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EINLEITUNG.

Die neue Technik, grofere Einkristalle der verschiedenen Metalle
zu gewinnen, hat die Méglichkeit geschaffen, das Metallkristall in
verschiedener Hinsicht 7y studieren, Mehrere Forscher haben speziell
die elastischen Eigenschaften untersucht. Nachdem die elastischen
Konstanten einiger Metallkristalle gemessen waren, lag es nahe sie
zu vergleichen mit den lingst bekannten Konstanten isotroper Metall-
stibe. Diese bestehen ja aus Einkristallen, eng aneinanderschlieBend,
mit allen méglichen Orientierungen der elastischen Hauptachsen, es
miissen also Beziehungen bestehen zwischen den elastischen Konstanten
der Kristalle und der isotropen Metallstibe. Voigt ist bis jetzt, so viel
ich weif}, der einzige Forscher gewesen, der solche Beziehungen ein-
gehend theoretisch untersucht hat — die neuen Versuche gestatten die
Priifung seiner Formeln, Seit 1924 haben solche Priifungen mehrfach
statt gefunden, Griineisen, Mazima und Sachs fanden dabei Abwei-
chungen die gréBer waren als die allerdings noch ziemlich grofle

Ungenauigkeit der Messungen. Die Voigtsche Theorie erscheint also
als eine zu grobe Anniherung,

In der vorliegenden Arbeit machen wir den Versuch einer besseren

Anniherung, Im 1. Kapitel wird die Voigtsche Theorie kurz aus-
einandergesetzt und kritisiert, Im II. Kapitel wird versucht eine
neue Theorie aufzubauen, Im III. und IV. Kapitel werden daraus
die Formeln abgeleitet fiir die elastischen Konstanten der isotropen
Aggregate aus hexagonalen bzw. reguliren Kristallen, und diese ver-
glichen mit den empirischen Daten,
meinen gut, auch in den F
bleiben griBere Abweichu
nalen Metalle Zink und
Stab aus sehr reinem Zin

Die chreinstimmung ist im allge-
dllen, wo die Voigtsche Theorie versagte, Es
ngen bei einzelnen Aggregaten der hexago-
Cadmium, besonders bei einem merkwiirdigen
k, den Griineisen 1907 untersucht hat. Dieses

i dyne
Aggregat (,,Zink II") ergab cfn"’"
1

einen Youngschen Modul 12,8 , 101
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wihrend Griineisen selbst spiter an Einkristallstiben mit verschiedenen
Achsenorientierungen als extreme Werte erhielt 3,520.10' und
11,500. 101, Hier versagt sowohl die alte Theorie wie die neue
und iiberhaupt jede Theorie, die von der Isotropie des Aggregats ausgeht.
Im V. Kapitel versuche ich eine Theorie aufzustellen fiir verschiedene
einfache Annahmen iiber nicht isotrope Verteilungen der Achsen-
orientierungen. Das elastische Verhalten des Zinkstabs II stimmt dann
ganz schén bei einer sehr plausibelen Annahme iiber den Aufbau des
Stabes, welche an andern Eigenschaften desselben Stabes nachgepriift
werden kann. Versuchsweise werden auch Abweichungen, die bei andern
Objekten gefunden wurden, durch spezielle Annahmen erklirt. Zum
SchluB kommt eine kurze Zusammenfassung.

In allen Untersuchungen beschrinke ich mich auf reversibele Vorginge,
grofere Beanspruchungen, wobei Gleitung auftreten koénnte, sind von
vornherein ausgeschlossen.

Dies iiber den Inhalt der Arbeit. Was die Form anbetrifft, so ver-
wenden wir der Hauptsache nach die Voigtsche Terminologie; die
verschiedenen Symbole haben also dieselbe Bedeutung wie in Voigts
Lehrbuch der Kristallphysik. Zwar ergeben die Symbole der neueren
Tensorrechnung einfachere Formeln mit Ersparung mancher unange-
nehmen Faktoren 2 und § — alle Abhandlungen mit deren Ergebnissen
wir uns beschiftigen, benutzen aber die Voigtschen ci und s und
anders gewahlte Konstanten miissen also doch schlieBlich wieder
umgerechnet werden. AuBerdem fordert unsre Methode schon
im Anfang die Darstellung der freien Energie als Funktion von
3 Deformationen und 3 Spannungen, von diesem Augenblicke an
wiirden wir also doch die eleganten Formeln der Tensorrechnung
aufgeben miissen.

Mit Voigt bezeichnen wir die Anderung der freien Energie in der
Volumeinheit bei einer isothermen Deformation mit & Die Verschie-
bungen in den 3 senkrechten Achsenrichtungen . heilen u, v, w, die

) : S ou
Deformationen Xy o « « o Vas » » » « sind definiert durch x; =<, .. . .,
w . ow : : e A
Y=, -+ .—5, . . .. Um Minuszeichen zu sparen, benutzen wir die
0z ¢

Voigtschen Druckkomponenten mit gedndertem Vorzeichen, fiihren
also normale Spannungen X, ¥, und Z, und tangentielle Spannungen
Y.(= Z,), Z.(= X.) und X,(= Y,) ein. Dann gilt fiir jede homogene
Deformation eines Kristalls:
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25 = Xxx»,- "I“ Yyy_u + Zzzz + zjizy _;— ‘Z.IZ.'B + nyy SR ¢ (1)

2;_:: = cllx-'l'lz “l‘ . - - . * . . . . * . _}— Cﬁuxyz '}*
IR 2C o Vo LR S 2c52,%; . . (2)

2::: == S]]sz + RN e LS e e NS ‘i“ SﬁsXye ‘+—
"J|‘— 2812Xxyy + + + 8 2 e+ s 4 a . "” 23552{3Xy . . (23)

Aus den Gleichungen (2) und (2a) erhilc man durch partielle
Differentiationen die Hookeschen Gleichungen in der einen oder andern
Form:

2G-S A ot Gy, USW. L L L . . (3)
Xe=SuXz+ . . . A 5eX,, usw. . . . . . (3a)

Die ¢z heiBen die Elastizitiitskonstanten, die sz die Elastizititsmoduln
des Kristalls,

Es gibt im allgemeinen 21 Elastizitﬁtskonstanten, zwischen welchen
aber in den meisten Kristallklassen Beziehungen bestel

1en. Bei geeigneter
Wahl des Achsenkreuzes reduziert sich die

Zahl im hexagonalen System
aubSH(ci e e C12s C14), im reguliren System auf 3 (c11, €13, €yy), bei
isotropen Substanzen auf 2, Die erste Molekulartheorie der Elastizitit,
die Cauchysche, glaubte die Zahl der Konstanten weiter reduzieren
zu konnen durch die Gleichungen:

Caa = Coay Cp5 = C3y, Coq = Cia

Cs¢ = C14r Coq = Co5 Cy5 = Cag

- (4

Im hexagonalen System wiirden dann 3, im reguliren 2, bei der
Isotropie 1 Konstante iibrig bleiben. Der Streit zwischen Rari- und
Multikonstantentheorie hat sich so ziemlich durch das ganze 19t
Jahrhundert fortgesetzt, bis die Messungen immer deutlicher fiir die
Multikonstantentheorie entschieden und schlieBlich Born 1) eine Mole-
kulartheorie der Elastizitit aufstellte, welche die experimentell erwiesene
Ungiiltigkeit der Cauchyschen Gleichungen erklirte.

Um unsre Formeln moglichst einfach zu gestalten, schreiben wir
Spannungen und Deformationen im Kristall bei willkiirlich gewihltem
Achsenkreuz X, .., ., Xp « ., die hinzugehdrigen Konstanten und
Moduln aber cir’ und si’. Die Spannungen und Deformationen im
Bezug auf die Hauptachsen heien X,°..... x,°..... die

) M. Born, Dynamik der Kristallgitter, 1914; 2. Aufl. u. d. Titel ,,Atom-
theorie des festen Zustandes" 1923,
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hinzugehoérigen Hauptkonstanten und Hauptmoduln ci und sir. In
der Theorie treten primire und sekundire Aggregate auf von
axialer Symmetrie, ihre Elastizititskonstanten werden @iz geschrieben.
Die Konstanten der isotropen Aggregate heifen € (fir Gy = Gy),
, (fiir G, = G,y) und G, (fiir Gy = Ceo) mit der bekannten Isotropie-
bedingung:
G — 20 s s S IETnt (D)
Andre GroRen, die in den Formeln fiir die einzelnen Kristallsysteme
auftreten, werden in den betreffenden Kapiteln erklirt; hier erwihnen
wir noch die quadratische Funktion, die wir im II. Kapitel statt der
freien Energie & benutzen:

@ = — 272, —ZyZy—LZp + « + s e a0 e oo (60
also:

20 = Xx, + Yyyy + Xyxy — 2.2, — LyZy— ZnZs o« (63)



L.
DIE VOIGTSCHE THEORIE DER
ELASTIZITAT QUASIISOTROPER MEDIEN.

§ 1. Die Voigtschen Formeln.

Der einzige mir bekannte Versuch, die elastischen Konstanten der
Kristallaggregate zu berechnen aus denen der Einzelkristalle, ist vor
mehr als 40 Jahren von V. Voigt!) gemacht worden. Er sollte als Beitrag
zZur Entscheidung des Streites zwischen Rari- und Multikonstanten-
theorie dienen, In vorhergehenden Untersuchungen ) hatte Voigt
die Elastizititskonstanten von verschiedenen kristallisierten Mineralien»
wie Steinsalz, FluBspat, Kalkspat, Quarz, Baryt bestimmt. Dabei hatte
sich ergeben, daB die Cauchyschen Bedingungen (4) nie genau und nur
einmal (beim Steinsalz) angendhert erfiillt waren, Fiir isotrope Kérper
reduzieren sich die 6 Cauchyschen Gleichungen auf eine einzige, die
Poissonsche Gleichung

€ = 3G,.

Voigt macht die Bemerkung, daB viele als isotrop bezeichnete Korper
in Wahrheit quasiisotrop, d. h, Aggregate von Kristallbrocken sind,
Kann man aus den Elastizititskonstanten der Einkristalle die Konstanten

des Aggregats berechnen, so wird sich ergeben, ob die Poissonsche
Gleichung erfiillt ist oder nicht, Voigt m

acht nun folgenden Ansatz,
den er vorliufig kaum niher begriindet:

Die elastischen Deformationen gehen stetig durch die Grenzflichen

der Kristalle hindurch und haben in den verschiedenen Kristallen mit

verschiedenen Achscnorientierungcn, die ein Volumelement des Aggregats
erfillen, nahezu denselben Wert.

Mit kleiner Miihe bildet er dann die Mittelwerte der elastischen
Spannungcn. Daraus folgen sogleich die Elastizititskonstanten des

') W. Voigt, Gétt. Abhandl. 1887, S. 48; Wied. Ann. 38, S. 573,
) W. Voigt, Pogg. Ann., Erg. B. VII, S. 1 und 177, 1875.

W. Voigt, Wied. Ann. 31, S. 474, 1887.

W. Voigt, Wied. Ann. 34, S. 981, 1888.

W. Voigt, Wied. Ann, 35, S. 642, 1888,
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quasiisotropen Mediums, ausgedriickt in den Kristallkonstanten. Mit
den Festsetzungen:

A = ¥ey + €2 + C)

B = ¥(cy3 + €z 1 C12)

C = 3cgs +Cs5 +Cag) « ¢ o o o ¢« o ¢ o & (7)
erhilt er unabhingig vom Kristallsystem fiir die Aggregatskonstanten
die Formeln:

€ =134 + 2B + 40

6, = 4(4 + 4B —20)

3, —=34A—B+3C) . . .. .. L T(8)
wobei die Isotropiebedingung (5) automatisch erfiillt ist. Bei den
Kristallen, wo die Gleichungen (4) nicht gelten, ist fiir das Aggregat
die Poissonsche Bedingung im allgemeinen nicht erfiillt, auch fiir die
hinzugehdrigen quasiisotropen Medien gilt also die Multikonstanten-
theorie.

Beiliufig vergleicht Voigt bei einigen Mineralien die berechneten
Aggregatskonstanten mit den empirisch bestimmten; iiber das Ergebnis
werde ich im § 3 berichten.

§ 2. Die Begriindung des Voigtschen Ansatzes.

Die vorhergehende Theorie beruht auf dem Ansatz von der Stetigkeit
der elastischen Deformationen. Die Begriindung dieses Ansatzes findet
sich im Anhang II des Lehrbuchs der Kristallphysik #). Voigt gibt
hier eine allgemeine Theorie der Beziehungen zwischen Einkristallen
und ihren quasiisotropen Aggregaten; die Strémungen der Elektrizitit
und der Wirme werden ausfithrlich behandelt, nach Analogie wird
dann das elastische Problem gelost.

Voigt stiitzt seine Theorie auf 2 Annahmen:

,,daB die Kristallbrocken klein sind selbst gegen die Dimensionen
der Volumelemente, die man bei der Entwickelung der Theorie eines
Vorganges benutzt, dabei aber immer noch groB gegen die Wirkungs-
weite ¥) molekularer Krifte,”” und ,daB sie auBerdem den Raum
liickenlos erfiillen.”

Dann bemerkt er, daB bei den meisten Vorgingen ausgezeichnete
Funktionen bestehen ,,die nach ihrer Definition Summen tiber Werte

%)  W. Voigt, Lehrbuch der Kristallphysik, Nachdruck 1928, S. 954.
1) l.c. S. 954 steht ,, Wirkungsweise", dies ist wohl ein Druckfehler.
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darstellen, die sich auf die einzelnen Molekiile oder ElementarmaRBen
des Koérpers beziehen. Beispiele liefern die Strémungen U der Wirme
und der Elektrizitit. ,,Im Gegensatz dazu wird die treibende Kraft |/
durch den Zustand in einem einzigen Punkte definiert’ %).

An diesen Unterschied zwischen U und V kniipft Voigt
Die treibende Kraft hat ein Potential, das durch die Gr
Kristallbrocken stetig hindurchgeht. Da schreibt er:
hieraus schlieBen diirfen, daB bei
das Potentialgefille
erfiillen,

einen zweiten,
enzflichen der
»Wir werden
hinreichender Kleinheit dieser Brocken
in allen denjenigen, welche ein Volumelement
sehr nahe gleiche GroBe besitzt.

Von den Strémungskomponenten gilt gleiches keineswegs, von diesen
sind nimlich nur die zu einer Zwischengrenze normalen, nicht auch
die tangentialen in den Grenzen stetig. Denken wir uns z. B., um einen
einfachen, leicht tibersehbaren Fall zu erhalten, einen quasiisotropen

Kérper aus diinnen zylinderférmigen Kristallbrock
deren Achsen parallel liegen,

von Zylinder zuy Zylinder
longitudinale Potentialgefill
gleich sein muB.” )
Voigt schreibt nun fiir die
einem Volumelement eines quasi
Uy = 6%1{111V1 + sV, + LsVsligi u.s. w.,

wo Q der Querschnitt des EI

€n zZusammengesetzt,
so wird die Strémung lings dieser Achsen
unstetig variieren kénnen, wihrend das
e in benachbarten Zylindern merklich

mittleren Strémungskomponenten in
isotropen Aggregats:

ements senkrecht zur X-Achse ist, die
Summe genommen wird iiber alle Kristallbrocken des Elements und
I, u.s. w. Konstanten der Leitfihigkeit sind, abhingig von den Achsen-
orientierungen der einzelnen Kristalle, Die Summe X zerfillt in eine
Doppeltsumme, wenn alle Brocken von a

nnihernd gleicher Orientierung
durch das Symbol S zusammengefalt werden und die Summe iiber
k

alle Orientierungen S geschrieben wird;
i

|U]! — _g) {Slllf(vl)k‘?k -+ Sll2§(vz)f.9!; ar '§l]:t§(vit)lcq}.‘} < (9)

»Es ist nun bei
Potentiale kein Grun
mit der

den oben erérterten Stetigkeitsverhiltnissen der
d einzusehen, warum die Summen M T o e
Orientierung der Kristallbrocken, auf die sie sich beziehen,

5 Lc. S. 956.
9 Ww. Voigt, l.c. S. 957,
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wechseln sollten. Wir werden sie demgemil ausschlieBlich als Funk-
tionen des Ortes betrachten diirfen, an dem sich das Volumelement
befindet, und setzen

Si(Vigx = lVllQi

wo |V;| der mittlere Wert der beziiglichen Feldkomponente in dem
Element ist, und Q,, der Anteil von Q, der von Kristallen der Orien-
tierung (i) bedeckt wird, fiir alle Orientierungen den gleichen Wert
hat.” 7)

Die Gleichungen (9) erhalten dann die Form

UL = [l + [Val + 2] - |Va| + |Ls] - |Vl usowe & o (10)

wo die vertikalen Striche wiederum Mittelwerte bezeichnen iber das
betrachtete Volumelement. Nach Wortlaut und Sinn der Voigtschen
Ableitung konnten die Mittelwertstriche bei V,, V, und V, wegfallen.

SchlieBlich folgt dann fiir die Leitfihigkeit | des quasiisotropen
Aggregats durch Mittelung iiber alle Orientierungen:

D= ly| = lleol =Ml « « ¢ ¢ o v v e (11)

welcher Wert sich ganz einfach berechnen 1a8t.

Fiir das elastische Problem liegen nach Voigt die Verhiltnisse vollig
analog. ,,Die DeformationsgroBen Xy « + « « » , xy driicken sich durch
die Gefille von Funktionen (ndmlich der Verriickungskomponenten
u, v, w) aus, die samtlich stetig durch die Grenzen zwischen den ver-
schiedenen Kristallbrocken gehen' §), Er iibertrigt diese Stetigkeit
stillschweigend von den Verriickungen auf ihre Ableitungen, die Defor-
mationen. Sodann ergibt sich (in etwas vereinfachter Fassung)

— | Xe| = lcnlxe + lesalyy + oo e+ |cglxy, wsW. o (12)
Die Berechnung der Mittelwerte ley| w.s.w. fithrt sodann auf die

Voigtschen Formeln (8).

§ 3. Die Voigtsche Priifung der Formeln (8).
Als Voigt seine Formeln verdffentlichte, war die Priiffung noch nicht
moglich, Von den quasiisotropen Medien, deren elastische Konstanten

7 W. Voigt, 1. c. S. 958,
%) Derselbe, l.c. S. 961.
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gemessen waren, hauptsichlich Metallen, kannte man keine Einkristalle,
grol und homogen genug zur Bestimmung der Kristallkonstanten, Voigt
ging also, um Zahlenmaterial zur Priifung seiner Theorie zu erhalten,
umgekehrt vor: er suchte aus der Reihe der Stoffe, deren Kristallkon-
Stanten er gemessen hatte %), diejenigen heraus, von welchen er aufler
den Kiristallen auch dichte, homogene Aggregate mikrokristalliner
Struktur untersuchen konnte. Er wihlte FluBspat, Kalkspat, Baryt
und Quarz. Fir Quarz bestimmte er die Konstanten an Feuerstein
und Opal, bei welchen Stoffen die Anwesenheit von Quarzmikrokristallen
allerdings damals noch nicht feststand,

Allenfalls war zy erwarten, daB die gemessenen Elastizititskonstanten
der Aggregate kleiner sein wiirden als die berechneten, da die Einzel-
kristalle hiufig durch ein fremdes Medium zusammengekittet sind.
Was das eventuelle Vorkommen von Porien im Aggregat anbelangt,
hat Voigt nachgewiesen %), daB regelmiBig verteilte Hohlungen die

. ¢ : .
Konstanten ¢ und €, des Aggregats verkleinern, s aber nicht verindern;
1

dagegen wird dies Verhiltnis geindert durch Briiche und Einschliisse.
AuBerdem wird, wie Voigt bemerkt, auch bei idealen Aggregaten kaum
vollstindige Ubereinstimmung Zu erwarten sein, weil die schon ziemlich

groflen relativen Ungenauigkeiten der gemessenen Kristallmoduln s
bedeutend vergroBert wiederkehre

n in den aus ihnen berechneten
Kristallkonstanten Cik.

Fiir die Vergleichung der berechneten und gemessenen GroBBen dient
die Tabelle A 1, Hierin sind G, €, und G, die Elastizititskonstanten
der quasiisotropen Aggregate, definiert durch die Gleichungen:

A= el Gy + 6,2z, us.w.

Y. = Gy, us.w.

Die zwei Baryte der Tabelle sind Stiicke von verschiedener Farbe,
Quarz T st Feuerstein, Quarz II Opal. Alle Konstanten sind gemessen

oy V0. Voigt, Wied. Ann. 31, S. 474, 1887; Wied. Ann, 34, S. 981, 1888;
Wied. Ann, 35, S. 642, 1888,
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A 1. (Voigtsche Theorie).

: . kg X ©

Einheit —3 G G, G, w@l
berechnet 14610 5610 4500 2,60
FluBspat o ressen 19) 11900 | 3370 | 4282 |. 3,53
berechnet 12162 4545 3809 2,67
Kalkspat . essen 19) 7070 | 2370 | 2354 2,98
berechnet 8777 3633 2575 2,42
Baryt gemessen 11°) 7400 2760 2320 2,68
SIlY) 7720 3130 2295 2,47
berechnet 10267 747 4760 13,74
Quarz gemessen 117) 7700 660 3521 11,67
L) 3910 251 1829 15,58

Von den empirischen GroBen ist €, ein anderes Symbol fiir den
Torsionsmodul &, der direkt gemessen wird, 6 und G, aber werden
berechnet aus & zusammen mit dem gemessenen Youngschen Modul
mittels der Gleichungen:

_ (6 +26) (€—G))

11
€ G+ 6, m13)e)
e (e ) R (14) 1)
welche als Losung ergeben:
. 34T —6)
b. — —ﬁ -------- (15)
und
. T(E — 2%)
G, = 'S—fjé— ........ (16)

Kleine Fehler in G und T verursachen unter Umstinden sehr be-
trachtliche Anderungen in € und G;. Um diese VergroBerung der
Fehler zu vermeiden, empfiehlt es sich, umgekehrt mittels (13) und (14)
aus den berechneten © und @, die theoretischen Werte fiir & und T
71 bestimmen und diese zu vergleichen mit den gemessenen § und .

In die Tabelle A 2 haben wir neben € und T auch das Vcrh;‘iltnis%

aufgenommen, das wie E. durch regelmiBig verteilte Porien nicht
1

geindert wird.

10) W, Voigt, Wied. Ann. 42, S. 537, 1891; 44, S. 168, 1891.
1) Vergl. z. B.Love, A Treatise on the Math. Th. of Elasticity, 4th Ed., S. 102, 103.



11

A 2. (Voigtsche Theorie).

Einheit ;f‘n% G T %
berechnet 11490 4500 2,55

RS et 10450 4282 2,44
berechnet 9690 3809 2,54

SNSRI e 5888 2354 2,50
berechnet 6245 2575 2,43

Baryt gemessen [ 5900 2320 2,54
gemessen II 5915 2295 2,58
berechnet 10170 4760 2,14

Quarz gemessen [ 7597 3521 2,16
gemessen I] 3880 1829 2,12

In Hinblick auf die experimentellen Schwierigkeiten, die alle ge-
messenen elastischen Konstanten sehr unsicher machen und in Anbetracht
der unbekannten Einfliisse von Porien und Ein
das Recht, von einer leidlichen chreinstimmung zu reden. Die mog-
lichen Fehler sind aber so betrichtlich, daB man von einer positiven
Bestiitigung der Voigtschen Theorie kaum reden darf,

schliissen hat Voigt wohl

§ 4. Priifung der Formeln (8) an neuen Daten.

Die Grundsitze, worauf die Voigtsche Theorie beruht, insbesondere
die liickenlose AneinanderschlieBung, sind wahrscheinlich oft bei Metallen
weitgehend erfiillt, Aber noch im Jahre 1910, als Voigt seine bekannte
Monographie herausgab, waren homogene Metalleinkristalle von ge-
niigenden Dimensionen nicht verfiigbar fiir die Priifung der Theorie.
Diese Priifung ist erst moglich nachdem Czochralski %) 1918 die
Technik erfunden hat Metalleinkristalle aus der Schmelze zu ziehen.
Seitdem sind an mehreren Metalleinkristallen die elastischen Konstanten
bestimmt worden und Zwars

von Bridgman an Antimon, Cadmium, Wismuth, Wolfram, Zink, Zinn %)

von Griineisen an Zink und Cadmium 19),

von Goens an Aluminium und Gold 19)

von Mazima und Sachs an Messing 1),

’

) Crochralski, 7, 1. phys. Chemie 92, S. 219, 1918.

") Bridgmay, Proc, Nat. Ac. of Am. 10, S. 411—415, 1924 Proc. Am. Ac. 60,
S. 306—383, 1975,
;:} Griineiscnl u. Goens, Z. f, Phys. 26, S. 235—249, 1924,
u) Goens, Die Naturwissensch. 17, S. 180, 1929.
) Mazima y, Sachs, Z. f. Phys. 50, S. 161—186, 1928,
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Aus den von ihnen bestimmten Werten der Voigtschen Moduln sis
habe ich die Konstanten cj; berechnet und mit einigen andern Konstanten

zusammengestellt in der Tabelle B 1

ce‘s 220 | ¥0°T A 0 182 | 996 | LLT | €9% | 6€8 (1g) wurz
€6l 19°0 L9°T : 7zev—| 187 | 68'c | 80°T | €6C | OL'S (1g) yInwsIp
oz‘e— |eg'o—| 200 & 160 29z | 8% | ¥b‘C | SL8‘T | ¢EL (1g) wownuy
Zh6’0 | 9gge | €e6'e X « | ezp'y | 0ST'S | TSI | 128F | 90Tl (f15) wnipe)
FOLT 918‘c | OF0F i H 0GLc | $09F | 2951 | 86°C | T6'0I (f1g) wnupe)
opz'e—| LLE| <SOLE A “« | crew | wep's | 00 | 1€%F | 8091 (19) yurz
o16'c—| 19% | s80°¢ [FP—')i=| O c1g% | #12°9 | 00F | €2c | 06°ST (ag) quiz
ITs It hh.no.ml.l Y3 4L 113 s mﬁqh dHa.ﬂ.—. mhqﬂﬁ A-m ‘N -Eu M—.HMWWNE
i LR (17 TR - it st 1 00% | 1991 | T¥'61 (‘D) PI°D
t SO 060 = L £ 4 “ | o8z | ¥8¢ | ve0l (‘D) wnuumy
fz=| f= |§10 Wy = 0 7Ty — | o = | 1g‘ST | 86°0C | LT'IS (1g) wedop
y g I 999 (2% 815 889 175 Iy 1y X 11—01

*UD[[LISIUIA[[EIRJA] UOA UAUEISUOS] YISHSE[H T d
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Hier sind f, g und h GréBen, die im ITI. und 1V, Kapitel benutzt
werden, mit den Definitionen:

f =cen—cpp— 2¢y;
E81C11 = Cra — 20y
h=cy + Caz — 2013 — 4cyy.

Sie verschwinden, wenn der Kristall isotrop wird, man kann sie daher

als ein MaB der Anisotropie betrachten. Bei den trigonalen Kristallen
ist ¢, ein weiteres MaB der Anisotrop
Caa — Cgge

Bevor wir die Daten d
Voigtschen Theorie ist no

e, wie bei den tetragonalen

er Tabelle B 1 anwenden zur Priifung der
ch folgendes zu bemerken:

1% Die Messungen der s; sind bis jetzt noch ziemlich ungenatu.
Bei den letzten Untersuchungen schitzt Goens die Genauigkeit beim

Gold auf 5 %; Mazima und Sachs schreiben: ,,die Genauigkeit der
Messung ist aber aus technisch nicht geklirten Ursachen gering.”

2%, Die Bercchnung der ¢ aus den sie. findet statt mit Formeln,
die z. B. beim reguliren System so aussehen:

P 1 St Spp ,
= (51 + 2519) (51, — S19)

— 512
Cia = —
- (511 + 251,) (5, — S12)
1
Ciy = — )
11 511

Wegen des relativ kleinen Wertes von s;; |- 2s,,

werden eventuelle
Fehler in S11 und s;, im allgemeinen stark ver

groflert in ¢;; und c¢,, wie-

’ ; ; 11,05 - /
derkehren. So ist beim Messing ¢,, — 2.70.27.75 + €in Fehler von 19,

1n s, allein verursacht schon Fehler von 5 % in ¢;; und ¢y, also nach (8)
Fehler von 5 9/

/o 1n den Aggregatskonstanten ¢ und (,, wihrend in @,
die Fehler sich aufheben. Auch wenn die Voigtsche Theorie vollstindig
richtig ist, wird sie also wohl nie genaue Ubereinstimmung zwischc%n
den berechneten und gemessenen Aggregatskonstanten ergeben; ein
Unterschied von etwa 5 9, in ¢ und T (wenn auch diese Grofen weniger

empfindlich sind als G und §,) spricht noch nicht gegen die Voigtsche
Theorie,

) W. Voigt, Lehrbuch, S. 741.
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Wie es um die Ubereinstimmung steht zeigt die Tabelle B 2. Diese
Tabelle enthalt:

19, die mittels (8), (13), (14) aus B 1 berechneten Werte der Dehnungs-
und Torsionsmoduln G und T der quasiisotropen Aggregate,

2%, die empirisch bestimmten Werte derselben Moduln,

39, das Verhiltnis £ als ein MaB fiir die Anisotropie der Kristalle,

€11

¥

49, das Verhailtnis %, dem Voigt groBen Wert beilegt, weil es fiir

poroses und porienfreies Material denselben Wert aufweisen soll.

