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??? errata. (y l)V3 log log 7 v.b. , â€”u, 3 V. b. is weggelaten (30)12 v.b. staat moet zijn 5 v.b. 3 V. 0.7 V. O. 3 v.b. 7 v.b. 6 v. O.5 V. 0. 4 V. 0. (2 n)! sin 2 a- /1t D-l S logh=l n â€” 1 n n h = in- 12 blz. 12 regel 2 v. o. staat 38 42 43 55 56 71 747984 9i 91 91 91 9 V. O.1 v.b. (y i)V3 2 log uâ€ž Jl^n (2n)! moet zijn (1 (1 -x^\'")^ Gd en 3 log 2 moet zijn C ^ en 51ogz 00d=:l sin 2 - /1l n-l S hlogh = l nâ€” 1 2 -in-l â€” Z hn h=i n â€” 1 > V2 moet zijn \'/2 1 3(y4-l) lOG de B\'s op regel 9 en 10 v. o. moeten niet dik zijn.



??? INLEIDING. Â§ L J. H. Lambert \') was de eerste, die de aandacht vestigdeop de reeks ^ ^  ...... Hij merkte op, dat wanneer men de termen van deze reeks inreeksen naar opklimmende machten van x ontwikkelt en daarnade gelijke machten van x samenvoegt, de reeks: x 2 xÂŽ 2 xÂ? -f 3  4.XÂ? 4x8-}-3xÂ? -f .. verschijnt, waarin de co??ffici??nten aangeven hoeveel deelersde exponenten hebben, de eenheid en het getal zelf meege-rekend. Deze eigenschap is gemakkelijk lo bewijzen, want ontwikkelt men = j^k  j-sk ^ ^ ^ ^ ^ slechts dan in die ontwikkeling voorkomen, wanneer k een 00 yk deeler van n is. In do ontwikkeling van E . , zal x" k = 1 1 â€” x* dus evenveel keeren voorkomen als er getallen k te vindenzijn, die deelers van n zijn. Do coGffici??nt van x" is dusgelijk aan het aantal deolers van n; is n een priomgetal, danIs do co??ffici?Ÿnt 2. Â§ 2. Om deze eigenschap, die het probleem van de priem-?Ÿetallon verleidelijk dicht bij eene oplossing scheen le brengen,Â?eeft (le reeks van Lamukht de aandacht van velen getrokken.^-UusEN publiceerde in 1828

eono transformatie in eene sterk^^j^verg^ reeks. Sghehk gaf in 1832 liet bewijs van deze F\'1 Architeclonic o,\\or Theorie Â?Ie. Einfnchen und des p 507 philosophischen und Mathomatinchon ErkcnntniHÂ?. Riga 1771.



??? transformatie: Hij ontwikkelde iederen term in eene macht-reeks en schreef deze onder elkander op: X x2 -f x3 X* . . . X^ X^ XÂ? XÂ? . . . De mÂŽ term uit de n" rij is x"Â?", maar dit is ook de n" termin de mÂŽ rij, dus de ni" term in de nÂŽ kolom. De n" rij ende n" kolom bevatten dus dezelfde termen. Veronderstellenwe 0<x<l, dan zijn alle termen van de dubbelreekspositief en mogen wij ze dus in willekeurige groepeering som-meeren. Men neemt eerst de termen van de eerste rij ende eerste kolom bij elkaar. Deze zijn: x 2x2-f 2x3 2x^-f 2x5 ......= \\1 â€” x/ Dan neemt men de overige termen van de tweede rij ende tweede kolom, daarna die van de derde rij en de derdekolom enz. Die van de k" rij en de k" kolom" zijn:X"\' 2 1) 2 X k(k 2) -I- ... = x^\'(1 2 x\'\'-f \\i â€” x De getransformeerde reeks wordt dus: 1 - x Â§ 3. Eisenstein (1844) onderzocht de convergentie. t. uk i_ , . k^\'c!D~??k convergentie voor x<l. De conver- gentiecirkel heeft de eenheid als straal. Op dien cirkel liggenoneindig veel polen van L (x), ieder punt x = e2Tir is na-melijk een pool mits 7 eene rationeele

breuk is. De con-vergentiecirkel is dus eene singuliere lijn. Â§ 4. Burhenne (1852) trachtte met de reeks van Lamherteen analytisch kenmerk voor de priemgetallen le vinden. Hij



??? wilde die reeks volgens Mac-Laurin in eene machtreeks ont-wikkelen. Deze ontwikkeling is dan identiek met die vanLambert zelf. Stelt men dus den co??ffici??nt van x" in deontwikkeling naar Mag-Laurin gelijk aan 2 dan heeft meneene vergelijking, waaraan slechts door n priem voldaanwordt. De resultaten waren niet zoo bevredigend als deeenvoud deed verwachten. Ook latere onderzoekers alsRogel en Curtze hebben er niets mee bereikt. Al stelde dereeks op dit gebied te leur, ze prikkelde lot onderzoek.ScHL??MiLcn, CEsaRO, Knopp, Landau e.a. hebben belangrijkeeigenschappen gevonden. Doel van dit proefschrift is een geordend overzicht te gevenvan het voornaamste wat van deze reeks bekendis. Daartoezullen we in het eerste hoofdstuk de pogingen om een ken-merk der priemgetallen af te leiden behandelen. In hoofdstuk II wordt de convergentie en het gedrag inde omgeving van den convergentiecirkel besproken. In eenvolgend hoofdstuk de sommatie en die transformaties, diedaarvoor noodig zijn. In het vierde hoofdstuk de overigetransformaties

terwijl in het laatste hoofdstuk eenige resultatenuit de getallentheorie niet behulp van onze reeks zullenworden afgeleid.



??? HOOFDSTUK I. Â§ 1. Om de reeks van L. volgens Mac-Laurin te ontwik-kelen behoeft men slechts ID" \\ lx = O te bepalen. Hiertoe splitsen we 1 1â€”x"1 x = 0 1 = D" r in 1 -x\' 1 -x\' t: eenvoudige gebrokens en noemen â€” = cc. K 1 Ao Bo zh= 1 Voor k even stelt men: I-Xk x-l^x l"^( Al. Bl. \\ X â€” e\'bÂ? X â€”e~ih\'7\' Substitutie van x=l 3, â€” 1 -fJ, e\'^a -f-Jeneâ€”Â?ha-f-^geeft Ao, Bo, Al, en Bi. waardoor we vinden: ^ l-x"^- C â€” i h a 1 1 \'A k -1 I / e\' liÂ? _V i. vx - r x -!- 17 h k \\xâ€”e i"h Â? xe- i\'hDifferentieert men dit n maal dan geeft dit: n! 1 1 (1) D" ..k 1 -X (-I)M\' e â€” i h a _______ We schrijven nu X â€” e â€” i li 1 = 1^1, gl ^b dan is x_e"^ = = Ri. e-\'??^i. terwijl: Ri. = (x^ 1 _ 2 X cos h Â?)V,, cos 01. = IZLC^giilf^. en Ril . sin h Xsm 4>h = â€”TTâ€”.Rh eiha



??? Substitueert men dit in (1) dan vindt men na eene kortelierleiding: 1 1 2 / v 1 \\ " i n\' D" l â€” x . ( . 1 ^ n! VÂ?t-1 cos (h g (n 1) 01.)-r(-l) 2- v^ Voor X = O is nu cos 0h = â€” cos h Â?, sin 011 = 4- sin h xdus??i, = tt â€” h terwijl cos(ha (n 1) 010 = cos !(n Ojt â€”â€” n h a ! = (â€” 1) " ^ cos n h waardoor we vinden vooreven k: / 1 \\ n t n\' Vs k -1 (2) =1^(1-(_ l)n \') 2^ coshnÂ? \' \' \\ 1 â€” x7x=:o k k h=i Voor oneven k voert eene dergelijke redeneering tot het doel. We stellen nu:k-i -I- Bl, Ao 1 l-x\'\' xâ€”1 ^h=i\\x â€”eilivoor oneven k Al, en vinden: x â€” kâ€”1I i (3) 1 \\ n\' n\' \' V coshnÂ? 1 â€” x\'/xsso k k h = i Zooals we reeds in de inleiding verklaarden is het aantaldeelers van n: 1 1 oc / vk \\ 1 co / 1 \\ n! \'x=on!kt:^i\\ 1â€”x7x = o n!k = i\\ 1â€”x7i=.o en in verband met (2) en (3) vindt men zoo: l J_ , 2 2n hT. (i) Tâ€ž= S p-^p = . P , V . , , p.q. ) I O h= /iq-1 2 n h r q \' \' q hr=i q waarbij voor p ieder oneven getal cn voor q ieder even getalgenomen moet worden. ^ Uil den regel van Leidniz volgt, dat -j) voor \\ 1 - X /x=rO k>n gelijk nul is, zoodat men in (i) de sommatie

slechtsbehoeft uit le strekken over getallen p en q ^ n.



??? .Â§ 2. Met (4) vindt men nu Ti = j J [J^ ^ j = 1,= 3, Ts = \' 1 -f O1 0 Vb - \'Is- 0 00 0 = 2, T4 = "/l5 V6 T6 = = 4. Ten einde dieper in de vorming van deze getallen door tedringen, zullen we voor n = 7, 8 en 9 de substituties voorp en q afzonderlijk uitvoeren. Daartoe schrijven we Tn = = ^ ^^ en vinden dan: Vi Wl n 7 1 8 9 p=l V w = 1 0 V w = 1 0 V w = 1 0 q = 2 V\'i Wl = 0 0 Vl Wl = 1 0 Vl Wl = 0 0 p = 3 V w = Vs - Va V 4- W = V, - V, V w = V, VÂ? q = 4 V, Wl = 0 0 Vl Â?â€?i = V, \'A Vl Wi= 0 0 p = 5 V w = V. -V. V w = V. - vÂ? V w = V. - V. q = 6 Vi w, = 0 0 Vl w, = Vs â€” VÂ? V, Wl = 0 0 p = 7 V w = VT \'A V w = \'A - V, V W = V7 - \'A q=8- Vl W, = V4 V4 V, w, = 0 0 p = 9 V w = V, 7, V \' W V W V V w ^ V, Wi=\'J ^ v, w, = 4 V, Wl = 3. We merken nu op dal, bij 7, p = 1 en p = 7 voor v w?Š??n opleveren en alle andere substituties nul, dnt voor 8,de substituties voor p = 1 en q = 2, 4 en 8 ?Š??n opleveren,de andere nul en bij 9 de substituties voor p = 1, 3 en 9 weer?Šen, de andere weer nul geven en vermoeden dat alle sub-stituties aan de eenvoudige wet onderworpen zijn: dat

vooriederen deeler van n de bijbelioorende v w of vi wi ?Šenoplevert en voor iederen niet-deeler van n de bijbelioorendesom nul is.



??? Â§ 3. Zekerheid kunnen we krijgen door de reeksen in (4):p-1 eos^^ en e\'cosâ€”â€” te sommeeren. We ge- h=i p h=i q bruiken daartoe de identiteit cos a cos 2 a cos 3 a .....cos m a = _ sin ^h (2 m 1) a â€” sin a2 sin Va a 2ns- â€”LllJ Voor de eerste som stellen we a = en m â€” % dan is: â€ž 1 . n TT ^ , sin n n- â€” sin -â€” V cosâ€”â€” ---^ = wanneer n ten P 2sin^^ P minste geen veelvoud van p is, in dat geval zou de breuk onbepaald worden on substitueert men liever direkt in de p-i * 2 n h T p â€” 1 reeks, iedere term wordt 1 en dus â€”â€” = â€”^ indien p een deeler van n is, anders â€” ^Is. 2n7r , Voor de tweede som stellen we a = â€”- cnm= /aqâ€”i cn vinden:V. en: . / nz\\ . n râ€ž , sm nr--â€” sm-â€” 2nhr \\_qj__3. _ ^ cos--------~~ Â?> = \' ^ 2 sin"\'\' q . nr . nr cos n r sm--sm â€” _-1 = _ i/j (1 -1- cos n z) 2 sm â€” q Is nu n ook even en geen veelvoud van q, dan iscos-"- = â€” 1, is n oneven dan is de som gelijk O, iÂ?=i n 1 â€? 1 , 1 maar is n even cn een veelvoud van q, dan is de breuk



??? weer onbepaald, maar geeft directe substitutie in de reeks Â§ 4. Voor het bewijs van de wet van Â§ 2 onderscheidenwe nu 5 gevallen, p-i 1Â°. p is een deeler van n dan is - - v cos = P p h = i p P^P 2 p-1 2Â°. p is geen deeler van n dan is - -f - V cos = P P h = l p 19 F 3Â°. q is een deeler van n dan is n even en: 40. q is geen deeler van n en n is oneven dan is: 5Â°. q is geen deeler van n en n is even, dan is:0 Hh-X-i=o. Iedere substitutie voor p of q levert dus 1 of O, naarmateP en q al of niet deelers van n zijn. Â§5. Het opstellen van een kenmerk voor de priemgetallen >s m, gemakkelijk. Behalve 2 zijn alle oneven, het is dusvoldoende de substituties slechts voor oneven getallen uit te



??? voeren. Zoo vond Burhenne dat alle priemgetallen > 2 vol-p-i (\\ â€” â€” cos doen aan:2p 2nh7r\\ 2 2 \\p pu = l P Tegelijk blijkt echter, dat deze vergelijking eene vanzelfsprekende identiteit is, die ook wel zonder de reeks van L.afgeleid had kunnen worden en dat het difTerentieeren vandeze reeks v????r de sommatie geen ander resultaat heeft gehad,â€? dan dat het op de gedachte gebracht heeft bij de reeks cos â€”naar iets karakteristieks voor de priemgetallente zoeken. Bezien we de zaak van dezen kant dan kunnenwe trachten uit de reeks ^ cos " " ^^" nog eenvoudiger func- / \\n â€” 2. ties af te leiden, die 1 of O opleveren naarmate r een deelervan n is of niet. Noemen we eene dergelijke functie xdan is voor oneven r: nsr sm n - â€” sin \\P/ p ph = i p 2 sin P / P Is p geen deeler van n dan is de teller nul en de noemerniet, is p wel cen deeler, dan is de breuk onbepaald, maarwordt feitelijk bedoeld: , . 1 sin XLim--= 1. J[sin n !r"P 1 2-- n TT n TT sm x-M>7rP â€? X \\ sm-P Voor even r is verder % ,2V.\'t-i 2nh - 2/ cos q h = isin fn â€? " __ ( Is n nu ook even dan is x

\\ 1-1- n T 2 sin



??? â– .nr . nr .nr,. nr smÂ?â€” , smnrcosâ€” â€” cosnrsm--rsm â€” q 1 q q q q ^.nr q _.nr ^ 2 sm â€” ^ 2 sm â€” q q , /n\\ 1 sin n r n r dus y â€”1 =--cos â€” \\q/ q . nr q^ sm â€” ^ q Gemakkelijk is te zien dat deze functie voor alle waardenvan n goed is, want is q geen deeler n, dan is de teller nulen de noemer niet, is q wel een deeler dan is n even. Tevens blijkt waarom bij even r een factor cos ^ noodzakelijk is, sin X q cos n r . . , want Lim -= -- en dit is q als n een even smâ€” cos â€” q q aantal malen q is en â€” q als n een oneven aantal malen qis, de factor cos ^ zorgt nu voor het goede teeken. Daar de grenswaarde van â€” â€” gelijk is aan p, kan men in sin â€”^P (5) zoo\'n factor niet gebruiken. De formule (G) is om ie rekenen in eene andere, die voor , , , ., , TA 1 sin n r nr even en oneven deelers beide geldt. De vorm---cos â€” r . n r rsin â€”r is nul, wanneer r geen deeler van n is, is r wel een deelerdan is de waarde van den vorm cos n r. Voor even n isdit -f 1, maar â€” l als n oneven is. Hieraan is tegemoette komen door nog een factor cos n r toe te voegen, die

inhet laatste geval voor het goede teeken zorgt en in het eersteniet schaadt. Zoo vindt men voor iedere n en r: n r \\ 4 â€? â€? rÂ? cos - 1 Sin n r n r sm 2 n r r n cos â€” cos n r = r . n r r 2 . nj smâ€” rsm â€” r r en = 2 J^. ^ r=i . nr rsm â€” , sm n --- (6)4â€”^-^



??? HOOFDSTUK II. CoiiYergontie. 00 x\'\' Â§ i. Definieert men eene reeks van Lambert als bk . \' n k = 1 1 ~~ dan geldt voor hare convergentie de volgende wet: Als bk convergeert, dan convergeert de reeks voor iederewaarde van | x | die van I verschilt. Is ^ bk niet convergent,dan is het convergentiegebied van de reeks het binnenstuk vanden convergentiecirkel van de verwante machtreeks bk x*^.In ieder afgesloten geheel binnen een convergentiegebied ge-legen deel, is de convergentie uniform. Om dit te bewijzen gebruiken we het kenmerk van Abel\'):wanneer ]Â?ak convergeert en ^ | vkâ€” Vk 1 | is convergent, danzal ^ ak Vk convergent zijn en deze convergentie is uniformin een gebied, waarvoor iedere waarde van x, | Vi | en Ui = z= I vi â€” Va I I V2 â€” Vs I enz____beneden vaste waarden blijven. x" Veronderstel nu eerst bk is convergent en neem vk = ^ __ ^it dan is: dus als I x |< 1: x" (1 - x) Vk - Vk 1 I = 2 I x\' I Vk - Vk 11< Ook is er dan eene waarde m te vinden, zoodat voor allek ^ m, I x\'\' I bijvoorbeeld kleiner dan \'/a zijn en dus | 1 - x\'\' ien 1 1 â€” x\'\' \' I

> \'/s. waaruit volgt: \') Bii??mwich: Iiifiniic SerieÂ? p. 205, 200.



??? , 21X00 S Ivk-vk il^ s â–  s I X I dus eindig. t = m k = m 12 . ?’2 k = m GO jj k De reeks Z bk . _ convergeert dus in dit geval. Om aan k â€” 1 A ^ te toonen, dat zij uniform convergeert voor x < p < 1 merkenwe op, dat: f ivk-vk ii<s n- ^^ ^ â€” P kt^I k = l l- p \' k-i\' " "k" i| i-x*^!! i-xi\' \'i van eene zekere waarde k = m af, zal /j*" < \'/a zijn en dus is: Ui<2\'"z,__^__ ^^ 1 _ , I 1 _ ^k t 1 m - 1 ^k ^ . = 2 I Vl I en Ul blijven dus beneden vaste waarden, waarmede deuniforme convergentie bewezen is. 00 Is I x > 1. dan schrijven we S bk-c = k = i 1 â€” x*^ _ co â€” .X bk X bk-:;-en behoeven slechts de uniforme k = i ^ bk convergentie van X aan te toonen. Voor Vk nemen K â€”â€”. 1 J Jk 1 1 -x\'^ we - Nu is I vk â€” Vk 11 = 1 1-1 X < 1 1 x" (1 - x) 0 1 k 1 Daar | x | > 1 is, is er eene waarde m te vinden, zoodat > \'/sis, dan is 1--- x" X co oo CO - = 8 V k= m en dus ein- en ZJvk -vk ,|< V Â?=Â? k =m \'12 . \'h voor alle k ^ m, ! en



??? dig, de Lambertsche reeks convergeert. Verder is weer voor x|>^>l |v.| = < en l-p 1 â€”X co U,= Z Ivk-vk i < k = 1 k = 1 00v Xi 1 1 < 1 is, blijft dit net als in \'t vorige geval beneden eene vaste waarde de reeks convergeert dus uniform in hetgebied j x ]>/?> 1. Veronderstellen we nu dat ^ hu divergeert. Bepaal dan pco zoodal Z bk x\'\' convergeert, dus ^ ^ 1. Neem nu in 1 dan zal dc reeks k= 1CO x"^ X bk j _ als reeks der v\'s : Vk = ._ k â€” 1 Â? X 1 X en daar co co ak = bk x\'\' dus convorgeeren. Blijft aan le loonen X dat \'Z |vk - Vk 1 I convergeert. Nu is:k = 1 Vk â€” Vk I I = xMl -x) 2 x <r Evenals le voren toont men ook nu weer aan dal de reeksder I Vk â€” Vk 11 convergeert en dat hare som heneden eenevaste waarde blijft. Kr moet dan nog nagegaan worden ofhel gebruikle kenmerk der uniforme convergenlie wel goedis, daar Buomwigu (p 206) hel adeidl voor hel geval dat00 00 ak niet do veranderlijke x beval. Maar daar bk x" uni-k = l k=:l form convergeert, voldoet deze reeks aan alle eischen, die hijde afleiding van hel kenmerk door Bhomwich aan ak

gesteldwerden, waarmee dit bezwaar vervalt. Â§ 2. Wanneer ^hk convergeert en dus de Lamberlschereeks binnen en huilen den eenhpidscirkel beslaal, is het nietnoodig dat de waarden binnen (Fi(x)) en builen den cirkel(Fh(x)) voorlzetlingen van elkaar zijn. Wel beslaal er een



??? /l\\ verband tusschen Fi(x) en Fi, - , want is jxK 1 . dan is: flV X ^ x\'\' co = Z bk 00 E bkk=:l Fi(x) Fb = - - bk.(M k = l 1 â€”X k = l Â§ 3. Om te bewijzen, dat de reelcs van L. eene functievoorstelt, die niet over den eenheidscirkel voortgezet kanworden, is het slechts noodig, dat we aantoonen, dat overalop den omtrek eene dicht bijeenliggende menigte punten is,waar L (x) oneindig wordt. Dit gebeurt nu in ieder rationaal u en x = ^e2"\'n(nenx\\ L (x) I = co zijn. 1 - â€”Xo n\' onderling ondeelbaar) Lim |/ />-)â–  1 Eene dergelijke nadering lot xo, waarbij slechts de voer-straal verandert, het argument hetzelfde blijft, zullen we eeneradiale nadering noemen. Voor de berekening der limiet co x^ splitsen we E -^ in twee deelen en naarmate k = 1 1 X k = 0 of ksj^O (mod. n) is. Nu is: randpunt, zelfs zal, als Xo = e V = V _ ^ W ^V" , V n Noemt men /3" = y dan vindt men:Lim{l -p) (1 -/3")Zi = -Lim(l-/j"):i:i = 1 co V*= -Lim(l -y) X -r^- waarmee de nadering lot het randpunt teruggebracht is totde radiale nadering van het punt -f 1. Nu is voor O < y < 1.co â€žv ro V (1 _ y) V â€”I_= V_y^ co

VÂ? 1 v=i 1 - y\' v^i 1 -f y -I- ~7:ydus: co Lini (1 â€” El > 7 Lim log ~â€” en dus cc.n y->i 1 â€” y



??? Kunnen we nu aantoonen, dat Lim X-Â?-3Câ€ž eene grens A blijft, dan is de stelling bewezen. Is k^O(mod. n) dan ligt Xo\'\' in een van de (n â€” 1) andere hoek-punten van eenen regelmatigen n-hoek, waarvan het eerstehoekpunt in 1 ligt. Voor O ^ g 1 is er altijd eenepositieve eindige grootheid h aan te wijzen, zoodat | 1 â€” x\'\' | ^ his. Vpor n = 2, is h = 1, is n > 2 dan is h de lengte vande loodlijn uit het hoekpunt 1 op den straal naar heteerstvolgend hoekpunt neergelaten (ligt x\'\' niet op dien eerstenstraal dan geldt de ongelijkheid ii fortiori.) 2 - Dus h = sin â€” en daar n eindig is, al kan n groot zijn, 00 l^^lk<Lim(l-^) = X -> X. Ic = 1 11 xo\' is h ook eindig.Nu is echter Lim x-^r, 1 = Lim f- = ^ = A (eindig), waarbij voor het gemakkelijk som- I x l\'\' meeren in de reeks nog eenige termen te veel opge- schreven zijn. Â§ 4. Voor Lamberlsche reeksen geldt de volgende eigen-schap van Franei. \') afkomstig, maar hier iets algemeeneruitgesproken. Wanneer de co??fficlenten hk zoo gekozen zijn, dat voor een bepaald geheel getal n, alle n reeksen^^^convergeeren (/ =0. 1. 2.

