_#
34 2"—lcos"® 1 (—2%cos?®) 2\ 1 (— 2% cos*@)?

n(n—4 I
'3( 2 )(—22c05"cp)3+

_ 2.5 T e e
T LLES) = 2¥cosi
volgens formule (28).

§ 1o. De polynomen laten zich ook schrijven, als een bij-
zonder geval van de hypergeometrische reeks.

Maken wij gebruik van de gewone notatie, dan is

£5+w-(m+1)8-(6+r)

' o
F L = 24...
o, 8, 7, 2 I+I.',y I. 2, % (rd41) i
oo
35) - - =R
s 8]
=E""'
\ 0
zijnde s (i) (e — 1) B (G S S )
E | N o Y r. y(+1...(0+7r—1)
en = A, 2.

Onmiddellijk blijkt, dat

6) 36a( (147 (y+7) A1 =(x+7) (B + 7) 4. of ook
: 366 (l+r}(7—]—r)1f,+1=(w+r)(@+r)u,.z.



Nu definieeren wij:

o0
37) ST = % Crxr
o0
=Py
\ 0
zijnde C—(v_r—l)
] = >
en u, = C, 2"
terwijl
38a | (14#)(v—r—1)C p1=(—2r—1)(v—27r—2)C, of ook
380 (1-{—r)(v—r——-:)u'r+1=(u-——2r~—1)(v—zr——2) u;,ﬂ:.

Beide reeksen (35) en (37) moeten nu identick zijn.

Reeds is #, = #, =1, zoodat het voldoende is 2, 3, ¥ en &
200 te kiezen, dat (364) overgaat in (334).

Deze laatste formule mag ook geschreven worden:

' y—I —2 ,
([-'—7') ——(vr-“l)"""ﬂr_l_l=‘—-«---:2--—+" —ane 5 +,'z”_r(_.4x)
30) dus moet y=1—v , e L ; ;3=_E_T_E en
2 2
7= —4x zijn.

Hieruit volgt

I—v 2—vV

’
2

40)....1?,(.1:):[*‘, ,1—:»,—-—49:*.
De oneindig voortloopende reeks B, (x) bestaat uit het poly-
noom 2B, (x), eene lacune en cen reeks:

[N —_2 ] :
¥ v 1 42
4[)..(v),t +(v+l):r +(p 2),t+ 4 ... ad inf.

I—V 2—V
) 2 ,I—v,-—-—4x

evenals de functie #
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Het polynoom B, (x) is dus identiek met de eerste v termen van
(I—v 2—¥ |

l 2 F ,I—V:ﬁ*drf;-

Beschouwen we nog de reeks

F

() (e (e
A1) = (—a) . };(“—vp_i_; I)(— 1) . .
Ook deze nieuwe reeks f&; fp, als Z,= (_VP‘F_P I) (— 1) ar

is ccne hypergeometrische, want 7, =1, terwijl

(vp+1)(—p—1) tp1=(—v—2p—1)(—v—2p—2)x¢ of

v 1 v+ 2
12) (120 +14+2) =22 42) (22 42) (— 404
Bij vergelijking met (364) moet
7=u—irl,m:v-gl,B:y-i30113=-—4,1:zijn,
dus
2 y+1 v42
Etsz = ) = 1‘”+IJ‘—'4127
g 2
zoodat
- ¥ I 2 '
43) B@)=DBue)+(—ay F|"T=, 212 upr, g
1—y 2—v il
—-1! 1 ,[-——v,—4,1l.

Bekend is, dat de differentiaalvergelijking voor /7 } &, 3, , x| is:
44a) . x(1—2) +ly—(@+ B+ 1)ty —afy=0
met de beide particuliere oplossingen:

448) . . . 3y =Fla, B, ¥, x|
Y= . Fla41—y,B+1—7,2—y, 2

Na de substitutie # | —4 2 vindt men, dat de differentiaalvergel.:

450) - 2 (1442 )" +lry +a@+L+1) 2y +4afy=o0
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tot particuliere oplossingen heeft:

J’1=F%“: B: "/)_‘4-1‘€
450) k :
.Jfﬂ.:(_—"l"r) _VF*"‘"i‘I‘—"?’:B-I-I—?’:2—?’:—4-“f-
Nemen we nu z=— - jy, B——Z_J, ¥ =1—v (Vergel (39)),
dan zijn
[—v 2—v |
J’.——F= S L= — 4
460) . |
e T v+ 2 1
A R e e T =l

twee particuliere oplossingen van

46) x (14 42) " — ly—1+2(2v—3) 2} y/ + (s — 1) () —2) y =o.
Volgens (43) is B, (¥) =y, — »,, dus ook het polynoom 2B, (¥)

is een particuliere oplossing van de differentiaalvergelijking (46a).

§ 11. Ten slotte kunnen we nog een kettingbreuk beschou-
wen, die door contractie ontstaat uit

r | T iEss D | o e Ly | 4
47) 11.m.1.|3+1—~|s+2—|3+° EE 7|~ ]/ +4/,.

De naderingsbreuken van deze kettingbreuk zijn identiek met
die van even rangorde bij (2).
(Voor de contractieformule vergelijke men 2 p. 201 (7)).
Gemakkelijk bewijst men b.v. analoog als bij formule (5), dat
de naderingstellers K, (z) en noemers L, (z) gelijk zijn aan:

1
5 3) NS % =5"132*(;)
en

486) L,(5)=3" _{_(’21;— I)S"“ +(zv;2)3"‘2+--=3” ’:’.v-{—]([)-

I b

480) K, (5) =7+ ( 2" 2)3*“"4 (

Bepalen we de differentiaalvergelijking voor

Ly (‘:‘) Bk Bgy.|_1 (;}:)
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Volgens (46a) is:
d* By, |
.1:(1-;—4:;:)—%@— 2v42(4v—3)x

4+2v(2yv—1) By, +1(x)=0.

dBﬂv_;___}_(x)
FeE T

. : . i 1
Kiest men tot nieuwe onafhankelijk veranderlijke =k dan

wordt de differentiaalvergelijking :

PE+4)y +l2@+1)22+2@4v+1)zty +2v(2v—1)y=0
met y, = Bay 11 (é—) tot particuliere oplossing.
Substitueert men nog:
Bs»+1(z-l-) ==Vl (2)
B;MG—):z—vL;(z)—yg—v~1L,, (2)

" I o ' :
Bﬂv+1(§) — =L (5)—2vs=" " L,(a) +v v+ 1) L () 5=,

dan krijgt men:
49) + « + . - sa+4)y' +2@E+1)y —v+1)y=0
met y, = L, (2) tot particuliere oplossing.

Ten einde overeenstemming te verkrijgen met de differentiaal-
vergelijking (44@) van de hypergeometrische reeks, stellen wij
nog z=—4x. L,(—4x) is dan een oplossing van

iy 1S
49) . . - 2 (1—2)y' +S(1—42)y' +v+ 1)y =0

Bij vergelijking met (44a) vindt men, dat
1

7=57 o= —1V B=V+l;
zoodat ,
L,,(——4x)=F}—u, v+ 1, %, x%
I Z |
50) of L,(~)=F{_-u, v, s _Zt'

De tweede particuliere oplossing van (49') is volgens (44°):

JJIZV}.F‘[_ZZV, 3-}—22?’ %, X
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en dus voor (49)
y2=l/—z F;I—zv, 3+2v, sE=a)
4 2 2 2y

Een eigenaardig resultaat vindt men, als men een tweede

particuliere oplossing van:
40| 2z +4)y" +2@+1)y —vp+1)y=o0
als volgt bepaalt.

Stel y=uL,+w, u en w zijn nog te bepalen functies van z,
dan is Y =uL +u'L,+w

y'=ulL, +2u L, +u"L,+w".

Na substitutie komt er een differentiaalvergelijking, die ver-
eenvoudigd door de opmerking, dat L, eene oplossing van (49)
is, wordt:

28(+a)w' Ly+Lz(z+4)u"+2(s+ 1)’}
+zt+4)w" +2@+1)w —yv(v+1)w=o0.
Kiezen we nu z z00, dat de coefficient van L, nul wordt:
ge+4)u'+2(@E+1)4' =0

Ao 2/ (S ) R I T R 3 B

W z(z+44) 2z 28+4+4

lg =—~lgz—=lg(z4+4)+1gC
9 L

Verder wordt
I 1 z I
ol SESIN Sl T 1A
i .[V~'f(f=+4)3 2 3+4 2

bij geschikte keuze van de integraticconstante.
De differentiaalvergelijking wordt nu:

szt g)w' +2@E@E+1)w —v+ I)zu+zl/—~i4L;=0.

-
~

Stelt men w = —f,
24+ 4

dan moect
s(e+4)t'+2(@+3)¢ —v(+1)t+2L,=0.



42

Deze vergelijking heeft tot particuliere oplossing 7, = K,, zoo-
als men gemakkelijk verifieert met behulp van de formules (48).

Wij mogen dus voor w nemen ::3_—& K, (2).

Als tweede particuliere oplossing van (49) heeft men nu:

yo=ul,(z)+w

Het is merkwaardig, dat in deze particuliere oplossing onver-

wachts de waarde, ——%-{-%1/—1 + 4/, van de kettingbreuk (47)

optreedt, die tot uitgangspunt diende. Dit is een eigenschap,
die ook in andere gevallen geldig is, b.v. bij de polynomen van
Legendre. Deze zijn de naderingsnoemers van de kettingbreuk:

i L8

841 dx: 2l 2 e 3T 4= SH
52)1g3_I: 3+’“:|—'5H§3—5_ |7~ o (P.p.351.(16))

1 2 |3 . 14 5

Noemen we de naderingstellers en noemers weer K, (z) en
L, (z) (= bolfunctie), dan is de differentiaalvergelijking voor L, (2):
S (1 — )y —2z2y 4nm+1)y=0
met de tweede particuliere oplossing:
z+1 K, () |

i gl
E o oo o J’z—gl"’(”)‘,]gs—l Lv('g)y-

De vraag, bij welke kettingbreuken van STIELTJES deze eigen-
schap geldt, heb ik echter nog niet geheel kunnen beantwoorden.



HOOFDSTUK II.

§ I. In deze paragraaf wil ik in 't kort eenige formules
afleiden.

Tot uitgangspunt dient een integraal van STIELTJES, een inte-
graal, die de volgende algemeene gedaante heeft:

+ o0
' = e dy (x)
54) """"" F(H)-—fﬂ—}—.‘l"

—o

waarbij ¢ (¥) een niet afnemende functie voorstelt, zoodanig, dat
de integralen

+ o0

o= [ (—a)f—1dy(x) (2=11, 75 Zhooe o )

— 0

alle bestaan').
Bekend is, dat omgekeerd ¢ (x) tot op eene constante na be-

paald is door 7 (2), n.m.L

W E—0)+ b E+ o) —L¥(e—0)+a+o)|—

1 I
s 2

55) . .

—a—1iy
: I
lim 9 (;—z I (3) at'z) (Vergel. P. pg. 372).
= -} () ¢

%= - STy

Onder de geassocieerde kettingbreuk van F(z) verstaat men

cen kettingbreuk van de gedaante:

b
1) 't Geval, dat één of beide integraalgrenzen eindig ujn,f “p—m, is hierin be-

. 5«

grepen, doordat dan  (x) =¥ (4) voor x> 4 en P (x) = ¢ (a) voor x> a is,
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ky '__ ky \_ ky | % I__
|z +4 g +4  |zt4 lg + 14 ’

die in haar convergentie-gebied gelijk is aan F(2).

Zij is steeds bestaanbaar en altijd is & > 0.
Is  (x) = ¢ (0) voor alle negatieve z-waarden, dan bestaat ook
de correspondeerende kettingbreuk:

TRE el
5 ey Gzt T B

+ ..., waarbij &,>0,
4

dit is dus een kettingbreuk van STIELTJES.

De geassocicerde kettingbreuk ontstaat door contractie uit de
correspondeerende, indien deze bestaat.

Het zijn de naderingsnoemers van de geassocieerde ketting-
breuk, waarmee we ons in dit hoofdstuk zullen bezighouden.
Zij worden voorgesteld door de notatie L, (2), terwijl de tellers
door K, (2) zullen worden aangegeven.

Volgens de algemeene theorie is:

58) I{A-}-l (Z) . LA (.8') — I(}L (3) L;,..[.]L (Z) = kl kz . en t{,';, 41+ (P. P- 378).

