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AAN MINE OUDERS,






Hooggeleerde Dy Viigs!

In de eerste plaats wensch ik U te danken voor alles, wat ik van U geleerd heb.

Overtuigd van den invioed, dien goed onderwys op iemands vorming witoefent, 200 behoef

il U wel niet te zegyen, hoezeer ik er van doordrongen ben, dat Uw voortreffelijke colleges
tot de wording van dit proefschrift hebben bijgedragen. In de tweede plaats dank ik U niel
minder voor de bereidwilligheid , die ik steeds van U heb mogen ondervinden. Heeft deze
arbeid door omstandigheden, van mijn wil onaf hankelijl:, langer op zich laten wachten . dan
gewenscht is, zoo geef i U hierbij de verzekering, dat Uw aanmoediging niet weintg tot de
voltooiing daarvan heeft meegewerkt,

Niet gaarne zow ik dit voorwoord willen afsltuiten, zonder mij ook tot U gericht te
hebben, Hooggeleerde Kaprenn. De wijze, waarop G de dikwijls netelige quaesties der
analyse witeenzel, heeft steeds myn bewondering gewekt.  Ook al handelt dit onderwerp niet
direct over dat gedeelte der wiskunde, hetwelk G doceert, zoo ben ik miy toch volkomen van

den invlovd bewust, dien Uw persoon en Uw leiding op min studie hebben witgeoefend.
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Het doel van dit proefschrift is, een bijdrage te leveren tot het onderzoek van stelsels
van oo? cirkels in de ruimte van drie afmetingen, zoogenaamde cirkelcongruenties (ook wel
eyclische congruenties geheeten), Tot nog toe heeft men zich bepaald tot de bestudeering
van een speciale congruentie, de normale cirkelcongruentie, d. w. z men heeft zich
afgevraagd, aan welke voorwaarden een cirkelcongruentie moet voldoen, opdat er o! opper-
vliakken kunnen worden aangegeven, zoodanig, dat de normalen dier opperviakken tevens
raaklijnen aan de cirkels zijn. Voor een goed begrip der zaak zullen we echter aan de
cirkeleongruenties de theorie der cirkelopperviaklken (cyclische opperviakken) vooraf laten gaan,
Dat zijn dus oppervlakken, die door een stelsel van «! cirkels beschreven worden. In
tegenstelling met de congruenties zijn deze oppervlakken vrij uitvoerig onderzocht, en wel in
twee verhandelingen. De oudste is die van ENNeper, getiteld: , Die cyklischen Flichen™ ).
In deze verhandeling gaat de schrijver uit van de parametervoorstelling van Gauvss, berekent
de coéflicienten £, F, G, L, M, N der twee grondvormen, geeft een indeeling der opper-
viakken, al naar gelang twee opeenvolgende cirkels geen punt, één enkel punt, of wel
twee punten gemeen hebben, de methoden om deze oppervlakken te beschrijven, en staat
nitvoerig stil bij het cyclisch minimaalopperviak. Het blijkt, dat in zijn formules twee
vormen optreden, die wij in het vervolg door S, en S, zullen voorstellen, en die, gelijk
aan nul gesteld, de snijpunten opleveren van twee karakteristicken met een bepaalden
cirkel, Houdt men n. 1l een bepaalden cirkel in het oog, dan levert S, = 0 de snijpunten
van de karakteristick van het vlak, waarin de cirkel gelegen is, met dien cirkel, terwijl
S, = 0 de snijpunten oplevert van dien cirkel met het machtvlak van twee bollen, waarop
twee opeenvolgende cirkels groote cirkels zijn. Wanneer wij het cyelisch oppervlak als volgt
voorstellen:

w=/[ - r(a cost--b sint)
Y=g -7 (a, cos t 4 b, sin t) ’ T R (el
2 =h--r(a, cost -} b, sint)

I

waarin /(s), ¢ (s), h(s) de kromme der centra is, »(s) de straal van den cirkel, en
(g, tyy ), (by, b,, by) twee onderling loodrechte richtingen, die het vlak van den cirkel bepalen,
dan zjn de genoemde vormen lineaire functies van cost en sint. ENNEPER gaat deze vormen
stilzwijgend voorbij, eveneens haar differentiaalquotiénten naar s en 4. Do eerste, die de

-

1) Zeitschrift fir Mathematik und Physik, 1869,



aandacht op deze vormen vestigde was DrsMARTRES, In een verhandeling: , Sur les surfaces
a genératrice circulaire” '). Tot uitgangspunt van dezen schrijver dient de kinematica. Hij
kiest n.l. een stelsel van o' ruimtekrommen, €én dier krommen in een bepaalden stand.,
en gaat nu door middel van drie elementaire translaties en rotaties tot den naastvolgenden
stand over. Aldus verkrijgt hij zes formules tusschen de translatie- en rotatiecomponenten,
en past deze toe op het geval van een stelsel van ! cirkels. De beide grondvormen van
Gauss worden ook hier opgemaakt, en het is duidelijk, dat de formules van beide schrijvers
met eenig gecijfer gemakkelilk met elkander in overeenstemming te brengen zijn.

Daar uit het vervolg zal blijken, dat de theorie der cyclische oppervliakken en
congruenties neerkomt op een bespreking der vormen S, en S,, zullen we in deze inleiding
de volgende vraag behandelen: Zijn er ook in het algemeene geval, dat men te doen heeft
met oo! ruimtekrommen, vormen aan te geven, die een rol spelen, analoog aan die der
vormen S, en S,? Zijn hun differentiaalguotiénten naar de ingevoerde parameters eveneens
van belang, en kan men er een eenvoudige meetkundige beteekenis aan hechten?

Reeds van te voren is te verwachten, dat de vormen en haar eerste afgeleiden op zullen
treden in het lijnelement, de hoogere afgeleiden, wanneer men zich met de kromming der
oppervliakken bezighoudt. Op de gestelde vraag dient bevestigend geantwoord te worden.
Daartoe gaan we uit van het volgende stelsel van o' ruimtekrommen:

IRy =S8 | () R ()] (T, ¥, 2,8 =0 . . . (3)

Door eliminatie van s vindt men het oppervlak, dat door deze ruimtekrommen beschreven
wordt We vragen in de eerste plaats naar de vergelijking van het raakvlak in eenig
punt (z, ¥, 2) van dit opperviak. Voor een bepaalde waarde s— s krijgt men de
vergelijking van een bepaalde beschrijvende kromme. De richtingscoéfliciénten 4, B, ¢ van
de raaklijn in eenig punt P dier kromme, worden gevonden uit het stelsel vergelijkingen :

Qi . Qp dq
d.x - d s ofeyi=—1()

U T Yy Y+ Q2

ATl oy ooy

——d X+ - d Yy 4 - gazi=—i()

dx Q1 Y1 3z

namelijk :
dg Ay dy dg B dgp dy dy g 0= dg Oy dy g
- 0y o0z 0y oz’ S Y 0z dazx’ — 0% Y dx VY’

Door den parameter s als functie van (xz, ¥, 2) te beschouwen, bijv. § = w (x, y, 2)
kunnen we op het oppervlak een tweede kromme verkrijgen, die door P gaat De richtings-
coéflicienten 47, B’, ¢’ van de raaklijn aan deze kromme worden gegeven door de vergelijkingen :

o g 0 q o LN
e e Y+ ——dz+ = digi— 0
0w A 3y dy+ )z ‘oS
R ARTT T AT/
: T -1 y - dz+ ——dg=0
0 % Ldy d'j ‘* d 2 LN IR
of:
d dg 08 (Dq A t‘dJ- dg , O :‘.&:]
— -~ d x — : —|dy 4 | - ad 2=
({‘;’E t a8 D.’EJ i L0y 08 0y Y+ L T os 02 ¢
T! dy ds8! R dy 08 AT dyw 08
( g r- ke . o (St s S fl;f/—}—( A AR ]
oL 08 oz QY a8 0y o2 08 02z
-

') Annales de I'Ecole Normale Supérieure 3¢ Série, I, 11 1885,
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Voor de grootheid A" is te schrijven:

dz oYy QY oz

aY Az 0z 0y Qs

.."1’ — A +

(Q _BS T E\S]_O_q ’ '3(,1 E!s dyp ds) oy
a8

“

terwijl voor de grootheden B” en € analoge uitdrukkingen gelden. De vergelijking van
het raakvlak in P luidt nu:

X —= Y —y A==
| A B C =1}
L= ] B’ 04
of, met doorzichtige bekorting:
A=
dgp Oy dy g
Yy 0z VY 0z = 0.
(.\t;r _?‘.S_Du;r (\S)'c‘q L[ﬂq 38__3:; Ob‘)ﬁqr
0z dy oy daz) os 0y dz 0z oyl os
T A e e b T s 2 Era ks O dq T
We vermenigvuldigen de eerste kolom met " | de tweede met , de derde met 5
ax oY 02

; : o AURTE AL )
en sommeeren. Daarna de kolommen respectievelijk met f\ w5 “ s - ‘,) Y an sommeeren
(U Oy Q2 '

wederom. Dan komt er:

5 Al li i A] iy
SR ) Y — S () et
( ) o Y ( ) A
0 u el R () — 0
0P o {D ¢ oy  dy dyg ) AR R \.( 0 dy  dy dg) 08
08 QY dz2 0y dz) ox R QY 02 Yy 0z ) oz |

Zoodat men ten slotte voor de vergelijking van het raakvlak in het punt P (x, 7. 2)
de volgende uitdrukking vindt:

Ly W0} o o Qi
;(_,\.—.u)[“’ dy (Jl:n, 2 o = A S AR

dd& 08 dxr 08

Wanneer men een bepaalde kromme s==3s in het oog houdt, dan blijkt uit deze
(\ 1,;

) — 0 is, het raakvlak aan het opper-
08 Js=5s

vergelijking, dat voor die punten, waarvoor (

vlak, door de ruimtekrommen beschreven, samenvalt met het raakvlak aan het opperviak

. . . )
(v, y, 2, 8)=0. Een analoge eigenschap geldt voor de punten, waarvoor (‘ "') — ()
Q8 Jg=3s

is. In het bijzonder zullen die gevallen moeten worden nagegaan. waarvoor de Kromme :
P () s Ry 8y) == p (2, ¥, 2, 8)=0

raakt aan, of een hooger contact vertoont met de oppervlakken:

ﬂfp ((\llr
— i) -
[l"‘a"}.s':--.\', H) U .'.-~-:.~a‘_“-

Verder blijkt uit vergelijking (4), dat het raakvlak onbepaald wordt, wanneer men
gelijktijdig heeft:

) ~ )
9—0. . . ... (B X =0. . .. (8

o8 a8

Aan deze beide vergelijkingen, dic ons in het geval van een stelsel van o' cirkels juist



de genoemde vormen S, en S, leveren, is een eenvoudige meetkundige beteekenis te hechten
Gaan we uit van het stelsel vergelijkingen (2) en (3). en vragen we ons af, wanneer dit
stelsel een omhullende bezit: m. a w. wanneer is er een ruimtekromme aan te geven,
waaraan al de krommen van het stelsel raken? Onafhankelijk van s moet dan voldaan
zijn aan het stelsel vergelijkingen (2), (3), (5) en (6) '). Deze kromme kunnen we
gevoeglijk de Feerkromme noemen van het oppervlak dat door de ruimtekrommen gevormd
wordt. Uit de vergelijking (4) van het raakvlak blijkt, dat dit onbepaald wordt voor een
punt dezer kromme, en zij dus singuliere kromme op het oppervlak is  Doch buitendien
heeft DArBoUX *) aangetoond, dat de stelling die Brior en BouquETr voor de regelvlakken
gegeven hebben n.l. dat de afstand van twee opeenvolgende rechten van een ontwikkelbaar
oppervlak een kleine van de 3¢ orde is, haar analogon bezit in het algemeene geval van oo!
ruimtekrommen. Beschouwt men n.l. twee opeenvolgende krommen van het stelsel, dan
is de afstand van twee punten, respectievelijk op elk der krommen gelegen. steeds van
dezelfde orde. Bezit het stelsel echter een omhullende, dan is de afstand van twee punten
van twee opeenvolgende krommen, in de buurt van hun raakpunt met de omhullende, een
kleine van de 3° orde ten opzichte van den afstand van elke andere twee punten op die
opeenvolgende krommen aangenomen.

. Dl O L .
Niet alleen zullen echter de grootheden = ! en \—‘ een rol spelen, maar ook de diffe-

oS (48027
rentiaalquotiénten van de 2¢ orde zoodra men n. 1. de kromming nagaat van de oppervlakken,
die door het stelsel rnimtekrommen gevormd worden. Ook aan deze differentiaalquotiénten
is een eenvoudige meetkundige beteekenis te hechten. Immers juist de karakteristicken
van een stelsel van ! oppervlakken leveren een stelsel ruimtekrommen, dat een omhullende
bezit ). De vergelijking dier kromme wordt blijkbaar gevonden, door uit het stelsel:

: (\ i} ; ;- 02 i
P Xy Y; 2,8 =0 . (2) 3 S"::U e (D) 3 9{,2(). ST, (7:)
x. Y, z op te lossen in functie van s. Zoo zullen de drie vergelijkingen:
} ) AT X AL
I!r (:L-. .’/‘ Z. S) — (} . (:;) 0; s () . . . (“) y Si‘ — (). . . ‘8)
E (

de krommen leveren, waaraan de karakteristieken van het oppervlakkenstelsel y (v, y, 2, 8) =0
raken. Deze krommen zullen echter slechts in bijzondere gevallen op het opperviak der
ruimtekrommen gelegen zijn, en wel de eerstgenoemde kromme, wanneer onafhankelijk
van s voldaan wordt aan het stelsel vergelijkingen (2), (3), (5) en (7), de laatstgenoemde
kromme, als identiek aan het stelsel vergelijkingen (2), (3), (6) en (8) voldaan wordt.
We passen deze algemeene beschouwingen toe op een stelsel van oo! cirkels, gegeven
door de vergelijkingen:
=2 (@—fMN*—=r=0 . . . . . . . ... (9)
I;IE.:,'C(:U*"/.):O T e MR L (LU)
waarin (f, g, &) de middelpuntskromme voorstelt, » de straal van den cirkel. en (¢ Cy50,)
de richtingscosinus van de normaal op het vlak van den cirkel, in zijn centrum opgericht,

) Proarp Traité d’ Analyse, tome 1, pag. 316.
1) Savants Etrangers, tome XXVII, pag. 41.
3) Picarp, 1. c. pag. 318,



De vergelijking van het raakvlak in eenig punt (x, », 2) van het oppervlak Inidt : (zle verg, 4).

RTE e g Y d W
L3 (X—2x — RS A T
08 ; ) QX d 8 G % i) el T 0.
s d g ¢ :
De vergelijking 5 E = 0 wordt in dit geval:
(¢
e o ) ) N = e SR (1111
Zij stelt het machtvlak voor van twee bollen, waarop twee opeenvolgende cirkels aroote
cirkels zijn. De vergelijking ;: — 0 wordt:
N8
2o (= )N e =105 e e e (1928

Gecombineerd met vergelijking (10) levert zij de karakteristiek van het vlak . waarin
de cirkel gelegen is.

Elk dezer vlakken levert voor een bepaalde waarde s =— s met den, met die waarde
correspondeerenden, cirkel twee snijpunten. In de punten, waarin het platte viak (11) den
cirkel snijdt, zal het raakvlak aan het cyclisch oppervlak samenvallen met het raakviak
aan den bol, waarop de cirkel gelegen is, en dus evenwijdig loopen aan de as van den
cirkel.  Daarentegen zal in de punten, waarin het vlak (12) den cirkel snijdt, het raakvlak
aan het cyclisch oppervlak met het viak van den cirkel samenvallen.  Van belang zijn
natuurlijk de bijzondere gevallen, waarin de karakteristicken niet meer twee verschillende
snijpunten met den cirkel leveren, doch in raaklijnen overgaan.

Het snijpunt der drie platte vlakken (10), (11) en (12) ligt in het algemeen niet op
den cirkel. Opdat dit het geval zij, zal de parameter s aan een zekere voorwaarde
moeten voldoen, welke gevonden wordt door @, y. z uit het stelsel vergelijkingen (9), (10),
(11) en (12) te elimineeren. Is de resulteerende vergelijking algebraisch, dan leveren haar
wortels de kegelpunten van het cyclisch oppervlak. In de meeste gevallen zal de vergelijking
echter franscendent zijn.  Wordt aan bedoelde vergelijking door alle waarden van s voldaan,
dan heeft men niet meer met de meest algemeene soort eyclische opperviakken te doen
Het stelsel cirkels bezit een omhullende, zij raken alle aan een bepaalde ruimtekromme,

Op deze wijze nader op de theorie in te gaan, brengt echter zijn bezwaren mede.
De boven besproken differentiaalquotiénten zijn partieel, en de vergelijkingen der kromme
lijnen op het cyclisch oppervlak worden door partieele differentiaalvergelijkingen gegeven,
Dit vermijdt men door de parametervoorstelling van Gauvss. Met behulp van deze voor-
stelling zullen we dan ook de zoo juist uiteengezette beschouwingen vervolgen, We eindigen
deze inleiding met een kort overzicht der verkregen resultaten.

Hoofdstuk I, Cyclische Oppervlakken.

Hoofdstuk II, Cyclische Congruenties,

Overzicht van hoofdstuk 1. We hadden reeds gelegenheid op de analogie met de
regelvlakken te wijzen, konden n.l. een kromme aangeven, die dezelfde rol speelt als de
keerkromme bij de ontwikkelbare oppervlakken. Dit feit voert ons terstond tot een
indeeling der cyclische opperviakken. Als opperviakken van de 1¢ soort kiezen we die,
waarvoor twee opeenvolgende cirkels geen enkel punt gemeen hebben.  Als opperviakken
van de 2¢ soort kiezen we die oppervlakken, waarvoor twee opeenvolgende cirkels één punt
gemeen hebben, en derhalve alle aan een bepaalde ruimtekromme raken. Hebben twee
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opeenvolgende cirkels fwee punten gemeen, dan moeten, daar deze punten gelijke rol
spelen, de beschrijvende cirkels noodzakelijk aan twee ruimtekrommen raken, en heeft men
met de omhullende o' bollen te doen. Tot dezelfde indeeling geraakt men door een nadere
beschouwing van het snijpunt 7' der twee karakteristieken S, en S,. Ligt het punt 7'
buiten of binnen den cirkel, dan heeft deze cirkel met den opvolgenden geen enkel punt
gemeen. Ligt het punt 7' op den cirkel, dan hebben twee opeenvolgende cirkels één punt
gemeen. Vallen de karakteristieken S, en S, samen, dan raakt de cirkel aan twee ruimte-
krommen. Ten slotte kunnen beide karakteristicken samenvallen met de raaklijn aan de
keerkromme, en wordt het cyclisch oppervlak door de osculatiecirkels der keerkromme
gevormd. Een belangrijke rol speelt de poollijn van het punt 7 ten opzichte van den cirkel.
Bij sommige vraagstukken worden onze vergelijkingen eenvoudiger, als we één der rich-
tingen, die het vlak van onzen cirkel bepalen (zie verg. 1) bijv. de richting (b, , b,. b,)
loodrecht op genoemde poollijn kiezen, welke keuze, zooals blijken zal, steeds mogelijk is.
We bereiken hiermee, dat de snijpunten ¢ en ¢ van poollijn en cirkel op gelijken voet
behandeld worden. Bij de oppervlakken van de 1° soort zijn nu op elken cirkel vier
belangrijke punten aan te geven. Vooreerst de punten @ en ¢'. In deze punten raakt de
cirkel n.l. aan een kromtelijn van het oppervlak. Verder de snijpunten van den karakte-
ristiek S, en den cirkel, in welke punten de cirkel aan een asymptotische lijn van het
oppervlak raakt. Wij kunnen hieraan toevoegen, dat de beide hoofdkromtestralen in de
punten ¢ en ¢ gemakkelijk te berekenen zijn, en dat, als een cyclisch oppervlak umbilicaal-
punten bezit, slechts deze punten als zoodanig kunnen optreden. Wanneer we het gedrag
van het raakvlak in de punten van eenzelfden beschrijvenden cirkel nagaan, dan is het
punt 7' als top van een stralenbundel te beschouwen, zoodanig, dat elke straal uit dien
bundel den cirkel in twee punten snijdt, waarvoor de raakvlakken elkaar in eenzelfde punt
der as ontmoeten Een wet, analoog aan die welke door Crasies voor de regelvliakken
gegeven is, is slechts in een enkel bijzonder geval aan te geven. Heeft men n.l. met opper-
vlakken van de 2° soort te doen, enis de keerkromme de ontwondene der centrale kromme,
dan verandert voor een bepaalden beschrijvenden cirkel de tangens van den standhoek van
het raakvlak en het vlak van den cirkel rechtevenredig met de tangens van den hoek,
dien de verbindingslijn van centrum en raakpunt met een bepaalde, als oorsprong gekozen
richting maakt.

Bij de regelvlakken is het normalenoppervlak van een bepaalde beschrijvende lijn
een paraboloide. Zoo kan men in ons geval vragen naar het normalenregelvlak van een
bepaalden beschrijvenden cirkel. Dit is een oppervlak van den 4en graad. Van dit regelvlak
zijn gemakkelijk drie richtkrommen aan te geven: n.l de beschrijvende cirkel zelf, de as
van den cirkel, en een kegelsnee, die in een vlak loodrecht op de raaklijn aan de centrale
kromme gelegen is.  Heeft men met opperviakken van de 2¢ soort te doen, dan ontaardt
deze kegelsnee in twee rechten, waarvan ¢één als richtkromme te verwerpen is,

Is het punt 7' een standvastigz punt in de ruimte, dan heeft men met een anallag-
matisch oppervlak te doen. De t]iﬁi}l'@l]fiﬂ;ll\’e:zgr;]ﬁl{illg der orthogonale trajectorién der
cirkels is een vergelijking van Ricoari. Vier dezer trajectorién snijden dus op een cirkel
een puntquadrupel van constante dubbelverhouding uit, In eenige bijzondere gevallen wordt
deze differentiaalvergelijking zeer eenvoudig. ~Liggen de cirkels n.1 in de normaalylakken
der centrale kromme, dan vindt men de orthogonale trajectorién door middel van een
enkele quadratnur, en treedt alleen de torsie der centrale kromme onder het integraalteeken




op. Een ander geval, waarin de differentiaalvergelijking der orthogonale trajectorién direct
geintegreerd kan worden, is dat der oppervlakken van de 2¢ soort, waarvoor de keer-
kromme als ontwondene der centrale kromme optreedt. Wil men, dat de orthogonale trajec-
torién der cirkels tevens een stelsel geodetische krommen vormen, dan moet het cyelisch
oppervlak aan de volgende voorwaarden voldoen: het vlak van den cirkel moet osculatievliak
der centrale kromme zijn, terwijl deze kromme zelf een constante torsie bezit, gelijk aan
den straal van den cirkel. Deze oppervlakken bezitten tevens de eigenschap, dat twee
opeenvolgende orthogonale trajectorién op elken beschrijvenden cirkel een element insnijden,
gelijk aan het correspondeerend element der cenfrale kromme. De trajectorién zelve
bezitten ook een constante torsie, die niet van kromme tot kromme verandert, en gelijk is
aan de torsie der centrale kromme., Ten slotte vragen we ons af, of de cirkels en hun
orthogonale trajectorién een isotherm stelsel kunnen vormen. Als oplossing vinden we o. a.
de anallagmatische oppervlakken met isotrope focaalkromme. Men kan zich vervolgens
afvragen, of op elken cirkel ook zoodanige punten te vinden zijn, dat de afstand tot den
volgenden cirkel een maximum of minimum bedraagt. De aaneenschakeling dezer punten
vormt dan een stelsel krommen op het oppervlak, strictie- en elongatielijnen geheeten.
Het blijkt, dat op elken cirkel vier punten te vinden zijn, die aan de vraag voldoen. Zij
worden uitgesneden door een gelijkzijdige hyperbool, die door het centrum van den ecirkel
gaat. Voor het geval de cirkels in de normaalvlakken der centrale kromme gelegen zijn,
ontaardt deze hyperbool in twee onderling loodrechte lijnen, de karakteristick S, —0, en
een middellijn.

Behalve de gevallen, dat de cirkels in de normaalvlakken of de osculatieviakken der
centrale kromme gelegen zijn, is er nog een geval, dat vermelding verdient, en wel, dat
de cirkels in onderling evenwijdige vlakken gelegen zijn. In dat geval ontaardt de hyper-
bool eveneens en worden de strictie- en elongaticlijnen door de karakteristiek S, =0, en
een middellijn loodrecht daarop, op het oppervlak uitgesneden. Onderstelt men tevens,
dat de centrale kromme vlak is, dan vormen de parameterkrommen, zooals wij ze in ver-
gelijking (1) hebben ingevoerd, een stelsel toegevoegde krommen, Tot deze groep van
oppervlakken komt men ook, wanneer men een onderzoek instelt naar het eyclisch minimaal-
oppervlak. De cirkels zijn in onderling evenwijdige vlakken gelegen, de centrale kromme
is vlak, en de codrdinaten van een punt dier kromme dubbelperiodieke functies van een
parameter.,  Bij een minimaaloppervlak is de som der hoofdkromtestralen in elk punt van
het opperviak nul  Meer algemeen kan men naar die oppervlakken vragen, waarvoor de
gemiddelde kromming voor de punten van eenzelfden beschrijvenden cirkel constant is, maar
van cirkel tot cirkel varieert. Alleen een omwentelingsoppervliak voldoet aan de vraag,
Nemen we aan, dat de gemiddelde kromming over het geheele opperviak constant is. dan
vindt men het kleinste omwentelingsoppervlak van gegeven volumen. De meridiaankromme
is de kromme, die door het hrandpunt van een ellips of hyperbool beschreven wordt,
wanneer deze, zonder te glijden, langs de as van omwenteling rolt. Stelt men ten slotte de
constante gelijk aan nul, dan heeft men weer te doen met een minimaaloppervlak, en vindt
als oplossing de catenoide, het eenige minimuu}'nppr~1'\-'la‘k, dat tevens omwentelingsoppervlak
is. Ook als men een onderzoek instelt naar de cyclische opperviakken met constante totale
kromming, voorloopig aannemende, dab deze van cirkel tot cirkel varieert, vindt men, dat
alleen de omwentelingsoppervlakken aan de vraag voldoen. Bij speciale keuze der constante,
vindt men als meridiaankromme de tractrix, waarvan het keerpunt op de omwentelingsas ligt.
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Overzicht van hoofdstul II. Bij de behandeling van de cyclische congruenties zoeken
we naar een analogie met de stralencongruenties. Door elken cirkel der coneruentie gaan
blijkbaar o' cyclische oppervlakken, die elk een bepaalde kromme op het oppervlak der
centra (centraal opperviak) insnijden. Zijn er nu onder deze o! oppervliakken ook opper-
vlakken van de 2¢ soort? Het blijkt, dat in elk punt van het centrale oppervlak vier
richtingen aan fe geven zijn, zoodanig, dat zij als raaklijnen optreden aan centrale krom-
men, die bij oppervlakken van de 2¢ soort behooren. Kiest men 0p een bepaalden
beschrijvenden cirkel een punt, en construeert men in dit punt het raakvlak aan een der
cyclische oppervlakken, die door dezen cirkel gaan dan zal het raakvlak in het algemeen
een anderen stand innemen, naar mate men een ander cyclisch opperviak door den ecirkel
brengt. Men kan zich nu afvragen, of er op elken cirkel ook punten te vinden zijin —
focaalpunten — zoodanig, dat het raakvlak hetzelfde is voor alle cyclische oppervlakken,
die door dien cirkel te brengen zijn. Het blijkt, dat er op elken cirkel vier punten gelegen
zijn, die aan de vraag voldoen. Voor de congruentie vormt het geheel dezer punten vier
oppervlakken, de focaalopperviakken der congruentie gehecten. Aan deze focaalopper-
vlakken kan nog een andere meetkundige beteekenis gehecht worden, We zagen, dat de
congruentie op vier wijzen volgens oppervlakken van de 2° soort gerangschikt kan worden.
Vraagt men nu, waar op elken cirkel de raakpunten met de keerkrommen gelegen zijn,
dan komt men terng tot de vier focaalpunten. lLlen focaalopperviak is dus ook te
beschouwen als de meetkundige plaats van een stelsel keerkrommen, waaraan de cirkels der
congruentie noodzakelijk raken. We passen nu voor elken cirkel dezelfde assendraaiing
toe als boven bij de cyclische opperviakken. Bij elken cirkel behoort een bepaald punt 7. Eén
der richtingen die het vlak van dien cirkel bepalen, bijv. de richting (b, y b, by) kiezen
we loodrecht op de poollijn van het punt 7. Het blijkt, dat deze keuze steeds mogelijk
is, en er op het centrale oppervlak twee stelsels krommen aangegeven kunnen worden,
zoodanig, dat, als we deze als centrale krommen van een cyelisch oppervlak kiezen, de
bedoelde assendraaiing voor deze oppervlakken plaats heeft gevonden. Genoemde krommen
kiezen we als parameterkrommen op het centrale oppervlak. Hierdoor wordt verkregen,,
dat er een ecenvoudig analytisch kenmerk valt aan te geven voor het feit. dat de con-
gruentie op één wijze volgens cyclische oppervlakken gerangschikt kan worden, die als
omhullenden van een stelsel o' bollen beschouwd kunnen worden,

We gaan de volgende speciale gevallen na:

1% de cirkels liggen in de raakvlakken van het centrale oppervlak ;
2°. de cirkels liggen in normaalvlakken van het centrale opperviak.
Het eerste geval wordt nog onderverdeeld in:
. de cirkels bezitten een constanten straal ;
b. de congruentie is op één wijze volgens omhullenden van oo! hollen te rangschikken.

