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HOOFDSTUK I

§ 1 — Inleidende eigenschappen.

Een geheele functie van de complexe variabele z is een functie,
die holomorf is in het heele eindige vlak. Zoo'n functie is dus ge-
karakteriseerd door het feit, dat de convergentie-straal van haar
Taylorsche ontwikkeling oneindig groot is.

Daar in het vervolg de nulpunten van zoo’n functie ter sprake
zullen komen, maken we daarover even een opmerking vooraf.
Zij { (=) een geheele functie, die niet overal nul is, en ay, a,, ay, . . . .
haar nulpunten. In ieder afgesloten gebied kunnen deze nu slechts
in cindig aantal aanwezig zijn, daar hun verzameling anders een
verdichtingspunt zou. hebben en dus f(z) =0 zou zijn. Dien-
tengevolge kunnen we ze gerangschikt denken naar de klimmende
moduli, wat we dan ook steeds zullen doen, zoodat we onderstellen:

lay | s |ay|s|ag|=s...
waarbij, ingeval a, een y-voudig nulpunt is:
Gpy F- O =gy =0 =y Fa .
Beschouwen we nu weer de geheele functie:

f(2) =ag+az+az24....,
dan hebben we direct de volgende:

Stelling I:

Tedere begrensde geheele functic is een constants.
Bewijs:

Zij overal | f (z) | < M, dan volgt uit de schatting van CAucny
voor de coéfficiénten a,:

la, | < }—?ﬂ% voor iedere R.
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Hieruit volgt echter, dat a, =0 voor #» =1, 2, 3,...., waar-
uit de stelling blijkt.
Deze stelling kunnen we uitbreiden tot de volgende:

Stelling 2:
Bestaal er een getal q, zoo dat voor |z | > 0.

/@)

z

< M,

. . . w
waarin M een vast getal is en [ (2) de geheele functie 2. anz* voor-
0

stelt, dan 1s [ (2) een polynoom van den graad g hoogstens.

Bewijs:

co

f@) =) anm.

]
Deelen we beide leden hiervan door z#+¢+1 en integreeren we
langs een cirkel C om O, dan krijgen we: (n > 0)

f 2
= 14 .
f el ?:n: n4-g

Daar nu | f () | < M R? volgens het onderstelde, als R de straal
voorstelt van cirkel C, volgt hieruit:

7 (z 2R 2nM
n+q+1

I R? .

< MR?. e =
M

zoodat dus: |amiq| < -— = , wat R ook is, m. a. w. an+4 =0 voor

iedere waarde van # > 0, waarmee de stelling bewezen is.

Stelling 3:
Iedere geheele functie f(z), waarvan het reéele deel u (z) overal
grooter is dan nul, is een constante.
Bewijs:
Stellen we: g (z) =e 719,
dan is g (z) ook geheel, maar met |g (z) | < I, omdat:

le @ = i<l
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We vinden dus, dat g (z) een begrensde geheele functie is, dus
een constante, waaruit volgt, dat f (z) ook constant moet zijn.

§ 2 — Algemeene stelling over holomorfe functies.
Onderstelling: f (z) holomorf voor |z | =< R;

@) =u (@) +iv () v (0) = o
Bewering: Voor |z | < R geldi:

e S T
f(z) :ﬁuz - Z{fmxﬂ (Ie(i )de
0
Bewijs:
Stellen we: Gy =an + Pui , 2 = e¥

dan is voor |z | = R:

0 0
/() :Z = E (an -+ Pni) 0" (cosne-isinng) =u(z)4iv(z).
0 0
Hieruit volgt:

o0
u (Re%) = Z R (an cos n8 — By, sin #6).

0
Door de beide leden van de laatste vergelijking te vermenig-
vuldigen respectievelijk met:

1, cos @, sin6, ...., cosnf, sin#nf, ....

en te integreeren tusschen 0 en 2x, leidt men hieruit af:

2
a —J-fu (Re%) do
0 _27[ ]
0
2x

1 ;
o [u (Re%) cosnb de,
nR"
0 BE== ] D o
2
0y o
ﬁ,,=—nR"/u(Re )sinn8da, l

0
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Substitueeren we deze waarden voor a, en fs, dan vinden we:

2or
f(z) =By + ﬁ f " (Ra"")[ 1+ 2}: (%)"emf?~4” ]d 6,
0 n=1

omdat de reeks onder het integraalteeken uniform convergeert
voor o < K.
De som dier reeks is:
(4

- —
Re? ) 2

[T
__ 8 p—8) Re” —z
1 T ¢

’

zoodat:

2x
: I ; 2z
1(2) = Bt —i—z;-[a (Reat) [1 +m‘de ==
0
2x A
= ey 1 0i Re® + 2
_ﬁ01+-2—ﬁfn(Rg ) e
0

R 801

do
— 2
w. t. b. w.

Gevolg:

Passen we de gevonden formule toe op de constante functie:
f(z2)=1, dan vinden we:

27 e
1 [Re" 4 2
5./‘&87:2 dé =1.

0

§ 3 — Toepassing op geheele functies. Formule van JEnsen.
Onderstelling: [ (z) geheel.

De nulpunten van f(z) binnen den cirkel |z| =R
mogen zin: ay, g, . ..., ay. Hun beeldpunten . 0. v.
[ZHE="R 1 a{ ¥ as IRt ay,
Bewering:  log f (2) = Az + Z log Z::? -
"

n=1



2
] RE 01 Rgei — Oy d B
o e *210g|fRe Elog — g .
Bewiys:
Stellen we:
g /@)
= (z—ay)....(7z—a)

dan is g(z) holomorf en nergens nul voor |z | = R. Dus is volgens
de vorige stelling:
2
| [Re% 4z

Iogg (z) — B1 + —_ Reab_v IOg 2 (Rcel)l do,

o
waarin B een op 2z en z'n veelvouden na bepaalde recele con-
stante is.
Hieruit volgt:
2

log /(5 = Bi -+ - ——i?logmfeﬁ‘)i Zlogiﬁﬂ"*~a1§dﬂ

0
Rb e n=1

—I-Zlog(z—a,;). Al RN T )

dan is
v 27 ) v
- 1 (Re% + 2
E log (z-a,) = Ci é_fﬁpﬂ—ij_ ~%E log | Re%"—aj |gd& (2)
ﬂ=1 TT ) B s A n-—“-l

Optelling van (1) en (2) levert het beweerde.

