
Elastizitätskonstanten von Kristallaggregaten

https://hdl.handle.net/1874/296165

https://hdl.handle.net/1874/296165


??? ELASTIZIT?„TSKONSTANTENVON KRISTALLAGGREGATEN ?• D. A. G. BRUGGEMAN J â–  , :nbsp;: - â–  . I \' . i . \\ : ... ;



??? â– M â–  \' 1 fi â€? \'Il\'????ji___



??? .M i IP V.^^f\'rf\'^i--



???



??? ELASTIZIT?„TSKONSTANTENVON KRISTALLAGGREGATEN



??? pv/nbsp;, - rt : \' ??cii-.r ftihr-U^,.;- â– sa.-quot; .i di 7 ??



??? ELASTIZITATSKONSTANTENVON KRISTALLAGGREGATEN PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAADVAN DOCTOR IN DE WIS- EN NATUURKUNDE AANDE RIJKS-UNIVERSITEIT TE UTRECHT. OP GEZAGVAN DEN RECTOR-MAGNIFICUSjhr Dr B. C. DE SAVORNIN LOHMAN,HOOGLEERAAR IN DE FACULTEIT DER RECHTSGE-LEERDHEID. VOLGENS BESLUIT VAN DEN SENAATDER UNIVERSITEIT TE VERDEDIGEN TEGEN DEBEDENKINGEN VAN DE FACULTEIT DER WIS- ENNATUURKUNDE OP MAANDAG 8 DECEMBER 1930,DES NAMIDDAGS TE 4 UUR DOOR DIRK ANTON GEORGE BRUGGEMAN geboren te heerenveen BIJ J. B. WOLTERS\' UITGEVERS-MAATSCHAPPIJ n.v.GRONINGEN -- DEN HAAG - 1930 jbibliotheek D?Š?jRIJKSUNIVERSITEIT\'UTRECHT.



??? BOEKDRUKKERIJ VAN J. B. WOLTERS



??? aan mijn vrouw aan de nagedachtenis van mijn ouders



??? Â? ... sciv L



??? Bx, het terugzien op de jaren van studie, waarvan dit proefschrift mij t^Ts h^^^^ \' \'\'nbsp;^^^nbsp;- hoogleraren, die ^LT t rnbsp;^^^ h^n liefde voor de exacte weten- knbsp;.nbsp;-- h-d bedankt, Ik herdenk hun in genegen herinnering. Hooggeleerde Haga, het is mij een groote vreugde, dat ik U, Hoog- UwTirnbsp;quot;quot;nbsp;proefschrift mag toekenden. Uw colleges en practica, waar Ge Uzelf volkomen gaaft, zijn mij eenonnavolgbaar voorbeeld gebleven voor eigen onderw^swerk. da^wTlfnnbsp;Uw onderwijs in Groningen p act rbi7u \'Tnbsp;Ge mij, na jaren onderv^quot; IZ \\nbsp;weg hebt geholpen in de physica. Dit proefschrift, hoezeer ook afwijkend van Uw oorspronkelijke bedoelinIS de late vrucht van wat Gij tot bloei hebt gebracht. vaf Mnbsp;Directeuren van het Nederlandsch Lyceum, mijn hartelijken dank voor de werk-en CrI\' 7nbsp;Directeuren?„rS ^^ -- tegemoetkoming gaf^de^nTu-f\'nbsp;- Griend, Uw raad en daad hub bf fnbsp;Promotor, U dank ik voor Uw hulp b, de voltooung. Ge hebt mij

vrijgelaten, als ik alleen verder kon,-n mi, over hmdernissen heengeholpen tot het einde, ik dank U zeer.



???



??? INHALTSVERZEICHNIS. Einleitung ......... I. Die Voigtsche Theorie der Elastizit?¤tMedien. quasiisotroper 5 68 1117 Â§ 1.nbsp;Die Voigtschen Formeln...... Â§ 2.nbsp;Die Begr??ndung des Voigtschen Ansatzes ^ 3.nbsp;Die Voigtsche Pr??fung der Formeln (8). Â§ 4.nbsp;Pr??fung der Formeln (8) an neuen Daten Â§ 5.nbsp;Kritik der Voigtschen Theorie .... Seite1 Versuch einer neuenisotroper Medien. Â§ 1. Grenzbedingungen und Annahmen .nbsp;jq Â§2. Theorie des allgemeinen Lamellenaggregats\' ! 22 I A ^ovrmln als erste Ann?¤herung ... 31Â§ 4. Allgemeines ??ber Pr??fungen der Theorie.....33 krtarltâ„?quot;quot;nbsp;Aggregats hexagonaler Â§ 1. Transformation der c\'.-, und s\'.-^ ...nbsp;39 Â§ 2. Die Koeffizienten der Funktionnbsp;42 4 Lamellenaggregate . . . ! ! !nbsp;46iTztr Aggregatskonstanten Â§ 5. Berechnung und Pr??fung der Aggregatskonstanienvon Cadmium........ Wallequot;quot;\'\'\' \'\'\' ^^^^^^^hinen Aggregats regul?¤rer Â§ 2nbsp;der c\',,............... Â§ 3\' Bornbsp;des

Lamellenaggregats......62 \' vo?w u ^nbsp;der Aggregatskonstanten von Wolfram . . .....................oy II. Theorie der Elastizit?¤t quasi- 51 56



??? Seite Â§ 4. Berechnung und Pr??fung der Aggregatskonstanten von Aluminium ................. 73 Â§ 5. Berechnung und Pr??fung der Aggregatskonstanten von Gold...................76 Â§ 6. Berechnung und Pr??fung der Aggregatskonstanten von Messing .................. 79 Â§ 7. Berechnung und Pr??fung der Aggregatskonstanten von Flu?Ÿspat..................84 V. Untersuchungen an speziellen Aggregaten. Â§ 1. Die nichtisotropen Aggregate ...........nbsp;86 Â§ 2. Spezielle Aggregate von hexagonalen Kristallen . .nbsp;89Â§ 3. Untersuchung der Struktur des anisotropen Gr??n- eisenschen Zinkaggregats .............95 Â§ 4. Spezielle Aggregate von regul?¤ren Kristallen ....nbsp;99 Â§ 5. Strukturuntersuchung bei anisotropen Goldaggregatennbsp;101 Zusammenfassung.....................104 _J



??? EINLEITUNG. verschiedenen Metalle LSer; H unbsp;MeuUkrisUl in I e ?Tnbsp;haben speziell die elas,.sehen E.genschaften umersueht. Nachdem die elastLh n Konstanten e,n,ger Metallkristalle gemessen waren, lag es nahe sfe u^er^^hen mit den l?¤ngs, betannten Konstanten isoLper M Ju S^alkn Ltr H o â– nbsp;aneinanderschlie?Ÿend, mi allen moghehen Onentierungen der elastischen Hauptachsen es quot;i^^L ^dnbsp;el-ischen\'KfnlÂ?: ich â„? r Hnbsp;Metallst?¤be. Voigt ist bis jetzt, so viel .ch we.?Ÿ der e.n2.ge Forscher gewesen, der solche Beoehunin eingehend theoreusch untersucht ha. - die neuen Versuche gesÂ?e Â?a.. gefunden, Grune.seâ€ž, Mazima und Sachs fanden dabei Abwei- â€”nbsp;erseheinr^so einandergeitzt â€žna , Tm tnbsp;quot;quot;quot; neue Theori. , t Â?quot;quot;^\'ert. Im II. BCap.tel w.rd versucht eine de Formerar T\'nbsp;Â?-quot;en daraus Ag Jr lquot; ; f quot; quot; quot;^^quot;^quot;^hen Konstanten der isotropenâ–  . nexagonalen bzw. regul?¤ren Kristallen, und diese ver- Lten

^unbsp;Daten. Die ?œbereinstimmung ist im allge- nalen MetalLnbsp;fnbsp;Aggregaten der hexago- Stab aus sehr rein!quot; 7Inbsp;merkw??rdigen einem Zmk. den Gr??neisen 1907 untersucht hat. Dieses Aggregat (â€žZink IIquot;) ergab einen Youngschen Modul 12.8. 10- cm*\'1



??? w?¤hrend Gr??neisen selbst sp?¤ter an Einkristallst?¤ben mit verschiedenenAchsenorientierungen als extreme Werte erhielt 3,520. IQii und11,500.nbsp;Hier versagt sowohl die alte Theorie wie die neue und ??berhaupt jede Theorie, die von der Isotropie des Aggregats ausgeht.Im V. Kapitel versuche ich eine Theorie aufzustellen f??r verschiedeneeinfache Annahmen ??ber nicht isotrope Verteilungen der Achsen-orientierungen. Das elastische Verhalten des Zinkstabs II stimmt dannganz sch??n bei einer sehr plausibelen Annahme ??ber den Aufbau desStabes, welche an andern Eigenschaften desselben Stabes nachgepr??ftwerden kann. Versuchsweise werden auch Abweichungen, die bei andernObjekten gefunden wurden, durch spezielle Annahmen erkl?¤rt. ZumSchlu?Ÿ kommt eine kurze Zusammenfassung. In allen Untersuchungen beschr?¤nke ich mich auf reversibele Vorg?¤nge^gr???Ÿere Beanspruchungen^ wobei Gleitung auftreten k??nnte, sind vonvornherein ausgeschlossen. Dies ??ber den Inhalt der Arbeit. Was die Form anbetrifft, so ver-

wenden wir der Hauptsache nach die Voigtsche Terminologie; dieverschiedenen Symbole haben also dieselbe Bedeutung wie in VoigtsLehrbuch der Kristallphysik. Zwar ergeben die Symbole der neuerenTensorrechnung einfachere Formeln mit Ersparung mancher unange-nehmen Faktoren 2 und â€” alle Abhandlungen mit deren Ergebnissenwir uns besch?¤ftigen, benutzen aber die Voigtschen ca- und sa undanders gew?¤hlte Konstanten m??ssen also doch schlie?Ÿlich wiederumgerechnet werden. Au?Ÿerdem fordert unsre Methode schonim Anfang die Darstellung der freien Energie als Funktion von3 Deformationen und 3 Spannungen, von diesem Augenblicke anw??rden wir also doch die eleganten Formeln der Tensorrechnungaufgeben m??ssen. Mit Voigt bezeichnen wir die ?„nderung der freien Energie in derVolumeinheit bei einer isothermen Deformation mit Die Verschie-bungen in den 3 senkrechten Achsenrichtungen hei?Ÿen u, v, w, die Deformationen ----- yz,----sind definiert durch = ----- V = â€” 4- â€”, . . . . Um Minuszeichen zu sparen, benutzen wir

die ^^ dz Voigtschen Druckkomponenten mit ge?¤ndertem Vorzeichen, f??hrenalso normale Spannungen X^, Yy und Zz und tangentielle SpannungenYz{= Zy), Zx(.= ^z) und Xyi^ Yx) ein. Dann gilt f??r jede homogeneDeformation eines Kristalls:



??? = ........... .......... . . (2) = ............. Ts.^X^Yy .......... . (2a) Aus den Gleichungen (2) und (2a) erh?¤lt man durch partielle Differentiationen die Hookeschennbsp;Gleichungen in der einen oder andernrorm: = CiiX^ .nbsp;. ^ _j_ ^^^^^^ ^ g ..... = SuZ^ .nbsp;. _ nbsp;...... des^\'L\'LdfElastizit?¤tskonstanten, die die Elastizit?¤tsmoduln Es gibt im allgenaeinen 21 Elasti^it?¤tskonstanten, zwischen welchen W m de aTTnbsp;Beziehungen bestehen. Bei geeigneter W h des Achsenkreuzes reduziert sich die Zahl im hexagonalen System ^ C33, Ci3, C12, C^,), im regul?¤ren System auf 3 (câ€ž c r ^ -tropen Substanzen auf 2. Die erste Molekulartheorie ?„^ti^?die Cauchysche glaubte die Zahl der Konstanten weiter reduz e nzu k??nnen durch die Gleichungen: ^ii = C23, C?Ÿs = C31, C?Ÿg = C12 C56 = Ci4, Ce4 = C25, C45 = ..........(4) Im hexagonalen System w??rden dann 3, im regul?¤ren 2, bei derIsotropie 1 Konstante ??brig bleiben. Der Streit zwischen Rari- undMultikonstantentheorie hat sich so ziemlich durch das ganze

19-^hrhundert fortgesetzt, bis die Messungen immer deutlicher f??r dieMultikonstantentheorie entschieden und schlie?Ÿlich Born eine Mole-kulartheorie der Elastizit?¤t aufstellte, welche die experimemell erwieseneUng??ltigkeit der Cauchyschen Gleichungen erkl?¤rte. Um unsre Formeln m??glichst einfach zu gestalten, schreiben wir^pannungen und Deformationen im Kristall bei willk??riich gew?¤hltem chsenkreuz X^----- ------- die hinzugeh??rigen Konstanten und Moduln aber cÂ?\' und Die Spannungen und Deformationen im^ezug auf die Hauptachsen hei?Ÿen ...... ...... die thein-p^;nbsp;Kristallgitter, 1914; 2. Aufl. u. d. Titel â€žAtom- ineorie des festen Zustandesquot; 1923.



??? hinzugeh??rigen Hauptkonstanten und Hauptmoduln cik und Sik, Inder Theorie treten prim?¤re und sekund?¤re Aggregate auf vonaxialer Symmetrie, ihre Elastizit?¤tskonstanten werden fe geschrieben.Die Konstanten der isotropen Aggregate hei?Ÿen (Â? (f??r gu = ÂŠ33),gl (f??r ÂŠ12 = (Â?13) und S2 (f??r = ^J mit der bekannten Isotropie-bedingung.nbsp;= ...........(5) Andre Gr???Ÿen, die in den Formeln f??r die einzelnen Kristallsystemeauftreten, werden in den betreffenden Kapiteln erkl?¤rt; hier erw?¤hnenwir noch die quadratische Funktion, die wir im II. Kapitel statt derfreien Energie | benutzen: = ^ â€” â€” â€” ...........(6) also: 2(p = X^^ -I- Yyyy XyXy â€” ZzZz quot; ZyZy â€” Z^z^ . . (6a)



??? DIE VOIGTSCHE THEORIE DERELASTIZIT?„T QUASIISOTROPER MEDIEN. Â§ 1. Die Voigtschen Formeln. Krfe??llZ?:nbsp;Konstanten der quot;Tmnbsp;Einzelkristalle, ist vor heofe c^ten \'t quot; I quot;nbsp;Multikonstanten theone dienen In vorhergehenden UntersuchungenÂ?) hatte Voigt Iii ^^^quot;\'â– Â?â€?^konstanten von verschiedenen kristalllierten Miner^Zw.e Stemsalz, Flu?Ÿspat, Kalkspat, Quarz, Baryt bestimmt. Daii hÂ?e ?„equot; sf- fnbsp;-aquot;: einmal (beim Steinsalz) angen?¤hert erf??llt waren. F??r isotrooe Kfirâ„?.. Pâ€”Seitunr^\'quot; ÂŽ = 3Si. Vmgt macht die Bemerkung, da?Ÿ viele als isotrop bezeichnete K??rperm Wahrheit quasnsotrop, d.h. Aggregate von Kristallbrocken sind.Kann man aus den Elastizit?¤tskonstanten der Einkristalle die Konstanten die Poissonsche Gleichung erf??llt ist oder nicht. Voigt macht nun folgenden Ansatz,den er vorl?¤ufig kaum n?¤her begr??ndet: def\'^nbsp;Deformationen gehen stetig durch die Grenzfl?¤chen der Kristalle hmdurch und haben in den verschiedenen

Kristallen mitverschiedenen Achsenorientierungen, die ein Volumelement des Aggregatserf??llen, nahezu denselben Wert. Mit kleiner M??he bildet er dann die Mittelwerte der elastischen^^pannungen. Daraus folgen sogleich die Elastizit?¤tskonstanten des \'1 mnbsp;Abhandl. 1887, S. 48; Wied. Ann. 38, S. 573. w â€žnbsp;VII, S. 1 und 177, 1875. W. Voigt, Wied. Ann. 31, S. 474, 1887.W. Voigt, Wied. Ann. 34, S. 981, 1888.W. Voigt, Wied. Ann. 35, S. 642, 1888.



??? quas??sotropen Mediums, ausgedr??ckt in den Kristallkonstanten. Mitden Festsetzungen: A =â– - Ucn C22 C33)B = KC23 Csi C12) C = i(c44 C55 Cee)..........(7) erh?¤lt er unabh?¤ngig vom Kristallsystem f??r die Aggregatskonstantendie Formeln: ÂŽ = i(3A 2B 4C)= i(A 4B- 2C) ?Ÿ2 = i(A-?Ÿ 3C)..........(8) wobei die Isotropiebedingung (5) automatisch erf??llt ist. Bei denKristallen, wo die Gleichungen (4) nicht gelten, ist f??r das Aggregatdie Poissonsche Bedingung im allgemeinen nicht erf??llt, auch f??r diehinzugeh??rigen quasiisotropen Medien gilt also die Multikonstanten-theorie. Beil?¤ufig vergleicht Voigt bei einigen Mineralien die berechnetenAggregatskonstanten mit den empirisch bestimmten; ??ber das Ergebniswerde ich im Â§ 3 berichten. Â§ 2. Die Begr??ndung des Voigtschen Ansatzes. Die vorhergehende Theorie beruht auf dem Ansatz von der Stetigkeitder elastischen Deformationen. Die Begr??ndung dieses Ansatzes findetsich im Anhang II des Lehrbuchs der KristallphysikÂ?). Voigt gibthier eine allgemeine Theorie

der Beziehungen zwischen Einkristallenund ihren quasiisotropen Aggregaten; die Str??mungen der Elektrizit?¤tund der W?¤rme werden ausf??hrlich behandelt, nach Analogie wirddann das elastische Problem gel??st. Voigt st??tzt seine Theorie auf 2 Annahmen: â€žda?Ÿ die Kristallbrocken klein sind selbst gegen die Dimensionender Volumelemente, die man bei der Entwicklung der Theorie einesVorganges benutzt, dabei aber immer noch gro?Ÿ gegen die Wirkungs-weite 4) molekularer Kr?¤fte,quot; und â€žda?Ÿ sie au?Ÿerdem den Raum l??ckenlos erf??llen.quot; Dann bemerkt er, da?Ÿ bei den meisten Vorg?¤ngen ausgezeichneteFunktionen bestehen â€ždie nach ihrer Definition Summen ??ber Werte Â?) W. Voigt, Lehrbuch der Kristallphysik, Nachdruck 1928, S. 954.Â?) 1. c. S. 954 steht â€žWirkungsweisequot;, dies ist wohl ein Druckfehler.



??? darst^en, die sich auf die einzelnen Molek??le oder Elementarma?Ÿendes K??rpers beziehenquot;. Beispiele liefern die Str??mungennbsp;w und der Elektrizit?¤t. â€žIm Gegensatz dazu .ir^T^^tZTvdurch den Zustand in einem einzigen Punkte definiertquot;An diesen Unterschied zwischen U und V kn??oft Vnicri-Dienbsp;K^af. HÂ? ein Po,eâ€ž.ia., das Knstallbrocken stetig hindurchgeht. Da schreibt er- Wi/ j rpi^r- r ,f - -- erf??Hen, sehrUe gHchfor?„tquot;quot;\' ^^ gleiches keineswegs, von diesendieVn^SlenTn H\' r quot;quot;quot; ^quot;Â?Â?engrenze normalen, nicht auch Sr n A to\'â„?.nbsp;Kristallbrocken zusammengeseÂ?, Vnbsp;r ztltSr\' quot;nbsp;Achse?? Zrlfquot;\' Q^^\'^^^hnitt des Elements senkrecht zur Z-Achse ist, dieSumme genommen wird ??ber alle Kristallbrocken des Elements und 4nZnfnbsp;\'r Leitf?¤higkeit sind, abh?¤ngig von den Achsen- orientierungen der einzelnen Kristalle. Die Summe v .erf?¤llt in eine durch das Symbol S zusammengefa?Ÿt werden und die Summe ??beralle Orientierungen 5 geschrieben

wird: m =nbsp; nbsp; nbsp;. . (9) Â?Es ist nun bei den oben er??rterten Stetigkeitsverh?¤ltnissen deri-otentiale kein Grund einzusehen, warum die Summennbsp;.... ^nit^d^rientierung der Kristallbrocken, auf die sie sich beziehen, 1. c. S. 956.\') W. Voigt, I.e. S. 957.



??? wechseln soUten. Wir werden sie demgem?¤?Ÿ ausschlie?Ÿlich als Funk-tionen des Ortes betrachten d??rfen, an dem sich das Volumelementbefindet, und setzen SiiVMic = IV\'ilQi wo \\V,\\ der mittlere Wert der bez??glichen Feldkomponente in demElement ist, und Q,-, der AnteU von Q, der von Kristallen der Orien-tierung (i) bedeckt wird, f??r alle Orientierungen den gleichen Wert hat.quot;\') Die Gleichungen (9) erhalten dann die Form m = |/nl . Il^il â™? I/13I . 11^3!. u.s.w. . . . (10) wo die vertikalen Striche wiederum Mittelwerte bezeichnen ??ber dasbetrachtete Volumelement. Nach Wortiaut und Sinn der VoigtschenAbleitung k??nnten die Mittelwertstriche bei V^, V^ und V, wegfallen. Schlie?Ÿlich folgt dann f??r die Leitf?¤higkeit 1 des quasiisotropenAggregats durch Mittelung ??ber alle Orientierungen: / = l^nl = = ......... welcher Wert sich ganz einfach berechnen l?¤?Ÿt. F??r das elastische Problem liegen nach Voigt die Verh?¤ltnisse v??llig analog. â€žDie Deformationsgr???Ÿen ...... dr??cken sich durch die Gef?¤lle von

Funktionen (n?¤mlich der Verr??ckungskomponentenu V w) aus, die s?¤m??ich stetig durch die Grenzen zwischen den ver-schiedenen Kristallbrocken gehenquot;Â?). Er ??bertr?¤gt diese Stetigkeitstillschweigend von den Verr??ckungen auf ihre Ableitungen, die Defor-mationen. Sodann ergibt sich (in etwas vereinfachter Fassung) - = knlx. Iciab. . . . â€? Iciel^i/\'nbsp;â€? â€? (12) Die Berechnung der Mittelwerte lcâ€ž| u.s.w. f??hrt sodann auf dieVoigtschen Formeln (8). Â§ 3 Die Voigtsche Pr??fung der Formeln (8).Als Voigt seine Formeln ver??ffentlichte, war die Pr??fung noch nichtm??glich. Von den quasiisotropen Medien, deren elastische Konstanten 7) W. Voigt, 1. c. S. 958.Â?) Derselbe, l.c. S. 961.



??? gemessen waren, haupts?¤chlich Metallen, kannte man keine Einkristalle,gro?Ÿ und homogen genug zur Bestimmung der Kristallkonstanten Voigtging also, um Zahlenmaterial zur Pr??fung seiner Theorie zu erhaltenumgekehrt vor: er suchte aus der Reihe der Stoffe, deren KristaUkon-stanten er gemessen hatteÂ?), diejenigen heraus, von welchen er au?Ÿerden Kristallen auch dichte, homogene Aggregate mikrokristallinerStruktur untersuchen konnte. Er w?¤hlte Flu?Ÿspat, Kalkspat, Baryt Z?¤ n7t \\nbsp;^^ Konstanten an Feuerstein und Opal, bei welchen Stoffen die Anwesenheit von Quarzmikrokristallenallerdmgs damals noch nicht feststand. Menfalls war zu erwarten, da?Ÿ die gemessenen Elastizit?¤tskonstanten krkt^f Trnbsp;^^^ ^^^ berechneten, da die Einzel- ^istalle h?¤ufig durch ein fremdes Medium zusammengekittet sind. Was das eventuelle Vorkommen von Porien im Aggregat anbelangt, hat Voigt nachgewiesenÂ?), da?Ÿ regelm?¤?Ÿig verte??te H??hlungen die Konstanten g und des Aggregats verkleinern, f aber

nicht ver?¤ndern; tTrlr^lif^\'-V\'^\'fnbsp;^^^^^^^ und Einschl??sse. quot;dL ??b quot;quot; \'\'nbsp;Aggregaten kaum gro?Ÿen rdativen Ungenauigkeiten der gemessenen Kristallmoduln die^T ?nbsp;berechneten und gemessenen Gr???Ÿen dient d e Tabelle A 1. Hierm sind S, und die Elastizit?¤tskonstantender quasiisotropen Aggregate, definiert durch die Gleichungen: = ?Ÿx^ -f u,s.w. ^z =nbsp;U.S.W. Die zwei Baryte der Tabelle sind St??cke von verschiedener Farbe,rz 1 ist Feuerstein, Quarz II Opal. Alle Konstanten sind gemessen mm^\'



??? A 1. (Voigtsche Theorie) ks Emheit mm\'\' (52 (Â?Gl 0 .. berechnet Fl^?Ÿ^P^^ gemessen 10) 1461011900 56103370 45004282 2,603,53 ,, ^ berechnetK^^P^t gemessen 1Â?) 121627070 45452370 38092354 2,672,98 berechnetBaryt gemessen 11ÂŽ) â€ž IIquot;) 877774007720 363327603130 257523202295 2,422,682,47 berechnetOuarz gemessen I ^o) â€ž IIquot;) 1026777003910 747660251 476035211829 13,7411,6715,58 Von den empirischen Gr???Ÿen ist eui anderes Symbol f??r denTorsionsmodul der direkt gemessen wird. S und aber werdenberechnet aus % zusammen mit dem gemessenen Youngschen Modul ÂŽmittels der Gleichungen: ^ ((^ 2^1) (S â€” Si)nbsp;ngxm eTlinbsp;.... V / 7 =nbsp;.........(14)-) welche als L??sung ergeben: 2:(4Xâ€”. . (15) d = (16) 3s â€”e und ~ â€” Kleine Fehler in (Â? und % verursachen unter Umst?¤nden sehr be-tr?¤chdiche ?„nderungen in (J und Um diese Vergr???Ÿerung derFehler zu vermeiden, empfiehlt es sich, umgekehrt mittels (13) und (14)aus den berechneten G und die

theoretischen Werte f??r S und %zu bestimmen und diese zu vergleichen mit den gemessenen fi und In die Tabelle A 2 haben wir neben ÂŽ und 51 auch das Verh?¤ltnis aufgenommen, das wie | durch regelm?¤?Ÿig verte??te Porien nicht ge?¤ndert wird. \' 10) w. Voigt, Wied. Ann. 42, S. 537, 1891; 44. S. 168, 1891. u) vTrgl 2 B. Love, A Treatise on the Math. Th. of Elasticity, 4.h Ed., S. 102, 103.



??? Einheit mm^ ÂŽ % (Â?% Flu?Ÿspat berechnet^ gemessen 1149010450 45004282 2,552,44 Kalkspat berechnetgemessen 96905888 38092354 2,542,50 berechnetBaryt gemessen Igemessen II 624559005915 257523202295 2,432,542,58 berechnetQuarz gemessen Igemessen II 1017075973880 476035211829 2,142,162,12 messenen IÂ?- Tnbsp;Schwierigkeiten, die alle ge- Tr â€žTv ^^ Konstanten sehr unsieher machen und in Anbe Jht t Snbsp;quot;quot;quot; Einschl??ssen hat Voigt wohl lIchefthir-Tlquot;quot;\'^\'quot;quot; Obereinstimmung zu reden. Dif mag- Â§ 4. Pr??fung der Formeln (8) an neuen Daten.D.e Grjmdsa^tze worauf die Voigtsche Theorie beruht, insbesondereweit^?¤Ltquot;nbsp;wahrscheinlich oft bei Met^ en ZtrlnhieT Knbsp;Voigt seine bekannte nnbsp;MetalleinkristaUe von ge- S PrtSrTquot; quot;quot;quot;nbsp;der Theorie. XriniV f u quot;quot;nbsp;Czochralski1918 die ^fdl strnbsp;quot;quot; S^hmelze\'.u ziehen. von Goens an Aluminium und GoldJ^^^^J^ma und Sachs an Messing quot;) Sgman\'\'^

â€?nbsp;^^^ ^^^^ 1918. S.soe-zsxmlnbsp;^H-^IS, 1924; Proc. Am. Ac. 60, quot;)nbsp;235-249, 1924. quot;) Mazima inbsp;^^ 1929. Â?ma u. Sachs, 2. f. phys. 50, S. 161-186, 1928.



