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INLEIDING.

§ 1. J. H.Laseert ') was de eerste, die de aandacht vestigde
op de reeks - - X3 Tt b 23 : k—...—k'\—-k—' -
]—x "1 —x*"' 1 —x3 | — xk

Hij merkte op, dat wanneer men de termen van deze recks in
reeksen naar opklimmende machten van x ontwikkelt en daama
de gelijke machten van x samenvoegt, de reeks: x - 2 x* 4-
+2x34- 8 x4 -2 36 - A xP - 2x7 +4x54-3x" 4 4 x104-
verschijnt, waarin de coéfficiénten aangeven hoeveel deelers
de exponenten hebben, de eenheid en het getal zelf meege-
rekend.  Deze eigenschap is gemakkelijk te bewijzen, want
;\_kxk = x¥ 4 x** 4 x*c - ... dan zal x»

slechts dan in die ontwikkeling voorkomen, wanneer k een
. L x K

deeler van nis, In de ontwikkeling van > E 2Bl
k=11 —X

dus evenveel keeren voorkomen als er getallen k te vinden
zijn, die deelers van n zijn, De codfficiént van x" is dus
gelijk aan het aantal deelers van n; is n een priemgetal, dan
is de coefficiént 2,

ontwikkelt men

§ 2. Om deze eigenschap, die hel probleem van de priem-
Betallen verleidelijk dicht bij eene oplossing scheen te brengen,
heeft o reeks van Lassert de aandacht van velen relrokken.
CLavsgy publiceerde in 1828 eene transformalie in eene sterk
CONVergente reeks. SCHERK gaf in 1832 het bewijs van deze

) A"l"uo zur Architectonic oder Theorie des Einfachen und des

O i H : kY . . -
Lrnrten in der philosophischen und Mathe matischen Erkenntniss. Riga 1771.
p. 607,
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transformatie: Iij ontwikkelde iederen term in eene macht-
reeks en schreef deze onder elkander op:

X +x24+x24xt4...
x*+xt-LxS-Ly8 L
X+ x0 - x?fxt2
x* - x8fxt2fx16 L

. . . .

De m® term uit de n® rij is x™, maar dit is ook de n® term
inde m® rij, dus de m* term in de n® kolom. De n® rij en
de n® kolom bevatten dus dezelfde termen. Veronderstellen
we 0<x<T1, dan zjn alle termen van de dubbelreeks
positiel en mogen wij ze dus in willekeurige groepeering som-
meeren. Men neemt eerst de termen van de eerste rij en
de eerste kolom bij elkaar. Deze zijn:

: [=iax

1 —x

Dan neemt men de overige termen van de tweede rij en
de tweede kolom, daarna die van de derde rij en de derde
kolom enz. Die van de k° rij en de k® kolom zijn:

Xk - 9 gk (k+1) + 2xkE+d 4 =xX(1+2xk 4

by
Qx:“‘—l—....)r—“xk:(l } ‘\k)'

‘.I Fam X /
De getransformeerde recks wordt dus:

Fl

SR A e R e A

— X ] —x? 1 —x?

\

§ 3. EisensTriy (1844) onderzocht de convergenlie.
Uk 4 1

Lim =5 = X dus convergentie voor x< 1. De conver-

k- CO
gentiecirkel heeft de eenheid als straal.

Op dien cirkel liggen
oneindig veel polen van L (x), ieder punt x = e2#i7 is na-

melijk een pool mits » eene rationeele breuk is. De con-
vergentiecirkel is dus eene singuliere lijn.

S 4. Buruesse (1852) trachtte met de reeks v

an LAMBERT
een analytisch kenmerk voor de priemget

allen te vinden. Hij
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wilde die reeks volgens Mac-Lavmiy in eene machireeks ont-
wikkelen. Deze ontwikkeling is dan identieck met die van
Lampert zelf. Stelt men dus den coéfficiént van x" in de
ontwikkeling naar Mac-Laveiy  gelijk aan 2 dan heeft men
eene  vergelijking, waaraan slechts door n priem voldaan
wordt. De resultaten waren niet zoo bevredigend als de
eenvoud deed verwachten. Ook latere onderzoekers als
Rocer en Cumrtze hebben er niets mee bereikt. Al stelde de
recks op dit gebied te lear, ze prikkelde tot onderzoek.
Seuromen, Cesano, Kxorp, Laspav e.a. hebben belangrijke
eigenschappen gevonden.

Doel van dit proefschrift is een geordend overzichl te geven
van het voornaamste wat van deze reeks bekendis. Daartoe
zullen we in het eerste hoofdstuk de pogingen om een ken-
merk der priemgetallen af te leiden behandelen.

In hoofdstuk Il wordl de convergentie en het gedrag in
de omgeving van den convergentiecirkel besproken. In een
volgend hoofdstuk de sommatie en die transformaties, die
daarvoor noodig zijn. In het vierde hoofdstuk de overige
transformaties lerwijl in hel laatste hoofdstuk eenige resultaten
uit de getallentheorie met behulp van onze reeks zullen
worden afgeleid.



HOOFDSTUK 1.

§ 1. Om de reeks van L. volgens Mac-Lavniy te ontw ik-

Kk
kelenbehoeﬂmenSlechls(D“ i—i o )x hO(D“(— 1+ | H\L) =
o :
=D“(.1 _\k) te bepalen. Hiertoe splitsen we lixk in
dx

eenvoudige gebrokens en noemen =

- | \o o

Voor k even stelt men: ——— = =" | e -

1 — %, x— 1 X+ 1
Vak —1 Ay Bn
AL =S ——— 4 = |.
ll-—-'=1 ) N elha X.__e"lhit
Substitutie vanx =1 +- 3, — 1 4- 3, eihe 4 Jene—iha 4}

y |
geeft Ag, Bo, Ay en By waardoor we vinden: P

1 (, l 1 ‘) / 1k—1 1 / Ui}l f a— iha )
— = — v Biot bl _

ICAXRCH] RS- f sy 1]\(;\-__@111'1 Xx—e—ihw
Differentieert men dit n maal dan geeft dit:

o D"(‘E\)z(' e 'l:!(_’(x--;)"-i-l_(x 4—11)=1+-1)-1_

n! k=1 eiha e—iha !
S e ((\-—clhu w1 T (x —e “'“)“*',)
We schrijvennu x — e —iha =Ry ei¢s danisx — etihe =
= Rne~1¢u terwijl:
Ri= (x4 1 — 2xcosha)', cosdp=>— ;;03 L
sin h « '

sin @ = R
1



ot

Substitueert men dit in (1) dan vindt men na eene korte
herleiding:

5 [ 1 i n-1 n! 1 1
> (1 —3") =il ((x_—“l)"+1 R 1) i
1 (7 1)!:-%-10';{‘ “\‘1 CUb (hx-]— ‘\I] —f- 1) (E]l)

i S me
Voor x =0 is nu cos ®n = —cosha, sin Oy, = -+ sinh«
dus®n =7 — h , terwijl cos (h + (n - 1) @n) =cos |(n 4 1) 7 —
—nhea!=(—1)"t'cosnhe, waardoor we vinden voor
even l:
' 1 1 Yak—1
(2) (D“ 1 l x"); = ];{' (15— (—=S1) 23] s B !':.l coshne

Voor oneven Ik voert ecene dergelijke rc(]enc(‘l‘ing tot het
doel.  We stellen nu:

k—1
I Ao - Ay B

. — Al RS . Ak : i !
TR R et | S g e b en vinden:
voor oneven k

‘ =

& l n! n!
(r]) B e = O \ cos |
: | ._..- 111 &.

] —x*/x—0 k kK n

Zooals we reeds in de inleiding verklaarden is hel aantal
deelers van n:

K JO
Ta= 1 (DAL(x) = _(1 . ) =1 L (pa 1
X OTI‘I\ e 0 n!n. Lo 1)

en in verband met (2) en (3) vindt men zoo:

h Pt
1 2 2 2nhx.
- o . 2. €08 —
(” hn= 2<{p P b= P 17
LA gh=1q=1 2nhx
1—=(=1"+1+ > cos
{ q h==1 q

waarbij voor p ieder oneven gelal en voor q ieder even gelal
genomen moet worden.

-k

: X

Uit den regel van Lemniz volgt, dat (I)“l _L) voor
x=0

k>n gelik nul is, zoodal men in (4 ) de -:mmnuliu slechlts
behoeft uit te strekken over getallen p en q = n.



6

§ 2. Met (4) vindt men nu T, = % A E =1,

= 3,15+:{15)

J= e 1
Ten einde dieper in de vorming van deze getallen door te
dringen, zullen we voor n=7, & en 9 de substituties voor
p en q afzonderlijk uitvoeren, Daartoe schrijven we Ty =
_yv v
Vi ‘l— Wi

en vinden dan:

H n 7 8 9 N
| |
| |
i p=1 ‘v Fw=1+0|v+w=1l4+0|v +w=1 + 0,1
| q=2 wWdwm=0+0|(n+wm=1+0|n+wm=0+ 0|
.[ p=3 \ viw=lh—s|lv+w=1 -1y +w=1l+ ’."‘3‘
| 9=4 |mi+wi=04+0|vn+wm=Y+Y | n+m=0+0
} p=1 { v +w=1f =l v 4w = Y —y v +w= 1 =) !
’l q=6 |[i+wm=0+0|v+wm=Y—Y|n+wm=0+ 0|
st i I view=l+ 8l v+w=1=|v +w=1=1 I
” = & Vi+ W= 1{:1 FYl i W= 0+ 0 I
” == ‘ v +w="Y+"%l
‘ R SEIE W «wVY tw <V +W ’
l | Tmtwm=2 | “viw=4  “nt+w=3 ]l

We merken nu op dal, bij 7, p=1 en p =7 voor v+ w
¢én opleveren en alle andere substituties nul, dat voor 8,
de substitulies voor p=1 en q =2, 4 en 8 één opleveren,
de andere nul en bij 9 de substituties voor p = 1, 3 en 9 weer
éen, de andere weer nul geven en vermoeden dat alle sub-
stituties aan de eenvoudige wet onderworpen zijn: dat voor
iederen deeler van n de bijbehoorende v -+ w of v, - wy éen
oplevert en voor iederen niet-deeler van n de bijbehoorende
som nul is,
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§ 3. Zekerheid kunnen we krijgen door de reeksen in (4):

p—1

- al, 1 o

= 2nhx= 37 9nh=

3, cos——— en >, COS— te sommeeren. We ge-
Iy — 1 p h —_ 1

bruiken daartoe de identiteit
cosa-+cos2a-+cos3a+.....cosma=

__sin's (2m-1)a—sin'la

2 sin Y2 a

In —
2nz p

Voor de eerste som stellen we a = = en m=",
dan is: )
p=1 % - sin n=

3 anh, ST

= 9nhzx p | !

¥ cos—— = —— ¥ — _ 1, wanneer n ten
h=1 p 0 N7

2 sin
P

minste geen veelvoud van p is, in dat geval zou de breuk
onbepaald worden en substitueerl men liever direkt in de
p—1
: - 9nhx ) — 1
reeks, iedere term wordt 1 en dus X cos =

h—1 p 9

indien p een deeler van n is, anders — '/
2nx

Voor de tweede som stellen we a =" enm="'aq—1

en vinden:

. (‘ n :) in L7
Y sinnzx — — 3
N = c —
A% 2nhz q q

>3 COS = o B
i q 9 sin —
. N7 nzr
— €0S n 7 sin ——= — SN —
(
4 9 __1(1+cosna)
L N7 _
2 sin
q
[s nu n ook even en geen veelvoud van q, dan is
Y/
19-1 9nhsx : ; o
2, COos " — — 1, is n oneven dan is de som gelijk 0,
his1 (

maar is n even en een veelvoud van g, dan is de breuk
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weer onbepaald, maar geeft directe substitutie in de reeks

1

P4t 9nhg
> cos——

== 1!“ —_— 1.
=1 q 24

§ 4. Voor het bewijs van de wet van § 2 onderscheiden
we nu 5 gevallen.

p—1
. 0 st 2nhzx
19 plis een deeler van n dan is == 3 cog =A% __
P Pu=i p
. 2p—1
=% 3F pD TP 1.
p=1
' Ll -} L 9nhzr
2% p is geen deeler van n dan is . —l—p > Cos =
h=1
1082 I
_p +p = gy
3% q is een deeler van n dan is n even en:
1 291 9nhr 4
—{l—(—1)2+Y) L= "% cog = USRS
q O =1 q q
2 (oq—1) =1
l q( Al e— 1 I
4°. q is geen deeler van n en n is oneven dan js:
9 Yaq—1 9nhr 9
1.([ — (=1t 427 % cns"n e~ l (1—1)4+=0=0
q q n=1 q q q
5% q is geen deeler van n en n is even, dan is:
1 291 onhr
1 — (= 1)+ 2, cos—— =—(141)+
q( (==81) ):qh_.I : q(})?
2
‘}* \\ —— 1 - (}
q

ledere substitutie voor p of q levert dus 1 of 0, naarmate
P en q al of niet deelers van n zijn.,

§ 5. Het opstellen van een kenmerk voor de priemgetallen
15 i gemakkelijk.  Behalve 2 zijn alle oneven, het is duos
voldoende de substituties slechts voor oneven getallen uit te
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voeren. Zoo vond Buruesse dat alle priemgetallen > 2 vol-

p—1 -
Sl s 5 Inhz
doen aan: > ( += 3 cos =19,
p Ph=1 p

Tegelijk blijkt echter, dat deze vergelijking eene vanzelf
sprekende identiteit is, die ook wel zonder de reeks van L.
afgeleid had kunnen worden en dal het differentieeren van
deze reeks voor de sommatie geen ander resultaat heeft gehad,
dan dat het op de gedachte gebracht heeft bij de reeks
< anhz : T TS T e _.
~cos naar iets karakteristicks voor de priemgetallen

te zoeken. Bezien we de zaak van dezen kant dan kunnen
: : 2nhx h e
we trachten uit de reeks X cos nog eenvoudiger func-
q
ties af te leiden, die 1 of O opleveren naarmate r een deeler

- . e N n
van n is of niel. Noemen we eene dergelijke functie x( )
:

dan is voor oneven »:

R inn Tl
= sinnr—s ,
(n) 1 | 2 2nhr 1 o p | 1sinnr

=

P P e p :p 113 . nr p..n -
2 sin sin —

p
Is p geen deeler van n dan is de teller nul en de noemer
niet, is p wel een deeler, dan is de breuk onbepaald, maar

wordl feitelijk bedoeld:

.1 sinx
Lim == {,
x=pox P . X
sin
p
1 ! 1 | eyhd
Voor even » is verder y ] = : 1 —=(—1)r+thH 4
(
ﬂ .
LY, gt 2nhzx
-{- > cos :
q h=1 (q
. ;“ N ) . Nx
sm\nT — == §In
: ‘ n 2 q
Is n nu ook even dan is == 1+
(/- . nrw
| f] 2 sin
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. nr . N7 y nr LT .
sin (n o= ) —+ sin. sin nzcos— — cosnrsin-—— - sin
(6)_1 q q Wi q q

. nr ( . N7
q 9 sin 1 9 sin —
q _ q
1 1 sinnsm nz
dus x e
( . nz
1 1 sin — q
. q

Gemakkelijk is te zien dat deze functie voor alle waarden
van n goed ig, want is g geen deeler n, dan is de teller nul

nz

en de noemer niet, is q wel een deeler danis n even. Tevens

¥ T nz 7: 10
blijkt waarom bij even r een factor cos T noodzakelijk is,

, sinx  qceosnrw
want Lim - eI T
X-rnz - X n=z
sin CO5==
q (q

en dit is + q als n een even

aantal malen q is en — q als n een oneven aantal malen q

i nz
is, de factor cos 7 zorgt nu voor het goede teeken.

sinnz
de grenswaarde van
sin —
p

(5) zoo’n factor niet gebruiken.

Daar

gelik is aan - p, kan men in

De formule (6) is om te rekenen in eene andere, die voor

g . 1 sinnx
even en oneven deelers beide geldt. De vorm l ==
sin

n=
05

is nul, wanneer r geen deeler van n is, is r wel een deeler
dan is de waarde van den vorm cos nx. Voor even n is
dit -+ 1, maar — 1 als n oneven is. Hieraan is tegemoet
te komen door nog een faclor cosn= toe te voegen, die in
het laatste geval voor het goede teeken zorgt enin hel eerste

niet schaadt, Zoo vindl men voor iedere n en r:

nm
. o oS
n\_1sinnz ngx sin2nx r
il = ——C0S—-cos N7 = :
r . N7 r 2 . DF
: sin I sin
r
nz
SN 2N g AT
en Th= > - -
C) —
-~ r 1 _



HOOFDSTUK 11

Convergentie.
o0 xK

§ 1. Definicerl men eene reeks van Lampert als !:El bk ik
dan geldt voor hare convergentie de volgende wet:

Als N bk convergeert, dan convergeerl de reeks voor iedere
waarde van | x| die van 1 verschilt. Is X bk niet convergent,
dan is het convergentiegebied van de reeks het binnenstuk van
den convergentiecirkel van de verwante machtreeks > bk x*
In ieder afgesloten geheel binnen een convergentiegebied ge-
legen deel, is de convergentie uniform.

Om dit te bewijzen gebruiken we het kenmerk van Apen'):
wanneer X ak convergeerl en X | vk— vk 41 | is convergent, dan
zal X ak vk convergent zijn en deze convergentie is uniform
in een gebied, waarvoor iedere waarde van x, | vy | en U =

=|vi — Vs |4 | va —vs|-4 enz ... beneden vasle waarden
blijven.
Xk
Veronderstel nu eerst X by is convergent en neem vk = T
dan is: '
i X :
: xF (1 —=x) ) 13 y
Vk = Vk 1| =] _ o | dusals [ x| <1:
| | (1 —x%) (L —x*T7) |
O | vk I

L - : :
1 “""|\il—#x“ﬂl—-_\‘"+’\

Ook is er dan eene waarde m te vinden, zoodal voor alle
k = m, | x* | bijvoorbeeld kleiner dan '/; zal zijn en dus | 1 — x* |
en | 1-=xk+1|> 1, waaruit volgt:

'y Bromwicu: Infinite Series p. 205, 200.



o0 X 92|x|k 0 A B
E Ik— k1| = T & i —8 ¥ | x| ¥dus eindig.
k=m k=m 2+ 7|2 k—m
) k
De reeks ¥ bk convergeert dus in dit geval. Om aan

k=1 1 —x
te toonen, dat zij uniform convergeert voor x < » < 1 merken
we op, dat:
x 1 @0 <0 9 | yk 1

g (=== en dat Uy = 3 |vk—wepi| <> —=1 _
A ‘1—x<l__; K—1' = <k.,, 1—xk[|1-xk+!
van eene zekere waarde k=maf, zal * <'/s zijn en dus is:

m—1 Fk oo ok
<2 ¥ +—+t—v—— 423 —

o7 P s U D T

m— 1 Lk a4
=23 ———1 +8 F F<C
k- lll—rik}‘lﬁ":k_!_l_ + k -mIJ <

vi | en U, blijven dus beneden vaste waarden, waarmede de

uniforme convergentie bewezen is.
| P £
Is |x > 1. dan schrijven we > bk et
k=1 — )

o o 1
=-— Lil)k 3R 02 bkl Lk €D behoeven slechts de uniforme
K1 — 3

: 3:’ b 7
convergentie van > [ _ 4k aan te toonen. Voor vk nemen
| i | — X
Wele—
{—=xk
‘ 4, :
Y : X< (1l —x
Nllls!\‘];*\‘k.iq;:‘ — k( )k T
(1 —x¥) (1 — xk+1)
| | |
[ 1 | i 1 | K
15— 1| 2| =|
e e | | X |
= P S T | '
e R R |
Fx YEEH 1o | i gkl

Daar |x|>1 is, is er eene waarde m te vinden, zoodal
‘ |

P saay -y B | {
voor allek = m, > ais, danis| 1 — 3 gcn ‘ 1 — T ,E> g

XS ,
|
o [1[5
\:G- :j_:, sl Xl o0 | k
en 2 |Vk — k41| < X . —8 X ( en dus ein-
=1m k=m }2- !2 k=m|X |
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dig, de Lambertsche reeks convergeert. Verder is weer voor
‘ [ S
ol ali= ——| en
| >,> ‘ll |1—HX| ‘1__:;!
11k
g/l
= i “1x
U= 2 [vk—wp1|< 2 B
k=1 k=1 |1 1] 1 1
|1 T ‘ | XK1 |

:\. !< | is, blijit dit net als in 't vorige geval beneden
|

en daar

eene vaste waarde de reeks convergeert dus uniform in het
gebied | x| >p > 1.

Veronderstellen we nu dat X bk divergeert. Bepaal dan p
0
~ - .
zoodal > bk x* convergeert, dus p = 1. Neem nu in
K1 =

a8 45

X X ' 1

2> bk ——— alsreeks der v's : vk = . dan zal de reeks

k=1 1 —X 1 —x

oo} 0 -

kl«] ak = k'\"1 bk x* dus convergeeren. Blijft aan te toonen

o's)

dat k}"l [ Vk — Vi 41 cconvergeert., Nu is:
‘ ‘ ’

e s Ll S

| Vk — Vk4-1 | = | | s
(1 —x (1 —xE+| S [1—xk|[1—x*1

Evenals te voren toont men ook nu weer aan dat de reeks
der | vik — vk 41| convergeert en dat hare som beneden eene
vaste waarde Dblijft. Er moelt dan nog nagegaan worden of
het gebruikte kenmerk der uniforme convergentie wel goed
is, daar Bromwicn (p 206) het afleidt voor hel geval dat

> - ‘ e
N ok niet de veranderlijke @ bevat, Maar daar X bk x* uni-
k=1 k=1

form convergeert, voldoet deze reeks aan alle eischen, die bij
de afleiding van het kenmerk door Bromwicn aan X ax gesteld
werden, waarmee dit bezwaar vervall.,

§ 2. Wanneer X b convergeert en dus de Lambertsche
reeks binnen en buiten den eenheidscirkel bestaat, is het niet
noodig dat de waarden binnen (Fi(x)) en buiten den cirkel
(Fy (x)) voorlzettingen van elkaar zijn. Wel bestaat er een
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1 3
verband lusschen Fi(x) en Fy (Y), want is | x| < 1. dan is:

(5
renl)eSat gy W e,
‘X‘, k—1 ]—k — 1)]\ pi=1
i
x-

§ 3. Om te bewijzen, dat de reeks van L. eene functie

voorstelt, die niet over den eenheidscirkel voortgezet kan
worden, is het slechts noodig, dat we aantoonen, dal overal
op den omtrek eene dicht bijeenliggende menigte punten is,
waar L (x) oneindig wordt. Dit gebeurt nu in ieder rationaal

' ‘
n San

randpunt, zelfs zal, als x¢ = e®™'u en x=(e?"'u(nen
. : X | ¥
n’ onderling ondeelbaar) Lim | (1 g )L (x) | = @ zijn.
o =r1 \ Al

tene dergelijke nadering tot xo, waarbij slechts de voer-
straal verandert, het argument hetzelfde blijft, zullen we eene
radiale nadering noemen. Voor de berekening der limiet

7o) -k
JHLEY ] 3
splitsen we X in twee deelen Y, en Y. naarmate
P (TS
k=0 of k=|=0 (mod. n) is. Nu is:
oD . VI oo -n\ v o A VD
\‘1 S— N X — N (X ) N\t = =

v=11—x'2 v=11 ﬁ(x")"_v“1 1 _— ML

Noemt men "=y dan vindt men:

1 —p
Lim (1 —p) X1 = Lim (1 -3 = l Lim(1 —p") X1 =

vl

pr1 =S L=t ;-1
1 a0 ¥
=~ Lim (1 — ) S
Iyt 1] — \"v

waarmee de nadering tot het l‘m(lpunt ternggebracht is tot
de radiale nadering van het punt -+ 1. Nu is voor 0<y< 1.

g & 3 .
—_— Y P X = L —— “" - - s o .\_: . — '
j v=11—y" |1“|—}"‘}‘)"‘{“....)"'"1>v 1V IOBI")’

dus:

Lim (1 —) 3 > 1- Lim log =11 en dus + oo,
prl Iyt l'—y



e
o

Kunnen we nu aantoonen, dat Lim | (1 —_ \) N | beneden
0

I-}K

eene grens A Dblijit, dan is de stelling bewezen. Is k=j=0
(mod. n) dan ligt x¢* in een van de (n — 1) andere hoek-
punten van eenen regelmaligen n-hoek, waarvan het eerste
hoekpunt in -1 ligt. Voor 0= ;=1 is er altijd eene
positieve eindige grootheid h aan te wijzen, zoodat | 1 —x* | = h
is. Voor n=2, is h=1, is n > 2 dan is h de lengte van
de loodliijn uit het hoekpunt -1 op den straal naar het
eerstvolgend hoekpunt neergelaten (ligt x* niet op dien eersten

straal dan geldt de ongelijkheid & fortiori.)
9 -
Dus h = sin o en daar n eindig is, al kan n groot zin,

is h ook eindig.

Nu is echter Lim

X=p X
PO

—
—

(1 el \) <],|nl (1 _r’) & _' if____

Xo X=X,

ol g 2l ) | P - i
= Lim Tl A (eindig), waarbij voor het gemakkelijk som-
f=1
MY 1 . r N, : X |k 1
meeren in de reeks - |, 1og eenige termen le veel opge-
schreven zijn,

§ 4. Voor Lambertsche reeksen geldt de volgende eigen-
schap van I'ranen ') afkomstig, maar hier iets algemeener

uitgesproken. ¥  Wanneer de coéfficienten bx zoo gekozen zijn,

L bny.- 41
dat voor een bepaald geheel getal n, alle n reeksen X
v=1NV +!

convergeeren (I=0.1.2.3..... ..n — 1), dan is, wanneer n’

n
. T, i i
en n onderling ondeelbaar zijn en men slelt xo=e ", hij
radiale n:ulm‘ing:

g X ) I)‘ xk l ’f“" hn v
1 Lim —- > bk = 3 :
( ) :rx,( Xo/ k=1 1"—'-\"5 vye={ LY

. 4 b ys
Franen merkte zelf al op dat, wanneer X “ van nul ver-
v=1 N1V
schilt, x, een singulier punt van de Lambertsche reeks moet
zijn, want de linkerkant van (1) moet dan den vorm 0 X o

) Sur Ia théorie des séries Math. Ann. Bd 52 (1899) p. 520—049.
") Kxorr. Uber Lambertsche Reihen Crelle. Bd. 142 (1913) p. 283,
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aannemen. Is dit voor % veel verschillende waarden van n
waar dan heelt de reeks ook oo veel singuliere punten. Dit
- - . bk
is zeker het geval als alle bx >0 zijn en _\_,E- convergeert.
De eenheidscirkel is dan singuliere lijn. Hij is ook convergentie-
cirkel; dit spreekt niet vanzelf, X bk zou kunnen divergeeren,
de convergentiecirkel is dan dezelfde als van X bk xk, Maar
0k o] — ok ol

als > K convergeert is Lim ¥ = = 1, dus Lim ¥~ bk ¥~ K =1
en omdat X bk divergeert is Lim ¥ bk = 1. Uit beide be-
trekkingen volgt Lim ¥ by = 1. Nu convergeert X bx X« voor
waarden van x, die Lim ¥ |bxxkx | <<1 maken of voor | x|

— dus | x| < 1.

Lim ¥ by <

= byl

Voor by =1, is ¥ K niet convergent, daarom moest voor
de reeks van L. een afzonderlijk bewijs gegeven worden. Dit
is het eerst gedaan door C. Haxsew, ') erg ingewikkeld; het
eenvoudig bewijs van § 3 stamt in wezen van Laxpauv.

a 4K
. o =71

Om de betrekking (1) te bewijzen, stellen we weer x = e "
en splitsen de reeks weer in twee stukken X, en Y. naar-
mate k al of niet == 0 (mod. n) is, terwijl we voor " y zullen
schrijven. Eerst bepalen we:

o0 LA
Lim(l —p) ¥ =Lim(1 — p) X buy 1 P =
fr=rl -1 v=1 . .”"
_— v nvy
= Lim e 1—m > bav "' __
e e e 1Y
P =1 , v=1 p
3 4 o0 Y ¥
i 3 Yv . 3 ]) : vy
Lim “ — y) L Dy J ¥ L= Lim .\; nv a¥, -
11 y-r1 v 1 l --y yrlv 1 ny l.,’A}' Hl_}..'."'.."\'

') Démonstration de l'impossibilité du prolongement analytique de la
série de LAMBERT et des séries analogues,

Oversigt over det kongelige Danske Videnskabernes Selskab Forhand-
lunger (1907) p. 3—19.
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Om deze limiet te bepalen, mogen we in de reeks rechis
y=1 substitueeren indien deze reeks voor 0 <y <1 uniform
convergent is en ook voor y=1 convergeert (Aser). Hel laatste

e -7 bay <7
is gegeven, voor het eerste schrijven we i = anv -+ 1 Bov.

