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??? INLEIDING. Het is reeds eenige jaren geleden, dat de studie van hetstandaardwerk van Stieltjes over de naar hem genoemdekettingbreuken (Annales de la Facult?Š des Sciences de Toulouse,T. VIII et IX, 1894 et 1895) mijne belangstelling voor deze takder wiskunde deed ontwaken. Het ontbreken echter van eenleerboek over de algemeene leer der kettingbreuken maaktedestijds verdere studie in die richting hoogst bezwaarlijk. Diegaping in de rij der leerboeken werd in 1913 op hoogst ver-dienstelijke wijze aangevuld door het werk van Prof. Dr. OskarPerron â€žDie Lehre von den Kettenbr??chen". Het is dit werk, waaraan dit proefschrift zijn oorsprong dankt. In \'t kort zijn de resultaten van mijn onderzoek de volgende: Het eerste hoofdstuk geeft, aan de hand van een kettingbreukvan stieltjes, een merkwaardig soort polynomen, die in eigen-schappen groote overeenkomst vertoonen met de geheele getallen,zooals b.v. de ontbinding in factoren aan den eenen kant, en dedeelbaarheid der getallen aan den anderen kant. Hierdoor wordteen nieuw verband verkregen tusschen de Getallenleer en Analyse. In het tweede hoofdstuk heb ik

een algemeen bewijs trachtente geven voor de mogelijkheid der ontwikkeling eener functie,die voldoet aan de voorwaarden van diriciilet, naar de naderings-noemers eener kettingbreuk van stieltjes. (Vergel. perron,blz. 382, waar dit probleem gesteld wordt). Onder de polynomen, die aldus als ontwikkelingselement ge-bezigd kunnen worden, vallen de in het eerste hoofdstuk behan-delde polynomen, verder die van Legendre, van Abel (vergel.Prof. Dr. A. A. nijland, diss. 1896; Prof. Dr. W. icapteyn,



??? Versl. Kon. Ac. v. W. 27 Mrt. 1913), van Hermite (vergel.Versl. Kon. Ac. v. W. 10 April, 12 Mei, 17 Juni \'14). In dezebijzondere gevallen was het bewijs der ontwikkeling reeds ge-geven, zij het dan ook in elk geval langs anderen weg. Eenderde hoofdstuk is nu aan de functies van Abel en Hermitegewijd, door hen saam te vatten tot eene algemeene polynoom-soort met twee veranderlijken, dat afgeleid kan worden uit deuitgebreide kettingbreuk van Laguerre, die behoort tot degroep der kettingbreuken van Stieltjes. #
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??? HOOFDSTUK I. De i?â€ž-polynomen. Â§ i. De eenvoudigste kettingbreuk, die men zich denken kan,is zeker wel de volgende: 1 )........= [7 j7 j7 â€? â€? â€? ad inf- Zij behoort tot die merkwaardige groep kettingbreuken, dievoornamelijk door de werken van STIELTJES op den voorgrondzijn gebracht. Dit blijkt het gemakkelijkst door middel van de substitutie x \\ â€”. \' z Na eene bekende herleiding vindt men: 2) â€? â€? â€? â€? ^?–^F i^ iF ir4 ad inf\' - De algemeene gedaante van een kettingbreuk van Stieltjesis toch: 1  ad inf- (Vergel- p-\') P- 393) I bxs \\??2 \\b3z \\baz met re??ele, positieve b\'s. De groote eenvoud van bovenstaande kettingbreuk F blijktuit de waarden der Â?\'s: bt= I (J>=i. 2. 3......) Uit het periodiek karakter volgt, dat in het convergentiegebied i) P. beteekent: Perron: â€žDie Lehre von den Kettenbr??chen". Teubner, 1913. 1



??? (d. i. het geheele complexe vlak, met uitzondering van de nega-tieve, re??ele as) Het zijn de noemers van de opeenvolgende naderingsbreukenvan deze kettingbreuk, die ik in dit hoofdstuk zal behandelen. In afwijking met de gebruikelijke notatie, schrijf ik in dithoofdstuk, voor de naderingsnoemer Bx liever Bi 1, waardoorde eigenschappen van een polynoom Bv overeenkomen met dievan zijn index, en niet met die van \'t getal v i. Bij de kettingbreuk = ^  inf. B3 = i xB4 = I 2X = i 3 x B0 = i 4 x 3B7 = I $x 6X2 X3Bs = i 6x iox2 -{-4 x3B0 = i 7 x 15 x2 -f- \\ox2 xlB]0= i 8 x 2i x2 20x3 5 x*\' Bn = i gx 28 x2 35 15 Bn = i 10 x 36 x2 56 -f 35 6Bx 3= 1 11*4-45 x2 84 x3 70 x* 21 x5 xaBu= 1 12 x $$ x2 -f- 120 x3 126 x* -f 56 7/Bi5â€” i 13X 66 x2 165 x3 -f 210 x4 126 xs -f- 28^Â° ^\' etc. De graad van 2?2v De graad van B%v is vâ€” 1van B3, v 1 is v , 4) in het algemeen is de graad van Bv gelijk etc.



??? De algemeene gedaante van het polynoom Bv \\(x) is: Bewijs: Door directe berekening overtuigt men zich gemak-kelijk van de juistheid der formule voor kleine j/-waarden. Nemen we dus de formule als juist aan voor v ^ N, dan moetzij slechts bewezen worden voor i/ = 7V-f i. Hiertoe maak ik gebruik der recurrente betrekking 6)...........Bn i = x Bnâ€”i want (N-P\\_[N-P)(N-P-i).. (N- 2p 3) (N-2p 2) p â€” iJ i 2 (p â€” 2) i) 7VTâ€”M (iv-/)^-/-!).. (iV-2^ 3) p â€” 2/ i 2 â€” 2) p l)[Nâ€”p) (Nâ€”Pâ€” i)...(Nâ€”2P 3)= (Nâ€”P i\\(p- 1)! \\ p â€” i r Hiermede is ook de juistheid der co??ffici??nten van de termenvan den hoogsten graad aangetoond, daar men â€žformeel" depolynomen met termen van dezelfde gedaante kan verlengen. Behalve de zoo even gebruikte recurrente betrekking (6) heeftmen de volgende â€žhoofdformule", die de eerste als bijzondergeval omvat. Volgens perron pg. 18 form. 3??b geldt, bij elke kettingbreuk,de betrekking:



??? \\>ll.Bujrp v_i = Bf}jry â€” \\>cl Ba i3_i (- i)13-1 Â?Â? 1 au g ??a 3 .... By-??, a l3 i?Â?_i In ons geval wordt deze formule: 7) â€? Bp.Bu p iy = Bi! v Ba 13 (â€”^ want =BX. Verder is de eerste index met ?Š?Šn verhoogd in aansluiting met de nieuwe notatie. Volledigheidshalve kan ik hieraan de naderingstellers toevoegen.Indien Av behoort bij Bv (index ?Š?Šn hooger) heeft men de vol-gende waarden: A0 = i Ax = o = x B0 A2 = x i â€” x BxA3= x i = x B2Ai = x (i x) = x B3etc. Aangezien voor de A\'s dezelfde recurrente betrekking geldt alsvoor de B\'s, zoo is algemeen: 8 ).............Av \\ â€” x Bv , waarmee de studie der tellers teruggebracht is tot die der noemers. Â§ 2. Evenals elk polynoom, zijn ook alle Z?\'s bepaald door hunwortels en eene constante. Deze laatste grootheid is onmiddellijkvastgelegd door de algemeene formule: 9 )..............Bv[ o)=i. De eigenschappen van een polynoom Bv zijn dus terug te vin-den in die van zijn wortels. Eigenschap I: Geen enkele wortel van een polynoom Bv ispositief re??el. Dit volgt onmiddellijk uit de algemeene gedaante (5) der po-lynomen. Elke co??ffici??nt toch is positief.



??? Eigenschap II: Alle wortels van elk polynoom Bv zijn re??el.De wortels van elk paar polynomen Bv _ 1 en Bv liggen afwisse-lend en wel z????, dat Bv de grootste (of kleinst negatieve) wortelbezit. Bewijs1): De juistheid der stelling blijkt onmiddellijk voorkleine waarden van v, bv.:B3=i x = _ i Bi= 1 2X *,(*) = â€” i B5= I 3X X* x^ = -i iVJ, = â€”Nemen we dus aan, dat de wortels van Bvâ€”2 en i?v â€”1 elkaarop de re??ele as afwisselen, en dat i?v_ 1 de grootste wortel bezit,dan moet nu bewezen worden, dat hetzelfde geldt voor de wor-tels van Bv-1 en Bv. Gemakshalve kunnen we een grafische voorstelling maken, doorte stellen: fv-s = Bv-2{x) ; =Bv-\\(x)-, â– yv = Bv(x). 3 Noemen we de wortels van Bv (x) = O : â€” Xim dan is volgensEig. I, indien re??el is, x^ > O. De re??ele waarden x^"^ en zijn door hun index i gerangschikt volgens opklimmende grootte. 10). Nu is: B{yâ€”2) (o) = B<y-1) (o) = Bv (o) = 1 > o. 1  Vergel. Stieltjes. Ann. de Toulouse. T. VIII. 1894.



??? Volgens (6) is:Bv (â€” -V) = Bv_l (- xf--D) - -D) of (â€” -1}) = â€” *1<Â? - \'VBv _ 2 (- ^ - *>). Nu is > o en i?v_2 (â€” .r^"-1)) > O, want i?v_2 (o) = i >0, en er is, volgens hypothese, nog geen wortel â€” gepasseerd, dus Bv(o)>o en Bv (â€” ^v~1>)<0.d. w. z. tusschen o en â€”â€”X) ligt minstens ?Š?Šn wortel vanBv [x) = o. Verder is, volgens (6): Bv (â€” - 2)) = _ t (â€” ^ - 2)) < o. Uit Bv (â€” < o en .Â?â€ž(-â€”^ ~ 3>) < o volgt, dat tusschen â€” Xi(v~en â€”^i(v-SJ\' o, 2, 4, .. wortels van i?â€ž liggen.Passen we nu (6) toe, voor x â€” â€” Bv (â€” *a<Â?-== â€” xP~By_i{â€” x?Šv-y>). Bekend is, dat Â?â€ž_3 (â€” < o, dus Â?â€ž(â€”*,(\'-Â?) >o. Brengt men dit in verband met i?v (â€”*i(v-2))<o dan blijkt,dat er minstens ?Š?Šn wortel van Bv ligt tusschen â€”x^v ~2) en Zoo voortgaande vindt men steeds minstens ?Š?Šn wortel vanBy tusschen o en â€”x^ ~ ^ en tusschen â€”xSv~2) en â€”11).Wij moeten nu twee gevallen onderscheiden, nml. A. v = 2 (l. By (x) = o bezit, volgens (4), yt. â€” 1 wortels, evenals i>\'v_i (x) = o.Volgens bovenstaande redeneering behoort bij elke wortel vanBy-\\{x) = o een interval, waarin een

wortel van By (x) gelegen is,want Bv_ 2(x) = o bezit slechts ^ â€” 2 wortels. Hiermee zijn dusalle wortels gevonden, en hun ligging voldoet aan de genoemdeeigenschappen. B. v = 2 fi 1. By(x) = o bezit, volgens (4), p wortels, terwijl Bv-\\ en Bv_2er beide (a â€” 1 bezitten. Evenals onder A, liggen er p â€” 1 wortels in de intervallen (O, , (-^K-l), .... -4-i??-



??? Er blijft nog ?Š?Šn wortel van i>v_ 3 over, die volgens de ge-maakte onderstelling omtrent de ligging der wortels van i?v- 2en Bv-1, voorbij de wortel â€”x* 1} gelegen zal zijn. We kun-nen nu bewijzen, dat de wortel van Bv ligt in het interval/ 2 Uâ€” 1 \\ (â€” > â€” <*>) Bijx 1 (â€” Â°Â°) = (â€” Q0)^ met \'t teeken van (â€” =BSlj. (â€” 00) = (â€” 00)^_1, teeken : â€”s.Bz p _ 1 (â€” 00) heeft tot teeken : â€” s. ITet teeken van Ba^lâ€”komt overeen met dat van-Bspiâ€” 00), dus met â€”e, omdat er nog geen wortel gepasseerd is. Volgens (6) is verder: n t â€ž(2(*-l)v _ r> / â€ž(2^-l)\\ bs(jl l(â€”) = bzli{â€” ) dus ook \'t teeken van i>2(i 1(â€”is â€”e, terwijl dat van â€”00) overeenkomt met dat van -ft. d. w. z. de (a? wortelvan Â?9^ \\{x) = o ligt in \'t interval â€” go). Eigenschap III: In het negatieve interval ^o,â€”^ heeftgeen der polynomen een wortel liggen. I want B, 1) Bewijs: Allereerst is Bv ^â€”= (-Â?)--? Hi B%\\--)=i=- ; BAâ€” = ^ etc. Nemen we dus de juistheid van (11) aan voor v ^ i, dan moetnog aangetoond worden, dat (11) dan ook geldt voor v = i 1.Volgens (6) is: Bi 1 (x) â€” Bi (x) x Bi- \\ (x) dus voor

x â€” â€” - 4 ii â€” 2 z â€” i_* i 2\' Hiermede is aangetoond, dat elke Bv in \'t punt x â€” â€” - posi- 4 tief is, evenals in het punt x â€” o, want i?â€ž (o) =-f 1. Dit wilechter voor de wortels zeggen, dat Bv (x) = O in \'t interval



??? ^o, â€” -jJ g?Š?Šn of een even aantal wortels bezit. Nemen we nu aan, dat Bk(x) het polynoom met den kleinsten index is, dattwee of meer wortels in bedoeld interval heeft, dan zal Bk â€” \\(x)volgens eig. II minstens ?Š?Šn wortel daar hebben liggen. Dit nustrijdt met de hypothese, dat k de kleinste index is, waarvoor het bijbehoorende polynoom een wortelpaar tusschen O en â€” â€” 4 heeft. Het getal k is dus niet aan te wijzen, of geen enkel poly-noom bezit wortels tusschen o en â€” â€”. 4 Opmerking i. De mogelijkheid, dat het polynoom Bk â€” \\ nietzou bestaan, is natuurlijk uitgesloten. De formules B leeren on-middellijk, dat k ^ 4. Opmerking 2. Het punt x â€” â€” - begrenst het wortelgebied 4 werkelijk, want volgens (11) is: lim By ( â€” -) â€” o. v=oo v 4/ Eigenschap IV. Het deel van de re??ele as, waarop allewortels van de polynomen Bv liggen, wordt ter rechterzijde â€žwerkelijk" begrensd door het punt x â€” â€” -, ter linkerzijde is 4 echter geen eindig grenspunt aanwezig. Bewijs: Volgens de voorgaande eigenschappen kunnen de wortels uitsluitend gelegen zijn in \'t re??ele interval ^â€” â€” co^ of in een

gedeelte daarvan. Dit laatste nu wordt door eig. IVontkend. Er is dus te bewijzen, dat er steeds een Bv gevonden kan worden, die een wortel heeft > â€” - â€” s en zoo ook een B^ die 4 een wortel heeft < â€” N, als N een willekeurig groot, maar con-stant getal is. Het eerste gedeelte volgt uit de Opm. 2, Eig. III.Het tweede gedeelte kan als volgt bewezen worden:



??? Volgens form. (5) is: Onderscheiden we nu de twee gevallen: A. v = 2 fjt, , (2 â€ž _ â€ž, (l??^iiiii^i) ... *-p)â€ž ... i . 2 B. V = 2 [l â€” I. I.2.3 Uit 12Â? volgt voor de som der p wortels van .#2^ 1-.3Â?).......... Uit 12Â? volgt voor de som der â€” 1 wortels van i?2fi .3*)........._(,-,)(, .) ft â€”1 Volgens eig. II zijn nu de [tâ€”1 eerste wortels van B2ijl i?Š?Šn voor ?Š?Šn kleiner dan de /zâ€”1 wortels van B2^, wat hunabsolute waarde betreft. Hieruit volgt: Mfr 1) ^ (A* â€” 1) , (2fi i) 2 ^ 6 ^ of .J8H-1) ^ fc 0 (2 ft i) 14) en \' f4 fi



??? Kiest men dus p z????, dat ^ 1) (2 ^ 1] ^yr dan hebben 6 alle polynomen met index > 2 [t 3 ?Š?Šn of meer wortels linksvan â€” N liggen. Opmerking: Een onderste grens voor â€”is: v- 2 Â§ 3. Gemakshalve voer ik de volgende definitie in. Definitie. Een wortel van de vergelijking i?v (*) = o heetprimitief, indien hij niet samenvalt met ?Š?Šn der wortels vaneen polynoom met kleineren index. Het is duidelijk, dat elke Bv minstens ?Š?Šn primitieve wortel zalbezitten van af v â€” 3, nml. de grootste (kleinst absoluut gemeten). Eigenschap V. Is â€”xp een wortel van Bv(x) = O, dan isdeze waarde ook een wortel van alle vergelijkingen BpV(x) â€” O.B e w ij s: Bekend is: ^0= 0. I I. (â€” *t) = 1 â€” xrBÂ? (â€” xt) â€” i â€” 2 xp.(â€”xp)=i â€” 3xp xp\\ j5v_i(â€”Xj)â€”Cv-1, eene bepaalde constante.Bv (â€” xp) = o = /j B0 met ?’, = â€” Cv-1 xrBy i(â€”Xp) = Bv(â€”Xp) â€” XpBv_i(â€”Xp) = -â€” Cv-\\Xp=f1 BrBv 2 (â€” xp) = Bv i(â€” Xp) â€” Xp Bv (â€” xp) = â€” Cv-1 x, = ?’,i?v 3 (â€” = â€” Cv-l xp Cv-lXp2 = ?’, Br etc. Bv q{â€”xp)= = Atl- ete. B2v-i[â€”Xp)= =/i =/i C-i. B2v(-Xp) = o #2v l (â€” Xf) = â€” f\\ Cv â€” \\Xp= f* Bv etc.



??? B%v (â€”xp) = O etc.(â€” Xp) = O. q. e. d. Een en ander is afhankelijk van het periodieke karakter vande kettingbreuk. \'t Voorgaande geldt voor elke wortel van Bv (x) = O, m. a. w.Bv is een factor van alle polynomen B^.y. Opmerking: Is â€”xp een primitieve wortel van Bv, dan blijktuit het bewijs, dat â€”xp slechts een wortel is van die i?-functies,wier index een veelvoud van v is. Eigenschap VbU: B2â€ž [x) bezit Bv (x) tot factor.Deze stelling is een bijzonder geval van de algemeene eig. V.Men kan haar ook als volgt bewijzen:Bewijs: Volgens de hoofdformule (7) is: Bp.Bcl p r = Bp y.Bcl l3 (- if-^xKBv.Ba.Nemen we: (3 = 2, u = v â€” 1 en y â€” v â€” 1, dan is:B-2v = B\'v 1 â€” x2. i?y_ 1. = (Bv 1-xBv_1) (By x xBy-j). 15) of Boy = By . { By \\ XBy_l j. Tevens is hiermede een nieuw bewijs gevonden voor de alge-meene eigenschap V. Het is toch steeds mogelijk B^v uit tedrukken in twee voorafgaande polynomen, bv. B^ v = g (x) Bv /i(x)B2v. Beide bevatten den factor Bv, dus moet deze ookvoorkomen in B^y. Gaan we weer uit van de form. (7): \'Bfi.Bt fi y^Bp y.Bt g iâ€” i)<*-1 X0 . By. Bx.voor a = (3 ==

y = v: Bv. Biv = B\\y (â€” i)"-i By2.of, gebruik makende van (15): 16) . Bs y = By | (By 1 * By _ tf (â€” I )"" 1 } Nemen we nu a. â€” /3 = v ; y = 2 v, zoo is :By . Biv = B-iv . BU (â€” I)"-1 # Biv . By 17) Biv = By\\Bv i xBy-1\\\\(Bv l xBy-l)i 2(â€” i)"-1*\'}. etc.