Geval la. Daar de cirkels een constanten straal bezitten . ziin de oppervlakken van
de 2¢ soort kanaaloppervlakken. De kromtelijnen van het centrale oppervilak bepalen de
centrale Krommen dezer 'kunmllf»pp(,'r\'lnkken. Treedt het punt P als centrum van ¢en
bepaalden cirkel der congruentie op, dan zijn de snijpunten van de raaklijnen aan de
kromtelijnen in het punt P mel den cirkel, de focaalpunten van dien cirkel.

Geval 16 Het centrale oppervlak is noodzakelijk een ontwikkelbaar oppervilak. De
beschrijvende lijnen  van dit oppervlak treden op als centrale krommen van cyclische
oppervlakken, die omhullenden van o' bollen zijn. '



H

De congruentie is aldus te construeeren. In elk raakvlak door een heschrijvende lijn
construeert men een stelsel van co! cirkels, waarvan de centra op die rechte gelegen zijn. Ben
dergelijk stelsel bezit steeds een omhullende. Men herhaalt de bewerking voor elk raakvlak.

De cirkelcongruentie, waarmee men zich tot nog toe bezig heeft gehouden, is de
normale congruentie. Men heeft zich n. 1. afgevraagd, aan welke voorwaarden een cirkel-
congruentie moet voldoen, opdat er o' oppervlakken aangegeven kunnen worden, wier
normalen raaklijnen aan de cirkels zijn. Oppervlakken, die aan de vraag voldoen, worden
gevonden door integratie van een totale differentiaalvergelijking. Nu bezit de totale differen-
tiaalvergelijking een integrabiliteitsvoorwaarde. Wanneer deze voorwaarde niet identiek
vervuld wordt, zijn er hoogstens twee oppervlakken, die aan de vraag voldoen, waaruit
de volgende, door Risavcour gegeven, stelling volgt:

. Wanneer men bij een cirkelcongruentie drie opperviakken kan aangeven, wier normalen
raaklijnen dezer cirkels zijn, dan zijn er oneindig vele opperviakken aan te geven, die deze
eigenschap bezitten. '

De totale differentinalvergelijking is om te werken tot een differentiaalvergelijking
van Riccati, waaruit de tweede stelling van Risavcour volgt:

Wanneer er een stelsel van ol opperviakken aan te geven is, wier normalen raaklijnen
aan cen stelsel van =* cirkels zyn, dan bepalen vier opperviakken van dit stelsel op alle cirkels
een puntquadrupel met constante dubbelverhiouding.

We onderzoeken nu, onder welke voorwaarden eenige der door ons beschonwde
congruenties normale congruenties zijn.  Dan geldt als eerste stelling:

Construeert men in de oo raakviakken van een willekeurig opperviak een stelsel congruente
cirkels, waarvan de centra de raakpunten ziyn, dan geldt als noodzakelijle en voldoende
voorwaarde opdat deze congruentie een normale congruentie zij, dat het centrale opperviak
een pseudosphaerisch opperviak 1is.

Tweede geval: de cirkels liggen in normaalvlakken van het centrale oppervlak. Dan
gelden de volgende stellingen:

[. Neemt men op cen opperviak cen stelsel kromtelijnen (parameterkrommen w = const.)
en construecert men in de by deze krommen behoorende hoofdnormaalvlakken cirkels, waarvan
de centra op die kromtelijnen liggen, dan zal de aldus ontstane congruentie een normale
congruentie zijn, wanneer men den straal van den cirkel evenredig aan den met het andere
hoofdnormaalvialk correspondeerenden  hoofdlromtestraal kiest, er zorg voor dragende, dat de
verhoudingsfactor voor een en dezelfde paramelerkromme constant is.

We kiezen op het centrale opperviak een stelsel parameterkrommen, zooals wij ze in
het begin van dit overzicht gedefinieerd hebben, en vinden als tweede stelling:

LI,  Wanneer men in de normaalviaklken van cen stelsel parameterkrommen (1 = const.)
cirkels construeert, waarvan de centra op deze krommen gelegen zijn, terwijl men tot straal
dezer cirkels telkenmale een der hoofdkromtestralen kiest, dan zal de aldus ontstane congruentie
een normale congruentie zin.
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Cyclische oppervlakken,

S 1. Het raakvlak. In de ruimte van drie afmetingen kan men een cirkel op de
volgende wijze voorstellen:

=7 -+1r(a,costt b sint))
Yy=g-+-r(aycostt+bysinty, . . . . . . . . | (1)
z2="h-r(a; cos t | by sin t)

Hierin zijn (f, g, k) de coordinaten van het middelpunt, (a,, a,, ty) (by, by, by) twee
onderling loodrechte, maar overigens geheel willekeurige richtingen, die het vlak van den
cirkel bepalen, terwijl » de straal van den cirkel is. Als nevenvoorwaarden gelden dus:

2a=1, Jab=0, 20=1. . . . . . . . . (9

Ten slotte stelt ¢ den hoek voor, dien de voerstraal van het middelpunt naar eenig
punb van den omtrek met de richting (a,, a,, a;) maakt. Neemt men aan, dat hovengenoemde
grootheden functies van één parameter s zijn, dan heeft men te doen met een stelsel van
w! cirkels, een cyclisch oppervlak. Een eerste vraag is nu naar de vergelijking van het
raakvlak in eenig punt (z, y, 2) van dit oppervlak. Zooals we in de inleiding gezien hebben
mag hiervoor geschreven worden:

[c@—f)—Zcf]2@—NEX—2)F [ (@—f)]r | 2e(X —z)=0. (2%)

Ons rest nog in deze vergelijkingen den parameter £ in te voeren, Daartoe brengt
men in het stelsel vergelijkingen (1) de grootheden (/, ¢, &) naar het 1e lid, vermenigvuldigt
de vergelijkingen respectievelijk met (/7, ¢/, /) daarna met (¢, ca, ¢3) en telt op. Men vindt dan:

2@ —)Frr=r(Zaf cost2bf sintr)=y SR (8

In 't oog houdend dat Tac=0, Xbec=01is, en dus Sa¢' — — 3 o’ ¢ en

b =— 20V cis vindt men:

2@ —f)—2cf =—[riZa’ccost} 3V csint)+ 3¢ [l=—25. . (4
De vergelijking van het raakvlak Inidt derhalve, na invoering van den parameter ¢:
2 (X —xz) [(acost+bsint)y S,—eS]=0. . . . . (5)

De grootheden S, en S, zijn lineaire functies van cos ¢ en sin t. Substitueert men in S, en S;:
R — 2410 COS lie— l—w'—'r tg : —0r (6)

1w’ L -+ w?? 2 ARy /
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dan correspondeeren met de twee waarden van w0, die aan de vergelijking:
" —=Z2af YW +20Zbf L1+ Saf =0
voldoen, de punten, waarin het machtvlak van twee bollen waarop twee opeenvolgende
cirkels groote cirkels zijn, den cirkel, waarvan we uitgingen, snijdt. Op gelijke wijze
correspondeeren met de wortels van de vergelijking:
Teff—rxac)wr42wr2bcet (Tcef+r2ac)=0

de punten, waarin de karakteristiek van het vlak van den cirkel dezen snijdt.

Om de beweging van hef raakvlak na te gaan, als het raakpunt een beschrijvenden
cirkel doorloopt, zoeken we het snijpunt van het raakvlak met de as van den cirkel. Aan
een bepaald cyclisch oppervlak kunnen we een bepaald assenregelvlak toevoegen, met
vergelijkingen :

r=f4-uc, y=g-4uc, z=ht+uc,.

We substitueeren nu de codrdinaten van een punt der as, dat als snijpunt op zal
treden, in de vergelijking (5) van het raakvlak, en vinden:

(Eadccost- W esint)-2cf’ (e —rXaguwi4-2wrIbet-sef'r3ae
Safcost--2bf sint)+1" (—2af)wr-2wIof 1" +-Saff

Ter loops merken we op, dat:

U——9

o w— S :
'q“_."h—.;q]-".'..'.l'(&)

den standhoek tusschen het raakvlak en het vlak van den cirkel bepaalt,

Uit vergelijking (7) volgt, dat Dij een bepaalde waarde van w één bepaalde waarde
van u behoort, maar omgekeerd, bij een bepaalde waarde van u een tweetal waarden van w.
Of meetkundig: aan elken cirkel kan een viakkenbundel worden toegevoegd, met vergelijking:

r Sy u S, =0
of’:
nREd@—)—2clfl—ul2f (& —[)4r1]=0.

Deze vlakkenbundel snijdt het
vlak van den cirkel volgens een stra-
lenbundel met top 7'(zie fig. ). Noemt

. men de punten, waarin een straal den
cirkel snijdt, geconjugeerde punten,
dan heeft men de volgende stellingen:

Raakvlakken in geconjugeerde
punten van een bepaalden cirkel aan

het opperviak  aangebracht, snijden
de as in eenzelfde punt.

Raakvlakken, in die geconju-
geerde punten aangebracht, waarin
het machtolak  den cirvkel snijdt,
(Sy = 0, u= ) lopen evenwijdiy
aan de as. In de punten, waarin de karakteristiek (S, =0, u = 0) den cirkel snijdt, vallen
ze samen met het vlak van den cirkel.

Tweemaal zal het voorkomen dat de geconjugeerde punten samenvallen, In dat geval

Fig. 1.
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raakt een straal uit den stralenbundel aan den cirkel. De waarden van ¢, die hiermee

) . : ; . . Mo d u
correspondeeren, de vertakkingspunten der functie, vindt men uit de vergelijking Eﬁ‘_:‘j’

Nu is:
S, 3.5,
QEet s Pl
du ?_('1 ot % BtJ
(iR S}
Bedoelde vergelijking lnidt derhalve:
-() .'S'2 a AS'I
Si——=2 Gl LR e 2 P PR P DO 1)
L 2t S ot U (%)

of uitgewerkt:

(rr’ Zbe—Xef' Shf)cost(Sef Saf —rr' Xd osint-r(Saf XV c—3bf’ S’ ¢)—0 (10)
een lineaire betrekking in cos ¢ en sin ¢, dus quadratisch in w, waarvan de wortels de
poollijn van het punt 7' bepalen. Naar gelang e

A=(rr' 2 c—Zcf/ IOt (Scf' Saff —r’ Sa cp—r2(af/ SV c—2bf .‘..‘u.’c)“%f() (11)
zullen de snijpunten van poollijn en cirkel, reeél, samenvallend, of imaginair zijn. Voor
het geval 4 =0 is, ligt het punt 7" op den cirkel. De vergelijkingen S, —0 en S,=—0
hebben een wortel gemeen. Uit vergelijking (7) blijkt. dat de waarde van w« voor dit punt
onbepaald wordt, derhalve het raakvlak ook. Een dergelijk punt treedt dus als kegelpunt
van het oppervlak op. Is de vergelijking 4 = 0 algebraisch, dan levert zij de kegelpunten,
In de meeste gevallen zal de vergelijking echter transcendent zijn.

ieldt de betrekking :

Sa'c Zbe Zcf G

Zaft S b Frrre i R SR AR (12)
dan moeten de karakteristieken S, en S, samenvallen, en is « constant. De normalen op
de raakvlakken, in de punten van eenzelfden cirkel. vormen een ontwikkelbaar opperviak
n.l. een kegel. De cirkel zelf is kromtelijn op het cyclisch oppervlak,

Beschouwen we de doorsnee van twee geconjugeerde raakvlakken ., dan steunt deze
eensdeels op de as van den cirkel, anderdeels op de poollijn van het punt 7'. Tusschen de
punten van deze rechten bestaat een (1:1) verwantschap; de doorsnee beschrijft dus een
hyperboloide. Ligh het punt 7' in het oneindige, en gaat dus de poollijn door het centrum,
dan ontaardt de hyperboloide in het dubbel te tellen platte vlak, dat door de middellijn
en de as van den cirkel gaat.

We kunnen hieraan het onderzoek verbinden naar de klasse van de meetkundige
plaats der vlakken, die het cyclisch oppervlak in de punten van een bepaalden beschrijvenden
cirkel raken. Met behulp van de betrekkingen :

S(@—f)p — 12 =
2c(x—[) —t
is de vergelijking van het raakvlak (2%) herleidbaar tot de gedaante :

[ @—f)—2cf][2@— (X =N—r|F[2f (@—f)+rr]3c(X— ) =0.
Combineert men deze vergelijking met de twee bovenstaande betrekkingen . dan blijkt,
dat door eenig punt (X, V, Z) wier raakvlakken gaan, die hun raakpunten op een
beschrijvenden cirkel hebben. Het stelsel van o' vlakken vormt dus een ontwikkelbaar
biquadratisch oppervlak. Daar het raakvlak in de snijpunten van den cirkel met de karakte-
ristieck .S, = 0 met het vlak van den cirkel samenvalt, treedt dit vlak als dubbelviak op.
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§ 2. Het normalenregelvlak van een bepaalden beschrijvenden cirkel. Wanneer we
een bepaalden beschrijvenden cirkel in het oog vatten kunnen we het centrum gevoeglijk
als codrdinatenoorsprong kiezen, de richting (a,, ao, @) als X" as, de richting (b, by, 0;)
als Y as, de richting (¢, ¢,, ¢;) als Z as. Deze keuze brengt de volgende substituties mede:

(f. g, h) is te vervangen door (0, 0, 0)

(a,, s A3l 5 4 (LR CY ) )
(b1s bgy b3) » o £ SRRt U LI ()Y
(Civ Cay C3) » w - o s WL Tk,

Daar de vergelijking van het raakvlak in eenig punt (z. y, 2):
2 (X —wm) [(acost - bsint) S, — ¢ S|=0
luidt, zoo wordt de normaal op het raakvlak in dat punt gegeven door :
X—ux .5 V=] oL Z—&

(aycos L by sint) S,— ¢y Sy~ (A o8t~ by8int) Sy — ¢, S, — (agcost | bysint) Sy — ¢ S,
Bij de speciale keuze van ons assenstelsel worden deze vergelijkingen eenvoudiger, terwijl
tevens de coordinaten (. y, 2) van het steunpunt te vervangen zijn door (r cost, r sint, 0),
De vergelijkingen der normaal Iuiden nu:

x—rcost Yy —rsimt oz
S,cost —  Sysmt T —5 oo (18)
Dus is:
weost 4+ ysint—r 25,
1 T S

waaruit : | .
Sy (weost fysint—7r)+ 2585 =0

of':
(Xaf cost+ 2bf sint--r)(vcostysint —r)z(rXa’ ceost--r b esint |- ef’) =0,
Om de vergelijking van het normalenregelvlak te vinden, moet de grootheid ¢ uit deze

vergelijking geélimineerd worden, Daar voor elk punt der normaal geldt, dat fg ¢ — y
. K : 7

200 mag:

cos t = = N SINt— = Y
V ar - g Va2 - g

gesteld worden. Na substitutie vindt men:

-"-Nf 1—3’],,.{)/ ' /.! A o Y e I'(.if;'{[’u.*_ y"“lh,r')‘_l_ \' A -,_ =

( ]/r--i- I - e A L |/.:="'“|‘:’J’2 | _L/_ .
of:

re@Xa’ct+yXVo)-r@Xaf -y2bf’) - ' (@241

zXaf’ yxbf'+edef —rr)=— 2 .
(@CXaf’ -y xbf'+ec/ / | ;,-

of ten slotte :
@S af -y 3 e el —rr =] @) b re@S oy SV o —rXaf 4y 2o
De normalen vormen dus een opperviak van den 4°" graad. Meetkundig is gemakkelijk
in te zien, dat de doorsnee met het vlak van den cirkel een €' oplevert, die ontaardt in
den ecirkel en twee aanvullende rechten. Immers, komt het raakpunt in het viak S, =0
te liggen, dan wordb u == co, en loopt het raakvlak evenwijdig aan de as. De normalen
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in de snijpunten van het vlak S,—0 met den cirkel liggen alzoo in het vlak van den cirkel.
Noemen wij de punten, waarin die normalen den cirkel ten tweeden male ontmoeten, N en N’

De as van den cirkel is eveneens op het oppervlak gelegen. Substitueert men n. 1.
=0, y=0 dan wordt aan bovenstaande vergelijking voldaan. Het is duidelijk, dat de as
dubbelrechte op het oppervlak is. Immers: raakviakken in geconjugeerde punten snijden
de as in hetfzelfde punt, en derhalve ook de normalen, in de steunpunten dier raakvlakken
opgericht. De cirkel en de as zijn alzoo tot richtkrommen van het regelvlak te kiezen.
Nu is er nog een derde richtkromme aan te geven, en wel de dubbelkegelsnee, die
verkregen wordt door de snijding van de hyperboloide :

r@+y)fre@zac-y3oc) —»r @Zaf +y2bf)=0
en het vlak:
V=xXaf LyZbf'423cf/—rv¥=0. . . . (14)

Omtrent dit platte vlak merken we op, dat zijn stand eenvoudig is aan te geven. De
coéfficienten X' a f”, X0/ en X ¢ f* zijn n.1. de cosinus van de hoeken, die de raaklijn aan
de centrale kromme met de drie richtingen (@y, ay, ag), (by. byy b3) en (¢, c,, ¢;) maakt.
Deze lijn treedt dus als de normaal op bovengenoemd vlak op. Het vlak loopt derhalve
evenwijdig aan het vlak S, =0, en gaat door de punten N en N’. Immers het viak S =)
snijdt van de Z as een stuk: — ../ af, terwijl het vlak ¥ een stuk - "’ — +"' r

. % ' Zaf I’
van de Z as afsnijdt. De vlakken liggen dus symmetrisch ten opzichte van het middelpunt
van den cirkel. DesMartres merkt op, dat van deze dubbelkegelsnee vijf punten gemakkelijk
geconstrueerd kunnen worden. Het vlak S, — 0 snijdt den cirkel n. 1. in twee punten wier
normalen evenwijdig aan de as loopen. Waar deze normalen het viak V7 ontmoeten, vindt
men  twee punten der dubbelkegelsnee. Verder de punten N en N’; ten slotte het punt,
waar de as van den cirkel het vlak ¥ snijdt. Door de drie genoemde richtkrommen is het
regelvlak volkomen bepaald. Een serie kegelsneden, die op het oppervlak gelegen is. wordt
nog als volgt gevonden.

Normalen, die bij de steunpunten van geconjugeerde raakvlakken behooren, snijden
de as in eenzelfde punt. Brengt men een vlak door twee dezer normalen, dan is de aan-
vullende kromme een kegelsnee.

Bijzondere gevallen:

1% XYaf =0, Xbf =0 d. w z de cirkels liggen in de normaalvlakken der
centrale kromme. De vergelijking der hyperboloide luidt:

@ty Frz@2d ety 3y c)=0.
Die van het platte viak 7:
22 eff—rrr=0
waaruit blijkt, dat de dubbelkegelsnee in dit geval in een cirkel overgaat,

2° Xc¢ff =0 d. w. z. dat de cirkels in raakvlakken der ceéntrale kromme gelegen
zijn, terwijl tevens » constant is. :

De hyperboloide ontaardt in twee platte vlakken:

| ] (]) o3 ac k,!_ Y SV o—. 0 o (2)
terwijl de vergelijking van het platte viak V:
€T _\:a/t__l__y‘:b/f:”. « ; 5 o ; y . . ] ; (3)



luidt. De doorsnee van de vlakken (2) en (3) is de Z as, die als tweevoudige rechte op
het normalenopperviak optreedt, terwijl de doorsnee der vlakken (1) en (3) in dit geval de
karakteristiek S, is, die thans in haar geheel op het normalenoppervlak ligt.

§ 3. Draaiing der richtingen, die het viak van den cirkel bepalen. Omtrent de
richtingen (a,. a,, a;) en (by, by, by) die
het vlak van den cirkel bepalen, hebben /‘?1 P2,/ 5 b] 3 bz, bS
we ondersleld, dat ze loodrecht op elkaar
staan. Overigens zijn ze willeKeurig in /
het vlak van den cirkel aangenomen.
We kunnen nu een vereenvoudiging in
onze formules aanbrengen, door één dier .
richtingen bijv. (b,, b,. b;) zoodanig te Ay, ey, a3
kiezen, dat zij loodrecht op de poollijn
van het punt 7' staat. Zij halveert der-
halve den hoek, dien de beide raaklijnen
uit 7" aan den cirkel vormen, waardoor
de raakpunten @ en ¢ op gelijken voet
behandeld worden, Laten de nieuwe rich-
tingen aangeduid worden door (a;, «g, «3)
en (By, Pa. f) en onderstellen wij, dat
wij daartoe de oude richtingen over een
hoek  moeten draaien (zie fig. 11). Dan
zijn de grootheden («y, wy, «y) €0 (34, (2 Fa)
voorloopig onbekende grootheden, die
cchter bekend zullen zijn, zoodra de hoek y bekend is. Een punt van het opperviak. dat

&

Fig. 1.

vroeger aangeduid werd, door:

w = [ r(a, cost | b, sint)
J — g -} 1 (ay cos t -~ b, stn t) ; (1)
— - r (ag cos t - by sin t)
wordt thans gegeven door het stelsel vergelijkingen:
0 T ~!- r I“l Ccos (f' — l,f) { “)’ Sin (t s— qw)l
Y =g 1 [ay €08 (£ — y) = Py sin (t — y)]
z=h -1 [agcos(t — y) -1 B3 8in (¢ — y)]
Dit eischt:
Uy = @y COS5 yp — [y SiN ‘ Wy == () CO8 Y |- by Sin y }
(g = 1ty CO8 Y — By Sin y ) of  ag == @ty €08 y |- b, 8in
Uy = gy COS p — (g SN ‘ g == Wy COS Y - by sin y |
by = (y €08 y - @y Sin l By = — @, 8in g | b, cos
by = B, CO8 @+ ag stny o OF  fy = — d, Sin oy -~ b, cos
by = By €OS W |- @y sin yr \ By = — dz sin y -~ by cos
Derhalve:
YR =Xaf siny—20b[ cosy -
X p c=Xa'csmypy — 2V ccos y ol Sl S e (10)
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Daar de hoeken in de punten ¢ en ¢ gelijken sinus bezitten, doch het teeken van
den cosinus tegengesteld is, zal, na de draaiing, de coéfficiént van cos ¢ in vergelijking (10)
moeten verdwijnen. Dit vereischt:

rr X Ble—3 ot B =00 e e e (16)

Om ¢y ¢ te vinden. moet men de grootheden X 3’ ¢ en X g /’, met behulp van het

stelsel vergelijkingen (15) uitdrukken in de grootheden. die in het stelsel vergelijkingen (1)
optreden. Daardoor gaat vergelijking (16) over in:

‘(2 a’ csingy — 3V ccos y) —Zef' (Zaf siny—3bf cos ) =0
of:
(rrXbec—2cf' Zbf)cosy—(rr3Sac—3 cf"2af’)siny—=0;
dus is:
it = A Uy BN T o LUl ) ey Wit 17
rr2ac—cff Zaf

waaruit blijkt, dat er steeds een hoek 4 gevonden kan worden, zoodanig, dat de poollijn
van het punt 7" loodrecht op de richting (by, b, by) staat. Wanneer we een evenredigheids-
factor ¢ invoeren, is betrekking (16) als volgt te schrijven:

i" ’ \ C/

- p . . . . ‘ . A . . - . 1\‘\»
i/ pirs : (18)

waardoor de vormen S, en S, overgaan in:

l/ I~

oy

o) = 2 « /’ cost 4 X Bf sint -1
' ’ N G LD
S, r2a ccost-or (2 p/ sint -+ 7)) (19)

{l

Byjzonder geval naar aanleiding van -ner_f;dyking (18). Is X¢/f' =0, m, a. w. lizzen
de cirkels in de raakviakken der centrale kromme, dan geldt:

of 7" =0 d. w. z. de cirkels worden beschreven met constanten straal. In dat
geval is £g y onbepaald, hetgeen hieruit te verklaren is, dat de beide karakteristicken S S
en S, door het middelpunt van den cirkel gaan, dit punt optreedt als punt 7'
de poollijn in het oneindige ligt;

, eén derhalve

of 2 f'c=0. De tungens van den draaiingshoek wordt thans gevonden uit verge-
lijking (15):

2a' csiny — 3V ¢ cos U=
/ 2 Ve
[ =t
} 2 a0

Vergelijking (10) die de poollijn van het punt 7’
bepaalt, gaat na de draaiing over in:

rip. aff— 3 ul c) (X[ + 7 8int) =0

of':
2R rsint=0 . . - (20)
Het zal tot geen verwarring aanleiding geven ,
wanneer we, in plaats van de Grieksche letters ,

dezelfde letters als vroeger invoe ren, daarbij in het

00g houdend, dat de zoo Juist hespmkr-n draaiing
Fig, ‘111, uitgevoerd
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§ 4. Voorwaarden wvoor een anallagmatisch opperviak. Zij ¢ (zie fig. I111) een straal
uit den stralenbundel met top 7'; de punten M en M’ zijn dan een paar geconjugeerde
punten; de normalen op de raakvlakken, in deze punten aan het cyclisch oppervlak aange-
bracht, ontmoeten de as in eenzelfde punt K. Nemen we K M — 5?.;: als straal van een

ST

bol, dan heeft deze in de punten I en M’ een dubbel contact met het oppervlak. Daar
het punt 7' eensdeels in het machtvlak van twee opeenvolgende bollen — waarop de
cirkel C en de naastvolgende cirkel groote cirkels zijn — gelegen is, anderdeels op de
karakteristiek van het vlak van den cirkel, zoo zal dit punt het centrum van een bol zijn,
die alle dubbelrakende bollen, die door een dezer beschrijvende cirkels gaan, orthogonaal
snijdt. Is het punt T stationair, dan moet het het centrum van een bol zijn, die drie
opeenvolgende stelsels dubbelrakende bollen orthogonaal snijdt. Is het punt 7' een vast
punt in de ruimte, dan zal het oppervlak anallagmatisch zijn, 7' het centrum van den bol,
die als directrix optreedt, terwijl de deferens een regelvlak is.

We zullen nu de analytische voorwaarden trachten te vinden, waarvoor 7 een in de
ruimte standvastig punt is. We vatten de zaak algemeen aan, denken ons in de ruimte
een vast assenstelsel 0,, X, Y, Z; (zie fig. 1V), en een beweeglijk assenstelsel 0. X, Y, Z.
Een willekeurig punt P denken we ons voorloopig vast verbonden met het beweeglijk
assenstelsel. Ten opzichte van dit assenstelsel heeft het de coordinaten (x, y, 2), ten
opzichte van het vaste de codrdinaten (%, #. &). De codrdinaten van den oorsprong 0 zijn
(€. Yoy 2). De richtingscosinus van de =z
heweeglijke assen ten opzichte van de

vaste, lezen we af uit de volgende tabel: Zy
z | ¥ 2
P, i e :
| 1
Z | &4 | | & |
| ' |
— o o= :
| 0 :
i ity bg | Cy 2 i et X 1
S
{
2y | Qg by Cy Yl

Fig, 1V.
De verschillende codrdinaten zijn nu door de volgende betrekkingen met elkaar verbonden :
Ty =g+ &+ b Y+ ¢
th =+ g T - by Y -} €y
2y =2 a2+ 0y cy
De, in het beweeglijk stelsel optredende, grootheden denken we ons functies van één
parameter s. Om de veranderingen in de codrdinaten van eenig punt na te gaan, als het
stelsel zich beweegt, differentieeren we bovenstaande betrekkingen naar s. Differentiatie

[

t

(=1)

(8]

naar ¢ door een accent aangevende, verkrijgt men:
7 ’ et / q S
H=xo-Fa x4 by} 2
4 ' ! {
h=1o+axtby-|c

/ / / y
2% =2y -+ az @ -+ bs ¥ - ¢

te
s~

bS

&)

gA % 3 S
i
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We zullen echter alle veranderingen trachten terug te brengen tot veranderingen ten
opzichte van het beweeglijke assenstelsel. Blijkbaar gelden de volgende betrekkingen:
x’ _a19"1—(1 j1+(13z’1
Yi—"0; e b, " - by 21
= R -+ ey h -+

Uit dit stelsel elimineeren we de grootheden @y, #i, 2z, door middel van het stelsel
vergelijkingen (22)

[4
(_3 <1

T =y Ty -y 0 Ly by Y -y &z ay Yoy o T Ay by Y - ay s 2 -
a2 2 1 (!sao:r—;—aabw;—[—aacnz NL™ o R N T 1)

Analoge uitdrukkingen gelden voor % en 7.