—

. : . Dav ‘ .
Uit de convergenlie van X - volgt dan die van X anv en
nv

y e V
van > Guv. Noem nu ty= e i]_‘ ..... Sv=1 dan
moet vooreerst de convergenlie van X ayv tv en van X Say ly
aangetoond worden, dus slechts bewezen, dat ty monotoon af
neemt en dat t; kleiner is dan eene constante.!) Nu is:
ty — ty 4 1= —v-'\'r-:_ i = , .M'“'”“”"\'k :

IS o ey Asm b H § 16 e 8 g Tt i)
Dit is zeker positief, want ieder der v termen yv*+1 yv 2,
coono ¥ s kleiner dan y¥. De reeks ty neemt dus sleeds af
Doy

envoorv=1 is t; = : dus << 1. De reeks X = Iy conver-

geert dus, mils 0 <"y < 1. Daar in dit interval ty(y) steeds
positief is, convergeeren de reeksen X apvty en > Bav ty

- bay

uniform®) en hiernit volgt helzelfde voorde reeks X tv. wanl

1Ny
als voor:
s : V) )
A=, | S any ty | < , ¢N VOOrA = my, | 2 Py by | << :, (waarbij
v A - v \ =

¢ eene willekeurig vooruitbepaalde kleine waarde heeft), dan
is als A = aan de grootste der waarden m en my:

or ﬁ :
l, any by *}* 1 .\_ [nv Ly < &
Voo d ves A

De substitutie y =1 in de limiel is dus geoorloofd en geeft:

e y arV a

Il. LT | g i N l]n\' V) — ’{: hnv.
“” g _l 1“” - ) v =1 i ’

=3 ' yiv=iNV 1 +y I \ ot AR y y=1 NV

Om het bewijs te voltooien, is hel voldoende aan te toonen,

) Bromwicn «Infinite Seriess p. 48. § 10,
5 Bromwicn «Infinite Seriess p. 113, § 44, 2,
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dat Lim (1 — 7)) ¥e =0, dus dat voor iedere waarde van

£>1
!=1.2.3....n— 1 bij radiale nadering:
_ S X \C{_‘ xhv + I o
Ll il ==
bnv L
Noem nu ——_I_—;-—d\ zoodat X dv convergeert, dan is te
bewijzen

(0's] r nv + 1 e 7]
Lim X dv (o +ll): \nv'z-(tl ) =

xx, V1

Voor x=x, dus p=1, is de waarde der reeks nul; het

is dus weer genoeg te bewijzen, dat zij in het interval
0 < <1 uniform convergeert. Nu is:

‘@ d mv4+Dy x(l —p") 1—p

0

v 1 — x'yY =k
_ R d ; (nv+0)y" 1 —y* (l—,:]x":
=1 Lty Lyt — xXty" 1 —®
=(I~|J]X] {J a (nv-1) | —y"

1 —p v= 1+y+y2+4. ..}.""If—x’y‘"

i - 4 =< .
I'en einde 1le unl[orme convergenlie van deze reeks aante
loonen, bewijzen we die eerst voor de reeks

(o0 ' - v
: nv-+1I
Doy ( = )3 ,—1 en daarna voor de bedoelde
Vo] l ol | y + -\-- 'VI_ ‘e _Y

. : ] —yY
recks, die ontslaal door iederen term met T g te  ver-
menigvaldigen. Het eerste kan gebeuren als bij de reeks

hm "
_,-l ~tv, voor hel tweede is hetl kenmerk van Apen voor

reeksen met complexe termen noodig, zooals we dat eenigs-
zins uitgebreid hebben voor het bewijs in § 1.
(nv—41)y*
TR AT Af A r ok
eene monotoon afnemende functie is. Nu is:
A y¥ | (nv 4 !}——n(\ Y aaY et -
SIS e e s Y
o ylal—y—y_y ) U
Oy v+ v )0 +y+y+....79

We toonen dus eerst aan dat o, (y) =

=1
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Voor 0 <"y <1 is &v(y) — &y 4+ 1 (¥) zeker positiel, Oy (y)

| -0y
neemt monotoon af, voor v=11is ¢ {y) = (n _iI )y <241

en daar > dy convergeert is aan alle voorwaarden voor de
1

v

uniforme convergentie van > dyv @v (y) voldaan.
v=1
; : &0 1 —y
Voor de uniforme convergentie der reeks X dy Qv (v) TS
v ] A
: X 1 —y" 1 —yv+1 |
is nu noodig dat > | + o — ~———— | conver-
" v=i || I=x}y" 1] —x'yv+ !

I
geert en eene som heeft die kleiner is dan eene eindige

i . —v | .
van y onafhankelijke waarde. Ook moel 7 | Kleiner

oV

] —x'y
zijn dan eene dergelijke vaste waarde. |
| 1 —y" { —yv+1 | yl—y=—x) |

].._ X’ }_\_ - {5 :\‘f.\' v 1 ‘_‘ “ — ! }.v)“ : *X' ).\v t 1”
Alle punten ¥, x'y¥, x'yv+ ! liggen op de stralen van
een regelmatigen nhoek, die een hoekpunt in x =1 heeft;
op den straal naar dit hoekpunt ligt geen der bedoelde punten.
Evenals in § 3 kunnen we aantoonen, dat | I —x'y*| en
|1 — xtyv + 1| altijd grooter zijn, dan eene waarde h
(h == siuﬂr;T als n> 92, anders 1), terwijl |1 —x"|<2. Zoo
vindt men:

‘ v (1 —y)(l —xI) 2

'(] — xt y)(1 — xtyv+1) ) o) |
R i=yp 1=yt 3 B gva )=y
=11l —xfyY 1—xyvtl "hiv=t o h* ~h*
—
i
vergentie der bedoelde recks aangetoond en tegelijk bewezen,
dat Lim1 (1 —p) Xe=0.

-»

E y (1 —y) en dus

48

-~

1 ) (R : .
Daar ook ’1 <j is  hiermede de uniforme con-
- \

l ‘ - ey Dy
In verband met Lim (1 ) =2 volgl hieruit de
pr v=101V

o

juistheid van (1).
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§ 5. Ook voor het geval, dat x niet radiaal tot x, nadert
<\ @® &
is de waarde van Lim |1 — =] ¥ bx —— — te bepalen.
xX—>xp \ Xo/ k=1 1 —x
Daarvoor maken we gebruik van eene stelling, dle door APPELL
gevonden en door PriNesaEm voor complexe waarden uitge-
breid is. AppeLL ') bewees, dat wanneer X ax x* en X by x*

den eenheidscirkel als convergentiecirkel hebben en voor x = 1
’I" .
SO P

A = dg .
divergeeren dat dan Lim-——— = Lim mils deze laatste
D an
x—r1 W k k—>w0 l Dk
2 bkx

k=0
limiet bestaat.
Arrel stelde zich voor dat x langs de reeele as tot 1
nadert.  Privasnem *) breidt dit uit voor het geval dat x door
complexe waarden tot 1 nadert. Hij voert daartoe het begrip
uniform divergent in, en noemt de reeks N by x* uniform
divergent Dbij x= -1, wanneer het mogelijk is binnen het
convergentiegebied bij 1 een gebied af te zonderen, b.v.
een gelijkbeenigen drichoek A met eindigen tophoek, met den
top in -+ 1 en de beenen synnetrisch ten opzichte van de
reéele as, zoodat ten minste binnen dit gebied
e
[ 2 DkX
| k=0

o0

kb x*
=0

|

= « >0, waarbij « eindig is.

Na deze afspraak bewijst Privasuent: Wanneer Y ay x* en
Y b x* den eenheidscirkel als convergentiecirkel hebben en
beide voor x=1 divergeeren, terwijl de tweede reeks posi-
tieve coéfficicnten heeft en uniform divergeert, dat dan als

ik .
Lim = =g ook voor eene nadering van x tot 1 langs
k-» 0 Dk

) Cesiro: Démonstration d’un théordme de M. Aprrenn. Mathésis
1893. p. 241, Ook Bromwich: Infinite series p. 131, § 62. Ex, 1 en 2

) Prixgsuem: Uber den Divergenzeharakter gewisser Potenzreiben,
Acta Math. Bd 28 p. 130 (1004).



X -
+su

s
Srayxs
e . k=0,
complexe waarden, mits binnen A: Lim . — - =g.
x>l 3 k
DR pex:
k=0

. Aax
De voorwaarde, dat Lim .

k -» 0 Dk
te maken, want stellen we ao== Aq, a0 + a; = A; enz. en

eveneens bo = Bo, bo -+ by = B, enz. dan is het al voldoende

bestaat, is nog iets algemeener

o0
AT
. Ax o ; . k=0
dat Lim -~ bestaat; is deze g, dan is ook Lim —i,
k-» oo Bk x>l k '
> b X
k=0

co_ 1l - T R o oy Ak
Dit is werkelijk eene uitbreiding, want uit Lim "t =g volgt

k -» o0 Dk
, Ak . ' .
Lim > = ¢ maar het omgekeerde is niet altijd waar.
k-0 Bk
§ 6. Met de stelling van Prixasaent kunnen we nu aantoonen,
. | bk | S
dat wanneer X X | convergeert ) en wanneer Xo =e=717,
|

(n' en n onderling ondeelbaar) dat dan bij willekeurige na-
dering, mits binnen A

(';)) Idil“ s (l — k) W I)k X z — }_: hll\'
/k ‘

x -+ x, | Xo/k = 1 { X, vV
Stelt men x =xo L dan is:
Lim ‘(f . K) R el (L) S F T st
: X0, kjlhkl"—xks t-r 1 “ )1\_'1 'ki—xn"l“‘\

We ontwikkelen nu alle breuken in reeksen en vereenigen
alle termen met gelijke machten van xo t, dan gaat de reeks

:L\‘ X0 kl.k . U_)‘ ki k 21 &0

> by Lo over in Y ak Xo MUY waarbij ax = X bq.
k=1 ] — xo *t k=1 alk
Men vindt zoo

5
‘ o E ‘\__ (ﬂk X0 k] lk
8) Lim § (1 — 1) X (acxo ¥) ¥ § = Lin} s ‘
o sl SIL
k 0

') In tegenstelling met het geval van radiale nadering moet de recks

nu absoluut convergeeren.
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o0 .
Nu heeft de reeks X tx positieve coefficiepten en is voor
) c—0

t = -+ 1 uniform divergent, want:

- 1 |

SEG Ll
A O e ST
[ve) — i [ e |
S e
=4 1'—' t—.

Teekent men nu in A (-~ 1) den bedoelden gelijkbeenigen
driehoek ABC en neemt men binnen dien driehoek een punt P om
t te bepalen, danis 1-—/t/=0A — OP en |1t =PA dus
1—[t]_O0A—-OP
[i—t|~ = PA
punt binnen den drichoek oneindig klein kan worden, dus steeds
grooter is dan eene eindige grootheid .  Slechts als ZBAO =
Y 0A — () P y
= 90" zou P A tot nul kunnen naderen. De tophoek
moet dus kleiner dan 180° zijn; naderen langs den conver-
gentiecirkel is uitgesloten.

We mogen (3) dus met de stelling van Prixasuent berekenen
en vinden:

. Men ziet direkt dat dit voor geen enkel-

Lim 5 ( X ) :\f‘i l)k X" ) = Lim & Xo '{’“ HE .\'02 ‘}" ........ ilk Xo
F Yoy 1 — xE ) ke k

We maken nu gebruik van de eigenschap ax = X ba en vinden:

cl k
A1 Xo == A3 X024 A3 X0 == s ceviaviroans ak Xo X =
|J1 X0 "I‘“ 1)| X0 2 “i‘ I'l1 Xo® '}' ........................ ll[ \nl‘ {
y [
ba xo® '*‘ 41104 o e R R R YT R R l)r \h
H
Iln Xu:‘ '*‘ hn Xn"‘i* ]l:; Xu"l ‘{“ ...... ““ 113 (Xun) 3
k
X Fbaxe®+baxo™ +bnxe®+......... bu (xo") \"‘ -4
4=

|
X+ D307 - byn X6 bea 5o+ b (xo™) [71] +
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Vestigen we de aandacht op de gemerkte rijen, dan zijn de
factoren, waarmede de b’s in die rijen vermenigvuldigd zijn,

v e k
alle 1, de eerste van die rijen heeft [n , termen, de tweede

k| N k
T t algemeen = zoodat we voor de som van alle
L Tl

gemerkte rijen vinden:

vy Lyn
en dus is:
3
n k
(5) (i Xo+asxe®+..... e %5)— 2 [§p b ( =
vl
k| o
=i ] —Xo L2 Ty
—by —— b+ hg—————+F .+cievee.. Waarbij in het
] — Xo 1l — xp°

tweede lid geen termen mogen voor komen, die sommen
ziin van reeksen met x"¥ als reden. De modulus van het
eerste lid is kleiner dan de som der moduli van het tweede.
De punten xof liggen in de hoekpunten van een regelmatigen
n hoek in den eenheidscirkel beschreven, maar het hoekpunt
x = 1 komt niet voor, omdal de reeksen met reden xo"" overge-
slagen zijn. | 1 — xo" | heelt dus als minimumwaarde de zijde
van den regelmatigen n hoek = 2 sin l'l. Nu is de omlrek van
een regelmatigen veelhoek grooter dan de middelliin dus
- Q
9n sin = > 2 en daarom |1 — xo¥ | > = leder der coefliciénten
n
van de b's in het tweede lid van (5) heeft dus eene modulus

|1 — xo™ 2
< v)“ < 9 == 1.

n n
k
De som der moduli van het tweede lid is dus <n X by,
ye=]
waarbij de ongelijkheid nog versterkl is, door bn, ban......
b . die er niet bij behooren er ook bij te tellen. Men

n
vindt als resultaat:



<
3 k
(6) |(a1Xo= azXo*+ asXo®>+..-..... ak Xo*) — Ll (_\;nl bn |
Vi -
k |
< n X |bviof
Y—.L]|
3
‘al Xu+ﬂn\n —}—".l \n‘—}— ...... {lk,‘{nk 1 kt‘ k
(7) el 5 -— e }_' Dvn
. k kv =g
n k
<S>yl by
kv=1
I VEK | k‘
Het tweede lid splitsen we in =~ X |be| en o X |by
k V=1l V= \"k

en nu blijkt de limiet van beide stukken nul te ziju, van het
eerste, omdal de reeks zoo weinig termen heeft, van het
tweede, omdat de termen zoo klein zijn. Want is G een
getal, dat voor iedere v grooter is dan | by | dan is:

Vk _
N nvk
Lim = 3 | lu < Lim G=0
k=0 k ve= k-» 1
1 3 SRy
Verder is Lim K b= limn> K <%
k>0 R o — \’l\ k- w \';\"k I
f ,‘i, hv Nglls
Lim n X en dit is nul omdat volgens de veron-
k-0 i i 1 v .
v=Ykl
g N . hv '
derstelling X ;| convergeerl,
Hierdoor vindt men uit (7):
Al
3 Li dy Xo —}‘ ag Xo® “‘]' v 50 e Ak Xnk | '.\
(8) Lim = 1am >3 byn.
k-0 k k-+a0 K y=1lvn

Wanneer nu 0 = 0 = 1 dan is:

B Ho
Lim > n.! )_Lnn > |.‘.,,( .g)-__-

k—p:l\ Y k-»o0 K v vn
{Ill

. i.‘;l

= Lim 3 Lim = ¥ b
k+; v=1VI lr_r[\ 1



(&2]
o

1 & 5

Nu is Lim b\., 0 < Lim l > bm < Lim - ; lJ‘ =

k—>w I\\ 3 — L-r_nl\v

zooals juist bewezen is, waaruit volgt:

i H

] F k n h-
le > llvnl H =Lim ¥ ——
k-»co K ve=1 v k+w v=1 VI

zoodat (8) overgaat in:

‘ . . o " . K o0

. 5 d1 I\n—l—dz Xo l‘ s sels 5 AKX X0 < 3]

(9) Lim : =3 -
k - 0 k v=1VnN

en we mel behulp van (4) vinden:

{ »\ Q0 -k [s)
¢ X < X ) - Dyn
l.nn%(l-—— )}_,}n.- ks‘:}; :
x>y, Xo/x=1 1—X v—1 Vn

§ 7. . Met behulp van (6) is een iels algemeenere voor-
waarde voor de niet-voortzetbaarheid van Lambertsche reeksen
op te stellen:

Eene binnen den eenheidscirkel convergeerende Lambertsche
recks mel positieve cocfficiénten stelt altijd eene niet over
dien cirkel voort te zetten funclie voor, wanneer voor on-
eindig veel waarden van n de betrekking geldt:

K
>, by
(10) Liim) = ()
k=pa0 l Jvn
TR ALY

Omdat by positief is volgt uit (6):

lk

n k E k

ay Xo + as Xo* ... .0k Xe — 2 bwm ‘ : \ <n X by of:
v 1 i v |

H 5
n k n k
lay xo4aeXot. .o akXs — b~ X 0bw|<n ¥ bydus
ve=1 v v | vie=1{



[k
) v bun
(11) laiXo + as X2+ ....axXx0" —k > <
y—1vn
k
n k k
b\n + n \__, bv = (“ + 1) > hr.
\.—1 vhl
k
la; Xo + a2 X024 ak XoX Libv
(1 2 ~ e e s # ax AD | p—1 .
of |20 [ l 1< (n+ 1) --"-kl.
k 2—1 b\s’ﬁ \il\ _]_)\'E.-
v—=1 V0N v=1Vn
Laat men k oneindig worden dan geeft dit in verband.

met (10) +

a1 Xo 1 az Xo*

-+« . 8k Xo¥

(12) Lim — — =15
k= [ I
' I! Ijtn
\-' A
lk
Nu stellen we k X I\)‘: — Dy, dan is Dy > Dx—1 en dus
V= l /
Dx — Dx—1=dx een positief getal. Nemen we bovendien
di=D; dan is Dik=dy+da-}bds-}......... dy en zal
: « byn R
Lim Dx = @, want uit (10) volgt dat k X i oneindig groot
k-» 0 v
wordt. Men heeft nu:
v
l‘, (ﬂk .\:Hk) tk
Lim 1 ==
% o0
k=1
. 3 k
a X azXo*+.....ak Xo :
—Lim —— it Ol == (volgens 12).
k-»on Ul:

o)

Nu is Lim X di t* = Limd; t 4 da t*

to>1 k=100 t=p1

dus moet Lim X (axxo*)t* ook oneindig worden.

l-Hkl
Qo

(1k ‘an} U‘ = Lim >, by

—

Lim \
k= I-p X, k=1 1

t—>1

-k

seevesdrtis= 00

Maar

+ dus is xo een singulier
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punt van de Lambertsche reeks, waarmee de niel-voorlzet-
baarheid aangetoond is. Niet-voortzetbaar is dus eene Lam-

. by
bertsche reeks wanneer: 1° X -~ convergeerl.

k
> bk k
20 bx =1, want dan is Lim ——— e Lim | = 0.
k- - v k-»w ~
k X - k >3, T
nv<k VN n py=<kV

een nieuw bewijs dat de reeks van L. zelf niel-voortzetbaar is.
39, by=0 of 1, naarmate k een priemgelal is of niet,
want dan is:

k
. > by . logk
Lim - : — Lim — = =0, voor alle ondeelbare n.
k- ~ bm k=0 |
k2> k —
ny < k vn 1l
xR x K . . i
De reeks X oy waarin px het k® priemgelal is, is
k=1 4 —xk

dus niet-voortzetbaar,
€ x k .
Helzelfde geldt voor de recks X o waarbij ¢ ez ..
¥ 1 — k
willekeurig  aangroeiende  getallen  zijn,  voldoende aan
. G (Ill]
Lim ==
m-»e0 1IN
5 L
waarvoor kK = m 1is.

-0 waarbij ¢(m) het aantal der cx beteekent,

§ 1 Yo clrmanrn EEE Ss ey
8. Je waarde der Lim | - ] 2 bk -
Sk "”o( X0/ k=1 | 'Z\'k ’

. Qriy
zullen we nu onderzoeken, wanneer Xo=—¢&=—e" "7 en y
irrationaal is. Eenig idee hierover kunnen we Krijgen, door

y ; o [ 5y L]
de coéfliciénten by zoo te kiezen, dat in (2) X = te bere-
kenen is en daarna n geleidelijk oneindig te laten worden.
1

7 — I sonverceert > K ! ' vindl men i (2):
Voor by —k;‘(nll\tl'hll,l LT ki @ mel (2):



1 1 =4
1 vé n45(4)= nt 90

Dit nadert voor groote waarden van n tot nul, het vermoeden

= X) ST v il IR liog 1)3_
1.;;113 (\! =1k —xf Y T = v vn/
© 1

nt,=;v!

: | o T o b X\ OO 1 B )
ligt voor de hand dat voor £§=e © Lim (1 - m) > ERa(
o= (\ k=1 k31 —xk

Kxorp heeft aangetoond dat dit vermoeden juist is en dat de
limiet zelfs nul is voor iedere waarde van bx mits X | bi | con-
vergeert en x radiaal tot & naderl. Iij breidde daartoe
eerst de stelling van ApreLn en Prinesuemw (§5) uit. Evenals
in § 5 denken we ons weer een gelijkbeenigen drichoek met
den top in 4+ 1 en zoo dat ten minste binnen dezen driehoek

i b

vk = B (B eindig).

|-.dl

Nemen we nu oneindig veel reeksen X ax (Ax* (A =1.2.3....)),

= . a4 a, () 4. .. a (A
terwijl vooriedere 2 bestaat: Lim ~ 1 -

- e P—r
k—+»w I\ '+‘ 1 o5
en er telkens een getal k, aan te geven is, zoodat:
ad a4, . ... () Vi<; 253 al: "
: - - — g , voor alle
k1 ST+ “

k =k, terwijl k; = am en ¢ eene willekeurig klein te kiezen
grootheid is, en wanneer er bovendien eene constante H be-
staat, zoodat voor alle K en 2

Laold) +ad 4. .......;ac (A ‘ (2) A

o k+1 —& | =latl < g H
dan bewees Kxorp!), dat er met den top in 4 1 een drie-
hoek A met basis 2¢ zoo aan te geven is, dat voor alle x

On
: . SR CY
in een drichoek A; met de basis =
A

‘ v's)

1—x) ¥ ac@xk—g, | <o
| k=0

§ 9. Deze stelling van Kxoer zullen we nu op de Lam-
bertsche reeks toe passen. Daar 3 by | werd verondersteld

') Uber Lambertsche Reihen Crelle Bd 142 (1913) p. 283.



't
< [ bx | .
te convergeeren, doet het ook ¥ —— en dus is ook voor

| k|
N n!
. el ot e
complexe nadering tot xo=-¢e n volgens (2)
{ / \ -
Fee 11 XA s £ b
Lim ',(I — ) Do by C= S Vi
X -F X, Xo/ k=1 | — X v=1 VIl

We moeten nu nagaan hoe snel deze functie tot hare grens-
waarde naderl, wanneer x; dus n telkens verandert. Door de
substitutie x = x; t. wordt het naderen tot het randpunt x;, over-

v o] x‘i
gebracht in het naderen tot -+ 1, terwijl de reeks > by [ xK
k 1 L
overgaat in X (ax xo*) 15, Beschouw nu de oneindig vele
k=1

1
; y n ’
recksen, die voor alle onherleidbare ontstaan, gerangschikt
n
naar de grootte der noemers, dan is (9):
0 T: a1 Xo ‘{‘ HE .\u2 } Fofak: Xtak 39 hvﬂ
1Y Lim == X .
v=1Vn

k—>wm 1\*{”1

Noemt men > |bx |=B dan is volgens (11):
k=1
4]
V=
S 21 byn

i- e B T I : .I:___k
.(dl Xo + Az Xo? 4+ . ... 2k X0%) e

k

<(n-+41) }:1 by | < (n - 1)B.

| "":k.lhm |

dus: | (a; Xo -+ a2 Xo? 4~ . .. . ax Xo*) — (k- 1) '.\,:I el
k
V= lnl

<in+1DB+4| X Do | <(n+2)B.

ve=1 v
of: ;
| Q1 Xo '+* de xu"l ”J[" s 4 siba 0k x”k . I,{; h!‘ll
1 k41 v=1V0
+2)B | Cl£ h\'n I
< (n+ 2)1 i S
k '-|' 1 k v
- — 1 ) + 1 .
n



Nu is:
- L byn 22 | byn |
L (o=t S ST <5l (st ) S 7
k=ow | _!k] o5 an k—>> ——lk‘ ‘\l]
Y= T Vie—=: = |-+ 1
n n
o vn L el x©
< Lmk-+1) w bk L = Lim _ij—- % | byn |
T k—eo {kl k— x> __ 1k
v=|=] 41 e + 1
n
en dit is nul omdat X |b.| convergeert.
e h\'n 7
De vorm \(k +1) = =l heeft dus eene groolste
];] +1
waarde M, zoodat:
Fll Xo + ae Xﬂs"l".... .‘"":\"’F o <(n~i~ B -\
k41 k| k1
n n+92B A M T
= SR (3B - M)
KEL ST <k-|-1' M
Neemt men 3B -+ M =N dan is:
00 . _ |[MXotasXe+..... ak Xo*
& a <k — k -<}k l {;u ]\ + l

Neemt men eindelijk een willekeurig klein getal ¢ > 0 dan
kan men daarbij eene waarde van m kiezen, zoo grool, dat

N & - -
< 4 en dan is voor alle n en k = k, = mn:
n 1442 =

90 | a; ‘_\u _‘}_,']f,‘{” + ..... HA -‘;n_ Loy < & .
o k41 gl et

Aan de drie voorwaarden in de vorige paragraaf gesleld
is dus-voldaan en daarom bestaat er bij - 1 een drichoek /\
met basis 2 ¢ zoodat bhij iedere n

l C‘/‘:; k k ’:r‘: I)"“ '
| {11= l) _\_, (ax Xo N L .\_, < £
| b P k=1 VIl

mits t in een bij - 1 te plaatsen drichoek A, met basis
20

= ligt. Stelt men nu t = 5 dan volgt hieruit, dat bij voor-
“%()

uit bepaalde kleine ¢ >0 er altijd een drichoek /\ met basis

2 ¢ zoo aan te geven is, dat:



/ -
‘[ X Lt St X bem 1
I — \ b. _— —_— N\ —_ | e
[ = Py k _k " ‘ Ee
8\ Xo) k=1 1--—-X v—1vn
n'

. “u L
wanneer X in een bij het randpunt xo=e~"'n geplaatsten

Q
driehoek /A met basis _nc ligl.
§ 10. Hieruit is af te leiden, dat als § = e 2717 (o irrationaal)

en als X | b, | convergeert dat dan bij radiale nadering

. IR Xk .
Lim | —=<)] X bk . ( =0. ‘tlIs daartoe voldoende
x5 §/ k=1 1 —x

aan le toonen, dat bij eene bepaalde kleine ¢ >0 de geza-
melijke drichoeken Ay, hoe klein ook de basis 2¢ van A uit-
alt, toch ieder stuk van den naar & voerenden straal in de
buurt van & geheel en al, dus zonder één punt over te slaan,
bedekken. Wegens de concaviteit van den cirkel is het al
voldoende te laten zien, dal wanneer men op de lijn 0...... 1'in
» eene loodlijn opricht, dat dan in de buurt van 5 alle punten

i

van deze lijn liggen in een of meer der naar denzelfden kant in
1
n : - ¥
de punten — geplaalste drichoeken Ay, Al deze drichoeken zijn
1
gelifkvormig, hunne bases zijn evenwijdig 0....1 en gelijk
9c! | T
, hunne tophoeken zijn 2 @y (Qu< ,,). Daar de omtrek van
1 : 9

den cirkel tot de lijn 0....1 ingekort is, zijn alle afmetingen

in de richting van die lijn in de zelfde verhouding te ver-

kleinen, zijn de tophoeken kleiner dan in den cirkel, zijn de
¢ ¢ 2!

bases niet — maar —~ = De grootle van ¢ bepaalt ¢ en
1 7 n

dus ¢,

We ontwikkelen nu » in eene kettingbreuk, de benaderde

'

1 1 1 1
o om! g n'su 3
breuken zijn: — -+ =5y BT ooy en beschouwen

M Ny DNy 1
. : e ortw [z
de, in de punten n, gezette drichoeken Any,, Kortweg A%, De
nl,
opvolgende punten liggen telkens aan weerskanten
1