??? Opmerking: Terwijl het eerst gegeven bewijs een dieper in-zicht geeft in het wezen der stelling (b.v. wat betreft de primi-tieve wortels), doet het tweede bewijs tevens de expliciete vormvan den anderen factor kennen.We hebben toch de volgende Eigenschap VI: Schrijven we voor (â€” i)v-1 ,rv: Xx en voorBv \\ xBv_i :XV dan is18)............Bp. v == Bv. D als Z>n de ft\' naderingsnoemer is van de kettingbreuk: ..... B e w ij s: Dx = i D1 â€” X2 (de index is weer met ?Š?Šn verhoogd).Dt=*X* XxDk = X* *XxX%Dt = Xf sXxX* X*.etc. De co??ffici??nten van deze polynomen zijn dezelfde als bij deBv functies, en Dk t â€” X1 Dk Xx Dk _ i.Nu is: Bv =By i = Bv Dx B2v = BVX2 â€” Bv Z>2.........(15) BSv = Bv\\X^ Xx | =BVDS.........(16) Biv = Bv\\X2* 2X1Xi\\=Â?vDi.........(17) De formule (18) is dus juist voor kleine waarden van ft. Nemenwe haar als geldig aan voor ft ^ k, dan moet nog de juistheidaangetoond worden voor ft â€” k-f- 1.De betrekking (7) Bp.Bu p v = Bp y. Ba n (â€” i)*3-1. xP Bv . Ba geeft voor x = v , (3 = v en y = (k â€” 1) v: \' Bv.BÂ? l)v = BkvB2v {â€” iy-i&Bit-^B,.of B{k ,)v = BkvXi (- i)v~l xv B(l-i)v = Bk v X2 B(k â€”

??) v Xx.Nu is reeds Bkv = Bv Dk en B(k â€” i)V = Bv Dk-\\dus B{i i)v = Bv I X1 Dk f Xx 1 \\ = BvDk i q. e. d.



??? Opmerking i. De verkregen Dy. groepeert de overblijvende \\s~~2â€”â€” 2 1J wortels in jj" ^ groepen van wortels. Opmerking 2. Vooral deze eigenschap doet nieuwe eigenschap-pen uit de Getallenleer vermoeden. Bij de algemeene formule (18) BpV â€” By. Dy. verdient \'t geval v = 2 afzonderlijk vermeld te worden. Biâ€”I, dus B%p â€” Dp.Nu is Xt â€” â€” x2 , Xj == i -f 2 x zoodat de kettingbreuk is: g X2 | X2 \\ X2 \\ \' 0 \\l 2X \\l 2x \\l 2x Kiest men nog X0 = x, dan ontstaat de kettingbreuk x i -f 2 X \\l 2X die door contractie ontstaat uit F(x), en dus dezelfde waardeheeft als de.oorspronkelijke kettingbreuk. Haar naderingsbreuken Aip \'??p zijn . Â?>2n In het algemeen heeft men de volgende:Eigenschap VII. Zij X0 = xBv-\\, Xl = (â€” i)v~lxv,X^ = Bv \\ x Bv_\\, dan is de kettingbreuk 19) . . G(x) = X0 ad inf. = Bv(x)F(x). B e w ij s: Mogen de naderingsbreuken der nieuwe kettingbreuk C G (x) voorgesteld worden door dan moet bewezen worden, dat df lim ~ = Bv [x) lim ^ft = 00 -^ft Â? = 00 F (x) â€” lim ~ bestaat in het geheele complexe vlak, behalve opt=oo Bt de negatieve re??ele as, links van â€” -.



??? Hier is dan lim ~ â€” lim k = 00 1^ = 00 -Bp- v We kunnen nu aantoonen, dat ~ = Bv voor elke (Â?-waarde. [L ^ v Volgens de vorige eig. VI is reeds Bv zoodat er overblijft te bewijzen: 20)..........C,4 = ApV = x B^y-1 (volgens 8). In de eerste plaats geldt deze betrekking voor p = i C1 = X0 â€” x Bv _ i en in de tweede plaats ook voor yt, â€” 2 C2 = X0(Bv l x Bv â€” i) (- i)*-1 = x { Bvâ€”\\ (By \\ x i?y_i) (â€” i)vâ€”1 xv~l}. Uitgaande van (7) is: Bl3.Bct (} 7 = B(} y.Bu i3 (â€” iBy.Bavoor (3 = v â€” i , <* = !/ , 7=1 Bv_ 1. BSv = Bv. B-2v â€” 1 (â€” i)"-2^"-1 Bvof, volgens (15) of \' =    (â€” i)Â?-**Â?-1. substitueerende is = a\' v â€” 1 â€? Nemen we dus aan, dat Cy. = x 1 voor p g:dan moet nog bewezen worden, dat ook cpa 1 = x 1) y_ 1. Nu is: i =  Â?;. (â€” i)"-1*"^-! of



??? Ter berekening van de 2ÂŽ factor in het tweede lid, heeft men:Bfl.Â?lt ft y = Bfi r.BK fi {â€” i f~^xKBy.Bavoor (3 â€” v , y â€” v , c& = ((t0 â€” i) v â€” i. Dan is: Bv. i?(AÂ?o i)V_i = Biv. Bp,v_i (â€” i)v~l xv. Bv. Z?(tt0_i) â€ž_ i.of volgens (15) Â?((t0 1K_i = (Â?â€ž ! ^oV_i (â€” i)v â€” * xv. B(pa â€” 1)y â€” 1Â? Substitueerende is dus: C^ iâ€”x B(p0 1) v - 1. Hieruit volgt, dat21)............~ = By.^^- voor elke ^-waarde dus G [x) = lim = By Y\\mj^=By.F (x). Â§4. Eigenschap VIII. Wanneer een wortel â€”xv van Bx,tevens primitieve wortel is van een Bv, dan is N een veelvoudvan v en Bv is een factor van By. Bewijs: Reeds uit de opmerking bij eig. V blijkt, dat deprimitieve wortels van Bv â€” o uitsluitend en noodzakelijk wortelszijn van die polynomen, wier index een veelvoud van v is, dusNâ€”(Jt,.v volgens de term â€žuitsluitend" en â€želke" wortel vanBy is tevens wortel van B& volgens de term â€žnoodzakelijk". Eigenschap IX. Twee polynomen B^ en Bv hebben geengemeenschappelijken factor (G.G.D â€” 1), indien de G.G.D {^.v)gelijk is aan 1 of 2. Bewijs: Zoo er een gemeenschappelijke factor is, zij

dezex-\\-xp, dan is â€”xp een wortel van B^ en van Bv. Zij verder Bi het polynoom, waarvoor â€” xp primitieve wortelis (A kleiner dan of gelijk aan de kleinste van dc waarden p en v).Uit de voorgaande eigenschap volgt dan, dat (t = f.t\'A en v = â€?/ \\en tevens, dat Bh een gemeene deeler is van B^ en Bv. Men ziet: de G. G. D {(i. v) ^ A, terwijl A ^ 3 is, want By moet



??? minstens ?Š?Šn factor bezitten. Dit nu is in strijd met het gegeven. Opmerking verdient, dat het eenige even priemgetal 2, hierheel natuurlijk, eene bijzondere plaats gaat innemen. Eigenschap X. Is a = G.G.D [ft. v), dan is de G.G.Dvan By. en Bv. Bewijs: Volgens eig. V is Bx zoowel een factor van B^ alsvan Bv, want ft â€” ft\' X en v = v\' X. Deze factor zal nu G.G.Dzijn, zoo Bp en Bv buiten Bx geen factor gemeenschappelijkhebben. Bestond deze factor nu wel, dan zou dit, volgens hetbewijs van eig. IX leiden tot een gemeenschappelijke deeler Bi,met ft = ft" x\' en v = v" x\'. Nu was gegeven, dat de G.G.D {ft, v) = a;dus is X\' een deeler van a. Het feit echter, dat a een veelvoudvan Xr is, zegt, dat By een factor is van BA m. a. w. de ver-onderstelde nieuwe factor komt reeds in B\\ voor. N.B. De wortels van elke Bv zijn enkelvoudig. Eigenschap XI: Indien v = 2"Â° . p** . pÂ?%----dan is Bv = BÂ°\'*Â? . JBP*i . Bp%*Â?.....Bn*k . Pv. als p{ , p% . . . pk de priemfactoren van v voorstellen. Bewijs: Aangezien v een veelvoud is van 2aÂ°,/,ai, p2"2 ... pf*zullen de polynomen Bi*Â? , Bv*i , Bp ... BPk*k als factoren vanBv

moeten optreden. Tevens is het onmogelijk, dat de enkel-voudige wortels daarbij dubbel geteld zouden worden, daar deindices der factoren relatief priem zijn. Opmerking verdient, dat Pv â€žniet uitsluitend" de primitievewortels van Bv bevat, maar ook nog andere b.v. de primitievevan Bier pul, etc. Â§5. Eigenschap XII. Het aantal primitieve wortels vanBp = O voor ft â€”p* is: â€” 1 (fi - 1) 22")........W(p*) = --^-- (p is een priemgetal). Bewijs: We onderscheiden twee gevallen:A. p â€” 2. Is Â? ^ 3, dan kunnen we schrijven: Ba* = â€”1 . Qi*.



??? is de grootste factor van B2Â?, die een volledige Z?-functievormt. Zij bevat geen enkelen primitieven wortel van B2Â?. Dezezijn alle bevat in Bovendien kan (2aa geen andere wortelsbevatten, daar deze dan tevens wortels van een BA zouden zijn,met A een deeler van 2" en <2*, d. w. z. A zou ook deeler van2"~1 moeten zijn, of BA is factor van B^-k Letten we nu op den graad van bovenstaande vergelijking,dan is: of W (2.) = *â€”â€?(Â?-\') _ /â€”(/>-â– ) v \' 2 2 Â? ^ 3- 22-l (2 _ i) Voor Â? = 2, is JF (22) = i =-â€”-, dus de formule is ook juist voor Â? = 2. B. p ^ 3, maar is een priemgetal. Voor Â?= 1, zijn alle wortels primitief, dus Zij nu Â? ^ 2, dan is Evenals bij pâ€” 2, bevat <2,,Â? juist de primitieve wortels, dus 2 P*-1(P- O >a -1 â€” i of = Eigenschap XIII. Het aantal primitieve wortels van Bâ€ž = o, als v = pQuÂ? pxu 1 , is 22Â?) . . W(p0"Â° . pl"l) = ^p0*o~1\'/\'i*1~1 (P0 â€” l)[f>i â€” 0- Bewijs: Zij = I, dan is QyP0 bevat de primitieve wortels van de /Â?-functies, die tot 2



??? index hebben p0aÂ? en pfÂ? p{ = v. Alle andere wortels van Bv zijnreeds begrepen in Bpa0 -1. Pi. De vergelijking van den graad wordt nu: [AÂ?-4L=L ] = [A^-^A-I] WM of Wlpo^.pi) = ^ \\Po*Â°-A â€” A"0-1 -A â€” A"0-1 â€? (Aâ€”(eig. XII) We hebben toch, dat, als N en N\' van dezelfde pariteit zijn,dat dan: |\'N â€” ij _ j"^ â€” ij = Nâ€”N\'Is toch N= 2ii \\, N\' = 2 n\' i, dan is: [^r^] = [T] = n\' EvenzoÂ° [^ir1] = n\'> dus Is N â€” 2 n en N\' = 2 dan is: = J] = n-i. Evenzoo [^p"*1] = n\'-\\, dus Nu zijn Pq\'Px en P0aÂ°~lpx alleen dan niet van dezelfde pa-riteit, als pQ â€” 2 en = i. Hier is N â€” 2n , N\' = 2 n\' I dus [^Z??] _ p^Ll] â€” n â€” I â€”.=s i j â€” N\' â€” i J. In dit speciale geval moet dus \'t tweede lid met 1/a vermin-derd worden. Dit kan men nu \'t eenvoudigst zoo doen, doorvoor den nu optredenden term JV(2) de formeele waarde te nemen, 2Â° (2_i) i d. i. W{2) = â€”- â€” - inplaats van de juiste waarde ?•V(2) =0. Het gegeven bewijs geldt nu in elk geval.



??? Voorbeeld: IV (6) = â€” = i de tweede en laatste wortel behoort bij B.y 2 . = 2. Qyfo bevat de primitieve wortels van Bp*0, BvÂ?op^ en Bp*op*, dus =po"-1 ?’ ,2-Ij  W(fio"Â°-P>*) of volgens \'t voorgaande gedeelte: \\ â€?Pt2 - A"Â° -1 â€? A2 - A"Â° -1 â€? (A-1)} - â€? A)=â€? A2) dus Wft,*. A2) = \\puÂ°~l -P\\ (Po ~ 0 (A - I). Nemen we aan, dat de juistheid der stelling bewezen is, voorax = n, dan zal zij ook gelden voor xt â€” n -f i, want Bpu o -pn 1 = BpÂ?o Nu bevat <2>?,Â° al de primitieve wortels der B\'s met indicesPo*0 > Po"Â° \'Px > Poa" \'P\\2 > â€?â€?â€? P-Pi\'1 en â€?A" 1â€? dus [A^A*\' ~ ij = po!-1 -A"- ij   ^w^.pS) w(pÂ?>.pr) of A"\') = I {/â€žÂ?.. A--A""-1 -A"1 â€” Atf??_1 (A - I) i -;iA,ao-1(A-i)(A-i)A<-1 = ^A)au-1.Aa<l-1(A-i)(A-i)- Eigenschap XIV: Het aantal primitieve wortels van Bv â€” o,als v = A^\'-A*1 â–  Aaa â€? â€? â€? â€? . is 22) = I)(A - I)--.(A- I) als <p (v) de functie van EULER aangeeft, indicator genoemd.



??? B e w ij s: Het bewijs is reeds geleverd voor k â€” o en i (eig.XII en XIII). Nemen wij nu k = 3 met k1 = 1 en = 1, dus v = p0*Â° . A . p%.Nu is: Bv = Bpf* ~1. . ^ ??/0 waarbij de primitieve wortels bevat van .Z?^*Â?, BpoÂ?o.pi, BpaaÂ° ,nen Bpfio. pi. pt, dus lettende op den graad: j = [Aâ€”^A-A-^     W(p0"Â°.p2) W(Po*Â° -A -Pi)\' of JFfo* -A. a) = ^A"0-1 (A - O (A - *) (A - O- Nemen we nu aan, dat de formule geldt voor v â€” pbaÂ° .p**. p%,dan geldt zij ook voor v = A/*0-A"\' 1 .pvWe hebben weer: bevat uitsluitend de primitieve wortels van: Bp*Â° , BpUo.Pi , , . . . Bpio pa l BvfÂ° r, > Bp0Uo â€?/>, p2 1 Bvnu" â–  r\\2p, \'Â? â€? â€? â€? â€? 1 â€? p, dus, lettende op den graad, is: zmp^.pr) 4-1 -a"-A) mpoaÂ°\'A) n = 1 â€? Â?1 = 1 Berekening leert: wip^.p^ \'.pt) = IHA-?•MA-1)- Tevens is dus nu: JF(A*Â° -A â€? A"2) = ^ A"0-1 -A"2-1 (A - i) (A â€” O (A - O- Ten slotte nog het bewijs voor k â€” 3, Â?j = 2 en = 2. v = PoaÂ° - Pi* â€? Pi bevat uitsluitend de primitieve factoren van:



??? BpoaÂ° â–  pÂ? Bpu*o .P1.P3 Bpo<* o. pi2. VlBpoaÂ°. pi Bpo*Â° â–  pi. Pt BpÂ?uÂ°. pi . px â€?dus de graadvergelijking wordt: 2 2 s -p") mpo"Â° â€? a) 2 w(po*Â°-Px -P?¨ Â?=1 n=l mpo" -pi2) mpo-Â° â– px â€? A1) w{pÂ?Â° .px- .p22). Berekening leert nu : W(p0aÂ°-px2\'p22) = \\ A"0-1 \'p\\-A(A-i)(A-0(A â€”O- Zoo voortredeneerende, kan het bewijs geleverd worden voorhoogere exponenten en meerdere factoren. Â§ 6. Gaan we nu de overige niet-primitieve wortels van Bvnader bestudeeren. Onder hen zullen er misschien voorkomen,die uitsluitend tot ?Š?Šn i>\'-polynoom met kleineren index behooren.Deze wortels kunnen we secundaire of wortels van de 2Â° ordenoemen. In \'t algemeen gaan we uit van de volgende Definitie: Onder de â€žorde" van een wortel van Bv â€” overstaat men het aantal i?-functies met een index, kleiner dan ofhoogstens gelijk aan v, waarvoor bedoelde wortel ook wortel is. Een primitieve wortel van Bv â€” o heeft dus een orde gelijkaan ?Š?Šn. Eigenschap XV. Is d een willekeurige deeler van v, dan i/ bezit Bv = o IV (d) wortels van een orde Bewijs: Elke wortel

van Bv is tevens primitieve wortel voor een polynoom Bj,, terwijl dan d een deeler van v moet zijn (v zelf medegerekend als deeler). Omgekeerd is elke primitievewortel van Bd ook wortel van Bv. Beschouwen we nu alle pri-



??? mitieve wortels van elke B,i (d deeler van v), dan hebben wejuist alle wortels van Bv, ieder ?Š?Šnmaal geteld, in formule 23)..........2 W(d) = pLpl] Ueclers v waarbij natuurlijk JV(i) = W{2) = o genomen moet worden. Verder is elke primitieve wortel van Bi tevens en uitsluitendeen wortel van een i5-polynoom met index: d , 2 d , 3d , ... ofv -d â€” v, wanneer we ons bepalen tot indices ^ v. d v v Hun aantal is m. a. w. er zijn W(d) wortels van een orde d d Â§ 7. Om een beter inzicht te verkrijgen in het onderling ver-band der wortels der verschillende polynomen, zal ik hen inteekening brengen \'). Zooals reeds bekend is, liggen alle wortels op de negatievere??ele as. Ter verduidelijking, teeken ik nu meerdere X-assenonder elkaar, z????danig, dat de correspondeerende punten elkhunner in ?Š?Šn loodlijn op hun gemeenschappelijke richting komente liggen. Dit sluit in zich, dat de eenheidsmaat in alle overeen-komstige punten dezelfde is. Zonder hiermede in strijd te komen,kan ik verder de eenheidsmaat laten afnemen met \'t grooter(absoluut genomen) worden van de abscis. Hierdoor wordt ver-kregen, dat in de

omgeving â€”waar de meeste wortels liggen,de X-assen op grootere schaal worden voorgesteld. Een en anderis analoog met eene afbeelding na eene transformatie, bv. x\' 1\' Verder gebruik ik de volgende notatie: â€” x/ is de kr wortelvan Bv. Als eerste wordt de absoluut kleinste genomen, die nadert totâ€” en verder volgens de grootte 2). Steeds is k ^ ^ 1 j.Op de bovenste of eerste X-as stip ik nu uitsluitend de ligging 1) Zie uitslaande plaat achteraan. 2) Hier en in \'t vervolg wordt met de grootte steeds de absolute waarde bedoeld.