??? Aus den von ihnen bestimmten Werten der Voigtschen Moduln sihhabe ich die Konstanten dh berechnet und mit einigen andern Konstantenzusammengestellt in der Tabelle B 1: m CQ quot;3 1 1 a lt;u 2V) S^ â€?s C^l .. .. II vo \\0 C^ ^ VO in CS c^ o^cn CO rt ??quot; 1 1 0 mCS in cn1 incnin OJO ,1 5 5 ^ VO VOr^ T-H CT) vo oo inCO fo cn cn ^ Ol vo 0 01 CSCS 0 in o o -H OJ^ t-^ o o in o 1 1 7 in m o cn00 o cn O C^ C5 cn cn ^ cn CS r^ 0 vo??quot; 0 CS ^ . . .II ^ ^ ^ t â€ž , ,.3! quot; quot; quot; rHjCJ II ^ O 5 5 5 â€? 0 5 :; 5 â€”1 CS 0\\ 00 0 1 0 CO J Â? - S 5 II m m vo cnâ€”1 c^ m lt;N00 cn-c^quot; cn CS t^ vo 00CS â€”lt; T-H 00oiquot; COCO o J . . 5 II \\o ^ c^i 0 cn C^ vo ^ vo in m 00 C3\\CS 00 cn vo VO oC Â?J* t-Â? o o o\\00 o in lt;N t-^ C^ Ol0 0 ^ m0 0 in 00 Â?^jf ^ i-H 000 oT t^t^Tâ€”t Â? 00 .-H in 00 vo ^ 0nbsp;in vo ^ 01nbsp;.-1 ^ cn 00 CSOl cn o\\ 00cn\' -cf cn m r^ cn 00 o^ CS CS cnvo Â?H Â?H t- inoj^ in t^ T-Jquot; O 0\\ ^ Vp) ,â€”1 Â?-I â€?â€”1 0 00 Ol VO 0 0in vd cT CN 1â€”( Â?-H i-H CS 0in igt; in c^cnod X HW 1

o1â€”1 B a i 1 ^ I Â? S 13 IIS! \'i? ^m ?? IT J 6 S ?? :fi 11t^ t^ u u 0nbsp;-3 1nbsp;i ^ to bB a .a



??? Hier sindund A Gr???Ÿen, die im III. und IV. Kapitel benutztwerden, mit den Defmitionen: ?’ = Cu â€” Ci3 â€” S = Cu â€” Ci2 â€” 2cÂ? C33 â€” 2CI3 â€” als\'l\'Malquot;quot;quot;nbsp;-- - daher als em Ma?Ÿ der Anisotropie betrachten. Bei den trigonalen Kristallen st^ em weiteres Ma?Ÿ der Anisotropie, wie bei den tetrag^nalequot;t-gg. Â° vIZefTh?nbsp;ÂŽ \'nbsp;Mf-g der ,0 r,nbsp;\'\'\'nbsp;zu bemerken: i . ae Messungen der smd bis jeet â€žoch aemlich ungenau G dttnbsp;Genauigkeifbei: Oold auf 5 /.; Maama und Sachs schreiben: â€ždie Genauigkeit derMe.ung .st aber ,US technisch nicht gekl?¤rten Ursachen gerÂ? quot; Câ€ž = ;-glL_ ^12 c -1 quot;) C44 â€” â€”. ) â€?Â?44 i^ehler m und im allgemeinen stark vergr???Ÿert in und wie-derkehren. So ist beim Messing c,, = ^^^^; ein Fehler von 1 o/â€ž gehler von 5 % m den Aggregatskonstanten ?Ÿ und w?¤hrend inaie i-ehler sich aufheben. Auch wenn die Voigtsche Theorie vollst?¤ndigicntig ist, wird sie also wohl nie genaue ?œbereinstimmung zwischenen berechneten und

gemessenen Aggregatskonstanten ergeben; einunterschied von etwa 5 % in (Â? und S (wenn auch diese Gr???Ÿen weniger Thw^^quot;\'\'\'nbsp;ÂŽnbsp;di^ Voigtsche quot;) W. Voigt, Lehrbuch, S. 741.



??? Wie es um die ?œbereinstimmung steht zeigt die Tabelle B 2. DieseTabelle enth?¤lt: 1quot;. die mittels (8), (13), (14) aus B 1 berechneten Werte der Dehnungs-und Torsionsmoduln (Â? und X der quasiisotropen Aggregate, 2quot;. die empirisch bestimmten Werte derselben Moduln,0 3quot;. das Verh?¤ltnis â€” als ein Ma?Ÿ f??r die Anisotropie der Kristalle,Cii 4Â°. das Verh?¤ltnis dem Voigt gro?Ÿen Wert beilegt, weil es f??r por??ses und porienfreies Material denselben Wert aufweisen soll. Von den vielen gemessenen Werten von @ und % habe ich bei jedemMetall nur diejenigen aufgenommen, die an demselben Metallst??ckgemessen sind; von den verschiedenen Daten desselben Forschers nehmeich hier die Mittelwerte. Fortgelassen habe ich bei dieser vorl?¤ufigenPr??fung die Metalle Zink und Cadmium, wo die verschiedenen empi-rischen Daten in allzu scharfem Widerspruch stehen; dieser merk-w??rdige Fall wird ausf??hrlich besprochen im III. und V. Kapitel.Beim (jold habe ich den Gr??neisenschen Stab â€žGold Iquot; quot;) fortgelassen,obgleich seine ÂŽ und % beide

gemessen sind; die Werte (J = 7,65,Z = 2,55 w??rden bei Isotropie ergeben (nach (15) und (16)) (S = C^i = oound der Stab ist also gewi?Ÿ nicht isotrop, wie Gr??neisen selbst ??brigensempirisch nachgewiesen hat. Dagegen habe ich die Kochschen Moduln von Messing quot;) aufge-nommen, obgleich ÂŽ und 3: an verschiedenen Materialproben gemessensind; die Proben hatten aber gleiche Zusammensetzung (60% Gu,40 quot;/o Zn) und waren in derselben Weise behandelt. Mit Ausnahme dieser Messingkonstanten sind alle gemessenen Aggre-gatskonstanten den Untersuchungen zweier Forscher entnommen, undzwar den ?¤lteren von Voigt und den neueren von Gr??neisen \'^i). quot;) Gr??neiscn, Ann. der Phys. 22, S. 801, 1907. Â?Â?) Koch u. Dannecker, Ann. der Phys. (4) 47, S. 197â€”226, 1915. Koch u. Dieterle, Ann. der Phys. (4) 68, S. 441â€”462, 1922.quot;) W. Voigt, Wied. Ann. 48, S. 674â€”707, 1893.quot;) E. Gr??neiscn, Ann. der Phys. 22, S. 801, 1907; 25, S. 825, 1908.



??? B 2. Vorl?¤ufige Pr??fung der Voigtschen Theorie. C. G. S. Einheiten g 10-quot; Z 10-quot; X Cii e z AI.(reg.) berechnet aus Kristallkonstantengemessen von G. (3 St?¤be, gezogen)â€ž V. (6 St?¤be, gegossen) 7.005 7.066,45 2,622,662,53 â€” 0,09 2,672,652,55 Au.(reg.) berechnet aus Kristallkonstantengemessen von G. (1 Stab, gezogen)â€ž â€ž V. (2 St?¤be, gegossen) 8,406 7,92 7,44 2,962,762,795 â€” 0,27 2,842,872,66 Mess.(reg.) berechnet aus Kristallkonstantengemessen von K. (Draht und Band, gez.)â€ž â€ž V. (8 St?¤be, gegossen) 13,27,299,04 5,043,823,625 â€” 0,73 2,621,912,49 Bi.(trig.) berechnet aus Kristallkonstantengemessen von G. (1 Stab, gegossen)â€ž â€ž V. (3 St?¤be, gegossen) 3,263,263,13 1,2851,17 0,11 2,542,68 Sn.(tetrag) berechnet aus Kristallkonstantengemessen von G. (1 Stab, gegossen)â€ž â€ž V. (8 St?¤be, gegossen) 5,165,475,31 1,9352,04 0,02 2,722,60 Aus dieser Tabelle lassen sich verschiedene Schl??sse ziehen. Erstens ??ber die Bedeutung des Dieses Verh?¤ltnis zeigte bei den Gesteinen der Tabelle A 2 treffende ?œbereinstimmung, nicht nurzwischen berechneten und

mitUeren gemessenen Werten, sondernbesonders auch zwischen den gemessenen Werten untereinander, selbstbei den so verschiedenen Materialproben Quarz I und II d. h. Feuersteinund Opal. Bei den Metallen ist dies keineswegs der Fall. Bei gegossenen und gezogenen Metallen stimmen die ^ im allgemeinen nicht besser ??berein als die Q selbst und entschieden schlechter als die Dasselbegilt auch f??r verschiedene Proben desselben Forschers; wiesen dochdie verschiedenen St?¤be die Voigt aus demselben Messingst??ck schnitt,a f??r Â? Werte auf von 2,82 bis 2,29, w?¤hrend die d von 9,8 bis 8,45, die



??? (Â? von 3,47 bis 3,83 schwankten. Die Erkl?¤rung mag wohl sein, da?Ÿdie regellos verteilten Porien, welche Voigt zur Erkl?¤rung der merk-w??rdigen Gleichheit des -| bei sehr verschiedenen ÂŽ und % heranzog, beim vorsichtig gegossenen Metall, wie es zur Messung benutzt wordenist, keinen entscheidenden Einflu?Ÿ haben, wie Voigt schon vermutete 22).Die Unterschiede in g und 2 m??gen vielmehr haupts?¤chlich beruhenauf die unvollst?¤ndige Isotropie der einzelnen Proben, wie ich sp?¤ternachweisen werde. Jeder einzelne Stab ist wegen dieser Anisotropie nicht ohne weiteresbrauchbar zur Pr??fung der Voigtschen Theorie; bei Mittelwerten ??bermehrere St?¤be werden diese Fehler sich mehr oder weniger atfheben,und ist eine vorl?¤ufige Pr??fung also m??glich. Zweitens zeigt die Tabelle B 2, da?Ÿ die ?œbereinstimmung zwischenTheorie und Erfahrung sehr verschieden ist, und zwar ergibt sich einmerkw??rdiger Zusammenhang mit der Gr???Ÿe der Kristallanisotropie.Bei dem regul?¤ren Kristall wird die Anisotropie gemessen durch die einzige

Gr???Ÿe ^ Die berechneten Werte der Moduln sind ??berallgr???Ÿer als die mitderen gemessenen Werte, und zwar: Beim AI., ^o ^ 9 % betr?¤gt, ist ?Ÿ 4,4 %, S 1 % zu gro?Ÿ quot;nbsp;quot; quot;27% â€ž â€ž â€ž 9,5%,,, 6,5% â€ž â€ž Messing, â€ž â€ž 73% â€ž â€ž â€ž62 %, â€ž35 %â€ž Die Zahlwerte der Abweichungen ?¤ndern sich, wenn man andreMessungen hinzunimmt oder den gew?¤hlten Messungen verschiedenesGewicht zuschreibt. Unge?¤ndert bleibt aber das Resultat, da?Ÿ die Theoriegut, m?¤?Ÿig, oder schlecht stimmt, je nachdem die Kristalle kleine,mitdere oder gro?Ÿe Anisotropie haben. Dies weckt die Vermutung, da?Ÿ die Voigtsche Theorie eineerste Ann?¤herung ist, welche f??r Kristalle mit kleinerAnisotropienoch ziemlich gut stimmt, bei zunehmenderAnisotropie aber immer schlechter wird. Die nicht regul?¤ren Metalle best?¤tigen diese Vermutung einigerma?Ÿen: W. Voigt, Lehrbuch, S. 964.



??? beim Wismuth, wo ^ = 11 % betr?¤gt, ist @ 2 % und S 10 % zu gro?Ÿ,p beim Zinn, wo ^ = 2 % betr?¤gt, ist (i 4,4 % zu klein, 2 4,6 % zu gro?Ÿ,doch gibt es hier mehrere Gr???Ÿen, die unabh?¤ngig von â€” die Anisotropie mitbestimmen, z. B. â€”, das beim Bi und Sn bzw. 29 % und 24 % ist, w?¤hrend beim Wismuth auch das ziemlich gro?Ÿe Ci^ eine besondereAnisotropie ausdr??ckt. Es ist nicht vorherzusagen, in welchem Ma?Ÿdiese verschiedenen Anisotropien einander in ihrem Einflu?Ÿ auf ?Ÿ und Zverst?¤rken oder aufheben werden. Voigt hat den approximativen Charakter seiner Theorie nirgendwoausdr??cklich betont, vielmehr scheint er ^3) die unvollst?¤ndige ?œberein-stimmung den Materialfehlern des Aggregats zuzuschreiben. Im n?¤chstenParagrafen werden wir zeigen, an welcher Stelle Voigts Ableitung theore-tische M?¤ngel aufweist. Der Aufbau der Theorie im IL Kapitel wirddann zeigen, da?Ÿ die Voigtsche Theorie in der Tat alserste Ann?¤herung herauskommt. Â§ 5. Kritik der Voigtschen Theorie. Die Voigtsche Theorie geht aus von der Bemerkung da?Ÿ das

elektrischePotential, die Temperatur und die elastische Verschiebung stetig durchdie Grenzfl?¤chen der Kristallbrocken hindurchgehen. Daraus schlie?ŸtVoigt sofort, da?Ÿ f??r ihre Ableitungen, â€” elektrische Kr?¤fte, Tempera-turgef?¤lle, elastische Deformationen â€”â€?, dasselbe gilt. Die andernGr???Ÿen aber, die in den Problemen auftreten â€” elektrischer Strom,W?¤rmestrom, elastische Spannungen â€” weisen nur Stetigkeit auf f??rdie normalen, nicht aber f??r die tangentiellen Komponenten 2Â?). Diesgen??gt um den inneren Widerspruch der Voigtschen Theorie zu zeigen.Ich beschr?¤nke mich auf die Elastizit?¤tstheorie. H?¤tten wirklich alle6 elastischen Deformationen auf beiden Seiten einer Grenzfl?¤che zweierKristalle mit ganz willk??rlicher Achsenorientierung denselben Wert,so w??rden im allgemeinen die 6 Spannungskomponenten beiderseitsnicht denselben Wert besitzen, auch nicht die normalen Komponenten.Nach dem Reaktionsprinzip ist dies aber notwendig, also sind gewi?Ÿnicht alle Deformationen stetig. quot;) Lehrbuch S. 962. Voigt, Lehrbuch der Kristallphysik, S.

957.



??? Dies ist auch auf andre Weise einzusehen. W?¤hlt man die Normale der Grenzfl?¤che zur Z-Achse, dann folgt ausder Stetigkeit der Verschiebungskomponenten die Stetigkeit ihrerAbleitungen nach x und y. Stetig sind also 3 Deformationen: Stetig sind auch und nicht aber ^ und ^ und damit wird die Stetigkeit der 3 Deformationen Zy und hinf?¤llig 2ÂŽ). Zugleichaber auch die G??ltigkeit der Voigtschen Theorie. asj Das Beispiel des Aggregats aus d??nnen nadeif??rmigen Kristallbrocken,womit Voigt, wie im Â§ 2 zitiert wurde, die Stetigkeit der Deformationen zu beweisenversucht, beweist nur die Stetigkeit der Ableitungen in der Richtung der Nadeln,also der tangentialen Deformationen, sagt aber nichts aus ??ber die normalenDeformationen.



??? IL VERSUCH EINER NEUEN THEORIE DERELASTIZIT?„T QUASIISOTROPER MEDIEN. Â§ 1. Grcnzbcdingungcn und Annahmen. Im letzten Â§ des vorigen Kapitels sind die richtigen Grenz-bedingungen angedeutet worden. Wird an der Grenzfl?¤che zweierKristallbrocken die Normale zur Z-Achse gew?¤hlt, und werden Defor-mationen und Spannungen in dem einen Kristall einzeln, im anderndoppelt gestrichen, so gilt an der Grenzfl?¤che: wegen der Stetigkeit der Verschiebungen yy\' = yyquot;, xy\'=^xyquot;,......(17) wegen des Reaktionsprinzips Zy\'=Zyquot;,nbsp;.......(is) Im ??brigen ??bernehmen wir die Voigtschen Annahmen in etwasandrer Formulierung: (I) die Kristallbrocken sind klein gegen die Dimensionen desAggregats, (II) sie sind gro?Ÿ gegen den Wirkungsbereich der molekularen Kr?¤fte, (III)nbsp;sie schlie?Ÿen fest aneinander. Dazu eine vierte die Voigt stillschweigend auch macht: (IV)nbsp;im undeformierten Aggregat sind ??berall die Spannungen null,oder so gering, da?Ÿ f??r kleine hinzugef??gte Deformationen das HookescheGesetz gilt.

F??r den Aufbau einer Theorie liegt die Sache nun viel ung??nstigerals bei den Voigtschen Grenzbedingungen. War das Aggregat, makro-skopisch betrachtet, homogen deformiert, so durfte Voigt an jederStelle jedes einzelnen Kristalls dieselben Werte der Deformationenannehmen; aus der besonderen Orientierung der Achsen konnte er injedem Kristall die Spannungen berechnen, und das Mitteln dieserSpannungen ergab die makroskopischen Spannungen und damit seineFormeln (8). Die neuen, verbesserten Grenzbedingungen haben nurG??ltigkeit f??r ein bestimmtes, mit der Lage der Grenzfl?¤che wechselndesKoordinatensystem. Im allgemeinen Fall, wo die Brocken willk??rliche



??? Formen haben mit Grenzfl?¤chen in allerhand Lagen, gibt es kein festesKoordinatensystem im Aggregat, wof??r auch nur eine der Defor-mationen oder der Spannungen stetig bliebe; weder eine Deformation,noch eine Spannung ist auch nur in einem Kristall homogen. Mankann also nicht ohne besondere Betrachtungen ??ber den Verlaufeinzelner Spannungen und Deformationen im Inneren der Kristalleauskommen. Urspr??nglich habe ich versucht einige allgemeine Annahmen ??berdiesen Verlauf einzuf??hren, sie hatten aber immer etwas willk??rlichesund ergaben au?Ÿerdem zwischen den mit ihrer Hilfe berechnetenAggregatskonstanten einen inneren Widerspruch, der allerdings nurbei stark anisotropen Kristallen wie Messing eine merkliche Unsicherheitder Resultate verursachte. Aber auch in den F?¤llen, wo diese Ungewi?Ÿheit nicht auftritt,bleibt die M??glichkeit, da?Ÿ eine andre Annahme andre Werte f??r dieAggregatskonstanten ergeben w??rde. Nur die Experimente k??nnten hier entscheiden. Leider sind vorl?¤ufigdie empirischen Werte der

elastischen Konstanten, sowohl f??r Kristalleals f??r Aggregate, noch viel zu ungenau, um sich zur Entscheidungzu eignen. Es war mir, zu meinem Bedauern, nicht m??glich, f??r will-k??rliche Aggregate auf einwandfreie Weise die elastischen Konstanten streng zu berechnen. Ich habe mich daher entschlossen einen besonderen Aufbau desAggregats zu w?¤hlen, wobei diese Schwierigkeit nicht auftritt. DieWahl ist naheliegend, ich mache die f??nfte Annahme: (V) das Aggregat besteht aus sehr d??nnen Lamellen mit parallelenGrenzfl?¤chen, wovon ein d??nnes Paket noch alle m??glichen Orien-tierungen der Achsen in gleicher H?¤ufigkeit, regellos verteilt, aufweist. Bei diesem Aufbau des Aggregats kann man f??r alle Kristalle dasselbeKoordinatensystem w?¤hlen mit der Normale der Grenzfl?¤chen als Z-Achse.In diesem festen Koordinatensystem sind dann ??berall dieselben 6Spannungen und Deformationen stetig, n?¤mlich x^, Xy, Zx, Zy, Zz\'Wir betrachten diese 6 Gr???Ÿen als unabh?¤ngige Variabein; die andern6 Gr???Ÿen, Zy, X^, Yy und Xy h?¤ngen in

den einzelnen Lamellenvon den ieweiligen Achsenorientierungen ab. Mit den Grenzbedingungen vertr?¤gt sich ietzt die Festsetzung, jededer 6 unabh?¤ngigen Variabein habe ??berall im ganzen Aggregat denselbenWert. Dies ergibt f??r das Aggregat, makroskopisch betrachtet, einehomogene Deformation; die 6 abh?¤ngigen Variabein sind konstant in



??? jeder einzelnen Lamelle, haben verschiedene Werte in den verschiedenenLamellen, und haben wieder feste Mittelwerte in Lamellenpaketen,die d??nn sind gegen die H??he des Aggregats, aber gro?Ÿ gegen die Dickeeiner einzelnen Lamelle. Wollte man diesen Zustand darstellen durchvorgeschriebene Spannungen oder Verschiebungen an den Grenzfl?¤chendes Aggregats, so m???Ÿten diese auf den schmalen Seitenfl?¤chen jederLamelle passend gew?¤hlt werden; Spannungen oder Verschiebungen,die an jeder ebenen Grenzfl?¤che des Aggregats ??berall konstante Werteaufweisen, verursachen keine reine homogene Deformation. Doch scheintes sehr wahrscheinlich, da?Ÿ die Abweichungen sich ausgleichen werdenin einer schmalen Grenzzone der Lamellen; wir machen also nochdie Hypothese: (VI) Wenn bei einem Aggregat des Typus (V) auf jeder Grenzfl?¤chekonstante Spannungen und Verschiebungen herrschen, entsteht imAggregat, abgesehen von verschwindend kleinen Grenzgebieten, eineelastische Deformation, wobei jede der 6

unabh?¤ngigen Variabein xÂŽ,yy, Xy, Zxgt; Zy, Zz im ganzen Aggregat konstant ist. Nach der Vorschrift (V) kann man noch sehr verschiedene Aggregateaufbauen, indem man die Verteilungsfunktion der Achsenorientierungen,die in den Lamellen auftreten, verschieden w?¤hlt. So kann man imregul?¤ren System einmal alle Orientierungen zulassen, ein andres Malnur diejenigen, wobei die Z-Achse z. B. mit der Hexaedernormalezusammenf?¤llt. Ich werde Formeln aufstellen unter verschiedenenAnnahmen: (Va) alle Orientierungen, die ??berhaupt auftreten k??nnen, kommenregellos verteilt und gleich h?¤ufig vor. (V/S) die Orientierungen sind nach irgend einem andern Gesetz verteilt. Ein Aggregat der ersten Art nennen wir allgemein, eins derzweiten Art speziell. Ein spezielles Aggregat ist gewi?Ÿ nicht isotrop, und auch bei einemallgemeinen Aggregat darf man im allgemeinen keine Isotropie erwarten,da die Z-Achse wohl in Bezug auf die Orientierungen der Kristallnetze,nicht aber in Bezug auf die Lage der Grenzfl?¤chen gleichwertig mitder X- und V-Achse ist.

Jedenfalls besitzt ein allgemeines Aggregat zylindrische Symmetrie,wie ein Kristall des hexagonalen Systems, und ist also durch f??nf elastischeKonstanten gekennzeichnet. Wie sich sp?¤ter herausstellen wird, ergibtdie Rechnung, da?Ÿ bei Kristallen von kleiner und mittlerer Anisotropiedas Aggregat (a) praktisch schon isotrop ist; beim Messing aber ist (a)



??? noch merklich anisotrop. Will man in diesem Fall ein Aggregat erhalten,das nahezu isotrop ist, dann kann man das Aufbauprinzip (V) nocheinmal anwenden. Ich mache also die Annahme: (VII) das Aggregat besteht aus d??nnen sekund?¤ren Lamellen mitparallelen Grenzfl?¤chen, und jede dieser Lamellen ist selbst ein Paketd??nnerer prim?¤rer Lamellen des Typus (Va), wobei die Normalendieser prim?¤ren Lamellen alle m??glichen Lagen haben, regellos verteiltund in gleicher H?¤ufigkeit. Die Rechnung zeigt, da?Ÿ diese Annahme auch bei Messing gen??gt,um ein isotropes Aggregat zu erzielen. Die Modelle, definiert durch die Annahme (Va) oder eine einfache(V/3), haben den Vorteil, da?Ÿ ihre Elastizit?¤tskonstanten sich exaktberechnen lassen. Dem steht der Nachteil gegen??ber, da?Ÿ ein solchesModell wohl nie auch nur angen?¤hert realisiert auftritt. Ein Resultat ist allenfalls erreicht, man kann jetzt von einem m??glichenisotropen Kristallaggregat die elastischen Konstanten einwandfreiberechnen. In den F?¤llen wo das Aggregat (Va) schon isotrop ist, dieLage der Grenzfl?¤chen also keinen Einflu?Ÿ hat, liegt die

Vermutungnahe, da?Ÿ die berechneten Werte f??r alle isotropen Aggregate geltenm??ssen. Andernfalls, wo die Lage der Grenzfl?¤chen sich geltend macht,wie bei Messing, und auch bei Zink und Cadmium, haben vielleichtdie f??r das Modell (VII) berechneten Werte dieselbe allgemeineBedeutung. Wir d??rfen aber nicht von vornherein die M??glichkeitablehnen da?Ÿ f??r anders aufgebaute isotrope Aggregate die elastischenKonstanten verschieden ausfallen und da?Ÿ also das Voigtsche Problemkeine eindeutige L??sung besitzt. Sollten von einem reinen Metallzwei porienfreie und erwiesenerma?Ÿen isotrope Aggregate verschiedeneelastische Konstanten aufweisen, so w?¤re dieser Unterschied vielleichtaus der letzterw?¤hnten Ursache zu erkl?¤ren. Soviel mir bekannt istdieser Fall noch nicht vorgekommen. Â§ 2. Theorie des allgemeinen Lamellenaggregats. Ich will jetzt die elastischen Konstanten des allgemeinen Lamellen-aggregats ausdr??cken in den Konstanten der Kristalle. Im folgendenbedeutet X, Y, Z ein raumfestes Koordinatensystem mit der Z-Achsesenkrecht zur Lamellenfl?¤che; Zquot;, Zquot; sind in jeder

Lamelle dieelastischen Hauptachsen, deren Lage festgelegt wird durch das Transfor-mationsschema:



??? X y z X^ Ol 71 yo Â?2 ?Ÿ2 Yi Â?3 ?Ÿz Yz Mit Voigt nennen wir die freie Energie pro Volumeinheit einer will-k??rlichen Lamelle bei kleiner homogener isothermischer Deformation f.Bevor wir ??ber das Aggregat mittein, m??ssen wir erst das ^ schreibenals Funktion der 6 Variabeinnbsp;y^, Xy, die ja im ganzen Aggregat konstante Werte aufweisen. Dazu schreiben wir, wie in derEinleitung: 2f = Z^c^x x^X^ y^Y^ XyXy . . . (1) Wir k??nnen nun in zwei verschiedenen aber ?¤quivalenten Weisenvorgehen. Das eine Mal werden Zy, in den gew?¤hlten Variabein ausgedr??cktdurch Aufl??sung der 3 Hookeschen Gleichungen: Zz â€” C\'siX^ â€” C\'aa^y â€” C\'sgXy = c\'ggZ, c\'ai^y c\'g^z^,Zv â€” c\'nXx â€” C\'ia^t, â€” C\'w^v = c\'jgZ, 4- c\'44Zy Zx â€” â€” â€” c\'^Xy = c\'?ŸgZ, c\'?Ÿsr^. . (20) Xa., Yy und Xy folgen dann aus den andern Hookeschen Gleichungen: Xx =nbsp;c\'ia^v c\\^Xy c\'iaz, -}- c\\iZy yy = c\'ziXx c\'sa^v -(- c\'^^Zy Xy = c\'fliXx 4- c\\^Xy c\'ear, -f c\\^Zy -fnbsp;. (21) Zur Abk??rzung schreiben wir: c\'aiXx nbsp; c\'ggXy = U^, c\'ii^ÂŽ 4- c\\.yy 4- c\'if^xy = C/j, c\'isi^x

c\'saJ\'v. c\\^Xy = C/?Ÿ.......(22) und -1- -f c\\^Xyquot;~ nbsp; nbsp; 2c\\^yyXy = U (23) und schlie?Ÿlich: (24) 44 = A, 63 C 64 C 56 welches A wir im folgenden die Hauptdeterminante nennen werden. 34



??? Die Gleichungen (20) lassen sich dann schreiben: c\'33^. d^^Zy c\'ssZ^ - Z, â€” f/g,c\'lB^z c\'iiZj, c\'45Zj. = Zy â€” Ui, c\\zZz c\\^Zy =nbsp;......(25), die Gleichungen (21) ergeben: yyYy XyXy = U U^z, UiZy U^z^ und aus (1) folgt: 21 - [7 (C/3 Zz)zz (C/4 Zy)zy {U, Z;)z, . (26) Indem wir Zy und aus (25) aufl??sen und in (26) eintragenerhalten wir: . (27) U U, Zz Ui Zj, 1 u,- Zz ^ 33 c\'34 c\'35 A u,- Zy C 43 c\'44 c\'45 u,- z. ^ 53 c\'54 c\'55 Das Ziel ist hiermit erreicht, 2^ ist, wie zu erwarten war, einequadratische Funktion der 6 Variabein ZzZyZ^^yXy. Diese Funktion hat aber die Eigent??mlichkeit, da?Ÿ die Produktewie ZzXx aus einer Spannung und einer Deformation wegfallen, dieFunktion 2^ hat also nur 12 Konstanten statt der allgemeinen Zahl 21.Demzufolge w??rden wir durch Mittelung ??ber das (axiale) Lamellen-aggregat nur 4 der 5 erforderlichen Konstanten erhalten. Darum f??hrenwir, wie schon in der Einleitung bemerkt worden ist, die Funktion 97 ein: lt;P = ^ â€” ZzZz â€” ZyZy â€” Z^Z^,nbsp;(6) die in ihrem Aufbau der Potentialfunktion der Thermodynamik

?¤hnlichist und sich der neuen Wahl der unabh?¤ngigen Variabein anpa?Ÿt. Aus bk = XMx Yy^yy XybXy Zzbz, Zybzy ZJgt;z^folgt ja f??r 99: bcp = XMx Yyhv XybXy â€” Z^bZz â€” ZybZy â€” zJZcc,und jede der neuen abh?¤ngigen Variabein ergibt sich aus einer partiellenDifferentiation von (p nach der hinzugeh??rigen unabh?¤ngigen Variabein: \'dg) u.s.w.