3.......n â€” 1), dan is, wanneer n\' 4ti ^ , .. \' hu x" co v en n onderling ondeelbaar zijn en men stelt xq = eradiale nadering: (1) Lim 1 hk xo/k = l 1â€”x^ 00 Ij Fhanel merkte zelf al op dat, wanneer v â€”^ van nul ver- V = 1 n v schilt, Xo een singulier punt van de Lamberlsche reeks moetzijn, want de linkerkant van (l) moei dan den vorm O X / 1-- \\ XoJ beneden Â?)"Su71a~th6orio ticÂ? 8Â?5ricÂ? Mnlh. Ann. IJtl W (1890) p. .V29-540.Â?) Knoit. ?œber Lambcrtscho Kcilicn Crclle. Htl. 14\'J (1013) p. 283. !i n v



??? aannemen. Is dit voor od veel verschillende waarden van nwaar dan heeft de reeks ook od veel singuliere punten. Dit is zeker het geval als alle bk > O zijn en 2 y convergeert. De eenheidscirkel is dan singuliere lijn. Hij is ook convergentie-cirkel; dit spreekt niet vanzelf, S bk zou kunnen divergeeren,de convergentiecirkel is dan dezelfde als van ^ bk x"^. Maar als S Y convergeert is L???????? y ^ 1, dus L??^ bk ^^ 1 en omdat Sbk divei-geert is L??m bk ^ 1. Uit beide be-trekkingen volgt L??m iK bk = 1. Nu convergeert S bk Xk voorwaarden van x, die Lim iK | bk Xk |< 1 maken of voor | x | Voor bk = 1, is X ^ niet convergent, daarom moest voor de reeks van L. een afzonderlijk bewijs gegeven worden. Ditis het eerst gedaan door C. Hansen, erg ingewikkeld; heteenvoudig bewijs van Â§ 3 stamt in wezen van Landau. in\' â€” Om de betrekking (1) te bewijzen, stellen we weer x = pc "en splitsen de reeks weer in twee stukken en naar-mate k al of niet = O (mod. n) is, terwijl we voor /s" y zullenschrijven. Eerst bepalen we: co Lim(l V, =Lim(l - p)!, b / t n v = l lâ€”p />->! A

â€”?’3 v=l 1 -p Lim (1 - y) V b.., = Lin. Â§n y-^i v=i 1-y\' y->iT=i nv 1 y y*........y^ \' M D?Šmonstration de l\'impossibilit?Š du prolongement analytique do las?Šrie de Lamheut ct des s?Šries analogueÂ?. Oversigt over det kongelige Danske Vidcnskabernofl Selskab Forhand-lunger (1907) p. 3â€”19.



??? Om deze limiet le bepalen, mogen we in de reeks rechts5\' = 1 substitueeren indien deze reeks voor 0<Cy<Cl uniformconvergent is en ook voor y=l convergeert (Abel). Het laatste is gegeven, voor het eerste schrijven we = Â?nv i /3nv.Uil de convergenlie van volgt dan die van Â?nv en van X (3uy. Noem nu tv = j y^yil^......y v -1 moet vooreerst de convergentie van Â?nv tv en van ^nv tvaangetoond worden, dus slechts bewezen, dat tv monotoon afneemt en dat ti kleiner is dan eene constante.\') Nu is: V y V _ yv 1 _ y V 2..........ylv \'\'~\' y ....y^-Od y\'-i .....Yr Dit is zeker positief, want ieder der v termen y^ ^y ^*^,.....yÂŽ^ is kleiner dan y\'\'. De reeks tv neemt dus steeds af en voor v = 1 is ti = ^ dus < 1 . De reeks w-j^ tv conver-geert dus, mits 0<y<l . Daar in dit interval tv (y) steedspositief is, convergeeren de reeksen Â?nv tv en /3nv tv uniform -) en hieruit volgt hetzelfde voor de reeks tv. want als voor: (Xi g co f Ai^ m, I Â?â€žV tv I < 5, t\'U voor A ^ nu, | ^ ^\'Â?v tv ! < (waarbij e eene willekeurig vooruitbepaalde kleine waarde heeft), dan is als aan de grootste der waarden

m en mi:co co ::: anvtv i::: i3â€žviv <f.\' De substitutie y=l in de limiet is dus geoorloofd en geeft: .. ,, ^ bâ€žv _vy;;_ . ^ l)â€žv Lun ( _ ??) V, = Lun ^ -, , ,-= L â€”^ ^ y-\'-\'v 1 nv 1 -f y y^-f-.......y"-Â? â€žy Om het bewijs te voltooien, is het voldoende aan le toonen, \') UuoMWlcn Â?Infinito SerieÂ?Â? p. 48. Â§ 19.\') IlRoMWicn Â?Inrinite SerieÂ?, p. 113. Â§ 44. \'2,



??? dat Lim (1 â€” Sa =0, dus dat voor iedere waarde van^ = 1. 2. 3----n â€” 1 bij radiale nadering: 00 x"*\' l s bnv I , = O Xo/V = 1 1 â€” xnv \' \' 1â€”^ Lim \'O â€? \\ Noem nu = dy zoodat S dv convergeert, dan is te nv c bewijzen ,. ^ , (n V O xnv / (1 _ Lmi E dv -â€”-r------- = O v=i 1 â€” xnv / Voor X = Xo dus p=l, is de waarde der reeks nul; hetis dus weer genoeg te bewijzen, dat zij in hel interval0<C/\'<Cl uniform convergeert. Nu is: 1-x\'yv = V d (nv /)y- 1-yv v^i \'l y y" ...y^-M-x\'y" l - p- ~_(i ^ (nv O _ 1 V = /\' i-fy-f y2 .,.yv-ir_j.Â?yv- Ten einde de uniforme convergentie van deze reeks aan totoonen, bewijzen we die eerst voor de reeksco (r, V 4- /) y* E dv ____â–  â– â–  I --en daarna voor de bedoelde V-! 1 i- y y\'\' . ..y\'\' \' ] _ yV reeks, die ontslaat door iederen term met â€”le ver- 1 â€” xy" menigvuldigen. Het eerste kan gebeuren als bij de reeksE ~ tv, voor het tweede is het kenmerk van Ahel voor reeksen met complexe termen noodig, zooals we dat eenigs-zins uitgebreid hebben voor het bewijs in Â§ 1. We toonen dus eerst aan dal <??>v (v) =-^ y"-^ eene monotoon

afnemende functie is. Nu is:(y) _ cp, ^ , (y) _ri(nv /)-n(y y^-|-yÂ? ..r)l _ = yMn(v â€”y-y=\'-y3....yv)-f / j___ (I i-y y^^ .-.r-\'jd y-f y^Â?-!- ....yV)\'



??? Voor O < y < 1 is cpv (y) â€” i (Y) zeker positief, cpv (y)neemt monotoon af, voor v = 1 is 0i (y) = ^^ ^ < 2 (n O 00 en daar S dv convergeert is aan alle voorwaarden voor de V=1 00 uniforme convergentie van S. dv (pv (y) voldaan. 00 \'yv ? = i , _yv Voor de uniforme convergentie der reeks IS dv (pv (y) j-â€” T= 1 1 A 1 â€” y\' 1 â€” yy \' conver- X\' yV I I â€” x\' y" GO is nu noodig dat V=1 geert en eene som heeft die kleiner is dan eene eindige van y onafhankelijke waarde. Ook moetzijn dan eene dergelijke vaste waarde. t-y 1 kleiner (l-x\'y^)(l-x\'yv 1) 1 â€”y\'- 1 - y^ \'1 _ x\' yv "" 1 â€” x\'y V 1 Alle punten x\', x\' y\\ x\' y ^ \' liggen op de stralen vaneen regelmatigen n hoek, die een hoekpunt in x = 1 heeft;op den straal naar dit hoekpunt ligt geen der bedoelde punten.Evenals in Â§ 3 kunnen we aantoonen, dat | 1 â€” x\' y* | enI 1 _ X\' yv 1 I altijd grooter zijn, dan eene waarde h (h = sin^ als n > 2, anders 1), terwijl | 1 - x\' | < 2. Zoo vindt men: <175 yMl -y) en dus 00 \'1- v-^l 1 1 yv(l-y)(l -X\')(1 -x\'y\'\')(l - x\'yv >)1 â€” y" I ^yv 1 c) co 0 0 c\'vV 1 r 1â€”x\'y1-y < - is hiermede de

uniforme con-1â€”x\'y h vergentie tier bedoelde reeks aangetoond en tegelijk bewezen,dal Lim (l -/j) Ii:Â? = 0. - /j) Zi = Â§ ^ volgt hieruit de v=inv Daar ook In verband met Lim (1 â€” /j) juistheid van (1).



??? Â§ 5. Ook voor het geval, dat x niet radiaal tot Xo nadert / 1 - â€”Xq/ Daarvoor maken we gebruik van eene stelling, die door Appellgevonden en door Pringsheim voor complexe waarden uitge-breid is. Appell bewees, dat wanneer X ak x\'\' en X bk x\'^den eenheidscirkel als convergentiecirkel hebben en voor x = 1 00 X akx" divergeeren dat dan Lim^^^^-= Lim ^ mits deze laatste ^ U k k->Mbk Dk x" k=0 limiet bestaat. Appell stelde zich voor dat x langs de reeele as tot 1nadert. Pringsheim breidt dit uit voor het geval dat x doorcomplexe waarden tot 1 nadert. Hij voert daartoe het begripuniform divergent in, en noemt de reeks bk x^" uniformdivergent bij x = -f-l, wanneer het mogelijk is binnen hetconvergentiegebied bij 1 een gebied af te zonderen, b.v.een gelijkbeenigen driehoek A met eindigen tophoek, met dentop in -j- 1 en de beeiien synnetrisch ten opzichte van dere??ele as, zoodat (en minste binnen dit gebied is de waarde van Lim x->10 x\\ , x\'\' S bk -?‡ te bepalen. k = i 1 â€” x" ^ a > O, waarbij Â? eindig is. co S bkx-Â?k = 0 co X I bk x"k = 0 Na deze afspraak

bewijst Pringsheim: Wanneer ]Â?akX^ enX bk x\'\' den eenheidscirkel als convergenliecirkel hebben enbeide voor x=l divergeeren, terwijl de tweede reeks posi-tieve co??fficienlen heeft en uniform divergeert, dat dan als M^x bk ~ ^ ^^^ nadering van x tot 1 langs \') Ces?ŽIro: D?Šiuonstralion d\'un th?Šor?¨me do M. Aitell. Math?Šnis1893. p. 241. Ook Bromwich: Infinit?Š Bcries p. 131. Â§ b2. Ex. 1 en 2. Prin^kheim: Ubcr don Divcrgenzcharakter gewisuer rolenzreihen.Acia Math. Ud 28 p. 1â€”30 (1904).



??? 00 S ak yi complexe waarden, mits binnen A: Lim-â€”g. k=0 De voorwaarde, dat Lim bestaal, is nog iets algemeener te maken, want stellen we ao = Ao, ao ai == Ai enz. en eveneens bo = Bo, bo bi = Bi enz. dan is het al voldoende GO ^ akx"^ dat Lim ~ bestaat; is deze g, dan is ook Lim ----= g. k co Bk * \' bk x"\' k^O Dit is werkelijk eene uitbreiding, want uil Lim \' =g volgt k->\'00t)k Lim ^ = g maar hel omgekeerde is niet altijd waar.k-foo Bk Â§ 6. Mei de stelling van PiuNfiSHEiM kunnen we nu aantoonen,bkk dal wanneer ^(n\' en n ondei convergeert\') en wanneer xo = e - "\' â€ž ing ondeelbaar) dat dan bij willekeurige na-dering, mits binnen A (O) LimS bkA! = X-.X, \\ xo/k = i 1-xM v^invStelt men x=.xo t dan is: Lim 5 f, ,, ! = Lim S (1 _ l) Â§ bk ^^ ^-^^iy Xo/kri \'l-xM \'k 1 1-xon We ontwikkelen nu alle breuken in reeksen cn vereenigen alle termen met gelijke machten van xo t, dan gaat de reeks 00 y k f k 00 QO bk - over in ^ ak Xo â€?\'r waarbij ak = b,i. k = l 1 â€” Xo "l" k = l .11 k Men vindt zoo ^ ) l(akXo\'\')t\'\' (3) Utn (1 - l) V (a, â€žo t" = pi"/ - ""-bo ^ â€? t 1 k = 1 \' \'

â€”\' V ^k _ k = 0 \') In tegenstelling met het geval vnn radiale nadering moet do reeks nu absoluut convergeeren.



??? GO Nu heeft de reeks E tk positieve coefticiepten en is voork = 0 t = 1 uniform divergent, want: 1 00k=rO 1 â€”t 00 SitMk = 0 1 _ l-|t|~ ii-tr 1 -iti Teekent men nu in A ( 1) den bedoelden gelijkbeenigendriehoek ABC en neemt men binnen dien driehoek een punt P omt te bepalen, dan is 1â€”lt| = OAâ€” OP en| 1â€”t l = PA dus l^zlll _0 A â€” OP ggg^ I 1 â€” 11 PA punt binnen den driehoek oneindig klein kan worden, dus steedsgrooter is dan eene eindige grootheid ?„. Slechts als ZBAO = = 90" zou ^ ^ ~ ^ ^ tot nul kunnen naderen. De tophoekP A moet dus kleiner dan 180*^ zijn; naderen langs den conver-gentiecirkel is uitgesloten. We mogen (3) dus met de stelling van Pringsheim berekenenen vinden: _Lim JL" ^\'o\'\' ........ak Xo k-^OO - , co E bkTk = i 1 â€” x ..V We maken nu gebruik van de eigenschap ak = E bd en vinden: d I k ai Xo a2 Xo^ -}- as Xo\' ..............ak Xo = b, Xo b, XoÂ? -f b, xo^" ........................bl Xo" â€? k b2 Xo\'\'  bz Xo\' ..............b?? (xo^) k 1)3X0=Â? 1)3X0" 1)3X0Â? ...... b8(Xo\') ^ ................. k X bâ€ž Xo" bâ€ž Xo-" bâ€ž xo^" .........bn(xo") "

................... X bvD Xo\'" bvâ€ž XoÂ?"" bvn Xo\'"" .....bvn (Xo")



??? Vestigen we de aandacht op de gemerkte rijen, dan zijn defactoren, waarmede de b\'s in die rijen vermenigvuldigd zijn, alle 1, de eerste van die rijen heeft vn , termen, de tweede n zoodat we voor de som van alle in \'t algemeengemerkte rijen vinden: k nV V = 1 vn en dus is: (ai Xo 32 Xo" .....ak Xo ) â€” â–  V = 1 klâ€ž bvâ€ž f = (5) vn waarbij in het = b, \\-^ â€”....... 1 â€” Xo 1 â€” tweede lid geen termen mogen voor komen, die sommenzijn van reeksen met XoÂ°* als reden. De modulus van heleerste lid is kleiner dan de som der moduli van het tweede.De punten xoi* liggen in de hoekpunten van een regelmatigenn hoek in den eenheidscirkel beschreven, maar hel hoekpuntX = 1 komt niet voor, omdat de reeksen met reden xo"* overge-slagen zijn. I 1 â€” Xo"\' I heeft dus als minimumwaarde de zijde van den regelmatigen n hoek = 2 sin Nu is de omtrek van een regelmatigen veelhoek grooter dan de middellijn dus 2n sin - > 2 en daarom | I - xqP I > j:Â? Ieder der coemci??nten n u van de b\'s in het tweede lid van (5) heeft dus eene modulus ll_Xol, 2 _ n 2n De som

der moduli van het tweede lid is dus lb V=1 1 - XO â– Xo\' 1 waarbij do ongelijkheid nog versterkt is, door bn, ban , die er niet bij behooren er ook bij to tellen. Men vindt als resultaat:



??? vn (6) |(aiXo-f a2Xo^ a3XoÂŽ ........akxeÂ?^)- S k < n z v= 1 (7) n 1 k v^i k bvn V n n k <- S |bvl.k V^:^ 1 \\l n ^ ^ n Hel tweede lid splitsen we in - X i bv | en - X lbv| k V = 1 k V y-g en nu blijkt de limiet van beide stukken nul te zijn, van heleersle, omdat de reeks zoo weinig termen heeft, van heltweede, omdat de termen zoo klein zijn. Want is G eengetal, dat voor iedere v grooter is dan | b1 | dan is: Lim ^ X I bv l< Lim G = O k -Â?â€? 00 V = V k en dit is nul omdat volgens dc veron- k-Â?-00 k v\'^1k n ^ Verder is Lim- Z |bvl=Limn X bv I of: ai Xo 32 xo^ a^ XoÂŽ ......ak xo\'\' k Lim n VV = Vk convergeert. V kl derstelling Hierdoor vindt men uit (7): (8) Lim ^^  = Lim i v k->CO k k-fOO k v = l v n Wanneer nu ?? ^ ?? ^ 1 dan is:k ( k Lim ^ V h^,, lt-*co K v = l k -?– = V nk = Lim 7- X bvn k->oo K v??=J V n 1  = Lim X â€” â€” Lim p Vk-Â?-ao v=t vn k-fxk v=:i



??? <Lim,- Z |bvn|<Lim| S ibvl=0k V = 1 k->-oo k v = l Nu is Lim bvn?? kv=i t->-QO zooals juist bewezen is, waaruit volgt: fk k 1 "Lim -r X bvn k->oo k v = i = Liâ€ž, v> _kv n k->oo v = i v n Lini ^ a2 Xo\' -4-.....ak Xo\'\' _ ^ zoodat (8) overgaat in: (9) en we met behulp van (4) vinden: \\ \\ ^1 - ^ b:: bk x" = V T = 1 V n Lim ..k Xo/k=l 1 â€” X Â§ 7. . Riet behulp van (6) is een iels algemeenere voor-waarde voor de niet-voorlzethaarheid van Lamberlsche reeksenop le stellen: Eene binnen den eenheidscirkel convergeerende Lamberlschereeks met positieve co??ffici??nten stelt altijd eene niet overdien cirkel voorl le zeilen functie voor, wanneer voor on-eindig veel waarden van n do betrekking geldt: k i: b,Lim â–  = O (10) k->00 j. V hv"nv^kVn Omdat bk positief is volgt uil (6): k n I ai Xo -f aj Xo" ----ak xi â€” ^ bvn v = l Jl V n <n bv of: V=1 k k I) . k . n r^l vn v=l k i: 1Â?=1



??? (11) I ai Xo 4 a2 xo\'\'\' .... at xo\'\' - k Z â€” v=ivn Z bvn4-n Z bv = (n4- 1) Z b.. V = 1 V = 1 T = 1 k Z bv V = 1 of <(n 1) ai Xo a2 XQ^ 4-.....ak xp\'^ n k Z Jvn k Z v=i V n v = iV n Laat men k oneindig worden dan geeft dit in verband,met (10) (12) Lim k->QO ai Xo 4" a2 XoÂŽ 4".....ak Xo\'\' = 1. kn k V v=iv n bvn Nu stellen we k Z â€” = Dk, dan is Dk>Dk-i en dus v = i V n Dk â€” Dk-i = dk een positief getal. Nemen we bovendiendl = Dl dan is Dk = di 4" d2 4- da 4".........dk en zal < Lim Dk = co , want uit (10) volgt dat k Z â€” oneindig groot k->Qo wordt. Men heeft nu: V n co , .Z (akXo\'\')t\'\'k=l___ Z dkk = l Limt-Â?-i â€” T i.Â? Xo4- a2 Xo\' 4- ?œLk Xo\' = 1 (volgens 12). -Lun k->oo co Nu is Lim Z dk t\'\' = Lim di t 4- dj 1Â? 4-......dk t" = co t-fl k = lQ0 t-*! dus moet Lim Z (ak xo\'\') t\'\' ook oneindig worden: Maart->i k = i ÂŽr â€? ^ CO jjk Lim Z (ak Xo\'\') t\'\' = Lim Z bk ;-r dus is Xo een singulier k=l k = l 1 â€”x"^



??? punt van de Lamberlsche reeks, waarmee de niet-voortzet-baarheid aangetoond is. Niet-voortzetbaar is dus eene Lam-berlsche reeks wanneer: 1Â° convergeert. ^ bk k2Â°. bk = 1, want dan is Lim-^ = Lim -------= 0. nvjk vn n n^kV een nieuw bewijs dat de reeks van L. zelf niet-voortzetbaar is. 3Â°. bk = 0 of 1, naarmate k een priemgetal is of niet,want dan is: k Lim â€”= Lim = O, voor alle ondeelbare n. k->QO b^ k->co J. nv^ k V n n De reeks â€”waarin pk hel k\' priemgetal is, isk = i i_/k dus niel-voorlzelbaar. 00 v\'k Ilelzelfde geldt voor de reeks , waarbij ci cÂ?.. k I 1 _ X willekeurig aangroeiende getallen zijn, voldoende aan y,â€ž = ?? waarbij c(m) het aantal der ck beteekent, m 00 ni waarvoor k ^ m is. ij x\\ x\'\'Â§ 8. De waarde der Lim 1 - *->â€?*, \\ Xo/ k = 1 1 â€” X zullen we nu onderzoeken, wanneer = f = en y irrationaal is. Eenig idee hierover kunnen we krijgen, door de coGmd??nten bk zoo te kiezen, dat in (2) te bere- kenen is en daarna n geleidelijk oneindig te laten worden. 1 k^ 1Voor bk convergeert y = - (2):



??? co; y v=ivn \\vn 1 /1 Lim k?¨i k^ 1 - x\'^ Xo 1 co 1 1 1 Dit nadert voor groote waarden van n tot nul, het vermoeden ligt voor de hand dat voorl=e^ ~\' " Lim ] v -i - \' 00 1 1 = 0. f/k = ikMâ€”x" Knopp heeft aangetoond dat dit vermoeden juist is en dat delimiet zelfs nul is voor iedere waarde van bt mits 2 I bk | con-vergeert en X radiaal lot f nadert. Hij breidde daartoeeerst de stelling van Appell en Pringsheim (Â§ 5) uit. Evenalsin Â§ 5 denken we ons weer een gelijkbeenigen driehoek metden top in -f 1 en zoo dat ten minste binnen dezen driehoeky I xM f^ g ?Ÿ i?Ÿ eindig). Nemen we nu oneindig veel reeksen Z ak Wx*\' (A=1.2.3.....), aoW 4- a,U)4-......ak â€” =ex k 1 terwijl voor iedere A bestaat: Lim k-Â?-oo --g; k 1 en er telkens een getal k^ aan te geven is, zoodat:aoW-f .........ak(^) < ^ ^ ?Ÿi voor alle ^ ^ k; terwijl k;. =Am en f eene willekeurig klein le kiezengrootheid is, en wanneer er bovendien eene constante H be-slaal, ^oodal voor alle K en A aoMH- ........a^iX) k T ^^ = I < H^ k 1 dan bewees Knopp\'), dal er met den top in -f 1 een drie-hoek A met basis 2c zoo aan te

geven is, dat voor alle x 2c in een driehoek A, met de basis ^ A co (1-x) Â? akWx^-g^ k = 0 Â§ 9. Deze stelling van Knopp zullen we nu op de Lam-berlsche reeks toe passen. Daar 2 I bk I werd verondersteld ?œber Lambertsche lieihen Crelle lid 142 (1013) p. 283.