??? van al de eerste wortels aan, op de tweede X-as uitsluitend dentweeden wortel van elk polynoom etc., in \'t kort op de k* X-aswordt alleen de ke wortel van elk polynoom aangegeven, zoodeze bestaat. Schuift men de assen weer ineen, dan is men toteene gewone afbeelding terug. Op eenzelfde X-as kunnen nu geen twee wortels samenvallen,daar, volgens eig. II, de ke wortel van Bv, bij \'t grooter wordenvan v, maar bij constante kT afneemt \'), in de teekening dusnaar rechts schuift. De evengroote wortels, op verschillende assen, liggen op dezelfdeloodlijn. Verder is in de teekening het negatieve teeken weggelaten,evenals de bovenindex (rangorde). Deze toch stemt overeen metden rang van den regel (X-as), waarop de wortel is geplaatst. Onmiddellijk blijkt, dat op den ken regel, alle getallen grooterdan 2 k als benedenindex juist in rangorde ?Š?Šnmaal voorkomen.Van af Bik \\ toch bezitten alle polynomen een km wortel. Eigenschap XVI: De wortelindices (aan den voet) van tweegelijke wortels verhouden zich als de rangorde van die wortels,in de bijbehoorende polynomen. Bewijs: Gaan we

uit van den p\'n wortel van Bv. Eenvoudig-heidshalve nemen we vooreerst aan, dat deze wortel een primitievevoor Bv is, d. w. z. in de teekening is x/ het hoofd van een kolom. Alle wortels, die gelijk zijn aan â€”x\\f en dus in dezelfde kolomvoorkomen, zullen volgens de opmerking bij eig. V, uitsluitendbehooren tot polynomen met indices, die veelvouden van v zijn.Kiezen we er ?Š?Šn uit, bv. met index n v, dan moet bewezenworden, dat de rangorde van den gelijken wortel van Bnv gelijkis aan np. Dit leidt tot het volgende vraagstuk: Gegeven: Bv{â€”x?) â€” o = o XV = X* . v n v Gevraagd: y.



??? Dit vraagstuk kan opgelost worden met behulp van het uit-gebreide theorema van Sturm. (Vergelijk bv. Lobatto\'s Algebrapg. 210). De te onderzoeken functie X is nu Bnv, terwijl voor de hulp-functies V\\ ... Vm-\\ , Vm , Vm i , Vn de polynomeni>n v â€” 2 ) ^nv-4 â€? â€? - Bm 2 , Bm , Bm_ 2 ... Bs of Bi kunnen ge-nomen worden. Hiertoe moeten deze /?-functies aan de volgende vier voor-waarden voldoen: iÂ°. Twee opeenvolgende functies Bm en Bm % worden niet nulvoor eenzelfde waarde van x. De G.G.D van m en m 2 is i of 2, dus Bm en Bm 2 hebbengeen gemeenschappelijken factor, volgens eig. IX. (Vergel. 40). 2Â°. Als voor een waarde van x de functie Bm nul wordt, ver-krijgen de voorafgaande en de volgende functies Bm 2 en i?m_2tegengestelde teekens. Zij die waarde â€”x,â€ž. Volgens form. (7) is: Bp.Ba p r = Bfi y.Bt p (-if-KxKBy.B*. Nemen we nu (3 = 2 , y = 2 , a = m â€” 2, dan is: BÂ?. Bm 2 = Bi . Bm â€” X". Bm _ n of voor = â€” xm. 24 ).......Bm 2 (â€” xm) = â€” x%m Bm _ 2 (â€” xm) waaruit blijkt, dat Bm_ 2 en Bm 2 in teeken verschillen voor x â€” xm. 3Â°. De laatste functie Bl (voor n v

oneven) of B.2 (voor n veven) behoudt voor elke waarde van ;t\' hetzelfde teeken, wantBx = i = Bv 4Â°. Als â€”xnv een wortel van de vergelijking Bnv(x) = o is,vormen de teekens van Bnv en Bnv_2 voor x = â€” xnvâ€”5 eenevariatie, en voor x â€” â€” xnâ€ž ^ eene permanentie, waarbij S eenzeer kleine positieve grootheid voorstelt. Analoog aan eig. II kan, met behulp der formule 25 ).....Bu i(x) = ( 1 2 x) Bx o (x) â€” X" Ba (x) bewezen worden, dat de wortels van elke twee opeenvolgende^-polynomen eener rij, hetzij met even, hetzij met oneven index,



??? Uit de teekening blijkt ten duidelijkste, dat aan deze 4C voor-waarde voldaan wordt bij eiken wortel van Bnv. De beschouwde reeks polynomen zijn dus Sturmsche functies,waarmee we nu \'t aantal wortels van Bnv = o gelegen tusscheno en â€” x/ â€” Â§ kunnen bepalen. Voor x = o vertoont de rij niets dan permanenties, wantBv (o) = i. Het verschil in aantal variaties bij de substituties x = â€” x/ â€” 5en x = o is dus juist het aantal variaties in de rij na de sub-stitie x â€” â€” x/ â€” Dit aantal kan nu als volgt bepaald worden. Volgens form. (7) is: fy.:Blt (i y**Â?H.r.BM ll (- if-lxP.By.Bm. Nemen we x = q v , y â€” 2 , dan is: Bp.Blv p i = B$ s.Btv p (- iy-Kxfi.B,,. Nu is â€”x/ een wortel voor elke vergelijking Bqv â€” o, dusBty{â€”xvp â€” S) neemt, met af tot elke willekeurige kleinewaarde, zoodat bij benadering Bqv p * _ Bp o Bqv ft Bp Moge nu j a j -f 1 of â€” 1 beteekenen, naarmate a positief ofnegatief is, dan is afwisselend gelegen zijn, en wel z????, dat de B met den grooterenindex den kleinsten (absoluut gemeten) wortel bezit.



??? < /? . - . â€ž ) f ; | Bq v 13 2 \\ \\B[3 2 | ( Bqy p \\-\\Bp j d. w. z. vertoonen twee polynomen en ^ 2 een variatie vooreen benaderde .ar-waarde, die een wortel is van de vergelijkingBv â€” o, dan is dit ook het geval met de functies Bqv p en Bjy 13 2 â€? Een tweede belangrijke betrekking, wat het teeken betreft,vindt men als volgt: Bp.B. p y = Bfi y.Ba p {â€” i f-ixe.Bt.By.voor x â€” v â€” y , (3 = y; By.Bv 7r= Biy . B, (â€” i )y -1 .ry Bv _ y . Z?y.dus voor a\' = â€” ;rv Â? < o , is \\ By . Bv y \\ = - { Bv _ y . By } of 27).....(* = â€”A-V*Â?5). In het volgende is het argument van de 5-functies steedsâ€” x/ â€” We kunnen nu de volgende gevallen onderscheiden: A. v is even, gelijk aan 2 y.. Men kan de reeks der ^-functies B?? , Z?4 ... B2v. als volgt inÂ?-groepen vereenigen. Eenvoudigheidshalve schrijf ik alleen den index: o, .2 , 4 >â– â€?â€? 2 <1 > 2g 2,...,2p â€” 22^,2^ 2,2i?? 4,...,2JÂ? 2^,2^-f2^ 2,...,4^ â€” 2,4//.4fA , 4^ 2, 4^ 4, ... 2q , 4^4 2^ 2,... ,6(1 â€” 2, 6|M. . . . , 2q , 2py, 2q 2 2 (tl â€” i) [A , . . . ... ,211 y. â€” 2 ,211 [A. Gemakkelijk is nu aan te toonen, dat de variaties (en dus ookde permanenties) kolomsgewijze

gerangschikt zijn, d.w.z. vertoonenBig en B.2q S eene variatie, dan is dit ook \'t geval met elk paar Bip^ ??q en B2j>h 2^ 2-



??? \\ Bqv i3 3 j ( BJV p, \\ ( B(t ) slechts q=p en /3 = 2 q, dan komt: | -#3^ 2? Â° | _ | Bj y 2 \\ { BipiJL Â?q ) ( Boq ) Volledigheidshalve is de index o er bij geplaatst, waarbij wedan B0 , als een permanentie hebben te beschouwen, opdathet aantal te berekenen variaties hetzelfde blijve. Dit is trouwensin overeenstemming met het feit, dat de geheele eerste kolommet de tweede slechts permanenties vertoont.Volgens de redeneering, gevolgd onder 40, is | Biq[l (â€” xv â€” S) (__^ ( Bz q m _ 2 (â€” xv â€” 5) ) en volgens 2Â° is: | 2 \' Â?% q p â€”2 dus, deelende is: | 2 I = 1. \' Biq ft 1 Het tellen van het aantal variaties in de rij B% , Â?i , ... Bnvvoor v â€” 2 p is hiermee teruggebracht tot \'t tellen van dit aantaltusschen de functies: B.x , />4 , . . . . Bo Het totale aantal variaties is dan n maal zoo groot.Bepalen we nu \'t aantal variaties in de eerste groep: . \\BV.S |----\\B01 . \\Bt\\ . I^j. Al dadelijk is | ~â€” { = â€” r, want van By liggen er p wortels \' Uy â€” 2 ) rechts van â€”x/ â€” 5 en slechts pâ€”1 van Z?v-2, in verbandmet j Bv (o) j = i = j By.2 (o) {. Deze eerste variatie heeft ons tevens gebracht op den p â€”

ir"regel van de figuur, want de p â€” ie wortel van />v_ 2 kwam tersprake, en met deze rangorde gaan we verder. Ter linkerzijdevan den wortel â€”X\\Z.\\ ligt de pâ€” i\' wortel van By.it hetzij Hiertoe substitueere men in (26)



??? rechts van de lijn â€” x/ â€” S, hetzij links. In beide gevallen ligtechter de pe wortel van links van â€”x/ â€” want elke wortel wordt grooter (absoluut gemeten) als de index van \'tpolynoom kleiner wordt. Nemen we nu aan, dat â€”xVvZ.\\ rechts van â€” xfâ€” S ligt, danliggen er, tusschen o en â€”x/â€” pâ€”i wortels van evenals van 2, dus j^" ~ 4 \\BV â€” 2 Zoo zal eveneens j ^"â€” = 1, als â€” xlZl rechts van de( bv ) lijn â€” x?’ â€” 1 gelegen is. Is nu Bv_2Â? de laatste B-functie met even index, waarvan de (pâ€” i)" wortel rechts van de lijn â€”xj1 â– â€”Â? ligt, dan zullen .Â?.,-2Â? en Bv_ 2jâ€”2 de tweede variatie vertoonen. Het aantal wortels van Z>\'v_ tusschen o en â€”xj1 â€” S is nog pâ€” 1, maar dat van Bv_2s slechts p â€” 2, maar ook niet minder. Dit laatste volgt uit \'t feit, dat de p â€” 2\' wortel van j5v_2j_2 rechts van den pâ€” ien wortel van i>\\_ 2j ligt, dus a fortiori van de lijn â€” xj> â€” S, dus ( Bj y - O , (Xy - S) ) _ _ | Bjy-??s-Z (- Xy - S) I (Bzy-2s(o) ) I B??y-ss-i (O) I\' Verder is weer {^2v-2Â?(o)} = j BÂ? v _ 3,_2 (o)} of ( I _ _ \' B^y â€” is > Vanzelf zijn we met deze nieuwe variatie een regel

hoogergekomen, want de p â€” 2\' wortel kwam ter sprake. Ligt ook dep â€” 2\' wortel van 2Â?-4 nog rechts van â€”x/ â€” dan is| B% v_os_4 j = | v_2 * }â€? Zij B) v _ 2Â?â€” 2 / de laatste functie, waar-voor de p â€” 2e wortel ter rechterzijde gelegen is, dan is } B^v _ 2i_ 2 tâ€” 2 | =- | Ba v â€” 2Â? â€” 2*} terwijl de p â€” 3" wortel van ^-2Â?-2/-3 rechts van â€”x/â€”Â?ligt. Tevens zijn we genaderd tot de wortels met een rangordep â€” 3, die alle gelegen zijn op de naastvolgende X-as. , By_ 4(0) 1, want ook -5-= 1.



??? Het is duidelijk, dat op eiken regel ?Š?Šn variatie komt, dit zijntotaal p variaties, zoodat het totale aantal variaties in de rijB.2. Ba____Bnv 11p bedraagt. De waarde van y in dit geval is dus np. N.B. In de figuur is deze redeneering gemakkelijk te volgen,door te nemen: v = 42 . pâ€” 13. Opmerking: Het bewijs blijft gelden, ook al ligt de scheidings-lijn â€” xvp â€” 5 links van de vertikaal â€”x3, mits men slechts inplaats van de uitdrukking â€žlinks van de lijn â€” xf\' â€” lezeâ€žniet rechts van de lijn â€”x/ â€” S". B. v is oneven, gelijk aan 20 1.iÂ°. n is even. We kunnen nu de B functies als volgt groepeeren: O,  2, ..20 â€” 2 ,20,.....,40,2(20 l) 2(20 l),2(20 l) 2..2(2 0 l) 20-2,.,4(2 0 j)-2,4(20 l)4(2^ 1), 4(2^ l) 2,.. .......... (Â?â€”2) (2 0 1) , . . . . . . . , Â?(20 1) Evenals onder A, blijken de variaties kolomsgewijze gerang-schikt te zijn, de eerste en tweede kolom vertoonen niets danpermanenties, de laatste en voorlaatste niets dan variaties. We11 hebben dus - groepen, met elk een aantal variaties, dat overeen-komt met dat van de rij: O,2,4,.,20, [2 0 1 (O)] ,2 0 2,..40 â€” 2,4 0,2 (2 0 l) (O). De index 20 1 is er bij

geplaatst, om \'t midden van de rijaan te geven. De nul beteekent, dat de bijbehoorende B functievoor â€” x/ â€” Â§ nagenoeg nul wordt. Volgens form. (27) zijn nu de teekens in deze rij symmetrischtegengesteld, of \'t aantal variaties in de eerste helft is gelijk aandat in de tweede helft.



??? Het totale aantal variaties is dus n maal zoo groot als dat inde rij: F 2, B2 K , Bi ^ _ s,... B^ , B2. Ook hier vindt men p variaties, dus y = np.2Â°. 11 is oneven. Nu is de groepeering als volgt: i , 3,..2*6 â€” 1 ,2*6 1, 2*6 3,..,2(2*6 0â€”1 ,2(2*6 0 2(2/B6 i) i ,2(2*6 0 3Â?Â? ,3(2^ 0, ..,4(2^ 0â€”1,4(2^ 0 4(2^ 0 1,4(2^ 0 3.Â? ,5(2>- 0Â? ..,6(2*6 1)â€” i ,6(2*6 1) (Â? â€” 0(2^ 0 1,........ ,Â?(2*6 0- Ook hier zijn de variaties kolomsgewijze gerangschikt en iselke volledige regel symmetrisch tegengesteld in teeken. Verderis | j52fi i | = } B^ft 4-31, want -#2^ 1 en B2jjL 3 hebben hetzelfdeaantal wortels rechts van de lijn â€” x/ â€” 5 liggen. Men komt dus tot 11 groepen, die alle hetzelfde aantal variatiesbezitten als de rij: Bz ft 1 , Bi n â€” 1 , . . . . Bi . B1.Dit aantal is weer p, dus ook hier is y â€” np. Opmerking. Het bewijs zou eenvoudiger geweest zijn, indiende polynomen niet in groepen waren gerangschikt. Hiermee zouechter de groote symmetrie, die volgens het gegeven bewijsbestaat, niet te voorschijn zijn getreden. Gemakkelijk kan de gemaakte beperking, n.m.1. dat ?Š?Šn dertwee gelijke wortels het hoofd van een kolom is,

opgehevenworden. Mogen de te beschouwen wortels zijn: â€” x" en â€” x",\' nv bv waarbij y en 2 de onbekende rangorde aangeven.Resumeerende, moet dan bewezen worden, dat y : 2 = 11 v : 11\' v als â€” = â€” <v Bewijs: Zij â€”x" de wortel, die het hoofd vormt van de



??? kolom, waarin beide wortels voorkomen. Volgens een reeds meer-malen gebruikte eigenschap is dan n v en n\' v een veelvoud vanof daar we n en n\' als relatief priem mogen beschouwen, isv een veelvoud van y. Zij v = k [t (k â€” i of 2 of 3____) Volgens de zooeven bewezen stelling, hebben we dan de even-redigheid : /i : nv = p : y v , of y = 11 p . â€” = ii. p . k. (i Eveneens: (x : n\' v =p : zof z = 1l\' .p . k dus y : z = 11 : n\' = nv : n\' v. h. t. b. w. Opmerking: Steeds is y>2. Definitie: Onder den rang van een kolom verstaat men derangorde van den regel, waarop het hoofd van de kolom voor-komt, d. w. z. de rangorde van dien wortel in het bijbehoorendpolynoom. Onmiddellijk volgt uit de voorgaande eigenschap: Eigenschap XVII. De rangorde van de kolom van eenwortel van den p"1 regel is steeds een deeler van p (i en p mede-gerekend). Eigenschap XVIII. Een primitieve wortel is steeds hethoofd van een kolom. De rangorde van wortel en kolom isdezelfde. Â§ 8. De ontbinding in factoren. Beginnen we met de polynomen />2v. Volgens form. (15) is Â?2v = Â?v\\Â?v l x Bv_x }. Volgens (5) is de

eerste factor



??? Voor den tweeden factor vindt men 7VC7V C7V - graad [Â?] j. Gaan we nu over tot het algemeene gevalBn â€” By.. v = Bp . P . dan is: (N ^ (N 4\\ 3 *-!(\'76) etc. Na vermenigvuldiging en gelijkstelling der co??ff. van gelijk-namige machten van .r, volgen de betrekkingen: a{ =Nâ€”/* = a uit ^ = ^ 2)5\' 4V 3Â? /aâ€”6N5\\ 4 Deze formules zijn zeker juist, zoolang de co??ficient a0 â€” inog bij de berekening gebruikt wordt. Dit houdt echter op, zoodra de macht van x gelijk aan pilIT- J 4. i wordt Dank zij den vorm der co??ffici??nten kunnen we By, formeel met de volgende termen verlengen:



??? -IMM imk zoodat we de co??ffici??nten tot en met Â?^-?? kunnen berekenen:Â?j = a = iV"â€” (Jt, â€” li\'-*) 30) a fa â€” Deze formules zijn toereikend in \'t geval N â€” 2 p. Ten einde de volgende co??ffici??nten a te bepalen,kunnen we B^ met nog meerdere termen verlengen, van over-eenkomstigen bouw. Deze termen bezitten niet meer een nulfactor, waardoor behalve de voortzetting ^ ^ \'jin^ een tweede correctie-term optreedt.Berekening leert: * - ? CZT\')*-* 3.) iâ€”ct1)Â?"â€” (t 2 / 1 \' 3\\ 2 J 1 2(*â€”l\\2(<> â€” 2) v iÂ?â€” i \\Â?4 â€” 2/



??? Vervolgens komt er: a (a-2ft-\\\\ , . b (b-ft-i\\ . ,0 ?? fa-2u-2\\ , . , Â? (b-ft-2\\ . ,â€ž c etc. etc.,terwijl a = Nâ€” Â? = â€” 2 ft = N â€” $ ftc =b â€” 2ft = Nâ€” 5 ftdâ€”c â€” 2 ft = N â€”7 ftetc. Voorbeelden: J512= i iox 36^ 56*3 35 = iÂ° ft = 6. v =2. N â€” 12. a = 6. ( j ( 6 6 6â€”3 2 , 6 (6â€”4) (6â€”5) ,) -^12 = j1 4 3 * j \\1 ~l* 2\'iX 3 i 2 | 2Â° ^3.4 iÂ? = 3- v = 4. Â? = 9. ^ = 3- â€? |~9 (9â€”5) (9â€”6) (9â€”7) 3~1 4j =l4\' 1.2.3 ij ) (1 x) (1 9 x 27 X2 29 x3 6 x4). 3Â° /i2.c [t â€” 2. v = 6. <3: =10. b = 6. c = 2. 10 9.8 â€ž 8.7.6 â€ž 7.6."5.4. . 6.?.4. 2 *12 i 1.2 1.2.3 1.2.3.4 1.2.3.4.5 32) ( 10 (10 10â€”3 \\ , , /io(ioâ€”4) (10â€”5) , 6\\ â€ž /io (10-5) (10-6) (10-7) 6 (6-3) \\ xiv 4 i.2.3 21 //10 (10-6) (10-7) (10-8) (10-9) , 6 (6-4) (6-5) 2\\ j\\ c 1.2.3.4 31.2 1/ r



??? Â§ 9- De behandelde polynomen staan in nauw verband metde transcendente functies sin n cp en cos n Cp. Bekend is: !(K â€” 2\\ 2"-1 COS"-1 (p â€” ^ ^ J (2 COS Cp)"-3 (" ^ 3) (2 COS â€” (" ~~ 4) (2 COS <p)Â?~ 7 . . . . | of . sin 11 Cp _ / 11 â€” 2\\ i 2"-1 sin Cp cos"-1 cp â€” 1 V i / (â€” 4 cos2Cp) (n â€” 3\\ 1 (n â€” 4^ 1 , V 2 ) (â€” 4 cos2 Cp)2 v 3 ) (â€” 4 cos2 Cp)3 \'" \' = Bn (--) = Bn (x) met * \\ 4 cos2 cp; x \' i c?)7 4 cos2 cp Doorloopt * \'t wortel-interval â€” â€” tot â€” 00 , dan doorloopt Cp 4 b.v. de waarden van o tot *"/2. Met behulp van deze transcendente functies zijn sommigeeigenschappen zeer eenvoudig te bewijzen.Nemen we, als voorbeeld eigenschap XVI: De wortels van --^-â€”â€” zijn dezelfde als die van 2"-1 sin cp cos"-1 cp sin 11 cp. Ze zijn: ticp â€” kr, k willekeurig geheel, dus Cp â€” â€” 11 We hadden aangenomen, dat o <cp<*lv dus Cpt â€” ^T met k = 1, 2, 3,... p\' 2 *J.De wortels van \'t polynoom Bn (x) zijn danâ€” xnk, met xnl\' 4 cos2 cpk 4 cosi i T\' r u \'t getal k geeft dus de rangorde aan. Zij nu van een ander polynoom Bnâ–  de k\'* wortel gelijk aanâ€” xnk, dan is y k_

fik\' â€?* n - \'vn , dus ook cpi â€” Cpf



??? k k\' Of â€” 7T = TT n n of k: k\' = n-.n\' h. t. b. w. Evenzoo is ii (ti_^ \\ COS n<P = 2\'"-lCOS\'l<Pâ€” - 2"-3COSn_2<?) -f - ^ ^ J 2"-6 cos"-4^â€” ~ 4) 2Â?-\'7 COS\'"-6 ^  ~ 5) 2"~9 COS"~8 <P â€? â€? â€? â€? cos ?i<p _ n i \\n(11â€”3^ 1 i 34\' 0 2"-xCOSÂ?"^ â€” 1 7\' (â€” 22COS2(p) 2 \\ I /(â€” 21COS1C?>)2  _I__ . 3 V 2 / (â€” 22 COS2 Cp)3^ Bnv(x) I voor x = Â?â€ž(*) ...... 22 cos2 cp" volgens formule (28). Â§ 10. De polynomen laten zich ook schrijven, als een bij-zonder geval van de hypergeometrische reeks. Maken wij gebruik van de gewone notatie, dan is jtlr fl v h-t i Â?^r â–  | 00 0 00 35) â€? â€? â€? = 2 u" 0 Â? (Â? 1)... (Â? r â€” 1) /3 (ff 1)... (<3 r â€” 1) (r r â€” 1) I. r. 7 (y i) Ur â€” Ar zr. zijnde = en Onmiddellijk blijkt, dat (i r) (y r) Ar l = {cc, r) (/3 4- r) Ar of ook(1 r) (y r) ur x = (Â? r) (0 r) ur. z. 36Â?36Â?