Deelt men door Ly (2) . L +1(2), en ontwikkelt vervolgens naar
afdalende machten van z, zoo is:

Kry1 Ki A Aol N
———— = etC-,
L +1 L, Baa+1 5
want K, is van den graad A — I, L, van den graad 2.
K;._ +1 (3) I{J\, (3)

De f | 8/) leert, dat
e formule (58°) leert, da ) en T

gens afdalende machten van z, met elkaar overeenstemmen tot

, ontwikkeld vol-

aan de macht —I‘ﬁ Ontwikkelt men de functie £ () in een

ol A
2

K,
reeks, zoo zal deze met T overeenstemmen tot aan de macht
A

1 ]{)‘_‘..1 I . ; .
e en dus met T tot aan —5o Uit (58’) volgt nu:

+ o0
di,[’(.f) ]{,\ Mz..ka +1_+'
z+x L FIA -t -
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of na vermenigvuldiging met L, (z) =2* - ..

+ 00
L, (2) I I rndd
A( S oY (x) — ()='—smﬁl+
—0
+ 00
Men mag, wegens het bestaan van de integralen ¢; :f(—— 2)-1dy (z),
—
ook schrijven:
+ o + o0
LA (z)——L;,(—-—x) i o L;.,( ) JL A &)‘4.1
A= Kae)+ | TP dp =Tty
— 00 - oo
Hieruit volgen de formules:
+ o
L (z
s9) - . | =D =2y () = &, )
— 0
+ 00
60) . . J(—*)fLa(—a)dy(¥x)=0 voor £=o0,1,...,A — L.
— 0

+ 00
oI RS ](—-—:L‘)“ Ly(—x)d(x)= A byooilorypn.

— 0o
of ook

b2)Fes ]zf(—:r)LA(—-—x)d\p(.r)_——_-.o voor u # A.

— Q0

+ oo
63} [Li (—x)dY(x)= by by...loasr.
— o0
Dank zij deze beide laatste eigenschappen leenen deze functies
zich bijzonder tot de ontwikkeling eener reéele functie?).
Reeds HEINE ?) stelde zich het volgende
Minimumprobleem: Is £(x) een continue, reéele functie,
¥ (¥) een niet afnemende functic met oneindig vele punten,

1) De ontwikkeling eener analytische functie is behandeld door PINCHERLE. Atti
Acc. dei Lincei, IV, 5, 1889; Annali di Matematica 1884; Acta Mathematica 16.
2) HeNe. E. Handbuch der Kugelfunktionen. 2 Aufl. 1878—1881,
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waarin ¥ (#) toeneemt, zoo wordt cen polynoom P, (») van ten
hoogste n graad gevraagd, waarvoor de integraal

= Jg;’o(.t) — P,(¥){*d ¥ (¥) minimum is.

De oplossing is:

uﬂ Lv o
G4 N P () P—(— i f(?!) L, (— u)dy (u)
R o actd e

waarin L, de »° naderingsnoemer voorstelt van de kettingbreuk
+ 00

dy (x)

behoorende bij T—FT eene formule, die door O. BLUMENTHAL )

— o0

als volgt, herleid is.

+ o0
: N (=) = 7:))
Allereerst is P, (x) = L 1) d D (u
©= (2 aan ) MW
— oo

Vo]gens de recurrente betrekking is:
Lo (—2)=(—x+b1)Ls (—ﬂ’)—ffwlf«v—l("—«‘-’)l
L,_H(—ﬂ) (— w1, ) Ly (—2)— k1 Ly (— #)
zijnde L, (z)=1 en L_1(z)=0.

(20

Vermenigvuldigt men de eerste formule met L,(—u), de tweede
met L, (— x), en trekt ze van elkaar af, zoo komt:

Lyin (=) Ly (— )= Ly (— ) Ly (—2) =

= (s—x) L,(—2) Ly(—u)+ k1 Lo (— 2) Ly 1 (—u)— Ly(—u) L, 1 (— )]

Na deeling door %, &, ...k 41 cn sommatie van ¥ =0 tot #,
verkrijgt men:

Lu +1 (_"' 1‘) Ln ('_ ) — Ln -+ 1 (‘—' H) L“ (——" ,1')

e - — e —

EPRY LA

G Jgfj #) L (—#)

—0 Aﬁtlllyl_l

1) BLUMENTHAL. 0. Uber die Entwicklung einer willkiirlichen Funktion nach den

~
et 2

Nennern des Kettenbruches fiir [ﬂ) "5 Diss. Gittingen 1898.

]
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Hierdoor gaat (64) over in:

+ oo
65) Palr) = ff(n}L”“ 2l X 5 e 7

Ryleg oo fon " —x
— 0

)
of s r= [f(u) 8, (n.x)dy (),

I Lia (2 Li(—#)—Lyga(—u) Ly (—2)
I ol i eat w— x

zijnde 8, (u.x) =

eene symmetrische functie van » en xr.
Het ligt voor de hand te vermoeden, dat, aangezien het
minimum van J, met grootere z-waarden blijkbaar afneemt,

lim P, (z) = f(x)
® = Co

In het volgende zal ik nu trachten te bewijzen, dat elke functie,
die voldoet aan de voorwaarden van DIRICHLET, cene ontwikke-

ling in de gedaante
o0

60 ) T f(x) =2 g .L,(— z) toclaat, als

y=10
+ o0

Ryleyosilvingy.= [ fu)L,(— u)d (u).
— o0

§ 2. Ik zal twee gevallen onderscheiden, nml.
- 00

. /
1%, de integraal, geschreven alsji—v# heeft werkelijk eindige
X

_U:‘
grenzen, b.v.

4
iy 8 [ VG il o e

> sin (2 v -+ ne
sing

41
I I dx 1 I I I
6 R i e e e = e —— — —_—— .
7) V,'_':2 T, fﬂ- l/[ —x? 4 x |3 |2 12 lﬂ z

met L, (cos @) = cos ¥ @. (Fourier-ontwikkeling).

(Vergel. Hoofdstuk I,

-
3
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s+1_ | dx _2| 2| 3l 4l 3I
SHRRRE s erins | oz et pan [ 7o [ORRS

=2 =z ~g =z

|2 3 4 15

met L, (z), die niets anders zijn dan de bolfuncties van Legendre.
(Vergel. Hoofdstuk I, § 11).

x

+ 00
2edc integraalf%(i) bezit ook werkelijk een oneindige grens,
—0

b.v. de uitgebreide kettingbreuk van Laguerre (2 =11)

+ o0
63) g f,:z.xx—ldt_ 1| 1.2 |_2.(w+l)]_3ﬁ.(c¢-§—2)|
T («) z+x | ¥

0
met L, (2, «), die voor =1 de polynomen van Abel leveren.
In nauw verband hiermede staat de kettingbreuk:

+ 0
I é’_"tzr 2\a — /2 _Llﬁf__.ii -a——+l~l———£l"“——+%l’"il
69) & (x)f ) o )

. o ey
- o o o ot o~ o ol
Z -i' X |~ |.u tu | ~ 'u l - l(.:
— 0

met N, (2, &), die voor ="'/, de polynomen van Hermite geven,
H, (3)

nml. N, (2, '[,) o

1
§ 3. Geval A: De integraal bezit eindige grenzen:f‘{f’r’_(_ﬂ
gy

it

Wij zagen reeds, dat de formecle ontwikkeling van een functie

f(x) was:
SeremiaY )= g L (—2)

yv=0
n’.’
met kg ey 8= [f(u) L,(—u)dy (u)

terwijl de eerste - I termen van de reeks geschreven kunnen
worden als:



”n rh
5) - Pule) =S5 Ll— ) = [ 7 8l 5) a0 ),
yv=20 Ja
.. o 1 L,1+1(—.‘-L’)L,,(—fu)—Ln.T1(—77{_JL”(—.1')
zijnde &;(?!.1)—/:_] LR —— - .

Er moet dus bewezen worden, dat lim 2, (=%
=00

Voor f(x)=a", m een geheel positief getal, is het bewijs
eenvoudig. Volgens form. (6o) is elke g, voor v > s nul, zoodat
de ontwikkeling eindig is, en voor elke x-waarde gelijk is aan 1.

Onmiddellijk volgt hieruit, dat ook elk polynoom van ,eindigen”
graad volgens Z, (— x) functies ontwikkeld kan worden.

Gaan we nu over tot het geval /(x) = sin % x (£ eindig). Deze
functie kan in cen machtreeks ontwikkeld worden, die cen on-
eindig grooten convergentiecirkel bezit en als machtrecks ook

in dat gebied uniform convergent is, dus
sin £ x = Sy (r) + Ry (x),

e x £ x)3 L L)Y
zijnde Sy (1) = l‘ = .(_E‘,l_ il i:_ J (/iﬂlg
5

cen polynoom van eindigen graad, terwijl V zoo gekozen kan
worden dat, zoo ¢ ecen willekeurig kleine positieve waarde voor-
stelt, voor elke eindige a-waarde geldt | Ry (v) | < «.

Bij substitutie wordt

~b
Py ()= / sinfu. 8, (u.x)d Y=

T

fi&‘,\- (2¢) &, (0. x) d L () 4 [f.f\’;\- (22) 8, (20 . x) d A (u).

De eerste term is gelijk aan Sy (#) = sin k1 — Ry (1), terwijl
de limietwaarde van den restterm nul is.
Dit laatste kan als volgt bewezen worden.
b
De integraal lim [ | £ (# . 2) | d (x) heeft cene positieve
n= 00 Ja
waarde, hetzij eindig, hetzij oneindig.
In het cerste geval, is het zonder meer duidelijk dat de rest-
term, dank zij de ongelijkheid | Ry (r) | <&, tot nul nadert.
Ook in het tweede geval, is de restterm van dezelfde orde als e.
4
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Dit vindt zijne verklaring in het feit, dat de negaticve waarden
van £, (x.x) de positieve opheffen.

Beschouwen we de functie £, (x.x) eens wat nauwkeuriger.
I Lyyr(— x) La(— 1) — Lt (—u) Lu(—= x)
o feyees Rngl ' "n—x 3

De hoofdfactor is: L1 (— %) La(— ) — Ly 1 (— ) La (— x)
of daar x constant gedacht wordt:

Q(—u)=rLi(— #) — k Lny1(— #)

De functie ¢ bezit een wortel, tusschen clke twee opeenvol-

$.(u.x)=

gende wortels van L, (— u), zooals blijkt nit de beschouwing
der grafische voorstelling der L, polynomen, welke berust op
de algemeenc eigenschap, dat de wortels van elk paar polynomen
L,(—u) en Lyp1(— u) afwisselend gelegen zijn.

[

A A
LA o~ - o T L
7 ~ -
s ’
A /J’/.\C' BN /_,\
/ Fd e ~
’ ~ »
p </ y \
) = e

~
-~

M 6!/ .
o/ g, JEIL
L,g ('_' 7!) /l:
L= =iy BB = = =
P (—#) ; Loy (—u) &
Aen C zijn twee opeenvolgende wortels van Z,, B de tusschen-
liggende wortel van L,.1. Men ziet, vanaf A neemt de verhou-

ding - " af van o tot — o, om vervolgens van - o weer te

Ln+1
verminderen tot o in C. Van 4 tot C is dus elke reéele waarde
A Ln ('_‘ ") . . fc:
éénmaal gepasseerd, of ;—————1 15 €€ns gelijk aan - geweest,
Loy 1 (— %) It

d. w. z. er ligt een nul tusschen clke twee opeenvolgende wortels
van L, (— ).

De functic @, (— x) bezit dus » wortels, die evenals de wortels
van L, (—u), voor n==® OVCT het integraticintcrval verdeeld
liggen.
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De factor

— neemt slechts den wortel # = 2 weg, zoodat

e ——=t

ook £, (x.x) een golflijn is, met onbepaald afnemende golflengte
in elk punt van het integratieinterval.

Gaan we over tot de waardebepaling van den restterm
b

Ry (u) &, (u . x) d ¥ (u), zijnde | Ry (u) | <s.

p
Allereerst echter deze beide opmerkingen:
1°. + wordt willekeurig in het interval (e, ) aangenomen,
doch is dan gedurende de geheele redeneering constant. Hierdoor
mag £, (x.x) als eene functie met slechts één veranderlijke be-
schouwd worden. De voorwaarde, dat x in het integraticinterval
ligt, is in overeenstemming met de vraag naar de waarde van
de recks in dat gebied.

2", n is willekeurig groot, doch steeds ecindig.

Nu zagen we reeds aan het begin van deze paragraaf, dat de
ontwikkeling van een polynoom wegens het cindig aantal termen,

convergeert, zoodat
b

L= | p(u) 8 (u.x)d (u)=p (v)

of
voor elk polynoom p (x) van een graad kleiner dan ».
In het bijzonder is voor p (#) = I.

[“ﬂf e (2. 2)d Y (1) = 1.

Bestudeeren we deze integraal ecens wat nader.

In overeenstemming met het reeds besproken geval, nml.
4

lim | | & (. x)|d¢ () is eindig, waar onmiddellijk bleek,
=00 @

dat de restterm van dezelfde grootte orde is als ¢, willen we
trachten de integraal 7, te splitsen in ecen willekeurig groot

!
aantal integralen van de gedaante [%.4 (2. x) d g (u), terwijl de
JE

integraalsom van de absolute waarden van al deze integralen eindig
blijft. Elk interval (%, /) kan willekeurig klein gemaakt worden,
zoodat met elke gewenschte nauwkeurigheid A (#) in elk interval
constant genomen mag worden.
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Hieruit volgt dan:

]]R(zt) £, (. 2x)dy (“)l:lsz(u)%"(“ ] x)dlr'-’(ﬂ)!