Von den vielen gemessenen Werten von § und ¥ habe ich bei jedem
Metall nur diejenigen aufgenommen, die an demselben Metallstiick
gemessen sind ; von den verschiedenen Daten desselben Forschers nehme
ich hier die Mittelwerte. Fortgelassen habe ich bei dieser vorliufigen
Priifung die Metalle Zink und Cadmium, wo die verschiedenen empi-
rischen Daten in allzu scharfem Widerspruch stehen; dieser merk-
wiirdige Fall wird ausfithrlich besprochen im III. und V. Kapitel.
Beim Gold habe ich den Griineisenschen Stab ,,Gold I ') fortgelassen,
obgleich seine § und § beide gemessen sind; die Werte & = 7,65,
T = 2,55 wiirden bei Isotropie ergeben (nach (15) und (16)) € = ¢, = =
und der Stab ist also gewiBl nicht isotrop, wie Griineisen selbst iibrigens
empirisch nachgewiesen hat.

Dagegen habe ich die Kochschen Moduln von Messing ') aufge-
nommen, obgleich G und € an verschiedenen Materialproben gemessen
sind; die Proben hatten aber gleiche Zusammensetzung (60 °/, Cu,
409/, Zn) und waren in derselben Weise behandelt.

Mit Ausnahme dieser Messingkonstanten sind alle gemessenen Aggre-
gatskonstanten den Untersuchungen zweier Forscher entnommen, und
zwar den ilteren von Voigt *) und den neueren von Griineisen 1),

18) Griineisen, Ann. der Phys. 22, S, 801, 1907.

19) Koch u. Dannecker, Ann. der Phys. (4) 47, 5. 197—226, 1915.
Koch u. Dieterle, Ann, der Phys. (4) 68, S. 441—462, 1922,

20) W, Voigt, Wied. Ann. 48, 5. 674—707, 1893,

21) E, Griineisen, Ann. der Phys. 22, S, 801, 1907; 25, 5. 825, 1908,
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B 2. Vorliufige Priifung der Voigtschen Theorie.

C. G. S. Einheiten G101 |z 10-u| £ -

C11 R
berechnet aus Kristallkonstanten 7,005 | 2,62 |—0,09 | 2,67

Al. | gemessen von G. (3 Stibe, gezogen) | 7,06 2,66 2,65
(reg.) 5 »» V. (6 Stibe, gegossen) | 6,45 255 2,55
berechnet aus Kristallkonstanten 8,406 | 2,96 |—0,27| 2,84

Au. |gemessen von G. (1 Stab, gezogen) | 7,92 2,76 2,87
(reg.) v » V. (2 Stibe, gegossen) | 7,44 2,795 2,66
berechnet aus Kristallkonstanten 13,2 504 (—0,73| 2,62

Mess. | gemessen von K. (DrahtundBand,gez.) | 7,29 | 3,82 1,91
(reg.) 5 .» V.(8 Stibe, gegossen) 0,04 | 3,625 2,49
berechnet aus Kristallkonstanten 3,26 1,285 0,11 2,54

Bi. | gemessen von G. (1 Stab, gegossen) 3,26 C— -
(trig.) 7 »w V. (3 Stibe, gegossen)| 3,13 1,17 2,68
berechnet aus Kristallkonstanten 5,16 1,935 | 0,02 2,72

Sn, |gemessen von G. (1 Stab, gegossen) 5,47 — —_
ﬁrag) o ,» V. (8 Stibe, gegossen)| 5,31 | 2,04 2,60

Aus dieser Tabelle lassen sich verschiedene Schliisse ziehen.

&

Erstens iiber die Bedeutung des =. Dieses Verhiltnis zeigte bei den

1

Gesteinen der Tabelle A 2 treffende Ubereinstimmung, nicht nur
zwischen berechneten und mittleren gemessenen Werten, sondern
besonders auch zwischen den gemessenen Werten untereinander, selbst
bei den so verschiedenen Materialproben Quarz I und II d. h. Feuerstein
und Opal. Bei den Metallen ist dies keineswegs der Fall. Bei gegossenen
und gezogenen Metallen stimmen die &

b

tiberein als die & selbst und entschieden schlechter als die T. Dasselbe
gilt auch fiir verschiedene Proben desselben Forschers; wiesen doch
die verschiedenen Stibe die Voigt aus demselben Messingstiick schnitt,

im allgemeinen nicht besser

T ’ " ;
fiir &r'i Werte auf von 2,82 bis 2,29, wihrend die G von 9,8 bis 8,45, die
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G von 3,47 bis 3,83 schwankten. Die Erklirung mag wohl sein, dafB
die regellos verteilten Porien, welche Voigt zur Erklirung der merk-

wiirdigen Gleichheit des% bei sehr verschiedenen ¢ und T heranzog,

beim vorsichtig gegossenen Metall, wie es zur Messung benutzt worden
ist, keinen entscheidenden EinflufRl haben, wie Voigt schon vermutete 2}
Die Unterschiede in & und T mégen vielmehr hauptsichlich beruhen
auf die unvollstindige Isotropie der einzelnen Proben, wie ich spiter
nachweisen werde.

Jeder einzelne Stab ist wegen dieser Anisotropie nicht ohne weiteres
brauchbar zur Priifung der Voigtschen Theorie; bei Mittelwerten tiber
mehrere Stibe werden diese Fehler sich mehr oder weniger atfheben,
und ist eine vorliufige Priifung also méglich.

Zweitens zeigt die Tabelle B 2, daB die Ubereinstimmung zwischen
Theorie und Erfahrung sehr verschieden ist, und zwar ergibt sich ein
merkwiirdiger Zusammenhang mit der GréBe der Kristallanisotropie.
Bei dem reguliren Kristall wird die Anisotropie gemessen durch die

einzige GroBe E—g— Die berechneten Werte der Moduln sind iiberall
11+

grofer als die mittleren gemessenen Werte, und zwar:

Beim Al., wo r_:gl 9 % betragt, ist G 4,4 %, T 1 % zu grof
1
1 Al}” » rr 27 [.,/:) 1 1’ rr 9}5 ‘}:JJ b 7 675 (:‘{) rr rr

5 0/
2] MESSIng; 1 11 7 /0 1 11 62 (%J? n35 ‘,"{l ”" 1"

Die Zahlwerte der Abweichungen Andern sich, wenn man andre
Messungen hinzunimmt oder den gewihlten Messungen verschiedenes
Gewicht zuschreibt. UngeZindert bleibt aber das Resultat, daB die Theorie
gut, miBig, oder schlecht stimmt, je nachdem die Kristalle kleine,
mittlere oder groBe Anisotropie haben.

Dies weckt die Vermutung, daB die Voigtsche Theorie eine
erste Anniherung ist, welche fiir Kristalle mit kleiner
Anisotropienoch ziemlich gut stimmt, bei zunehmender
Anisotropie aber immer schlechter wird.

Die nicht reguliren Metalle bestitigen diese Vermutung einigermaBen:

*)  W. Voigt, Lehrbuch, S. 964.
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beim Wismuth, wo ci = 119, betridgt, ist € 2% und T 10 9%, zu grof3,
11

J . - . ’
beim Zinn, wo EE_ = 2 % betrigt, ist ¢ 4,4% zu klein, T 4,6 %, zu grof,
31

: . S : .
doch gibt es hier mehrere Grofen, die unabhingig von o, die Anisotropie
11

mitbestimmen, z. B. c—f" das beim Bi und Sn bzw. 29 %, und 24 % 1ist,
11

wihrend beim Wismuth auch das ziemlich groBe ¢, eine besondere
Anisotropie ausdriickt. Es ist nicht vorherzusagen, in welchem MaB
diese verschiedenen Anisotropien einander in ihrem EinfluB auf G und
verstirken oder aufheben werden.

Voigt hat den approximativen Charakter seiner Theorie nirgendwo
ausdriicklich betont, vielmehr scheint er 2%) die unvollstindige Uberein-
stimmung den Materialfehlern des Aggregats zuzuschreiben, Im nichsten
Paragrafen werden wir zeigen, an welcher Stelle Voigts Ableitung theore-
tische Mingel aufweist. Der Aufbau der Theorie im II. Kapitel wird
dann zeigen, daBB die Voigtsche Theorie in der Tat als
erste Anniherung herauskommt.

§ 5. Kritik der Voigtschen Theorie.

Die Voigtsche Theorie geht aus von der Bemerkung daB das elektrische
Potential, die Temperatur und die elastische Verschiebung stetig durch
die Grenzflichen der Kristallbrocken hindurchgehen. Daraus schlieBt
Voigt sofort, daf3 fiir ihre Ableitungen, — elektrische Krifte, Tempera-
turgefille, elastische Deformationen —, dasselbe gilt. Die andern
GrofBen aber, die in den Problemen auftreten — elektrischer Strom,
Wirmestrom, elastische Spannungen — weisen nur Stetigkeit auf fiir
die normalen, nicht aber fiir die tangentiellen Komponenten ). Dies
geniigt um den inneren Widerspruch der Voigtschen Theorie zu zeigen.
Ich beschrinke mich auf die Elastizititstheorie. Hitten wirklich alle
6 elastischen Deformationen auf beiden Seiten einer Grenzfliche zweier
Kristalle mit ganz willkiirlicher Achsenorientierung denselben Wert,
so wiirden im allgemeinen die 6 Spannungskomponenten beiderseits
nicht denselben Wert besitzen, auch nicht die normalen Komponenten.
Nach dem Reaktionsprinzip ist dies aber notwendig, also sind gewiB
nicht alle Deformationen stetig.

#)  Lehrbuch S. 962,
*) Voigt, Lehrbuch der Kristallphysik, S. 957.
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Dies ist auch auf andre Weise einzusehen.

Wihlt man die Normale der Grenzfliche zur Z-Achse, dann folgt aus
der Stetigkeit der Verschiebungskomponenten die Stetigkeit ihrer
Ableitungen nach x und y. Stetig sind also 3 Deformationen:

ou’ [ v ( ou . ov
X, ( ax) yy[ y) Und xy' 'a—j el '{'i}).

ow ou v Aw
Stetig sind auch 3o und 7, nicht aber S5l ; nd ‘—Z und damit wird

die Stetigkeit der 3 Deformationen z,, z, und z, hinfillig ). Zugleich
aber auch die Giiltigkeit der Voigtschen Theorie.

35) Das Beispiel des Aggregats aus diinnen nadelférmigen Kristallbrocken,
womit Voigt, wie im § 2 zitiert wurde, die Stetigkeit der Deformationen zu beweisen
versucht, beweist nur die Stetigkeit der Ableitungen in der Richtung der Nadeln,
also der tangentialen Deformationen, sagt aber nichts aus {iber die normalen
Deformationen.



II. :
VERSUCH EINER NEUEN THEORIE DER
ELASTIZITAT QUASIISOTROPER MEDIEN.

§ 1. Grenzbedingungen und Annahmen.

Im letzten § des vorigen Kapitels sind die richtigen Grenz-
bedingungen angedeutet worden., Wird an der Grenzfliche zweier
Kristallbrocken die Normale zur Z-Achse gewihlt, und werden Defor-
mationen und Spannungen in dem einen Kristall einzeln, im andern
doppelt gestrichen, so gilt an der Grenzfliche:

wegen der Stetigkeit der Verschiebungen

Xy =Xz, Y/=W"» x=x" ... (17)
wegen des Reaktionsprinzips
z-rﬂ: ‘N’ zyl: Zy”’ Z:I: szl‘ ..... (18)

Im ftbrigen iibernehmen wir die Voigtschen Annahmen in etwas
andrer Formulierung:

(I) die Kristallbrocken sind klein gegen die Dimensionen des
Aggregats,
(IT) siesind groB gegen den Wirkungsbereich der molekularen Kriifte,

(III) sie schlieBen fest aneinander.

Dazu eine vierte die Voigt stillschweigend auch macht:

(IV) im undeformierten Aggregat sind iiberall die Spannungen null,
oder so gering, daB fiir kleine hinzugefiigte Deformationen das Hookesche
Gesetz gilt.

Fiir den Aufbau einer Theorie liegt die Sache nun viel ungiinstiger
als bei den Voigtschen Grenzbedingungen. War das Aggregat, makro-
skopisch betrachtet, homogen deformiert, so durfte Voigt an jeder
Stelle jedes einzelnen Kristalls dieselben Werte der Deformationen
annehmen; aus der besonderen Orientierung der Achsen konnte er in
jedem Kiristall die Spannungen berechnen, und das Mitteln dieser
Spannungen ergab die makroskopischen Spannungen und damit seine
Formeln (8). Die neuen, verbesserten Grenzbedingungen haben nur
Giiltigkeit fiir ein bestimmtes, mit der Lage der Grenzfliche wechselndes
Koordinatensystem. Im allgemeinen Fall, wo die Brocken willkiirliche
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Formen haben mit Grenzflichen in allerhand Lagen, gibt es kein festes
Koordinatensystem im Aggregat, woflir auch nur eine der Defor-
mationen oder der Spannungen stetig bliebe; weder eine Deformation,
noch eine Spannung ist auch nur in einem Kristall homogen. Man
kann also nicht ohne besondere Betrachtungen iiber den Verlauf
einzelner Spannungen und Deformationen im Inneren der Kristalle
auskommen.

Urspriinglich habe ich versucht einige allgemeine Annahmen iiber
diesen Verlauf einzufithren, sie hatten aber immer etwas willkiirliches
und ergaben auBerdem zwischen den mit ihrer Hilfe berechneten
Aggregatskonstanten einen inneren Widerspruch, der allerdings nur
bei stark anisotropen Kristallen wie Messing eine merkliche Unsicherheit
der Resultate verursachte.

Aber auch in den Fillen, wo diese UngewiBheit nicht auftritt,
bleibt die Mbglichkeit, daB eine andre Annahme andre Werte fiir die
Aggregatskonstanten ergeben wiirde.

Nur die Experimente konnten hier entscheiden. Leider sind vorldufig
die empirischen Werte der elastischen Konstanten, sowohl fiir Kristalle
als fiir Aggregate, noch viel zu ungenau, um sich zur Entscheidung
zu eignen. Es war mir, zu meinem Bedauern, nicht moglich, fiir will-
kiirliche Aggregate auf einwandfreie Weise die elastischen Konstanten
streng zu berechnen.

Ich habe mich daher entschlossen einen besonderen Aufbau des
Aggregats zu wihlen, wobei diese Schwierigkeit nicht auftritt. Die
Wahl ist naheliegend, ich mache die fiinfte Annahme:

(V) das Aggregat besteht aus sehr diinnen Lamellen mit parallelen
Grenzflichen, wovon ein diinnes Paket noch alle moglichen Orien-
tierungen der Achsen in gleicher Hiaufigkeit, regellos verteilt, aufweist.

Bei diesem Aufbau des Aggregats kann man fiir alle Kristalle dasselbe
Koordinatensystem wihlen mit der Normale der Grenzflichenals Z-Achse.
In diesem festen Koordinatensystem sind dann iiberall dieselben 6
Spannungen und Deformationen stetig, namlich x,, y,, Xy, Zu Zy: 4:.
Wir betrachten diese 6 GroBen als unabhingige Variabeln; die andern
6 GroBen, z,, Zy, 2y Xar Yu und X, hingen in den einzelnen Lamellen
von den jeweiligen Achsenorientierungen ab.

Mit den Grenzbedingungen vertrigt sich jetzt die Festsetzung, jede
der 6 unabhingigen Variabeln habe tiberall im ganzen Aggregat denselben
Wert. Dies ergibt fiir das Aggregat, makroskopisch betrachtet, eine
homogene Deformation; die 6 abhingigen Variabeln sind konstant in
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jeder einzelnen Lamelle, haben verschiedene Werte in den verschiedenen
Lamellen, und haben wieder feste Mittelwerte in Lamellenpaketen,
die diinn sind gegen die Hohe des Aggregats, aber groB gegen die Dicke
einer einzelnen Lamelle. Wollte man diesen Zustand darstellen durch
vorgeschriebene Spannungen oder Verschiebungen an den Grenzflichen
des Aggregats, so miilten diese auf den schmalen Seitenflichen jeder
Lamelle passend gewihlt werden; Spannungen oder Verschiebungen,
die an jeder ebenen Grenzfliche des Aggregats iiberall konstante Werte
aufweisen, verursachen keine reine homogene Deformation. Doch scheint
es sehr wahrscheinlich, daB die Abweichungen sich ausgleichen werden
in einer schmalen Grenzzone der Lamellen; wir machen also noch
die Hypothese:

(VI) Wenn bei einem Aggregat des Typus (V) auf jeder Grenzfliche
konstante Spannungen und Verschiebungen herrschen, entsteht im
Aggregat, abgesehen von verschwindend kleinen Grenzgebieten, eine
elastische Deformation, wobei jede der 6 unabhingigen Variabeln x,,
Vur Xy, 4y 4Ly, 4, 1m ganzen Aggregat konstant ist.

Nach der Vorschrift (V) kann man noch sehr verschiedene Aggregate
aufbauen, indem man die Verteilungsfunktion der Achsenorientierungen,
die in den Lamellen auftreten, verschieden wihlt, So kann man im
reguliren System einmal alle Orientierungen zulassen, ein andres Mal
nur diejenigen, wobei die Z-Achse z. B. mit der Hexaedernormale
zusammenfillt, Ich werde Formeln aufstellen unter verschiedenen
Annahmen:

(Va) alle Orientierungen, die iiberhaupt auftreten kénnen, kommen
regellos verteilt und gleich hiufig vor.

(VB) die Orientierungen sind nachirgend einem andern Gesetz verteilt.

Ein Aggregat der ersten Art nennen wir allgemein, eins der
zweiten Art speziell.

Ein spezielles Aggregat ist gewiB nicht isotrop, und auch bei einem
allgemeinen Aggregat darf man im allgemeinen keine Isotropie erwarten,
da die Z-Achse wohl in Bezug auf die Orientierungen der Kristallnetze,
nicht aber in Bezug auf die Lage der Grenzflichen gleichwertig mit
der X- und Y-Achse ist.

Jedenfalls besitzt ein allgemeines Aggregat zylindrische Symmetrie,
wie ein Kristall des hexagonalen Systems, und ist also durch fiinf elastische
Konstanten gekennzeichnet. Wie sich spiter herausstellen wird, ergibt
die Rechnung, daB bei Kristallen von kleiner und mittlerer Anisotropie
das Aggregat (a) praktisch schon isotrop ist; beim Messing aber ist (a)
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noch merklich anisotrop. Will man in diesem Fall ein Aggregat erhalten,
das nahezu isotrop ist, dann kann man das Aufbauprinzip (V) noch
einmal anwenden.

Ich mache also die Annahme:

(VII) das Aggregat besteht aus diinnen sekundiren Lamellen mit
parallelen Grenzflichen, und jede dieser Lamellen ist selbst ein Paket
diinnerer primirer Lamellen des Typus (Va), wobei die Normalen
dieser primiren Lamellen alle moglichen Lagen haben, regellos verteilt
und in gleicher Haufigkeit,

Die Rechnung zeigt, daB diese Annahme auch bei Messing geniigt,
um ein isotropes Aggregat zu erzielen.

Die Modelle, definiert durch die Annahme (Va) oder eine einfache
(VB), haben den Vorteil, daB ihre Elastizititskonstanten sich exakt
berechnen lassen. Dem steht der Nachteil gegeniiber, daB ein solches
Modell wohl nie auch nur angenihert realisiert auftritt.

Ein Resultat ist allenfalls erreicht, man kann jetzt von einem moglichen
1sotropen  Kristallaggregat die elastischen Konstanten einwandfrei
berechnen. In den Fillen wo das Aggregat (Va) schon isotrop ist, die
Lage der Grenzflichen also keinen EinfluBl hat, liegt die Vermutung
nahe, daB die berechneten Werte fiir alle isotropen Aggregate gelten
miissen. Andernfalls, wo die Lage der Grenzflichen sich geltend macht,
wie bei Messing, und auch bei Zink und Cadmium, haben vielleicht
die fiir das Modell (VII) berechneten Werte dieselbe allgemeine
Bedeutung. Wir diirfen aber nicht von vornherein die Moglichkeit
ablehnen daB fiir anders aufgebaute isotrope Aggregate die elastischen
Konstanten verschieden ausfallen und daB also das Voigtsche Problem
keine eindeutige Losung besitzt, Sollten von einem reinen Metall
zwei porienfreie und erwiesenermallen isotrope Aggregate verschiedene
elastische Konstanten aufweisen, so wire dieser Unterschied vielleicht
aus der letzterwihnten Ursache zu erkliren. Soviel mir bekannt ist
dieser Fall noch nicht vorgekommen.

§ 2. Theorie des allgemeinen Lamellenaggregats.

Ich will jetzt die elastischen Konstanten des allgemeinen Lamellen-
aggregats ausdriicken in den Konstanten der Kristalle. Im folgenden
bedeutet X, Y, Z ein raumfestes Koordinatensystem mit der Z-Achse
senkrecht zur Lamellenfliche; X° Y Z° sind in jeder Lamelle die
elastischen Hauptachsen, deren Lage festgelegt wird durch das Transfor-
mationsschema:
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|X Y Z

X0 ay 131 V1
bAY ay fla 72
Z°a3ﬁ3}'3..........(19)

Mit Voigt nennen wir die freie Energie pro Volumeinheit einer will-
kiirlichen Lamelle bei kleiner homogener isothermischer Deformation E,
Bevor wir iiber das Aggregat mitteln, miissen wir erst das & schreiben
als Funktion der 6 Variabeln Z,, Zys Zigy Xy Py» Xy, die ja im ganzen

Aggregat konstante Werte aufweisen. Dazu schreiben wir, wie in der
Einleitung:

25 — Z:Zz -+ Zﬂzil ar Z;rz.r aF x.rX:r + y!J'YII + xfth' - (1)

Wir kénnen nun in zwei verschiedenen aber dquivalenten Weisen
vorgehen.

Das eine Mal werden z,, z,, z, in den gewihlten Variabeln ausgedriickt
durch Aufldsung der 3 Hookeschen Gleichungen:

] r { 4 ’ ’ ’
Z;—Cgyx,—c 32Vy — CaeXy = C 32, -+ C 342y - C'452,,
r r ’ ’ r (4
Zy—C X, —c¢ 42Vy —— CagXy = Cy32; + C 42y + €' 4522,
’ v ’ ’ Sz Fo= LA b oy
Zy—C 51%2 = C 5o Vy — C ggXy = CpaZ; + Cp5aZy + CpsZpe (20)

X, Yy und X, folgen dann aus den andern Hookeschen Gleichungen:

f ’ ’ ! = ! » ’
Xe=cpyxz+c 12Vy + CieXy + €132, + 142y + 1520
(4 ’ ’ ’ ’ (4
Yy = caxe + caapy + opXy + gz, + ¢ 212y + CopZay

’ r r ’ r ’
Xy =cCgxp + ¢ e2Vy T~ CgeXy T Cg3Z: + CgeZy + C'g320e - (21)

Zur Abkiirzung schreiben wir:

’ ’ ’
Ca1Xz 1 Cgaly + C'gexy = U,,
’ r
1Yy + Cyexy = Uy,

fni.'}’u ey =Us v v v v v . . (22)
und

c'1xxt + C'a-.!yyz ar C'msxuz s Zc’lﬂx-rylf 1r QC'mxnxv + 2¢'s6yyxy =U (23)

und schlieBlich:

’ ’ [
Caa Cygq4 Cg;

6’43 C’*“ C“'r’ == 1,'1, & 2 P 2 o+ s s @ (24)

’ ! ’
€53 Cp1 Cogp

welches 4 wir im folgenden die Hauptdeterminante nennen werden.
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Die Gleichungen (20) lassen sich dann schreiben:

€332, + C'azy + 352, = Z, — U,,

C3Zs + €2y + 452, = Zy— Uy,

C’F;:lzz 4F Cls.;zy -+ 5’5531- - Z,s_-‘—‘ U5 ...... (25),
die Gleichungen (21) ergeben:

X2 Xo + Y¥y + Xy = U 4 Uz, + Uszy + Usz,
und aus (1) folgt:
28 =U+ (U; + Z,)z, + (U, + Zy)zy + (Us + 4z, -+ (26)

Indem wir z,, z, und z, aus (25) aufldsen und in (26) eintragen
erhalten wir:

u Uy + 24, Ug+ 2y U+ Zy |

r ! !
1 1U;— Z, C g € ay C a5 @27)
23;7—1 U, —2Z7 ' c o LR
£ 1 v 13 44 45
! r r
Us— 2, C 53 C5a €55

Das Ziel ist hiermit erreicht, 2& ist, wie zu erwarten war, eine
quadratische Funktion der 6 Variabeln Z.Z,7.x.y,x,.

Diese Funktion hat aber die Eigentiimlichkeit, daB die Produkte
wie Z.x, aus einer Spannung und einer Deformation wegfallen, die
Funktion 2& hat also nur 12 Konstanten statt der allgemeinen Zahl 21.
Demzufolge wiirden wir durch Mittelung {iber das (axiale) Lamellen-
aggregat nur 4 der 5 erforderlichen Konstanten erhalten. Darum fithren
wir, wie schon in der Einleitung bemerkt worden ist, die Funktion ¢ ein:

= &— Zzzz = erzy = szmy (6)
die in ithrem Aufbau der Potentialfunktion der Thermodynamik dhnlich
ist und sich der neuen Wahl der unabhingigen Variabeln anpalit. Aus

0f = X,0x, + Y, 0py + X,0x, + Z,0z, + Z,0z, + Z.0z,
folgt ja fiir @:
(jtp = thsxr ‘|’ Yyéyy + Xyéxy — 32623 —_— t'.'y(szy — zx(sz_t,

und jede der neuen abhingigen Variabeln ergibt sich aus einer partiellen
Differentiation von ¢ nach der hinzugehérigen unabhingigen Variabeln:

op

Xy = ¥
s | L7
Ly — — azz’

u.s.w.
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An die Stelle von (26) tritt jetzt die Gleichung
2@3 =U -+ (U3 —_— Z:)Zz "|— (Ui. - Zy)zaf ar (U5 = Z.r)za: o (28)

oder mittels (25):
U U3 = Z:.- Ud = Zy U5 —— Z.r.

’ ! ’
1 |Us— 4. Cag Cay C g
2 = _T U Z ' ’ ’ * (29)
=74 C a3 €1 C a5
Us— 2. C'5a c'ss 55

In dieser Formel sind U, U, und U; Linearfunktionen der Variabeln
X,, yy und xy, U ist eine homogene quadratische Funktion derselben
Variabeln und 2 ist eine homogene quadratische Funktion der 6 ausge-
wihlten Variabeln Z,Z,Z.x,y,x, mit 21 Koeffizienten.

Jeder dieser Koeffizienten ist der Quotient zweier Determinanten.
Wir schreiben:

i, C’ﬁ‘k C’r.-r y Aii S (Z, k: I = 3: 41 5 (30)
/j C’[k C,” /1 L i ¢ k ¢ l g
Lo G el g2 0 o1
/_I C” Cul 4 l#k#l b
’ r t
1 Cam €21 Cyp E
s ! 4 ! — —3m
7| Cam i Gl = gsm(m = 1, 2, 6);
“ ’ ’ ’ -
Csm Cpa Css
r ’ ’
Css Cam €35
1 Cf c’ r’ — E,l"]
"',j' '-'13 ’4m C’M» — T - E'-.jm(m = S0 6)r
Css Csm Coss
U r r
1 Cas Cy1 Cam E
' ' ' L
Bl 6’43 Cy Cam| = —L’f"_l = .cbm(m =125 0) (32)
- ’ ’
Csz Cpr1 Com

’ ’ ’ ’
C mn c m3 c md C ms

1 c’:!rl 8’33 C'3_1 c’:l.': (I)mn m, n :_}’ 2’ 0 33
71_ ’ ’ ’ ' — u—‘r' = @mn =T = ( )
Ad1Can Cay Caa Cuas ’

’ ’ ’ ’

Csn Csy Cs4 Cip

Aus (29) erhalten wir dann fiir die Funktion ¢ in der einzelnen
Lamelle:
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20 = — 6332:2 — ‘5442312 — asazxg—Qd:s;ZzZy = 26352:2?» _'26_1‘,2};2: +
T Pux,? + ParVy® + Pegxy® -+ 2 PraXaVy + 2¢14%.%y - 2P05yyXy +
T 2e5Z.x, + 26402y + 2504y +
F 2e01Zyx, + 2e49Zyyy + 2e46Zyxy +
+ 285 Xy 1 28502,y |- 2856Z0%y .+ .., coee e (34)

Hieraus erhalten wir, indem wir Mittelwerte durch einen horizontalen
Strich andeuten, fiir die Funktion @ eines willkiirlichen Lamellen-
aggregats im raumfesten Koordinatensystem XYZ:
2p = —@azf—@zyﬂ—5_552.-3——2@42221,—2ﬁgszzz.r—254521,& s

T FXe? = @agyt - Peey® -+ 2010,y + 251035.@—'(1; ¥ 2‘;‘26}’ny I
s 23‘;1sz:1= 3F zzaazsyy ais ZTE_SGszy i
T+ 2e0Zyx, + 2642, 1, -+ 2e462y%y +
058 Z oy O e e 2o, A (35)

Diese Gleichung legt den Grund fiir die neue Theorie der Bezichungen
zwischen Aggregats- und Kristallkonstanten. Einerseits 183t sich die
Funktion 2¢ fiir das Aggregat schreiben in der Form (35) mit Koeffi-
zienten, die von den Elastizititskonstanten des Aggregats abhingen.
Andrerseits beruht die Berechnung der Koeffizienten 0q5 U.5.w. in der
Gleichung (34) auf einfachen, wenn auch oft sehr umstindlichen Ten-
sortransformationen. Die Gleichung (35) gestattet also die exakte
Berechnung der Aggregatskonstanten in allen Fillen, wo sich die
Mittelung der &,; u.s.w. ausfithren 13Bt. Ob diese Mittelung méglich
und mehr oder weniger leicht ist, hingt vor allem von der Verteilungs-
funktion der Achsenorientierungen in den verschiedenen Lamellen ab.