??? An die Stelle von (26) tritt jetzt die Gleichung (C73 - (U, - Zy)zy iU, - . . (28) oder mittels (25): . (29) u U, â€” Zz U,-Zy U,- c/3 â€” C 33 C\'31 f ^ 35 u. â€” c\'43 c\',u c\'45 U, â€” Zx c\'53 C\'54 c 55 In dieser Formel sind U^, U^ und Ur, Linearfunktionen der Variabeinyy und Xy, U ist eine homogene quadratische Funktion derselbenVariabein und 2lt;p ist eine homogene quadratische Funktion der 6 ausge-w?¤hlten Variabein Z,ZyZ^:cyyXy mit 21 Koeffizienten. Jeder dieser Koeffizienten ist der Quotient zweier Determinanten.Wir schreiben: Au _ , /i, k, 1 = 3, 4, 5^ J_ A J_ A C ]cknbsp;C jcl 0 iknbsp;C II c\'ik c II:nbsp;C II (30) (31) = â€”r = ^ik i, k, 1 = 3, 4,5i^k^l = ^ = SsJm = 1, 2, 6), C 37Â? C imC 5m 31 \' 41 â–  51 â€?3m C 35 C 33 C\'43 ^ 53 C\'33C\'l3C\'53 _ ^im = Â?4â€ž(m = 1, 2, 6), 45 â€? 4m \' 5m C 55 C\'3, C 3mc\'44 ^ 4mc\'54 ^ 5m (32) =nbsp;= ^5m(m = 2, 6) A c m3 ** m4 ^ m5 gt;71, nnbsp;2, 6^ (33) \' 35 â–  33 â–  3n = Â?P, :3i C In C 43 C 44 C 46V C 5n C 63 55 54 Aus (29) erhalten wir dann f??r die Funktion cp in der einzelnenLamelle:



??? w 2 ; 2 2Â?41 VÂ? 2e,.^Zyyy 2e,,ZyXy nbsp; 2e,,Z,yy nbsp;........... rreL? \' Tnbsp;willk??rlichen Lamellen- Aggregats im raumfesten Koordinatensystem XYZi ^nbsp;X 27 7 quot;f\'1 nbsp; 2nbsp; ^^ilZyX, 2^,,Zyyy 2^,,ZyXy nbsp; 2e,,Z,yy nbsp;............... Diese Gleichung legt den Grund f??r die neue Theorie der BeziehungenFrktlfr?quot; rnbsp;n. Einerseits l?¤?Ÿt sich Zknterd^ rnbsp;quot; ^^^nbsp;Koeffi- 7- des Aggregats abh?¤ngen.Andrerseits beruht die Berechnung der Koeffizienten ^33 u.s.w. in der Gleichung (34) auf einfachen, wenn auch oft sehr umst?¤ndlichen Ten-sortransformationen. Die Gleichung (35) gestattet also die exakteBerechnung der Aggregatskonstanten in allen F?¤llen, wo sich dieMittelung der u.s.w. ausf??hren l?¤?Ÿt. Ob diese Mittelung m??glichund mehr oder weniger leicht ist, h?¤ngt vor allem von der Verte??ungs-funktion der Achsenorientierungen in den verschiedenen Lamellen ab (vl\'t T tu Tlnbsp;^^g^bt die Annahme Va) die denkbarst einfache Verteilungsfunktion: alle m??glichen Orien-tierungen des Achsenkreuzes kommen

gleich h?¤ufig vor Dies vereinfacht die Gleichung (35) betr?¤chtlich. Das ^ ist invariantf??r ?„nderung des Vorzeichens der y- oder Z-Richtung, dies reduziertGl. (35) auf: nbsp; nbsp;-f- 2E^^Z,yy. Aus der Gleichwertigkeit der X- und F-Richtungen folgt: = ^11 = = ^32 ................



??? X- und F-Richtung sind auch vertauschbar mit jeder andern Richtungin der X-V-Ebene, darausJolgt: ^ _ Â?P66 = KT\'ii â€”9^12) â€? .........(37) Schlie?Ÿlich nimmt also f??r das allgemeine Lamellenaggregat (Fa) dieGl. (35) folgende einfache Form an: 2^ = â€” â€” l^iZy^ nbsp; yvY nbsp;â€” 4^x73/) nbsp; yy)......(38) Wie schon im vorigen Paragrafen bemerkt worden ist, hat das allgemeineAggregat zylindrische Symmetrie. Es besitzt also 5 unabh?¤ngigeElastizit?¤tskonstanten Ku, 633Â?nbsp;quot;ndnbsp;wie bekannt, ist ÂŽ66 = i(ÂŽiiâ€”M\' Um die Funktion (p f??r das Aggregat mit Hilfe derAggregatskonstanten in den 6 unabh?¤ngigen Variabein ZzZyZxXxVyXyauszudr??cken, wiederholen wir die Ausf??hrung dieses Paragrafen f??rein zylindrisches Aggregat, wo die Z-Achse als 00-z?¤hlige Symmetrie-achse auftritt. Die Gl. (24), (30)â€”(33) werden hier sehr vereinfacht. A reduziert sich auf (^sa^u^, 633 wird ^44 wie (Jgg wird f??r^31 wie Â?32 erhalten wir cpn und 9^22 werdennbsp;\' ergibt schlie?Ÿlich erh?¤lt Â?pee den Wert See und weil f??r ein zylindrisches Aggregat (wie

f??r ein hexagonales ^istall) (See = 2 (?Ÿ^nâ€” ^12)ist, ist auch hier (pee = U\'Pn â€” \'Pii)\' F??r das (p des Aggregats gilt alsodie Gleichung: nbsp; nbsp;. . . (39) Aus (38) und (39) folgen dann f??r die 5 Elastizit?¤tskonstanten des allgemeinen Lamellenaggregats die Beziehungen: J_ ^ ÂŽ33 (E r ..........(41) 633 ^^ _1_(544 = 5-44,...........(42) = ...........(43) Ken-Si2) = Â?P66............(44) = Â?33,...........(40)



??? befecLtquot;\'nbsp;-- di^ 5 Aggregatskonstanten erg^trquot;\'quot;\'\'\'nbsp;Ann?¤herung = ÂŽ13, ÂŽ44 = KSu â€” ?Ÿia) .........(45) In diesen F?¤llen nennen wirnbsp;â€žâ€ža bzw. und staln Vquot; \'nbsp;^^^^ --ht/die Konquot; nnfcn^^^^^nbsp;bestimmt. Bei andern Metallen md die Gl. (45) mcht alle erf??llt; dann wird das Aufbauprinzip(VII) angewandt Die berechneten ergeben dann die Elas^itTtskonstanten sekund?¤rer Lamellen, womit wir das Verfahren wiederholenIn allen von mir durchgerechneten F?¤llen ergibt sich das sekund?¤reAggregat als praktisch isotrop, in mehreren F?¤llen ist die Anisotropieder prim?¤ren Lamellen schon so gering, da?Ÿ die Voigtsche TheoLgen??gt zur Berechnung der sekund?¤ren Konstanten. Im IIL und IV. Kapitel wird die Rechnung durchgef??hrt f??r Kristalleder hexagonalen und regul?¤ren Systeme. Dabei erweist sich die Auf-stellung der Ausdr??cke f??r J, ?–33 u. s. w. als sehr leicht, die Mittelungaber als sehr umst?¤ndlich. Insbesondere gilt das f??r und wodie Zahler 4-reihige Determinanten sind und sehr verwickelte

Formen4. Grades der c,, ergeben. Die Rechnung wird aber betr?¤chtlichvereinfacht, wenn wir den im Anfang des Paragrafen erw?¤hnten zweiten Weg gehen. Wir gehen wiederum aus von der Gl. (6), ausf??hrlichgeschrieben: â€? ^T\'l\'\'nbsp;quot;quot;quot;nbsp;^^nbsp;ausgedr??ckt m den 6 unabh?¤ngigen Variabein. Dazu werden jetzt die Hookeschen Gleichungen benutzt in der Form (3a) der Einleitung. Das ganze Ver-fahren verl?¤uft parallel mit dem vorigen, also: ^x â€” s\'isZz â€” s\'iiZy â€” s\'i^Zx = s\'i?„ s\\zYy s\\^Xy,yv â€” â€” s\'^iZy â€” s\'A = s\'nX^ s\'^^Yy Xy â€” s\'esZz â€” s\'eiZy â€” s\'?Ÿ^Zx -nbsp; s\'^^Yy -f s\'^^Xy z,nbsp;s\'aai\'. nbsp; nbsp;-f- s\'3,4 ^J/ =^\'41^. s\',,Xy s\\,Zy ygt; (20a)(21a)



??? Mit den Abk??rzungen: ^\'uZy s\'isZa; = Vy,s\'izZz 5 ZiZy 5 25^X = s\\^Zy s\'es\'^x = ........(22a) und s\'uZy\' 2s\',,ZzZy 2s\',,ZzZ, 2s\\,ZyZ, = V . (23a)werden die Gl. (20a): ÂŽ ll-^x S liYy S 16-X\'j, = â€” Vi, S 21-^x ^ 22^2/ ^ 26-^y ~ yj/- ^2\' 5\'eiZ, s\'e^Fy nbsp;= Xy â€” V,......(25a) Jetzt werden Xx, Yy und Xy aufgel??st aus (25a) mittels der zweitenHauptdeterminante: ^12 ^16 Z == s\'ai s\'22 s\'26 ..........(24a) ^ 61 ^ 62 ^66 und eingetragen in die Gleichung: 2lt;p = XxXx yyYy XyXy â€” ZzZz â€” ZyZy â€” Z^Zx == Xx{Xx - 7l) Yyiyy - V,) XyiXy - V,) - V . Dies ergibt: Vnbsp;V^-Xxnbsp;V..-yy V,-Xy Xx s 11nbsp;$12nbsp;5 16 ^2 yvnbsp;S 21nbsp;S 22nbsp;5 26 V^ Xy S 61nbsp;$ 62nbsp;5 66 . (28a) . . . . (29a) F??r unsern Zweck gen??gt es, die Analoga der da und t hinzuschreiben,also die Br??che mit 2-reihigen Z?¤hlern: s\'lcknbsp;s\'kl ^ s\'iknbsp;s\'il __s\'iknbsp;s\'il ^ S\'lknbsp;s\'il Wir schreiben dann: . (30a). (31a) = ^ = aÂ? 2\' ik 2- (i, k, 1=1, 2, 6i^ktl(i, k,i = i,2,e 2(p = OiiXx^ Oz^yy^ OjgXy?¤ 4- 2ai2X^yâ€ž u.s.w.........(34a) und nach der Mittelung: 2\'^ = OiiX/ a22y!/ÂŽ OeoXj/quot;

2oi2Xa;gt;\'y-f-u.s.w........ . (35a)



??? wo wiederum: quot;quot; = .............(36a) = iioii â€” ?–12).........(37a) o \'66 Die Vergleichung mit (39) ergibt dann â„? S13quot; â€” quot; ^ quot;quot;quot;.........(43a) â€” ÂŠ12) . ............(44a) und noch 3 andre Gleichungen, die (40)-(42) entsprechen. In diesen3 neuen Gleichungen treten jet,t aber 3- und 4-reihige Determinantenau^ sie smd also f??r die Rechnung weniger bequem als (40)-(42) selbst.Es ist klar, da?Ÿ die neue Gleichung (34a) f??r jede einzelne Lmelle identisch ist mit der alten Gl. (34), es ist also = ^ f??r jede Wahl dernbsp;des Schemas (19). In der Tat wird sich bei der Anwendung der Formeln im III. Kapitel zeigen, da?Ÿ zl und ^ Funktionen derRichtungscosinus mit proportionalen Koeffizienten sind. Die Ausdr??cketur 2a und ^-eÂ? sind aber so viel einfacher als die f??r und da?Ÿes vortedha t erscheint, f??r die Rechnungen im hexagonalen Systemneben (40), (41) und (42) die Gleichungen (43a) und (44a) zu benutzen. Bei den regul?¤ren Kristallen gestaltet sich die Rechnung einfacher.Hier werden bei allseitig gleichem Druck die Kristalle

gleichm?¤?Ÿigdeformiert, die Kompressibilit?¤t hat also denselben Wert f??r alleLamellen und f??r das Aggregat. Diese Betrachtung liefert sofort die2 einfachen Gleichungen: ^^^nbsp; nbsp; ÂŽi3 = Cn 2^2......(46) 2^13 ÂŠ33 = Cii 2^2......(47)^ die sich nat??rlich auch aus der allgemeinen Theorie ergeben Nachdem (S33 und S44 aus den Gl. (40), (42) berechnet worden sindberechnen wir (5x2 und ÂŠ^3 aus (46) und (47). Schlie?Ÿlich gilt\'wie wir im IV, Kapitel nachweisen werden, im regul?¤ren System di?ŠBeziehung: 4(6n - = 2c,2 4C44) ~ 4c,,(c,, - c,) ^ - 3c, (48) welche mit (46) zusammen die Berechnung von und gestattet. Die Berechnung von .31 und von den oder?¤,, ist also im regul?¤renSystem ??berfl??ssig.



??? Â§ 3. Die Voigtschen Formeln als erste Ann?¤herung. Wir wollen jetzt zeigen, da?Ÿ die neuen Formeln f??r die Konstantendes prim?¤ren Aggregats, falls die Anisotropie des Kristalls sehr kleinist, die Voigtschen Formeln als erste Ann?¤herung ergeben. Das Aggregatist in diesem Fall also praktisch isotrop. Dazu gehen wir von unsernFormeln (40)â€”(44) aus. Kleine Isotropie bei einem Kristall eines willk??rlichen Systemsbedeutet, da?Ÿ alle Richtungen im Kristall nahezu gleichwertig sind.Daraus folgt, da?Ÿ bei jeder willk??rlichen Wahl des Achsenkreuzes: c\'ii, c\'22, c\'33 wenig verschieden sind von einem festen A,C 23, c 31, c 12 â€žnbsp;â€žnbsp;â€ž â€ž â€ž â€ž Bf Inbsp;tnbsp;M quot; gt;gt; H }gt; tt C, 66 iV 55, W?¤hrend alle andern c\'i^ wenig verschieden sind von Null. F??r A, Bund C k??nnen wir die Voigtschen Mittelwerte w?¤hlen, wie sie durchdie Gl. (7) definiert sind. Mit Vernachl?¤ssigung von Betr?¤gen, dieklein sind von h??herer Ordnung, wie c\'342, (c\'^^^ â€” Ay u.s.w. erhaltenwir (mit Anwendung des Zeichens ~ f??r â€žann?¤hernd gleichquot;), aus (24): und

daher aus (30):?? \'33 -\'33 J ~ 33 C\'44 C\'55 1 C 33 1 633 1 ~ A 1 c 33 \\ A 1 ÂŠ33 ÂŠ33 und nach (40) also: oder (49a), welche Gleichung bei Voigt aus (12) folgt und auf die erste VoigtscheGleichung (8) f??hrt.In derselben Weise folgt aus (24), (30) und (42) ~ c\'44...........(49b) und daraus die 3. Gleichung (8).Aus (24) und (32) erhalten wir: ^ /i , c\'i3 â€” B c\',, - A]c\'33 ?„V â€”â€”



??? - ^^ I di.-B 5nbsp;A und nach (41) und (49a) ÂŠ13 = ÂŠ33 . i^i ~ S fl Vnbsp;B y oder ÂŠ13 ~ c\'i3 .......... woraus sich die 2. Gleichung (8) ergibt.Weiter gilt nach (24) und (33) 9?ii ~ c 11 33 und aus (49a) und (49c) erh?¤lt man leicht ^^ fZl ÂŠ33 l C\'33 woraus nach (43) folgt: ÂŠn ~ c\'ii ............(49d) Schlie?Ÿlich ergibt eine andre der Gleichungen (33) zusammen mit (24) lt;P66 ~ c\'eo und nach (44) gilt i(ÂŠii â€” ÂŠ12) = ÂŠ66 ~ C\'BS.......(49e) Die Formeln (49d) und (49e) ergeben aufs neue die 1. bzw. 3.Voigtsche Gleichung; au?Ÿerdem best?¤tigen sie, da?Ÿ das Aggregatann?¤hernd isotrop ist.quot; Die Voigtsche Theorie ergibt also eine gen??gendeAnn?¤herung bei kleiner Anisotropie der Kristalle. ?œbrigens k??nnte man eine zweite Theorie aufstellen mit ebenfallsbeschr?¤nkter G??ltigkeit, sozusagen die Antipode der Voigtschen Theorie.Sie ergibt sich, wenn man statt der Gl. (40)â€”(44) die Gl. (43a) und(44a) samt 3 weiteren Gleichungen in s\'^^ hinschreibt und die analogeAnn?¤herung ausf??hrt. So erhalten wir z.B. aus (44a): 1 _MÂŠn-

ÂŠ12)quot;ÂŽÂ?Â?solche Formeln dr??cken eine Annahme aus, welche der VoigtschenAnnahme diametral gegen??ber steht, n?¤mlich da?Ÿ nicht die Defor-mationen, sondern die Spannungen stetig durch die Grenzfl?¤chen % ~ J daher



??? hindurchgehen. Jede dieser Annahmen enth?¤lt 3 richtige und 3 falscheGrenzbedingungen, jede ist ann?¤herungsweise richtig in demselbenFall, n?¤mlich wenn die Kristalle ungef?¤hr isotrop sind. Â§ 4. Allgemeines ??ber Pr??fungen der Theorie. ImÂ§ 1 dieses KapitelssinddieAnnahmenaufgestelltworden,welchezum Aufbau der Theorie dienen. Wir heben 3 dieser Annahmen hervor- (I) Die Kristallbrocken sind sehr klein, die Materialprobe enth?¤ltvon ihnen eine sehr gro?Ÿe Zahl. (III) Sie schlie?Ÿen fest aneinander. (Via) Alle Achsenorientierungen kommen regellos verteilt und gleichh?¤ufig vor. Diese Annahmen beschr?¤nken die exakte G??ltigkeit der Theoriesehr stark. (I) schlie?Ÿt alle grobk??rnigen Aggregate aus, und von den fein-kornigen alle diejenigen, wo eine oder die andre Dimension sehr kleinist, also Metalldr?¤hte und -b?¤nder. Sehr gro?Ÿe St?¤be w??rden der Bedinging(I) am besten gen??gen, sie sind aber f??r die feineren Experimente un-brauchbar. Bei den verschiedenen kleinen St?¤ben, die Voigt!Â?) ausdemselben Gu?Ÿst??ck schneidet, ist die Zahl der

Einzelkristalle offenbarungen??gend, jeder Stab hat eigene Werte f??r die Moduln, deu??ichunterschieden von denen der Nachbarst?¤be. In einigen St?¤ben hebensich die St??rungen ungef?¤hr auf, sie gen??gen dem Isotropiekriterium(52), das wir weiter unten ableiten werden; solche St?¤be werden wir inden n?¤chsten Kapiteln w?¤hlen zur Pr??fung der Theorie. (III) war sehr schlecht erf??llt bei den dichten Gesteinen der TabellenA 1 und A 2, an denen Voigt seine Theorie gepr??ft hat. F??r alle Ab-weichungen von der Annahme (III) benutzen wir im folgenden das Wortâ€žPorosit?¤tquot;. Dieser Begriff umfa?Ÿt also den Einflu?Ÿ der leeren R?¤umeim Aggregat, der eventuellen Bindesubstanz zwischen den Kristall-brocken, der relativen Bewegung der Oberfl?¤chen zweier Nachbar-kristalle. Ein Ma?Ÿ f??r die Gr???Ÿe der Porosit?¤t gibt die Kompressib??it?¤tdes Aggregats. Ist die Bedingung (III) genau erf??llt, so ist im regul?¤renSystem der Kompressionsmodul ?Ÿ des Aggregats gleich dem fl derKristalle; im regul?¤ren System erzeugt ja ein allseitig gleicher Druckeine

allseitig gleiche Kompression. Bei den andren Kristallsystemenist der Zusammenhang nicht so einfach, hier m??ssen wir zuerst aus Â?) W. Voigt, Wied. Ann. 48, S. 674â€”707, 1893.



??? den Kristallkonstanten die Elastizit?¤tskonstanten g, und g des modul. Hier wie dort m??ssen wir dieses berechnete ?Ÿ vergleichen mit wei?Ÿ an kemem Aggregat dessen S oder 2 wir kennen, auch das ?Ÿ direktgemessen worden. In den meisten F?¤llen sind von dem einzelnen Stabnur die eme oder die andre von den Dehnungs- und Torsionsmodulne und 2 gemessen, oder auch beide. Im ersten Fall ist das ?Ÿ des AggregatsUberhaupt nicht zu berechnen, im zweiten Fall nur bei nachgewLeneIsotropie des Aggregats. Die Untersuchung der Porosit?¤t ist daherverkn??pft mit der Pr??fung der Isotropie, zu welcher wir sogleich ??be f wnbsp;^^^nbsp;^^^^nbsp;-inen @ und ^ der Wert des ^ ausrechnen. Die Formel f??r die Beziehung zwischen (Â? Z und ?Ÿ wird in der folgenden Weise abgeleitet.nbsp;^^^Â?\'^^en Aus den bekannten Gleichungen f??r ?Ÿ, @ und f??r die Querkontraktion yw des isotropen Mediums: 3?Ÿ = g 26i (S 2g,) (S - 6,) ÂŽ folgt zuerstund ÂŽ ..........(50) r- g 2(1 ............(51) Die Elimination von ?Ÿ ergibt 2 3?Ÿ - 3 oder J. _3 I 3^?Ž e ................

Mit der Formel (52) l?¤?Ÿt sich der Kompressionsmodul des Aggregatsberechnen und benutzen zur Pr??fung der Porosit?¤t. Das Resultat istsehr verschieden.



??? Beim Flu?Ÿspat ergibt (52) als Mittelwert der 2 am hp^t.,. ; .Aggregate Voigtsnbsp;isotropen = 19,600 mm\' w?¤hrend die Kristalle ergeben ^s) = 25,850 mm^ die Porosit?¤t ist also sehr gro?Ÿ -nd IVnbsp;Aggregaten die in den Kap V trSSnbsp;quot;quot;nbsp;Aggregaten des ^rd In ie V â– \'tTv quot;quot;quot;nbsp;^^ quot;r^^e. Im aUgemeinen St^e It 7 \' Ve^\'-ng\'-) best?¤tigt, da?Ÿ bei Metallen dieJ^nstaile gut Zusammenschlie?Ÿen. keS:nbsp;^^^^^ ^^^^ - quot; Schwierig- Zwar gestanet jetzt die R??ntgenanalyse einen guten ?œberblick ??ber tlnbsp;Aggregat, die sch??nen Untersuchungen von Voigt und Gruneisen, welche die vollst?¤ndigsten Daten zur Pr??fungunsrer Theorie ergeben Â?Â?), stammen aber aus der Zeit vor dem LaueschenVersuch. Die Isotropie mu?Ÿ also in indirekter Weise nachgewiesen werden. Beide Forscher haben ihre Aufmerksamkeit auf die Isotropie ihresMaterials gerichtet. Voigts Messungen beweisen im allgemeinen dieGleichwertigkeit aller Richtungen senkrecht zur Stabsachse; ob dieseRichtungen aber auch mit der

Stabsachse selbst gleichwertig sind, gehtaus den Messungen von (Â? und Z nicht hervor, und gerade diese Gleich-wertigkeit ist weder bei gegossenen noch bei gezogenen St?¤ben vonvornherein gewi?Ÿ. Gr??neisen pr??ft sie nach mittels der Gl. (51) 2(1 Mit dieser Formel berechnet er aus den gemessenen Werten (5 und Zeine â€ždynamischequot; Querkontraktion /i und vergleicht diese mit der Â?) W. Voigt, Wied. Ann. 42, S. 537â€”548, 1891. ^us den Voigtschen Konstanten, Lehrbuch S. 744.quot;) W. Voigt, Lehrbuch S. 964.Â?Â?) W. Voigt, E. Gr??neisen, 1. c. bei der Tabelle B 2.



??? direkt gemessenen â€žstatischen\'\'. Die Formel (51) g??t f??r isotropeSubstanzen, die ?œbereinstimmung von fidyr, und fi^t ist also einKriterium f??r die Isotropie des Aggregats. Die Resultate haben wirzusammengestellt in der Tabelle C: C. Isotropie des Gr??neisenschen Materials. Stab f^yn flgtal AI. I 0,31 0,339 AI. II 0,337 0,334 Cu. IVa 0,356 0,348 Ag. 0,369 0,379 Au. II 0,435 0,42 Stahl 0,287 0,287 Konstantan 0.329 0,325 Manganin 0,329 0,329 Pt. II 0,368 0,387 Cu. VI 0,399 Au. I 0,495 0,423 Bronze 0,177 0,308 Pd. 0,101 0,393 Platin, Bronze und Palladium sind gegossen, die andern St?¤be gezogen. In den meisten F?¤llen ist die ?œbereinstimmung gut, unterm Strichstehen einige Aggregate, 2 gezogene und 2 gegossene, wo das Materialsich sehr anisotrop zeigt; bei Au. I und Bronze war ??brigens dieAnisotropie schon bei den Messungen selbst hervorgetreten. Die Isotropiepr??fung mhtels der Formel (51) ist unm??glich, wennan der Materialprobe nur 2 elastische Gr???Ÿen gemessen sind. Gr??neisenhat bei Cd, Sn, Pb, Bi nur Q und /x

gemessen, Voigt an allen Metall-st?¤ben nur ?Ÿ und 2;. In diesen F?¤llen ergeben die Gleichungen (50) bzw. (52) Kriterienf??r die Isotropie, wenn in irgend einer Weise der Kompressionsmodulder Aggregats bestimmt ist. Dieser folgt bei den regul?¤ren Kristallendirekt aus den Kristallkonstanten Cn und c^a; in den anderen Systemenm??ssen erst nach der Theorie dieses Kapitels die 6 und ÂŠi des isotropenAggregats berechnet werden, daraus folgt dann das ?„, das zur Isotropiegeh??rt. Der so berechnete Wert enth?¤lt also die Fehler der Kristall-



??? konstanten und eventuell der neuen Theorie, au?Ÿerdem den Einflu?Ÿder unbekannten Porosit?¤t des betreffenden Materialsnbsp;rf wi?Ÿheiten machen die Entscheidung nach der Fortd (50^ quot; Ziemlich illusorisch: 1-2;. ist ja von derselben Gr???Ÿenordnung wie ^An^rnbsp;quot; ^nbsp;quot;quot;--quot;dert zur??ck in \' ^^^nbsp;- ÂŽ ^ beLm sind. 3nbsp;2 e 3?Ÿ 3nbsp;- ist - sehr viel gr???Ÿer als 1 eine Ungewi?Ÿheit von 10 o/â€ž in ?Ÿ bedeutet demnbsp;\' quot;nbsp;--nbsp;(52) aus Is S?abenbsp;n quot;nbsp;^nbsp;-- - bei Isotropie LterSl t hT quot;nbsp;dieser 2 Werte ein neues Kritermm f??r d,e Isotropie, das dem Gr??neisenschen (Gl. (51)) ungef?¤hr gleichwertig ist Wo diese Kriterien versagen, ist das Matlial iZ ,1anisotrop. Im III. und IV. Kapitel wird sich herausstellen, da?Ÿ dies beivie en St?¤ben der Fall ist. Dies war von vornherein zu erwarten.Polanyi ) hat die â€žstark erh??hte H?¤ufigkeitquot; von bestimmten Kristall-onentierungen bei gezogenen St?¤ben von CÂ?, AI, Pd nachgewiesen -die Gr??neisenschen St?¤be sind zwar nachtr?¤glich

gegl??ht, ein Blickauf die Tabelle C lehrt aber, da?Ÿ dieses Gl??hen nicht immer gen??gtum Isotropie herzustellen, ??ber derartige â€žFaserstrukturenquot; beigegossenen Metallst?¤ben habe ich in der Literatur keine Angabengefunden. Es ist aber, besonders beim vorsichtigen Gie?Ÿen, wie Voigtes anwendet, nicht unwahrscheinlich, da?Ÿ die ersten Kristalle, welchesich m der Schmelze bilden, gewisse Vorzugsorientierungen aufweisenm Bezug auf die Vertikale, d. h. die Stabsachse. Derardge spezielleOnentierungen sehen wir ja oft auftreten beim ruhigen Kristallisieren,sowohl an der Oberfl?¤che, z.B. bei Eis und Kochsalz, wie im Innernder Losung, z.B. bei Alaun. Die meisten gegossenen St?¤be, die Gr??n-eisenschen der Tabelle C wie die Voigtschen der vorhin erw?¤hntenUntersuchung, zeigen deu??iche Ungleichwertigkeit der Richtungenparallel und senkrecht zur Stabsachse. \'Â?) Polanyi, Z. f. Phys. 17, S. 42â€”53, 1923.