<3

R (k) ] ls,.t (. %) d ()|

l
<e E'Js (. x)d ¥ ()]
.

< & X een eindige waarde <u.

Boven bedoelde intervallen worden nu als volgt gevonden.

Het interval (@, &) kan gesplitst worden in g eindige inter-
vallen (pi, pi+1) en in v eindige intervallen (i, gi +1). Deze
intervallen zijn z60 bepaald, dat in elk interval (i, 2i+1) elke
amplitude van £, (w.x), wat n ook is, eindig is, dus absoluut
gemeten, kleiner dan cene constante 4. In elk interval (i, ¢5+1)
daarentegen neemt minstens ¢én amplitude met 2 toe, elke vaste
ogrens overschrijdend.

Hieruit volgt:

] 7 Pi4-1 v 7i+4+1
1t —_—-f g, (w.x)dP ()= Ef 8, (w.x)dd(u)+ ¥ | 8 (u. x) dy (u).
a i i

1 1 Jyq

De eerste som is cindig, want

. Pitl 73 Vi
> ]Sﬁ,, (n.x)d Y (u) “ = f “ £, (n . x) { d (u) <
P 1 p

i

’.J_ Pi 4« 1
A, f dy (u) < Ak.
1 "

Volgens het uitgangspunt in § 1 toch is i (x) eene niet af-
nemende functie, zoodat in het integratiegebied &+ (#) > 0.

]1. il b
De factor E]a’x,b(u) is dus kleiner dan [d#z(?t) en deze
P

1

i Ja

integraal is gelijk aan %, volgens formule (63) voor A== O.
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Aangezien 7, zelf eindig is (nml. gelijk aan 1), zoo moet ook
v Yi 4
de tweede groep termen 7, =Y [ 8, («.x)d ¥ (1) eindig zijn.
L Jy

Het totaal van deze v intervallen wordt nu onderverdeeld in
m intervallen, (7, 7i+1)-

Het getal m is veranderlijk met », en wel evenredig met
Vu (bv. m=[V#u|). De deelpunten 7; voldoen aan de voor-
waarde, dat elk interval willekeurig klein gemaakt kan worden,
door 7 en dus ook m maar groot genoeg te nemen. Aan deze
voorwaarde kan steeds voldaan worden, daar het interval (@, &)
eindig is.

Op blz. 50 en 51 is reeds aangetoond, dat &%, (« . x) een
golflijn is, met #» — 1 wortels. Deze liggen over de s intervallen
verspreid, zoodat er meerdere intervallen moeten zijn, die onbe-
paald veel wortels bevatten. (Bij gelijkmatige verdecling bevat
elk interval er ongeveer [V ], als m = [V n]).

De eindige integraal 7,/ valt dus nu als volgt uiteen:

Ak ’i‘ |- 1

/=Y | 8 (u.2)dd (u)

|
1 ¥

13
LI
Beschouwen we elken term | 8, («.x) dy (¢) eens afzonderlijk.

We zagen reeds, dat 4 (#) steeds positief is, zoodat we de
cerste middelwaardestelling ') mogen toepassen:

r

i1 gt e
[ .. x) dy(u)=20, | d¥(u),
JI i
waarin 4, de waarde van §,(x.x) voor een waarde van # in-
liggende tusschen »; en 71 beteekent.
Bij elke 7 kunnen we de termen verdeelen in twee groepen, nml.
groep I bevat alle termen, waarvoor ‘/)‘,.i] <:C;
groep II bevat alle termen, waarvoor 5/:‘,,1.|> G,

waarbij € een aangenomen positieve constante is,

1) Vergel.: bv. GoursaT. Cours d'Analyse Math. I p. 181, 2de druk,
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De integraal 7,/ valt nu uiteen in twee reeksen :

Ti41 o1
/=Y | 8. dy W+ N | Se(n.x)d Y (u)
Gr. 1 Jr; Gr. 11 J3;

waarin de s; de intervallen van groep II begrenzen.
LR LS|

=0 [ Ay () + 3, By | d¥(u)

1 Jr

7 1I 8
zijnde | By | = Cen|By|> G

De rceks, behoorende b1j oroep 1 heeft ecn eindige waarde, want

P41 Tiq1 i1
- 3 v i x| 3 . 4 “ ,
{}_‘b,.ijd\j)(u) | <ZI1>,.i!fci¢(zz)<C Y| dvw) <k C
1 4 1 1y I Jrg
cen eindige waarde, die onafhankelyjk is van .
Ook de waarde van 7, in zijn geheel, was eindig, en de
bovenste grenswaarde, nml. I - k, A onafhankelyk van n, z00-
8 4-1

dat ook | Y, By dtp(u)! cen ecindige bovenste grenswaarde

1L 5
bezit, dic onveranderlijk is, hoe groot z ook wordt.

Gaan we nu over tot de beschouwing van de meer alge-
meene integraal

b
Ig= [].‘! (1) 8, (u . x) d Y () = 2 (2)-

We ‘zullen nu uitsluitend die polynomen p (u) beschouwen,

waarvoor, in het interval (a, &)
Max. supr. | 2 (%) | = 2,

waarin A/ ecen constante, willekeurig aangenomen, orootheid
aangeeft, onafhankelijk van 7.

Ook 7, is steeds kleiner dan A, omdat x een waarde is in
het integraticinterval (a, &), zooals op blz. 51 aangenomen is.

Splitsen we nu de integraal 7/, in dezelfde deelen als /;:

" Fi +1 1= Pi 41
“) [p(n) (. x)dy :¢)|<> U (n M e X \Id' (s2) < by A. D,
i

Ly

deze som blijft dus, wat » ook is, beneden een vaste grens.
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AR R
A, > j 2 (w) 8, (v . x)dy ().
Gr. I Jr;
We zagen reeds, dat voor elken term van groep I geldt:
Fivrn ‘ i1
[&l (. x)dy (u) = By, [dt,b (), zijnde | B, | = C.
i

Het is duidelijk, dat elk integraal [%n (s .x) d L (u) gesplitst
kan worden in twee (of drie) deelen, die Jetzelfde teeken hebben,

dat overecenkomt met dat van B, dus

it £ A
| [ S0 (. x)dy ()| = | f $,(u . 2)dy(w)| + | , (. x) d ()|

JE

F
o 2? 1
| B, | ‘,;{f\,’) ().

Het polynoom 2 (1) is in het willekeurig kleine interval,
(riy, 7i11), monotoon, tenzij het daar juist een maximum of
minimum bezit.

In het cerste geval kan men onmiddellijk de tweede middel-

waardestelling ') toepassen:

]f; (”) —‘S}'n (”- . -1') i!L,L' (.’l) ==

£ Ti4-1
2 (7i) /'2.,1 (0. x)d Y () + p (7i 41) ]S,, (.x)d g (u),
Jr; £
zijnde & een waarde, inliggende tusschen »; en 741

Laten we nu () en p (r; +1) constant, dan zal & continu met
het polynoom p () veranderen. We kiezen p (#) nu in elk inter-
val 266, dat elke & samenvalt met een & waarde d. w. z. de

£ rig
integralen ]2,, (w.x2)d ¥ (u) en ]ﬁ,, (#.x)dy (x) komen overeen
" ;

in teeken.

1) Vergel.: by, Goursat. Cours d’Analyse Math. I p. 182, 2de¢ druk.
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Nu volgt:

$.(u.x)d ()|

|]_f;(2£ Z .r)a.".,b(zf,)‘<\p(
+ 'p(-;'i“)i f‘%:(u.:r)dzp(u)‘
£

: E L EE |
<M§ ]f& (. x) d Y () y+|[3d (. 2)dy (u) | %

s

=M ’ 8, (n.x)d () l

i

(dank zij de overeenstemming in tecken)

=M | B, f dyw)sMC f dy OF

dus

E[}‘j(n)gu(ﬂ-..1‘)(!’1‘[)(?1)i<>_1 ,;‘t-(u)ﬁ (. x)d b (u) |
i A, 1 r

riga
= MGy [ ady (u) < ky M C=3,,
11

cen eindige waarde, onafhankelijk van .

Ook het optreden van meerdere intervallen, waarin p (#) een
maximum of minimum bezit, biedt geen nieuwe moeilijkheden,
zooals uit het volgende zal blijken.

Resumeerende komen we tot het volgende resultaat:

Elke integraal 7, kan in drie stukken gesplitst worden, die
ook in hun verdere onderverdeeling geheel overcenkomen met
de verdeeling van de integraal /,.

De beide eerste stukken, nml. de g cindige intervallen
(| £.(x.x) | < A) en de r-intervallen (| B, | = €) hebben steeds
een eindige waarde, waarvan het absolute bedrag beneden een
vaste grens blijft, die onafhankelijk is van 7.

Aangezien de geheele integraal 7, een cindige waarde heeft,
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nml. p (¥), zijnde | p () | < M, zoo moet ook het derde stuk
eindig zijn.
We gaan nu over tot de studie van:

i1
3% N | 2(w) 8. (u.x)d (),
Gr, 11 S
LB £ 41
zijnde 8.(u.x)dV(u)=2D8, |8, (u.x)d L (u)
met | By | > C

Tot dusverre was de keuze der deelpunten »; en s; alleen be-
perkt door de voorwaarde, dat elk interval willekeurig klein
gemaakt kan worden. We mogen dus de deelpunten nog nader
bepalen.

Nemen we aan, dat bij cen willekeurige verdeeling, men tot
twee intervallen komt, behoorende bij groep II, die aan elkaar
grenzen, b.v. & tot si11, en 543 tot s;13, en waarvan de bij-

behoorende &, en 5, | in teeken verschillen.

- 1

Veranderen we nu het deelpunt s, in het punt w, als w
cen naastliggende wortel van s, is van 8, (# . x). Hierdoor
ontstaan twee nieuwe integralen

w iy a

[%,, (0 .x)dL(u) en | &, (2.x)d Y (u).

W 1"

Deze verandering in de deelpunten wordt overal, waar het
noodig is, aangebracht'!), zoodat ook de onderste grens s; van
de eerste en de bovenste grens sy van de tweede integraal
veranderd kunnen zijn.

Bij deze nieuwe verdeeling passen wij op de integraal [, de-
zelfde redeneering toe, als bij de geheel willekeurige verdeeling.

We gebruiken dezelfde notatie, nml. een » met index ter be-
grenzing van een interval van groep I, een s met index ter

begrenzing van een interval van groep II.

1) Het is misschien cenvoudiger te zeggen, dat alle deelpunten, zoowel de »- als
S-punten steeds wortels van de bijbehoorende ¥, (. ) moeten zijn, Dit aantal voor-
waarden is echter in 't algemeen grooter.
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Het is mogelijk, dat ook nu twee s-intervallen aan elkaar
grenzen, waarvoor de bijbehoorende B, verschillen in teeken.
Zijn deze integralen weer:

$i4 i1 Fi42 $i42
[3,, (n.x)d ()= B;; [d'_’ () en f&n (.2)dy ()= Dy , Ifd (22),

J 8 i i+ 1 %t 41

dan is nu tevens £, (5ie1,%) =0

Het deelpunt s 1= wordt nu vervangen door twee deel-
punten: w — T, €n w + Ty, waarin T, €0 7, positieve waarden
voorstellen.

7, en 7, voldoen aan de voorwaarde, dat | &, (¢ . 2) | voor
w—7, = u< w7, cindig is, b.v. kleiner dan 2. ;

Evenals bij de  intervallen, waar | 8 (. x) | <A (zic blz. 52),
zoo zal de integraalsom

w7,
E ? (ﬂ) £, (“ . ;1‘) dy (,v[.)

kleiner zijn dan cen eindig getal. Het ligt voor de hand beide
deelen te vereenigen, zoodat dan de som kleiner is dan %, M
vermenigvuldigd met het maximum van A en 2.

Deze wijziging wordt overal in de deelpunten aangebracht,
waar twee integralen van de groep II aan eclkaar grenzen, of
komen te grenzen tengevolge van deze verandering.

Hierdoor is verkregen, dat elke twee opeenvolgende integralen
uit groep 11 gescheiden worden door eene tusschenruimte, w — 7,
tot w -+ T,

Gaan we nu verder met de studie van

$4 -1
20 > [;‘) () 8 (e . x) d P (1),
Gr. 11 Js;
.'ti +1 Sifl 1
zijnde -’,S“ (u.x)dd () = B;; ] d (u)
met | B, | > C. (Zie blz. 57)-

We leggen nu aan p (1) de volgende voorwaarden op:
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a. in elk interval (s;, siy1) is het teeken van p(«) hetzelfde
als dat van 5 ;

4. in elk interval (s;, s;41) is | 2 () | > s een eindige positieve
waarde, b.v. I;

¢c. in elk interval (s;, s 41) bezit p (x) één maximum of één
minimum.