Nach den Ausfithrungen des vorigen Paragrafen ergibt die Annahme
(Va) die denkbarst einfache Verteilungsfunktion: alle moglichen Orien-
tierungen des Achsenkreuzes kommen gleich hiufig vor.

Dies vereinfacht die Gleichung (35) betrichtlich. Das @ ist invariant
fiir Anderung des Vorzeichens der X-, Y- oder Z-Richtung, dies reduziert
Gl. (35) auf:

2‘; = —333222 _"—5-1-1 ug '_35520:2 T a’-’uxmz i ?1322}’112 i3 Ecmxyﬂ I
+ 2p19%,yy + 2e312:%, + 26507y,

Aus der Gleichwertigkeit der X- und Y-Richtungen folgt:

644 = 055;
P11 = Qoo
SET s en g oo g o o (36)
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X- und Y-Richtung sind auch vertauschbar mit jeder andern Richtung
in der X-Y-Ebene, daraus folgt:

Pes=3Pu—®1a) -+ - 0oL (37)

SchlieBlich nimmt also fiir das allgemeine Lamellenaggregat (Va) die
Gl. (35) folgende einfache Form an:

2 — — 033Z,> — 0u(Zy® + Z.3) + Pulx. + y)® +

+ @l — 4x.yy) + 260 28X + V) - - - - - - (38)

Wie schon im vorigen Paragrafen bemerkt worden ist, hat das allgemeine

Aggrepat zylindrische Symmetrie. Es besitzt also 5 unabhingige

Elastizitatskonstanten Cur Cusr Cror Gy und (©4; wie bekannt, 1st

Ggs=2(6;;—C10). Um die Funktion ¢ fiir das Aggregat mit Hilfe der

Aggregatskonstanten in den 6 unabhingigen Variabeln Z,Z,Z.X.yyXy

auszudriicken, wiederholen wir die Ausfiihrung dieses Paragrafen fiir

ein zylindrisches Aggregat, wo die Z-Achse als co-zihlige Symmetrie-

achse auftritt. Die GIl. (24), (30)—(33) werden hier sehr vueinf'lcht

A reduziert sich auf (5,6,,% 04 wird — C , 044 Wie Og wird L fiir
1
. . G B (e
&y, wie &g, erhalten wir %, @y, und @, werden —L--llg'aiﬁ Uty
- . @'33 bj33
("5:126'33—(513'a . . " o . - .
T schlieBlich erhilt ¢g den Wert Gy und weil fiir ein
zylindrisches Aggregat (wie fiir ein hexagonales Kristall) G5 = 3(C31— €10)
ist, ist auch hier gg = 3(¢nn— @1)- Fiir das ¢ des Aggregats gilt also
die Gleichung:

» (1s €rgibt

— 1 ~ a C’ o
By — — o2 — Bt + 2 + SR, 4yt

3 @
+ (6, — 612) (xy*— 4xz}’1/) i 26_;22:(1} ) B (39)

Aus (38) und (39) folgen dann fiir die 5 Elastizititskonstanten des
allgemeinen Lamellenaggregats die Beziehungen:

1 -
o Oggr v v v v v (40)
E. —
(g_!‘lz =01 p Il e e s NG S o S IS « R+ IR P E e (4‘1)
1 -
(S_“ == ()‘1“ o B R O RE R e o LR (42)
. Gy —
Q‘»n = Gﬂ =i@11p, 2 b e s e b el el el e (43)



28

Aus diesen Gleichungen kénnen wir die 5 Aggregatskonstanten (P
berechnen.

Bei mehreren Metallen wird die Rechnung mit grofer Anniherung
ergeben:
€ = Gz,
G2 = €3
Cao =36y —6y) .. ....... (45)

In diesen Fillen nennen wir €11 €15 und €44 bzw, G, €, und €,
und das im Anfang des Paragrafen gesteckte Ziel ist erreicht, die Kon-
stanten des quasiisotropen Aggregats sind bestimmt, Bei andern Metallen
sind die Gl. (45) nicht alle erfillt; dann wird das Aufbauprinzip
(VII) angewandt. Die berechneten G:. ergeben dann die Elastizitits-
konstanten sekundirer Lamellen, womit wir das Verfahren wiederholen.
In allen von mir durchgerechneten Fillen ergibt sich das sekundire
Aggregat als praktisch isotrop, in mehreren Fillen ist die Anisotropie
der primiren Lamellen schon so gering, daB die Voigtsche Theorie
gentigt zur Berechnung der sekundiren Konstanten.

Im III. und IV. Kapitel wird die Rechnung durchgefiihrt fiir Kristalle
der hexagonalen und reguliren Systeme. Dabei erweist sich die Auf-
stellung der Ausdriicke fiir A4, ;4 u.s. w, als sehr leicht, die Mittelung
aber als sehr umstindlich. Insbesondere gilt das fiir ¢, und Pggr WO
die Zahler 4-reihige Determinanten sind und sehr verwickelte Formen
4. Grades der c¢; ergeben. Die Rechnung wird aber betrichtlich
vereinfacht, wenn wir den im Anfang des Paragrafen erwihnten zZweiten
Weg gehen. Wir gehen wiederum aus von der Gl. (6), ausfiihrlich
geschrieben:

299 = Xp X, -+ J’yyy ar xUXI! — Zzzz S fozb' — ZJ:ZJC SN (6‘1)

Statt z,, z, und z, werden nun aber X, Y, und X, ausgedriickt
in den 6 unabhingigen Variabeln, Dazu werden jetzt die Hookeschen
Gleichungen benutzt in der Form (3a) der Einleitung. Das ganze Ver-
fahren verlduft parallel mit dem vorigen, also:

] ’ ! ! ’
Xo— 8'1945 — $'102y — 5152, = s uXe + 5',Yy, + s 16X
Yy — 5'2322 — S’g-sZy i 5’252: = S'nX, + 5’22Y&' ar 3’2ﬂXyr
/ ’ ’
Xy — S'esd; — S'eady — S'o5ip = 5’1 X, + 5 0¥y + 556X, . (20a)

’ ! ’
2, — S’;;IX;.; 37 S'szyy =13 36Xli + s 3322 + s 3-12-:1 ar 3'352xr

r 1 r ’ »
Zy =83 Xo+ 0¥y + 546Xy + 5 wd: + s udy + 552,
’ 1 ’
Zy =5'5X, + 'Yy + 5 56Xy T 8’532, +- S'5ady + S'ssda « (21a)
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Mit den Abkiirzungen:
s'10d: + s'14Zy + 154, = V3,
§'03Z; + §'a1dy + 8’95l = Vo
3'6322 -+ 3’5421; + S’B,ﬁzm == V(; Y M P feeory (22:1)
und
8’0342+ 5" 04y 4 8 55de® + 28" 34 2,2y + 25" 552,20 - 25 454y 2 =V . (232)
werden die Gl. (20a):
$'uXe + 5'2Yy + 516Xy = X, — V,
S Xy + 0¥y + 55Xy = yy — Vs,
S'01Xe +5'62Yy 4+ SeeXy =%y — Vo . . . . . (252)
Jetzt werden X, Y, und X, aufgelost aus (25a) mittels der zweiten
Hauptdeterminante:
$'11 812§
2 == 5’21 3’22 5’26 . FYSRTSES . . - (24&)

r r’ ’
Se1 ez e
und eingetragen in die Gleichung:

20 = x. X0 + Yy + Xy — 2.2, — Zyzy — Zpz, =
= Xo(x— V) + Yy(yy — Vo) + Xylxy—Ve)—V. , (28a)

Dies ergibt:
4 Vi—xz Vo—yy Ve—xy

/ r’ ’
hi = A Vi—x, S 11 S12 S 29
== 5 ’ ’ ' . ( 8)
2| Ve—yy S o1 S oa S og
= ' ’ ’
Ve—xy 561 S ga S 6e

Fiir unsern Zweck geniigt es, die Analoga der d,; und §,, hinzuschreiben,
also die Briiche mit 2-reihigen Zihlern:

1| 5" $"n it i Sl 1 =0k, 6)
sl o |= == 0 v . (30
‘\- S’“: SI” h\r (\ i _;___' ]{ _—/t I ( J.)
1 S"p S"I ’ _\:'}. (I., k, I = I, 2, 6

. | e | T T ! ST (31a
2 sy sy 2 Oik i :;"—' k —_,’l' l ) (313)

Wir schreiben dann:
200 =011X5" 1+ 0309y % -+ OgeXy® +2019XzVy +USWe « o + + » + o o (34a)
und nach der Mittelung:

2q1 = ﬂuxﬁ '“|‘ G-J_-:_Vy‘l _i‘ Uﬁgxy""' '1"‘ 20121”.?};1, "}“ WSWe o 4 o ¢ o o ¢ (353)
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D6eaes {'“(Eu = Em) --------- (372)

Die Vergleichung mit (39) ergibt dann

Gi® —
== = e 43a
11 @33 911 (-‘ )
%(611 - 6:12) =S O G a s (443)

und noch 3 andre Gleichungen, die (40)—(42) entsprechen. In diesen
3 neuen Gleichungen treten jetzt aber 3- und 4-reihige Determinanten
auf, sie sind also fiir die Rechnung weniger bequem als (40)—(42) selbst.

Es ist klar, daB die neue Gleichung (34a) fiir jede einzelne Lamelle

5%
identisch ist mit der alten Gl. (34), es ist also :§ == %Ll fiir jede Wahl

der a;, f;, 7; des Schemas (19). In der Tat wird sich bei der Anwendung
der Formeln im III, Kapitel zeigen, daB A und 3 Funktionen der
Richtungscosinus mit proportionalen Koeffizienten sind. Die Ausdriicke
fir 2; und 3, sind aber so viel einfacher als die fiir ¢ 11 und D, daBB
es vorteilhaft erscheint, fiir die Rechnungen im hexagonalen System
neben (40), (41) und (42) die Gleichungen (43a) und (44a) zu benutzen,

Bei den reguliren Kristallen gestaltet sich die Rechnung einfacher,
Hier werden bei allseitig gleichem Druck die Kristalle gleichmiBig
deformiert, die Kompressibilitit hat also denselben Wert fiir alle
Lamellen und fiir das Aggregat, Diese Betrachtung liefert sofort die
2 einfachen Gleichungen:

G + 62 -+ Gz =cyp + 20 ... .., (46)
und
26,5 + Cos = ¢y + 2020 0 e h, . (47),

die sich natiirlich auch aus der allgemeinen Theorie ergeben.

Nachdem @, und §,, aus den GI. (40), (42) berechnet worden sind,
berechnen wir €, + €,, und €5 aus (46) und (47). SchlieBlich gilt,
wie wir im IV. Kapitel nachweisen werden, im reguliren System die
Beziehung:

1 1
€1y — C1a) = cyyleyy + 2655 + dcyy) '@—33 + degy(c; — ) ‘@T}"— 3¢y, (48)
welche mit (46) zusammen die Berechnung von 61y und G,, gestattet,

Die Berechnung von &, und von den Pir oder o ist also im reguliren
System {iberfliissig,
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§ 3. Die Voigtschen Formeln als erste Anniherung.

Wir wollen jetzt zeigen, daB die neuen Formeln fiir die Konstanten
des primiren Aggregats, falls die Anisotropie des Kristalls sehr klein
ist, die Voigtschen Formeln als erste Anniherung ergeben. Das Aggregat
ist in diesem Fall also praktisch isotrop. Dazu gehen wir von unsern
Formeln (40)—(44) aus.

Kleine Isotropie bei einem Kiristall eines willkiirlichen Systems
bedeutet, daB alle Richtungen im Kristall nahezu gleichwertig sind.
Daraus folgt, daB bei jeder willkiirlichen Wahl des Achsenkreuzes:

¢'11» "33, ¢'33 wenig verschieden sind von einem festen A,

' ' ’

Cag Caps € 12 2 12 7] i3} 1t 2 B;
’ ' ’

C a1 €35 Cga 7 13 ) 19 1 i Gy

wihrend alle andern c¢’;, wenig verschieden sind von Null. Fiir A, B
und C kénnen wir die Voigtschen Mittelwerte wihlen, wie sie durch
die Gl. (7) definiert sind. Mit Vernachlissigung von Betrigen, die
klein sind von héherer Ordnung, wie ¢'y,?, (¢’ — A)* w.s.w. erhalten
wir (mit Anwendung des Zeichens ~ fiir »anndhernd gleich”), aus (24):

!’ ’ ’
4 ~ Cg3 Cyg Cp5

und daher aus (30):

1 1 ¢’y — A
R

und nach (40)

also:

oder

welche Gleichung bei Voigt aus (12) folgt und auf die erste Voigtsche
Gleichung (8) fiihrt,

In derselben Weise folgt aus (24), (30) und (42)

B e i T . (49b)

und daraus die 3. Gleichung (8).
Aus (24) und (32) erhalten wir:

Eq4 ™~ E:‘-—‘ . B (1 -+ ¢iw—B Clag — A),
: Cz3 A
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daher

A

— B = ‘9 —
oA (P AT

und nach (41) und (49a)

Gm=%-%~3@+s%§ﬂ

oder .
(513 £ Cllg 33 SR E I (49C),
woraus sich die 2. Gleichung (8) ergibt,
Weiter gilt nach (24) und (33)
’ C’lsz
~ C —_——
P11 11 Cua
und aus (49a) und (49c) erhilt man leicht
OTh ~ (C’mz )’
Css

a3
woraus nach (43) folgt:

(511 et C’Il ............ (49d)
SchlieBlich ergibt eine andre der Gleichungen (33) zusammen mit (24)
Pos ~ Cop
und nach (44) gilt
361 — C1p) = Gy ~ CroA T R N R (49¢)

Die Formeln (49d) und (49e) ergeben aufs neue die 1. bzw. 3.
Voigtsche Gleichung; auBerdem bestitigen sie, daB das Aggregat
anndhernd isotrop ist. Die Voigtsche Theorie ergibt also eine geniigende
Anniherung bei kleiner Anisotropie der Kristalle,

Ubrigens kbénnte man eine zweite Theorie aufstellen mit ebenfalls
beschrinkter Giiltigkeit, sozusagen die Antipode der Voigtschen Theorie.
Sie ergibt sich, wenn man statt der GI, (40)—(44) die Gl. (43a) und
(44a) samt 3 weiteren Gleichungen in s';; hinschreibt und die analoge
Anniherung ausfiithrt. So erhalten wir z.B. aus (44a):

1 =
HCn— G St =%ess
solche Formeln driicken eine Annahme aus, welche der Voigtschen
Annahme diametral gegeniiber steht, nimlich dafl nicht die Defor-
mationen, sondern die Spannungen stetig durch die Grenzflichen
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hindurchgehen. Jede dieser Annahmen enthilt 3 richtige und 3 falsche
Grenzbedingungen, jede ist anniherungsweise richtig in demselben
Fall, nimlich wenn die Kristalle ungefihr isotrop sind.

§ 4. Allgemeines iiber Priifungen der Theorie.
Im§ 1 dieses Kapitelssind die Annahmen aufgestellt worden, welche zum
Aufbau der Theorie dienen, Wir heben 3 dieser Annahmen hervor:
(I) Die Kristallbrocken sind sehr klein, die Materialprobe enthalt
von ihnen eine sehr groBe Zahl.
(III) Sie schlieBen fest aneinander.

(VIa) Alle Achsenorientierungen kommen regellos verteilt und gleich
haufig vor,

Diese Annahmen beschrinken die exakte Giiltigkeit der Theorie
sehr stark,

(I) schlieBt alle grobkdrnigen Aggregate aus, und von den fein-
kérnigen alle diejenigen, wo eine oder die andre Dimension sehr klein
ist, also Metalldrihte und -binder. Sehr grofle Stabe wiirden der Bedinging
(I) am besten geniigen, sie sind aber fiir die feineren Experimente un-
brauchbar. Bei den verschiedenen kleinen Stiben, die Voigt ®) aus
demselben GuBstiick schneidet, ist die Zahl der Einzelkristalle offenbar
ungentigend, jeder Stab hat eigene Werte fiir die Moduln, deutlich
unterschieden von denen der Nachbarstibe. In einigen Stiben heben
sich die Stérungen ungefihr auf, sie geniigen dem Isotropiekriterium
(52), das wir weiter unten ableiten werden; solche Stibe werden wir in
den nichsten Kapiteln wihlen zur Priifung der Theorie.

(IIT) war sehr schlecht erfiillt bei den dichten Gesteinen der Tabellen
A1l und A2, an denen Voigt seine Theorie gepriift hat, Fiir alle Ab-
weichungen von der Annahme (III) benutzen wir im folgenden das Wort
nPorositit’', Dieser Begriff umfaBt also den EinfluBl der leeren Riume
im Aggregat, der eventuellen Bindesubstanz zwischen den Kristall-
brocken, der relativen Bewegung der Oberflichen zweier Nachbar-
kristalle. Ein MaB fiir die GréBe der Porositit gibt die Kompressibilitit
des Aggregats. Ist die Bedingung (III) genau erfiillt, so ist im reguliren
System der Kompressionsmodul § des Aggregats gleich dem £ der
Kristalle; im reguliren System erzeugt ja ein allseitig gleicher Druck
eine allseitig gleiche Kompression. Bei den andren Kristallsystemen
ist der Zusammenhang nicht so einfach, hier miissen wir zuerst aus

*) W. Voigt, Wied. Ann. 48, S. 674—707, 1893,
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den Kristallkonstanten dje Elastizititskonstanten €, € und G, des
Aggregats berechnen, + 26, ergibt dann den idealen Kompressions-
modul. Hier wie dort missen wir dieses berechnete £ vergleichen mit
dem empirischen Wert am gemessenen Aggregat. Leider ist so viel ich
weil} an keinem Aggregat dessen § oder ¥ wir kennen, auch das f direkt
getmessen worden. In den meisten Fillen sind von dem einzelnen Stab
nur die eine oder die andre von den Dehnungs- und Torsionsmoduln
€ und T gemessen, oder auch beide. Im ersten Fall ist das § des Aggregats
liberhaupt nicht zu berechnen, im zweiten Fall nur bei nachgewiesener
Isotropie des Aggregats. Die Unrersuchung der Porositit ist daher
verkniipft mit der Priifung der Isotropie, zu welcher wir sogleich {iber-
gehen. Ergibt sich das Material als isotrop, so liBt sich aus seinen § und §
der Wert des & ausrechnen. Die Formel fiir die Beziehung zwischen G,
T und & wird in der folgenden Weise abgeleitet,

Aus den bekannten Gleichungen fiir £, T, € und fiir die Querkontrak-
tion u des isotropen Mediums:

3R = € + 26,
T = 1(6_(51)
G — (€ + 26,) (6 — 6,
= €+ 6,
T
@ 'F* @1

folgt zuerst

E

3;@ = TTZH $ 8 s s 4wl e s e e (50)
und =

T = m R e O o (51)

Die Elimination von u ergibt

¢ G

g t3p=3
oder

1 3 1

ﬁ - @ ——— i R C RN 9 SRR e s T T (52)

Mit der Formel (52) 1dBt sich der Kompressionsmodul des Aggregats
berechnen und benutzen zur Priifung der Porositit. Das Resultat ist
sehr verschieden,
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Beim FluBspat ergibt (52) als Mittelwert der 2 am besten isotropen
Aggregate Voigts 27);

38 — 19,600 &
mm=

wahrend die Kristalle ergeben )

3% = 25,850 &,
mm=

die Porositit ist also sehr gropB,

Anders verhilt sich die Sache bei den gegossenen und den gezogenen
Metallstiben. Weder bei den isotropen Aggregaten die in den Kapiteln II1I
und IV untersucht werden, noch bei den anisotropen Aggregaten des
Kap. V tritt im allgemeinen eine grof3e Porositit zu Tage. Im allgemeinen
wird also die Voigtsche Vermutung 29) bestitigt, daB bei Metallen die
Kristalle gut zusammenschlieBen,

Die Isotropieforderung (VIa) gibt wohl zu den meisten Schwierig-
keiten AnlaB,

Zwar gestattet jetzt die Rontgenanalyse einen guten Uberblick iber
die Achsenorientierungen im Aggregat, die schonen Untersuchungen
von Voigt und Griineisen, welche die vollstindigsten Daten zur Prifung
unsrer Theorie ergeben ), stammen aber aus der Zeit vor dem Laueschen
Versuch. Die Isotropie muB also in indirekter Weise nachgewiesen werden.

Beide Forscher haben ihre Aufmerksamkeit auf die Isotropie ihres
Materials gerichtet, Voigts Messungen beweisen im allgemeinen die
Gleichwertigkeit aller Richtungen senkrecht zur Stabsachse; ob diese
Richtungen aber auch mit der Stabsachse selbst gleichwertig sind, geht
aus den Messungen von & und § nicht hervor, und gerade diese Gleich-
wertigkeit ist weder bei gegossenen noch bej gezogenen Stiben von
vornherein gewiB.

Griineisen priift sie nach mittels der Gl (51)

E

T =5

2(1 F p)

Mit dieser Formel berechnet er aus den gemessenen Werten § und ¢
eine ,,dynamische” Querkontraktion u und vergleicht diese mit der

) W. Voigt, Wied. Ann. 42, S. 537—548, 18091.

*%) aus den Voigtschen Konstanten, Lehrbuch S. 744.
)  W. Voigt, Lehrbuch S. 964.

1) W. Voigt, E. Griineisen, 1. c. bei der Tabelle B 2.
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direkt gemessenen ,,statischen”. Die Formel (51) gilt fiir isotrope
Substanzen, die Ubereinstimmung von ugyn und pga ist also ein
Kriterium fiir die Isotropie des Aggregats. Die Resultate haben wir
zusammengestellt in der Tabelle C:

C. Isotropie des Griineisenschen Materials.

Stab Mdyn Ustat
AT 0,31 0,339
Al 1I 0,337 0,334
Cu. IVa 0,356 0,348
Ag. 0,369 0,379
Au. II 0,435 0,42
Stahl 0,287 0,287
Konstantan 0,329 0,325
Manganin 0,329 0,329
Pt. II 0,368 0,387
Cu. VI 0,399 0,337
Au. I 0,495 0,423
Bronze 0,177 0,308
Pd. 0,101 0,393

Platin, Bronze und Palladium sind gegossen, die andern Stibe gezogen,

In den meisten Fillen ist die Ubereinstimmung gut, unterm Strich
stehen einige Aggregate, 2 gezogene und 2 gegossene, wo das Material
sich sehr anisotrop zeigt; bei Au. I und Bronze war iibrigens die
Anisotropie schon bei den Messungen selbst hervorgetreten.

Die Isotropiepriifung mittels der Formel (51) ist unméglich, wenn
an der Materialprobe nur 2 elastische GréBen gemessen sind. Griineisen
hat bei Cd, Sn, Pb, Bi nur § und x gemessen, Voigt an allen Metall-
stiben nur § und %.

In diesen Fillen ergeben die Gleichungen (50) bzw. (52) Kriterien
fiir die Isotropie, wenn in irgend einer Weise der Kompressionsmodul
der Aggregats bestimmt ist. Dieser folgt bei den reguliren Kristallen
direkt aus den Kristallkonstanten ¢;; und c,,; in den anderen Systemen
miissen erst nach der Theorie dieses Kapitels die € und @, des isotropen
Aggregats berechnet werden, daraus folgt dann das §, das zur Isotropie
gehort. Der so berechnete Wert enthilt also die Fehler der Kristall-
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konstanten und eventuell der neuen Theorie, auBerdem den EinfluB
der unbekannten Porositit des betreffenden Materials. Dijese Unge-
wiBheiten machen die Entscheidung nach der Formel (50)

38
1 — 2‘u = E
ziemlich illusorisch: 1—2u ist ja von derselben GréBenordnung wie 1,
die UngewiBheit des £ kehrt also unverandert zuriick in u.
Anders verhilt es sich in den Fillen, wo ¢ und ¥ bekannt sind.,
In der Formel (52):

A48 0
L € 3¢
e 5 :
18t G sehr viel gréBer als glﬁ, eine UngewiBheit von 10 % in § bedeutet

eine UngewiBheit von 1 bis 2 % in ¥. Wenn wir also mittels (52) aus
dem gemessenen € des Aggregats das ¢ berechnen, wie es bei Isotropie
des Stabes sein sollte, und diesen berechneten Wert mit dem gemessenen
T vergleichen, ergibt die Ubereinstimmung dieser 2 Werte ein neues
Kriterium fiir die Isotropie, das dem Griineisenschen (Gl. (51)) ungefihr
gleichwertig ist. Wo diese Kriterien versagen, ist das Material jedenfalls
anisotrop. Im IIL. und IV. Kapitel wird sich herausstellen, daB dies bei
vielen Stiben der Fall ist. Dies war von vornherein zu erwarten.
Polanyi 1) hat die »stark erhohte Haufigkeit" von bestimmten Kristall-
orientierungen bei gezogenen Stiben von Cu, Al, Pd nachgewiesen —
die Griineisenschen Stibe sind zwar nachtriglich gegliiht, ein Blick
auf die Tabelle C lehrt aber, daB dieses Glithen nicht immer geniigt
um Isotropie herzustellen. Uber derartige ,,Faserstrukturen” bei
gegossenen Metallstiben habe ich in der Literatur keine Angaben
gefunden. Es ist aber, besonders beim vorsichtigen GieBen, wie Voigt
es anwendet, nicht unwahrscheinlich, daB die ersten Kristalle, welche
sich in der Schmelze bilden, gewisse Vorzugsorientierungen aufweisen
in Bezug auf die Vertikale, d.h. die Stabsachse., Derartige spezielle
Orientierungen sehen wir ja oft auftreten beim ruhigen Kristallisieren,
sowohl an der Oberfliche, z.B. bei Eis und Kochsalz, wie im Innern
der Losung, z.B. bei Alaun. Die meisten gegossenen Stibe, die Griin-
eisenschen der Tabelle C wie die Voigtschen der vorhin erwihnten
Untersuchung, zeigen deutliche Ungleichwertigkeit der Richtungen
parallel und senkrecht zur Stabsachse.

1) Polanyi, Z. f. Phys, 17, S. 42—53, 1923,
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Im V. Kapitel wird der Versuch gemacht, die elastischen Eigenschaften
verschiedener anisotropen Aggregate dadurch zu verstehen, daB wir
anstatt der Annahme (Va) die Annahme (V) des § 1 dieses Kapitels
zugrunde legen. Wir untersuchen die Eigenschaften eines lamelliren
Aggregats, wo in den verschiedenen Lamellen die Achsenorientierungen
nicht regellos verteilt sind, sondern einem Verteilungsgesetz gehorchen,
bei dem gewisse Orientierungen eine Vorzugsrolle spielen.

Diejenigen Stibe, die einem der Isotropiekriterien (51) oder (52)
ungefihr geniigen, bilden das Material zur Priifung der neuen Theorie
fiir isotrope Aggregate, und zur Vergleichung der neuen Theorie mit der
alten. Die Resultate finden sich im III. und IV, Kapitel. Hier sei noch
bemerkt, daB die zwei Kriterien notwendige, nicht aber hinreichende
Bedingungen fiir die Isotropie des Aggregats darstellen. Besonders
bei den gezogenen reguliren Stiben, wo nach Polanyi zwei verschiedene
Vorzugsorientierungen zusammen auftreten, kann man sich denken,
daB die spezielle Struktur wohl die Werte ¢ und T, nicht aber den

3 1 : .
Wert T % merklich indert, so daB der anisotrope Stab dennoch der

Gleichung (52) geniigt. Auch hieriiber berichtet das V. Kapitel.