??? 3 7 Nu definieeren wij: qo 37) â€? â€? â€?( = o 00 = 2Â?/ 0 zijnde Cr={^ ^ en ur\' = Cr terwijl 380 ( (1 r)(v â€” râ€”i)Cr i=(vâ€” 2râ€”i)(vâ€”â€”2)Crofook 38) 38^ ( (1 r)(v â€” râ€” 1) ur l = (vâ€”2irâ€”i)(vâ€”2râ€”2) urx. Beide reeksen (35) en (37) moeten nu identiek zijn.Reeds is u0\' = u0 â€” 1, zoodat het voldoende is x, |S, y en zz???? te kiezen, dat (36 overgaat in (38^). Deze laatste formule mag ook geschreven worden: Â? )\' vâ€” i H vâ€” 2 )\'. (l -C-O ^j "r l=--2~ r\\ I--??~ r\\Ur(â€”4X) . , . V â€” I _ V â€” 2 39) dus moet y = 1 â€” v , x â€”--, p â€”--- en 2 2 z â€” â€” 4 x zijn. Hieruit volgt 40) ... . Bv(x) = F j^jp^ , \' Iâ€” v \' ~ De oneindig voortloopende reeks Bv(x) bestaat uit het poly-noom By(x), eene lacune en een reeks: â€? â€? (~,)\'" C \'.)*\' , C sÂ?)*\' , -ad inf- | | _j/ 2 â€” v ) evenals de functie F\\- , - , 1 â€” v , â€”\\x . (22 )



??? Het polynoom Bv (x) is dus identiek met de eerste v termen van i â€” v 2 â€” v , i â€” v , 4 x (22Beschouwen we nog de reeks 4\')......=(-*)\'â€?!( â€ž /)(~\'>\' â€? o oo Ook deze nieuwe reeks Y fp> h = ( ^, * *)(â€” O" o v V P J is eene hypergeometrische, want t^ â€” I, terwijl [v â€”pâ€” l)tp \\ = [â€”V â€” 2pâ€” i)( v 2.p 2)xtf of 42) (i p){v 1 p) fp iâ€” Bij vergelijking met (36 b) moet Xl\' v 4- i - v 2y == v 4- i , x â€”- , [5 =- en z = â€” 4 x zijn, dus Â? (V I v 2 | S tv = F\\â€”â€” Â? â€”7- Â? " 1 Â? â€” 4* . zoodat 43) = , ^ , v i , -4xl â€ž ( I - V 2 -V = F j â€”-â€” , â€”â€” > I â€” V > â€” 4X( 2 2 Bekend is, dat de differentiaalvergelijking voor F j x, (3, y,x\\ is:44a) . . . x(iâ€” x)y" j y â€” (x 13 i)x \\y\' â€” x (3y = omet de beide particuliere oplossingen:44^) . . . yxâ€”F\\ot, y, x\\ yt = xl~r. F\\x 4- 1 â€” y, (3 4- 1 â€” 7, 2 â€” y, x\\.Na de substitutie x\\ â€” 4X vindt men, dat de differentiaalvergel.:45a) . x (1 4-4x)y" I 7 ^ l)x\\y\' 4<zpy â€” o



??? tot particuliere oplossingen heeft:yx=F \\x, (3, y, â€” Atx\\ y2 = [â€”4x)l~7F\\x iâ€”y,(3 iâ€”y,2 â€” y,â€”4x\\. dan zijn46b) Nemen we nu Â? = --/3 = --7=1 â€” v (Vergel. (39)), â€žli â€” v 2 â€” v IT-\' \' l~v\' ~4\'r . _ [v I V -j- 2 j ^ = v i, twee particuliere oplossingen van 46Â?) * (i--f 4x)y"â€” \\v â€” i 2 (2 v â€” 5) x\\y\' (vâ€” 1) {v â€” 2)y = 0. Volgens (43) is Bâ€ž(x)=y1 â€”y2, dus ook het polynoom Bv (x)is een particuliere oplossing van de differentiaalvergelijking (46a). Â§ 11. Ten slotte kunnen we nog een kettingbreuk beschou-wen, die door contractie ontstaat uit A7) n.m.1. ^ - j-LJ-j-iJ _ -jJ.^-i I]/", 4/r De naderingsbreuken van deze kettingbreuk zijn identiek metdie van even rangorde bij (2). (Voor de contractieformule vergelijke men P p. 201 (7)).Gemakkelijk bewijst men b.v. analoog als bij formule (5), datde naderingstellers Kv (z) en noemers Lv (z) gelijk zijn aan: 45^) 48Â?) Kv(2)=z>-I (2v-2)Z>-* (2V-3)Z*-* .. en 48*) Lv(Z)=Z> (2\\ l)*-l (2V2 2)z"-3 ..=Z>B,v Bepalen we de differentiaalvergelijking voorLv{z) = zvB,v iQ).



??? Volgens (46 a) is: . d2 B2 v 1 (x) ( , . j d Bi â€ž 1 (x) dx\'1 ( ) ^^r Kiest men tot nieuwe onafhankelijk veranderlijke 2 == ~> danwordt de differentiaalvergelijking: z2 (z 4) y" | 2 (j/ 1) z1 -f 2 (4 v 4- i ) 5 | y\' 2 v (2 v â€” 1) y = omet ?’, = Bi v 1 QJ tot particuliere oplossing.Substitueert men nog: B3v 1(^j=z-vLv (z) B2y 1Q) = (*) dan krijgt men: 49).....* (* A)y" 2(z i)y\' â€” v(v i)y = o met yt = Lv (z) tot particuliere oplossing. Ten einde overeenstemming te verkrijgen met de differentiaal-vergelijking (440) van de hypergeometrische reeks, stellen wijnog z â€” â€” 4 x. Lv(â€” 4 x) is dan een oplossing van 49\') ... x (1 â€”x)y" Â?(i â€”4 x)y\' v(v i)y = o. 2 Bij vergelijking met (44Â?) vindt men, dat y = \\> <* = â€” Â?\', (3 = v 1, zoodat Â?y (â€” 4x) â€” F â€” V, V 1, x\\ 50) of Lv{e) = F\\ â€” v, v i,1â€”1. â€? ( 24\' De tweede particuliere oplossing van (49\') is volgens (44ÂŽ): ,/- â€ž (i â€” 2v 34-2V 3,,-Vx.PJâ€”5â€” 2 \' 2\' *



??? en dus voor (49) y-i = l/=Â? F\\ â€”3-, =4 K 4(2 2 2 4 ) Een eigenaardig resultaat vindt men, als men een tweedeparticuliere oplossing van: 49).....z 4)y" 2(2 i) ?’ â€” V (v 1) ?’ = o als volgt bepaalt. Stel y = u Lv w, u en w zijn nog te bepalen functies van 2,dan is y\' â€” u\' Lv w\' y" = u 2 u\' u" Lv w".Na substitutie komt er een differentiaalvergelijking, die ver-eenvoudigd door de opmerking, dat ZÂ? eene oplossing van (49)is, wordt: 2 z (2 4) u\' L\'v 4- Lv {z (z 4- 4) u" 4- 2 (z 4- 1) ti\' f4- 2 (z 4- 4) w" 4- 2 (z 4- 1) w\' â€” v (v 4- 1) tv = o.Kiezen we nu u z????, dat de co??ffici??nt van Lv nul wordt:2(2 4-4) u" 4- 2 (2 4- 1) u\' = o u"_ 2 (2 4- 1)_ 11 3 i u\' 2(2 4-4) 2 2 224-4 lgÂ?\' = -^lg*-flg(* 4) lgCr t door de constante 1 te nemen. VZ(2 4-4)3 Vz(2 4)3Verder wordt 2 i 2 4 ~ 2 bij geschikte keuze van de integratieconstante.De differentiaalvergelijking wordt nu: 2(2 4) w" 2 {2 4- â€” f(v4- 1) ze; 4- 2 1/ â€”-â€” L\'v â€” o. r 24-4 Stelt men wâ€” 1/ â€”-â€”t,v 24-4 dan moet 3 (s 4- 4) /" 4- 2 (2 4- 3) t\' â€” * (" 0 14- 2 L\'v = O.



??? Deze vergelijking heeft tot particuliere oplossing t{ â€” Kv, zoo-als men gemakkelijk verifieert met behulp van de formules (48). Kv (2). Wij mogen dus voor w nemen Als tweede particuliere oplossing van (49) heeft men nu: y2 = u Lv (2) w 1/ 2 4 -WV- Kv (2) i Lv (2) 4 2 4 51) ... = lv{2) y Het is merkwaardig, dat in deze particuliere oplossing onver-wachts de waarde, â€”^""^l/"1 ^ van ketting^reu^ (47) optreedt, die tot uitgangspunt diende. Dit is een eigenschap,die ook in andere gevallen geldig is, b.v. bij de polynomen vanLegendre. Deze zijn de naderingsnoemers van de kettingbreuk:Â? 1d x 2I De vraag, bij welke kettingbreuken van Stieltjes deze eigen-schap geldt, heb ik echter nog niet geheel kunnen beantwoorden. .. (P.p.35I.(I6)) 1* 3â€ž 5. 7, 2 3 4 Noemen we de naderingstellers en noemers weer Kv {2) cnLv(z) (= bolfunctie), dan is de differentiaalvergelijking voorZ,v(^r): (1 â€” 2i)y" â€” 2 2y\' n (n 1) y = o met de tweede particuliere oplossing: V1 4/, 1  ( 2 i



??? HOOFDSTUK II. Â§ i. In deze paragraaf wil ik in \'t kort eenige formulesafleiden. Tot uitgangspunt dient een integraal van Stieltjes, een inte-graal, die de volgende algemeene gedaante heeft: . 00 ?’ 00 z x\' 54).........F W â€” 00 waarbij \\p (x) een niet afnemende functie voorstelt, zoodanig, datde integralen f CC / (-x)k-ld??(x) (/C= I, 2, 3,.....) Jâ€” oo alle bestaan \'). Bekend is, dat omgekeerd (x) tot op eene constante na be-paald is door F(z), n.m.1. 55) â€? â€? ^ j ^ (4\' â€” o) ^ o) J â€” ^ j ^ â€” o) ^ 4- o) j = ^imjJi(~jF(z)d)j (Vergel. P. pg. 372). Onder de geassocieerde kettingbreuk van F(z) verstaat meneen kettingbreuk van de gedaante: 1) \'t Geval, dat ?Š?Šn of beide integraalgrcnzen eindig zijn, f ^ ^ , is hierin be- Ja s x grepen, doordat dan \\J> (.r) = \\p (6) voor x > b en <{/ (.r) = (Â?) voor â€žt > a is.



??? 1 _ 1 _ ^3 I _ kj 1 _ b).......k 4 |* (i "" die in haar convergentie-gebied gelijk is aan F(z).Zij is steeds bestaanbaar en altijd is kv > O.Is ip (x) = (o) voor alle negatieve ^-waarden, dan bestaat ookde correspondeerende kettingbreuk: V I I I I I i I I 1-7 57.....uri \\A \\ri Tjr \'--> waarblJ l l * i 3 * I 4 dit is dus een kettingbreuk van STIELTJES. De geassocieerde kettingbreuk ontstaat door contractie uit decorrespondeerende, indien deze bestaat. Het zijn de naderingsnoemers van de geassocieerde ketting-breuk, waarmee we ons in dit hoofdstuk zullen bezighouden.Zij worden voorgesteld door de notatie Lx (z), terwijl de tellersdoor Kx (z) zullen worden aangegeven.Volgens de algemeene theorie is: 58) Kx ! (*). U (*) - Kx (z) L),jr\\(z) = klkl...k\\ \\. (P. p. 378). Deelt men door Lx (z). Lx 1 (z), en ontwikkelt vervolgens naarafdalende machten van z, zoo is: 58O......=  Lx i Lx Zi x 4-1 want Kx is van den graad A â€” 1, Lx van den graad De formule (58\') leert, dat en ontwikkeld vol- 3 \' Lx 1 (*) Lx{z) gens afdalende machten van z, met elkaar overeenstemmen totaan de macht â€ž?’, .. Ontwikkelt men de functie F(z) in een 21X l

reeks, zoo zal deze met -=- overeenstemmen tot aan de macht Lx i K i en dus met tot aan Uit (58\') volgt nu: ?’ 4-00dj>{x,z x



??? 00 ^J W-K* (z) =  i 1 â€” 00 / 00- oo ook schrijven: ?’ cc /> 00 - 00 â€” 00Hieruit volgen de formules: /Â? 00 59). â€? Â?/â€” 00r oo 60) . . /(â€”â€”x)d\\p(x) = o voor Â? â€” o,i,..., & â€” i. Jâ€” 00 / CO- 00 of ook r oo 62) . . ?’ (â€” *) (â€” x) d (x) = o voor 0 A. Jâ€”co f 00 63) â€? â€? I (â€” x) d\\fj (x) â€” kx ... 1. Jâ€” 00 Dank zij deze beide laatste eigenschappen leenen deze functieszich bijzonder tot de ontwikkeling eener re??ele functie 1).Reeds HEINE 2) stelde zich het volgendeMinimumprobleem: Is f(x) een continue, re??ele functie,^ (x) een niet afnemende functie met oneindig vele punten, of na vermenigvuldiging met (z) = z* 4- / 1  De ontwikkeling eener analytische functie is behandeld door Pincherle. AttiAcc. dei Lincei, IV, 5, 1889; Annali di Matematica 1884; Acta Mathematica 16. 2  Heine. E. Handbuch der Kugelfunktionen. 2 Aufl. 1878â€”1881.



??? waarin ^ (x) toeneemt, zoo wordt een polynoom Pâ€ž (x) van tenhoogste uen graad gevraagd, waarvoor de integraalr oo Jn = I \\/(x) â€” Pn (x) }2 d\\p (x) minimum is.Jâ€” 00 De oplossing is: r /_x) f cc 64) . â€? â€? Pn (X) = 2 \' > / f{u) Lv (- H)d-\\> (tl) waarin Lv de ve naderingsnoemer voorstelt van de kettingbreuk ?’ 00 eene formule, die door O. BLUMENTHAL\') -00 als volgt, herleid is. /Â? 00 Allereerst is PH(x) = ( | f (Â?)<t*(Â?)â€? â€?J â€” ca Volgens de recurrente betrekking is:Lv 1 (â€” x) = (â€”x lv ]) Lv (â€” x) â€” Â?v iLv-i (â€” x)L., 1 (â€” u) = (â€” u /v 1) Lv (â€” ti) â€” kv \\ _ ] (â€” 7/)zijnde Z0 (2) = 1 en L_\\(z) â€” O. Vermenigvuldigt men de eerste formule met Lv(â€”u), de tweedemet Zv (â€” x), en trekt ze van elkaar af, zoo komt: Lv 1 (â€” x) Lv (â€” u) â€” Lv 1 (â€” ti) Lv (â€” x) â€”~(uâ€”x)Lv (â€”x) Lv (â€” u) kv 1 \\LV (â€”x) Lv-1 (â€” u) â€” Lv (â€” u) Lv _ 1 (â€”x)\\. Na deeling door kx kt... kv 1 en sommatie van v â€” o totverkrijgt men: Ln x (â€” x) Ln (â€” u) â€” Ln 1 (â€” ti) Ln (â€” x)â–  â€? â–  1 Zv(â€” x)Lv(â€” u) (v^o) y=0 1 2 ... a^V 1



??? Hierdoor gaat (64) over in: . â€?>-{- co 65) /Â?.M-ttt-VTT //(")\'â– ^l^iNX.M^ ^"2 â€? â€? ^iÂ? 1 / r co of Pâ€ž (*) = ?’ /(Â?) Jgâ€ž (Â? (Â?), 00 zijnde &,(Â?â€?*) - 7T~aâ€”-Ln \\{â€”x)Ln(-â€”Â?)â€”/,â€ž 4.1(~~u)Ln(â€”x) 1 2 * * w 4" 1 ^ â€”â€” ^ eene symmetrische functie van u en x. Het ligt voor de hand te vermoeden, dat, aangezien het minimum van Jâ€ž met grootere Â?-waarden blijkbaar afneemt, lim Pn(x)=f(x). n = 00 In het volgende zal ik nu trachten te bewijzen, dat elke functie,die voldoet aan de voorwaarden van DiRlCHLET, eene ontwikke-ling in de gedaante 00 66)......?’ (x) = 2 gv â€? Ly (â€” x) toelaat, als 00 kx ... kv 1 g9. = ?’ ?’ (u) Lv (â€” 11) d (ti).Jâ€”i â–  00 Â§ 2. Ik zal twee gevallen onderscheiden, nml. ?’ 00 - ^ heeft werkelijk eindige z x â€” 00 grenzen, b.v. \' 1 4-2 b 2\' i ii /---77 (V\'L-1 j i I i -2 2!/ \' 4/.-J sife^^p t-p; met Lv (â€” 22 cos2 $) = (â€” 1)* â€”il^il^ (Vergel. Hoofdstuk I, Â§11). 1 __ f 1 . = __Li__Li__li Vz*â€” ?? J nViâ€”x* \' z * \\z \\2 z \\2 e \\2 z\'"â€” 1 met Lv (cos <p) = cos v cp. (Fourier-ontwikkeling).