Noemen we de #-waarde, waarvoor p (x) max. of min. is g

o ?
dan is:

%4 4 5 4
fﬁ(n)%,‘ (u . x)dy (u) =fp (2) £, (0 . x)d P () 4 ’.p(u);ﬁ” (2 . x)d ().
“i .&‘i J G

Beschouwen we den integrand als het product van p () en
$, (. x)dy (#), dan mogen we de tweede middelwaardestelling
toepassen, omdat p (x) in elke integraal monotoon is.

Hieruit volgt:

/‘;’ fz!) S (. x)dy ()=

W S

£

];(si)[%,, (2. x)d Y (u) q--p(g)'/;&;(u Lx)dy (u) ~§-/J(g)f§l., (r.x)d "y (u)

g

.\1

.“i i
+ 2 (Si + .)]5}-" (. x)dP (u) =
o

g 8l
2 (si) [Sn(n ) d(u) *l‘j’(g)j;&, (2. x)d () ‘i—/»(s.:;])fsﬁu (0. x)d P (u).

3

oI

De ligging van de grenspunten & en &’ verandert continu met

het polynoom p (#) (b.v. door wijziging in de grootte en ligging

van het punt g), zoodat we bij meerdere polynomen mogen
aannemen, dat de drie integralen

N
541

£ £
f 8, (n.x)d Y (u), [ S, (. x)d (1) en [ 8, (u.x)d ()
."i E o £'

+

in teeken overeenstemmen, en dus ook met hun som

[ 8, (u.x)dy(u) =By -/ dy (u).
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Uit voorwaarde a volgt nu, dat ook p(s:), £(g) en 2 (si+))
hetzelfde teeken hebben, d.w.z. elk der drie deelen van de
integraal

n— [p (-u) 8, (. x)d Y (u)

.3

is positief, of ook u; zelf is positief.

Nu was op blz. 57 reeds bewezen, dat het derde stuk van Loy
d.i. S u; steeds eindig is, zoo |g (x)| slechts kleiner is dan A7
Dit geldt dus ook in het bovenstaande geval, waar elke #;
positief is.

Deze reeks zal a fortiori convergecren, indien we elken term
vervangen door een kleinere waarde.

Nu was:

2 = [l;b(u) 2, (n.x)d(u)=

of &5

%4

“]53?1(:; x)d(u) H Iﬁ(g M]&:(?z x) dy(u) ‘-i ‘ps,HH[ a(10.) A (M}‘

of volgens voorwaarde (4) blz. 59.

3 i1
zr,>sr}] i) fi.p(u) '] (e 2)d zr|+'f dt,b(zr)\g

_s’]‘ll x) dy n)\

i | 1
dus \j t (2 | convergeert

141
of ook de reeks N j%,‘ (.x) dy (z:)i convergeert,
1

cen reeks, die onafhankelijk is van de gebruikte 2 (u).
We hebben nu het volgende resultaat verkregen. De integraal
I, kan gesplitst worden in drie gedeelten.
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Pl+| 7)-}-72
1° ~Z[ (w.x) dy (u) —|—L] u (2. x afz,b(n)'<5
zijnde | 8. (#.x) | <4 in de cerste som
en | &, (. .1:) | < D in de tweede som.
T4 T4
205 > [&1 (.2) dy ()| < X | 8| | dow () < S,
Gr. 1.Jr; i Jr;
zijnde | B, | =
7 $i 41 |
398 ’ E[% (. 2x) d () ,< f ¢ x) d () |
Gr. 11 Js; 5

Hierin zijn S, S, en S, eindige waarden, die alle onafhankelijk
van 2 zijn.
Bepalen we nu den restterm:

~
J ] R(u) 8, (u.x)d (u) I <

_\t, [ {l}c'(n) |8, (. 2) | d () + Y, [ R fy)j | 8. x) | d b (u)
1 Jp

S S =Ty
+ % f}@(u) S (u.2) d(u) |+ % \ [R(rr.) 8, (u.x) dy(u) |

In clk interval (7, 7 1) en (s, si41) mag, met elken gewenschten

o)

graad van nauwkeurigheid & () constant gesteld worden, dus

b
’ ffx’ () 8, (u.x)d Y (n) | LeS, 465, +685;, <y

cen grootheid, die met ¢ willckeurig klein wordt, hoe groot »
ook is, dus

e (.’1‘) =sin £x + ¥,
zijnde | | € ¢ + %/, hoe groot n ook is

of lim 2, (x)=sin % x.
ne=00
Eveneens is

b
lim f cos Luf, (n.x)d Y (u)=cos kx.

Hn=00D



062

Deze resultaten zijn in overeenstemming met het werk van
PINCHERLE '). Deze bewees, dat elke analytische functie, die
geen singulariteiten in 't integratie-interval bezit, ontwikkelbaar
is volgens de naderingsnoemecrs.

§ 4. Het integratiegebied (a, &) kan uiteenvallen in meerdere
gedeelten:

(a, &,), (a5, by), (@5, 03) - - (a;, 0)
m. a. w. d () # 0 uitsluitend in een interval (a,, &,).

Een reéele functie f (¥), die in deze intervallen z66 bepaald
is, dat zij overal eindig is, geen discontinuiteiten en een eindig
aantal maxima en minima bezit, moet nu ontwikkeld kunnen wor-
den, volgens L, (— x) polynomen. Voorloopig is ook f(a) = f (&)

Een functie £, (#) wordt nu als volgt t gedefinicerd: £, (a) = f (a).
In 't interval (a, &,) is f; (u) =/ (u)

(b @) S ) =S (G)+ ;= —3;(@)4(&)‘

(@, ) £ )=/ (0 '

o @) ) =F )+ R ) =S )]
cte. etc.

De functie 7, (#) kan nu in 't interval (a, &) in cen Fourier-
recks ontwikkeld worden, die absoluut en uniform convergent is,
wanneer men nog onderstelt dat deze functie eene afgeleide heeft

die eindig is en voldoet aan de voorwaarden van DIRICHLET ).
Zij

oo D 3 — -
o 2T MU | D . 2mmu
fi () =ay+ Y, an cos 7——+ 2 i i S
m=1 Z} a m=1 ZJ a
S o 0 AN
an is | au | & — en | bn | &2 —.

m ~

. i g iy o
De notatie @, « &, beteekent, dat de verhouding ™ eindig blijft,

it

nﬂl-

en niet steeds nul is, terwijl @, -< &, aangeeft, dat lim 5 — 0.
m= G0 7

1) PINCHERLE, Atti Acc. dei Lincei, 1V, 5, 1889. Annali di Matematica, 1884.
Acta Mathematica, 16.
2) PICARD , Traité d’Analyse, 1, p. 235.
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Wegens de uniforme convergentie mogen we, wat het inte-
greeren betreft, de functie £, (#) benaderen, door de eerste
(222 + 1) termen van haar reeks, dus
= 2T pu

<
.f.l (H) :I)E"U ) a, COS *(} _7

+ &, sin —2;?_?: ; + R ()

met | R (x) | <e, een willekeurig kleine positieve waarde, terwijl
m steeds eindig blijft.
Bij substitutie in de integraal 2, (x) (65) vindt men:

b
lim 7, (r) = lim /s > a, cos ET_L; + &, sin Z—W—fl-?fgéf(u.x)dq; (#)

n=2090 n=0a0 =0 f.]/' [’"—(Z

b
+ lim [R () 8, (e o x) d A ().

n=0ol
Tl
/ 2T px .. 2TPpx
= N (a oS —— + b, sin —-—-) -y’
2\ Ay s | R
p=0
. * 3
want de restterm is, evenals in § 3, van dezelfde orde als &,
of lim Py(z)'= £ () »-
n=J0

Laten we nu m grooter worden, dan neemt y af,

dus I CE = (%))
n= Qo0
o
of de reeks ¥ g, L,(— x) stelt in elk interval (a,, &,) de functie
v=10
S (#) voor.

Het is niet noodzakelijk, dat f(a)= /(6).
Zij toch f(x) de te ontwikkelen functiec, met f(a) £ £(&).
We kunnen nu een functic @ (#) als volgt definiceren:

@ (u) = 5—:«— ‘j'(é] — f(a) ;l, dus

@ (a)=o0 en @ (0) = f(6) — f(a).
Het is duidelijk, dat de functie /7 (u)= f(x) — @ (#) ook de
voorwaarde /7 (a) = I () vervult, dus

n= 00

lim [ Fu)8,(u.2)dy (n)=F(x).
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a0

Eveneens is lim f@ w) 8, (. x)d Y () =@ (%),

dus

=00

lim ] } F(20) + @ (u) 2 $, (. x)dy (u)=F(2) + P )

of lim ]j’ (1) &, (. x) d Y () = [ (%).

=0

Tot dusverre hebben wij aangenomen, dat de functie continu
is. Ook dit is niet noodzakelijk.

Gaan we uit van een continue functie 7 (u), die in het interval
A, B, de onderstaande gedaante heeft:

/ C

DL

terwijl + op eindigen afstand van 47 ligt.

De integraal 7, (x) zal voor n = %, de waarde f(r) aannemen,
zelfs al is 't interval 4, B, zeer kl«.m, want zoolang A4, B, # 0
is, is f(u) continu. Laten we nu A, B, onbepaald afnemen, dan

zal lim P, (x) alleen kunnen veranderen door de bijdrage uit
n =00 i

*t interval (M — o, M- o). Deze nu is nul, wanneer we aanne-
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men, dat f(#) in 4, en B, tegengestelde waarde heeft, evenals
in €, en D, de begrenzingspunten van een nieuw, kleiner ge-
worden interval 4, 5. Steeds blijft het verloop van f (x) in
't interval 4, B, symmetrisch. De functie £, (x.2) zal nu in elk
punt van dit oneindig kleine interval tot dezelfde grenswaarde
naderen, evenals & (#), zoodat
B
lim F) 8 (n.2x)dy (u) = o.

n=0oo
Ay B =0 JA4

Hiermede zijn wij gekomen tot een functie f(x), die discon-
tinu is in A/, maar 266, dat f (xy + 0)= — f (rj— 0). Dezec
laatste beperking laat zich als volgt opheffen. Zij f(«) de zoo
juist beschouwde functie, dan is:

lim [Jif(ﬁ) B.(n.2)du=f(x)

= 00 Ja
cn

lim -[CP (H) £, (”‘ ' -1") d = 0 ('1‘)!

n =g

waarin @ een continue functie is.
Hieruit volgt:

(]
lim | F(u) 8, (0. x)du=F (x),
=20 fq

als I(u) = f () + @ (u).

F7(u) is nu een functie, die in A7 een ecindige discontinuiteit
bezit, want 7 (xy + 0) = f(vy + 0) + @ (xry) en F (vry—o0)=
— f (%3 — O) + @ ().

Langs denzelfden weg kunnen ook meerdere eindige discon-
tinuiteiten ingevoerd worden.

Vanzelf dringt zich nu de vraag op, welke de waarde van
limiet 7, (x) is, als f(#) in x discontinu is. Analogie met de
Fourierreeks doet vermoeden, dat

: I |
lim Py ()= | f (x—0)+/ (x+0)|.
=00 2 \ ‘

Dit kan als volgt bewezen worden:

wn
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Volgens het voorgaande, is bij een functie £ (u), die discontinu

in # =2 is:

=00

b
lim P, (x)=lim ]f(ﬂ) 2,.d¢ (u) =

z z -4 ¥
lim } fu)8.dbu+ Flu) &, d b (u)

rT—¢
waarbij ¢ en # willekeurig klein genomen mogen worden.
In de eerste integraal mag voor f(x) de waarde f(r— o) ge-
substitueerd worden, in de tweede f (v + 0), zoodat, met elken

gewenschten graad van nauwkeurigheid

x 24y
lim P, (x)=lim ’f(l — 0) ]%u dy () + f (¥ —0) [ $,.dV(u z

=00

Nemen we f(x —0)=/f(¥+ o), dan is:

'z Tty
lim 1[8,.(1".{)”—#]%,,(34;(”)%: i
n=0co = z

Verder is:

£ 44
lim f $,d L (u) = lim f%,, dy (u)

mits d (x) in x continu is, bv. = (u)du.
De factor d+ (1) heeft dus in beide integralen dezelfde waarde.
700 ook de factor £, (v . u). Volgens blz. 47 15:

£ (2. 0) = /‘7‘1 £ éﬁil_(_‘ﬁﬂ(f_?{bf‘r%ﬂf_"):rf;'-_(:;‘_')_
keplides

. A’-,z +1 : H—x

Wij zagen, dat L, (— 2) Lo (—#) — Luya (— ) L, (— x) cen
golflijn is, met cen nul in 2% = x, wat n ook zij. Onmiddellijk
volgt hieruit, dat voor kleine waarde van 0:

Laia (= 2) L (— %t — Loga(—x+0Li(— A=
— Wl (=) (=i 0) — Luyr(— > — 0) L, (— x) |

I
Ook de factor —— heeft voor # =214 + 0 tegengestelde waar-

den, dus
g, (x.ao—0)==%(¥.x+ 0), wat # ook is voor § < Max. van £ eny,
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zoodat de integranden in overeenkomstige punten gelijk zijn,

waaruit dan de gelijkheid van beide integralen volgt.
Uit beide vergelijkingen volgt:
+ <+ y
lim f $.(v.u)d Y (u) =1,. lim f Solx.u)dy (u)=",
r—g x

zoodat

M ()= %f(m —0) + f (¥ + o) %

b | =

Opmerking: is d+ (#) ook in x discontinu, b.v.
aY(x—o)=pdu en d (v +0)=qgdu, met p# g,
dan zal, volgens dezelfde redeneering

lim 7, (x) :}"—f th Z50)) +]—h%(]f(_r + o).