I1I.
UNTERSUCHUNG DES ALLGEMEINEN
AGGREGATS HEXAGONALER KRISTALLE,

§ 1. Transformation der ¢’;, und S'ene

Wie im § 2 des IT. Kapitels bezeichnen wir in der Einzellamelle
das raumfeste Koordinatensystem mit XY Z, mit der 4-Achse senkrecht
zur Lamellenebene, X0 yo Z° sei das System der kristallografischen
Hauptachsen, mit der Z°"-Achse als sechszihlige Symmetrieachse. Das
Transformationsschema (19) schreiben wir jetzt

| S V7

X0 ay B 71

Yola, g Y2

A G B e T e e (53)
lassen also die Indices der ay iy 73 fort. Wegen der zylindrischen
Symmetrie der elastischen Eigenschaften reduziert sich die Zahl der
Cir, auf 51 ¢y (= cyy), ¢y, Ca3 Cra(= €y3) und cyy(= C55)5 Cos = $(cyy — Cra)e
Zur Abkiirzung schreiben wir fiir 3 dieser Konstanten:

Cne—a
Cg = b
S0 808 8 0 6o o 5 ¢ (54)

und fiir einige oft vorkommende Kombinationen:
Cn—Cs— 2 =f

Cu—Clp—20, =g

Cll 4_ C.’l:l k! 2C13 —— 4C44 — h

C]_S ‘1_ C]_2 == k S ® e e e Eie T Ve I B R B e (55)
woraus folgt i

Sy e U g R e | O (56)

Die GroBen x,, y,, z,, b2y, 4z, Ix, sind die Komponenten eines
symmetrischen Tensors. Hieraus folgen die Transformationsgleichungen
x% = a,%x, + B:%vy + 1%z, + Bry1Y: + 1oz, + 11Xy

u. 5. w.
¥’ = 2ayax, 2B:Byy + 2yyyz. + (Bay + Bya)y. +
+ (vea + yag)z, + (a.f + CEALE G 6 5 So o O ot (57)

u.s.w,
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Fiir die freie Energie reduziert sich Gl. (2) auf:

2% = Cll(xzo: iF J’yog) s Cae:zzoz + 265(x2° + 1992, + 2¢15x,%,° +
+ (2 + 20D 4 e — )X o e e e e . (58)

Fiihren wir in diese Gleichung die Werte x,° u.s.w. aus (57) ein,
so erhalten wir die freie Energie in Bezug auf die Koordinaten XYZ,
bestimmt durch eine Gleichung von der allgemeinen Form (2)

’ g ’ |
2% =c¢ 1%e> + 5’22}’1.'2 + € g32,% + 2C’23}’y3z 3F 25’3122951 e 25’12xx.Vy i
' P ’ U )
+ Cay:® + 5522+ ¢ 66Xy” 1 2‘:’552:31'3 Sis 2Cre-1ny’z + 25‘45}’22:: r
r
+ 2¢'14%.y: + 2¢ o592, - 2c 622Xy -+
'
+ 2¢" 5%z, + 2 5yyxy + 2¢'42.y, +
’ ’ i
—I_ 2C lsx.r,xy + 26'24}’1}3"2 + 2C 35232.1'
Hier ist
¢’y = eyt + cpyat -+ Cygat -+ 2¢y30%(ay® + a,?) + 2¢y50,%ay® -
9 o
+ 4deq(y222 + 20,2 + $(ci — o)y Byt =
9
= ¢n — 2a®(c;; — ¢y — 2¢44) + a*(cy; + Cg3 — 2¢13 — 4cyy).
In derselben Weise werden die anderen c';; abgeleitet, wobei stets
Gebrauch gemacht wird von den Identititen:

;2 + a2=1—aqa?
a1y + agfly = — ap

04— asfy =y LS. W,

So erhalten wir die Transformationsformeln, die in abgekiirzter
Form lauten:

¢’y = a—2fa* - hat Cos = b— (g —fla® + hB%?
Cas = a—2fp* + Rt s =b—(g—/)p* + hy*a®
C's3 = a—2fy® 4 hyt Cra=b—(g—f)y? - hap*
Coa = C+ Bga® I hf%y? <56 = By(— g + ha?)

¢'ss = ¢ + 326 + hy?a® c'es = ya(— 3g + hp?

oo = c + bg7* + ha'p? 15 — af(—dg + hy?)

¢’y = By(g—f + ha?) ¢'ys = ya(—f + ha?)

¢'ys = ya(g —f + hp?) ¢ = af(—f + hp?)

36 = af(g—f + hy®) g0 = Py(—f - hy?)

¢’y = ap(—f + ha?)
c’ss = fy(—f + hp?)
Cgg=yal—=F4hyd) o0 L. (59)
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Wie zu erwarten war, fallen die Richtungscosinus der X0 und Ye-
Achsen aus den Formeln weg.

Genau in derselben Weise 1aBt sich die Transformation der s',,, der
Koeffizienten der Gl. (2a), durchfithren. Hier sind die analogen Abkiir-
zungen:

su=4A S1—Si3— ¥ =F
$13 = B ¢ (54a) Sii— S1e— 38513 =G (55a)
sy = C $31 + Ss3— 253 — Sy = H
S35 =D (54b)
mit 513 “— 512 = G Tr— F -------- (563)

Die Spannungen sind Tensorkomponenten mit den Transformations-
gleichungen:

X0 = a,* X, +p 1Yy -+ "z, + 2B1Y; + 2y,0,2Z, + 2a,6, Xy,

u.s.w.
Y::U === a'.!uX:c ar ﬁzﬁyy + ?’2;’22 a1 (ﬁz? ar ﬂ}'E)Y: T
+ (a0 +ya)Z + @B+ af)Xy o (57a)
u.s.w.

Diese werden eingefithrt in den Ausdruck fiir die freie Energie im
hexagonalen System:

28 = Sll(Xx02 ar yyo'l) T 5332502 + 25;,5( X0 + Y9 2.0 +
+ 2512 X,07 0 + 540(V20" + Z,9%) + 2(s;; — 5,0 X,° . . (58)

So erhalten wir die Transformationsgleichungen fiir die s';.: -

§'1 = A — 2Fa® + Hat
§'5s = A — 2Fp? -+ Hp
§'53 = A — 2Fy® + Hy

§'s3 = C + 2Ga® 4 4Hp2y?
§'s5 = C 4 2Gf* + 4Hy%a?
$'s = C + 2Gy® -} 4Ha2p?
$14 = 2y(G — F + Ha?)

§'ss = 2ya(G — F + Hp?)
'3 = 2aB(G — F + Hy?)

$'sg = B— (G — F)a® - Hf%?*
S'n = B— (G — F)f* + Hy'a*
S’w = B — (G — F)},'l -+ Hﬂ2ﬂ2

s's6 = 2GPy(— G -+ 2Ha?)
s'ss = 2Gya(— G + 2Hp?)
§'45 = 2Gaf(— G + 2Hy?)

s'1s = 2ya(— F + Ha’)

s'yg = 2af(— F + Hp*)
§'ga = 2fy(— F + Hy®)

s'16 = 2af(— F 4 Ha?)
$'24 = 2fy(— F + Hp?)
Sss=29a(—F 4+ HyD) . v v v v v v o . (59a)
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§ 2. Die Koeffizienten der Funktion ¢.

Im vorigen Kapitel ist gezeigt worden, daB wir von den Koeffizienten
der Funktion @ nur brauchen:

533(2 :%), 644(: %): 531(: (J_E;_'n)’ 011(2 f\%l): ‘756(2 ég})
\ \ J and —

Von den zweireihigen Determinanten benutzen wir also dgg, Aygy, 25,
und Z; auBerdem noch Agy, Ay5 zur Entwicklung der 1. Hauptdeter-
minante 4, 3, und 21g Zur Entwicklung der 2. Hauptdeterminante 3,
Etwas einfacher gestalten sich die Formeln, wenn wir statt Ay, Fgy
und 2y, die Summen 4,, + 4., By + Ey und 21 + 2, berechnen
und auBerdem =X, zu Hilfe ziehen.

Zuerst berechnen wir die Hauptdeterminante.

Nach (24) und (59) ist

a—2fy* + hyt,  By(—f+ hy?), ya(—f + hy?
Ad=|Bf(—f+hy?), c+ dga+ 4 7% ap(—ig+ hyd) | (60)
val—f Ry, af(—ig+hy?), oL g hy*a®
Sodann finden wir aus (30)
A3 = {c+ 38(1 — »3)} {c + hy2(1 —y¥)},
A+ s = 2 + 320l — 79} (@ — 2y + ) — (f* — ahyy2(1 — 5,
Aus (31) folgt
dss = ayfc + (L — y3)} (f— hy?),.
Asa = Byle + $2(l — )} (f— hyp?).
Jetzt kénnen wir 4 entwickeln, und finden
A = c'33dy5 + ¢'sadyy + Cg5dys =
= {e+22(1—y) (@—2fy*+ hy%) (c+ hy*(1—y?) (@ B2 ) (—f+ hyY)],
also
4= {c+ $g(1 — )} {ac — y*(2cf + 2 — ah) + p4(ch +f2—ah)} (61)

Wir sehen daB a und # aus der Hauptdeterminante wegfallen,
Wir konnen also schreiben:

Aus (32), (59) und (55) folgt in derselben Weise
Em+Esz={C+é‘g(l—;’aJ}[CM'J’ZC(Q-—f)4‘3’2(1~;’2){(f—h)(g—2f)'i*h(f-i—Zb)}]o
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Fir die erste Gruppe der Koeffizienten finden wir also:

hy?(1 — p?
533=C+f(§ L) WA Wy, - (64)

by - 5., — SKA7C@—F) +r*(1—p?) (F—h) (6—2) +h(c +25)}
31 €39 = S

(65)

Sus 5. — 2c+3g(1—y?)} (a—2fy*+ hy") —(f2—ah)y*(1—p?)
44+ bhii== {C 7% %g(l __;,2) }(5 =

_ a=2pt it cla—2fy*+ ) —(f—ah)y*(1—y?)

0 e + fe(T— 7910 -
a2 rac hyA T T
B 3 e+ 1g(1—y7)

Fiir die spitere Mittelung schreiben wir mit Vorteil (nach (63)):

o 1 ] 9
a—2fy3 -+ hyt = = {8 + (f2—ah)y*(1 — y?)},
alsdann gilt

1 1 fA—ah y*—yt
R e e e R
Wir gehen jetzt zur zweiten Gruppe iiber.
Die 2. Hauptdeterminante wird nach (24a) und (59a)

A—2Fa® 4 Hal, B—(G—F)y*+Ha*8?, 2af(— F + Ha?)
3'=|B—(G—F)y*{Ha®f:, A—2Ff*+ HB',  2af(—F + Hp?) | (60a)
2ap(— F + Ha?), 2af(— F + HpY), C-+2Gy*+-4Ha?p?|

Bei der Entwicklung dieser Determinante wird sich wiederum zeigen,
daB alle a und f wegfallen.

Wir finden aus (30a) und (31a):

21+2e = (CH2Gy*) {24—2F(1—y?) + H(a*+-$%) } —8a2f2(F:—AH),
212=(C+2Gy*) {— B+ (G — F)y® + Haf*) + 4a*f*(F* — AH),
Zgs=(A* — 2AF + AH — B?) - 2y*(AF — AH + BG — BF) +
+y"{AH—(G—F)*} + 2a*$*(— AH— BH + 2F*—FH) +
-+ 2a*8%**GH,
oder mit (54b)

Zs= (AD— B?) - 2}’2{A(F——H) + B(G—F)} + y§AH—(G—F)* +
+ 22*f*{F(A — D) — H(A + B)} + 2a%°GH.
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Weiter folgt aus (24a) nach einer umstindlichen Rechnung:
==(C+2Gy*)[AD—B*+2y*{A(F—H)+ B(G—F) } +7* {AH—(G—F)*}] (61a)
oder 2=(C+2Gy) 0. .. .. .... SR R T (62a)

mito = AD— B*4-2y*{A(F— H) -+ B(G—F) }+y*{ AH—(G—F)?}] (63a)

Die zweite Gruppe der Koeffizienten wird so nach einiger Rechnung:

__ 2A—2F(1—y% + H(a*+ 89 a?fe

Gq1 -+ Ogg = P — S(Fz—-AH) mr
— B+ (G—F)y® + Ha2f2 202
s = =i CEeT
- 1 Ha2%p? ' ! ap?
m=Crop T, THE—AR) e

Hieraus entnehmen wir zwei Formeln, deren Mittelung leicht vor-
zunehmen ist:
C+2Gy? + H(l — »9)?

011+ Ogp + 203, = = S (67)

1 B — (G — F)y*

Ogg— 010 = CTZCT}:: = e e e (68)

Wegen der Beziehungen (36a) und (37a): 0y, = 0gs, Oy — Yoy — 0y)
geniigen (67) und (68) zur Berechnung der o,; und Gog; ZUSammen mit
(64), (65) und (66) ergeben sie also die 5 notwendigen Formeln.

Wenn wir (62a) und (63a) vergleichen mit (62) und (63) so sieht man,
daB die zwei Hauptdeterminanten 4 und 2 ganz dhnlich sind. Dies war
zu erwarten, da die a,,, welche ¥ im Nenner haben, identisch sind mit
den o welche 4 im Nenner enthalten. Es muB sich also ergeben, daBB
die Koeffizienten der 2’ denen der A proportional sind. Es wird sich
lohnen 4 und 2 in den c¢;; auszudriicken, wodurch die Proportionalitit
zu Tage tritt; alle 5 Formeln erhalten dann denselben Nenner und die
Integration wird erleichtert. Die Zihler der Formeln (67) und (68) sind
Funktionen der s;; auch diese werden in c;, umgerechnet. Dazu
gebrauchen wir die Transformationsformeln fiir das hexagonale System 32)

3% Vgl. Voigt, Kristallphysik, S 747, wo die i In 5, ausgedriickt stehen.
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o= | CyaCs3 — C13” = _ Cislay — C45° Q '___CI_-;
= Acyy — ¢1a)” ey —cpp)? 718 A
. (69)
SIS C:116 Crs IS
38— i r 244 oy
WO ll — 633(C11 + C12) e 26132 & % & S E a2 s e s s (70)

Einerseits ist 4, nach (61):
4= {c+ 321 —p?)} [ac —y*(2cf + f*— ah) + y*(ch + 2 — ah)]
und wir konnen nach (54) und (55) schreiben:

d = depeglen —cepp) (1—Ly%) 1 —Mp2+NyY . . . . (7])

8 ot —Cia—2cy
wo L = +tg_ T By 43 & g B 60 6 g R e (72)
FF7 2cf +£ —ah _ 2¢44(C11 + €13) — C11Ca3 + Cwﬂ, NN (73)
€11€4
N — ch + f*—ah = CaalCuy + €33 -+ 2615) — 1€y +$2' (74)

ac Cllc‘li
Anderseits ist 2, nach (61a):
"= (C +2Gy?) [AD— B*— y*(2A(H —F) + 2B(F — G)} +
+ 7 {AH— (G— F)?},

und nach (54a)—(56a) konnen wir fiir diese Form schreiben:

251y — Syg — 4544) 72

2= 53 + S (511833 — 5159)[1 —
14
o 2511(533 — S13— #54) + 2511(512 — S13)
=7 i
S11533 — Sy13°
+ 511(511 + S35 — 28,3 — 344) — (S13 = 84 )
4 11833 — S13°
Mittels (69) und (70) bekommen wir hieraus
C11 11—C1e—2C4| | 2"4;(5114 C13)— C11C:m+5132
o= —— l—f" —— | []— -+
C‘i-l(cll CI )11 Cll S Cl'.! CILC“
4yt Caa(C€1y + €35 + 2015) — €15655 + ‘3132}
! C11€ay
oder
C11
= (1] e l—My24-NyYHY. . . . . . .. 71a
TR & =) y: + NyY) (71a)
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Somit ist die Proportionalitit der zwei Hauptdeterminanten erwiesen.
Sl _— 2
Der Proportionalititsfaktor ist — — 5
4 Aleyy — ¢19) %cqy®
—6 in den c;;, wie es fiir den Quotient zweier dreireihigen Deter-
minanten mit Elementen s’;, und ¢’ i ZU erwarten war,

Dieselben Transformationen (69) ergeben fiir den Zihler der Formel (67)

»; er ist vom Grade

(€ + H) + (2G — H)y®> — Hy*(1 — y2) —
1
L E;[(Cn — Cy9) (€11 + €12 + 2¢45) + C11€33 — C1p° —
— »2{(c1y — C19) (€11 + €10 + 2¢13) — (€31 + 2'312)533 + 36152} —

2 ‘2‘ i 2
— 31— 7%) {(‘-'11 — C1p) (€11 +C10+ 2¢43) + 11—y 32— MH

Csa
Mit der Abkiirzung:
@ =(cn—¢3p) (1 + 12+ 2645) + eiacp3—cp5® .+ . . . (75)
1aBt sich die Gleichung (67) nach einiger Rechnung schreiben:

—Cys
2t ARy
0 1—y2—p3(l—y? A
011+ Oy + 2075 = —+ =0 )

e 1—My? —|—N/4 T 1=+ Ny

: i
1 9+;f2(—o+22)+r2(1_;,~)(_9-|-2;,+f;)
e e e I —My* + Ny (76)

11

Fiir den Zihler des zweiten Bruches im letzten Glied der Formel (68)
erhalten wir:

B—(G—F)y*=— C—ii‘ e = Caa€12 ‘i(::(ilcz)fw + C1a)
Mit der Abkiirzung:
V= CraC3—C1a(Crn—Cr12+C13) « « v v 4 o o (77)
erhalten wir nach kurzer Rechnung

— _,_C'ﬂ.___, — _l ’ Cla(cll_clg) + ,ry‘_"_ (78)
Ogs — C12 = 7 —Ly: ¢y 1—Mp:+ Ny * * ¢

Somit ist die Umrechnung vollendet.

§ 3. Die Konstanten der Lamellenaggregate.
Zuerst wollen wir die Formeln hinschreiben fiir die Konstanten des
allgemeinen primiren Lamellenaggregats, wie es im § 1 des Kap. II



47

definiert wurde. Dieses Aggregat ist ein Paket sehr vieler diinnen
Lamellen mit allen méglichen Orientierungen des Hauptachsenkreuzes
in gleicher Haufigkeit.

Bei den betrachteten Kombinationen der Koeffizienten » Ogy + 055 15w,
fallen die Cosinus a und 8 der Z°-Achse weg; diese Kombinationen
behalten also denselben Wert, wenn die Z%-Achse der Lamelle sich
um die Lamellennormale dreht. Nur wenn der Winkel ¢ der Z°- und
Z-Achse sich indert, dndern sich auch die GréBen 033, 033+ 55, €31 +- €54,
11 + 013 + 20y und 645 — 055, Der Mittelwert dy, ist also

1 > 27 1 y - A 4T

i “sin 0 [1633d97 = {.J;;sdy; in derselben Weise erhalten wir die
0 0 0

andern Mittelwerte. Nach (36) gilt 9,4 = 0; und £41 = &30, nach (36a)

und (37a) Eu :322 und 0y, r;n - 2;66. Daraus folgt

‘;;1 A ;.'2 r 2312 = 4(511 b= Ees) ------- (79)
?].55 _;12 == 3;66_';11 SR S e S S I g T e e (80)

So erhalten wir 5 Gleichungen zur Berechnung der Elastizitits-
konstanten des primiren Lamellenpakets, nimlich:
Aus (40) und (64) mit (54):

11 1 g+ hy(1l — 92)
Caz Cnc-il»(/) N My 2 V8 SRR LS

Aus (41) und (65), mit (54) und (56):

26,y SIS f “dy SalCratCrs)Fy eu(Cre—cia) +r* (10— [(F—h) (8—20) + h(2esgt-¢4))]
Gy Cnc-uo 1—My2+4 Ny

(81b)
Aus (42) und (66), mit (54) und (55):
2" dy  f—cuht oyl —
S| Y Ty G10)

20
Coaa  Caa ' €y— Ci2) 1—Ly* Clas® |
0 0
Aus (43a), (44a), (79) und (76):
A
07—+ 2+ (1—) o+ 22+ )

/ G2\ 1N Cy.
26t 62t )=y T pt)

Aus (43a), (44a), (80) und (78):

. 6,5° 1 dy 1 (1. (e — €ra) + vy?
+ — 3¢( mtlh e = R Pt & 3
161 — 8652 + Gy M/ ] =0 c“j 1) 1 — My® £ Nyt (81¢)
0

0
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In diesen Formeln bedeuten die griechischen Buchstaben Formen
zweiten Grades in den ¢;;:
l — Clm((.‘u + Cl?) ey 3 2C1327 ------------- (70)
0 = C33€11 — €15° + (€11 —€y9) (€15 + €12 + 2¢43), - - . (75)
V= CyCip— CraCin—Cra = Cpg)e o v o o o oL (77)
Die kleinen Buchstaben sind Formen ersten Grades:
f=c¢11—c13—2¢y
g - Cll —— C12 — 2C44 ....... (55)
h = cy + €33 —2¢,3 — dcyy

Die groBen Buchstaben sind dimensionslose Zahlen:

g
L=—2— . . .
CiteCie ¥
e AR S - (73)
C11Cy4
N— CUREIT e Cri (U L (74)
€11C44

SchlieBlich fithren wir fiir die Integrale noch Abkiirzungen ein

K= j 1_ Ly ............ (82a)
dy
P :f =TT 0 8 8 E i ¢ (82b)
0
= M el
o) = 0/ T g e SRR (82¢)
1 2 2
_ [t ¥ —y¥)dy
R Gj T T 0 G B G (82d)
wo R sich aus P und Q berechnen 148t nach der Formel:
S (M= N ) O =N R = i i e (83)
So erhalten die Gleichungen (81) ihre endgiiltige Form:
1 1
ol T -+ h PR Tt L Py t
Gy CriCm (CaES ) Es
26 1 (f—h) (g—2f) - h(2c,.
KT :El—l[(cm+C12)p“|“(‘313_5'12)0+ ) (g fc)“ ( C”_*_CH)R » (84b)
2 1 " 2 (f — cyih)
€y } C11_—‘312 T S &)



49

A 2@;32‘__1_[ ey ( 2
2(511 Fon— 0P ) o (S 0 T +2}.+E:_4)R] (2

G1s® 1
TSM: = Cyq K‘_E'; [e1a(cy — c1n)P + vQl. . .. (84e)

Zur Priifung der Formeln (84) sei bemerkt, daB sie auch stimmen
im Grenzfall, wo die urspriinglichen Kristalle genau isotrop sind, also
€11 = Ca3r C12 = C1g» G113 — €1y = 2¢44. Da werden f, g, b, M, N und »
gleich 0, 0 = 21 = 2¢;,2 + 2011015 — dcp? = 2(cnn + 2c19) (613 —¢10);
P und K werden == 1, Q=1%und R = T

Die Formeln (84) ergeben sodann:

1 1
(P
2613 _ 2
€ o

21} 2R

“ 26,2 12+ cqic 2¢,5°
2(@11 "I’ b.q_o . ___}_) =t 11 11-12 12
Cas €11
U C1a(Cy1 —¢q)
‘1 _:z (s 13 == _ 12\%1] 12 e lc __3(: 132
36y, 8612 + G 14 1 2t §C1a + €11

und das Aggregat hat dieselben Konstanten wie jeder Einzelkristall,

Etwas eingehender ist die Priifung der Formeln fiir die Aggregats-
konstanten durch die Annahme, daB die Anisotropie des Einkristalls
gering ist. Mit Vernachlissigung der kleinen GréBen hoherer Ordnung
miissen sodann die Voigtschen Formeln herauskommen, wie im Kap. II,
§ 3, nachgewiesen ist. Ich habe die Rechnung durchgefithrt an den
Gleichungen (81). Es seien €11 — C33, Cia—Cy3 und ¢y — ;9 — 2644
klein gegen alle c;;.. Dasselbe gilt dann nach (55) fiir f und h, nach (70),
(75) und (77) fiir » und — o + 24, wihrend nach (72)—(74) L, M und N
klein sind gegen 1. Mit Vernachlissigung aller Produkte und Potenzen
solcher GroBen erhalten wir fiir das primire Lamellenaggregat nach
einiger Rechnung in erster Anniherung

€y = Gy = ;—',(3611 + ¢35 + 4c1g+ 8€aa) o o . (85‘1)
Ci2=Cpy = (e + ey + fC12 1+ $€13 — $Cad) © (85b)
(€ —C6ypy) = Gy = b(fen + deas — fera — Fous + 2¢4y) - (85¢)

und das sind eben die Voigtschen Formeln (8) fiir das hexagonale System.
4
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Es kommt auch wieder heraus, daB das primire Aggregat in diesem Fall
annihernd isotrop ist.

Es gestaltet sich also die Berechnung der Konstanten eines isotropen
Aggregats von hexagonalen Kristallen verschieden:

a. Bei kleiner Anisotropie der Einkristalle werden die Voigtschen
Formeln (8) angewandt.

b. Bei grdBerer Anisotropie wenden wir zuerst die Formeln (84) an;
ist das primire Aggregat sodann nahezu isotrop, so erhalten wir aus
den @, durch Anwendung der Voigtschen Formeln die Konstanten
des isotropen Aggregats.

¢. Ist die Anisotropie der Einkristalle sehr groB, so miissen wir
auf die @, des primiren Aggregats noch einmal die Formeln (84)
anwenden; auch bei sehr groBer Anisotropie der Einkristalle ist das
sekundire Aggregat so wenig anisotrop, dall die Voigtschen Formeln
oder auch einfache Mittelungen sodann die Konstanten des isotropen
Aggregats liefern.

Die Formeln (84), die in den Fillen b) und ¢) anstatt der Voigtschen
Formeln benutzt werden, sind ziemlich einfach, nur die Berechnung
der Integrale K, P und Q ist etwas umstindlich. L ist in allen Anwen-
dungen positiv, es folgt da aus (82a)

1 Uaa/L
R i B /T

(86)

Die Integrationen P und Q sind verschieden je nach den Vorzeichen
der Diskriminante M?* — 4N, und der GréBe IV selbst. Ich schreibe nur
die Formeln hin, die in den Anwendungen benutzt werden. Durch
elementare Integralrechnung erhalten wir:

19, falls M*—4N <o . . . . . PERTRRa (5 /)
14+ N+ T,
bete T /N \/N O N =T -
P — 251 4T Fo o & b e e 4 e a)
1 1= «/N T+ y + \/N
0= TN 25, T, ey (88b)

OIS e 0 N = AT T = DR/ IV ST T S e (89)
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29, falls MES A N0 N =oan s e (90)
1 1 _!* T2
P —= ﬁ [Sz bgtg S, + 1T, log = TJ’ « + « . (913)
‘ 1 bgtg S, 1 ST
O vl o =73 R
wo S, = V—IM{ }WIE—ax,
e T
=V WM+ Wir—ay ..., (92)

§ 4. Berechnung und Priifung der Aggregatskonstanten von Zink.

Beim Zink haben Hull und Davey mittels Rontgenanalyse die Zuge-
horigkeit zum hexagonalen System nachgewiesen %3)

Nachdem die Herstellung der Einkristallstibe gelungen war haben
zwei verschiedene Forscher die Kristallkonstanten unabhingig von
einander bestimmt: Griineisen und Bridgman ™). Leider stimmen
thre Daten ziemlich schlecht iiberein. Wir sind nicht in der Lage, zu
entscheiden, welche Bestimmung die genauere ist; iibrigens wird sich
zeigen, daB diese Unterschiede die Werte der Aggregatskonstanten
ziemlich wenig beeinflussen. Bei den folgenden Ausfithrungen sind jeweils
zwei Zahlenwerte angegeben; der erste bezieht sich auf die Messungen
von Griineisen, der zweite, eingeklammerte, auf die von Bridgman.

Aus den s, haben wir mittels der Transformationsgleichungen die
durch Auflsung der Gleichungen (69) erhalten werden, die c;;, bestimmt;
daraus ¢y — ¢y, €3 — ¢y, und die GréBen f» g und h der Gleichungen
(55), welche den Grad der Anisotropie ausdriicken. Das Resultat findet

sich in der Tabelle D 1; hier, wie iiberall im folgenden sind alle GréBen
in C. G. S. Einheiten geschrieben.

D 1. Kiristallkonstanten von Zink.

108 =) - 8,0 (8,23) ey 10-11= 16,08 (15,90) | (c;;—c55)10-11=| 10,655(9,685)
o = 282 (26,38) lcyy ,,  =|5,424(6,214) [(c,i—cra),  =| 0,065(1,585)
2 =05 (+0,34)c,y ,, =| 4,31(3,23) |f » =| 3,705(3,085)
a o =—6,05(—6,64)c;y ,, =|4,375 (4,815)[g wo = 3,77(4,67)
S =] 250 (250) fcy 5,  =| 4,00(4,00) | »  =—3,245(—3,515)

) Hull u. Davey, Phys. Rev. 17, 1921.

#)  Griineisen, Z. f. Ph. 26, S. 235—249, 1924,
Bridgman, Proc. Nat. Ac. of Am. 10, S. 411—415, 1924,
Bridgman, Proc. Am, Ac. 60, S. 306—383, 1925,
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Es zeigt sich, daB Zink sehr stark anisotrop ist, die Voigtsche Theorie
ist hier also nur eine grobe Anniherung.
Die Rechnung ergibt nach (73) und (74):

M = 1,4857(1,4163)
N = 0,8230(0,8075),

und die Diskriminante der Form 1 — My2 |- Ny* hat den Wert:
M* — 4N — —1,085(—1,224).