??? Im V. Kapitel wird der Versuch gemacht, die elastischen Eigenschaftenverschiedener anisotropen Aggregate dadurch zu verstehen, da?Ÿ wiranstatt der Annahme (Va) die Annahme (V?Ÿ) des Â§ 1 dieses Kapitelszugrunde legen. Wir untersuchen die Eigenschaften eines lamell?¤renAggregats, wo in den verschiedenen Lamellen die Achsenorientierungennicht regellos verte??t sind, sondern einem Verteilungsgesetz gehorchen,bei dem gewisse Orientierungen eine Vorzugsrolle spielen. Diejenigen St?¤be, die einem der Isotropiekriterien (51) oder (52)ungef?¤hr gen??gen, b??den das Material zur Pr??fung der neuen Theorief??r isotrope Aggregate, und zur Vergleichung der neuen Theorie mit deralten. Die Resultate finden sich im IIL und IV. Kapitel. Hier sei nochbemerkt, da?Ÿ die zwei Kriterien notwendige, nicht aber hinreichendeBedingungen f??r die Isotropie des Aggregats darstellen. Besondersbei den gezogenen regul?¤ren St?¤ben, wo nach Polanyi zwei verschiedeneVorzugsorientierungen zusammen auftreten, kann man sich denken,da?Ÿ die

spezielle Struktur wohl die Werte (g und nicht aber den3 1 (?Ÿ ~ 2nbsp;?¤ndert, so da?Ÿ der anisotrope Stab dennoch der Gleichung (52) gen??gt. Auch hier??ber berichtet das V. Kapitel.



??? quot;^ES ALLGEMEINENAGGREGATS HEXAGONALER KRISTALLE. tt taT/^^Â°Ka?^\'\'rVâ– quot;â€? dasraumfes,eKllâ€ž ,nbsp;bezeichnen wir in der Einzellamelle Hauptachsen mit 7. , fnbsp;kristaUografischen X Y z Â?1 ?Ÿi 71 yo ?Ÿ2 72 a ?Ÿ y ,.........(53) . J \' quot;nbsp;quot;sA^a/s lort. wiegen der zylindrischen Symmetrie der elastischen Eigenschaften reduziert sich die Zahl der Zur Abkurzung schreiben wir f??r 3 dieser Konstanten: Cii = a Ci3 = b , . .nbsp;C44 = c . . . ........ /54\\ und f??r eimge oft vorkommende Kombinationen: Ca â€” Ci3 â€” 2C44 = / Â?^11 â€” C12 â€” 2câ€ž = g ^11 C33 â€” 2ci3 â€” 4CI4 = h woraus folgtnbsp; = k............(55) Ci3 â€”=nbsp;..........(56) Die Gr???Ÿen j:,, y^, z^, \\zy, ^z^, Ixy sind die Komponenten einessymmetrischen Tensors. Hieraus folgen die Transformadonsgleichungen: -nbsp; nbsp; r^Z, ?Ÿ, y^ y^ y^a^z, u. s. w. y\\ =nbsp; 2?Ÿ,?Ÿyy 2y,yz, (?Ÿ,y ?Ÿy,)y^ {y^o. nbsp; {a^ a?Ÿ^)zy..........(57) u .s. w.



??? F??r die freie Energie reduziert sich Gl. (2) auf:21 = qifeoj 2c,3(x,o nbsp; nbsp;...........(58) F??hren wir in diese Gleichung die Werte x^Â? u.s.w. aus (57) ein,so erhalten wir die freie Energie in Bezug auf die Koordinaten XYZ,bestimmt durch eine Gleichung von der allgemeinen Form (2) nbsp; c\'?Ÿsz/ c\'eeXj,^ nbsp; nbsp; nbsp; nbsp; 2c\\^yyz^ 2c\'.^z,Xy nbsp; 2c\\eyvXy nbsp; ^c\'iex^xy 2c\\iyyy, Hier ist c\'n = CixOiÂ? ciia^* CggOÂ? nbsp; a^^) nbsp; nbsp; y^y,^) -nbsp;= = câ€ž â€” 2a2(câ€ž â€” Ci3 â€” 2C44) a4(cii C33 â€” 2ci3 â€” 4C44). In derselben Weise werden die anderen c\',-,. abgeleitet, wobei stetsGebrauch gemacht wird von den Identit?¤ten:ai2 nbsp;I_a2 ^i?Ÿi Â?2/^2 = â€” o?Ÿa^?Ÿz â€” a^?Ÿx = y u.s.w. So erhalten wir die Transformationsformeln, die in abgek??rzterForm lauten: c\'ii = a â€” 2/a2 ha^nbsp;c\'23 = fe â€” (gnbsp; h?Ÿ^y^ c\'22 = a - 2f?Ÿ^ h?Ÿ^nbsp;= fi - (g -f)?Ÿ^ c\'33 - a â€” 2fy^ hy^nbsp;= b â€” {g â€”f)y^ ha^?Ÿ^ c\'44 = c kci\' h?Ÿ^y^nbsp;c\'56 = ?Ÿyi- lg ha^) c\'55 = c is?Ÿ\' hy^a^nbsp;= ya(- ^g h?Ÿ^) c\'eÂ? = c iSY\'

ha^?Ÿ^nbsp;c\'45 = a?Ÿ{- ^g hy^) c\'u = ?Ÿyig â€” f ha^)nbsp;c\\, = yaiâ€”f ha^) c\'25 = ylt;xig-f h?Ÿ^)nbsp;c\'26 = a?Ÿ{-f h?Ÿ^) c\'36 = a?Ÿ{o â€” f hy^)nbsp;c\'34 = ?Ÿy{â€”f hy^) c\'n = ?Ÿy{-f h?Ÿ^) c\'35 = yaiâ€”f hy^).........(59)



??? Wie zu erwarten war, fallen die Richtungscosinus der und Vquot;-Achsen aus den Formeln weg. Genau in derselben Weise l?¤?Ÿt sich die Transformation der s\',,., derKoeffizienten der Gl. (2a), durchf??hren. Hier sind die analogen Abk??r-zungen: -â– ^13- 1^44 = -fnbsp;1 (54a)nbsp;5â€ž â€” Si2 â€” hii = G I (55a) ^11 S33-2Si3 â€” S44 = J il2 (54b)mit Si3 (56a) Die Spannungen sind Tensorkomponenten mit den Transformations-gleichungen: u.s.w. y.o = a^aX^ ?Ÿ,?ŸYy Y^yZ, {?Ÿ,y ?Ÿy,)Y, iy^a nbsp;-f {a^?Ÿ a?Ÿ^)Xy..........(57a) u.s.w. Diese werden eingef??hrt in den Ausdruck f??r die freie Energie imhexagonalen System: = SniX,^\' y/\') 533^.quot;\' nbsp; nbsp; nbsp; 544(7,0\'- ^ 2(5â€ž -nbsp;. . (58a) So erhalten wir die Transformationsgleichungen f??r die s\'j^: â–  = A Sil Si3=BS44= C S33 = D s\'n = A â€” 2Fa- Ha* s\',, = A â€” 2Fy^ Hy* s\'44 = C 2Ga2 AH?ŸY5\'55 = C 2G?Ÿ^ s\'ee = C 2Gy^ s\'u = 2?ŸyiG-F Ha^)s\\, = 2ya{G-F H?Ÿ^)s\',^ = 2a?ŸiG â€” F Hy^) 5\'23 =B â€” {G â€” F)a^ s\'31 = ?Ÿ â€” (G â€” s\'i2 = B â€” iG â€” F)y^ Ha^?Ÿ^ s\\^ =

2G?Ÿy{â€”G^2Ha^)s\'e4 = 2Gya(â€” G -f 2H?Ÿ\')s\\, = 2Ga?Ÿ{â€”G 2Hy^) s\\^ = 2ya{â€”F Ha\'-)s\\, = 2?Ÿy{-F Hy^) s\'i8 = 2a/?(â€”F-fHaquot;)s\\A = 2?Ÿy{â€”F H?Ÿ^)s\'z, = 2yair-F Hy\'-) (59a)



??? Â§ 2. Die Koeffizienten der Funktion qgt;. Im vorigen Kapitel ist gezeigt worden, da?Ÿ wir von den Koeffizientender Funktion lt;p nur brauchen: ^nbsp;^^^ ^e Von den zweireihigen Determinanten benutzen wir also A,,,und 2\'ee; au?Ÿerdem noch A,,, A,, zur Entwicklung der 1. Hauptdeter-minante J Z und zur Entwicklung der 2. Hauptdeterminante X E^as einfacher gestalten sich die Formeln, wenn wir statt und die Summen A,, E,, E,, und 2-22 berechnenund au?Ÿerdem zu Hilfe ziehen.nbsp;\'\' berechnen Zuerst berechnen wir die Hauptdeterminante.Nach (24) und (59) ist (60) A = ?Ÿriâ€”f hy^), c iga^ -f h?ŸY, a?Ÿiâ€” ig hy^)ya{~f hy^), a?Ÿ{- Jg hy% c ^g?Ÿ^ hy^a^ Sodann finden wir aus (30) ^3 = {c Ml â€” y\')} {c -t- /lyHl â€”^44 ^65 = {2c ig(l -y\')}(a~2fy^ hy^) - (?’^ - ah)y\\l - y^). Aus (31) folgt ^35 = ay{c k(l â€” y^)} (?’ â€” hy%.^34 = ?Ÿy{c ig(l â€” {fâ€”hy\\ Jetzt k??nnen wir A entwickeln, und findenalsonbsp;\' nbsp;{ac-y,f f^-ah) y\\ch p-ah)} (61) Wir sehen da?Ÿ a und ?Ÿ aus der Hauptdeterminante wegfallen.Wir k??nnen also schreiben: .............(62) wo ^ = ac -

y,f P- ah) 4- P~ah) . . (63) Aus (32), (59) und (55) folgt in derselben Weise



??? F??r die erste Gruppe der Koeffizienten finden wir also: --5..................(64) 31 Â?32--g--(65) aâ€”2fy^ hy^ ciaâ€”2fy^ hy*)â€”iPâ€”ah)y^{lâ€”y^) _ ^nbsp;{c Ml â€” Â?5nbsp; F??r die sp?¤tere Mittelung schreiben wir mit Vorteil (nach (63)):a â€” 2fy^ hy^ = j-{?? (/^ â€” ah)yHl â€” y^)}, A 1 A _ 1 J__1nbsp;, p â€” ah y2 â€” y* alsdann gilt 1 . 1 (66) Wir gehen jetzt zur zweiten Gruppe ??ber.Die 2. Hauptdeterminante wird nach (24a) und (59a)A â€” 2Fa2 Ha\\ Bâ€”{Gâ€”F)y^ Ha^?Ÿ\\ 2a?Ÿ{â€” F Haquot;^)B-{?Ÿ-F)y^ Ha^?Ÿ\\ A - 2F?Ÿ^ H?Ÿ\\ 2a?Ÿ{- F H?Ÿ^) (60a)2a?Ÿ{â€” F Ha% 2a?Ÿ{â€” F H?Ÿ% C 2Gy^ AHa^?Ÿ^ Bei der Entwicklung dieser Determinante wird sich wiederum zeigen,da?Ÿ alle a und ?Ÿ wegfallen.Wir finden aus (30a) und (31a): = (C 2Gy 2) {2^_2F(1â€” nbsp;} = (C 2Gy2) {_ ?Ÿ (G â€” Ha\'-?Ÿ^} Aa^?Ÿ^F^ â€” AH),-Tee = (^2 â€” 2i4F AH â€” B^) 2y\\AF â€” AH BGâ€” BF) y*{AHâ€”{Gâ€”F)^) 2a^?Ÿ^{â€”AHâ€” BH 2F^â€”FH) 2a^?ŸYGH,oder mit (54b) 2\'Â?e= {ADâ€”B^) 2y^AiFâ€”H) ?Ÿ(Gâ€”F)} y*{AHâ€”iGâ€”F)^} nbsp;â€” D)â€”HiA B)}

2a^?ŸYGH 2 =



??? Weiter folgt aus (24a) nach einer umst?¤ndlichen Rechnung: odtt Z={p 2Gy^) .....................(62a) mita = ADâ€”B^- 2yHA{F-H) B{?Ÿâ€”F)} y^{AH-{Gâ€”Fr}^ (63a) Die zweite Gruppe der Koeffizienten wird so nach einiger Rechnung: ^^^^nbsp;(C 2Gy-W 1nbsp;Ha^?Ÿ^ = cTW Â? Hieraus entnehmen wir zwei Formeln, deren Mittelung leicht vor-zunehmen ist: 1 , B â€” (G â€” F)y^ = C -^^- â™? â™? â™? â€? (68) Wegen der Beziehungen (36a) und (37a): ^^ =nbsp;= â€” ?¤^^) gen??gen (67) und (68) zur Berechnung der und Ogg; zusammen mit(64), (65) und (66) ergeben sie also die 5 notwendigen Formeln. Wenn wir (62a) und (63a) vergleichen mit (62) und (63) so sieht man,da?Ÿ die zwei Hauptdeterminanten A und 2 ganz ?¤hnlich smd. Dies warzu erwarten, da die Of^, welche 2 im Nenner haben, identisch sind mitden GiT, welche A im Nenner enthalten. Es mu?Ÿ sich also ergeben, da?Ÿdie Koeffizienten der 2 denen der A proportional sind. Es wird sichlohnen A und S in den Cij^ auszudr??cken, wodurch die Proportionalit?¤tzu Tage tritt; alle 5 Formeln

erhalten dann denselben Nenner und dieIntegration wird erleichtert. Die Z?¤hler der Formeln (67) und (68) sindFunktionen der auch diese werden in umgerechnet. Dazugebrauchen wir die Transformationsformeln f??r das hexagonale System Â?) Vgl. Voigt, Kristallphysik, S 747, wo die c^^ in s^j. ausgedr??ckt stehen.



??? . __Cis^ _ C12C33-C^g^nbsp;Ci3 quot; - - c,,)\' - Xic, - \' = - X . (69). (70) 1 lt;-44 Cii Cj_2 S33- ^ wo A = c33(cn C12) â€” 2ci32Einerseits ist A, nach (61): ^ = {c k(l â€” y\')} [ac - YK2cf P â€” ah) y\\ch P â€” ah)]und wir k??nnen nach (54) und (55) schreiben: ^ = Icuc44(cii â€” C12) (1 â€” Ly^) (1 â€” My^ Ny*) . .S Cii â€” C12 â€” 2C44 wo L = Ca â€” Ci2 ^ _ 2cf-\\-P â€” ah ^ 2c44(cu ci3) â€”CnC33 Ci32 acnbsp;CnC44nbsp;\' \' \' =nbsp;â€” ah _ c44(cn C33 2^3) â€” CnC,., c^^ acnbsp;C11C44 (71) (72) (73) (74) 2c g Anderseits ist H, nach (61a):2quot; = (C 2Gy^) [AD â€” B^ â€” y^{2A{H â€” F) 2B{F â€” G)} und nach (54a)â€”(56a) k??nnen wir f??r diese Form schreiben: 2(^11 â€” Sia â€” *5i4)S44 2- = 544 (S11S33 â€”Si3\')[1 â€” 25â€ž(533 â€” ^13 â€” K4) 2^13(512 â€” 5,3) ^11^33- ^.1^11(^11 533 â€” 2^13 â€” 544) â€” (5^3 â€” Mittels (69) und (70) bekommen wir hierausCll 1_^11 C12 2C44 \'C44(Ciiâ€”Ci2)A \\ ^,g2c44(qi ci3)â€”CiiCaa Cis^ ^C11C44 C12 .^cujcii C33 2ci3) â€” CnC33 C11C41 Yoder (71a) ^ = C44(Cu-CX2)A - ^^^^ - ^^^



??? Somit ist die Proportionalit?¤t der zwei Hauptdeterminanten erwiesen.Der Proportionalit?¤tsfaktor ist^ =nbsp;^^^ ^rade â€” 6 m den c^-j, wie es f??r den Quotient zweier dreireihigen Deter-minanten mit Elementen s\'^ und zu erwarten war.Dieselben Transformationen (69) ergeben f??r den Z?¤hler der Formel (67) (C i??) (2G â€” â€” Hy^il â€” y^) = (cii â€” C12) (Cn C12 2CI3) C11C33 â€” Cig^ _ c â€”nbsp;yHiCn â€” C12) (câ€ž C12 2ci3) â€” (cu 2ci2)c33 3^,2} â€” -nbsp;r\'il-y\') |(Cn-Ci2) (cu ci2 2q3) Mit der Abk??rzung: Q = (CU â€” C12) (Cll C12 2Ci3) CnCgg â€” Cjg^ .... (75)l?¤?Ÿt sich die Gleichung (67) nach einiger Rechnung schreiben: Â?u ^22 2ai2 -^^^nbsp; ^--I-My^ Ny^ oder an a22 2ai2=---1 _ My^ Nf- ^^^^ F??r den Z?¤hler des zweiten Bruches im letzten Glied der Formel (68)erhalten wir: B_(G_F)y2 =_I y2 ^33^12 Cia(Cii â€” C13 c^g) ^nbsp;\'^(Cil â€”C12) Mit der Abk??rzung: Â?Â? = C12C33 â€” Ci3(câ€ž â€” C12 C13).......(77) erhalten wir nach kurzer Rechnung ?–66 ?–12 - 1 _nbsp;cii 1â€”My^ Ny* \' â™? \' ^^^^ Somit ist die Umrechnung

vollendet. Â§ 3. Die Konstanten der Lamellenaggregate.Zuerst wollen wir die Formeln hinschreiben f??r die Konstanten desallgemeinen prim?¤ren Lamellenaggregats, wie es im Â§ 1 des Kap. II



??? definiert wurde. Dieses Aggregat ist ein Paket sehr vieler d??nnenLamellen mit allen m??glichen Orientierungen des Hauptachsenkreuzesin gleicher H?¤ufigkeit. Bei den betrachteten Kombinationen der Koeffizienten, d^^ ^55 u.s.w.fallen die Cosinus a und ?Ÿ der ZÂ?-Achse weg; diese Kombinationenbehalten also denselben Wert, wenn die Zquot;-Achse der Lamelle sichum die Lamellennormale dreht. Nur wenn der Winkel ?– der ZÂ°- undAchse sich ?¤ndert, ?¤ndern sich auch die Gr???Ÿei^das, ^gg, Cg^, quot;quot;ii Â?12 2(Ti2 und (7g6 â€” 012. Der Mittelwert ?–33 ist also rji . fzTtnbsp;ri 4jr jnbsp;/ dssdlt;p = / d^^dy; in derselben Weise erhalten wir die 00nbsp;0nbsp;_ andern Mittelwerte. Nach (36)_gilt aÂ? = ??^g und 73^ = F32, nach (36a)Und (37a) On = 022 und a^^ = o^i â€” Daraus folgt Oll O22 2(7x2 = 4((7n â€” ??es)...... , (79) lt;^66 â€” Ox2 = 3068 â€” Ollnbsp;(80) So erhalten wir 5 Gleichungen zur Berechnung der Elastizit?¤ts-konstanten des prim?¤ren Lamellenpakets, n?¤mlich:Aus (40) und (64) mit (54): -L _ _J_ rj C44 hy^jl â€” ÂŽ33

c^CiiJ y 1â€”Myquot; Ny^ . â™? . . . (8Ia) Aus (41) und (65), mit (54) und (56): ÂŽ33 CiiC^Jnbsp;lâ€”My^ Ny*\'--â€”â€” Aus (42) und (66), mit (54) und (55):nbsp;^^^^^ ÂŠ44 C44 ^ Cn - cj 1 - Ly^nbsp;J ^y l-My-^ Ny^ -Aus (43a), (44a), (79) und (76): ~cjnbsp;1 â€” My^ Ny* (81d) 2-33/ 0 Aus (43a), (44a), (80) und (78): - = ?’ â– nbsp;_ 1nbsp;(8.e,



??? In diesen Formeln bedeuten die griechischen Buchstaben Formenzweiten Grades in den Cf^: ^ = c^aCcii C12) â€” 2c Q = C33C11 â€” C132 (cn â€” C12) (cii C12 2CI3), . .^ ~ C33C12 Cl3(Cll C12 C^g). Die kleinen Buchstaben sind Formen ersten Grades: ?’ = Cu â€” Ci3 â€” 2C44 â€” C12 â€” 2C44 ?„ = Cu C33 â€” 2CI3 â€” 4C44 Die gro?Ÿen Buchstaben sind dimensionslose Zahlen: g L = N = Cll C12 2044/ f â– Ciih C11C44Cjjh â€” Ciih ^11^44 Schlie?Ÿlich f??hren wir f??r die Integrale noch Abk??rzungen ein (70)(75)(77) (55) (72) (73) (74) 13 ? Ly^dy K (82a)(82b)(82c)(82d) 0 Ny*-yHy My^ Ny^ ri y^il-y^)dy â–  My^ Ny* wo R sich aus P und Q berechnen l?¤?Ÿt nach der Formel: P â€” iM â€” N)Q â€” NR=l.......(83) So erhalten die Gleichungen (81) ihre endg??ltige Form: ^ ^ (CiiP hR),..........(84a) 2(5 1 13 ,(84b)(84c) Tf- ^-7- KHi^ -1- nn), ......... Â?a-ss C11C44 C44 lt;-11 â– 33 s 2 _ _1_ 2 C44 Cxi C12 \'44 ^11^44



??? nbsp; nbsp; nbsp; (84d) S .nbsp;1 Zur Pr??fung der Formeln (84) sei bemerkt, da?Ÿ sie auch stimmenim Grenzfall,^o die urspr??nglichen Kristalle genau isotrop sind, alsocii - C33, - ci3, cn-cia = 2câ€ž. Da werden ?’, g, h, M, N und v Die Formeln (84) ergeben sodann: ÂŠ33 Cii 2^3 ÂŠ33 Cn A _ 1 I 2 _ 2 ÂŠ44 C44 Cn - C12 C44 2fÂŠx, ÂŠ12 -nbsp;= ^nbsp;^33 /nbsp;Cn und das Aggregat hat dieselben Konstanten wie jeder Einzelkristall. Etwas eingehender ist die Pr??fung der Formeln f??r die Aggregats-konstanten durch die Annahme, da?Ÿ die Anisotropie des Einkristallsgering ist. Mit Vernachl?¤ssigung der kleinen Gr???Ÿen h??herer Ordnungm??ssen sodann die Voigtschen Formeln herauskommen, wie im Kap. II,Â§ 3, nachgewiesen ist. Ich habe die Rechnung durchgef??hrt an denGleichungen (81). Es seien Cn-C33, Ci2-q3 und Cn-ci2-2c44klein gegen alle Dasselbe gilt dann nach (55) f??r ?’ und h, nach (70),(75) und (77) f??r v und â€” p 2X, w?¤hrend nach (72)â€”(74) L, M und Nklein sind gegen 1. Mit Vernachl?¤ssigung aller Produkte

und Potenzensolcher Gr???Ÿen erhalten wir f??r das prim?¤re Lamellenaggregat nacheiniger Rechnung in erster Ann?¤herung ÂŠ11 = ÂŠ33 = C33 |ci3 fc44) .... (85a)ÂŠ12 = ÂŠ13 = i (JCn iC33 |Ci3 - IC44) . (85b)KÂŠu â€” ÂŠ12) = ÂŠ44 = i(lCn ^C33 â€” |C12 â€” |Ci3 2C44) . (85c)und das sind eben die Voigtschen Formeln (8) f??r das hexagonale System.



??? Es kommt auch wieder heraus, da?Ÿ das prim?¤re Aggregat in diesem Fallann?¤hernd isotrop ist. Es gestaltet sich also die Berechnung der Konstanten eines isotropenAggregats von hexagonalen Kristallen verschieden: a. Bei kleiner Anisotropie der Einkristalle werden die VoigtschenFormeln (8) angewandt. Bei gr???Ÿerer Anisotropie wenden wir zuerst die Formeln (84) an;ist das prim?¤re Aggregat sodann nahezu isotrop, so erhalten wir ausden ÂŠfj: durch Anwendung der Voigtschen Formeln die Konstantendes isotropen Aggregats. c. Ist die Anisotropie der Einkristalle sehr gro?Ÿ, so m??ssen wirauf die ÂŠifc des prim?¤ren Aggregats noch einmal die Formeln (84)anwenden; auch bei sehr gro?Ÿer Anisotropie der Einkristalle ist dassekund?¤re Aggregat so wenig anisotrop, da?Ÿ die Voigtschen Formelnoder auch einfache Mittelungen sodann die Konstanten des isotropenAggregats liefern. Die Formeln (84), die in den F?¤llen b) und c) anstatt der VoigtschenFormeln benutzt werden, sind ziemlich einfach, nur die Berechnungder Integrale K, P und Q ist etwas umst?¤ndlich. L ist in

allen Anwen-dungen positiv, es folgt da aus (82a) ........ Die Integrationen P und Q sind verschieden je nach den Vorzeichender Diskriminante M^ â€” 4N, und der Gr???Ÿe N selbst. Ich schreibe nurdie Formeln hin, die in den Anwendungen benutzt werden. Durchelementare Integralrechnung erhalten wir: 10. fallsnbsp;M^ â€” 4Nlt;o..........(87) .nbsp;, 1 VN ??srsr^ logTTWHL P =-2^^ 4T, ......... . \'Squot;! 1 I VN T,~ WLnbsp;47\\nbsp;...... wo = V2VN-M, T, = V2VN M........(89)



??? VM^â€”AN1 M^ â€” ANgt;o, Nlt;o 1 n 2Â?. fallsP = S^bgtgS^ iT^ log iii J- i o â– VM^â€”AN So = Vâ€”IVM2â€”4iV, wo . . . (90). . . (91a) . . . (91b) (92) h??rirgt; fR??ntgenanalyse die Zuge-hor^keit zum hexagonalen System nachgewiesen 33).nbsp;^ Nachdem die Herstellung der Einkristallst?¤be gelungen war haben^e, verschiedene Forscher die KristallkonstantL uLbh?¤n ig von^nander bestimmt : Gr??neisen und Bridgman a.). Leider stimmenihre Daten ziemlich schlecht ??berein. Wir sind nicht in der Lage, zuentscheiden welche Bestimmung die genauere ist; ??brigens wird ich zLmSh rnbsp;^^^ Aggregatskonstanten ziemlich wenig beeinflussen. Beiden folgenden Ausf??hrungen sind jeweils zwei Zahlenwerte angegeben; der erste bezieht sich auf die Messungenvon Gr??neisen, der zweite, eingeklammerte, auf die von BridgmanAus den s,, haben wir mittels der Transformationsgleichungen diedurch Aufl??sung der Gleichungen (69) erhalten werden, die c,, bestimmt;daraus c^-c^,nbsp;und die Gr???Ÿen/, g und h der Gleichungen (55), welche

den Grad der Anisotropie ausdr??cken. Das Resultat findetsich in der Tabelle D 1; hier, wie ??berall im folgenden sind alle Gr???Ÿenin C. G. S. Einheiten geschrieben. D 1. Kristallkonstanten von Zink. Sil. 10 13 = ^33 tt =^12 â€ž =^13 â€ž =^44 gt;, = 8,0 (8,23)28,2 (26,38)-0,5 ( 0,34)â€” 6,05(â€”6,64)25,0 (25,0) Cll. 10-11=C33 Â? =tf =Cl3 Â? = C44 tt = 16,08(15,90)5,424 (6,214)4,31 (3,23)4,375 (4,815)4,00 (4,00) -- (cnâ€”C33)10-ii=(Cl3 C12) tt =/ Â? =S tt =h â€ž = 10,655(9,685)0,065(1,585)3,705(3,085)3,77(4,67)-3,245(-3,515) quot;) Hull u. Davey, Phys. Rev, 17, 1921. Gr??neisen, Z. f. Ph. 26, S. 235â€”249, 1924.Bridgman, Proc. Nat. Ac. of Am. 10, S. 411â€”415, 1924.Bridgman, Proc. Am. Ac. 60, S. 306â€”383, 1925.