??? . 1 Â?dx 2| 2 2 3 4 3 4 5 5 â€” 1 * i 52) . â€? lg Â? * 2 met Lv (z), die niets anders zijn dan de bolfuncties van Legendre.(Vergel. Hoofdstuk I, Â§ ii). ?’ 00 ^^ ^ bezit ook werkelijk een oneindige grens,z x 2Â°. de ?’ 00z x b.v. de uitgebreide kettingbreuk van Laguerre (x â€” i) 00 l.X | 2.(Â? l)| 3 .(Â? 2)1 68) dx- \'I z x \\z x 2 \\z x 4 | z x 6" met ZÂ? (z, x), die voor Â?=i de polynomen van Abel leveren.In nauw verband hiermede staat de kettingbreuk: v \' z z z ?’ 00 fUL 69) met Ny (z , x), die voor x â€” \'/2 de polynomen van Hermite geven,nml. Nâ€ž (z, lji) = . Â§ 3. Geval A: De integraal bezit eindige grenzen: I z x\' Wij zagen reeds, dat de forineele ontwikkeling van een functief{x) was: â– j! f(x) = %gvLv (â€” x) 00 V = 0 66) kx k2 . . . ky 1 gy = ?’ ?’ (U) Ly (â€” U) d </> (u) -l met terwijl de eerste 11 1 termen van de reeks geschreven kunnenworden als:



??? n rh 6s) . . . Pn (x) = %gvLv(-x) = /(Â?) Â?â€ž (Â? . *) ^ (Â?), v = o Ja zijnde Â?â€ž(Â?.*) = / \' V . ^(-x)Ln(-u)-Ln l[-u)Ln(-x)^ kxk1..kn \\ Uâ€” X Er moet dus bewezen worden, dat lim Pn (x) = f(x). n = 00 Voor f(x) = x"1, m een geheel positief getal, is het bewijseenvoudig. Volgens form. (60) is elke gv voor v > m nul, zoodatde ontwikkeling eindig is, en voor elke ^--waarde gelijk is aan xm. Onmiddellijk volgt hieruit, dat ook elk polynoom van â€žeindigen"graad volgens Lv(â€”x) functies ontwikkeld kan worden. Gaan we nu over tot het geval f(x) â€” smkx (k eindig). Dezefunctie kan in een machtreeks ontwikkeld worden, die een on-eindig grooten convergentiecirkel bezit en als machtreeks ookin dat gebied uniform convergent is, dus sin k x â€” Sn (.x) -f Rn (x) , kx (kxf (kxf (kxf ZIJ nde (x) = ---- .... Â? een polynoom van eindigen graad, terwijl N zoo gekozen kanworden dat, zoo Â? een willekeurig kleine positieve waarde voor-stelt, voor elke eindige A\'-waarde geldt | Rn(x) | <f.Bij substitutie wordt f6 Pa (x) â€” I sin k u . (u . x) dip u â€”f SN (u) Â?â€ž (u. x) d -p (u) f (u) &n (u . x) d $ (Â?). Ja Ja De eerste

term is gelijk aan 5jv(^) = sin kx â€” Rn(x), terwijlde limietwaarde van den restterm nul is.Dit laatste kan als volgt bewezen worden. \' . f De integraal lim I | (u . x) \\ d \\p (x) heeft eene positieve waarde, hetzij eindig, hetzij oneindig. In het eerste geval, is het zonder meer duidelijk dat de rest-term, dank zij de ongelijkheid | R#(x) | <f, tot nul nadert.Ook in het tweede geval, is de restterm van dezelfde orde als s. 4



??? Dit vindt zijne verklaring in het feit, dat de negatieve waardenvan (u . x) de positieve opheffen. Beschouwen we de functie Â?â€ž (u. x) eens wat nauwkeuriger. q , v __I Ln \\{â€”x) Ln (â€” u) â€” Ln 1 (â€” u) Ln (â€” x) Â?>n â€? X) - - r- . : â€? klk1... kn \\ tl-* De hoofdfactor is: L,l \\ (â€” x) Ln (â€” u) â€” Lâ€ž (â€” 11) Ln (â€” x)of daar * constant gedacht wordt: <p (â€” ti) â€” h Ln(â€” ti) â€” k Ln i (â€” u).De functie <p bezit een wortel, tusschen elke twee opeenvol-gende wortels van Lâ€ž (â€” u), zooals blijkt uit de beschouwingder grafische voorstelling der Ln polynomen, welke berust opde algemeene eigenschap, dat de wortels van elk paar polynomenLn(â€”ti) en Ln i (â€”u) afwisselend gelegen zijn. Ln 1 (â€” u) h A \'en C zijn twee opeenvolgende wortels van Ln, B de tusschen-liggende wortel van Ln \\. Men ziet, vanaf A neemt de verhou-ding -f~â€” af van O tot â€” 00, om vervolgens van 00 weer teverminderen tot O in C. Van A tot C is dus elke re??ele waarde ?Š?Šnmaal gepasseerd, of ^ U\\ is eens gelijk aan â€” geweest, â€”Â?) >l d. w. z. er ligt een nul tusschen elke twee opeenvolgende wortelsvan Ln

(â€” ti). De functie <pn (â€” 11) bezit dus n wortels, die evenals de wortelsvan Ln (â€” ti), voor 11 â€” 00 over het integratieinterval verdeeldliggen.



??? De factor - neemt slechts den wortel ti = x weg, zoodat u â€” x ook Sâ€ž(ti.x) een golflijn is, met onbepaald afnemende golflengtein elk punt van het integratieinterval. Gaan we over tot de waardebepaling van den resttermrs I Rn {u) &a (ti . x) dty (ti), zijnde | RN(u) \\ < s. Allereerst echter deze beide opmerkingen:iÂ°. x wordt willekeurig in het interval (a, b) aangenomen,doch is dan gedurende de geheele redeneering constant. Hierdoormag Â?â€ž (u . x) als eene functie met slechts ?Š?Šn veranderlijke be-schouwd worden. De voorwaarde, dat x in het integratieintervalligt, is in overeenstemming met de vraag naar de waarde vande reeks in dat gebied. 2Â°. n is willekeurig groot, doch steeds eindig.Nu zagen we reeds aan het begin van deze paragraaf, dat deontwikkeling van een polynoom wegens het eindig aantal termen,convergeert, zoodat ip = (") S" (u (") = P (*)â€? voor elk polynoom p (u) van een graad kleiner dan tl.In het bijzonder is voor p (ti) = i. f \' /, = ?’ Sâ€ž (tl .X)dlp (tl) = I. Bestudeeren we deze integraal eens wat nader. In overeenstemming met het reeds besproken geval, nml.fÂ? lim

?’ | Â?â€ž (ti . x)\\ d ip (ti) is eindig, waar onmiddellijk bleek,"=Â?Ja dat de restterm van dezelfde grootte orde is als s, willen wetrachten de integraal 7, te splitsen in een willekeurig groot aantal integralen van de gedaante J^ Â?(l (u . x) d \\Jj (Â?), terwijl de integraalsom van de absolute waarden van al deze integralen eindigblijft. Elk interval (k, l) kan willekeurig klein gemaakt worden,zoodat met elke gewenschte nauwkeurigheid R (u) in elk intervalconstant genomen mag worden.



??? Hieruit volgt dan: | ?’ R (u) Â?â€ž (u . x) dip (u) | = | ^ (Â?) (Â? â€? *) (Â?)! <f Si < 5 X een eindige waarde < >j. Boven bedoelde intervallen worden nu als volgt gevonden.Het interval (a, b) kan gesplitst worden in [i eindige inter-vallen (pi, pi \\) en in v eindige intervallen (qt, qi \\). Dezeintervallen zijn z???? bepaald, dat in elk interval (pi, pi \\) elkeamplitude van Â?â€ž (u . x), rvat n ook is, eindig is, dus absoluutgemeten, kleiner dan eene constante A. In elk interval (qt, qk \\)daarentegen neemt minstens ?Š?Šn amplitude met n toe, elke vastegrens overschrijdend.Hieruit volgt: fl n [Pi 1 v r?? i /, = I &â€ž (u .x) dip (u) = 2 Sn (u .x) dip (u) S / SÂ? (u . X) di> (li).Ja 1 Jp{ 1 Jq-t De eerste som is eindig, want â€? IX rPi 1 (i fPi > 12 / sÂ? (Â?. x) dip (Â?) | < 2 / Iâ€? *) | ^ (Â?) < 1 Jpj 1 ./Pi (i r Pi 1 ^ S / d^(u)<Akv Volgens het uitgangspunt in Â§ i toch is ip (Â?) eene niet af-nemende functie, zoodat in het integratiegebied dip(u)> o. f* rPi 1 ri De factor Â? I dip (u) is dus kleiner dan I dip (u) en deze1 Jpi Ja integraal is gelijk aan kx volgens formule (63) voor * = o.



??? Aangezien /, zelf eindig is (nml. gelijk aan i), zoo moet ook Het totaal van deze v intervallen wordt nu onderverdeeld inm intervallen, (r;, ri i). Het getal m is veranderlijk met Â?, en wel evenredig metVn (b.v. 7/z = [K72]). De deelpunten rx voldoen aan de voor-waarde, dat elk interval willekeurig klein gemaakt kan worden,door 11 en dus ook m maar groot genoeg te nemen. Aan dezevoorwaarde kan steeds voldaan worden, daar het interval (a, b)eindig is. Op blz. 50 en 51 is reeds aangetoond, dat (u . x) eengolflijn is, met n â€” 1 wortels. Deze liggen over de m intervallenverspreid, zoodat er meerdere intervallen moeten zijn, die onbe-paald veel wortels bevatten. (Bij gelijkmatige verdeeling bevatelk interval er ongeveer [VV], als 111 = [Vu]). De eindige integraal // valt dus nu als volgt uiteen: Beschouwen we eiken term u .x) d^j (u) eens afzonderlijk. We zagen reeds, dat d ip (u) steeds positief is, zoodat we deeerste middelwaardestelling \') mogen toepassen: waarin Br. de waarde van (u . x) voor een waarde van u in-liggende tusschen r; en ri i beteekent. Bij elke m kunnen we de termen verdeelen in

twee groepen, nml.groep I bevat alle termen, waarvoor | Br. I ^ C,groep II bevat alle termen, waarvoor | Br. \\ > C,waarbij C een aangenomen positieve constante is. 1) Vergel.: bv. Goursat. Cours d\'Analyse Math. I p. 181. 2de druk.



??? De integraal // valt nu uiteen in twee reeksen: rri x r\'i i // = 2 I (Â?â€? *) (Â?) 2 s" (Â?(Â?) Gr. I Jr{ Gr. II Jij waarin de Si de intervallen van groep II begrenzen. V = 2 Rn f (Â?) 2 [ W (Â?) I .\'r; II Jij zijnde | i?r; | ^ C en | i?s. j > C. De reeks, behoorende bij groep I heeft een eindige waarde, want |2#?? f^(u)<C 2 f U (Â?) < K C 1 Jri i \' Jri I /r{ een eindige waarde, die onafhankelijk is van n. Ook de waarde van //, in zijn geheel, was eindig, en debovenste grenswaarde, nml. i k{ A onafhankelijk van n, zoo- rH i dat ook | 2 I (u) | een eindige bovenste grenswaarde 11 \' Jsi bezit, die onveranderlijk is, hoe groot n ook wordt. Gaan we nu over tot de beschouwing van de meer alge-meene integraal = i/ ^ &H ^ ^ = PWe \'zullen nu uitsluitend die polynomen p (u) beschouwen,waarvoor, in het interval (a, b) Max. supr. | p (u) | g M,waarin M een constante, willekeurig aangenomen, grootheidaangeeft, onafhankelijk van n. Ook lp is steeds kleiner dan M, omdat x een waarde is inhet integratieinterval (a, b), zooals op blz. 51 aangenomen is.Splitsen we nu de integraal Iv in dezelfde deelen als /,:f* ri\'i i ft rPi 1 iÂ°. I 2 ?’ /(Â?) &(Â?â€?

X)d-p(u) | < 2 ?’ !P(Â?) 11 8.(Â?.I ^(Â?) <A^ 1 1 /Pi deze som blijft dus, wat 11 ook is, beneden een vaste grens.



??? 2Â°. 2 ]P(u) Â?n (u.x)dip(u). Gr. We zagen reeds, dat voor eiken term van groep I geldt: f ri I fri 1 I (u . x) dip (u) = Br. I d^p (;u), zijnde | Br. j g C.Jri Jr, [rH i Het is duidelijk, dat elk integraal I Sâ€ž (Â? . x) dip (n) gesplitst Jrx kan worden in twee (of drie) deelen, die hetzelfde teeken hebben,dat overeenkomt met dat van Br., dusfri 1 f ri 1| / Â?. (m . a\') (Â?) j = I I Â?â€ž (u . x) dip (Â?) | I / Â?Â?(Â? â€? *) ^ (Â?) | Jr, Jr, JH fri 1= | ?’ </*(Â?). Jri Het polynoom / (u) is in het willekeurig kleine interval,(rj, ri i), monotoon, tenzij het daar juist een maximum ofminimum bezit. In het eerste geval kan men onmiddellijk de tweede middel-waardestelling \') toepassen: ?’ Jn ri i p (u) Â?â€ž (u . x) d ip (u) n ri i P (ri) J ^ (Â? .x) dip (u) p[ri 1) j Â?â€ž (Â? .x) dip (Â?), zijnde een waarde, inliggende tusschen rx en rx 1. Laten we nu p (rt) en p (rx 1) constant, dan zal continu methet polynoom p (u) veranderen. We kiezen p (u) nu in elk inter-val z????, dat elke samenvalt met een Â? waarde d. w. z. de/â€??? fr i 1integralen I Â?n(u . x) dip (u) en I Â?â€ž(u. x) d\\p (u) komen overeen r\'?? i2 lp(u)Â?â€ž(u.x) gr. i jri in teeken. i)

Vergel.: bv. Gouksat. Cours d\'Analysc Math. I p. 182. 2<le druk.



??? Nu volgt: f\'\' 1 f * I ?’ p (u) Sn (u .x)di> (iu) | < | p (n) j | I Su (u . x) d ?? (u) J ri J\'i fri 1 | P (rÂ? i) | | J (u â€? x)d\\p (w) | <M| | J Sn (tl . x)d$ (;U) | | J &n (u . x) d-p (li) | jrri 1 = M\\ ?’ Sn(u . x)d$ (u) | Jri (dank zij de overeenstemming in teeken) rr i i fri i = M\\ Br. | ?’ (?*) g / (Â?), Aj ./r; dus rr i 4 1 fri 1 2 / p (Â?) (Â? . rt\' ^ (Â?) | < 2 ! ?’ P (") & (Â? â€? (") 1 ir; 1 \' A; ri i \'2 / **1 Jri <MC^ ?’ d^ iu) <k\\ MCâ€” S2, een eindige waarde, onafhankelijk van Ook het optreden van meerdere intervallen, waarin p (u) eenmaximum of minimum bezit, biedt geen nieuwe moeilijkheden,zooals uit het volgende zal blijken. Resumeerende komen we tot het volgende resultaat:Elke integraal Iv kan in drie stukken gesplitst worden, dieook in hun verdere onderverdeeling geheel overeenkomen metde verdeeling van de integraal /,. De beide eerste stukken, nml. de p eindige intervallen( | Sn (ft â–  x) | < A) en de r-intervallen ( | Br \\ g C) hebben steedseen eindige waarde, waarvan het absolute bedrag beneden eenvaste grens blijft, die onafhankelijk is van n. Aangezien de geheele integraal Iv een eindige waarde heeft,



??? nml. p (x), zijnde | p (x) | < M, zoo moet ook het derde stukeindig zijn. We gaan nu over tot de studie van: I B,. | > C. Tot dusverre was de keuze der deelpunten rt en Si alleen be-perkt door de voorwaarde, dat elk interval willekeurig kleingemaakt kan worden. We mogen dus de deelpunten nog naderbepalen. Nemen we aan, dat bij een willekeurige verdeeling, men tottwee intervallen komt, behoorende bij groep II, die aan elkaargrenzen, b.v. Si tot Si \\ , en Si 1 tot s{ 2, en waarvan de bij-behoorende Bs. en BS{ { l in teeken verschillen. Veranderen we nu het deelpunt .s-j i in het punt w, als iveen naastliggende wortel van i is van (u . x). Hierdoorontstaan twee nieuwe integralen Deze verandering in de deelpunten wordt overal, waar hetnoodig is, aangebracht \'), zoodat ook de onderste grens Si vande eerste en de bovenste grens 2 van de tweede integraalveranderd kunnen zijn. Bij deze nieuwe verdeeling passen wij op de integraal Iv de-zelfde redeneering toe, als bij de geheel willekeurige verdeeling. We gebruiken dezelfde notatie, nml. een r met index ter be-grenzing van een interval van groep I,

een s met index terbegrenzing van een interval van groep II.



??? Het is mogelijk, dat ook nu twee j-intervallen aan elkaargrenzen, waarvoor de bijbehoorende Bs verschillen in teeken.Zijn deze integralen weer: rsi i rs i 1 rs i 2 rs i 2 I Sâ€ž (u . x) d -p (u) = Bs. I dip (u) en / &â€ž (u . x) d-p (u) = Bs. ( ] I dip (u),J\'i J*i J\'i 1 J\'i i dan is nu tevens (jÂ? 1, x) = O. Het deelpunt si \\=w wordt nu vervangen door twee deel-punten: w â€” t1 en w r2, waarin t, en r2 positieve waardenvoorstellen. r, en r2 voldoen aan de voorwaarde, dat | SÂ? (u . x) | voor??v â€” Tj ^ ii ^ w t2 eindig is, b.v. kleiner dan D. Evenals bij de p intervallen, waar | Â?â€ž (u . x) \\ < A (zie blz. 52),zoo zal de integraalsom 2 I p(u)&n(u .X) d<P (tl) JlO â€” Tl kleiner zijn dan een eindig getal. Het ligt voor de hand beidedeelen te vereenigen, zoodat dan de som kleiner is dan kx Mvermenigvuldigd met het maximum van A en D. Deze wijziging wordt overal in de deelpunten aangebracht,waar twee integralen van de groep II aan elkaar grenzen, ofkomen te grenzen tengevolge van deze verandering. Hierdoor is verkregen, dat elke twee opeenvolgende integralenuit groep II gescheiden worden door eene tusschenruimte, w â€”

t,tot w -f t2. Gaan we nu verder met de studie van 3Â°. 2 f Mu) (u -x) dip (Â?), Gr. ii JSir\'i 1 zijnde / &H (u . x) dip (11) = Bs. J>i met | B,. | > C. (Zie blz. 57). We leggen nu aan p (u) de volgende voorwaarden op: f i 1?’ dip (Â?)J\'i



??? a. in elk interval (S{, Si 1) is het teeken van p (u) hetzelfdeals dat van BSi; b. in elk interval (Si, is | p (u) | > s een eindige positievewaarde, b.v. i; c. in elk interval (.$â€?;, Ji i) bezit p (ti) ?Š?Šn maximum of ?Š?Šnminimum. Noemen we de //-waarde, waarvoor p (u) max. of min. is g,dan is: r\'i i ro r \'i 1 / p (u) Â?â€ž (ii. x) dip (u) = / p (u) Â?â€ž (ii. x) dip (ii) 4 I p (Â?) Â?â€ž (u . x) dip (Â?).J>i J\'i Jg Beschouwen we den integrand als het product van p (u) enÂ?n (u . x) d ip (u), dan mogen we de tweede middelwaardestellingtoepassen, omdat p (u) in elke integraal monotoon is. Hieruit volgt: ?œ i 1 p (u) Â?u (ii. x) d ip (Â?) = p(Si) [ Â?â€ž(u.x)dip(u) p(g) f 2n(u.x)dip(u) p(g) [&H(u.x)drp(u) J>i Ja Jg r\'i i p(si i) J Â?â€ž (u. x) dip (Â?) = /â€??? /â€?Â?\' r\'i-i p (Si) / Â?n (li. x) dip(u) -hp(g) Â?â€ž (u .X)dip(tl) p(si l) Â?u (u. x) dip (u). J*i â–  h h\' De ligging van de grenspunten Â? en verandert continu methet polynoom p (ti) (b.v. door wijziging in de grootte en liggingvan het punt g), zoodat we bij meerdere polynomen mogenaannemen, dat de drie integralen A\' r\'i i I Â?h (u .x) dip (u), / Â?n (U . X) d 1P (U) en I Â?n