7



. | n' 1 AT
van 9, hun afstand tot » is:| ——y¢ | < —- Is dit
| N, n, n, + 1
cl . _ ; 5 ;
< — dus dan de halve basis van den driehoek A”, dan reiken
n
i

deze driehoeken telkens over de loodlijn heen. Dit gebeurt
dus zoodra n, 4 | > v voor alle x's grooter dan eene be-

paalde is het dus zeker hel geval. Onder aan de loodlijn laal
ieder der driehoeken nog een sluk onbedekt. De grootte van
n',
h! 3 =N
2 i N,
dit stuk is gemakkelijk te berekenen. Men vindt - =
waarin h. de hoogte van den oorspronkelijken drichoek met
: : ; h
basis 2¢' is. Het onbedekte stuk is dus < | . Het
C'Nunm +1
nnp +
zal dus zeker kleiner zijn dan de hoogte van den volgenden
. h h 100
driehoek, wanneer — - el of n, < . Van eene
¢ “'q “ﬂ ] “.n; - 1 [
bepaalde waarde van z, dus vanaf een bepaald punt zullen
de opvolgende driechoeken over de loodlijn in 5 heenreiken en
zal de hoogte van den volgenden drichoek grooter zijn dan het door
den vorigen vrijgelaten stuk, daarom zal ieder punt der lood-
liin, van eene bepaalde hoogle af, minstens in een der drie-
hoeken liggen en is voor ieder punt der loodlijn :

7 (v 8] 'k o0 l [
| x ~ X < Mvn
1= (_) e by - > < ¢, waarin n de noemer
]( EJv=1 T1—xk JZivn|

nz behoorende bij den driehoek A™, waarin het punt ligt, is.
Nu wordt n steeds grooler naarmate het punt lager komt,

{'i Dy {'i byn
met het toenemen van n, neemt > af, want > =
v=1 VI v=1 VD
1 L by 5 : by
== % "™ en daar X |by| convergeert is ¥ — zeker
nv=1 Vv ' v
eindig en nadert voor toenemende n tot nul, des te sterker
! C\Q by

n .
2 , waaruit dus:
n v=1 V
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4 -k
: XA X
Lim (1 —=| 2 bk——= 0.
X-3& §/ k=1 Il —x
§ 11. Laspav!) heeft eene kortere afleiding van dit resul-
e
taal gegeven en daarbij de voorwaarde: X |by| convergent,
door eene algemeenere vervangen. [ij onderzocht eerst wan-
N
neer bij eene willekeurige reeks X cx t* de limiet:
k=1
- ,

Lim(1—t) ¥ cit*=0is. Nu is deze limiet gelijk aan:
t—>1 k=1

o0 k ¥

\“ |- “

>, okt D CY
]- im i~ — 3| b 1 in] Cy “{_ Ca _{' e dn 8 Ae AN (‘.\ = l iln k 1
4 ' ~ T — d — ‘| .
t—1 {'1 t& y >0 1 ‘&‘ 1 + 1 ‘l“ l + ...... 1 Y -0 }' '1" I

k0

-
Dit moet nul zijn, dus moet C(y)= X ¢ bij deeling door
: k=1

y tot nul naderen, wanneer y oneindig wordt, of volgens de
notatie van LaAxpau:
(13). C (y) = o (y).
Stelt men nu weer in de Lamberlsche reeks x=2¢& 1 danis:
. N2 X5 . s ok ik
Lim (l — =] 2> b + = Lim (1 -- t) 2. ap S:th
X5\ &l k=1 I —X L1 k=]
v

In dit geval is dus C(y)= X axé* en moet men de be-
k=1

¥
trekking (13) slechts aantoonen. Nu is (:()'):;":'1 &t )_,kh.".
3 m L
Deze dubbele som is nu te bepalen, door eerst alle machten
van £ le sommeeren, die bij eene bepaalde bw  behooren en
daarna de sommatie van m==1 tot m=y uil te voeren.
3
[Ill]

v
Men vindt: C(y)= X bum DRETa

m =1 q=1

y
[m] ; 5 )- ) }'

Nuis: 19 | ¥ MM |S <~ en

q=1 = m m
y ~ - o1 mEe]
[mJ Cr & (lml } ) 2
21X MISs|—1—@  |T1—&"]
g1 Tt ' &

1) Sur les séries de LAMBERT. Comptes Rendus de 'Académie des
Sciences t. 156, p. 1461 (1913).
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Nemen we nu voor z een geheel getal <y, terwijl y = 2,
dan is:

S lem‘ Y bm‘
Y~ R el 1 . Nt =
(14‘) C(‘)I ﬁm‘:tlll l,;:rn! y m;+l m

Over het getal z kan nu nog naar verkiezing beschikt
worden. We nemen eerst voor z het grootste geheele getal
<y, dat voldoet aan:

Z Q| xm
Wl e ].)

Z =<

m==

9| [
.11#1_7_::_'_-!/'\

Dit is altijd mogelijk, want voor z=1 is de som links
9 | })1 ; v T
,—1-—‘—‘,_,-, deze som groeit steeds aan en het is mogelijk dat
|+ 7§

2| by .
een bepaald aantal termen de constante waarde 1 ' ElJ —}-]/y
overtreft, anders is z=y — 1. Wordt y oneindig groot, dan
is de vorm rechts oneindig groot en moet dus z ook oneindig
genomen worden. Na z zoo bepaald te hebben vindt men
uit (14):

Cy) <

2 | by

—_ O

‘ ~ 3," \l)m \

E_+]/ y+ym %-{—I ‘m

De beide eerste termen zijn o (y), daar tegelijk met y ook z

| bx |
k

convergeert, waarmee tevens bewezen is, dat reeds in deze

ruimere veronderstelling:

. & x*
Lim{1l—-=] ¥ b : =0.
x-p & TS ] —x

oneindig wordt is ook de laatste term o (y), wanneer X

o

Bij de afleiding van (13) hebben we gebruik gemaakl van
de stelling van Areent dat voor radiale nadering

o0 y

otk

: L-'-'lml L o i e O A
Lim — = Lim

EEP TS (k v ld+1414 ... F1
=
Prvesuent heeft deze stelling uitgebreid voor nadering
binnen een bepaalden hoek, maar daarmee is tegelijk aange-



. ot e BE|
toond, dat ook voor complexe nadering, mils X . conver-

geerl de juist berekende limietwaarde goed is.

§ 12. De weg ligt nu open om, na het maken van be-
perkende afspraken omtrent de coéfficiénten bi of het irratio-
nale getal 5, andere limieten te berekenen. Is bijvoorbeeld
S be| convergent en zijn de partieele noemers van de
kettingbreuk, waarin 3 ontwikkeld kan worden eindig, dan

i x\/» R xk
kunnen we bewijzen dat: Lim {1 -— _ > hL — =
X-» = = = o
We gaan daartoe ecerst de vc,)m'\\'nm':lc na, waarvoor bij de
‘y-i : llﬂz ,:‘j_‘v’,
recks S cx t* de limiet: Lim (1 —t) X cext*=0. Deze
K=1 tr 1 k=1
limiet is weer gelijk aan:
0 R
> cx t* W Crel U
Lim = = Lim = = Lim - i inOge 1
4 ~ —hd rf
t-»l“ _t) L=>1 '\f“) k y = oo &0 |‘ iy '{ dg —1|‘...:l3-
> act

k
: 2
Nuis (1 —t)a=1-4 "2t 2 s Lt,, =

DR L 2 y! e
{342 1. 8 &6 2
Dus a0 +a= ;.5 [ ao -+ -+ a= ;. 9 9 9 door

een bewijs van y op y - 1 kunnen we bewijzen dat:

g 1 35 2y +1 2
:lu'}* a; =+ ag 7| ceea sy = 2 9 9 SRR I ~' ‘,1.

en dus Lim a0+ a1 4 ag+..... 0y =

y =+ 0

2 B” O v D v - o
I . J A 1 B (-a ‘\ 1] - ) '_'I I _— ]’f;! y _§ 1 ]:, -
AL A vl T

ey : ) -

Deze limiet is dus O (y'2), dus Lim (1 ——=1"% X extk=0
tr 1 k=1
als Cly)= X ecx=o0('")

k 1
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.
Bij de Lambertsche recksen is C(y) = E1ak &5 terwijl vol-
gens (14) B}

s lemW
TF by o |
IG(}J|§m;1———ll“En‘

1Y, 3 i)
m =z ot 1
Evenals in § 3 is | 1 — & | grooter dan de loodlijn uit - 1
op den voerstraal van &™ neergelaten. Dus |1 — &™| >
sin 27 m+y. Zij g nu het geheele getal, dat zoo dicht mogelijk
bij my ligt, dan is dus
(15) 11 —&™|>|sin27x(my —g)|.

Ontwikkelt men 9 in eene kettingbreuk y = | qi qa s . . ..

Qs..-.. en noemt men ys=|qs+1.qs +2....| dan is
A . k's  Ksii

y=\'qiqeQqs....qsys{. Zijn -— en ——— de benaderende

breuken van deze kettingbreuk, danisk, . 1 = ksys + kg

1 lat ks 41 K (—1)s+1 k's 4 1
en dus omdaa —— e — D - en ; o— i
ke 1 ks ks k,; ] z

T [ el !
U6y = Skl T hoi” ket D

kﬁ-}-l‘

Volgens de veronderstelling is er nu altijd een getal A,
zoodat voor iedere s, qs <A, maar dan is
=105 +1, s+ 2. <Gy 1 +1<A-1, dus

| k| L

I 7 kg \ ks"! (1\. *‘ 2) - k.-«""
r | r B
Is nu ° eene naderende breuk van v, danis|y — B >—,
m m|~ m?*

r

is -2 geen naderende breuk, dan is volgens eene bekende
m

, 7 | : :
eigenschap |y — 1;:1 { T dus in beide gevallen
g k o o T k
Yy —- ; waarbij k eindig is, of |my —g
= gt ] g is, AP

waardoor (15) geeft:
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|1 — &2 | >sin 27 = en omdat sin a > mits « < -

|

2
k2 4k’ A
|1 —&2 | >27 — == — ="
ma= m m
i i B = | ‘ / | b |
Hieruit volgt: | C (y)|= = 2 |bm Mty X —
=1

meenr e i

Stel nu z =[Vy] en splits ook de eerste reeks in twee

stukken, dan vindt men:

‘ g [Vi] ‘ 2 - | J b
ICy) == X |balm4+ = X Ibn lm4y X =
A m=1 Am_'[\'z ] L1 m=z4+1 m
9 / [‘ 1] . 2 z : y v !
ICHI==1Vz 2 [bml+= 2 |buld+< ¥  [bm
A m=1 Am"'[l\‘:r.J»{-l Zm=z-41
L e i :
Daar Y | ba | convergeert en z en |/ z tegelijk oneindig
m==1

worden, is de recks in den eersten term eindig, de beide
andere naderen tot nul, waaruit:
|G (y) =0 (y':).
§ 13, Eindelijk zullen we nog aantoonen dal

x\ ¥y & K o)
Lim 1l —= 3 by + =0, wanneer X | bk conver-
S £ & K1 ] —x k=1

geert en de partieele noemers g, van de keltlingbreok, waarin
v ontwikkeld kan worden vanal eene zekere waarde voldoen
aan gy < Ak, 1 (A eindig).

Eerst bepalen we weer de voorwaarde, waarvoor bij

o) ol oo, . .
N oot de limiet: Lim (1—t) s k.\;.l ek t*==0. Men vindt

—

Ko 1 t—l

el LOTR S
: R . ‘.,-I (»3 I s 60 a 0in o » (,:, o "
dan alsin § 12 dal Lim t : =0 moel zijn,
ybeo Q0 81 +83 ... . Qy
waarbij de a’s de coeflicienten van de ontwikkeling (1 — 1)~ "5 zijn.

25 t2

u):
Nll i'\ (I -"U '::‘:1 I .’{‘t’”:;:iﬂ'—i—...'.g:

-

-

i3l 3

92 516 265819
B+ m=g. 3519 0t utR=gaaag

8 3Jy— y
9} 1_4_1
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door een bewijs van y op y -+ 1 kunnen we bewijzen:

ﬂn+a1+az+ ....... V=
258 3y+2 1 3(y+1)
SIgIBEELY 3 (y+1)! 2

Hiervoor kunnen we schrijven:

1 —1s 2_—'11:1_3_':'.3__._”_ (Y‘*’l)—lis ‘](ﬁ‘l‘l)_

12 Eo

y+1 2

1) ¥ 1
k_l(l—sk)

Dit oneindig product zal divergeeren, omdat > 31kdivergeert.

3
3

Nemen we den logarithmus en ontwikkelen de logarithmen der
(L
termen dan komt er — '[s { +

1
gt =

hier /s log (y -+ 1) bij dan wordt dit eindig, daarom

). Voegt men

Limas+ar+a+....ay=

Lim - 11 : ¢ =
y—=+1 - k=1

3@4-1w4b 1)&UWW+1}#%MMFPU
T3k

i y+1( 1\ Yslog(y +1) =t 4
Lim T | L= ) e dus O (y “s).
yol GHD% =1 3k

zoodat:

oL
l.ri“] {1 — l)ZJ‘I\ E Ck tk 0 ll“: ( (\‘) =i, ‘ }
t—1 k='1

Om dit op de Lambertsche reeksen toe te passen volgen
we de redeneering van de vorige paragraaf. Vanaf eene be-
paalde waarde van s is nu qs<CA k; 1 en dus
H—*qHL] ] <qn,1]+1<i\l\a'i‘|-——”|\\
Met (16) vinden we nu:

k's < I 1 |

v ST
| bf’hﬂwﬁ_w>mﬂnm1ﬁn:ukﬂmmﬁ‘mmw'
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o :
Nu kan lt:f eene herleide breuk zijn of niet. In het eerste

S

geval is |y — El |>n‘1'"’-'i i’r geen herleide breuk dan is
weer [y — 2| > -—1—: dus ook > —-.
| m =~ 2m? m®
-

Zoo vindt men weer my —g > 5

P N 3 0)

waaruit |1 — & | >sin 27— -
m*”~ m*
Substitueert men dit in (14) dan komt er:
- e B . Y |Dm|
Icw =2 = |ba|mi4y > —
' A m—1 " m=z41 M

Neemt men nu z=|[¥ yv] en splitst de eerste reeks in

twee stukken, dan vindl men:

2 Vz 0 % . v ¥
[ G (\) | = A A XL 3 Z ) | bm "i'h.f P “’m:-
me==1 L) m |\ z l"i“ ‘m=z+41

Nu is | bw | convergent, dus de som in den eersten term
is eindig en in de beide andere termen nul, omdat z tegelijk

Dus:

met y oneindig wordt,
| (: (}r) 1 =0 ("_!'I-’n)'



HOOFDSTUK III.

Sommatie.

§ 1. Alleen bij reeksen mel groote convergentiesnelheid
zal men door het samentellen der opvolgende termen zonder
veel moeile de som in eenige decimalen nauwkeurig kunnen
verkrijgen. Een denkbeeld over de convergentiesnelheid kan
men krijgen door de verhouding te berekenen van de rest
Zy =U, + 1+ Uy oo+ ...endenn® term u,. Beschouwen
we nu twee reeksen U=u; + 1z +us 4 ..... ... (Rest an)
en V=vi+va+ Vs 4 ..... (Rest 3u) en heeft de reeks u
uitsluitend positieve termen dan is
(1.) Lim P — 1im LU Yot Sl Lim "

n—»o &n n-r D0 Un+|—*- lll),*Ag‘i—...... n-»x Un
mits deze laatste limiet bestaal. Neem nu voor V de reeks:
Uz 4+ ug vt 4 .... dus vy = u,.v, dan gaat (1) over in:

. Uppotupg3t ..., . Ungl
IJ”“ 5 - —_— [‘”n —e
n—»oo Up.a| +ull-!-2—|_-"'-°'- n—+w Upy

Noem deze laatste limiet 2, dan is dus:

- Up 41 : \ .
Lim (1 —— ) = A of : Lim (2, — Aup) = Lim A z, dus:

n-r o & p n=p 00 n-p o0
Zn )
C - »
(2). Lim = —
n-»»n Uy | — 2

3ij eene convergente reeks kan A varieeren van 0 tot 1

‘ ; . “n
in het eerste geval is Lim = 0, convergeerl de reeks als
n-»x Uy y
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an
het ware oneindig snel, in het tweede is Lim —— = 1 en con-
n-—» PO un

vergeert de reeks oneindig langzaam. X
Is x nu positief dan kan men dit op de reeks van Lambert

foepassen

Up 1 _XIiJ"V] (1—x")

Lim —

n+w Up (I—X“'H)Xn B

Daar de limiet niet nul is, zal voor de berekening der som
in eenige decimalen nauwkeurig een vrij groot aantal termen
noodig zijn.

§ 2. Grootere nauwkeurigheid is le bereiken door eene
benaderde uitdrukking voor de rest op te stellen of door de
reeks in eene sneller convergeerende te transformeeren. Trachten
we dus eerst xy te benaderen. We leiden daartoe eene alge-
meene betrekking af door in de reeks:

=X XN XSS \ - . 1
4 — -+ N o "y g g WOreN X = .
log i—x 2|1 F3 -+ B , (Ix]<1) te substitueeren x =¥
0
Iogp+1 2 =r 1.+_1.—+ ] = =42 v
) — 1 p 3p* bHp° p
(3). n!’: 2 log :::’F i = :) -+ vy waarbij
i { 1 ) ( 1 1 ) R LRl
Vp = - o L < | == + . )= "
¥ ap? ! op? i ip' | ~3p? Ip* ! p' 3p (p*—1)
Nu is:
" ] o
2 1 o 12
p(p*=1) p—1 p+1 p
(4). en dus: vp v o —1 p+ 1 D,
Geeft men nu in (3) aan p achtereenvolgens de waarden uy,
" | |
Ue. Us o . ... up en telt alles samen, daarbij Uy = — - £,
g K 1y g
2 K I en Vin=vm -+ vuz -+ ..... Vv noemend, dan vindt
Un

men de betrekking:
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(5) U ST =] log{u1j_l)(u2+1)...(lln+
\* e N il

1)
Zlog (g — 1) (uz — 1) ... (wn— 1)

§ 3. Om hiernit den restterm van de reeks van L. te

] 1 +x1—xk . uk—1+1
vinden noemen we Uy=-——— - dan is — =xen
X L l—x ux — 1
n 1 - K -
=, —X X ] —x
(6) U= X = —

keq1l+x1—x* 1+4x
(S, is de som van n termen van de reeks van L..).
De reeks van L. convergeert voor x <1, dan is

Uk = %:;—_—: I:;‘x->l en mag daarom voor p in (3) ge-
substitueerd worden. Men vindt nu uit (5) en (6):
14x1 —x"
Up 41 S
Un+ Va=1alogxn—15"—"—73 = tslogxn—1 T -1 of:
e
(7) Un _i‘ Vn — 1!‘.’ IOg (l ‘l ae 11_ ‘\\()'
V, moet nu benaderd worden. Dit kan gebeuren door het
verschil tusschen V=Lim vui + vue + ..... vus en Vi te
m = 0

benaderen. Bij deze berekening zal tegelijk blijken dat V
eindig is. Uit (4) volgt:

8 VA S (et ' 9)
®) T3 e e k1 (.Uk - 1 - =t e uk,'
Nu is:
1 (=x)x [ (1= ) s
k—1 14+x—2xF pe+1 1 x—2xk+l AL
1 15 == x) xX
Uk (1 4+ x)(1 —x%)
dus:
1 | | 1
= u - e I e K L
ux — 1 Jr-uk—}—l Uk e dps (1—}—};—&3:{"'

1 1
+14_x_9xk;-1"1+x_xu-__xk+1)'
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Nuis 2xk + 1< xk4 xk+1 en dus:
1 1

T —gxk ]l ST+ x —xE—xEFl
1 1
en eveneens: o 5§ < ot e L L dus:
1 ' 1 1 1
Bp LTy o e e ) R e T )
ue—1 | w1 Uk<(1 ) 14+ x—2x*
<777 (l—xmﬂ‘: X .
] +x —xk—1__xk up_;
waardoor (8) overgaat in:
o0 ¢ (X o)
Ve Val sy (“ Btz 3 S
6 p—n+1\Uk—1 Uk 6 \Uf k=n+1 Uk
187X :
— o '1 o x U'_Un
6 (Un ( ) ( ) )
e A 1 1 - u
wanneer we U= Lim 4+ =4 ... noemen, Nu is:
m-» o Ul Uz Um
14+x1—x _14x1
g T <3 P en dus
1l—x R
UL > oxke=
1 _*— X k=n + 1
xn + 1 11— SCL Y (P X" {n e Ay

—_— — e R .
{4+x 1—x 14x1-—x" | —X U
Hierdoor vindt men uit (9)
1 "\-_ X‘ xD + 1
VY — (] = — .
n < 6 \uy ( )u,. 6 Uy
De reeks der v's convergeerlt dus zeker, terwijl de gevon-
den betrekking ook kan dienen om de fout te benaderen,
wanneer men bij den n*® term afbreekt.  Men heeft dan
! . xn+ | -
(10) Va =V -0 waarbij 0 <4 < 1. Intusschen moet
1 Up
V zelf ook nog gevonden. Dit kan ontgaan worden door (10)
in (7) te substitueeren en op te merken dat V onafhankelijk
van n is, eene bijzondere waarde van n voert dan tot hel doel.

Men vindt zoo

{ (oo bl -_Q‘lwxh-_ X""l__? :
l_iﬂxb" — 1/ log (l t- 2x 1‘--x) + 06 Un YapL:

\

|
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n k. r = c2n + 1
(11). E s —l_h_ log 1/1 + x Lo \ -4 -»\ -~ Const
k=1l — 1 —x 2

Xk I—x xn)
IS
1—:\"1_-.

Deze constante = — V 1007 is onafhankelijk

van n. Neemi men nu n= % dan vindt men uit (11).
r'f: Ax- olERx logl/lf X onst
P e S ] —x

en hiervan (11) aftrekkend:

X Xk _1+x |/ 'T—Fx" 4 x2n+1
e - o - g T (g e = 5
k——‘;J.]]"_'\k 1—x = X
Dus:
oo \;k n ‘Lk

19). > ——= 3
12) k=11 —x* y=; 1—x

] —x " ] 4+ x—2xn +1 6 1.—xn

§ 4. Uit deze formule van Cesaro is voor niel te groote
x de waarde der reeks snel te bepalen. Nemen we x = 0,1
en wenschen we eene nauwkeurigheid van 7 decimalen dan

moet E,a(}ihi_r\") < 107, Hieraan is reeds voldaan door
n=3 te nemen. Men vindt dan:
] 1 1 11 ‘ !)1)0(}
S=9Tgg T ggg T 13 %8599 = 11 1111 1.
-+ 0. 01 01 010, 0. 001 001 O., -
02000 181 1015 =10.1 223 2492/,

De juistheid van deze uitkomst is gemakkelijk te contro-
leeren, daar, volgens de fundamenteele eigenschap der reeks
van L., voor x=0.1 de som van deze reeks in de eerste
46 decimalen het aantal deelers van de eerste 46 getallen
geeft. (48 heeft 10 deelers, dus is de 47¢ decimaal 3 en
niet 2),
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§ 5. De transformatie van Cravsex (inleiding § 2)

Ll s I + xk\ .
2 s 0% L ( Xk is te beschouwen als eene
1! =" o1 1t

geslaagde poging om de reeks in eene snel convergeerende
om te rekenen, want volgens (2) is:

o . un+1 oo d ] e nElisn st 20
Lim — =Lim ——=Lim 1pe | ———=0

—A— - 2
n-yoo U0 fipion OB Tpgeel XM {E=Tsn xn

8§ 6. De reeks van Cravses heeft het nadeel, dat alle
termen positief zijn. Cesimo ') is er in geslaagd eene reeks
met gestadig afmemende beurtelings posilieve en negatieve
termen te vinden. Men heeft dan direkt eene grens voor de
fout. Uitgaande van eene formule van Cavcny:*)

f{:IJ lﬂuqu %3 t—])i\ q,L{L}”
k=11—aky x=e(l—q—q)........ (1 —qk)
(x—=y)(x—qy).......(x —gk—1y)
=gy —q’y)........ (1 —gky)

waarbij rechts voor k==0 als eerste term 1 genomen moet
worden, substitueert hij x =y q" en vindt:

R {_qgk+ny L, (— 1k gk +1)
| R B R D e 2
kL] 1 —qky k=1l — gt —af)... (1L —qk)
(— 1)k yk (— q" +1) (— q"+q)",',"'(," ql\-{-qk—l_):
><[l-—(]\) (15—=q® §)ias o aioiolainiaivnsavnions (1 —qky)
e {Q q,k(kl 1) q",l-.(l.._l}
“i0—q 0 —qg%).eeene. (1 - qk)
o gl —qn) (I —qo— ) sesres(l—qu—kt1)
X y¥ (= ) (1Y) e e e s (1 —qky)

1y Source d'identités Mathésis t. 6. p. 126131 (1856). Eene elementaire
afleiding vindt men in de Wiskundige Opgaven van het Wiskundig Ge-
nootschap Onvermoeide Arbeids t. 13. 2¢ stuk.

1) Comptes Rendus t. XVII p. 530,



CON (1E2q T M (1IN ) et (1 —gqn—k=+1
= =) G T L T e (1 — gk
X ok

(1—qx) (1 —g*x)...(1 —qkn)
Deze formule geldt voor willekeurige n, men mag haar dus
naar n differentieeren.
., d @© 1 _gktnx
Nu is an kl:il e

(o &)

4 - == qk 4+ nx
T r }
= xqh+Pp kgl(l k) (I—qv P ) log q dus
(I (v o) 1 _qk +n ‘,{ @ - qp
: =1 S
(14) (d 1 klll TR L 0g q = =

IHet differentiaalquotient naar n van den rechterkant van
(13) is:

k—1
L‘J“ qL“\L > —q—pP(1l—qgqn)(1 —gq"—1)....(1 —qe—k +1)
< - (]
‘g q —1 (1—-q){1~q) 1 —qk) (1—qx) (1 —q*x) . . (1 —qkx)(1 —qn—p)
Voor n is nul valt alles met den factor (1 — g") weg, blijven
alleen die termen, welke bij p==0 behooren (in teller en
noemer (1 — q°)) en vindt men:
0 — agk*xk (1 — q—1 —q—2 T =]
logq > gk xk (1 —q )(lqu ) Becatane.tive f:)l q ) :
P (=) (=) e (1 —qgk)(1 —gx) (1 —g°x)..... (1 - qkx)
o0 (llj’:k{k 1) Xk
(15) log > (—1)k - 3 .
o lga ¥ (=D T —q—qx......( —q&)
Uit (14) en (15) volgt:
kK o0 1, kik+1) xk
(19 = —XE__ F (—pk+ 9 :
k=11—qkx L::!( ) (1—qk) (1 —qx) (1 —g°x).:..(1—qkx)

Stelt men x=1 en q=x dan vindl men de gezochte
transformatie van de reeks van L.:



Lim = Lim
1 =»

wdwdwut.o.o=unl4u) —uoe A ug) - ug ue us(l 4=ug)...=

Ug

X X 4

T A Ty L=

e o x93 i x5

TOl— T =91 —x)F " I—x)0—x)(1—x "
Door de termen der reeks van L. uy, ug, us enz. te noemen

krijgt (17) den vorm:

114 117 Ug » 1 e Uy

+ s + = = -
(18) us+uve+us+..... == T { — x3

e

De termen van deze reeks zijn afwisselend positief en nega-
tief en nemen snel af; zelfs als ze alle positief waren, had

‘men nog:

tn+1 Uz Ug.....Un+1 1 —Xx0 ;
Ty : = Limun +1=10
o tn n=r ] — X Uy Ue....Un n- oo

§ 7. Daar de termen meestal direkt (x = 0.8) en anders
toch vrij spoedig gaan afnemen, zal de reeks van Gesino met
steeds kleiner amplitudines om de juiste waarde van L (X)
heenschommelen.  Men kan deze amplitudines nog verkleinen.
We merken daartoe op dat:

1 =Xk xk
(=K Bk : {—xk
over in:

= | -+ uk. Hierdoor gaat (18)

w4 wr? — vy ug — ug ug® 4wy ug g - wpue gt — ... dus:
(19) us + vg+ug +.....=uy + uy (1 —ug) =1y ug (Vg — uy) 4=
4wy ugug (g — uy) ...... de getransformeerde reeks is dus
pitsluitend uit termen  der oorspronkelijke opgebouwd.  Maar
nu is:

xk—1 xk xk—1(] —x) __ Ug--1uk

Sl S ey | 1,#xkﬁ(l_xk)(l.ﬁxkfn_u[ xk—1

Substitueert men dit in (19) dan vindt men:
- up e ue® ug , ue us®uy
u; -+ U -+ g 'l' o= + T —— S "i‘ 3
X X2 X
De beide eerste termen zijn nog eenvoudig samen te voegen,
want:



up g X x?
U b (= ()
\—l—v '7 A RE 1 _:_1_}_u.ug
(1—x) (1—xY x?
dus:
Uz U2® g
(200 mi+w+ug+...=—1+ T x_h,q
4 Us uz® uy Uz ug us® us R g

xli x-l

Dal de amplitudines door dit proces werkelijk verkleind
zijn, is gemakkelijk te zien. In de reeks (I8) is de som van
1§ U3 u:

- , te klein, in de reeks (20)is de som
T e s

2 termen

up Uz ue® U !
)-— ook te klein, maar

van 2 termen (—1 == ~
X X
blijkens de afleiding u; uz ng grooter dan de overeenkomstige

som van (18) dus dichter bij de juiste waarde.