In het oog houdend, dat:

ANy 3:0% —1 >3 o

b=t

et a——() 2abtha=—:0 SRC Ca——il)
Onderstellen we, dat de oorsprong O een ruimtekromme
Lo —="1(8) Yo =9 (38) 2o =" (8)
beschrijft, dan gaat verg. (23) over in:

T=Zuf+yZab—zac
Op gelijke wijze: Ya—— b e SO b a7 (2 C) B (24)
Zd=cf t+xzxdcty2bc

Onderstellen we nu, dat het punt P een eigen beweging ten opzichte van het
assenstelsel O, X, Y, Z heeft, en geven we de veranderingen der codrdinaten ten opzichte
van dit assenstelsel door middel van dz, dy, dz aan, de totale verplaatsingen door middel
van 0z, d i, 0z, dan zal deze resulteerende verplaatsing als volgt voor te stellen Zijn:

de=dx} (Taf'+yall—z2a c)ds Q
VYy=dy-+ bl  —xz2all—z2Vc)ds DR R I (2D)
Vz—=dz}| (Xclf/ fx2dcty2lcds ‘

Na deze inleidende beschouwing kunnen we de voorwaarden nagaan, waarvoor bij
een cyclisch opperviak het punt 7' een vast punt in de ruimte is. De codrdinaten van het
punt 7" vinden we uit de vergelijkingen:

zXal ' +y2bf 4-rr=20
z2acty2betcf =0
of, als we ons de draaling uitgevoerd denken, die bewerkstelligt, dat de richting (by, by, by)
loodrecht op de poollijn van het punt 7' staat, uit:
2aff4+y2bf +rr=0
zXact+Yye2bf +ogrr=0
De gezochte codrdinaten zijn derhalve:

L)'= Y = ——-~ R (2(5)
Opdat T een vast punt zij, zal:

JiC:O, J?]:U, 0.6—0 . . .. Al A (27,
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moeten zijn. Substitutie van (26) in (25) geeft, in verband met (27), de volgende voor-
waarden:

S = s S SRR
AN ST e, _

Tt ORI  S  0)
o > 97 .k |
DL e I e e S N (1)

De laatste betrekking is per se vervuld, zie vergelijking (16). De tweede betrekking
schrijven we aldus:
Ty o Y T

>b6f” ds 2brr T =0
Geintegreerd:
y.: — 7-2 + /l‘:
of:
T O — 1 2

Uit deze laatste betrekking blijkt, dat 7 het middelpunt is van een bol, die alle bollen.
die het oppervlak dubbel aanraken, en hun centra op het assenregelvlak hebben, orthogonaal
snijdt. De grootheid £ is de straal van den bol, die bij de anallagmatische oppervlakken
als directrix optreedt.

§ b, Nadere beschowwing der voorwaarde 4 — 0. De vergelijking 4 — 0 is tevens
de voorwaarde, dat het stelsel van ! cirkels een omhullende bezit, d. w. z dat er een
ruimtekromme aan te geven is, waaraan de o' exemplaren raken. Wanneer men — de
quaestie zoo algemeen mogelijk aanvattende — uitgaat van een stelsel van o! ruimtekrommen

x=[(s, ), Y=g (8 t), 2=h(s,t)
dan vormen deze een oppervlak. Een kromme lijn op dit oppervlak wordt gevonden door
een functionaal verband te leggen tusschen de parameters, bijv. ¢ = o (s).

De richtingscodfliciénten van de raakliin aan zoon kromme, die de rol van omhullende
moet spelen, worden gegeven door:

_ D/ 2 _ O N/ A/ AW/
l)‘t': du)'—"' df' 1)![: (la'*= (EJ’. ()Z:._‘, f & —d
D8 * AN 08 , ol A8 B ‘\[(“'

De richtingscoéflicienten van de raaklijn aan een der voortbrengende krommen van

het stelsel, zijn:

NS of 0y < AW/
d.:_-_ﬁM it, dy._M dt, d S

Opdat beide krommen elkander raken, moet de betrekking gelden:

0w )Y 0z /e s h.
S e ik —— — 8 (e
IR T T T B R 7 S R Y

Blimineert men uit deze betrekking den parameter £, dan moet — wil het stelsel een
omhullende bezitten — de komende vergelijking in s identiek vervuld worden. Zooals we
in de inleiding gezien hebben, kunnen we, naar analogie met de regelvlakken, de gevonden
kromme gevoeglijk  keerkromme van het oppervlak noemen, dat door de ruimtekrommen
gévormd wordt.
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Werken we vergelijking (31) voor ons stelsel van oo! cirkels uit, dan komt er:

[ r(a cost—[—blaznf)—l—r (ay cost -0, sint) _9g el (uawst—b sint)—r (azcost_—,—b sint)

r (b, cos t — a, sin c’) 7 (b, cOS £ — ay Sin t)

h i (gq cost + b_ sin t) 1’ (az cos t | by sin t) =
r (b cos t — rza sint) )

of’:
7' - (d] cos t —%— by sin t) 4 7’ (ay cos t = b, sin t) — & r (by c0s t — a, sin A==}

9" -+ 7 (as cos t - by sin t) - 1’ (a5 cos t - by sin t) — ) r (by cos t — a, sin ) =10
W -1 (ds cos t -+ bs sin t) - 17 (ay cos t - by sin t) — &1 (by cos t — ay sin t) = 0.

o

We vermenigvuldigen deze vergelijkingen respectievelijk met (a, cos¢ -1 b, sin t),
(ay cos t -1 by sin t), (aycost - by sint), daarna met ¢,, ¢, ¢;, en tellen vervolgens op.
Dan komt er:
Si=2af'cost+Zbf sint4+=0
S=rdccsttZbVcsint)y+Zcf' =0
waaruit blijkt, dat de voorwaarde (31) te vervangen is door de vergelijkingen S, =0,
S, =— 0. We elimineeren uit deze vergelijkingen de grootheden cos ¢ en sin ¢, door oplossen
en quadrateeren

cost sin t o 1
RO s X = | >a [ 2bf’
;b’c el | cft 2Zalce Za'c Zbce |

De komende vergelijking in s luidt dan:

(rr' 2V c—Scf/ b2 (TafZcfl —rrZde=rQaf/Zbc—-3bf' 3 c)
zijnde de vergelijking 4= 0.

Gebruikt men de vergelijkingen S, en S,, zooals ze na de assendraaiing worden, en
stelt men in bovenstaande vergelijkingen X ¢/ =g rr  en 2V c—=¢ X b [, dan g:mt het
kenmerk 4 — 0 over in:

r@Zaf/ —Za' clR[(Zbf)P—1r2=0.
Zooals we weldra zullen zien, moet de eerste factor £ 0 zijn, daar anders de vormen
Sy en S, op een factor na gelijk zouden zijn, in welk geval de karakteristieken samenvallen,
de cirkel noodzakelijk aan twee ruimtekrommen raakt, en men te doen heeft met de
omhullende van ! bollen.

§ 6. Indeeling der cyclische opperviakken. Bovenstaande beschouwing geeft ons aan-
leiding tot een indeeling der cyclische oppervlakken. Als oppervlakken van de.l¢ soort
kiezen we die oppervlakken, waarvoor twee opeenvolgende cirkels geen punt gemeen
hebben, of beter uitgedrukt, waarvoor de afstand van twee punten, op twee opeenvolgende
cirkels gelegen, steeds van dezelfde orde is. Als oppervlakken van de 2¢ soort kiezen we
die, waarvoor het stelsel cirkels een omhullende bezit. Zij kunnen op de volgende, door
ENNEPER aangegeven, wijze worden voortgebracht. Men neemt op een regelvlak een ortho-
gonale trajectorie der beschrijvende lijnen, en brengt in eenig punt dier kromme het raakvlak
aan het oppervlak aan. Vervolgens beschrijft men in het raakvlak een cirkel, waarvan
een raakliin met de raaklijn aan de orthogonale trajectorie samenvalt, Het centrum van



den cirkel laat men een, van te voren aangegeven, kromme op het regelviak doorloopen.
Het stelsel van oot cirkels, dat aldus gevormd wordt, levert het gezochte oppervlak.

De oppervlakken, waarvoor de doorsneden van de vlakken S, en S, met het vlak
7an den cirkel samenvallen, zullen we als oppervlakken van de 3¢ soort kiezen. Vergelijking (7)
leert ons, dat het stuk, hetwelk het raakvlak van de as afsnijdt, voor een hepaalde
waarde van s constant is, De raakvlakken, in de punten van een bepaalden beschrijvenden
cirkel, vormen derhalve een kegel. De normalen op de raakvlakken eveneens, en de cirkel
is kromtelijn op het oppervlak. Het vlak van den cirkel valt samen met het machtvlak
van twee opeenvolgende bollen. Het cyclisch opperviak is dus te beschouwen als de
omhullende van o' bollen. De cirkel raakt voortdurend aan twee richtkrommen In een
bijzonder geval kunnen deze twee richtkrommen samenvallen, en dus tevens de doorsneden
van de vlakken S, en S, met de raaklijn aan de keerkromme. Men heeft dan met de
osculatiecirkels van een bepaalde ruimtekromme te doen,

VB0

Fig. V. Fig. VI Fig. Vila. Fig. V115,

Aan deze uiteenzetting kunnen we een meetkundige beschouwing vastknoopen De
indeeling kan n.l. aan de hand van nevenstaande figuren geschieden. Ligt het snijpunt 7
der karakteristicken S, en S, buiten den cirkel, dan heeft men te doen met de oppervlakken
van de 1°¢ soort. Ligt het punt 7' op den cirkel, dan bezit het stelsel cirkels een omhul-
lende : de oppervlakken zijn van de 2¢ soort.  Vallen de karakteristieken S, en S, samen,
dan spelen de punten 7" en 7 dezelfde rol, en moet de cirkel noodzakelijk aan twee ruimte-
krommen raken. Het eyclisch oppervlak is als de omhullende van co! bollen te beschouwen,
is dus oppervlak van de 3° soort. Ten slotte kunnen de karakteristicken met de raaklijn
aan den cirkel samenvallen (fig. VIIb). Het oppervlak wordt dan door de osculatiecirkels

van de keerkromme gevormd.

§ 7. Analytische voorstelling van de opperviakken van de 2 soort, De ruimtekromme,
waaraan de cirkels raken, stellen we voor door:

x=1u(8), y=1v(8), 2=w3);
den hoek dien de voerstraal 7' @ (zie fig. VIL) met de raaklijn in 7' maakt, door ¢. Uit
den rechthoekigen drichoek 7' ¢V volgt, dat T'Q =2 r sin ¢. Projecteert men den voerstraal

’

T Q op de richtingen (by, by, bg) en T R (v, ', ‘w’), die het vlak van den cirkel bepalen,
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dan zijn deze projecties respectievelijk :
2710, 812 g, 21 by sin? g, 27 b, sin® q.
2ru singcosqg, 27 singcosg, 2rw sing cosq.
De coordinaten van eenig punt van het opperviak luiden nu:
' @ —u -+ 27 sin g ( cos g - b, sin q)
V! Yy=—v =271 sing (V' cosqg - bysing) . (32)
Z—=1w-- 2 rsin g (W cos p -+ by sin )
met de voorwaarden :

R0 SRR e —— MR (83

waarin (¢,., ¢,. ¢;) evenals vroeger de richtingscosinus
van de normaal op het vlak van den cirkel zijn.

Onze eerste vraag is naar de vormen S, en S,.
Kvenals in § 1 beschouwen we den cirkel als doorsnee

7 2 van een bol met een plat vlak. Ter vereenvoudiging
Fig. VIIL van onze berekeningen voeren we de centrale kromme

in, waarvan de codrdinaten met die der keerkromme, als volgt, samenhangen :
=% rb. g—=v-Frby =070 " % .. . 1 (34)
Naar s differentieerend :
(=W rb-t+rb,. ¢g=0v+rby+rby, W=uw-+rb-1’b,. (35)
S=2(x—N+rr=3W-rb +rbd(x—u—rb)-+rir=
P (@—u =2rsmg |2 ucosp+ 2bf sing]|

— Se=2.¢ (x — u) = 2rsing |2 w cosg - Xbd sing|\

(36)

Daar:
Do uwi=—"cu’len b —=—23¢c
vinden we ten slotte voor den vorm S,:
Se=2rsing|2cu’ cosp--2cl sing.
In verband met formule (357 kunnen we aan de, in bovenstaande vormen, optredende
coéfliciénten een nadere beteekenis hechten. Door sommatie, na geschikte vermenigvuldiging,
vinden we n.l. de volgende betrekkingen :

2u =2 urr TV u =1 —1r2bu’=cosu
A g — c08 R (O 11)
SR G =y S A U [y = (08 »

’ ’

Nu vormen de drie richtingen (w’, v', w’) (by, by, by) (¢, ¢y ;) de assen van een
rechthoekig assenstelsel.  Drie van de vier coéfficiénten der vormen S; en Ss blijken de
richtingscosinus der hoeken te zijn, die de raaklijn aan de middelpuntskromme met de assen
van genoemd trieder maakt. Dus cos® « - cos* g - cos® » — 1. Aan den 4™ codfficiant
is als volgt een beteekenis te hechten. De grootheden (¢, ey, ) zijn de richtingscosinus
van de normaal op het raakvlak, aan het regelvlak met beschrijvende lijnen (byy by, by).
Noemen we o den hoek, dien de richtingen (¢, ¢y, ¢5) en (/”, g”, 1) met elkaar maken.
dan leert het theorema van MEUSNIER:

CosS m 1

o i
A e —
0 0N
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welke laatste grootheid de kromming der normaaldoorsnede voorstelt. De vormen S, en S,
gaan nu over in:

[

S, 9 8in q [cos « cos @ - cos B sin g
1 F L P = { I

. A v
.1512 = 2 St s [ - CO8 e : COs ¥ Sin lr]
ON

R o)

f

Uit het vervolg zal echter blijken, dat onze substituties het eenvoudigst uitgevoerd
worden, wanneer we, in plaats van den hoek ¢, den hoek ¢ invoeren, dien we tot nog
toe bezigden. Tusschen de hoeken ¢ en ¢ bestaat de betrekking: 2 ¢ = 90 - ¢ (zie fig. VIII).
Derhalve:

cos 2 g——sint of: 1 —28n*g=—sint en dus 2 sin®* g —= 1 - sin ¢

Verder:

sin 2 g = cos ¢,
Daardoor gaat het stelsel (38) over in:

, = 08 « co8 t 4~ cos B (1 |- sin t) i lk_ "]

: 39
S, =k cos t 4 cos y (1 - sint) (39)

O AT

vd

Bijzonder geval. cos « = 0 (zie verg. 37). De raaklijn aan de keerkromme en die der
_ 1
middelpuntskromme kruisen, elkaar loodrecht; X0 u” — =i Daar we den hoek tusschen de

normaal (¢,, ¢y, ¢;) op het raakvlak en de hoofdnormaal der keerkromme o gesteld hebben,
is. > b w’ = “ waarin ¢ de kromtestraal der keerkromme is. Richt men in het krom-

ol

mingsmiddelpunt een loodlijn op de hoofdnormaal op, dan ontmoet deze de richting (b, , by, by)
in het geodetisch kromtecentrum. Derhalve g, sin o = o, waarin 4, de geodetische kromte-
straal is1).

4 St o 1 1
In ons geval heeft men nu = DSl : — " = - m. a. w.
0y — ne

de straal van den cirkel is dus voortdurend gelijk aan den geodetischen kromtestraal,
Is tevens het regelvlak der lijnen (by by, by) ontwikkelbaar, dan verdwijnt de determinant:
| 95 W
by, by, by |

2
’ ’

by, by, b

of wel 2 ¢ b — 0. dus ook cos y = 0. De raaklijn aan de middelpuntskromme, valt samen
met de richting (by, by, 0y) d. W. 7 de normalen der Keerkromme zijn raaklijnen aan de
centrale kromme. In dit geval is cos g = 1 (zie 87) Dus: r = s, De straal van den cirkel
is voortdurend gelijk aan de booglengte van den oorsprong van bogen afgerekend. De keer-
kromme is derhalve de ontwondene van de centrale, kromme. De vergelijkingen der
karakteristicken luiden in dit geval:

S;=1-1sint

Sq =Kk Co8't

De karakteristiek S, valt samen met de raaklijn aan de keerkromme. de karakte-
ristick .S, treedt als middellijn op.

£ - o1 3 1 N i) H 59
1) Vessior, Lecons de Géométrie supérieure, pag. oz,
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S 8. Het raakvlak bij opperviakken van de 2¢ soorf. Alles wat in § 1 omtrent het
raakvlak in eenig punt van een beschrijvenden cirkel gezegd is. kan hier mutatis mutandis
herhaald worden. Voor den tangens van den standhoek &« van het raakvlak en het vlak
van den cirkel, geldt: (zie verg. 8):

S, €08 w« CoS 14 + €08 3 sin g cos « 4-cos B tg g

= e = kcosypt-cosysing  k-d-cosyigq WD)

In het bijzonder geval van § 7, waarvoor de keerkromme de ontwondene der centrale
kromme is, vinden we:

1
fg&:-——flfgrp

in welke vergelijking een stelling uitgedrukt ligt, analoog aan die van Crasres bij de regel-

vlakken. Wanneer n.l. het raakpunt den beschrijvenden cirkel doorloopt, verandert de

tangens van den standhoek van het raakvlak en het vlak van den cirkel evenredig met

den tangens van den hoek, dien de voerstraal 7' met de raaklijn 7'R maakt (zie fig. VIII).
Uit vergelijking (40) blijkt, dat de standhoek constant is, als:

CoS « _ CcOS f3

k — cos

of cos wcos y —keosp=0 . . ., . . . . (41)

In dat geval vallen de karakteristicken samen, en heeft men dus te doen met de
oppervlakken van de 3¢ soort.

Een belangrijke opmerking is nog te maken omtrent het normalenregelviak van een
bepaalden beschrijvenden cirkel. Wij hebben bij de oppervlakken van de 1° soort gezien ,
dat er drie richtkrommen aangegeven kunnen worden n.l. de cirkel, de as van den cirkel,
en een dubbelkegelsnee. Wij zullen thans aantoonen, dat de dubbelkegelsnee bij de opper-
vlakken van de 2¢ soort ontaardt. Daartoe knoopen we vast aan vergelijking ( (13):

Teostysint—r  —z8,
1 o S,
de vergelijking van het normalenregelvlak, en substitueeren voor S en S, stelsel (39).
Dit levert: .
(z cost |y sin t — r) [cos a cos t - cos B (1 - sint)] - z [k cos t - cos ; (1 -+ 8in t)] = 0.

Evenals vroeger, vervangen we:

: /
cos ¢ door 1 /.r‘lltk{ﬁ ek sin t door I /:_1:2‘/_{_ )
Uit:
. kax —|— Y cos ;
(/a2 T [r(,r_)a.x—]—yr()s__i Cos ] l Co J"-—l)
(l I —l— U ]) I/r —} ?/- _* [" + / .'].-"+ ﬂ" + & ,

of:

- (;'f:2+ y*) cos 3 + < ”" X =1 €08 y) — 1 (cos w -1 cos 3
T COS « -1 cOS f 2z cos y — 1 cos § |- - : ]/1:--{—:;7 S \LC0s =Y 60815 )
vinden wij ten slotte als eindvergelijking:
(2% +172) [ 008 w4y 08 @ + 2 cos ; — 7 008 B — [c08 B (2 + )+ 2 (k2 -y 0o ) —
— 7 (& €08 « 4 Y co8 B)]* = 0.
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De dubbelkegelsnee wordt gevonden als doorsnee van het platte viak 7 met de
hyperboloide H :

V=xcosa-t|ycosf--2c08y —rcosf—=0. . . .. (42)
H = (x* 4 4*) cos 3 -z (k x® -+ y cos ; )——l(lcOSa—|—a;CGSﬁ):::()

De laatste vergelijking is met behulp van de eerste te vervangen door:

H=@*—4-y*)cos § 4z (k@ - y cos ) -}- r (2 cos y — r cos )
= (@ — 1) cos Bt zkx 4 (y + Nesyl=0. . . . . . (48)
We elimineeren z uit de vergelijkingen (42) en (43), en vinden op deze wijze de
projectie der dubbelkegelsnee op het X Y vlak:
X o8 a-- (Y —1r)cosf

Co8 y

Invulling in vergelijking (43) levert:

H Y 1 —— .rOv. i -
(@ -y — 1?) cos 3 — et _hég - A [k x4 (¥ 4 7) cos y] = 0,
= /

(@ -yt — r®) cos § — kgl %.co8 j;g(f £).C0818) 5 s z (Y + z) o8 a« — (y* — r?) cos 3 = 0,
2% cos 3 cos y — Kk x* co8 & — kx(y—r)cosf —x(y - r)cosa«cos y— .
Deze vergelijking is te splitsen in & =0, en
(cos B cos y — ki cos «) & — (ki c0s B - €08 « €08 7) y 7 (k cos 3 — cos « cos y) = 0,
De eerste factor is te verwerpen, de tweede factor levert de projectie van de rechte
lijn, die in dit geval als 3° richtkromme van het normalenregelvlak optreedt.

& 9. Het ljnelement. Aangaande den eersten grondvorm, die het quadraat van het

lijnelement aangeeft, n. l.:
dR=FEKds +2Fdsdt 4+ Gdi2

zullen we de volgende quaesties behandelen:

I. Berekening der grootheden K| I"en G. Deze drukken we uit in S, en S, en hun
differentiaalquotiénten naar s en 4

II. bespreking van den vorm H* = E G — F*:

I[II. de differentianlvergelijking der orthogonale trajectorién der cirkels;

IV. bepaling der strictie- en elongatielijnen van een cyclisch oppervlak, dat zijn kromme
lijnen, waarvan de punten een Kleinsten of grootsten afstand tusschen twee opeen-
volgende cirkels aangeven;

V. bespreking der opperviakken, waarvoor de orthogonale trajectorién der cirkels tevens
geodetische lijnen zijn;

VI. behandeling der isocyclische oppervlakken, dat zijn oppervlakken, waarvoor de cirkels
en hun orthogonale trajectorién een isotherm stelsel vormen.

Ad I
2
E=Xaq;.
Ty=[f"4r r (ay cos t - by sin t) - 17 (@, cos t - by sin t), zie verg. (1).
= mf, =3 LS a'?ecostt 22 a b sintcost 4 X002 sint )12 27 (X [ cost o

4y sint)+ 2 r'(Eafcostt-2bfsint). . ., . . . (44)



Deze vorm is om te werken tot:
il ] “ |5" 2
2 d 0 so
St + S: - ( 5 afl SR b’J e b L (40)

Bij de gelijksfelling honden we de volgende betrekkingen in het oog:
il = (S b RS e 3 o A et o (46)
Om de tweede betrekking te vinden, voeren we, ter bekorting, de vectorschrijfwijze in, n.l.
AUy voor (ay, a,, az), B, voor (by, by, by), €, voor (¢, ¢y, c5).

Daar de afgeleide van een eenheidsvector loodrecht op dien vector staat. ligt A in

het vlak der vectoren B, en G,, 8’ in het vlak der vectoren %, en G,. Elk dezer afgeleiden
ontbinden we in het vlak, waarin ze gelegen zijn:

W=38+,6C, =B +:6. . . . . . . . (47

Door vectorieele vermenigvuldiging der eerste vergelijking met B, daarna met €,

vindt men:

g==2ab, ;=2ac.
De tweede vergelijking vermenigvuldigen we eerst met 9,, daarna met G,. Dit levert:
ag—2abl=——3alb, «=3bc

Vervolgens verheffen we ¢

S

e vergelijkingen (47) in het quadraat. Dan komt er:
Sat=f4 2= (Za b4 (Za c)’
SWr= = (T bR+ (3o

Ten slotte vermenigvuldigen we de vergelijkingen (47) vectorieel:

AT NSRS A O A C:

Dit leidt tot de volgende betrekking:

Tatcostt -2 a" WV sintcost - XWrsintt—= (S a c)costt23a ¢V csintcost -

+(Ebepanttd-(Zab) . . . . . . . . . (48)

Ken derde betrekking, die we meermalen zullen gebruiken, wordt gevonden door het

stelsel vergelijkingen (47) te combineeren met:

% — 3 %, u B, » G,

waarin:

(

i=Xaf, u=3b[", r=2Xcf.

Door vectorieele vermenigvuldiging vinden we:

2aff=uptrvy=—2ab 2bf +2acIcf 7
23 [)’ /’ P— (.(} I‘ e 30 /) hf & a/" __}'__ Cy) bf c e /-, . 4 y X . (_ .’)

Nu is:

S — (Fafcost+-2bf sintf-rP=(2af)cos*t 4 (b)) sin{ 172 L

S = [r(2a" ceost -V esint)-Xcf']P=r*(Xa c)costt - r2 (XY ¢)* sint t |

l) S‘l
AN

+23af 2Xbf sintcost 20 (Xaf costt 3bf sint),

+(EefPt2rXacZVesinteost-2r Xcf' (Fa'ccost - 3 ¢sin t).

@

— —r2a b’J —[2bf costl —Xaf sint—rXab P=(Zbf’)cos*t (S afyesindt 2k

+ 22 (Salb’—2Faf Tbf sintcost—2rZal (Sbf cost— g 1’ sin t).
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De gelijkheid der vormen (44) en (45) is thans, met behulp van de betrekkingen (47),
(48) en (49), zonder meer duidelijk.
Resumeerend hebben wij:

5 ~2 v “‘ '\'l 2
B—5; = S -+ (Ol’ —r>a f)’] K, R il Sy (5(_))

F= 2z, z.
—r X" -7 (a’ cost |- b sint) {1 (acost—bsint)](hcost—asint)
—r[2bf cost—Xaf sint—rXall
0.5,
— —rZabl) . .- . o
(_Mf / o) AT e S S S T (B 1))
G="Sx; — r2Si(bioos T —alzinit) == 73 NS A R e (D2

Derhalve:
Q5 "o b S : e
dliz2— l,\] 4 83 - —rxat| d §2 -2 ( N —Irea b’) dsdt--r2di . (63)

Y

Ad IL

Hr=FE G — F2 =12 (S L S)).

|
Ter berekening van dezen vorm, gebruiken we het stelsel vergelijkingen (19):
2 OV~ o .9 . \2 ~ A2 P *al r\2] ein2 ‘ n L ¥ L 2 1 y |
Si-ESi=(14-g* 1) (202 —(2af P —r (2 a’cl|sin?t4-23b " (Xaf g r*2a’c)sintcost |-
+-2r(Xaf’ g r2ya’c)cost--2r 2o (Lg% rd)sint 721 |- 21 (R afpd-rXae? (54)
Het is van belang aangaande deze uitdrukking, die zoowel in den eersten. als in den
tweeden grondvorm optreedt, de volgende vragen te stellen:
a. Wanneer is zij te herleiden tot een volkomen quadraat (i cos ¢ - u sin ¢ - v)2?
b, Wanneer zal zij overgaan in een lineaire uitdrukking in sin ¢ en cos ¢ ?

Sub a. Opdat de gelijkheid:
Sy Si= (A cost 4 u sint |- v)?
hesta. moet aan de volgende voorwaarden voldaan worden :

Uit ralle R P G RaE = Sl e o e i)

JSori(Sar +(J r2 2 ) — by Tl B Y6
ri(2a /’ -t (,) — O BBy Y (:-Sl)
' S0 (14 g J") —REM T ()
72 (14 g2 rt) - (Taf )P4 (2a c)? =y pa R el s SR (D)

We maken het gedurig product der uitdrukkingen (2), (3) en (4) op:

M2d = (TR (T al g rt Tal ) (14 g2 02
AR — OO I A4 Oy -+~ q r2a e) l'/ l —=¢* "2-
Deze nitdrukking deelen we respectievelijk door (2), (3) en (4), en vinden :
Saf'+qgr22a'c SR 1A .
— //,' II e 1= 23 {ihgg 171 @3 v =1’ ]/1-} 2,
V14 q2 12

Substitutie dezer grootheden in betrekking (5) levert:

[(Fafp4rrEde| (4 P)=(@af’+ g rXa c)
0f':
Sac—gIaf)=0.
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Substitutie in betrekking (1) levert hetzelfde op. De beteekenis van deze voorwaarde
is, dat de karakteristieken samenvallen. Dit geval sluiten we uit. Zullen we met opper-
viakken van de 1¢ soort te doen hebben, dan is de eenige mogelijkheid ). — 0 d. w, i

Zafl=—pr2Za’c. . . . . . .. . . . (55)

De betrekkingen (1) tot (5) gaan nu over in:

=1+ (S0 —r (3 )|
=120 (1 ¢q2r2)
= (1 4 g7 [1"2 -+ 2 (3 o ).