Die Integrale P und Q werden also berechnet nach den Formeln (88);
wir erhalten: A
P = 1,7415 (1,6361)
Q = 0,7920 (0,7188).
Weiter ergibt (83)
R = 0,2167 (0,1985).

Aus den Gl. (84) folgt dann:

D 2. Primires Aggregat von Zink.

Gy - 10-11 | 12,38 (12,67) | (6 — 6,4,)10—11 1,755 (1,47)
Gl 10,525 (11,20) | (Gy5— Gya) — 0,53 (—0,46)
Cia 4,06 (4,24) i - 1,01 (0,83)
Giyun 3,53 (3,78) g 0,48 (0,37)
Cut 3,02 (4,03) 5% el 0,165 (0,19)

Vergleicht man diese Tabelle mit der vorigen, so sieht man, daB
in D 2 die Unterschiede der Konstanten nach Griineisen und Bridgman
meistens kleiner sind, als die Unterschiede in DI1. Das Aggregat ist
noch anisotrop, wenn auch in viel geringerem MaB als der urspringliche
Kristall. Wir bilden also nach II, § 2 ein sekundires Lamellenaggregat.
Nach II, § 3 wiirden wir auf die @;; die Voigtsche Theorie anwenden
koénnen, wenn in Tabelle D 2 die GroBen der letzten Spalte alle klein
wiren den ©;; gegeniiber. Diese Bedingung ist nicht geniigend erfiillt,
wir wihlen also den sichereren, wenn auch lingeren Weg, und wenden
noch einmal die Formeln (84) an.

Diesmal erhalten wir

M = 0,14207 (0,09737)
N = —0,00774 (0,01866),
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also die Diskriminante M*® — 4N positiv. Fiir diesen Fall ergeben die
Formeln (91) die Zahlen P und Q;die Bestimmung von R aber mittels (83)
ist wegen des kleinen Wertes von N nicht sehr genay,

Fiir die Berechnung von R (und auch von P upng Q) verfahren wir
deshalb folgendermaBen:

dpe i kg
(1—S%% 1+ T3 =

1_ d;, /‘1
5 Hd{ 1—My* A~
0

il
= Bt S LSy ) g Tyt — ... ) (93)

dhnliche Formeln gelten fiir Q und R, Wegen der kleinen Werte fiir
Sy und T, lassen sich die Reihen bald abbrechen.
Wir erhalten so:

P = 1,0538 (1,0389)

Q = 0,3664 (0,3574)

R = 0,1424 (0,1399)
welche Werte bei der kleinen Anisotropie nicht allzuweit von den
Grenzwerten 1,0000, 0,3333 und 0,1333 liegen, die bei Isotropie auf-
treten. So erhalten wir die Konstanten (;, des sekundiren Aggregats:

D 2a. Sekundires Aggregat von Zink,

G- 10—11[11,72 (12,135)
G 11,685 (12,12)

Cia's s 3,703 (3,935)
Gt 3,69 (3,921)
@_’] LI T 4‘,005 (4,100)

Die Tabelle zeigt, daB das sekundire Aggregat kaum merklich anisotrop
ist. Es lohnt sich also nicht um noch einmal tertiire Lamellen zu bilden
und nach der Voigtschen Theorie dafiir die Konstanten zu berechnen;
das Ergebnis st dasselbe, wenn wir einfach mitteln, also

— 261, +6,, und ¢, — £SuiEs %(3&” — G nehmen.
= k g =

= 2&‘%‘._%’ G

o |

Aus den erhaltenen ¢ und €, berechnen wir den Dehnungsmodul:
G — @_ r 261) (6 = G])
=] € -+ G,
wihrend wir wie in (14) fiir den Torsionsmodul im folgenden schf-eiben.
Daneben sind die Werte berechnet worden, welche die Voigtsche
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Theorie, nach (8), (13) und (14), ergibt, wenn sie auf die sehr anisotropen
Zinkkristalle angewandt wird.

D 3. Isotropes Zinkaggregat.
nach Voigt neu
G .10—11 | 12,96 (13,14) | 11,71 (12,135)
G,.10—11 | 4,135 (4,055) | 3,695 (3,925)
G .10—11 | 10,96 (11,23) | 9,94 (10,21)

AL

4,415 (4,545)

4,005 (4,10)

Wie schon bemerkt worden ist, stimmen die Werte fir € und I,
welche aus den Griineisenschen und den Bridgmanschen Konstanten
berechnet sind, gut iiberein; viel groBer ist der Unterschied zwischen
den Ergebnissen der alten und der neuen Theorie. Die experimentellen
Daten fiir Zinkageregate konnen also zur Priffung der neuen Theorie

beitragen.

Die empirischen Werte der § und ¥ sind den Landoltschen Tabellen
entnommen und umgerechnet in das C. G. S. System; von den dlteren
habe ich die Voigtschen hinzugefiigt.

D 4. Zinkaggregate (empirisch).

Nummer Forscher Material |Temp.| G.10—1 |£.10—1
1 Griineisen  |II,gegossen| 18° 12,85 —-
2a Voigt - - 10,51 3,80
2b 7 5 — 10,03 3,85
2c s T — 9,95 3,62
2d A '’ — 9,97 3,95
3 — gewalzt — 17,3 —10,4 —
4 Griineisen I,gegossen| 18° 8,23 —
5 Kikuta gezogen 25° — 3,59
6 Koch-Dannecker| Draht 20° - 3,22
7 Jokibe-Sakai T 24° — 3,02
8 Guye-Schapper ” 0° — 2,38

Die Unterschiede sind auffallend; alle Ursachen fir Abweichungen,
die wir in 1I, § 3 besprochen haben, sind wohl im Spiel, daneben noch
der EinfluB von Beimischungen. Besonders fallen Abweichungen von
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der regellosen Verteilung der Achsenkreuze hier schwer ins Gewicht;
wegen der sehr groBen Anisotropie der Zinkkristalle werden spezielle
Orientierungen ganz andre Werte fiir € und ¥ aufweisen,

Nach dem Arbeitsplan am Ende des Kap. II untersuchen wir Zuerst,
ob D 4 isotrope Materialien enthilt. Fiir die Entscheidung kommen
nur die Nummern 2a—2d in Betracht; Griineisen hat ausnahmsweise
am Zink nur das § gemessen. Am Stab II (unsrer Nummer 1), der aus
sehr reinem Zink bestand, waren Porien duBerlich sichtbar, das G soll
also noch erhaht werden, Griineisen hob schon in seiner Abhandlung
vom J. 1907 den sehr hohen Wert hervor — damals erklirte er die
Abweichung von den Voigtschen Werten als mogliche Folge einer andern
Zusammensetzung des Materials. Als Griineisen aber 1924 die Ein-
kristalle von Zink untersuchte, wobei er Stibe messen konnte, deren
Léngsrichtung Winkel von 39 bis 880 mit der hexagonalen Hauptachse
bildete, ergab sich daB in allen Kristallstiben das G kleiner war, als
das € vom J. 1907. Es scheint also ausgeschlossen, daB der Stab Zn IT aus
einem isotropen Gemische solcher Kristalle bestehen kinne. Im Kapitel V
werden wir sehen, daB ein bestimmtes anisotropes Aggregat in der
Tat ein € ergeben kann, héher als das § in irgendeinem Kristall,

Um die Gl (52) anwenden zu kdnnen berechnen wir zuerst den Kom-
pressionsmodul § = (G +- 264). Als mégliche Werte erhalten wiraus D 3

nach der alten Theorie

SRI=I01805 (21,25)
nach der neuen Theorie

38 = 19,10 (19,985)
also jedenfalls

38 = 20,20 + 1,10
oder

1
g = 0,050 -+ 0,003.

1 3 |
FiirdieVoigtschen Stibeerhalten wir also aus der GL(52): == T

D253 Isotropiepriifung der Zinkstibe.

Nummer G.10—1 | ¢, 10—11 berechnet Z.10—11 gemessen

2a 10,51 4,25 4 0,05 3,80
2b 10,03 4,01 + 0,05 3,85
2¢ 9,95 3,97 - 0,05 3,62

2d 9,97 3,98 4 0,05 3,95
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Gleichgiiltig ob man die alte oder die neue Theorie, die Griineisen-
schen oder die Bridgmanschen Konstanten zu Grunde legt, in jedem
Fall findet man 2a und 2c stark anisotrop, 2b wenig anisotrop, wihrend
2d der Isotropiebedingung sehr gut geniigt. Bei der Berechnung ist
das Material als porienfrei betrachtet; ist das Material merklich pords,
so ist f kleiner, das berechnete ¥ fillt also noch groBer aus, und 2a,
2b und 2c sind noch deutlicher anisotrop, wihrend bei einem um einige
Prozente verinderten G, der Stab 2d immer noch die Gl. (52) ziemlich
genau erfiillt.

Es erscheint also durchaus erlaubt den Voigtschen Stab 2d an erster
Stelle zur Priifung zu benutzen.

Da erhalten wir:

D 6. Priifung fiir isotropes Zink.

G.10—11 g .10—11
Empirischer Wert 9,97 3,95
Berechneter ,, (alte Theorie) 10,96 (11,23) 4,415 (4,545)
. ,, (neue ,, ) 9,94 (10,21) 4,005 (4,105)

Zieht man in Betracht, daB die empirischen Werte wegen der Porositit
mehr oder weniger erhdht werden miissen, so ist die Ubereinstimmung
swischen Erfahrung und neuer Theorie wirklich sehr gut.

Die andern Daten der Tabelle D 5 haben meines Erachtens wenig
Beweiskraft; so weit sie solche besitzen, unterstiitzen sie eher die neue,
als die alte Theorie.

§ 5. Berechnung und Priifung der Aggregatskonstanten von
Cadmium.

Neben Zink ist Cadmium das zinzige hexagonale Metall, dessen
Kristallkonstanten bis jetzt gemessen worden sind. Die Verhiltnisse
liegen wie beim Zink, nur noch ungiinstiger. Wiederum liegen Messungen
von Griineisen und Bridgman vor. Thre s; stimmen besser iiberein,
aber die Abweichungen bei s3; und sy, haben dasselbe Vorzeichen;
wihrend beim Zink die Unterschiede in  und T sich tetlweise auf-
heben, werden sie hier vergroBert; auBerdem tritt hier ein Unterschied
in s, auf. Das Resultat ist 10 % Unterschied zwischen den Werten
von G und ¥ nach Griineisen und Bridgman. Die Rechnungen laufen
parallel mit denen beim Zink; nur findet man bei den Bridgmanschen
Zahlen N — 0,01067, also die Diskriminante M?—4N positiv. Fir



57

P und Q kann man hier die Formeln (91) anwenden, wegen des kleinen
Wertes fiir IV 14Bt sich aber R nicht aus (83) berechnen. Wir miissen
also einen andern Weg wihlen. Bei der Zerlegung

1

1

= istS2—— 1M 1 /T —ATT
=M+ Nt (87 0159 = M+ VP —4N,sehe

klein (- 0,0182); mit einem Fehler unter 0,003 kann man also schreiben

und die Rechnung gibt

WO

Die Tabelle:

o

1 1 — 82
1 —My* 4 Nyt~ 1 —T32?
e =y
Q:—é% Tz;s“’(—u-b‘) S
R=ig— =Sy 1 10
U= /~1] __d}%.:_,}-};_, = 217, log li; ist.

1. Kristallkonstanten von Cadmium.

L

1

r

”

LR

L1018

12,3 (12,9)
35,5 (36,9)
1,5(—1,5)
9,3(—9,3)
54,0(64,0)

cp - 10-11 12,06 (10,92)
s » o |5,136 (4,604)
Clotiiss 4,82 (3,98)

Gy 4,423 (3,756)
c . |1,852(1,562)

(c3;—¢33) . 1011
(c1a—C10) 1
f

g 12

h

1

1

6,924 (6,316)
—0/397 (—0,224)
3,933 (4,040)
3,536 (3,816)
0,942 (1,764)

wo wie vorher die ersten Zahlen von Griineisen %), die zweiten von
Bridgman herriihren %), zeigt wiederum sehr groBe Anisotropie. Die

Rechnung liefert:

E 2. Primires Aggregat von Cadmium.

§yy . 10— 11
6-33 1
(51‘3 1
6«13 ”"
64.1 "

3}((1";11_61‘3) 1"

0,225 (8,215) || (€, —G,q) . 10—11 | 1,085 (1,01)
8,14 (7,205) || (Gs— G 5 |—0,405 (— 0,38)
4,535 (3,925) i " 0,655  (0,63)
4,13 (3,545) q i3 0,25  (0,25)
2,22 (2,02) b ¥ 0,225  (0,25)
2,345 (2,145)

ﬂb)

l. e. beim Zink (III, § 5).
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Wiederum ist die Voigtsche Anniherung wahrscheinlich, aber nicht
ganz sicher erlaubt, wir wollen also weiter rechnen, und finden

E 2a. Sekundires Aggregat von Cadmium.

Gy . 10—11 | 8,818 (7,831)
G5 8,802 (7,815)
che. 4,267 (3,677)
o 4,263 (3,672)
Chm 2,27 (2,075)

Daraus folgt schlieBlich

E 3. Isotropes Cadmium.

nach Voigt neu

€.10—11 | 9,625 (8,58) | 8,81 (7,825)
Yy 4,62 (3,95) | 4,265 (3,675)

¢ . 6,63 (6,09) | 6,025 (5,475)
R s 2,50 (2,32) | 2,27 (2,07)

Hier ist der Unterschied zwischen den Griineisenschen und Bridg-
manschen Werten von derselben GroBenordnung, wie der zwischen
den Ergebnissen der beiden Theorien; die alten Werte nach Bridgman
stimmen fast {iberein mit den neuen nach Griineisen. Auch die em-
pirischen Daten liegen weit auseinander:

E 4. Cadmiumaggregate (empirisch).

Nummer | Forscher Material Temp. E.10—11 | g, 10—11
la Voigt gegossen — 6,94 2,42
1b ’r » — 7,06 2,42
lc ” Y — 6,94 2,42
1d ” ’ = 6,78 2,41
2 Griineisen 29 18° 5,00 1,93 %)
3 Koch Draht 20° -— 2,26

%) aus € und p unter Voransetzung der Isotropie mit GI. (51) berechnet.
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Die Isotropiepriiffung wird ausgefithrt wie beim Zink, und jetzt auch
auf den Griineisenschen Stab angewandt. Wir erhalten aus E 3%

nach der alten Theorie
38 = 18,865 (16,48)
nach der neuen Theorie

38 = 17,34 (15.175)
also jedenfalls

38 = 17 4+ 1,90
oder

1
H = 0,060 + 0,007.

Daraus folgt mittels der Gleichung (52):

E 5. Isotropiepriifung der Cadmiumstibe.

Nummer | §.10—11 | ¢ .10—11 berechnet |§.10—11 gemessen
la 6,94 2,69 4+ 0,05 2,42
1b 7,06 2,74 + 0,05 2,42
lc 6,94 2,69 + 0,05 2,42
1d 6,78 2,62 4+ 0,05 2,41
2 5,00 1,86 4 0,03 1,93

Diesmal ist die Ubereinstimmung schlecht bei den Voigtschen Stiben,
ziemlich gut bei dem Griineisenschen Stab. Bei der Berechnung ist §
genommen fiir porienfreies Cadmium; Porositit wiirde das berechnete
wiederum vergréBern, also die erste Ubereinstimmung noch schlechter,
die zweite noch besser machen. AuBerdem scheint eine spezielle Orien-
tierung der Kristalle beim Voigtschen Cadmium nicht unwahrscheinlich.
Cadmium zeigt beim Erstarren eine starke Kontraktion; um Porien
zu vermeiden hat Voigt daher beim GieBen das Metall unten langsam
erstarren lassen, wihrend es oben fliissig gehalten wurde ¥7). Hier liegen
also die Verhiltnisse giinstig fiir eine spezielle Orientierung der Kristalle.

Griineisen berichtet nichts {iber derartige MaBnahmen, hier kann
man daher eine schnellere Erstarrung mit nahezu allgemeiner Orien-
tierung vermuten, wobei dann wegen der erwihnten Kontraktion
mdglicherweise Porien, vielleicht gar Kanilchen in der Stabsachse auf-

17)  Voigt, Wied. Ann. 48, 1893, S. 677.
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treten konnten. Falls der von Griineisen benutzte Stab noch bei der
Phys.-Techn. Reichsanstalt aufbewahrt wird, koénnte die Vermutung
iiber seine isotrope Struktur noch nachgepriift werden. Fiir die Priifung
der neuen Theorie kommt jedenfalls nur Stab 2 in Betracht.

E 6. Priifung fur isotropes Cadmium.

E.10—11 % .10—1

Emp. Wert | 5,00 1,03
Alte Theorie | 6,63 (6,09) 2,50 (2,32)
Neue ,, 6,025 (5,475) | 2,27 (2,07)

Die Tabelle E 6 zeigt, daB auch hier die neue Theorie erheblich besser
stimmt als die alte; ist die Vermutung iiber die Porositit der Griin-
eisenschen Stibe richtig, so sollten beide empirische Zahlen erhoht
werden, das & wegen der axialen Hoéhlung wohl am meisten — voll-
stindige Ubereinstimmung zwischen Erfahrung und neuer Theorie ist
also nicht ausgeschlossen.



IV.
UNTERSUCHUNG DES ALLGEMEINEN
AGGREGATS REGULARER KRISTALLE.

§ 1. Transformation der ¢,
Wir betrachten jetzt ein primires Lamellenaggregat von regulirer
Symmetrie, Die Transformationsformeln der c’s sind den Formeln (59)

1m hexagonalen System ahnlich, nur sind sie einfacher. Das Transfor-
mationsschema sei jetzt:

[N
X0 lay By 71
Yolay, By 7,

ZO a:} ﬁ:j 3’3 L AL Bl BRE B R e ® (94)

Die Z%Achse hat nicht, wie im vorigen Kapitel, eine ausgezeichnete
Bedeutung, sie ist gleichwertig mit den beiden anderen Hauptachsen,
Wohl ist die Z-Achse nach wie vor senkrecht zur Lamellenebene. Es
1aBt sich also erwarten, daB in den Formeln fiir die Aggregatskonstanten
statt des einzelnen y der Formeln (81) die 3 Cosinus y,, y, und 73 gleich-
wertig auftreten werden. In der Tat treten 2 Kombinationen auf, die
gegen Vertauschungen der y, invariant sind:

Y = };22};32 _|_ ;,3‘2}112 4ﬁ 3)12},22 ..... e (95)
4 =HTRIEE o o Ao oo & T R (90)

Wir fithren Abkiirzungen ein analog denen im III. Kap.:

th = a,
Cie = Tt Al R (97)
und
C“_ - Cl';’ — 2(:1_! —_— f ............ (98)

Wo f jetzt allein ein MaB ist fiir die Anisotropie des Kristalls, und
wollen a, ¢ und f als unabhingige elastische Konstanten benutzen. In
derselben Weise wie im III. Kap. erhalten wir fiir die elastischen
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Konstanten ¢’;; der willkiirlichen Lamelle, bestimmt im Bezug auf
das raumfeste Achsenkreuz XVYZ, die Transformationsformeln:

C’n == {1 _f aF fzai4 6’23 — (a —2c —'f) ar fZﬂ,;?yf

6!22 = a '—f + fz 14 C'nl == ((1 e 2(: —f) + ff}'iﬂﬂiz
Css=a—f 1+ 2y 12 = (@ —2c—f) + f2a*B®

C'4y =C+ f2B:%y:¢ C'14 = C'se = f20:%Piys

C's5 =€+ f2y:ta® c'e5 = C'oa = 2827104

¢ e = ¢ + f2a;?f? ¢'s6 = Cas = [2y:a:f;

0'15 — fza-j,syi c'lﬁ - Zaisﬂi

C'og = fzﬁiaai oy = 2B3y:

c'ar = f27:°B1 Clgs =27 « « « o o . « (99)

Fiir die s';; konnten wir analoge Formeln hinschreiben. Im nachsten §
wird sich aber ergeben, daB wir nur eine der Funktionen ¢, der
Formeln (34), namlich das ¢g brauchen werden, auBerdem ist die
vierreihige Determinante im Zahler des ggg ziemlich einfach. Es lohnt
sich daher nicht, die ganze Rechnung in den s’y durchzufiihren.

§ 2. Die Konstanten des Lamellenaggregats.
Fiir das allgemeine primire Lamellenaggregat gilt nach wie vor die
Formel (38):

2.9—9 = _‘__Esazz2 ‘_’_644(23;2 .xr__"zx2) -+ ‘7711(3‘1 + yy)? +
+ @eelxy® — 4x,yy) + 2651 4:(x: + Vo)

Das Aggregat hat wiederum axiale Symmetrie, die Konstanten
werden bestimmt durch die Gl. (40)—(44):

1 - S, —.
e i 6 ] ( e il B —

Cos 357 (O Cag P11+
1 — -
'@; = 044 16y — C12) = Pee-

G _ —

T - faur
33
Die 5 Aggregatskonstanten sind jedoch jetzt nicht von einander un-
abhingig, sie hingen ja alle von den 3 Kristallkonstanten a, ¢ und f ab.
Es miissen also zwischen den ©;;. noch Beziehungen bestehen. Solche
folgen sogleich aus der Kompressionsbedingung, von der schon in II, § 3
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die Rede war. Allseitig gleicher Druck P erzeugt bei reguliren Kristallen

eine gleichférmige Kompression p, der Kompressionsmodul § — % ist
bestimmt durch:

3R = Cl 2010 o e el o e (100)
also nach (97) und (98)
R =3a—4c—2f. . . .. ... (101)

Fiir das axiale primire Aggregat gilt nach den Hookeschen Glei-
chungen

P = (6" <|* &12 + @13)1')
und

P = (2@13 + Gaa)p
und wir erhalten:

C11+ 61 +Cra=38, ..., ..... (102)
2613+ C33=38. . . . .. ... (103)

Somit bleiben zu berechnen {ibrig G5, Cgs und Ggp = $(6; — 6,0)
Die Rechnung ergibt ziemlich leicht:

.

A=t 2pcf + 30/ v v v v e e e e e e (104a)
Ay + dgs=2c(a—f)+fla—f) Zy 2(1 —y,) + 2cf2y A 1222 (1 — %)
(104b)

Pes = ¢4 + f[{ac* + fla—c —f) 2yec + xf)} Za;2B2 +
+cfla—c—f) Za; B2y f—cf(a—f) 2B %y 2+ of 220,282y 2y i+
ar sz(ﬂ —{" '—f) {C:’!kﬂkaiﬁlykgrlz =t Zf-g“kﬁ:.-ﬂrﬂt}] . . (104c)
In diesen Formeln ist i+ k=1, 2 driickt eine Summation iiber

3 Glieder aus. 4 bedeutet wie immer die Hauptdeterminante (24), sie
hat hier folgenden nur von den y; abhingigen Wert:

A = ac* + yef(2a — 2c — f) + xf*Ba — 3¢ —2f) . . (105)

Die Mittelung wird auch hier zuerst ausgefiihrt {iber alle Lamellen
mit gleichen y,. Dabei benutzen wir die Formeln:

a?f® = (1 — %)%

akﬁkaiﬁ!: é(— ;’:’2 -1ﬁ }';.-_2?;2) P T T S S T S (106)
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wihrend aus den Definitionen von v und y, (95) und (96), folgt:
2yt =1—2y,
2yf=1—3y + 3,
2y =1—dy + 4z + 2%
2yfvetrt = 2
A e T o e 5 2 s o e (107)
So erhalten wir Mittelwerte fiir d,;, d;, und ¢g, genommen {iber
alle Lamellen mit denselben y;, wobei A nach (105) einen festen Wert
aufweist. Nachher mufl dann integriert werden iiber alle Richtungen

der Lamellennormale im System X°Y°Z°, Wir schreiben fiir das Flichen-
element der Einheitskugel do und erhalten dann

A0 L et + 2wef + 3yf?
Css 4n.,/ A Ay 1 v 1 e ke (108a)
1 _ 1 fac+ yfla—2c—34f) — §zf*
Gz —4::‘/ A do. . . . (108b)
1 [2c(a—ywa—4yf)+f(3a—4c—2f) (p—
@652%(@11-612):C+ﬁ'6f~-4‘—1f cla—ya—4yf) le( a—4c—2f) (w Sx--)da

»

(108c)

Zwischen den Gl. (108a)—(108c) besteht noch eine einfache Bezichung
die hervortritt wenn man fiir 4 die Form (105) einfithrt und die 3
Gleichungen (108) bzw. mit a(3a — 2f), 4c(2c 4+ f) und —8 multi-
pliziert., Addition ergibt sodann:

a(3a—2f) . 4c(2c + f)
G Gy

Die Gl. (108) und (109) gelten auch fiir jedes spezielle Aggregat mit

festen Werten von y und x, nur fallen aus den Formeln (108) die

—4(6, —C10) =3a . . . (109)

1 : :
Faktoren 7 die Integralzeichen und do fort; bei der Behandlung der

speziellen Aggregate im V. Kap. werden wir die so vereinfachten
Gleichungen benutzen.

Jetzt kehren wir zum aligemeinen Aggregat zuriick. (109) tritt an
die Stelle der Gl. (108c), es bleiben also noch die Integrale (108a) und
(108b) zu berechnen iibrig. Wir schreiben:

f(2a—2c—f)
e (S (110a)
f*Ba—3c—2f) _ Fif 2 e (110b)

ac*
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und setzen:

1 / do _

) T+ My £ Ng =T -+ o o s + « .« (l11a)
198 wdo

E./l_-lmzl‘ G Gt e (111b)

Das dritte Integral, das zu den Integralen der Formeln (108) beitrigt

»

! do . ’
nimlich f TTML?/’W' 1aBt sich ausdriicken in J und L mittels
der Formel:

1 7 ydo 1
Zﬁjm':ﬁ(l—]—ﬂﬂ,) SR (1112)

So erhalten die Gleichungen fiir die Konstanten des primiren Aggre-
gats ihre endgiiltige Form:

1 3ac—Je(3c + 2f) — L
Cya  acBa—3c—2f) * t vt e s e e oo, . (1132)
1 —3ac? +Jac(6a—3c—4f) —I—Lf[af-‘|~2(a-—c—f)(3a——3c——f)]
Cas 2ac*(3a — 3¢ — 2f) ———= (113b)
zusammen mit
3a—2 4c(2c -
461 — Cre) = —3a + M—f)' I _CLU « » (113c)
Gy €4

263 =3a—4c—2f—Gy. . . . . .. .(113d)
2(611 ’l‘ (Sl‘l) — 3a _‘4(:_ 2f 'l_ Ga:] WO R TS (1136)

die aus (109, (101), (102) und (103) folgen.

Die Formeln sind betrichtlich einfacher als die analogen Gleichungen
(84) des hexagonalen Systems; die Berechnung der Integrale J und L
ist hier aber viel umstindlicher als die der P und Q im Kap. III.

Fiir die Bestimmung der J und L gehen wir aus von den Formeln:

/‘A

s 5 (Cp—1)(2p—3)...12¢—1) 2¢g—3)...1.x
<p “d @ ) — - o=
lg Sln qJCOS (}dq (p ‘}7 q) (p __1|_ q = 1) ........ 1 » 2: +q 1
und
o - k=0 s o s rat 1.20+1
[ sinee 415 cosn gy @ +20+ D @p T 20—1D....Cq 1 1)

0

die aus der elementaren Integralrechnung folgen.



66

Aus diesen Formeln lassen sich endliche Reihen ableiten fiir
ﬁd yido, 4—1;/ wiydo, 4%/ yiyido, u.s.w.

Hierbei schwankt das y im Integrationsgebiet zwischen 0 und 1 mit

dem Mittelwert 1, das % schwankt zwischen 0 und 1 mit dem Mittel-

wert .

Bei den Kristallen, deren Anisotropie f nicht allzu groB ist gegen
a und ¢, sind nach (110) M und N klein gegen 1. Hier kénnen wir
Cier M:U iy schreiben

1— My + Np) + (My + Ny — . . .,
und mit groBer Anniherung die Reihe schnell abbrechen. Ist die Aniso-
tropie aber groBer, wie beim Gold und besonders beim Messing, so
werden M und IV groB3, bei Messing ist z.B, M — —2,956. In der obigen
Reihe kann daher My in einzelnen Kristallen nahezu den Wert 1 erreichen
und sein Mittelwert ist ungefihr 0,6, die Reihe ist also unbrauchbar,

Wir fiithren darum ein:

fia

FES LEmtIN ke o5 e e Es 3ty (114a)
=GP0 0.6 00 0 g 66w - (114b)

wo p in absolutem Wert nie %, g nie J; dbertrifft, und schreiben:

1 1 1 1
1+Myp+Ny ~ 14+ 1M+ #N—Mp—Nq 1+1M+ AN’ 1—M'p—N'gq

Sodann erhalten wir:
1 da 1 5 L ,
J =LE_[ My TN~ TN [+ MPy o+ M P, + MP, .
+ Q-+ 2M'N'Q, +3M*N'Q,+ . .
+N"*Ro-+3M'N'?R, + 6M'2N'?R,-|-. .