§ 8. De waarde van deze reeksen kan men onderling ver-
gelijken door voor ieder eene grens voorde fout op te stellen,
die men maakt als men na n termen de berekening afbreekt.
Voor de reeks van L. zell moet dus bepaald worden

xn + 1 |4 xn + 2 xn + 3

1 — %0 + 3 &

an—

D) ]

{ —xn+1 "1 —xn+2
Nu hebben we in (16) gevonden:

Xq 4 _xq  xXq¢
l—qx 1—qg*x 1—¢g°x

q X s e (;“x” _A!—
1—gx)(l—q) (1—qx)(1—qg*x) 1 —q’

N TAs, q°x’
+ l——qX)(l—«q X) (1 —qg*x)(1 —-—-q)

Stelt men hierin x = q" en q = x dan vindt men:
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xn+1 xn+2 xn+3
A e I R T T B e
xn +1 x2n+3
T l—xn+1)(1—x) (1—xn+1) (1__xn'+'2) (1—x2) ~F
x3n+6
+ (1—xn+1) (1—xn+2) (1—xn+3) (1—x3)

dus:
(21) xﬂ_____?hfrf!_{‘n_»l Un+2  Un4+1Un+2Un+3

1 —x 1—x2 1 —x3
De termen van deze reeks zullen in 't algemeen weer spoedig
afnemen, voor x = 0.8 direkt, en daar het teeken afwisselend

yositief en negatief is, heeft men dan « < il
n

§ 9. Voor de reeksontwikkeling van Cravsen moel een
grens gevonden worden voor:

{ 4 xn+l | -} xn+2
= 1+ 1) ~ x(n+2)*
ﬁl] 1_\"11 x(n +[H_.x!|{3\( )+
1 -} xn
x n + 3)' -
1 {—xn+s ( ) il
n n
Hiervoor maken we gebruik van de identiteit X X ajj==
i=1j=1
" [q.. 4+ ‘F (aij -+ aji)]
::]-
blclt men hierin a;j = X1 dan vindt men links:
e ! N - , n T
_\_‘,_\_‘,xil:E{Kl-}‘Xgl-‘-,,,,.,X"]):}:Xi iy
{e]]=t =1 =1 1 —xt

n
Rechts vindt men: 3 (xi*4- 2 (xi(i+1) 4 xi(i+2) 4=, ..., . 4xin))=
i1

1

n 3 ? ' = . . noq ;‘1____)\“1 124
e e 4 k) el A (n-—1 iy s -
S ' poxi'(d 4 x2g, xi0)) =5 :
j=1 i1 | — x
Linker- en rechterkant gelijkstellend:
n AT 111 " i .i__.q AMi—iti
| — _i —_— «
i=11] — X {=1 e );

1) Uit deze identiteit is trouwens ook de reeks van CLAUSEN af te leiden,
E. Cpsaro: Sor les transformations de la série de LAMBERT,
Nouvelles Annales série 3, t. 7, p. 374, (1888),

X

!



n 1+:{1 oy n Xi n xni+i L
of: § ———x''— > — = > ——— waaruit:
i=11 x! EE] =5 =1 —xl
s e S -9, ~n
(95) S—{B’n —S"}‘Zn—-’xu—ﬁu—kn u+x"us+..,... X" Un.

Eene eenvoudige uildrukking voor (a krijgt men door an in
een anderen vorm dan (21) te ontwikkelen. Nu verschijnt

o0 xk
an, als we in X T \(iEI voor q = X" zetten. Maar
o xk 0 xk ok
s 24 5 I hetgeen blijkt als men iederen

il —xFg =il =

term van de laatste reeks in eene reeks ontwikkelt, de reeksen
onder elkaar schriift en de kolommen sommeert. Substitueert
men in deze gelijkheid q==x" dan vindt men:

xn+1 I 2 xn+3
o n 1Tl fa SN PR [t
«h+1 + x2n +2 ot x3n+3
o ihiiee R e

(24) of: en=wm X"+ X2 upx*" ...,
Nu is (23) fn=an — (i x" + vz X*"+........UnX")
waaruit met (24) volgt:
(25) Bu==up .1 xn(n+1) 4 w5%o xh(n+2) +up3 s nin+ 3}‘{ "
Maar u, ;< x" u en zoo gaat (25) over in:
’,.3" < hn +2) 1y + xhn -+ 3) Vi 0+ 4) Us _{_ .
(QG) of: j"J‘u < A 1) an.

§ 10. Voor de reeks van Cesaro (18) moet een grens ge-
vonden worden voor:
Uy Uz ....Up4 Upuz....Upp9 UpU2....UG43

rn = 1= Xn +1 1 Xllrf'_f i | 7xll-‘. 3 g
We merkten reeds op dal voor x = 0.80 de termen onmid-
dellijk zullen afnemen, zoodat men dan heefll:
! MpUgUs....Up 4]
(‘21) Yn < | ==t -
— X

,\'..\:'“)x“....x"‘:’l

(M=) —x) (L = x)res(—x"F {0 —x2F)
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xYa(n + 1) (0 + 2)
(1 — x)n + 2
want 1 —x<1 —x*< | —x° enz.

§ 11. In (20) vonden we de transformatie :

pne  we®uy , Ususius U2 Us Ut U
L+ 1=—"—F ——5—+ — T

X X

x> X
Voor de rest van deze reeks vindt men evenzoo:

UgUgUg....0 & 1 U £ 2

0Q ¥ St SR I e AT ik, T A
("‘b) on < x" + 1

- .1.)
xixh, ...yt lxnte

A=) (=) —x).... 0 —x" P —x"* S

x“,-', (n + l)r{u f-.AlJ

§ 12. Voordal we nu de waarde der verschillende reeksen
vergelijken, merken we op, dat ze niet voor alle waarden tusschen
0 en 1 geschikt zijn om L (x) te becijferen. De termen van
de reeks van Cesino kunnen b.v. aanvankelijk toenemen, want

WS WU ) =14x—2x*—x*>0.
] —x° 1 —Xx*

Nu is f(0.80) = - 0.008 en [(0.81)= — 0.033641. De
termen nemen dus direkt af als x = 0.80. Voor x> 0.80
zal de reeks vrij onbruikbaar zijn, maar zelfs als x < 0.80 is
de convergentie in de buurt van 0.80 nog traag. Dergelijke
bezwaren heeft men ook bij de andere reeksen. Nu heeft
SenLosinen de reeks van Lampear in een eene half convergente
recks ontwikkeld, welke het antwoord des te nanwkeuriger
geeft, naarmate x dichter bij 1 ligt. Maar zelfs voor x = 0.4
vindt men nog 9 decimalen nauwkeurig, wanneer men 4
termen van de reeks van ScHLOMILCH sommeert, de reeks van
Cravsey geeft er dan ook 9. De gebieden van bruikbaarheid
an beide reeksen ontmoeten elkaar hier. Voor waarden van
x > 0.4 zal men bij voorkeur de reeks van ScHLOMILCH ge-
bruiken, bij waarden van x< 0.4 de andere reeksen, die wij
nu in die veronderstelling zullen vergelijken.

t; > ts, wanneer



o2

n+1
n-kl_” e
§ 13. Nu is ("1)ml< T T (i “*')(1—-}\)<
n+1
cEL

X
want: (1—x"*thH(l—x)=2(1—x301 —x>
(1—0.16) (1 —0.4) >04>x.
Men zou kunnen denken, dat deze grensbepaling wat ruw
was, maar

‘{‘n + 1 n+2 xﬂ L3
a:nzl 1‘:n*‘l—‘_1 ;i‘-l-g'{_']"_' nl'g—f'..
n -+ 1
x"
dus Xn > el o >xn L 1
1 Yn + 1
' N n+ 1
waaruit XN < oy < X 1

Voor 8, vinden we nu uit (26) 8, < x"(® + Vg, < xn0+ 2,

Ook hier is de benadering als macht van x zoo nauwkeurig
mogelijk, want:

n
X =P
a =2 > en dus (95) fa =220+ Dy 4y +
‘}_)\Tl(n-l__)ul-{n__r_x"(ll43)u }+ _______ >
x (0L (nal) (nii2) i p(nitd) (nb8) e TR > e il b L

nin + 2 n(n 4 2) 4 1
X ( }> Bn P ( )
De waarde voor oy (27) is ook nog iels te vereenvoudigen,

want sommeert men niet te veel termen, dan zal (1 —x)" " “ >x
zijn.  Dit is het geval als (n -+ 2) log (1 —x) > log x dus

log x : .

n4+ 2 < T 14— Men vindt dan:
1/(!1!—1)(:1%") 1, (0! +8 1)
a(n? 43 n
S ey S

Qok 3n (28) is zoo te behandelen. Weer moet (1 — x*) " © “>x

zijn of (n -+ 2)log (1 —x*) >logx dusn+4 2 < iogl(nl;;_x X7
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Men kan hier dus nog wat meer termen sommeeren dan Dbij

»n en toch blijft
i(n + 1)(n + 4)
Xt _ T
R S I
— x -

S 14. Volgens deze resultaten geeft voor x = 0, 1 de som-
matie van n termen vanp de reeks van L. n decimalen nauw-
keurig, de transformatie (12) geeft er 2n -+ 1, de reeks van
Cravsey n (n -+ 2), de reeks van Cesano '[an(n - 3) mits

log 0.1
n+2< ———=21.8dus n < 20. Isn > 20 dan kan men

log 0.9
nagaan voor welke n, (1 —x) " * “ > x? en vindt zoo dat
slechts het laatste cijffer onnauwkeurig zal zijn, wanneer
19 < n<42 enz. De reeks (20) geeft '2 (n* - 5n - 3)
decimalen, mits n - 2 < gLV =909 500 dussni<<+ 228,
log 0.99
Om 35 nauwkeurige decimalen voor x == 0.1 le vinden, moel
men 5 termen van de reeks van Cravsex sommeeren of 7 van
de reeks van Cgsano, maar 35 van de reeks van L. Gebruikte
men echter 35 termen van de reeks van Cravsey dan vond
men 1295 decimalen nauwkeurig, de reeks van Crsaro gaf er
dan 664 en de reeks (20) 701, De reeks van Cravsey ver-
dient in het algemeen den voorkeur, de reeks (20) is echter
beter om vlug een paar decimalen le vinden, Voor x =0, 1
geefl ¢één term reeds het antwoord in 4 decimalen, twee
lermen geven er zelfs 8, bij meer termen wint de reeks van
Cravsex het.

§ 15. Besluiten we dil hoofdstuk mel eene afleiding van

de asymplotische ontwikkeling van Scnvomien.  Hij ging it

van de sommalieformule van Evier-Mac, Lavnin: ') (29)
hif(@+fa+h)+flad+2n)4.....fla+(@—1)h)]=
b s hi. ’ ;
£ (u) du — Yeh [£(0) — £ @)]+ 22 (17 () — £ (@)] +

) ScardMiien Compendinm der Héhere Analyse Bd I1 p, 225,
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B; s T o B‘Jn—?h2n—2
[r ) —f"" ()] +..... e
[f‘-_)n —3(h) — £20—3 )] __h?'n : l- [S-) @ (t. 2 n) dt %)
: 2n)! Lt e :
waarin:
Son=f2"(@a+ht)+>"@@a+h+ht)+........
"0+ (gq—1)h+ht)
e () T (n) R () R 27 (u) van u=a tot u=>H

continu zijn en eindig }J]ijven

3 . B: , Bi,
Hij nam f(n) = e 1 + - 'q"i u -+ it ud 4
Bs L :

+67u5+ .. (mits | u | < 27)

Substitueert men deze functie in '(29), neemt a=0 dus
b = gh en bedenkt dat £{0) =0, f* (0) = '/2 B, {""" (0) = '[s Bs

ENZ e 2n—1(0)= u]n By, dan vindt men:
1 1 |
h [Oh —1 —l- e—‘:ﬁ_h _71 _|'_ ....... e(‘;{; —l—)-i-l-—_:..l__
1 ! - 1 J - 1 S 1 = e f]h
- [1 + 9 —1 1 _i (qﬁ l) lr- h ——-I(}h qh +

0 e B — B+ e+

0 )
177 B pent 1

n—2 02" "5y

o (2 n)!

2n.

*) Voor getallen van BERNOULLI zullen wij de notatie van CEsinRo
gebruiken, die deze getallen definieerde door de symbolische vergelijking
(B + 1)P — BP = p. waarbij By, =1 genomen wordt, Men vindt zoo:

By=1, Bi=1;, By=1 By=0, Bj=— 13, B; =0, By = /s enz.

Tusschen de notaties van SERRET, SCHLOMILCH en CESARO bestaat de

. 8 Behl n—1 L+
betrekking: B = an_‘ =(—1) B:n



1
waarbij Io, = [ Son @ (t. 2 n) dt.
0

Deelend door h en rangschikkend vindt men:

N T N L
eh_l e'&h__-l "'e(q—l)h "_,1_
o } l_ | 1 . 1 !(_19; h i 1
—(1+9+3+""qu !O"q)h_ T
1 —ab 1 1
i or q g Sy g e -
" h DiiliEige ) 2qh Q(c‘lh___l)Kl

B: h .., BIih S e e g
+ =5, - [f" (g h) — 'z Bs] 4 j“l (" "(qh) — 1 Bi]+4....

2n—3 )
| HES

B-) T ot ]l ¢ ’
£ “ 2n —3 .
@2n—2)! L Gl 2n—2 Bun— L']"(_L’n)! lon:

Kunnen we nu de waarden van f'(u), £’ (u) enz. voor
u= o vinden dan kunnen we in (30) q oneindig groot laten

worden, dus de reeks links tot in het oneindige voortzetten.
Nu is:

| l___ —me" 1 1 !
Dy |‘“u q)w ¥ (e¥ — 1):1.1 T T (e — {)m ‘_*—(uu___”m +1 s

ledere vorm met eene macht van (e" — 1) in den noemer
lovert dus na differentiatie twee dergelijke vormen, €en mel
dezelfde macht en ¢en mel een éen hoogere macht van

(e" — 1) in den noemer. Hiernil volgt direkt:

£20—1 () § AL 1 AL Awm  @n—1)1
(e —1 (e —1)° = (aui— ) =R ush .
waarin Aq . Ag ... Ay eindige getallen zijn. Lim (201 (u) is

=00
dus nul en uit (30) volgt voor q - 90 :

) 1 : 1 1 -
(1) e =
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82 on —2 2n — 3 | 2 ; !
TS = = o — " e .“) ﬁ - Q .{ .
@1 —2)1(@n—9) " (9’“)!'6[ Syp © (L. 2n) dt
waarin Sz, = 20 (b) 4+ €20 (£ h) + £ @0 1) ...

Nu is (— 1)® @ (t.2n) van O tot 1 positief, kan men dus
twee eindige van t onafhankelijke grootheden M en N vinden,
zoodat M < S, <N dan is;

(= 1)"_/'1 M. o (t2n)dt < (-- 1')"_/‘l Son @ (t.2n)dt< (— 1)n _{.1 No(t.2n)dt
0 0 Of 0
(— 1) LM By <l (— 1)"‘(/)‘l Sop @ (t.2n) dt<(—1"* I'N By,
want _[1 ®(t.2n) dt = —Bg,.

0

1
dus [ Sop @ (t,2n)dt= —By, [M+ (N —M)] voor 00 <1.
0

Hierdoor wordt de restterm van (31)

& h

(32). + @n)! Bop[M+40(N—M)]

Het komt er nog slechls op aan M en N te bepalen. Nu

geeft de betrekking (—r=x= -+ 7)
rer* e {1 Acosx | 2 cos 2 X
2 gd% _g—A% 2a 1'4A' 28427
ACOS3 X
1 Fpp—
e N e e voor X =g
3! 4 A2+ )

/

A A A

T 2 ' 1
9(1 e T 1)‘"93 t o T e patgia T

waaruit voor 2Ax — u:
1 . u 1 ]
f(u ——HQS : A - O IR
() (9274 f-u? ' 4¥x% 4 u? 1 6%z? 4 u® 5

) Scurominen Compendiom Bd. IT p. 140.
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wanneer we deze betrekking 2 n maal differenticeren en be-

denken dat:

o8 %(m l)bgtgi%
= (—1)"m! — )
(a® +u?) 2

m U

a*-u?
dan vinden we:

9
. ‘ cos[(ﬂn +1) hgtg:lﬂ
fesiln) =] (En)!a 92 72 - y# 0 + ' B

cos{ln )bgtg ‘LUFJ )

- (1 Py n)" T Pt 5 dus:

9 1 1
p2n 2 (2n)! -1~ P ey
‘ u) ‘ <2(2n) 3{-92 74 b ) } (4% 7% -+ 0?) "FI %

7 2(2n)! { 1 ] g L E
(27) 20 == {2zt 2 2¥P 24224y T
! 1
wanl: . : LT 5]
(a® 4 u?)" & ath—2(a?*4n?

Vervangl men nu 4% =% 6°=z* enz. overal door 2* =% dan
vindt men:

.. ‘ 2(2n)! 1 1 1
120 ()| < oe :(I:n--:"'f"i,:la—:'{':‘un—:"i' """ )2'—‘:“

2 :_).. n—
dus:

9 n 2 (‘2 Il)! S50pn—9 £ o
22 () = = —a gagr g Wb —1<e<+

2@n)!sp o €0
Nu wordt Sy, == ”i) )20 — 2 (1 x? IL(lll)‘l
2x ) S

') Men bewijst dit door: - L= 1 ( —-]--_ - +fl.%). m > te

a4 ut 2 \u—ina u+ 1A
differenticeren.
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T iix Th T A2 (;21: SR 2 ) s
ESEH | <C) ((D rl))' :>_ i 2 4____%_? e _E—(jh)z e ek

dus |Sgp| < (— )" —1an(2n—1)By, 2 5' ; A ——g

4 7% 6l
n—1¢2n—3 2n—2 Ban—2
want sop_o=1(—1) 92 Hol oy

Men vindt dus dat | Sp,, | kleiner is dan een eindig getal
N en dus is M< S5, <N, waarbij M= — N, maar dan is
M- 4(N—M)= — N+ 20N=pN, waarbij—1<p Lopab
De restterm wordt volgens (32):

2n 3
(0= 1 h 9 O 4 " ‘ I Wl L /
pr(—1) @n)! 21n(2n I)B,_,,__.“e e . el B,,

0 €| o
«l —& )
h 133“__0 9 n )

-

Ui @n-—2)!

Uit (31) vindt men dan:

I I 1 (. — log h
Ry e SR R Eh R
) B e I edh 1 h +
1 ] Bgﬂ ll Bq"' }I:1 P;"':}' =1g] }1() n—3 _
T 9lg T A4 T (2n—2)!(2 5 TR
' R ERA 2n —2)!(2n—2)

Stelt men hierin e ! =x, dan is 0 < x <1 omdat h po-
citief is en strekt men de sommatie nog een term verder uit,
dan gaat (33) over in:



: Xl X g X

(34) 1-——x+l—x“-’Tl Rl Ty s
0g

B‘-’u 1 Bs* 1) Ban 1\2n—1
Th—grgl8 s — 112 ('“"'x) """ (@) :zn(l”g x) B
waarbij:
Boy Bonsy (72 , log?X ) o
85) Ry = p SRR T o

Wij noemen de coéfficiénten = (z enz. en geven voor

Lol
144 Co= 86400

919
eene snelle becijffering de waarden van Cg =

1 = 1

) | S —_— 1

enz. oo

77620480 T 290304000" 10T 6322821120°
vinden wij:
1
L xk C—log log o8 { \2k-1
= i S — X Ca (lﬂg ) + Ran
k=11 —X log k=1 X

§ 16. We merkten reeds op, dat de bruikbaarlfeid van de
reeks toeneemt, wanneer x tot 1 nadert. Voorx = 0.9 vindt
. 1
C—log log -

1
0F

men reeds 4 decimalen nauwkeurig met L (x) =

I 1
4 144

van de reeks van Cravses moet berekenen om eene dergelijke
pauwkeurigheid te bereiken. Maar ook voor kleinere waarden

1 “
log 20 terwijl men voor x==0.9 reeds 10 termen

. . . 1 | o
is de reeks nog geschikt mits log = < {1 dusx >—=0.,36728....
=X B

Voor x=0.4 vindl men melt de recks van Scaromen:
],{'0.-1‘)'-:().727)11;’)!3‘379‘.i—{-(_}.':3:": 0.0063631301 — 0.0000089010
— 0.0000000848 — 0.000000001% = 0.9689841591,

Ter controle berekenen we L (0.4) ook mel de reeks van
(ILAUSEN:
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L (0.4) = 0.9333333333 - 0.0353523810 -+ 0.0002979928 -
0.0000004521 = 0.9689841592.
Nu is fn<x2OFD oy en an <

Up+1 " :
———— dus bij de berekening

==
Sl 0.4:5 -
(1 —0.4%0.6

met de reeks van Cravsey is de fout < 0.4%°

< 0.0000000002.

De eerste 9 decimalen zijn dus juist becijferd, de reeks
van Scuvomicn geeft precies dezelfde, ook daar zijn ze dus
goed. De gebieden van bruikbaarheid van beide reeksen
ontmoeten elkaar dus bij x = 0.4 (van beide zijn 4 termen
becijferd). Wanneer men echter voor onze becijfering met
de reeks van Scunomincn den restterm berekent vindt men

pay or2 ’
Ry—, D8 Bro 472  log Uigd log® 0.4 of |Rs| < 0.00000005,

TR L P
door controle met de reeks van Crauvsex weten we |Rs |
< 0.0000000004. De grens voor de fout is bij Ren dus lang
zoo nauw niet getrokken als voor a. en S

§ 17. Wij besluiten dit hoofdstuk met een tabelletje der
waarden van L (x) in vijf decimalen nauwkeurig.
L (0) = 0.00000. L (0.3) = 0.56686. L (0.6) = 2.69140. 1. (0.9) = 27.08648.
L (0.1) = 0.12232. 1, (0.4) = 0.96898. L (0.7) = A.75640. L (1) = @
L (0.2) = 0.30173. L (0.5) = 1.60669. L (0.8) = 9.55705.



HOOFDSTUK 1V.
(Transformaties).

a. Algebraische transformaties.
§ 1. We gebruikten reeds de transformatie van CrLAUseN
(Inleiding § 2):

o xk 2 { 4 xk ‘
Pt p= >yx~ - ) Met behulp hiervan heeft
x=11—X k=1 1

Fisensteiy de reeks van L. in eene keltingbreuk getrans-
formeerd. Cravsex vond:

PR I L] B x by 2t 2l

[,(x)_hl_xl—leX._,—{— ...... l_ik—l— ..... =
X X2 X‘ xr. x“' xk'—!-k :
Tx T Tox Tl T i T T e 1
Stelt men rechts X = : dan gaalt dit over in:
e SR L 1 3 1 b
(1) L(x) TR f LL— 1) l (2 _”—} G- 1) LR
1 1
k) T T

De reeks is nu in eenen vorm geschikt om met de methode
van Buten in eene kettingbreuk ontwikkeld te worden. Men
1 1 1

heefl namelijk dat, wanneer S = - - 4. ... eene
1y g Ua

convergente reeks is, dat dan:
: 1
N = ll|2
L1 A= e ®
W - ug — .
Ug - Uy~ €Nz,
Past men dit op (1) toe dan heeft men:
U -+ U = t* —1, ug *‘I*I]a"':l (1 — 1)., U= tJ“l'—l)u -----

Ugk—1 - Ugk = =k (l::k_ 1)' Usk ']" Uz k41 = Lk (t2k+l'_ 1)
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waaruit de ontwikkeling volgt:

LE=f—— -1

tz_ t! t-" )E

=3 i ¢4} 3 2
T e )

l"'[l“— W=D e e e e A S D S T
7!“7'(?' =TS (T
of telkens teller en noemer door eene macht van ¢ deplemi

1 mits {x) < 1 dus |t
L(x)zﬁ‘_ t_]Jz ) [t] >
—1— _tfti ] t tzi )2
18— IRy Y PR LY |
i meeba (bl )
t’ul—on:r
tk—l([kﬁ”?
ke e
B = [t tk (tk—1)*

2k+1—1— enz....

§ 2. Corrze transformeerde de reeks van L. in eene be-
paalde integraal, en leidde hieruit weer eene reeksontwikke-

; ling af. Zoo vond hij:
0 k : 0 { | xk
X X X
Q DS a2 —— \‘ e o
(2) 2 3 [ 1 ~1 — x*. Hoewel de
k=1 1— ~ k=1 X

integraal geen beteekenis h: u! kan men de juistheid der trans-
formatie aantoonen. Ontwikkell men iederen term der reeks
qan L. in eene reeks dan vindt men:

0O xk s}
2 3 T =2, e textt ettt )=
Vs Sy ik
0
Y k+ \‘ (xk 4232k 4 2x8k4 .. ....)
k kﬁt
1 + \‘1(-' 20 x2-xr4-....0)=
Done
1—x k1l —X°

Uit deze afleiding ziet men direkt, dat deze transformatie

voor uitbreiding vatbaar is. Men vindt in 't algemeen:
0 xk 0

n Yy - = 3 (nx*+nx*+nxtk4-.....)=
k= 1 1 =T K==1

o) 0 , 0

S m—1)x+ ¥ @m—2)x¥*4..... ¥ x4

= k=1 k=1

a0

+ ¥ (x"—{-f_’x“—}—.,.... (n—l)x‘“ 1k -{—-le“l‘ L{_”x(uﬁ-”k_*_..
k=1



X‘.!
) et (== 3) s
A= il o el o
.n—1 o0
b D R ()
(3) waaruit: n S £ = (n — 1] -1-
k=1 1 — xk =
X xh—1 :Q xk l ﬁk_{__ 11L
) [ AT n Ly 2 )
(n )1_\_—1— ...... 1__:\_“__1%‘:,1 l—k“

Men ziet dat (3) voor n==2, (2) als bijzonder geval bevat.

§ 3. Eene dergelijke transformatie kan men afleiden door
de opvolgende termen der reeks van L. in reeksen fte ont-
wikkelen, en deze reeksen onder elkaar te schrijven.  Op deze
wijze ontstaat eene dubbelreeks, waarvan we eerst de diago-
naal term sommeeren, dan de overblijvende termen van de
eerste rij en de eersle kolom, daarna de dan nog overgebleven
termen van de tweede rij en de tweede kolom enz. Men
vindt zoo

s:? Xk rjg kit ;‘ Dxk(k +1)
=11 — x5 S =1 o=y
Nu i 9xkk +1) (K 9 x* e ﬂ 9x¥ { 4x2% )
i\ S: == XY — X 4 " " ==
1 —x ] —xk (1 Fxk " 1 —x)
H‘ui 9 xk - 4 x2k ’_ H‘\:"“" i___
: 1 4 xk 1 - x 3
X 1 ’.-_ ’e NN : = y : 2l k
I\ A xE T 1 4x3E { -} x2P 1k, 1 \-l !

Daar |x|<C1 naderl de laatste term met toenemende p
tot nul en dus:

L ek &

Y, TE—— xk? |

koe=| I—X k=1
o0 ( 9 xk - 02 x 2 08 ik )
> ke Sl Lo
k=g Y\l 4 xk ] o x3k ] 4 xik I

Nemen we in de laatste dubbelreeks alle termen bij elkaar,
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2 x4 '
die ———— bevatten, dan vindt men vooreerst den term
1+ x4
a 222 1 t d is komt o
Xisee e Mg Arals een tweevoud is komt ———- ook
1+ x9’ q 1 + xd
(2) |
. . 2 . . s
voor in de reeks, die met x‘*/ begint, is q een viervoud, dan
(3)
ook nog in de reeks met x %/ enz., waaruit volgt, dat alle
den f et
termen met den factor ———— zijn:
1 - xd !

; q\* Hve .

2X9 (- 41 ) 4 v
—= x99 4. 9 x V&l LA x 4+ . ... ), waarbij de reeks
I+ x9 , '
tusschen haakjes afgebroken moel worden bij den laatsten
geheelen exponent.