Nemen we aan weerszijden van het gelijkteeken in de gevonden
formule het reéele deel, dan vinden we:
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a);

2
log |/ (z L lng

1) 91» _[H z) 7
92( log | f (Re%) | do
— +)ﬂ/ R g | f (Re™) |

Dit is de algemeene formule van JENSEN [5] ! voor geheele functies.
De bijzondere vinden we door z =0 te stellen en f (0) # 0, nl.:

“ﬂ an

(wegens |ozﬂ aﬂ' [E=iR)
2
log | (0 |—-]E:,1O¢J1,| +5m J[}og |/ (Re") | db.
lan | < R 0

Deze laatste kunnen we ook als volgt bewijzen:
Daartoe beschouwen we de gelijkheid van Cauchy, gevende

het aantal » (R) der nulpunten van f (z) binnen den cirkel | z | = R:

2
,., ),31
v (R) = _*/f f. S .1 pﬂeiLﬁJ{M
(2) / (Re™)

lsl=R g

[/ (0) 7 0]
Deelt men hiervan beide leden door R en integreert men tus-
schen 0 en R, dan vinden we:

R

/“" , /-ff I“gm) mdﬁdf)
(Re?)
0
- f R e
2:’tf f Adte)i—
2

~$ff4mum+mﬂm%h6:
0

2
= —log/ (0) +.- [ log / (Re%) do.
27

0

dus:

Z 10b

[l <R |

1 De getallen tusschen de vierkante haken verwijzen naar de literatuur-

lijst achterin.
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Door het reéele deel te nemen blijkt de bewering.

§ 4 — Gevolgen van de formule van JENSEN.
Onderstelt men f (0) = 1, dan gaat de gevonden formule over in:

27

1 : R il
=4/ 1l My 1q6 =Y 1 —Slopeer
znfoglf(ﬁ’a)ld Eogiaul e
0 |Clm<R
Zij nu M(R) het maximum van | f (z) | op den cirkel | z | = R,
dan volgt er uit:
R > y — - |
_ R | < M(®), voor || < R = la, . (1)
ajahoutd)

Dit gcldt echter voor zedere R, want als R b.v. llgt in het in-
terval:

|avsr | = R = | aptr41 ],

k geheel, positief, dan heeft men vooreerst:

v+ k
% { < M(R)

a0y . ... Oppk

ofwel:

R
Ap -k

R
ay.i.1

R.I.f

alaz....dl"

< M(R).

Het eerste lid hiervan is echter minstens gelijk aan dat van (1),
dus blijft (1) gelden voor R > | ay41 |.

Analoog bewijst men, dat (1) geldt voor R < |a,|, zoodat we
hebben:

Als gegeven is een geheele fumctie, mel f(0) =1 en nulpunten

@, a,, .... (gerangschikt volgens klimmende moduli) dan is:
- 15 M (R)
laay. ... an| R

vooyr 1edere R en n.
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§ 5 — Theorema van Hapamarp over het reéele deel van een ge-
heele functie [6].

Onderstelling: [ (z) is een geheele funclic met reéel deel u (2).
Zij u () < Ar* op oneindig veel civkels om O met on-
bepaald groeiende stralen, en A een positieve constante,
4 een geheel, positief getal of 0.
Bewering: a) [ (z) 1s een polynoom van den graad 1 hoogstens.
b) [ (2) is een polynoom van een graad lager dan 2,
als de onderstelling vervuld is, hoe klein A ook is.

Bewzjs:
Nemen we de notatie van § 2, dan hebben we gevonden, wegens

= , — g __ —nbi,
a, =a, + 1 en cosnld —isinnd =¢ .

i
2

n — oy —nli
ara, = |u(re’)e de,

0
waaruit volgt:

27
ata, | = f | 4 (re ') | do.
0

Verder was:
2

2na, :fu (re%) dn,

0
zoodat:

2
a" | a, | + 2na, gf{l u (re®) | + u (re%) }do.
0

Omdat nu |« | + # = 2u of 0, naargelang « positief of negatief
is, komt er dus voor # =1 4 &, (k geheel), in verband met het
onderstelde:

ar*tk ] @,y | + 270, < dnAdr*,
ofwel:
2|la,| 44
| nir | < Do +5%

op iedere cirkel genoemd in de onderstelling.
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Als £ > 0 nadert het tweede lid tot 0 als » + o0, zoodat
ar+1, aate . ... nul zijn. Q. E. D.

Het tweede deel van de bewering bewijst men op dezelfde ma-
nier, door & =0 te nemen.

Natuurlijk geldt de stelling ook voor het imaginaire deel v (2)
van f (z).

§ 6 — Constructie van een geheele functie, die sneller groeit dan
een gegeven monotoon-stijgende functie.

Uit de stelling van de vorige paragraaf volgt, dat, als de functie
f (z) geen polynoom is, niet alleen haar modulus ieder nog zoo
groot getal overtreft, maar bovendien, dat haar reéel deel (en
natuurlijk ook haar imaginair deel) waarden aanneemt, die voor
|z | voldoend groot in absolute waarde grooter zijn, dan ieder
vooraf gegeven getal, en zelfs grooter dan My?, wat de vaste ge-
tallen M en g ook mogen zijn.

We kunnen zelfs beweren, dat er geheele functies te construeeren
zijn, die sneller groeien dan iedere voorafgegeven monotoon stij-
gende functie:

Onderstelling: @ (v) 1is voor 0 < r < oo monotoon stijgend.
Bewering: Er is een geheele functie 7 (z) met M (r) > @ (7).
Bewijs: |
We kiezen de getallen:
<< <N <Ny <....

alle geheel en z66, dat:

(%)”t:w (3) (%)> @) ; ....:(k_j;—!‘)nt>¢ (R+2) 5 .. -

en stellen:
ro (2 (5 ()

dan is f(z) geheel en

ERE GG
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Zi nu: A e AR O [ geheel, positief,
dan is:
i\
M(r) > M (k)>(fc_:) >@k+1)=p().
Voor » > 1 is dus M () > ¢ (7).
De geheele functie / (2) 4+ C, waarin C een constante is, voldoet
dan overal voor | C | groot genoeg aan M (7) > ¢ (7).



HOOFDSTUK II

§ 7 — Orde en schijnorde van een geheele functie [2].
Zij f(z) een geheele functie met nulpunten an:

0<|gls|laglslagl=....

en p een zoodanig getal, dat de reeks:

2 1
Z’ 1aﬂ- lp+€
n=1

convergeert of divergeert naargelang & positief of negatief is.
Dit getal ¢ noemt men de orde van de geheele functie, zoodat
we de volgende definitie hebben:
Een geheele functie heet van de orde g, als de reeks:

1

o0
Z | an ll
=]

convergesyt voor A>0,
en divergeert voor 1 <op.

Opmerkingen:

Men noemt o ook wel de convergentic-exponent van de rij der
getallen: |a, |, |az|, |23], - - -

Voor 4 = p kan de reeks convergeeren, zooals bij an = log®n,
maar ook divergeeren, zooals bij an =1.

In het eerste geval noemen we o de convergenire-orde, in het
tweede geval de divergentie-orde van [ (z).

HapaMARD heeft nog een ander kenmerkend getal ingevoerd.
Zij M () = Max. | f (z) | en stel, dat er 'ngetal ¢ bestaat, zoo
|z|=r
dat voor iedere voldoend groote r geldt:
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M) <e' (1)
Hierin moet ¢ een positief getal zijn; immers, was ¢ negatief
of nul, dan zou f (z) in het heele vlak begrensd zijn, dus constant.,
Zij nu ' de onderste grens van de waarden van o, waarvoor (1)
geldt, dan noemt Hadamard o' de schijnorde (,,ordre apparent’)
van f (2).
Zij is dus daardoor gekarakteriseerd, dat bij willekeurig gegeven
positieve ¢ vanaf zekere » geldt:

M(r) < e’ +s,

terwijl bovendien voor oneindig veel waarden van » ~> 00!

ey

M (r) > ¢
Men heeft klaarblijkelijk:

Bty log log M (r)
£ _lm:;,iul) : log

In het vervolg beschouwen we alleen geheele functies, waar-
voor deze schijnorde eindig is, dus p’ < oo.