(u . x) dip (ti) Ju Ji h\' in teeken overeenstemmen, en dus ook met hun som f\'i l f \'i 1/ Â?n(u.x)dip (u) = Â?,. ?’ dip(u).J\'i J\'i



??? Uit voorwaarde a volgt nu, dat ook p (jj), p (g) en p ( 1)hetzelfde teeken hebben, d. w. z. elk der drie deelen van deintegraal rsi i Ui= lp (Â?) Â?Â? Js: is positief, of ook Ui zelf is positief. Nu was op blz. 57 reeds bewezen, dat het derde stuk van Iv,d. i. steeds eindig is, zoo \\p (u) | slechts kleiner is dan M.Dit geldt dus ook in het bovenstaande geval, waar elke u-xpositief is. Deze reeks zal a fortiori convergeeren, indien we eiken termvervangen door een kleinere waarde. Nu was: r*i 4 â€? Ui = lp (u) Sn (tl. x) d\\p (u) â€” J\'i r* ft\' r\'i i |/(j|)||J Sâ€ž(u.x) d??(u)\\ \\p(g)\\J Sn(u.x) dip(u)\\ \\psi x\\J Sn(u.x) d^p (u)\\ of volgens voorwaarde (b) blz. 59. r? Ui>s j \\jsn (u .x)di> (u) | 1 j&â€ž [u .x) drp (u) | 1 jf Sn (ii. x) d\\p (ti) \\ j r\'i 1 = J | I Sn(u.x) d ip (11) |,J>i rÂ?i 1 dus 2 s j / Sâ€ž (11. x) d \\p (u) | convergeert r\'i i of ook de reeks ^ j / Â?â€ž (ti. x) d \\p (ti) | convergeert, J>i een reeks, die onafhankelijk is van de gebruikte p (11). We hebben nu het volgende resultaat verkregen. De integraal/j kan gesplitst worden in drie gedeelten. (;U . x) d lp (tl)



??? p rPi 1 /â€?Â?" r2 1Â°. | j / (#â€? *) ^ (Â?) 2 / &(Â?â€? *) ^ (Â?) I <s; 1 Jpl JtO â€” Tj zijnde | Â?â€ž (u . x) \\ A in de eerste som en | Â?â€ž (u . x) | < D in de tweede som. rri 1 rri 1 2Â°. |2| (Â?â€? *) (Â?) | < SIB\' I / ^ (Â?) < 52 Gr. I Jr{ I Jr{ zijnde | Br | ^ C. fsi l-i r\'i i 3Â°- | 2 /|<21 /&(#â€?*)<*<MÂ?)|<-V Gr. II Jij II Jij Hierin zijn S{, S2 en S3 eindige waarden, die alle onafhankelijkvan n zijn. Bepalen we nu den restterm: [ R(u) Â?n(u.x)di> (u) < u n\'i i r Ti 1 Jpi JtO â€” T, rri-*-i rs ?? 1 21 / R (Â?) s* (Â?. *) (K) | 21 / * (Â?)(Â?â– *)(Â?) I- I Jfi II ?’>; ?’ In elk interval , r; 1) en (j;, Jj 1) mag, met eiken gewenschtengraad van nauwkeurigheid R (u) constant gesteld worden, dus n R (Â?) Â?lt (u .x(u) I < e S, f S2 Â? S3 < u\' een grootheid, die met Â? willekeurig klein wordt, hoe groot 11ook is, dus Pn (x) = sin k x -f- yj, zijnde | y | < Â? -f v\\\', hoe groot n ook is of lim Pâ€ž (x) = sin k x. tl = 00 Eveneens is lim f " = Â°Â° Ja cos k ii Â?n [u .x)d\\p (u) = cos k x.



??? Deze resultaten zijn in overeenstemming met het werk vanPlNCHERLE \'). Deze bewees, dat elke analytische functie, diegeen singulariteiten in \'t integratie-interval bezit, ontwikkelbaaris volgens de naderingsnoemers. Â§ 4. Het integratiegebied [a, b) kan uiteenvallen in meerderegedeelten: (a, bj), (a2, b2), (a3, b3)----(aq, b) m. a. w. d-]i(u)yÂ?. O uitsluitend in een interval (av, bp). Een re??ele functie f (x), die in deze intervallen z???? bepaaldis, dat zij overal eindig is, geen discontinu??teiten en een eindigaantal maxima en minima bezit, moet nu ontwikkeld kunnen wor-den, volgens Lv(â€”x) polynomen. Voorloopig is ook f(a)=f(b). Een functie ?’, (u) wordt nu als volgt gedefinieerd: ?’, (a) = f(a).In \'t interval (a, bt) is ?’, (u) = f{u) , /, (Â?) i^Ex !/(*Â?>-/&) I Cl 2 I ^ (Â?a. fx (Â?)=?’(Â?) (h> /, (Â?) = /(*,) !/(Â?,) - / ! etc. etc. De functie ?’, (Â?) kan nu in \'t interval (a, b) in een Fourier-reeks ontwikkeld worden, die absoluut en uniform convergent is,wanneer men nog onderstelt dat deze functie eene afgeleide heeftdie eindig is en voldoet aan de voorwaarden van DlRICHLET 1).Zij\' 00 2 TT ttt U , .2 TT VI u sin /1 (Â?) = 2.

cos tâ€”r 1/ â€” a , ?? â€” a m â€” 1 Â?1 = 1 dan is | | 3 en | bm ) -^5. 1 ^ vr 1 1 ^ nr De notatie am cv bm beteekent, dat de verhouding y- eindig blijft, Um en niet steeds nul is, terwijl am -< bm aangeeft, dat lim ~ = O. mâ€” 00 VM 1  Picard, Trait?Š d\'Analyse, I, p. 235.



??? Wegens de uniforme convergentie mogen we, wat het inte-greeren betreft, de functie fx (u) benaderen, door de eerste(2 /// 1) termen van haar reeks, dus JT / \\ V ( 2 K p u , , . 2 TTpu) fx (Â?) = 2 \\aP cos b_a bV s,n b_a R (Â?) p = 0 â€? \' met | (21) | < een willekeurig kleine positieve waarde, terwijlm steeds eindig blijft. Bij substitutie in de integraal Pn(x) (65) vindt men: rt t ( , 1 17 i) U 2 TT 4) 11 )lim Pn(x)â€” lim ?’ ap cos --l-^sin-^â€”â€” \\&(n.x)d\\p(u) Â?1 = 00 Â? = 00 Ja \'p = 0 - ^ - ^ \' I lim I R(u)Â?n(u.x)dip(tt). Â? = 00 / 2 TTpX . 2 5T p = 1 (^COS  Sin  ^ p = 0 want de restterm is, evenals in Â§ 3, van dezelfde orde als s,of lim Pn (x) â€” ?’, (ar) jj. n â€” CO Laten we nu grooter worden, dan neemt v\\ af,dus lim Pn (x) = f (*), Â? = 00 00 of de reeks V gvLv(â€”.r) stelt in elk interval de functie V =0 f (u) voor. Het is niet noodzakelijk, dat f(a)=f(b). Zij toch f (11) de te ontwikkelen functie, met f(a) f{b). We kunnen nu een functie cp (u) als volgt definieeren: -/(<*)]>dus <p(a) = o en cp (b) = /|) - f (a). Het is duidelijk, dat de functie F (u) â€” f(u) â€” cp (?/) ook devoorwaarde F(a) = F(b) vervult, dus lim f F

(u) &n (u . x) d\\p (u) = F (.v).Â? = 00 Jn



??? f is lim ?’ " = 00 Ja <P (li) Sn (lt . X\') d \\p (li) â€” Cp (x), Eveneensdus f\'i 1lim j F (u) <?)(Â?) Sn (iu (Â?) = F [x) Q (x) r lim I f(????) Sâ€ž (11. x) d\\p (ii) =f(x). of Â? = <*> Ja Tot dusverre hebben wij aangenomen, dat de functie continuis. Ook dit is niet noodzakelijk. Gaan we uit van een continue functie ?’ (u), die in het intervalA{ Bx de onderstaande gedaante heeft: terwijl x op eindigen afstand van M ligt. De integraal Pâ€ž (x) zal voor n â€” 00 de waarde f(x) aannemen,zelfs al is \'t interval A{ B{ zeer klein, want zoolang A{ B{ ^ ois, is ?’ (11) continu. Laten we nu At Bt onbepaald afnemen, danzal lim Pâ€ž (x) alleen kunnen veranderen door de bijdrage uit n = 00 \'t interval (Mâ€”o, M o). Deze nu is nul, wanneer we aanne-



??? men, dat f(u) in Ax en Bx tegengestelde waarde heeft, evenalsin Cx en Dx, de begrenzingspunten van een nieuw, kleiner ge-worden interval Ax Bv Steeds blijft het verloop van f (u) in\'t interval Ax Bt symmetrisch. De functie Sn (u . x) zal nu in elkpunt van dit oneindig kleine interval tot dezelfde grenswaardenaderen, evenals dip(u), zoodat pBi lim I f (u) Â?â€ž (u . x) d\\p (u) = o.Â? = 00 /Ai Si = 0 J-Ai Hiermede zijn wij gekomen tot een functie ?’(Â?), die discon-tinu is in M, maar z????, dat ?’ (x3[ o) = â€” ?’ (Xm â€” o). Dezelaatste beperking laat zich als volgt opheffen. Zij ?’(?/) de zoojuist beschouwde functie, dan is: f lim f f (u) Â?â€ž (u . x) du= f(x)Â? = Â?> Ja en f" lim ?’ <p (u) Sâ€ž (u . x) d u = <p (x), Â? = oo Ja waarin (p een continue functie is.Hieruit volgt: r lim ?’ F (u) Sn [u ,x)du = F (x),Â? = 30 Ju als F[u) =?’(Â?) <p(u). F (tl) is nu een functie, die in M een eindige discontinu??teitbezit, want F (xM o) = ?’ (xM o) (p (xM) en F (xM â€” o) ==f(xM â€” o) -f Cp {xM). Langs denzelfden weg kunnen ook meerdere eindige discon-tinuiteiten ingevoerd worden. Vanzelf dringt zich nu de vraag op, welke de

waarde vanlimiet Pn (x) is, als f(u) in a\' discontinu is. Analogie met deFourierreeks doet vermoeden, dat lim PÂ?[x) = \\\\f(x-o) f(x o) j. II â€” CC 4 \' \' Dit kan als volgt bewezen worden:



??? Volgens het voorgaande, is bij een functie ?’ (Â?), die discontinuin u â€” x is: lim PH (x) = Hm ?’ /(Â?) Â?â€ž d-p (Â?) = Â? = 00 /â€?z Ar >?’ 1 / ?’ (Â?) & d Ib u / ?’ (Â?) Â?Â? d $ (Â?) ,Jx â€” I Jx lim waarbij s en >; willekeurig klein genomen mogen worden. In de eerste integraal mag voor f(u) de waarde f(xâ€”o) ge-substitueerd worden, in de tweede ?’ (x -f- o), zoodat, met eikengewenschten graad van nauwkeurigheid Irx r.x 1* j f(x â€” o) / (Â?) ?’(* â€” <>) ?’ . A-f A \' Nemen we ?’(*â–  â€” o)=f(x-{-d), dan is: i rx rx 1, j lim I Â?ndip u / Sâ€ž d\\p (Â?) I = i. = 00 ( Jx_t Jx ) Â? = oo Verder is: rx rx t lim I Â?â€ž d \\p (ii) = lim / Â?Â? d ip Jxâ€”t Jx mits d-p (u) in cont i nii is, b.v. = \\p\' (u) du. De factor d-p (u) heeft dus in beide integralen dezelfde waarde.Zoo ook de factor &n (x. u). Volgens blz. 47 is: s .. _______i__Zâ€ž ! (â€” x) Ln (â€” u) â€” Ln ?? {â€” u) Ln (â€” x)^ kx . . kn 1 \' U-X Wij zagen, dat Ln 1 (â€” x) Ln (â€” j??) â€” Lu 1 (â€” u) Ln (â€” eengolflijn is, met een nul in u = x, wat n ook zij. Onmiddellijkvolgt hieruit, dat voor kleine waarde van 0: Lâ€ž 1 (â€” x) Ln(â€”x ??) â€” Ln 1 (â€” x 0) Ln (â€” x) = â€” j L,l l

(â€” x) Ln (â€” x â€” ??) â€” Lh i (â€” * â€” 6) Lh (â€” x) |. Ook de factor â€”-â€” heeft voor u â€” x Â? 0 tegengestelde waar-11 â€” x den, duÂ§ Sâ€ž (x . x â€” ??) â€” Â?â€ž (x. x ??), wat n ook is voor 0 g Max. van e en y, =liml



??? zoodat de integranden in overeenkomstige punten gelijk zijn,waaruit dan de gelijkheid van beide integralen volgt.Uit beide vergelijkingen volgt: rx fx tt lim / &n (.x (Â?) = 7lim / &â€ž (x .u) dip (u) = % JX â€” c Jx zoodat lim Pn (x) = j f(x â€” o) ?’ (x o) j. Opmerking: is dip(u) ook in x discontinu, b.v. dip (x â€” o) = p dii en d ip (x -f o) = q d u, met p jL q,dan zal, volgens dezelfde redeneering lim Pn (x) = --pâ€”f(x - o) jÂ?-f{x o).p -Y q p q Resumeerende zijn we tot \'t volgend theorema gekomen:Elke functie, die in \'t integratiegebied van de integraal cl \\L> x â€”aan de voorwaarden van DlRlCHLET voldoet, kan in Z X dit gebied volgens de naderingsnoemers van de kettingbreuk,die bij deze integraal behoort, ontwikkeld worden, mits de ver-schillende integratieintervallen alle eindig zijn. Â§ 5. Geval B: De integraal bezit een oneindige grens: In het voorgaande geval A berustte het geheele betoog op dereeksontwikkeling volgens FOURIER van de functie ?’(Â?). Dezeontwikkeling vervalt nu door het oneindig worden van hetintegratieinterval. Zooals bekend is, treedt in de plaats van dereeks de volgende

dubbelintegraal: 00 /â€? b dx I/(A) cos x (11 â€” tusschen de grenzen Â? b. Daarbuiten is de integraal nul.Overigens is de gang van het bewijs dezelfde als onder A. Voor ?’ (u) â€” um (m een positief geheel) breekt de ontwikkeling 00 Pn (x) = ^ gy Lv (â€” x) na v = m af. v =0 ?’ Ja Ja * * /W^??Jf



??? Zij bestaat dus uit een eindig aantal termen en geeft voorelke x waarde de functie xm volkomen nauwkeurig aan.Beschouwen we nu de functie (kxf (,kxY , [kx)N , _ . .cos kx=lâ€” r --. . â€? Â? -nrr~ Rn *) â€? = (*) (x), waarin SN[x) een polynoom van den Ne" graad is, terwijl Neindig is met | Rn[x) | < f, omdat de reeks uniform convergeert.Dit geldt voor alle kx waarden, die kleiner zijn dan een wille-keurig groot getal G.Nu is reeds bekend, dat /oo um &n (x . u) d \\p (u) voor n > 111 i = ?’ 1lm &n [X . U) d-Jj [li) V,,, met | jim | < Yi en lim y = o. G = 00 Dan is ook: r 00 lim Pâ€ž (x) = lim I cos k u &n d -Jj (u) = n = oo J o lim Â? ?’ cos li u . &Â? (x .u) dip (u) J cos Â? Â? . Â?ndip (u) J = /, /,. i i i r i | /, = lim I cos k u . Â?>tdip (u) ^ Jo lim | jf (Â?) Â?â€ž ^ (Â?) | | ?’ 7?jv (u) ^ (Â?) | J | g (Vergelijk Geval A, blz. 49) < | SN | (*) n t e. Eveneens is /â€?oo I A I = I ?’ cos k n Sâ€ž d ip (11) < y\',



??? want het is niet mogelijk, dat de nullen van de functie cos ku,die onafhankelijk is van n, alle steeds zouden samenvallen metdie van Â?Â? (x. ti) en dit is de eenige manier, waardoor de on- r 00 indig kleine integraal I &n (x. u) dip (u) een eindige waarde zou JG f lim I Â? = 00 Ja kunnen aannemen.We vinden dus, dat â€?co cos k u Â?â€ž (x . 11) dip (u) â€” cos k x . voor willekeurig groote waarden van x. Gaan we nu over tot een functie f(x), die in het interval(a, co) re??el en continu is, dan kunnen we als volgt de waarde r 00 van lim / f(ti) Â?,, (x .ti)d\\p (ti) bepalen. Â? = <*> Ja Volgens dc integraal van Fourier is: i r f i f(u) â€” - ?’ dx I ?’ (X) cos x [u â€” A) d A 57 Jo J-b in het interval Â? b i r r b of f(u) = lim - I dx I f (A) cos x (u â€” A) d A <?=oo?ry o j-i f (A) cos X (u â€” A) d A -f R (u), â–  h zijnde | R (u) | < s. Na substitutie vindt men: /â€?co rcc lim jf(u)&Hdip(u)= lim 12n(x .u)dip(u)- \\ d x\\f(^) cosx(uâ€”X)d^Â?=<*>Ja Â? = <*>Ja *J 0 J-i f lim | A (72) .11) d\\p (11) â€”Â?=00 Jrt (aangezien de grenzen constant zijn, en de functies continu zijn,mogen de integraties verwisseld worden)



??? i fÂ° f b rj lim â€” I dx I f (a) d??. I cos x (u â€” a) (x . 71) dip (u) -f y Â?=00 TT Jo J_b Ja i r f t = lim - I dx I f (A) d 4 lim f \' a cos x (x â€” a) -f y = f (71) j/ in het interval Â? b, hoe groot b ook is. Nemen weG steeds grooter, dan nadert j/ tot nul, dus ten slotte roo /(Â?) %l(x.u)d^{u)=f(x) voor willekeurig groote waarde van x. Ook het invoeren van een eindig aantal eindige discontinu-teiten levert geen bezwaren meer op. Geheel het betoog, datdaartoe onder A gehouden is (vergel. blz. 64, 65) kan hier woor-delijk herhaald worden. Nergens toch kwam de hoegrootheidvan de integraalgrenzen ter sprake, en dit is het eenige onder-scheid met het nu besproken geval B. Het zal tevens duidelijk zijn, dat het oneindig worden vanbeide grenzen in de integraal van STIELTJES, geen nieuwe be-schouwingen zal vereischen, zoodat ik het resultaat van dit hoofd-stuk als volgt mag formuleeren: Theorema: Elke functie, die in het integratiegebied van /â€? CO de integraal van stieltjes i ^ (,y) \') aan de voorwaarden z xâ€” 00 van dirichlet voldoet, kan in dit gebied volgens de naderings-noemers van de kettingbreuk, die bij deze

integraal behoort,ontwikkeld worden. Is dip (71) voor 71 = x â€” o gelijk aan pd7i en voor 71 = xo co p gelijk aan q d u, dan is de reeks ^ gv Lv\'(â€” x) = â€” f(x â€” o) -f v = 0 ^ -f f(x o), mits x niet in een oneindig klein integratie-interval gelegen is. /d 4, (x) â– â€”is hierin z -J- x \' begrepen, doordat dan 4* (x) = tp (A) voor x > b en \\p (x) â€” (Â?) voor x <a.