Sluiten we het geval van samenvallen der karakteristieken uit, dan levert de tweede
vergelijking ons als eenige oplossing:

T ]-/17;_:1,27 ﬁ;é, ¥— Sab a4 -+ @2 72,

terwijl de 1° en 3e vergelijking als nieuwe voorwaarde meebrengen :

hr

B (b ) R Syl (S YA P S (56)
De vergelijkingen der karakteristieken Iuiden nu:
Ss=Xaf cost +2bf sint '
Q,E——-‘lqarlf cost--grXbf sint-t+ grr 5 MRl i (5 7)

Si+S=0+@ )@ sint+3b . . . . .. (58)
Het blijkt, dat de uitdrukking , op een factor na, gelijk is aan het quadraat van een
vorm, die, gelijk aan nul gesteld, de poollijn van het punt 7' aangeeft. Het eerste lid van
vergelijking (56) is de grootheid 4 (zie vergelijking 11), waarin te substitueeren is
2cff=gyrv, SVc—=¢3Zb /7. In het onderhavige geval essentieel negatief. Dan Zijn
de punten ¢ en ¢/, de snijpunten van poollijn en cirkel imaginair, ligt de poollijn dus buiten
den cirkel, en het punt 7' binnen den cirkel. DesMARTRES noemt deze oppervlakken, cyclische
oppervlakken met isotrope focaalkromme. Deze naam is aldus te rechtvaardigen, Wij
zetten van uit het centrum op de normaal twee stukken af, respectievelijk 7% en — ri,
Deze punten zijn door LAGUERRE (Sur Uemploi des imaginaires dans U'espace 1)) de focaal-
punten van den cirkel genoemd. We zullen aantoonen. dat deze punten in ons geval een
minimaalkromme op het  assenregelvlal beschrijven. Vooraf gaan we na, waarin,  bij
inachtname der voorwaarden (55) en (56), de uitdrukking :

EafPLEbfrEfEcef)r=1

PriacP4-(2bf 8 - gt 2 —
PrEofp—r2 @022 rr=1
(1427 (20 7)r=1 (1))
Om de vergelijking der focaalkromme op het assenregelvlak te vinden, substitueeren we
voor u in de betrekkingen:
T=[+uc, y=g-+uc, z=htuc
de grootheid » 7, en maken vervolgens het lijnelement dezer kromme op :
A== (f"4ircFir c)

=2 —rt 3=t Lo r 3 o= P I e S S . (60)

overgaat,

-y

1) Journal de Liouville, 28 série T I, 1872.
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Ten einde de grootheden, die in deze uitdrukkingen optreden, te kunnen vervangen
door grootheden, die in de vormen S, en S, optreden, nemen we wederom onzen toevlucht
tot vectoren. Daar G, eenheidsvector is, ligh de vector 6" in het vlak der vectoren ¥, en 8,. Dus:

G':t{?ll+q51 e PR L A e (61)

Door vectorieele vermenigvuldiging, eerst met ¥;, daarna met ¥,, vinden we

gcl W ——i 30 0.4

U
b

Quadrateering der formule (61) levert:
=0 2:?'2—!—“' (S od == (Sibieh)in W tlnal Suon (62)
= (2a’c)+ (2 c)p

Evenals vroeger § =— 4 ¥; -+ u 8, -~ » §, stellende, vinden wij:

Scff=r5+u p==2afJad+2b }" v bcf
—=—(afXadc| 2 SUBle) i i L (68)
Met behulp van de betrekkingen (62) en (63) gaat formule ( GO) over in:
dp=1—nr[Ea o+ (@Y —r2—2ir(Eaf Tact I/ IV o)+ 2igr
— 1 — (; b /.’}""' — q?‘ r? (.S b/";g — 217 [—- i 73 (.}f a’ HE Jj i (‘l b /")2] + 24 P 7’2
—1— (1) (S0P — Qir[pr't|+2igry?
—1—(14q¢2r3) (20 Ta)s
— 03 (zie vergelijking 59),
waarmee aangetoond is, dat hetb lijnelement der focaalkromme verdwijnt, en deze dus
minimaalkromme op het assenregelvlak is.

Opmerking naar aanleiding van de focaalpunten. Wij hebben gezien, dat elk punt
der as te beschouwen is als het centrum van een dubbelrakenden bol. De raakpunten van
den bol en het cyclisch oppervlak worden gegeven door de snijpunten van den cirkel met
een straal uit den stralenbundel met top 7. Om de stralen te vinden, die met de focaal-
punten correspondeeren, heeft men in vergelijking (7) voor u te substitueeren -}-r ¢ en
— 4. De gezochte stralen zijn dus:

'*—‘ i Sg f— O., en ‘S‘l —_1 S._: — 0}

Met de twee paren ceconjugeerde punten, die deze stralen op den cirkel insnijden, corres-
pondeeren twee nulbollen, die den cirkel ondubbelzinnig bepalen. Dit is het uitgangspunt
van LAGUERRE.

Sub b, Opdat de vorm St -+ Sy overgaat in een lineaire betrekking tusschen cos ¢ en
sin t, moeten de volgende twee l.mtleldungen bestaan, (Zie vergelijking 54).
A+ (Sbf R —(TafP—r(@ad =0

O i (.l' af’ -{— P12 Ea (') =),
Bepalen we ons tot recéle oppervlakken, dan eischt de laatste betrekking :

a4 giri3ac=0.
De eerste betrekking gaat hierdoor over in:

A )[Ebf) —r3(Taf o] =0 = o whe Ll . (64)

Om de beteekenis van deze betrekkingen na te gaan, beschouwen we wederom het

assenregelvlak : _
w=[4uc,, y=49g + e, z=h-4 uc,
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L]

Het strictiepunt der as wordt gevonden, door » op te lossen uit de vergelijking :
U 23 f"=01).
Vergelijking (63) leert ons:
Scff=—CacTafl ISV cZb)
In het oog houdend, dat:
> f" — — pa > {1’ ¥
W ec—=p3b T
mag voor bovenstaande betrekking geschreven worden :
2 =g [(Z0f)2—r*(2d c)?]=0. Zie vergelijking (64).
Vergelijking (65) levert nu u — 0, hetgeen ons leert, dat woor aile cyclische opper-
vlakken , waarvoor H* een lineaire functie is van sint en cost, de centrale kromme strictielijn
op het assenregelvialk is.

Ad IIL

Wij beschouwen een willekeurige kromme op het cyelisch oppervlak. De richtings-
coéflicienten der raaklijn, in eenig punt dier kromme, worden gegeven door :

dw . 0% oY QY 0z Q2
a1 — Q8 === R — QB o e ) e e L o,
R AR i IR Y e e B ey et Wity

De richtingscoéfficiénten van de raaklijn aan den cirkel, die door dat punt gaat, door:

0L oY 02
ot ot At

Wanneer de eerstgenoemde kromme als orthogonale trajectorie van den cirkel optreedt,
geldt de betrekking:

A U )
:[‘ " ds - o cu]‘ — 0,

d8 07( o
of:
Fds-+—-Gdt=0.

5 2
A e ST I Fi—t=rs o A==t () EENE 30
[Dt rX2ab|dstrdt=0 S (60)
r (“-|~ Ybof cost — Xaf sint—rIabt = 67
Lis S . P / . . . . . . » (()[)
We merken terstond op, dat in de differentiaalvergelijking (66) wel de grootheid Sy
doch S, niet optreedt, d. w. z dat de richting (¢, ¢, ¢;) — de normaal van de platte
vlakken, waarin de cirkels gelegen zijn — Dbij dit vraagstuk geen rol speelt. Dit is een

speciaal geval van een bekende stelling#). Bepaalt men n. 1. de orthogonale trajectorien van
een stelsel vlakke krommen, willekeurig in de ruimte aangenomen . dan blijkt, dat in de
differentiaalvergelijking de kromming van de keerkromme der oo! platte viakken wel, doch
de torsie niet optreedt. Ontwikkelt men derhalve het ontwikkelbare oppervlak op een plat
vlak, dan is de vraag naar de orthogonale trajectorién van het gegeven stelsel terug te

1) Zie bijv. Vessior l. ¢. pag. 100.
2) Zie bijv. TisseraND—PAINLEVE, Recueil d’exercices ete. Pag. 411 en vig.
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brengen tot het bepalen van de orthogonale trajectorién van een stelsel krommen, die alle
in hetzelfde platte vlak gelegen zijn.

Voor het geval het stelsel krommen uit oo! cirkels bestaat, zijn de orthogonale trajec-
torién te bepalen uit een differentiaalvergelijking van Riccarr. In de ruimte derhalve eveneens.
Dit is gemakkelijk te verifieren, door in vergelijking (67) te substitueeren:

2w _ 1 — w?
TFw = T e

tg__i:w, t=2bgtgw, sint—

waardoor deze vergelijking overgaat in:

2r (_fizg 28 (1l —w?)—2w2af—r (1l u)Jab =0,
of:
irﬁizﬂlbf{—r:aUMMA—Qw:&df+(r£av——:bfﬁ.. . (68)

een differentinalvergelijking van Riccarr, waaruit de bekende stelling volgt, dat vier orthogonale
trajectorien een cirkel volgens een puntquadrupel met constante dubbelverhouding snijden.

Bijzondere gevallen.

19 Yaf’'=0,3bf =0 d. w. z de cirkels zijn in de normaalvlakken der middel-
puntskromme gelegen. De richting (¢;, ¢. ¢;) der as valt dus samen met (/*, ¢', #). De
differentiaalvergelijking der orthogonale trajectorién wordt in dit geval zeer eenvoudig. Zij
luidt n. L. (zie 67),

¢ — 3 ab
s
en dus: .
t=[Zablds . . . . . .. . . . (89)

Als nienw assenstelsel voeren we het triéder van Serrer in, en ontbinden de rich-
tingen (ay, @y, ) en (by. ba, by), volgens de hoofdnormaal (%,, %y, 2y) en de binormaal
(py, Pas py) der middelpuntskromme. Noemen we den hoek tusschen de richtingen (@, Uy, (ly)
en (hy, hy, hy) o, dan gelden de volgende betrekkingen:

ty = hy €08 w |- Py 8iR o, gy == Ny 08 w 1~ Py SN w, g — hy 08 © - Py 8in w
by = — hy 8inw - py 08w, by==— hy 810w -~ Py €08 0, by == hg sin w - py cos o
¥
‘g A LRI AN inoYo —|—— —P1) cogw .M :
o — h] o8 w -1.. I St w - (py o8 — Iz.l .‘1\“!»(0)(!; — (— ‘E-; — £ ] C08 O —4- . St w —{# (plf'oa' m—]l, Smm) w’
].‘ ’ . ' ’ oA O | 1 { Jp— /" | 1" QN hl ' f .
= —h) sinw - p cosw— (I 08w —-PrSiNw)w ="~ —| s w - _ Cosw — (R €08 w = py sin w)w'
waaruit volgt: 1
yYae— —cosw en Xbec= = 8in w,
0 iy

Vervolgens stellen we ons de vraag: over welken hoek ¢ moeten de richtingen
(ay, ay, az) en (by, by, by) gedraaid worden, omm de draaiing, in § 3 bedoeld, te bewerk-
stelligen? Daar na de draaiing & ¢/ == 0 is, moet volgens (18) & g’ ¢ eveneens nul zijn,
Volgens (15) is: _
M

Ly W= e — tg w

dus :
|;r —. )
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waarmee aangetoond is, dat, na de draaiing, de richtingen, die het vlak van den cirkel
bepalen, respectievelijk met de hoofdnormaal en de binormaal der centrale kromme samen-
vallen:

qyi— hl, Tial— Il-ﬂ SR ¢ { f— 123.
fr="01, f2=Ds, [3=Ds
1
2« ﬁ' ——p> ]Lp' =—,
r

waardoor vergelijking (69) overgaat in:

| ¢n

i , . -(-lr

De torsiestraal der centrale kromme berekend zijnde, worden de orthogonale trajec-
torién in dit geval door een enkele quadratuur gevonden.
De vergelijkingen der karakteristieken luiden:

Ay o e IR SR B B 1))

~

nS — ?", 82 —

2°, Xeff=0, en tevens r constant, d. w. z. dat de cirkels in de raakvlakken der
centrale kromme gelegen zijn. We kiezen de richting (e,, @, a;) langs (f’, ¢’, /') en
onthinden de richtingen (b,, by, b3) en (¢, ¢y, ¢3) weer langs de hoofdnormaal en binormaal
der centrale kromme, terwijl « den hoek voorstelt, dien de richting (¢, ¢, ¢;) met de
hoofdnormaal maakt :
by = h, 8in v — p, c08 @ enz. ¢, = h, cos o -~ p, sin » enz.

We berekenen de coéfficienten der karakteristieken S, en S,:

R N1 Sona=—\ \
. 1
Sac=2[" (I cos - p, 8N w)—= — 08 w

i

-

SV =2 (I sin o — py cos o) - (hy 05 0 = py sin w)w’] (y 08 0 |- p, sin w)

— 3| — (f - p) 8in w ——hr’ 08 w ~ (hy €08 w - Py sin w) w’](h, €08 w = Py 8in w) ) (71)

¢ ' 7

1 ;
=—— -+

!

; . 10
— 3 b=—2["(h sin w — p,; CO8 w) = — 8in w,
i

Sabt

Voor het geval o =0 is, d. w. z dat de cirkels in de rectificeerende viakken der
centrale kromme gelegen zijn, luidt de differentiaalvergelijking der orthogonale trajectorién:

(i ;
n———28in1
d s
of’:
di __ds
sint — r
l_qtguf)—: g
2 '
l’y f) :(}:



Om na te gaan, hoe de differentiaalvergelijking der orthogonale trajectorién voor
opperviakken van de 2¢ soort luidt, knoopen we aan bij betrekking (66):

05,

ot

De grootheid X a O’ gaat thans over in:

—cos Bcost—cosasint—1r cost — (1L —rIbu’)sint. (Zie 37).

SN b= S bl L
Men vindt derhalve voor de differentiaalvergelijking:

[7cost —(A—r2bu)sint —rXbu’|dst-rdt=0. . . . (72

of:
L — —r'cost (1l —r2obu’)sint—rxbu’
s ‘ '
O [l ?(' o f Ar2) O 1 a \-( arlt P F 7B a5
2y o =—1 l1—w)42w(l—r2bu"’) —r3du (1 o w?)
[0 ’ + ; " o ¢ . " , 3 -
2 r {(857: (W —rZbu)utt+2(0—rZou)w—(r4r>bu’) . . (78)

Voor § 7, bijzonder geval, gaat (72) over in:
(1 4-cost)yds 4 sdit—=10,
De variabelen zijn te scheiden, en de differentiaalvergelijking der orthogonale trajec-
torién is direct te integreeren:

it m d s
1 4}— cost 8
ty f) — — 13

Uit deze vergelijking moeten cos £ en sin ¢ bepaald worden, en daarna gesubstitueerd
in verg. (1). _
De differentiaalvergelijking (78) gaat over in een lineaire, wanneer de coéfliciént van
w* verdwijnt. Dus:
s S TS 0,
of’:

| s '
= . (4ie § 7, bijz. geval).
g

Wanneer de keerkromme gegeven is, en men den straal van den cirkel A priori
zoodanig kiest, dat aan bovenstaande betrekking voldaan is, d. w. z.:
" (l &
o e— / —_——,
4 Qg

dan gaat (78) over in de volgende imeaire differentinalvergelijking :

dw 1 — 17 2 -
ds r r
en dus:
B e
{ '!— % s Y / ! ’ s
p —_— s o r (} — 2 r g
w=tg 4 =¢ fles as|

Wordt ten slotte het cyclisch oppervlak door de osculatiecirkels der keerkromme
3



gevormd, m. a. w. is » — p, 2 bu” —— dan luidt de differentiaalvergelijking der orthogonale

1
trajectorién:
d w
n p— —
S ds

(8]

= ({J’ — l) w* — (h)'r + 1)

Zij is te integreeren voor het geval ¢ — s, d. w. z. dat de kromtestraal steeds gelijk
is aan de booglengte, van den oorsprong van bogen afgerekend. Men vindt thans het
volgende functionaal verband tusschen de parameters s en ¢:

W==t4 1; =15

Daar de cirkels zelf, in het laatste geval, een stelsel kromtelijnen vormen, vormen de
orthogonale frajectorién het andere stelsel.

Ad IV.

Aan het vraagstuk der orthogonale trajectorién knoopen we dat der strictie- en
elongatielijnen vast.

Gaan we uit van twee, willekeurig in de ruimte aangenomen, cirkels, dan kunnen
we een onderzoek instellen naar die punten, wier afstand een maximum of minimum bedraagt.
Het zal blijken, dat er op elken cirkel vier punten aan te geven zijn, die aan de vraag
voldoen. Op het cyclisch oppervlak levert de aaneenschakeling dezer punten vier krommen,
strictie- en elongatielijnen geheeten. We zullen de zaak algemeen aanvatten en onderstellen,
dat een oppervlak:

=i (85t} Ry =—="g(851) s 2=/ (8;it)

beschreven wordt door o' lijnen s — const. We nemen twee dier lijnen s=—s, 5-—g,
Kiezen we nu op de eerste kromme voor ¢ een waarde fy, en op de tweede kromme een
waarde t—+{,, dan zijn daarmee op die krommen respectievelilk twee punten P, en By
bepaald. De afstand d dier punten wordt gevonden uit de formule:

d: = 3 (x; — Z,)%.

Opdat deze afstand een maximum of minimum bedraagt, moet gelijktijdig aan de
volgende voorwaarden voldaan worden:

o d? o d*

— 0 = (),
l" fl 4 l‘l t:!
of:
oL 0 Lo
S — =0, (X, — o) =0
( 1 L-) o tl ( 1 -) a tz )

waaruit blijkt, dat de verbindingslijn der punten P, en F, zoowel loodrecht staat op de
raaklijn in het punt P, als op die in het punt F,. Gaan we tot de limiet over, d.w. 2
nemen we twee kromme lijnen, die zeer weinig van stand verschillen, dan wnrrl;lt 104 12
een element van een geodetische kromme, en zal voor bedoelde punten moeten gelden, dat
daar ter plaatse de geodetische kromming der orthogonale trajectorie gelijk aan nul is.
Heeft men op een oppervlak een.willekeurig stelsel parameterkrommen g — const., ¢ =— const,
aangernomen, en is verder ¢ (s, ¢{) = const. een stelsel kromme lijnen op dat oppervlak, dan
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wordt de geodetische kromming in eenig punt van zoo’n kromme gegeven door de formule '):

Ay A S dap T

Z)‘ ( ) !_ ',IJ’

l_ l ot TO»; 4 P ]De)' T
(g \ - 0(’ (\q ﬂr[ : (\q ' Ot ‘ a {1‘; ‘i dq nr
L‘ ) 2 4G J L‘ —Ohyade I el
ot ‘-\ ot IS IM at T 7las

Is het stelsel krommen ¢ =— const. niet door een vergelijking in eindigen vorm gegeven,

maar, zooals in ons geval, door een differentiaalvergelijking, n.l. die der orthogonale

trajectorién :
Fdst| Gdt=D0,
waaruit volgt:
o i 0 iq
e TR
Y 4

dan gaat bovenstaande vorm over in:
1 1 ) I —FEG Ky IS AR s

—H¥Y VEG—-2F 6 4GP H ot e

De punten worden dus in ons geval gekarakteriseerd door (e vergelijking;

i‘ 9 y )
Y (.\'l' - -S';i) = {8,

én de vergelijking der strictie- en elongatielijnen luidt :
Ty AT IR
S, 5SS, 22— 0,
Al =il
Na uitwerking vinden wij:
(2 af cost--Xbf sint4-r) Qb cost—Xaf sin B ~br(rXa ccost- IS
rXbesmt--2ef) (X ceost —Xadesint)y—0 . . . (T

-

We substitueeren evenals vroeger (zie § 2):

i ; )
P —— N B e S
15 r

waardoor bovenstaande vergelijking overgaat in

@Saf' d4-yx bf' )@ Sbf —y2af)+r*eXac-tyI et Sef el e—yXac)—=0

1][' v"l”l ]”]\1“” van een gel ]iky]]lh”’t‘ h\pl []N)O] die d(]“l het ]lllll!!b]])l]]]t van den (]1]\(\| u‘n‘”
De vier strictie I”””-‘—'“ ,4]_”1 dus de hll[]]lllllh‘ll van deze ll}]u*]huu] met den cirkel. Twee

dezer punten zijn steeds redel,

Bijzondere gevallen. 1°. De cirkels liggen in de normaalvlakken der centrale Kromme,

Saf =0, 3bf —0. De vier bedoelde punten worden uitgesneden door de karakteristiok

: ‘ 0 S,
S; =0, en een lijn door het centrum, loodrecht daarop, © =2 — (),

200 Yag'¢e—0en XV e¢=0. Daar:

(X a e+ (2 eP=2c"2 (zie verg. 62)
Moet, bij deze onderstelling, de richting (e, ¢y, &) constant zijn.  De cirkels liggen dus

") Cf. Braxenr, Vorlesungen ber Differentialgeometrie pag. 148, ed. 1910.
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in onderling evenwijdige vlakken. In dat geval ontaardt de hyperbool in de volgende
twee rechten: de karakteristiek S, =—0, en een loodlijn daarop, door het centrnm van
: oS

den cirkel, = — (.
ot
Ad V.

In verband met deze quaestie doet zich de volgende vraag voor: aan welke voor-
waarden moet het oppervlak voldoen, opdat de orthogonale trajectorién der cirkels tevens
geodetische lijnen zijn. Dan zal aan vergelijking (74) onafhankelijk van de waarde van ¢
voldaan moeten worden,
(Kafcost2bf"sint-r)(Sbf cost—Zaf sint)y--r(r2a ccost—+rIVcsint-L

+—Icf) (b ccost— X a csint)—=0.

Deze vergelijking is van den vorm:

Asin?t+ Bsintcost 4 Ceost---Dsint - E=0.

Derhalve is te voldoen aan:

A = ] ) i e ()

of :
Saf SO I A eI e=0 . . . - - . . . . .. Q)
(B[P — (Xafp—r(Xd P4 SV eE=0 . . .. . (2
' X b /r ..]L ry r./" S Y et { ) Ml o (;})
— 9 3 /‘f e A LS Y /" S Gl v . : . . . s . (‘1‘)

Aan de laatste twee voorwaarden is o, a. op de volgende wijze te voldoen: 2/ —

Sc¢ff=0. We gebruiken nu de formules (71). Dan eischt de eerste betrekking

| E 0S5 m g
(wanneer we ons tot reéele oppervlakken bepalen): X a’c¢-— —=0. Dus o= ‘;

d. w. z. dat de cirkels in de osculatievlakken der centrale kromme gelegen zijn, Nu is

1 . :
2V e—— — De tweede betrekking levert
T

2 3
= M= 22 =0of 2 =+ r = const.

Resumeerend: Zet viak van den cirkel
is osculatievlak der centrale kromme. Het
centrum van den  cirkel beschrijft een
kromme met constante ltorsie, gelijk aan
den straal van den cirkel.

De vergelijkingen der karakteristieken
luiden:

Sy =cost, S,—— gint. (75)

Deze zeer eenvoudige uitdrukkingen
voor de karakteristieken leveren ons nog
eenige belangrijke eigenschappen voor dit
cyclisch oppervlak. Substituceren we n, 1.
de gevonden uitdrukkingen in vergelijking (8), dan vinden we:

tga=—1gt.

Fig. IX.
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Beschouwen we fig. IX, waarin P 7 de raaklijn aan de orthogonale trajectorie is.
dan blijkt uit bovenstaande betrekking, dat de hoek. dien deze raaklijn met den voerstraal
O P maakt, voortdurend gelijk is aan den hoek. dien laatstgenoemde voerstraal met de
vaste richting (a,, a,, a3) insluit.

We beschouwen een element d [ van een bepaalde orthogonale trajectorie. In formule
(53) kunnen we F'— 0 stellen, terwijl de term met d 2 evenecens vervalt, omdat ¢ niet
verandert, wanneer we ons in de richting P ¥ voorthewegen. Sy -~ S} — 1 zijnde, vinden we:

diP=ds* ofdi=d s.

Stelling :  Het element, dat twee opeenvolgende beschrijvende cirkels op eenzelfde orthogonale
trajectorie witsnijden, is geliyjk aan het correspondecrende element der centrale Jromme.

PV raaklijn zijnde aan de orthogonale trajectorie. zoo is P R binormaal dier kromme.,
Immers de orthogonale trajectorie is in ons geval tevens geodetische kromme, en het vlak
V' P R treedt als raakvlak aan het cyclisch opperviak op.

De richtingscosinus der raaklijn £ V zijn: cos®/, sintcost, sint,
Die der binormaal PR . 8int, cos t 0,
Die der hoofdnormaal PU :osinteost, sintt, — co8 L.

We zullen nu de torsie der orthogonale trajectorie gaan berekenen. moeten hierbij
echter in het oog houden, dat bovenstaande richtingscosinus betrekkivg hebben op een
beweeglijk assenstelsel.  Wanneer we in het algemeen te doen hebben met drie richtings-
cosinus A, B. C, dan kunnen we, op dezelfde wijze als in § 4, aantoonen, dat de totale
veranderingen, die deze cosinus ondergaan, gevonden worden uit het volgende stelsel
vergelijkingen :

dd—d A4 —}— (H b= 03 a o) d s,
SB=dB—(A4d2al +C2V ¢)ds.
00 =dC0C 4 d2dc|-BXVec)ds.

De torsie der trajectorie 7' stellende, en alles, wat op de trajectorie hetrekking heeft

met index ¢ aangevende, zoo levert ons een der formules van Serrer

1 (1 N Py ] ['d, P+ (0 2 a ¢ Pe 20 0)d s
= e 7 |,
st ant

cos ¢ 1
1
T

waarnit  blijkt, dat de torsie der trajectorie gelijk is aan de torsie der centrale kromme ,
een eigenschap. die reeds door Lz gevonden is.  Men heeft derhalve de volgende

Stelling :  Elke orthogonale trajectorie bezit een constante torsie, die niet van tragectorie Lot
trajectorie verandert. Zij is gelyk aan de torsie der centrale kromme.

Fen andere wijze, om aan het stelsel voorwaarden (1) tot (4) te voldoen, is, » =0
onderstellende .

Saf=0, 2b/f=0¢endus ¢/ =1.
Verder :
S atn=—= U hiic=—1();

Daar :

> a c) 4 (S )= 3’2,

—
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brengen de laatste twee voorwaarden mede. dat de richting (e;, ¢, ;) constant is. De
cirkels liggen dus in onderling evenwijdige vlakken. De eerste drie voorwaarden eischen
nu, dat de centra op een rechte lijn gelegen zijn. We hebben derhalve met omuwentelings-
opperviakken te doen. De vergelijkingen der karakteristieken luiden :

'S'l S— )”, 18’2 —— 1 - : s v . i . » A . s (T‘i )

Ad VI

We stellen een onderzoek in naar die cyelische oppervlakken, die door de cirkels en
hun orthogonale trajectorién in oneindig kleine vierkantjes verdeeld worden. De hiervoor
noodzakelijke en voldoende voorwaarde is, dat de differentinalvergelijking der orthogonale
trajectorién een integreerenden factor bezit. Opdat de differentiaalvergelijking :

Fdst+Gdt=0

- u . . g .
een integreerenden factor o7 Pezib, waarin u = /(s), zal de volgende betrekking moeten
gelden :
'll }1 ‘IH (""
N
o TR mO L b

R

Na uitwerking :

A ik ,(] H Q I (z “ Q0 .f.]
M H ST i F ot H Y i ( e
He = e
of :
o K ks AT (z L0 H - -
I H S i I N H S0 4 G N il FETEEE Y (77)

welke vergelijking, ter vermijding van wortelvormen, na vermenigvuldiging met H, ook in
de volgende gedaante gebracht kan worden :

0 (S 1) e 1 e e Gt (A g
it H? l\f———— 5) " [ 37 — H? 7 ir B w ViR — (). <L ey ((H)

Wanneer men in deze vergelijking de karakteristieken S en S, in hun meest
alzemeenen vorm substitueert, is zij oogenschijnlijk van den 3% graad in cos f en sint. We
zullen echter aantoonen. dat de eindvergelijking aldus voorgesteld kan worden :

A sin® t ~{-— B sintcost 4 Csint D cos t LS Pl ) R . (T9)

Uitdrokkingen van den 3¢ graad treden blijkbaar alleen in de eerste twee termen
van vergelijking (78) op. Vervangen we cos* f door (1 — sin® ), dan behoeven we alleen
te letten op de coéfliciénten van sin® £ en sin® b cos 1.

Uit den eersten term volgt als coéfliciént van sin® £ : (Zie verg 51 en 54 -

: 222\ (3} £7\2 o )2 2(va el b L2 Xal’ b (S g
—r[(l+ ) (bR —(Saf’P—r2(Xa cP|20f - 2r2af Jbf (Saf L g1 Xalc);
als coéfliciént van sin* t cos t:

— [+ g2 (S —(Faf P —r2(Ed P Taf —2r (bR (Sar T gt 3w o),
=2l g (0] — (Xaf P sintoost 2 X0 (Xaf 02 Sl o)L —2sindt] ...
1
2

Vermenigvuldiging met F levert als bijdrage tot de termen met iy /-

—r[(A g2 r2) (bR — (X af)}— r2(Xa’cR|2bf 4+-2raf bl (S af’ dgriXa’e);
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tot de termen met sin®{ cost:

—_— % (]_,I_ 22 ‘l‘b":}_. _\-."2__f‘ M, M) 1 By vdl. - ‘ "\ & A
| Loy ) ( /") (2 af’) r(2aic|=af 2r (b2 (2 af g1 2 a o).
Na aftrekking vallen de termen van den 3°" graad weg. Aan de eindvergelijking (79)
moet nu, onafhankelijk van ¢, voldaan worden. Dit eischt:
E=8 R = CE= e =)}
We passen deze theorie op de cyclische oppervlakken met isotrope focaalkromme toe
(cf. verg. 58):
[T el | 1D 2 2t il st | \
H=rV1+¢g2r2 (' sint 2 bf")

o SR N T i : ! :
=557 (@ sint+20f) = oy it t + r (zie verg. (59)).
4 ‘) S - 7 " v . ) .
F=r (a f‘—— r>a b) —=r(Ebf cost —Xaf sint—r3ab)
3 F (S af cosi-l-23br si
=7 —— (_ af’costl + 2 ) [T stn lf).