§ 8 — Verband tusschen orde en schijnorde.

Hulpstelling:
Voor iedere geheele junctic f(z) met f(0) = 1, geldi:

log M (r) = n (37) log 2,

waarin n (v) het aantal nulpunien van f (2) binnen den cirkel | z | = »
voorstelt.

Bewijs:
Uit de formule van JENSEN volgt:

7 r
log M () _a_ff—fﬂdrg ’—"y(—")dr:;n (7) log 2.
0 T
w. t. b. w.
De functie 7 (r) groeit dus voor » -=» 0o niet sneller dan de

functie log M ().
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We kunnen nu bewijzen, dat de schijnorde van een geheele
functie altijd minstens gelijk is aan de orde der functie.

Stelling van HADAMARD [3]: ey
Heeft | (z) een eindige schijnorde @', dan is f (2) van eindige orde,
terwijl o = o'.

Bewtjs:
Uit de voorafgaande hulpstelling volgt:
log M (27)
— e 1
nt) =5 (1)

Nu is als & > 0, wegens het onderstelde, op den duur:

+e
M@ <,

waaruit volgt:
log M (2r) < 2/t /77,

zoodat wegens (1):

2f'+a 7,"-{--
n(r) = —Tc_)g_2—'
en dit is op den duur weer kleiner dan # *%_ Daar voor iedere
k> 0: -
n=nlm+ k) < (m+ BT
Waarin Ty = ] (4 I I,

geldt op den duur:
1

¢ +2e
n >N
ofwel;
p' +3e
¢ +3s ¢ 2
n = N ’
waaruit volgt, dat de reeks
(= <]
Y
' 43
o Yy +3

convergeert voor iedere £ > 0,
waarmee de stelling bewezen 1is.
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§ 9 — Voorbeelden van geheele functies van eindige schijnorde en
orde.

Stelling:
Is g (z) een polynoom van den graad q, dan heeft de geheele functie:
/@) =
de schijnorde q.
Bewijs: »
Men heeft: | F(2) | = e RisR|.
Stelt men:
g(z):a0+alz+a222—{~....+aqzq,
waarin; @n=0an + 1y (n=0,1,....9)
€1l h— 7’6’{?’
dan is: Rfg (z)} = b, + by + br® .. .. by
waarin:
bn = ay cos np — B, sin ne, (m=0,1,....9
zoodat:
bqrq+ coe 4 B,
17(z) | =e

'\/a:‘: + 8} =0 is het maximum van b, voor 0 = ¢ =< 2a
dus is voor voldoend groote r en &> 0:

»

|£(2) | = ett+ar,
Verder is voor oneindig veel waarden van # - o en £ > 0:

Max. |/ (z) | = & 197"
|zl =r

zoodat f (2) van de schijnorde g is.

Bijgevolg is ¢ een gehecle functie van de schijnorde 1.
Evenzoo: sSin z en cos z.
ir__ .~

Immers: sinzg = ———-
21



15
6’ + 61,: Gf!
2

terwijl voor z = i bij iedere £ > 0 en iedere voldoend groote 7
geldt:

zoodat: M @) <

¥

| £ (2) |:=}?_._"2;e_ < —or

De gehecle functie:
® R

f(a) =" + e =2Z{ k)!

k=0
is van de schijnorde 14, daar vooreerst:

1F(2) | < e +e"" =26 < M7, (> 0),

terwijl bovendien voor iedere voldoend groote z=7>0 geldt:

]

b

‘I/
/(@) | =+ "> (2> 0).
Geheele functies van bepaalde orde:
a) Stellen we |ay | = 4/n, zoodat
1|2 1 [2+e
a | = n ' en o =y F),
" n

dan is een geheele functie, die deze a, tot nulpunten heeft, van
de orde 2, terwijl ¢ = 2,divergentic-orde 1s.

b) | an | = A/n . log n.
] 2
e —1 —2
a | =n . (logn),
n
1 28—

— 1R (log n)— &)

ay

zoodat ¢ = 2 convergentie-orde is.
c) |a, | = I/n?,
1

: — y—(1+e/2)

waaruit volgt, dat ¢ = § divergentie-orde 1s.
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§ 10 — Schijnorde van de som, respectievelijk het product van 2
geheele functies.
Stelling 1:

Zyn f (2) en fy(2) twee geheele functies, respectievelijk van de
schijnorden o} en o, lerwyl o > o4, dan heeft:

g =h{) + /()

de schijnorde ;.
Bewijs:

Vooreerst hebben we voor iedere voldoend groote r en wille-

keurige £ > O:
Max. |g ()] = Max. |£,() |+ Max. |/26) | <
Il=r

ls|=r il=1r

e'P; + 4e pa + e

+ €
Verder is voor oneindig veel waarden van 7 —» « en &> 0:

Max. |g ()| =Max. [/ () |—Max. [fy(3) | >

|x]=r

= i Qe'pi + 4 i 6,pi + G‘

- — £

rm‘——ic e'Pi+ e _ gfp'l—i‘t( IR _,m’—ic)

= %grl’l""‘}‘ > erpl—', AL (i gy A v
wat we mogen aannemen.
Stelling 2:

Zin f, (2) en [y (2) twee geheele functies, respectievelijk van de schijn-
orden py en pj, terwyl o; = g3, dan 1s

g() =hHQ). 1)

hoogstens van de schijnorde ;.

Bewnjs:
Voor voldoend groote |z | =7 en iedere £ > 0 hebben we:

1+ 1+ Je
1@ <™ en g <

zoodat wegens p; = p; :

»
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fpi _i- ':]ft fﬂl\'.+ €

lg(x) | <é <e

waarunit de stelling volgt.

§ 11 — De maximale term in de reeksontwikkeling van f(2).

Onderstelling: | (2= 3 and”, geheel met eindige schijnorde p'.
0

u (7) is de grootste der moduli van de termen der machi-
reeks wvoor |z| = 7.

Bewering: Voor iedere ¢ > 0 geldt oneindig vaak (d.w. z. voor
co veel tot 0O groeiende 7).

pi=t
p(r)>é
Bewijs:
Ontkenning beteekent, dat er een ¢ > 0 is, z06 dat voor 7 vol-

doend groot:
a

ur)=¢ (0=0"—¢)
ofwel: | an | 7 = &’
)ra
cn ] anl = =

1%

Voor sedere » > 0 is dan met zekere positieve constante A,
die niet van » afhangt:

’.cr

€

|aul<A
¥

Het minimum van het rechterlid wordt bereikt voor:

nlo u (o
zoodat: lan | < 4 £ =4 (2) .
n\'le &
(%)
Bepaal nu £ uit: k = [2%0r7],

dan hebben we:
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k
] nla wL e n g
7) < A ‘\:(%) - 4 Z (,—f) .7+ B

n=1 n=k41
< Ak.7*. o oM 24 () + B
< Ak .¥* . ekl ot 424 + B,

zoodat op den duur:

atef p—efz
Mirn<e *' =¢
wat onmogelijk is.
Opmerking:
Natuurlijk is voor oneindig veel waarden van 7 =» co en ¢ > 0
+
ook: pin <e "

De schijnorde van f(z) wordt dus bepaald door die van de
mmaximale term” u (7).