??? Es zeigt sich, da?Ÿ Zink sehr stark anisotrop ist, die Voigtsche Theorieist hier also nur eine grobe Ann?¤herung.Die Rechnung ergibt nach (73) und (74): M = 1,4857(1,4163)N = 0,8230(0,8075), und die Diskriminante der Form l â€” My^ Ny^ hat den Wert: â€” = â€”1,085(â€”1,224). Die Integrale P und Q werden also berechnet nach den Formeln (88);wir erhalten: P = 1,7415 (1,6361)Q - 0,7920 (0,7188). Weiter ergibt (83) R = 0,2167 (0,1985).Aus den Gl. (84) folgt dann: D 2. Prim?¤res Aggregat von Zink. ÂŠu. 10-11 12,38 (12,67) (ÂŠ11 â€” ÂŠ33)10-11 1,755 (1,47) ÂŠ33 â€ž 10,525 (11,20) (ÂŠ13 â€” ÂŠla) â€ž â€” 0,53 (â€”0,46) ÂŠ12 tf 4,06 (4,24) f 1,01 (0,83) ÂŠ13 3,53 (3,78) 9 0,48 (0,37) ÂŠ44 3,92 (4,03) 0,165 (0,19) Vergleicht man diese Tabelle mit der vorigen, so sieht man, da?Ÿin D 2 die Unterschiede der Konstanten nach Gr??neisen und Bridgmanmeistens kleiner sind, als die Unterschiede in Dl. Das Aggregat istnoch anisotrop, wenn auch in viel geringerem Ma?Ÿ als der urspr??nglicheKristall. Wir bilden also nach II, Â§ 2 ein sekund?¤res Lamellenaggregat.Nach II, Â§ 3

w??rden wir auf die ÂŠft die Voigtsche Theorie anwendenk??nnen, wenn in Tabelle D 2 die Gr???Ÿen der letzten Spalte alle kleinw?¤ren den ^ik gegen??ber. Diese Bedingung ist nicht gen??gend erf??llt,wir w?¤hlen also den sichereren, wenn auch l?¤ngeren Weg, und wendennoch einmal die Formeln (84) an. Diesmal erhalten wir M = 0,14207 (0,09737)iV = â€”0,00774(0,01866),



??? also die Diskriminantenbsp;positiv. F??r diesennbsp;â€? Formeln (91) die 2aUenP und Q; die Bestimmung v^Zf quot;quot; .st wegen des kleinen Wertes von iV ^nbsp;-- ^ Â? -f^^ren wir P = f\\__ ?Ÿnbsp;dy =^gt;â– (1 W ...., a-r.v w-..,., ,93,Wir erhalten so: P = 1,0538 (1,0389)Q = 0,3664 (0,3574)i? = 0,1424 (0,1399) -n. so erhaltennbsp;^^ D 2agt; Sekund?¤res Aggregat von Zink. ist^slhn h \' Lnd nach ^ Vnbsp;Lamellen zu bilden Is Erl T\'^rnbsp;^^^nbsp;berechnen; das Ergebnis ist dasselbe, wenn wir einfach mittein, also ÂŠnbsp;.nbsp;â€žehmen. Aus den erhaltenen g und berechnen wir den Dehnungsmodul: g ^ (e 2(s:i) â€”(s,) w?¤hrend wir wie in (14) f??r den Torsionsmodul im folgenden % schreibenDaneben sind die Werte berechnet worden, welche die Voigtsche



??? Theorie, nach (8), (13) und (14), ergibt, wenn sie auf die sehr anisotropenZinkkristalle angewandt wird. D 3. Isotropes Zinkaggregat. nach Voigt neu g .10-1110-11 12,96 (13,14)4,135 (4,055) 11,71 (12,135)3,695 (3,925) g .10-11% .10-11 10,96 (11,23)4,415 (4,545) 9,94 (10,21)4,005 (4,10) Wie schon bemerkt worden ist, stimmen die Werte f??r (Â? und %,welche aus den Gr??neisenschen und den Bridgmanschen Konstantenberechnet sind, gut ??berein j viel gr???Ÿer ist der Unterschied zwischenden Ergebnissen der alten und der neuen Theorie. Die experimentellenDaten f??r Zinkaggregate k??nnen also zur Pr??fung der neuen Theoriebeitragen. Die empirischen Werte der ÂŽ und % sind den Landoltschen Tabellenentnommen und umgerechnet in das C. G. S. System; von den ?¤lterenhabe ich die Voigtschen hinzugef??gt. D 4. Zinkaggregate (empirisch). Nummer Forscher Material Temp. ÂŽ . 10-11 Z. 10-11 1 Gr??neisen II,gegossen 18Â° 12,85 â€” 2a Voigt tt â€” 10,51 3,80 2b Â?, gt;gt; â€” 10,03 3,85 2c gt;gt; â€” 9,95 3,62 2d gt;gt; ff â€” 9,97 3,95 3 â€” gewalzt â€” 7,3 â€”

10,4 â€” 4 Gr??neisen I, gegossen 18^ 8,23 â€” 5 Kikuta gezogen 25Â° â€” 3,59 6 Koch-Dannecker Draht 20Â° â€” 3,22 7 Jokibe-Sakai ff 24Â° â€” 3,02 8 Guye-Schapper tt 0Â° 2,38 Die Unterschiede sind auffallend; alle Ursachen f??r Abweichungen,die wir in II, Â§ 3 besprochen haben, sind wohl im Spiel, daneben nochder Einflu?Ÿ von Beimischungen. Besonders fallen Abweichungen von



??? der regellosen Verteilung der Achsenkreuze hier schwer ine n â€? u wegen der sehr gro?Ÿen Anisotropie der Onentierungen ganz andre Werte f??r @ und S: aufweisen Nach dem Arbehsplan am Ende des Kap. II untersuchen wir zuerstob D 4 isotrope Materialien enth?¤lt. F??r die Entscheidunrt kristalk vnn T^t Matenals. Als Gr??neisen aber 1924 die Ein- we den wir sehen, da?Ÿ ein bestimmtes anisotropes Agg LT,-quot;de! Um die Gl. (52) anwenden zu k??nnen berechnen wir zuerst den Kon,pressionsmodulÂ? = J(, 2ÂŽ,). Als â€ž5ghche WerteThrn wir a^ ^3nach der alten Theorie 3St = 21,25 (21,25)nach der neuen Theorie 3fl = 19,10 (19,985) also jedenfallsoder 3fl = 20,20 Â? 1,10 ^ = 0,050 Â? 0,003. F??r dieVoigtschen St?¤beerhalten wir also aus der Gl. (52)D 5. Isotropiepr??fung der Zinkst?¤be. Z. 10-11 berechnet Nummer . 10-11 Z. 10â€”11 gemessen 4,25 Â? 0,054,01 Â? 0,05 3.97nbsp;Â? 0,05 3.98nbsp;Â? 0,05 2a2b2c2d 10,5110,039,959,97 3,803,853,623,95



??? Gleichg??ltig ob man die alte oder die neue Theorie, die Gr??neisen-schen oder die Bridgmanschen Konstanten zu Grunde legt, in jedemFall findet man 2a und 2c stark anisotrop, 2b wenig anisotrop, w?¤hrend2d der Isotropiebedingung sehr gut gen??gt. Bei der Berechnung istdas Material als porienfrei betrachtet; ist das Material merklich por??s,so ist St kleiner, das berechnete % f?¤llt also noch gr???Ÿer aus, und 2a,2b und 2c sind noch deutlicher anisotrop, w?¤hrend bei einem um einigeProzente ver?¤nderten (Â?, der Stab 2d immer noch die Gl. (52) ziemlichgenau erf??llt. Es erscheint also durchaus erlaubt den Voigtschen Stab 2d an ersterStelle zur Pr??fung zu benutzen. Da erhalten wir: D 6. Pr??fung f??r isotropes Zink. 10-11 2:. 10-11 Empirischer WertBerechneter â€ž (alte Theorie)â€ž â€ž (neue â€ž ) 9,97 10,96 (11,23)9,94 (10,21) 3,95 4,415 (4,545)4,005 (4,105) Zieht man in Betracht, da?Ÿ die empirischen Werte wegen der Porosit?¤tmehr oder weniger erh??ht werden m??ssen, so ist die ?œbereinstimmungzwischen Erfahrung und neuer Theorie wirklich sehr gut. Die

andern Daten der Tabelle D 5 haben meines Erachtens wenigBeweiskraft; so weit sie solche besitzen, unterst??tzen sie eher die neue,als die alte Theorie. Â§ 5. Bcrcchnung und Pr??fung der Aggregatskonstanten vonCadmium. Neben Zink ist Cadmium das einzige hexagonale Metall, dessenKristallkonstanten bis jetzt gemessen worden sind. Die Verh?¤ltnisseliegen wie beim Zink, nur noch ung??nstiger. Wiederum liegen Messungenvon Gr??neisen und Bridgman vor. Ihre Sj^ stimmen besser ??berein,aber die Abweichungen bei S33 und haben dasselbe Vorzeichen;w?¤hrend beim Zink die Unterschiede in ÂŽ und Z sich teilweise auf-heben, werden sie hier vergr???Ÿert; au?Ÿerdem tritt hier ein Unterschiedin S44 auf. Das Resultat ist 10 % Unterschied zwischen den Wertenvon (Â? und Z nach Gr??neisen und Bridgman. Die Rechnungen laufenparallel mit denen beim Zink; nur findet man bei den BridgmanschenZahlen iV = 0,01067, also die Diskriminante M^ â€” 4N positiv. F??r



??? P und Q kann man hier die Formeln (91) anwenden, wegen des kleinenWertes f??r N l?¤?Ÿt sich aber R nicht aus (83) berechnen. Wir m??ssenalso einen andern Weg w?¤hlen. Bei der Zerlegung Ny*^ {1nbsp;= â€”iM VM^â€”4iV,sehr klein ( 0,0182); mit einem Fehler unter 0,003 kann man also schreiben 1__1 â€” SY 1 â€” My^ Ny*~ 1 â€” T\'Yund die Rechnung gibt: (93a)(93b) ^ â€” 72 i f2 U..... 52 7-2_ C2 Q = -fAi-i u) j,, 52 3-2_ C2 ^ = ^72--f^i-hT^-l U) . . .(93c) rÂ? TT r ^y 1 1 1 T. ^ -J 1 _ T-Y- ^ ^ T^ wo (93d) Die Tabelle: E. 1. Kristallkonstanten von Cadmium. 1013 12,3 (12,9) Cn. 10-11 12,06 (10,92) (Cii C33), 10- -11 6,924 (6,316) ^33 35,5 (36,9) C33 ,, 5,136 (4,604) (Cl3â€”Cis) tt â€”0,\'397 (â€”0,224) -1,5(-1,5) C12 tt 4,82 (3,98) ?’ tt 3,933 (4,040) â€?^13 lgt; -9,3(-9,3) tt 4,423 (3,756) S tt 3,536 (3,816) 544 )gt; 54,0(64,0) C44 tt 1,852 (1,562) h tt 0,942 (1,764) wo wie vorher die ersten Zahlen von Gr??neisen die zweiten vonBridgman herr??hren\'ÂŽ), zeigt wiederum sehr gro?Ÿe Anisotropie. DieRechnung liefert: E 2. Prim?¤res Aggregat

von Cadmium. 10-11 9,225 (8,215) (Sil -S13). 10-11 1,085 (1,01) ÂŽ33 tt 8,14 (7,205) (613 â€” (S12) tt â€” 0,405 (- -0,38) (5I2 tt 4,535 (3,925) f tt 0,655 (0,63) ^13 tt 4,13 (3,545) S tt 0,25 (0,25) ÂŠ44 tt 2,22 (2,02) Ii tt 0,225 (0,25) Ken-(Si2) tt 2,345 (2,145) quot;) 1.0. beim Zink (III, Â§ 5).



??? Wiederum ist die Voigtsche Ann?¤herung wahrscheinlich, aber nichtganz sicher erlaubt, wir wollen also weiter rechnen, und finden E 2a. Sekund?¤res Aggregat von Cadmium. Sil. 10-11 8,818 (7,831) ÂŽ33 tt 8,802 (7,815) tt 4,267 (3,677) ÂŠ13 tt 4,263 (3,672) ÂŠ44 tt 2,27 (2,075) Daraus folgt schlie?Ÿlich E 3. Isotropes Cadmium. nach Voigt neu ÂŠ.10-11ÂŠ1 ,, 9,625 (8,58)4,62 (3,95) 8,81 (7,825)4,265 (3,675) Â? â€ž 6,63 (6,09)2,50 (2,32) 6,025 (5,475)2,27 (2,07) Hier ist der Unterschied zwischen den Gr??neisenschen und Bridg-manschen Werten von derselben Gr???Ÿenordnung, wie der zwischenden Ergebnissen der beiden Theorien; die alten Werte nach Bridgmanstimmen fast ??berein mit den neuen nach Gr??neisen. Auch die em-pirischen Daten liegen weit auseinander: E 4. Cadmiumaggregate (empirisch). Nummer Forscher Material Temp. ÂŽ. 10-11 2.10-11 la Voigt gegossen â€” 6,94 2,42 Ib tt tt â€” 7,06 2,42 Ic tt tt â€” 6,94 2,42 Id tt tt â€” 6,78 2,41 2 Gr??neisen tt 18Â° 5,00 1,93 ÂŽ8) 3 Koch Draht 20Â° â€” 2,26 \'â€?) aus g und /j. unter Voransetzung der Isotropie mit

Gl. (51) berechnet.



??? Die Isotropiepr??fung wird ausgef??hrt wie beim Zink, und jetzt auchauf den Gr??neisenschen Stab angewandt. Wir erhalten aus E 3: nach der alten Theorie 3?Ÿ = 18,865 (16,48)nach der neuen Theorie 3?Ÿ = 17,34 (15,175) also jedenfalls 3?„ = 17 Â? 1,90 oder ~ = 0,060 Â? 0,007. Daraus folgt mittels der Gleichung (52): E 5. Isotropiepr??fung der Cadmiumst?¤be. Nummer 10-11 3:. 10-11 berechnet Z. 10â€”11 gemessen la 6,94 2,69 Â? 0,05 2,42 Ib 7,06 2,74 Â? 0,05 2,42 lc 6,94 2,69 Â? 0,05 2,42 Id 6,78 2,62 Â? 0,05 2,41 2 5,00 1,86 Â? 0,03 1,93 Diesmal ist die ?œbereinstimmung schlecht bei den Voigtschen St?¤ben,ziemlich gut bei dem Gr??neisenschen Stab. Bei der Berechnung ist Stgenommen f??r porienfreies Cadmium; Porosit?¤t w??rde das berechnete %wiederum vergr???Ÿern, also die erste ?œbereinstimmung noch schlechter,die zweite noch besser machen. Au?Ÿerdem scheint eine spezielle Orien-tierung der Kristalle beim Voigtschen Cadmium nicht unwahrscheinlich.Cadmium zeigt beim Erstarren eine starke Kontraktion; um

Porienzu vermeiden hat Voigt daher beim Gie?Ÿen das Metall unten langsamerstarren lassen, w?¤hrend es oben fl??ssig gehalten wurdeÂŽ\'). Hier liegenalso die Verh?¤ltnisse g??nstig f??r eine spezielle Orientierung der Kristalle. Gr??neisen berichtet nichts ??ber derartige Ma?Ÿnahmen, hier kannman daher eine schnellere Erstarrung mit nahezu allgemeiner Orien-tierung vermuten, wobei dann wegen der erw?¤hnten Kontraktionm??glicherweise Porien, vielleicht gar Kan?¤lchen in der Stabsachse auf- quot;) Voigt, Wied. Ann. 48, 1893, S. 677.



??? treten k??nnten. Falls der von Gr??neisen benutzte Stab noch bei derPhys.-Techn. Reichsanstalt aufbewahrt wird, k??nnte die Vermutung??ber seine isotrope Struktur noch nachgepr??ft werden. F??r die Pr??fungder neuen Theorie kommt jedenfalls nur Stab 2 in Betracht. E 6. Pr??fung f??r isotropes Cadmium. @. 10-11 S. 10-11 Emp. WertAlte TheorieNeue â€ž 5,00 6,63 (6,09)6,025 (5,475) 1,93 2,50 (2,32)2,27 (2,07) Die Tabelle E 6 zeigt, da?Ÿ auch hier die neue Theorie erheblich besserstimmt als die alte; ist die Vermutung ??ber die Porosit?¤t der Gr??n-eisenschen St?¤be richtig, so sollten beide empirische Zahlen erh??htwerden, das (g wegen der axialen H??hlung wohl am meisten â€” voll-st?¤ndige ?œbereinstimmung zwischen Erfahrung und neuer Theorie istalso nicht ausgeschlossen.



??? UNTERSUCHUNG DES ALLGEMEINENAGGREGATS REGUL?„RER KRISTALLE. Â§ 1. Transformation der c\' j. Sylmet??rmlTnbsp;Lamellenaggrega, von regul?¤rer ZT Die Transformationsformeln der sind den Formeln (59) inauonsschema sei jetzt: X Y z xÂ? Ol ?Ÿl n yo Â?2 ?Ÿ2 y-i ZO Â?3 ?Ÿz yz ........ (94) Die Zo-Achse hat nicht, wie im vorigen Kapitel, eine ausgezeichneteBedeutung sie ist gleichwertig mit den beiden anderen Hauptachsen.Wohl ist die Z-Achse nach wie vor senkrecht zur Lamellenebene. Esla?Ÿt sich also erwarten, da?Ÿ in den Formeln f??r die Aggregatskonstantenstatt des einzelnen ^ der Formeln (81) die 3 Cosinus ^ und y, gleich-wertig auftreten werden. In der Tat treten 2 Kombinationen auf, diegegen Vertauschungen der y^ invariant sind: y^ = r2W .......(95) z = .................. Wir f??hren Abk??rzungen ein analog denen im III. Kap.: Cu = a, undnbsp;............(97) Ca â€” C12 â€” 2ci4 = ?’............(98) wo ?’ jetzt allein ein Ma?Ÿ ist f??r die Anisotropie des Kristalls, undwollen a, c und ?’ als unabh?¤ngige elastische

Konstanten benutzen. Inderselben Weise wie im III. Kap. erhalten wir f??r die elastischen



??? Konstanten c\'ffc der willk??rlichen Lamelle, bestimmt im Bezug aufdas raumfeste Achsenkreuz XYZ, die Transformationsformeln: c\'n = a-f fSa,^nbsp;c\'23 = (a - 2c - ?’) f^?Ÿ^W c\',, = a-f fS?Ÿf\'nbsp;c\'31 = (a - 2c - ?’) fSy^a^ c\'33 = a - ?’ nbsp;= (a - 2c - ?’) c\'44 = c m^y^nbsp;c\'i4 = c\'se = f^a^?Ÿ.yi c\'55 = c fSy^ai\'nbsp;c\'25 = c\'64 = f^?Ÿi\'yiai = c fSa^?Ÿ^nbsp;c\'36 - c\'45 = f2y^a,?Ÿi =nbsp;c\'35 = ,3a,........(99) F??r die s\'.-fc k??nnten wir analoge Formeln hinschreiben. Im n?¤chsten Â§wird sich aber ergeben, da?Ÿ wir nur eine der Funktionen 95,^ derFormeln (34), n?¤mlich das (pes brauchen werden, au?Ÿerdem ist dievierreihige Determinante im Z?¤hler des Â?pee ziemlich einfach. Es lohntsich daher nicht, die ganze Rechnung in den s\'i^ durchzuf??hren. Â§ 2. Die Konstanten des Lamellenaggregats. F??r das allgemeine prim?¤re Lamellenaggregat gilt nach wie vor dieFormel (38): =nbsp; Zx\') ViiiXx yvV nbsp;â€” AXxVv) nbsp; yv)- Das Aggregat hat wiederum axiale Symmetrie, die Konstantenwerden bestimmt durch die Gl. (40)â€”(44): 2 1 Tnbsp;rt- _ â€” = ?–33,nbsp;t^ii--â€”

9P11Â? i?¤-33nbsp;\'a-33 ^ = ^44Â?nbsp;â€” ÂŠ12) = T\'ee. ÂŠ44 ÂŠ13ÂŠ33 = e 31Â? Die 5 Aggregatskonstanten sind jedoch jetzt nicht von einander un-abh?¤ngig, sie h?¤ngen ja alle von den 3 Kristallkonstanten a, c und ?’ ab.Es m??ssen also zwischen den Sit noch Beziehungen bestehen. Solchefolgen sogleich aus der Kompressionsbedingung, von der schon in II, Â§ 3



??? die Rede war. Allseitig gleicher Druck P erzeugt bei regul?¤ren Kristallen eine gleichf??rmige Kompression p, der Kompressionsmodul ?Ÿ = ^ istbestimmt durch: Cji 2CI2?nbsp;(100) also nach (97) und (98) 3?Ÿ = 3a â€”4c â€”2/..........(101) F??r das axiale prim?¤re Aggregat gilt nach den Hookeschen Glei-chungen P = (Sâ€ž 4- Und P = (2ÂŠ13 ÂŠ33)P und wir erhalten: ÂŠU ÂŠ12 ÂŠ13 = 3?„,........(102) 2ÂŠ13 ÂŠ33 = ........ . (103) Somit bleiben zu berechnen ??brig (Ksa, ÂŠ44 und ÂŠgg = KÂŠii â€” ÂŠ12).Die Rechnung ergibt ziemlich leicht: = c^-h 2yjcf-h 3xP................(104a) ^44 ^55=2c(a-?’) /(a_nbsp; 2c/2gt;,^ fnbsp;j2(l _ j, .2) (104b) lt;Pes = cJ -F /[{ac2 f(a â€” c â€” ?’) (2ipc nbsp;-f 2f(a â€”câ€”?’) {cla^?Ÿ^ai?Ÿiy^^i^ xf^ak?Ÿkai?Ÿi)]^ . (104c) In diesen Formeln ist iz^k^l, S dr??ckt eine Summation ??ber3 Glieder aus. A bedeutet wie immer die Hauptdeterminante (24), siehat hier folgenden nur von den abh?¤ngigen Wert: J =ac2-|-v^c/(2a â€”2câ€”?’) ;^f(3a â€”3c â€”2/) . .(105) Die Mittelung wird auch hier zuerst ausgef??hrt ??ber alle Lamellenmit

gleichen Dabei benutzen wir die Formeln: ^hMi =nbsp; YhW)........(106)



??? w?¤hrend aus den Definitionen von xp und (95) und (96), folgt: = â€”2;C............(107) So erhalten wir Mittelwerte f??r ^33, und 9766Â? genommen ??beralle Lamellen mit denselben wobei A nach (105) einen festen WertaufweistÂ? Nachher mu?Ÿ dann integriert werden ??ber alle Richtungender Lamellennormale im System X\'^Y^Z^^ Wir schreiben f??r das Fl?¤chen-element der Einheitskugel da und erhalten dann 1 1 rc2 2yjcf 3xp ^ ^ ^ W-^-.........(108^) -2-â€? â™? \'(108b) (108c) Zwischen den Gl. (108a)â€”(108c) besteht noch eine einfache Beziehungdie hervortritt wenn man f??r A die Form (105) einf??hrt und die 3Gleichungen (108) bzw. mit a(3a â€”2/), 4c(2c /) undâ€”8 multi-pliziert. Addition ergibt sodann: = ...,109, Die Gl. (108) und (109) gelten auch f??r jedes spezielle Aggregat mitfesten Werten von tp und Xr nur fallen aus den Formeln (108) die Faktoren^, die Integralzeichen und da fort; bei der Behandlung der speziellen Aggregate im V. Kap. werden wir die so vereinfachtenGleichungen benutzen. Jetzt kehren wir zum allgemeinen Aggregat zur??ck. (109) tritt andie Stelle

der Gl. (108c), es bleiben also noch die Integrale (108a) und(108b) zu berechnen ??brig. Wir schreiben: --~ = M........(110a) P{3a â€” 3c â€” 2f) ---- = N........(110b)



??? f l 1 f_ifda 4jiJ 1 471J l Myj Nxnbsp;(111b) Das dritte Integral, das zu den Integralen der Formeln (108) beitr?¤gt - r Vi f ^^^quot; J 1 Myj N\'x\' ^^^^ ausdr??cken in J und L mittels der Formel: JLnbsp;1 ^^J nbsp;(112) ttr J__3acâ€”7c(3c 2/) â€” ÂŠ33 ac{3a â€” 3c~2f) ...............(113a) ^ = Jac(6a-3c-4f) 2ac\\3a~3c â€” 2f)---- (113b) zusammen mit 2ÂŠi3 = 3a-4c-2/-(S33........(n3d) 2(ÂŠn ÂŠ12) = 3a â€” 4c â€” 2/ ÂŽ33........(113e) die aus (109, (101), (102) und (103) folgen. Die Formeln sind betr?¤chtlich einfacher als die analogen Gleichungen(84) des hexagonalen Systems; die Berechnung der Integrale ?’ und List hier aber viel umst?¤ndlicher als die der P und Q im Kap. III.F??r die Bestimmung der / und L gehen wir aus von den Formeln: (quot;^sirfiP o, cos2Â? wdw = (2P- 1) (2p-3)...l(2g-l) (2g-3)... 1 .^rinbsp;(p 9)(p gâ€”1)........1.2f Â?-i und ftin^p itf cos^ ??rf?? = _P(P-l)........_, {nbsp;quot; ^ (2p 2g 1) (2p 2g - 1) ... . (2g 1)\' die aus der elementaren Integralrechnung folgen. und setzen: da__ Mxp nbsp;.........(lila)



??? Aus diesen Formeln lassen sich endliche Reihen ableiten f??r^^?’ rxda, ~?’ rx\'da, u.s.w. Hierbei schwankt das y^ im Integrationsgebiet zwischen 0 und i mit dem Mittelwert i das schwankt zwischen 0 und ^ mit dem Mittel-wert Bei den Kristallen, deren Anisotropie ?’ nicht allzu gro?Ÿ ist gegena und c, sind nach (110) M und N klein gegen 1. Hier k??nnen wir und mit gro?Ÿer Ann?¤herung die Reihe schnell abbrechen. Ist die Aniso-tropie aber gr???Ÿer, wie beim Gold und besonders beim Messing, sowerden M und N gro?Ÿ, bei Messing ist z.B. M = -2,956. In der obigenReihe kann daher My) in einzelnen Kristallen nahezu den Wert 1 erreichenund sein Mittelwert ist ungef?¤hr 0,6, die Reihe ist also unbrauchbar.Wir f??hren darum ein: P-^nbsp;..........(114a) 1=-h â€” X..........(114b) wo p in absolutem Wert nie i, q nie ^ ??bertrifft, und schreiben: _\\___\\_1 1 I Mxp Nx 1 W ^N~Mp-Nq~ 1 ^N\' l-M\'p~N\'q Sodann erhalten wir: r danbsp;1 ^ 47zJ l Mxp-\\-Nx~l iM ^N M\'sPg . . . . N\'Qo 2M\'N\'Qi 3M\'WQ^-\\- . . N\'^R, SM\'N\'^R, 6M\'Wi?, . , ..............quot; . .] (115) In dieser Reihe, die

beim Messing nach rechts und nach unten biszum 8. Glied inkl. fortgesetzt werden mu?Ÿ, bedeutetnbsp;\' ...........(116a) ...........(116b) ..........(116c) u.s.w.



??? (117a) 1 . ........(117b) Die U.S.W sind feste Zahlen, die Berechnung ist ziemlich zeit-raubend. In der Tabelle F gebe ich diese Zahlen so weit sie beim Messingbenutzt werden:nbsp;^ M M\' = 1 iM ^ijNN N\' = F. Hilfsintegrale bei regul?¤ren Kristallen, 3,3333.10-2^2= 8,730 .10-34,16 .10-41,348 .10-1 â– P5=â€”6,8 .10-6P6= 2,57 .10-Â?P,=â€”1,3 .10-7 Qo= 8,9947.10-3Qj= 3,928 .10-43,031 .10-59,71 ,10-6Q4= 4 .10-8Q5= 2,0 .10-7 Q6=â€”1,1 .10-8 1,9000.10-4^1= 5,1 ,10-7^2= 1,617 ,10-61,0 ,10-8Ri= 2,65 .10-8 i?5=â€”1,0 .10-0 5o = 2,497,10-6= 1,385,10-7^2=1,82 ,10-Â?^3=4,06 ,10-9^4 = 3,9 ,10-10 To = 5,135.10-8^1 = 2,07 .10-07\'2 = 8,53 ,10-107^3 = 4,11 ,10-10 Po= 7,5 ,10-109,6 ,10-112,3 ,10-11 1^0= 1,9 .10-11Vi= 2,4 .10-12 6 .10-13 In der GL (115) werden die Daten dieser Tabelle und die besonderenWerte der Gr???Ÿen M, N, M\', N\' f??r jedes einzelne Metall eingef??hrt-so erh?¤lt man den hinzugeh??rigen Wert von J.F??r L gilt: j - ^ [nbsp;_ , r 471J 1 Myj Nx ~ also 1 l ^M ^JV t^i nbsp; ......... ....................... woraus L

berechnet wird.nbsp;^^^^^ Die Formeln f??r die Konstanten des prim?¤ren Aggregats m??ssenf??r kleine Anisotropie die Voigtschen Formeln als 1. Ann?¤herungergeben. Dies ergibt wiederum, wie im IIL Kap., eine Pr??fung dererhaltenen Formeln.Wir gehen aus von (108a) und (108b) zusammen mit (113c, d, e). 1nbsp;pda 1 W -^N\'^tij 1 â€” M\'p â€” N\'lt;,



??? Das ?’ wird klein, Potenzen von ?’ werden vernachl?¤ssigt, es wird alsoann?¤hernd: M = alsound (119a) 2fia-c) ac Nach (108a) gilt: ÂŠ33 a ÂŠ33 = 0 1-1-^ =a-f/ Nach (108b) gilt: ^ = ?’ V^/(Â?-2c)]nbsp;= iac- yjaf) 47t woraus folgt: ( f\\ -c if Cf (113c) ergibt 4(a;xi-Si^) = (3a-2/) (l 4(2c ?’) (l â€”â€?-3Â? = 8c 1/also â€”ÂŠ12) = c J ?’.........(119c) Aus (113d) ergibt sich ÂŽi3 = ia C12 â€” ^633 = C12 i/ ...... (119d) Aus (113e) mn ÂŠxa) = ia ^c,, nbsp; Ic,, - ^f und aus dieser Gleichung und (119c) ÂŠ11 = ia ici2 c -iV/ . ........(Ii9e) ÂŠ12 = iÂ? â€” c â€” ^f........ , (119f) F??hren wir in die Gl. (119) ??berall a, c und ?’ aus (97) und (98) ein,so erhalten wir: ÂŠ11 = ÂŠ33 = i(3cii 2ci2 4C44),....... (120a) ÂŠ12 = ÂŠ13 = i(cn 4ci2 â€” 2C44),.......(120b) ÂŠ44 = KÂŠii â€” ÂŠ12) = Kcn â€” C12 3C44),.... (120c)also wiederum die Voigtschen Formeln (8). ÂŠ44 = c (119b)



??? Â§ 3. Berechnung und Pr??fung der Aggregatskonstanten vonWolfram. Wolfram war das erste regul?¤re Metall, dessen Kristalmoduln sÂ?gemessen worden sind, und zwar von Bridgman im J. 1924. SeineMessungen ergeben: G 1. Kristallkonstanten von Wolfram. Sn - 10 13 2,534 Cn.lO-n 51,27 â– ^12 â™? ygt; â€” 0,726 ^12 . Â? 20,58 ^44 â€? it 6,55 C44 â€? n 15,27 f . â€ž 0,15 Nach dieser Tabelle ist die Anisotropie der Kristalle au?Ÿerordentlichklein, zwischen alter und neuer Theorie kann also kaum ein merklicherUnterschied bestehen. In der Tat ergibt die Rechnung: G 2. Prim?¤res Aggregat von Wolfram. ÂŽn. 10-11 51,22 ÂŽ33 â€? tt 51,23 ÂŽ12 â™? tt 20,62 ÂŽ13 â™? tt 20,60 ÂŠ14 â™? tt 15,30 1(ÂŠ11 â€”ÂŠ12) â€ž 15,30 Das prim?¤re Aggregat ist also praktisch schon isotrop, und wir erhaltenohne weiteres, wenn wir noch die Voigtschen Formeln anwenden: G 3. Isotropes Wolframaggregat. nach Voigt neu ÂŠ . 10-11 51,21 51,22 ÂŠ1. 10-11 20,61 20,61 e . 10-11 39,4 39,4 Z . 10-11 15,3 15,3 Die empirischen Daten

k??nnen also nicht beitragen zur Vergleichungder alten Theorie mit der neuen. Bridgman, 1. c. beim Zink.