Resumeerende zijn we tot °t volgend theorema gekomen:
Elke functie, die in ’t integratiegebied van de integraal

o -
-~ -

]

ddx :
[ L - aan de voorwaarden van DIRICHLET voldoet, kan in
[
dit gebied volgens de naderingsnoemers van de kettingbreuk,
dic bij deze integraal behoort, ontwikkeld worden, mits de ver-

schillende integraticintervallen alle eindig zijn.

m -
§ 5. Geval B: De integraal bezit een oneindige grens: tfl(%)

@

In het voorgaande geval A berustte het geheele betoog op de
recksontwikkeling volgens FOURIER van de functie f(x). Deze
ontwikkeling vervalt nu door het oneindig worden van het
integraticinterval. Zooals bekend is, treedt in de plaats van de

reeks de volgende dubbelintegraal :

(0 a] + b
[ dz ]f().) cos a (u—2Ar)da,
0 =

tusschen de grenzen -4, Daarbuiten is de integraal nul.

N~

S () =

Overigens is de gang van het bewijs dezelfde als onder A.
Voor f(u) = w" (m cen positief geheel) breckt de ontwikkeling

5

8

]),‘ (,l') p—

v

& L,(—=x) na v=m af.
= ()
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7ij bestaat dus uit een eindig aantal termen en geeft voor
clke » waarde de functie a™ volkomen nauwkeurig aan.
Beschouwen we nu de functie

e 4 L AN
cos /:.x.———t—-(}vl'%) —MQL—-... —_I-(‘—L-r%)—J.—fCi\-(,r).
2 4 if\_/
— Sy () + Ry (),

waarin Sy (#) een polynoom van den N@ graad is, terwijl &
eindig is met | Ry (%) | <& omdat de reeks uniform convergeert.
Dit geldt voor alle 2% waarden, die kleiner zijn dan een wille-
keurig groot getal G.

Nu is reeds bekend, dat

co
M = [ 2 ’_SE” (x £ H) d {T’) (71’] voor 7 =1

Ja
&

— j w8, (j,‘ . l/) (JJJ (?!) + A
@

met | . | <# en lim #=o.
G=0o0

Dan is ook:
(08
lim P, (x)= lim ] cos b u S, dy (1) =
n=00 0
o)

(
lim [j cos kw8 (v.u)d(u) |—[cos k.S, {{EP(?()]

0 8

=7, + 1,.

G
‘]l i:limi]Cos/du.ﬁ,‘dgb(u).g
' 0

lim [' [ G (1) 8o d b (1) | + | ] Ry () £, d g (1) i]
0 0 '

1y Ly I
e iy b A M e 1 %
L.?- 5:1. ‘A]\

= | Sy (%) l -+ ¥ \f 14
(Vergelijk Geval A, blz. 49)

< | Sy|(x)+ne+e
Evenecens is

0
U-,,]:-‘i [cos };zzg,,(g.“r,(,,)’{,’:;,

JG
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want het is niet mogelijk, dat de nullen van de functie cos % #,
die onafhankelijk is van #, alle steeds zouden samenvallen met
die van £,(r.#) en dit is dec cenige manier, waardoor de on-

o0

cindig kleine integraal [%u (v .u)d (u) cen eindige waarde zou
S

lkunnen aannemen.
We vinden dus, dat

(93]
lim [ cos ku,(v.u)d (u)=coska

n=00
o

voor willekeurig groote waarden van ..

ttaan we nu over tot een functie f(v), dic in het interval
(a, ) reéel en continu is, dan kunnen we als volgt de waarde

van lim f u) 8, (x . u)dy () bepalen.

n=0e J,.

Volgens de integraal van Iourier is:

o b
I ;
fu)y=~ [ dz | f(») cos a(u—2r)d2
Iy if Y
in het interval 4+ &
— kb
of S (1) =lim — [ dz | f(A) cos a(u—A)dnr
=07 Jo —

< [ b
=— | do [f(A) cos & (u— r)dr + R (n),
]

T J = b
zijnde | R (n) | < e.

Na substitutie vindt men:

‘i

el *x I + b
lim | f() 8, d L ()= lim | &, (x.0)d(u) ].:!.4[ 2) cosa(i—nr)d

n=00 [, n=0o0 J,

w0

+lim | R(u) 8, (v.u)d (u) =

=00

Ji

(aangezien de grenzen constant zijn, en de functies continu zijn,

mogen de integraties verwisscld worden)
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roC

G +
lim — " dz | f(»)d2 ] cos o (n—2) 8 (x . 1) dd (#) + 7
0 — b @

=
n=0o0 #
o

1 (¢ +b
—=lims— “ de | f(»)dn cos o (v —a)+4
0

9 =00 T A b
— f(#) +% in het interval 4 6, hoe groot ¢ ook is. Nemen wc
G steeds grooter, dan nadert »’ tot nul, dus ten slotte

lim [f(?t) 8, (x.u)dy (u) =Ff¥)

n=00 _
voor willekeurig groote waarde van .

Ook het invoeren van een cindig aantal cindige discontinu-
teiten levert gecn bezwaren mcer Op. Geheel het betoog, dat
daartoe onder A gehouden is (vergel. blz. 64, 65) kan hicr woor-
delijk herhaald worden. Nergens toch kwam de hoegrootheid
van dc integraalgrenzen ter sprake, en dit is het eenige onder-
scheid met het nu besproken geval B.

Het zal tevens duidelijk zijn, dat het oneindig worden van
beide grenzen in de integraal van STIELTJES, geen nieuwe be-
schouwingen zal vereischen, soodat ik het resultaat van dit hoofd-
stuk als volgt mag formulceren:

Theorema: Elke functie, die in het intcgraticgcbicd van

oo

dec integraal van STIELTJES dY(¥) 1) aan de voorwaarden

2+ x
—
van DIRICHLET voldoet, kan in dit gebied volgens de naderings-
noemers van de kettingbreuk, dic bij deze integraal bechoort,
ontwikkeld - worden.
Is dy (#) voor #=x—0 aelijk aan pdu en voor #=2x+0
o0
gelijk aan ¢ du, dan is de reeks Y, gv Ly (— %) = p--fll-r—f(,r — 0) +
= 17
v=0
-{-;_{_—)f(.r + 0), mits x niet 1n een oneindig klein integratic-
[

interval gelegen is.

b
d A\ (x)

1) Het geval, dal één of beide integraticgrenzen eindig zijn, e is hierin

o

begrepen, doordat dan ¥ (x) = (&) voor x> & en b (x) =1 (a) voor x <a.



HOOFDSTUK I1L

§ 1. In dit hoofdstuk heb ik eenige resultaten samengevat,
die ik verkregen heb uit de studie van de volgende ketting-
breuk van Stieltjes:

e

1 ezt | o 1] e+1], 2 «42|, 3
e - e - it e f_'_—_:_ = ',,_.’__". S US .i‘__,i_ 2 ]J.i_.
7°) T (2) stax 0 !s_||1{|.: | 1 Iz ;_] 1 Ticl
J
(voor &0 en z nict negaticf reeel) "
T (T (e YRR L (200 SRR (e + 2) |
]G 6 on =i T e ey e £
T ()l = 5 3 )
: ;
=: .()- (u?l, I, ;),
zijnde a3
3 n't‘ i Al nd '..1
72) « . (2 B X)y=1-—ap i (1) B (B + 1) S
£
— e+ 1)(2+2)BB+1)(E+2) 7 4 cte.
De kettingbreuk:
I | | e41], 2  a+2, 3 2+3
vo) « K=p 4 tf ——F et
! : g | o 2" | g " | 1

komt voor & = 1 reeds voor bij TSCHEBYSCHEFT *) en LAGUERRE %),
Uitgaande van deze kettingbreuk kan mcn langs twee verschil-

1) Voor het Dbewijs van bovenstaande formules vergelijke men PERRON, blz. 313
en 392.
2) TsCHEBYsCHEFF, P. Sur le développement des fonctions a une seule variable,

Bull. Pet. 1. 1860.
o0

= Vi e—rdx s .
2} LAGUERRE, E. Sur l'intégrale e R SOM TR 7R3
3 ] b v
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lende wegen tot cen geassocicerde kettingbreuk komen van de
gedaante:

k| by | ky |

— i —... ky > 0.

Frh Bth E+A =¥
1°. door contractie (P. blz. 200):

68)..}{12 I_l I & l 2(“""1)‘ 3(x'|'?‘)|

|:','n+.¢:_13+0:A|-2—13+m—{—4—[3+<z—|—6y"
Dezc kettingbreuk heeft tot naderingsbreuken die van K van
even rangorde, zoodat ook

o2
1 F-I 1% = |

BRI ey — —dx met & >0

) ! T () gi--x

0
e IO R RO R
ST () e 2 23 2 =)
o
in overeenstemming met ]e‘x z¢—lamdx =T (x4 m).
0
20, door de substitutie z | — z* en vermenigvuldiging met — 3:

1|, 2, 1], e+1| 2]

K@ =prhtp o Tt
dus J\)‘(Q):_SK(_HZEJL::S;!TT(;'-{‘| IglJrrTI'* | zzal‘-‘*‘
2 szzg._%ﬂul‘:ﬂ!_rt“_lﬁsi_
S Dl e Dl

I x I 1 x
AL 2 g3
dus de coéfficient van 1s:



F () | (=) fy
na x| Vy
ql.‘f- oD
2 dy 1
e — Y g — P — g —1 1 f ) P
yrE—% ¢
1(;;)1, PV, 1(;»)[ T e
T (24 2)-
o T
De coéfficient van —- is:
TR [ 1
1—(—_)-)}'5**2 (x¥e—% 22+l dxr = o, want de integrand is een
) |_ o
oneven functie, dus:
1 (T(x) T(x+1) T(2+2 R
L=rml = T3 17 oo Y

De naderingsnoemers ¢n van K, ¢n van X, kunnen dus vol-
gens het tweede hoofdstuk als ontwikkelingselement voor functies
die voldoen aan de voorwaarden van DIRICILET, dienst doen.
Bij X, behoort het interval nul-pos. oneindig, bij K&, de geheele
reéele as. Een en ander herinnert aan de Fourier-ontwikkelingen.

§ 2. De kettingbreuk:

o]
I. 2.(z+41)] 1 =1 pe 1
K= l ---——"-'ﬁl—- ('-‘f‘_")l"""--=‘—“]"__‘1'7,_(I,.1‘.
(1]

lz4+a  |statz  [stetaq T ()

De naderingsnoemers zal ik voorstellen door Z, (s, ).
De recurrente betrekking is:

74) Luy1(z, 2)=@+a+2n) L, (2, 2) —n(n+a—1)Li_1(3 ).