Men vindt zoo de transformatie:

w0 k a0

> ——= 3 4
« Kk —

kr:11_}\k k:l

k=11 + xk

=

§ 4. Eene andere transformatie vindt men door te stellen:

@0 xk L Ax xk
> - p= ¥ . en dan de coéfficiénten Ay onaf-
k=11 —x k=114 X

hankelijk van x trachten te bepalen. Nu is

xk xk __ x2k xK 9 x 2k

{+ x*  1—x*F | —xkt [—x&

Er moet dus voldaan worden aan:

) B S e e TSy e
k=1 1 — X k=11 —Xx ety [T L

Bij ontwikkeling in reeksen geelt de tweede term rechis
slechts even machten van xX. De oneven machlen van X in

oo Kk o0 xk
de ontwikkelingen van X Ay en van >

k=1 | xS o= =
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moeten dus gelijk zijn, hetgeen achtereenvolgens vereischt:
Ai=1, As=1, As=1 enz. (4) gaat nu over in:

o0 <21 oD <21 o0 21
¥ = N A T O SN A : lus t:
AN 1121 i Fa - aus moet:
=1 1 — x*! 1 =1 PRl .'.__:1 ] — x¥
0 \“‘Ef e8] q{i“
= (-\ e 1) D S AT =
021 — - L I =
[‘_(I 1 x?i’ = e -‘\‘21

waaraan voldaan wordt door As;— 1 =2 As
Nu is voor alle oneven I: Ar=1 en heeft men dus
Ae;—1=2 As;=2-+1=3. Voor even ! heeft men:
Atm — 1 =2 Ag,, wat weer voor oneven m geeft:
Aam=224+1)+1=224241=17.
Men kan op deze manier doorgaan en ziet gemakkelijk in,
dat als k= 2"n en n oneven dat dan:

opt+1 _ {
ATE—TO TR D R R Rt R ] = e A
De recksontwikkeling uitschrijvend:
GO RIS I s X 3 x? X O T
Z T Igx "I+ TFe T I+ +
x50 3x! X1 15 x*

| L

7}71—}4.\:" e XU 1 \\,'{“

aF 1 + xb
§ 5. Trachten we de reeks van L. te vervangen door eene
xk - 2x2k -, (q—1)xa-Dk
reeks met algemeenen term Ak R T
dan vinden wij eene uitbreiding der vorige transformatie,
welke haar voor g = 2 als bijzonder geval beval.

xk - 2 x4 | (q—1)x@-Dk_ (1 —x¥)(xk4-2x%,, (q —1)xla=bk)

| _+A .\Ck _i_ Pt w(g—=1k —— = Nk
xk - x2k4 | xta-Dk _ (q—1) xk xk x1k
l_xr[l\‘ -_1__xk —ql_.qu.

Fr moel dus voldaan worden aan:

w xk B xk xn XIx
93 = om > Ax e —q > Ax Sy
k=1 1—X k=1 ] —Xx k=1 | — x4

Bij ontwikkeling in reeksen geeft de tweede term rechts
slechts machten van x9 de andere machten van x in de



66

® xk w0 xk
ontwikkelingen van }_, e en van >, Ax T moeten
== T et — )
dus gelijk zijn. D|t vereischt dat Ax =1 voor alle waarden

van k, die niet deelbaar zijn door q, voor de andere A’sheelt men:
CF iq co -l q
X X
_, Ajq — | = E ol e dus A; — 1= Ar
=, (I q ) ‘]q q = —x q q

Is I geen q—\-'oud dan is A; =1 dus Aig=q+ 1. Is ! wel
een g-voud, dan heeft men Awmg: — 1 = q Amq, dus als m geen
g-voud is Amq2 =q(q+1) + 1=q* + q+ 1. Op deze
manier kan men doorgaan en men ziet gemakkelijk in dat
als k=qg"n en n geen q-voud dat dan:

Ax = P + g + Pt L=

& 6. Bedenkt men, dat men alle getallen kan verkrijgen
door alle oneven gelallen achtereenvolgens met 1,2, 2% 27 enz.
te vermenigvuldigen, dan ziet men in dat:

o0 k i 2 i

= X ~ X X X

> 257 22, =jip 3T Ai ‘)
k=1 1 — X P\l —x Ee | —x

waarbij de sommatie over alle oneven getallen i uitgestrekt
moet worden. Ontwikkelt men de reeks tusschen haakjes
naar opklimmende machten van x, dan zal x" (n=2%p en
p oneven) slechts in de ontwikkeling van die breuken voor-

gfh:

komen, die in den teller hebben: X0, X e . ke 18
codfficient van x™ is dus « - 1.
: 2l e -
Men vindt daarom X z=2 2 (« Sl ) xas
k 1 1 — X 1 n 1

Verandert men rechls de volgorde der sommatie, dan geeft dit:
W xk

Pj:’.
S i =2 et t) @b ) S

el

k=11 —X n
oD "
b2 K00 e ) s :
= ] _Hx!n

§ 7. Zonder de afleiding te geven heefl FisenstEm ') reeds
vermeld, dat de reeks van L. getransformeerd kon worden in

') Transformations remarquables de quelques séries, Crelles Journal
t 27—28 p. 193107, 1844,
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het quotient van eene oneindige reeks en een oneindig product.
We zullen daarloe eerst het oneindig product van EuLer in
eene reeks ontwikkelen en stellen:

Pxt)=(1—xt) (1 —xt) (1 —x*t)...... =
=14 At +Aet®4...... mits |x|<1 en |[t|=1.
Maar dan is

(1—xt)P(x.xt)=01—xt).0 —xt) (1—x31)....=P(x.1).
Subslitueert men hierm de machtreeks in t, dan kan men uil
de komende identiteit de coéfliciénten A bepalen. Men heeft zoo:

“ —_ \l)(l + ;\‘Xt —1— :\2 X",l"! '1' ....... \ = { ’}‘ 1\1 t - A-)_tu *}* .......
dus A]X i — A[ of :\1 ' -
i — X
X2 X8
o p V=t ‘2-'_—_1.. P — ﬁ-l.- - g
Ao x A x Ao of Ag l—x"'m =3 (=)
SF
Apxk— Ax—1 X = Acof Ak = — - Ax—1 dus
e DR A
——J [— )k X e
A== a9 =x9......... (1 — x4
,"J,k(k + 1)
— (=S p) . . c
(1 —3) (L—=x).:.s: (1 — x¥)
ot (115 )b et ) (TP ) et =1— = St
x:l :\.l'. ‘
JEE BT R
i (1 —x)(1- x'—')t 1—x) (1 —x%) (1—x% !
en voor t=1: (1—x) (1 —x%) (1 —x% «oovernnnn ==

e X s X
== Ti— 0 —x)  1—x)(=x){l=x9

§ 8. Langs ecen dergelijken weg is de transformatie van
IisensteiN e verkrijgen.  Nu stellen we f(x.t)= (1 i -+

1 x? { X3
{—x't ' 1—x°
"t komt er nu maar op aan f(xt) in eenc machtreeks naar t

o )(I—xl)(l—-x'*’t)[l——x“t)....
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te ontwikkelen en dan t=1 te stellen. Stel f(x.t)=0C, +

4+ Cit+Cot®? 4+ Cat> +—. . ... dan is x (1 — xt) f(x.xt) =
Xa ! x3 x4 :
- A TE R — 4. ... i) (1= = X2 L)
(I—X't_f_l—x"‘th’_léx’t | )“ ADiSS e

dus x(1 —xt) f(x.xt) =f(xt) — ] i—x—tP (x.1).

Vermenigvuldigt men dit met (1 —xt) en substitueert de
reeks voor f(x.t) dan geeft dit:

x(1 —xt)2 (Co+ Cixt+ Cex®t?4....... )=
(1 —xt) (Co+ Cit 4 Coe l'"’+ ....... ) —
X X
)‘(1_“1____ t~i—1_\)(1_\) ....... ) of:
To 4 (Cyx®* — 2Cox?2 )t—l—(()-\ — 9 xP - Coxd)ta-. oot
(Ckx*+'—2Cx—1 x*+!1 4 Cx—2 xk+)gkL ... =
Ln-—((,l——(m\)t—]—(_lg—ij)tg—{—.....((_lk—-(_ik_lx)i“—{- ......
X P, xl .
—>\+ x (l—x)(l—xz)t .................
- 1V, k(k+1)
(— 1)k+! ; —tk ..
(1 —x)(1i—%%)..iL (1—x5)
zoodat Cox = Cop — x dus Co= 1 i <
: x3 ‘7\3
L ySE N ) F et e Y e ::___ i |
((41 A C(:)}\ (,41 (:.m X % 1 —x? of (,1 (l ot \) 1 = }‘ )
xl.

((:2 —'9 (;| 'Jl‘ (:(;) X3 = (:2 — (1 x — of

(1) S{dl=x)

i 3.x°
= (1—3x (1 —x% (I -x9

Dit wekt het vermoeden dat:

‘ k (k=) xS DA Rl T

e e s o (1 — xk +1)

Om dit te onderzoeken, merken we op dat de coéfliciénten

(. voldoen aan:
Gl E o/ | xEBl Ll kU= o = Crix T
\",k{k—‘*-]) 1

| k+1 =
=) 1—x)(1 —x¥...(1 —xk
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of aan: Ci (1l — xk“] = Gpaen(2 KL ) G xk+1
A k(k+1)+1

) S PG B

= x) (1 =ix) (1 —=xk)

Uit deze betrekking blijkt nu gemakkelijk, dat wanneer

Cr v en Cp__ 1 den veronderstelden vorm hebben Cy hem

ook heeft en omdat C; en C: van dien vorm zijn, zijn hetl
dus alle coéfficiénten C. Men vindt:

< <2
N 1 o L. o 4

(l—kt_i l_xgtT-...)(l kt)(l .\l) .....

. X =T, st rl‘_i_ 3 Xl; ____tﬂ

1 —x (1—x)(1—x3 1 —x)(1—x2)(1—x?

SRS 0 o (o
T —x—=x)(—x)A—x)"

en =1 slellend en door het product van Euvier deelend:

X x* X
s X L e

1= 1=t

2x° 3'x* 4 x!°

x  (1—x)(1 & Tii—n x)(1—x)  (1—x) (1 —x3) (1 =x)1—x)

(1— A —x)1 - —xY.een.n..

de transformalie van [1SENSTEIN.

§ 9. Wij zullen nu formules afleiden, die het verband
lusschen Lambertsche reeksen met verschillend argument aan-

geven, Zooals bekend is, is L (x) = X i 02 0 (k) x*,

k=11—X !
Substitueert men in deze gelijkheid achtereenvolgens 1 x, " x,

[ ¥ — 1 L S |

b p 4 x, waarbij 1, &, &....& de worlels

van xP — 1 ==0 zijn, dan vindt men na samentelling:
3) LE+FLEY+LED+ .. .LE'=
oo

=p X 0 (hp) P want B x", uitgestrekt over de worlels
h=i

van x! — 1 =0 is 0 of p naarmate n niet of wel een p-voud

l"
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0
is. Men kan nu altijid X ¢ (hp)x AP in de som van een eindig
=

aantal reeksen van L. uitdrukken, waarvan de argumenten
machten van x zijn. We veronderstellen daartoe eerst dat
p= * m” waarbij [ en m priemgetallen zijn. De cetallen h
verdeelen we dan in vier groepen. 1° de getallen a. die
noch door [ noch door m te deelen zijn, 2° de getallen van
den vorm bl, b ondeiling ondeelbaar met m, 3% de getallen
van den vorm cm, c.o.0. met {, 4% de getallen van den
vorm dlm, waarbij d van 1 tot @ loopt. Nu heell men:

€© h a ~ hh
©) > 6(hp)xPP=314(ap)x®? + X4 (blp)x"P +
b

h=1 i
R 1l
3 0 (emp) x™P + X 4 (d/mp) x*"P.
& di=i]
leder getal a is van den vorm A" RO , waarbij
A.B.C.... van elkaar en van m en [ verschillende priem-
getallen aangeven, dus 0 (ap) = (= + 1) (3 + 1)(y41).....
4+ DAr+1)....=k+ 1A+ 1)0(). Ileder getal b is
van den vorm A“B°C7....17...., waarbij p ook nul kan
ziin en A, B, C....I van elkaar en vanm verschillende priem-

getallen zijn. Dus, in aanmerking nemend, dat x - o+ 2 =

= (A4 1) (o - )—) o -+ 1), vindt men 4 (blp) = (« -+ l)
(841 )(7+1) (A + ¢ 1“'|(z+1)---- (A1) (1)
(x4 1)(8 - +l} ...... )+ 2)enn ~/[/£{|)(—|H
(B4 1y -l ) ..... (p 1 1) ..... = (r-+1) (- 1)0(b) —
alp -+ 10 (b).

Eveneens 0 (cmp) = (2 -+ 1) (z - 1) 0 (em) — 2 (& + 1) 4 (c).
Voor ieder getal d kan men zetten A" BAGr. ... 1" m”.
waarbij A. B. C....Lm. ... weer onderling verschillende priem-
getallen zijn. Neemt men weer in aanmerking, dal men voor
w4742 een dergeliken vorm als voor A-p-+2 kan
zetlen, dan vindt men 4 (dimp) = (& 4 1) (2 4 1) (« } {3-4-1)

(r+1)..+2(@+2)..— (2 i 1) (1) (B+1) (»+1)..
(¢+2)(s+1)..— 2 u+ 11( -1)@+ 1)+ )...(p41)
e4+2)...+apl+1)B+1)+1)...(+1)(+1).
(A1) (e4-1)0(dlm) — (A -+ “;.Lo(l“) - Al 4 DO(dm) A 0(d)

-
o de
|
3
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Substitueert men dit in (6) dan vindt men:

o0
S 0(hp)xPP = (3 1) (u + 1) [S 6 (a) x*P + %  (bl) xPIP 4
a

—1

N _cmp | Q? dimp]__
+ > 0(cm)x LN 4 (dimyx

c d=1

oo
— 2lp 1) [Z0m)x"P + ¥ 4 (dm) xI0P] —
b =il

— (A D[S0 x™P 40 @) xMP] 4 ap X 0(d)x¥™P,
c o =a1

o0
8 . . kp
T'usschen de eerste haken staat niets anders dan X 4 (k) x*P?
"—a|
want de eerste term bevat alle termen der som, die behooren
bij waarden van k, die met / en mel m onderling ondeelbaar
ziln, de Ltweede term alles wat behoort bij waarden van k
die een deeler [ maar geen deeler m hebben, de derde term
zorgt voor de waarden van k, die wel een deeler m, maar
geen deeler [ hebben, terwijl de laatste term die waarden
van k beval, die door ! en door m deelbaar zijn. Evenzoo
] (k. p

staat tusschen de tweede haken X 4 (k)
i

en lusschen de

< k : % ;
derde X 0 (k) x**™P, waardoor men vindt: X f(hp) x"P =

—_—

e —al ==l

< k T k.l
=A+1DE+1)Y 0KP—a(e41) ¥ 0(k)x*P
e K==l
X k R
— A+ Dp X 0®x"P4arpn X 0(k) x*""Pofmel (5):
k s l k — !
l..l (.\Z) 'i' 1.1 (:' X) "l" ]J (l.::l k) '{" ..... l.l (:]1 —1 X) —
7 (At D)+ DpL(P) —a(z+ 1)pL(xPh)—
— A+ DupL P+ Aupl (x'P)
Door analoge redeneeringen kan men het geval behandelen
dat p een product van machten van meer priemfactoren is;
de wel volgens welke het resultaat gevormd wordt is uit (7)

voldoende le zien. Is p b.v. gelijk aan * 2™ »" dan vindt men:
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8 LE-+L( \H—L("\)—,— DLy =
=G+ )(eFD)0E+1) ) pL (xP) — A (u +1) (>+1) pL (xP)) —
— (AT Dpl+1)pLEP") —(A+1)(x+ 1)y pL (xPY) +
+ap(»+1)pL (\p!m) +(A+1)uspL (ZEXIDHES
1 a ( 4L ) spL (Xpnl) —ApvplL (xp!nm).
Bijzondere gevallen zijn:
p—=2 L(x)+L(—x)=4L(x) — 2L (x%
eene formule, waarmee de waarde van de reeks van L. voor
negatieve argumenten uit die voor positieve berekend kan
worden.
P=3. L(x) + L (Y (— 1 i ]’/3).\')-1-11(“‘-.-(—1 —il/3)x) =
=6 L (x*) — 3 L (x9).
p=4 LKE)4+L{x)+L(—x)+L(—ix)=12L (x!)—
— 8 L (x%) enz.

§ 10. Noemen we L (x)+ L (¢ x)+ L(2x)......... -

+ L~ 1x)=1v¢(p.x) dan kunnen wij mel (8) aantoonen,
dat wanneer r een niet op p deelbaar priemgetal is, datl dan

g } = l
(9) gpr’ x)=r"[(c+ D (p.x")— ¢ (p.x* il
Voorloopig nemen we weer aan dal p van den vorm [* m”

is, danis: ¢ (p roe x) = (2 + 1) (2 4 1) (2 - 1) pr” L (xV m 10)
A+ )pr L (xi* " e ) —
— (b 4+1) (o + )[I L (\1) m/+ 1 ) _ o (A1) (4 1)p 2 (xl mtrp N
p (A4 l)pl"l (xtﬁ' - Lrp ”) 1
Fralp+ UIWM AL T o) 4o (- L Ime ey
— Apppr’L(x LA Imp ot Tpo 1y =1 (o4 1) [(M +1) (» + 1) pL ((x"")‘j“ miy
e Aeasril)ip L ((-‘”')W 'mf) w4 1) p L () B ")
+ puApL ( (x”’)M b 1t + 1)] = 5T [('u +1) (A1) p L ((xr2 ]) ;)m;,_)
— (x4 1) pL (i Imery
— w4+ 1)pL (" +l il’”" £ )+ wapL((x ol 1) 1 p+ H]
=r" [+ 1)y (px™”) — s (p.x™ " ])], waarmede de betrek-
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king (9) aangetoond is, dat zij ook geldt, wanneer p een
product van machten van meer priemgetallen is, wordt be-
grijpelijk als men bedenkt, dat iedere term met een factor
(p+1) in den exponent heeft r# en iedere term met een
factor » in den exponent rp+1 heeft, terwijl de vorming der
andere factoren en exponenten onafhankelijk van r en » is.

S 1. Wanneer 1yy® 2% oyt de wortels zijn van
X*— 1 =0, dan is: .

L(x)+ L (#x) + L (4*x) 4+ L (4*x) + o L) =y (2px) of
L(#x)L(#*x)4- . ... L(*=1x) =¢(2p.x) —L(x) —L{#*x)...—L(»*-%x).
Nu zijn », 4% 5. ... 41 de worlels van xP - 1 =0, lerwijl
L% 9t. ... 9"—2 de wortels ziin van x"— 1 = 0. Hierdoor

vindt men voor de worlels van x? +1=0:

S L(wx)=¢ (2p.x) — Y (p. x).

W

§ 12, Wij zullen nu nog eenige transformaties van Lam-
v o) .k

4 X :
bertsche reeksen, N by 1 ok behandelen. Deze conver-
k=1 — X

geeren  absoluut  binnen  het convergentiegebied der “recks
o0
X bk x¥, mits dit den eenheidscirkel niet bevat. (Hidst, 11, § 1).
k=1

Voor waarden van x binnen djl gebied mag men dus de
termen in machtrecksen ontwikkelen en deze op willekeurige
Wijs samenvoegen. Schrijft men nu deze reeksontwikkelingen
onder elkaar op en sommeert dan de kolommen, dan vindt men

v e yk o0 a0 o0
> bk k=2 bkxX+ ¥ bex™+ 3 pex L
k=1 1—X k=1 ke=1 k=1
R xk
Daar de reeks k}_‘, b TR absoluul convergeert zullen
=
0 e

alle reeksen X Dk x™* convergeeren. Is nu N by Xk =g (x)
k=1 k=1

dan vindt men de transformalie:

oo xk o)
> bk = > g (Xm).
: 1

1 l —x me=
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Door nu voor bk verschillende waarden te nemen volgen
hieruit bijzondere transformaties:

190 b — (— 1)1,

C:D( k—1 \‘k (‘T:J ( ) 3 4 ({‘) o
S (o e = = S (xR e ) — 1 D i,
k=1 ) l—xk m-—1 + + ) meed il ’i",\'m
X x* x3 X > & &
of _ e — ... = —— - —— :
1—x 1—}:2{_1—:{" 1+x—}1+x~'1+x3+

Men had dit ook kunnen vinden door uit de reeks van § 4

o0 2k
& X . :
>3 [ — x& af te leiden en daarna beide kanten van de be-
k:l —
COREE 2
doelde reeks met 2 X o te verminderen.
k=11 —X

29, bk =k.

oo Xk @90 X
Sk X =3 (o exmp3xnf. )= T
= =1 (I_ X )h

| lmxk m==1

X x2

_Q : __.3

1~~>c_1 'l——xz}
X x? X

== = ()2

........

39 bk=(— 1)*—1 k. Men vindt nu:
X ; :
£ —1)k-1k = :§ X , of:
k:__’l 1 — Xk m 1 (1 -]" X m)'!

X bhXs L3 X5 -
—d| g + . BN
1 — x ] —x2 1 — x°

x?2 X

X
(R RN (O

Telt men deze reeks bij de vorige op dan vindt men:
. D

20 "Qk -1 v &) ym
Sk —1) g = 2 . Aftrekking geefl
. l( )] P xﬁk—l - 1(1___);2111)2 EE
niets nienws, maar reeks n’ 2
1 2
I — 2 Nu is }_,l (x™ 4 Yex? 4 YyxP 4., )=
m=
”
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0
= > —log(l —x™) dus:
m=1
X 1R 2 (i

- +.

—y g {—_x2" 3] —x!

e
1

1 1
= log i -+ log FEST 4+ log % SRR

Op deze manier vindt men, dat het oneindig product van
Euter met eene Lambertsche reeks in verband staat:

5.

0 kT
1 (1 —x®)=e *='° " 7°

me=1

o8

o0
b= (= 1)1k Nuis 3 (xm—1axin 4 tloxin—_.)=

dus

m-—1

D TpE e s ek et L e

=log(1l+x)(1+x3)(14x¥.....

1—X

Telt men deze en de vorige recks samen dan vindt men :

oo | x'_’i-—l 21 | | xm
D e ey = Yalog 1l Sy
p=1 2k—11 — x* il e
Aftrekking geefl niels nienws
60. bk=a* |ax|<1.
k \k L (v 0] ax™
4 — N (pxm n2 yam ad w3m — .
a = 3 (ax®--alxiN4-a’x*R )= 2,
Ji= xX m==1 ( il —ax™
ax_ adx3 | azxs | =
l el o 1 - x'l l - \3 b L T
ax ax? a x? :
| —ax T T L T e
de recks, waaruit in Hfdst. 111 § 9 (24) is afgeleid.
2 o) XX
§ 13. Door iederen term der Lambertsche reeks X hkl =5t
K = 1 —X

te ontwikkelen en deze recksen

reeks

0

o

—

uk X

le sommeeren ontstaat de

£, De coéfficienten a hangen natuurlijk met

dus:
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de coéfficicnten b samen. Nu zal x* slechts in die ontwik-
kelingen voorkomen. die met eene macht van x beginnen,
waarvan de exponent op k deelbaar is. Alle termen van
zoo'n ontwikkeling hebben als coéfficiént b met een index
gelik aan die exponent, waaruil volgt:

(10) a— a'\:i; b,

Omgekeerd kunnen we ons voorstellen, dat de gelallen a
gegeven zijn en dat er gevraagd wordt de bijbehoorende ze-
tallen b te bepalen, dus de betrekking (10) om te keeren,
Dit blijkt altijd en slechts op eene manier gelijk.

(11) Het resultaat is b, =d-\;% 7 (i\l) a, waarbij « (m) de
functie van Moniws is, gedefinieerd ') door: 1 (1)=1, » (m) =0
voor een niet kwadraatvrij gelal m, .z (m)=(— 1)? voor een
kwadraatvrij getal m, dat uit p priemfactoren bestaat. Hieruil
volgt dat niet alleen iedere Lambertsche reeks binnen haar
convergenliegebied (mits » = 1) altijd in eene machtreeks
ontwikkeld kan worden, maar dat ook iedere machtreeks
door eene Lamberlsche reeks voor te stellen is, waarvan de

coéfliciénten door (11) bepaald zijn. Als voorbeeld ontwik-

:,:J "

kelen we x in eene Lamberlsche reeks. Dus x = N ax Xas
; K1

waarbij a; = 1 en alle andere a’s =0 zijn

\ i
S k Ay IR - X !
) (d) a, = (k) dus x = RN (k) sk of':
(1)) X x:! _\.3 xb { Nf; :\-T ' xlﬂ
:" X = = = — — — o — 0 P ey i G
Il—x f1—x*¥ 1—x% 1—x0 {—xf {—x?" (| _x10
v X ) ] ‘ ' |
Eveneens kan men = X+ 2x? 4 3x¥ - 4x4¢ . ...

in eene Lambertsche recks ontwikkelen. Hier is a, =k dus

=d-\;:k 7 (1;)(1. Men toont gemakkelijk aan dat dit gelijk
| (

is aan @ (k), n.l. het aantal getallen <k, die met k onderling
ondeelbaar zijn. Men stelt b.v. dat k de ondeelbare facloren

b,

') E. LAxpAv. Handbuch der Lehre von der Verteilung der Prim-
zahlen II, p. 567,
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-1

a—1 b—1 ¢c—1
a b c
Ontwikkelt men dit product en onderscheidt dan nog het
geval van enkele en dubbele priemfactoren dan komt men
direct tot de gewenschte betrekking en vindt

a, b, ¢ heeft, dan is @ (k) = X k.

X X0 XK
o N A e
Towr = Ok ok
- - .2 -3 " | 1.
(13 St N TR LRy Bl i L X U S B TR
) (1—x)? l—xTIHx”} RSyl I—x'+11—x“—%

Deze reeks is een lypisch voorbeeld van eene Lambertsche
reeks met zelfs ot in het oneindige aangroeiende coefficienten,
die toch over den convergenticcirkel kan worden voortgezet.

§ 14. We beschouwen nu nog de recks

:{3 ] _\jk 3? (’l % ( “m( k)ﬂmn}‘l)
2y DK =4 e (P — X —
k=1 1=-x* =\ as )
o0 s v
:'.4 (__ |)m ‘\_{ hk (X2'" —1-1)1( S -\_( ( l)mg(x'zm + 1)
m =0 k=1 m-=0
w\
wanneer we X b, x* = ¢ (x) noemen.
k1
Stelt men in deze transformatic b, = 1, dan vindt men:
oo x k D
W E = 5% (__ 1)lll(x'.'m o | ,{_ yim -{‘E,l \ m —‘}-3..}... . .)=
k=11 " X‘?L m—fﬂ
0 x2m -1
_— (R, ])m ! !
me= 0 ! ] — xmtd

De eerste recks is hel historisch eerste voorbeeld, dal
Weierstrass gaf van eene functie, die buiten een bepaald
gebied niet voortgezel kan worden, de reeks achter.het gelijk-
teeken is eene Lamberlsche reeks, waarbij bex 41 == (— 1)* en
bex = 0. +Op deze manier blijkl dus dal hel niet kunnen
voortzetten der reeks van Waeierstrass terng te brengen is
tot hel niet kunnen voortzelten van eene Lambertsche reeks,

Transformaties in asymptotische ontwikkelingen.
§ 15. De reeksontwikkeling van Scuvosieen (Hidst. 111 (34) ),
is door Wieent ') uilgebreid tot complexe waarden van x

1) Sur la série de Lambert et son application i la théorie des nombres,
Acta mathematica t. 41, p. 107218, 1918,
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in de omgeving van -~ 1, waarvoor x|<C1. Het resultaat
van Wicert is later eenvoudiger door Laxpaul!) afgeleid.

Laxpau’s bewijs berust op de formule van MeLuis: ®)
; e —s ¥ i ! el
2rie —./ I'(s)y ~ ds, waarbij de integratieweg rechtlijnig

P
C

van ¢ — % i naar ¢ -+~ @ i gaat, ¢ >0 en R (y) >0 is, ter-
wijl aan y—* de beteekenis gehecht moet worden van e tlony.

waarin | Ilogy | <j is.

i T £ KK “
Stelt men nu x=¢e¢ N Lx)= Y ——= X 0(k)x*
ke 1 X k—1
: ‘ : L 1
mits |x|<1, dan vindt men A(z) = X =
k—1 e *—1
U‘E —kz o
> i(k)e waarbij R (z) >0 is.
o k
Hieruit volgt 271 A (z) = 2= 1]_}_:1 f(k)e” "=
i = .. .
1) =T SNIC ds =/ 1'(s) 2~ (&) ds,

p !
want bij ontwikkeling van & (s)ﬂ(:, SO L ; l)

oo
volgt direkt dat {2(s) = kf_,‘ oYk .