??? Diese empirischen Daten liegen ziemlich weit auseinander. In derTabelle G 4 bringe ich die Werte aus Landolt-B??rnstein (1. Erg?¤nzungs-band 1927) umgerechnet in C. G. S.-Einheiten, zusammen mit denen,die von Koenigsberger gemessen und zitiert worden sind. G 4. Wolframaggregate (empirisch). No. Forscher Material Temp. ÂŽ . 10-quot; Â?.10-quot; 1 Pintsch Einkristalldr. 18,0 2 Gei?Ÿ tt R.T. 38,8 16,5 3 Pintsch tt 15,5 4 Lax â€” R.T. 37,2 _ 5 Dodge gegl. Draht 20Â° 35,5 _ 6 Sch??nborn gezogen R.T. 32,5â€”36,5 â€” 7 Jokibe-Sakai gez. Draht 19Â° â€” 13,2 8 Koenigsb. Nymegen-Dr. â€” â€” 16,2â€”20 9 Osram- â€ž â€” â€” 7,1 â€” 16,8 10 tt Siemens- â€ž â€” â€” 8,6 11 Gei?Ÿ-v.Liemptquot;) Philips- â€ž â€” â€” 17 Zur Isotropiepr??fung bietet nur Stab 2 gen??gende Daten. Das Resultatist vorauszusehen, das Material ist ja faktisch ein Kristall, also anisotrop.In der Tat ergibt die Formel (52), wenn wir nach (G 3) 3?„ = 92,4nehmen: Zber = 15,4.10quot;nebennbsp;= 16,5 .10quot;, also einen ziemlich gro?Ÿen Unterschied. Es liegt also kein erwiesener-

ma?Ÿen isotropes Material vor, die Pr??fung unsrer Theorie ist alsovorl?¤ufig an Wolfram nicht m??glich. Die Besprechung von Wolfram k??nnten wir damit abschlie?Ÿen. Dieschlechte ?œbereinstimmung zwischen den verschiedenen in G 4 mitge-teilten Resultaten hat mich aber zu den folgenden Erw?¤gungen veranla?Ÿt,die vielleicht zur Erkl?¤rung dieser Tatsache beitragen k??nnen. Die Bridgmanschen Kristallkonstanten haben einen ganz besonderenCharakter: das Kristall ist fast genau isotrop. Daraus folgen mehrereEigenschaften der Aggregate: Koenigsberger, Z. f. Phys. 40, S. 719â€”741, 1926.Gfeiss u. V. Liempt, Ann. der Phys. 77, S. 105, 1925.



??? Einkristallst?¤be der verschiedenen Orientierungen sollen nahezudieselben Werte f??r @ und % aufweisen: (g = 39,6 .10quot;, % = 15,3 . 10quot;. 2ÂŽ. Multikristalle sollen ungef?¤hr dieselben Werte ergeben, falls sieden Bedingungen von II, Â§ 1 gen??gen und zwar unabh?¤ngig von denKristallorientierungen, sowohl allgemeine Aggregate als solche mitVorzugsorientierungen. Porosit?¤t im weitesten Sinne, wie auch dieGleitungen, die bei st?¤rkerer Beanspruchung des Materials baldauftreten, erniedrigen die Moduln, f??r Aggregate sollen also 39,6 und15,3 Maximumwerte der Moduln darstellen. Beide Erwartungen sind, wie aus der Tabelle G 4 hervorgeht, ziemlichschlecht erf??llt. Von den drei Einkristalldr?¤hten haben zwei Torsions-moduln um 8 % und 16 % zu hoch, von den 12 Multikristalldr?¤hten,wor??ber Koenigsberger berichtet, haben 7 ein %, das 6 % bis 30 %zu hoch liegt. Will man nicht alle diese Messungen an Materialien vonverschiedener Herkunft disqualifizieren, so bleibt wie mir scheint nurdie Folgerung ??brig, da?Ÿ

die Bridgmanschen Kristallkonstanten vonWolfram ziemlich ungenau sind. Dies scheint auch aus anderen Gr??ndennicht unwahrscheinlich. Erstens hatte Bridgman nur einen einzigenKristall zur Verf??gung, und es ist bekannt, da?Ÿ die Einkristalle ??ftersgest??rt sind; vielleicht deutet die Kr??mmung, die nach Bridgman beidem Einkristallstab anwesend war, auf eine solche St??rung. Zweitenserscheint der Kompressionsmodul des Wolframkristalls etwas zu niedrig.Bridgman selbst hat die Kompressibilit?¤t gemessen an 2 verschiedenenVielkristallen von Wolfram ^i). Er erhielt bei einem geschmiedetenStab von der Dichte 19,137 f??r Â? in CG5-Einheiten 2,99. lO-is, beieinem gezogenen Draht von der Dichte Â? 19,48 Â? = 3,21 .10â€”13,Die Kompressionsmoduln der beiden Aggregate sind bzw. 33,4.10quot;und 31,2 . 10quot;. Den kleineren Wert des Moduln beim dichteren Materialerkl?¤rt er durch den Einflu?Ÿ der gr???Ÿeren Menge amorfen Materialsim gezogenen Draht, wodurch die Kompressibilit?¤t vergr???Ÿert wird. F??rdas

Wolframkristall sollte ?Ÿ also mindestens gleich 33,4 . 10quot; sein oder = 100,1 . 10quot;. Am Einkristallstab erh?¤lt Bridgman aber 3?„ = -f 2CI2 = 92,4 . 10quot;,es scheint plausibel, da?Ÿ dieser Wert und daher die BridgmanschenKristallkonstanten iedenfalls ge?¤ndert werden m??ssen. ?œbrigens gilt Â?i) Bridgman, Proc. Am. Ac. of Arts and Sciences, 58, S. 163, 1922â€”\'23.



??? dies bei den gro?Ÿen Schwierigkeiten der elastischen Messungen wohlf??r mehrere Kristallkonstanten, man sieht ja aus den Tabellen D 1und E 1, wie weit die Werte derselben Konstante bei verschiedenenForschern aus einander gehen k??nnen. So mu?Ÿ man beim Cadmiumdie Bridgmanschen Konstanten c,, C33, C12 und c^ bzw. um 10, 11, 21und 19 % erh??hen, beim Zink das C33 13 % kleiner und das Cja 33 %gr???Ÿer machen, um die entsprechenden Gr??neisenschen Werte zuerhalten. Mit ?„nderungen derselben Gr???Ÿenordnung in den vonWolfram k??nnen wir so ziemlich alle Moduln der Tabelle G 4 erzeugen.Die Summe c, 2ci2 soll etwa 8 % gr???Ÿer werden, es scheint abernach der Tabelle G 4 erw??nscht, das berechnete @ zu verkleinern.Versuchsweise w?¤hle ich: Cji 10 % kleinernbsp;als bei Br. also Cn = 46 . 10quot;, C12 27 % gr???Ÿernbsp;â€ž â€žnbsp;â€ž , â€ž Cjg = 27 . 10quot;,C44 17 % ffnbsp;ff ffnbsp;ff f ff C44 â€” 18.10quot;. Das Kristall wird sodann stark anisotrop (?’ = â€” 17), was wegender verschiedenen Moduln bei

Einkristalldr?¤hten notwendig erscheint.Es folgt aus dieser Annahme:f??r den Kompressionsmodul: 3?Ÿ = 100 . 10quot; in ?œbereinstimmung mit der Messung von Bridgman;f??r den Einkristallstab parallel der Hexaedernormale: (5 = 27,4.10quot;, 2=18.10quot;; f??r den Einkristallstab parallel der Oktaedernormale: ÂŽ = 45,8.10quot;, 2=12,3.10quot;; f??r das allgemeine, isotrope Aggregat, angen?¤hert nach der VoigtschenTheorie: (5 = 38,6 . 10quot;, 2 = 14,6 . 10quot;. Wo Koenigsberger die m??glichen Fehler seiner Torsionsmodulnauf 8 % sch?¤tzt, gen??gt die gew?¤hlte Ab?¤nderung der BridgmanschenKristallkonstanten um alle plausibelen empirischen Werte der TabelleG 4 zu erkl?¤ren. Die 2 extremen Werte, die Koenigsberger f??r 2 erh?¤lt,7,1 und 8,6, werden von ihm erkl?¤rt durch die Annahme einer gewissenPorosit?¤t, n?¤mlich einer Aufspaltung des Drahtes, auf die schon Arkel



??? und van Liempt hingewiesen haben. Im ??brigen Hegen seine % allezwischen 14,9 und 20, k??nnten also zu isotropen Aggregaten mit ev.Beimischung von Kristallen mit Hexaederorientierung geh??ren. Die vorhergehenden Betrachtungen beanspruchen nicht, bessereKristallkonstanten zu berechnen als die von Bridgman gemessenen;sie wollen nur andeuten, wie man die Kristallkonstanten den Aggregats-konstanten anpassen kann. Nur wenn letztere sehr genau bekannt sindund auch die Verteilung der Orientierungen im Aggregat einigerma?Ÿenfeststeht, k??nnte man solchen indirekten Bestimmungen der Kristall-konstanten etwas gr???Ÿeren Wert beilegen. Bei Kupfer habe ich denVersuch einer solchen Bestimmung gemacht, ??ber das Ergebnis werdeich an andrer Stelle berichten. F??r Wolfram scheint mir das Ergebnisdieses Paragrafen, da?Ÿ die Kristallkonstanten, die Bridgman gemessenhat, Fehler von mehreren Prozenten enthalten m??gen, und da?Ÿ seineCi2 und C44 wahrscheinlich bedeutend zu klein sind. Â§ 4.

Bcrcchnung und Pr??fung der Aggregatskonstanten vonAluminium. Hier wie bei den folgenden Metallen liegt nur eine Messung vonKristallkonstanten vor, eine m??gUche Ungenauigkeit derselben trhtnicht sofort ans Licht. Goens der die Si^ der Al.Kristalle gemessen hatsch?¤tzt den m??glichen Fehler auf 1 %; in c^ und c^^ wird der Fehlernoch vergr???Ÿert. Die Anisotropie der Kristalle ist gering, aber merklichgr???Ÿer als bei den Bridgmanschen Konstanten des Wolfram, wie sichergibt aus H 1. Kristallkonstanten von AI. Sil- 10quot; 16,7 Cn. 10-11 10,54 via tt -5,6 C12 gt;t 5,84 S44 tt 35,7 C,14 tt 2,80 ?’ tt â€” 0,90 Daraus folgt nach ziemlich kurzer Rechnung, (da die Reihen (115)und (118) bald abgebrochen werden k??nnen) Arkel u. van Liempt, Ann. der Phys. 77, S. 105â€”108, 1925.quot;) Goens, Die Naturwiss. 17, S. 180, 1929.



??? H 2. Prim?¤res Aggregat von AI. (Â?u. 10-11 10,89 ÂŠ33 ft 10,89 ÂŠ12 tt 5,67 ÂŠ13 tt 5,67 ÂŠ14 tt 2,61 KÂŠii â€”ÂŠ12) ,, 2,61 Wiederum ist das Aggregat praktisch isotrop, es folgt ohne weiteres:H 3. Isotropes AI. nach Voigt neu ÂŠ . 10-11 10,90 10,89 ÂŠX. tt 5,66 5,67 e . tt 7,03 7,005 % . 2,62 2,61 Auch hier ist der Unterschied zwischen der alten und der neuenTheorie zu klein, um zwischen ihnen zu w?¤hlen; sie k??nnen nurgemeinsam gepr??ft werden. Beim Aluminium liegt zur Pr??fung viel Material vor und die meistenDaten liegen nicht allzuweit auseinander. H 4. AI. Aggregate (empirisch). Nummer Forscher Material Temp. Dodge gegl??ht 20Â° Baumann â€” _ Gr??neisentt gezogentt 18Â° tt Voigttttt tt gegossentttt tttttt Schaefer tttttt 20Â° Koch-Dieterle Band, gegl??ht 17Â° Kikuta Draht, â€ž 11Â° Koch tt tt 20Â° Guye-Schapper â€” 0Â° Jokibe-Sakai Draht, gegl??ht 25Â° ÂŽ. 10-11 2:. 10-11 123a3b3c4a4b4c4d4e4f 5 6 7 89 10 7,507,22â€”7,36 7.056,987,18 6.066,806,376,376,456,676,216,04 2,67 2,69 2,36 2,645 2,59 2,49 2,56 2,625 2,29 2,752,712,612.48



??? Im allgemeinen ist die ?œbereinstimmung mit der Theorie nichtschlecht. Um genauer nachzupr??fen untersuchen wir erst, wo esm??glich ist, die Isotropie mit 3?Ÿ . 10quot;quot; = 22,22. H 5. Isotropiepr??fung der AI. St?¤be. Nummer 10-11 2 . 10 â€”11 berechnet %. 10 â€” 11 gemessen 3b 6,98 2,60 2,67 3c 7,18 2,68 2,69 4a 6,06 2,22 2,36 4b 6,80 2,525 2,645 4c 6,37 2,35 2,59 4d 6,37 2,35 2,49 4e 6,45 2,38 2,56 4f 6,67 2,47 2,625 5 6,21 2,28 2,29 Von den Gr??neisenschen St?¤ben gen??gt also 3c dem Isotropiekriteriumganz gut. Dies stimmt mit den eigenen Ergebnissen Gr??neisens: dieQuerkontraktion, berechnet nach Formel (51) war bei diesem Stab0,337, w?¤hrend die gemessene Querkontraktion 0,334 betrug. Auchdas Schaefersche Material war isotrop, die Moduln sind aber bedeutendkleiner, als alle andern, wie es bei den Schaeferschen Materialienallgemein der Fall istquot;). Porosit?¤t kann diese Abweichung erkl?¤ren,wo aber die Abweichungen so allgemein auftreten und immer in dem-selben Sinn, scheint ein

systematischer Fehler in den SchaeferschenMessungen (Gleitung?) nicht ausgeschlossen. Auch die Voigtschen Werte sind kleiner als die Gr??neisenschen,wenn auch die Abweichung im Durchschnitt viel kleiner ist, und beiden einzelnen St?¤ben sehr verschieden. Der letzte Umstand spricht f??rPorosit?¤t als Ursache der Erscheinung, die Porien werden ja in denverschiedenen kleinen St?¤ben ungleichen Einflu?Ÿ haben. Gr??neisenzieht die Unreinheit des Voigtschen Materials als Erkl?¤rungsgrundheran. Aus der Tabelle H 5 vermutet man eine dritte Ursache: dieAnisotropie des Materials. Zum Teil ist diese wohl die Folge der germgenDimensionen der St?¤be, 100 X 6 X 1 mm, gewi?Ÿ sind nicht in jedemQuerschnitt alle Orientierungen in gleicher H?¤ufigkeit vertreten. Neben Â?Â?) vgl. Landoltsche Tabellen I.



??? den Abweichungen, die von der zuf?¤lligen Verteilung von Orientierungenund Porien herr??hren, tritt eine systematische Abweichung auf, dasZ ist ??berall verh?¤ltnism?¤?Ÿig gro?Ÿ und ??bertrifft bisweilen den berech-neten Wert. Dies deutet auf eine prinzipielle Bevorzugung gewisserOrientierungen im Gu?Ÿst??ck, woraus alle St?¤be mit paralleler L?¤ngs-richtung geschnitten sind, ich komme auf diesen Punkt im V. Kapitelzur??ck. F??r die Vergleichung der berechneten und gemessenen Konstantenkommt also schlie?Ÿlich nur der Stab 3c (Gr??neisens AI. II) in Betracht;wo alte und neue Theorie praktisch ??bereinstimmen, ist die Vergleichungso ziemlich eine gegenseitige Pr??fung der Messungen von Gr??neisenund Goens. H 6. Pr??fung f??r isotropes AI, (Â?.10-11 10-11 Empirischer WertBerechneter Wert 7,187,005 2,692,61 Bei der immerhin ziemlich gro?Ÿen Ungenauigkeit aller elastischenMessungen und bei der M??glichkeit einer etwas verschiedenenZusammensetzung der Proben (das Gr??neisensche Aluminium warnicht chemisch rein) erscheint die

?œbereinstimmung als sehr befriedigend.Die meisten nicht besprochenen Daten der Tabelle H 4 schlie?Ÿen sichdem Gr??neisenschen Werte gut an; es sieht aus, alsob die GoensschenKristallkonstanten etwas niedrig sind. Â§ 5. Berechnung und Pr??fung der Aggregatskonstanten vonGold. Die Kristallkonstanten von Gold stammen von Goens sie sindzusammengetragen in: K 1. Kristallkonstanten von Gold. Sil . 1013 24,5 cii. 10-11 19,41 tt â€” 11,3 â€? tt 16,61 sÂ?. tt 25 C44 â€? tt 4,00 f ,, â€” 5,20 quot;) Goens, I.e. beim AI.



??? Goens sch?¤tzt die Genauigkeit seiner s.t auf 5 %, die m??glichenFehler in c^ und C12 sind noch gr???Ÿer; in den hieraus berechnetenModuln ÂŽ und Z d??rfen wir sie wiederum auf 5 % sch?¤tzen. Aus K 1 ergibt sich, da?Ÿ die Anisotropie der Goldkristalle ziemlichgro?Ÿ ist. Die Rechnung ist daher etwas zeitraubend, das Ergebnis ist: K 2. Prim?¤res Aggregat von Gold. ?Ÿu.lO-quot; 21,17 ÂŠ33 â€? quot; 21,03 ÂŠ12 â€? 15,67 ÂŠ13 â™? ,Â? 15,80 ÂŠ44 â€? tt 2,65 ?¨(ÂŠll â€” ÂŠ12) ,, 2,75 Die gro?Ÿe Anisotropie der Kristalle ist im prim?¤ren Aggregat schonbeinahe verschwunden. F??r die Berechnung der Konstanten des isotropenAggregats gen??gt also jetzt die Voigtsche Theorie. In der Tabelle K 3 sind die so berechneten Konstanten rechts einge-tragen, in der linken Spalte stehen die Werte welche man erh?¤lt, wennman ??berhaupt nur die Voigtsche Theorie benutzt: K 3. Isotropes Gold. nach Voigt neu ÂŠ . 10-quot;ÂŠ1. â€ž 21,5015,57 21,1215,75 e . â€ž3: . Â? 8,4052,96 7,6652,68 Hier trht also der Unterschied zwischen den

Ergebnissen der altenund der neuen Theorie deutlich hervor; wie bei Zink und Cadmium istbei Gold eine Pr??fung der neuen Theorie m??glich. Leider ist die Unge-wi?Ÿheit der Goenschen Werte noch etwas gro?Ÿ, 5 % von ?Ÿ und Z istso ziemlich die H?¤lfte der Unterschiede zwischen alten und neuen Werten.



??? Die verschiedenen gemessenen Aggregatsmoduln stimmen nicht allzuschlecht, wie es die Tabelle K 4 zeigt: K 4. Goldaggregate (empirisch). Nummer Forscher Temp. 10-11 10-11 la Gr??neisen 18Â° 7,65 2,55 Ib tl 7,92 2,77 2a Voigt â€” 7,30 2,82 2b ft â€” 7,58 2,77 3 Koch-Dannecker 0Â° 2,84 4 Kikuta 26Â° 2,83 5 Guye-Schapper 0Â° 2,62 6 Jokibe-Sakai 53Â° 2,55 Mehrere empirische Werte liegen zwischen den Ergebnissen deralten und der neuen Theorie, die Entscheidung ist daher nicht leicht.Zuerst machen wir die Isotropiepr??fung bei den Pr?¤paraten mit 2gemessenen Moduln. K 5. Isotropiepr??fung der Goldst?¤be. Nummer (5. 10-11 2;. 10â€”11 berechnet %. 10 â€” 11 gemessen la 7,65 2,68 2,55 Ib 7,92 2,78 2,77 2a 7,30 2,55 2,82 2b 7,58 2,65 2,77 Das Sf der Formel (52) ist berechnet aus c^ und c^j der Tabelle K 1; wegen des gro?Ÿen Wertes des Verh?¤ltnisses ^ ist 3?„ (52,63) sehr gro?Ÿ gegen und ein abweichendes ?Ÿ w??rde das berechnete Z sehr wenig?¤ndern. Von den 4 St?¤ben sind 3 stark anisotrop, und zwar ist beim Gr??n-eisenschen Stab

la das 5C verh?¤ltnism?¤?Ÿig zu klein, bei den VoigtschenSt?¤ben wieder zu gro?Ÿ wie bei AI. Letztere werden im Kap. V nochbesprochen, mit la ist nicht viel anzufangen, die Unregelm?¤?Ÿigkeitendieses Stabes sind schon in II, Â§ 4 besprochen. Der Stab Ib aber (bei



??? Gr??neisen Au II) kann nach K 5 sehr genau isotrop sein und Gr??neisenseigene Pr??fung mit der Formel (51) ergab nach Tabelle C (m II, Â§ 4)dasselbe Resultat, wenn auch nicht mit derselben Genauigkeit Auchdieser Stab wird im V. Kap. n?¤her besprochen, vorl?¤ufig wollen wirihn hier zur Pr??fung heranziehen. K 6. Pr??fung f??r nahezu isotropes Gold. ÂŽ . 10-quot; 2.10-quot; Empirischer Wert 7,92 2,77 Alte Theorie 8,405 2,96 Neue â€ž 7,665 2,68 Die empirischen Werte stimmen also mit den nach der neuen Theorieberechneten Werten bis auf ungef?¤hr 3 %, w?¤hrend die Abweichungenvon den Werten der alten Theorie rund 6 % sind. Auch die andernWerte von 2 aus der Tabelle K 4, gemessen an Material von unbekannterAnisotropie, liegen durchschnit??ich ganz in der N?¤he der neuen Werte.Soweit bei der immerhin noch merklichen Anisotropie des Stabes 1 b undder m?¤?Ÿigen Genauigkeit der Goensschen Konstanten die Beweiskraft derPr??fung reicht, spricht sie wieder zugunsten der neuen Theorie. Auchbei Gold

liegen aber die alten und neuen Werte von (S und % noch zudicht neben einander; zur endg??ltigen Entscheidung brauchen wir emMaterial von noch gr???Ÿerer Anisotropie. Â§ 6. Bcrcchnung und Pr??fung der Aggregatskonstanten von Messing.nbsp;. Mazima und Sachsquot;) haben die Elastizit?¤tskonstanten an Emkristall-st?¤ben von Messing bestimmt. Die Kristalle zeigten sich au?Ÿerordentlichanisotrop, hier haben wir also das Mittel zur endg??ltigen Prufung derVoigtschen Theorie. Mazima und Sachs haben diese Pr??fung ausgef??hrt,sie konstatieren ausdr??cklich die sehr schlechte ?œbereinstimmung undsagen: â€ždie Ursache der Unstimmigkeiten ist bisher mcht erkannt quot;quot; Efnwandfrei sind ihre Messungen nicht, die Forscher selbst habenmanches gegen sie einzuwenden. Sie messen zuerst an 8 Emkristallstaben \' Â?) Mazima und Sachs, Mechanische Eigenschaften von Messingkristallen, Z.f.Phys. 50, S. 161, 1928.



??? von sehr verschiedener Orientierung die Dehnungs- und Torsions-moduln, wobei sie die Genauigkeit auf â€žh??chstens 1 bis 3 %quot; absch?¤tzen,und suchen Werte Sj^, die sich am besten den Messungen an dem einen,nahezu kubisch orientierten Stab anschlie?Ÿen. Als dann aber aus dendie verschiedenen E und T der Einkristalle zur??ckberechnet werden,zeigen sich systematische Abweichungen, das E ist immer zu gro?Ÿ,das T zu klein. Sie sagen selbst: â€ždie Genauigkeit der Messungen istjedoch aus technisch nicht gekl?¤rten Ursachen gering.quot; Den erhaltenenKristallkonstanten gegen??ber ist also einiges Mi?Ÿtrauen wohl erlaubt. Auch in andrer Hinsicht ist Messing kein ideales Material f??r unsrePr??fung. Von den verschiedenen Messingarten, deren Aggregatskonstantenin Landolt-B??rnstein angegeben sind, hat keine genau die Zusammen-setzung des Messings von Mazima und Sachs (71,7â€”74,1 % Cu).Gl??cklicherweise gehen die Aggregatsmoduln f??r Messing von ver-schiedener Zusammensetzung nicht allzuweit auseinander und

durchInterpolation ist eine Absch?¤tzung der Moduln bei einem Aggregatmit 73 % Cu m??glich. F??r das ?Ÿ gelingt diese Absch?¤tzung nur zwischenziemlich weiten Grenzen. Wegen der gro?Ÿen Unterschiede in den Wertenvon (Â? und Z nach der alten und der neuen Theorie ist dennoch dieEntscheidung zwischen beiden Theorien an Messing m??glich. Die Ergebnisse lassen sich aus den nachfolgenden Tabellen ablesen: L 1. Kristallkonstanten von Messing. 19,4 Cn. 10-11 14,75 Sl2 â€? tt â€” 8,35 C12. tt 11,14 S44 â€? tt 13,9 C44. Â?Â? 7,19 ?’ . Â? â€” 10,77 L 2. Prim?¤res Aggregat von Messing. ÂŠu. 19,28 (ÂŠ11-ÂŠ33). 10-11 â€” 0,34 ÂŠ33 â€? 19,62 (ÂŠ13 ÂŠ12) . tt â€” 0,34 ÂŠ12 â€? tt 9,04 f 4,76 ÂŠ13 â€? tt 8,70 9 4,43 ÂŠ44 . tt 2,91 9,86 HÂŠii â€”ÂŠ12) 5,12



??? Das prim?¤re Aggregat ist also noch deutlich anisotrop, bei diesemaxialen Aggregat wenden wir also die Methode des III. Kapitels an, mit M = â€” 2,497iV = â€”2,473. Die Diskriminante M^-4iV ist positiv, also wenden wir (91) an.Von den Formeln (84) benutzen wir nur die Nummern (84a), (84c)und (84e), das ??brige leistet die Kompressib??h?¤tsbedmgungSn ÂŠ12 ÂŠ13 = ÂŠ33 2ÂŠI3 = Cn 2CI2.So erhalten wir: L 2a. Sekund?¤res Aggregat von Messing. ÂŠn. 10-11 17,885 ÂŠ33 â€? tt 17,84 ÂŠ12 â™? tt 9,545 ÂŠ13 â€? Â?Â? 9,59 ÂŠ44 â™? X 4,13 KÂŠii â€” ÂŠ12) quot; 4,17 Das Aggregat ist jetzt beinahe isotrop, die Voigtschen Formeln odereinfaches Mittelnnbsp;^^^u.s.w.) ergeben schlie?Ÿlich die Konstanten f??r isotropes Messing. In der Tabelle L 3 sind diese mit den Werten zusammengesteUt,welche die Anwendung der Voigtschen Theorie auf die urspr??nglichenKristallkonstanten ergibt: L 3. Isotropes Messing. nach Voigt neu ÂŠ . 10-11ÂŠ1. t, 19,068,99 17,879,575 ÂŠ . â€žâ€ž 13,295,035 11,194,14 Die alte Theorie ergibt

also f??r ÂŠ und 51 Werte, die bzw. 19 % und22 % h??her liegen als die Werte nach der neuen Theorie. Die verschiedenen Aggregatsmoduln sind zusammengesteUt in:



??? L 4. Messingaggregate (empirisch). Nummer Forscher Material Zusammensetzung @. 10-11 2.10-11 la Voigt gegossen Cu6Q%,ZnA0% 9,8 3,475 Ib tt tt tt tt 9,5 3,51 Ic tt tt tt tt 9,0 3,68 Id tt tt tt tt 9,4 3,50 le tt tt tt tt 8,8 3,67 If tt tt tt tt 8,6 3,67 lg tt tt tt tt 8,8 3,83 Ih tt tt tt tt 8,45 3,69 2a Koch-Dannecker Draht 85% 15% _ 4,33 2b tt tt tt 60% 40% â€” 3,83 3 Kikuta tt 70% 30% â€” 4,14 4 Koch-Dieterle Band 60% 40% 7,29 â€” Zuerst f??hren wir die Isotropiepr??fung aus mit 3?Ÿ = 37,03 nachden Daten von Mazima und Sachs; abweichende Werte haben wenigEinflu?Ÿ. L 5. Isotropiepr??fung der Messingst?¤be. Nummer e. 10-11 Z . 10â€”11 berechnet %. 10â€”11 gemessen la 9,8 3,58 3,475 Ib 9,5 3,46 3,51 Ic 9,0 3,27 3,68 Id 9,4 3,42 3,50 le 8,8 3,19 3,67 If 8,6 3,11 3,67 lg 8,8 3,19 3,83 Ih 8,45 3,05 3,69 Im allgemeinen ist % wiederum zu gro?Ÿ, ein einziges Mal zu klein,der Stab Ib gen??gt aber dem Isotropiekriterium ziemlich gut. GegossenesMessing mit 60 % Ca hat also bei Isotropie die Modulwerte: e = 9,5 .1011, 3; = 3,5 .10quot;.Hiernach lassen sich die Modulwerte bei 72 % Cu-Gehalt

absch?¤tzen.