Hieruit volgt, dat

75) Lu (8, 2)=g"+ (’:)(u—i—m-—— I)gn-t +(g)(u—|—y.—1)(u+:f.--2)::”“9+

;) ntoe—1)nta—2)...(n4a—p)st—r4...
) nda—1).. (@+1)z+n+a—1)(n+a—2).. (24 1) 2.

n
I
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Om dit eenvoudig te bewijzen, voer ik de volgende hulpfuncties

in, gedefinieerd door:

L.(z, =
76) < v e P (2, @)= 5~ F(,E+“a:;’
T (n-+t e
of L =2t 0u(z o),

zoodat (74) overgaat in:
T(ntz+ 1) Pt (2 )= (z+¢a+2 n) U (n+ o) P (2, &) —
—nnta—1)T (2+a— 1) Qu—1(2, #)
7Y of (14 2) Gusn (5 &)= (5+2+21)Qulsy @) =1 Pua (& 2)

Uit (73) volgt voor &, (2, a)

zn-}-u—] ‘1 S:a+:¢—3 2" L.u-{—cz-—:i
8 n 3’ — ) ey A e
78) Pl ) I‘(rz+a:)+(1 I' (n+ 2—1) i (2)1‘(1;-]—%—2)+

o —p— P gt —1
+() et (e tte
PRI O (2, @) =?§0(;) 1%; 4”;)

Met behulp van (77) zal ik nu (78’) bewijzen, waarmee dan
tevens de juistheid van (75) is aangetoond.
Voor kleine n-waarden geeft de directe berekening:

et —1
Ly(z a)=1 Po (2, @) = T (%)
o zoc—l
Al %=t @
3“""1 el zﬁt’-—-l

Ly=#+z2(@+10z+(z+1)2 qa::m-*ﬂzf(x%l-l)% r(a)

in overeenstemming met (75) resp. (78)-
Nemen we dus aan, dat (78) juist is voor » =, dan moeten
we aantoonen, dat de formule ook juist is voor 7 == + 1.
Met het oog op (77) bereken ik:
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(z+at2m)Qu—m@P,_1=

“-I‘ i ap+e o ey mbte— 1
¥ ( )—4-2 (2:1&—}—;4)( )_

p—ﬂ I‘(p-l—o’) 1}:” p, F(P_{_'Z)
m— 1 L]
N e AR
s ( ? )1‘(;>+z)
m.il(f’_{—y I) f o\ gP Fa—1 + n;( o "t 20 et
/ — 2m 2
r=1 (1”# ) (p-|—y} ,;ftl )([’)[‘ (# + =)
m— I\ zpte—1
30("5 ) Fpra
" i _ om Pl
i t-2) L (m+4a+ 1) G =1 (m —— I) I (m+ 2) +

+ (q 1 —|_ \9') 7ii om - =i\
2 g (m) I (m+ ) =

S e, e ()= (")

s —1 P
+(3m+6¢)1—‘m—m;—(_x)z

ot it =S8 m da—1 ]
z - = - S
) I:I‘ (m 4 + 1) s ( m ) I' (m + )

m—1 ‘_‘}4.1—] wt(me—1).. +
+;,2_‘1r (#+2) s p(!m L2 plpa1)+ e t-)on 1)
— (e —p) (e —p -+ 1)}
+ (ne 4 @) m(;;_—
m 41
~ + 1 g+ e—1
(m + ) }"0 (Htﬂ ) 5 7 e ) = (m + &) Pu i1 (2, &),
p=
dus ook
m~_§-11 ‘?)Z—[— [ jjl’+“'—‘
peals x)_,,?;o( ? )r G+
g+ & —1
§ 3. Wij zagen, dat @, (s, « N ‘1_ i
bl DG ,,_ﬂ(p)lwaq
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Zooals reeds is opgemerkt, gaan deze polynomen voor & =1
over in die van ABEL').

n

T ok Qu(—x =3 (=1 (;);

Tal van eigenschappen van @, (—7%, 1) kunnen gemakkelijk
uitgebreid worden tot eigenschappen der polynomen Qu (2, ).
Allereerst voer ik nog in:

"

= Q. (2, @ of) ,;(,,, ) S (ﬂ) z?

80) . . - Xn (2, o —

g1 Tnta) Zo\2/T (7 +2
en
........ OB, ¥, 5)=l 0 ,”,,E
81) B, ¥ 2) “11::1;1 (x By ¥ J)
Bz BE+1 & BE+1B+2) =
B e e
' 1 yo+1 2 r+1E+2) 3
zoodat
T et i (2 &) = s - @ (— 11, @5 — 3)

I ()

I :
1_‘_(7&) I (_—- 1n, o} —.’3) toch 1s:

I () e 2)s (o e SRR (NG T
T@) ea@E+n@E+2) - (@+2—1) A (ﬁ)r(p—w)‘

Een der meest voor de hand liggende eigenschappen is:

de p¢ term van

NS o hoitliob Q. (2, )= QPul(z, 2 —1).
4 eop e —1
Bewijs: Lz, )=, A S
J Pnler 8= 21 ()t
; " " b Te—
D, (2, &) = f}go (p) e = q?" (.,,, o — 1), met &> L.
Verder is:
84) « ¢ o0 o Cu (2 2) + D) (2, #) = Put1 (2, 2 — 1)
of volgens (83)
O i i O (5 @) = Puir (& @) — @ (5 @)

1) Vergel. A. A. NILAND, diss. 1896 en Prof. Dr. W. KAPTEYN, Versl. Kon.
Ac. v. W., 27 Maart 1013.
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(pn (5; «:E) —l' Cp”! ("?"J 05) —

Bewijs:
i g\ gpte—1 i gEEe—2 '
S\t () rrea—y|

=0

|

3 ﬂjfj—.t—l

gnta—1 “‘: =
r(;.zq-}c_)Jr;‘O:( )+(p—nw)l T(p+ea 2 ST

":? (n + 1 ) gp+#—1 s”‘2 _"{ﬂl 1+ I) EEE e
2 (pi)rpra =, 5 s Jrpra—y
q. e d.

@1‘+] {;’3’,‘ b= I) .
Vermenigvuldigt men beide leden van (84) met ¢*dz, dan is

(i("‘: an (,.::, a‘)) = & ¢ll+1 (’:’ = I) d 5.

86) TR
of ook
87) e de.2*~ . Lu( @) =e.22"%*. Lys1(s, 2 —1)d 2
Nog is
n!
( = ¢
BRI L, (z, &) (,,__j,).fu-p(ﬂ «+ )
Ly (2 m) ' /n\ grte—l
' PR 2 N e
Bewijs: Qs o)== F(u + 2) P:‘ (ﬁ) NTED
JEET qc:_)____ f;, ny  zF
oL r(z;+x}“P:O(p)r(p+x)’
Iu’('j! o*) b :u‘ " gp=—1 L
i (- Tx)’jfil(p) LY pra)
i ol 1 n—1 g
\ n—1 sre3 SR I | BTN
”w‘:'_‘](j)r——l)l‘(p—{-o') q_Ju( q )l (¢ + @+ 1)
= Llr—}_(“:! & | I)
T I' (124 )
s ao of L.(z ¢)=nL.-1(s -+ 1)

Zo00 ook:

L' (z a)=nL\—1(5 &+ D=unn—1)L,_a(z &+ 2)

ete.



Differentiaalvergelijkingen:
1%, voor L, (s, =)
89) . ..aL/ (s, @)+ (z+e) L) (5, a) —nLi(z 2)=0.
Bewijs: (87) wordt na 2 |+ 1 en n|n—1I:
d(@e* Loz, a+1))=¢.22"". L.(3, 2)dz.

of volgens (88'):

d 3;3‘ 2. L) (2, a)} =e .82 . nL,(2 =)

Uitvoering der differentiatie levert (39):
29, voor %. (2, #):
89/) + . . 3 (5 @) + (24 @)% (6 2) — 1 a5 @) =0,

omdat ©a (2, &)= 1%—‘{?5”—’}%
3% voor Q,(z, 2):
89") 2 ®a’ (7, &)+ (z+2—a) P (3 ) —(n +2— 1) Pa(8 2)=0,
omdat Pai(z, @) =28~ Lou (2, ).
Recurrente betrekkingen: Vergel. (74) en (77):
74) « « Luyi(s ) =(z +2n+a)L, (s a)—n(n+a—1)L.a(z x)
(n4-2) gu 1 (5 @) = (3 + 214 a) (2, ) — 2 Pua (2, 2)
f ?(;z+x)cp,i+1(5, 2)=(z+2n+ a) Pu(s, ) —nPu—1(2, 2)
Uit (887) volgt'

d ( P 1—}):- C'D"—l H:z“-_{ﬁ )

na uitvoering der differentiatie vindt men:

90) « . . 5P (5 @) —(@— 1) Puls, &) =nPu_1(z &+ 1)

of volgens (83)

90') . . 2Pu(z, 2—1)— (2 — 1) Qu(z, @) =nPu— (z, &+ 1)

of ook

90"”) . . 2@ (7, &) —n@u_1(s 2+ 2)=(e— 1) Q. (2, )
en volgens (85)

00"") . . 2P (2, @)+ uPa_alz @) =(n+a—1)P.(s 2)
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Nog is:
91) . . 2@ (2, )= (n+ ) Puy1(2 &) —(s+ 2+ 1) Puls )
02) . .29/ (5 2)+(2— )P (3, &) —nQu_1(3, 2)=0.
Uit (85) volgt:

o, =9, — @’ voor argumenten z,

Cp-_z — cp:;f e (PQI

----------

dus
n
-l r ’ ’
D2P=0u— P =Pup—I
p:U
n
03 ) R ke of ook Y @, =@t

p=0
Uit (92) volgt:
i Qi—1=2Q + (2 — 2) @/

dus
n n i
_\,: 1P 1=2 E Qi + (2 — ) )_: @i’
1 1 1
=2@", 1+ (2—2)@ 41 volgens (93)
=(m+1)0,—@",1+1 volgens (92).
I i __] n—1
Nu 1is E ?‘@j,_.1=:}':l'¢,t+}: CP,'=
i=] i=1 i=10
n —1
E z @f _+- $!?l = (” ks I) ':.D’ll garrer ':.D”u -1
=1
“ -—_]
04} Evre e ke of ¥ iPi=n®u— P us1.
7=
n—1
04) « .o N iQi(s 2)=nQu(s, 2 — 1) —Pusa (s, a— 2).
{=

§ 4. De genetische functie voor @, (s, a).

Volgens de definitie der Abelsche functies is:

T g e
05) TSN, (v
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De genetische functie der algemeene polynomen &, (x, ) kan
nu gevonden worden, door gebruik te maken van de definitie
van RIEMANN !) van de integratie en differentiatie met gebroken
en onmeetbaren index.

RIEMANN definicert een « herhaalde integratie van f(x), sym-
bolisch D f(x) = x* . R* (x) geschreven, als volgt:

e 1 [ Lena
RfW=rg | Gt=p== 2> 0.

o/ 0

: ® T n+1)
1: T . . foa =y —— i A
Als f(x)= O(z v, dan is R* f(x) Py x]a x

718

Il

[

r J\ ]-‘ (jj + I)
of D& x)— N s 42
f( ) 4__40 (P Ty 9&) ay A

»

In ons geval is:

n

f@)=Qu(x 1)= ‘é_‘o (;) ﬁj;%#l—) e TS (7 54);

P e AR =
g6) dus D*=1Q.(x, 1) __"'%n (jJ) b IR Qn (v, ).

Deze formule geldt ook voor & — 1 negaticf, als men definieert

: ﬂ- [)};+¢—l 4 -
i“_lf(":) -——'.1‘&‘:— X d_rmr-f_(’ﬂ_ a2 >0

waarbij £ 't kleinste geheel is, waarvoor b4 o—1=0. In ons
geval is dus £ =1 voor 0 & <AL

Nu is:
o I 27
% o Ll — e » -—
%@mnuwﬂl_ﬂeh.
dus
"_'f_;‘ 1 .
97) - oo 2 Ol x)tfj':]—i—q]-])ﬂ“]c’“/I—r.

0

Het convergentiegebied is de eenheidscirkel.

1) B. Riemany, Versuch ciner allgemeinen Auffassung der Integration und Diffe-
rentiation, 1847. Mathematische Werke, 2t¢ Auflage, p. 353
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Voor « geheel (1, 2, 3,.4) vindt men onmiddellijk:

% ‘L—o\l a
S ¢ B or— it ([ ) e 1= — 2 (%)

==l ZE

(1 —o)f=*

= e — )

,E/,{‘—l

waarbij # (¥) een polynomium is, waardoor de termen met

ke —

2% a1,...2%—* worden weggenomen, zoodat

i — =2 (X Ve e ek "'(._Ql
N £% Ot — (————I ’) = ; RS e
98) "(‘Tj Qt! {.-1', k} v 'E’k._l € I I |2 ‘3 (R S ﬁtk—;ﬂs
zijnde X = =S
I —7
§ 5. De kettingbreuk:
= I o I o+ 1 2 o 2
69)...]&2:%——:’——|E|——[._;fﬁl.__r§|_1_]: —
+ oo 3
— 1 £t -2 a_},- s
_I‘(x) S—I—_‘{' (—1) ,..{{,1.
— 0

De naderingsnoemers zal ik voorstellen door &V, (z, «),
dan zijn de recurrente betrekkingen:
99(1) -‘JVE n-41 (3: lx) = 3 JV?. n (3: 95) — -‘?v'.] it—1 (3: 0-“)
(1 4+ 2) Ny, (2, 2).

Het ligt voor de hand, om afzonderlijk de recurrente betrekking

991’) Arg w42 (,’J, x) =25 I\‘Tg n41 (3, 5‘5)

te berekenen voor alle functies met even, en met oneven index.
Bij substitutic van (9g9a) in (994) komt:

Nowpas=—(—28*4+n+4a) Ny, —nz Nyy—y,
maar volgens 9o/ voor u | n—1 is,
— s Noyr=—Noy— (42— 1) N, 2
dus
Noppo=—(—2s*+2n+a)VMon—n(n+a—1)Nop—1y
of

100) (— )"+ Nopugry (8, &) = (— &%+ 2 n + &) (— )" Nau (3, @) —
—n(n4oe—1)(—1)""! Nop— (2, ).