??? 2ri - bk en dus is ook voor te convergeeren, doel het ook S complexe nadering lot xo = e "" " volgens (2) co = V Lim v=i vn 1--- \\ Z bk Xo/ k = i 1 â€” X* We moeten nu nagaan hoe snel deze functie lot hare grens-waarde nadert, wanneer xodus n telkens verandert. Door de substitutie x = Xo t. wordt het naderen lol het randpunt Xo over- 00 gebracht in hel naderen tol 1, terwijl de reeks ^ bk - k=l 1 â€” ^ 00 overgaat in E (ak xoM l\'\'. Beschouw nu de oneindig vele n\' reeksen, die voor alle onherleidbare â€” ontslaan, gerangschikt naar de grootte der noemers, dan is (9): ai Xo aa Xo\' 4-.....ak Xo^ _ ^ bÂ?n iT-i-??.........= - vÂ? 1 1Â° Lim 00 Noemt men Z 1 bk | = B dan is volgens (11): v= (ai Xo a2 Xo\' -f----ak xo\'\') ~ ^ ^ "Ti? <(n-f 1) S |b.|<(n-|- 1)13. V = 1 (lus: 1 (a, Xo aÂ? xqM- .... ak xo^) â€” (k -f 1) ^^^ â€” k <{n-f l)B-f b, <(n 2) B. V v n a.jco aj x^Â? -I-.....ak Xo" __ of: bvn cc V 1n V n ^ (n 2) B^ k-fl\'



??? Nu is:Lim (k 1) k = oo g Lim (k 1) S V n V n 1 1 co ^ Lim (k 1) sk->00 k 1 oov k n = Lim k->.oo 1 1 en dit is nul omdat S i bv | convergeert. 00 (k 1) Ek bvn De vorm heeft dus eene grootste V n 1 waarde M, zoodat: ai XQ 32 XQ^ ----ak XQ*^ k 1 ~n (n 2) B M gn < k 1 ^(n 2)B M_k l - (3 B M)< k 1 â€? n ^k 1Neemt men 3 B -f M = N dan is:20 fni ai Xo aa xo^Â? .....ak Xo\'\' Neemt men eindelijk een willekeurig klein geta N. k lf > O dan kan men daarbij eene waarde van m kiezen, zoo groot, dat- < ^ en dan is voor alle n en k ^ kâ€ž = m n: ai Xo 32 xâ€ž2 -f.....ak Xo\'\' - Bn , < k l <="\' 1 ^ 1 -I- Aan de drie voorwaarden in de vorige paragraaf gesteldis dus\'voldaan en daarom bestaat er bij 1 een driehoek Amet basis 2 c zoodat bij iedere n co cc K (1-t) E (akKo")!"- E â€”k=i k=ivn mits t in een bij 1 te plaatsen driehoek An \'i^et basis 2 c X ligt. Stelt men nu t = ^ dan volgt hieruit, dat bij voor- 3Â°. " Xo uit bepaalde kleine f > O er altijd een driehoek A "iet basis2 c zoo aan te geven is, dat:



??? co u Xo/ k = i 1 â€” Y=i vn wanneer x in een bij het randpunt Xo = e" ~\' " geplaatsten 2 c driehoek An met basis â€” ligt. Â§ 10. Hieruit is af te leiden, dat als ^ = e \'\' ir irrationaal)en als X | b^ I convergeert dat dan bij radiale nadering vA 00 VI. = 0. \'t Is daartoe voldoende Xk Lim n I â€” ^ bk-^---V aan te toonen, dat bij eene bepaalde kleine f > O de geza-melijke driehoeken A,,, hoe klein ook de basis 2c van A uit-valt, toch ieder stuk van den naar ^ voerenden straal in debuurt van f geheel en al, dus zonder ?Š?Šn punt over te slaan,bedekken. Wegens de concaviteit van den cirkel is het al voldoende te laten zien, dal wanneer men op de lijn O......1 in r eene loodlijn opricht, dat dan in de huurt van y alle puntenvan deze lijn liggen in een of meer der naar denzelfden kant in de punten ^ geplaatste driehoeken A,,. Al deze driehoeken zijn gelijkvormig, hunne bases zijn evenwijdig O.... 1 en gelijk hunne tophoeken zijn 2(i)oUo<^y Daar de omtrek van den cirkel tol de lijn O____1 ingekort is, zijn alle afmetingen in de richting van die lijn in de zelfde verhouding te ver-kleinen,

zijn de tophoeken kleiner dan in den cirkel, zijn do bases niet - maar â€” = â€” . De grootte van e bepaalt c enn TU n dus c^ We ontwikkelen nu r >Â? eene kellingbreuk, dc benaderde breuken zijn: ...... â€”.....Â?en beschouwen ni ng ns de, in de punten n^, gezette driehoeken An,,, kortweg A". Den\' opvolgende punten â€” liggen telkens aan weerskanten X



??? van 7, hun afstand tot r \'s: n . Is dit < â€” 7 ^ n â– < â€” \' dus dan de halve basis van den driehoek A\'^, dan reiken deze driehoeken telkens over de loodlijn heen. Dit gebeurtdus zoodra nâ€ž i ;> voor alle u\'s grooter dan eene be-paalde is het dus zeker het geval. Onder aan de loodlijn laatieder der driehoeken nog een stuk onbedekt. De grootte van h" dit stuk is gemakkeliik te berekenen. Men vindt â€” waarin h. de hoogte van den oorspronkelijken driehoek met basis 2c\' is. Hel onbedekte stuk is dus â€”---Hel ^ " /\'t n/i 1 zal dus zeker kleiner zf^n dan de hoogte van den volgendendriehoek, wanneer , - â€” <\' â€”^^â€”of nÂ? <[ -r. Van eene- bepaalde waarde van /x, dus vanaf een bepaald punt zullende opvolgende driehoeken over de loodlijn in y heenreiken enzal de hoogte van den volgenden driehoek grooter zijn dan het doorden vorigen vrijgelaten stuk, daarom zal ieder punt der lood-lijn, yan eene bepaalde hoogte af, minstens in een der drie-hoeken liggen en is voor ieder punt der loodlijn < f, waarin n de noemer â€”7 k = i l â€” x\'\' v=i vn n/a behoorende bij

den driehoek A\'\', waarin hel punt ligt, is.Nu wordt n steeds grooter naarmate hel punt lager komt, met het toenemen van n, neemt X af, want V v=i vn , = i vn = - X en daar S I br | convergeert is ^ zekern v=i V ^ V eindig en nadert voor toenemende n tot nul, des te sterker 1 ^ bvn , - 2/ â€”, waaruit dus:n v=i V \'



??? Â§ 11. Landau O heeft eene kortere afleiding van dit resul-taat gegeven en daarbij de voorwaarde: Z I b^ | convergent, door eene algemeenere vervangen. Hij onderzocht eerst wan- 00 neer bij eene willekeurige reeks Z Ckt^de Hmiet: 00 Lim(lâ€”t) S Ckt\'\'=Ois. Nu is deze limiet gelijk aan;1->1 k=l u v ik k^l .... c.-l-cH-..........Cj. ^^J^ Lim OJi->i V tkk=0 y 1 1 Lim 1 â€” t ~ /ix 1 1 l 1 Dit moet nul zijn, dus moet G(y)= S Ck bij deeling door y lot nul naderen, wanneer y oneindig wordt, of volgens denotatie van Landau:(13). C(y) = o(y). Stelt men nu weer in de Lamberlsche reeks x =Â? f l dan is: \' v\\ co vk 00 , u VI,, =Lim(l-t) akf^t". k = l 1â€”X" l-Â?.l k = l In dit geval is dus C (y) = ^^^ak I\'\' Â?n moet men de be-trekking (13) slechts aantoonen. Nu is C (y) = l*" ^^b,,.. Deze dubbele som is nu le bepalen, door eerst alle machtenvan ^ le sommeeren, die bij eene bepaalde b,,, behooren endaarna de sommalie van m = 1 lot Â?n = y uit In voeren. y L"iJ Men vindt: C(y)= X b." m = 1 q = 1 Z Ck "1\' Nu is: 1Â°. I S ^ q = l [3 ^ enm 20 i vqr=l 1 1 - Â?) Sur Icrt H?Šriw (lo Lamukkt.

CompUÂ? Rcndus do l\'Acad?Šmio dwScienceÂ? t. lf)6. p. 1451 (1013).



??? Nemen we nu voor z een geheel getal < y, terwijl y ^ 2,dan is: (14) |G(y)| ^ S if^l y S m = l I 1 â€”? I m = i l m Over het getal z kan nu nog naar verkiezing beschiktworden. We nemen eerst voor z het grootste geheele getal<Cy, dat voldoet aan: Dit is altijd mogelijk, want voor z = 1 is de som linksdeze som groeit steeds aan en het is mogelijk dat een bepaald aantal termen de constante waarde ^ ^ ^ | overtreft, anders is z = yâ€” 1. Wordt y oneindig groot, danis de vorm rechts oneindig groot en moet dus z ook oneindiggenomen worden. Na z zoo bepaald te hebben vindt menuit (14): I 1 â€” ? I in = z 1 m De beide eerste termen zijn o (y), daar tegelijk met y ook z oneindig wordt is ook de laatste term o (y), wanneer convergeert, waarmee levens bewezen is, dal reeds in dezoruimere veronderstelling: / x\\ Â? x\'\'Lim 1 â€” -r M??^ bk -g = 0. Bij de afleiding van (13) hebben we gebruik gemaakt vande stelling van Appell dal voor radiale nadering00 x clcl" , , Lim = Lim \'\'t 1" "\'S-\'l t-^l ^ ^Ic y->.00 I 1 1 ... 1k = o z Pringsheim heeft deze stelling uitgebreid voor naderingbinnen

een bepaalden hoek, maar daarmee is Iegelijk aange- y



??? loond, dat ook voor complexe nadering, mits Z \'-^conver-geert de juist berekende limietwaarde goed is. Â§ 12. De weg ligt nu open om, na het maken van be-perkende afspraken omtrent de co??ffici??nten bk of het irratio-nale getal 7, andere limieten te berekenen. Is bijvoorbeeldZI bk 1 convergent en zijn de partieele noemers van dekettingbreuk, waarin y ontwikkeld kan worden eindig, dan x\\V: x^ _ kunnen we bewijzen dat: Lim 1 â€” -r Z bk- \\ c / k=i 1 â€” X We gaan daartoe eerst de voorwaarde na, waarvoor bij de00 V, Qo reeks Z ck t"\' de limiet: Lim (1 - t) E ckt\'\' = 0. Dezek = i t-Â?.i k = i limiet is weer gelijk aan:,. ....... Lmi ---ttt = Lim --55---------= Lim â€”XT~TT~T 7 t-M (1 â€” t) /Â? 1-Â?. 1 ^ ^^ ^k y=oo ao ai aa ... ay k = 0 Nu is (I_t)V. = l \'/Â?t4-V2=\'/!|^ .... 1.3.5......(2y-n ty 2.2.2...... 2 y! 1 3 2 , , 1 3 5 2 ,Dus ao ai = 2 \'2 \'n\' "" 2 \' 2 2 ^ ^ een bewijs van y op y -f 1 kunnen we bewijzen dat: __ 1 3 5 2y 1 2ao ai as-l-.....2 â€? 2 2...... 2 yl\' en dus Lim ao ai 4" as .....ay = 1.3.5.....(2y-l) 2y l _ ^^ ^ - ^ ]/l 2.2.2........2 y! y " j > - 00 Deze limiet is dus 0{yVi), dus Lim (1 --l)Vi

Z Ck f\'= O l-fl kml als G(y)= S^Ck=o(yV.).



??? Bij de Lamberlsche reeksen is C (y) = E ak terwijl vol-gens (14) ~ m = lll â€” S I m=z l m Evenals in Â§ 3 is | 1 â€” fâ„? | grooter dan de loodlijn uil 1op den voerstraal van neergelaten. Dus | 1 â€” fÂ° | >sin 2 r m y. Zij g nu het geheele getal, dat zoo dicht mogelijkbij m â€?) ligt, dan is dus (15) I 1 -|\'Â°|>|sin2r(m7â€”g)|. Ontwikkelt men y in eene keltingbreuk r = t qi qa qa---- qs____! en noemt men rÂ? = I qÂ? i â€? qs 2----I dan is , , k\'s k\'g 1 r = ! qi q2 qs. â€?.. qs rÂ? !â€? Zyn en de benaderende breuken van deze keltingbreuk, dan is kg i = ks y s kg _ i k H 1 B en 7 = ksk 1 8 1 en dus omdat ks 1 1 kj!ks 1 > (16) kH(kHrÂ? kB_i)\'" kÂ?MrÂ? 1) Volgens de veronderstelling is er nu altijd een getal A,zoodat voor iedere s, qH<A, maar dan is7Â?= IgÂ? li q. Kqs 1 1 <A 1, dus B k\'s 1 > kÂ?\' (A -h 2) kÂ? fr Is nu â€” eene naderende breuk van y, dan ism >- m is ~ geen naderende breuk, dan is volgens eene bekende > -râ€”- en dus in beide gevallen2 m" eigenschap \' m y â€” â€” i > -1 waarbij k eindig is, of | m y â€” g | > â€”, JYJ ! tn * Itl m m waardoor (15) geeft:



??? k 2 cc Tt 1 â€” sÂŽ I > sin 2â€” en omdat sin Â? > ^ mits a < m - m m Hieruit volgt: I C (y) | ^ f E | bâ„? | m y i \' A m = l m = i 1 Stel nu z =[Vy] en splits ook de eerste reeks in tweestukken, dan vindt men: 2 t??T^. . . 2 .... lbâ€ž c) L\' IJ O X y I G(y)|^7 E |bâ„?|m 4 S I bâ€ž, | m y ^ i A*^ I ~Â?41 I â€”- I . ^^ â€? â€?-\'Jll I â€?â€?â€? I J ^^ - m = l m = z l ni A m = l ^m = [V7] I Zm = i 1 CO Daar X bm | convergeert en z en [/ z tegelijk oneindig m= 1 worden, is de reeks in den eersten term eindig, de beideandere naderen tot nul, waaruil: |C(y)| = o(yV,).13. Eindelijk zullen we nog aantoonen dal Lim ^ xV/Â? . x" .- V bk-r- = O, wanneer E ! bk | conver- k=l 1 â€” X* k = l geert en de parlieele noemers qÂ? van de kellingbreuk, waarin 7 ontwikkeld kan worden vanaf eene zekere waarde voldoen aan qÂ? < A k, _ i (A eindig). Eerst bepalen we weer de voorwaarde, waarvoor bij00 co V Ckl" do limiet: Lim (l-l)V> Z Ck l\'\' = 0. Men vindtk^l l-fl k==l dan als in Â§ 12 dal Lim "j" f ........= O moet zijn, y-foo no 4-ai-t-aa ----ay waarbij do a\'s de coefllcienten van de ontwikkeling (1 -1) - VÂ?

zijn. , ,, . . 2 5 12 , 2 5 8 3y-l , ty Nuis(l-t)-V3=l-M/Â?l 3 3-2, ..... 3 3-3-.. \'3 ^Tj-â€? â€? 2510 , , __25819ao a, =3. 3-2,2 \'  3 3 3 3!2



??? door een bewijs van y op y 1 kunnen we bewijzen: ao ai az .......ay == 2 5 8 3y 2 1 3 (y 1) 2. 3 3 3 ........ 3 (y 1)! Hiervoor kunnen we schrijven: (y l)-Vs 3(y l)_y 1 2 3- \'h 1 2 1 "" 2 kiil 3kj Dit oneindig product zal divergeeren, omdat S^divergeert. Nemen we den logarilhmus en ontwikkelen de logarithmen der /l 1 1termen dan komt er â€” ^la ^"j" g â€? . Voegt men k=:l 1 â€?y 1 hier Va log (y 1) bij dan wordt dit eindig, daaromLim ao ai aÂ? .... ay = 1 \\ VÂ?iog(y 1) -Vsiog(y 1)1 â€” â€”Ie e 3 k 1 \\ V,l<\'B{y 1) , n / Â? ^3k) ÂŽ \' Lim , , ,vrry^l (y l)V3k=i zoodat: Lim (1 â€” l)VÂ? S cic t\'\' = O als C (y) = o (yV.).t->i k=i Om dit op de Lamberlsche reeksen toe le passen volgenwe de redeneering van de vorige paragraaf. Vanaf eene be-paalde waarde van s is nu qÂ? < A kÂ? _ i en dus 78= I qn 1 â€? qÂ? 2 . â– . â€?! <q9 4-1 1< A kâ€ž 1 = B k\'H. Met (16) vinden we nu: ks^ (rl (BkÂ? ircb~KV k\'. >r r â€”



??? Nu kan â€” eene herleide breuk zijn of niet. In het eerstem > is geen herleide breuk dan is râ€” geval is nr I J V r â€” - > â€”; dus ook > â€”\' m 2 m^ m\' weer waaruit Zoo vindt men weer | m r â€” g 1 > ^ m^ (X>0) Substitueert men dit in (14) dan komt er: Â?) Â? y I bm 1 IC(y)|Sj S lb.|m\' y JÂ? Li\'- m =1 ra = ?? 1 H\' Neemt men nu z = [Â?^\'y] en splitst de eerste reeks intwee stukken, dan vindt men: |G(y)1^7/. X |bâ€ž,| 7ZÂ? i  i Jb^ Nu is s I bm I convergent, dus de som in\'den eersten termis eindig en in de beide andere termen nul, omdat z tegelijkmet y oneindig wordt. Dus: IC(y)l = o(y\'A).



??? HOOFDSTUK III. Sommatie. Â§ 1. Alleen bij reeksen met groote convergentiesnelheidzal men door het samentellen der opvolgende termen zonderveel moeite de som in eenige decimalen nauwkeurig kunnenverkrijgen. ,Een denkbeeld over de convergentiesnelheid kanmen krijgen door de verhouding te berekenen van de restaijj = uâ€ž 1 Un 2 â€? â€? â–  den n term Ur. Beschouwen we nu twee reeksen U = Ui -f Ua -f Us ........(Rest Â?n) en V = vi v2 v8 .....(Rest /S,,) en heeft de reeks u uitsluitend positieve termen dan is 3n Vn4.i Vn 2 ............Vn 1. Lim Lim -^-^--"" T\' . n-*oo Â?n n-coo Un 1 Un 2 ~r...... n->-ao Un mits deze laatste limiet bestaat. Neem nu voor V de reeks:U2 U3 U4 ____dus Vn i = Un^.2, dan gaat (1) over in: Un 2 Un 3 ........_ , "n-fl Lim--.-------X--T;â€” n-)>00 Unxi -h Un 2 "T................"n Noem deze laatste limiet A, dan is dus: / Lim I1- CX5 / U 1 \\ 1 â€” " ) = A of: Lim (Â?â€ž â€” Auâ€ž) = Lim A^n dus: ^ Â?n / n-^CO 00 (2). Lmi -- n->30 Up 1 -A Hij eene convergente reeks kan A varieeren van O tot 1 ; in het eerste geval is Lim â€” =^0, convergeert

de reeks als- VOO u-



??? Â?n het ware oneindig snel, in het tweede is Lim â€” = 1 en con- n-> 00 Un vergeert de reeks oneindig langzaam. Is X nu positief dan kan men dit op de reeks van Lamberttoepassen Un i x" Mlâ€”x") Lmi -=--r â€”-- = X. n->00 Un (l-xÂ° Mx" Daar de limiet niet nul is, zal voor de berekening der somin eenige decimalen nauwkeurig een vrij groot aantal termennoodig zijn. Â§ 2. Grootere nauwkeurigheid is te bereiken door eenebenaderde uitdrukking voor de rest op te stellen of door dereeks in eene sneller convergeerende te transformeeren. Trachtenwe dus eerst Â?n te benaderen. We leiden daartoe eene alge-meene betrekking af door in de reeks: , (IX|< 1) tesubstilueeren x = I _ 4- 1 - X P 1-,p-1 = - 2 vp.P log p 3pÂ? ??p"^ (3). of: \'h log = waarbij ____. 3p=Â?1 3p=Â? â€? ??p=Nu is: 1 plp^-D^p-i p 1 en dus: vp < | \' ^ p-1 p 1Geeft men nu in (3) aan p achtereenvolgens do waarden Ui,uj, us.....Un en telt alles samen, daarbij ^n == â€” â€” . Ua j_ en Vn = Vu, vuj .....Vu. noemend, dan vindt Un men de betrekking:



??? (5) Uâ€ž Vn - /2 j^g _ 1) (U2 - 1) . . . (Un - 1) Â§ 3. Om hieruit den restterm van de reeks van L. te 1 -hx 1 â€” X"^ , . Uk-l 1vinden noemen we Uk â€”^ _ ^ oan is ^^ _ ^ â€”xen (6) uâ€ž = ^ ^ Y^ - xqr^ Sn. (Sn is de som van n termen van de reeks van L.).De reeks van L. convergeert voorx<l, dan is u- = > 1 en mag daarom voor p in (3) ge- 1 â€” X x*" substitueerd worden. Men vindt nu uit (5) en (6): l X 1 â€” of: X Un 1 ,, , 1 â€” X Un Vn = log xn- 1 = V^logX"- â€” 1 X (7) Un Vn = \'h log fl 4- 2 X iâ€” Vn moet nu benaderd worden. Dit kan gebeuren door hetverschil tusschen V = Lim Vu i vm -f-.....Vuâ„? en Vâ€ž te m-^oo benaderen. Bij deze berekening zal tegelijk blijken dat Veindig is. Uit (4) volgt: 00/1 1 2\\ (8) â– Nu is: 1 . (l-x)x\'\' 1 _ d-xjx" ^^ Uk â€” I "" 1 X â€” 2 x"\' Uk 1 1 â–  X _ 2 xk 1J_ ^ (1 â€” x) x*^Uk (1 x)(l-x\'\')\' dus: 1 1.1 1 u"rn"^uk l~uk \'\' \\1 -I-X-.2X . 1 ___ 1 ^ 1^-f-x â€”2 xk l 1-I-X â€” xk â€” xk



??? Nu is 2 X k 1 < xk -I- xk 1 en dus: __1_^ 1__ l x â€” 2xk l^l x â€” xk â€” xk l1 . 1 en dus: en eveneens: _ \'__^_____ â€?x â€” ^xi^^l x â€” xkâ€” xk 1 -t-x 1 Ulcâ€”1 ^Uk 1 Uk (1 â€” x) xk < 1 -f. X â€” xk â€” 1 â€” xk waardoor (8) overgaat in: ^ 1]Uk, 1 (9) V-Vâ€ž<^ E 6 k=7 1 \\"k â€” 1 1 - - X â€” 2 x"^X 1 -XUk Uk-I <i(??_ f6 \\Uk k = n I (.1 _x) (U-Un) ,uâ€ž1 wanneer weU= Lim \' ........â€ž m-fOO Ul U2 Um l 1 noemen. Nu is: ,k j1 -X Â?1 X k=\'n 1 1 - XU- TTn> xn 1 _ 1 l - x" x 1 -X X 1 â€” X UnX" 1 ~l x 1â€”X 1-f-x 1-x"Hierdoor vindt men uit (9) (> \\Un O Un in/ De reeks der v\'s convergeert dus zeker, terwijl de gevon-den betrekking ook kan dienen om de fout te benaderen,wanneer men bij den n"" term afbreekt. Men heeft dan (10) Vâ€ž = V - \' waarhij 0 < ?? < 1. Intusschen moet ^ \'\' 0 Un V zelf ook nog gevonden. Dit kan ontgaan worden door (10)in (7) te subslitueeren en op te merken dat V onafhankelijkvan n is, eene bijzondere waarde van n voert dan tot hel doel.Men vindt zoo1 vnâ€”l of: U Un \'^Sn =\'M0g (l-f 2X ^ l -X



??? Â° xk â€? 1 x, 1 1 â€” x2n l 1 X \\ I X Deze constante = â€” V --,-log 2 is onafhankeliik lâ€”x lâ€”XÂŽ van n. Neemt men nu n= co dan vindt men uit (11). \'"^\'logl/v^J?‰^ const k^l 1 -x"^ 1-xen hiervan (11) aftrekkend: V ^^ _ 1 ^ 1 1/ 1 x <?x2n l = n 1 1 â€”1 â€”X l-l-xâ€”2xn l 61â€”xn\' k Dus: co yk n k n <51 _^_= V _Â?_ _L_ ^ k = i k=i l-x" \' , 1 X 1 X 1 x _ O 1i- j log y 1 X - 2xn 1 6 1 - XÂ?\' Â§ 4. Uit deze formule van CEsano is voor niet te groote X de waarde der reeks snel te bepalen. Nemen we x = 0,1 en wenschen we eene nauwkeurigheid van 7 decimalen danO x2n 1 moet g ^ _ ^n^ 10â€”7, Elieraan is reeds voldaan door n = 3 te nemen. Men vindt dan: c 1 ^ 1 I 1 11 1 5500 _ n 11 11 11 1 i ^ = 9 99  ^^ ^^ ^^ 0. 01 01 010. 0. OOI 001.0.. 0. 000 I 1 1 1 .. = 0. 1 2 2 3 2 4 2 ... De juistheid van deze uitkomst is gemakkelijk te contro-leeren, daar, volgens de fundamenteele eigenschap der reeksvan L., voor x = 0.1 de som van deze reeks in de eerste46 decimalen het aantal deelers van de eerste 46 getallengeeft. (48 heeft 10 deelers, dus is de 47Â? decimaal 3 enniet 2).

(11)



??? Â§ 5. De transformatie van Clausen (inleiding Â§ 2) (i 4- xk\\ is te beschouwen als eene , . Â?n r \' un 1 T . I â€” ~r \' â€? \' - " â€?_^ Lim - =Lim -= Lim  i ---O kil 1-xk k = l \\l-xkj geslaagde poging om de reeks in eene snel convergeerendeom te rekenen, want volgens (2) is: Â?â€ž 1 â€” xn l xn l xn\' 2n l_^ n->c3oUn n 00 Un n->oo Â§ 6. De reeks van Clausen heeft het nadeel, dat alletermen positief zijn. Cesiiro \') is er in geslaagd eene reeksmet gestadig afnemende beurtelings positieve en negatievetermen te vinden. Men heeft dan direkt eene grens voor defout. Uitgaande van eene formule van Cauchy:ÂŽ)co i_qkx_ ^ (â€”l)k qV,k(k i) kSir^qÂ?^" k=o(i-q)(i-q^)........O-q"^) (x-y)(x-qy).......(x-qk-ly) (l-qy){l-qÂ?y)........(l-qÂ?^y) waarbij rechts voor k = 0 als eersle term I genomen moetworden, substitueert hij x = yq" en vindt: 00 1 _ qk n y _ co (- DkqV.Mk ])___ k=i~T-\'q"k7 "" k = i(i (_ I)kyk(_qn-J- 1) (..qn q)......(_qn qk-l)_ X(i_qy) (i_q=Â?y)...................(l-qky) _ oo qV,k(k 1) qV.k(k-l) kii(i-q) a-q\').......d -n\'^) V .,(1 -q") (1 -q"-\')......O -q"-\'^^ O (i-qy) (i-q\'-y)............(i-qi^y) \') Sourco

d\'identit?Šs Mnth?Šsia t. 6. p. 120â€”131 (1880). Ecno olomcntftireafleiding vindt men in do Wiskundige Opgftven van hot Wiskundig Go-nootschap Â?Onvermoeide ArbeidÂ? t. 13. 2Â? stuk.Â?) Comptcfl Kcndus t. XVII p. 530.