§ 12 — Ongelijkheden, waaraan de coéfficienten van de reeks-
ontwikkeling van f (z) voldoen.

Stelling:

Heeft de geheele functie [ (z) = 3 an de eindige schijnorde o,
0

dan is bij willekeurig kleine e > 0:
1) woor n groot genoeg:

|
Yola, | < Sse

2) oneindig vaak:
1
e —e) -

YV a,| >

Bewijs:
1) Volgens de schatting van CAucHY is voor iedere |z | =7> 0
en iedere #:

| an l #"

Er is dus een positief getal 4, zoo dat voor alle |z | =#> 0
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geldt:

r

pike

|ﬂ;:|§A

Tﬂr
Nu wordt het minimum van het rechterlid bereikt voor:
pl1€
V i
r= |/ — ;
o'+ ¢

Vult men deze waarde voor r in, dan blijkt de juistheid der
bewering.

2) Ontkenning beteekent, dat er een ¢ > 0 is, zoo dat op den duur:

1
V| = e,

p—E

Er is weer een positief getal 4 te bepalen, z66 dat steeds:

ofwel: |an | = p 1= — y—in, ( = ,1 )

lan| = A4 .07,

s

=1

Zoodat:

Waarin B een constante voorstelt.

Bepaal nu £ uit: k= [(27)',
dan vinden we:

< Akr* 24 ()1 + B

< A @) ™ 404 4 B,
dus op den duur:

M (r) < o PHth gt

wat een contradictie oplevert.
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Opmerking:
Met deze ongelijkheden bewijst men gemakkelijk de volgende
stelling:

o
De schynorde van Z auzt 1s dezelfde als de schijnorde van

=0
o0
pMAED
#n=0

§ 13 — Een noodige en voldoende voorwaarde voor eindige schijn-
orde o' [11].
Uit de ongelijkheden der vorige paragraaf volgt de volgende:

Stelling:
Een noodige en voldoende voorwaarde, waaronder een geheele functic
f (2) de eindige schijnorde o' heeft, 1s, dat

nlogn ]

ral

H=D
Bewuys:

De voorwaarde is noodig, immers heeft f (z) de schijnorde p’,
dan is volgens de vorige paragraaf voor voldoend groote #nen e > 0:

i
7| an |

~ pllP"+e)

n log n o' + €

waaruit volgt:

Bijgevolg is lim. "—M—ailg-}«;.
= nlogn 0
Verder is oneindig vaak:
I 1/(p'—s
n 1y
]yl An 1 <
dus:
e ].Og ] aﬂ | < : l
#nlog n o' —¢&
m. a. w. Himje e oailidnl = —I,— ;
nlog n 0

=
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zoodat we vinden:

T il 1L
nlog n 0

=0

Dat de voorwaarde ook woldoende is, blijkt als volgt:

Is lim, 108 |an |
n log n

£
Q!

=0
dan volgen hieruit de ongelijkheden der vorige stelling. Uit de
eerste ongelijkheid volgt dan, dat voor voldoend groote n en & > 0:

¥ 1
lan |7 < (;ﬂ(P—-F.}) :

zoodat ,,de maximale term” u (r) kleiner is dan het maximum
van het tweede lid van de ongelijkheid, dat bereikt wordt voor

| ik
#=— """
(4

Bijgevolg vinden we, als we deze waarde voor 2 invullen:
p'te
w(r) < e vanaf zekere 7.

Evenzoo bewijst men, dat wvoor oneindig veel waarden van
¥ en g> (:

f._.
Yleet

p(r)>c

De schijnorde van p (r) is dus o', waaruit in verband met een
vorige stelling de bewering volgt.
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§ 14 - Algemeene gedaante van een geheele functie zonder nul-
punten.

Stelling:

De algemeene vorm van een geheele functie zonder nulpunten is:
3!1(:5}’

waarin H (z) een willekeurige geheele functie voorstelt.
Bewiys:

Z1j G (2) een geheele functie zonder nulpunten, dan is i g}
ook een geheele functie, omdat G (z) nergens nul is.
Hieruit volgt, dat

-

H (2) :fg 8 dz= 108 G (3)—Tog G (0)
0

L) G’ (2)
ook een geheele functie is, omdat [ G ()
r

dz over lederen geslo-

ten weg I'" nul is.

We vinden dus:

G(2) =W TC
waarin C een constante is.

Daar omgekeerd de functie e een geheele functie is zonder
nulpunten, wanneer H (z) een willekeurige geheele functie voor-
stelt, levert ¢ de algemeene gedaante voor geheele functies
zonder nulpunten.

H (z)

Gevolg:

Zyn f (z) en g (z) twee geheele functies met dezeljde nulpunten,
dan is hun quotiént weer een geheele functie, echter zonder nul-
punten, dus van den vorm e?®, zoodat

i = )
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Zij f (2) een geheele functic zonder nulpunten, zoodat:
=

waarin H (z) een geheele functie is.

Is nu bovendien f (2) van eindige schijnorde, dan moet H (z)
een polynoom zijn. Immers heeft f(z) de schijnorde ¢, dan is,
wegens R / (z) = log | f (2) |, voor voldoend groote |z|=7 en
€> 0

RH () <7t
dus volgens § 5 is H (z) cen polynoom met graad ¢ =e’ +e¢
dus ¢ =< p’, waaruit volgt ¢ = [e'].

Daar echter volgens § 9 de schijnorde van e waarin H (z)
een polynoom voorstelt, gelijk moet zijn aan den graad van H (2),
besluiten we hieruit, dat de geheele functie ¢ @ zopnder nulpunten
alleen van geheele, eindige schijnorde kan zijn, ofwel:

Alle geheele functies van eindige, niet geheele schijnorde moeten
noodzakelijk nulpunten hebben.

H (z)

Uit stelling 1 van § 10 volgt in het bijzonder, dat de schijnorde

van f (z) dezelfde is als van f (z) + C, indien C een of andere con-
stante voorstelt. In verband met het voorafgaande kunnen we
dus zeggen:

Geheele functies van eindige, nict geheele schijnorde nemen iedere
waarde aan.

§ 15 — Geheele functies met een eindig aantal nulpunten.