In dieser Reihe, die beim Messing nach rechts und nach unten bis
zum 8, Glied inkl. fortgesetzt werden muf}, bedeutet

L

= a‘/p‘do ....... S (1162)
1/,

Q,-:E;‘/p‘qda. e (11 6D)
1N/

R, = afpzqzdo ......... . (116¢)

u.s.w,



Die P; u.s.w. sind feste Zahlen,
raubend. In der Tabelle F gebe ich di

MI

N!

benutzt werden:
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M

I+ aN

=X N
TTHIM T AN

oooooooo

.......

(117b)

die Berechnung ist ziemlich Zeit-
ese Zahlen so weit sie beim Messing

F. Hilfsintegrale bej reguliren Kristallen,

Py=+1 0= 89947.10—3% | Ry= 1,9000.10—* | S, —2,497.10—¢
P,=—3,3333.10—2 | Q,— 3,028 .10+ Ri= 51 .10—7|S,=1,385.10—7
Py=+8,730 .10-3 |Q,— 3,031 .10~5 R,= 1,617 .10—6|S,—1,82 .10-8
Py=—4,16 .10—4|Q,— 9,71 .10-¢ Ry= 1,0 .10-8|S,=4,06 .10—9
Py=+41,348 .10~ |Q,— 4 08 |Ry= 2,65 .10-8|S5,—3,9 ,10—10
Pr=—6,8 .10—6|Q,= 2,0 .10~7 Ry=—1,0 .10—9(7T,=5,135,10-8
Pe=+257 .10% [Qy=—1,1 .10-8 [U,— 7,5 .lo=mo T,=2,07 .10~
Pr=—13 .10=7"|V,= 1,9 .10-1U,— 96 .10-n T,=8,53 ,10—10
W,— 6 A0 V= 24 10-2|U,= 23 | 10-n T;=4,11 ,10-10

In der Gl. (115) werden die Daten dieser Tabelle und die besonderen
Werte der GroBen M, N, M', N’ fiir jedes einzelne Metall eingefiihrt;
so erhdlt man den hinzugehdrigen Wert von I

Fir L gilt:

I 1 [ ydo
T 4z) 1+ My + Ny
also
T il |
UTTRME

— -

1

1

14+ IM + &N 'ﬁ/

— [Py + M'Py+ M'*P, - M'3P,
+N'Q+2M'N'Q, + 3M'*N'Q, -+ 4MN'Q,+ . . .

pdo

1— M'p— N'¢’

oooooooo

+N'2R,+3M'N'*R,+-6M'*N'*R,+ 10M">N'*R,+ . .

......
---------------

woraus L berechnet wird.
Die Formeln fiir die Konstanten des primiren Aggregats miissen
fiir kleine Anisotropie die Voigtschen Formeln als 1. Anniherung
ergeben. Dies ergibt wiederum, wie im III. Kap., eine Priifung der
erhaltenen Formeln.
Wir gehen aus von (108a) und (108b) zusammen mit (113c, d, e).
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Das f wird klein, Potenzen von f werden vernachlissigt, es wird also
anndhernd:

M — 2f(a — c)’
ac
N =o,

Nach (108a) gilt:

1 - s 1 [, Vo do
= E] (e + 2yef) (1 — My) T = EE/ [¢2 + w(2ef — )]

also ] ;
1 -
&= 1+ )

\

und ;
(533:a(1—§——£}=a—§-f + + s o« 4 (1192)

Nach (108b) gilt:

1 1 do 1 d
= -a-c-a-j [ac + wf(a — 2¢)] (1 — M) T EEE/ (ac — yaf) Ig

-~

woraus folgt:

Gu=c(1+4L

L) =c44f . . . . .. (110D)

(113¢) ereibt ’
4Eu—61) = Ga—20) (1+ 1) + 4o+ (1—1 ) —3a—8c 111

C

also
%(611—612):C+%f L T T T T (IIQC)

Aus (113d) ergibt sich
Ca=datca—iCn=co+4if « v oo .. (119d)
Aus (113e)
3Cy1 + G1n) = Ja + ¢y, + 16— %f = da + deyy — &
und aus dieser Gleichung und (119c¢)
Chn=4%a+des+c+4f ... ... « + o+ (119¢)
Ce=da+dcs—c—H&f .. .00 ... (119f)
Fiihren wir in die Gl. (119) {iberall a, ¢ und f aus (97) und (98) ein,
so erhalten wir:
G = B = 308cxs + 2¢1p + 4cy),. . . L L L (120a)
Cro=Crs =H4(cn +4cn—2¢cy), . . . . . . + (120b)
Cyy = 2(C1 — C12) = ey, —C1a 1 3Cu)re + o . (120c)
also wiederum die Voigtschen Formeln (8),
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§ 3. Berechnung und Priifung der Aggregatskonstanten von
Wolfram.
Wolfram war das erste regulire Metall, dessen Kristalmoduln Sik
gemessen worden sind, und zwar von Bridgman %) im J. 1924, Secine
Messungen ergeben:

G 1. Kristallkonstanten von Wolfram.

53y . 10+13 2,534 || ¢y.10-11 | 51,27

312 - i7) A 0,726 C]_? + 17 20;58
Ssae 6,55 Cipe i 15,27
FR 0,15

Nach dieser Tabelle ist die Anisotropie der Kristalle auBerordentlich
klein, zwischen alter und neuer Theorie kann also kaum ein merklicher
Unterschied bestehen. In der Tat ergibt die Rechnung:

G 2. Primires Aggregat von Wolfram.

G,y - 1012 51,22
Cage 4 51,23
Ciae 1 20,62
Cige 20,60
Cis » 15,30
.1:(611 = 612) 1 15,30

Das primire Aggregat ist also praktisch schon isotrop, und wir erhalten
ohne weiteres, wenn wir noch die Voigtschen Formeln anwenden:

G 3. Isotropes Wolframaggregat,

nach Voigt neu
¢ .10 51,21 51,22
¢,.10—1 20,61 20,61
¢ .10 39,4 39,4
T .10 15,3 15,3

Die empirischen Daten kénnen also nicht beitragen zur Vergleichung
der alten Theorie mit der neuen.

38)  Bridgman, l. c. beim Zink.
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Diese empirischen Daten liegen ziemlich weit auseinander, In der
Tabelle G 4 bringe ich die Werte aus Landolt-Bérnstein (1. Erginzungs-
band 1927) umgerechnet in C. G. S.-Einheiten, zusammen mit denen,
die von Koenigsberger %) gemessen und zitiert worden sind.

G 4. Wolframaggregate (empirisch).

No. Forscher Material |Temp.| @.10—11 | g, 10—1
1 Pintsch Einkristalldr., 18,0
2 Geil3 ' RIS 38,8 16,5
3 Pintsch .. 15,5
4 Lax — R.T. 37,2 —
5 Dodge gegl. Draht | 20° 35,5 —
6 Schonborn gezogen R.T. |32,5—36,5 —
7 Jokibe-Sakai gez. Draht 19° — 13,2
8 Koenigsb. Nymegen-Dr.| — — 16,2—20
9 T, Osram- i - — 7,1—16,8
10 r Siemens- ,, — — 8,6
11 |GeiB-v.Liempt%)|Philips- ,, | — — 17

Zur Isotropiepriifung bietet nur Stab 2 geniigende Daten. Das Resultat
ist vorauszusehen, das Material ist ja faktisch ein Kristall, also anisotrop.
In der Tat ergibt die Formel (52), wenn wir nach (G 3) 38 = 92,4
nehmen:

_ Tper = 15,4, 1011
neben Egcm. - 16:5 . 1011’

also einen ziemlich groBen Unterschied. Es liegt also kein erwiesener-
maBen isotropes Material vor, die Priifung unsrer Theorie ist also
vorlaufig an Wolfram nicht méoglich.

Die Besprechung von Wolfram kénnten wir damit abschlieBen, Die
schlechte Ubereinstimmung zwischen den verschiedenen in G 4 mitge-
teilten Resultaten hat mich aber zu den folgenden Erwigungen veranlaBt,
die vielleicht zur Erklirung dieser Tatsache beitragen kénnen.

Die Bridgmanschen Kristallkonstanten haben einen ganz besonderen
Charakter: das Kristall ist fast genau isotrop, Daraus folgen mehrere
Eigenschaften der Aggregate:

3)  Koenigsberger, Z. f. Phys. 40, S. 719—741, 1926.
. 1) Geiss u, v. Liempt, Ann, der Phys. 77, S. 105, 1925.
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1% Einkristallstibe der verschiedenen Orientierungen sollen nahezu
dieselben Werte fiir G und ¥ aufweisen: G = 39,6 . 1011, § — 15,3 . 1011,

2% Multikristalle sollen ungefihr dieselben Werte ergeben, falls sie
den Bedingungen von II, § 1 geniigen und zwar unabhiingig von den
Kristallorientierungen, sowohl allgemeine Aggregate als solche mit
Vorzugsorientierungen. Porositit im weitesten Sinne, wie auch die
Gleitungen, die bei stirkerer Beanspruchung des Materials bald
auftreten, erniedrigen die Moduln, fiir Aggregate sollen also 39,6 und
15,3 Maximumwerte der Moduln darstellen.

Beide Erwartungen sind, wie aus der Tabelle G 4 hervorgeht, ziemlich
schlecht erfiillt. Von den drei Einkristalldrihten haben zwei Torsions-
moduln um 8 9%, und 16 9, zu hoch, von den 12 Multikristalldrihten,
woriiber Koenigsberger berichtet, haben 7 ein €, das 6 %, bis 30 %,
zu hoch liegt. Will man nicht alle diese Messungen an Materialien von
verschiedener Herkunft disqualifizieren, so bleibt wie mir scheint nur
die Folgerung iibrig, daB die Bridgmanschen Kristallkonstanten von
Wolfram ziemlich ungenau sind. Dies scheint auch aus anderen Griinden
nicht unwahrscheinlich. Erstens hatte Bridgman nur einen einzigen
Kristall zur Verfligung, und es ist bekannt, daB die Einkristalle &fters
gestort sind; vielleicht deutet die Kriimmung, die nach Bridgman bei
dem Einkristallstab anwesend war, auf eine solche Stérung. Zweitens
erscheint der Kompressionsmodul des Wolframkristalls etwas zu niedrig.
Bridgman selbst hat die Kompressibilitit gemessen an 2 verschiedenen
Vielkristallen von Wolfram#1), Er erhielt bei einem geschmiedeten
Stab von der Dichte 19,137 fiir » in CGS-Einheiten 2,99.10—1%, bei
einem gezogenen Draht von der Dichte 4 19,48 x = 3,21.10-18,
Die Kompressionsmoduln der beiden Aggregate sind bzw. 33,4. 10"
und 31,2 . 10", Den kleineren Wert des Moduln beim dichteren Material
erklirt er durch den Einfluf der groBeren Menge amorfen Materials
im gezogenen Draht, wodurch die Kompressibilitit vergroBert wird. Fiir
das Wolframkristall sollte § also mindestens gleich 33,4, 10" sein oder

38=1100,1F10%
Am Einkristallstab erhilt Bridgman aber
3& == C”_ 'I— 2(:13 = 92,4 . 10”1

es scheint plausibel, daB8 dieser Wert und daher die Bridgmanschen
Kristallkonstanten jedenfalls geindert werden miissen. Ubrigens gilt

41) Bridgman, Proc. Am. Ac. of Arts and Sciences, 58, S. 163, 1922—'23,
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dies bei den groBen Schwierigkeiten der elastischen Messungen wohl
fiir mehrere Kristallkonstanten, man sieht ja aus den Tabellen D 1
und E 1, wie weit die Werte derselben Konstante bei verschiedenen
Forschern aus einander gehen kénnen. So muB man beim Cadmium
die Bridgmanschen Konstanten c,, c;3, ¢;5 und ¢;3 bzw. um 10, 11, 21
und 19 9, erhéhen, beim Zink das c,, 13 9 kleiner und das Cial 33895
groBer machen, um die entsprechenden Griineisenschen Werte zu
erhalten. Mit Anderungen derselben GroBenordnung in den ¢;; von
Wolfram kénnen wir so ziemlich alle Moduln der Tabelle G 4 erzeugen,
Die Summe ¢;; + 2¢;, soll etwa 8 9, gréBer werden, es scheint aber

nach der Tabelle G 4 erwiinscht, das berechnete ¢ zu verkleinern,
Versuchsweise wihle ich:

¢y 10 % kleiner als bei Br. also ¢;; = 46 . 1011,
Ci2 27 (%; gfﬁﬁel‘ 1 12 111 o5 G = 27210
Cyy 17 (.’/’0 71 10 9r sy 3 Cyy = 18, 10M,

Das Kristall wird sodann stark anisotrop (f = — 17), was wegen
der verschiedenen Moduln bei Einkristalldrihten notwendig erscheint.
Es folgt aus dieser Annahme:
fiir den Kompressionsmodul:

38 = 100, 101!

in Ubereinstimmung mit der Messung von Bridgman;
fir den Einkristallstab parallel der Hexaedernormale:

G =274 V101 g =] 81 101:
fiir den Einkristallstab parallel der Oktaedernormale:

€ =45,8.,101, ¥ =12,3,101;
fiir das allgemeine, isotrope Aggregat, angenihert nach der Voigtschen
Theorie:

¢ =238,6.1011, ¥ = 14,6.104,

Wo Koenigsberger die moglichen Fehler seiner Torsionsmoduln
auf 8 9, schitzt, geniigt die gewihlte Abinderung der Bridgmanschen
Kristallkonstanten um alle plausibelen empirischen Werte der Tabelle
G 4 zu erkliren. Die 2 extremen Werte, die Koenigsberger fiir € erhilt,

7,1 und 8,6, werden von ihm erklirt durch die Annahme einer gewissen
Porositit, nimlich einer Aufspaltung des Drahtes, auf die schon Arkel
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und van Liempt 42) hingewiesen haben. Im {ibrigen liegen seine ¥ alle
zwischen 14,9 und 20, konnten also zu isotropen Aggregaten mit ev.
Beimischung von Kristallen mit Hexaederorientierung gehoren.

Die vorhergehenden Betrachtungen beanspruchen nicht, bessere
Kristallkonstanten zu berechnen als die von Bridgman gemessenen;
sie wollen nur andetiten, wie man die Kristallkonstanten den Aggregats-
konstanten anpassen kann. Nur wenn letztere sehr genau bekannt sind
und auch die Verteilung der Orientierungen im Aggregat einigermafen
feststeht, konnte man solchen indirekten Bestimmungen der Kristall-
konstanten etwas groBeren Wert beilegen. Bei Kupfer habe ich den
Versuch einer solchen Bestimmung gemacht, iiber das Ergebnis werde
ich an andrer Stelle berichten. Fiir Wolfram scheint mir das Ergebnis
dieses Paragrafen, daB die Kristallkonstanten, die Bridgman gemessen
hat, Fehler von mehreren Prozenten enthalten mogen, und daB seine
¢;s und ¢;y wahrscheinlich bedeutend zu klein sind.

§ 4, Berechnung und Priifung der Aggregatskonstanten von
Aluminium.

Hier wie bei den folgenden Metallen liegt nur eine Messung von
Kristallkonstanten vor, eine mogliche Ungenauigkeit derselben tritt
nicht sofort ans Licht. Goens der die s;;, der Al.Kristalle gemessen hat *9),
schitzt den moglichen Fehler auf 1 %; in ¢, und ¢;; wird der Fehler
noch vergréBert. Die Anisotropie der Kristalle ist gering, aber merklich
groBer als bei den Bridgmanschen Konstanten des Wolfram, wie sich
ergibt aus

H 1. Kristallkonstanten von Al

§1p - 1013 16,7 ¢y » 10—11 10,54
S1a 1 — 516 Cra2 1 5:84
Sl 35,7 Caa 2 2,80

f ¥ — 0,90

Daraus folgt nach ziemlich kurzer Rechnung, (da die Reihen (115)
und (118) bald abgebrochen werden koénnen)

47)  Arkel u. van Liempt, Ann. der Phys, 77, S. 105—108, 1925,
43)  Goens, Die Naturwiss. 17, S, 180, 1929,
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H 2. Primires Aggregat von Al

Gy . 1012 10,89
633 12 10:89
6:12 13 5167
6-"13 22 5:67
G‘-M *r 2:61
HEy —GC) 2,61

Wiederum ist das Aggregat praktisch isotrop, es folgt ohne weiteres:

H 3. Isotropes Al.

nach Voigt neu
¢ .10 10,90 10,89
€. 5,66 5,67
E + 1 7:03 71005
S 5 2,62 2,61

Auch hier ist der Unterschied zwischen der alten und der neuen
Theorie zu klein, um zwischen ihnen zu wihlen; sie koénnen nur
gemeinsam gepriift werden.

Beim Aluminium liegt zur Priifung viel Material vor und die meisten
Daten liegen nicht allzuweit auseinander.

H 4. Al. Aggregate (empirisch).

Nummer Forscher Material |Temp.| . 10—1! |T.10—1
1 Dodge gegliiht 20° 7,50 —
2 Baumann — — |7,22—17,36 —_
3a Griineisen gezogen 18° 7,05 -
3b ’” 1 iz 6t98 2167
3(: rr 1y 7 7118 2r69
4a Voigt gegossen — 6,06 2,36
4b r 1t — 6’80 2r645
4c 1 7] — 6;37 2,59
4d ¥ 1 S 6,37 2,49
de % 11 e 6;45 2,56
4f ’ ’" = 6,67 2,625
5 Schaefer — 20° 6,21 2,29
6 Koch-Dieterle |Band, geglitht| 17° 6,04 =
7 Kikuta Draht, ,, 11° 2,75
8 Koch 11 11 20° 2,71
9 Guye-Schapper — 0° 2,61
10 Jokibe-Sakai |Draht,gegliiht| 25° 2,48
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Im allgemeinen ist die Ubereinstimmung mit der Theorie nicht
schlecht, Um genauer nachzupriifen untersuchen wir erst, wo €s
moglich ist, die Isotropie mit 3§ . 10z =222}

H 5. Isotropiepriifung der Al. Stibe.

Nummer | . 10— @ . 10—1! berechnet |Z. 10—11 gemessen
3b 6,98 2,60 2,67
3¢ 7,18 2,68 2,69
da 6,06 2,22 2,36
4b 6,80 2,525 2,645
4c 6,37 2:35 2,59
4d 6,37 2,35 2,49
4e 6,45 2,38 2,56
af 6,67 2,47 2,625
5 6,21 2,28 2,29

Von den Griineisenschen Stiben geniigt also 3¢ dem Isotropiekriterium
ganz gut. Dies stimmt mit den eigenen Ergebnissen Griineisens: die
Querkontraktion, berechnet nach Formel (51) war bei diesem Stab
0,337, wihrend die gemessene Querkontraktion 0,334 betrug. Auch
das Schaefersche Material war isotrop, die Moduln sind aber bedeutend
kleiner, als alle andern, wie es bei den Schaeferschen Materialien
allgemein der Fall ist ). Porositit kann diese Abweichung erkliren,
wo aber die Abweichungen so allgemein auftreten und immer in dem-
selben Sinn, scheint ein systematischer Fehler in den Schaeferschen
Messungen (Gleitung?) nicht ausgeschlossen.

Auch die Voigtschen Werte sind kleiner als die Griineisenschen,
wenn auch die Abweichung im Durchschnitt viel kleiner ist, und bei
den einzelnen Stiben sehr verschieden. Der letzte Umstand spricht fiir
DPorositit als Ursache der Erscheinung, die Porien werden ja in den
verschiedenen kleinen Stiben ungleichen EinfluB haben. Griineisen
zieht die Unreinheit des Voigtschen Materials als Erklirungsgrund
heran. Aus der Tabelle H 5 vermutet man eine dritte Ursache: die
Anisotropie des Materials. Zum Teil ist diese wohl die Folge der geringen
Dimensionen der Stibe, 100 x 6 x 1 mm, gewiB sind nicht in jedem
Querschnitt alle Orientierungen in gleicher Hiufigkeit vertreten. Neben

s1) ygl, Landoltsche Tabellen I.
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den Abweichungen, die von der zufilligen Verteilung von Orientierungen
und Porien herriihren, tritt eine systematische Abweichung auf, das
Z ist iiberall verhiltnismiBig groB und {ibertrifft bisweilen den berech-
neten Wert. Dies deutet auf eine prinzipielle Bevorzugung gewisser
Orientierungen im GuBstiick, woraus alle Stibe mit paralleler Lings-
richtung geschnitten sind, ich komme auf diesen Punkt im V. Kapitel
zuriick.

Fir die Vergleichung der berechneten und gemessenen Konstanten
kommt also schlieflich nur der Stab 3¢ (Griineisens Al. II) in Betracht;
wo alte und neue Theorie praktisch {ibereinstimmen, ist die Vergleichung
so ziemlich eine gegenseitige Priifung der Messungen von Griineisen
und Goens.

H 6. Priffung fiir isotropes Al.

E.10—1 $.10—1

Empirischer Wert 7,18 2,69
Berechneter Wert 7,005 2,61

Bei der immerhin ziemlich groBen Ungenauigkeit aller elastischen
Messungen und bei der Mbglichkeit einer etwas verschiedenen
Zusammensetzung der Proben (das Griineisensche Aluminium war
nicht chemisch rein) erscheint die Ubereinstimmung als sehr befriedigend.
Die meisten nicht besprochenen Daten der Tabelle H 4 schlieBen sich
dem Griineisenschen Werte gut an; es siecht aus, alsob die Goensschen
Kristallkonstanten etwas niedrig sind.

§ 5. Berechnung und Priifung der Aggregatskonstanten von
Gold.

Die Kristallkonstanten von Gold stammen von Goens 45)  sie sind
zusammengetragen in:

K 1. Kristallkonstanten von Gold.

S11+ 1018 24,5 €110 1012 19,41
S1ge 32 =l'l;3 Cig+ 1 16,61
Lyviey o, 25 Cig+ 1 4,00

o | =520

%) Goens, L. c. beim Al
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Goens schitzt die Genauigkeit seiner S auf 5 9, die moglichen
Fehler in ¢;, und c¢;, sind noch grofer; in den hieraus berechneten
Moduln G und € diirfen wir sie wiederum auf 5 9, schitzen.

Aus K 1 ergibt sich, daB die Anisotropie der Goldkristalle ziemlich
groB ist. Die Rechnung ist daher etwas zeitraubend, das Ergebnis ist:

K 2. Primires Aggregat von Gold.

Gy . 1011 21,17

Ganre 553 21,03

Gl 15,67

Gt 40 15,80

v o 2,65

16y —C) - 2,75

Die groBe Anisotropie der Kristalle ist im primiren Aggregat schon
beinahe verschwunden. Fiir die Berechnung der Konstanten des isotropen
Aggregats geniigt also jetzt die Voigtsche Theorie.

In der Tabelle K 3 sind die so berechneten Konstanten rechts einge-
tragen, in der linken Spalte stehen die Werte welche man erhilt, wenn
man iiberhaupt nur die Voigtsche Theorie benutzt:

K 3. Isotropes Gold.

nach Voigt neu
¢ .10~ 21,50 21,12
Cie » 15,57 15,75
G. » 8,405 7,665
. » 2,96 2,08

Hier tritt also der Unterschied zwischen den Ergebnissen der alten
und der neuen Theorie deutlich hervor; wie bei Zink und Cadmium ist
bei Gold eine Priifung der neuen Theorie mdglich. Leider ist die Unge-
wiBheit der Goenschen Werte noch etwas groB, 5 % von @ und T ist
so ziemlich die Hilfte der Unterschiede zwischen alten und neuen
Werten.
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Die verschiedenen gemessenen Aggregatsmoduln stimmen nicht allzu
schlecht, wie es die Tabelle K 4 zeigt:

K 4. Goldaggregate (empirisch).

Nummer Forscher Temp. .10—11 | £.10—1
la Griineisen 18° 7,65 2,55
1b P 7,92 2,77
2a Voigt — 7,30 2,82
2b " —_ 7,58 2,77
3 Koch-Dannecker 0° 2,84
4 Kikuta 26° 2,83
5 Guye-Schapper 0° 2,62
6 Jokibe-Sakai h33 2,55

Mehrere empirische Werte liegen zwischen den Ergebnissen der
alten und der neuen Theorie, die Entscheidung ist daher nicht leicht.
Zuerst machen wir die Isotropiepriifung bei den Priparaten mit 2
gemessenen Moduln.

K 5. Isotropiepriifung der Goldstibe.

Nummer | .10—1 | < .10—11 berechnet | .10—1 gemessen
la 7,65 2,68 2,55
1b 7,92 2,78 20l
2a 7,30 245 2,82
2b 7,58 2,65 254,

Das & der Formel (52) ist berechnet aus ¢,; und ¢,, der Tabelle K 1;

wegen des groflen Wertes des Verhiltnisses -21—2 ist 3R (52,63) sehr groB

11

gegen }@ und ein abweichendes § wiirde das berechnete ¥ sehr wenig

indern.

Von den 4 Stiben sind 3 stark anisotrop, und zwar ist beim Griin-
eisenschen Stab la das € verhiltnismiBig zu klein, bei den Voigtschen
Stiben wieder zu groB wie bei Al. Letztere werden im Kap. V noch
besprochen, mit la ist nicht viel anzufangen, die UnregelmiBigkeiten
dieses Stabes sind schon in II, § 4 besprochen. Der Stab 1b aber (bei
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Griineisen Au IT) kann nach K 5 sehr genau isotrop sein und Griineisens
eigene Priifung mit der Formel (51) ergab nach Tabelle C (in II, § 4)
dasselbe Resultat, wenn auch nicht mit derselben Genauigkeit. Auch
dieser Stab wird im V. Kap. naher besprochen, vorliufig wollen wir
ihn hier zur Priiffung heranziehen.

K 6. Prifung fiir nahezu isotropes Gold.

G.10-1 | .10

Empirischer Wert 7,92 2,77
Alte Theorie 8,405 2,96
Neue e 7,665 2,68

Die empirischen Werte stimmen also mit den nach der neuen Theorie
berechneten Werten bis auf ungefahr 3 %, wihrend die Abweichungen
von den Werten der alten Theorie rund 6 o/, sind. Auch die andern
Werte von T aus der Tabelle K 4, gemessen an Material von unbekannter
Anisotropie, liegen durchschnittlich ganz in der Nihe der neuen Werte.
Soweit bei der immerhin noch merklichen Anisotropie des Stabes 1 b und
der miBigen Genauigkeit der Goensschen Konstanten die Beweiskraft der
Priifung reicht, spricht sie wieder zugunsten der neuen Theorie. Auch
bei Gold liegen aber die alten und neuen Werte von & und E noch zu
dicht neben einander; zur endgiiltigen Entscheidung brauchen wir ein
Material von noch groBerer Anisotropie.

§ 6, Berechnung und Priifung der Aggregatskonstanten von
Messing.

Mazima und Sachs %) haben die Elastizititskonstanten an Einkristall-
stiben von Messing bestimmt, Die Kristalle zeigten sich auBerordentlich
anisotrop, hier haben wir also das Mittel zur endgiiltigen Priifung der
Voigtschen Theorie. Mazima und Sachs haben diese Priifung ausgefiihrt,
sie konstatieren ausdriicklich die sehr schlechte Ubereinstimmung und
sagen: ,die Ursache der Unstimmigkeiten ist bisher nicht erkannt
worden.”’

Einwandfrei sind ihre Messungen nicht, die Forscher selbst haben
manches gegen sie einzuwenden. Sie messen zuerst an 8 Einkristallstiben

s8) Mazima und Sachs, Mechanische Eigenschaften von Messingkristallen, Z. f.
Phys. 50, S. 161, 1928.
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von sehr verschiedener Orientierung die Dehnungs- und Torsions-
moduln, wobei sie die Genauigkeit auf ,,hochstens 1 bis 3 9,’" abschitzen,
und suchen Werte s;,, die sich am besten den Messungen an dem einen,
nahezu kubisch orientierten Stab anschlieBen. Als dann aber aus den
s;. die verschiedenen E und T der Einkristalle zuriickberechnet werden,
zeigen sich systematische Abweichungen, das E ist immer zu groB,
das T zu klein. Sie sagen selbst: ,,die Genauigkeit der Messungen ist
jedoch aus technisch nicht geklirten Ursachen gering.”” Den erhaltenen
Kristallkonstanten gegeniiber ist also einiges MiBtrauen wohl erlaubt.

Auch in andrer Hinsicht ist Messing kein ideales Material fiir unsre
Prifung.

Von den verschiedenen Messingarten, deren Aggregatskonstanten
in Landolt-Bornstein angegeben sind, hat keine genau die Zusammen-
setzung des Messings von Mazima und Sachs (71,7—74,1 % Cu).
Gliicklicherweise gehen die Aggregatsmoduln fiir Messing von ver-
schiedener Zusammensetzung nicht allzuweit auseinander und durch
Interpolation ist eine Abschitzung der Moduln bei einem Aggregat
mit 73 %, Cu mdglich. Fiir das § gelingt diese Abschitzung nur zwischen
ziemlich weiten Grenzen, Wegen der grofen Unterschiede in den Werten
von G und ¥ nach der alten und der neuen Theorie ist dennoch die
Entscheidung zwischen beiden Theorien an Messing moglich.

Die Ergebnisse lassen sich aus den nachfolgenden Tabellen ablesen:

L 1. Kristallkonstanten von Messing.