We denken ons nu een rechthoek, begrensd door twee
lijnen in s=c>1 en in s=—2p (p geheel en >0) even-
wijdig aan de imaginaire as en door twee lijnen op « af-
stand aan weerskanten evenwijdig aan de reeele as. Langs
de zijden van dezen rechthoek integreeren we I (s)z~*(* (s).
De waarde van de integraal is dan 271 keer de som van de
residuen van de polen binnen den rechthoek.

De integralen langs lijnen evenwijdig aan de reeele as zullen
nul opleveren, want als s = ¢ -~ it, dan is voor aangroeienden |t
—ue—-s-’-'ifﬂ 4 it}_:()(ey"itf)'

gz—'=r

1y Uber die Wigertsche asymptotische Functionalgleichung fiir die
Lambertsche Reihe. Archiv der Mathematik und Physik Bd 27. p. 144-

146. 1898, .
)  Acta Societatis Fennicae, Bd 21. N 1. p. 76, 1896.
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- l ol . * e
['s)=0( *? | 't!™), n eindig en constant, terwijl ook

C(s)=0 ([t ™), waarbij m eindig en constant is. Dus

2= T () () =0( — (2 —PItI[t|»+ 2m) =0 1)

Voor de beide andere integralen dus voor /H / vindt
e —ap

men dus 2 zi keer de som van de residuen van de bedoelde
polen. Nu heeft de { functie slechls éene pool s=1. De
polen der I' functie liggen bij 0, — 1, —2..... — 2 p, maar
— 9 —4....—2p zijn nulpunten der { functie en daar

:.-Qs_ I"(s) & (s) volgt hieruit voor

s= — 2k dat T (—2k){ (— 2k) = (— 1)k ;(‘1(;7;2;9 dus

eindig is, waaruit: z—* ' (s) (s) = 0 voor s = — 2k. Wijj

hebben dus slechls deresiduen der polen: s=1,0, —1, —3..... —_

— (2 p — 1) te berekenen. Voor het residu in s= 1 heeft men:
Fg)=1—-CG(s—1)+....... szt gl g =S W)

= gz—1 g=t=llogr = g=1 11 __(g—1) logz—~+ ."... | =

2=l —z-1s—1)logz+4....... d

;’z(_q)._-:(s -]Al_i- O P ) :(s _11)._.‘}' =

Voor s =1 -}- 3 volgt hiernit z =* I' (s) & (s) =

, : ] 1 2C!
=(—Cd+4 ... )z=11 —3log2-..) (‘)2 4 1)

C— logz ‘ :
— (.., 1t - 8 4-....]. Het residu van deze pool
2 b ]

U==slopz
is dus 'lng, - ;

el ; legre |
Voor het residu in s=0 vindt men '+, want I (0) = .+ ...

o
3 . 1
en ¢ (0)= — 2, dus z " I’ (s) J(s)-’—'d';——}- .......
Het residu in een der pt)l(;n — (2k — 1) wordt berekend,

door op le merken dat:
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1 1
S st e e ] SO L
13t k—1)1ta)=(—1)* @k—1)!s s e e en
dus is dit residu:
1 P R
(ak_.*iﬁ""'“““"'—(“—‘“ﬂ
e - e - | s 0k — 1, BT hY b | ——
B itE s Dtk Dl ( FAe=T)
Advinda: lot) S Bj_g“ L, 2k—1
T2k —1)! (2k)2 2k (2k)!
In verband met (14) vindt men nu:
C—logz , 1 PR B 2
= A (z | S  p2k=11 —
(15 A — ( : L3 )
1 = &
=9:.f 1‘(5)'/,"*‘;‘_.’2(5](].=;=‘21_-i-‘{‘ T'(l—sz-U-2(1 —s)ds.
—2p 2p41
Maar nu is: ['(1 —s) z—(=9 22(1 — )
(1 —s)z““'([nu) - T (s) € (s)
B 4 .85 g
L)1 —s)z '(4 - cos? 2 I"(s) &(s) =
T 4 TS 97 4:2—“ TS
_F a=1_ 2 N 172 () =i : #2 AR
L (g cos? 75 I (s) &% (s) = ( z) (8) &2(s) cot g 5
hien vindt :r'.oo:u]_i [ F(l—s)z=®-9¢2(1—s)ds=
. 4% epg.1
HEY (h ~ 2\ — 8
- / " (s) (4 - ) ’“’(s](nl;:' ds =
7 J 7
2p+1 {
i — "1‘?72‘ 8 Yixls l [ 1_ =k &2 "' '
47* i{' : -' H z8 '
(16) volgelh(ld) ( )— - | (n _- (otg cls
Z Z2p 41

Beperken we nu de waarden van @ tot 0 < 0 < '”, dan

kunnen -we he\\ij/un dat uniform in @ voor r - 0:

/ l‘(s( :)— 4 ()(cotg :-ﬂ)dsf()(r*"“)

3p 41



81

x w8 21
s ¢ namelijk = 2p -+ 1 dan is cotg — =
i 9 exsi—j
21 21 | ' ' 7S .i<a L= 0
———— = — ——————— (us 1‘0'* 5 —i|=2voort =
e;'.'llA_’pJ-l»-tl) i 14 e—7t 9 =
‘ xS .| 1 :
en ;cotg - —1‘[590—’7&“! voor t = 0.
- . l{&7x3\— it 2pt1
Verder is s <\ (reiv)” | =i tle—pt
7

A7\ 8| 2 L
dus i(? A < 2+ yoor t >0 en = r¥*tle2  voort=0.

s

Ook is '(s) =0 (e—%;” it|2e+') en C(s)=0(1).

Hieruit volgt dus dat de modulus van den integrand kleiner
is dan 120+ 1 P (1), waarbij P (1) continu en onafthankelijk
van z is. Wanneer t-»> 20isP (1)=0 B SLEt ) en wan-

O .4 40
neert-+ — o0 is P(t)=0 (e==I*|t|*P" ) zaudal.j P (t) dt

- 00

| Azt\-s ‘ %8 \ '
convergeert.  Zoo vindt men dal ’ I'(s)( - ) ¢2 (s) (mlg L: — i) tlsi

, |2p-+1 J -
< r¥r+1 / “P(t)dt. dus dal de integraal = O (r¥v +1),
=0
Dit geeft in verband met (15) en (16):
(17). C—logz , 1 & B%:x  op—1
MBI =— R TR

i

0o 2

Qi 4 x » ; : .

- = ‘\( - )*‘; O (r*) de asymplotische functionaal ver-
gelijking van WigenT en Laxbav.

16. Naast deze ontwikkeling van Laxpau voor complexe
waarden in de omgeving van - 1 (|x|[<1) heeft Kroyven ')
eene asymplotische ontwikkeling gegeven voor het geval dat
de veranderlijke langs eene straal van den ee mheidseirkel tot
een rationaal randpunt nadert.

Zijn nenn’ weer geheele onderling ondeelbare getallen, zoodat

n’

3
Ari
o710 een rationaal randpunt is, noemt men dan e n = 4,

1 Over de reeks van LasperT, Verslagen Koninkl, Acad, van Wetensch.
te Amsterdam. Deel XXVIII, p. 262260, 1919,
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dan zal x/0* dit randpunt naderen, wanneer x door reéele

waarden van 0 lol 1 loopt. Voor de Lambertsche reeks
0

N@z= X bL —k hebben we dan:
k= 1—z

(18). N (x 6“') =

p-

.kn

n —1
- \"‘
hl\nl Ln+ Tty 4 _70 bkn 4 h 1 l\n—}holm

o0 J-.n +h gho’

4[48 [

kn
X
We ontwikkelen nu achtereenvolgens in reeksen I——Afm

Xk“ 4o’ an a{u—- 1)n’

l_j;b POTNC (0 ‘ii X'kn—d'(";; n' en SC]II‘I_]VGH de nitkomsten

onder elkaar op. Sommeeren we nu de kolommen, dan zullen
alleen de n° de 2n° enz. kolommen eene andere uitkomst
dan nul opleveren. Zoo vindt men:

an n—1 .kn ghn ‘ o xkn“-
+ 2 — =nx™ 4 nxtk*fpxd* L =n
1—){ —11—Xk"0h" + +
(08 -kn o0 -kn? o0 n—1 kn ghn'
3 X - X" ~ - $ ezl
dus l’ bl\n gt ‘\—' th kn’ e )‘ }-’ hl-'n 1 kn ghn'*
k=1 1 — k—1 = k=1 h—1 1 — x* ¢
Substilueert men dit in (18) dan komt er:
o0 kn? O n=—1 -kn ghn’
: X ot i)
A — W« 7 = w« -~ .

N (X0 )_ n k‘-'—'l bkn T xkn" k?l h«_—(I bkn i — xkn Olm' '

n—1 O Ln+h ghn
S 2 a\'-f bku+ h ki + b gho’ of:

h—1k= 1 —x et
oo kn?

N((xf6")—n X b, — =

( ) it kn { P an‘
n—1 m xkn-+h 0hn ‘kn ahn' n—1 glm'
\ﬁ‘ I - \1
h-'-'g‘l = (bkn +h 1 ykn-h fhn’ hkn = xkn fjhn’ { h-—'l 1}0 s 01m’ .

Doorloopt h nu alle waarden van 1 tot (n — 1) dan lig ggen
de bijbehoorende punten "™ symmeltrisch ten opzichte van

de reeele as, tenzij n even is, in welk geval het punt — 1
op zich zell voorkomt. Voor twee symmetrische punten vindt
dlm' 0— hn' .

N . L . - . — T " ’ 1e -
men: i o= { —g—tw —— 1. Voor even n is dus
n—1 th' Ni— & \

U £ et} SN 7l Ry B A hr

PR = [+ -+ 3 X —1=—13(n—1)voor
: n—1 1

oneven n is de som —— X — 1 = — 13 (n — 1).

1—x

kn?
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1 n’ %Q X
Men vindt zoo: N(x6*) —n = b, I_;Tﬁ“+
n—1
(19) +Yabotn —1) = ¥ U, (x.n’). waarbij
==l
w [ kn 4 h phn’ _kn fhn'
Uplx.n) = ¥ bkn-i-h”iﬁ-k &1 b = Dy - E ') T
k=0 1 _.xn+10m n{ . yknghn
Of_l _.kn+h alm' ‘.lm ohn'
) gbk +1 “*\”’u““”ﬁ'H = Vel =
k—0 n 1 l—x“"‘“ﬂ'“ lb__xnam

xlm fjln’
_}_ (bku +h bkn) 1__ xkn-alin-}" % dus:

o0 xlm dhn'

(0] = FY i — +h) © — .
(—'0) U (3 . n) (I X ) =0 hkn 4+ h (1 Al xkn+h 01111') (1 sl xlm Ghn'}+

xIm 0hn'
i =T} xl:u 0[1:1"
Voor de reeks van L. is bx=1 en by = 0. Substitueert

men echter bx=1 en by =1 in (19), dan schrijft men links
n—1 hn'

te veel op 'a(n— 1) en rechts — 3 G =
b l = 0111

zijn gelijk, de gelijkheid blijft intact. Men heeft:

S
+ ot (hkn S blm)

deze vormen

n—1
Lx6") —nL(x™)4-Yaln —1)= ¥ T, (x.n).
he=1
A il : r/_‘} xkn 4 h fjbn’ y ko ghin’
(21) wam‘hl_] ]h (X 1 ): k-\—-'ﬂ (l __ xkn £ h g’ 1 __7xk'nglin' .

kn 6hu'

= — (1 - X ) k—_.do (i -_-}E'“_‘ .}: h ahn‘)(l = xl.r.ual:n.)

9 . . . I - ' i/
§ 18. Stelt men in (21) x =e—V, SRR dus 0" =¢'#
1

en noemt men:

+ 00 |
=—th+ ¥ e
==cw U—hiB+ 27xil

{‘D (ll) = el — hitf_l

dan vindt men:
2y 1 i
{

A=Y — : :
Th ('\'H)Hﬂ'fo x—kn—haihn'_l x—kna—hnr___l
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= | 1 1

= le®n+hy—hig_ |~ gkny—hig_{
m - .
= X ¢ (kny+hy) — o (kny)|
1 L sin2zit X
Noemt men nu g (t) = — — Li i T dan is
;TI:__

o, ()=t — 12 —[t], dus als we geheele waarden van t
2} baal o
buitensluiten is g’1 (t) constant, daarom is:

w . \ ’ }
[ ggi(t—%f)—g:(t)G@(lny)dtz()

U b

wanneer we die waarden buiten het inlegratiegebied sluiten,

h p -
waarvoor t — rTol‘ t geheel zijn. De integraal loopt dus van

h h h
¢ tot =) van 4+ ctotl — e, vanl 4 stot 1 - = enz.

Deze integraal zullen we 2m keer partieel integreeren. Het
geefl gemak eene serie functies g (t) in te voeren, zoo gekozen,

d g1 (t) 1 L cos2xlt

dus g2 (1) = 4+ — > . eny.
dt g (1) —{ Dxrii=1 {2

dat @ (1) =

We vinden:

(22) /% g1 (l. ::) — g (t) )' o (tny) dt= ;gn (t = 1') —~ & (U% @ (tny) +

| ) ‘ n
2m — 1 ]
= I

om [ h
- ngm }"'m / : £ 2m (1- e 1;) — f2m U) i @!m [LI] ",') dt.
: I
Hierin moeten achlereenvolgens de grenzen e, 111 =i -1~ &,
1 - ¢ enz. gesubstitueerd worden. Men vindt zoo bij substitutie

. :
in %gl (t*“])— g1 (l)%o(lny):
I , _
— (-— Il)@ (0) 4 g1 (0) @ (0) — 21 () @ (hy) + 21 (1 4= &) Dlny) —
—92¢i(1 +¢ @ (ny-+ hy)+2g 2+ ¢) @ (2ny) — enz. Daar nu
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gile) =g(l4+d=gpl+ad=........ = — 12 gaat dit
f o0
over in: — g (— 2) o (0)+ r.‘\: | @ (kny + hy) — ¢ (kny) | +
k=10

+ 120(0) = C] ‘/2) (0) + 2.6 (0) +

_C\f“ _L_ ,__ll
= 19 (kny +hy) — @ (kny)l =& (0) +

o5
‘.\_‘, |® (kny + hy) — @ (kny)!

Omdat de functies go.gs enz. continu zijn, geven de grenzen

:: — &, I:- -+ ¢ enz. lelkens dezelfde waarden en behoeven we
slechts rekening te houden met de grenzen ¢ (=0) en o,
Voor L - naderen @ (Iny) en @' (tny) tot nul, hel tweede
stuk achter het gelijktecken in (22) geeft bij substitutie der
grenzen:
e P T A I h Uil
— :-\"-'1 (—1)'nly %KJ—H("— )'—gr-H(U) { @0+

1
2m 2m . h a 2m :
n=-y 82m t— n ~— B2m (l) s O (l l]},] dt
waaruil men vindt:

@© h
23) >) ‘cp(l\m -+ hy) — @ (kny)! 1@(0) -+

2m -1

W L‘l( 1)in'y % +1( h)—g;.‘.l(())%Q’(U)—I—R.

1

)- - gro1 (0) staal in verband met de
n

De vorm g, (—

funclties van Berxourn;, want substitueert men

- -~ [ S Q@
@n)! R 1 R cos 2r Iz gn—13n

-

— b)) ) —_— v m e
Ba, = (— ota-i ftn 2 jm O E T =y [ B2n (2) in:

_ 2n)! X cos2xlz ')
@ (7" 2n) = Baa + (—1)"~" 2 _(!n 9n =, |20

dan vindt men @ (z 2n)==(2n)! |geu (z) — gu (O)I.

) Scuromined, Compendium I blz. 217.



86
¢ (z.n)

Noemt men fa—1(z) =~ = danis dusf,, ,(z)= |20 (2) — g2a(0)i

0 o lz
Evenzoo heeft men @ (z. 2n + 1) = (— 1)+ £29 6)(211[11-{:_{1)“ z- ; o

(?n + ]) goent1 ( ) dus fﬂu (.) =i on (/)
Samenvattend heeft men voor [ >0 dat fi (z)=1g+1(z) — gi+1(0)!
daar gen+1 (0) = o (n>o0). Nu is voor oneven i

51+ h h en voor even [l is
giti1 e g1+ or e . 18

I I .
gr+:( 1)= — gi+1 (11) en daarom is voor [ >0

14}
(—1)y+11; (::) =— % gr+1 (—E)_"gl-P-l (0)%.

Voor |=o is echler (—1) fs (h) ol
n n

\'1

Hierdoor vindt men uit (23):
o0 °m 1
(24) k}: | @ (kny + hy) — @ (kny){ = — >n )‘h(}l)@‘(o)—l—l{.
=10 =D
. 1 gi— lnﬂ_}_
Nu is @(u)——'-,ﬁ,,g__l'—— — s 42 Py
— 1z 4 l_-"zicol."( [ziu -%--’—' hn)

: ‘ : ~hn'
waaruit @ (0) = — /2 1 '[¢ 1 colg Len

@' (O) = (Y2 i)l +1 (nf coly y);:.-hn
Substitueert men dit in (24) dan koml er:
Th (x. ) = : | & (kny + hy) — @ (kny) _f;l x
2m —1
— 3 ({fsi)it n’y'f:(n) (DF cotg »), =hv' - R.

i==p n

- o I /-05 ll ' ]
Om de restR=—n"" y" | f €20 t-- =1k g2m (t)i @ (tny) dt

te begrenzen merkt men op dat | 9* (tny) | =
Qo 1

[ 2 1 |

9 | \‘ - . \‘

(...m) ]! __m (lny ) hl )_*‘ q"'],f 4m * 1 1<( “]) _0: ]tznzyf‘)_l__(hfs___gz_!)ztm a7 l',"
o0 |

am)l Y, oo T A —_—
<(2m) e K |1"’}*2+(h,’3——52.-:i)2 (b g —2x 1)
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W0

= ‘ e 1 ‘h—2=1
dus' |RI<<2| gam (0) [ (2m){nt =t y2m=l o e ‘ t

1= » [ — 2zl tny \2
1+(Illﬁ—2..l|)

0

of R1<2m=|gem(0)| n2m—1y2m—1|g?m=1(0)|de modulus
van de rest is dus kleiner dan een eindig veelvoud van de
modulus van den voorafgaanden term in de som, daarom is

h 2m—2

T
Ty (xn)=o-— 2 (Yo i)+ 0! (log ) (l)(D'cot" T

n
2m-—1
-+4-Kn?m—1 log _ waarin K eindig en onafhankelijk
van X is.

n—1

Stelt men nu A; :]E fi (ii)([)’ colg v) - dan vindt
y== | Ve
n

men uit (21) A
@m-—2

H A 1 !
I; (;\- an') = (:\-lﬁ) _— lh (]1 —_ 1) — _\_: A, (UI))J I]r (]Ug 1) —L
10 2 X

) ) | @m -1
+ Kyn?m -1 (Iou Y)

waarin K, weer eindig en onafhankelijk van x is.

Men vindt hiernit Lim | L (x 0%) = n L (x»*) { = — /s (n — 1)—
x-»1
jae = hn'
>, h cotg ——
2N h=1 & n

dus dal L (x0%) op dezelfde manier oneindig wordt als n L (x»%),

G — log lngi — 2 logn
dus volgens (34) Hidst. I11 als = -+ 1y n.
nlog .

't Bestaanbare deel van L (x4") wordt dus oneindig op
eene manier onafhankelijk van n’, het imaginaire deel blijft
eindig, dit shuit met § 3 Hfdst. II, de recks van L, werd
daar gesplitst in Xi en Xa. De reeks >, had slechts reeele
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termen, Lim (1 — 7) = was oneindig onafhankelijk van n'.

gl
De reeks S had complexe termen Lim (1 — p) Xe was echter

-1

1
log log

eindig. A posteriori weten we nu dat het deel — ]
In 10g =

i o - .. C—2logn
behoort bij de limiet van 2, terwijl - =TT ook voor
nlog
X

een gedeelte kan behooren bij de limiet van X..

8 19. De methode van de vorige paragraaf kan voor ge-
schikt gekozen bk ook uilgebreid worden tot Lambertsche

reeksen. Voor bk = — [k is

W 1 - Xk &0 )
M@z)=— X —=log Il (1 —7%) (Hfdst.1V §12n°.4)

k—1 k1 —x k=1
n—-1 0D ) n—1 ©O

Nuis ¥ \.: ‘Og(l ——xkn 4 h jhn ) = 2 > lug(l __xkn+4h (0:lf}kn J !:) —
h=1"kx=0 ch==1 k=0
e Vs

@) 8 gt — "W — X log(t —x8")™).
k 1 " |

n—1 o0 ’ n—1 ‘
VBI'I]_CI' l‘: \wl k:U]OH (1 3 1 xh“fjl"'):— ::1 IO{,{“ _Olm) }

—

-

_* :: ]og(l e xk::gp) (1 xkna.‘.p‘] ...... (l e Xk" g(n — Ilp)
k=1
l n
— 1
L | o0 an) ' o0 { — xkn’
= log Lim - > log xkn (@~ = logn-+ X log ——— =

gunwil_*k I 8 1 LR o ] —x

. xkn =

2 .
(26) log n L_";,l (log (1 — x***) — log (1 — x*7)).

Dit (25) en (26) volgt:

n=—1 o0
.\: \_‘ f 10g “ A xku..lr-h 611:;') A Il,lg (1 53] xkn ﬁhn'): —
h==1 k=0
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o0 oo
3 log (1 — (09— > log (1 —x)—

o0 L o0
— X log(1 —x¥*) 4+ 3 log(l —x*) —logn=
k=1 k=1
(27) M (x6") — M (x**) — log n.
We integreeren weer dezelfde integraal als in § 18, 2m
keer bij gedeelten, maar nemen nu © (u) =log (1 — ‘“0'“")

zoodat het diff. quol. van deze © (u) de functie @ (u) van § 18
oplevert. Er komt nu:

02 | s }1 )
1‘l‘,u(@ (kny -+ hy) — @ (kny)) = § & — 2y @ (0)==

Qm_-‘-l 295 h Pr :
— % niy'fs n)@ (0) -+ R.
1 1

&=

: ; .an'h| .z , .anh
waarin @ (0) = log | 2 sin =% ko 15 Rl =
.. wn'h (  (ln’ lm')
y | O ! - - ¥y —4-
I();:,L..SIII 2 ]—i ..1(;_,( = ) i - )
@' (0) :L.: colg 'ﬂ:lh — 12 en O"(())—( ) (l) —1 colg » ) 7 hn'
! .
(28) of ¥ |log (1 — xke-thpw'y — Jog (1 — x*gh)| =
k=0
@ . I\ . =n'h |
S (¢ (kny - hy) — o (kny)) = — = ] log|2s |+
l‘,_U(cfa(l\n) t hy) — @ (kny)) =1 10hI == Jl
i hn'| ! [l i
_}..,,(”(”') | ll l T y(h .:l)_
2m ~ 1
- 2 llf)"'f/ ) D =Teoly y) .+ R
i=1 ____.-.hn
s :
Hierin is R = — n®n ym / ;*‘r"'”( — :) — gom (1) : @* (tny) dt.
0
Maar nu is:
tny) | < S :
|0* (tny (2m — )‘,, S L TUnty - (hf— 2z =
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1 1

00
@Bm—1)! ¥ =S s s o ntm—2
= ) == o t2n2y2+ (h3—2z1)? (b3 — 2zH)™"

dus
o Tt
|IR| <=1y —1 9]ge,(0)|(2m —1)! f, = s NBEE A m P T E 1T
“ 1 == (_tzl_y_ 2 WA — 2wt
o \h@g— 2=
2 2 | 3 +—C:J 1
iR ‘ <n-m_1 y—m_i 2] B2m (0) | (3m — 1)! 2 z,,,\-igg -(111'3 :—.:_9:73)2"17_71.

— (gm_ 1) - gom (0) I y‘lm—- 1 an -1 q)?.m -1 (O)

dus R =K y* —! waarin K eindig en onafhankelijk van y is.
Uit (27) en (28) volgt:

(29) M(x6™)— M(x*)=logn —
1 H'Q_‘l r.'n'h

| o (g + 2]} —

L I s (h ‘=1cot g : : (1 j !( l)f-.,
_..24'(11»—1)]0;;:x =, (h_:,lf: G (D wt*’"v_,""'i 9 n ‘IU“x !

i n

h log l 2 sin

T et
N h=1

\2m — 1
+ Ki (]og x') waarin K; eindig en onafhankelijk van xis.

Daar nu bekend is hoe M (z), dus het oneindig product
van Evier zich gedraagt als z langs de reeele as tot éen
nadert!) volgt uit (29) het gedrag van M (x ™) als x tot 1
nadert. Dan is:

Lim | M (x0") — M (x»") | = logn —

-1
e

| . wn'h| _; hn" U‘Im‘\ |
nv=1 hloglﬂsm = 1%..1lx(g1(n){ =5 { -

Lt i x*
W 1
1 1 1 ; 't ( log 7)
) M(z) =51 log =+ log 2= -— Y/, log logz ——— T MA\e 4

= 6 log -

n~-—1
— b
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M (x4™) wordt dus op dezelfde manier o0 als M (x*°) dus als

Lim — '/; log log -

x—>1 X

Het reeele stuk van M (x0™ ) wordt dus slechts @ en weer
onafhankelijk van n'.

Zelfs zal het reeele stuk van Lim (M (x #* ) — M (x"")| onaf-

x-1
|
7 5 IR . an'h|
hankelijk van n’ zijn, want X~ ) hlog|2sin= =
N h—t n |J
| 1zt | . zn'h
=——log24+ = > log/|sin= ;

g nn=1 | n

Voegen we in deze reeks de termen, die evenver van de
uiteinden staan, twee aan twee samen, dan zijn telkens de
logarithmensinussen gelijk en de som van hunne coeflicienten
(n — 1). Daar n; <n en onderling ondeclbaar met n, laten
de getallen n - 2n',....(n — D n" bij deeling door n de resten

A s e ers n— 1).
Hieruit volgt dat de som van onze reeks voor oneven nis
Yy (n—1) _=h 1fn—1 -1
m—1) > logsin [ 3 voor evenn is zij (hn—1) X Jog sin"” : !
r= W=
dus telkens onafhankelijk van n'. (29) wordt nu
: | n’ niy | na== I (]
Lim | M(x0") — M (x**) | .= log n - log 2 +
x-+1 n
. / . : 1. (
Tin \\l [ [hn hn'l\ _  n—1 A7 D . =h
K -} = — > log sin — vooronevenn
ksl n n I =] Il
1 n—
n—1 7% 1 . 7h
en=— —¢ 2. log sin voor even n.
R = n
k o D
In Hfdst. I1 §6 vonden we dat als X | P | convergeert, dal
dan:
n’
/ o0 -k ® b e
. X & X - v w
Lim | (1 —= ) 2 b, 1 =% -* waarbijj x, == e D0
x>x, | X/ k=1 © 1—x* § | nv



e 1 by -
Hier is by = — +~ dus X | —| convergeert, waaruit volgt
U s x* ) :
dat Lim { ——] » b, ——— reeel en onafhankelijk
{ X k1 — xk) '
XX, Ko/ k=1 <
! s @ bnv (Q 1 7._2
van n’ is. Verderis ¥ —=— X == — — g%
v=1 NV v—1D°V 6n*

Stelt men nu x = (1 — 3) X, dan vinden we z00

1 72 T
LI M=) =8 L s e g e ey v
;-Tl ( ) J=Z0R0 s 6 n? 6n*o
In deze paragraaf vonden we Lim M (xfn) =
x-r1
L : ‘l ' = :.‘J
inl — [ S G = — i‘u 10"; _— - LA — - —~ =
8=0 1 log log 1i—3 (21089 — g 23 6n®o
, 6 n® log et
—

wat dus behoorlijk sluit.
Eene andere proef op de gevonden limiet kan men maken
door n'=1en n=2 te nemen dan is:

Lim |M(—x) — M (x%)| = log 2— [z log 9 =1/, log 2
x-r 1

o0
1 (14 x2=-1)

of lim * JlJ =1/§, eene bekende uitkomsL.
x—»1 ll (1 _‘}_ xE")
n==1

§ 20. Uit de transformaticformules van Kivuver kan men
nog eenige voorwaarden voor de niet-voortzetbaarheid van
Lambertsche reeksen afleiden. Zoo volgt uit (21), dat de reeks
van L. zelf niet over den eenheidscirkel voortgezet kan worden.
Evenals in Hfdst. 11§ 3 kunnen we aantoonen dat |1 — xko-+h ghni]
en |1 x* g4’ | yoor 0= x= 1 grooter zijn dan een eindig getal,

dus zal Lim| T, (x,n’)|=
x -1

y 9 8) xkn ghn’
. L e h S
{42!} | ('l X )k :0 (1 = )Z.h“ +h 6]mJ) (1 X Xk" 61,":}

< A (eindig).
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Dus is:

n—1
Lim | L (x6%) —n L (x*") | =Lim | — Y2 (n—1) + >3 L (x, n') |

x—+1 x—r1 :
dus eindig, waaruit volgt dat Lim | L (x %) | = @, omdnt Z—1

x—>1
een singulier punt van L(z) is en dus Lim L (x)= oo.
x> 1

[eder rationaal randpunt van den eenheidscirkel is dus een
singulier punt van L(z); over dien cirkel is de reeks niet
voorl te zetten.