??? zoodat: 00k: ^ (1 -q") (1 ......(1 -qn-k ij ki](l-q)(l-q\').................(1-qk) X qk\'xk (1 _qx)(l -q2x)...(l -qkn) Deze formule geldt voor willekeurige n, men mag haar dus naar n differentieeren. ... d 1 - qk n X _ Nu IS 3â€” n . â€”râ€” â€”d n k = 1 1 â€” qk X GO 00 1 â€” nk nx (H) =l0Bq f Idn k=l l-ql^x /n^o = i 1 - qPx Het differentiaalquotient naar n van den rechterkant van(13) is: ^ qk\'xk\'ll^ _qn-p(i _qn)(l _ qn - 1) . . . . (1 _ qâ€ž - k 1) kÂ?l (l -q) (1 -?).. (1 -q^) (I -qx) (1 -qÂ?x). .(1 -qkx)(l -qn^F)" Voor n is nul valt alles met den factor (1 â€” q") weg, blijvenalleen die termen, welke bij p = 0 behooren (in teller ennoemer (1 â€” q")) en vindt men: wn V - q\'^\' xk (1 - q-l) (1 - q-2)........\'(1 - q-k 1) ^ kil (1 - q) (I - q\'-^).....(1 - qk) (1 - qx) (1 -q\'-^x).....(1 - qkx) 00 nVik(k l)vk(.5) ......(i-q>x)- Uit (14) en (15) volgt: (16) I I (_nk l qV.k^k Dxk ^ ^ kill-qkx-kil \' (l-qk)(l-qx)(l-q\'^x).:..(l-qkx) Stelt men x = 1 en q = x dan vindt men de gezochtetransformatie van de reeks van L.: 1 _ qk n X (13) ,n,



??? (17)  ...... â€?x x^Â? XÂ? Door de termen der reeks van L. Ui, U2, Us enz. te noemenkrijgt (17) den vorm: Ui Ui U2 , U1U2U3 .-3 1 - X 1 â€” x^ 1 â€” X (18) U1 U2 U3 .....= De termen van deze reeks zijn afwisselend positief en nega-tief en nemen snel af; zelfs als ze alle positief waren, hadmen nog: tn l U1U2U3.....un i 1 â€” Lnn - = Lim v" ~v n?? 1 TTT^---un 1 â€” U Â§ 7. Daar de termen meestal direkt (x^O. 8) en anderstoch vrij spoedig gaan afnemen, zal de reeks van GEsano metsteeds kleiner amplitudines om de juiste waarde van L (x)heenschommelen. Men kan deze amplitudines nog verkleinen.We merken daartoe op dat: _-t-â€”=l-^uk. Hierdoor gaat (18) l_xk 1 â€”xk 1 â€”xk over in : Ui 4- U2 4- U3 .... = UI (1 4-"i) â€” uÂ? "2 d\'  4-"3)...= u, 4- uiÂ? â€” u, U2 â€” Ui UsÂ? 4- iii "s 113 4- Ui "2 U3\' â€”.....dus: (19) Ui -f U24-U8 4-.....= ui -f- Ui (uiâ€”U2)-Ui U8(Ua -U3)4- 4" Ui U?? U3 (ua â€” U4)......de getransformeerde reeks is dus uitsluitend uit termen der oorspronkelijke opgebouwd. Maarnu is: - xk _ xk-Â?(|â€”x) _Uk-lUic Uk_i - Uk -j - 1 - xk (l_xk)(l_xlt->) uixk-

l Substitueert men dit in (19) dan vindt men: , , Ui Uj U2* Us I Us Ua\'Ui Ui 4- Us -I- Us 4-----= Ui 4- --^s 4- j.3 ---- Do beide eerste termen zijn nog eenvoudig samen te voegen,want:



??? , Ui U2 X I Ui = ^ X 1 _x \' (1 - x) (I â€” X X^ â€” x3 _ _ , J__â€” _ 1 I 3lÂ?2 Ul U2 U2\'\'\' U3 1 _ X â€” x2 x3 \' \' (1 _ X) (1 _ X--\')dus: (20) Ui U2 us ... = â€” 1 x^ U2 U3^ U4 U2 Us U4^ U5 ,175 -.d I \' Dat de amplitudines door dit proces werkelijk verkleindzijn, is gemakkelijk te zien. In de reeks (18) is de som van 2 termen â€” te klein, in de reeks (20) is de som 1 â€” X I â€” X U2 Us , , , , . , ook te klem, maar van 2 termen X \\ , blijkens de afleiding Ui U2 U3 grooter dan de overeenkomstigesom van (18) dus dichter bij de juiste waarde. Â§ 8. De waarde van deze reeksen kan men onderling ver-gelijken door voor ieder eene grens voor de fout op te stellen,die men maakt als men na n termen de berekening afbreekt.Voor de reeks van L. zelf moet dus bepaald worden _ xn 1 ^ xn 2 xn 3 ~ fâ€” xn 1 \' r _ xn 2 1 _ xn 3 \' \' Nu hebben we in (16) gevonden: xq , xq\' xq\' _ 1 _ q X ^ 1 - qÂ? X 1 â€” q3 x ^ â€? â€? â€? qx___q^xÂ?_ , (l_qx) (1-q) (l-qx) (1-q^x) (1 -q\')^ _t^\' {l_qx)(l-qÂ?x)(l-q5x)(l-q=Â?)Stelt men hierin x = qn en q = x dan vindt men:



??? xn l , x" 2 xP 3 â–  ^ â€?J 1 4 â€žn J. V ..... xd I x2n 3 â€” (l-xn l) (1-x) (1-xn l) (??-xn \'\'^) (l-x2) x3n 6 (l_xn l)(l_xn 5i) (l_xn 3)(l_x^ dus: _Un l Un 1 "n 2 , Â?n 1 "n 2"n 3(.1) Â?n-â€”â€”-..... De termen van deze reeks zullen in \'t algemeen weer spoedigafnemen, voor x ^ 0.8 direkt, en daar het teeken afwisselend positief en negatief is, heeft men dan < 1 X Â§ 9. Voor de reeksontwikkeling van Clausen moet eengrens gevonden worden voor: f^n 1 _ XÂ? I \' 1 _ X" -i  (n.3). ....... ^ 1 _ xn 3 tl n Hiervoor maken we gebruik van de identiteit ^^^ aij = n n Z [aii S (aij aji)]i=i j-t i Stelt men hierin aij = xij dan vindt men links: n II n " . 1 â€” X" iV V xij = V (xi -I- x2Â? 4-......xn 1) = V XÂ? i = 1=1 i = l I â€” X Rechts vindt men: Â? (xi\' 2 (xi(i D xi(i 2) ....... xin)) = \' = > . .... " 1 -i. v< _ Q vniâ€”i\' fi Jj-I ir=l 1 - X Linker- en rechterkant gelijkstellend: V ^ V 1  i^l 1 _ x\' \' i = l 1 â€” x\' ??) Uit dezo idonlitoit Ih trouwenÂ? ook do reelcR vwi CLAU8KN nf to leiden.E. Ci??si\\Ro: Sur leÂ? transformations do la Â?<?rio do Lamukkt.NouvelleÂ? AnnaleÂ? s?Šrie 3, t. 7, p. 374. (1888).



??? fa 1 4- vi Â° n \' â€žf. y ^ x^\'_ V ^ .â€” Â?----r waaruit: i?¨il-xi i^il-x^ i = il_x\' (23) s-/3n - S Â?â€ž=a:n-/3n=x" U, x2Â°U2 .....x"\'un. Eene eenvoudige uitdrukking voor (Sn krijgt men door Â?n in een anderen vorm dan (21) le ontwikkelen. Nu verschijnt ccn, als we in Â? , ^ V voor q = zetten. Maark=i 1â€”X. q C/O vk fj x\'^ n\'\' V _yâ€” = y Jâ€”3â€”- hetgeen bliikt als men iederen k^il-x-^q 1 = 1 1-x^\' term van de laatste reeks in eene reeks ontwikkelt, de reeksenonder elkaar schrijft en de kolommen sommeert. Substitueertmen in deze gelijkheid q--x" dan vindt men: ^ ___I ___I____u . = ^ 1 â€” ^ ___L---U........ 1 - (24) of: aâ€ž = UiX" U2x2n U3X=\'n ..... Nu is (23) (5n = Â?n - (Ui X" U2 x\'" -f........Un X"\') waaruit met (24) volgl: (25) =      Maar en zoo gaal (25) over in: u, U2  ..... (26) \' of:  Â§ 10. Voor de reeks van Cesiiho (18) moet een grens ge-vonden worden voor: _ Ul U2----U,, 1 U1 UO . . â€? â€? "n4-2 "1 Â?>2 â€? â€?â€?â€?"ii 3_ We merkten reeds op dal voor x ^ 0.80 dc termen onmid-dellijk zullen afnemen, zoodat men dan heeft:^ U, U2 U3 .... Un 1 (27) rn<

-YZ-^nTl" = ____x.xÂ?... x" _________^ (1 - X) (1 - X\'^) (l - X=\')7.T; (1- X-\'^^ \') ("l - x" \')



??? xVÂ?(" ^ (lâ€” want 1 â€” X < 1 â€” XÂŽ < I â€” x\' enz. Â§ 11. In (20) vonden we de transformatie: Ui U2 Uz^ U3 , U2 Us^ m U2 Us U4\' U5 , L(x) --^...... Voor de rest van deze reeks vindt men evenzoo: U2 Us U4----uÂŽn 1 Un 2 (28) ^n<---= _____X\'\' XÂ? x^. V _ - (f_ XÂ?) (1- XÂ?) d - x^).... (1 - x" - x" l)(n 4) (1 _ XÂ?)" Â§ 12. Voordat we nu de waarde der verschillende reeksenvergelijken,-merken we op, dat ze niet voor alle waarden tusschenO en 1 geschikt zijn om L (x) le becijferen. De termen vande reeks van CEsaao kunnen b.v. aanvankelijk toenemen, want ti>t2, wanneer ^ f(x)= 1 x-2xÂ?-xÂ?>0. Nu is f(0.80) = 0.008 en f (0.81) = -0.033641. Determen nemen dus direkt af als x g 0.80. Voor x> 0.80zal de reeks vrij onbruikbaar zijn, maar zelfs als x < 0.80 isde convergentie in de buurt van 0.80 nog traag. Dergelijkebezwaren heeft men ook bij de andere reeksen. Nu heeaScin,?–Miixn do reeks van Lamheht in een eene half convergentereeks ontwikkeld, welke hel antwoord des te nauwkeurigergeen, naarmate x dichter bij l ligt. Maar zelfs voor x = 0.4vindt men

nog 9 decimalen nauwkeurig, wanneer men 4termen van de reeks van SchlOmilcu sommeert, de reeks vanClausen geeft er dan ook 9. De gebieden van bruikbaarheidvan beide reeksen onlmoelen elkaar hier. Voor waarden vanx>0.4 zal men bij voorkeur de reeks van Schl??milch gg-bruiken, bij waarden van x<?œ.4 do andere reeksen, die wijnu in die veronderstelling zullen vergelijken.



??? ,n 1 Â§13. Nu is (21) Â?n < = _ ^â€ž^ Ij â€”) < want: (1 - x" (1 - x) ^ (1 - x^) (1 - x) >(1â€”0.16) (1 â€” 0.4)>0.4>x.Men zou kunnen denken, dat deze grensbepaling wat ruwwas, maar j^n 1 xÂ° ^ x" ^   3 ..... waaruit Voor /?â€ž vinden we nu uit (26) < x" ^^Â?Â? < x" 2).Ook hier is de benadering als macht van x zoo nauwkeurigmogelijk, want: Un = > x" en dus (25) i3â€ž = x" uÂ? i 1 â€” x"   .......> x(n 1)\' 1)(Â? 2)  l)(n 3)^.....^ ^nÂ? 2n 1 De waarde voor yn (27) is ook nog iets te vereenvoudigen,want sommeert men niet te veel termen, dan zal(lâ€”x)" \'\'^>xzijn. Dit is het geval als (n 2) log (1 â€” x) > log x dus n 2 < , ^ Men vindt dan:log (1 â€” x) 0 Otok 3n (28) is zoo te behandelen. Weer moet (1 - x*) " ^ > xzijn of (n \'2) log (1 - x\') > log x dus n 2 <



??? Men kan hier dus nog wat meer termen sommeeren dan bijra en toch blijft Â§ 14. Volgens deze resultaten geeR voor x = O, 1 de som-matie van n termen vai> de reeks van L. n decimalen nauw-keurig, de transformatie (12) geeft er 2n -f- 1, de reeks vanCla??sen n (n 2), de reeks van CEsano V2 n (n 3) mits n 2 < = 21. 8 dus n < 20. Is n > 20 dan kan men log 0. y nagaan voor welke n, (1 â€” x) " > x^ en vindt zoo datslechts het laatste cijfer onnauwkeurig zal zijn, wanneer19 < n < 42 enz. De reeks (20) geeft Va (n-\' 5n 4- 3) decimalen, mits n 2 <= 299,... dus n < 228. log 0.99 Om 35 nauwkeurige decimalen voor x = 0. 1 te vinden, moetmen 5 termen van de reeks van Clausen sommeeren of 7 vande reeks van CEsano, maar 35 van de reeks van L. Gebruiktemen echter 35 termen van de reeks van Clausen dan vondmen 1295 decimalen nauwkeurig, de reeks van CEsano gaf erdan GG4 en de reeks (20) 701. De reeks van Clausen ver-dient in het algemeen den voorkeur, do reeks (20) is echterbeter om vlug een paar decimalen te vindon. Voor x = 0. 1geeft ?Š??n

term reeds hot antwoord in 4 decimalen, tweetermen geven er zelfs 8, bij meer termen wint de reeks vanClausen het. Â§ 15. Besluiten we dit hoofdstuk met eono afleiding vando asymptotische ontwikkeling van Schl??milch. Hij ging uitvan de sommatieformule van EuleÂ?-Mac. Laurin: \') (29)h [f (a) 4- f (a 4- h) f (a 4- 2 h) 4-.....f (a 4" (q - 1) li)] = r \'"f (u) du - VÂ? ll [f (b) - f (a)] 4- ^ [f\' (b) - f\' (a)] 4" \') Scm-??mu.cn Compondiiim der H??here Analyse Bii II p. 225.



??? ..... 1,2 n 1 /â€?! [f2n-3(b)_f2n-3(3)]_iL^ ?’ S^ â€ž (t-2 n) dt.waarin: S2 â€ž = f2 " (a ht) f2 " (a h ht) ........ f2Â°(a (q-l)h-|-ht) en f(u), f\'(u), f"(u).......f2Â°(u) van u = a tot u = b continu zijn en eindig blijven. 1 1,1 Bg , Bl 3 , Hij nam f (u) = |fu5 ...(mits|u|<2T) Substitueert men deze functie in \'(29), neemt a = 0 dusb = qh en bedenkt dat f (0) = O, f\' (0) = \'k Ba, f(0) = \'I* Bi enz.....f^ " ~ \' (0) = ^ B2 n, (lan vindt men: , 2h â€” 1 2n1 e^-1 1 1 14.1 1 (q-l)V2h = log-â€”^ qh h i.1, B2 h\' 1,2 n-1-1 -I2n. (2n)! E2n-2h^[f2 n - 3 (q,) _ (2 n - 2)! \') Voor getallen van Beunoulli zullen wij do notatie van CEsilnogebruiken, dio deze getallen definieerde door de Â?ymbolische vergelyking(B 1)Pâ€”= waarbij Bj = 1 genomen wordt. Men vindt zoo:B, = 1, B, = V,. B, = V.. Â?Â? = O, B, = - 7,0, B, = O, B. = % enz.TuHHchen rte Â?lotatieÂ? van Serket, SCHl^MnXH en CesJro bcHtaat de betrekking: b" = b""" =(-!)""\' BÂŽ n 3 B 1 Â?n



??? waarbij I2 n = ?’ ^ Â§2 â€ž (t- 2 n) dt.0 Deelend door h en rangschikkend vindt men: 1 1 1 .(q-l)h _ 1 e^-1 .2h - 1 1 h h ^ 4 ^ logq \\1 ^ 2 ^ 3 ^ q ^ [f (q h) - VÂ? 13.] ^ [f"\'(qh) - i B.] .... .2n (q â€?\') - B2 n - 2] - l2n- (2 n - 2)! Kunnen we nu de waarden van f\' (u), f\'" (u) enz. vooru = co vinden dan kunnen we in (30) q oneindig groot latenworden, dus de reeks links tot in het oneindige voortzetten.Nu is: ______ [-^211-3 1,1 1 â– m (e" - l)\'^ â€” m e ??â€ž Iedere vorm met eene macht van (e" â€” 1) in den noemerlevert dus na dii??erentiatie twee dergelijke vormen, ?Šen metdezelfde macht en ?Šen met een ?Šen hoogere macht van(e" â€” 1) in den noemer. Hieruit volgt direkt: A, . Aa , A,â€ž (2n-l)! ,2n , ..... e"-!"^ (e"-l)Â? ......(e"-l)\'-\'" waarin Ai . Aa... Au eindige getallen zijn. Lim f U->00 dus nul en uit (30) volgt voor q oo : 2nâ€”1 (u) is 1 1 3h C. â€” log h O. 1 _ % \' J, _ â–  Ir\' _h \' 4 2!2 4!4 Bl



??? waarin Ssn = f^" (ht) f^" (h ht) f(2h ht) ..... \' Nu is (â€”1)" (p (t. 2n) van O tot 1 positief, kan men dustwee eindige van t onafhankelijke grootheden M en N vinden,zoodat M<S2n<N dan is; (- D" f^M. 4) (t.2n)dt<(-!\')"?’\'Son c??)(t.2n)dt<(-l)n j\'N4)(t.2n)dt O O O of (-1)" ^ M. B2n <(-l)"/\'s2n (t-2 n) dt<(-l)" \' N B^n O want /\'0(t.2n) dt = â€” Ban- O dus S2nCP(t,2n)dt=-B2n[M ??(N-M)]voorO<??<l.O Hierdoor wordt de restterm van (31) \' -(^B2â€ž[M ?–(N-M)] Hel komt er nog slechts op aan M en N le bepalen. Nugeeft de betrekking (â€” jt ^ x ^ s-) 1 X cos x , A cos 2 x _ acos3x 1 ,v ......Voorx = . 1 . ___\\ J_ ,   " 4-__ii_  _ ^ waaruit voor 2 A ;r = u:f(u) = 2 2Â? u\' ^ 4\' TÂ? UÂ? u\' \') ScHL??MiLcn Compendium Bd. II p. 140.



??? wanneer we deze betrekking 2 n maal differentieeren en be-denken dat: (m l)bgtg^j ni 1 cos = (-l)â„?m! D a\' uÂ?dan vinden we: (cos (2n l)bgtg â€”4?r cos (2n Dbgtg ...... j dus: f2"(u)| <2(2n)! ^ - ^---------(-. V, 2(2n)! 1 < Vervangt men nu 4\'t*, 6\'t\' enz. overal door 2\'jr\', danvindt men: 2 2(2 n)! I i _ 1 1 . 1 , \\ 1 f (") < /g Â? â€” 2 \\i 2 n -2 22 n -2 32 n -2 ...../ 2* T* U* dus: 2(2n)!soâ€ž_o â€? f" " (") = (2 - ~ U\'\' - 1< f < l. UÂ? 2(2 n)!s2 n-2/_^ , Nu wordt S,â€ž = ^2,)2n-2 [??^hlj^ \') Men bewnst dit door: . " . = ^ (â€”??-r- â€”m V <Â?\' ^ a\' u\' 2 \\u â€”la u la/ differcniiecren.



??? Â?2 . \\ fl dus 4 (h ht)2 ^ 4 (2 h hl)\'-\' 2(2n)!s2n-2 l 1 S2nl<- \\  4 (2 h)\' L4.1(1 1 1 ....) 2(2 n)!s2n-2 < 2(2n)!s2n-2 M ^ dus |S2â€ži <(-l)"~\'2n(2n-l)B2â€ž_2j 1 wanl = Men vindl dus dal 1 S2 â€ž 1 kleiner is dan een eindig gelalN en dus is M < S2 n < N, waarbij M = â€” N, maar dan isM ?– (N â€” M) = - N 2 ?? N =/JiN, waarhijâ€” l</?i < 1-De resllerm wordl volgens (32):.2n i.iin ( 1 (iW "" ~??iT\' ii\'n 4r h2"-2B2â€ž_2B2â€ž j J^^jr^i. of R = P "(2n- 2)1Uil (31) vindl men dan: l (33) 1 _ Bo\'\' h B,\' h\'2! 2 4! 4 h 1 1 , _C:^iogh 2h i ^ u ^ 2n-3 R. (2n â€”2)!(2n--2) Slell men hierin e~" ^ = x, dan is O < x < 1 omdal h po-silief is en slrekl men de sommatie nog een term verder uil,dan gaat (83) over in:



??? X xÂ? G-log log i - ^ log - - JTI r" x).....- (T^Wrn rÂ? V " waarbij: Wij noemen de co??ffici??nten ^^y^ = Ca enz. en geven vooreene snelle becijfering de waarden van Ca = ^^ ~ 86?•?–?–\' ^^ ~^0480\' ~ ^04000\' "" 6^2821120\' vinden wij: iog^- \' \'\' 30 xk G-loglogv X i\\ik-i V â€”  c^k log- Ra.. Â§ IG. We merkten reeds op, dat de brnikbaarlfeid van dereeks toeneemt, wanneer x lot 1 nadert. Voor x ^ 0.9 vindt C â€”log log 7 men reeds 4 decimalen nauwkeurig met L (x) =-;-j--h logT . ---Iy log ^ , terwijl men voor x = 0.9 reeds IO termen 4 144 ÂŽ X\' van de reeks van Ci.ausen moet berekenen om eene dergelijkenauwkeurigheid te bereiken. Maar ook voor kleinere waarden is de reeks nog geschikt mits log -C?œ 1 dus x>-^= 0.3?œ728---- ^ O Voor x = 0.4 vindt men met de reeks van SciilOmilcii:L (0.4) = 0.72535G2799 0.25 - 0.00G3G31301 - 0.0000089010â€” 0.0000000848 - 0.0000000019 = 0.9689841591. Ter controle berekenen we L (0.4) ook met de reeks vanClausen:



??? L (0.4) = 0.9333333333 0.0353523810 0.0002979928 0.0000004521 =0.9689841592. Nu is  en bij de berekening 0.4^ met de reeks van Cla??sen is de fout < 0.4^Â° _ q 4Â?) o 6 < 0.0000000002. De eerste 9 decimalen zijn dus juist becijferd, de reeksvan Schl??milch geeft precies dezelfde, ook daar zijn ze dusgoed. De gebieden van bruikbaarheid van beide reeksenontmoeten elkaar dus bij x = 0.4 (van beide zijn 4 termenbecijferd). Wanneer men echter voor onze becijfering metde reeks van Schl??milch den restterm berekent vindt men = iog8 0.4 of iRsl <0.00000005, \' 8! l o 4 i door controle met de reeks van Clausen weten we | Rs |<0.0000000004. De grens voor de fout is bij Ran dus langzoo nauw niet getrokken als voor Â?n en ^n. Â§ 17. Wij besluiten dit hoofdstuk met een tabelletje derwaarden van L (x) in vijf decimalen nauwkeurig.L (0) = 0.00000. L (0.3) = 0.56686. L (0.6) = 2.69140. L (0.9) = 27.08648.L (0.1) = 0.122?2.L (0.4) = 0.96898. L (0.7) = 4.75640. L(l) = coL (0.2) = 0.30173. L (0.5) = 1.60669. L (0.8) = 9.55705.