St L0 19,4 €+ 1011 14,75
Grie o — 8,35 Cia s, 11,14
Sga+ 1 13,9 Ciyla 7,19

7o — 10,77

L 2. Primires Aggregat von Messing.

Gy - 1071 19,28 (G — €yy) . 101 — 0,34

Caze o 19,62 C13—C). 4 — 0,34

Ciae » 9,04 f ’ 4,76

S18+ 1 8,70 q 2 4,43

Cea- 2,91 ) 7 9,86
"}:'(Gll ol 612) 1" 5:12
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Das primire Aggregat ist also noch deutlich anisotrop, bei diesem
axialen Aggregat wenden wir also die Methode des III. Kapitels an, mit

M = — 2,497
= — 2,473,

Die Diskriminante M?®— 4N ist positiv, also wenden wir (91) an.
Von den Formeln (84) benutzen wir nur die Nummern (84a), (84c)
und (84e), das iibrige leistet die Kompressibilititsbedingung

G+ Gt Gy = G + 263 =cn T 2¢
So erhalten wir:

L 2a. Sekundires Aggregat von Messing.

6. 1011 | 17,885
Gt 5s 17,84
G 9,545
Cize 9,59
(S“H = r 4,13
1(611 i (‘512) 2 4,17

Das Aggregat ist jetzt beinahe isotrop, die Voigtschen Formeln oder

26 S ! .
g-;—Lﬂju.s.v«.’.) ergeben schlieBlich die Konstanten

einfaches Mitteln (

fiir isotropes Messing.

In der Tabelle L 3 sind diese mit den Werten zusammengestellt,
welche die Anwendung der Voigtschen Theorie auf die urspriinglichen
Kristallkonstanten ergibt:

L. 3. Isotropes Messing.

nach Voigt neu
G .10 19,06 17,87
Gl- 1§ 8,99 9,575
E. » 13,29 11,19
. p 5,035 4,14

Die alte Theorie ergibt also fiir € und Werte, die bzw. 19 % und
22 9/ hoher liegen als die Werte nach der neuen Theorie.

Die verschiedenen Aggregatsmoduln sind rusammengestellt in:
6
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L 4. Messingaggregate (empirisch).

Nummer Forscher Material |Zusammensetzung|@.10—11|g, 10—1!
la Voigt gegossen | Cu60Y,,Zn40% | 9,8 3,475
Ib 7 o ¥ 5 9,5 3,51
lc - T T . 9,0 3,68
1d ¥ 7 > - 9,4 3,50
le /o o o 7 8,8 3,67
if 91 ¥ 7 a 8,6 3,67
g T 7 7 . 8,8 3,83
1h 3 o ¥ T 8,45 3,69
2a Koch-Dannecker| Draht BORY a1 5107 — 4,33
2b s 2 33 60 % 409, — 3,83
3 Kikuta 5 70% 309 — 4,14
4 Koch-Dieterle Band 60 % 40 9 7,29 —.

Zuerst fithren wir die Isotropiepriifung aus mit 3§ — 37,03 nach
den Daten von Mazima und Sachs; abweichende Werte haben wenig

EinfluB.
L 5. Isotropiepriifung der Messingstibe,
Nummer [ §.10—1| T .10—!! berechnet Z . 10—11 gemessen
la 9,8 3,58 3,475
1b 9,5 3,46 Bl
lc 9,0 3,27 3,68
1d 0,4 3,42 3,50
le 8,8 3,19 3,67
1f 8,6 3,11 3,67
lg 8,8 3,19 3,83
1h 8,45 3,05 3,69

Im allgemeinen ist T wiederum zu groB, ein einziges Mal zu klein,
der Stab 1b geniigt aber dem Isotropiekriterium ziemlich gut, Gegossenes
Messing mit 60 %, Cu hat also bei Isotropie die Modulwerte:

€ —95.101, T =35, [0u,

Hiernach lassen sich die Modulwerte bei 72 9, Cu-Gehalt abschitzen.
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Zunichst schreiben wir die Werte von ¥ fiir gezogenes Messing von
verschiedener Zusammensetzung hin:

bei 60 %, Cu Gehalt .10~ = 3,83 (Koch-Dannecker)

o HNTA 4 s K55 4,14 (Kikuta)
v BRIUA v g 4,33 (Koch-Dannecker)
q HUNYE o T 4,57 (Mittel der Werte von Koch,
Jokibe-Sakai, Griineisen und
Kikuta).
Interpolation ergibt mit Wahrscheinlichkeit fiir gezogenen Draht
bei 72 %, Cu-Gehalt T .10—11 = 4,15 -+ 0,05.

Bei den gezogenen Messing- und Kupferdrihten ist im allgemeinen
die Isotropie nicht festgestellt, das isotrope, aber vermutlich pordse
Voigtsche Messing hat ein €, 81 9, unter dem Wert fiir gezogenen
Draht von derselben Zusammensetzung. Der erhaltene Wert fiir £ mag
also einige Prozente zu hoch sein, jedenfalls konnen wir mit grofer
Wahrscheinlichkeit fiir isotropes porienfreies Messing von 72 %,
Cu-Gehalt schreiben

T .10—11 = 4,0 + 0,2,
wobei die groBeren Werte die wahrscheinlicheren sind.

Fiir die Abschitzung von & haben wir keine andre Daten als das
Voigtsche G.10—11=09,5 bei 60 % Cu, welche Zahl wohl einige
Prozente zu niedrig sein diirfte, und den wahrscheinlich sehr genauen
Wert 12,5 fiir reines Kupfer ¥7). Mit sehr weiten Fehlergrenzen kénnen
wir sicher fiir ideales Messing mit 72 %, Cu schreiben:

¢.1011 =11,0 4 1,5,

Es folgt also schlieBlich

L 6. Priiffung fiir Messing mit 72 %, Cu.

E.1011 s 10=1
Empirischer Wert 11,0+ 1,5 4,0 -+ 0,2
Alte Theorie 13,29 5,035
Neue ,, 11,19 4,14

Dieses Ergebnis spricht entschieden zugunsten der neuen Theorie.

47)  Griineisen, 1. c. bei der Tabelle B 2, Seite 14.
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§ 7. Berechnung und Priifung der Aggregatskonstanten von
FluBspat,

Friitherist betont worden, daB die Gesteine im allgemeinen jede Theorie,
welche von den Annahmen von II, § 1 ausgeht, schlecht erfiillen. Die
Schuld liegt an der Porositit im weitesten Sinne, besonders wohl an der
amorfen, vielleicht fremdartigen Bindesubstanz zwischen den Elementar-
kristallen; auBerdem ist Anisotropie keineswegs ausgeschlossen. Dennoch
wollen wir die Aggregatskonstanten von FluBspat ausrechnen, weil
dies das einzige regulire Material ist, woran Voigt frither seine Theorie
gepriift hat.

Nach den Voigtschen Messungen ) gilt in E-i:

M 1. Kiristallkonstanten von FluBspat.

¢y . 10—8 16,7

Cror 4,57
Cag« 314‘5
f s 5;23

FluBspat ist also ungefihr in demselben MaB anisotrop wie Gold,
nur ist hier das f positiv.
Die Rechnung ergibt:

M 2. Primdres Aggregat von FluBspat.

Gy . 10-8 14,41
(Bvae oy 14,34
e 5,68
6,'13 . 1 5175
Cas 4,308
HEHy—Gp) 4,365

Hier tritt schon nahezu Isotropie auf; ohne weiteres erhalten wir also

M 3. Isotropes FluBspat.

nach Voigt neu
G.10—8 14,61 14,385
30T 5,615 5,73
G 11,49 11,12
Y Sy 4,495 4,33

%) Voigt, Lehrbuch, S. 741.
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Die berechneten Moduln liegen also nicht so weit auseinander wie
beim Gold; immerhin gibt es, besonders im %, noch einen deutlichen
Unterschied zwischen der alten und der neuen Theorie.

Quasiisotrope Aggregate von FluBspat sind nur von Voigt gemessen
worden %), Er hat 5 Stibe untersucht. Wie gewdhnlich schneidet er
sie aus dem Aggregat mit gleicher Lingsrichtung; die Nummern a bis ¢
haben auch die groBte Querrichtung parallel, d und e haben die grofite
Querrichtung senkrecht dazu. Die Messungen zeigen keinen deutlichen
Unterschied in den beiden Querrichtungen. Wir konnen also nahezu
Isotropie erwarten, weil nur zufillig die Langsrichtung mit einer ausge-
zeichneten Richtung im Aggregat zusammentreffen wiirde.

Weil das Verhiltnis '% hier klein ist, hingt das Resultat der Isotropie-

pritffung mehr als gewdhnlich von der Porositit ab. € ist hier berechnet
mit 38 — 25,84, es ist aber eingeklammert beigefiigt der Wert fiir T,
der aus einem 10 %, kleineren & erfolgt; hohere Porositit scheint aller-
dings nicht ausgeschlossen.

M 4. Isotropiepriiffung der FluBspataggregate.

Nummer | G.10—8 | < .10—8 berechnet T . 10—8 gemessen
a 10,57 4,10 (4,17) 4,28
b 10,42 4,02 (4,09) 4,285
c 10,42 4,02 (4,09) 4,30
d 10,49 4,05 (4,12) 4,25
e 10,34 3,98 (4,05) 4,29

Es scheint also doch eine kleine prinzipielle Anisotropie aufzutreten;
das gemessene T ist {iberall etwas zu groB. Wir wihlen die Stibe a und d,
die am besten isotrop sind, und erhalten sodann schlieBlich:

M 5. Priifung fiir nahezu isotropes FluBspat.

€.10—8 | £.10—8
Empirischer Wert a) 10,57 4,28
Empirischer Wert d) 10,49 4,25
Alte Theorie 11,49 4,495
Neue Theorie 11,12 4,33

Wegen der schlechten Isotropie hat die Vergleichung keine grofe
Beweiskraft, er spricht allenfalls nicht gegen die neue Theorie.

1) Voigt, Wied. Ann. 42, S. 537—548, 1891.
6*



V.
UNTERSUCHUNGEN AN
SPEZIELLEN AGGREGATEN.

§ 1. Die nichtisotropen Aggregate.

Aus den Isotropiepriifungen im III. und IV, Kapitel ist hervorge-
gangen, daB3 von den Metallaggregaten, deren Moduln bis jetzt gemessen
worden sind, nur wenige ungefihr isotrop sind. Im allgemeinen waren
die Stabe so ziemlich zylindrisch symmetrisch in Bezug auf die Stabsachse,
es zeigten sich aber oft bedeutende Unterschiede zwischen dem elastischen
Verhalten in der Richtung der Stabsachse und senkrecht dazu. Diese
Aggregate von nahezu axialer Symmetrie bilden 3 Gruppen, wovon
jede durch bestimmte Abweichungen von G und ¢ gekennzeichnet ist:

1% Einige gegossene Stibe der hexagonalen Metalle,
nimlich der Griineisensche Zinkstab 1 der Tabelle D 4 und die Voigtschen
Cadmiumstibe la—1d aus E 4; bei allen ist das G, und, wo es gemessen
ist, das ¥ bedeutend groBer als die berechneten und empirischen Werte
fiir isotrope Aggregate.

2% Alle Voigtschen gegossenen Stibe der reguliren
Metalle; hier ist  zu klein, ¥ verhiltnismiBig gréBer und bei einigen
Al und allen Au.-Stiben auch absolut zu grof,

3% Der Griineisensche Goldstab II, 1b der Tabelle K 4,
Bei diesem Stab sind die gemessenen § und T beide gréBer als die
berechneten. Die Abweichungen sind so klein, daf sie vielleicht aus
der Ungenauigkeit der Goensschen Kristallkonstanten zu erkliren sind;
wo aber Griineisen selbst merkliche Anisotropie fand (vergl, Tabelle C)
scheint es lohnend, auch diesen Fall niher zu untersuchen.

Fiir jede dieser 3 Gruppen wollen wir die Rechnung durchfiihren
mit Hinblick auf bestimmte Objekte. Wir wihlen:

fiir die erste Gruppe das Zink 1 aus D 4
» 9 Zweite ,, ,, Gold 2a,b e
» 5, dritte ir » Gold 1b o K4

In diesen Fillen handelt es sich um Metallstibe, die als chemisch
rein bezeichnet sind., Die Abweichungen sind also nicht dem EinfluB
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von Beimischungen zuzuschreiben; die Tatsache, daB wenigstens ein
Modul zu groB ist, zeigt, daB auch die Porositit jedenfalls nicht die
einzige Ursache der Abweichungen sein kann., Fehler in den Kristall-
konstanten kénnen schwerlich den sehr hohen Wert des Griineisenschen
Zinkmoduls erkliren, um so weniger, wo die sehr verschiedenen Kristall-
konstanten von Griineisen und Bridgman ungefihr dasselbe € ergeben;
bei Gold wiirde Anderung der Kristallkonstanten jedenfalls nicht fiir alle
Objekte gleichzeitig Ubereinstimmung erzeugen. Sehr wahrscheinlich
sind daher spezielle Strukturen der ausgewihlten Aggregate als
Ursachen der Abweichungen zu betrachten; wir wollen versuchen,
diese Strukturen aus den Aggregatsmoduln zu ermitteln und an andern
Daten nachzupriifen.

Mit groBer Vorsicht lassen sich die erhaltenen Resultate vielleicht
auf andre Objekte derselben Gruppen {ibertragen, wie das Voigtsche
Cd und Al

In den folgenden Paragrafen werden zuerst Formeln fiir die Kon-
stanten und Moduln ermittelt bei verschiedenen einfachen speziellen
Aggregaten. Bei den hexagonalen Kristallen beschrinken wir uns auf
die Aggregate, wo alle hexagonalen Hauptachsen der Einkristalle entweder
parallel oder senkrecht zur Stabsachse sind, im letzteren Fall mit gleicher
Hiufigkeit in allen mdglichen Richtungen. Im reguliren System betrachten
wir diejenigen Vielkristallstiibe, wo die gleiche kristallografisch wichtige
Richtung in allen Einkristallen der Stabsachse parallel liegt; ist dies die
Hexaeder-, Oktaeder- oder Rhombendodekaedernormale, so werden
die Aggregate bzw. als H-, O- und R-Aggregate bezeichnet. Auch hier
kommen alle mit der gewihlten Annahme vertraglichen Orientierungen
in gleicher Haufigkeit vor.

Wir tragen in die so erhaltenen Formeln die Kristallkonstanten von
Zink und Gold ein und vergleichen die so berechneten Werte fiir § und
wombglich T und u (die Querkontraktion) mit den empirischen. Vielleicht
ist die Ubereinstimmung so gut, daB wir dem Aggregat die reine spezielle
Struktur zuschreiben diirfen. Meistens wird jedoch eine der speziellen
Strukturen zwar Werte fiir ¢, T und u aufweisen, die von den Isotropie-
moduln in der erwiinschten Richtung abweichen, aber in zu starkem
MaBe; die empirischen Daten liegen zwischen den berechneten Werten
fiir das allgemeine und ein bestimmtes spezielles Aggregat. Wir konnen
das Ergebnis deuten als eine Struktur, wo im isotropen Aggregat Einzel-
kristalle von bestimmter Vorzugsorientierung vorkommen. Falls alle
empirischen Werte zuverlissig sind, kénnen wir sogar den Prozentsatz
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der speziell orientierten Kristallsubstanz abschitzen. An jedem einzelnen
Modul kénnen wir die Schitzung machen; gute Ubereinstimmung der
Prozentsitze, mit &, ¥ und eventuell i+ erhalten, weisen darauf hin,
daB die so bestimmte Struktur des Aggregats einigermaBen zuverlissig
ist. Jedenfalls ist Nachpriifung der ermittelten Struktur, mit Rontgen-
strahlen oder andern Hilfsmitteln, sehr erwiinscht.

Wir kénnen die obenerwihnte Abschitzung ziemlich roh so machen,
daB wir fiir jeden Modul seine Anderung dem Prozentgehalt der speziell
orientierten Substanz proportional ansetzen. Eine groBere Genauigkeit
wird erreicht, wenn wir diese Proportionalitit nicht anwenden auf G,
Z und u, sondern auf die GréBen @a, (Sl“ u.s.w. der Formeln (40)—(44).
Dies geht hervor aus der GI. (34), die fiir jede einzelne Lamelle, speziell
orientiert oder nicht, des gemischten Aggregats gilt. Daraus folgen
fir die Kristallkonstanten des gemischten Aggregats, wo der Bruchteil r
der Kristallsubstanz speziell, der Rest allgemein orientiert ist, wenn
wir die Aggregatskonstanten bei spezieller und allgemeiner Orientierung
mit Einzel- und Doppeltstrich andeuten:

1 P l—p

TR = ey - i r [ R T T R Y [ T 12 ©
Q.‘i.’} (_5,3:‘. ¥ (!’ 33 ( 11)
Gz Gy O

Gas = D6 1 G SRlEr el e e (121)
1 D I==n

—— _T— —!— = » * . . . » . . . . . - . 12
G Gy (URPP 2210

(5’1:.': G’l:lz‘ §e

. ’ 4 \ - \ wr (.S 13
Q.l! — 6_',‘33 :p (2 11— _@33) l' (\1 "_‘p) ((‘/ b ~— @_ra_&), (IQId)

Cn — 6y = P(@'u — @‘12) + (1 &) ((-lmu = s”’12) O (1213)

Im reguliren System werden (121b) und (121d) wie friiher ersetzt
durch die Kompressionsformel:

G+ 6+ Cia=2Cy+Cp=cy+2, ...... (121f)

Aus diesen Formeln lassen sich fiir einige Zahlenwerte von p die §,,
und daraus ¢, T und u des gemischten Aggregats berechnen; Inter-
polation der empirischen Daten ergibt dann 2 oder 3, mehr oder weniger
tibereinstimmende Werte fiir p.

Es ist ohne weiteres klar, daB3 die Messung von 2 oder 3 elastischen
Konstanten nie die genaue Struktur eines gemischten Aggregats ein-
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wandfrei feststellen kann; denselben Effekt wie den einer Beimischung
von Einkristallen in H-Orientierung kann man etwa erzielen durch
Beimischung von Einkristallen, deren H-Achsen einen bestimmten
spitzen Winkel mit der Stabsachse bilden und in gleicher Haufigkeit
um diese Achse herum verteilt sind, oder durch andre Verteilungs-
funktionen von axialer Symmetrie. Die Rontgenanalyse wird voraus-
sichtlich iiber die Einzelheiten solcher Strukturen nihere Auskunft

geben konnen.

§ 2. Spezielle Aggregate von hexagonalen Kristallen.

Wir suchen zuerst Formeln fiir die Konstanten der 2 speziellen
Aggregate hexagonaler Kristalle, die im vorigen § hervorgehoben sind,
nimlich der Vielkristalle mit allen hexagonalen Hauptachsen
parallel bzw. senkrecht zur Stabsachse.

Dic erste Orientierung gibt ein sehr einfaches Resultat: wegen der
axialen Symmetrie des hexagonalen Kristalls benimmt sich das Aggregat
in seinen elastischen Eigenschaften wie ein Einkristall mit der hexa-
gonalen Hauptachse in der Lingsrichtung des Stabes.

Als Aggregatskonstanten erhalten wir also die unmodifizierten Kristall-
konstanten und es gelten nach den Hookeschen Gleichungen fiir dieses
spezielle Aggregat die Formeln:

N I (1222)

(,I. L= C-ll « & % 8 % % % & 8 6 & & (122b)

Mehr Schwierigkeiten bringt die zweite spezielle Struktur, wo
die hexagonalen Hauptachsen iiber alle Richtungen
senkrecht zur Stabsachse in gleicher Hiufigkeit
verteilt sind. Fiir ein solches Aggregat wollen wir jetzt die
Konstanten berechnen.

7unichst betrachten wir ein primires Lamellenaggregat mit der
Stabsachse als Lamellennormale. Es gelten jetzt die Formeln (81) des

111. Kapitels, wenn man in ihnen fld;' {iberall streicht und das y
0

durch o ersetzt. Die Moduln werden in diesem Falle mit Gy und Ty

angedeutet; wir berechnen nur diejenigen Aggregatskonstanten, die zur

Berechnung von @; und ¥; benutzt werden. Wir erhalten:

1} = 6:1,1 . . - - . . * . - . . . . (1233)
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und

1
@I = é: ’
also nach (69) -

Gy — 633(@11 ir (512) — 2@132
=

..... 123b
Lq/].‘.l —1'7 612 ( )
Aus (81d) erhalten wir
26y + Gpp) — 4 212” _ @
‘11 ~12 (533 m— ca
aus (81a) und (81b)
4G,,* _ (g + Cw)f,
2lso Gy ‘1
= 2
Gy + 6) = 2 La £ o)
oder nach (75)
261y + 6po) =)y + C33 + 2¢45.
Tragen wir diesen Wert und
Gy =cyy
in die Gleichung (123b) ein, so erhalten wir
G = . (124a)
& €1+ Cy3+ 264
Daneben folgt aus (123a) und (8lc)
2 1 1
T T S (1041
Ly Cyy L ey —¢p0) ( )
Die Voigtsche Theorie ergibt nach einiger Rechnung:
= o et (125a
S C11 + €33 + 2¢4, L )
2%]’01: = C*ll + ;15(511 _CI'-!) ........ (125b)

Erstere Formel stimmt genau mit (124a) iiberein, letztere ist die
erste Anniherung von (124b) fiir kleine Anisotropie, Ist die Isotropie
der Einkristalle gering, so diitfen wir ohne weiteres die Formeln (125)
anwenden,

Ist die Anisotropie der Einkristalle groBer, von der GroBenordnung
der Anisotropie beim Gold, so wird die Voigtsche Anniherung zu grob.
In diesem Fall haben wir gefunden (Tabelle K 2), daB das allgemeine
primire Aggregat schon praktisch isotrop ist, die Lage der Grenzflichen
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im Aggregat also keinen merklichen EinfluB ausiibt, Wir {ibertragen
dieses Resultat auf das spezielle Aggregat und nehmen an, daB auch
hier bei mittlerer Anisotropie die Aggregatskonstanten wenig von der
Lage der Lamellennormale beeinfluBt werden. Die durch (124a) und
(124b) bestimmten Moduln diirften also in zweiter Annaherung nicht
nur gelten fiir das einfache Lamellenpaket mit der Lamellennormale
in der Stabsachse, sondern fiir jedes Aggregat mit willkiirlichen Grenz-
flichen, das die spezielle Orientierung der Kristallachsen aufweist. Auch
fiir hexagonale Einkristalle mittlerer Anisotropie wire die gestellte
Aufgabe also gelost.

Bei den hexagonalen Metallen, die uns jetzt beschiftigen, Zink und
Cadmium, ist aber die Anisotropie leider sehr groB. Die Tabellen D 2
und E 2 zeigen, daB das primire allgemeine Aggregat hier ausgesprochen
anisotrop ist, daB also die Lage der Grenzflichen bei der allgemeinen
Orientierung die elastischen Konstanten merklich beeinflu3t. Dies konnte
bei der speziellen Orientierung auch der Fall sein, es ist daher nicht
ohne weiteres erlaubt, das in Wirklichkeit auftretende Koérneraggregat
durch ein einfaches Lamellenpaket zu ersetzen. Die beste Anniherung
wiirden wir wohl erhalten durch Anwendung des Aufbauprinzips (VII)
des Kap. II, § 1. Wir hitten demnach ein Aggregat aufzubauen aus
sekundiren Lamellen senkrecht zur Stabsachse, jede einzelne Lamelle
zusammengesetzt aus primiren Lamellen irgend welcher Lage, wihrend
in jedem Paket solcher primiren Lamellen die Netzorientierungen eine
gleichmiBige Verteilung der hexagonalen Hauptachsen senkrecht zur
Normale der sekundiren Lamellen aufweisen sollten. Fiir die Rechnung
bringt dies aber betrichtliche Schwierigkeiten mit sich, Die sekundiren
Lamellen haben jetzt im allgemeinen die Symmetrie monokliner
Kristalle und zwar mit Konstanten, die in den einzelnen Lamellen
verschiedene Werte haben. Als Grenzfille treten sekundire Lamellen
von hexagonaler und rhombischer Symmetrie auf, Erstere zeigen den
Aufbau des vorher besprochenen primiren Lamellenaggregats mit den
Moduln @; und %, letztere sind zusammengesetzt aus primiren
Lamellen senkrecht zur sekundiren Lamellenebene, welche also der
Stabsachse parallel sind.

Wiren die Kristallkonstanten fiir die monoklinen sekundiren Lamellen
einmal berechnet, so wiirde die Mittelung iiber das ganze Aggregat
mittels der Voigtschen Formeln ziemlich leicht sein, die Bestimmung
der monoklinen Konstanten scheint aber um so schwerer. Ich habe
mich daher entschlossen, von den sekundiren Lamellen nur die
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extremen zu wihlen, die hexagonale und 2 rhombische mit den primiren
Lamellenebenen senkrecht zu einander. Da die Kristallkonstanten dieser
3 sekundiren Lamellen sich nur um einige Prozente unterscheiden
(wie die Rechnung zeigen wird), erhalten wir durch einfache Mittelung
in guter Anniherung die Aggregatskonstanten. Zur weiteren Verein-
fachung berechnen wir nur die Mittelwerte von @ und §. Wo ¢; und T,
schon berechnet sind, bleibt also nur die Bestimmung {ibrig von (508
und Zy, Moduln des rhombischen Lamellenpakets bei Dehnung und
Torsion in Bezug auf eine Richtung, welche in der Lamellencbene senk-
recht zu den verschiedenen Lagen der hexagonalen Hauptachse liegt,

L . f 2E ‘ 25
Die Mittelwerte gl_‘*;ibg und 21_4"3_1_11 ergeben dann annihernd

die gesuchten Aggregatskonstanten G und .

Um Formeln fiir G;; und 1 zu erhalten, wihlen wir die Lamellen-
normale zur Z-Achse. Die Richtung in der Lamellenfliche parallel
zur Stabsachse wird als V-Achse gewihlt, die XZ-Ebene enthilt die
hexagonalen Hauptachsen der primiren Lamellen. Das Transformations-
schema (53) erhilt daher die Form:

[ ARRY R
X0 | @ fr1 o7
YOia, By y,
Z”aO;'.........(I26)
wo a® +- y2 =1 ist.
Das rhombische Aggregat ist gekennzeichnet ) durch 9 Haupt-
moduln:
611; '6221 633, @23; @31; g]g; @44: 6_55; 606
oder durch 9 Hauptkonstanten
&11: 6:22} 633’ (g.’.'i’ 63]1 G’l'.:-" 6"‘“1 (S'Su' (S'lili'

Der Modul Gp; gehort zu einer Dehnung lings der Y-Achse, es
gilt also: ;
@II:é;. ..... O O LS o £y e (1273)

Zyy ist der Modul fiir eine Torsion um die ¥-Achse. Nach der Elastizi-
titstheorie hingt bei einem rhombischen zylindrischen oder prismatischen
Stab, wenn Stabsachse und zweite rhombische Hauptachse zusammen-

#9)  Voigt, Lehrbuch, S. 586.
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fallen, das Verhiltnis von Drehungsmoment und Drillung in verschie-

' ; : : o |
dener, mehr oder weniger verwickelter Weise von den GréBen 6344( S
44

1 : 1
und Gcs(z 5_6) ab, je nachdem der Querschnitt des Stabes die eine
6

oder die andre Form hat ®!). Es wird sich aber zeigen, daB fiir unser
rhombisches Lamellenaggregat gilt

@-u — GGGr

sodann gehen die betreffenden Formeln in die Formeln fiir eine iso-
trope Substanz %%) oder ein axiales Aggregat iiber und es gilt

11
" Bu S

Fiir unsern Zweck geniigt es also, die 3 Hauptmoduln &,,, &4, und S
des rhombischen Aggregats zu berechnen.

Dazu schreiben wir wie im II. Kapitel den Ausdruck fiir die Potential-
funktion ¢ des Aggregats in den beiden gleichwertigen Formen (35)
und (35a):

2;’ s _S:::sz:z_hga‘lzvg"'d—‘nﬁzr-z — 0 0 0 o OO
—:L-auxf—{—................—.-
= 01Xa® + 0¥y + OasXy® + 2000%,, + . . . . (128)

T . . . (127b)

Die Koeffizienten dieser Gleichung lassen sich ausdriicken, das eine
Mal in den Hauptmoduln &;;, des rhombischen Aggregats, das andre
Mal als Integralformeln der Hauptkonstanten oder Hauptmoduln des
hexagonalen Einkristalls. Die erste Rechnung, analog derjenigen, die
zu der Gleichung (39) gefiihrt hat, liefert die Formeln:

3;4:G_“, * e+ e & a4 s & & & & & & s (129:‘)

— 1

nm:—é, ST I R e R R e | 1 200)
6

aullerdem

= &

M= 18 — B

- €182 — G15°

= = — S .