Verder kunnen we bewijzen, dat eene Lamberlsche reeks
niet voort le zetten is, wanneer A >b, > B >0 is. Bere-
kenen we n.l. achtereenvolgens de verschillende stukken van
LinuN (x 0%), dan hebben we vooreerst:

x-»1
on \kn > con xku! on ‘l\'nl
LimnA X Lim n \__,‘ b, > Limn 13 y —
| ke='l 1 — KERS Xx=r1 1 - 1 — xknd x—1 1 1 — an:
1
— log log \ log o Lo e g
dus volgens § 18 en omdal Lim : = Lim — —— = Lim
x-»1 l“g a0 0 xp1 1 —X
- X
AloBT—x % xko* plogy
Lim >Limn ¥ bk > l,un
sn lr—x x4 Xkl 1 — xko* n 1—x
| ' CD yko phn! ’
Verder is Lim | (1 —x") | 1) .
;J L | t ‘k kn -4 h (l L1| - h 0]"')(1 p= \l\nahn)
oD kn A |
O /. 1 o4 A V v
<LmAQ —x") ¥ == =" waarbij « en (3 eindig zin.
x=1 k () &x !) x IJ 1
& kn fhn’
- X
Eindelijk is Lim _, b — b : 3
i =Ty } K ( kn +h kn) == xkn ghn |
s 3\ Cf? - v 1\ | 1
<Lim = ¥ x*¥=Lim.- .
x-»1 3 k=0 1 31 —X

In de uitdrukking (19) voor N (x 4") zijn voor Lim x - |
de andere termen legenover de eerste te verwaarloozen en
B log;

dusis Lim IN (x ") > Lim
x -1 x>1n 1 —X

Lambertsche reeks niet over den eenheidscirkel voortgezel kan

waaruil volgt, dat eene
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worden, wanneer de coéfficiénten eindige positieve getallen
zijn.  Bij dit bewijs is gebruik gemaakt van de veronderstelling,
dat deze getallen eene bovenste grens hadden, anders is het
niet zeker dat in (19) de eerste term den doorslag geeft.
Kunnen de codfficiénten oo worden dan is het heel goed
mogelijk dat de reeks voortzetbaar is zooals uit het voorbeeld
(13) van § 13 te zien is. 't Bewijs gaat evenmin door wan-
neer de coéfficienten als onderste grens nul hebben, ook in
dit geval kan de reeks voortzetbaar zijn, zooals uit het voor-
beeld (12) van § 13 duidelijk wordt.

Is Lim b, = A ~|=0 dan is de reeks ook niet voort te zetten,
k—>w

want dan zal als A positief is, van eene zekere waarde van
k=m af:.A-+e¢>b >A—¢ waarbi ¢ eindig is, feitelijk
i hiermede het geval tot het vorige teruggebracht. Voor
negatieve A bewijst men dat — N (z) en dus ook -+ N(2)
niet voortzethaar is.

Wanneer de coéfficienten echter zoo o0 worden, dat

Lim b, = A k*, waarbij s> 0, dan is men zeker dat de reeks
k=

niet-voortzetbaar is. In dit geval geeft de eerste term van
(19) weer den doorslag. Van een zeker rangnummer m af
zal b, minder dan eene eindige kleine grootheid ¢ van Ak®
verschillen; met verwaarloozing van waarden van lager orde

is dus:
' . oD xin'
Lim|N(x4")|=LimnA ¥ k'n®: =
x 1 x =1 k=1 ] —X
w . 7
—Limnit* A 3 k®(xk? - x¥n? L x30 L =
x-+1 k=1

oo
— Linlm ntteA kEI (1 xkn® |- @s x¥n' | g x3knt L )
X =pr

wanneer we in de dubbelreeks eerst de kolommen sommeeren.
Hiernit volgt dus:
. /
Lim (1 — x)1*+* N (x ") =

x=»l

on - 91 21
Ant+eLim 5 (1—x)t+e (15 x5 20 x4 g8 x4 L),
=1 k=1
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NutistLim | (1) b (18501 g8 xS g8 o e )=T(1+49)1Y
-+l
dus Lim (1 — x)t+5 (18 xk0* | o8 x2kn® 4 g8 3kn® 4 =
x—>1
(1 — x)+e

Lim

e L & wan ¥ - l- E L 2
D — ey s (1 xKL3) Eeha(1 A R 9 Sk g R i PR —
X =» —_—

1 1
= — . '(1-45s)
st s ) gl o
g | 148 n’ 148 1 -~ = 1
endus Lim | (1 —x)" "*N(x0")| =An'*®* —— T (145 = T
x> 1 v T kel et
A

= A T+ +5).
1

leder rationaal randpunt is dus weer een singulier punt
van N (z).

We merken nog op, dat de coefficienten van de reeks (13)
van § 13 wel oneindig worden, maar niet voldoen aan
Lim b, = Ak* (k > 0); de recks was dan ook voorl te zetten.

k -y
Voor het geval Lim b, = 0. verwijzen we naar § 7, Hfdst. II.
k-»
Transformaties in bepaalde integralen.
§ 21. Voor iedere positieve waarde van p heeft men:
(P I
1+eP 2 sin p Y =
——=4 o~ dy?)
il—e—P P : e="Y —
0
Stelt men e — P =xK op vermenigvuldigt met x* dan komt er:
" 9 x K 2 xK = dy .
—xK . pF——=—14 o —— kank(gblugx).
] —x klogx J e“"¥—1
0
w0 kK ;
SO o Y X
waaruit: > Cli s —
k=1 | — x l —x

Y Cesiro-KOWALEWSKI p. 285,
) CaTALAN: Mélanges mathématiques p. 188,



1 XS Y SR s G COSN
aF STy o Ty etE — 2 -—.-;--_L,fv — > xFsink (¢ log x).
logx w e=TY —1x=1
- - :,J
De som tusschen haakjesislog (1 — x)en X x¥sink x is het
k=1
m e 8= s
imaginaire stuk van ¥ x* e'*2 dus gelijk aan:
k=1
X sin :
- —5 Men vindt zoo:
] —2xcosa-t+ X
o) (k : T (he=x
S e S :\4_;_].(_‘.0_“, )
G 1 —X log x
) /'“ sin (Y log x) d ¢
< — Z X OrCr g 9@ il 4
(30) 1 —2xcos(ylogx)4 x?et7¢ — 1

Verandert men x in x* en trekt tweemaal het resullaat van
den oorspronkelijken vorm af, dan komt er:

SO [ e P T O og U o)
Kol 1i==xk 1 4+x log x
X sin (¢ log x) 2 x*sin 2 (L log X) d ¢

— T f;

o)
.yl

| — 2x*cos 2 (¥ log x) + x4l e27¢ — 1

1 —2xcos (¢ log x) 4 x*
Nu i X sin « 9x%sin2 X 8in «

i —— =
1 —2xcosa+ x* 1 —2x3%cos 2« -+ x* 1 42x cose -+ x*

en dus met § 13 n% 1.

o  k o0 k . L b
1T o xR0 0 (e T ey e 08 T O
=114+ xk = : 1 — xk 1 4 x log x
- ‘v/'m sin(plogx)  , dy
'“” 1 4 2xcos (Llog x) + x? e?x¢ — 1’
' OO S K
Ontwikkelt men X . in cene machlreeks naar x,
k=111 X
dan zal x* slechts voorkomen in die ontwikkelingen van

a

"
X 0 " ! n
4, waarbij k deelbaar op n is; x" is dan telkens = term.
1+ x : k
n

Dus heeft deze term een plustecken als . oneven is, anders

; e '
een minteeken. Nu is " evengoed een deeler van n en daarom
zal de coéfficiént van x" telkens het verschil van het aantal
oneven en even deelers van n zijn. Door (30) en (31) zijn
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o) xk o0 K
le reecksen ¥ ——— en ¥ - ineindigen vorm voor-
de S >y - ine

L e g k=1 1+ x* ®

gesteld. Voor x =0 zullen de n® diff. quotienten van deze
vormen n! keer het aantal deelers van n en n! keer het ver-
schil van de aantallen oneven en even deelers van n aangeven,
dus samen beide aantallen leeren kennen.

§ 22. De formule van Poissox ')

el — e~ P o [Feld f-e—a¢ |
2510 —— sinpydy

eP 4 2cosld+e P exy —e-7¢

geeftl voor 0 =0:

2p 2] [0 o /|
e iy € /l-‘/ - kmppn_,‘ a4,

(P 4 1) e 4 1 AIEE V2 B ¢

Neeml men weer e P =xX vermenigvuldigt met x* en
sommeert van k=1 tol @@ dan vindt men:

o0k "w ! o0
X X d ¢

92 . X = =_4 / ' > x*sink (¢ log x
k—11 _i' XI\ ] —x 0 et A k—' (V 4 )
of na berekening der laatste som:

Y- T 5 I' sin k (¢ log x) d o

= lj2 —— — 9x , L e
k=11 x¥ 1 —x v e"¢ —e—7¢ 1 — 2x cos (Y log x) 4 x*

§ 23. De elliptische functies geven ook nog eenige trans-

formalies in bepaalde integralen.  De formule
Ku K—E 2z X kq .
= — > l 5 cosku ?)

r KE KkK'&Si1—q

sin® am

geeft bij vermenigvuldiging met log (1 —2 g cosu - q%) du en
integratie tusschen o en #:

1) Journal de I'Ecole Polytechnique XVIII Cahier pag. 207,

) Scuromiten, Compendiam IT p. 414,
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f log (1 — 2 q cosu -+ q7) sin® aml\_udu_l\l\, e

"‘E-
S ORI,

L et T ol — 9 3 2} cos ki du.
KK, 1——q“"{ log (1 — 2 qecosu - q*) coskudu

“log (I — 2qeosu +q¥)du—

Nu is / log (1 — 2q cos u + ¢*) du = o en
(4]
T —_ qk 1
f log (1 — 2qcosu+ q°) cosku dn= — = )
(4]
waardoor we vinden:
{ ]" 9 :.:1 o0 qﬂk
log(1 — 2q cosu-f-¢ 2)sin*am - duf- Y s
“ l 1 3 k2K:xE 1 —qg*
D }g -
Stelt men hierin x=q*=¢ K dan vindt men:
oo 2k 72 po >
X k* K Ku
e =
2 — T log (1 — 2 Vx cos u - x) sin® am d u.
e L= & b !, ( ) T

§ 94. Ook de thetafuncties van Jacont geven transformaties.

a.t(- o0 2k
Men heelt ! (7)- —cotgz=—4 X 1 55 sin 2k z
0y (z) r=11—q°* 2)
0y (2) X 15

2 C :
+tgz=4 ¥ (— 1) s, sin 2k z
k=1 1-—q°

0..- (/)

Vermem"\uldwl men de eerste betrekking mct colg z en de

tweede mel tgz en integreerl tusschen o en dan verschijnen

d

anan den rechterkant integralen van de gedaante:

nr‘-,’
/ " gin 2kz colgz dz en { sin 2k z tgz dz.

o o
Nu is 1 -+ 2 (cos 2z + cosdz - cos 6z+.... cos2k A —
gin (2k + 1) z

sin z
sin 2k zcot g z—1 —cos 2k 7 + 2 (cos 2z + cos 4z + ... .. cos 2kz).

— sin 2 kz cot g z -} cos 2k z dus:

) Voor de eerste integraal FRENET ,,Calcul Tnfinitésimal” n® 443.
Differenticert men naar q dan vindt men de tweede met n 453.
) SturM, Cours d’Analyse t. II p. 587.
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waaruit (32):. | " sin 2k z cotg zdz =73
0 2
T ‘-4" —
7z door - P aoy [ ¢ ok o te 2 dz = k—17%
en z dool g —Z vervangend (33) f sin2kztgzdz=(—1)""5"
0

Hiermede vindt men nu de transformalies:
(v o) K'N o0 q2k 1 r=/s '(7]
4 { 1 i
— = 1 = - / — cotg z) cotg z dz.

S NS e = e
rey =gk e = — g™ O 0y (z)

o xk xR g* 1 1=/, (Gn'('/.)
n > ——== X % oo = tgz|tgzdz
e T T = e 9.7:-!, 0s (2) +tez)te

waarbij weer =V x en dus:

i) =2 > (—1)F ! x sEk=1gn @k — 1)z
o0
enfg(z)=2 X X Yok —1)* 005 (2k — 1) z.
k=1

§ 95, Ook met de functies 0 en fy kan men de reeks
Lransformeeren:
0" (z) o2 q
A — s : i Qg 1

b2 5 sin 2kz 1)

.0(7.) l k=1
Vermenigvuldigh men beide kanten met de gelijkheid:

k

qsin 2z 5 oh i
. . = qsin 2z -} q* sin 4z + Sginb6z4......
{ —q cos 2z + q* q 1 q

en integreert dan tusschen O en 9 dan komt er:

Py F"
=0 (z) q sin 2z 7
az —
f(z) 1 — qeos2z-+q*
0
.-1:-;'.' T:, []k | ; ! ‘ )
—ef fidl 2 | — g sin 2kz (q sin 2z -+ * sin 4z - ¢* sin 6z -+ ... ) dz
k=11 —

"7
Nu is / sin 2kz sin 2mz dz =0 maar

0

1) Sturs, Cours d'Analyse t. 11 p. 557
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—

Ty 2 _ ~
[ sin? 2kz dz = §[ (1 — cos 4kz) dz = fi
0 0
ridl |

) = 1 [ "0 (2) sin 2z
SO ] R LA G
en dus is D e = 6 (2) T—3qeosdztq’ dz

0
en vervangt men hierin q door — q dan gaat dit over in:
0O B ] = 1 “]26'37'7(7.)__ __qgsin2 iz
L =g 7 05 (z) 1+ 2q cos 2z -} q*
"0

Stelt men weer q = 1/ x dan vindt men de twee transformaties:

CO x| "l 0'(z)  x/sin2z S
k=11—-x = 0(z) 1 —ax' cos 2z -+ x i
I,O
L [2 ' 1),
1 0’y (2) X /% gin 2z L
= —— — ; -~z
7 | 0s (z) 1+4-9x" cos 22 4 x
"
. xQ k_ Y k?
waarind(z) =142 X (—1) x5 cos2kz en
k=1

R g :
bs(z)=1-+2 ¥ x/*% cos 2kz.
=

§ 26. Eén nieuwe transformatie kan men nog afleiden uit
de beide formules:

/i "".) L qik
= cotgz + 4 > - 5 8in 2kz en
01 (z) 8% k=11 —qg*
' |- o0 k
) N S N (o e S
0 (2) k=1 ] —q*

Vermenigvuldigt men beide met tgz dz en integreert tusschen
0 en '27 dan vindt men in verband met (33):

~

1/ o
% " fg ]
1"

R (1)t 1 s (2
N o, k—1 — 1 g
k—,(l ( l) = q:‘k 9 / 0‘ (?) t{._./.(]l: ’1

/

0

.
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“()
3(2)

en > — =

= l—q 3, tgz dz.

o0 qk L

0

Substitueert men in de eerste formule q—l/x en in de
tweede q = x. dan gaan de linkerkanten over in:

e A e R % .
2 (— 1) — Sken X g terwijl men de functie 4
1 1 — k=11 —x* ;
moet nemen, die bij q=]/x past. Nu is:
X S O vk XX
] —xk ] ik 1 - xk
® xk 0 Xk N xk
DU‘; _\_, -k —_— 9‘ ::: 2k ‘_‘.‘ = k —
k=11 — X k=1 1—x* k=1 14 x
o0 -k oo .k
g S S i (] o — (L
k=1 1 —x2k k=1 ] — xk
in verband met § 13, n% 1 vindt men zoo:
. Ry ¥
S | ll"‘.;(/)t/] 1 '““f’l'(z)l |
> == dz— = gz dz
1 l—x 4 7d 05 (2) 90 Oy () ©
arin 0y (z) =2 X (— 1)k 1x" @&=Dgin 9k 1)z en
1

Ty
Is(z)=1-4+2 ¥ x¥cos2kz.
e

§ 27. De { functie van WriersTrAss geefl ook eene trans-

formatie,
: 1 T R q* . kzxu\)
Stelt men in: £ (u) = 2y u - 7 colg +dx 3 - sin
5( ':.?u.l "ﬂwl K — 1 | —'(]ak Wi
7 U . :
5. — % vermenigvuldiglt aan weerskanten mel colg z dz en
- (U1 "
integreert tusschen 0 en '[ex, dan vindt men met (32):
%/ f_,)('l .3 W1 7 '1-?1'1 w1 [T/ "7;) (E‘]'k
/ - :( : -colgz| cotg z dz = . f zeolgzdz + 27 3 1 i
0 T x B k—1 l——q
. [ ‘ i "7y :
Nuis [ 'z colg z dz = z log sin ’ — / log sin z dz = '[; x log 2
0 [ 0 0
waaruit voor q=YVx:
oo -k r1r/ 4 I Q.
X r‘l Wi /e | 2001 AT A
. — ) by b — . v
u'\": i =5 log 2+ — / - \,( ) cotgz| cotgz dz.
- . -, l] ) \ L]

') JorpaAx, Cours d'analyse de I'école polytechnique t. 11 p. 454,
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Deze betrekking wordt eenvoudiger, wanneer men de periode
9w, der ¢ functie gelijk = neemt. Men vindt dan:

g_x [ o
=t ] — _xk _2“ ‘|‘ ‘(z) — cotg z) cotgz dz

en omdat.

el

Sf ] . A
f (¢ (z) — cotgz) cotgz dz = ({ (z) — colg z) log sin /f] -
L] 0

[::‘,:! (i}' (z) — '_1‘/) 1ok Siuizd

o sSin-
1 :
.—— | log sin z dz.
sin’z

Afleiding van transformaties met Calcul Symbolique. 7)

,_
i
lS.

o—-—-g

§ 98. Met eene symholische rekenwijze heeft Cesano ver-
schillende der vorige transformaties afgeleid en er eenige
geheel nieuwe aan toegevoegd. De grondbeginselen van deze
methode kan men vinden in Cesaro-Kowarewskl, Algebraische
Analysis p. 294—308. De Bernoulliaansche getallen worden
daar gedefinieerd door de symbolische vergelijking:

(B - 1)? -- B? = p, terwijl Bo = 1 genomen wordt. Hieraan moet
men de beteekenis hechten, dat deze symbolische vergelijking ge-
wone vergelijkingen geeft, wanneer men (B - 1)* ontwikkelt en
daarria de exponenten der machten van B als indivuq beschouwl.

Neemt men voor p achtereenvolgens 1.2.3 enz. dan geeft
dit met Bo voldoende betrekkingen om (Iu gelallen van Ben-
sourtt te bepalen. Neemt men nu in de symbolische identiteil

fat(N+ 1) — fa+N="T ”" N

+ WEDI=N g 4 B 13; N () enz.

voor de getallen N de getallen van Berxouvir dan vindt men

Z00:

f(ad-(B+1)—f(a-+ B)="{ (a) fl(;l) -} f bjf:l) T = {'(a

1) Opsiro: Principes du Calenl Symbolique Mathésis t. 111 p. 10. 1853,
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, en omdat f(a - (B 1)=((la-B)+ 1) dus:
(34) f(a4B)+1)—f(a+B)=f (a4 1)
Schrijft men dit op voor a=0,1.2.3........ (n—1)
en sommeert, dan vindt men de sommaltieformule van Mac. Laurin
(35) (1) 412 4 f'(3) 4.......0 ()= f(n+B) —1{(B).

Het gebruiken van deze reeks geeft dikwijls aanleiding tot
het ontstaan van divergente reeksen van het asymptotische
type. Daar het bepalen van den restterm nog al eens be-
zwaren heeft, kunnen de volgende beschouwingen niet als
volkomen streng gelden, al hebben ze het voordeel de reeds
gevonden resultaten van eenen anderen kant te belichten.

§ 29. Voor a==0 volgt uit (34) £(B 1y —£(B)=1{"(1).
Dus als f(z) = e** dan is:

e(B-+- )x eBx = x X of

s oo B
X6 e, = Pk ¢ '
e = a DR > X", waaruit:
ex iy + | k!
et 1 ® Bx y_
o ‘*’ P T X
0.\ — 1 X k 1 k.
5 X O? ”k xk y
integreerend: log (e* —1)=logx + kll k! k + C.

Voor x=0 blijkt C==0 dus beide kanten van log e¥ =X
aftrekkend:

e o Bir kK 0 Boi 2k
. »q: \ k X 2 2k X
(36) log — =X - > =1gX — ¥ =5

" e%*— 1 =1 k! Kk k=1 (2k)! 2k

want B, = '/z en B, = By = B; = enz. = 0.

§ 30. Sommeeren we mel (30) eene reeks met algemeenen
. 1 s 1 i ey
term f (k) = - — ¢ log = terwijl x< 1. Wij vinden
k 1 —x X :
oogenblikkelijk:
n+ DB

n (1 Xk | / l ! 1)
N — ¥ = _— v =
k=1 (k [k log x) y (t 1 —xt log X, i



Dit geeft voor x=0:

J =]

N

( B
2 == Jog (n - B) — log B= — log B -+ logn + log(l - n)

y—=1k
n o q 1 L By 1
W S n'B o ~ el %
k=1k log B +-logn +- 90 k=1 2k =
Laat men n oneindig worden, dan blijkt — log B de con-
stante van Euvrer te zijn en dus:
9 S 1 C -1 s @ By
(38) = 3y SR [Tt ety FT% e .
Trekt men nu (37) van (38) af, dan vindl men:
o X5 1 T | "0 Bax 1
2 B PO T e iy -
Ki=i{ 1 — x* log " OB IS n k- 12k1r
n-+ B B
‘——IDCI n—}-!l-rlonlﬁ B

Stelt men rechts x=e—! dan is omdat x <1, t >0, laat
men nu n oneindig worden, dan geeft dit:

o xk 1 ‘ nB l 1 ‘ ” Bt

> F— - r : -

yeq ll—xs o t C+log 5(m-+B)(1— a—Bt -+~ ln;j —

@ s Cologt, 1 Bted

) u‘\".’1 (2 T 1 log si_{—

G 08 9 Lgjnt S b en bij invoering van x:
t tl 2 = (2k)! 2k ) | g van Xx:
X xx G —loglog s L1_ Q B (Drel
R‘—'I 1= x:\i IU'I.,' l 4‘ L-dl (:‘J l\}! :3 k

de bekende formule van Scuvommen Hfdst T (34).

8 31. Uit deze formule heeft Cesano de transformaltie afgeleid:

¢ log e Z 2 |
A () = Og % ~Jr- T , (:'Uig /un gl ) _[l 1 I
0o\ = -

Z Z ) pdTh
Wicent ') merkte op, dal deze transformatie voor reeele z

') Acta mathematica t. 41, p. 197, (1918).
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| kS

kax
b

geen beteekenis heeft, daar de integraal dan voor u =
(k=4 1, + 2....) divergeert. Het blijft mogelijk, dat de
betrekking voor complexe z goed is: na zeer ingewikkelde
becijferingen bleek dit op ¢één term na hel geval te zijn.
Eene eenvoudige afleiding is de volgende:

I‘c zu 2 du _f‘” L Azu du
LOtg Gl s 2ru 717 T 3 1_... 2-u f
L 7 1) 27— =iziut— Arin® e —

/.?o:{g 2 zu+ 1.11) /u) BT
o n=1 an\2zn oz n 27 n Tt etRu

0O D 9 ,2k-1 8 y2k—1
A0 Y- f ! d =
= --' z'k om
N1 k=1(2x D) s N g frd
G o0 O 2% : 9 42k=1 e Al
1 \D\ v - 4 (_“ }'li—l_r}ﬂ‘: \'\) 22 k]:;ﬂ\ : £ A
x=1n=1 (27)** n* 9k =i (27 2k =1 n*
:‘_f:) QZE&—I(_ ) Be I\( 1) “‘__‘1]32}; :-k 1 9.? ]33, I.uL 1
k=1 (27)™ 2k (2k)! r—1(2k)! 2k
: G —logz , 1 P B3
Nu is (17) A (z) = SEam T i on B 1

Z 4 =12k (2k)!
5 \ (1 : O (r*
1A (2 )-1 ) (1),

waaruil voor p-» o en z in de buurt van - 1:

C—logz ,1 ,2xi, (4xY , [® zu 2\ du
i 7)== . L2 - - ,‘.\ - .. rr- - .
\ (2) Z } -1-~I Z ( Z ) i 1’; (‘ otg 2 ;cu) e __ |

§ 32. De Ultra-Bernoulliaansche getallen, bepaald door de
symbolische gelijkheid (B -+ 1)* — aB" = p (a 1) Y, geven nog
cenige transformaties, 't Is gemakkelijk eene betrekking af
te leiden, die overeenkomt met (34). Men vindt:

f(x -+ B4 1) —af(x+4 B)={(x-1) dus voorx =0
((B-1)—af(B)=1{(1). Neemt men f(z)=e** dan heeft
men oo

: 1 2n
1y Men vindt B, =0, B, = s By = — enz, Yoor a=—1
) 3 Oty i (1—n)? 4
gaan ze niet in de Bernoullinansche getallen over, omdat dan
(B + 1)"—B'==0 eene identiteit is en dus B, pas bepaald wordt door

de volgende vergelijking (B + 1) — B'= 1.
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‘ X e* L Be
(39) ex{B.,.l) —— exB = x e* dus - ——— eBx —_ }- XL_
e’ —a k—1k!
Vervangt men X door ix en stelt de reéele stukken gelijk

dan vindt men:

(40) _asinx R (— 1) B o1
1 —2a cosx -} a? -y (2 k)!
Deelt men (39) door x en integreert dan, dan vindt men:

co Bk );k
rilpt e e b1
log (e a) = B E 4+ C
Voor x =0 blikt C=log(l — a) en trekl men het ge-
vonden resultaat af van log e*=x dan krijgt men:
e* | @ Bk X=

e I e WL )
(41) ]Ooex X IOgI—a x=1 k! k

et ™

§ 33. Nieuwe transformaties vindt men door (35) op te

schrijven voor f' (z) = (log ‘1\) l—i;‘? dan isf(z)=log(1 — ax?)

-

en er komt:

n : oK
> |log e LB — = log (1 — a x"+B) — log (1 — axB).
x/1—ax

—_—
k=1
: Ao PP s X 1 O
waaruit voorn = o enx=e"': X P log e
k=11 —ax l e =8

Uit (41) zien we, welke beteekenis aan dezen vorm gehecht
moet worden en vinden:

% a xk w B B, .._
S ax kzllug- | LB — > k Pk k=1
k=1 1—ax t 1 —a k=1 k! k

of met Hfdst. 1V § 13 n% 6 de transformalie:

o0 (K o0 n vk
= :lk7 X = - a X 2
k=1 1—x* =11 —ax*
l 1
o S— - / 2L
(42) P8 1=a a © By By e Ly
2) - T (i) 0 :
gl 20—a) =i @WIZk\x
X
mits a 1, neemt men a= —1 dan vindt men voor de

reeks (31):



X x*_ N _x3 :I_gi’ X
1+x+1-|ﬁx'-’i—l+x3_'_ lO"’i— e
X
lug ( 0g ) (log )
- + + enz.....

48 5760 120960

§ 34. Stelt men in (42) a =x" dan vindt men:

1

:12 Xk log T <o X <3‘ Bﬂ B—vk 1\2k -1 1)
Y = ey e e e | | O
K=t 1 —x IOQ\T u(I—x) k...l(Qk)!';]k *a
x"sin (Y logx) d

=
terwijl uit (40) volgt - — — —
: ( : ({ 1 — 2x" cos (¢ log x) 4 x% e27¢ _ 1

o ’
== 1)k et k= d —
__‘0/ ( 1) (Q 1\ (¢ logx) 270y
oD ~o0 12k — 1
= ¥ (—=1) By, (log x)** ! Yo dy ==
leesr] (2k)! ({ e E i1
— 1/ :\Q (__ l)k B A (| o ) k—-]( ) ]“gk == 1[" '{2 Bﬂk ]3& 1 2k —1
' e og X g0y ) IOL,'
: (2k)! 9 k K=1(2k)! 2 k X
waardoor we vinden:
rFf-‘F 3{1‘ X x? xn -1 1 i
‘\—' ¢ K = - r2 —i """ cn—1 _1— (o} cn hlﬂ
k=11—X ] —x ] —x 1 —Xx 21—x
log (1 — x?) ' /“r X" sin (¢ log x) - d
log x ".u I —2x" cos (¢logx) - x2a YT __ 1

welke transformalie voor n = 1. (30) als bijzonder geval heval.