??? HOOFDSTUK IV.(Transformaties). rt. Algebraische transformaties. Â§ 1. We gebruikten reeds de transformatie van Clausen(Inleiding Â§ 2): co vk 00 /l 4- vk \\ y â–  = s X^M ; ^ \' â–  . Met behulp hiervan heeftk^i 1 â€” xk k = l \\1 â€” xk / Eisenstein de reeks van L. in eene kettingbreuk getrans-formeerd. Clausen vond: l-x^\'^....."" l-xÂ?^^..... x . xÂ? , XÂ? , x" , xk\' xk\' k 7 1 "" 1 I" â€? â€? â€? â€? 1 vk l" Â? _vk \' 1 1 â€” X^ l â€”XÂ?^ 1â€”1 _ xk ^ 1â€”xk Stelt men rechts ^ = dan gaat dit over in : (1) L (x) = â€” jj -i-    ..... 1 I 1 I lkÂ?-k(ik_i)-t-ik.(tk_. i)-r..... De reeks is nu in eenen vorm geschikt om met de methodevan EuleÂ? in eene kettingbreuk ontwikkeld te worden. Men heeft namelijk dal, wanneer S =  ----eene U| Ut Us convergente reeks is, dat dan: "â– -V ??,;--^ U2 "9 â€” enz.Past men dit op (1) toe dan hoeft men: u, u, = lÂ?- 1, u2-|-u5 = l(t\'-1), u8i-u4 = tÂ?(t*-1),..... u,k-i = (t^"- 1), U,k U,k 1 = (1Â?\'\' \' -1)



??? waaruit de ontwikkeling volgt: _!__ tÂ?(t\'â€”1)â€” enz. of telkens teller en noemer door eene macht van t deelend: I mits (x) < 1 dus | 11 > 1.t^â€” 1 â€” __L , tJâ€” ns t\'â€” 1 â€” enz. tk-lftkâ€”1)Â? ^ \' tMf-D\' t\'kâ€”1 â€” t2k iâ€”1 _ enz....Â§ 2. CuRTZE Iranst\'ormeerde de reeks van L. in eene be-paalde integraal, en leidde hieruit weer eene reeksontwikke-ling af. Zoo vond hij: (2) 2 V = _iL_ f x^ Hoewel de \' k=i 1â€”x\'\' 1â€”X k = ilâ€”x" integraal geen beteekenis had, kan men de juistheid der trans-formatie aantoonen. Ontwikkelt men iederen term der reeksvan L. in eene reeks dan vindt men: k = l lâ€”x^ k = l = 1 (x\'\' 2x"-f  ......) k=l k=l L(X): CO Â? I ^^ 1 â€”X k=l Y co 1 4- vk - ^ I V i-IEJL vk : Z .....) = k XV ~"1-X \' k=l 1 - X^Uit deze afleiding ziet men direkt, dat deze transformatievoor uitbreiding vatbaar is. Men vindt in \'t algemeen: GO x\'\' k= 1 1 â€” X\'\' k=lco co , S (n-l)x\'\' Z (n-2)x" ..... Z  k = i k = i k =f -f f (x\'^ 2x"-f......(n - l)x<Â°-i>\'= nx"\'\' nx("



??? ^ (n-2) = (n-l) 1 â€”X 1 -x\' GO Z ..... .....) t waaruit: k = l 1 â€” x" 1 â€” X .n- 1 (n-2) 1 â€” \' â€?\' â–  Men ziet flat (3) voor n = 2, (2) als bijzonder geval bevat. Â§ 3. Eene dergelijke transformatie kan men afleiden doorde opvolgende termen der reeks van L. in reeksen te ont-wikkelen, en deze reeksen onder elkaar te schrijven. Op dezewijze ontstaat eene dubbelreeks, waarvan we eerst de diago-naal lerm sommeeren, dan de overblijvende termen van deeerste rij en de eerste kolom, daarna de dan nog overgebleventermen van de tweede rij en de tweede kolom enz. Menvindt zoo 1 - X"(3) 00V Nu is: =  \\\\\\ k=l 12xk(k 1) 1 -x"^\\ 2x\'\' Sx\'\' x" = 1 1 -X Sk 1 x4.x" k-^i 1 â€” x\' 00 GO C)vk(k4-1) 2k 1-1-X 1 x\' 4-x I-l-XÂ?"^ l-X*"gP j-SP-\' k ..??P-U â€ž4k 1 -X 2P lxÂ?\'\'\'\' I r-xÂ?\'\'" i ..ik Daar | x |< I nadert de laatste lerm met toenemende plot nul en dus: 00 vk CO ,V _= V co / 2 x\'\'k-Ti ^ \\1 i- 2ÂŽ 2\' X\'"\' 1 xk 1 XÂ?k \' 1 -i- Nemen we in de laatste dubbelreeks alle termen bij elkaar.



??? die â€”i- bevatten, dan vindt men vooreerst den term 1 xi 2 xi 2 xi x"!ÂŽ-â€”;â€”maar als q een tweevoud is komt â€”;â€”- ook1 xi\' ^ 1 x^ voor in de reeks, die met x^\'^\'\' begint, is q een viervoud, dan ook nog in de reeks met x^^^ enz., waaruit volgt, dat alle 9. x\'?? termen met den factor j-â€”- zijn: 1 X" q (^V f-V \\ ^ Ix^\' 4 2 4 -i/ ....), waarbij de reeks 1 x^ \\ / tusschen haakjes afgebroken moet worden bij den laatstengeheelen exponent. Men vindt zoo de transformatie: â€? . k co x"" 00 u 2 - ^ k=l 1 - k=:l C-V (-Y \\ xk* 2xV2/  ... V ^^k?¨ii x" Â§ 4. . Eene andere transformatie vindt men door te stellen:00 x\'\' Ak y, -r = y 7â€”Tâ€”r en dan de coCffici?Šnten Ak onaf- k = i 1 â€” x" k = il x" hankelijk van x trachten te bepalen. Nu is x*^ _ x\'\' â€” x"^ _ x** . 2XÂ?\'\'1 -f x" ~ 1 ~ 1 _ xk 1 â€”x2k- Er moet dus voldaan worden aan:(4) , jâ€”^ - Tâ€”m -2.2 â€” k l-x" k^il-xk Bij ontwikkeling in reeksen geeft de tweede term rechtsslechts even machten van x. De oneven machten van x in co x\'\' ^ x\'\' de ontwikkelingen van E Ak ,-------en van E -7 k = l 1 â€” XÂ? k=l 1 â€” xÂ?



??? inoeten dus gelijk zijn, hetgeen achtereenvolgens vereischt:Ai = l, As â€”1, Ar,= l enz. (4) gaat nu over in: 00 v2J 00 xÂŽ\' XÂŽ\' nr-x- = .f, CT". - ^ ,5, r-r-x\'-i OD x^\' QO x" waaraan voldaan wordt door Auâ€” 1 = 2 Ai. Nu is voor alle oneven l: Af=l en heeft men dusAa; â€” 1 = 2, AsÂ? = 2 1 = 3. Voor even l heeft men:Aim â€” 1 = 2 Asnv, wat weer voor oneven m geeft:Atm =2(2 1) f 1=2^ 2 1=7.Men kan op deze manier doorgaan en ziet gemakkelijk in,dat als k = 2P n en n oneven dat dan: QP 1 _ 1 A, = 2M-2P-i 2\'\'-2 ....1= =2P \' - 1 De reeksontwikkeling uitschrijvend:Â? xk _ X 3xg__, 7 k=i?? - xkâ€” 1 -i- X 1  1 X\' 1 x^ xii 3x" x^ 15 XÂ? , 4 I â€žR 4 1 â€ž7 4 I ..S â€? â€? â€? â€? â€? ^ 1 x^ ^ 1 XÂ? ^ 1 x^ 1 H- xÂ? Â§ 5. Trachten we de reeks van L. te vervangen door eene. . xk 2xÂ?k ....(q-l)x<q-\'>kreeks met algemeenen term Ak-^ ^k -f--- dan vinden wij eene uitbreiding der vorige transformatie,welke haar voor q = 2 als bijzonder geval bevat. xk 2 x\'k-f... (q-l)x(q-\')k_(l -xk) ... (q^) xfj-Â?^ Nuis: â€”- - ...... , " \' \' xk -I- x\'lk^ . . . . x(l-\')k â€” (q-l) xk _ xk _ X<lk_ lâ€”xlk Er

moet dus voldaan worden aan: 00 vk CO vk OO x\'Jk Bij ontwikkeling in reeksen geeft de tweede term rechtsslechts machten van x*Â?, de andere machten van x in de



??? GO x^ ^ x"^ ontwikkelingen van S JZT^ l â€” x*^ dus gelijk zijn. Dit vereischt dat Ak = 1 voor alle waardenvan k, die niet deelbaar zijn door q, voor de andere A\'s heeft men: 00 x^\'?? x\'\'^ (Al, - 1) = q A, â€”^ dus 1 = q A,. Is l geen q-voud dan is Aj = 1 dus A;q = q 1. Is Z weleen q-voud, dan heeft men Amq^ â€” 1 = q Amq, dus als m geenq-voud is Amq2 = q (q 1) 1 q\' q I- Op dezemanier kan men doorgaan en men ziet gemakkelijk in datals k = qPn en n geen q-voud dat dan: â€” 1 A, = qP qP-i qP-ÂŽ ......... 1 = ^ Â§ 6. Bedenkt men, dat men alle getallen kan verkrijgendoor alle oneven getallen achtereenvolgens met 1,-2, enz. le vermenigvuldigen, dan ziet men in dat: k?¨t r^^- Y ii -1 - x^\' 1 -X*\'^ â€? ...... waarbij de sommatie over alle oneven getallen i uitgestrektmoet worden. Ontwikkelt men de reeks tusschen haakjesnaar opklimmende machten van x, dan zal x"\' (n = 2Â? p enp oneven) slechts in de ontwikkeling van die breuken voor-komen, \'die in den teller hebben: x\\ xÂŽ\'.........xÂŽ"\', de co??ffici?Šnt van xÂ°\' is dus Â? 1. co x\'\' ^ Men vindt daarom S t"â€”^ (a

l)x"\'. 1 _ x" r n = l Verandert men rechts de volgorde der sommatie, dan geeft dit: f , \'\'\' k = f 1) (X" -f x\'M-...........) = k-l 1 â€” X* n = l co vn Â§ 7. Zonder de afleiding te geven heeft Eisenstein\') reedsvermeld, dal, de reeks van L. getransformeerd kon worden in \') TransformationÂ? remarquables de quelques s?Šries. Grelles Journalt 27â€”28 p. 193-197. 1844.



??? het quotient van eene oneindige reeks en een oneindig product.We zullen daartoe eerst het oneindig product van Euler ineene reeks ontwikkelen en stellen: P(x.t) = (l-xt) (l-xn) (l-xH)......= = 1 Alt Aat^ ......mits 1 X |< 1 en 111 ^ 1 . Maar dan is (l-xt)P(x.xt) = (l-xt).(l-xn)(l-xn).... = P(x.t). Substitueert men hierin de machtreeks in t, dan kan men uilde komende identiteit de co??mci??nten A bepalen. Men heeft zoo:(1 _ xt) (1 A, xt Aa xH\'^ .......) = 1 4- Al H- Aa -}- . . . __x dus Al X â€” X = Al of Al--I __ ^ x2 _ x\'__ Aax2-A,x2 = AaofA2 = - -x\') xk Akxk â€”Ak-ixk = AicOfAic= - dus* .........^ = (l-x)(l -X^).........(1 -x^ ~ xV.Mk 1) _ = _x) d-x\'\').....(l-xk)" dus (I~xt) (1-xH) (1 -xM).........= l--r^x 1 (, _ x)crr^) i - (t- x) (1 -x\') (1 - x\')en voor t=l : (1-x) (I -xÂ?) (1 - x\')..........= r-x (1 -x) (1 -x=) - (1 -x) (I - xÂ?) (1 - xÂ?) Â§ 8. Langs een dergelijken weg is de transformatie van x â€? Eisenstkin te verkrijgen. Nu stellen we f(x. l)= ^YTZla"^     ......)(i-xO(.-xn)(i-xn).... \'tkomt er nu maar op aan f(xl) in eene machtreeks naar t



??? te ontwikkelen en dan t = 1 te stellen. Stel f (x. t) â€” Go Git G2t2 03 1^4-.....dan is x (1 â€” xt) f(x.xt) = / x^ \\ dus x(l -xt)f(x.xt)=f(xt)--p^^P{x.t). Vermenigvuldigt men dit met (1â€”xt) en substitueert dereeks voor f(x. t) dan geeft dit: x(l-xt)MGo C,xt G2xn2 .......) = (1 - xt) {Go Glt4-C2t2 .......) - of: Go (C,x2 - 2Gox2) t   Gox\'\') t\' .... (Ckx-\' \'-aGk-i xi\' \' Gk-a .....= Go4-(Gi-Cox)t (G2-Cix) t\'H-.....(Gk-Gk-ix)t\'\' .. l.4 _ X -J____ f â€” -^^^-t2 ... ^^ 1-x\' (1 _X)(1-X2)\' ................. (- i)\'"^\'(Tzrx)(i_x2)\'.T.. d-x\'\')^\'........ zoodat Co X = Co â€” X dus Go = - - - . 1 â€” X x\' 2 x=Â? (C, - 2 G,) X\' = C, - C, X  of C, = -(!_,) x\' (C2 - 2 C, Co) x^ = G2 - G, X - ^^ of 3 XÂŽ ^ (1 - X) (1 - XÂ?) (1 - X-^)Dit wekt het vermoeden dat: n^ (k 1) ...... lA-l- u ........(1 -xk f- 1) Om dit te onderzoeken, merken we op dat de co??fllci??ntenG voldoen aan:  x^\' i =Gk-Ck-.ix  (T - x~k)



??? of aan: Ck(l - (2 x\'^^^- x)-Gk_2 Uit deze betrekking blijkt nu gemakkelijk, dat wanneerCk _ 2 en Ck _ 1 den veronderstelden vorm hebben Ck hemook heeft en omdat Ci en C2 van dien vorm zijn, zijn hetdus alle co??ffici??nten C. Men vindt: ""   -xt) (l-xM).....= â€” xt \' 1â€”xn / 2x3 3X\'\' 3t i- Ti ..2\\ ____ i -X (1 -x)(l -x=^)(l-x=\') 4 en t=l stellend en door het product van Euler deelend: 1-X^l-XÂ? â€? l-x^Â?^..... X 2x\' _ _ _ ___ 1~~(T-x) -x) (i-x\') (1 -x\'\')" (1 -xj(1 -x^Hi-x^ld-x*)(T^) (1 - x^) (1 - x=Â?) (1 - x^)........ de transformatie van Eisenstein. Â§ 9. Wij zullen nu formules afleiden, die hel verbandtusschen Lamberlsche reeksen met verschillend argument aan- geven. Zooals bekend is, is L (x) = v -----= v ??(k)x^ - k=il-x\'^ k=i Substitueert men in deze gelijkheid achtereenvolgens 1 x, x, ^ x,.....~ \' x, waarbij 1, C\', T â€? â€? â€? â€? ~ \' wortels van x^\' â€” 1 = O zijn, dan vindt men na samentelling: (5) L (x) x) L . .. ^ x) =co . = p X ?? (ll p) X want X x", uitgestrekt over do wortelsh=l van xl^ â€” 1 = O is O of p naarmate n niet of wel een p-voud



??? is. Men kan nu altijd S ?? (hp) x^P in de som van een eindigâ–  h=i aantal reeksen van L. uitdrukken, waarvan de argumentenmachten van x zijn. We veronderstellen daartoe eerst datp = l^- m\'\' waarbij l en m priemgetallen zijn. De getallen hverdeelen we dan in vier groepen. 1Â°. de getallen a. dienoch door l noch door m le deelen zijn, 2Â°. de getallen vanden vorm U, b ondeiling ondeelbaar met m, 3Â°. de getallenvan den vorm c m, c. o. o. mei /, 4". de getallen van denvorm dim, waarbij d van 1 tot co loopt. Nu heeft men: (6) Z ?– ril p) x^P = S ?? (a p) xÂ?P Z ?? {hip) x^\'P h = l a b c d = 1 Ieder getal a is van den vorm A" B\'^ C....... waarbij A. B. C____ van elkaar en van m en l verschillende priem-getallen aangeven, dus Q (ap) = (it 1) (/3 1) (r 1)..... 1) (A -I- 1).... = (i^ 1) (A 1) ?– (a). Ieder getal b is van den vorm A" B\'^G^____l^ .... , waarbij p ook nul kan zijn en A, B, C . ... Z van elkaar en van m verschillende priem-getallen zijn. Dus, in aanmerking nemend, dat A p 2 == 2)_ 1), vindt men ??(b;p) = (Â? l) (Â? -f. 1) (,3 -f 1) (r -f 1).... (p 2).....- A 1) (a 1) i)(r 1).....1).....=

(A 1) i)??(b/)- Eveneens ?? (cmp) = (a -f 1) 1) ?? (6m) - (a 1) ?– (c). Voor ieder getal d kan men zetten A" B\'^ G^----l^\' m"... waarbij A. B. G____Lm____weer onderling verschillende priem-getallen zijn. Neemt men weer in aanmerking, dat men voor-f- a- 2 een dergelijken vorm als voor A p 2 kanzetten, dan vindt men O (dimp) = (A 1) {/z 1) (Â? -f 1) (i3 -j-1)(7 !)..(; 2) (<r 2)..-(A l)/.U-f l)(/3 l)(r-|-l)..{^-f2) (<r-f 1)..-A (^x 1) (a-f 1) (/3-f 1) (r 1).. â€? (i\' 1)4- 2)... A (Â? -M) (/3-I- 1) (y 1)... 1) I) â€? â€? =(A 1) (^x 1)?– idlm) - (A -f 1)?? (dZ) - A 1)?“ (dm) A/X??(d)



??? Substitueert men dit in (6) dan vindt men: E 6 (hp) x^P = (a 1) 1) [Z ?? (a) x^P Z ?? {bl) x^^P h=l a b z 6 (cm) x^\'^P 4- z 6 {dim) x\'^^\'^P] - c d = l - a (f^ 1) [Z ?? (b) x^\'P 4- Z O (dm) -b d=l c d = 1 00 Tusschen de eerste haken slaat niets anders dan Z ?? (k) x P\' k = i want de eerste term bevat alle termen der som, die behoorenbij waarden van k, die met l en met m onderling ondeelbaarzijn, de tweede term alles wal behoort bij waarden van kdie een deeler l maar geen deeler m hebben, de derde termzorgt voor de waarden van k, die wel een deeler m, maargeen deeler l hebben, terwijl de laatste term die waardenvan k bevat, die door l en door m deelbaar zijn. Evenzoo staat tusschen de tweede haken Z ??(k)x\'\'\'\'P en tusschen de k=l derde Z ?–(k)x\'\'-â„?P, waardoor men vindt: Z ?–(lip)x^\'\' =k=l h=l = (a4-1)(^^4-1) Z ??(k).x\'^\'P-a(/x4-1) Z ??(k)x\'^-\'Pk=l k=l 00 , co \' , , -(A4-l)At Z ?–(k)x\'\'-"\'P4-A^ Z ??(k)x\'\'-\'\'"Pofmel(5):k=l k=l L (x)4-L(r x)4-L(CÂ? x)4-.....L(CP-^) = 7) (A 4- 1) (^ 4- 1) P L (xP) - A (f. -M) p L (xP^) - -(a4- l)/=^pL(xP"\')4- a/xpL(x\'\'"P) Door analoge

redeneeringen kan men hot geval behandelendal p een product van machten van meer priemfacloren is;de wel volgens welke hel resultaat gevormd wordl is uil (7)voldoende le zien. Is p b.v. gelijk aan l^ dan vindt men:



??? (8) L (x) L (^x) L (C^x) .... L x) == (A 1) -f 1) (v 1) pL(xP)- A 1) (. 1) pL (xP^ -- (A l)^(> l)pL(xP")-(A l)(^ l);.pL(xP") A (y 1) p L (XP\'"\') -f (A 4- 1) ^ , p L (xP""\') A 1) V p L (xP"\') - A . p L (xP^""\')-Bijzondere gevallen zijn:p = 2 L (x) L (â€” x) = 4 L (x2) - 2 L (x^)eene formule, waarmee de waarde van de reeks van I.. voornegatieve argumenten uit die voor positieve berekend kanworden. p = 3. L (x) L (\'/2 (- 1 i 1/3)x) L(\'/2(- 1 -iK3)x) = = 6 L (x3) - 3 L (x").p = 4. L (x) L (i x) L (- x) L (- i x) = 12 L (x^) - - 8 L (x8) enz. Â§ 10. Noemen we L (x) L (C x) L (^ x)......... L(CP-^x) = vÂ?\'(p.x) dan kunnen wij met (8) aantoonen,dat wanneer r een niet op p deelbaar priemgetal is, dal dan (9) (p r^^ .x) = r/\' \\{p (p. xr^\') -p^piv. x^^\'^ \')J. Voorloopig nemen we weer aan dat p van den vorm m"is, dan is: i// (p rr- x) = (A 1) (pt 1) (^ 1) p L {xl^ m/^ rr)- A 1) (^ 4- 1) p r." L (x\'"^"^\' V) _ - /X (A -f 1) (^ 1) p r/\' L (x\'^ \' r/\') _ ^ j) ^ j) ^^ ^^^^ ^^^ j ^ Dprp 1 \' l)L(x\'^\'" \') _ - A^ p r/\'L  Ir/\' ^\') = r^ (^ 1) [(^ 1) (A 1) pL - -A^/^ Dp L (A A p L ((X^O^\'^- 1) (A-f-1) p L ((xr/"^ v^ - ^ (A iS PL ((x--^\' ^ Y\'-" ^ A p L ((x^\'\'V^\'

""\')]=  waarmede de betrek-



??? king (9) aangetoond is, dat zij ook geldt, wanneer p eenproduct van machten van meer priemgetallen is, wordt be-grijpelijk als men bedenkt, dat iedere term met een factor(^ 1) in den exponent heeft rp en iedere term met eenfactor p in den exponent r/\' i heeft, terwijl de vorming derandere factoren en exponenten onaniankelijk van r en p is. Â§ 11. Wanneer 1......^Â?p-i de wortels zijn van x^\'P-1 =0, dan is: L (x) L x) L x) L x) ... L x) = p x) of  .... L(-^^P-\'x) = ^(2p.x)-L(.x) -L(-^^x).. .-l(>,Â?p-Â?x). Nu zijn Â?), .... de wortels van xp 1=0, terwijl1, ... -^Â?P-Â? de wortels zijn van xPâ€” 1 = 0. Hierdoorvindt men voor de wortels van xp 1=0: Z L (w x) = (2p. x) - ^p (p. x). Â§ 12. Wij zullen nu nog eenige transformaties van Lam- bertsche reeksen, J^ bk behandelen. Deze conver- gieren absoluut binnen het convergentiegebied der\'reeks bk xS mits dit den eenheidscirkel niet bevat, (llfdst. II, Â§ 1). Voor waarden van x binnen dit gebied mag men dus determen m machtreeksen ontwikkelen en deze oj) willekeurigewijs samenvoegen. Schrija men nu deze reeksontwikkelingenonder

elkaar op en sommeert dan do kolommen, dan vimit men:x\'\' co 00 00 l^k H- bk V ,,, ^........ * \' * Â? = I kssl ite-1 ....... 00 yk Daar de reeks bk jâ€”^ absoluut convergeert zullen oo QQ alle reeksen bk x""\' convorgoeren. Is nu E bk .x\'\' = g (x) dan vindt men do transformatie: ^ , x" 00



??? Door nu voor bk verschillende waarden te nemen volgenhieruit bijzondere transformaties: k = l 1 â€” x\' m = l m = l 1 1" X . X X^ , X^ _ X X\'\' , "M-x-l-x^\'^l-xÂŽ .....â€” l X^"^ Men had dit ook kunnen vinden door uit de reeks van Â§ 4 GO x^k Â? --rr af te leiden en daarna beide kanten van de be- k = l 1 â€” X^k co x^k doelde reeks met 2 S _ 2k verminderen. k = 1 1 X dus: 2Â?. bk = k. 00 yk 00 00 X â„? ......(1-^ X , X^ , XÂŽ , -(1_X)2^(1 -X2)2 \' (1 \' ....... 30 i3k = {â€” Men vindt nu: 00 yk CO y"* of: 1-x 1 - X2 \' 1 - X^Â?. X , X^ 4. ..... Telt men deze reeks bij de vorige op dan vindt men: I, " - " = J, (T-ixSjr Aftrekking geeft niets nieuws, maar reeks nÂŽ. 2 40. bk = r- Nuis 1 (xÂ?" V2 x^\'" \'/s x""-f ...) =k m â€”1



??? = S -log (I -X") dus: ni = l 1 1 ^^ 1 _ ^ T? o" ?• Tb 1â€”x2^31â€” x3 = ??oe los rrhrÂ? â€? â€? â€? â€? Op deze manier vindt men, dat het oneindig product vanEulkr met eene Lamberlsche reeks in verband slaat: fl (,_xÂ?) = e m = l 50. l)lc-li. Nu is Z   = ra = 1 = 1 logd xÂ?"). m = l x 1 x2 . 1 xÂ?dus ::-- â€” - ::--r-) "r 01--3 1 â€” x 2 1 â€” x2 \' 3 1 â€” x^ = log(l x)(l x2)(l x\')..... Teil men deze en de vorige reeks samen dan vindl men :co 1 co l-j-x"\' Aftrekking geeft niets nieuwsG". bk = a\'\' |ax|<l. dus: ax"" co . vk co . . ^ ax k=l 1 â€” X" â€ž, = 1 . m = llâ€”I a X , a^ x2 , a^ x\' V \' 1 -r2 \' 1 v3 " â€? â–  â€? â€? 1 _ x ^ 1 _x2 \' 1 -xÂ? _. a X 2 , a x^ , 1 â€” a X 1 â€” a x 2 1 â€” a x Â? â€?\'\' â€? de reeks, waaruil in Ilfdsl. 111 Â§ 9 (21) is afgeleid. co x*\' S 13. Door iederen term der Lamberlsche reeks Z bk 7-^â€”1,^ k-i 1â€”x* te ontwikkelen en dezo reeksen le sommeeren ontstaat deco reeks Z a^ x^. De co??ffici??nten a hangen natuurlijk met



??? de co??ffici??nten b samen. Nu zal x\'^-slechts in die ontwik-kelingen voorkomen, die met eene macht van x beginnen,waarvan de exponent op k deelbaar is. Alle termen vanzoo\'n ontwikkeling hebben als co??ffici??nt b met een indexgelijk aan die exponent, waaruit volgt:(.0) = Omgekeerd kunnen we ons voorstellen, dat de getallen agegeven zijn en dat er gevraagd wordt de bijbehoorende ge-tallen b te bepalen, dus de betrekking (10) om te keeren.Dit blijkt altijd en slechts op eene manier mogelijk. V /k\\ (llj Het resultaat is b^ = J ^d waarbij fx (m) de functie van M??bius is, gedefinieerd door: /x (1) = 1, /x (m) = Ovoor een niet kwadraatvrij getal m, /:i(m) = (â€” 1)p voor eenkwadraatvrij getal m, dat uit p priemfactoren bestaat. Hieruitvolgt dat niet alleen iedere Lambertsche reeks binnen haarconvergentiegebied (mits ^ 1) altijd in eene machtreeksontwikkeld kan worden, maar dat ook iedere machtreeksdoor eene Lambertsche reeks voor le stellen is, waarvan deco??ffici??nten door (11) bepaald zijn. Als voorbeeld ontwik- (X) kelen we x m eene Lambertsche reeks. Dus

x = ak x^ k = i \' waarbij ai = 1 en alle andere a\'s = O zijn v^ /k\\ 00 vk K = iH ^ (d) == ^^ =^ ^^^ ________, ^^^__. x\'o x Eveneens kan men = x Sx^\' Sx\'^ -f 4x^ ____ in eene Lamberlsche reeks ontwikkelen. Hier is a. = k dusV 7k\\ = d|k ^ 1 d J gemakkelijk aan dal dit gelijk is aan 0 (k), n. 1. het aantal getallen < k, die met k onderling ondeelbaar zijn. Men slelt b.v. dat k de ondeelbare factoren - f... \') e. Landau. Handbuch der Lehre von der Verteilung der Prim-zahlen II, p. 567.