Na substitutie in verg. (77) vinden we:

NI e s | o i S R e B :

— u [‘Y b }N sin t -t ]J (__\_ (1,/ cos S 2 b /’ sint) — wr (_1 h/' cost — X a /'f sint —
i A

| ¢ u

. rr LAY Y e :
—rXal L Cost— et vl urr et e [T e e
) 3bf Sbf” G| SIS o | RS | S5y bt S e
De termen met sin® £ en sint cos £ verdwijnen. De eindvergelijking is van den vorm:
Acost+ Bsint 4 C=0.
A — 0 levert als eerste voorwaarde:
M l? e
—ur2all+ur2abd ——m=0
: " b fe
of':
‘:w (1 /'.’ ;v h /'I ey o= '. ’.I .:.‘ i br — 0 ] . : (1“,)

B — 0 levert als tweede voorwaarde:

. O u r Al ke
r3bf 2wt 1 T — T .
. I ( BT Tys) T “TaeIhr 0 s e (@)
(0 — 0 levert als derde voorwaarde:
SOl Cdu 2 71
snrr e — 0, of — e —
. 08 u 2t
Na integratie:
{u — 2 —{-— le
p
Mk e e S /¢
h g2 . . 7 : . . . . X (';ll)

Hierdoor gaat de 2¢ voorwaarde over in:
N\ yor!

b Y S
a8 Xb/f 007 =si0:

De eerste en tweede voorwaarde zijn dezelfile als vergelijking (28) en (29). Dit leidt

tot de volgende:
Stelling: De cyclische opperviakken met isotrope focaalkromme, waarop de cirkels en hun
orthogonale trajectorién een isotherm stelsel vormen, zijn noodzakelijl: anallagmatische opperviaklen
{ . ’ vGre,
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§ 10. Aangaande den tweeden grondvorm:
Lds +2Mdsdt -+ Ndt?
zullen we de volgende quaesties behandelen:

I. berekening der grootheden L, M en N. Deze drukken we uit in de karakteristieken
S, en S,, en hun differentiaalquotiénten naar s en /;
II. bespreking van de vierkantsvergelijking der hoofdkromtestralen :
III. opmerking aangaande de kromtelijnen;
IV. opmerking aangaande de asymptotische lijnen.

Ad I
Bij definitie is:

L=z, M=Xlz

sty _-L\TE‘:Z.’U,!(

waarin I, m en n de richtingscosinus der normaal zijn:

' . Y \ £ aTs rOT =
l—__—H [(a, cos t -+ bysint) S, — ¢y S,| (zle verg. 5)
r i : : ‘ .
m=p [(ay cos t + by sint) Sy — ¢y 5]

Ty . o i
n— = [(ay cos t + by sint) S, — g Sy]

L

I

- r - ¢ ’ O Y . 1o y
Sy — 17 X(a@cost 4 bsint)S,—e S|+ r(a”cost + b sint) 4 21 (a’ cost -}

+ U sint) + " (acost + bsint)] —= j_! [ (Zaf’cost+ Zbf"sint 4 1) S, —

—r2(Za?costt +23a' Y sintcost + I W2sin2t) S, —2rr' (Ta'ccost 4 XU csint) D=
— {2 (Za”ccost + SV csint)y+rZef’t S| . . .. L, (80)
Het is te verwachten, dat bij nitwerking van deze formule de afgeleiden van S, en S,
naar s zullen optreden.
Deze afgeleiden zullen we in de eerste plaats berekenen:
Ss=2Xaf’cost+ Xbf sint 4 7r
‘.‘hl —Saf’cost+Zbf"sint+Za [fcost 4 V[ sint 4 r”,
(LR

De eerste term van vergelijking (80) is om te werken tot:

) S
r(Zaf”cost 4 bf"sint+1")S=1S —

[Nl Fr onnoe | . . . \ N
o FI(R2EANFEC08 L SN h'/’ sin f,' e

Deze unitdrukking vervormen wij met behulp van de vergelijkingen (49):
(‘ 18‘1

r{af”cost + X bf"sint + ") S, =1rS, -
33

—rXefT (2 ceost 4 XV esint) S, 4

+rXall (—Xaf sint + Fb[f" cost) S, —

, L Y S
« N a PN g nopag B a6l o ety PRI o
5 r3cf/(Zaceost+ 20 csint)S, +rXab Sy (81)

S;=r(Za’ccost 4+ It csint)+4 ef.
(‘ *S'n
n &

=1 (Ta' ccost + IV csint) +r(Ta’ cost + XV sint) + r (X a”ceost 4

4 3V csint) + X[+ Tef
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De laatste term van vergelijking (80) gaat nu over in:
— [2 (2 a’ccost b csnt) +r2cf] S =—r S, - S A
V 0 &

+rr (Sd ccost 4 XV ¢sint) Sy +r2(Sa' ccost + IV sint) S, +r>cfS. (82)
Teneinde deze uitdrukking te vervormen, berekenen we: X a' ¢, X 0 ¢ en memo-

reeren X ¢ /7 (verg. (63)).

1| e

T AT P (53

Derhalve:
Sngca=apene— SE aohihbics=="3d i haSehide
SV —at=Zabtl Zacl=—2=alb' Za'c
Sad=—(afZdct b 2V c)

Zoodat vergelijking (S2) te vervangen is door:

P I A ] o v e 4 . . : Y 5 ) S",
— [ (za’ ccost + IV csint) +rTef’] S =—rS8 ‘0‘; s
AW, <1 . N ’ J S‘-’- s Y XY ot N ) :
+rr' (Za‘ccost + = W ¢ sint) S; +r2ab’ S Y R rEaf Tact b 2V c)S,. (83)
L

De uitdrukkingen (81) en (83) substitueeren we in (80),  Dan komt er:
. 1 l\ -Sll ~ f\ ‘q') . ’ - “ ‘S"‘! oY 0 S ’
- | S, — 83| RS g | S st S e ot L Ay
.L }{ _} (Sﬁ d N =1 t‘ b g ! J { _I. S' Al L (— i 9% ¢ +

+23a b sintcost+ SPsintt) Sy —ri'(Faccost + T esint) S, —rXcf (Xa’ccost +

L+ 3Wesmt)Ss—r(Eaf Tac+ b3V )l ] g, Pt (B4
De 4° en 5 term van deze vergelijking nemen we samen: I
— (S ccost+SWesint)(r S+ Sceff S)=—1r (Ta'ccost 4+ XV csint)[{S, —
—(Zaf cost+ Xb[ sint)} S + (S, —r(Xa cceost + XU ¢sint)f S, -
——r(Xa’'ccost + 2 e sint) (-\'i] ar \'3) +r@a ccost 4+ SV esint)(Xaf cost +
L Xbfsint) S, 4 r2(Xdceost + ZWesint)}S, . . . . . (8D)
Nu is:
r(Xa ccost -+ XV esint)(Faf cost 4 2bf sint) S,

—r[Xaf Xa ccostl -+ S HfrEbc st (2a'cebff 42V ecXa [7) sin t cos (] o —
=r[(Eaf/Xa’c+ b/ b')—=2a ffra’csm?t - (S acXbf" 4 XV eXaf)sintcost—
— 3 hifESle cast t] 1S =
—rSaffSa’c+ Ibf 2bc) S;—rXbecost—2a’ csint)(Xbf" cost — Xaf sint) S, —

g : 050 Sy
~r(XafSac+ IS0 ZVe)SS—15 YR A

Hierdoor gaat vergelijking (85) over in:

. / y Y ) - B v v o, | ) ¥ . 24
—r(Xa’ccost 4 XU csint) (' Sy + 2 ¢ ["S))=—r(Zaccost 4 XV csin t) (S + ‘ql) .
- v o Lt Y SN 0 Hl A S‘J 1 el i 3P o -
+r(Saf/Xa'c+ 20/ .)__h c) S5 — T >y NI i o ri(2a’cceost - XV esint) S,

Deze uitdrukkingen substitueeren we i vergelijking (84), zoodat we ten slotte, met

inachtname van vergelijking (48) vinden:

— 1 2 TN S VLT It 05, s oS
Vh— i -;-(.s, 4+ S)(2a ccost + X0 csint) ( ¥, —);u.h](ﬁl =5

X ~¢ (‘. ;\‘2 v 0 ,S'
—r Sy=at)+ 7'(-“1 P ‘)] e o olet h 2 (86)

A
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Voor de grootheden M en N vinden we eenvoudiger nitdrukkingen:

M= Xlay= 1 X[(acost +bsint)S,—c Sy, 7 cost —a’ sint) + 1* (b cost — asin )] =
/A - 7 oo . 1.7 A > . F , ot i AS'

= [rZal’ S, —r(XWccost— Xaesint) S;| = g {r.l aOASI=— S 37 ] (87)

= 'y Yioln ) , - : re Al

N=Zlx— = [((@eost - bsint)S,—eS;, —r(acosl+ bsint)] = = i S;. (88)

Ad II
De vierkantsvergelijking der hoofdkromtestralen in eenig punt van het cyclisch opper-
vlak luidt
E— Lo F— Mo
F— My G— Ny

Met behulp van de juist berekende waarden, kunnen we deze vergelijking onder de
volgende gedaante brengen:

=ik & A E ....('89)

1S,
E—Lg ](Df_

A [ A A i R & .S,
f‘.at-——?.lt!b)—ff[?_(!.bSE_S] ':‘lf]' [I 1 H")

We onderzoeken het gedrag van deze vergelijking in de snijpunten van de poollijn
van het punt 7" met den cirkel, de punten ¢ en ¢’. Die punten worden gegeven door
de volgende betrekking:

25,

Al P [ i
r3ab |-_ . (; Yab' 8,85

— (. (90)

0 S, . A5,

S —_— S, — —it
K ot Y’ .
Vergelijking (90) gaat nu over in:
1 . 0 'S . N ,_ [ \ o Sl. 1
| E— Ly "(i\t rab r2abt! — = S, | )
7 ORI Nal' AN O A 1) g "2(1 IO S ) _
| ﬂtﬁ’—" kjf(l_fl) (\l} o ’ 73 .!‘
of:
N S’l ey 2 ,) ( 0 Vi
N i 0 - — 1 2 | - w.q.,
Bl (7 —r=av)lt+ 4 )
: n | =0
| 0 ‘Sr v ’ {' J I .
_[1 -_S)(O/ —rXa ()J (1 + 52]

. ‘ (4 - -~ &
De determinant bevat een factor (1 4- [ S;]. Een der hoofdkromtestralen wordt
H 2 1

dus gevonden uit de vergelijking :

It S T RS S o L O e ) (9])

De andere hoofdkromtestraal wordt gevonden uit de betrekking:

- ( b (] g Lo
( S— TJ U ) 'F? — F .:. (I h ’ (1 + y 182) ey O,
T S e s (a S, oS
].4 p— 3 , — 2> h "—"l-]z + '.“ ! — h) 11, . Dot ()‘



g a i l) ig 5 2 -~ _a d 3 C’1 X o =
‘5” 4k -\‘; —— —l 7 : u h, .9:, —_— .S” b .H‘: i y —) MY A y_ L o | - ‘ s ~ (‘ 452
(ST 4 Sz) [_(_0! 2 (ST -+ S3) (S, 2306 e .lrrb”él i
i i . \ Ll i :
r S, 2 a b’) — JF {_5“ 0 Sy g t‘_El) Yooy
J ! 08 281 ] Rt
S'?, 4B 93) [ S\‘l QZ) 8 N £ o d tgz g Al S’II 1 0a -
(51 + S3) + | (91 S3) (B — 2 ¢ f) 47 ‘5’1"1 — SN == 0,
) ¢S5 s )1 H
H (S + S3)
== s : o P 09
ro? o ~ . 5, A S S o i ._4)
(51 + S2) (5: 0 G T (S] 3 -S" S S ated
R E

We moeten nu onderscheid maken tusschen de hoofdkromfestralen in het punt ¢ en
die in het punt ¢/. Bij de keuze, dic we gedaan hebben, omtrent de richtingen (a,, a,, ay)
en (by, by, bg) bezitten de hoeken, die met die punten correspondeeren, gelijken sinus,
doch is het teeken van den cosinus verschillend.

Voor () substitueeren we:

. > n“) 4 l/}-ﬂ! =0 b )2
SN —— ,/ RGOSl = - l) 3
¥ ‘ r
Voor () substitueeren we:
¥ _‘[J 2z )"‘_’_\'h 79
sint— — _,/, ., (081 — — | ’( 77 ,
! 7

We kunnen ons bepalen tot het geval:
P2 — (XD =0

[s 72 — (X b /7 = 0 dan heeft men Of te doen met oppervlakken van de tweede
soort, of met het geval, dat de punten ¢ en ()" imaginair zijn.

Voorbeeld.  We onderstellen, dat de cirkels in de normaalvlakken der centrale kromme
gelegen zijn, en dat we de,in § 5 besproken, draaiing toegepast hebben, In § 9 111 (bijzonder
veval 19) hebben we gezien, dat dan de richtingen (a,, a,, ay) en (by. by, b,) samenvallen
met de hoofdnormaal en binormaal der centrale kromme. We nemen buitendien aan. dat
de straal van den cirkel voortdurend gelijk genomen wordt aan den, met het centrum
t‘f}l'l'(r‘:-%]‘)HI]l]Ul!l't'lllllfll, kromtestraal der centrale kromme. De formules (70) ziin thans te
cebruiken in den volgenden vorm:

9y rf, Sg=co8l -4 1.

Voor het punt ¢ substitneeren we:

st =—="08"cogit =—"13

Voor het punt ¢ substitueeren we:

sin t =0, CO08 e fe— ]
@. W

'\:l i )" HI e 1’

Sy 2 Oy 0
H?2 — ;2 (92 4 4). bl — gt AL

1 . ‘
[0 — 7 ] J" 4, | P — — 0o,
— 7 ra _l) l.-’/)’.' = | —_ g3 :

thy . ’ ‘J, — — .
iy (" 4+ 4)—2rr” ! . e 245
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Om ons tot een concreet geval te bepalen, onderstellen we, dat de kromtestraal van

de centrale kromme in elk punt gelijk is aan de booglengte, van den oorsprong van bogen
afgerekend, dus o — r — 5. Dan geldt:

. J @
1 -
0] — — 5 s ]/5 O1———100!
e o o) i o
0y — j;] :*—-‘5‘|/1). Oy — &

Umbilicaalpunten. Voor umbilicaalpunten geldt:
E R G

§ 0 ey Tl T
De voorwaarde FF N — G M — 0 levert bij uitwerking:

oS, = : o Q.S, .
— —rZa bt S, 1rZal S, — S o | =t
(M ? (tb}8~|(7 al’ S, 1Dz‘J ;
of';
. 0.5, R0 5 R 9
St S e D RN R (05)

waaruit. blijkt, dat bij een cyelisch oppervlak slechts de punten ¢ en ¢ als umbilicaal-
punten kunnen optreden.

Een tweede voorwaarde, waaraan voldaan moet worden, vindt men uit de vergelijking:
EM—FL—=0,
welke tweede voorwaarde ook gevonden kan worden, door in het oog te houden, dat

i i

e

Tl o3 G
‘g; 5 ~2 ~2 q - oy v ‘() nqz < (‘ JSI "
SIS (S, — e+ [_‘Sl i e .s‘]

Na uitwerking :
fooy P . 085
12 I 2 Y o 7 P ¢ ""2 s y . 1 S—
(S S))Zeff—a (S', 3 S, 5 J.ﬁ”. v SRR 5(04)

3
s

Wanneer we deze vergelijking toepassen op bovenstaand voorbeeld, vinden w

¢ als
oplossing s — 0. Immers:

t'fllS, _]) 8 ]/:‘, == o s — (%

waarunit blijkt, dat voor dit oppervlak het punt ¢, in den oorsprong van bogen, umbilicaal-
punt is,
Gemiddelde en tolale Eromming. Na uitwerking. lnidt de vierkantsvergelijking (89):
(L N — 41[") 0 4 (KN "i’ GL—2F .'Ur) v “I“ EG— F2— 0,
We beschouwen achtereenvolgens de gemiddelde kromming :
1 1 2FM—EN— GL
e ~ . . ¢ ] . ) o5
T Ve NC
en de totale kromming :
1  LN-— M

9-1 02 H? .



Voor minimaalopperviakken geldt :

ENA+GL—2FM=0

of
Sy Sy 95y = P b 35 ( LSS — e o[98 - L 05,
(1 + O2) 1 37 p 95 18 ’“)( s ’/)T‘l-i'f—?’«lab' S, ,\t"—
(L ¢
i ,ans, VS ; .
L ¥ ’ g . ( 151 —l y & o c 0 1 Dl\n ‘
_},2_.3(;] ’}l =¥ -51 (\b)] )(D/ I-_(Ih][ l\;—-f‘hz_‘;al}’):”,

. aS
5 ter net. den factor | — —7r 2% 8 4 \fNendaiidariss: ¢
De termen met den factol (M‘ r3a h} te zamen nemende, verkrijgen wij :
Sy

2 oS QS 3 Q @
S-S (2 S —2¢ "—‘—[ ‘—-)_ab)[..-— — o B e R O ¢ 00y N
(51 A 5) (2 5 r) ol |EE4WATE 15 7 .\108_}‘238 = 0. (86)
Deze vergelijking is van den vorm :
ans ! ind ‘08 -". B ) 0S8 - 1 o 1 'y “y A
Asindt + Bsinttcost - Csin®t + Dsintcost + Esint 4 Feost 4+ G—0, (97)
Zij zal vervuld moeten worden, onafhankelijk van de waarde, die men aan ¢ geeft.
Dit eischt:
A=B=0=D=b=—F=0G=0,
g — . - aele) 37 3' r 3 « \ " anratar == y oo |
A =0. Termen nu,b“am i]\lll]l]l,l] alleen 1}1t den eersten term van vergelijking (96)
voortkomen. Wanneer wij cos® ¢ door (1 — sin*{) vervangen, vinden wij voor den
coéfliciént A
QorIbf |(L4+¢* 1) (20/) — (& af P —r (S P —4rZa c N (Saf + g1 Nale)
Deze uitdrukking bevat als factor 2 b /7. De eerste voorwaarde luidt derhalye :
A g S —{ D S (98)
Deze voorwaarde in het oog houdend, schrijven wij het begin van vergelijking (96)
als volgh:
(X a4 (S op]sintt + 27 (Saf + o1 Xac)eost.. }@r>a ceost.,.)
. O e1 8 : s _"‘.‘:t 0OS8 1—,::’;‘: ‘:_:; '.:,‘ £ £ 1l W 3 YT -
De codfliciént van sin®t cost bevat als factor Xa’c.  Als tweede voorwaarde geldt :
Shaip =0, A ) (99)
Na invoering dezer twee voorwaarden luidt vergelijking (96) :
[— (X af)psintt-+ 20 Saf cost+ 21+ g rd) + (Saf P Xof —(Saf sint +
) .
.oy Nar . Tt L o \ YV anoe b ol g ¢ X P 0 A :
rxab/)grr Xaf sint 1 (-"/ L) A -1'/"(\.\-; af’ cost + :]] = 0.

Hieruit blijkt, dat de L()Uﬂl( itnten ¢ en D bij de gemaakte nmlusrullmm‘n an zelf

verdwijnen, Opdat £ =0 is. vinden we als derde voorwaarde :

PBIE= I e R s G e (100)
=10 of:
& a/r\f/__)‘f/’ Safl +r2 u/’ il'(f

21

) "’
ﬂ & v a/

t‘ ' ’ 1‘
— g
Qrr o8 / )

re ST A RS



Integratie levert :

>
IR L L L e A s (101)
Een tweede integraal wordt gevonden uit de laatste voorwaarde G — 0 of :

1

"2+ (Ferp + (Sar)y

)
STy RS e PR SRR I S, =1
oS
Door middel van vergelijking (101) elimineeren we de grootheid 3 /’. Dan luidt
bovenstaande vorm :

3 7 1y, S : : Q
[72 + (S cf)2 + ;.:1' (el el —rr"Zcf +rr.

¢ )
e fE—0,
d S f

In plaats van s kiezen we den straal » als onaf hankeliik veranderlijke. Men verkriiet dan :
-y 1 =]
.f--] e . : : ) . (l _\. C /-,
T P +Zcef  + Xcef’P+r T —0.
& d i
Om deze vergelijking te integreeren, beschouwen we (2 ¢ /)2 als een functie van 72,
Dit levert ons:

8 (Zcf

7 R B T e —

otel :
(Sef)p=p, 12=q
Dan gaat bovenstaande vergelijking over in :

dp N >\
— o] e e i 2 —(
ff d g I 1" 1 ( I k_;J_fJ em—

dp L (L q"_lg____“
lej+ q .[}_T—[q Al fi"l_[ =y -

Deze differentiaalvergelijking is terug te brengen tot een lineaire k)i
De integraal luidt :

A ‘,-fﬂ*(q ! ]
7 — — - ;,‘r,—‘lc 0| g + quq-.

[1) — — g [f. i / (kll I qlx ] d q | (¢ = a? stellende)
1 3 - (! 1 . _‘12 9 !
s L'y - I
= PR—atkg— it
_:« o /" s li-

SVt —aria et — g

We interpretecren de verkregen resultaten X0/’ — 0 brengt met zich mede
2 b c=0 (zie verg. 18).

(Ta'cPt (SVe)pR=xc?

zijnde, is met het oog op (99) X2 =0, dus (¢, ¢, ¢;) constant De cirkels liggen

') Cf. SERrET—HARNACK, Lehrbuch der Diff. und Integralrechnung I1I § 678,
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derhalve in onderling evenwijdige vlakken. Daar de richting (b,, b,. by) in het vlak der
richtingen (a,, @, @) en (¢, ¢ ) gelegen is, geldt:
Sab )t (et = > b

Beide termen in het eerste lid dezer vergelijking gelijk nul zijnde (zie verg. 100), zoo
moet ook de richting (b, by, by) constant zijn, en derhalve de richting (a,, a,, a,), lood-
recht op deze beide, eveneens. De richting (¢, ¢, ¢;) kiezen we als Z as, (a,, @, @)
als X as, (by, by, by) als Y as; dan moet, X0 /" =0 zijnde, het centrum van den cirkel
een viakke kromme in het X Z vlak beschrijven. Vergelijking (102) gaat bij deze aanname
over in:

dr

A ff— Ve —akhr — e

terwijl de eerste integraal (101) ons levert:
; r2d r
W — e ——— —
| Ty s —
Deze laatste twee vergelijkingen geven de differentiaalvergelijking der centrale kromme.
De cotrdinaten van een punt dier kromme zijn dubbelperiodieke functies van den parameter 7,
De vergelijkingen der karakteristieken luiden:
=Saficogt +r, WS=Iof"0 . oL . o W' (108)

Het hier besproken oppervlak is het minimaaloppervlak van Riemany 1),

H] o

We hadden bovenstaand vraagstuk iets algemeener kunnen aanvatten, n. 1. kunnen
vragen naar die cyclische opperviakken, waarvoor de gemiddelde kromming, langs een
beschrijvenden cirkel constant =& is, maar van cirkel tot cirkel varieert. Blijkbaar zal
de betrekking:

O FPM—EN— GL=FkH:?

wederom voor alle waarden van ¢ vervuld moeten zijn., Na uitwerking lnidt bovenstaande

vergelijking :

s 05, \ ."l L & H-.z\ g 95 v 0
2 | o /0 O v —rXab]llS, — D 7D = —_— g -
(5) - 53) (.3 i 2 Cl) T o ! & L e 1At il 1ds 05 "

CAYN iL
1| =""c (104)

Het tweede lid dezer vergelijking doet ons terstond zien, dat alleen een oplossing te
zoeken is onder de cvelische oppervlakken, waarvoor M een rationale functie van cos ¢ en

sint is. m. a. w. onder de cyclische oppervlakken met isotrope focaalkromme. Dus:

H =72 (1 + ¢*r?) (1 sint + ZO[)
Hy=r (1 + g*r) V1 4 g2 r2 (" sint X b[)

Men substitueert nu in vergelijking (104) voor S, en S, de formules (57), vervangt
in de komende uitdrukking cos® ¢ door (1 — sin®t), en vindt een uitdrukking in cos ¢ en sint,
008 Ben (97). 108 CORIACISIIOHTHS d”"“_’ uitdrukking moeten alle gelijk aan nul gesteld
fig NeBi AP gee SIS werk gaande, vindt men, onder de opperviakken van de 1° soort
zeen enkel bestaanbaar opperviak, dat aan de vraag voldoet. Daar H rationaal in cos ¢

: 3 ?4 1 . X : TR r
en sin ¢ moet zijn, zal alleen de omhullende van o' bollen een oplossing leveren, In dit

) Of. Riemaxy, Ges. Werke, Pag. 820 en vig.
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geval 1s echter een der hoofdkromtestralen, wanneer men zich langs een beschrijvenden
cirkel beweegt, constant, n.l. gelijk aan den straal van den cirkel. Daar de som der hoofd-
kromtestralen volgens onderstelling, constant is, zal de andere hoofdkromtestraal voor een
bepaalden. beschrijvenden cirkel eveneens constant moeten zijn. Daaruit volgt, dat alleen
de omwentelingsoppervlakken aan de vraag zullen voldoen. We kunnen direct substitueeren :
S TS N ( Zi B8R 6)]
Vergelijking (104) gaat nu over in:

(2 4 1) —rr’=rk(l + r2)V1 412

1 rort

=== ol o — — i
1//—_'[ i ke }-’2 (1 Jl— 7"2) l/l + )'!2 ’

o e YT Rl
1T+ (1472 V1T +r?
dir 1
£ L7 d —— —krd1
Vitr: ' “VItre
of :
%
1 =T
{ .I/] + '-’2 TR A
- .
e i
V14 e /

Deze vergelijking verheffen we in 't quadraat:

e 12
1';'{;—7_,__,‘ = (‘[]57 i 7’] ~

We voeren nu, in plaats van s, den straal r als onafhankelijk veranderlijke, z als
afhankelijk veranderlijke in. ‘
Dus:
R
v dr  dr’
s

Daardoor gaat onze differentiaalvergelijking over in:

gl i
o ferar (2 = (0o

of’:

.]‘kr dr

dr — 1 p T O R (1 415)
\/?" =5 ”k rd 7')

waarmee de differentiaalvergelijking der meridiaankromme gevonden is,

We kunnen ons vraagstuk iets specialiseeren, door te onderstellen, dat & een absolute
constante is, d. w. z. dat de gemiddelde kromming thans niet meer van cirkel tot cirkel
varieert, maar over het geheele oppervlak constant is, Vergelijking (105) gaat dan over in:

Ll FUdr
Viarr: — (r® g b2y

dz

iz =
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Shrfa . 1 . .
waarin we de grootheid £ = : gesteld hebben. Men vindt hier het kleinste omwentelings-

&l
oppervlak van gegeven volumen. De meridiaankromme is de kromme, die door het brand-
punt van een ellips of hyperbool beschreven wordt, wanneer deze, zonder te glijden, langs
de Z as rolt ).
Is ten slotte % —— 0, dan heeft men weer met een minimaaloppervlak te doen, en
gaat vergelijking (105) over in:
dz ¢
dr Vor: — ¢

¥ G
. — z—a . T T __ R—u
AR e L r— /1 & - ,—25
P o
i g~ -—Q
r=r5 [(3 G LD O J
—

de vergelijking der kettinglijn. Het: beschreven oppervlak is de cafenoide, het eenige
minimaaloppervlak, dat tevens omwentelingsopperviak is.

Onderzoek der cyclische oppervlakken met constante totale krommning. Het product
der hoofdkromtestralen stellen we £, voorloopig aannemende, dat dit product van cirkel
tot: cirkel varieert. Dan zal de vergelijking :

L N MY SRR AN, s s o L (106)

wederom voor alle waarden van ¢ vervuld moeten Zijn.

LN — M2 — ;!_ S, lt”Hf i s,) (gt A - (.i:;jl —rNa h’] (fl n"\?‘: —r S, Xa b’-) +
co(siEos SRl rers—s i)
S (S SH (S — et (“’3 o }H” 3 [S‘ i

O 8 ol
n l\‘l ¥ l1 IH‘.,)‘
D> ! H. —— b -
_-—fh.,.-(lh)[aat lat

zoodat vergelijking (106) overgaat in:
oy . 0N
—r S, X a h') (.H_, B 1S

) _'\'2 ¢ o Hl) l.sl 0 5,
L

"2 X Ve 3 U Y . “' ,. — A =
PELS, (ST 4 S3) (Sy — 2 ef) 41! “‘s[“in.\- AR Q1

) Sal 2y -
s = SR S (1T

Om ecen oplossing te vinden, zouden we deze vergelijking wederom moeten rang-
schikken naar machten van cos ¢ en sin t, el in de verkregen eindvergelijking de coéfliciénten
elk afzonderlijk gelijk aan nul moeten stellen.  Wij komen dan tot de conclusie, dat geen

enkel regel opperviak aan de vraag voldoet, uitgezonderd de omwentelingsoppervlakken,

Derhalve substitueeren we: TR ALY

\ PRE a ‘ ‘l"‘."
1) SERRET—HARNACK, 1. ¢, 111 § 7bo €3y 8Jo
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waardoor we voor vergelijking (107) de volgende differentiaalvergelijking vinden:
AL S e

) 9! i
—2 k1T e SLCE A e S e (1.03)

€
—

-

S
T - 773)
welke differentinalvergelijking geintegreerd moet worden. Zoolang we de grootheid % nog
als functie van s beschouwen, valt omtrent deze vergelijking mets te zeggen. Onder-
stellen we echter, dat %k een absolute constante is, dus niet meer van cirkel tot cirkel
verandert, dan is vergelijking (108) te integreeren. Men vindt n. 1%

e
|

|

1 B e

Ll 1 7-{{ —— ]b (Z? ‘
1 e {2 1 » ‘

o 1];"7_-' T k (; ar (B}

We voeren. evenals boven, den straal » als onafhankelijk veranderlijke, z als |
afhankelijk veranderlijke in: |
|

(a7
67 — k(1 + ¢)

d z\*
| 1'] i L
oo 1] KIOREI)
V1 —k@®+ ¢
Onderstelt men % negatief =— — m?, en kiest men ¢ zoodanig, daf:

o V1 —m2 dr mrdrr

dz —_— — .
mr mryVi—mr: V1—mdr?