') De getallen B moeten hier natuurlijk zoo genomen “ordvn dat zij
bij a= xn passen,



HOOFDSTUK V.

§ 1. We zullen nu nog eenige merkwaardige uitkomsten
afleiden, die met de reeks van L. verkregen kunnen worden.

L(z) :
Integreert men om het nulpunt heen S dan is het resultaat

271 L' (0) en dus zal volgens de fundamentale eigenschap
der reeks van L. ieder priemgetal voldoen aan:
9 1 { L('/.)

Qri J zP+1

dz.

§ 2. Eene andere integraal met L(x) achter het integratie-
teeken staat in verband met de J functie van Riemany. Sub-
stitueert men z=ku (k>0) in de integraal van EuLer:

oo
[ e~ *z°—1dz=1(s) danvindt men:
0

1 j’m i g8 |
o (| A i
[(s) % k

Vermenigvuldigt men beide kanlen met 4 (k) en sommeert van
1 tot oo dan is:

R ok [* R dk %

> {‘ (k) e~ ¥~ du= 3 (‘) = {*(s)

k=11 (s)y k=1 k

ey L Srpsae | I 1
zooals blijkt uit het kwadrateeren van { (s) = T A ga oo

Stelt men e~ "==x dan vindt men:

2 (o) — 1/‘1:{2 2wk ,la_ldx =
E(s)= ]‘(S);, = 0 (k) x lonx = dus:

il ] -/‘I 1\*—1dx
4 (s)= I'(s) L(x) (1[),,){) =

0
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§ 3. De reeks van L. hangt ook samen met de getallen
b 2]
van Fisovacer. Deze zijn bepaald door de recurrente betrekking
Upy2=U, 4]+ Uy, waarbij uy =1 en us = 1. Hieruit volgt

1]n,:~1 lln_l l.In_L_'l . u“II
: =14+ —— dosl < <IN Om Lim ———
Up Uy n n—s»co Up

. 1 1+1/5
te bepalen stellen we haar x, danisx =1 + = dus x = ~ },*

. i
endaarx > 1is, dusx =1, (1 + |/ 5). De reeks van Finox-
Nacar zal dus divergeeren, maar de reeks der omgekeerden
van de getallen van Figosyaca convergeert.  De getallen

/,—
I+l'.: 7
5 spelen ook verder eene groote rol bij deze reeks,

1+ V5\n 1 —y5\n
2 TATE

Z00 is Uy, = ~——! ]—,. - . Men ziet direkt dat dit
45

Juist is voor n==1 en n=2 door een bewijs van Berxournu
kan men de algemeene geldigheid aantoonen,

. 1—v5 y +V5 |
Stel —u‘—-—d = —a dan is 1 101 2 = —en dus:
1 I//- 5 1/ 5a®

Uy, | L | —(— 1)n %’
e (—1)"a

Voor de som van de omgekeerden der even lermen van
de reecks van Fmoxacar vinden we:

e Q  g%h 0 o0
5%, I —— I/ 5 % i - ]‘,f B S w a (k42 h —
P - et ] =g 4h . — ‘__; s
h=1 Uy, h =1 a Tl [
L X o0 otk +2)
— ]‘,/ 5 Y 3 akk+dr =1/5 ¥ a _
K= onT k=01 — atk+92
aus by —— - - Lk =
l./‘ 5 h 1 Uih l el © I —th ¥ I =3 :lll.'l

’

a® 1) a® ) at o U
1 —a® i {i=Tat ! 1 — gt T, )L (<1 — gt % 1 — a8 .
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Tl VELE@—La)=V 5

3—vH 7—3V5
> A
h=1 Uy [ ( 2 ) L( 2 )}

De som der omgekeerden van de oneven termen me;t niet
tot de reeks van Lamsert, maar tot eene reeks van Jacont ).

of

§ 4. Met de stelling van APPELL (Hfdst. 1I. § 5)

oD n
S k W

a, X Zr 4

F oD i SR k=

Tim == [ M= [ N

x-»1 o b xk n-» 0 ~'n n—»@ N b .
— Mg
k=0 v

—
k=0
kan men uit de reeks van L. nog eenige uitkomsten verkrijgen.
We moeten dan het gedrag der reeks in de buurl van x=1

kennen en gebruiken daartoe de ontwikkeling van SCHLOMILCH

(Hfdst. 111 (34)).
Stelt men nu in het tweede lid x=1--2 dan komt e

_ C—log(o Yga? 4 s34 ...) i i
W= = ;..a The ... Lk
___4‘_“10{.';0—1(;11'(16'1- Igu-iﬁ !qr) .l‘)+lll...=
é(l—l-g-+3- Foiate s siels )
- - (G — log d — '[29) 1—5--.)
P — r g — ! oo , 2 '
C — log "a. [23 S (R — Loy, =
{1 +5+- )
S G :
= __IQE_‘-'_’ + u + 1Yslogd — 2 C—"at a4,
Zien we dus van positieve machten’ van o af, dan is
{1
(lng + G ) —y="lyToe (Im,1 _I_ + C ) - 14

(1) L) —"‘fz

mits x in de buurt van 1.
We vergelijken nu eerst [, (x) met de reeks, die men Krijg
1 .
als men log - ontwikkelt. Nu is ] log -
X 1 — 1 —x 1] —x

1V

Sur la série des inverses des nombres de Fibonacei,

) E. LA\DM;
Bulletin de la société Mathématique de France t27, p 208 — 300 (1899),



:(1+x—l—x'-’—}—...)(£—]-£4—)_£3—}— ): S

T ok
1 g T g Teeeen k:,VIIIkx
waarbij H, =14+ s+ Y5+ .... Yk Uit (1) volgt nu:
Lim —— L()‘{) ——— = Lim L= ?() Lf(;)' =
x—:-l_ | |0f" | x-r1 1 rl_
1—x °1—x TS

1o (1 ) log 1 ¢)— 1 (1 —
T RO S U X eyl
x-1 |

© Maar ook is Lim L(rx)i
Trgy |

1y 08 s

= = Lim ~5 —

x-»1 o k
k,\_,ll'lkx

Sl s 0(1) 4 0(2)446(3) 4 ...0(n)
n=Fon “l "%‘ “: 'i— ][5 “‘]“ ...1][;

") ranrnl laill] 4 (1) P!_' 4 (ﬂ) '“}— 7 (:;) ..... a (!1) = ~f o T N
(2) waaruit nsw  H; - Ha 3 Hp . ooo. Mo 1. Schrijft men

nu onder elkaar Hy, Hey Hy oo 0o [y uit en sommeert de kolom-

il s . n—1 n=3, 1=

men, dan vindl men _,I”L n - 2 | 3 ! e
n+4+1, n4+1, nt1 n- l) (I 2 3 n)

{ al : a2 2L, =] =(n+1)HHa—n.
m(l P T n T TAr s A (R
Omdat Hy zelf asymptotisch tot log n nadert, heeft men:

Li]"III‘} II'.!_% Il.’l’%' ....IIn ,I.im(” '%'I)Iln-—- 1 7]‘“” lI“ :

_ = 1.
s nlogn n= o n logn nr® Jogn
en dus in verband met (2)
o)+ a(@)42a(3)....2(n
(4) Lim )50\ S o) ):"—1.
n-» o nlogn
§ 5. We kunnen zelfs het oneindig kleine verschil tusschen

1 en deze limiet berekenen door de functie:

' o 1 ;: - 5 -k ¥ W '
L(x) — T log Ty (o (k) — Hk) x* te beschouwen.

Voor x - 1 nadert deze functie tot:



11-+x ( 187 5 el ) P PR U
Eins_.l—.\ log g o —4-1_x10,.1__\;—
{x—1 1 C(1+x) 1 C
le01 —]0,31_x | 2(1_3—4 }_1’“111__}:'
| 1
LX) =———log—=—
Dus Lim M \ Sh=R 1.
x-—r1 (-j
1 —x
0 - &L
> (# (k) — Hi) xk > (0(k)—TTk)
Maar deze limiet is ook gelijk aan Lim - = T —— Lim = AT
x=>1 ‘\_‘: ka 1 oo a2 ( 1)(
k=0

(5) dus Lim ! S (7 (k) — Hg)=C. Maar volgens (3) is:

n—)m]] et —4 |

n
Lim A ¥ Hig=Lim (n j; - Hn — 1 ): Lim (C 4+ logn — 1) en dus gaat (5)

n+ell k=1 n-o \ n-» o

Sl e
over in Lim ; > o(k)—C—logn-+1 % -
n—om \11 k=1
g (1) -+ a(2 a(3 o il
)00+ .20 _ gy ) g0
een bekend resultaat uit de getallentheorie. )
Voor de gemiddelde waarde van Lim 4 (n) vinden we hier-

uit 4 (n) = log n -+ 2 C, want trekt ;llell van
a(1) 4+ a(2) + 2(@) + .... ¢(n) = n logn 4+ (2C — 1)n
af 0(1)+0(2)+@B)+....0m—1)=— logn—1)+(2C—1)(n—1)

dan krijgt men ¢ (n) = log (“_TII) 420 — 1=

(6) of Lim (

n=p

n—1
log (1 +i11—1) 4 logn+ 2C —1=logn + 2 (. ‘)

§ 6. Volgens (6) kunnen we nu stellen
n
S o(k)=nlogn+4 (2C—1) n+ an
k=1
en weer kan de reeks van Laupert ons helpen om

1) StienTaes, Comptes Rendus de I'Académie des Sciences de Paris
t. XCVI p. 764—1029.
') LeseuNe Diricarer, Journal de Liouville p. 350. 1856



113

Lim 2y te vinden. In verband met de berekening van § 5
n-y» o

gebruiken we nu de functie:

F(x=L(x)— T_l - (log T IS —r (:). We zien dan direkt dat
—_— X —
Lim F (x) = Lim — !z log -1——' en dus:
x—1 x-»1 1—x
| | .
(7) Lim — = L= 1Y,
x-p1 1
log :
—'x

Om de stelling van Aprenn te kunnen toepassen, moeten
we teller en noemer in reeksen ontwikkelen. Nu is

1 e o
e d) o (lub +C)— > 0(k)xk — ¥ Hexk— X Cxk=
1 = l l k=1 k=10
‘.O
=¥ ar k_\.:,l (0 (k) — Hi — C) x*.
Voor de limiet (7) vinden we dus ook:
|
Lim ( C - = (ﬁ (k) — Hk — U)
ll—bu‘llu
Deze limiet is dus gelijk —“,._. en daarom:
0 2) - 0(8) - ‘ n

(8) Lim - AR o U oS L) >, Hxk -—¢:)=_'Js

1~ o “ll 11 Nke=ti

5 -+ — I
Nu iSI > ”k:(“ 1) Ha S —logn+ C—1 f‘ :
n k=1 n
en dus \nl"l 1lil (8):
| - 0(3).
Lim ( ik (sl — logn—(2C —- 1)) —=—1]3
n-k o lln 1
‘ Ao A (DY e A (e
dus Lim — (0(1) r02)+06)....0(n) — logn — (2C — I)) = 1]s,

n=p o IOL-'.'” ]

Deze uitkomst bevat (6) en geefl bovendien:

xn ! If-a

Lim :
1=p 00 ]U'r“

0
8 7. De reeks van L. geeft na differentiatie L'(x) = k'\’:: k 0 (k) x*-1

- 1
In de buurt van x=1is L (x) == /s 1 L (I 08 1 -{ (‘) — 'y dus
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1 1 1+x+2C
"(x — L=
AW (oS y e (s
I3
We zien dus direkt dat Lim-— - &) —— =1,
x—1 __1 ] o 1
({0==¥vx)2 08 1 —x

Om de stelling van Appent te kunnen toepassen ontwik-
kelen we den noemer in eene reeks:

R 1_1(1_101)_
AEEy)1 OB S (el e R e |

o0 k
(1+x+x2+.. ) (Hix+Hax*+ Hax®4 ... )= X ( > l'Ih) x* zoodat:
k=1 \h=1
i 10(1)+240(2 ‘_-5_”9{‘3]—{* ......... né(n) * e
n_wli; 1 (Hy -+ Hy) =+ III - He+ Hs) 4. . . (Hy 4+ He 4. . Hae1) '
u- 1 n—1 n —I
Met (3) wordt de som in den noemer k Hy }ﬂ 5> “k k.
k l
n—1
Schrijven we > kH, term voor lerm onder elkaar uit en
| g
sommeeren de kolommen, dan vinden we:
n—1 n—1 \ n -1
1 X k4 ('lg P = 1}2)—1-(“:1 S k—Ys (1~ ‘.'2)) A= i v are
k=1 L k=1 k=1
1 llil 1 e
2 k—— 1+2+3+...n—2))=
\n—1x=i n—1
n—1 1——‘]
Hi-t S k— 3 R e n (1) Hy s — e (01— 1) (n —2)

K= k=2 2 k
]),- waarde van den geheelen noemer is (ll!s
Yen(p —1)H,_, —"%m—1)(n—2)+nH,_, —n +1 —=1'Yan(n—1)
=!'ann-+1)H,_, — s (n—1) @Bn -+ 2).

We hebben dus:

1o(1) +20(2)+36(3)4..... néin)
A - : = | en dus ook:
n]ﬁl,”; e (n-+1)H, _, —'fa(n — 1) (3n + 2)
. o) +20(2)436(3)+....... nen)
Lim T - = |
o Iz n*log n
”n-—l
want Lim —— =1

n=-r a0 ]0[_,' 1n
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§ 8. We kunnen nu weer het oneindig kleine verschil
tusschen deze limiet en 1 berekenen door te beschouwen:

R L SR T 1) e e = S H, | xk
(1—x) °1—x g=ol ' et
o o 1 ok 1S +_5’_g
STk P—]P: ) (1—x)® log ] —X Ejl:ll 9 (1 — x)*
14 C N
(9) Lim (1—x)* zoodat volgens de stelling van AppeLL:
x-» 1 —
n—1 k
16(1)+20(2)+36(8) +...né(n)— VY ]\‘ H,
Li e L s B k*ll_l_zl C
T AT T (n—1) T
Men heeft echter:
n—1 k
e _k\ 1 h::' H, ar R Yo (n + )H, _, — Yaln—1)( ‘%!14—0):
n - 0 '/gn(n-—l) n—r 00 Yen(n—1)

Lim H _,—°%:= Lim logn -+ G — %5, Men vindt zoo:

n=p oC n=y o0
1L 9s(9) 34/
(10) Lim (10(1) -20(2) 4 Jn(-"i‘)...._.....T.nﬂ(.l?)__lmﬂg“ =
n-» 0 ( n- t

§ 9. Volgens (10) kunnen we nu stellen:

S ko (k) = Yan?logn - (G — ") n* +ng.
i

k
Lim 3, is te vinden door de functie:
n =y GO
F70 1 1 14-C = :
L’ (x) 1) log NErie (=) te beschouwen,
In de buurt van x = 1 gedraagt deze functie zich (9) als
—_1 +x | _
9(1 —x) = 2(1—x)
, 1 1 1 4G
L(x) — log — i
Dus Lim (1—x)* o2 I (s 1Sy 1 1y,
x-r1 "‘177.
1 —x

1) Rendiconti dei Lincei 1888, p. 4b.

U Y
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hieruit volgt weer:

n—1 n—1 k n—1
> (k+1)ok+1)— ¥ X H —1U+0) X (k+1)
Liln k=0 E==lih=1 k=0 N 1{2
n-— oc n '
dus:
LAY S e ) ;. (n—1)(3n+2) ,
Lim {- 5 ko()— s (o4 1) H,_, + % ") ———-—’fg(n—§~1)(1+(..)%=——‘]g
s 1| 1 1
Lim 1~ 3 ka(k) — e : = =— Y
i e 02 (k) — 12 (n 1)(11n n+1+(“)—l—4n (m — 1) (3n 4-2) % /
. 12 1 19
Lim H* > ké(k)—'en logn —'/an (2C =!-1)+“un%#‘/zlogn—‘fz(EZ(H-1)+';;‘—'$:—1/z
n—» o Nk—1 2 4
Lim l Sn‘ kr.’i(k) — 14n loen — 1,01.](;),: L 1_) ? — Y logn 4 C — 1”4
nae (N k=g (bR L\s Y3 T '

e o , |
enzoois Lim ¥ ké(k)='/an®logn -+ n? (C - -+ n (
n—r o k=—1 4‘

eene uitkomst, welke (10) bevat en levens geeft:

Lim B,="'/s logn -+ C — /..
n—» 0

§ 10. De reeks van L komt ook voor den dag, wanneer
we willen onderzoeken niet slechts hoeveel deelers een getal
in het systeem der natuurlijke getallen bezit, maar ook hoeveel
deelers van dat getal in een willekeurig getallensysteem voor-
komen. Daartoe beschouwen we eene functie f(x) zoodanig
dat de reeksen: [ (1) + Yo f(2) + "[s £(3) 4+ ...enf(1)log 1
Yo £(2) log 2 4 Y5 £(3) log 3 -} . . convergeeren, hunne sommen
ziin 81 en se. F (k) noemen we de som van alle waarden van
f(x), wanneer men voor x achlereenvolgens alle deelers van k
invult. Hieruit volgt:

o0 o0 '

B (k) Xk S ( > f(i]))l\‘k. Let men in deze

k=1 k=1\d|k
dubbele som op alle termen mel f(d), dan ziet men datf(d)
telkens met een macht van x vermenigvuldigd wordt, waarvan
de exponent een veelvoud van d is, de coéfliciént van {(d)

oo ‘.IJ' oo ‘d
is dus ¥ x% waaruit: ¥ F(kix*= ¥ ——f(d).

=1 k=1 di= 11 —x
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oe) 00 vk
Men heeft dus: Lim (1 — \) o [‘(k) xs="Lim (1" =x) > ﬁﬁk f(k)=
k=11 —x

= x-»1
R ’“f(k) ® 1
b > = Py 1=
xi:l} k=11 —+— \—«{-—\~+ ..... xk—1 =1k f (k) Sy

o
> Fk) xt

i o = _ . kewd
Maar ook is Lim (I —x) ¥ F(k)x*=Lim—7F— =
x—1 K= x 1 7 ,,1,
1—x
Lig P FFE+FE) 4 ....F(n)
nJ-i.’.TJ 1
F(1) +F(2)+F(8)+4 ....F(n)

(11) dus Lim ———M—— O

n=y o0 n
Evenals we uit f(k) de functie I (k) afzeleid hebben, leiden
we uil F (k) de functie F (k) al. Deze is dus ¥ F (k). Wij
d|k

= 8i.

kunnen nu gemakkelijk aantoonen, dat:

oo _ o0
(12) P> 1R k)= X L(x%) £ (k);
= |

want ontwikkelt men beide sommen in recksen, dan zal in
beide de coéfficiént van x% bestaan uit de som der funclies
f(d) van de deelers van q ieder vermenigvaldigd met het
aantal deelers van 9/,

\

1 4 xk/ I J
Volgens (1) is L (x¥) =1/, l xk(]ng W _.|-(‘) el

Stelt men x=1-—24 en verwaarloost alles van lager orde

| - Y
dan . dan vindt men voor x in de buurt van |
(7]

9—ksd |
N = . = ' o - ok - : -
L (x¥) [+ =13 (][]h k3 ) Ik ( (log p logk -+ ( ))

1 /1 ; log k l log k
k(é ('“‘"a‘“‘)_ ) I\(I‘(‘) u-x)'

on

o
Met (12) is dus in de buurt van x=1: ¥ x*F (k)= k:\-:l L (x*) f(k)=
= :

rf" r K ~,
2l (L ) log l\\') A b —
1 X,

T —X
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Cﬁ k Qo
en dus X **51)'(———\ F(l\))z =
r—1 \l —x* A S X,

volgens de stelling van AppeLl dus:

o

> (s1 (k) — F (k) x* "’ﬂ (s1 6 (k) — FU\)]
Limi— — -~—Ltm}"!- —— =52
x—»1 (l ‘—‘X) i n-» oo n+]

In verband met (6) volgt hiernit:

(F‘ (1) + F (2) —!—_F (3) t_Fan — 51 log 11) =(2C—1)s:

n

'[’JQ

Dit resultaat wordt eenvoudiger, wanneer we hieruil eene

gemiddelde waarde van Lim F (n) afleiden. Men vindt:
n = 0
n—1

F(n)— S Fik)— ™ F(L)—un logn + (2C —1)sin —

(n—l)ﬂ]ng(n~|) (2C—1)si(n—1)+ s:(n—1)

= 8y log( - )_—I—sllogn—{-(ﬂ(i—])sl-—sg:

S logn —{— 2 sy — Sg.
(13) Men heeft dus gemiddeld Lim F (n)==s; logn- 2 C s —s..

n=r 0

§ 11. Als een bijzonder geval van deze algemeene formule
sullen we eene bekende betrekking afleiden. We stellen dat
F (k) 1 of 0 is, naarmate k al of niet tot een gegeven systeem
geheele getallen behoort, waarvan de frequentie van 0 ver-
schilt. Volgens (11) is dus:

Lim F(1)+F@2)+F@B) +.....F(n) It Lt
n = o I

kant staat echter het n® gedeelte van het aantal getallen in
het systeem, die kleiner of gelijk n zijn, dus de frequentie

w, deze is dus gelijk si. Daar F (k)=2X F(k), is F (k) dus
d|k
gelijk aan het aantal deelers van k, die tot het systeem be-

hooren. Het ligt voor de hand, dat dit aantal asymptotisch
nadert tot het totale aantal deelers van k vermenigvuldigd
met de frequentie w. Dus F(n) zal bij eerste benadering
gelifk zijn aan (§5) @6 (n) = s (logn -+ 2C). (13) geell nu
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eene nauwkeurige benadering, waarin de waarden van s en
s van den aard van het systeem afhangen.

* § 12. Nemen we voor het getallensysteem alle getallen,
welke behalve de eenheid geen kwadratische deelers hebben
dan moeten we dus f (k) zoo bepalen, dat F (k) 1 of 0 is,
naarmate k al of niet tot hel systeem behoort. Hieraan
voldoet eene functie (k) zoodat f(1)=1 en f (k)= (— 1),
wanneer k gelijk is aan het product van de kwadraten van r
ongelijke ondeelbare getallen, in elk ander geval is f (k) = 0.
Heeft k geen kwadralische [actoren, dan is F (k) = f(1) = 1.
Heeft k de kwadratische factoren, a, b, ¢, d enz... dan is I'(k)
gelijk aan de som der functies f, die behooren bij de termen
an de ontwikkeling van (1 -4-a) (1-b) (1 -Fe¢)(1 +d)....

Nu zijn deze functies -+ 1 of — 1, naarmate ze behooren
bij termen van even of oneven graad. De som van al deze
functies krijgt men door voor a, b, ¢, d.... in het product
— 1 te plaatsen, dit wordl dan nul. F(K) heeft dus altijd
de gewenschte waarde, F (k) geeft dus het aantal deelers in
het systeem. Dit is echter ook gelijk aan de bekende funclie
w (k), die bepaalt op hoeveel verschillende manieren k in
twee onderling ondeelbare factoren kan ontbonden worden,
Heelt k geen kwadratische factoren, dan komen alle deelers
van k in het systeem voor; twee aan Lwee is hun product k en
ieder zoo'n stel geeft ook twee onthbindingen in factoren.
Is k=abePd"..... . heeft k dus wel kwadratische deelers,
dan is hel aantal ontbindingen in twee onderling ondeelbare
factoren helzelfde als van abed... daar de factoren cen de
facloren d enz tlelkens toch bijeen moeten blijven. Hel
aantal deelers in het systeem is ook hetzellde als van abed...
Beide aantallen zijn dus gelijk. ')

Om nu « (k) dus F (k) te vinden, moelen we s; en sz bepalen.

o =1(1) 4 " £@) + L £8) 4 ... =1+ 040 — 5+

l; |
. -~

1y (k) == 27, waarbij p het aantal ondeelbare factoren van k is, want
er zijn danl + C + C% + C% + ....Crp =20 ontbindingen in onderling
ondeelbare factoren mogelijk.



| 1 1
== e e i - s Be
+0+0+0+0—g, e, R

1
3)
(= ;><1—.%>(1-;>(1 0

Dit is dus ook de kans, dat een geheel getal tot ons systeem
zal behooren.

sz-——f(I)log(l)—}—gf log ('))—{— f(3) log34-...... Om deze

t...

som te berekenen bepalen we den coéfficiént van log p, waarbij
p een ondeelbaar getal is. Nu zal log p slechts voorkomen

in de termen met log p% log (2p)% log (3p):....... daar

anders de bijbehoorende functie f gelijk nnl is. Zoo vindt men:
2 2 9 2 2

(-— p? et ip? i op? I 9803 (Gp)F ) logp. In deze

9]
reeks komt echter niet voor (b.p)? log p, daarde bijbehoorende
p.p)*

functie f(p*) = 0. Men vindt dus voor de coéfficiént van log p

Q(l"g:-*)(‘*')('" ) 12

D
(l . 72 p*—1
p?' |

12 . logp
dus: gg=—==Sy-~l
™ p*—1

waarbij deze som over alle ondeelbare getallen moet worden
uitgestrekt. Men kan dil nog iets vereenvoudigen. Beschouwen

X log k e e —

2 ;- en lrachten hierin den coéfficiént van log p te
x=1 k?
bepalen, waarin p een willekeurig ondeelbaar gelal is.  Alle
termen, waarin log p voorkomt, zijn:

we

log3p , log p?® log p* |

logp , log2p
Bp?* T ) T (pY)?

p (2 p)*

Men splitst log 2p in log 2+ logp, log p* in log p 4 log p,
log p® in log p -+ logp + log p en zoo vindt men:

') LAxDAU, Primzahlen I p. 126,

_l._




2 3* p 9t T 32 =
log p 1 1
P e o)) 4
1,1 {R
_(pz—;—p,fi*bg—{— ) (l - m-{—a._,;—l— ) log p
__logp X 1 _ =z logp

p:—1=1k? 6 p2—1

e ranlog X logk o TP
waaruit: - > — P = 2 g2 = (0.937548254 = (;

. logp 6 Cy 12 ., 6:Cy 12
dus > o2 oy OISy = ’_._;JX = Ciy

waarna we voor het aantal deelers van k in ons systeem
en dus ook voor w (k) hebben:

e AU A o120
Lim o (k)= (logk+2C+ 5 0n)

) Leseune Diricnver, Journal de Liouville 1856, p. 350,
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STELLINGEN.

1t

De afleiding door Cesaro der betrekking:
B, (—1)=(2"—1)B,
kan mel voordeel vervangen worden door eene andere, waar-
bij tgx op twee verschillende manieren in eene machtreeks
ontwikkeld wordt.
1. Cesano: Sur les nombres de Bensounn el v’EvLEen.
Nouvelles Annales de Mathématiques. t3. 1886. p. 305.

11.

't Verdient aanbeveling den samenhang tusschen het theorema
an Tavror en de 1° middelwaardestelling nader te onder-
zoeken,

111.
Scbrijft men: _
L LI h | :
f(a-+h)=="f(a)+ 11 () [:' f(a) e e 111' " (a -+ 0 h), dan is:
19, als f(x) een veelterm van den (n - 1) graad in x is:
1
0“ —
n -1
29 als f(x), f' (x)..... fr+2(x) in het vak a..... a - h
eindig en continu zijn en " *+!(a) is niet nul:
|
J. 0 —_ *
il by

en Lim f, = o.
n=p 0
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8
IV.

De bewering van H. pe Vmies, dat men tusschen twee
punten van een kegeloppervlak oneindig veel geodetische
lijnen kan trekken, komt mij voor niet juist te zijn.

Dr. H. pe Vmis. Leerboek der beschrijvende Meetkunde.
Deel II. blz. 38.

V.
Het gebruikelijke bewijs van de stelling van Gauss is
onvolledig.
Apranay uvsp Foepn. Theorie der Elektrizitit. Bd 1. S. 54.

VI.
Het bewiis. dat M. Praxck van den phasenregel van Gisps
15, I -

geeft, is, van mathematisch standpunt beschonwd, onbe-
vredigend.

M. Praxck. Vorlesungen iiber Thermodynamik. 4° aufl. 5. 183.

VIL
De afleiding door Kmcunorr van de vergelijking van Poisson
is niet voldoende streng.

Kincunorr. Vorlesungen iiber Mechanik. XVI Vorl. § 2.

VIIIL.

't Onderwijs in de astronomie aan onze scholen van Middel-
baar en voorbereidend Hooger onderwijs moet gepaard gaan
met observaties van den sterrenhemel.

IX.

Na de K. B. van 7 Juni 1919 en 1 Mei 1920, regelende
het programma der Gymmnasia, is eene Gymnasiale opleiding
opleiding niet aan te raden voor iemand, die bij zijne verdere
studie Wiskunde noodig heeft.
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