??? a, b, c heeft, dan is <p (k) = ~~ ^ ^^ X k. abc Ontwikkelt men dit product en onderscheidt dan nog het geval van enkele en dubbele priemfactoren dan komt men direct tot de gewenschte betrekking en vindt X 00 yk Deze reeks is een typisch voorbeeld van eene Lambertschereeks met zelfs tot in het oneindige aangroeiende coefficienten,die toch over den convergentiecirkel kan worden voortgezet. Â§ 14. We beschouwen nu nog de reeks 00 00 / co , ,\\ k = l 1 x" k = l \\ m=0 / co / .co \\ 00 Z (-1)\'" Z = V (_ l)n\'g(x2"\' n m = 0 \\ kr3 1 / ni = 0 m = 0 00 wanneer we Â? k x\'\'= g (x) noemen.k = l Stelt men in deze transformatie b^ = l, dan vindt men:co y k 00 L= 1 1 -f- X\'"\' ni = 0 oo 3j2m 1 = v ivn -^ De eerste reeks is het historisch eerste voorbeeld, dalWeier.sthass gaf van eene functie, die buiten een bepaaldgebied niet voortgezel kan worden, de reeks aehter.het gelijk-teeken is eene Lambertsche reeks, waarbij b2k 1 =(â€”l)\'\'en1)2k=0. Â?Op deze manier blijkt dus dal hol niet kunnenvoortzetten dor reeks van Weierstrass terug lo brengen islol hel niet kunnen voortzetten

van eene Lamberlscho reeks. Transformaties in asyniptotisclio ontwikkelingen. Â§ 15. Do reeksontwikkeling van Sghl??-milgh (Hfdst. III (34) ),is door Wioert \') uitgebreid lol complexe waarden van x \') Sur Ir t??rio <lo Lambert ot son application A la tbC-orio deÂ? nombreÂ?.Acta malbomatica t. 41. p. 107â€”218. 1018.



??? in de omgeving van 1, waarvoor |x|<l. Het resultaatvan wigert is later eenvoudiger door Landau afgeleid,Landa??\'s bewijs berust op de formule van Mellin : -) â€? ?’ r(s)y~\' ds, waarbij de integratieweg rechtlijnig c van c â€” X i naar c co i gaat, c > O en R (y) > O is, ter-wijl aan y"ÂŽ de beteekenis gehecht moet worden van waarin | Hogy is. xk SS ,,, ^ .t Stelt men nu x = e"\' in L(x)= E= S ^ (k)x kr=l 1 X k = l co 1 mits |x|<l, dan vindt men A (z) = Z ^^^ k = l k = i e^^\'-l oo ^ X e"\'\'\' waarbij R(z)>0 is.= 1 00 Hieruit volgt 2 i yV (z) = 2 - i ?? (k) e =(14) =/r(s) 1 ??(k)k-" z"\'ds=/r(s)z-\'\'C\'(s) ds, \'c k=l C want bij ontwikkeling van (s) = (p ^ ^^ â€? â€? â€?) volgt direkt dat ^ (s) = ?? (k) k . We denken ons nu een rechthoek, begrensd door tweelijnen in s = c>l en in s = â€” 2 p (p geheel en >0) even-wijdig aan de imaginaire as en door twee lijnen op cc af-stand aan weerskanten evenwijdig aan de reeele as. Langsde zijden van dezen rechthoek integreerdn we r(s)z-\'^(s).De waarde van de integraal is dan 2 r i keer de som van deresiduen van de polen binnen den rechthoek. De

integralen langs lijnen evenwijdig aan de reeele as zullennul opleveren, want als s = o- it, dan is voor aangroeienden \\i\\ \') Uber die Wigertecho asymptotische Fiinctionalgleichung f??r dieLambertBche Reibe. Archiv der Mathematik und Physik Bd 27. p. 144-146. 1898. >) Acta Societatis Fennicae. Bd 21. N*. 1. p. 76, 1896.



??? â€” \' r 1 11 f(s)=0(e " \' ll|"), n eindig en constant, terwijl ook^ (s) = O (111 waarbij m eindig en constant is. Dus Voor de beide andere integralen dus voor ?’ â€” ?’ vindt c â€” 2 p men dus 2 - i keer de som van de residuen van de bedoeldepolen. Nu heeft de ^ functie slechts ?Šene pool s=l. De polen der V functie liggen bij 0,-1,-2.....â€” 2 p, maar -2,-4____â€” 2 p zijn nulpunten der ^ functie en daar ^(1 _ s) = 2 . (2 tt) -" cos ^ r (s) C (s) volgt hieruit voor s=-2k dat r(-2k)C(-2k) =(- D\'l^y^dus eindig is, waaruit: z-\'T (s)^(s) = 0 voor s= â€” 2k. Wij hebben dus slechts de residuen der polen: s= 1,0, â€”1,-3.....â€” â€” (2 p â€” 1) te berekenen. Voor hel residu in s = 1 heeft men: r(s) = l -G(s-l) 4-.......; = = = Z-\' = Z-\' 1 1 - (s â€” 1) logz .....I = â€” z - \' (s â€” 1) log z ........ 1 1 . 2C ...... Voor s = 1 5 volgt hieruit z -" T (s) ^ (s) = (1 2C = (JL ~ .... V Het residu van deze pool 7. ?? 1 . , G- log z IS dus--. z Voor het residu in s=0 vindt men \'/<Â? want P = ---- en K (0)= - dus Z-- V (s) ....... Het residu in een der polen â€” (2k â€”1) wordt berekend,door op le merken dal:



??? r (- (2 k - 1) = (- (ikÂ?iyTi 4 en dus is dit residu: 1 (2k- 1)! Bak (2;r) - 1 \\k - 1 (2 k â€” 1)! U2 -I B^ak - z ""(2k-l)! (2k)2 2k(2k)!In verband mef (14) vindt men nu: Bhy 2k-l \\ â€” (15) A(z)- /G-log^ , 1_ _ z " k = i2k(2k)! B^ak , 2 k 2k-l Maar nu is: F (1 â€”s) z^(1 - s) = 8-1 9 rr 211 Y{s)^{s) = B-1 cos Z r (1 - s) z s s- s F(s)C2(s)cotg^- sinrs 2 Men vindt zoo: ^ ?’ F (1 - s) z " -> CM 1 - s) d s = z 2p I l -if r(s) Zlp 1 (IG) volgens (14) â€”A Z2p 1 Beperken we nu de waarden van 4> tot O < (?) < ^\'kunnen--we bewijzen dat uniform in ?“ voor f ->â€? 0: ?’ r (s) (i^VV W (c ol B - i) 1 = = O \' ^ â€?2p l



??? 2i Is ??" namelijk = 2p 1 dan is cotg^ â€” e-sl _ i ____=--r^^fius cotg^-i g2voort^0 < 2e-\'f|M voor t g 0. , -scotg y â€”1 en Verder is -IM voor t>0 en g rÂŽP \'eÂŽ voort^O. Ook is r(s)=o(e-??-l"|t|^P V,) en e(s) = 0(l).Hieruit volgt dus dat de modulus van den integrand kleineris dan rÂ?p \' P (t), waarbij P (t) continu en onafhankelijk van z is. Wanneer t - oo is P (I) = O tÂŽ\'\'"^\'/\') en wan- neert->- co is p (l) = o (e"\'^!\'! V.) ^oodat Z^"" P (t) dt â€” 00 convergeert. Zoo vindt men dal |?’ V (s) y\'l ) " (s) (cotg â€” i) ds^ >/^"P(l)dl. dus dat de integraal = O (r*P Â?). â€” 00 Dit geeft in verband met (15) en (l??): (17). . log z , 1 _ P\'Â?Â?\' ./V(z)----- -f- 2k(2k)! /4 O (r\'p) de asymptolische funclionaal ver- z gelijking van Wkiert en Landau. Â§ IG. Naast deze ontwikkeling van Landau voor complexewaarden in de omgeving van l(|x|<l) heeft Kluweh \')eene asymptolische ontwikkeling gegeven voor hel geval dalde veranderlijke langs eene straal van den eenheidscirkel loleen rationaal randpunt nadert. Zijn n en n\' weer geheele onderling ondeelbare getallen, zoodal eÂ?"\'^ een rationaal

randpunt is, noemt men dan e~ = fl, \') Over do reeks van Lamhkkt. VerÂ?Ingen Koninkl. Acad. van Wetensch.te AmHtcrdam. Deel XXVIII, p. 2(52-2G9. 1910. dus 1\\



??? dan zal dit randpunt naderen, wanneer x door re??ele waarden van O tot 1 loopt. Voor de Lambertsche reeks co 2k N(z)= X bk -k hebben we dan: k=i 1 â€” z^ â–  , ^ , , 00 vkn n-1 QO Yl^n h/Jhn\' (18). N (X n = 2, s, b,â€ž xkn. We ontwikkelen nu achtereenvolgens in reeksen -^v 1 _ d^\'----1 â€” schrijven de uitkomsten onder elkaar op. Sommeeren we nu de kolommen, dan zullenalleen de nÂŽ, de 2 nÂŽ enz. kolommen eene andere uitkomstdan nul opleveren. Zoo vindt men: xkÂ° -xkn^hn\' knÂ?-r-4- y - - -n ykn* 4-n Y^knÂ? I n v3knÂ? I X X OO yknÂ? OD n-1 â€žkn /hn\' Substitueert men dit in (18) dan komt er: 00 x""!\' co n-1 â€žkn /Ihn\' N ) = n b,â€ž - _ s  n-1 00 vkn b/lhn\' z Z \'h=lk=0 .Z Z 1 _ xkn h^hn\' 00 xkÂ?Â?\' h=1 k=0^" M â€” xkÂ? Â?> ??""\' 1 â€” x"Â? , Doorloopt h nu alle waarden van 1 .tot (n â€” 1) dan liggende bijbehoorende punten ??*""\' symmetrisch ten opzichte vande reeele as, tenzij n even is, in welk geval het punt â€?â€” 1op zich zelf voorkomt. Voor twee,symmetrische punten vindt ^hn\' ^-hn\' â€? 1 _ flhn\' "f" 1 _ (9-hn\' = â€” Voor evon n is dus

n -1 Ahn\' P â€” O -nr??br= -X - 1 = -(n - 1). vooroneven n is de som " ~ ^ X â€” 1 = â€” Va (n â€” 1).



??? Men vindt zoo: N (x ??Â°\') - n Â? Kâ€ž . . 4- k=:l 1 - X*" (19) Va bo (n - 1) = U^ (x . n\'). waarbijU (x V Ih -J^Ult"\' u k = 0 \\ ^ " 1 â€” x""" " ?–Â?Â?"\' ~ j-kn h ^hn\' ^kn ^hn\' \\ \'^kn h _ ??*""\' 1 _ x\'\'" ??*""\') (bkn i, - bkÂ?) 1 1 \\ dus: (20) uâ€ž(x.n\')=-(.J^ 00 â€žkn /Ihn\' 4- ^h h ^ ^ " k = 0 ^ ~ 1 â€” x""Â? fl\'"\'\' Voor de reeks van L. is bk = 1 en bo = 0. Substitueertmen echter bk=l en bo = 1 in (19), dan schrijft men links te veel op Va (n â€” 1) en rechts â€” deze vormen h = i 1 â€” zijn gehjk, de gelijkheid blijft intact. Men heeft: n - 1 L (x ??"\') - n L (x\'") -1- Va (n - 1) = V T,, (x . n\'). ii = i (21) waarbij T, (x â€ž\') = _ = 00 vkn /Iin\' = -(l-x\'\')v Â§ 18. Steltmen in(21) x dus en noemt men: , V 1 I ch (u) =----rsâ€” = â€” \'/2 V ---------------\'________ dan vindt men: ^ 00 i I j Tâ€ž (X. n\') = |j.-kn-h(5-hn-_i - 1 00k=0



??? coâ€” x^ 00 = S !4)(kny hy)-cp(kny)ik=0 1 ^ sin2;r?œ , .Noemt men nu gi (t) = â€” - 2. -:-. oan is TT 1 = 1 I gj (t) = t â€” 1/2 â€” [t], dus als we geheele waarden van tbuitensluiten is g\'i (t) constant, daarom is: /"jg\'i(t-^)-g\'i(t) j0(tny)dt = O u ^ \' wanneer we die waarden buiten het inlegratiegebied sluiten, waarvoor t â€” ^ of t geheel zijn. De integraal loopt dus van Â? tot - - Â?, van - Â? tot 1 â€” e, van 1 Â? tot 1 - â€” e enz.n n n Deze integraal zullen we 2m keer partieel integreeren. Hetgeeft gemak eene serie functies g (t) in te voeren, zoo gekozen, .. /x^ dgH-i(t) , 1 ^ cos2rU dat g, (t) = flus g2 (t) = 272 ^Zj enz. We vinden: (22) ?’ jg\'.(t-|j)-g\', (t) j4^(lny)dt= jg,(t-|j)~g.(l)j (Iny) \' (-1) \'n \'y \' j gM 1 (t - Ij) - g\' 1 (t)j 0\'(tny) -gim(l) 4)""(tny)dt. l\\ 4- nÂ?â„? yÂ?"- glm n Hierin moeten achtereenvolgens de grenzen Â?, ~ â€” fÂ?" 1 â€” Â? enz. gesubstitueerd worden. Men vindt zoo bij substitutie gi(t)!0(tny): in gl t-- n â€” gl - (0) gl (0) cp (0) - 2 g, (f) 0 (hy) 2 gl (1 -f O 0 (n y) - 2g,(i -i-f) (ny hy) 2gi(2 Â?)<p(2ny) - enz. Daar nu



??? gl (e) = gl (1 f) = g2 (1 e) =........= â€” V2 gaat dit over in: â€” gi lm - 1 E (-l)\'n\'y\' issl g/ i(0) -- 0(0) E |?“(kny liy)-cJ)(kny)! n/ k=o . (P (0) = ^IJ - V2 j (P (0) V2 cp (0) 00 J, EJc/) (kny hy) - (kny)| = ii 0 (O) f 10(kny liy)-4)(kny)!k = 0 Omdat de functies g2. gs enz. continu zijn, geven de grenzen â€” â€” f, â€” e, enz. telkens dezelfde waarden en behoeven wen n ^ slechts rekening te houden met de grenzen f (= 0) en oo .Voor t-*cc naderen cp (tny) en (p\' (tny) tot nul, het tweedestuk achter het gelijkteeken in (22) geeft bij substitutie dergrenzen: -1) \'n \'y\' j g, 1 - g, 1 (0) I cp\' (0) â€žim ytn. ?’ j gj^ (i - - g??m (t) j (tuy) dt waaruit men vindt: (23) 2 I4)(kny hy)-0(kny)| = -|j-(|)(O) k=0 " h] / h\\ co n 0\'(O) R. De vorm g/^. i ^ â€” â€” g/ 1 (0) slaat in verband met defunclies van Bernoulli, want substitueert men Bin = (- 1)" cin-l u ^ii; Â?n = e^ (z) : dan vindt men 0 (z. 2n) = (2n)! Igan (z) â€” gan (0)1.\') Sciii/??MiLCii, Com{)CDdlutD II blz. 217.



??? Noemt men fâ€ž-i (z) = ^ dan is dus f,,_j(z)=!g?n(z)-gtn(o); Evenzoo heeft men <p (z. 2n 1) = (â€” 1)" 2 ^a^^an 1 i^n i (2n 1)! g2n i (z), dus fan (z) = gan i (z).Samenvattend heeft men voor Z>0 dat f, (z) = | g/ i (z) - gi iloj 1daar gan i (o) = o (n>o). Nu is voor oneven l: -) en voor even l isin/ = _ i (^j en daarom is voor l> o nj \\n/ \\n/ V \\ "/ /h\\ hVoor i = o is echter (â€”1) fo = â€” Hierdoor vindt men uit (23): (24) Jj 0 (kny hy) -4) (kny)! =  hnh^ gj igi i 11_Vi{ JO I 4 Nu is 0 (u) = = -\'/Â? \'h I - _ VaicotgHsiu -f n ,, . . Ji-hn\'waaruit 0(o) = -- \'h 4" \'h i cotg -jp- en cp\'(o) (d\' Substitueert men dit in (24) dan komt er: Tl, (x. n\') = 1 1 4) (kny hy) - 0 (kny) i = ^ - k=o - ""zCh i)\'^\' n\'y\'f,(|-) (D\' cotg R- Om de restR=-nÂŽ\'" y-f jg^n, (t - - g^. (oj d)"" (tny) dtte begrenzen merkt men op dat | (tny) 1 = ^ _I__ cc (2m)! tfj â€? i< (2m)! ^^ ^-ft2^2-y2 (l[?Ÿ- 2r ^1 < tWT?–T^(li /3 - l)""-\'



??? of i r K 2 m .T I (0) I nÂŽ" - ^ yÂŽ"- M M0) I de modulusvan de rest is dus kleiner dan een eindig veelvoud van demodulus van den voorafgaanden term in de som, daarom is _ (D\'cotgv)  1 \\ 2 m - 1 KnÂŽ"~Mlog-| waarin K eindig en onafhankelijkvan X is. n-l Stelt men nu A/ = Z f/h = l n^en uit (21) . , / x . / 2m-2 /i\\i â€? ,/ iVL (X fl" ) - n L (xn\') = - V4 (n - 1) - A, M " ^Â?x-j waarin Ki weer eindig en onafhankelijk van x is. Men vindt hieruit Lim j L (x fl"\') - n L (x"\') j = - Â?/i (n - 1)- n-l rhn\' â€” Â? Z h cotg2n h=i â€? n dus dal L (x fl" ) op dezelfde manier oneindig wordt als n L (xÂ?\'), C â€” log log^ â€” 2 log n dus volgens (34) Ilfdst. III als-------------^-------------h nlog- \'l Bestaanbare deel van L (xfl") wordt dus oneindig opeene manier onafhankelijk van n\', het imaginaire deel blijfteindig, dit sluit met Â§ 3 Ilfdsl. II, de reeks van L. werddaar gesplitst in Ei en Zj. De reeks liad slechts reeele \\n (D\' cotg v) _hn- dan vindt go dus |R|<2| g?Žra (0) 1 (2 m)! n\'â€”Â? â€ž



??? termen, Lim (1 - p) Si was oneindig onafhankelijk van n\'.De reeks Z2 had complexe termen Lim (1 â€” p) Sa was echter n A log log ^ eindie. A posteriori weten we nu dat het deel â€” ; p nlog- C â€” 2 log n , . behoort bij de limiet van Si, terwijl-----ook voor nlog-een gedeelte kan behooren bij de limiet van Â?2. Â§ 19. De methode van de vorige paragraaf kan voor ge-schikt gekozen bk ook uitgebreid worden tot Lambertschereeksen. Voor bk = â€” Vk is = _ f = n _(l-z\')([lfdst.ivÂ§12nÂ?.4.) Nuis 1 108(1  = h = l k = 0 (25) 1 log(l-(x??"\')\'\')- Â? log(l-(xr\')\'>").k= 1 * â€” \' Venier is: s\' f log (1 - \'\'\'"??\'"\') = \'Â?B d - Â?\'"â– â– ) h = l k = 0 V log(l-xk"?–P)(l-x\'\'Â??–^P)......(l-x\'\'n??("-Â?P) k = l 1 = log Lim ^ Z log X^" - " V-= log n -1- Z log y^^^lT ^ x â€” 1 k = l 1 _ 1 co Vk=l Uit (25) en (26) volgt: n-^l go xkn 1 (2G) log n 1 (log (1 - x""\') - log (1 - x"") ). h=lk=0



??? 1 logd-Cxfl"\')")- 1 log(l-x\'\'Â°)-k=l k=l 00 oo ^ -S log(l-x\'"") s logd-xk")-logn =k=i k=i (27) M(xr) â€”M(x"\') â€”log n. We integreeren weer dezelfde integraal als in Â§ 18, 2m keer bij gedeelten, maar nemen nu ?? (u) = log(l â€” e\'^??\'""\') zoodat het diff. quot. van deze 0 (u) de functie <p (u) van Â§ 18 oplevert. Er komt nu: Si 00 V (Cp(kny hy)-0(kny)) =k=0 2m - 1 /l, \\ . r , . Tn\'h n . -n\'h 2 sin- waarin cp(0) = loglog ^ . Trn h2sin- -i(B [hn\'l \\ n n (|)\'(0)=i colg^ - V2 en cotg>) ^^^ (28) of E ilogflâ€”xk-\' \'-??""\') â€”log(l -xi^-?–\'\'"\')! kssO 00 h 2sm- h^ n X (0 (kny -1- hy) - cp (kny)) = - - logk = 0 " * hn\' - y 2m- 1 - E n\'/f/ D\'-\'cotgv  U ^ 11 Hierin is R = - n\'â„? y"Â? ?’" jgiâ€ž. (t --] - g2m (D j (t ny) dt. O ^ \' Maar nu is:



??? 00 1 _1_ dus dt ny 1 00 /= â€” 00 tny \\h/3 â€” Â?> __ 1 r |< nÂŽ- -1 y"" -1 2 I gaâ„? (0) I (2m - 1)! 2 ^ "(h^ _ 2 rrlf- " ^ = (2m -1) r 1 gam (0) 1 yÂŽ- -1 nÂ?â„? -11 ^tm -1 (o) ] dus R = K y^â„? -\' waarin K eindig en onafhankelijk van y is.Uit (27) en (28) volgt: (29) M(x??"\') â€” M(x\'") = logn â€” Â? . Â?n h 2 sin- \'hn\' hn\'. n 1 V2j I n-1 n h==i -f s-ih h log \\ V n n , 1 am-l/n-l /|,\\ - ?Š - Â? 7 - U, f\' (n) (D\'- Â? . = \' v\'/ / i\\??m-l Kl log -) waarin Ki eindig en onafhankelijk van x is. Daar nu bekend is hoe M (z), dus het oneindig productvan Euler zich gedraagt als z langs de reeele as tot ?Šennadert\') volgt uit (29) het gedrag van M(x??"\') als x tol 1nadert. Dan is: Lim 1M (x ?“"") - M (x"\') | = log n - x-Â?.l hn\' 4 n-1 n h = i gi) O â€? 2 sin- h log \') M (7.) ^ log i 1 log 2r - VÂ? log log (\' loli) 6 log- Ti