6
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Deze formule herinnert aan (74) voor &= —2

Lori(—2 o)== skt=2 s &) L, (—5*, e)—n(n+oe— 1) Lu—1(—5% @)

want tevens is
Ny=1=(—1)". L (— 2%, 2)
en N,=2*—a=(— i)' L, (— 3% ) = — (— &° + 2).
Een zclfde berekening leidt tot een formule voor Nowsa (3, )
Volgens (g9b) is: Nyy=2Nay1— (n+a— 1) Nay—2-
Substitueerende in (994):
Noy11=1(g* SV — g+ a— 1) Vyw—s
Verder is:
(n+a—1) Ny 1=5(+a— ) Noy—2—(n—1)(n+0— 1)NVou—3
dus
Nont1= (52— 2n—a+ DEMawe1— (n—1) (n 4 — 1) Ngn—3,
of

t02) (1) Niusr (6 8) = (— 2+ 25 +a—1) (=0~} May1—
(u—- 1) (n+a— 1) (— 1)*—2 Nau—s.

2

Vergelijken wij met (74) na = | — 24 n|n—1, @

a4 1:

Li(—2%e+1)=(—2"t2n+e— 1) Ly—1 (e, 2+ 1)— (12— 1)(n+e—1)
Ln—‘l (;;” ¢+ [)

zoodat

want tevens is:
N, (2, 2)=2=(— 1)2.2.L,.
N, (5, a) = —(a+ 1)s=(—1)'s}—7+ (e Di=(=1)'e- Ly (2% et )

Nu was L, (L‘, oc:] —T (;; - gg) Z (;) ff(}:’._-_*
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dus
= . 22p
[ == S ()
104 \ p=0 ]5[‘(‘15-|-0:.)
|V 1(5, ) =(—1)5 Lu(—22 2+ 1)=

2P

n b

—(—rerita+ 0 3 =1 (3) i

p=0

Deze formules kunnen ook als volgt geschreven worden:

n(n—1)

" L

Ny (2, 2)=2" “gfs(n Foa—1)z20-N L (n4-e—1)(n+o—2)z2r—*

_n(n—1)(n—2)
1. 23
Voor z=1, is:

c(rte—1)(nta—2)(nta—3)B2 -0 ., etc.

Nan(s, ] Ly gtn_ 2% (9”_IJ_,;S::—E,I,2”(2”_2)_(2”* )(2 7;—3
s I 23 I8z 24

o
Qin—0
& +..

2n(2n—2)(2n—4) (2n—1)(2n—3)(2n—75)
s 2 ) ’ 23

o 2n(2 F— Q
(23):“:_ ! ( ff_“__) (2 ;-:)‘211-—-,. _+

of Ny, (8, 1,) = 2y

22 }

2n (2 "— 1) (2 u—") (2 71—3)( )t __ s,
5 8 o AT
als A, (s) de functies van HERMITE aangeeft !).
Evenzoo is:
Hy i (=)
pIntl
H, (2)
ot

Mi‘-l'l (:“’ 1!}2) —

105) . . . . of algemeen W, (z,!/,) =

Eenvoudiger is dit te bewijzen, met behulp van (99). Deze
formules zijn voor a="/,:

J\I.‘Jn 41 (3: 1/2) =& j\rfu —f AF"H—]

JVQ,L.Q_g = g IVO,, gl = (H -+ .;) No

mne

1) Vergelijk: Versl. Kon. Ac. v. W., Prof. Dr. W, Karrevn, ,Over de functies
van Hermite, 1ste ged. 1o April 1914. form, (3).
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Vermenigvuldigen we respectievelijk met 22u+1 en 22#+2 danis:
i+l Ny, 1 =22.2"" Ngy—2.21%. ptn—1 N 1
22n+2 Ny, 12=22%. 2+l Noyp1— 2 (2 w4 1) 221 Ny,

of in ¢én formule:
2 N,=2z.22"'N,-1—2. (v — 1) 2= N, _s,
terwijl voor /, geldt:
H,=2zH,1—2 (n— 1) T osty]

Tevens is:
Hoz I = 20 'Nu (2.‘, 1[.2)
H=2z3= 2!, N, (2, '],)
zoodat wecr

105) e e e (e =2 Nu(EE])

§ 6. Volgens het voorgaande bestaat er een zeer eenvoudig
verband tusschen de functies van Abel en Hermite.
Uit (105) en (103) volgt:
Hawra 8] =228 +1 Naug1 (s o) = (— 1)n 22n+l.g L, (—'2% °)
= (—1)rt+! 2241 4T (n42%,) @ul— 52,%,) - . .. (76)
Nu is verder volgens (06):
&, (%, 2s) = D', (x, 1) = 2l R, (x, 1)

1
1y
:L— Cpu(i f, ,Il)(l,f
| T@ ) o—g"
dus
o= 1)
12 Pul— = I
A 8) = Ll e
@u( ? ‘l) ‘»/ - n (I --—f)‘h f
cn
1
. T (n+°) Qu(— 224 1
100) H:u ()= (— 1)%, 2284l T (‘)/2 . _(l( ; /)1;;)’ dt.
P

0

Het is nu cenvoudig a4 (z) in cen reeks van Abelsche

polynomen te ontwikkelen.
1) Vergelijk: Versl. Kon. Ac. v. W., Prof. Dr. W. KAPTEYN, ,Over de functies
van HERMITE. 1%t¢ ged. 10 April 1914. form. (5)



Hiertoe gaan wij uit van:

[
ae =3 A Qi (— 2, 1)
0
107) met

/IFL = 1. 1 [f —_— (= —_.___! ‘u‘ ! =4
,[ ISl ! (e —1)!
Vo]rrens (78")

Su(—rx )= (—1)r () 5 (+7)r = (wegens 107)

= 3 = 0r(2)rr 3 =0t (B =)

p=0 P k=10
= BN ph(f — p)n—k D, o T
2 ) =)t (x, 1))

108) . . . of Pulta, )= 3 (:)t"'.(l — =k (i, 1)

zoodat
1
Pult 7, 1)
f (r— 2 =
0
" l
AN L - : no— k=1l
=Y, ( )@(1, 1) Blk+1, n—Fk4 )
k=10 '1
W_I‘(u—i ) Tl—4k+") )
=) A Th—k4) oY
dus

100) [f;!,,_+.1(3):(——'1)”‘-32"'*'1’151;?_ E L AR, Qi (— 22, 1).

Voor 3, (s) vind ik:

1) Zie blz. 87 voor de volledige afleiding.



86

Nu i1s:
O, (1, ) = D= @y (3, 1) = 2= R= D, (, 1)

1
2 d [esn
.y ‘TR) d: (1 — )

0

1

v el )

== (“ﬁ)[ X 2y d t.
0

Differentieert men (108) naar Z:

n

2 (t2,1)= Y, (/) g““'l-( [— =k —(n—k) 2 (1= Qi (%, 1)
F=0 \"

en substitueert, dan is:
i W I (n+1) “T(m—k—")) _
Pl ) =—"h e T ) & T—&+ 1) Pi (1)

0

dus

110) Hau(z)=(—1)*11.28""1.nl =Y
0

Langs denzelfden weg kunnen alle functies @, (%, ) en IV, (%, 2)
ontwikkeld worden in reeksen volgens Abelsche polynomen.

Bepaalt men deze ontwikkeling direct volgens form. (66), dan
geeft de vergelijking tal van integralen.

In het voorgaande nemen de functies van ABEL blijkbaar een
bevoorrechte plaats in. Men mag verwachten, dat dit slechts

schijnbaar is, wat als volgt kan worden aangetoond.
Wij hadden:

) o i m+ G=2 = LGN
of (__I)a»._r_(::_ —I—):%:(—I)" (’j) & (+ %, 1).

Passen we op beide leden de operatie D~ toc, dan is:

- .‘L‘”"l‘“_l_’i i [ A (1. ¢
(=1 '1‘((4—1-;)—}0"(H " (i)&("x}’

1) Deze formule voor A2 (z) is langs anderen weg afgeleid door den heer
N. G. W. H, BEEGER. Versl. Kon, Ac. v. W, 17 Juni 1914, blz. 95.



of, lettende op (30):

b
IR ;) o

111) of ook
Ontwikkelen we nu

~ iR at .
wictni= 3 0 () e

dus, volgens (I11)

=¥ (— 1) (n) 2N (— )k (2 X x
3:0 2 _{,:0( (k) ( )
In ‘talgemecen is:
B N =Y D tir= Uy
i=0 k=0 k=0 i=#k
G e o i e
+ tly o+ Uyy Uy -t
dh 'y onn 6w
'i_ Hnu"‘ Hrq |‘ ----- | My
dus
= ',5 { "
(=2, )= X (—Dfx(—x2) ¥ (—1) (. ()
k=100 t=k ¢ i
e E [;'L[/CJ.('-"k &)
r=10
waar
s Qi (P i o 1t "n-—k) s
]”d_,%.( A (5) (l)’ : .—x( ) LA) (i—-*fﬂ =

4k (j{z] ":;:"‘ — 1) (ft:-/u) e (:’f) (1 —g)n—*

0

ten slotte is dus:

n

12) - gelem )= 3 (}) #0— 0t (@)

)
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Het zal duidelijk zijn, dat deze formule en die voor de inte-
gra;tic, respect., differentiatie voor gcbroken of onmeetbaren index,
evenals in het bijzondere geval, dat voorafgaat, ons in staat
stellen elke functie wn(z,2) of M. (s 2) volgens een reeks met
willekeurige «, hetzij bestaande uit x-, hetzij uit MN-functies te
ontwikkelen. Hierin ligt een schat bepaalde integralen opgesloten.

Ik wil niet verzuimen te wijzen op een eigenaardige symme-
trie in form. (111) en (80).

3 . L-,, (-— Z, ﬂ)— ’.11 ‘1 ——3_):1:“_
o)) g o I S ,,ﬂ )I‘ e

(+ .‘Z.')ra o al P L( -8, p:)
R R A b )

Hieruit volgt deze stelling'): Als een naar opklimmende mach-
ten van z gerangschikte functie naar Z,(—z, ) ontwikkeld kan
worden, zoodat symbolisch

fle)=F(L)
f(L)=F(3).

L* is hierin steeds te vervangen door L;.

is, dan is ook

§ 7. Het verband met de functies van Bessel.

Voor alle waarden van z en 2 is

S e
2 e T e LT )

of voor n=a—1, z=2V xy:

z—1 OO (_ l)r

L2V xy)=(xy) 2 Z 7‘71“—(7-} ')(J'J')"-
Z0oo 1s
¢e—1 OO s o0
TG ) =y Sy f==iredt
¢ 12V xy)=(xy) 3‘%*' P _“c)J

e e e ) (e e
=Ty 2’? )(_m- )'*( )F(f12+;-j+( )[‘(illlli/" 2)+ ‘

. R 2 La(—2)
— (1 v)%— N T L
®7) < m\ T (m 4— &)

N =

1) Lacuerre, Bull. de la Soc. math. de France. Tome VII, p. 81.



89
dus

e— 1 = " Lm. == )%
N3 el etk (2 Vxy)= E ,_ ém:}]—%))'

Vermenigvuldigen we beide leden met e—¥ 3" y“=1dy en
integreeren tusschen 0 en oo, dan is:

eF :L.l—._.j ;lf e f‘%l[ (q ]/1_,)({. ;? x" w—rf pe—1 L”‘(_}!"z) '
. “ ¢ i )8 a=1\2V Ay)ay “"m_.:d 7/2' s .J (UJ-,L'.%)

Nu is volgens (I11I):

2
v 0]
Ln(—p 2)
— 1y ot it —1 e
dus [ﬂ Y.ty BTy i) dy

0

/] 1
I ik o — i e s =Y R | ’ )
i aE A=, (w) T2 (m + «) ]:.6 S e UK

volgens (62)

“~

n I'(m -+ 1
=T (n+ &) (— 1)* ( ) ‘F qu:;)j, volgens (63).
et tweede lid wordt dus:

L (n+ 2) {‘ (” ) (— a)m

-\ g I‘_(IJ:E_{———:_J:-} =L, (“" 4 ‘x) ’

Tl [ a—1
114) of Ly (—x, a)=¢e .27 2 [f“-".f“" 5 L,1(2Vxy)dy,
0

2
of na ¥y } — en x ‘ %2
4

v 4]
114/) 280t g =1 o= L, (— 2%, a) = [ e—=Pl, Binte [, (B2)dp.
JO

Gebruik makende van (101} en (103), vind ik

T o0
115) N (x, &)= (—l)[]:““.pf [ B/ Qe ], — i (Bx)dp.