2 G11622 — @1 ,

) wvgl. z. B, Voigt, I. ¢. S. 638, 644; Love, Treatise on the math. theor. of
elast., 4th ed. 1927, S. 325.
#2) ygl, Love, l.c. S. 318,
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woraus folgt
— — 1

011033 — 0% = —— :
3 81182 — )51

also schlieBlich

Wir brauchen also bloB die Koeffizienten O41r Ogsy 1y, Gps und Tt
der Gleichung (128) in den ;. oder s;; auszudriicken,

Die Rechnung verliuft den Ausfiihrungen im III. Kapitel parallel.
Die Hauptdeterminanten 4 und 3 haben genau dieselbe Form, die-

jenige der Gl (71) und (71a); von den Zihlern der Ausdriicke

Ay = ; - : ‘
f, == w.s.w. werden einzelne einfacher, weil = o und a2 = 1 — 52,
i

Um die Mittelwerte zu bilden schreiben wir ¥ = cos ¢, es wird so z. B.

= 2) g /}:’r dop

T 2|7 B R
13 ) 1 — L cos2p

. /C Cia :
Neben diesem Integral, das wegen (72) den Wert -.-}:t],r’ 1—12;—'“ besitzt,
a1

treten Ausdriicke auf, die den Formen (82b—d) analog sind:

’ 2 “.IIH dfp
L ::/ ISR VA il F R (130a)
' 2 /Iy‘! 3o
o= ;y I—MyPF Np& ° c = 20 v v v v (130b)
0
r 2 (37 p3(1 ;,2)(&1}_
R = _,:g-.}/ 1_"‘M}"": =E Nj’d’ ....... . . e (ISOC)
0

Die Rechnung ergibt:

/ 2

S = Y oeas
& " Cya(C11—C19)

........ . . (131a)

- /esa(€1y—¢1s)
”asur:””—lgﬁ"""" ...... (131b)

= A1y — €19)
L2 Pl e

.suP'.............(I3Ic)
1
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- A — Cq0 J ’
: _@ = C12) [—s15P" + (515 —512)Q] . . . . (131d)

tn
— Alcyy — e

o= Mo — a8 o b (6 — 5O — HR] . . (131e)

1
Sodann erhalten wir aus (127a), (127b), (129a, b, c):

{_S_;sp’ + (513—512) Q" }*
sy P’

@II—"A(LZI_ILPJ) S33P” + (51— 533)Q' —HR'—
(132a)

T = VEcu(cii—cCa) « ¢+« ¢« o . SR b Sl Tl Fents (132b)

Diese Werte, zusammen mit dem G; und dem ¥; der Formeln (124),
werden eingetragen in die Gleichungen:

G =146 +26y) . . . . . 5 5 B ¢ ... . (133a)

T = %(‘II aF 23:11) ............... (133b)

So erhalten wir die Dehnungs- und Torsionsmoduln des zweiten
speziellen Aggregats (mit den hexagonalen Hauptachsen der Einkristalle
senkrecht zur Stabsachse) fiir den Fall, wo die Einkristalle stark an-
isotrop sind.

§ 3. Untersuchung der Struktur des anisotropen Griineisen-

schen Zinkaggregats.

Wir wollen jetzt die Formeln (122) und (133) bei Zink anwenden
um zu untersuchen, ob eine der besprochenen speziellen Strukturen
den auBerordentlich hohen Wert fiir & erklirt, den Griineisen 1907
an einem Zinkstab der Phys. Techn. Reichsanstalt in Charlottenburg
gemessen hat; sein & war hoher als der hochste Wert, den der Dehnungs-
modul im Einkristall erreicht. Darum sind in der Tabelle N 1 die extre-
men Werte des Moduls im Einkristall zusammengestellt mit den Werten
fiir @ bei speziellen Aggregaten der beiden erwihnten Orientierungen
und beim allgemeinen Aggregat, und mit dem Griineisenschen Modul,
gemessen am Stab 1 von D 4, Alle berechneten Moduln sind mit der
Voigtschen und mit der neuen Theorie bestimmt worden; {iberall sind
wiederum 2 Werte angegeben, wovon der erste aus den Griineisenschen,
der zweite, eingeklammert geschriebene, aus den Bridgmanschen Kristall-
konstanten berechnet worden ist, Stetssind C, G.S. Einheiten verwendet.
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N 1. Dehnungsmoduln (. 10—1!) beim Zink.

Einkristall, kleinster Modul®%) . . . . . . .| 3,54 ( 3,79)
»  , groBter T Vo e e s 12,50 (12,15)
Spez. Aggr., hexag. H.A. [/ Stabsachse, . . . .| 3,54 ( 3,79) [(122a)
o n L » »n.Voigt®) | 13,59 (13,86) |(125a)
T T T s yneu ™) S8Ti113,161(13,17)| (133a)

Isotropes Aggr., n. Voigt . . . . . . . . .|[10,96(11,23)| D3
oy 4 aHER S 5o oh s e os e . . .| 9,94 (10,21)| D3
Das Griineisensche Zn II ., . . . . . . ., . | 12,85 D4

Aus dieser Tabelle lassen sich mehrere Schliisse ziehen.

Erstens erkennt man beim zweiten speziellen Aggregat einen deutlichen
Unterschied zwischen den Ergebnissen der alten und der neuen Theorie.
Wird die neue Theorie nur auf das hexagonale primire Lamellen-
aggregat angewandt, so stimmt das @ aus (124a) mit dem Voigtschen @
iberein, die umfangreiche Rechnung, die ¢; mittels (132a) und (133a)
durch G ersetzt hat, ist lohnend gewesen.

Zweitens 1st der Modul fiir das spezielle Aggregat mit
allen hexagonalen Hauptachsen senkrecht zur Stabs-
achse wirklich gréBer als der groBte Dehnungsmodul
im Einkristall, sowohl wenn man die Griineisenschen als wenn
man die Bridgmanschen Kristallkonstanten zu Grunde legt. Diese
merkwiirdige Eigentiimlichkeit des Griineisenschen Zinkstabs geht somit
zwanglos aus der Annahme hervor, daBl der betreffende Stab die erwihnte
spezielle Struktur aufweist.

Drittens besteht eine gute Ubereinstimmung zwischen
dem empirischen und dem nach der neuen Theorie
berechneten Wert des Dehnungsmoduls. Zieht man in
Betracht, daB3 das Zinkaggregat eine rissige Oberfliche hatte, wodurch
das & verkleinert wird, so ist vollstindige Ubereinstimmung nicht aus-
geschlossen.

S i D
€3+ €12
€11€33 — Cra’
3)  Dieser Wert ist gleich dem € der neuen Theorie.

%) Aus € = (—E-‘——f"jz—(i—”, das @y hat den Wert 12,95 (12,83).

H) € =cy—
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Es scheint also die Folgerung erlaubt, daB in dem gegossenen
Zinkstab II der Griineisenschen Untersuchung vom J.
1907 die Einkristalle wahrscheinlich in iberwiegender
Zahl speziell orientiert waren mit den hexagonalen
Hauptachsen senkrecht zur Stabsachse.

Ich habe in der Literatur keine Angabe iiber spezielle Strukturen bei
Zinkaggregaten gefunden; Rontgenpriifungen liegen soviel ich weil} nicht
vor. Dagegen 1aBt sich aus Messungen auf ganz andrem Gebiet eine
zweite, unabhingige Priiffung der Struktur desselben Zinkstabs II
vornehmen. Der Stab ist nimlich friiher von Jaeger und Diesselhorst auf
seine elektrische Leitfihigkeit untersucht worden®), diese betrug bei 18°
16,51 . 10%. Da tat sich die merkwiirdige Tatsache vor, daB} zwei Drihte,
aus diesem Stab gezogen, Leitfihigkeiten zeigten bzw. gleich 15,98 . 101
und 15,95 . 10%; ein andrer Zinkstab, Zn I (Nummer 4 unsrer Tabelle D 4)
wies Werte 15,88 . 10* und 15,83 . 10% auf. Dies deutet jedenfalls auf
eine spezielle Struktur des Zinkstabs II hin. Niheres liBt sich schlieBen
aus den Messungen der elektrischen Widerstinde in Zinkeinkristallen,
die sowohl Griineisen und Goens ¥) wie Bridgman *) ausgefuhrt haben.
Erstere fanden fiir den elektrischen Widerstand parallel und senk-
recht zur hexagonalen Hauptachse bzw. 5,83. 10—¢ und 5,39. 10—°9,
letzterer fand fiir dieselben GroBen bzw. 5,66 und 5,45. Aus diesen
elektrischen Kristallkonstanten lassen sich die Widerstinde fiir allge-
meine und spezielle Aggregate berechnen.

Die Voigtsche Theorie fiir diese Rechnung ist im Kap. I, § 2 dieser
Arbeit kurz wiedergegeben. Seine Methode ist wiederum eine erste
Anniherung, nach der Methode des IL Kapitels dieser Arbeit lassen
sich neue Formeln ermitteln, die hier viel einfacher sind als fiir die
Elastizitit. Wo aber die elektrische Anisotropie des Zinks klein ist,
geniigen hier die Voigtschen Formeln, In der Tabelle N 2 sind die
berechneten und empirischen Werte zusammengestellt, wie bei den
elastischen GroBen findet man auch hier in jeder Zeile der berechneten
Werte 2 Zahlen, erstere nach den Griineisenschen, letztere nach den
Bridgmanschen Widerstinden bei Einkristallen. Die Einheit ist das
£ cm. 10—°5.

57)  Jaeger und Diesselhorst, Wirmeleitung, Elektrizititsleitung, Wirmekapazitit
u. Thermokraft einiger Metalle.

Wiss. Abh. der Phys.-Techn. Reichsanstalt, 3, S. 269—423, 1900,

#)  Griineisen u. Goens, Z. f. Phys. 26, S. 250—273, 1924.

9) Bridgman, Proc. Nat. Ac. 10, S. 411, 1924,
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N 2. Elektrische Widerstinde beim Zink.

Einkristall parallel der H. A,. . . . . T T LB 831(5766)
7 senkrecht zur H. A.. . . . . . . . + « «| 5,39 (5,45)
Spezielles  Aggregat, H. A. // Stabsachse. . . . . .| 5,83 (5,66)
» » o HiA, | . e oo oo o] 5,39 (545)
Allgemeines rs | ry i AT R e 5,61 (5,55)
Empirischer Wert fiir Zn I . . . . . . . . . .. 6,31
3 5 AR AL 5 5 SR o e 6,05
7 R R D rahtiads B ST [ 6,26
2 12 22 2' 1 13 1 1 + . * . + 6,27

Die berechneten und gemessenen Widerstinde stimmen dem abso-
luten Wert nach schlecht iiberein, offenbar hat die Tatsache der Viel-
kristallstruktur mehr EinfluB auf die elektrischen als auf die elastischen
Widerstinde. Es zeigt sich aber, daf3 Zn II in derselben Richtung abweicht
von den andren Aggregaten (die unter sich ziemlich gut iibereinstimmen)
wie das 2. spezielle Aggregat von dem isotropen. Auch das Verhiltnis
stimmt nicht schlecht, Zn II bleibt 3 bis 4 Prozent unter den andern
Aggregaten, wihrend die spezielle Struktur, die wir aus den elastischen
Messungen fiir Zn II ermittelt haben, fiir den spezifischen Widerstand
Werte ergeben wiirde, die nach den Griineisenschen bzw. Bridgmanschen
Daten 4 bzw. 2% kleiner sind als der Widerstand desallgemeinen Aggregats.

Soweit die Genauigkeit der Leitfihigkeitsmessungen
reicht, scheinen sie also unsre Vermutung iiber die
Struktur des GriineisenschenZinkstabsII zu bestitigen.

Falls der Rest dieses Stabes in Charlottenburg aufbewahrt wird (ein
Teil ist jedenfalls fiir die erwihnten Drihte verwendet worden) wire Nach-
priifung der gefundenen Struktur mittels Réntgenstrahlen sehr erwiinscht.

Beim Cadmium liegen die Verhiltnisse dhnlich wie beim Zink, nur
ist alles ungewisser. Erstens liegen die Aggregatskonstanten, berechnet
aus den Griineisenschen und Bridgmanschen Kristallkonstanten, beim
speziellen wie beim allgemeinen Aggregat, weiter auseinander. Zweitens
ist von den abweichenden Aggregaten, hier den 4 Voigtschen Stiben,
die Leitfihigkeit nicht bekannt, so dal die Kontrolle auf die eventuell
gefundene Struktur wegfillt. Dem steht gegeniiber, daB Voigt an seinen
Stiben 2 Moduln gemessen hat, wodurch eine doppelte Priifung méglich
wird, Das Ergebnis findet man in
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N 3. Moduln fiir spezielles Cadmium.

(e =2 S (e,

Spez.Aggr., hex.H.A. | Stabsachse,n.Voigt | 8,78 (8,32) | 2,73 (2,51)
3] FY IR I 2 17 12 i3] , neu . 8;52 (8:08) 2;54 (2;27)
Isotropes Aggregat, mett . . . . . . . .| 6,02 (5,47) | 2,27 (2,07)

Empirische Werte, Cd la . . . . . . . 6,94 2,42
by v mn ke o oo 7,06 2,36
7 s G L CHE R R s R 6,94 2,42
r Ry Rty 1 L 5o e IR Sy 6,78 2,41

Bei allen Stiben zeigen G und T deutliche Abweichungen von der
Isotropie im Sinne einer Struktur mit Vorherrschaft derjenigen Orien-
tierungen, wo die hexagonale Hauptachse senkrecht zur Stabsachse liegt.
Nach den empirischen Werten von & wire es nicht ausgeschlossen,
daB das Aggregat nur solche Orientierungen enthalten wiirde, die
gemessenen § sind aber merklich zu klein. In wiefern die Abweichungen
beruhen auf der Beimischung von Kristallen anderer Orientierungen,
in wiefern sie auf Porositit (die bei ungleichmiBiger Verteilung der
Porien @ und § verschieden beeinfluBt) beruhen, 1Bt sich bei der grofen
UngewiBheit der Daten nicht einmal vermuten. Jedenfalls ist das
Voigtsche Cadmium anisotrop, wie aus der Tabelle E 5 hervorgeht,
und die Tabelle N 3 macht es wahrscheinlich, daB bei der speziellen
Verteilung der Kristallorientierungen diejenigen mit der hexagonalen
Hauptachse senkrecht zur Stabsachse stark vertreten sind. Die Haufigkeit
dieser Vorzugsorientierung wird in den verschiedenen Stiben nie vollig
gleich sein, daher wohl die verschiedenen Werte der empirischen Moduln.

§ 4, Spezielle Aggregate von reguliren Kristallen.

Im reguliren System untersuchen wir die Strukturen, wo alle Ein-
kristalle des Aggregats bzw. eine Hexaeder-, Oktaeder- oder Rhomben-
dodekaedernormale in der Stabsachse haben; im folgenden werden sie als
H-, O- und R-Aggregate bezeichnet. Ich beschrinke mich auf primire
Lamellenaggregate mit den Lamellenebenen senkrecht zur Stabsachse,
die erhaltenen Formeln gelten also mit guter Anniherung nur fir
Kristalle von kleiner und mittlerer Anisotropie, wie sie beim Aluminium
und Gold auftreten.

Fiir die Aggregatskonstanten gelten sodann die Gleichungen (108a)
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und (108b) zusammen mit (113c, d, ), wenn wir aus ersteren den Faktor

4 das [und das do streichen. Die y und y lassen sich entnehmen
aus der Tabelle

O 1. Richtungscosinus in spez. Aggr.

H-Aggr. | O-Aggr. | R-Aggr.
n| 1 vi | vi
Y2 0 Vi Vi
V3 0 V' 0
Y 0 5 i
z 0 ghr 0

Z =Gy
) 2
— I = GS.’ _TL 11‘3
©;; Pl O T
Die Querkontraktion
'-5-1‘1
(/n ar Lu

Wir erhalten:

O 2. Konstanten bei speziellen Aggregaten regulirer Kristalle,

H-Aggr. O-Aggr. R-Aggr.
Cas Cia ¢y —§f cn— 3f
S13 C12 1z + %f 12 + 1f
Casleas + 1)
Y 1 14\ T 57)
Caa Caa i+ 3f Co Rl
v : Casf 3¢, —2f
¢ €pq — 4 i — i —28d . 8
11 11 ;f 11 .if 3 Cik _Jl_ ;} f‘l hfzc o __f
e caaf ‘ 3¢, —2
(U e + 4 Cie + 3f—% Cas j:_T Cia + $f—%f 2(:1111 __J}f
Gy + Cpaf €1t Cro €13 + e — 14 €13 + C1p —4f
2C19° 5 2("-'11 lf 2(cyy + 4f)*
5 o — ot — — =
5 TN A if C11‘|‘C12—§f cy1—3f ey t-Cra—1]
culci + 5f)
T c Cqq + 4 £ L © S S P4
~ a4 a3 Y
. €10 s+ ¥f _ Gt
¢ i1 T €12 11 + Cia— 3f cn+ Ca—1f
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Ist die GroBe f, das MaB3 der Anisotropie, negativ, so ist bei der
H-Struktur das G kleiner und das ¥ groBer als bei der O-Struktur,
bei positivem f verhilt sich die Sache umgekehrt. Die Moduln beim
allgemeinen Aggregat liegen jedenfalls zwischen diesen extremen Werten.

§ 5. Strukturuntersuchung bei anisotropen Goldaggregaten.

In der Tabelle O 3 sind zusammengestellt die Moduln der erwiesener-
maBen anisotropen Goldaggregate aus K 4 und die berechneten Moduln
fiir mehrere spezielle und gemischte Aggregate sowie fiir isotropes Gold.
Bei Gold ist f negativ, fiir die gegossenen Stibe 2a und 2b, wo G kleiner
und € groBer ist als die Isotropiewerte kommt also nur eine partielle
H-Struktur in Betracht. Der gezogene Goldstab 1b weist fiir € und
beide zu groBe Werte auf. Beimischung einer einzigen speziellen
Orientierung kann diese Abweichung nicht erkldren, ich hatte sie daher
zuerst, wie schon bemerkt, einer Ungenauigkeit der Goensschen Kristall-
konstanten zugeschrieben. Spiter fand ich die Abhandlung von
Polanyi ®%), worin er mittels Roéntgenpriifung nachweist, daBl die
gezogenen Aggregate von den flichenzentrierten Metallen Kupfer,
Aluminium und Palladium ,,paratrop’’ sind fiir 2 verschiedene spezielle
Orientierungen. Im Aggregat treten Einkristalle mit O- und H-
Orientierungen beide ,,mit stark erhohter Hiufigkeit” auf, wobei die
ersteren die zahlreicheren sind.

Polanyi hat nicht bei gezogenen Goldstiben eine solche Struktur
nachgewiesen, Gold gehort aber auch zu den kubisch flichenzentrierten
Elementen und aus andern Untersuchungen geht hervor, daB in
gewalztem Gold dieselbe ,,Faserstruktur’’ auftritt wie in Blechen von
andern flichenzentrierten Metallen: Ag, Cu, Al, Pt®), Wir wollen
daher versuchsweise fiir den Griineisenschen Goldstab dieselbe Faserung
annehmen, wie fiir die Metalle von Polanyi, und haben mittels der
Formeln (121) aus § 1, auf 3 Bestandteile angewandt, die Moduln be-
rechnet fiir mehrere gemischte Aggregate, zusammengesetzt aus allge-
meinem, O- und H-Material (die in Betracht kommenden Prozentzahlen
wurden abgeschitzt durch Interpolation der @ und T zwischen den
Werten fiir reines isotropes, bzw. O- oder H-orientiertes Material).

Die verschiedenen berechneten und gemessenen Moduln haben wir
rusammengestellt in der Tabelle:

¢) Polanyi, Z. f. Physik 17, S. 42—53, 1923.
¢) Vergl. z. B. Ewald, Kristalle u. Réntgenstrahlen, 1923, S. 143,
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O 3. Priifung fiir spezielle Goldaggregate.

€.10-1Z. 10-1(G/%| u

Berechn. Wert fiir H-Aggregate . . . .| 4,00 4,00 11,02|0,461
1 1y 12 O"’ 13 .« s+ s . 11,15 2,27 4,91 0,394
23 »» 1 Isotropie .+« o T,665| 2,68 (2,86(0,427

o S R 05 B RS =S G 10 S H N7 47 2,72 12,715 —
3 oo 909% Is. + 109% H| 7,30 2,77 2,64 —

Gemess. Wert, Stab 2a, gegossen . , . 7,30 2,82 (2,59 —
’ » s 1 2b, ’ . » +| 7,58 2,77 (2,74 —

Berechn.Wert,fﬁrGO%Is.+20%O +209%, 7,57 2,76 (2,7510,428

= w1 45%Is.4+30%0+25%H| 7,70 2,76 |2,79]0,427
» 1 20%Is.4-45%0+35%H| 7,82 2,77 |2,82|0,426
o o 3%Is.+55%0-+40%H| 7,97 2,78 [2,87(0,424

Gemess. Wert, Stab 1b, gezogen . . . 7,92 2,77 |2,86(0,42

Nach dieser Tabelle 4Bt sich aus den elastischen Messungen nichts
quantitatives aussagen {iber die Struktur der verschiedenen Goldstiibe,
wohl aber qualitatives.

Erstens zeigt sich, daB hinter der scheinbar kleinen Anisotropie
des gezogenen Stabes, die bei der Griineisenschen Priifung (Tabelle
C, im § 4 des II. Kap.) hervortrat, eine sehr groBe wirkliche Paratropie
stecken kann, wenn die Struktur bei Gold dieselbe ist wie bei den
andern gezogenen Metallen mit kubisch flichenzentriertem Gitter.
Wire die Fehlergrenze der Goensschen Kristallkonstanten viel enger,
z. B. unter 1 %, so kdnnten wir schlieBen, daB der Griineisensche Stab
wenig isotropes Material enthilt und die 2 Polanyischen Vorzugsorien-
tierungen ungefihr im Verhiltnis 3 : 2 vertreten sind. Unter den ge-
gebenen Umstinden bleibt das Verhiltnis noch einigermaBen zuverlissig
und somit die Polanyische Struktur des Stabes wahrscheinlich; es ist
aber sehr gut moglich, daB8 den Vorzugsorientierungen in viel hoherem
MaBe die allgemeine Orientierung beigemischt ist. Beim Zinkstab
konnten wir von einer wahrscheinlichen Struktur sprechen, hier ist die
gefundene Struktur kaum mehr als eine Vermutung. Falls der Goldstab
noch aufbewahrt wird, wire hier, noch mehr als beim Zink, Nach-
priffung mit Réntgenstrahlen erwiinscht,

Nicht viel anders scheint die Sache zu liegen beim gezogenen
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Aluminium, doch kommt hier die ungleiche chemische Zusammensetzung
der verschiedenen Proben als weitere Ursache von Abweichungen in
Betracht. Das Verhalten des Stabes 3¢ (= Al II) der Tabelle H 4, der
sowohl dem Griineisenschen Isotropiekriterium wie dem unsrigen
geniigte (vergl. Tab. C und H 5), aber fiir § und € Werte aufwies
ungefihr 3 %, groBer als die berechneten, ware vielleicht aus einer
Polanyischen Paratropie zu erkliren,

Uber die gegossenen Goldstibe 1aBt sich wenig mehr aussagen, als
was schon im Anfang dieses Paragrafen bemerkt worden ist. Das
verkleinerte G und das vergroBerte ¥ zusammen weisen bei allen
Metallen mit negativem f auf eine Beimischung von Kristallen in der
H-Orientierung hin. Diese werden natiirlich in verschiedenen Stiben
in ungleicher Hiufigkeit vertreten sein, die Daten der Tabelle O 3 ver-
tragen sich z.B. mit etwa 129, und 5 o/ solcher Kristalle in 2a und 2b.
Die Zuverlissigkeit solcher Abschitzungen ist aber gering, wir be-
schrinken uns daher auf die Aussage, daB die Annahme eines geringen
Prozentsatzes von Einkristallen der H-Orientierung geniigt, um die
abweichenden Moduln der Voigtschen Goldstibe zu érklaren.



ZUSAMMENFASSUNG.

I. Die Voigtschen Formeln (8) [Seite 6] fiir die Elastizitits-
konstanten eines Kristallaggregats beruhen auf unrichtigen Annahmen
tiber die Grenzbedingungen,

II. Aus den richtigen Grenzbedingungen werden die Formeln
(40)—(44) [Seite 27] und (43a)—(44a) [Seite 30] abgeleitet, deren
Anwendung, nétigenfalls wiederholt, fiir ein zweckmiBig gewihltes
isotropes Aggregat die Elastizititskonstanten ergibt. In diesen Formeln
bezeichnen die d;;, @, und o, Mittelwerte iiber gewisse Funktionen
der elastischen Kristallkonstanten.

III—IV. Die Funktionen 9, u.s.w. werden berechnet fiir Kristalle
der hexagonalen und reguliren Systeme; so erhalten wir die Formeln
(84) [Seite 48] bzw. (113) [Seite 65]. Diese werden gepriift an allen
mir bekannt gewordenen Daten fiir isotrope Metallaggregate. Die
Resultate, so viel sie deutliche Unterschiede zwischen der alten und
der neuen Theorie aufweisen, sind zusammengestellt in der Tabelle Q,
wo & und T bzw. Dehnungs- und Torsionsmoduln bezeichnen.

Q. SchluBtabelle fiir -+ isotropes Material.

Zink Cadmium |[Gold| Messing
alte Theorie [10,96(11,23)]6,63 (6,09) |8,405| 13,29
E.10—11 { neue ,, 9,94(10,21)]6,025 (5,475)|7,665| 11,19
gemessen 9,97 5,00 7,92 |11,041,5
alte Theorie |4,415(4,545)|2,50 (2,32) |2,96 5,035
T .10—11 § neue ,, 4,005 (4,105) | 2,27 (2,07) |2,68 4,14
1 gemessen 3,95 1,93 2,77 (4,0 4-0,2

V. Es werden fiir mehrere spezielle Verteilungsfunktionen der
Achsenorientierungen die Aggregatskonstanten berechnet und ver-
glichen mit den Werten, gemessen an anisotropen Aggregaten. Ein
interessantes Resultat dieser Rechnungen findet sich in der Tabelle N 1
(Seite 96), die sich bezieht auf den Dehnungsmodul eines Griineisen
schen Zinkstabs, dessen wahrscheinliche Struktur ermittelt wird.
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STELLINGEN.

I

Elke 3¢ graadsvergelijking met regele coéfficiénten is te herleiden
tot een vergelijking van den vorm:

x3—x—s =0,

waarin s een reéel getal = 0 is. Deze vergelijking heeft één positieve
wortel, die gelijk is aan de convergente ,,wortelkettingbreuk''

/ §
e

II.

De twee definities, die Hobson in zijn ,, Theory of functions of a real
variable” (2¢ druk, § 64, 65) geeft van de transfiniete ordinaalgetallen
der 2¢ klasse, zijn niet gelijkwaardig. In verband daarmee bevat de
fundamenteele stelling in § 66 een overbodige beperking.

IIL

Ten onrechte meent Czuber, dat men een waarschijnlijkheidsrekening
kan opbouwen op het ,,Prinzip des mangelnden Grundes''.
E. Czuber, Wahrscheinlichkeitsrechnung, I, 1908, p. 10,

IV.

Nog steeds worden onder de elasticiteitsconstanten van kristallen
opgenomen de constanten van koperkristallen, die Voigt in 1883 indirect
heeft bepaald. Deze getallen zijn niet juist, ook niet bij benadering.

W. Voigt, Berl. Sitz. Ber. 37, 1883, p. 961; 38, 1884, p. 1004.

M. Born, Enz. d. math. Wiss. V 25, 1923, p. 570.

Miiller—Pouillet, Lehrbuch d. Physik, 11¢ dr. 1%, 1929, p. 936.
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V.

De theorie van Voigt over het geleidingsvermogen voor warmte en
electriciteit van kristalaggregaten is slechts een eerste benadering, die
b.v. bij electrische geleiding in tin zeer onnauwkeurig is.

W. Voigt, Lehrbuch der Kristallphysik, 1928, p. 956—960.

VI.

Tutton betoogt, dat de eigenschappen van Lehmanns ,,vloeibare
kristallen” geheel verklaard worden door de ,zwerm’’-hypothese van
Bose. Dit betoog is niet afdoende.

A, E. H. Tutton, Natural History of Crystalls, 1924, p. 226—228,

VII.

Waarschijnlijk zal men elastische anisotropie bij vloeibare kristallen,
althans bij sommige, kunnen aantoonen.

VIII.

In ziyn ,,Dynamik der Kristallgitter” [1914] leidt M. Born de
formules (32'), (37) en (41) voor de drie deelen van de potentiéele
energie bij homogene vervorming zoo af, dat hij in de formule voor
de totale potentiéele energie eerst overgaat van absolute tot relatieve
verschuivingen en na de splitsing terugkeert tot de absolute. Deze
omweg is overbodig,

IX.

Bij de Algebra op gymnasium en H. B. S, kan de behandeling der
wortelvormen zeer sterk worden beperkt; de vrijkomende uren geven
gelegenheid, in den onderbouw het rekenen met benaderde waarden
en in de hoogste klas de ontwikkeling van het getalbegrip degelijk te

behandelen,
X.

Het is gewenscht, dat ieder gymnasium en lyceum het recht verkrijgt,
elk jaar te kiezen tusschen Differentiaalrekening, Analytische en Projec-
tieve Meetkunde als verplicht examenvak voor de B-leerlingen.
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