??? M(x??"\') wordt dus op dezelfde manier oo als M (xÂ°\') dus als Lim â€” \'/2 log log - I -Â?â€? 1 X 6n2 1og-x Het reeele stuk van M(xfl"\') wordt dus slechts oo en weeronafhankelijk van n\'.Zelfs zal het reeele stuk van Lim j(iM (x ) â€” M {x"\')| onaf- 1 hankelijk van n\' zijn, want â€” Z n h=i n â€” 1 1 n-l h log 2 sm- . -n\'hsm- Voegen we in deze reeks de termen, die evenver van deuiteinden staan, twee aan twee samen, dan zijn telkens delogarithmensinussen gelijk en de som van hunne coefTicientenâ€? (n â€” 1). Daar ni<n en onderling ondeelbaar met n, laten de getallen n . 2n\',----(n â€” 1) n\' bij deeling door n de resten 1.2.3.....(n â€” 1). Hieruit volgt dat de som van onze reeks voor oneven n isV.(n-I) ^h V."-1 â–  (n â€” 1) X log sin â€”; voor even n is zij (n â€” 1) Z loc sin â€”h=l " h=l " n \' dus telkens onafhankelijk van n\'. (29) wordt nu Lim I M (x r) - M (xÂ?\') | â€” log n --- log 2 -f x->i n n_i/Â?("-i) -h - Z log sin â€” voor oneven n n h = l " hn\' n n â€” 1 Vi n - 1 -li en ---^â€” Z log sin â€” voor oven n. - h = 1 n bk In Ilfdst. II Â§ 6 vonden we dat als Z | I convergeert, dat

dan: li X\\ ?–O yV Lim 1-- Z 1), , , XH-I, ( V Xo/ k= 1 I â€” x" waarbij Xo Â? e " v = l "V



??? bâ€ž Hier is b, = - ^ dus S I y I convergeert, waaruit volgtdat Lim Kl-f^ll en onafhankelijk van n\' is. Verder is â€” â€” " n\'^v^ Gn^\' Stelt men nu x = (1 - Xo dan vinden we zoo 1 _Lmi M (X ??-\') = Lmi^ 1 X " G^-Â?"" In deze paragraaf vonden we Lim Mlx??Â?\') = 1 _ Lim - VÂ? log log 7------- 1 "" G nU wat dus behoorlijk sluit. Eene andere proef op de gevonden limiet kan men maken door n\' = 1 en n = 2 te nemen dan is: Lim IM (- x) - M (x\'\')! = log 2 - V2 log 2 = \'/a log 2x-^ 1 U \')Qf ^_____________ â€”1/2, eene bekende uitkomst. n (l xÂ?") n = l Â§ 20. Uit de transformaticformules van Kluijveh kan mennog eenige voorwaarden voor de niet-voortzetbaarheid vanLambertsche reeksen afleiden. Zoo volgt uil (21), dat dc reeksvan L.zelfniet over den eenheidscirkel voortgezet kan worden.Evenals in Hfdst. II Â§ 3 kunnen we aantoonen dat 11 â€” ??"*"\'!en I 1 â€” x\'\'" ??*"Â?\' i voor O^x ^ 1 grooter zijn dan een eindig getal, dus zal Lim|Th(x,n\')| = Lim I- n\'-"") Jâ€ž (, _ ?? - \'



??? Dus is: n-l Lim I L - n L | = Lim | - \'h (n-1) Z T, (x, n\') |dus eindig, waaruit volgt dat Lim | L (x ??Â°\') 1 = QO , omdat z = 1 X->1 een singulier punt van L (z) is en dus Lini L (x"\') = Ieder rationaal randpunt van den eenheidscirkel is dus eensingulier punt van L(z); over dien cirkel is de reeks nietvoort te zetten. Verder kunnen we bewijzen, dat eene Lambertsche reeksniet voort te zetten is, wanneer A>bt>B>0 is. Bere-kenen we n.1. achtereenvolgens de verschillende stukken vanLinvN (x ??" ), dan hebben we vooreerst: Xkn\' 00 X->1 go Lim n A Z r x-f-l k=l 1 j.knt vknl oo >LimnB Z i > Lim n Z b \'kn ^knÂ?\' v-knÂ? i-kn< k = i 1 1 -X x->l k = l - log log 7 log^ log ,4l^-------= Lnn â€” â€”^ = Lnn ?¨ X- 1 1 â€” X dus volgens Â§ 18 en omdat Lim , X-.1 log- Lmi- â€” > Lim n Z bknx-^i n 1 â€” x x->l k-l 1 x"Â?\' B\'o&rrx -;-??> Lim---7---------- 1 â€” x""\' X 1 n 1 â€” x co x\'\'" d-x") Verder is Lim X=1 < Lim A (1 - x\'O z ^ = A !: ^vaarbij Â? en (3 eindig zijn.^x-^i k=o cc (3 n 00 â–  -kn Eindelijk is Lim k = O ~ 1 â€” x*"* ?”\'"\'\' 1 ^T- A ^ A 1 x->i /3 k=o x-^i p 1 â€” X n In de uitdrukking (19)

voor N(x??"\') zijn voor Lim x1de andere termen tegenover de eerste te verwaarloozen en logâ€”^ dus is Lim |N (x > Lim - -r-^ ~ * waaruit volgt, dal eene X 1 x-f 1 n 1 â€” X Lambertsche reeks niet over den eenheidscirkel voortgezet kan



??? worden, wanneer de co??ffici??nten eindige positieve getallenzijn. Bij dit bewijs is gebruik gemaakt van de veronderstelling,dat deze getallen eene bovenste grens hadden, anders is hetniet zeker dat in (19) de eerste term den doorslag geeft.Kunnen de co??ffici??nten co worden dan is het heel goedmogelijk dat de reeks voortzetbaar is zooals uit het voorbeeld(13) van Â§ 13 te zien is. \'t Bewijs gaat evenmin door wan-neer de co??ffici??nten als onderste grens nul hebben, ook indit geval kan de reeks voortzetbaar zijn, zooals uit het voor-beeld (12) van Â§ 13 duidelijk wordt. Is Lim bk = A O dan is de reeks ook niet voort te zetten,k->oo want dan zal als A positief is, van eene zekere waarde vank = m af:. A -}- Â? > b^ > A â€” waarbij Â? eindig is, feitelijkis hiermede het geval tot het vorige teruggebracht. Voornegatieve A bewijst men dat â€” N (z) en dus ook N (z)niet voortzetbaar is. Wanneer de co??mci??nten echter zoo co worden, dalLim bfc =AkÂ?, waarbij s> O, dan is men zeker dat de reeks niet-voorlzelbaar is. In dit geval geeft de eersle term van(19) weer den

doorslag. Van een zeker rangnummer m afzal b, minder dan eene eindige kleine grootheid e van Ak\'verschillen; met verwaarloozing van waarden van lager ordeis dus: co x"*"\' LimlN(xr\')l = LimnA S â€? = Lim n\' â€? A f k" (x"\'"\' -f x"Â?\' x^""\' -F...........) = = Limn\' \'\'A Â? (f x"Â?" 2\'xÂ?\'\'"\'-f 3\'x^"\'"\'........) XH-I k = l wanneer we in de dubbelreeks eerst de kolommen sommeeren.Hieruit volgt dus: Lim(l-x)Â? -N(x??"\') =



??? Nu is Lim (1 â€” x x\' 3ÂŽ x\' ..........) = F (1 s) dus Lim (1 - x)i Â? (1Â? 2ÂŽ x^l^"\' 3ÂŽ x^"^"\' .....) = B i->-i ^ r(i s) â€ž2 28 J.1 en dus Lim 1(1 - x) ^ Â? | = An ^, \\ , r{\\ s) E -A: x->.i n k=i k Ieder rationaal randpunt is dus weer een singulier puntâ€? van N (z). We merken nog op, dat de coemcienten van de reeks (13)van Â§ 13 wel oneindig worden, maar niet voldoen aanLim 1)^ = AkÂŽ (k > 0); de reeks was dan ook voort le zetten. V-f^oo Voor het geval Lim b^ = O . verwijzen we naar Â§ 7, Ilfdst. II.k 00 Tninsforniaties iu bepanldo Integralen.Â§ 21. Voor iedere positieve waarde van p heeft men: r sinp^ l-e-P P J Slell men e " P = x\'^ en vermenigvuldigt met x^ dan komt er: waaruit: E . = \'/, k = l i-x"^ \' 1 -X \') CF:8ilr0-k0wai.ew8ki p. 285.â€?) Catalan: M<^lang0fl nmth?Šmatiquoi p. 188.



??? f^ d ti 00 , 2./ , Zx\'^sinkliAlogx).n e Ik 1 logxV 12 3 O co De som tusschen haakjes is log (1 â€” x) en E ^^ sin k x is liet k;= 1 CO imaginaire stuk van E dus gelijk aan: k = lX sin cc ;. Men vindt zoo: 1 â€” 2 X cos a: x2 V ./ ^ log (1-x) k?¨il-x\'\' logx c â€” - ___ dy^ (30) -2x^j J _2xcos(01ogx) x2e2:r9\'. _ 1\' Verandert men x in x^ en trekt tweemaal het resultaat vanden oorspronkelijken vorm af, dan komt er: \' x 4 ^ k=/~ ^ i-x"^â€” \'M-i-x logx x sin ((// log x) 2 x2 sin 2 {\\P log x) -fO dl// â€” 1 1 â€” 2 X cos (t// log x) x" 1â€”2 x^i cos 2 (i// log x) x^ . X sin Â? 2 xÂŽ sin 2 a x sin tx Nu is 1 â€”2xcosa xÂ? 1 â€” 2x"\'\'cos2Â? x^ 1 4-2x cosa x\'\'en dus met Â§ 13 nÂ°. 1. = logx" - â€? ("â€žâ€žâ€ž?‹iaiilosj^L__â€ž 1 2x cos (;//logx) x2co x\'\' \' Ontwikkelt men f T^ machtreeks naar x, dan zal x" slechts voorkomen in die ontwikkelingen van x\'\' n" â– ;â€”jâ€”waarbij k deelbaar op n is; x" is dan telkens - term.1 -p X K Dus heeft deze term een plusteeken als oneven is, anders een minteeken. Nu is ^ evengoed een deeler van n en daarom zal de .co?Šffici??nt van x" telkens het verschil van

het aantaloneven en even deelers van n zijn. Door (30) en (31) zjjn



??? 00 xk 00 xk de reeksen E â€”â€”t en S 71â€”c eindigen vorm voor-k=i 1 â€” x1" k = l 1 x" gesteld. Voor x = O zullen de nÂŽ diff. quotienten van dezevormen n! keer het aantal deelers van n en n! keer het ver-schil van de aantallen oneven en even deelers van n aangeven,dus samen beide aantallen leeren kennen. Â§ 22. De formule van Poisson eP-e-P ^ f^eH\'\' e-ff. â€” = 2 / ^ â€? ^^ , sin p d-p J e- ?§\'\' â€” \' ^ ^ eP i- 2 cos ?? 4- e ^ geeft voor 0 = 0:e\'P â€” 1 eP 4- 1 V (eP 1):! eP -{- . Neemt men weer e" p = xk, vermenigvuldigt met xk ensommeert van k = 1 tot 00 dan vindt men: co xk d iL co 2 z T-^k - r^ = - i / â€”^ ----V xk sin k log x) __sink(0Jogx) _a^p k=i 1 xk \' 1 - X i c\'\'/\' - e-\'^^\'\' 1 - 2 X k = il-l-xk _ ^ of na berekening der laatste som: og x) _ cos {\\f/ log x) X* Â§ 2.3. De elliptische functies geven ook nog eenige trans-formaties in bepaalde integralen. De formule . , Ku K-E 2tÂ? Â? kq\'\' , w - k^KÂ? k^i r-V\'^ geeft bij vermenigvuldiging met log(l â€” 2 q cos u q*) du enintegratie tusschen 0 en r: >) .lounml do I\'?Ÿcolo Polyteohniquo XVIII Cnhicr png. 297.â€?}

Scni.??Mn.cu. Compoiulium II p. 414.



??? P log (1 - 2 q cos u q^\') sin^ a m ^ d u = ^r^-f (I - 2 q cos u -}- q^) d u O ^ " - ,4^2 ?? r^^k ?’log (l - 2 q cos u q^) cos k?? du.Nu is /"log (1 â€” 2 q cos u q\') du = o en O /"logO â€” 2qcosu4-qÂŽ)cosku d7i = â€”^ O waardoor we vinden: r- , ov . O Ku, I log(l â€” 2q cosu q2)sin2am--du = 2;: K\' Stelt men hierin x = q\' = e dan vindt men: 00 vk K^ r- , X . O Ku , y = W{1 â€” 2 Vxcosu x)sm2am â€” du. Â§ 24. Ook de thetafuncties van Jacobi geven transformaties. ,2k hl V k\'K\'k^i 1 â€” q 2k oo q4k â€?cotgz = 4 E^j^k ?–i\'(z) sin 2k z Men heeft r.2k Vermenigvuldigt men de eerste betrekking met cotgz en detweede met tg z en integreert tusschen o en | dan verschijnenaan den rechterkant integralen vmi de gedaante: r^\' sin 2 kz cotgz dz en sin 2k z tgz dz. O Â? \' Nu is 14-2 (cos 2z cos 4z cos 6z ----cos 2 k z) = = sin 2 kz cot g z cos 2k z dus: sin z sin 2k zcot g z=l â€”cos 2k z 4- 2 (cos 2z 4- cos 4z 4" â€? â€? â€? â€? â€? cos 2kz).



??? waaruit (32) ?’ sin 2 k z cotg z ^ z = | O en z door â€” z vervangend (33) ?’" \' sin 2k z tg z dz = (â€” l)*""^ ??" O Hiermede vindt men nu de transformaties: ^ ? cotgz) cotg zdz. t^il-xk k?¨il-q"\' \\??i(z) / waarbij weer q = V x en dus: en??.(z)=2 V ^ D\' cos (2k - 1) z. Â§ 25. Ook met de functies ?– on ?–3 kan men de reekstransformeeren: ?? (z) k = 1 1 â€” q" Vermenigvuldigt men beide kanten met de gelijkheid: q^\'" - = q sin 2z q\' sin 4z q\' sin Gz -f...... Iâ€”qcos2z qÂŽ en integreert dan tusschen O on | dan komt er: qsin2z_ ^^^I fl(z) 1-qcos2z q\'\'b V _-^,v-sin2kz(qsin2z qÂ?siniz qÂ?sin6z4-....)dz I \'0 Nu is / sin 2kz sin 2nr/, dz = O maar0 \') Sturm, Cours d\'AimlyBe t. II p. 587.



??? r^/a I f\'h ^ / sinÂŽ 2kz dz=- j (1 â€” cos 4kz) dz = ^ O O , . ^ q" 1 r\'^S\'iz) qsin2z en dus is E . = - / â€”--??r-f-^ dz k=i 1 â€”q" t: 6(z) 1â€”2qcos2z q\'\' O en vervangt men hierin q door â€” q dan gaat dit over in: y _3!L_=_1/ qsin2z ki 1 1 - qÂ?\'\' ^ ?’ ?“3 (z) 1 2q cos 2z q^ O Stelt men weer q = l^" x dan vindt men de twee transformaties:c"^ 1 Q\' (z) xVÂ? sin 2z \'S x^ dz = k = l l-x" J ?´{z) 1 â€” 2x\'/\'cos2z4-x O _ 1 r\'\' 0\', iz) xV. sin 2z dz TT ?–3(z) H-2xVÂ?cos2z x co waarin ?? (z) = 1 2 Â? (-1)\'\' xV. cos 2kz enk ?–3 (z) = 1 2 1 x\'/Â? k\' cos 2kz.k = l Â§ 2G. E?Šn nieuwe transformatie kan men nog afleiden uitde beide formules: ?”\'i (â€?\') ^ n" ??s (z) k = 1 1 â€” q" Vermenigvuldigt men beide met tgz dz en integreert tusschenO en y27: dan vindt men in verband met (33):



??? O Substitueert men in de eerste formule q = l/x en in detweede q = x. dan gaan de linkerkanten over in: \' j _ jjk \\ Z. x^k terwijl men de functie ??i moet nemen, die bij q = l/x past. Nu is: 2xk x" l x\' x^ ___ l-x\'\' 1-x^ â€?k O) 00 x = 0) v Vâ€”v ..k x\'\' 1-XÂ? k^l 1-x\'"\'00 x"^ 00 in verband met Â§ 13, nÂ°. 1 vindt men zoo: = 1 1 x waarin ?–. (z) = 2 l)\'\'->x^^<"-\')\'sin(2k-l)z en 00 ?–3(z) = l 2 X x\'^\'cos2kz.k = i Â§ 27. De ^ functie van Weierstiuss geeft ook eene trans-formatie. t men in: ^u) = ^ ^ (2 u t cotg ^ " f sin \\ 2a)i k=i 1 â€” q" / 5â€” = z, vermenigvuldigt aan \'weerskanten met cotg z dz enintegreert tusschen O en \'/??jt, dan vindt men met (32): â€” K â€”- -cotgz cotgz dz = \'"// zcolgzdz 2TE^ \\ Â? / ^ " b k = i 1 â€” q** Nu is I"\'7. cotg z dz = z log sin z \' - log sin z dz = \'/s ?r log 2 "o _ 0 b waaruit voor q = Vx: ?’ k?¨. â€”^ 2 4-^/ â€” C^â€”j-cotgz cotgz dz. JOKDAN, Cours d\'nnalyso do l\'?Šcolo polytcchniquo t. II. p. 454.



??? Deze betrekking wordt eenvoudiger, wanneer men de periode2m der C functie gelijk r neemt. Men vindt dan: Zâ€”=   - cotg z) cotgz dz en omdat: ^ r\'\' {y (z) _ cotgz) cotgz dz = (C (z) - cotg z) log sin z \' Afleiding van tran.sforniaties met Calcul Synibolique. \') Â§ 28. Met eene symbolische rekenwijze heeft CEsano ver-schillende der vorige transformaties afgeleid en er eenigegeheel nieuwe aan toegevoegd. De grondbeginselen van dezemethode kan men vinden in Ces??ho-Kowalewski, AlgebraischeAnalysis p. 294â€”308. De Bernoulliaansche getallen wordendaar gedefinieerd door de symbolische vergelijking:(B i)p â€”BP = p, terwijl Bo = 1 genomen wordt. Hieraan moetmen de beteekenis hechten, dat deze .symbolische vergelijking ge-wone vergelijkingen geeft, wanneer men (B l)\'\'ontwikkelt endaarrfa de exponenten der machten van B als indices beschouwt. Neemt men voor p achtereenvolgens 1.2.3 enz. dan geeftdit met Bo voldoende betrekkingen om de getallen van Beu-noulli te bepalen. Neemt men nu in de symbolische identiteit f (a 4- (N D) - f(a  f (a)

(NÂ?r(a) ^^^^ f-(a) enz.voor de getallen N de getallen van Bernoulli dan vindt men zoo: f(a4-(B4-l))-f(a B) = f\'(a)-|-^^^ ^ .......= aa4-l). \') CES?¤RO: Principes du Calcul Symbolique Math?Šsis t. III p. 10.1883.



??? en omdat f (a (B 1)) = f ((a B) 1) dus: (34) f ((a B) 1) - f (a B) = f\' (a 1). Schrijft men dit op voor a = O, T. 2 . 3........(n â€” 1) en sommeert, dan vindt men de sommatieformule vanMAC.LAURiN (35) f\'(l) 4- f\'(2) f\'(3) f\'(n) = f(n B) - f (B). Het gebruiken van deze reeks geeft dikwijls aanleiding tothet ontstaan van divergente reeksen van het asymptotischetype. Daar het bepalen van den restterm nog al eens be-zwaren heeft, kunnen de volgende beschouwingen niet alsvolkomen streng gelden, al hebben ze het voordeel de reedsgevonden resultaten van eenen anderen kant te belichten. Â§ 29. Voor a = 0 volgt uit (34) f(B 1) _f(B) = f\'(l).Dus als f(z) =e\'^^dan is:  of IS.â€” = ?ŸB\'t = 1 Z -IT X â€? waaruit: e^ ~ \' ic = i k! e 1 cÂŽ Bk â–  , e-^ _ 1 X ^ k=i k! 05 Bk x\'^ , integreerend: log (0^ â€” 1) = log x ^^ k?? X Voor X = O blijkt C = O dus beide kanten van log o"^ = xaftrekkend: xe\'^ 00 Bk x\'^ _ ,, V Â?2k ^ (3G) log ^^ ^ - kS. IT T " k^i (2k)! 2k want B, = Va en B3 = B^ Â? B; = enz. = 0. Â§ 30. Sommeeren wo met (35) eeno reeks met algemeenenterm f\' (k) = ^ " ^ ^ < \' â€?

oogenblikkelijk:



??? Dit geeft voor x = 0: B Â? l^log{n B)-logB = -log B logn logll -k = lk ni , 1 ^ B,, 1 Laat men n oneindig worden, dan blijkt â€” log B de con-stante van Euler te zijn en dus: n 1 1 Bjk 1 Trekt men nu (37) van (38) af, dan vindt men: ^ , 1 ^ B??k 1 B n B G-Mogn-I--- B log kSil-x" logl 1 . " \' 1-x" Stelt men rechts x=e-^ dan is omdat x<l, t>0, laatmen nu n oneindig worden, dan geeft dit: nB X^ 1 go S G log (n B)(l-e-Â?^) k^l 1 - x" t Be"\'G iog^B??zr?? co x\'\' G â€”logt , 1 , Bte\'"_dus met (3G) = ^ Gzi^ . 1" t "^t w x" _G-loglogT , 1_ k?¨irrr^ log-^ k^.(2k)! 2k de bekende formule van SchlOmilch Ilfdst III (34). Â§ 31. Uit deze formule heeft Gesiiho de transformatie afgeleid: , , G-logz , 1 , rÂŽ/ , zu 2 \\ duA (z) = ~ - 4- ^ -f i (cotg - WiGERx\') merkte op, dat deze Iransformatie voor reeele z\') Acta mathematica t. 41. p 197. (1918). ^ Bik Bik t\'"k = i(2k)! 2k en bij invoering van x: I Mk-l



??? 2k;r geen beteekenis heeft, daar de integraal dan voor u â€” ^ (k= Â? 1, Â? 2____) divergeert. Het blijft mogelijk, dat de betrekking voor complexe z goed is: na zeer ingewikkeldebecijferingen bleek dit op ?Š?Šn term na het geval te zijn.Eene eenvoudige afleiding is de volgende: 2 \\ du 00 00 4 z u 00 du =?’ ?’ Z U e2:ru_ 1/ du z u2,Tn; z u - l 2-n \\ ^ ^"//â€?co GO C) n=i TT n \\2t n 00 00 2 /â€? 8 uÂŽ\'\'-\' n=i ^ "^"k^i (2 Trr ^ ^ 2kn^i nÂ?\'\'- . \' (2kr! k=i(2k)! 2k z"-\' G Nu is (17) A(z) z "^4 k^i2k(2k)!waaruit voor p oc en z in de buurt van 1: du â€” 1 Â§ 32. De Ultra-Bernoulliaansche getallen, bepaald door desymbolische gelijkheid (b 1)\'\' â€” aB" = p (a J 1) \'), geven nogeenige transformaties, \'t Is gemakkelijk eono betrekking afto leiden, die overeenkomt met (34). Men vindt:f (X -1 b -1- t) _ a f (x b) = f\' (X 1) dus voor x = Of (B 1) â€” a f (b) = f (1). Noemt men f (z) = e\' * dan heeftmen zoo \' â€”------------------J O n >) .Men vindl BÂ? =0, B, = B, = â€” ^??^T^^jÂ? "^oor n= 1, gaan ze niet in do HernonlliapnKchc getallen over, omdnt dan(B i)o_ijo = 0 eene identiteit ia en duÂ?

Bo piw bepaald wordt doordo volgende vergelijking (B 1)\' â€”B\'=l.



??? (39)   = dus ^^^ =6^"= f e"" â€” a k = ik! Vervangt men x door ix en stelt de re??ele stukken gelijkdan vindt men: (40) _^^_= V ^ \' 1â€”2acosx a2 (2k)! Deelt men (39) door x en integreert dan, dan vindt men: co B^ x"^ J.i????T c Voor X = O blijkt C = log (1 â€” a) en trekt men het ge-vonden resultaat af van loge* = x dan krijgt men:px 1 00 B, xk (M, Â§ 33. Nieuwe transformaties vindt men door (35) op te / 1 \\ Q schrijven voor f\' (z) = log â€” --^ dan isf(z) = log(l â€”ax^) xy 1 â€” a X en er komt: Â° / 1\\ ax\'\' ^ y^^ = log(l-axÂ° Â?)-log(l-axÂ?). k = i\\ ^ â€” ax co x\'\' 1 e" ^ waaruit voor n = co en x =Â? e~ 2 râ€”-c = t iog -tt,â€” k = i 1 â€” a x*" t " Uit (41) zien we, welke beteekenis aan dezen vorm gehecht moet worden en vinden: 1-i = T 5--h Bl â€” X -j-, , I k = il â€” ax" t 1 â€” a k = ik!k of met Hfdst. IV Â§ 13 nÂ?. 6 de transformatie: \\ jjk-- = N - _ k = i l-x" k=i 1 â€”ax" mits a < 1, neemt men a = â€”1 dan vindt men voor dereeks (31):



??? 48 5760 120960" Â§ 34. Stelt men in (42) a^x" dan vindt men: V xk ___^xÂ? _ X B,, B,, / I) \' 1 - xk 1 2 (l -X")- (2l??TÂ?k r^ xj terwijl uit (40) volgt T-(\'A log x) _Al_ ^ i 1-2 X" cos (0 log x) x\'" eÂŽ\'^^^ - 1f^ oo R , , X R rao Â??? k -1 waardoor we vinden: V ^ ^ 4- . X"-\' 1 XÂ? , k = il â€”xk l_x~lâ€”xÂ?"^......1 _ XÂ?-Â? 2 r^ lgg_(L- O r X" sin (0 log x) d;/; \'ogx "./ 1 -2x"cos(t//logx)-fxÂ?" welke Iransformalie voor n = 1.(30) als bijzonder geval beval. \') Do getftllcn B moeten hier natuurlyk zoo genomen worden, dnt zijby nrrrxÂ? pjuwen.