??? HOOFDSTUK III. Â§ i. In dit hoofdstuk heb ik eenige resultaten samengevat,die ik verkregen heb uit de studie van de volgende ketting-breuk van Stieltjes: /x e-*.x"-1 I cA , i| a li 2I x-\\-2\\ 31 -=F ii f 1-r F f-H F " â–  (voor iz > o en 2 niet negatief re??el) \') _ _L_ ! LW _r (* 0 , r (* 2) _ I 7i> ~T {x)\\ 2 2,J â– â€?â–  I = l2 n {*\' l\' ?•)\' zijnde 72) . . a{x, ff, x)= iâ€”x(3 Â? Â?(Â? 1) ff (ff 1)\'^- _ Â? (Â? i) (Â? 2) ff (ff i) (ff 2) ...\' etc.De kettingbreuk: â„??• 1 1 11 1 I 2I l " 21 I 3I 1 * 3l 1 70) . ^ jJ jT fs | ?? js | ?? j* | ??~ komt voor <x = 1 reeds voor bij TSCIIEBYSCIIEFF -) en LAGUERRE 3).Uitgaande van deze kettingbreuk kan men langs twee vcrschil- Bull. S. M. F. 7. 1879 1  Voor het bewijs van bovenstaande formules vergelijke men Perron, blz. 313en 392. 2  TSCHEBYSCHEFE, P. Sur le d?Šveloppement des fonctions ?  une seule variable.Bull. Pet. 1. 1860. /Â?00 I câ€” x d x 3  Laguerre, E. Sur l\'int?Šgrale I ---



??? lende wegen tot een geassocieerde kettingbreuk komen van degedaante: k\\ i__^lJ _ h 1 _ b ^ n 1* /, A k 4 iÂ°. door contractie (P. blz. 200): 68). . Ar,=r-!-!- ! Â?(Â? \')!_ 3(* a)l---- 1 |2r -f x \\z x 2 jz x 4 \\z 4 a: 4- 6 Deze kettingbreuk heeft tot naderingsbreuken die van K vaneven rangorde, zoodat ook I 00 68) ... . Ky â€” =T7-r I -â€”7-d x met x > O co I r-**"""1Jo VT?• irW r (* i) r(a; 2) r(H-3) , /l> â–  â€? â€? T{x)\\ z Z2 ^ Â?3 in overeenstemming met I e~x xx~1 xm dx = F (a -f ;Â?). 2Â°. door de substitutie Â? | â€”en vermenigvuldiging met â€”z: M1 M 1 k 1 / \\ rr / 2\\ â€” Â?I , Â?I , I I . Â? 11 , 2 I . dus K2(z) = â€” z K [â€”z2) 69).....^ = 2| 2 ^ 2 z \' 1 i r W r(" *) , r (* 2) .73).......= r~("j i " \'\' terwijl de bijbehoorende integraal wordt: \' 00 r 69)......../2 = -f- ?’ -!_(*Â?)*- 1 (Â?) I z 4 *v</â€” 00 Dit kan als volgt bewezen worden: i _ i x ^ x"1 x3 ^ z x z z2 z3 zl dus de co??ffici??nt van _1, . is: 1 /GO * x* - 1z x ..



??? i f CC 2 f <X> na x I Vy r" I dy I r , WJ = rwI-y*~ -y*dy = r (* -VP). De coefficient van â€” is: Z\'V I rj* r cc â€” I e-x*(x2)u--k x~i\' x dx â€” o, want de integrand is een\' Jâ€”cc oneven functie, dus: i j r (*) , r (* i) , r (* 2) , j De naderingsnoemers ?¨n van Kx en van K1 kunnen dus vol-gens het tweede hoofdstuk als ontwikkclingselement voor functiesdie voldoen aan de voorwaarden van DIRICIILET, dienst doen.Bij K{ behoort het interval nul-pos. oneindig, bij K2 de geheelere??ele as. Een en ander herinnert aan de Fourier-ontwikkelingen. /.co .{x i)| _ i h-\'.x"-1 sr <* 4 " ~ T (x)J 8 x\'u Â§ 2. De kettingbreuk: K = _jJ__\'â€?Â? : r dx De naderingsnoemers zal ik voorstellen door L,,(z, Â?). De recurrente betrekking is: 74) Ln i(z, x) = (z x 2 ti) Ln (z, x)-n(n-\\-x â€” i) Ln_ x (z, x).Hieruit volgt, dat 75)Ln(z, x) = zÂ? Q (n et--1) 1 Q (n Â?-1) (Â? x-2) .. (Â? # â€” 1) (Â? # â€” 2) ...(Â? *â€” . (") *â€”0 â€? â€? (* 0 2 (n 05 â€” 0 (Â? *â€”2) â€? â€? (# 0 2



??? Om dit eenvoudig te bewijzen, voer ik de volgende hulpfunctiesin, gedefinieerd door: 76 ).........*â– <*Â?>â€” r (n 4- x) . .of ZÂ? (z, a) = ^. <pn (2, x), z zoodat (74) overgaat in: r (11 4- et 4- 1) <pM i (2, x) = (2 4- et 2 Â?) V (11 et) <pH (2, x) â€”â€” 11(11 otâ€” 1) r (n x â€” i)<pn-\\ (2, x) 77) of (n x) <pH i (2, x) = (2 x 2 11) <pu (2, x) â€” 11 <pâ€ž_i (2, x).Uit (75) volgt voor <$â€ž(2, x) Zn U-1 /n\\ 2n Â?-2 /n\\ sn x-3 â„? X^ = T~(??r ~x) \\ Jr (n xâ€”i)^^) T (n xâ€”2) "\' r (ti x) \\i/r (n xâ€”i) \\2/ r(n xâ€”2) zn cc-p-l ,nv z \'ii \\p) t (11 Xâ€”p) " (1) r (X I) r (Â?)â€?^........ Met behulp van (77) zal ik nu (78\') bewijzen, waarmee dantevens de juistheid van (75) is aangetoond. Voor kleine Â?-waarden geeft de directe berekening: Â?Â?â–  â€” 1 L0(z, a)=i <p0(z, Â?)= jr^j gCt #cc â€” 1 Ly (2, x) = 2 x <Pi= ??wâ€”7T\\ r(Â? i) 1Â? L2 â€” Z1 2(x l)z (x l)x cp2 = f^) 2fJÂ?n-) in overeenstemming met (75) resp. (78). Nemen we dus aan, dat (78\') juist is voor 11 ^ 111, dan moetenwe aantoonen, dat de formule ook juist is voor 11 â€” 111 1.Met het oog op (77) bereken ik:



??? (z ct 2 in) <pm â€” 111 <pM _ x = 2 (j F77T71 2 (2 Â?) P?¨o\\ P (P Â?)~ m \\ â€”1 * , i "- Â?G- .)?•W â€ž5â€ž<2- G) nTT^ (in â€” i\\ 2P Â?-1sm " / /// \\ Â?â€” i lm a)T (m * ,) (Â? Â?-\') (w_IJf(^) (2 ,â€ž Â?) HrT\'~\\ v r (7Â? Â?) P â€”,  . / w \\ , . . /W\\ (1 "G-i) (I" "G)â€”â€?(2 Â? â€” 1 0Â? â€” 1 r *Â? Â?  l\\ "1 Lr (,Â? Â? -f l) l Â? J r (;/, Â?) J 1  I)..(Mâ€”p 2). Â?.et â€” 1VI I\\ ZP *~1 m 4-1 . /;Â? i \\ -1-Â? â€” ^(*Â? 2q p ) r[p Â?)= ^ <PÂ? i (*Â? *)< dus ook Â?)=S0( , jf??TM- Â§ 3. Wij zagen, dat <pn(z, *) = 2 Q



??? Zooals reeds is opgemerkt, gaan deze polynomen voor x = i over in die van Abel \').Â?>....... Tal van eigenschappen van CpH(â€”x, i) kunnen gemakkelijkuitgebreid worden tot eigenschappen der polynomen <pâ€ž (z, x).Allereerst voer ik nog in : o \\ , \\ et) Lâ€ž (z, x) " ni\\ z\'\' 80) . . . (,, .) - - Â?Â?TJ) = 2 (,) rJf 7) en 81 )........4>(/3, y, z)= lim f(x, (3, y, -) a â€” CC \\ \' Q z (3 ((3 i) (3 ((3 i) (/3 2)7 \' i r (7 i)\' \\2 y (y i) (y 2)\' [3 zoodat 82 ).......%n(z, Â?)==â€”â€”.<!>(â€”Â?, â€” z) de pc term van â€ž \\ . <I> (â€” n, x\\ â€” z) toch is:r (x) i -â€”Â?(-â€”Â? l)(â€”m 2)..(â€”tt /â€” i) (â€” z)p _ / 7ix Z>\'rjx)\' x[x i)[x 2) ..(x pâ€”\\)\'p\\ ~\\p)r(p x)\' Een der meest voor de hand liggende eigenschappen is: 83 )..........(pj [z, x) = (pn (z, X â€” 1). B e w ij s: ^ (z, x) = Â? Q dus (pn {2, *) = 2 (^J r J ^ = <PÂ? (*Â? Â? â€” 1), niet Â? > 1.Verder is: 84 )......<pn [2, Â?) (pn [2, Cl) = <pn 1 Â? ~ O of volgens (83): 85 ).......(Pn (2, Ct) = (p\'n i[z, X) â€” (pn\' [Z, x).



??? B e w ij s: <pâ€ž (z, x) CpJ (z, x) = " i/n\\ zp *-1 (n\\ zi> "-2 Zj v, Tl* i ) r{p x) \\p) r (p h Â?) \\p) v(p xâ€”i) r (Â? Â?) 1 i UJ U 1) J r (p x) r (x ~ " /Â? I\\ zp \'-i _ " ,1 /n i\\ zP "~2 vr(/ #) r(Â?-i)~pf0V p ) r (p xâ€”i)~ <pâ€ž i (z; xâ€” i). q. e. d. Vermenigvuldigt men beide leden van (84) met e\'dz, dan is: 86 )......d[er Cpâ€ž (z, x)) = r* <pH 1 (z, x â€” 1) d z. of ook: 87) . . d(e= .z*-1. Ln(z, x)) = e*.z*-2.Lu i(z, xâ€”i)dz.Nog is: 88 )......LnW(z, x p). Bewjs: fcfc = .= X) ^ " //|\\ ZP r(Â? Â?) ^.Wr^ i)\' dus sy.^.----- r (Â? Â?) pfi W r (p x) V ~~ l\\ gf,~1 = "v1 (n â€” l\\\'l \\P-1)T(P *) ti9\\ q ).T(q x l) 1 (z, X 4- 1) = n--5-\'- r (Â? 4-Â?) 88\').....of Â?â€ž\' (5, x) = 11 Lâ€ž-i (z, x 1). Zoo ook: Lâ€ž" (z, x) = 11 L\'n-1 (.er, Â? 1) = Â? (Â? â€” 1) Â?â€ž-s(*, x 2).etc.



??? Differentiaalvergelijkingen :iÂ°. voor Ln(z, x) 89) ... z (z, x) (z x) LJ (z, x) â€” 11 Ln (z, x) = O.B e \\v ij s : (87) wordt na x | a i en 11 \\ n â€” 1 : d(e= z* Ln-i(z, x 1)) = e*.z"-1 .L,t{z, x) d z.of volgens (880 = â€” \\ez.z*.Ln\' (z, x)} = ^. z*-*. n Ln (z, x). Uitvoering der differentiatie levert (89):2Â°. voor Zn (2, et) :89\') . . . z [z, x) {z Â?) Xn (2, a) â€”11 xÂ? [z, x) â€” o, A 4. t \\ Ln (0> *) omdat %M (z, x) = 3Â°. voor (pn(z, x): 89") 2 <pn" (z, et) {z 2 â€” x) <pn\' (z, x) â€” (n x â€” 1) <pH (z, x) = O, omdat Qh (z, x) = zu~1 (z, x). Recurrente betrekkingen: Vergel. (74) en (77): 74) . . Ln 1 (z, x)=(z-\\-2n x)Ln(z,x) â€” n(n xâ€”i)Ln-\\{z,x) {n et)Xn i{z, et) = (z 2 n x) xn{z, <*) â€”Â? <prt_i (s, x) (Â? x)<pn \\(z, x) = (z 211 et) Cpn(z, x) â€” u(pn-i(z, x). Uit (880 volgt: d_ (<pÂ?(g, et)\\ _ ^ (pn-\\{z, et 1)dz\\ z*~l J 11 \' z* na uitvoering der differentiatie vindt men: 90) ... Z Cpn\' (z, x) â€” (x â€” I) <pH (z, x) = 11 <pH _ 1 (z, X I)of volgens (83) 90\') . . z(pâ€ž[z, X â€” 1) â€” (x â€” 1) <pH (z, x) = 11 <pn _ 1 (z, X -f 1)of ook 90") . . z <pn\' (z, x) â€” 11 Q\'u _ 1 (z, x 2) = [x â€” 1) <pH (z, x)en volgens (85) 90\'") . . z QÂ? (z, x) 11 <pâ€ž _ 1 (z, x) =

[11 x~ 1) cpn (z, x). 77)



??? Nog is: 91) . . z <pn\' x) = (11 x) <pH 1 (z, x) â€” (z 1l 1) Cpâ€ž (z, x) 92) . . z cp,/\' (z, x) (2 â€” x) Cp,/ (z, x) â€” n cpn _ 1 (z, x) = o.Uit (85) volgt: (pl=(pt\' â€”<p/ voor argumenten z, x <Pa = <P3\' <pH = Cp\'n lâ€” Cp,/ dus Â? 2 <Pp= Q\'n lâ€” Qi = <P\'H 1 â€” Ip = 0 n 93 )........of ook 2i<Pp = <P\'Â? i. p = 0 Uit (92) volgt: i(Pi â€” \\ = z <pi" (2 â€” x) (pi\' dus 2 icPi-i â€” z Â? #," (3-Â?) Â? <Pi\' 1 1 1 = 2 1 (2 â€” Â?) 0"H 1 volgens (93)= (Â? 1) (p\'n â€” <p"n 1 volgens (92). H Â? â€” 1 Â?I- 1 Nu is 2 i(Pi-1= 2 2 & =i = 1 i = 1 i = 0 M â€” 1 2 Cpi <p\', = (Â? !) <?>\'â€ž â€” 1i = 1 Â? â€” 1 94 ).......of 2 i<pi = "$\',t â€” <p"Â? 1. i = 1 H -1 94O â€? â€? â€? 2 (*Â? *) = 11Q" Â?â€” 0â€”<PÂ? i (*Â?*â€”2)- lal Â§ 4. De genetische functie voor Cpâ€ž (z, x).Volgens de definitie der Abelsche functies is: j *Â? 00 95)........7-n\'eX~t ~ 2 <M-r> O*"- li\' A



??? De genetische functie der algemeene polynomen <pu (x, x) kannu gevonden worden, door gebruik te maken van de definitievan RiEMANN *) van de integratie en differentiatie met gebrokenen onmeetbaren index. RiEMANN definieert een x herhaalde integratie van f(x), sym-bolisch D* f (x) â€” x* . R" (x) geschreven, als volgt: t, v 1 f f{tx)dt . Â?â– /w-rw j0 ">0â€? co co r [tl 4- i) Als ?’(*)= 2 dan is Ra f(x) â€” Â? v | / a.* m = 0 Â?= 0 1 \\n I 1 \' K> In ons geval is: 0- S.Of^TiJ......(78,)\' 96) dus 0-><M*( â– )= Deze formule geldt ook voor x â€” 1 negatief, als men definieert .>0 Â? X waarbij k \'t kleinste geheel is, waarvoor k x â€” 1 S: O. In onsgeval is dus k = 1 voor O < x < 1.Nu is: 00 I xtl 2 1) = A-\' dus 00 i tr/ 97)......y Â?)vn =-c /1â€”t 7// 0 1 â€” V Het convergentiegebied is de eenheidscirkel. 1  B. Riemann, Versuch einer allgemeinen Auffassung der Integration und Diffe-



??? 8 r Voor Â? geheel (r, 2, 3,. k) vindt men onmiddellijk: , i / i-z/V-1 xv I (i -v)l~2 xv I = A- -p waarbij ?’ (*) een polynomium is, waardoor de termen met;trÂ°, ^r1, ...xk~2 worden weggenomen, zoodat v^, (i-^)1-2 (X ^ X2 A\'3 Xk~s\\ 98) = -i-jr-gâ€”jj-i^i zijnde X~ X V . Â§5. De kettingbreuk: 11 x\\ 11 <* il 2I Â? 2| i r* =??>) / 7 wâ€”fÂ? 69) . . . AT, = Ijbf I JBT Lar 00 e~x\' 1 - (,r2)a â€”a" dx. -f- x00 De naderingsnoemers zal ik voorstellen door Nn (z, x),dan zijn de recurrente betrekkingen: 99 a) [ Nln i (z, x) = zNaâ€ž(z, x) â€” iiNin^. i(z, x)99b) I N2n 2(z, x) = z N2n i(z, x) â€” (n x) Nin(z, x). Het ligt voor de hand, om afzonderlijk de recurrente betrekkingte berekenen voor alle functies met even, en met oneven index.Bij substitutie van (99Â?) in (99^) komt: N2 n 3 = â€” (â€” -f 11 x) N2 â€ž â€” 71 z Ns â€ž _ 1,maar volgens 99b voor 11 | 11 â€” 1 is, â€” zN2â€ž-i = â€” NZn â€” (11 x â€” i )NsÂ?-9 dus iV2n 2 = â€” (â€” z% 211 x)N2u â€” n (n xâ€” i)iVo(M_i) of IOO) (â€” I)" 1 N2(n 1) [S, x)=(â€”Z2 2 11 X) (â€” I)" NSn (Z, X) â€” â€” 11(11 Xâ€” 1) (â€” I)Â?-1 Nj(â€ž â€” ij (5, x).