Integratie geeft :
1, VI—mrt—1 , V1 —mr?

om mor m

< :U
Voor m positief is dit de vergelijking der fractriz, die haar keerpunt in z = z,,

1 .
9 — — — heeft 1).
Tt

Ad IIL

De difﬁsrentiaalvergclijkin;; der kromtelijnen luidt :
(EM—FLyds* +(EN— GL)ydsdt+ (FN—GMyd# =0,
We drukken den Jaatsten term dezer vergelijking in de karakteristieken en haar

afgeleiden uit:
(\' 15'1
ot

(FN—GM)=—17 ( —rxa h’] Sy — 13 (?" SR OaSI=S 05, ey
2 1 A

i

0 S 2 S
o | QR EAR friise ]
F 7(82(\& SIM]'

|
|
|
ke=—mrc=1
dan gaat bovenstaande vergelijking over in:
1) SERRET—HARNACK 1. ¢. § 756,
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Hieruit blijkt, dat, wanneer men de richtingen der kromtelijnen in de punten ¢ en ¢’

A e

bepaalt, voor welke punten de unitdrukking S, Oy '(I\"f- verdwijnt, de differentiaal-

QO 3
vergelijking een factor d s bevat, en één der richtingen derhalve gegeven wordt door
s — const., hetgeen er op wijst, dat elke cirkel in de punten Q en () aan een Eromtelijn raalkt.

Speciaal geval, waarin de integratie der differentiaalvergelijking nit te voeren is. We
onderstellen, dat we met een eyclisch opperviak te doen hebben, waarvoor de orthogonale
trajectorién der cirkels een stelsel geodetische krommen zijn (zie § 9, V) De differentiaal-

vergelijking dezer krommen Inidt dan:

({ (i T o £ T il
9, — — W+ 2w ——, (zie verg. 68)
s 0 0 ' .
d w 1. P 1 1
S T - e L (R £
d s 20 i 2o it 0t)

Wij hebben gezien, dat de centrale kromme constante torsie bezit; we nemen aan,
dat zij tevens constante kromming bezit, m. a. w. we kiezen tot centrale kromme, de
gewone schroefliin, De uitdrukking in het tweede lid van bovenstaande vergelijking,
bevat nu constante coéflicienten. De wortels der vergelijking :

1 1 1 .
W — Ty —:
2 o T 2 2 [
of ; .
:3 i-'
we — w4+ 1=0
P
te weten :
e ARE=T  E ryer
10, = ) Wy —
T 4

zijn particuliere integralen der Riccarr'sche differentiaalvergelijking,
Twee particuliere integralen bekend zijnde, zoo wordt de bepaling der orthogonale
trajectorién tot een enkele quadratuur teruggebracht. Stel n. .
W = W, +
U

dan gaat vergelijking (109) over in:

I
i |
1 : 1 1 1
N F e . - =
=g [ J F (o 1) 2
l dy __ Lo [t [) l(ﬁ 3 1)_'1
ot ds — 20 [MI i ’j | /a N : S U] 20

Daar w, een integraal van vergelijking (1089) is, mag hiervoor geschreven worden :

], (I 'J e “.71 - 1 L 1
h TALLT 0 2 7 r oy
dy __ (w, l] BT ’
dN'A{y £ )7 B 0t SR B . (110)
Stel ;
W, — Wy -+
2 1 o
Waaruit volgt : 1
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(9 s

dan zal #, een integraal zijn van vergelijking (110). We stellen nu:

) =0T O
dan is:

Derhalve :

dny, 48 (w0 LY e T g 1
Tetas=|p =)t 0+ gy

Daar g, een integraal is van vergelijking (110), mag voor bovenstaande vorm
geschreven worden:
as (-wl 1 ) n
_— — .

d S [ T
" [ 1
L) S8
Y=l
g—e 9t "
Nu is:
5 1 1
el 11 h — —_
(R Y Wy — 1, °
en dus:
1 Vi 1
— — 6 f- | - y
W — w, Wy — Wy
1 Vii— 2 T
= — —_— i
?U —— '1(/1 2 l/n- et rl’
W — Wy = =T
_— ) — ) %) i ¥
pr—r
l/ﬁ— T Ly _ f;
' i Ll "
10 — ¢ ‘1‘717/7:)“7-— L ]/U‘-’- — 72

P VFI_.',] .
l/(pz-—r'-'e (K ¥ & 1

b4

-

. : {
‘mMedda - 3 -] r nla on X L g )
Hiermede is w, en dus ook tg o s een functie van s gevonden, Om nu de verge-

lijking der orthogonale trajectorién in eindigen vorm neer te kunnen schrijven, dienen uit

. i P te worden. en daarna gesub-
stitueerd in de vergelijkingen van het cyclisch oppervlak (stelsel 1). De cirkels en de
aldus gevonden krommen kiezen we tot parameterkrommen. Daar de Ol‘t-lmtrrnmlé tl“;ivct:t'n'iél;
inons geval tevens geodetische krommen zijn, geldt: B—1, — 0. Daar S — cos ¢
S, = —gint is, is: D Daar 5; == cos t,

bovenstaande uitdrukking cos ¢t en sin ¢ afzonderlijk bepaald

ey TE— N e Wi (—T $int -1 cos? ¢,

v No—='r st t,

De differentiaalvergelijking der kromtelijnen inidt thans:

f Mds* - (N—GLydsdt— G Mde— 0
of’: |

d‘r‘u‘_rgdt!:()s
)

t—,
t = r k]- c,
waarmee de kromtelijnen van dit cyelisch opperviak bepaald zijn
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Ad IV.

Op een willekeurig oppervlak worden foegevoegde richtingen gegeven door de differen-
tiaalvergelijking :

Ldsds -+ M(dsot-+-dsdi)+ Ndtot—=D0.

Aan welke voorwaarde moet voldaan worden, opdat de parameterkrommen een toegevoeqgd
stelsel vormen? De cirkels zelve zijn de parameterkrommen s -— const. Wanneer we
veranderingen, die op de cirkels betrekking hebben, met d aangeven, dan worden, de aan
de cirkels toegevoegde krommen, gevonden uit de differentiaalvergelijking:

Mdés+ NIt=0.

Opdat de parameterkrommen ¢ = const. met de cirkels een toegevoegd stelsel vormen,

zal men moeten hebben:
M=——=0"
e, 1k e 0S| _ T e yab(rZaccost +agr3bfsint + grr) —
ﬂI:H 7_‘{611:52—-'\1‘”]_}1[ - { t / T -
r(zaficost+ Sbf sint + 1) (= T csint 4 g3 bf cost)),

De voorwaarde M — 0 is aldus te schrijven:

Svfr(sact+oxal) sintt +[ZTaff Tac— .;; (.: h’ /‘f)2| sin t cos t _j_ (.,-r >ae 4
+grIbf Xalb)sint — (g P I —rIabXa c)cost+ rrSabtl =0,

Aan deze uitdrukking

men met opperviakken van de eerste

zal voor alle waarden van ¢ voldaan moeten worden. Opdat
sport te doen hebbe, zullen de volgende voorwaarden

vervuld moeten zijn: Ao
b — 0, 2 alce=0, a b=

Deze voorwaarden zijn dezelfde als (98), (99) en (100), ‘[_i" we bij het minimaal-
oppervlak van Rigsmaxy aantrofien. De cirkels liggen dus in nnc[m'lmg.(1\'{:'11\\'i_i{lig{a viakken,
en de centrale kromme is vlak. Terloops merken we op, dat de differentinalvergelijking
der orthogonale trajectorién der cirkels door een enkele quadratuur geintegreerd kan worden.,

Zij luidt

’ (”;:.l'uf’e:fnt.
s
b ¥ ' 4
‘f‘ t o af (8
st t r

i 8.

’ ..\.,.'(!/l‘,
!.(f(.’f 2'/ 7

Voor een willekeurig oppervlak worden de asymptotische lijnen gegeven door de

differentinalvergelijking :
entiaalvergel{king Ldst+2Mdsdl+ Ndit=0.

. T , ]
Daar voor de eyclische oppervlakken i o7 en s geldt de volgende stelling:
In de punten, waarin de karakteristiek Sy =0 den cirkel snyjdt, raakt deze aan een

asymptotische lijn van het oppervlak.
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Cyclische Congruenties.

§ 1. Focaalpunten en focaalopperviaiken. Wanneer we het alzemeene geval beschouwen,
en uitgaan van het stelsel vergelijkingen:

QUL Y, 2 U, 1) —0" & 0 (1) 1 LRy a2 SR 16, 0) =—=I0F W N (D)
dan stelt voor een bepaalde waarde van w en v zoowel de eerste. als de tweede verge-
lijking een oppervlak wvoor. De doorsnee dezer twee oppervlakken is een ruimtekromme,
Daar elk der parameters w en » ol waarden kan bezitten, heeft men met een tweevoudige
oneindigheid van ruimtekrommen te doen, een zoogenaamde congruentie, Legt men een
functionaal verband tusschen de parameters u en », bijv.:

U— w($), w—y(s)
dan licht men uit de tweevoudige oneindigheid der ruimtekrommen een enkelvoudige
oneindigheid, derhalve een opperviak der congruentie. Houdt men een bepaalde ruimte-
kromme in het oog, dan kunnen er door deze kromme <! oppervlakken gebracht worden,
al naarmate men een ander functionaal verband tusschen de parameters kiest, Onze eerste
vraag is naar de vergelijking van het raakvlak in eenig punt P (x, ¥, z) aan een bepaald
oppervlak, dat door een bepaalde ruimtekromme gebracht is.  Bedoelde vergelijking Inidt:

- dog (o ARIL A \l A\l 1
2 (X — ) ‘1\ (: (' Yodu -4 > "; ol b' = (t = du E12 :‘ :) d ?f"] =0. . . 3

AR 01 du lou
Zij kan terstond worden afgeleid uit hoofdstuk I, (verg. 4), door elk differentiaalquotient
van den vorm g, door (g, du - g,d v) te vervangen. Brengt men haar in de gedaante:

= (-‘\_ S [( O O . AURTIL ‘I] L 4 [t\ g O Ly dygp g ] d l’] ==

Q0 Py O I T AL v AT 0

dan blijkt ten duoidelijkste, dat het raakvlak in het punt P varieert, al naar mate men een
ander functionaal verband legt tusschen de parameters, en dus een ander oppervlak door
de bepaalde ruimtekromme brengt., De vraag rijst nu, of het niet mogelijk is, z0odanige
punten op de ruimtekromme te vinden, dat het raakvlak in zoo'n punt hetzelfde is voor
alle oppervlakken, die door de ruimtekromme te brengen zijn, Dan zal vergelijking (3)

i ' o u o &,
onafhankelijk moeten zijn van Ao’ hetgeen vereischt:

d g d
du __ 0V
g R
A O
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een betrekking tusschen de parameters w en v, die een oppervlak voorstelt. Combineeren
wij deze vergelijking met de vergelijkingen (1) en (2). dan zal de, door deze laatste ver-
gelijkingen voorgestelde, ruimtekromme het oppervlak (4) in het algemeen in een eindig
aantal punten snijden, die de eigenschap bezitten, dat het raakvlak, in die punten aange-
bracht, hetzelfde is voor alle oppervlakken, welke door de ruimtekromme te brengen zijn.
Deze punten heeten focaalpunten.

Bovenstaande uiteenzetting zullen we op een stelsel van o2 cirkels toepassen, gegeven
door de vergelijkingen:

28 (et prain— ()1 ;) SR SE SRR e (5)

S (e A B0 Ll e el R (6)
waarin (f, ¢, h), 7, (¢1. €z, ¢3) thans functies van twee parameters w en » zijn. Het
oppervlak:

(5 D) = B OV = 1)
het zoogenaamde centrale oppervlak, treedt als meetkundige plaats van de middelpunten
der cirkels op. Voor een bepaalde waarde van u en v heeft men met een bepaalden cirkel
te doen. Legt men een functionaal verband tusschen de parameters w en v:

H-:w(:h’:], VES T S it v o i ni i o 1, A s (T)
dan licht men een stelsel ool cirkels uit de congruentie, derhalve een cyclisch opperviak.
Houdt men een bepaalden cirkel in het oog, dan zal men door dezen cirkel ot eyclische
oppervlakken kunnen brengen, die verschillen, naar gelang men een ander functionaal
verband (7) kiest. De vergelijking van het raakvlak in eenig punt P van een, door een
hepaalden ecirkel gebracht, cyclisch oppervlak, wordt gegeven door vergelijking (3), waarin:

g s £ (1 : O g : ;
— L — b2 ,.,.”. __“:_\- e . g
ou f”(( ’)_{ £ A /1(_' /)+? T
- 'H)
) . PR e . = O e 1, | . : (
AR/ ==& Oy ('I' _/)'—‘-'/uq d ?’- .lf'i.(;t.f/)_k;{.;r

Opdat nu het raakvlak hetzelfde is voor alle cyclische oppervlakken, die door dien
beschrijvenden cirkel gebracht kunnen worden, moet aan vergelijking (4) voldaan worden,
derhalve aan:

Shi@=N+rr _ Ef{@—7F)+rr
Te@—f)—2ch o f)—cfy T

Voor een bepaalde waarde van u en » zal gelijktijdig aan de vergelijkingen (5), (6)

en (9) voldaan moeten worden.  Nu stelt de laatste vergelijking een hyperboloide voor.

(9)

De doorsnee met het platte viak (6) levert een kegelsnee, die den cirkel, waarvan we
uitgingen, in 4 punten snijdt.  Wij komen dus tot de volgende stelling:

Op elken cirkel van een cirkelcongruentie liggen vier punten, focaalpunten geheeten . die
de eigenschap bezitlen dat het daar ter plaatse aangebrachte raakvlak hetzelfde is voor alle
eyelische oppervlakken, die door dien cirkel te brengen zijn.,

Rvenals in het vorig hoofdstuk Kkiezen we, in plaats van het stelsel vergelijkingen
(5) en (6), liever de parametervoorstelling van Gauvss:

©=/[ -+ r(a,cost -+ b sint)
Y= - 7i(agicos i+ bg 8 1)t i o manian s v (d0)
2=h + r(agcosl 4 by 8in t)
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waarin thans (7, g. %), », (a,, a,, a;). (by, by, by) functies van de parameters « en # zijn.
Op dezelfde wijze, als we toen tot de vormen S, en S, gekomen zijn, voert ons thans het
stelsel vergelijkingen (8) tot de volgende vormen :
Sit='af,cost+ Zbf,sint+r,, SS=Zaf,cosl +3bf,sintt-r, (11)
S'=r(Zaceost + Zbesinty 4+ Sef,, Si=r(Za,ccost 4 3b,csin b+ 2ef,
De vergelijking (3) van het raakviak gaat nu over in:
Wit ; 1t /D v ¢ A\ [a 7 Ot ~ \- .
2 (X — z) [(aycost + bysint)y (Sy' du+ Sid )|+ 2 (X —2)[e; (ST du+ S dv)] =0 (12)
terwijl de voorwaarde (4) Inidt:
a\‘“ !Sr s
LT R R R . L (18)
OSSR ‘
of :
Tafy,cost 4 Zbf,sint + r, e Tafpcost +2bfsint + r, 14
r (S ay ccost - 3.0, csin H+Xcefy, r(Xay,ccost 4+ X b, sin ty -3¢ o

Substitueeren we in deze vergelijking:

2w 1 — w? t
SNl — CosTn— i I —hg H)
sin i T 14 g2 ) : e (115)
dan gaat zij over in:
(ru—2af )+ 2r3bfow -t (ry - Zaf,) _ (e —=Xaf )+ 2r 3bf, w + (rs +3af)

(Fefu—r2a, 0w +2r Th e+ (Sefy+ 1 Ee) T (Eeh—rZ 4,00 420 Xhcw L (X ofs by Sant)
een  vierdemachtsvergelijking in w, die ons wederom de vier foc: alpunten levert. Het
raakvlak in een focaalpunt heet focaalvlak. Om de vergelijking der vier focaalvlakken te
vinden, die bij een bepaalden cirkel behooren, moet men de wortels der vierdemachtsver-
gelijking in vergelijking (15) substitueeren, vindt op deze wijze vier stellen w
en cost, en voegt deze in de vergelijking (12) van het raakvlak,

De tweevoudige oneindigheid der cirkels voert ook tot een tweevoudig oneindig aantal
focaalpunten. De meetkundige plaats dezer punten is gemakkelijk neer te schrijy
bij de bepaling der focaalvlakken, lost men de \'i('l‘il(‘ll]iltt]]]HW']‘g{-]i_i}(i“g in
tueert het daarmee correspondecrend stelsel waarden voor

aarden voor sin f

en. Evenals
W op, en substi-
St en cost in het stelsel
vergelijkingen (10). In de buurt van den cirkel, waarvan we nitgingen, zal deze mectkundige
plaats uit vier verschillende bladen bestaan. Zij heet het focaalopperviak dey congruentie.
Wij hebben gezien, dat door een bepaalden cirkel oot eyelische opperviakken cobyae
kunnen worden. Een tweede vraag, die ons zal b(':’.i{.:]l(.)l.ltlcl;, is de (il

volgende: zijn er onder
deze cyclische oppervlakken ook oppervlakken van de 2e

Het antwoord hierop
y als daar ter plaatse,
dn-moet worden :

soort?
wordt ons gegeven door hoofdstuk I § 5. Op analoge wijze redencerend
vinden wij, dat aan de volgende twee betrekkingen volda

Sidu-+ ST dy—0 _
SFUTE ST sy === (| AR el gt (16)

(2 afycost+2bf,sint 4 r,)du+ (3a focost 4 30 f

e 8in t - re) d v — ()
[7 (2 ccost + b, esint)y+ Sef,|du + |7 (2 e e cos

t+ X b, esint) + < cfp]l dv =0,

welke vergelijkingen in de volgende gedaante gebracht kunnen worden -

(af,du+ Saf,dv)cost + (Zbf du 430 [o dv)sin it 4

‘ - (Yud w4 7, d vy = 0.
rXa,cdut Za,cdv)cost + r(Xh,edu 4

= by edv)sint -+ (Fefidu+t 3¢ [, dv) = 0.
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Elimineert men uit deze twee vergelijkingen de grootheden sin ¢ en cos ¢, op dezelfde
wijze, als we dit in genoemde paragraaf gedaan hebben, dan vindt men de volgende
- e e L )
vierdemachtsvergelijking in T

[/

Tafydu+Xafpdv  2bfdutbfedv 2 | Xafydu+ Xaf,dv Tudw 4+ 7. dv 2
ri&aycdu+ Sa,edv) r(Eeb,dut-Sebdv)  rSacdult s a.cdy) Scfdu + Sef,dv
Shfudu+2bf,dv rudu 4 rydv 2 17
r@cebydu+cbdv) Sef,du-tSef,do : S o)
1

o o u . _ iy / "
Lost men deze vergelijking naar e op, dan vindt men vier lineaire differentiaalver-

gelijkingen, welke ons, na integratie, vier vergelijkingen leveren, van den vorm:
U — gy (0) = Tonst i (=152 S 8 4) Lo i (18)
Substitueert men deze betrekkingen, die cen functionaal verband tusschen de para-
meters leggen, in de vergelijkingen der congruentie (10), dan zullen de aldus verkregen
cyclische oppervlakken noodzakelijk oppervlakken van de 2° soort zijn. Derhalve geldt de
volgende ! |
Stelling:  Onder de oot eyclische opperviakken, die door een bepaalden cirkel van een
cirkelcongruentie gebracht Fkunnen worden, ziyn vier opperviakken van de 20 soort. Elke
"ff‘f:f"ir‘r)n.r;rm’nn'w is dus op vier wijzen volgens opperviakken van de 2¢ soort te rangschilkken.
‘%u‘h\'titnm-rt men het door (18) gegeven functionaal verband in de vergelijking van
het centrale opperviak: |
x—=f(u, v). ¥y=4yu, v), z2=h (u, v),
dan verkrijgt men 4 x ! ruimtekrommen, die als centrale kKrommen optreden van opper-
L f = U ; r - )
viakken \’.l‘ll de 90 soort. Men kan dus ook zeggen: in elk punt van het centrale opper-
dh , it ! ‘e LG N
vlak zijn vier richtingen aan te geven, die als raaklijnen aan centrale krommen van
" - - = : s
”["])ll\]‘lllin van de 2e snort nl)tl‘mh‘.ll. Nu hebben Wilj onder ﬂ])l)(!l'\'[;{](km] van de
rvlakke ¢ ) 4 ¢ :
20 soort zoodanige cyelische oppervlakken verstaan, waarvoor de cirkels alle aan een
&~ 8 2 ; \ A b .‘ ‘ ' ‘
bepaalde ruimt l\r;nmmu raken. Het ligt voor de hand naar de raakpunten van elken cirkel
paalde i eRT » raken. = .
met die ruimtekromme te vragen Daartoe moeten we uit het stelsel vergelijkingen (16)
. . " . f.. ‘. \ t : :
de grootheden d u en d v elimineeren: Wi vinden dan
Oy Sy
o S
dezelfde lijking als vorgelijking (18), waaruit blijkt, dat de focaalpunten tevens als
Zellde vergelijking  als gell -

‘uvlinkk 3 Qg . Y
raakpunten optreden met de keerkrommen van de oppervlakken van de 2¢ soort, waarin
bl iy ) e v v

i : ; noeechikt kan worden.
iedere cirkelcongruentie gerangschikt ka

die het vlak van den cirkel bepalen,  Alvorens over te
gaan tot een heschonwing van de viu,.‘lmmu'hlsvc;-gplcii]{i?]g l]lll {'()(j:jullp'u?ten, 1:11‘ vu‘n d_io,
welke ons in de congruentie de opperviakken Vil‘ll.(l(.‘ : ..s](zmt] :\lef t, Il:tls:'s?n :V(.; \100‘1. '¢l~]tl\.0nr
tirkel de assendraaiing toe, die we in hoofdstuk 1§ 3 h@*jl"o] “"t‘ 4 ’;L;'.qt.::?'];;. "‘t‘.tioe\”ll;']'_l“h
(byy b, by) zoodanig, dat ze loodrecht op de poollijn van het %)ll‘ll;. Sine ; aal ( gcnxen

2 | verband #=w (8). ¥ =1 (¢) tusschen de p1}'1"\1-11t3t¢=1.s.. uen v,
an de vergelijkingen in twee

§ 2. Draaiing der rvichtingen,

-----

WE.ons eerst een functionaa
) : srvlak te doen, waar
We krijgen dan met een cyelisch opperviak tt PN
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(] |

parameters s en ¢ uitgedrukt zijn, en kunnen nu de redeneeringen van genoemde paragraaf
herhalen, waarbij we elk differentiaalquotiént van den vorm g, door (g, du . dv) te
% 8 y
vervangen hebben. De tangens van den hoek, waarover de richtingen, die het vlak van
den cirkel bepalen, gedraaid moeten worden, is derhalve gegeven door de vergelijking :
L] ¥ ovD =] d (=

tgyp—LTudt+77,d0) (Fb,cdu+ Tbyedo)—(cfdu+ Fefodo)(Sbfudu+ Tbf,dv)

Crr,dut+rr,dv)(Sacdu + Tacdv)—Scef,du -+ 2efodv)(Taf,du -+ Za [-dv)

__AdAdu* + Bdudv + Cdy? (19)

A A SRE LB G uld vl Gl y? B S E e et B B e B S s
waarin :

T Z 07,

L o
— G [ _‘.fb”

0— 7T A0
’ ST S ik |

Uit vergelijking (19) blijkt, dat de assendraaiing overbodig is, wanneer men, den
teller of den noemer van de breuk gelijk aan nul kiest, dus wanneer bijv. :

Afdur =L Bid i dp = Gidpli—"0F TV R (20)
s ; _ | y . du
Deze vergelijking levert in het algemeen twee verschillende waarden voor iv
du ! du

— — wy (U, ¥ e g (W (1)
e o e

Integreert men deze differentiaalvergelijkingen :

U= ’ oy, (W, v)AdV + ¢, U= ’w2 (u, v)dv + ¢,

dan vindt men, na substitutie in de vergelijkingen van het centrale oppervlak, op dit
oppervlak twee stelsels krommen, waarvan de punten, wanneer men zich langs een
dusdanige kromme voortheweegt, als centra van cirkels optreden, waarvoor de richting
(by, by. by) loodrecht op de poollijp van het punt 7' staat. Deze stelsels krommen kiezen we
als parameterkrommen. Voor de differentiaalvergelijking (20) eischt dit: 4 =0 ¢en C—0, of:

P v f“ el — 2 ( /1‘ — = £ hc — = a3 Ry B (21)
y i ru_ .l. h f;r 2 ‘¥ ]'1: ‘: b /1' ‘

Met behulp van deze betrekkingen gaan de vormen Si en Si over in:
St =r[Za,ccost+ LXbf, 8init+ AP
Si=r[Za,cco8t + uXbf, sint—4 ury.

De vergelijking, die de focaalpunten levert, luidt thans:

Safycost +3bfusint +r, _ Sayccosl 4+ L(2Df,sint+ r) s
Safpcost--3bfysintt+r,  Xaccost+ w(Fbfpsint4-) - (22

-~

terwijl de vergelijking, die ons de oppervlakken van de 2° soort levert, verkregen wordt
door cost en sint te elimineeren uit het stelsel:

(Safydu+Safydoycost + (Sbfpdu+ 2bfpdv)ysint +rydu+ rydp—0.
(Taycdu+ Zayedv)ycost +~ A20fudu+ w201 dv) sint + (hr,du 4 wry dv)y—0,

welke eliminatie ons de volgende vergelijking levert:

Safudut+2af,dv roduw -+ r,doy 2 Shfudu+2bf,dv rudtt 41 d v [2 ‘
Sa,cdu 4 2a,c dv Lrudu -+ w iy dv L2 h/;, du + TP h /'L dy ) 7y d i 4 ury do

Safudu4+Saf,dv Shfudu+4-Zbf,dv |2
- . " . . - "J;,
Sayedu+Ya,cdv AXbfdu o X bf,dv <o (23)
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We beschouwen in het bijzonder het geval:
A— u — q.
Bij deze onderstelling gaat vergelijking (23) over in:
l(q Safu—2a,0)du+(p2af,— =2 a, f') d 'U]2 l(_‘ bfudu 4+ 2bf,dv)?—

e (T U )t | 55 O RSB SRS A e i (O4)
waaruit blijkt, dat twee wortels van de vierdemachtsvergelijking samenvallen, Deze dubbel
te tellen wortel voert ons tot de differentiaalvergelijking:

eafy—2amc)dut (pZafy—a,c)dv—=0. . . . . (25)
Zij legt, na integratie, een functionaal verband tusschen de parameters u en o,
waarvan wij de beteekenis willen nagaan. Daartoe brengen wij haar in de volgende cedaante :

Saycdu+ Za,cdv

ST RS S A I 2

Uit vergelijking (21) kan men afleiden:

Xebydu+ Tebdv _ Scefpdu-Xcfpdo

Sbfudu+ 2bfdv . rrodu-Srredy P,

waarbij wij voor u die functie van » kiezen, welke ons door de differentiaalvergelijking (25)
cegeven wordt,  Derhalve geldt de evenredigheid:

Saycdu+ Tapecdv _ Schdu+ b, dv  SefydudSefido
Saf,du+Xaf,dv Shfudut=

: — ‘ 7 =g
bfodv e T =TTy G /
of': '
Jac 2 4p 2cf
Saff — Xbff — rp W

Dit is juist de conditie, dat de karakteristicken S, en S, samenvallen ; waaruit blijkt .,
dat er op het centrale oppervlak ¢én stelsel krommen te kiezen is, gegeven door de
differentinalvergelijking (25), zoodanig, dat, wanneer men deze als centrale krommen van
cyclische oppervlakken kiest, de congruentie in ! eyelische oppervlakken gerangschikt wordt :
die als de omhullenden van ot bollen beschouwd kunnen worden. De vergelijkingen dezer
omhullenden zelve vindt men, door het functionaal verband, dat de intecraal van verge-
lijking (25) ons levert . in de vergelijkingen (10) der congruentie te substitueeren. Behalve
den dubbel te tellen wortel, levert vergelijking (24) twee enkelvoudige wortels, die ons tot
de volgende differentiaalvergelijkingen leiden:

Ebh+rddu+ (20 +1r)dv=0
en _
(Tbfu—r)adu+ (bfy—r1r)dyv—=0,

De integralen dezer beide vergelijkingen leveren ons, na substitutie in de vergelijkingen
der congruentie, de oppervlakken van de 2¢ soort, waarin de congruentie gerangschikt kan
worden.

Resumeerend, kunnen we zeggen, dat het geval ) == w ons leert, dat elke cirkeleon-
gruentic bij deze onderstelling op éen wyjze volgens omhullenden van o* bollen , doch op twee
wijzen volgens cyclische opperviakken met een keerkromme gerangschikt kan worden.