??? Zun?¤chst schreiben wir die Werte von % f??r gezogenes Messing vonverschiedener Zusammensetzung hin: bei 60 % Cu Gehalt % . 10-quot; = 3,83 (Koch-Dannecker)â€ž â€žnbsp;4,14 (Kikuta) â€ž â€žnbsp;4,33 (Koch-Dannecker) â€ž â€žnbsp;4,57 (Mittel der Werte von Koch, Jokibe-Sakai, Gr??neisen undKikuta). Interpolation ergibt mit Wahrscheinlichkeit f??r gezogenen Drahtbei 72 % Cu-Gehalt % . 10-quot; = 4,15 Â? 0,05. Bei den gezogenen Messing- und Kupferdr?¤hten ist im allgemeinendie Isotropie nicht festgestellt, das isotrope, aber vermutlich por??seVoigtsche Messing hat ein %, 8J % unter dem Wert f??r gezogenenDraht von derselben Zusammensetzung. Der erhaltene Wert f??r % magalso einige Prozente zu hoch sein, jedenfalls k??nnen wir mit gro?ŸerWahrscheinlichkeit f??r isotropes porienfreies Messing von 72 %Cu-Gehalt schreiben % . 10-11 = 4,0 Â? 0,2, wobei die gr???Ÿeren Werte die wahrscheinlicheren sind. F??r die Absch?¤tzung von ÂŽ haben wir keine andre Daten als dasVoigtsche (g. lO-n = 9,5 bei 60 % Cu, welche

Zahl wohl einigeProzente zu niedrig sein d??rfte, und den wahrscheinlich sehr genauenWert 12,5 f??r reines Kupfer quot;). Mit sehr weiten Fehlergrenzen k??nnenwir sicher f??r ideales Messing mit 72 % Cu schreiben:(j. 10-11 = 11,0 db 1,5. Es folgt also schlie?Ÿlich 70 %85%100 % L 6. Pr??fung f??r Messing mit 72 % Cu. e . 10-11 %. 10-11 Empirischer WertAlte TheorieNeue â€ž 11,0 Â?1,5 13,29 11,19 4,0 Â? 0,2 5,035 4,14 Dieses Ergebnis spricht entschieden zugunsten der neuen Theorie. quot;) Gr??neisen, 1. c. bei der Tabelle B 2, Seite 14.



??? Â§ 7. Berechnung und Pr??fung der Aggregatskonstanten vonFlu?Ÿspat. Fr??her ist betont worden, da?Ÿ die Gesteine im allgemeinen jede Theorie,welche von den Annahmen von II, Â§ 1 ausgeht, schlecht erf??llen. DieSchuld hegt an der Porosit?¤t im weitesten Sinne, besonders wohl an deramorfen, vielleicht fremdartigen Bindesubstanz zwischen den Elementar-kristallen; au?Ÿerdem ist Anisotropie keineswegs ausgeschlossen. Dennochwollen wir die Aggregatskonstanten von Flu?Ÿspat ausrechnen, weildies das einzige regul?¤re Material ist, woran Voigt fr??her seine Theoriegepr??ft hat. Nach den Voigtschen Messungeng??t in M 1. Kristallkonstanten von Flu?Ÿspat. 10-8 16,7 4,57 C44. 3,45 ?’ - 5,23 Flu?Ÿspat ist also ungef?¤hr in demselben Ma?Ÿ anisotrop wie Gold,nur ist hier das ?’ positiv.Die Rechnung ergibt: M 2. Prim?¤res Aggregat von Flu?Ÿspat. (Sil. 10-8 14,41 633 â€? t\' 14,34 ÂŠ12 â™? ff 5,68 ÂŠ13 . â€ž 5,75 ÂŠi4 â€? ff 4,308 ?¨(ÂŠuâ€” ÂŠ12) â€ž 4,365 M 3. Isotropes Flu?Ÿspat. nach Voigt neu S. 10-8ÂŠ1. â€ž 14,615,615 14,3855,73 ÂŠ . â€ž2 â™? â€ž 11,494,495

11,124,33 \') Voigt, Lehrbuch, S. 741.lt;



??? Die berechneten Moduln liegen also nicht so weit auseinander wiebeim Gold; immerhin gibt es, besonders im noch einen deutlichenUnterschied zwischen der alten und der neuen Theorie. Quasiisotrope Aggregate von Flu?Ÿspat sind nur von Voigt gemessenworden Er hat 5 St?¤be untersucht. Wie gew??hnlich schneidet ersie aus dem Aggregat mit gleicher L?¤ngsrichtung; die Nummern a bis chaben auch die gr???Ÿte Querrichtung parallel, d und e haben die gr???ŸteQuerrichtung senkrecht dazu. Die Messungen zeigen keinen deutlichenUnterschied in den beiden Querrichtungen. Wir k??nnen also nahezuIsotropie erwarten, weil nur zuf?¤llig die L?¤ngsrichtung mit einer ausge-zeichneten Richtung im Aggregat zusammentreffen w??rde. Weil das Verh?¤ltnis ^ hier klein ist, h?¤ngt das Resultat der Isotropie-pr??fung mehr als gew??hnlich von der Porosit?¤t ab. Z ist hier berechnetmit = 25,84, es ist aber eingeklammert beigef??gt der Wert f??r Z,der aus einem 10 % kleineren ?„ erfolgt; h??here Porosit?¤t scheint aller-dings nicht ausgeschlossen. M

4. Isotropiepr??fung der Flu?Ÿspataggregate. Nummer (5. 10-8 5t. 10â€”8 berechnet 5t. 10â€”ÂŽ gemessen a 10,57 4,10 (4,17) 4,28 b 10,42 4,02 (4,09) 4,285 c 10,42 4,02 (4,09) 4,30 d 10,49 4,05 (4,12) 4,25 e 10,34 3,98 (4,05) 4,29 Es scheint also doch eine kleine prinzipielle Anisotropie aufzutreten;das gemessene Z ist ??berall etwas zu gro?Ÿ. Wir w?¤hlen die St?¤be a und d,die am besten isotrop sind, und erhalten sodann schlie?Ÿlich: M 5. Pr??fung f??r nahezu isotropes Flu?Ÿspat. ffi. 10-8 51.10-8 Empirischer Wert a) 10,57 4,28 Empirischer Wert d) 10,49 4,25 Alte Theorie 11,49 4,495 Neue Theorie 11,12 4,33 Wegen der schlechten Isotropie hat die Vergleichung keine gro?ŸeBeweiskraft, er spricht allenfalls nicht gegen die neue Theorie. quot;) Voigt, Wied. Ann. 42, S. 537â€”548, 1891.



??? UNTERSUCHUNGEN ANSPEZIELLEN AGGREGATEN. Â§ L Die nichtisotropen Aggregate. Aus den Isotropiepr??fungen im III. uâ€žd IV. Kapitel ist hervorge-gangen, da?Ÿ von den Metallaggregaten, deren Moduln bis Jetzt geZsenworden smd, nur wen ge ungef?¤hr isotrop sind. Im allgemeinrw endie Stabe so ziemhch zylindrisch symmetrisch in Bezug auf die Stabsachsees zeigten s.h aber oft bedeutende Unterschiede zwischen dem e^^^^^^Verhalten m der Richtung der Stabsachse und senkrecht dazu. DieseAggregate von nahezu axialer Symmetrie bilden 3 Gruppen, wovonjede durch bestimmte Abweichungen von @ und 2 gekennzeichnet ist: n?¤ln^^rr\'nbsp;^^^ hexagonalen Metalle, namhch der Gr??neisensche Zinkstab 1 der Tabelle D 4 und die Voigtschen Cadmiumst?¤be laâ€”Id aus E 4: bei allen ict H^Â? kicf A. er u A , !nbsp;es gemessen ist, das 2 bedeutend gr???Ÿer als die berechneten und empirischen Wertelur isotrope Aggregate. Alle Voigtschen gegossenen St?¤be der regul?¤renMe taH e; hier ist ffi zu klein, St verh?¤ltnism?¤?Ÿig gr???Ÿer und bei einigenAI. und allen

Au.-St?¤ben auch absolut zu gro?Ÿ. 3Â?. Der Gr??neisensche Goldstab II, Ib der Tabelle K 4.Bei diesem Stab sind die gemessenen d und 2 beide gr???Ÿer als dieberechneten. Die Abweichungen sind so klein, da?Ÿ sie vielleicht ausder Ungenauigkeit der Goensschen Kristallkonstanten zu erkl?¤ren sind;wo aber Gruneisen selbst merkliche Anisotropie fand (vergl. Tabelle Cscheint es lohnend, auch diesen Fall n?¤her zu untersuchen F??r jede dieser 3 Gruppen wollen wir die Rechnung durchf??hrenmit Hinblick auf bestimmte Objekte. Wir w?¤hlen: f??r die erste Gruppe das Zink 1 aus D 4â€ž â€ž zweite â€ž â€ž Gold 2a, b â€ž K 4â€ž â€ž dritte â€ž â€ž Gold Ib â€ž K 4. In diesen F?¤llen handelt es sich um Metallst?¤be, die als chemischrem bezeichnet smd. Die Abweichungen sind also nicht dem Einflu?Ÿ.



??? von Beimischungen zuzuschreiben; die Tatsache, da?Ÿ wenigstens einModul zu gro?Ÿ ist, zeigt, da?Ÿ auch die Porosit?¤t jedenfalls nicht dieeinzige Ursache der Abweichungen sein kann. Fehler in den Kristall-konstanten k??nnen schwerlich den sehr hohen Wert des Gr??neisenschenZinkmoduls erkl?¤ren, um so weniger, wo die sehr verschiedenen Kristall-konstanten von Gr??neisen und Bridgman ungef?¤hr dasselbe @ ergeben;bei Gold w??rde ?„nderung der Kristallkonstanten jedenfalls nicht f??r alleObjekte gleichzeitig ?œbereinstimmung erzeugen. Sehr wahrscheinlichsind daher spezielle Strukturen der ausgew?¤hlten Aggregate alsUrsachen der Abweichungen zu betrachten; wir wollen versuchen,diese Strukturen aus den Aggregatsmoduln zu ermitteln und an andernDaten nachzupr??fen. Mit gro?Ÿer Vorsicht lassen sich die erhaltenen Resultate vielleichtauf andre Objekte derselben Gruppen ??bertragen, wie das VoigtscheCd und AI In den folgenden Paragrafen werden zuerst Formeln f??r die Kon-stanten und Moduln ermittelt bei

verschiedenen einfachen speziellenAggregaten. Bei den hexagonalen Kristallen beschr?¤nken wir uns aufdie Aggregate, wo alle hexagonalen Hauptachsen der Einkristalle entwederparallel oder senkrecht zur Stabsachse sind, im letzteren Fall mit gleicherH?¤ufigkeit in allen m??glichen Richtungen. Im regul?¤ren System betrachtenwir diejenigen Vielkristallst?¤be, wo die gleiche kristallografisch wichtigeRichtung in allen Einkristallen der Stabsachse parallel liegt; ist dies dieHexaeder-, Oktaeder- oder Rhombendodekaedernormale, so werdendie Aggregate bzw. als H-, O- und i?-Aggregate bezeichnet. Auch hierkommen alle mit der gew?¤hlten Annahme vertr?¤glichen Orientierungenin gleicher H?¤ufigkeit vor. Wir tragen in die so erhaltenen Formeln die Kristallkonstanten vonZink und Gold ein und vergleichen die so berechneten Werte f??r (S undwom??glich % und fi (die Querkontraktion) mit den empirischen. Vielleichtist die ?œbereinstimmung so gut, da?Ÿ wir dem Aggregat die reine spezielleStruktur zuschreiben d??rfen. Meistens wird jedoch eine der

speziellenStrukturen zwar Werte f??r % und jj, aufweisen, die von den Isotropie-moduln in der erw??nschten Richtung abweichen, aber in zu starkemMa?Ÿe; die empirischen Daten liegen zwischen den berechneten Wertenf??r das allgemeine und ein bestimmtes spezielles Aggregat. Wir k??nnendas Ergebnis deuten als eine Struktur, wo im isotropen Aggregat Einzel-kristalle von bestimmter Vorzugsorientierung vorkommen. Falls alleempirischen Werte zuverl?¤ssig sind, k??nnen wir sogar den Prozentsatz



??? der speziell orientierten Kristallsubstanz absch?¤tzen. An jedem einzelnenModul k??nnen wir die Sch?¤tzung machen; gute ?œbereinstimmung derProzents?¤tze, mit (g, % und eventuell fi erhalten, weisen darauf hin,da?Ÿ die so bestimmte Struktur des Aggregats einigerma?Ÿen zuverl?¤ssigist. JedenfaUs ist Nachpr??fung der ermittehen Struktur, mit R??ntgen-strahlen oder andern H??fsmitteln, sehr erw??nscht. Wir k??nnen die obenerw?¤hnte Absch?¤tzung ziemlich roh so machen,da?Ÿ wir f??r jeden Modul seine ?„nderung dem Prozentgehalt der speziellorientierten Substanz proportional ansetzen. Eine gr???Ÿere Genauigkeitwird erreicht, wenn wir diese Proportionalit?¤t nicht anwenden auf {Â?, Z und sondern auf die Gr???Ÿen ~ â€” u.s.w. der Formeln (40)-(44). Dies geht hervor aus der Gl. (34), die f??quot; jede einzelne Lamelle, speziellorientiert oder nicht, des gemischten Aggregats gilt. Daraus folgenf??r die Kristallkonstanten des gemischten Aggregats, wo der Bruchteil pder Kristallsubstanz speziell, der Rest allgemein orientiert ist, wennwir die Aggregatskonstanten bei spezieller

und allgemeiner Orientierungmit Einzel- und Doppeltstrich andeuten: J__ P ^ l-P nbsp;.............(121a) ÂŠ13 ^ÂŠ13 , f,nbsp;sÂŠquot;l3 ..........(i2ib) j___, l-P ÂŠ44 ~ ÂŠ\'44 quot;rV\' ............(121c) ÂŠ11 â€” ÂŠ12 =nbsp;â€” ?Ÿ\'is) (1 â€”;))nbsp;â€” Q,quot;,^) . . (121e) Im repl?¤ren System werden (121b) und (121d) wie fr??her ersetztdurch die Kompressionsformel: ÂŠ11 ÂŠ12 ÂŠ13 = 2(Ei3 ÂŠ33 = Cii 2ci2......(121f) Aus diesen Formeln lassen sich f??r einige Zahlenwerte von p dieund daraus (Â?, Z und /x des gemischten Aggregats berechnen; Inter-polation der empirischen Daten ergibt dann 2 oder 3, mehr oder weniger??bereinstimmende Werte f??r p. Es ist ohne weiteres klar, da?Ÿ die Messung von 2 oder 3 elastischenKonstanten nie die genaue Struktur eines gemischten Aggregats ein-



??? wandfrei feststellen kann; denselben Effekt wie den einer Beimischungvon Einkristallen in H-Orientierung kann man etwa erzielen durchBeimischung von Einkristallen, deren H-Achsen einen bestimmtenspitzen Winkel mit der Stabsachse bilden und in gleicher H?¤ufigkeitum diese Achse herum verteilt sind, oder durch andre Verteilungs-funktionen von axialer Symmetrie. Die R??ntgenanalyse wird voraus-sichtlich ??ber die Einzelheiten solcher Strukturen n?¤here Auskunftgeben k??nnen. Â§ 2. Spezielle Aggregate von hexagonalen Kristallen. Wir suchen zuerst Formeln f??r die Konstanten der 2 speziellenAggregate hexagonaler Kristalle, die im vorigen Â§ hervorgehoben sind,n?¤mlich der Vielkristalle mit allen hexagonalen Hauptachsenparallel bzw. senkrecht zur Stabsachse. Die erste Orientierung gibt ein sehr einfaches Resultat: wegen deraxialen Symmetrie des hexagonalen Kristalls benimmt sich das Aggregatin seinen elastischen Eigenschaften wie ein Einkristall mit der hexa-gonalen Hauptachse in der L?¤ngsrichtung des Stabes. Als

Aggregatskonstanten erhalten wir also die unmodifizierten Kristall-konstanten und es gelten nach den Hookeschen Gleichungen f??r diesesspezielle Aggregat die Formeln: =nbsp;........(1223) Cll ^ \'â€?12 3: = cÂ?.............(122b) Mehr Schwierigkeiten bringt die zweite spezielle Struktur, wodie hexagonalen Hauptachsen ??ber alle Richtungensenkrecht zur Stabsachse in gleicher H?¤ufigkeitverteilt sind. F??r ein solches Aggregat wollen wir jetzt die Konstanten berechnen. Zun?¤chst betrachten wir ein prim?¤res Lamellenaggregat mit derStabsachse als Lamellennormale. Es gelten jetzt die Formeln (81) des HL Kapitels, wenn man in ihnen j^dy ??berall streicht und das y 0 durch 0 ersetzt. Die Moduln werden in diesem Falle mit (Si undangedeutet; wir berechnen nur diejenigen Aggregatskonstanten, die zurBerechnung von ÂŠi und %i benutzt werden. Wir erhalten: = .............(123a)



??? und also nach (69)nbsp;ÂŽ \'nbsp;ÂŠ11 nbsp;.....(123b) Aus (81d) erhalten wir ci 1 aus (81a) und (81b) (Cl3 alsonbsp;~ oder nach (75)nbsp;^^^ 2(ÂŠii ÂŠ12) = cii C33 2CI3. Tragen wir diesen Wert und ÂŠ33 = Cii in die Gleichung (123b) ein, so erhalten wir ^ CII C3! 2CI3.........(124a) Daneben folgt aus (123a) und (81c) A - 1 , 1 ~ câ€ž Mcn-ci2).......(124b) Die Voigtsche Theorie ergibt nach einiger Rechnung: = C- ci 2CI3.........(125a) 2%vlt;yi = cÂ? i(cii â€” C12) ........(125b) Erstere Formel stimmt genau mit (124a) ??berein, letztere ist dieerste Ann?¤herung von (124b) f??r kleine Anisotropie. Ist die Isotropieder Einkristalle gering, so d??rfen wir ohne weiteres die Formeln (125)anwenden. Ist die Anisotropie der Einkristalle gr???Ÿer, von der Gr???Ÿenordnungder Anisotropie beim Gold, so wird die Voigtsche Ann?¤herung zu grob.In diesem Fall haben wir gefunden (Tabelle K 2), da?Ÿ das allgemeineprim?¤re Aggregat schon praktisch isotrop ist, die Lage der Grenzfl?¤chen



??? im Aggregat also keinen merklichen Einflu?Ÿ aus??bt. Wir ??bertragendieses Resultat auf das spezielle Aggregat und nehmen an, da?Ÿ auchhier bei mittlerer Anisotropie die Aggregatskonstanten wenig von derLage der Lamellennormale beeinflu?Ÿt werden. Die durch (124a) und(124b) bestimmten Moduln d??rften also in zweiter Ann?¤herung nichtnur gelten f??r das einfache Lamellenpaket mit der Lamellennormalein der Stabsachse, sondern f??r jedes Aggregat mit willk??rlichen Grenz-fl?¤chen, das die spezielle Orientierung der Kristallachsen aufweist. Auchf??r hexagonale Einkristalle mittlerer Anisotropie w?¤re die gestellteAufgabe also gel??st. Bei den hexagonalen Metallen, die uns jetzt besch?¤ftigen, Zink undCadmium, ist aber die Anisotropie leider sehr gro?Ÿ. Die Tabellen D 2und E 2 zeigen, da?Ÿ das prim?¤re allgemeine Aggregat hier ausgesprochenanisotrop ist, da?Ÿ also die Lage der Grenzfl?¤chen bei der allgemeinenOrientierung die elastischen Konstanten merklich beeinflu?Ÿt. Dies k??nntebei der speziellen Orientierung auch der

Fall sein, es ist daher nichtohne weiteres erlaubt, das in Wirklichkeit auftretende K??rneraggregatdurch ein einfaches Lamellenpaket zu ersetzen. Die beste Ann?¤herungw??rden wir wohl erhalten durch Anwendung des Aufbauprinzips (VII)des Kap. II, Â§ 1. Wir h?¤tten demnach ein Aggregat aufzubauen aussekund?¤ren Lamellen senkrecht zur Stabsachse, jede einzelne Lamellezusammengesetzt aus prim?¤ren Lamellen irgend welcher Lage, w?¤hrendin jedem Paket solcher prim?¤ren Lamellen die Netzorientierungen einegleichm?¤?Ÿige Verteilung der hexagonalen Hauptachsen senkrecht zurNormale der sekund?¤ren Lamellen aufweisen sollten. F??r die Rechnungbringt dies aber betr?¤chdiche Schwierigkeiten mit sich. Die sekund?¤renLamellen haben jetzt im allgemeinen die Symmetrie monoklinerKristalle und zwar mit Konstanten, die in d?Šn einzelnen Lamellenverschiedene Werte haben. Als Grenzf?¤lle treten sekund?¤re Lamellenvon hexagonaler und rhombischer Symmetrie auf. Erstere zeigen denAufbau des vorher besprochenen prim?¤ren

Lamellenaggregats mit denModuln (gl und Zi, letztere sind zusammengesetzt aus prim?¤renLamellen senkrecht zur sekund?¤ren Lamellenebene, welche also derStabsachse parallel sind. W?¤ren die Kristallkonstanten f??r die monoklinen sekund?¤ren Lamelleneinmal berechnet, so w??rde die Mittelung ??ber das ganze Aggregatmittels der Voigtschen Formeln ziemlich leicht sein, die Bestimmungder monoklinen Konstanten scheint aber um so schwerer. Ich habemich daher entschlossen, von den sekund?¤ren Lamellen nur die



??? extremen zu w?¤hlen, die hexagonale und 2 rhombische mit den prim?¤renLameUenebenen senkrecht zu einander. Da die KristaUkonstanten dieser3 sekund?¤ren Lamellen sich nur um einige Prozente unterscheiden(Wie die Rechnung zeigen wird), erhalten wir durch einfache Mittelungm guter Ann?¤herung die Aggregatskonstanten. Zur weiteren Verein-tachung berechnen wir nur die Mittelwerte von ÂŽ und Wo Qj und Zrschon berechnet sind, bleibt also nur die Bestimmung ??brig von gnund Zn, Moduln des rhombischen Lamellenpakets bei Dehnung undTorsion in Bezug auf eine Richtung, welche in der Lamellenebene senk-recht zu den verschiedenen Lagen der hexagonalen Hauptachse liegt. Die Mittelwerte fc!^ ^^^nbsp;. ,nbsp;â€ž^ , 3 una 2 ergeben dann ann?¤hernd die gesuchten Aggregatskonstanten g und Z. Um Formeln f??r und ^n 2u erhalten, w?¤hlen wir die Lamellen-normale zur Z-Achse. Die Richtung in der Lamellenfl?¤che parallelzur Stabsachse wird als V-Achse gew?¤hlt, die XZ-Ebene enth?¤lt diehexagonalen Hauptachsen der prim?¤ren Lamellen. Das Transformations-

schema (53) erh?¤lt daher die Form: Â?1 ?Ÿi YiÂ?2 ?Ÿi 72 Â?Oy .........(126) XYZ yo ZÂ? wo a2 = 1 ist. Das rhombische Aggregat ist gekennzeichnetÂ?Â?) durch 9 Haupt-moduln: ÂŠ11Â? ÂŠ22Â? ÂŠ33Â? ÂŠ23Â? ÂŠ31Â? ÂŠ12Â? ÂŠ44Â? ÂŠ55Â? ÂŠ66 oder durch 9 Hauptkonstanten: SilÂ? ÂŠ22, ÂŠ33Â? ÂŽ23Â? ÂŠ31Â? ÂŠ12Â? ÂŠUÂ? ÂŠ5.Â? ÂŠ66- Der Modul (Â?n geh??rt zu einer Dehnung l?¤ngs der F-Achse, esgilt also: quot; ........................... Zu ist der Modul f??r eine Torsion um die F-Achse. Nach der Elastizi-t?¤tstheorie h?¤ngt bei einem rhombischen zylindrischen oder prismatischenStab, wenn Stabsachse und zweite rhombische Hauptachse zusammen- Voigt, Lehrbuch, S. 586.



??? fallen, das Verh?¤ltnis von Drehungsmoment und Drillung in verschie-dener, mehr oder weniger verwickelter Weise von den Gr???Ÿen ÂŠiif = -J- / I \\nbsp;^ und ÂŠcel = 7=quot; ab, je nachdem der Querschnitt des Stabes die eine \\ lt;066/ oder die andre Form hatÂŽi). Es wird sich aber zeigen, da?Ÿ f??r unserrhombisches Lamellenaggregat gilt ÂŠ44 = ÂŠ66gt; sodann gehen die betreffenden Formeln in die Formeln f??r eine iso-trope Substanzquot;) oder ein axiales Aggregat ??ber und es gilt == ^ = ^..........(127b) \'Â?541 gt;Â?66 F??r unsern Zweck gen??gt es also, die 3 Hauptmoduln 622Â? ÂŠ44 quot;quot;d ÂŠ^edes rhombischen Aggregats zu berechnen. Dazu schreiben wir wie im H. Kapitel den Ausdruck f??r die Potential-funktion (p des Aggregats in den beiden gleichwertigen Formen (35)und (35a): 2^ = - - - d^^Z.-quot; -.......-I- .. ... ^ ...... = = (^nXx^ Ossyv^ ^a^^x^yy -f- . . . . (128)Die Koeffizienten dieser Gleichung lassen sich ausdr??cken, das eineMal in den Hauptmoduln des rhombischen Aggregats, das andreMal als Integralformeln der

Hauptkonstanten oder Hauptmoduln deshexagonalen Einkristalls. Die erste Rechnung, analog derjenigen, diezu der Gleichung (39) gef??hrt hat, liefert die Formeln: du = ÂŠ44,.............(129a) 066 = ^,.............(129b) Â?366 22 au?Ÿerdem ÂŠ ÂŠ11ÂŠ22 â€” ÂŠ12ÂŠ11 ÂŠ11ÂŠ22 â€” ÂŠ12quot; - ÂŠ12 ÂŠnÂŠ22 â€” ÂŠ12^ 022 = O12 = quot;) vgl. Z. B. Voigt, 1. c. S. 638, 644; Love, Treatise on the math, theor. ofelast., 4th ed. 1927, S. 325.quot;) vgl. Love, 1. c. S. 318.