Ggo

Uit (113) volgt nog:

- . 2 ™ Lal—2 %)
% 2 ti [, _1(2Vaxy =¢€. . el d =
(xp)® & (2 Vay)=e m}';() T ()
en
= — © g L (— %, 2)
xy) 2 2t Y [“‘_ 2 ]/- Y =t et 0 z___ Lo\ i S
(xy) 2 e 12V zy)=c¢ :nZU e e )
dus
r{“ s Lm (____J/ JC] -32 ym. Lna (_ ¥ :JG)
o)l ey S L e e S T i\ e
1) d m}:"u m! T (m+ ) ‘ ]}:‘ﬂ m! T (m -+ a)

cen vergelijking, die herinnert aan de symmetrie, waarop aan
't einde van de voorgaande paragraaf gewezen werd.

§ 8. De AN-functies kunnen ook nog als volgt geschreven
worden:

—1 e

AT TRy | ot (n) p— x*
i\"lu-i-l(l) ‘3‘")""‘_2211_‘_"{4(3’1:&‘&5 ‘ )

117)--i

\

{
f—) voorstelt.
dx

; A d 1 ti 2 —1
; : f > ~ e - e - = .
waarin .4, de operator —o—y 7o\ 4

Bewijs:
Now(z, ) =(—1)" Lu(— 2% &) - -« - (101)

dus
;_i- Noul(zy @)= (—1)"(—232) L, (— 5% @)= volgens (88")
dz
—(—1)p—t.2n.2L,1 (— 22 2+ 1)= volgens (103)
— 21 Nan—1(2 2)
of
X d
L8 Rowie e i - Nyn(s, &)=2n Naw—1 (2, 2)
Evenzoo is:
Niop1 (8 #)=(— 1.8 La(— 5% a+ 1) (103)
[i a d . ) >
2 8-l Nyiq1(s @) =—=(— 1)t e. (— 2% La (— 2%, &+ 1)



gl

f
(Ll = I (2+ e+ 1) Qu(—2% «+ 1) = volgens (83)

[ ~
(—i1)+e(m+2)C (n+ 2) (—22) Q. (— 2, )
(—12z(m+a)fx—1L,(— 2% a)=2@m+a)2*—1 NV, (2, )

7 =
119) dus = (24— Nay 11 (3 2))=— 2 (n+-a) 2?2~ 1 Moy (3, ).

ds

Verder is:

d x J ) 7
g 3(—-ng « (2, ﬁ); —e—#)— 25N +2n Ny, 1} = volgens (99a)
= — 2" IVQ,“*_] (.3', Jﬁ)
dus
I e d | _ A7 |
1204) . . Mpup1(s a)=—_.et" . =3¢ V(s a)(.
Eveneens
(l" o . a h
7.«‘) ﬂ.g"d_lNiu'i'l(ﬂl x)E:‘,—- ';—2:-“‘1\;:3“'1'1—1- (H }-‘y] L JV’,"\
——2¢ .81 Ny, 1a(2, )... (990)

dus

TR AN S '
IZO&) j\g,,*.g(s, a):—:t’.’I]Tll .{i"’ i.;""'“ L ora—1 Afr2u~|-| (,’,‘, J.’o)'\'-

Nu is N,=1, dus volgens (1204)

I . d .
N =——.¢ Vs
. 21 dz ( )
I . I . 174 .
N’, = ¢ &, = (::"“‘—] . — (e ))
2 grea=lidg a3z
e 'IT, :ﬁ"l ,,A:”) &
2-1
etc:

§ 9. De bijbehoorende differentiaalvergelijkingen.

Fen der vele manieren om te komen tot de differentiaalver-
gelijking voor Ny, (2, #) en Ny, y1(3, @) is de volgende:

N, n4 8= -SIV.’.’JA +1 (” ar .%) AT-;,, Seon (99&)



volgens (120) is:

T T d [
j\(“n 5 = - f‘€:~ : '39“_1—*6": 7,
a2 =T3¢ a1 gz’ dz )
Y =
en Nawp1=—75€ =N
: 2- adsg

Na uitwerking en substitutic komt er:
121a)ke - s%y”-—25’}!'—1—2.215y}+(2:¢—-1)y’=0

cen differentiaalvergelijking, waarvan Na, (2, «) een particulicre
oplossing is.

‘{VL‘ n —

Langs denzelfden weg of door de opmerking, dat T

— 22 N3 ,—1, vindt men Voor de differentiaalvergelijking voor
Nan—1(2 2):
1216) 2}y’ —2 xy +2(2n— Dyl+@e—1)F y' —y)=o0.
Ook kan men uitgaan van de differentiaalvergelijking voor
L, (2, «):
89) . .- % Lz, )+ 2+ a) L/ (2, &) — L.(z, 2)=0.
Kiest men tot onafhankelijk variable x, 266 dat 2= — 2% dan

vindt men direct (1214).
Deze methode verdient vermelding, omdat de studie der

differentiaalvergelijking (39) die der vergelijkingen (121a) en (1210)
omvat,

Is toch een tweede particulicre oplossing van (89) bekend, dan
voert dezelfde substitutie tot cen tweede particuliere oplossing
van (121a) en na differentiatie tot cen van (1210).

In het volgende bepaal ik mij dus tot de vergelijkingen:

89) v v v e .2y (st )y —ny=0
7ij ¥, een tweede particuliere oplossing, dan is:
z L+ (2 + «) L/ —nlL,=0
20, 4 (2 4 ) ¢,/ —nd,= 0.
Na eliminatie van L, en ¥u:

b (an Lu” — ‘ﬁbn'” Iln) "I‘ (3 ‘l‘ ﬂ) (“P?l L.z! T, 1PJ|, Ln) =0
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: uLu L:t.w +(7+‘3]{'\P:1L Lu,u::O

I3
,.’

£ (bn L — Labl) = —1—2,

ans 2
log (1P'rt Lul o Ln Hf)m!) —_— &
Ya 411/ — L Eb-u/ = (e Sa g e

(;i'-" (I{b}l) = C::: Ty

-

ta
«Q
<)
!
i
+
&)

127 U, (2, &)=L, (2 —_— i,
) n( ? ) N( ’ ) ,'.".'“ : Ln— (3’ 'x)

Het is mogelijk deze functie in een anderen vorm te schrijven.
Daartoe stel ik in
2y +(s+ea)y —ny=o0

y=ul,+w
dan is:

bz u'/ + (24 @) W'\ Ly + s’ + (2 + @) w —nw+2zu’ L/=0

Kiest men z z66, dat de coéfficient van L, nul wordt, dus

4+ o0
" y—F
wW=C— en u= C,+C — d 2,
E
dan moet:
e—*
s’ 4 (@ +e)w —nw+2—— L/ =o0.

”

Na de substitutie @ = e—*. ¢, gaat deze differentiaalvergelijking
over in:
st —(z—e)l —(nta)t=—25"" Lieh

Stelt men nu weer:
t=2g'—*%y, dan is

123) . . .2y —(e+a—2)y — @+ 1)y +2L/=0.
Deze differentiaalvergelijking heeft nu K, (z, «) (de naderings-
teller van de kettingbreuk K,) tot particuliere oplossing, zoodat

\ \'\

134) T '4),, ('.'.’, JL) — L,I (.‘.T, Oi] f“‘ -} K e ( 3.:)_
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In de vergel. (123) heeft men een nieuw aanknoopingspunt
voor de studie der tellers X, (z, «). Tal van eigenschappen, o.a.
gctalbetrekkingen voor de T functic kunnen gevonden worden
met behulp van de differentiaalvergelijking, de algemeene formule:

o0

125 G (2, w):fe—*,t“—l

0

Ln ('-"; 0.’-) e Ln (— X, fz) r"]

g+

X

en de recurrente betrekking:

126) K, 41 (2 2) = (z+2n+2) Ki(z, ) —n (n+oa—1) K.—1(z @)

Het is waarschijnlijk, dat tal van eigenschappen van de poly-
nomen Z, en NV, niet alleen gelden voor deze, maar karakteristiek
zijn voor de naderingsnoemers van de kettingbreuken van
STIELTJES.



Blz.

(1
10,

21,

43,
30,

V.

V.

ERRATA.

staat:Rxr bl S moetizijnseicais
staat: p=, moet zijn: p,”.
staat: p*, moet zijn: p,*.
staat: ¥ > «, moet zijn: x < .
staat: R*(x), moet zijn: R*f (x).
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STELLINGEN.






STELLINGEN.

1L

Het is van belang de functies @, (z @) ook als functies van &

te bestudeeren.
(definitic van @, (2, #): blz. 74, form. (76)).

II.

In de theoric der algebraische kettingbreuken, moet de be-
naderingswet van LAGRANGE ") meer op den voorgrond gebracht

worden.

I11.

In de leer der kettingbreuken necemt men als eerste naderings-
noemer, 5, steeds B, = 1. Deze aanname, die op analogic met
de regelmatige kettingbreuken berust, zal waarschijnlijk bij de
verdere ontwikkeling van de theorie der kettingbreuken van
STIELTJES (blz. 1) vervangen moeten worden door B, = f(3),
terwijl de cerste nocmer by 2 g(2) wordt.

(£(s) en g (2) zijn functies van z).
IV.

Het kriterium voor algebraische getallen van MINKOWSKI is
van weinig praktische waarde.

Gottinger Nachrichten. 1899. S. 64—388.

Ges. Abh. Bd. I XIV. S. 293 ff.

1) Vergel. b.v.: ,PERRON. Dic Lehre von den Kettenbriichen" Teubner, 1913. 5. 42.
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V.

De ontwikkeling der wiskunde vereischt de vervanging van
elk formeel bewijs door ecn bewijsvoering, dic duidelijk laat zien,
hoe het theorema uit de gegevens volgt; in dit opzicht verdient
b.v. het bewijs van STIELTJES vOOr de stelling, dat de wortels
van de naderingsnoemers van zijne kettingbreuken alle reéel,
enkelvoudig en niet positief zijn de voorkeur boven dat van
PERRON.

SriELTjES. Ann. de Toulouse. T. VIII. 1804.

PERRON. ,Die Lehre von den Kettenbriichen” Teubner 1913.

S. 394—395-
VI

De ontwikkeling van de taal en de methoden der meer-
dimensionale meetkunde is van het hoogste belang voor de

analyse en de mathematische physica (b.v. statistische mechanica).
VII.

De mectkundige behandeling der logarithme zooals KLEIN
deze voorstelt is niet te verkiezen boven de gebruikelijke alge-
braische methode.

F. Kuein. Elementar Mathematik vom hoheren Standpunkte
aus. Bd. I S. 319ff.

Zijne methode is nader uitgewerkt in het , Zeitschrift fur
mathematischen und naturwissenschaftlichen Unterricht”, 44 J.
1913 door

FrENZEL. Zur Kleinschen Einfiithrung in die Lehre von den
Logarithmen. S. 1. en

Funk-DORRIE. Die Kleinsche Einfiihrung in die Lechre von
den Logarithmen. S. 463.
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VIII.

Het is zeer te betreuren dat in de leerboeken der stercometrie

de kegelsneden niet of bijna niet worden behandeld.
IX.

De cosmogonie van LAPLACE verdient de voorkeur boven
die van FAYE.

H. FAVE. Sur I'Origine du Monde. 4° edit. Patis G. V. 1907.
Chap. XIII et XIV.

X.

De gronden, die ARRHENIUS in zijne cosmogonie aanvoert
voor het betoog, dat de ontwikkeling van de sterrenwereld cen
eeuwige herhaling zou zijn, zijn onbevredigend.

S. ARRHENIUS. Das Werden der Welten. 1907.

XI.

De wijze, waarop PLANCK uitgaande van de eigenschappen
der ideale gassen, de tweede hoofdwet der thermodynamica
afleidt, is te verkiezen boven de methode van BRYAN.

Max PLANCK: Vorlesungen iiber Thermodynamik. 3 Aufl. 1g1r.

G. H. BryaN: Thermodynamics. Teubner 1go7.

XII.

Bij de behandeling der eigenschappen der geconcentreerde
oplossingen dient men uit tc gaan van de theorie der ideale
geconcentreerde oplossingen '), berustende op de thermodyna-
mische potentiaal en niet van de theorie van vaN 't HOFF.

1) Voor de theorie der yideale” geconcentreerde oplossingen vergelijke men b.v.
K. IkEpa. The Journal of the College of Science. Imperial University. Japan.
(Tokio) 25. Art. 10 (1908).
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XIIL

Het begrip pstof” is even onbegrijpelijk als het begrip j,on-

stoffelijk” (in de beteckenis van ,geest’).

XIV.

at bij het onderwijs in de natuurkunde op

Het wordt tijd, d
t de vorderingen

de ILB.S. meer rckening gehouden wordt me

der wetenschap.
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