??? Deze formule herinnert aan (74) voor z = â€” z2 Â?â€ž i(â€” z2, Â?) = (â€” z1 2n x)Ln(â€” z2, Â?)â€”ti(ti xâ€” i)Â?â€ž_i(â€” x)zoodat 101 ).......A2ll (2, x) = (â€”i)nLn(â€”z2, x), want tevens is A0=i=(- i)Â°.L0(-z*, x)en Nt = z2 â€” x = (â€” i)1 L{ (â€”z\\ Â?) = â€” (â€” x).Een zelfde berekening leidt tot een formule voor Nin \\ (z, ?<)â€?Volgens (gg&) is: A2â€ž â€” z A3h_i â€” (ti xâ€”1) 7V2H_2-Substitueerende in (99a): Aoâ€ž i = (z2-tl) A3â€ž_i â€” z(tl X- 1) A2m_ 2* Verder is: (ti x â€” i)NSn-i=z(n uâ€” 1) A2â€ž_3â€” (11â€” 1 )(n xâ€” i)A3)i_3dus A3m 1 = (z2 â€” 2 11 â€” x 1) iVsÂ?-! â€” (n â€” 1) (ti â€” 1) A3n_3lof 102) (â€” i)"N2ll l (z, x) = (-z2 2ti xâ€”i)(â€”i)n-lN2n_l â€” â€” (n â€” i)(n xâ€” 1) (â€” i)"-2 A3),_3. Vergelijken wij met (74) na z | â€” z2, 11 | 11 â€” 1, x | x 1: Ln(â€”z2,x i) = (â€”zl-\\-2n-\\-xâ€” i)Lâ€ž-i(z,x i)â€”(tiâ€” i)(n xâ€” 1) Al-2 (z, X 1) zoodat 103 ).....As â€ž 1 (z, x) = (â€” 1)Â? z Ln (â€” z3,x i) want tevens is: A, (z, x)=z=(~ N,(z, x)=z3-(x 1)z=(- i)\'zl-z2 (x 1)}=(-1yz.L, (~z2,x 1). 0 U / 71 \\ Z^ Nu was La (z, x) = T (ti x) Â? ^) r (/> ^



??? 104)! *=0 Ukâ€ž !(s,Â?)=(â€” i fzLn(â€”z2, a i)= Deze formules kunnen ook als volgt geschreven worden: 11 (fi_j W11_2) M \' . (Â? Â?â€”i)(w Â? â€” 2)(Â? Â?~3)02"-g ... etc. ,2Â? 1.2.3Voor Â? = \'/2 is: I â€? 22  I . 2 â€? 24 2Â?(2Â?-2)(2Â?-4) (211 l)(2ll 3) (2 11 5) â€žg,i_f, .I.2.3 \' 2Â° ~ Of 7V2â€ž \'/,) = j (2 2)2Â? - (2 ,)Â?-Â? 2 11 (2 Â?1 â€” I) (2 Â? â€” 2) (2 11 â€” 3) _ I #2Â? (2) 2! \' * \' \' " ) als Hn (z) de functies van Hermite aangeeft\').Evenzoo is: AT (â€ž \\l\\ â€” ^Â?n l (g) JVSn i(S, U) = â€”smT" 105) .... of algemeen Nv (z,\'/,) = â€” Eenvoudiger is dit te bewijzen, met behulp van (99). Dezeformules zijn voor x = ]/1: NSn i {z, 7j) = z Nin â€” 11Nj,1â€”1= e A^ i â€” (Â? i)



??? Vermenigvuldigen we respectievelijk met 22" 1 en 22h 2, dan is:22tt 1 N2n 1 = 2z. 2U Nin â€”2.2 n. 22"-1 iV3)i_i Z NÂ?H 2= 2 Z . 2*Â? 1 N2n l - 2 (2 11 l)2*Â?Nonof in ?Š?Šn formule: 2V = 2 Z . 2"-1iVv_i â€” 2 . (vâ€” i) 2v~a"terwijl voor geldt: Hn=2Z //"â€ž_) â€” 2 (Â? â€” I) //â€ž_2 \'). Tevens is: ffo=I=2\'.No[0t*U)H1 = 2Z=2\\NX(Z, V??) zoodat weer 105)..........Hv(z) = 2"Nv(z,il2) Â§ 6. Volgens het voorgaande bestaat er een zeer eenvoudigverband tusschen de functies van Abel en Hermite. Uit (105) en (103) volgt: #Â?. iW = 2Â?Â? iAi. i(*f \'/O = (-!)â€? 2Â?" i.Â? M-\'*\'Â? 7*) = (â€” 1)Â? 128Â? 1. f r (Â? 3/J (â€” s2,3/2) .... (76). Nu is verder volgens (96): c?>â€ž (a\', 3/2) = Z?V. cpn (x, l) = *V. ^V. <pâ€ž 1) _ Xxl* C<pÂ?{xt, I) , -r(i)J0 (i-V\' dus 0 /_Â?n-iL f ^ikzlAJldt<M Â?, w-yit] (i â€” /)â– /. atj 0 en ,06) r^o rf, \'O Het is nu eenvoudig Â? 1 (Â?) in een reeks van Abelschepolynomen te ontwikkelen. 1  Vergelijk: Versl. Kon. Ac. v. W., Prof. Dr. W. Kapteyn, â€žOver de functies



??? Hiertoe gaan wij uit van: 0 107) ( met rcc ( t A\\:=[*â– <-â–  * (- (- D\' \'n^?‰Tji Volgens (78\') is: * = o f â€?\'O â€” ( r)p = (wegens 107) = ?Š (",) Â?"\' (Â?-r)â€” <pt{x, i)1) i = 0 108) . . . 0f<M\'*. 0 = 2 Ul\'Miâ€” f)*-kQk{x,\\)zoodat (i-tyi> 2 Uj<M*.0 Â?-* \'/Â?) k â€” 0 dus 109) ^ =   ,). Voor //2(, (2) vind ik: //2â€ž (,) = 22" Aoâ€ž (*, >/a) = 22" (- i)" (- \'/,)= (- i)Â? 2Â°-Â?.izr (n Vj) s2, Va)- 1  Zie blz. 87 voor de volledige afleiding.



??? Nu is: <pu(x, = i) = x-*R-1lÂ?<pn(x, l) _X-Vl Â? f<t>n(*t,i) -x T WYdx I (I-/)*Â?0 _ [lcp,/ (xt, i)-r(i)jf (i-/)* â€?\'O Differentieert men (108) naaren substitueert, dan is: \'/)--â€?/ i r(?? i) Ar^-\'/j<M* /2)~ l2-vâ€”\'C{n vZ T[n_k l) *>{*>*) dus 1,0) â– , 2i.-l.K! -L| ^ ,) â– ). Langs denzelfden weg kunnen alle functies 0â€ž (x, x) en iVâ€ž Â?)ontwikkeld worden in reeksen volgens Abelsche polynomen. Bepaalt men deze ontwikkeling direct volgens form. (66), dangeeft de vergelijking tal van integralen. In het voorgaande nemen de functies van Abel blijkbaar eenbevoorrechte plaats in. Men mag verwachten, dat dit slechtsschijnbaar is, wat als volgt kan worden aangetoond.Wij hadden: \'Â°7)......rW) = !<-â– >\'(><-*â€?\'> Â°f O\', -i<-.)\'ft) *< *..)â€? Passen we op beide leden de operatie Da~x toe, dan is: 1  Deze formule voor HÂ?n (z) is langs anderen weg afgeleid door den heerN. G. W. H. Beeger. Versl. Kon. Ac. v. W. 17 Juni 1914, blz. 95.



??? of, lettende op (80): in> ofook rJ^Tx)= 2(â€” 0\'Xi(â€” x,x). XÂ?(â€”tx,*)= ?? (- 0\' Ontwikkelen we nu H = V iV / , r (Â? Â?) dus, volgens (inj =1(-"\'(") "i\'-"\'O*Â?â€” In \'talgemeen is: n i k = t; i =Â? 2 2 2 2 Â?i* = Â?00 i = 0 * = 0 * = 0 i = i Â?10 Â?1 1 Â?20 Â?2 1 Â?2 2 ....... Â?HO Â?Â?1 ..... Â?\'"Â? dus Â? i-=0 waar Â? <- (:)â– (;)^C- 0â€”a) GTS"â€” Â? = * I = * ten slotte is dus:* " / Â?\\112) .... Xn(tX,x)=yi{\'tk)tl(lâ€”t)n-\'rXn(x>*)\'



??? Het zal duidelijk zijn, dat deze formule en die voor de inte-gratie, respect., differentiatie voor gebroken of onmeetbaren index,evenals in het bijzondere geval, dat voorafgaat, ons in staatstellen elke functie (z, x) of Nn (z, ot) volgens een reeks metwillekeurige x, hetzij bestaande uit hetzij uit iVrfuncties teontwikkelen. Hierin ligt een schat bepaalde integralen opgesloten. Ik wil niet verzuimen te wijzen op een eigenaardige symme-trie in form. (in) en (80). 80) is htkzhA = V (_. I)p (n\\ ( *)\' . in) ... { z)n j (-1 )Pr1\\Lp(-*>*). Hieruit volgt deze stelling1): Als een naar opklimmende mach-ten van z gerangschikte functie naar Ln (â€” z, x) ontwikkeld kanworden, zoodat symbolisch f(z) = F(L) is, dan is ook f(L) = F(z).Lk is hierin steeds te vervangen door Lk. Â§ 7. Het verband met de functies van Bessel.Voor alle waarden van 11 en z is r = 0 2 " 2 r r! r (72 r 1)of voor 77 = x â€” i, zâ€”2Vxy: __a. â€” 1 00 /_ .)r ?’â€ž _1 (2 V Xy) = (X y)â€” r! r (r et){xZoo is: Â? â€” 1 00 Ys 00 /_ Tw Yr ,lm-l{ 2 V~xy) * M- Â? 2 ^f^râ€”1 " (â€”jy)OT , (-)"t-1 , | Â?ter)-* ? 1  Laguerre. Buil. de la Soc. math. de France. Tome VII, p. 81.



??? dus 113) . . (xyfir (2 VT}) = 1 y,x). m=Om â€? r (/Â? Â?) Vermenigvuldigen we beide leden met e-\'J yn ya~l dy enintegreeren tusschen o en 00 , dan is: i_Â?rÂ? u-i __Â? x\'" fâ„? L (â€”va) S.xâ€”le-vyy ?? fa_1(2Vxy)dy= ^ â€” l^yy^Ky^^dy. Nu is volgens (in): y = r(Â? Â?) j 2(â€”\')\'(*)^r xf j dus ( e-y.fpdy = Jo r (Â? Â?) rcc r (. .) (- 1)- (Â?) |Â?.Â? (-* â€?)^ volgens (62) =  volgens (63). Het tweede lid wordt dus: " (n\\ (â€” x)" of Â?â€ž(â€” x, cc) = e*.xâ€” I e-y  (2 Vxy)dy, \\ /3a 1 of na v â€” en x x2 1 4 1 rao 114O 2*Â? *x*-\'1 x2, Â?) = ?’ Jo Gebruik makende van (101) en (103), vind ik11 s) A> (x, Â?) = (-i)D?– â€? ^ jf â–  /Â?- v. |i (-DÂ?} (/3 *) 114)



??? Uit (113) volgt nog: /._, VT,) = ,. | Â? en 1-Â? ___00 vm r (_ r â€ž) (^)-T- ^ /._, (2 Vxy) = . Jo i, M^Â? dus \' \' \' \' r(Â? Â?) \'.foÂ?! r(Â? Â?) \' een vergelijking, die herinnert aan de symmetrie, waarop aan\'t einde van de voorgaande paragraaf gewezen werd. Â§ 8. De iV-functies kunnen ook nog als volgt geschrevenworden: 117) . . waarin aAx de operator (-y2 " ~1 voorstelt. B e w ij s: Nin{z, Â?) = (â€” i)nLn{â€” et) ... . (101) dus ^ As * [Z, et) = (â€” 1)" (â€” 2 z) L; (â€” z2, *) = volgens (88\') = (â€” i)"_1. 2 7; ,zLn-\\(â€” z2, et i)= volgens (103)= 2 11 A2â€ž_i (0, Â?) of 118).......â€” NÂ?n(z, Â?) â€” 211 A^h-i [ss, et). Cl % Evenzoo is: Nin \\{?, ec) = {â€”i)Â?.zLn(â€”z2, Â? i).... (103) ^ . jV2tt , (Z, Â?) = -f2(- l),l * â–  S2)\' ^ Â? O



??? = (â€” O" " â€? r (Â? * O (â€” *1> * O = volgens (83) = (â€” O" *(n x)r (11 x) (â€” 2 z) (pH (â€” z2, k)= (â€” i)\'1 2 (Â? Â?) Ltl (â€” Â?) = 2 (Â? -f Â?) z2*-1 NSn (z, x) 119) dus -^[z**-1 Nin ](z, Â?)) = â€” 2(n x)zs"-1N2n(z, x). d_d z Verder is: e~*N2â€ž (z, Â?)j = | â€” 2 zNiH-\\-2 n = volgens (99a) = â€” 2e-Â°2 NSn i (z, x) dus 120 ei) . . Aj â€ž 1 (z, x) =â€” *)j. 2 Ct % \' ) Eveneens = â€” 2 N2n 2(z, et)... (99 ??) dus 120*) N2h 2(z, x) = â€” jV<3 .a8 â€”*iV,. i(s, *)j. Nu is iV0 = 1, dus volgens (i20<Â?) 1  2 etc. 3 Een der vele manieren om te komen tot de differentiaalver-



??? volgens (120) is: i d en NSn \\ =--e* -7- iV2 â€ž. T 2 dz Na uitwerking en substitutie komt er: 121 a) ... z jy" â€” 2 zy\' 2 . 2 n y } (2 et â€” 1) y\' = O een differentiaalvergelijking, waarvan N??n(z, et) een particuliereoplossing is. Langs denzelfden weg of door de opmerking, dat â€”Nin = & z = 2 nN^n-i) vindt men voor de differentiaalvergelijking voor Nin-i(z, et): 121 b) z2\\y" â€” 2 xy\' 2 (2 n â€” i)y j (2 et â€” 1) (xy\' â€” y) â€” o. Ook kan men uitgaan van de differentiaalvergelijking voorLn(z, ot): 89) ... z L" (z, et) (z et) Ln\' (z, et) â€” n L,t (z, et) â€” o. Kiest men tot onafhankelijk variable x, z???? dat z = â€” x\'1, danvindt men direct (121 0). Deze methode verdient vermelding, omdat de studie derdifferentiaalvergelijking (89) die der vergelijkingen (121 a) en (121 b)omvat. Is toch een tweede particuliere oplossing van (89) bekend, danvoert dezelfde substitutie tot een tweede particuliere oplossingvan (121 a) en na differentiatie tot een van (121 In het volgende bepaal ik mij dus tot de vergelijkingen: 89).........zy" (z -f et)y\' â€” n y = o. Zij t//â€ž een tweede particuliere oplossing, dan is: 2 Lr!\' [z et) Lr! â€” 11 Ln = o 2 [z

et) iplt\' â€” nttt= o. Na eliminatie van Lâ€ž en \\pn: *z (<//â€ž Ln" - Ln) (z et) ( u L,! - tn\' Ln) = o



??? J -pn LJ â€” Ln \\fj/ j (z et) | \\pn L,/ â€” Ln tyj} = o^ log {ipn LJ â€” Lâ€ž = â€” i â€” t, log L,! â€” Â?â€ž = â€”z â€” x log 2 C\'^nLn\'~ Ln??n\' = C\' . Z-*. d AM ^ of dz\\LJ z* L,? > 00 -rrf; J oog. _ L 2 Het is mogelijk deze functie in een anderen vorm te schrijven.Daartoe stel ik in zy" x)y\' â€” n y = oy â€” u Ln w dan is: {z u" (z et) u\' \\Ln z w" (ar et)wf â€” n zu 2 zu\' Ln\' = o. Kiest men u z????, dat de co??ffici??nt van Ln nul wordt, dus . 00 ?? u\' = Ceâ€”â€” en u = C. 4- C I dt 1 I cvCt dan moet: e~B zu" 4- (z x) zu\' â€” ii zu 4- 2 Ln\' â€” o. Na de substitutie zu â€” e~\'. /, gaat deze differentiaalvergelijkingover in: 21" â€” (z â€” x)t/ â€” (n x)t = â€” 2 s1 LJ.Stelt men nu weer: t = zl~u y, dan is123) .. . zy" â€” (z 4- et â€” 2)y\' â€” (n i)y 2 Ln\' = o. A d z Deze differentiaalvergelijking heeft nu Kn (z, x) (de naderings-tcllcr van de kettingbreuk Kx) tot particuliere oplossing, zoodat ?’ 00 124) . . (z, x) = Lâ€ž (z, x) I ~â€”dz â€”?? . Kn (z, x).



??? In de vergel. (123) heeft men een nieuw aanknoopingspuntvoor de studie der tellers Kn {z, a). Tal van eigenschappen, o. a.getalbetrekkingen voor de T functie kunnen gevonden wordenmet behulp van de differentiaalvergelijking, de algemeene formule: , x rÂ° 1 Ln (z, a) â€” Zâ€ž (â€” X, Ct)125 . . . KAz, Â?)= ?’ e~x x"-1 v \'â€”:â€”---â€”; dx Jo * " en de recurrente betrekking: 126) Kn 1 (z, a) = (z 2n Â?) Kn (z, Â?) â€” n (n cc â€” 1) Kn _ 1 (z, a). Het is waarschijnlijk, dat tal van eigenschappen van de poly-nomen Ln en Nn niet alleen gelden voor deze, maar karakteristiekzijn voor de naderingsnoemers van de kettingbreuken vanStieltjes.



??? ERRATA. Blz. 9. regel 6 V. b. staat Â? 16, Â? - 16 V. b. staat Â? 21, Â? 7 V. b. staat Â? 43Â? Â? I V. O. staat n 8o, V 6 V. b. staat XP 1, moet zijn: xpx\', moet zijn: p^1.p*a, moet zijn: p0Uo.x > x, moet zijn: x < x.R"(x), moet zijn: R"f{x).
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???



??? STELLINGEN.



???



??? STELLINGEN. i. Het is van belang de functies <pn (z, cl) ook als functies van Â?te bestudeeren. (definitie van cpn(z,x): blz. 74, form. (76)). II. In de theorie der algebra??sche kettingbreuken, moet de be-naderingswet van LAGRANGE \') meer op den voorgrond gebrachtworden. III. In de leer der kettingbreuken neemt men als eerste nadcrings-noemer, B0, steeds B0 â€” 1. Deze aanname, die op analogie metde regelmatige kettingbreuken berust, zal waarschijnlijk bij deverdere ontwikkeling van de theorie der kettingbreuken vanStieltjes (blz. 1) vervangen moeten worden door B0 == f(z),terwijl de eerste noemer bxz g(z) wordt. (f(z) en g(z) zijn functies van z). IV. Het kriterium voor algebra??sche getallen van MlNKOWSKl isvan weinig praktische waarde. G??ttinger Nachrichten. 1899. S. 64â€”88.Ges. Abh. 13d. I XIV. S. 293 ff. 1) Vcrgcl. b.v.: â€žPerron. Die Lehre von den Kettenbr??chen" Tcubner, 1913. S. 42.



??? ioo V. De ontwikkeling der wiskunde vereischt de vervanging vanelk formeel bewijs door een bewijsvoering, die duidelijk laat zien,hoe het theorema uit de gegevens volgt; in dit opzicht verdientb.v. het bewijs van stieltjes voor de stelling, dat de wortelsvan de naderingsnoemers van zijne kettingbreuken alle re??el,enkelvoudig en niet positief zijn de voorkeur boven dat vanPerron. Stieltjes. Ann. de Toulouse. T. VIII. 1894. perron. â€žDie Lehre von den Kettenbr??chen" Teubner 1913.S. 394â€”395- VI. De ontwikkeling van de taal en de methoden der meer-dimensionale meetkunde is van het hoogste belang voor de analyse en de mathematische physica (b.v. statistische mechanica). * VII. De meetkundige behandeling der logarithme zooals Kleindeze voorstelt is niet te verkiezen boven de gebruikelijke alge-bra??sche methode. F. klein. Elementar Mathematik vom h??heren Standpunkteaus. Bd. I S. 319 ff. Zijne methode is nader uitgewerkt in het â€žZeitschrift f??rmathematischen und naturwissenschaftlichen Unterricht", 44 J.1913 door Frenzel. Zur Kleinschen Einf??hrung in die Lehre von

denLogarithmen. S. 1. en Funk-D??RRIE. Die Kleinsche Einf??hrung in die Lehre vonden Logarithmen. S. 463.



??? ior VIII. Het is zeer te betreuren dat in de leerboeken der stereometriede kegelsneden niet of bijna niet worden behandeld. IX. De cosmogonie van laplace verdient de voorkeur bovendie van Faye. H. Faye. Sur 1\'Origine du Monde. 40 edit. Paris G. V. 1907.Chap. XIII et XIV. X. De gronden, die ARRHENIUS in zijne cosmogonie aanvoertvoor het betoog, dat de ontwikkeling van de sterrenwereld eeneeuwige herhaling zou zijn, zijn onbevredigend. S. ARRHENIUS. Das Werden der Weiten. 1907. XI. De wijze, waarop Planck uitgaande van de eigenschappender ideale gassen, de tweede hoofdwet der thermodynamicaafleidt, is te verkiezen boven de methode van Bryan. Max planck: Vorlesungen ??ber Thermodynamik. 3 Aufl. 1911. G. H. Br van: Thermodynamics. Teubner 1907. XII. Bij de behandeling der eigenschappen der geconcentreerdeoplossingen dient men uit te gaan van de theorie der idealegeconcentreerde oplossingen \')Â? berustende op de thermodyna-mische potentiaal en niet van de theorie van van \'t Hoff. 1) Voor de theorie der â€žideale" geconcentreerde oplossingen vergelijke

men b.v.K. Ikeda. The Journal of the College of Science. Imperial University. Japan.(Tokio) 25. Art. 10 (1908).



??? XIII. Het begrip â€žstof" is even onbegrijpelijk als het begrip â€žon-stoffelijk" (in de beteekenis van â€žgeest"). XIV. Het wordt tijd, dat bij het onderwijs in de natuurkunde opde H.B.S. meer rekening gehouden wordt met de vorderingender wetenschap.
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