Beschouwen we nu een geheele functie f (z) van eindige schijn-
orde met een eindig aantal nulpunten. Zijn deze a;, a,, ... .an
dan is:

f(2)
1=
() (z—a)....(z—ap)
een geheele functie zonder nulpunten en van dezelfde eindige schijn-

orde als f (z), want voor iedere voldoend groote » en ¢ > 0 hebben
we:

ef e pite
Max. | F () | < —r— 1 = ¢ 5
[zl=7

terwijl voor oneindig veel waarden van 7 => 0oO:
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7P’ —¢

e S D=
Mi}:'IF(Z)!>__?‘+_1—/G .
(" >¢e>0)
Dan is echter F (z) van den vorm ¢ ofwel:
H(z)

)= (z—a) (z—ay) . ... (z— ay) 7@

waarin H (z) een polynoom van den graad ¢’ moet zijn, bijgevolg

moet o’ geheel zijn.

We vinden dus het volgende resultaat:

Geheele functies van eindige schijnorde met een eindig aantal nul-
punten moeten van geheele schijnorde zijn.

Opmerking:

Het omgekeerde is niet het geval, bijvoorbeeld:
cos (z?) — sin (z7) is van de schijnorde ¢, dus van geheele schijn-
orde, als g geheel is; heelt echter oneindig veel nulpunten, nl.:

ZE=R iy - %) s (=10, 152 5 )

Verder vinden we nog in verband met de vorige paragraaf:
Geheele funclies van ewdige, niet geheele schijnorde nemen iedere
waarde onewndig vaak aan.

§ 16 — Geheele functies met een oneindig aantal nulpunten. Stel-
ling van WEIERSTRASZ.

Stelling:
Heeft de geheele functie f(z) de eindige orde o, dan heeft men,
als a,, a;, a,, . ...de nulpunien van f (z) voorstellen:

f(2) = cH 1T (1 - Ef" ) GHon + & (efan)t -+ 1Up (sfan)

=1 t0

waarin p =p = p + 1, en H (2) een geheele functie voorstelt.
Bewiys:
Stellen we:

Z ; T n
(1 __.E_) ezl{au'!'- . -+ 1”’ (zfa jp i (Pn (Z),
"

dan behoeven we slechts te bewijzen, dat het oneindige product
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n
I ¢4 () uniform convergeert binnen ieder begrensd gebied G,
ik

dus een geheele functie voorstelt, klaarblijkelijk met dezelfde
nulpunten als f (z), waaruit dan in verband met een vorige stelling
de bewering volgt.

In ieder begrensd gebied G is |z | < M.

Zij nu n, 266, dat |ax | > 2M voor n = 7, Aangezien voor
n > ny

1 T (| 1 z)f"**?
i )=~ i) < AHE =

geldt overal in G voor n => #

Mt J
1og gn(2)| < =g <2 BT
H

2Zlog @u (z) convergeert dus uniform in G, dus ook fn’ @ (2).

"y e
Opmerking :

We hebben stilzwijgend f(0) 7 0 ondersteld. Is f(0) =0,
dan moet de uitdrukking voor f (z) nog vermenigvuldigd worden
met 2, als 0 een »-voudig nulpunt is van f (z).

§ 17 — Definitie van het geslacht. Hulpstelling.

Wanneer in het bijzonder de functie H (z) van de vorige stelling
een polynoom is van den graad g, dan noemt men het grootste
der getallen $ en g het geslacht der functie f (2). (LAGUERRE).

Gevolg:
Is dus het geslacht van een functie p, dan convergeert de reeks
= I ket

Z_

an
=1

Is de functie van het geslacht nul, dan is
1

convergent, zoodat f(z) dan te schrijven is in de gedaante:

1
2771
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7 (z) = Cl?(l e —)

an
waarin C een constante voorstelt.
We behandelen nu eerst de volgende
Hulpstelling [1]:

| 21 p geheel, niet negaticf en p < o = p + 1, dan is er een getal
K = K (0), zo0 dat voor iedere complexe u geldt:

u= { T Ur
Sp T R A U0
; “ rd K |u
(I —u)e =¢ "
Bewijs:
Zyj p > 0; voor |u| < 1 hebben we:
u e 1 , ur urkl - gpt2
1:—{--5--[-....—{-; Og (1 —u) L u-f....} 5 —ﬁ-PTI-——f—-—Hﬁg——...‘

(1 -u)e — e s

waaruit volgt:

42 u» . | %]
u+§+....-— Pl o g 002 L,

(1-u)e <e =c <JE
voor |u | = V.

Daar echter o > $, groeit voor [u |- het laatste lid van
de vorige ongelijkheid sneller dan de maximale modulus van
het eerste lid, zoodat de ongelijkheid ook nog zal gelden voor
iedere waarde van u, waarvan de modulus een bepaalde eindige
limiet 4 overschrijdt, m. a. w. het bovenstaande geldt voor

|#| = 1 en voor |u|= i

Tenslotte kunnen we klaarblijkelijk een positief getal e vinden,

zoo dat:

; (1 . ?«E) 8H + 2 L urfp l - 60,[1:]“

voor Y << |u| < A

Kiezen we nu voor K het grootste der getallen 2 en a, dan zal
dus de ongelijkheid gelden voor iedere u, waarmee de stelling
bewezen is.

Voor p = 0 geldt de stelling ook, welke dan als volgt luidt:

Zi) 0 <o =1, dan bestaat er een gelal K = K (o), zoo dat voor
tedere complexe u geldt:

- o
11— | = &M



Bewijs:
Voor |« | <1 is:

ki U,.z 1. |ulo
H—uj =1+ u=1+ 2=

1
f»’:[]—i—‘;]

en stel K — +/k!, dan is voor |« |= I

Bepaal nu % uit:

. ||
et

=14 e =1+ 2
Aangezien K > 1 is, is hiermede de stelling bewezen.

§ 18 - Stelling van POINCARE.
Stellen we ter afkorting:

= Z}Clu ~+ é‘ (zfl‘lu)z AT lf‘b (Z,l'a,g}l' »
O__)G =l e

L
a'ﬂ-

dan gaan we nu een hovenste grens bepalen van de modulus der
functie:

1o =E(r
op den cirkel |z | = 7.
Onderstellen we eerst, dat de reeks:
Z )7 convergeert,
an

=1
dan is p — g — 1. Zij £ > 0, dan kunnen we een geheel getal m
200 bepalen, dat:
w0

iw=m-1

1

ap

g —£i
2K’

waarin K het getal is, dat in de hulpstelling van de vorige para-

graaf voorkomt, zoodat:
P

1

: o
KrP X
@y

i ) o

m-41 @y

voor | z| = 7.
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Daar echter in dit geval p > # is, geldt voor het uit een emdig
"
aantal factoren bestaande product I7 voor |z | < r:
1

1 o
IIr r
[ 1 (“u j)

mits 7 groot genoeg is, zoodat we voor | 2| = # zullen hebben,
voor 7 voldoend groot:

€y |2]P . €fs i’
< & < G

]

11@) ] < e™.
Onderstellen we in de tweede plaats, dat de reeks:
=1

dan heeft men o < p - 1.
Fixeeren we nu ¢ > 0 zoo, dat

]

Ay

p

divergeert,

£
et =p+1,

en gebruiken we de vorige hulpstelling met:

£
0=0p -+ —5

2:
K
(2 9) <

@0
M
An
=1
besluiten we eruit, dat:

dan vinden we:

7 P'}-(Ff:.'.

dn

Omdat echter
ptef2

convergeert,

. @
Kk >

o » z 1 o‘n
HE[(Z. )| <e
1 ay

en bijgevolg: [f(2) | <e

17 1p+£l

vanaf zekere 7.
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In het bijzonder volgt uit het voorafgaande, dat voor iedere
geheele functie van het geslacht p geldt:

+1
7G| < e
vanaf zekere 7, voor iedere willekeurig kleine e > 0.
Dit is de stelling van POINCARE [9)].