Wat de vergelijking der focaalpunten betreft, deze luidt bij de onderstelling A = u = ¢:
afycost + X bfusint + ry __ Xa,ccost 4 ¢ (X f,sint 4 1))

afocost + Xbfosimt +7e  Xagecost 4 ¢ (Xbf,sint 4 r,)

N
—
N
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of wel:
Tafycost+Zbfysint+r, (pZaf,—2ar)cost
Saf.cost+Zbf,sint-+r, (pZaf, —2a,c)co8t
ii : T 3
Zij bevat als factor: cosf. Met den wortel cos ¢ =—0, en dus { —= -, 5 T, COITes-
- o

pondeeren twee der focaalpunten. Bij de keuze, die we omtrent de richting (b,, b,, b,) gedaan
hebben, zal juist deze richting de gevonden focaalpunten op den cirkel insnijden (zie fig, 11).
De beide andere focaalpunten worden gevonden uit de vergelijking:

Zafycstt+Sbfysint+r, oeZafy—2a,c
Saf,cost+3bf,sint+r, qgZafy—=2a,c’

welke betrekking lineair is in sin £ en cos ¢, en dus quadratisch in 2.

§ 3. Nuader verband met het centrale opperviak. De boven verkregen resultaten winnen
aan overzichtelijkheid, wanneer we een nauwer verband leggen tusschen de congruentie
en het centrale oppervlak, door n.l. de coéfliciénten der vormen S, en S, in de coéfficiénten
der twee grondvormen van Gauvss uit te drukken.

Onderstellen we, dat een willekeurig oppervlak voorgesteld wordt door:

r=fw, ), y=gu,v), 2=h(u, v)

dan zullen we een stel formules memoreeren, dat een verband legt tusschen de partieel

Nro Ny Pz 2y
- 07 . [ 0" < . M -~
afzeleiden van de tweede orde 31 : ", S5y €0 die van de eerste orde SeCROl e s n
dntt outt o dud 1 ou' on' ou’ 2!
‘_‘ o (" ?j (‘ = .
: . 1 ; ¢ T, e ST e (e T T ) -_;‘ 1 2
ST ). Daartoe voeren we de volgende notaties in 2):
1 - 1 1
X, — il Y, — v oy s
=gl S W LS
v
. 1 1 l
By — Tal; Yo — . 7 : ) o
o -I/G v 2 I/G T g — ]/(15 ]!,- { e e )
terwijl: \
}L's % )-"3 = (ly, Z:.; —Cy
de richtingscosinus der normaal zijn. Dan gelden de volgende condities:
v Ve S YA N
— A,l_ 1 niltem —_ -\-.1‘-——1 > ..\,—';‘..:*. | o
> ‘\_1 4\3 =it} A .\’2 Ay —11) L)
We zullen nu betrekkingen trachten te vinden van den vorm:
3 X, ) Y
— g X, y X, i SN ¢ Y ¢
54 L+ B X+ X, v — N HIX 4 X,
2 Y, - ) Y
; iy W7 Vi AL 98 e} e, Y. 4 Vv
o LR L Rt e @8) ST =t R4 R 4T, ). . . (29)
A /
[} -J] ’ . 7, -, ‘/
- e ff/ 3 /,.—L oy s ~1 = L7 [
o u S BT 7 s Y Zy + 82, + 9 Ly
Hierin moeten de coifficiénten B r : !
: “ Py p €D &, O, 5 berekend worden. Daartoe

1) Deze formules kKomen te pas bij het bewijs, ds
wanneer de zes invarianten FE, F, G en I, M, N ge
®) BiaxcHI L. ¢, pag. 93.

it de vorm van een oppervlak volkomen bepaald is
geven zijn. Cf, Vessior 1. c. pag. 62 en vig
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beschouwen we eerst het eerste drietal vergelijkingen, ver:

met (X,, Y,, %), daarna met (X,, Y,
vervolgens op:

-th

Z,), ten slotte met (X,

menigvuldigen die respectievelijk

Y;, Z;) en tellen

b

—:0= i1 350G A= ALK -
=26 QU l 1 +ﬁ]/.ﬁ](:‘ (30)
Q J_r s F
i 3 — — .4' A. g} 3
T 3t “VEag T (31)
I
2 2y
: 0 e DTN A, .
Ons rest de berekening der grootheden X X, 3 “‘ en = X, 5 ﬁl' Nu is X, — e £
waaruit volgt:
2VE
- /rtu] L"’"/u' -
G AT du o
QU K v2)
VE £ e F yVE
Lax, Ve 'Yt Ve o .
= AR E (33)
Nu is 2 fy fo=F, en dus:
I i e 3 F
-rfﬂtl /1"1'-:/"/140:4 U
of:
D F | d [b‘
_/uu/v — du = :-! D'U'

Deze uitdrukking substitueeren we 1

o X 1 o I 1 2 1 F o ]':)
- “i1 = -— . v .
=<2 3y T VEG\u 2 0w 2 K du
Voor de vergelijkingen (80) en (81) vinden wij nu:
o
P‘ I — (),
V E G
I 1 A 1 oK 1 Fok
“VB ﬁ-f'l/b, ‘au 2 v 2 K ouf

Uit deze twee betrekk

kingen zijn de grootheden « en § te berekenen,

vergelijking (83), waardoor zij overgaat in:

Men vindt:

F{ oF 10E , 1 ¥k ¢
A==l [" Ju T 2 0w ' 2 E o u.J . (84)
G [F 1ok 1 Fo }f)
B= l/jjp [0 w 2 d0 2 K ouj" ° (135)

Om de grootheid y te herekenen,

én sommeeren, Men \'nult dan terstond:
L

% —_— I/Iv:

vermenigvuldigen we de vergelijking (82) met .\,

(36)
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Op dezelfde wijze berekenen we de coéfficiénten ¢, L en 5 uit het stelsel verge-

lijkingen (29):

v > (\ .JY S it - - 1;‘
—_— .4‘. a ’U S— 0 — ¢ g > 411 .41:; — € _‘_ ]/E (,
3 0 X, I
3 A B —_— 8 =
— a a ” Ca— 1 .4’11) _T" Se ey ]/E ""_ -
R
S G —_—

De te berekenen grootheden zijn thans: 3 X, : :) en = X, 04

Ny
= A VE
‘a£ - a f(‘( - I/E }lztv’_fu ??W
o "0/ E P R o = (87)
VE _ .. F 2 VE
/’_-,_‘-'f?:/ur:-—'/‘:"""' -
sy 0 e Ve 20 1 (Ioc 1 FAE
v E ~ VEG\2 v 9 F au )

De grootheden ¢ en { moeten nu opgelost worden uit het volgende
F
VEG

—,—'-F Ll (1 oG 1 FE
VEG VEG\2 du 2 K 00)'

stelsel vergelijkingen :

¢+ ¢ — (1)

ua=t

Men vindt :

. F I o6 1 F yE
L H”( 2 du T 8 F 3 ?,J' (38)
r— VE r.( 0G 1 FyE
: H: 2 ou I I v_) (539)

De grootheid 5 wordt wederom direct gevonden ,

door vergelijking (37 ¢
. : zell af) met Y, te
vermenigvuldigen, en te sommeeren A i

M
VElaadd s e L o .. (40)

Op gelijke wijze moet nu met de grootheden X5 5
einde haar afgeleiden naar « en » in de 2
stellen wederom :

n =

2 €0 Z, gehandeld worden, ten

Ze8 mvantmt(n van Gauvss uit te drukken Wij

(‘ ..:-X’ ‘l’ + Xr x‘r (} “r
_‘ & = p 1 0 Ag + 2 g 3o — ‘Y, -i* b 4\’2 --7'- 1 _"3.

2 Y, {
= =0 Y, +oY, 41 Y. 98

o u v 9N+ Y, 4+ y Y.
d Z, ; 7
ka_uz:g Zy + 0 Z, + T Ly, By

5 =g Z, Sy +.;;Za.
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Berekening der grootheden o, ¢ e€n z:

- 0 X, B
T "Hg—i*-ﬂ_\..\q‘\z,

=~ 13w
(\41}:) - -
s> X. 2 - 0—p3 X, X, H 0.
AETEED ¥ A
N T
23 S s —
S 0u

WV G
Var i i A

A

du ~ ou VG G
e A R i oG R ] (1 VE 1 FaG
= A4 (flt — l/--H—r—r-- w/uv 2 1/ H O U =T ]/ ]f."(: 2 v 2 U 0 N)

o en o worden gevonden uit het stelsel vergelijkingen :
ro 1 (1 °E 1 F a(})
CT Oy EG VEG 2 v 2 G du)
1"1
0 =
*VEG

De grootheden

+ 6= 0.

Waaruit volgt:

(41)

VEG(1 dE 1 B f_;)
¢="H* [” o 29 G oul '
1

V& 1 o K F oG 5
":Hﬁ(—‘ e vl I G ¢

terwijl men voor de grootheid z vindt:
M

Bepaling der grootheden g, y € y:

vy (‘4’1'2
=1 dp

—_tl ,}.- I _},' -\'1 .\'2.

Xe 0\'\2 —0=np = X, -\'2 -+ 1
= av

1~

0 X
' dha
X !
b | '\ 0 f )

I~

n /(. . . ! :
Br ) /r /139] 1 [ d v . iy 0 f,. ar(_,'
o vl G @ Ve  GVa e
% F R
(‘ a\z ] 5 f -’ g o )
“ ” —_— l/]{} h’ — /u /l.l “. l/": fr‘ a v
vindt men na differentiatie naar v:
o F 1 o0

X

3 fulo=F zijnde,

Shilv=75y — 2 du’
en dus:
) X, 1 [a a 1 202G ) A0 (:‘]
p O L0y i - — — - —— —— s
> —_— = y 9 0 9 G dv
S 55 T VEGY & R
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Dit voert ons tot de vergelijkingen :

., F o (BT G o

.;J—I—/!]/E(,-’_]/E;G v 2 w2 @G av)'
fl"

A L

Op gelijke wijze als te voren vindt men:

VEG[(YF 1 2@ 1 F @G ,
T [3 bl v ) (4)
F b G M (e e 1 F 3G i
1= ge (_ W T 23w T 2 G v J (9)
N

tp:]/(IGG)

Deze vergelijkingen moeten nu nog gecompleteerd worden, door nitdrukkingen te zoeken
voor de afgeleiden naar « en » van de richtingscosinus der normaal. Wij stellen weer:

o0 X,
o

15

=p X +q3&, +rX;, N rx& 49X +1rx,

AR Y 0 Yy 90 Z, . . .,
. u"‘, 5 u"’ en ‘w ?3, \4/'3 analoge uitdrukkingen gelden. Berekenen wij de
T AT NIRRT i

grootheden p, g en r:

terwijl voor

v v d ‘1’3 el | v v v vy (‘_mya e /“ o _L
-_— .ll B — ?] ":— q -— 4“] 412. t, wilh.q ‘ - — . o — - — 1
ou O u B du VE
\ 73 “ _‘1’ > > 7" ‘- ¢ { s
> X, - =2 —y i3 A, + ¢ = Xy < € amams 237 o 9¢ = M -
N7 QU I/’(; du l/“
0 X,
> ‘L' ;**3 o 0 l]
P du

Derhalve moeten de grootheden p en ¢ opgelost worden uit het stelsel vergelijkingen :

o L =P + ¢ o en — M—) 2 -+ ¢
VE- T iVEG Ve T e 1
waaruit volgt:
. KM — GL __FL—EM .
P = s VE, ¢g= 17 I G,

zoodat:

0% _ 1w FM—GL . v, FL—EN .
A g At VG 1 e N R € 1))

Op volkomen gelijke wijze vindt men:

Bﬁ;—:,_-/’, FN—GM s FM—EN _ _
v =LA H? L + VG g Aae .o L L (48)

Onze vergelijkingen worden belangrijk eenvoudiger, voor het goval men met een
stelsel orthogonale parameterkrommen te doen heeft. In de zoo juist berekende coéfliciénten
moet nu F— 0 gesteld worden. De eindvergelijkingen luiden dan:
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0. X5 hint 1o it Lt

u — Vg ap ‘=t Vg }

I e T P e e 2w e (49)
0  VE du "2+]7'jg =

0 X, 1 2VE _ Mo

du - 1/G op - Vet ’

o X, 1 al/@ v N \ &0
Diy BSRERS TR 1 ‘1+]/G‘1"

2. X5 AR Ly, S M ‘

T VENT g% '

)X, u . N - \ b R (611)
RN P o T Vi

Nog eenvoudiger worden de vergelijkingen, wanneer men de kromtelijnen tot para-
meterkrommen van het oppervlak kiest. In dat geval is ¥ — 0 te stellen, en geldt bovendien: -
14 (s

N=— 1y
7y y ”,

L:—

S+ Toepassing van het voorguande op eenige bijzondere congruenties. Wij beschouwen
de volgende bijzondere gevallen:
A. de cirkels liggen in de raakvlakken van het centrale opperviak,
B. de cirkels liggen in normaalvlakken van het centrale oppervlak,

4.

De onderstelling, dat de cirkels in de raakvlakken van het centrale opperviak gelegen
2ijn, derhalve X ¢/, =0, ¥ ¢/, =0, brengt volgens vergelijking (28) de volgende onder-
verdeeling met zich mede:

1% ry=1y=0 d. w. z de cirkels bezitten een constanten straal,

2% Teby=0, Yecb,=0 d. w. z. dat het centrale oppervlak een ontwikkelbaar
opperviak is; zooals we weldra zullen zien.

Sub 1°. We vragen in de eerste plaats naar de diﬂ'en!nti:mlvergulﬁking, die op het
centrale oppervlak de middelpuntskrommen van de opperviakken der 2¢ soort bepaalt. Die
oppervlakken zelf zijn kanaaloppervlakken; immers de
cirkels bezitten een constanten straal, en raken alle (Xz,}f’.,zz)
aan eenzelfde ruimtekromme.  De richting (a,, ay, a,),
die thans in het raakvlak gelegen is, ontbinden we in
de richtingen (X;, Y, Z,) en (X, Y,, Z,) (zie fig. X).

Den hoek, dien zij met de richting (X, Y,, Z,) maakt, - ?(al.“z,“.!)
stellen we &; den hoek, dien zij met de richting - J$ (X v 7)
(Xy, Yy, Z,) maakt, w. De ontbondene in de richting X S that
(X, Y3, Z)) een oogenblik @ stellende, en die in de Fig. X.

1) Voor dit bijzonder geval zijn de formules neergeschreven in Braxcmr, 1. ¢. pag. 03, Tevens wordt
daar ter plaatse een andere afleiding gegeven voor het algemeeno goval,
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richting (X;, Ya.. Z,) #, heeft men de volgende evenredigheid:
x i 1 i,
sinw — sind ~ sin (¢ +w)
Derhalve:
L==D S o, Y — o 8N i,

en
a, =0 (X, sinow + X, sin &), a,=—=0 (Y, sinw 4 Yysin), a=1o (2 sinw + Z, sin ).

Voor de richting (b,, by, by). die loodrecht op de richting (a,, a,, a;) staat, geldt:
by—=0(— X, 08w + X, c088), by—0(— Y c08w + Y, c08 M), by—=0(— Zcosw -+ Z, cos ).

De richting (¢;, ¢,, ;) valt samen met de normaal, dus ¢, = X;, ¢, = Y, ¢ = Z,.

du . .
e die de middelpuntskrommen van de opper-
vlakken van de 2¢ soort levert, luidt bij de gemaakte onderstellingen:

De vierdemachtsvergelijking (23) in

Safudu-t+Xaf,dv Sofudu-+Xbf,dv 2
0
K =)

Sa,cdu -+ Za,cdv LEXbfudu+ aXbf,dy

Bedoelde krommen zijn derhalve twee aan twee dubbel te tellen. De vergelijking kan
in de volgende gedaante gebracht worden:
ol Zafu—2ac)du A2af—2a,c)d v] du
Zbf, [(-“ Xafu— 2 a,0) du+4+ uafy—2a,c)d plid == (s =1 (52)
Wij zullen nu de hierin optredende coéfficiénten berekenen, Het stelsel (26) in het

! 1
oog houdend, en ter bekorting I/lh‘ = 76 — ¢ stellende. vindt men:

-

Yafu=—r0o(r Esino -+ ¢ Fsin i) 2aly=0(r Fsinw + r G sin o)
21} f,‘: 0 (— I F cos w + T F cos 'f‘) X0 /, — 0 (—— r I cos (0 -{A ¢ (1 cos Ha

(G — u( a‘ - 8N w + 2 sin .l] =L

termen, die na \/‘fsl'menigvulnli,r.;in;,r met (¢y, 6. ¢3) en daarop gevolgde sommatie, wegvallen :

0 X, . 0 X, .
o — St w - S0 i) S
(ty ) g( 3p B = p S ar

(

Saue =19 (v Lsinow -+ v M 8in i) Sty =9 (r M8in w4 ¢+ N sin o)
d X, 0 X, ‘ '
byl = (—- €1 rog 2 cos i
(Or)e = ¢ o u ) du T
0 X, o X,
(by)e=p (—— _3—23 - 08 w 57 08 n) + ..,
2byec=p (— v Lcosw + v Mcos 0) 2bye=¢(— vy Mcos w4 r N cos ¥,
Ten slotte is:
;' == A"--c-.bu = -—- 4 L CO:? -(U + r A! co8 n e -_‘; C b?_ —_— ﬂ[ CO8 w _*_ I IV 08 0
Zbf —vEcsw+zFeso “T3p5T Z0F o8 w -+ v G cos i

1 A2afu—Zayc=
(—vLcosw v Mcosd) (v Esinw 1 Fsin 0)— (v Lsinw + v Msin &) (—

i —r Ecosw 4 v Feos o
vt (EM— F L)cos w sin & -+ v r(EM—FL).smmmsn
Lo — v Keosw + 1 Feos o

v (EM—FL)sin (04 w)
— v K cos w + ¢ Fcos 0

(2

v Ecosw-t Feos o)
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20 1Zaf,—3a,c—
(—vLcosw v Mcos®) (r Fsinew -t G sin ) —wMsinw ¢ N sin N (— v Ecosw +- = Fcos )

o — p ]‘IOStr)—[—r]fiosl’} =
__ 7" (EM—FL)cos wsin w-i— vr(EN— G L)sin (0 + o)+ 2 (M G — F N) sin & cos 9
— v Ecosw + z Fcos o . (54)
N, udafy—Ta c=

__(—vMcosw -+t Ncos ) (v Esinw 4 v Fsin ) — (v Lsinw - v Msin N(—» Feosw 4 (G cos o)
— — v Feosw 4 ¢ G cos o |
— i (EM—FL)coswsino + r v (EN—L G)sin(#—o)—2 (MG — —F'.N) sin & cos 9
— v Feosw + 7 (G cos &

. (bh)

490 udaf,—2aC=
(—rMcosw -+t Neos &) (v Fsine 41 G sin i) — (v Msinw--7 Nsind)(—» Feos o L Goos o
— p Fcos w -4~ v G cos &

AT (FN—MGYcoswsint +r v (F'N— G M)cos ‘l.\'mm v (FN— G M)sin(a L o) Y.
—p Freosw -+ v G eos — v Fcosw -1 Geos g (H6)

)

Na substitutie van de uitdrukkingen (53), (54), (5b) en (56) in vergelijking (59), gaat

deze over in:
EM—-FILYyduwr 4+ (EN—GLydudv 4 (FN— G M) d 2 — 0,

welke differentinalvergelijking de kromftelijnen op het eentrale opperviak aangeeft,  Men

heeft derhalve de volgende

Stelling:  Construcert men in de raakviakken van eenig opperviak o congruente cirkels,
die de raakpunten tol centra hebben, dan bepalen de kromtelijnen van het opperviak de
middelpuntskrommen van de kanaalopperviakken der congruentie.

We kiezen nu de kromtelijnen tot parameterkrommen. De vergelijkingen der congruentio
ziin dan in den volgenden vorm te brengen:

~/' + 7 (X, cos t 4 X, sin t).

+ r (Y, cost 4 Y, sint).
4 r(Zycost + Zysint).

De richting (a,, @y, @y) valt nu samen met de richting (X, Y,, Z), en de richting
by, by , by) met (Xy, Ya, Z). Bij deze aanname gaan de coéfliciénten der vormen S, en

Sy over in:

: _ S e
2afy= ‘/]':, 2bfu=0, < Oy C = — Ty y = @e=0 )
ve (-®7
. s ¥ 1 Y — y .
Saf,=0, Shfi=VGE 2bc=0, by ¢ — — =

Vergelijking (14), die op elken cirkel de focaalpunten bepaalt, luidt thans:
VE 08 t -
Ts ke V' E cos t
VG t — V' Gsint

Of :

c2

m
[ 1 ] )m’u tcost=0. Dust=0, 5, n, - m
Ty, a )
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Construeert men derhalve in eenig punt P van het centrale oppervlak, in het raakvlak,
een cirkel met straal », dan snijden de raaklijnen aan de kromtelijnen door P; op den cirkel
de focaalpunten uit.

In de buurt van den cirkel zullen de vergelijkingen der focaaloppervlakken als volgt
luiden :

e [T ey T— i s
Y= Yy Y/ Y
Ci—— Ty s Ze—h 7

Vragen we thans naar de focaalvlakken, dat zijn de raakvlakken in de focaalpunten.
De coordinaten van het focaalpunt (xz, y, 2) stellende, vindt men in het eerste geval voor
de vergelijkingen der focaalvlakken:

‘ EXe—srr Y —y L 2
| 2 X 1 e N7
+r——1 Ju T 7 1 hu £ 7 L
| [t du Ju * Qu 5 du _—i
3 X, 0 Y, % ot
S - ' e ; .t'r ) |
vt Qv got? o v : Qv

en in het tweede geval:

X —=x Yy —uy 4 —z
Ju = Yo A= (TE2E \
d U QU au ——]
- 2 r;
" (‘ 4Y2 {‘ }ro O A'Z
108 R LI ho 7
fo X7 Qv JoEial A : oV

We herleiden den eersten determinant door de kolommen respectievelijk met X, Y, 2.
te vermenigvuldigen, daarna met X, Y, en Z, en vervolgens te sommeeren; den tweeden
determinant door de kolommen respectievelijk met X,, Y, Z, te vermenigvuldigen, daarna
met X, Y, Z, en te sommeeren. Dan verkrijgt men in het eerste geval:

S X =V §n e (X — x) X

- e 2
VK d + Voo —0,
() TR, ()

en in het tweede geval:
|2 X—2)X, . .. S(X—2a)X

| 0 TR A, 0 0
: r N S
Al SR a :
Vg VG

Na unitwerking leveren deze determinanten:

X (X — ) [l'/i X, ¥ VE L) =0

;’(J‘—:U)[]"/(j 4\3:4.']/(! ..\:,J_—_O.

In het oog houdend, dat de parameterkrommen kromtelijnen zijn, mag men voor I

. ) e e
en N schrijven: — -* en — . De vergelijkingen der focaalvlakken luiden derhalve:
2 1

(X —2)[F X £y X)=0en 3(X—a)[r X, £r, X,]=0
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'

Tieruit blijk ; oL eer aar viakk © de richti 3 %
Hieruit 11_}_l\t, 'daL h(rl ee{ste paar vlakken door de richting (X,, Y,, Z), het tweede
paar door de richting (X, Y;, Z;) heengaat. Wanneer men den hoek tusschen twee

focaalvlakken « stelt, geldt:
= (&, E J{S)ﬁ(’ *‘_Xari Ty P Ty,
Vi@ 4+ ) (0 + 1)) R AGCEE O YGETh

CO8S «© —

. v g . . ;
Al naar gelang de focaalpunten - of = verschillen, dient in deze formule het plus-

of het minteeken gekozen te worden. De hoek is dus een functie van de hoofdkromte-
stralen in het centrum van den cirkel; zijn teeken wordt door het teeken van de totale
kromming in dat centrum bepaald.

Sub 2°. Voor het geval de cirkels in de raakvlakken van het centrale oppervlak
gelegen ziju, blijkt, dat zich nog een tweede mogelijkheid kan voordoen, n.l.:

17— U SR 1 () e by . (D8)

Nu geldt: 2 =u=0. Uit de algemeene beschouwingen van § 2 volgt, dat er op
L o b] )
ot centrale orvlak een stelsel kr : alt - A7 e ot :
het centrale oppervlak een stelsel hlmnn.un valt aan te geven, zoodanig, dat, wanneer
men deze als centrale krommen van cyclische oppervlakken kiest, deze opperviakken als
omhullenden van oot bollen beschouwd kunnen worden. We zullen in de eerste plaats de
WA S Jiele )
heteekenis der voorwaarden (58) nagaan. Daartoe drukken we de grootheden in het eerste
lid in de cobfliciénten der grondvormen van het centrale opperviak unit. We kiezen eerst
weer als parameterkrommen die krommen, die, als centrale krommen van eyelische opper-
vlakken gekozen, aanleiding geven tot oppervlakken, waarvoor de richting (by; by, by) lood
1 - . ) =] A e ] -
recht op de poollijn van het punt 7' staat. Evenals in het vorig geval, geldt:

”1 —_— o ‘.\.y] S!.)l () + 4‘\'2 Sl.}n ”)’ ”“ — N O 1] 7

hl — (—- _;":1 08 w + ;\.—2 Cos f"), bg e O T1 %

terwijl de richting (¢, ¢3, ¢) als normaal op het oppervlak optreedt.

' g -

(h) p——) .—- g F‘\,“ COS w -}— ¢ < B Co8 &
1/u LY ‘\ " a o COS "*‘ .

termen, die, na vermenigvuldiging met (¢, ¢, ¢) en gevolgde optelling, verdwijnen:

; e X !
o L o S i BTy T TN A Ly
(_hl)n— ¢ ( Qv 08 m - A cos "} o= L
Derhalve:
- * 0 -‘\-' 0 "Lr
Sceb k._u—-.‘.."i L cos o Ay g =t Koy | 2=
u L [ 3 D u L "+ »\3 3 % co8 . Ol'=— (.
- - . > " ‘.YI - l‘ .-:Y.
Schy=p (—— S X, Ny 8w +4 X X, - = ?2 CO8 ;r] — 0
/ ( ‘ .

Met behulp van de formules (36), (40), (43), (46), gaan bovenstaande betrekkingen

over in:
i M
I/}; Co8 w VG 08 O — 0,
J r

J'U lv
— e 08 w - cos & = ()
V. K VG '
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Dit eischt:
LN—M=—0,

m. a. w. het centrale opperviak is een ontwikkelbaar oppervlak; welk resultaat ons er toe
leidt, een nieuw stelsel parameterkrommen in te voeren, n.l. de beschrijvende lijnen, en
haar orthogonale trajectorién Kiezen we de rechte lilnen tot parameterkrommen « — const. .
dan mogen we in het stelsel vergelijkingen (49), (50) en (51) de grootheden M en N gelijk
aan nul stellen. De coéflicienten der vormen S; en S, zijn nu gelijkluidend aan de
coéfficienten in het vorig geval. (Sub 1°% verg. 57). Alleen verdwijnt bovendien de
grootheid X b, ¢, omdat 7, = o is.

Om op het centrale oppervlak de krommen te vinden, die als centrale krommen van
oppervlakken van de 2¢ soort optreden, substitueeren we de genoemde coéfficiénten in
vergelijking (17), hetwelk ons levert:

V'Edu VEde ! VEdu ?'ud‘u-}-r,,dv’”

7 7 — Vil .

—rVEdu 0 __7'1 Ldu 5 |

s Ta |
Gadurdv*=du(ndu+r,dv)p . . . (59)

Deze vergelijking bevat een dubbel te tellen wortel % — const. De rechte lijnen
van het ontwikkelbaar oppervlak treden dus als centrale krommen van cyclische oppervlakken
op, die omhullenden van co! bollen zijn. Dit was te verwachten, daar de congruentie aldus
te construeeren is: in elk raakvlak door een bepaalde beschrijvende lijn van een ontwikkel-
baar oppervlak, construeert men een stelsel van o' cirkels, waarvan de centra op die
rechte gelegen zijn. Een dergelijk stelsel bezit steeds een omhullende, Men herhaalt de
bewerking voor elk raakvlak. Het aldus gevormde stelsel van ow? cirkels voldost aan de vraag.

De beide andere wortels van vergelijking (59) worden gevonden it

rudu 4+, + V@ dv=0 en r,du -+ (rn—VG)ydv=0
welke vergelijkingen, na integratie, de centrale krommen van cyclische oppervlakken leveren,
waarvan de cirkels slechts aan één ruimtekromme raken, Wanneer alleen een functie
van v is (r, = 0), derhalve alleen varieert, wanneer men zich langs een beschrijvende lijn
beweegt, dan gaan bovenstaande vergelijkingen over in: d v =10, welke wortel ons de
orthogonale trajectorién levert, die dubbel geteld moeten worden. In dat geval is de

congruentie echter op één wijze volgens kanaaloppervlakken te rangschikken.
De focaalpunten, die op elken cirkel gelegen zijn, worden,

evenals in het vorig geval,
gegeven door: :

sintcost—=0,

T 3 oy I 3
dus =0, g M g ™ Hieruit blijkt, dat voor ¢ — g o ™ de beschrijvende lijnen in

haar geheel als focaallijnen optreden, en dus de razkvlakken aan het oppervlak als focaal-
vlakken, een resultaat, dat eveneens te VOOrzien was.