??? HOOFDSTUK V. Â§ 1. We zullen nu nog eenige merkwaardige uitkomstenafleiden, die met de reeks van L. verkregen kunnen worden. L(z) Integreert men om het nulpunt heen ^^^ dan is het resultaat 2jriL^P)(0) en dus zal volgens de fundamentale eigenschapder reeks van L. ieder priemgetal voldoen aan: 2ri i zP i\'\'\'- Â§ 2. Eene andere integraal met L (x) achter het integratie-teeken staat in verband met de ^ functie van Riemann. Sub-stitueert men z = ku (k>0) in de integraal van Euler: roo / dz = r(s) dan vindt men: O 1 1mJ â€?w, Vermenigvuldigt men beide kanten met O (k) en sommeert van1 tot co dan is: dx â€” dus:x zooals blijkt uit het kwadrateeren van ^ (s) = -f J, â–  â€? â€? â€?Stelt men e~"=x dan vindt men: 1 ^ t / l\\ \'-\'dxx



??? Â§ 3. De reeks van L. hangt ook samen met de getallenvan Fibonacci. Deze zijn bepaald door de recurrente betrekkingUn 2 = Un i Un, waarbij ui = 1 en U2 = 1. Hieruit volgt "n "n Un â€ž^oo Un te bepalen stellen we haar x, dan is x = 1 4- - dus x = l^J^ X 2 en daar x > 1 is, dus x = V2 (1 ]/5). De reeks van Fibon-NACGi zal dus divergeeren, maar de reeks der omgekeerdenvan de getallen van Fibonnacci convergeert. De getallenlÂ?l/5 , â€”^â€” spelen ook verder eene groote rol bij deze reeks, 4- V5j" __ - V5jn zoo IS Un =- y-g " \' . Men ziet direkt dat dit juist is voor n = 1 en n = 2 door een bewijs van Bebnoullikan men de algemeene geldigheid aantoonen. Stel = -a dan is en dus : __l/5 _ l/5aÂ° Voor de som van de omgekeerden der oven termen vande reeks van Fibonacci vinden we: L â€” = 1/5 V ^ â€”1/5 V V â€ž(ik 2)h _ wj 00 _ 00 = 1/ 5 V V J,(41c l)h =1/5 V k = 0h^i ^ \'\' k=oI 1/ 5 = 1 Ujh 1 â€” aÂ? ^ 1 - aÂ? ^ 1 _ ^ \' â€? â€? < n6 I I \\ / , , 1 -a" \' 1 - a



??? â€žt f 5 [L (a.) - L (a\')] = 1/ 6 - L (1^)\' De som der omgekeerden van de oneven termen voert niettot de reeks van Lambert, maar tot eene reeks van JagobiO- Â§ 4. Met de stelling van Appell (Hfdst. II. Â§ 5) 00 "y n xk Sa Lim - = I-im = Lim -ji kan men uit de reeks van L. nog eenige uitkomsten verkrij^n. We moeten dan het gedrag der reeks in de buurt van xâ€” 1kennen en gebruiken daartoe de ontwikkeling van Schl??milcii (Hfdst. lll. (34)). Stelt men nu in het tweede lid x=l â€” 5 dan komt er: â€”thmm^w t.... \' G - log ^ - log (1 -f Va 3 Va ..â€?), I, _ ........) â€”/ V \\ -r 1*â€” ^ == _ ^ 1/, log ^ - Vi C - VÂ? -f V^ -h. â–  â€? d?? Zien we dus van positieve machten\'van ?¨ af,, dan is: ,â€ž L (X) =./, ^ (,og i c) - ./, =  c)- mits X in de buurt van 1. We vergelijken nu eerst L (x) met de reeks, die men krijgt, 1 1 1 , \' 1 __ als men log ontwikkelt. Nu isj^ log ^ â€” 1) E. Landau: Sur Ia n?Šrie dos invcrBCÂ? des nombroa do Fibonacci,Bulletin do la 80ci6U5 Math?Šmatique do Franco t27, p 298 - 300 (1899).



??? III /x . xÂ? . x\' \\ GO = ^ ^ ......j = waarbij H^ = 1 V2 Vs .... Vk. Uit (1) volgt nu: 1 , 1 x-Â?-l . A log-^- log V2 (1 x) (log  c) - V4 (1 - x) = Lim . , x-Â?-l 1 log 1 â€”x 00 L(x) Maar ook is Lim â€”:---â€” = Lim ---= 1 â€”x ÂŽ 1 â€”X k = l -niZ Hl ri2 IIÂ? ...Un nu onder elkaar IIi, II2, II3.....Iln uit en sommeert de kolom- n _ jjâ€”1 n â€”2 , 1 _ men, dan vindt men Z Hk = n k=i \' 2 \' 3 â–  n /n 4- 1 n 4- I n 1 (3) 1 ^ 2 ^ 3 n , n/ Omdat Iln zelf asymptotisch lot log n nadert, heeft men: Lim H. HÂ? ^ Lim (jlÂ?i) = Lim JllL = 1. n-^Â? nlogn nlogn "-^"logn en dus in verband met (2) n-,.Â? nlogn Â§ 5, We kunnen zelfs het oneindig kleine verschil tusschen1 en deze limiet berekenen door de funclie: L (x) - loB = (\'^(k) - "k) x" lo beschouwen. Voor X 1 nadert deze funclie lol: (2)



??? ,. 1 1 4- xLim â€” ,-- 2 1 â€”X T- 1 Xâ€” 1 ,Lim - ^-log , G (1 x) 1 ,. G 2 riTl,r^ 2"(T=T) - 4 = 1 - x 1 1 ^ :log C log 1 â€”X1 1 1 L(x) Dus Lim x^l lo 1 - x " 1 - x = 1. 1 â€”X00 f (?–(k)-llk)k=i - = Lim (n l)G 00 S Gx"^k=:0 (^(k)-Hk) xk k=:l Maar deze limiet is ook gelijk aan Lim (5) dus Lim (k) - Hk) = G. Maar volgens (3) is: n->oo n k = l Lim- 2 Hk = Lim n-j-oon k = l n-Â?-a6 over in Lim n->oo " Hn - 1 W Lim (G log n - 1) en dus gaat (5) = G n-^oo - Â? <?(k)-G-logn 1n k=:l (0 (l) g(2) g(3) ....<^(n) =2G- 1 log n (6) of Lim U-J- \\ een bekend resultaat uit de getallentheorie. \') Voor de gemiddelde waarde van Lim O (n) vinden we hier- n-> 00 uit 0 (n) = log n 2 G. want trekt men van^(1)  <?(3) .... ^(n) = n log n (2G - l)n af -9(1) ^(2) ^(3) .... ^(n - 1) = (n - 1) log (n- 1) (2 G - 1) (n - 1) n" dan krijgt men o(n) = log . 2G â€” 1 = log logn 2G-l=logn-i-2G. 8 G. Volgens (6) kunnen we nu stellen Â? tf(k) = nlogn (2Gâ€” 1) n-j-Â?n \'k=l en weer kan de reeks van LAMnEnr ons helpen om \') Stieltjes, CJomptes Rendus de rAcad?Šmio des Sciencca de TariÂ?t. XCVI p. 7??4â€”1029.\') Lejeune Dirichlet,

Journal do Liouvillo p. 359. 185G.



??? Lim Â?u te vinden. In verband met de berekening van Â§ 5 n->oo gebruiken we nu de functie: F (x = L (x) â€” â€”^ (logâ€” C). We zien dan direkt dat: i X 1 X Lim F (x) = Lim â€” V2 log 7â€”â€” en dus:x-t-l i->l 1 â€” x LW-rbfiogfi^r^ c)(7) Lim----^^--^ = x-^l ,1 Om de stelling van Appell te kunnen toepassen, moetenwe teller en noemer in reeksen ontwikkelen. Nu is 1/1 \\ 00 00 QO , L(x)-â€”iâ€” log - - C = V fl(k)x\'\'- ZHkx\'\'- ZCx\'\' =l â€” x\\ ÂŽ 1 â€” X / k = l k=l v=0 -G I (?–(k)-Ilk-C)x^ kE^l Voor de limiet (7) vinden we dus ook: Lim^(-G i (fl(k)-IIk-C)] n-*\'0o Iln \\ k = Deze limiet is dus gelijk â€” en daarom: (8) n->ooIIn\\ n nk=i / Nu IS- Z IIk= -----= log n--C â€” 1 â€”- n kBi u ÂŽ n en dus volgt uit (8):n-Â?-Â? lln \\ n / dus Lim " l n / n-Â?.Â?logn Deze uitkomst beval (G) en geeft bovendien: 1 â€? II Lnn ,-= logn Â§ 7. De reeks van L. geeft na dilTerenlialie L\'(x) = k fl (k)x\'\'-^In de buurt van x = 1 is L (x) = \'/Â? (\'og Cj - \'U dus



??? w , , J_, 1 , 1 X 2C L Â? = (TZT^^ r 2 (1 - xF\' L\' (x) We zien dus direkt dat Lim^-^---zâ€”= 1- log (1 _ 1 _ X Om de stelling van Appell te kunnen toepassen ontwik-kelen we den noemer in eene reeks : \' 1 , 1 \' 1,1 1 ^ , log --- = --- ---Jog: k (1 â€” x)2 " 1 â€” x - 1 â€” x \\1 - x ÂŽ 1 - x co (l x x2 ...)(Hix-fH2x2 Il3X=\' ...)= Z Z Hâ€ž x" zoodat: k=i \\h=i / ..____U(1) 2<?(2)-{-3!J(3) ........-"^("I__.= 1 n^ H. (Ul H2) (Hl Ih lh) .. (Hl H2 .. Hn-i) n-1 nâ€”1 n-t Met (3) wordt de som in den noemer Z k Ik -Z Hu â€” Z k. k = i ^ k=i k=i n-1 Schrijven we Z k H,. term voor term onder elkaar uit ensommeeren de kolommen, dan vinden we: n-1 / n-1 \\ n-l \\ 1 Z k Z k - Vii V3 Z k - \'/s (1 2)H-...... k=t \\ k=l / k=l / ^ "Zk--^-(l-|-2 3 ...n-2)) = \\,n-lk = r n-i Hâ€ž_, k -"Z ,-= VÂ? n (n - 1) Hâ€ž_, - \'U (n - D (n - 2). k=l k=2 2 k De waarde van den geheelen noemer is dus:V2 n (n - 1) Iiâ€ž_, - V4 (n _ l)(n - 2) n Hâ€ž_, - n 1 - \'/s n (n - 1)= \'h n (n 1) Hâ€ž_, - \'/. (n-1) (3n -j- 2).We hebben dus: .. U(l)-|-2/7(2)-I-3/^(3)-f.....nfl(n)_ I â€? 1^(1) 2^(2) 3^(3) .......ntf(n) u^i\'S " " VanMogn wanl Lun -= 1. nn-co logn



??? Â§ 8. We kunnen nu weer het oneindig kleine verschiltusschen deze limiet en 1 berekenen door te beschouwen: i 1 00 ) 1 1 1 x 2 Nu is: Urn L\'(x) - log â€” = Lmi (9) Lim /^-i-^ zoodal volgens de stelling van Appell:(1 â€”x)ÂŽ n-l k Hh = 1 G ----------TTsT^TTTTTTHrT^i) n 00 Men heeft echler: n-l k hS. "" n{n [) - V, (n - U (3n^) _Lim H â€” = Lim log n C â€” Men vindt zoo:(JO) Lim   ....... â€? â–  â–  â€? n^(n) _ â€ž j ^C-V. M n- 00 ( Â§ 9. Volgens (10) kunnen we nu stellen: i k (k) = Va n^ log n (G - \'U) n\' n /3â€ž.Lim is te vinden door de functie: k = l n co T \' fv^__!â€” loKâ€”--le beschouwen. In de buurt van x = 1 gedraagt deze functie zich (9) als 2(1 -x)Â? 2(1â€”x)T \'/ ^ 1 , I Dus Lim ,-------- 1 â€”x Â?) Rcndiconti dei Lincoi 1888, p. 45.



??? hieruit volgt weer: Lim ^^^--_= _ 1/2. n->- oc n dus: n-yco V IIk= 1 " â€” _ if n k ^(k) - V2 (n 1) (hâ€ž 1 g) ^ (n - l) (3n 2) Lim j i k^(k)-i/2nlogn-V2n(2G l) 3/4n!-V2logn-V2(2G l) -^-4â–? -â–?00 ^ V n k=i ) 2 4 ^ k^(k) - V2n logn - V2n(2G - j) | = ^2 log n G - \'U. Lim n-Â?-oo \\ ^ Â° / I \\ en zoo is Lim Z k ^(k) =\'/a nMogn nMGâ€”r "100 k = 1 \\ 4 / eene uitkomst, welke (10) beval en tevens geeft:Lim = Va logn C - \'ji. Â§ 10. De reeks van L komt ook voor den dag, wanneerwe willen onderzoeken niet slechts hoeveel deelers een gelalin het systeem der natuurlijke getallen bezit, maar ook hoeveeldeelers van dat getal in een willekeurig gelallensysleem voor-komen. Daartoe beschouwen we eene functie f(x) zoodanigdat de reeksen:f(l)-f\'/2f(2) \'/3f(3)-f-...enf(l)lo^l Vb f (2) log 2 -j- Vs f (3) log 3 -f-... convergeeren, hunne sommenzijn Si en S2. F (k) noemen we de som van alle waarden vanf (x), wanneer men voor x achtereenvolgens alle deelers van kinvult. Hieruit volgl: 00 00 / \\ V F(k)x\'\'= V V f(d) x". Let men in dezek = l k=:l\\d|k / dubbele som op alle termen met f(d), dan ziel men

dalf(d)telkens met een macht van x vermenigvuldigd wordt, waarvande exponent een veelvoud van d is, de co??lIlciGnl van f(d) cc 00 00 Y^ is dus Â? x\'^Swaaruil: Z F (k) x^ = V , f(d).k = l k = l d= 1 1 â€” x** Lim n->-oo VÂ?â– \'h



??? r Men heeft dus: Lim (1 â€” x) Z F x^ = Lim (1 - x) Z f(k) = k 1 * X xk f(k) x->l 00 1 Xk-l co ZF(k)xk Maar ook is Lim (lâ€”x) Z F(k)xk = Lim-~ X I k : 1 X 1 1 1 â€” X F (1) F (2) F(3) ....F(n)n Lim n-xÂ? F(l) F(2) F(3) ....F(n) = Si. (11) dus Lim Evenals we uit f(k) de functie F (k) afgeleid hebben, leidenwe uit F (k) de functie F (k) af. Deze is dus Z F (k). Wij d I k kunnen nu gemakkelijk aantoonen, dat:(12) Z xkF(k)= Z L(xk)f{k); k= 1 k = I want ontwikkelt men beide sommen in reeksen, dan zal inbeide de co??ffici??nt van x\'^ bestaan uit de som der functiesf(d) van de deelers van q ieder vermenigvuldigd met hetaantal deelers van "J/^. Volgens (l) is L (xM = \'/s 1 -f-x 1 log x" Stelt men x=l â€”5 en verwaarloost alles van lager orde dan "7 dan vindt men voor x in de buurt van 1 J J(log j-logk4-G)) = kj 2k logj-f-C 1 /I logk1 -x/\' L(x) k U Met (12) is dus in de buurt van x = 1: Z x"" F (k) = Z L {x}) f(k)= k=l k=l 00 1 /V 1 L(x)-^)f(K)=s, L(x)- 1-x 1 -X Sa c = i k



??? volgens de stelling van Appell dus: ; oo Â° Z (s, ^ (k) - F (k)) x\'\' ^ (k) - F (k)) Lim ,,-rn--= Lim ^-;rXl-- (1 â€” x) \' n->oo n 1 In verband met (6) volgt hieruit: \\ n / . Dit resultaat wordt eenvoudiger, wanneer we hieruit eenegemiddelde waarde van Lim F (n) afleiden. Men vindt: n-t-OT n -1 F (n) = E F (k) - Â? F (k) = n s, log n (2 C - 1) si n - k = l kr^l _S2n -(n- l)si log(n-l)-(2Gâ€”l)s,(n-l)-f S2(n-1). = si log(l 4 -^Jlf silogn -f (2C- l)si -S2 = si log n 2 G si â€” sj.(13) Men heeft dus gemiddeld Lim F (n)=si logn-f 2 Gsi â€”st. n-fOS Â§ 11. Als een bijzonder geval van deze algemeene formulezullen we eene bekende betrekking afleiden. We stellen datF (k) 1 of 0 is, naarmate k al of niet tot een gegeven systeemgeheele getallen behoort, waarvan de frequentie van 0 ver-schilt. Volgens (11) is dus: Lta Anâ€ž,leâ€ž linker- n CO kant slaat echter hel n" gedeelte van hel aantal getallen in het systeem, die kleiner of gelijk n zijn, dus de frequentie u, deze is dus gelijk s,. Daar F(k) = >:: F (k), is F(k) dus .11 k gelijk aan hel aantal deelers van k, die tol het .systeem be-hooren. Het ligt voor de

hand, dat dit aantal asymptotischnadert lot het totale aantal deelers van k vermenigvuldigdmet de frequentie u. Dus â€? F (n) zal hij eerste benaderinggelijk zijn aan (Â§5) u 6 (n) = Si (log n -f 2 G). (13) geefl nu Lim n->-cc



??? eene nauwkeurige benadering, waarin de waarden van si enS2 van den aard van het systeem afhangen. \' Â§ 12. Nemen we voor het getallensysteem alle getallen,welke behalve de eenheid geen kwadratische deelers hebbendan moeten we dus f (k) zoo bepalen, dat F (k) 1 of O is,naarmate k al of niet tot het systeem behoort. Hieraanvoldoet eene functie f(k) zoodat f(l)=l en f(k) = (â€”1)Swanneer k gelijk is aan het product van de kwadraten van rongelijke ondeelbare getallen, in elk ander geval is f(k) = 0.Heeft k geen kwadratische factoren, dan is F(k) = f(l)=l.Heeft k de kwadratische factoren, a, b, c, d enz... dan is F(k)gelijk aan de som der functies f, die behooren bij de termenvan de ontwikkeling van (1 a) (1 -f- b) (1 c) (1 -f d).. .. Nu zijn deze functies 1 of â€” 1, naarmate ze behoorenbij termen van even of oneven graad. De som van al deze functies krijgt men door voor a, b, c, d----in het product â€” 1 te plaatsen, dit wordt dan nul. F(k) heeft dus altijdde gewenschte waarde, F(k) geeft dus het aantal deelers inhet systeem. Dit is echter ook gelijk aan de bekende

funcliea)(k), die bepaalt op hoeveel verschillende manieren k intwee onderling ondeelbare factoren kan ontbonden worden.Heeft k geen kwadratische factoren, dan komen alle deelersvan k in het systeem voor; twee aan twee is hun jjroduct k cnieder zoo\'n stel geeft ook twee ontbindingen in factoren. Is k = abc\'\'d"...... heeR k dus wol kwadrati.scho deelers, dan is het aantal ontbindingen in twee onderling ondeelbarefactoren hetzelfde als van a b c d ... daar do factoren c en dofactoren d enz. telkens toch bijeen moeten blijven. Helaantal deelers hl hel systeem is ook hotzolfdo als van abcd...Beide aantallen zijn dus? gelijk. \') Om nu u (k) dus F(k) te vinden, moeten we si en sÂ? bepalen. si = f(l) \'/2 f(2) I- f (3) ... = 1 O -{- O - i) w^k) = 2^ wftnrb?? p het nnntnl omlccllmro factoren van k is, wanter zgn dan 1 CÂ?p CÂ?, C\'p .... (>p = ontbindingen in onderlingondeelbare factoren mogeiyk.



??? 0 0 0 0-1......-1...... si = Dit is dus ook de kans, dat een geheel getal tot ons systeemzal behooren. S2 = f{l) log (1) |-f(2) log (2) j f(3) log 3 4-...... Om deze som te berekenen bepalen we den co??ffici??nt van log p, waarbijp een ondeelbaar getal is. Nu zal log p slechts voorkomenin de termen met log p^ log (2p)^ log(3p)2....... daar anders de bijbehoorende functie f gelijk nul is. Zoo vindt men: ^ ....... 2 I reeks komt echter niet voor log p, daar de bijbehoorende functie ftp-*) = 0. Men vindt dus voor de co??fTici??nt van log p ...... 12 V Io{?P _____12 I dus: sz =--7 Z \'P\'^-I waarbij deze .som over alle ondeelbare getallen moet wordenuitgestrekt. Men kan dit nog iets vereenvoudigen. Beschouwenlogk we en trachten hierin den co??f??ici??nt van log p te bepalen, waarin p een willekeurig ondeelbaar gelal is. Alletermen, waarin log p voorkomt, zijn: logj) log2p ,Hog3 p logp\' log^p"^ (2p)^ (3p)\'\' â€?â€?â€?â€? (p3):. ..... Men splitst log 2 p in log 2 log p, log pÂ? in log p log p,logpÂ? in log plog p log p en zoo vindt men: Landau, Primzahlen I p. 126.



??? logp p" = ^   logp ^ logp ^ l = ^jÂ?gp_p2 - 1 k=i k2 6 p2 _ l" waaruil: = = 0.937548254 == C, waarna we voor hel aanlal deelers van k in ons sysleenien dus ook voor w(k) hebben: Lim Â? {k) = -2 (log k 2 GG, ) \') Lrteunk D1RICHI.OT, Journal do Liouvillo iS????. p. 359.
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??? Stellingen. I. Dp afleiding door Ces?šro der betrekking:Bp(-l) = (2\'\'-l)Bpkan met voordeel vervangen worden door eene andere, waar-bij Igx op twee verschillende manieren in eene machtreeks ontwikkeld wordt. E. Ces?šuo: Sur les nombres de Bernoulli ei u\'Euler.Nouvelles Annales de Math?Šmatiques, t 3. 188G. p. 305. II. \'t Verdient aanbeveling den samenhang tusschen het theoremavan Tavlor en de 1ÂŽ. middelwaardestelling nader te onder-zoeken. "lll. Schrijft men : {(a h) = f(a) -Yf\'(a)-f .....^f"(a ??â€žh), dan is: 10. als f (x) een veelterm van den (n 1)"\' graad in x is: 2Â?. als f (x), f\' (x).....f" Â? (x) in hel vak a.....a h eindig en continu zijn en f" \'(a) is niet nul: Lim ??n = â€”TT\' h-^o n len Lim ?´n = o. n-^ 0Â?



??? IV. De bewering van H. de Vries, dat men tusschen tweepunten van een kegeloppervlak oneindig veel geodetischelijnen kan trekken, komt mij voor niet juist te zijn. Dr. H. de Vries. Leerboek der beschrijvende Meetkunde.Deel IL blz. 38. V. Het gebruikelijke bewijs van de stelling van Gauss isonvolledig. Abraham und F??ppl. Theorie der Elektrizit?¤t. Bd I. S. 54. VI. Het bewijs, dat M. Planck van den phasenregel van Gibbsgeeft, is, van mathematisch standpunt beschouwd, onbe-vredigend. M. Planck. Vorlesungen ??ber Thermodynamik. 4\' aufl. S. 183. VII. De afleiding door Kirgiihoff van de vergelijking van Poissonis niet voldoende streng. Kirchhoff. Voriesungen ??ber Mechanik. XVI Vorl. Â§ 2. VIII. \'t Onderwijs in de astronomie aan onze scholen van Middel-baar en voorbereidend Hooger onderwijs moet gepaard gaanmet observaties van den sterrenhemel. IX. Na de K. B. van 7 Juni 1919 en 1 Mei 1920, regelendehet programma der Gymnasia, is eene Gymnasiale opleidingopleiding niet aan te raden voor iemand, die bij zijne verdereâ–  studie Wiskunde noodig

heeft.
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