Opmerking:

Uit de definitie van de schijnorde volgt in verband met het
vorige:

Het geslacht van een geheele functic i hoogstens gelijk aan de schijn-
orde der functie.

Onder een kanonisch product verstaan we een product van den

VOorm:
z z\® 1 2
2o (e o (—)’
f} an

ﬁE(:‘p)—:—:ﬁ(I——i)c !
n=1 an Ham 1 an

Uit het vorige blijkt nog, dat voor een kanonisch product ¢’ = e.

Aangezien steeds geldt o = e’ hebben we dus de volgende
Stelling:

Voor een kanowisch product zijn de orde en de schijnorde gelijk.

Hieruit volgt nu, dat bij iedere geheele functie van eindige,
niet geheele schijnorde, orde en schijnorde gelijk zijn.

Immers, is:

f(z) = () T E (a; : ;b) _ o HG) p (),
n=1 =

waarin H (z) een polynoom in z voorstelt, dan zou, als voor f (2)
o < o' was, de schijnorde van P (z) ook kleiner dan g’ zijn en
moest de factor eH(s de schijnorde o’ hebben, want was deze
< o', dan zou de schijnorde van f (z) ook < o’ zijn. ¢HE) kan
echter alleen de schijnorde ¢’ hebben, indien g’ geheel is.

Is de schijnorde gehecl, dan kan de orde kleiner zijn dan de
schijnorde.

§ 19 — Geheele functies van ’t oeslacht nul.

Beschouwen we nu een geheele functie f (z) van 't geslacht nul
en zij weer M (r) = Max. |/ (2) |.

2] =7
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Stelling 1I:
Is van een geheele functie van 't geslacht nul de ovde o kleiner dan 1,
dan is de orde gelijk aan de schijnorde L.

Bewiys:
Zije>0en p+ = 1.

Uit de convergentie van de reeks

= 1
Lo

th=1

volgt, dat er een natuurlijk getal m bestaat z66, dat:

l

Q41

=]

DX

n=1

pte

<

Volgens de hulpstelling van § 17 is er een getal K zoo, dat:

K 3 (_’“)P'Fe

#=1 \|a@in-nl

KerPte

lIA

fIll-— 2 <e

n—=1 Am-t-n

Dan is:

ti=1 [ an l

Rer L™ 5
M) <e Ir {1+ ;

hetgeen voor voldoend groote » kleiner is dan:

p+2¢ € p+2e € p+3e
e’ e =—rel “FRe i

waaruit volgt:

IIA

Y log log M ()
= lim. sup. —————~ !

e ey P log » e
Aangezien steeds: ¢ = p’, volgt er uit, dat ¢ = p'.

Stelling 2:
Voor iedere geheele functie van het geslacht nul is:
log M (v) = o (7).

! Deze stelling volgt ook uit § 18, want is f (z) van geslacht nul, dan is f (z)
een kanonisch product, dus o’ = p.
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Bewijs:
Omdat f (z) van ’t geslacht nul is, hebben we:

f(z)fCH(l—_;?).

C = constante, terwijl de reeks:

o«

D

n=1

convergeert.

"

Hieruit volgt:

¥ ¥
M(-y)g|cl(1+ & I) (1+ Iaal)""

Zij nu ¢ > 0, dan is er een natuurlijk getal m z06, dat:

e
ap
n=m-41
derhalve: o
rs ;1_‘ m
- n Y mt " A
M) =ic |€I(1—|—|an|)g L <|Cle (1+lﬂ,,|)

waaruit voor voldoend groote 7 volgt:
M(r) < &, d.w.z. log M (r) =0 (7).
Opmerking:
Dat de voorwaarde: log M (r) = o (r) niet voldvende is voor het

nul zijn van het geslacht van een geheele functie blijkt uit het
volgende voorbeeld van PoiNcARE [9].

[~ e
Stel: f(2) = II (l — n?log? n) g

n=2

Het geslacht p = 1.
Echter is toch log M (r) = o (7), immers:

@ 72
M () = %}(1 + g )

”2
dus log M (r Z log( + Tog? n)
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Zij ¢ > 0, dan bepalen we % uit:
er << klogh=e 41,

dan is: log & v log 7.
Nu is:
08 M, Z, log ( Wl log ?z) ar Z log( n2 loq n)
n=Fk4+1
zoodat:

e 7 72
log M (7) < klog(l - W) - f]og(] - ;;I'Og—zx) dx,
k

dus:
2 dx
log M (1) < klog{1 + Jay537 ) +7* | Eiogrw
k

Het eerste stuk in het tweede lid dezer ongelijkheid is

=~

% =
B .2logr =2er.

Het tweede stuk is kleiner dan:

i~ fmdx = 1 r: log » 7

log? % log*k ~ k % log®r © & ~ elogr '’
R
waaruit volgt, dat

log;_L(f) -> () voor # = CO.

§ 20 - Vervolg.
Sittell i nigs
De convergentie van de reeks:

o
E log M ()
72
r=1

15 voldoende voor p = 0.
Bewrys:

o
Is 2 un een reeks van afnemende positieve termen, die con-

n=1

vergeert, dan geldt: nu, -0 voor # - oo,
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Passen we dit toe op de gegeven reeks, dan vinden we:

log M () () voor # -0

7
dus ook:
?ig) —~ () voor ¥ =+
wegens de hulpstelling van § 8.
Stellen we | an | = 7n, dan 1s:
1
gt L . ak
DR DR R I X =
Ié'u(k 1;,«,“,‘:2 2= n<i B :—1-=:1n<k
{0 1 N I
-._——_?11(2) —n(l)%—]- -+ 3?1(3) —71.(;3)%5 4. A (k) —n(k~1) e
n(k)

|
= — (1) + —=n(2)+ 31.345(3)-1—...—'; N (k- ])+L—I

152 2.
k—1

=i} ( ) _|_ - (T -;,‘ :1_)

Nu is:
f.

e
n (7) 10“ M (27) lng M (7)
D =) <Z"‘— =) "’2—“ '

=2
dus begrensd voor k--co Wegens de gegeven convergentie
Verder is:
n (R
k_(_lf_ﬂ) voor k— o,

waaruit tenslotte de convergentie van de reeks

Z—— volgt, m. a. w. p = 0 volgens § 22.

n
n=1

Noodzakelijk is de voorwaarde echter niet, hetgeen moge blijken

uit het volgende voorbeeld:

Stel: )= 1 — e g
: /) = ;ﬂ,( n log? 'n)’

dan is / (z) een geheele functie met p = 0.
3
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Verder is, als we de nulpunten # log? % nog voorloopig 7, stellen,

log M (7) = Z log (1 4+ ) flog (l - ri,,) ant=

Tn

: rn (
= lim. [nlog(l +4- m) —f x ][ p ] e

2
~ 7 n(x)
¥ f TACET)

Nu is in ons voorbeeld

X
n (%) » log?x’
3 rdx
zoodat: log M (7) f (# 4 7) log2x

2
Fixeeren we % en schrijven we:

rdx 3 rdx .
log M (7) &> [ (x -+ 7) log2 x T (x + 7) log2 x’ Laips
2 kr

volgens de middelwaarde-stelling de eerste integraal gelijk aan:
ky

kr
dx Hy Ix kr kr
M [ fogZa log2kr | “ @ F1logz fy © log? 7
3

2

. 1
waarin: PR < < 1

Verder is de tweede integraal gelijk aan:

(=] @

dx f dx 7 4
S e = P T g
) (l i xi)xlogzx x log® x log kr log »

4

kr

et—i—‘< <l
] e SR

Bijgevolg:
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log M (7) »

»

log r

log M () 1

ofwel » S
7 rlogr

(=]
log M (7 )
m. a. w, de reeks —qg~:jz,—() divergeert.

y=2

Uit het voorafgaande volgt, dat voor het nul zijn van het ge-
slacht geen noodige en voldoende voorwaarde bestaat, waarin
alleen de groei van M (#) voorkomt.
log M (r)

r

§ 21 — Over het tot nul naderen van voor geheele functies

van het geslacht nul.
We hebben gezien, dat bij een geheele functie van 't geslacht nul

log M ()

e
Men kan bewijzen, dat dit naderen tot 0 ,,z00 traag kan gaan als
men wil”’, waaruit dan volgt, dat er ook geen noodige en voldoende
Voorwaarde voor p = 0 op te stellen is, waarin alleen de ,,décross-
Sance’’ van

-» () voor 7 = 0O.

log MiY) figureert ).
r

Onderstelling: ¢ (r) monotoon dalend voor 0 < v << 00 en @ (v) > 0
v00r 7 => CO.

Bewering: Er is een geheele [unciie van 'L geslacht nul wei:

lo_gw}l’;ﬁf_(_r) =@ (?) voor 0 < r< 00.

Bewsys :

Bepaal bij n =1, 2, 3,.... het kleinste natuurlijke getal &,
waarvoor:
R

2

kR —1
2ﬂ
1) We verwijzen verder naar de correspondentie LANDAU—HADAMARD:

Rendiconti della R. Acc. dei Lincei. Vol VI, serie 6, 2e sem. 1927, pag. 3;
en LINDELOF, Mathematische Annalen, bd. 58, 1904.

=" H—o2" %) <
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Op het interval | < y < 2 kiezen we %, punten
2 ”n 3y 2 < X < 22 £3) 1 }‘?2 L
i ~—1 :
1] 1 1] 2 ; ‘< x{’: 2” » ” f'-’u 1]
enz.

Van links naar rechts noemen we al deze punten:

'El’ a.‘:, * e oay a”, e B
We stellen nu:
0 2z
CEE A =y
Nu is de reeks
:ZI, Tar | convergent,
omd'Lt' '
f.‘n, ]e k z f
N
Z( o “3;,){290( ) +2
/(2) 1s dus een geheele functie van ’t geslacht 0.
Verder is:
2
M (r) = (1 - )> I (1 - _f) > II /1%
k=1 ag=4r ax ap>4r

omdat voor 0 < x< 1, geldt: 1 + x > ¢¥*, wegens:
g2 RS A d

x%2 48 a4
log(1+x);:x—~§+§—a+...>x—(“2——|—“§—f—z—|-... —

1 -2
=X — l/zlx >x—x=2x(1—2x) >z

Bijgevolg is:
1
log M (7) >:~'Z P

ar >4r

21!.—4 n—=a

Zij nu: =tr=a)



dus:
dan vinden we:

@MMZ‘Z

s
ag > 2n—1

0. E. D.

]

_ > — L
ar

37

P =< 2h

ky Ren 41
on a9n+1

1

>
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§ 22 - Stelling van Lanpav.
Onderstelling: f (2) 1s geheel met nulpunien a;, a,, .
0 < [01|§|‘12|-§]‘13|§....,
FO) =1, 1logM () =0 (7).
Bewering: f(2) = IT (1 — i)
n=1 an

Voorafeaande opmerking:
De onderstelling f(0) = 1 doet niets aan de algemeenheid te
kort. Inderdaad, is f(0) # 1, dan kan men schrijven:

f(2) =ez® f (2),

waarin ¢z de eerste term is in de ontwikkeling van f (z) volgens
de opklimmende machten van 2, zoodat dan /1(0) =1 en het
theorema voor f, (2) geldt —.

Bewnjs:
Z1j R zoodanig, dat binnen den cirkel | z| = R, nulpunten
G, @, .. .. ap van f(2) liggen. Stellen we:

A = /()

=alli=2)

dan is A, (z) geheel, F 0 voor |[z]|< R, en hn(0) = 1.
Zij voor |z | < R:

4

K
gn (2) = [ ]:n EZ; dz = log hy (z),
0

dan is g, (2) holomorf voor 2 =R




39

Nu is voor |z| < R:
M (2R)

=——"—" = M(2R),

| An (2) | = Max. van | by (z) | voor |z | = 2R =

zZoodat: Ron (2) < log M (2R).

Volgens § 2 is voor |z | <7< R:
2%

| Reﬂ; 2 ;
n (Z) 2.7]: ET"—-’———, Iob lh,; (Rgs) ]dﬂ

Ook is: 0= éi_z f log | /in (Re%|d6, waaruit door optelling volgt:

2x 9y
] i
gn (2) = 2:./‘1, B, log | /s (Rea) | dé,
0
zoodat: lgn (2) | = Rzi = log M (2R),
m a. w.: | log 7n (2) | = log M (2R).