??? woraus folgtalso schlie?Ÿlich 1nbsp;-nbsp;oia^ ................ Wir brauchen also blo?Ÿ die Koeffizienten ?¤Â?Â?, ?¤^^ undder Gleichung (128) in den c^^ oder s,;, auszudr??cken. Die Rechnung verl?¤uft den Ausf??hrungen im IIL Kapitel parallel.Die Hauptdeterminanten A und haben genau dieselbe Form, die-jjnig^der Gl. (71) und (71a) j von den Z?¤hlern der Ausdr??cke u.s.w. werden einzelne einfacher, weil ?Ÿ = o und a^ = 1 _ y^. Um die Mittelwerte zu bilden schreiben wir y = cos tp, es wird so z. B. = 2 2 r^Ti dg} quot; Cu â€” C12\' TTj 1 â€” L cosV\'0nbsp;^ Neben diesem Integral, das wegen (72) den Wertnbsp;besitzt, Anbsp;\' treten Ausdr??cke auf, die den Formen (82bâ€”d) analog sind:P\' = â€” ?Ÿ\'\' 7t J lâ€”My^ Ny*\'..........(130a) 0 yMq) My^ Ny^\'..........(130b) 1 â€” y^)d(p My^ Ny*\'..........(130c) 0 Die Rechnung ergibt: ..............(131a) â€”nbsp;1/^44(^11 C12) ?–6C = y-2...............(131b) -nbsp;Xjcii â€” Cta) ^ --.............(131c) Q\' ^ I?Ÿ\'\'___Y\'dlt;p nj 1 â€” 7t J 1 â€”



??? Sodann erhalten wir aus (127a), (127b), (129a, b, c):\'l(Cll â€”C12) (Si3- SnP\' (132a 511â€” â€”^11 Ss^P\' ihi-sJQ\'-HR\' Xn = VKi(Cu-Ci2)..................(132b) Diese Werte, zusammen mit dem Sj und dem der Formeln (124),werden eingetragen in die Gleichungen: @ = MSi 2(Â?ii)...............(133a) Z = 2Sn)...............(133b) So erhalten wir die Dehnungs- und Torsionsmoduln des zweitenspeziellen Aggregats (mit den hexagonalen Hauptachsen der Einkristallesenkrecht zur Stabsachse) f??r den Fall, wo die Einkristalle stark an-isotrop sind. Â§ 3. Untersuchung der Struktur des anisotropen Gr??neisen-schen Zinkaggregats. Wir wollen jetzt die Formeln (122) und (133) bei Zink anwendenum zu untersuchen, ob eine der besprochenen speziellen Strukturenden au?Ÿerordentlich hohen Wert f??r (g erkl?¤rt, den Gr??neisen 1907an einem Zinkstab der Phys, Techn, Reichsanstalt in Charlottenburggemessen hat; sein 6 war h??her als der h??chste Wert, den der Dehnungs-modul im Einkristall erreicht. Darum sind in der Tabelle N 1 die extre-men Werte des

Moduls im Einkristall zusammengestellt mit den Wertenf??r @ bei speziellen Aggregaten der beiden erw?¤hnten Orientierungenund beim allgemeinen Aggregat, und mit dem Gr??neisenschen Modul,gemessen am Stab 1 von D 4, Alle berechneten Moduln sind mit derVoigtschen und mit der neuen Theorie bestimmt worden; ??berall sindwiederum 2 Werte angegeben, wovon der erste aus den Gr??neisenschen,der zweite, eingeklammert geschriebene, aus den Bridgmanschen Kristall-konstanten berechnet worden ist. Stets sind C, G. S. Einheiten verwendet.



??? N L Dehnungsmoduln (. 10-quot;) beim Zink. Einkristall, kleinster Modul ^3)....... â€ž , gr???Ÿter â€ž ....... Spez.Aggr.,hexag.H.A.//Stabsachse, ....Â? Â? , â€ž â€ž Â? â€ž , n.VoigtÂŽÂ?)Â? Â? t â€ž â€ž â€ž â€ž , neu . . Isotropes Aggr., n. Voigt......... â€ž â€ž , neu ........... 3,54 ( 3,79)12,50 (12,15)3,54 ( 3,79)13,59 (13,86)13,16 (13,17)10,96 (11,23)9,94 (10,21) (122a)(125a)(133a)D3D3 Das Gr??neisensche Z/z II ........ . 12,85 D4 Aus dieser Tabelle lassen sich mehrere Schl??sse ziehen. Erstens erkennt man beim zweiten speziellen Aggregat einen deutlichenUnterschied zwischen den Ergebnissen der alten und der neuen Theorie.Wird die neue Theorie nur auf das hexagonale prim?¤re Lamellen-aggregat angewandt, so stimmt das (gj aus (124a) mit dem Voigtschen ÂŽ??berein, die umfangreiche Rechnung, die @i mittels (132a) und (133a)durch @ ersetzt hat, ist lohnend gewesen. Zweitens ist der Modul f??r das spezielle Aggregat mitallen hexagonalen Hauptachsen senkrecht zur Stabs-achse wirklich gr???Ÿer als der gr???Ÿte Dehnungsmodulim Einkristall, sowohl wenn man die

Gr??neisenschen als wennman die Bridgmanschen Kristallkonstanten zu Grunde legt. Diesemerkw??rdige Eigent??mlichkeit des Gr??neisenschen Zinkstabs geht somitzwanglos aus der Annahme hervor, da?Ÿ der betreffende Stab die erw?¤hntespezielle Struktur aufweist. Drittens besteht eine gute Obereinstimmung zwischendem empirischen und dem nach der neuen Theorieberechneten Wert des Dehnungsmoduls. Zieht man inBetracht, da?Ÿ das Zinkaggregat eine rissige Oberfl?¤che hatte, wodurchdas (S verkleinert wird, so ist vollst?¤ndige ?œbereinstimmung nicht aus-geschlossen. Cll C,2 en Knbsp;CiiCi,\' CaaCia\' â€” ) Vi â€” Cll--^ 2nbsp;* CllCsS - Cis quot;) Dieser Wert ist gleich dem @i der neuen Theorie.Â?) Aus g = ^T das Sil hat den Wert 12,95 (12,83).



??? Es scheint also die Folgerung erlaubt, da?Ÿ in dem gegossenenZinkstab II der Gr??neisenschen Untersuchung vom J.1907 die Einkristalle wahrscheinlich in ??berwiegenderZahl speziell orientiert waren mit den hexagonalenHauptachsen senkrecht zur Stabsachse. Ich habe in der Literatur keine Angabe ??ber spezielle Strukturen beiZinkaggregaten gefunden; R??ntgenpr??fungen liegen soviel ich wei?Ÿ nichtvor. Dagegen l?¤?Ÿt sich aus Messungen auf ganz andrem Gebiet einezweite, unabh?¤ngige Pr??fung der Struktur desselben Zinkstabs IIvornehmen. Der Stab ist n?¤mlich fr??her von Jaeger und Diesselhorst aufseine elektrische Leitf?¤higkeit untersucht wordenquot;), diese betrug bei 18quot;16,51 .10^. Da tat sich die merkw??rdige Tatsache vor, da?Ÿ zwei Dr?¤hte,aus diesem Stab gezogen, Leitf?¤higkeiten zeigten bzw. gleich 15,98 . 10*und 15,95 . 10Â?; ein andrer Zinkstab, Zn I (Nummer 4 unsrer Tabelle D 4)wies Werte 15,88. 10^ und 15,83. 10* auf. Dies deutet jedenfalls aufeine spezielle Struktur des Zinkstabs II hin. N?¤heres l?¤?Ÿt

sich schlie?Ÿenaus den Messungen der elektrischen Widerst?¤nde in Zinkeinkristallen,die sowohl Gr??neisen und Goens wie Bridgman ausgef??hrt haben.Erstere fanden f??r den elektrischen Widerstand parallel und senk-recht zur hexagonalen Hauptachse bzw. 5,83.10-Â? und 5,39. lO-??,letzterer fand f??r dieselben Gr???Ÿen bzw. 5,66 und 5,45. Aus diesenelektrischen Kristallkonstanten lassen sich die Widerst?¤nde f??r allge-meine und spezielle Aggregate berechnen. Die Voigtsche Theorie f??r diese Rechnung ist im Kap. I, Â§ 2 dieserArbeit kurz wiedergegeben. Seine Methode ist wiederum eine ersteAnn?¤herung, nach der Methode des II. Kapitels dieser Arbeit lassensich neue Formeln ermitteln, die hier viel einfacher sind als f??r dieElastizit?¤t. Wo aber die elektrische Anisotropie des Zinks klein ist,gen??gen hier die Voigtschen Formeln. In der Tabelle N 2 sind dieberechneten und empirischen Werte zusammengestellt, wie bei denelastischen Gr???Ÿen findet man auch hier in jeder Zeile der berechnetenWerte 2 Zahlen, erstere nach den

Gr??neisenschen, letztere nach denBridgmanschen Widerst?¤nden bei Einkristallen. Die Einheit ist dasn cm. 10-0. quot;) Jaeger und Diesselhorst, W?¤rmeleitung, Elektrizit?¤tsleitung, W?¤rmekapazit?¤t u. Thermokraft einiger Metalle. Wiss. Abh. der Phys.-Techn. Reichsanstalt, 3, S. 269â€”423, 1900.quot;) Gr??neisen u. Goens, Z. f. Phys. 26, S. 250â€”273, 1924.quot;) Bridgman, Proc. Nat. Ac. 10, S. 411, 1924.



??? N 2. Elektrische Widerst?¤nde beim Zink. Einkristall parallel der H. A........ â€ž senkrecht zur H. A....... Spezielles Aggregat, H. A. // Stabsachse. Â?nbsp;tt ) H, A. _L â€ž Allgemeines â€ž , n. Voigt . . . . . Empirischer Wert f??r Zn I ...... â€žnbsp;â€ž â€ž Zn II ..... . â€žnbsp;â€ž â€ž1. Draht aus Zn II 9 tt tt tt tt tt tt tt 5,83 (5,66)5,39 (5,45)5,83 (5,66)5,39 (5,45)5,61 (5,55) 6,316,056,266,27 Die berechneten und gemessenen Widerst?¤nde stimmen dem abso-luten Wert nach schlecht ??berein, offenbar hat die Tatsache der Viel-kristallstruktur mehr Einflu?Ÿ auf die elektrischen als auf die elastischenWiderst?¤nde. Es zeigt sich aber, da?Ÿ Zn II in derselben Richtung abweichtvon den andren Aggregaten (die unter sich ziemlich gut ??bereinstimmen)wie das 2. spezielle Aggregat von dem isotropen. Auch das Verh?¤ltnisstimmt nicht schlecht, Zn II bleibt 3 bis 4 Prozent unter den andernAggregaten, w?¤hrend die spezielle Struktur, die wir aus den elastischenMessungen f??r Zn II ermittelt haben, f??r den spezifischen WiderstandWerte ergeben w??rde, die nach den Gr??neisenschen bzw.

BridgmanschenDaten 4 bzw. 2 % kleiner sind als der Widerstand des allgemeinen Aggregats. Soweit die Genauigkeit der Leitf?¤higkeitsmessungenreicht, scheinen sie also unsre Vermutung ??ber dieStruktur des Gr??neisenschen Zinkstabs II zu best?¤tigen. Falls der Rest dieses Stabes in Charlottenburg aufbewahrt wird (einTeil ist jedenfalls f??r die erw?¤hnten Dr?¤hte verwendet worden) w?¤re Nach-pr??fung der gefundenen Struktur mittels R??ntgenstrahlen sehr erw??nscht. Beim Cadmium liegen die Verh?¤ltnisse ?¤hnlich wie beim Zink, nurist alles ungewisser. Erstens liegen die Aggregatskonstanten, berechnetaus den Gr??neisenschen und Bridgmanschen Kristallkonstanten, beimspeziellen wie beim allgemeinen Aggregat, weiter auseinander. Zweitensist von den abweichenden Aggregaten, hier den 4 Voigtschen St?¤ben,die Leitf?¤higkeit nicht bekannt, so da?Ÿ die Kontrolle auf die eventuellgefundene Struktur wegf?¤llt. Dem steht gegen??ber, da?Ÿ Voigt an seinenSt?¤ben 2 Moduln gemessen hat, wodurch eine doppelte Pr??fung m??glichwird. Das Ergebnis findet man in



??? N 3. Moduln f??r spezielles Cadmium. e. 10-11 % . 10-11 Spez. Aggr., hex. H.A. Â? Stabsachse,n. Voigtâ€ž ,t ) n Â? Â? Â? gt; quot;eu â€?Isotropes Aggregat, neu ........ 8,78 (8,32)8,52 (8,08)6,02 (5,47) 2,73 (2,51)2,54 (2,27)2,27 (2,07) Empirische Werte, Cd la....... n , â€ž Ib....... ,, tt ,,, Ic ...... â€? â€ž tt ,â€ž Id ...... . 6,947,066,946,78 2,422,362,422,41 Bei allen St?¤ben zeigen ÂŽ und % deudiche Abweichungen von derIsotropie im Sinne einer Struktur mit Vorherrschaft derjenigen Orien-tierungen, wo die hexagonale Hauptachse senkrecht zur Stabsachse liegt.Nach den empirischen Werten von Z w?¤re es nicht ausgeschlossen,da?Ÿ das Aggregat nur solche Orientierungen enthalten w??rde, diegemessenen (Â? sind aber merklich zu klein. In wiefern die Abweichungenberuhen auf der Beimischung von Kristallen anderer Orientierungen,in wiefern sie auf Porosit?¤t (die bei ungleichm?¤?Ÿiger Verteilung derPorien ÂŽ und % verschieden beeinflu?Ÿt) beruhen, l?¤?Ÿt sich bei der gro?ŸenUngewi?Ÿheit der Daten nicht einmal vermuten. Jedenfalls ist

dasVoigtsche Cadmium anisotrop, wie aus der Tabelle E 5 hervorgeht,und die Tabelle N 3 macht es wahrscheinlich, da?Ÿ bei der speziellenVerteilung der Kristallorientierungen diejenigen mit der hexagonalenHauptachse senkrecht zur Stabsachse stark vertreten sind. Die H?¤ufigkeitdieser Vorzugsorientierung wird in den verschiedenen St?¤ben nie v??lliggleich sein, daher wohl die verschiedenen Werte der empirischen Moduln. Â§ 4. Spezielle Aggregate von regul?¤ren Kristallen. Im regul?¤ren System untersuchen wir die Strukturen, wo alle Ein-kristalle des Aggregats bzw. eine Hexaeder-, Oktaeder- oder Rhomben-dodekaedernormale in der Stabsachse haben; im folgenden werden sie alsH-, O- und /^-Aggregate bezeichnet. Ich beschr?¤nke mich auf prim?¤reLamellenaggregate mit den Lamellenebenen senkrecht zur Stabsachse,die erhaltenen Formeln gelten also mit guter Ann?¤herung nur f??rKristalle von kleiner und mitderer Anisotropie, wie sie beim Aluminiumund Gold auftreten. F??r die Aggregatskonstanten gelten sodann die Gleichungen

(108a)



??? und (108b) zusammen mit (113c, d, e), wenn wir aus ersteren den Faktordas ?’ und das da streichen. Die \\p und x lassen sich entnehmenaus der Tabelle O 1. Richtungscosinus in spez. Aggr. if-Aggr. 0-Aggr. R-Aggt. Yi 1 Vi Vi 72 0 Vi Vi 7z 0 Vi 0 yj 0 i 1 4 X 0 0 In der Tabelle O 2 ist 3: = ÂŠ44 ÂŠ33 Die Querkontraktion ÂŠ 13 jÂ? ÂŠU ÂŠ12 Wir erhalten: O 2. Konstanten bei speziellen Aggregaten regul?¤rer Kristalle. H-Aggr. 0-Aggr. ?„-Aggr. ÂŠ33ÂŠ13 ÂŠ44ÂŠ11 ÂŠ12 ÂŠ11 ÂŠ12ÂŠ 3:iÂ? -11 CuCx2C44 Cn-if C,2 i/Cii C12 Cu C12 C44 C12 ^11 C12 cn-y C12 hf C44 y Ciif C44 yCuf cn-y i C12 i/â€”i C44 yCu C12â€”y Cll-f/- Cn Ci2â€”y C44 yC12 y cii C12 â€” y Cuâ€”y C12 1/C44(C44 y)C44 i/ CU C12 â€”{?’ 2(Cu i/)-^ Cu-I/- Cu Cl2 â€”i/C44(C44 y)C44 i/C12 ifCu C12 â€” if



??? Ist die Gr???Ÿe ?’, das Ma?Ÿ der Anisotropie, negativ, so ist bei derif-Struktur das ÂŽ kleiner und das % gr???Ÿer als bei der 0-Struktur,bei positivem ?’ verh?¤lt sich die Sache umgekehrt. Die Moduln beimallgemeinen Aggregat liegen jedenfalls zwischen diesen extremen Werten. Â§ 5. Strukturuntersuchung bei anisotropen Goldaggregaten. In der Tabelle O 3 sind zusammengestellt die Moduln der erwiesener-ma?Ÿen anisotropen Goldaggregate aus K 4 und die berechneten Modulnf??r mehrere spezielle und gemischte Aggregate sowie f??r isotropes Gold.Bei Gold ist ?’ negativ, f??r die gegossenen St?¤be 2a und 2b, wo @ kleinerund Z gr???Ÿer ist als die Isotropiewerte kommt also nur eine partielleH-Struktur in Betracht. Der gezogene Goldstab Ib weist f??r ÂŠ und Zbeide zu gro?Ÿe Werte auf. Beimischung einer einzigen speziellenOrientierung kann diese Abweichung nicht erkl?¤ren, ich hatte sie daherzuerst, wie schon bemerkt, einer Ungenauigkeit der Goensschen Kristall-konstanten zugeschrieben. Sp?¤ter fand ich die Abhandlung vonPolanyi

worin er mittels R??ntgenpr??fung nachweist, da?Ÿ diegezogenen Aggregate von den fl?¤chenzentrierten Metallen Kupfer,Aluminium und Palladium â€žparatropquot; sind f??r 2 verschiedene spezielleOrientierungen. Im Aggregat treten Einkristalle mit O- und H-Orientierungen beide â€žmit stark erh??hter H?¤ufigkeitquot; auf, wobei dieersteren die zahlreicheren sind. Polanyi hat nicht bei gezogenen Goldst?¤ben eine solche Strukturnachgewiesen, Gold geh??rt aber auch zu den kubisch fl?¤chenzentriertenElementen und aus andern Untersuchungen geht hervor, da?Ÿ ingewalztem Gold dieselbe â€žFaserstrukturquot; auftritt wie in Blechen vonandern fl?¤chenzentrierten Metallen: Ag, Ca, AI,nbsp;Wir wollen daher versuchsweise f??r den Gr??neisenschen Goldstab dieselbe Faserungannehmen, wie f??r die Metalle von Polanyi, und haben mittels derFormeln (121) aus Â§ 1, auf 3 Bestandteile angewandt, die Moduln be-rechnet f??r mehrere gemischte Aggregate, zusammengesetzt aus allge-meinem, O- und H-Material (die in Betracht kommenden

Prozentzahlenwurden abgesch?¤tzt durch Interpolation der ?? und Z zwischen denWerten f??r reines isotropes, bzw. O- oder H-orientiertes Material). Die verschiedenen berechneten und gemessenen Moduln haben wirzusammengestellt in der Tabelle: quot;gt;) Polanyi, Z. f. Physik 17, S. 42â€”53, 1923. Â?\') Vergl. z. B. Ewald, Kristalle u. R??ntgenstrahlen, 1923, S. 143.



??? O 3. Pr??fung f??r spezielle Goldaggregate. 10-11 2.10-11 yquot; Berechn. Wert f??r i/-Aggregate . . . . 4,09 4,00 1,02 0,461 *gt; ff 0- â€ž . . . . 11,15 2,27 4,91 0,394 ff ff â€ž Isotropie . . . . 7,665 2,68 2,86 0,427 95 % Is. 5% H 7,47 2,72 2,75 _ Â? â€ž 90 % Is. -t- 10 % H 7,30 2,77 2,64 â€” Gemess. Wert, Stab 2a, gegossen . . , 7,30 2,82 2,59 _ ff f ff 2b, ,, ... 7,58 2,77 2,74 â€” Berechn. Wert,f??r60 % Is. 20%0 20 %/?’ 7,57 2,76 2,75 0,428 â€ž â€ž 45%Is. 30%0 25%H 7,70 2,76 2,79 0,427 â€ž â€ž 20%Is. 45%0-h35%// 7,82 2,77 2,82 0,426 â€ž â€ž 5%Is. 55%0-f40%// 7,97 2,78 2,87 0,424 Gemess. Wert, Stab Ib, gezogen . . 7,92 2,77 2,86 0,42 Nach dieser Tabelle l?¤?Ÿt sich aus den elastischen Messungen nichtsquantitatives aussagen ??ber die Struktur der verschiedenen Goldst?¤be,wohl aber qualitatives. Erstens zeigt sich, da?Ÿ hinter der scheinbar kleinen Anisotropiedes gezogenen Stabes, die bei der Gr??neisenschen Pr??fung (TabelleC, im Â§ 4 des II. Kap.) hervortrat, eine sehr gro?Ÿe wirkliche Paratropiestecken kann, wenn die Struktur bei Gold dieselbe ist wie bei denandern

gezogenen Metallen mit kubisch fl?¤chenzentriertem Gitter.W?¤re die Fehlergrenze der Goensschen Kristallkonstanten viel enger,Z. B. unter 1 %, so k??nnten wir schlie?Ÿen, da?Ÿ der Gr??neisensche Stabwenig isotropes Material enth?¤lt und die 2 Polanyischen Vorzugsorien-tierungen ungef?¤hr im Verh?¤ltnis 3 : 2 vertreten sind. Unter den ge-gebenen Umst?¤nden bleibt das Verh?¤ltnis noch einigerma?Ÿen zuverl?¤ssigund somit die Polanyische Struktur des Stabes wahrscheinlich; es istaber sehr gut m??glich, da?Ÿ den Vorzugsorientierungen in viel h??heremMa?Ÿe die allgemeine Orientierung beigemischt ist. Beim Zinkstabkonnten wir von einer wahrscheinlichen Struktur sprechen, hier ist diegefundene Struktur kaum mehr als eine Vermutung. Falls der Goldstabnoch aufbewahrt wird, w?¤re hier, noch mehr als beim Zink, Nach-pr??fung mit R??ntgenstrahlen erw??nscht. Nicht viel anders scheint die Sache zu liegen beim gezogenen



??? Aluminium, doch kommt hier die ungleiche chemische Zusammensetzungder verschiedenen Proben als weitere Ursache von Abweichungen inBetracht. Das Verhalten des Stabes 3c (= AI II) der Tabelle H 4, dersowohl dem Gr??neisenschen Isotropiekriterium wie dem unsrigengen??gte (vergl. Tab. C und H 5), aber f??r (g und % Werte aufwiesungef?¤hr 3% gr???Ÿer als die berechneten, w?¤re vielleicht aus einerPolanyischen Paratropie zu erkl?¤ren. ?œber die gegossenen Goldst?¤be l?¤?Ÿt sich wenig mehr aussagen, alswas schon im Anfang dieses Paragrafen bemerkt worden ist. Dasverkleinerte ÂŽ und das vergr???Ÿerte % zusammen weisen bei allenMetallen mit negativem ?’ auf eine Beimischung von Kristallen in derOrientierung hin. Diese werden nat??rlich in verschiedenen St?¤benin ungleicher H?¤ufigkeit vertreten sein, die Daten der Tabelle O 3 ver-tragen sich z.B. mit etwa 12 % und 5 % solcher Kristalle in 2a und 2b.Die Zuverl?¤ssigkeit solcher Absch?¤tzungen ist aber gering, wir be-schr?¤nken uns daher auf die Aussage, da?Ÿ die

Annahme eines geringenProzentsatzes von Einkristallen der if-Orientierung gen??gt, um dieabweichenden Moduln der Voigtschen Goldst?¤be zu erklaren.



??? ZUSAMMENFASSUNG. I. Die Voigtschen Formeln (8) [Seite 6] f??r die Elastizit?¤ts-konstanten eines Kristallaggregats beruhen auf unrichtigen Annahmen??ber die Grenzbedingungen. II. Aus den richtigen Grenzbedingungen werden die Formeln(40)â€”(44) [Seite 27] und (43a)â€”(44a) [Seite 30] abgeleitet, derenAnwendung, n??tigenfalls wiederholt, f??r ein zweckm?¤?Ÿig gew?¤hltesisotropes Aggregat die Elastizit?¤tskonstanten ergibt. In diesen Formelnbezeichnen die ?´ijc, lt;pijc und oj^ Mittelwerte ??ber gewisse Funktionender elastischen Kristallkonstanten. IIIâ€”IV. Die Funktionen u.s.w. werden berechnet f??r Kristalleder hexagonalen und regul?¤ren Systeme; so erhalten wir die Formeln(84) [Seite 48] bzw. (113) [Seite 65]. Diese werden gepr??ft an allenmir bekannt gewordenen Daten f??r isotrope Metallaggregate. DieResultate, so viel sie deutliche Unterschiede zwischen der alten undder neuen Theorie aufweisen, sind zusammengestellt in der Tabelle Q,wo ÂŽ und % bzw. Dehnungs- und Torsionsmoduln bezeichnen. Q.

Schlu?Ÿtabelle f??r Â? isotropes Material. Zink Cadmium Gold Messing f alte Theorie 10,96(11,23) 6,63 (6,09) 8,405 13,29 e . 10-quot; 1 neue â€ž 9,94 (10,21) 6,025 (5,475) 7,665 11,19 { gemessen 9,97 5,00 7,92 11,0 Â?1,5 f alte Theorie 4,415(4,545) 2,50 (2,32) 2,96 5,035 % . 10-11 j neue â€ž 4,005 (4,105) 2,27 (2,07) 2,68 4,14 [ gemessen 3,95 1,93 2,77 4,0 Â?0,2 V. Es werden f??r mehrere spezielle Verteilungsfunktionen derAchsenorientierungen die Aggregatskonstanten berechnet und ver-glichen mit den Werten, gemessen an anisotropen Aggregaten. Eininteressantes Resultat dieser Rechnungen findet sich in der Tabelle N 1(Seite 96), die sich bezieht auf den Dehnungsmodul eines Gr??neisen-schen Zinkstabs, dessen wahrscheinliche Struktur ermittelt wird. Uli



??? STELLINGEN.I. Elke 3ÂŽ graadsvergelijking met re??ele co??ffici??nten is te herleidentot een vergelijking van den vorm: xÂ? â€” X â€” s = O, waarin s een re??el getal gt; O is. Deze vergelijking heeft ?Š?Šn positievewortel, die gelijk is aan de convergente â€žwortelkettingbreukquot; f\' \'vrr. II. De twee definities, die Hobson in ziin â€žTheory of functions of a realvariablequot; (2ÂŽ druk, Â§ 64, 65) geeft van de transfiniete ordinaalgetallender 2Â? klasse, zijn niet gelijkwaardig. In verband daarmee bevat defundamenteele stelling in Â§ 66 een overbodige beperking. III. Ten onrechte meent Czuber, dat men een waarschijnlijkheidsrekeningkan opbouwen op het â€žPrinzip des mangelnden Grundesquot;. E. Czuber, Wahrscheinlichkeitsrechnung, I, 1908, p. 10. IV. Nog steeds worden onder de elasticiteitsconstanten van kristallenopgenomen de constanten quot;van koperkristallen, die Voigt in 1883 indirectheeft bepaald. Deze getallen zijn niet juist, ook niet bij benadering. W. Voigt, Berl.\'Sitz. Ber. 37, 1883, p. 961; 38, 1884, p. 1004. M. Born,

Enz. d. math. Wiss. V 25, 1923, p. 570. M??llerâ€”Pouillet, Lehrbuch d. Physik, 11Â? dr. IÂ?, 1929, p. 936.



??? De theorie van Voigt over het geleidingsvermogen voor warmte enelectriciteit van kristalaggregaten is slechts een eerste benadering, dieb.v. bij electrische geleiding in tin zeer onnauwkeurig is. W. Voigt, Lehrbuch der Kristallphysik, 1928, p. 956â€”960. VI. Tutton betoogt, dat de eigenschappen van Lehmanns â€žvloeibarekristallenquot; geheel verklaard worden door de â€ž2wermquot;-hypothese vanBose. Dit betoog is niet afdoende. A. E. H. Tutten, Natural History of Crystalls, 1924, p. 226â€”228. VIL Waarschijnlijk zal men elastische anisotropie bij vloeibare kristallen,althans bij sommige, kunnen aantoonen. Vin. In zijn â€žDynamik der Kristallgitter!\' [1914] leidt M. Born deformules (32\'), (37) en (41) voor de drie deelen van de potend??eleenergie bij homogene vervorming zoo af, dat hij in de formule voorde totale potenti??ele energie eerst overgaat van absolute tot relatieveverschuivmgen en na de splitsing terugkeert tot de absolute. Dezeomweg is overbodig. IX. Bij de Algebra op gymnasium en H. B. S. kan de behandeling derwortelvormen

zeer sterk worden beperkt; de vrijkomende uren gevengelegenheid, in den onderbouw het rekenen met benaderde waardenen in de hoogste klas de ontwikkeling van het getalbegrip degelijk tebehandelen. X. Het is gewenscht, dat ieder gymnasium en lyceum het recht verkrijgt,elk jaar te kiezen tusschen Differentiaalrekening, Analytische en Projec-tieve Meetkunde als verplicht examenvak voor de B-leerlingen.
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