2 5 ; Al ) ; X

§ 5. De normale cirkelcongruentie ). Underzoeken we thans, onder welke voorwaarden
de bovenstaande congruentie, een zoogenaamde normale congruentie is, We vatten de

') Cf. Biaxcur 1, ¢. hoofdstuk XIII, Vessior 1. c. pag. 204 en vig,
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zaak algemeen aan, en vragen naar de conditie, dat er voor een stelsel van o2 cirkels ool
oppervlakken aangegeven Kkunnen worden, waarvan de normalen als raaklilnen aan [1.0
cirkels optreden. Onze congruentie denken we ons voorgesteld door: ‘ |
x=7[ -+ r(ay cost + by sint).
Y=g + 7 (ay cos t + by sin t). (c)x dy dz
z="N 4+ r (ag cos t + by sin t). Jf’cﬁ,é—]
Het is nu zaak, een zoodanige waarde
van ¢ te bepalen, (zie fig. XI) dat de raaklijn, M.
in het uiteinde M van den voerstraal aange-
bracht, als normaal van een zeker oppervlak
optreedt. Substitueert men in bovenstaande ¢
vergelijkingen :

Qox,dy, oz

T (-n, L‘)
dan verkrijgt men een oppervlak. Onderstel,
dat dit oppervlak aan de vraag voldoet, en
duid de richtingscosinus van de raaklijn in M
aan dit oppervlak door d z, d y, d = aan. De Fig. XI.

o d dz

richtingscosinus van de raakliin aan den cirkel zin: ==, ==, —5-. Derhalve luidt de

voorwaarde voor het bestaan van een dergelijk opperviak:

O e
.‘.Dt(l.f,-._ﬂ...........(‘()’0.\,

of daar:
)T o

o
du - .M)dv-{- 7 dt,

1 A ie—
¢ o u

dx 0T o 0% 0T 5 [?‘ X ]2
- w4 3 dv 4 3 |- giti=0
TR T A AT e Lo '

welke vergelijking van den vorm:

Al B Bra A O tkiv =1 O R e R (61)
Aan deze totale differentinalvergelijking moet nu £ = w (, v) als integraal voldoen. Opdat
lakken zijn, die aan de vraag voldoen, moet hovenstaande ‘lim'“"“iilill\’(ll‘;_:nli_jl\'ing
d. w. z dat de integrabiliteitsvoorwaarde:

IS,

er ! opperv

onbepaald te integreeren zijn,
QB a O "\0_0.’1] 0 ‘\‘,I_‘\]f]_ .

)+h’(. = Far i =y 5] =0. . . . (62

P Y = TYIT at v

¢{. u en v vervuld moet zijn. Is dit niet het geval, dan zal er
lakken zijn, dat aan de vraag voldoet. Zij worden
), die aan vergelijKing (61) voldoen,

Voor alle waarden van

slechts een beperkt aantal opperv

hepaald door de wortels van vergelijking (62
We werken de differentinalvergelijking (60) uit:

2a : Y e b o )y e = (— s 8in EE b

)i __,(__ t!,bi)lﬁ-*-"lfU-\f)n ‘\!____I( Iy SN 2 by ( 3 SN t atJS(}.

AT = df 4 r(—a, sint + by cos ) dt -+ r(cos day + sintdby) + (a cost + bysintydr,

terwijl voor d i en d = analoge nitdrukkingen gelden,
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Derhalve luidt de totale differentiaalvergelijking:

\,‘r‘.JC

22 _Bi‘_der(_‘\"-“ dfsint +2bdfeost +rdt-+r>h da)y=0
of:

rdt=Xadfsint4+ >bdfcost—r3bda. san el (63)

al— (71 Zaf,sint— Tl 2bfcost—20h au] du -- (}‘ Xaf,sint— f 2hf,cost— X !:(1(.) dv. (64)

Wanneer we deze nitdrukking met de formule (61) vergelijken, vinden we:

4d=—1
1. . 1neg -
BEF.La,ﬁcsmt—-—T—.‘.‘.bfucust——.‘.ba“
i : 1
(= e Laf,,smt—v‘)—_--;h/v cost — X ba,,

Als integrabiliteitsvoorwaarde verkrijgt men dus een lineaire uitdrukking
Pceost + Qsint + R=0,
waarin P, ¢ en R functies van » en v zijn. Opdat er nu een stelsel van oot

aan te geven is, waarvan de normalen als raaklijnen aan de
bovenstaande uitdrukking identick vervuld zijn, hetgeen vereischt :

P=0, =0, R—o,

In sin b en cos t:

oppervlakken
cirkels optreden, moet

Is zlj niet identiek vervuld, dan zullen er hoogstens twee oppervlakken zijn, die
.s . 3 - / il 3 ,
aan de vraag voldoen; hetgeen blijkt, wanneer men in vergelijking (65) de meermalen
besproken substitutie {g g =W uitvoert, welke vergelijking daardoor quadratisch in
wordt. Derhalve geldt de volgende, door Risavcour gegevern
Wanneer men bij een cirkelcongruentie drie oppervluk:
normalen raaklijnen der cirkels zyjn, dan zijn er
eigenschap bezitten.
Door de substitutie:

stelling :

ken kan aangeven, waarvan e
l. 0 J Afa y

wt opperviakken aan te geven, die deze

2w ] — s {
e cos t — —. —
l + 202 b 1 + ?03 s tg O — H?,

gaat vergelijking (63) over in:

SN =

; ) - 2w . W08 —
Zdw_(l—}-w“).‘.udh—{——T-.‘_u,d/-{- :

r—2bdf

of:

G0=(c1 + w0+ Ndu+ (@ 0+ 5w+ 9 dy

waarin «, ¢, 7, «, 3, ;/ bekende functies van u en v zijn
karakter van de differentiaalvergelijking van Ricoar
van RIBAUCOUR voert:

Deze vergelijking draagt het
hetgeen ons tot de tweede stelling

Wanneer bij ecen cirkelcongruentie o1 opperviakken aan (e geven ziyin, waarvan de
normalen maklwzcn‘ der cirkels zijn, dan snijden viep opperviakken van dit stelsel op elken
cirkel der congruentie een puntquadrupel met constante duhbclverhouqu uit

Toepassing op de congruentie Vereoliil: -
P g g 4. Vergelijking (64) werken we nader uit, voor het
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zeval we te doen hebben met een congruentie,, waarvan de cirkels een constanten straal
bezitten, en in de raakvlakken van een oppetvllk gelegen zijn. Dan dienen de coéfliciénten ,
die in deze vergelijking optreden, berekend te worden. Dit is grootendeecls reeds gesc hled
in het stelsel (57). Ons rest nog de bepaling der grootheden ¥ j ay en X b a,:

, S 2 ] [T R i

20 Oy = e 412 “' u —_—— ]/G ?r_v (ZIe le_g. 49).
: , 04X, 1 3G

.‘ba,.:_“_, oot L=k |
- -\ v ]/]‘3 Rl U

Hierdoor gaat vergelijking (64) over in:

/R 1 al/’f«:)
[

VE VG NG
Hi—— - sint +4- VG 2v

Hiif , _n 1
+( I‘ cos ¢ I;/L, B?L-l dv.

Opdat er oot oppervlakken aan de vraag voldoen, moef de integrabiliteitsvoorwaarde

(62) identiek vervuld worden. Daar 4 = — 1 is, luidt deze voorwaarde:
a0 o B o C )
(([}_‘( —f—H( ("]’:U
o o AN ot

of, na invulling:

e 1 216G o [VE . B V)
VG co8 Ll L ( : } ‘ ( . sin t -} I'/ : ( I ],] i

T du ' r V'E du 0 G 0V
I g !’: l A l 11 l / ) ( 1’ (l' f\l I / I
_'_ 1 > g t‘ f - O8N / " > —_—
T ( = stn t V G ) ) sin it - r” cos | - l/l' ARt ) Seos b == 0
of:
L7 | i I// Gl i \ ( | t‘.l/]';)-‘ ik V EG =h
] [ A7 ( IV E du v\ VG ov ) s
of:
1 L[ [ L m;) . ‘ L A VE
T M kG Ldu VK. ou'l W\ 1/ v ”

Nu heoft het tweede lid dezer vergelijking een eenvoudige meetkundige beteekenis.

, TR A : :
Het stelt n. 1. de totale kromming o in het centrum van den cirkel voor . Derhalve is

172
voor bovenstaande voorwaarde te schrijven:
| |
"l ’-2 .
Dit voert ons tot de volgende
Stelling :  Opdat een cirkelcongruentie, die uit «* cirkels mel constanten straal bestaat
tvens ven normale congruentie s, geldt als noodzakelijke en voldoende voorwaarde, dat het
Centrale oppervlak een constante, negalieve, kromming bezit, derhalve een zoogenaamd pseudo-

Sphaeriseh opperolak i

') Cf. Biancur 1. ¢. pag. 67.
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§ 6. Beschowwing der congruenlic B. Terwijl we in het vorig geval aannamen, dat de
cirkels in de raakvlakken van het centrale oppervlak gelegen waren, nemen we thans aan.
dat zij in normaalvlakken van het centrale oppervlak liggen, zoodat men heeft:

A T S S ST o)

De richting (a,, ay, ) treedt dus als normaal van het oppervlak op. Substitueeren
we deze voorwaarden in vergelijking (23), die ons de centrale krommen van de oppervlakken
van de 2° soort levert, dan gaat zij over in:

(0 — 22 (r,20f —r, 20 fRdwrdr = (S a,cdu+ X a,cdo)? [(Xbfudu++X0f,d v):—
— (ru A% J-ry @VW] 0 owl Y e (66)

Naar aanleiding van deze vergelijking zullen we, behalve het algemeene, nog een
bijzonder geval beschouwen, n.l.:

S ety SR,

In het algemeene geval vormen de parameterkromme::, zooals wij ze in § 2 gede-
finieerd hebben, geen orthogonaal stelsel. De coéfliciénten der vormen S; en S, die in
vergelijking (66) optreden, moeten nu met behulp van de formules van § 3 in de coéfli-
ciénten der grondvormen van Gauss uitgedrukt worden, leveren echter ingewikkelde
nitdrukkingen, die niet eenvoudig te interpreteeren zijn. Willen de resultaten ;,runiﬁ]cl{uli_il{ in
woorden gebracht kunnen worden, dan moeten we specialiseeren. We nemen daarom aan,
dat we met een orthogonaal stelsel parameterkrommen te doen hebben, dat dus = 0 is,
waardoor we gebruik mogen maken van de vergelijkingen (49), (50) en (51).

Daar de as van den cirkel in het raakvlak gelegen is, en de richting (b,,
er loodrecht op staat eveneens, stellen we:

gy lg), die

0 == X, cos ir 4 X, sin & enz,

by =— X, sin & + X, cos & enz.
terwijl
- » - " r,
Gy=2X; =Y, =272,
1) 4}.’1 . “ A'\'g >
(by)u= — Yo At + yu 08— (X cos 0 + X, sin o) 0,
I.‘ 41'1 ¥ (\ .-Yz -
(b)) = — 5 S+ Yo (080 — (X, cos 0 + X, sin ) i,
En dus:
) X Y X
O Dy S X e gintn 3 Yy Y=< 2
‘ A + 2 X 3y (08t 0 —
SR 0 /e
VG v it
d X, ) X,
.‘.'r'f);.—_——.‘"t“l."'-" SR Y g S
v x2 D Stn= ) + -— 4\1 A Co8* ()} — ”l'-
1 2V@
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In het oog houdend, dat:
1

a

i

1 Ve
R | e Pt

1

Ty

1 Y VE

=T VEe v )

waarin «, de geodetische kromtestraal in eenig punt der parameterkromme u = const. ,

o, die in eenig punt der parameterkromme v — const

vormen schrijven:

IS, mag men voor hovenstaande

_ V'E
Xehy=— [ = IF b u) . (67)
VG
R Ol Ot — 3 3
¢h =2 (68)
¥ —— ’ (‘ = rs T Ane | T o i — L e I ‘n ' i
> a, C = 2 3 u (4‘ g cos & - .,12 St J) — (-—— .l’/!:: CoS &+ — 17(; Sin “}) ('19)
. P v a ‘1:‘ > 1 3 o ;. 3 —— ﬂ[ 4 » 4 J'V 4 -
Sy c=—"3 e (X, cos & - X, sin 8) = (—— e 0 — G o ﬂ) (70)
B 4173 ar . - L . d
Ya,b=23-"2(— X, sn & 4+ X;c08 &)= 8N & — e c08 | e
S b= (— & i ) 7% [/ Cos (71)
I.\ 41'3 - . - 0 e A! - J.\r
\ — YV - SN i - Ag COS iF) = it — 8 ¢ (7€
2 ay b= 0 (— Xy ein & + Xy 008 0) =y sin Ve Rk (72)
b — VE sin o f Xyt Xefi=VE cos
" _ . (73) : P _ (74)
Xbf =V @G cos & \ Scefo=V G sin o :

met welk stelsel formules wij bereikt hebben,

dat de coéfliciénten der vormen S, en S,

in de coétliciénten van de grondvormen van Gauss witgedrukt zijn.

Wij zullen de voorwaarden nagaan, wa
congruentie een normale congruentie is.
onderstellingen over in:

dt -| B

' : Xbhfycost4 2 b u,,] o u
r ,

araan voldaan moet worden, opdat deze
De tot:

e differentiaalvergelijking (64) gaat bij onze

1 .
l ~ 2bfpcost-Xba)do=—0,

dt4 Bdu+ Cdv=»0.

De integrabiliteitsvoorwaarde luidt nu:

V() 0 O
[‘ ,])’ . i ( w+~ }),l
v QU ot
Na uitwerking:
, 3 )
d ] = ' A =y, &
Xbfocost - -hﬂl' :
AR I r fu ' p a1

L :
iR ,1 2bficost 4 2b u,,] X[, sint - (
01’
g \ [ e
> LS. 4 Shfu2bay, —
Tl ba, Y7 b a, -+ ‘ . /
o TRLENS i ]
= PN
on { " /

') Braxcmr 1, c. pag. 147.

o B
kC‘ —s
ot
1NeL, s " ]
: Sbficost 4+ 3ba,|—
el r y

! Xbfyeost -0 u,‘) 3 20t 8t =10
r r

= b0 2D u',) sint - l “‘ ( 1 N /;‘) -
giv AT

J WL = U.
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Zullen er =! oppervlakken bestaan, waarvan de normalen als raaklijnen aan de cirkels
der congruentie optreden, dan moet bovenstaande vergelijking voor alle waarden van /
vervald zijn. Zij is derhalve te splitsen in de volgende 3 voorwaarden:

d 0
— 3 y— g AR riat Ahod s 1
37 ba, S biay =10
1
% b fu - . |
e R | ) B
= BTN G i
: !
o (1 : o [ 1 8
== S — = hliase o . L
E\v(r 'bf“] dulr bf'“_, : |
Wij besch_ou\.von in het bijzonder de tweede voorwaarde. Na uitwerking levert deze:
LEes M _
- 8in i — Cos i

— V' E sin o VE

ERUABE ViG
1/G cos

M 5'1'); 13 | A1 0s
— S ] - — } A

VE Ve

e 1 Sl e
MV EG:cs2 o 5 (NE—LG)sin2 a=0.
ooy — 2MVEG 7a
g — = LI e« . (786
AT GL—EN U
Deze vergelijking leert ons, welke functie de hoek # van de parameters w en » moet
zijn, of, anders gezegd, welken hoek de as van den cirkel met de parameterkrommen
moet maken, opdat de congiuentie een normale congruentie zij, Voor het geval de kromte-
lijnen tot parameterkrommen gekozen worden, moet de hoek o noodzakelijk 0 of ; zijn,
m. a. w. de as van den cirkel is raaklijn aan de kromteliijn. Neem bijv. 9 = 0. Dan is:
PNy — X e — A )

1 Va

= 2hb = 5

VG
f'l .

De voorwaarden 1 en III houden nu in. dat de grootheden in het tweede lid dezer
vergelijkingen alleen functies van den parameter o zijn, hetwelk meebrengt, dat het

A [—
g, O Oy

quotiént - eveneens een functie van » alleen is, m. a, w.:
"y
r=ryq ().

Kiest men & —= -, dan vindt men op gelijke wijze als voorwaarde

b2l 3§

r="Ty p (1)
Derhalve geldt de volgende
Stelling : ~ Neeml men op een opperviak een  stelsel kromtelijnen (parameterkrommen
w = const.) en construeert men in de bij deze krommen behoorende hoofdnormaalvlaklen cirkels,

waarvan  de centra op die kromtelijnen gelegen 2yn, dan zal de aldus ont
een normale congruentic zijn, wanneer men den straal van den cirkel evenredig aan den, mel
het andere hoofdnormaalvial: correspondeerenden , hoofdkromtestraal kiest, er .‘:();'r/.z_vm,r d-"m/("mle
dat de verhoudingsfactor voor ecen en dezelfde paramelerkromimne r‘nn.s'm;g{ s, ‘ i ‘

stane congruentie
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De voorwaarde IT van vergelijking (75) voert ons nog tot een ander hijzonder geval
Onderstel, dat gelijktijdiz voldaan wordt aan de volgende gelijkheden:
L SO =" U e ! SO =231 7
= -— U — - " ’ y — /n' — a, s iLoimpen Le. ou el ((7)
Wij vatten de zaak thans zoo algemeen mogelijk aan, onderstellen dat de parameter-
krommen op het centrale oppervlak zoodanig gekozen ziju, dat voor elken cirkel de richting
(by, by, by) loodrecht op de poollijn van het punt 7' staat, welke keuze, zooals wij gezien
hebben, steeds mogelijk is. In dat geval luiden onze coéfficiénten:

20 w— 0 ]/I‘: > J-YI (ﬁ-— .1'1 08 w -+ 41'2 coSs .'};I — ) [——- I/E cos w - é cos &)

|
|

0

=15 (— V'E G cos w + F cos #).
bfi—=0 VG 3 X, (— X, c0s 0 + X, cos ) = ]"E_F,' (— Fcos o + 1V E G cos o).
S _\_.(]/ o F M;ﬂ 6Ly LG TD };31-: M 1_\'2) sy b dui
L sfeve EM=R Tl 5 FL=E Jeotu i i P FM—GL W S )
b=z (VEFN =6 My o Vi R B ) ox a ot , o
—o 3|~V EMLE e P sosot (et e Vg PHU—EN Jeoso

Deze grootheden vullen we in de vergelijkingen (75) in, en vinden dan twee lineaire

hetrekkingen in cos m en cos i Dus is te voldoen aan:

I Ay oS | bl -
E(FM—GL)+ F(FL- M) - - H2E  F(EM—G L)+ G(FL—E M)-|- ’1_ H2 p
=i

L E PEN—GM)+G(EM—EN)+ - Hia |
P

r

E(FN—GM)+ F(FM—E N) -+

Na unitwerking, en deeling door [i*, volgt hieruit:
(11 J\' —_ ﬂ[ﬂ) 78 -|-— (_]': AT -}"- G L — 2K ;”) ¥s *** }_‘,‘ (+ — " — 0.

ziinde de vergelijking der hoofdkromtestralen, waarut blijkt, dat de vergelijkingen (75)
impliceeren, dat de straal van den cirkel aan een der hoofdkromtestralen gelijk genomen
b L - i wlc =3 » | )
wordt. De voorwaarden I en III van het stelsel (75) zijn nu door een enkele te vervangen
bijv. de eerste, Deze drukt uit, dat:
sha,du+ 2ba,dv

een totale differentinal is. Beschouwen nu onze totale differentiaalvergelijking (64), dan is
deze, bij inachtname van vergelijking (75), als volgt te schrijven:

6 — (X ba,du-+ Xba,dv).

| 4 cost .

Het tweede lid is dus een totale differentiaal,, en de verlangde voorwaarde hiermee

vervald,  Dit leidt tot de volgende

1 ' ’ . lakken van  een stelsel ameter k.
Stelling : - Construeert men: de normaalvlakken el parameterkrommen
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(zooals ze boven door ons gedefinieerd zijn) een stelsel van 2 cirkels , waarvan de centra op
dat opperviak gelegen zijn, en waarvan de straal gelijk is aan een der hoofdkromtestralen
dan is deze congruentie noodzakelijl: een normale congruentie.,

S 7. Congruentie B net centrale opperviak is cen ontwilkelbaar opperviak. Behalve
de onderstelling, dat de cirkels in normaalvlakken van het centrale oppervlak gelegen zijn ,
nemen we aan, dat de voorwaarden:

Sy =D g c——()

vervald zijn. We kiezen de parameterkrommen eerst weer zoo algemeen mogelijk, dus
zoodanig, dat zij als centrale krommen van cyclische oppervlakken optreden, waarbij de
richting (by, by, by) voor elken cirkel loodrecht op de poollijn van het punt 7" staat. Bij
deze onderstelling, gaat vergelijking (66) over in:

(dudvP—=20

waaruit volgt, dat de parameterkrommen zelven optreden als de centrale krommen van
de oppervlakken van de tweede soort, waarin de congruentie gerangschikt kan worden.
Wart de focaalpunten betreft. zoo blijkt uit vergelijking (22), dat deze gegeven worden door
het stelsel vergelijkingen :

2bofusint +r,—=0, Xbfisint +r.—0. . . . . S EN(78)

Daar de term met cos ¢ in deze vergelijkingen ontbreekt, worden zij op elken cirkel
door een stelsel lijuen, loodrecht op de richting (by, by, by) |zie fig. 11| ingesneden,
Gaan wij thans de beteekenis van de voorwaarden: X a, ¢ — U rae = Oma:

, P e -
Suc=y2 u3 (X sin o + X, sin o).
_ A e P2y,
SO, c=p3 | v“ (X sin o + X, sin ).
; ,

Met behulp van de formules (47) en (48) gaan bovenstaande uitdrukkingen over in:

1, FM—LG@G FL—EM
| V) 73 -

- FN—GM . - M —EN
VE 173 sinw 4+ 1/ G 8

sinw + 1V G

sin &y = 0,

gin & = 0,

d. z. twee lineaire betrekkingen in sin w en sin &, Dus is te voldoen aan:

| FM— LG FL—-—EMi
| P N—GM FM—EN

— (b))

of':
(£ G — F?) (L N— a8 y==I0

Daar de eerste factor verschillend van nul is, geldt:
LN—M2=0,

m. & w. ook in dit geval is het centrale opperviak een ontwikkelbaar opperviak, Dit leidt
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ons tot het invoeren van een nieuw stelsel parameterkrommen, de beschrijvende lijnen, en
haar orthogonale trajectorién. De beschrijvende lijnen kiezen we als de parameterkrommen
w — const. In het oog houdend, dat de parameterkrommen tevens kromtelijnen zijn, en
voor een regelvlak, zoowel r, als s, oneindig is. vindt men voor de coéfliciénten der vormen
S, en S;: [zie de verg, 71—75]:

S O ——— V" E sin o >ecb, = — ( l;;_E “}- ;r")

Xbf, = VG cos Scb,— — @, L 9)
AT 1/ E cos o SR — V& st i)

B3 — 1/ G sin o Shagh—10 2 /

Om de centrale krommen van de oppervlakken van de 2¢ soort te vinden, moeten
wij, bij deze keuze van parameterkrommen, bovenstaande grootheden in vergelijking (17)
invullen. Dit levert:

VV Esinodu —V Geosordo rett - r,d v .
L (VE S r ey =i1]
/ 4+ n|du o, do V' Ecosddu- VG sinado
W,
. T .
We beschouwen speciaal het geval: & = const. — . Dan bezit bovenstaande verge-

lijking een factor: o w = 0. De integraal w — const., levert ons de beschrijvende lijnen, die
dubbel geteld moeten worden De congruentie kan derhalve aldus geconstrueerd worden: men
oaat nit van een onwikkelbaar oppervlak, en construeert in het normaalvlak, dat door een
bepaalde beschrijvende lijn gaat, een stelsel cirkels, waarvan de centra op die beschrijvende
lijn gelegen zijn. De aldus gevormde congruentie is tevens een normale congruentie, als de
straal evenredig genomen wordt aan den bij elk punt behoorenden hoofdkromtestraal, er
zorg voor dragende, dat de verhoudingsfactor voor een en dezelfde beschrijvende lijn

constant is. Immers, daar ¢ = I8, en dus 20/, —= X a, b = 0 is, gaan de beide voor-

—

waarden I en Il in cen enkele over, die tot de conditie:
7=y yp (1)
voert. Bij deze keuze van parameterkrommen worden de focaalpunten gevonden uit:

Sbfusint4r, _ rEbesint4cf, o
Sl sint+r,  rabcsint+xcf, 20 Ve (D)

of:

P(Xbf, S b c—2bfy2b)sindt + (XL X ey—2bf, Xef)sint 4 r Sefy—r,Xefu==0

een quadratische vergelijking in sin £, hetgeen overeenkomt met vergelijking (78). In het
speciale geval, dat:

7T
Q
r

iy —

i« (en dus ook in het geval der normale congruentie), verdwijnt de coéfliciént van den
term van den 2 graad, doordat 20/, =0 wordt. De beteekenis hiervan blijkt het
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duidelijkst uit vergelijking (78). De tweede vergelijking gaat nu over in: r. = (. Voeren
we de substitutie /g | — w uit, dan is zij als volgt te schrijven:

“

220w+ r, (I w?) = 0.
Voor # =  , en dus X b/, = 0 vindt men: w — + ;. Twee der focaalpunten vallen
derhalve met de imaginaire cirkelpunten samen.

De andere twee focaalpunten vindt men
uit de vergelijking:

Ebofu2cly — 20 Zcf)sint +r,Scf, —reScf,—0.
Substitueert men hierin de in (79) berekende grootheden, dan verkrijgt men:

VEGsint —r, 1V (G—0
en dus:

sin t— v
S

/fL __SF/}/ (ﬂts—'
//



STELLIN G E N.

De, in dit proefschrift ingevoerde, vormen S, en S, zullen, nmet alleen bij het onderzoek
van een enkelvoudige of° meervoudige oneindigheid van cirkels, maar ook bij dat van: een
enkel- of meervoudige oneindigheid van ruimtekrommen, een belangrijke rol kunnen spelen.

11,

Braxcar schrijft, terwijl hij een cirkel analytisch voorstelt op de wijze, als op'blz. |
van it proefschrift is geschied: in der Ebene des Kreises ziehen wir zwei aufeinander
senkrechte, im fibrigen willkiirliche Durchmesser.

Bij wverschillende vraagstukken is het evenwel niet gewenscht, dat deze willekeur
blijft bestaan.

Biaxonr, Vorlesungen itber Differentinlgeometrie, pag 347, ed. 1910,

111,

In zijn: Eramen des différentes méthodes employies pour résoudre les problémes de
-géometrie, zegh LAM B
£ 1 1 aF 1 3 o - . . N ' '
Toutes les fois qu'il s'agit de résoudre deux problomes analogues, I'un dans I'espace
I'autre sur le plan, il vaut mieux commencer par resoudre celui de I'espace,

Het is niet wenschelijk, deze methode, als algemeen geldend, te aanvaarden,

IV.

Bij vraagstukken, die over functies van een redele veranderlijke handelen, kan het,
tot beter inzicht van zich voordoende moeilijkheden, dikwijls van voordeel zijn het onderzoek
tot het complexe gebied uit te breiden,
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\'

Wanneer een stelling, zoowel voor niet-analytische als voor analytische functies geldt,
verdient het aanbeveling, dat in de handboeken over functietheorie, het bewijs dier stelling
voor eerstgenoemde functies ook vermeld wordt.

VAL

Hacen's afleiding der foutenwet, zooals deze in MerRrRmMAN (a Textbook on the Method of
Least Squares) gegeven wordt, is aan bedenking onderhevig.

VII.

Ten onrechte zegt MerrmAN; (1. c. pag. 205):
The probable error being the most natural unit of comparison, it is certainly to be
desired that it alone should be used, and the mean error be discarded.

VIIL.

MarcoNt heeft waargenomen, dat radiogrammen bij nacht beter overgeseind worden
dan bij dag. De verklaring, die FLEmiNGg van dit verschijnsel tracht te geven, is niet zeer
waarschijnlijk.

Marcont, Proc. Roy. Soc. 1902,

FremiNG, Cantor Lectures on Hertzian Wave Telegraphy, pag. 69.

IX.

GERDIEN'S bezwaren tegen de theorie van Esert, ter verklaring van het electrische
veld der atmosfeer, tasten deze theorie niet in haar grondslagen aan,
H. Egerr, Phys. Zeitschr. 5, 1904, H. Gerpiex, Ph. Z. 6, 1905,

X.

De onderzoekingen van Fiscuer en Hexe maken het bestaan van een chemisch-actieve
modificatie der stikstof onwaarschijnlijk.

R. J. Srrurr, Proc. Roy. Soc. 1911 en 1912, §5 4, 86 4, 87 A.

Fiscaer en Hese, Ber. D. Chem. Ges. 46 N° 3, 1913.
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XL

Door zijne, op de vergelijking van Vax bper WaaLs toegepaste, mathematische
bewerkingen komt Wicksenn tot resultaten, die met de werkelijkheid in strijd zijn.
S. D, Wieksenn, Phil. Mag. XXIV, 1912.

X1I,

Bij de atleiding van de bewegingsvergelijkingen heeft Picarp in de dvnamica het
begrip ,champ de forces constantes”™ ingevoerd. Dit is noch noodzakelijk, noch gewenscht.
B. Picarp, Quelques réflevions sur la Mecanique, Paris 1902,
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