R
Uit log M (2R) = o (R) volgt dan voor |z |7

| log A (2) | = 0 voor R =» co, d.i. voor # => co,

zoodat: hn (2) => 1 voor #n = co,
@ 2
ofwel: 1i(zy = "l (1 —— —) : 0. E. D.
n=1 an
Opmerking:

De convergentie blijkt tevens uniform te zijn voor |z|< r.
Echter mogen we nzet besluiten tot

E
i @
m. a. w. dat het geslacht nul is. LANDAU formuleerde dan ook

de stelling (voor willekeurig geslacht) op de volgende manier [4]:
Een noodige en voldoende voorwaarde, waaronder een geheele functie

<< 00,
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1 (2) is van het geslacht = k, 1s, dat zij voldoet aan de volgende 2
condities:

a) De reeks:
i ‘_l_ st convergeert.
0=
. log M (v)
b lim, —=—=——= =0,
) iR
Bewijs:

We onderstellen weer f (0) = 1.
I. Zij f (z) van het geslacht = %, zoodat aan de eerste conditie

voldaan is, terwijl
f()—eH‘“’IIE( k).

waarin H (z) een polynoom is van den graad = k en

k wh

E(u; k) = (1 — u) er=1
Voor een willekeurige waarde van 2 heeft men:
VoA = Pl ™ ,

waarin ¢ (k) een constante is, alleen afhangend van k. Immers,
voor |u| = 1, is:

fo) A k-1
3 e ] 3
| E (u; k) gl A=kEL A | = ikl 21|
terwijl voor |u | = 14 geldt:
k ; k41
|E(u;R) | =1+ |u|)e luf+. ...+ ]ul = (ol 1v

Gebruiken we deze schatting, dan is voor iedere ¢ > 0:

II E (a;a ) Z log( T&}:Tl) -+
an loa| =2

: 1 i) 7 u\ A

Zal) - D

A—=1

log Max.

jasl=7
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T8 ( i) \= 1
a, An - (/\’) L m

phit1 lan|>¢

— log Max.
lim s = »
yr=Q

—_—

en als men !/ onbepaald laat toenemen volgt er uit, dat:

log Max. |ITE (—3 : k) [ = (;,k+1),
1z a an
l»ué r "
dus
log Max. |/ (z) | = Max. | H () | + log Max. | II E (a ") = o(r"")

l2|<s 7 B =r lol < 7
en is dus zeker aan de tweede conditie voldaan.

II. Zij omgekeerd voldaan aan de 2 condities. Daar in deze
onderstelling f (z) zeker van den vorm

f(z) =" OE (ai ; fe)

an

is, waarin H (z) ecen geheele func® is, moeten we dus laten zien, dat:

HY (0) = 0 voor 1=k -+ 1.

Nu is:
I
JRl2) B 1 Zous
f(z)—H (2) '*_GZ"(_—G“—Z—I_;; a’-)'

waarin % (z; R) een holomorfe functie is voor |z| = R, gede-
finieerd door:

/(z) = h(z; R) :

h(0; R) =
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Op den omtrek |z | = 2R heeft men:

I (1 2 i)
fan] = R an

Waaruit voor |z | = R volgt:

e " < M (2R), dus Rh(z; R) =< log M (2R).
Zij de Taylorsche ontwikkeling van % (z ; R):

= I {(Pe=ib= )

las| <R

h(z; R) = Z a’n;Rzﬂ ’
n=1
2. lllog M (2R)
Ri

dan is:  [A%(0; R) | = 1 |app | =

waaruit wegens de 2de conditie volgt:

lim | 2% (0; R) | = 0 voor 1=% + 1
e
zoodat

H(0) = 1im 2% (0; R) = 0 woor 1=} 4 1,

R=a
waarmee de stelling bewezen is.

MINETTI [7] heeft dit resultaat nog eenigszins verruimd door
voor E (u; k) de schatting van § 17 te gebruiken en vindt dan
dat f(z) de orde o en het geslacht = o heeft, din en ddn alleen als
voldaan is aan:

on

@
1 iz
a) Z T oae convergeerl, E——— divergeerd.

. laﬂlP-Hl - |€In]p_E’
log M(7)
b) Iim ——~L —
) rsw Pt

waarin &), &, en & willekeurig en positief zymn.

Toepassing van de stelling van 1ANDAU:

Zii: A sinn\/z
1j / (2) -—-—“\/5

dan is f (z) geheel en nul voor 7z — 12, R3S
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%) log M(;
Hierbyj is: %7& - (0 voor 7 = Q0
zoodat: _____sin 7/ =] (] — ia)
7z 1 n
o] 32
dus; sinnz-——nzﬂ(l——-—z).
7 n

§ 23 - Twee stellingen over de convergentie van de reeks:

[+a]

L 5

n=1

De eerste conditie in de stelling van LANDAU, nl. dat de reeks:

>

n=1

1 |k+1

convergeert,
Az

kunnen we vervangen door een andere, die de a, niet bevat. Daar-
voor behandelen we ecerst de volgende stelling, waarbij we | ay |
gemakshalve vervangen door 7x.

Stelling 1 [10]:
Een noodige en voldoende wvoorwaarde, opdat de reeks:

X 0

n=1

convergeert, is dat de integraal:
(o]

f ?F‘Sﬂ ar 2)

0
convergeert, waarin n (v) weer het aantal nulpunien van f (2) wvoor-
stell binnen den cirkel |z | = 7.
Bewnjs:
Men ziet terstond in, dat men heeft:

1 no\r n
E?=’ff1,k—+14r+75 3)
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Als nu de reeks (1) convergeert, is het 2de lid van (3) begrensd,
wat n ook is, dus a fortiori de integraal.

Omgekeerd, als de integraal (2) convergeert, dan nadert de
integraal:

27
n (v
fef ,Erz dr tot 0, als # = oo,
f"
i

waaruit voor # voldoend groot en & = () volgt:

2rn 27n
n (v) dr n I
£ >/\i/‘;fj+—l dr > im(}‘,;) ’Im = ?ﬁ (] —-—27 .
7n a

zoodat

il
— > 0 als n = oo,

n

Het 2de lid van (3) is dus begrensd, m. a. w. de reeks (1) con-
vergeert.

Stellen we nu:
Dor
J_ loo .01
10) =52 [ log |/ (re%) | an,
0
dan volgt uit de voorgaande stelling de volgende:
Stelling 2:
Wanneer voor een gegeven waarde van k de integraal:

110
0

convergeert, dan convergeert ook de reehs:
@w
B
k41 ¢
n=1 'n
Bewiys:

Onderstellen we weer f (0) = 1, dan gaat de formule van JENSEN
over in:

e




Omdat nu:

f do _.f do = n (37) log 2

kunnen we SChIl]VCIl.

dr 7 Q)
[i0-] 2a28

zoodat uit de convergentie van de gegeven integraal die van

o
n (7)
e dr

volgt, waarmee in verband met de vorige stelling het bewijs ge-
leverd is.

w
l
o
2

IW

Onderstellen we dus in de stelling van LANDAU op blz. 38 boven-
dien, dat de integraal

F i)
o
0

dan kunnen we besluiten, dat de functie het geslacht 0 moet
hebben.

§ 24 — Vervolg.

Sicnbilhingeg 1k
Zijn ay, a,, . . .. de nulpunien der geheele functie f (z), met moduls
71 Vs .« ... e Stellen we:!
¥
N (7) .—-f 1%(_{)_ dt,
0

dan zijn voor een gegeven k > 0 de integralen:

TN () Fn ()
il 9 j G @
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en de reeks: 2 ( 7;)
i

n=1

gelijktijdig convergent of divergent.

Bewijs:
Door partiéele integratie vindt men, dat voor 0< B, < g

B B
N N () N (B) 1 7)
Fg)d’: 7 Y 7?,[:%1" )

Bﬂ Bn
waaruit men ziet, dat de integraal

o Qo
N n\7
f ’,k+(zl) dr convergeert, als f f—,\,g:% dr convergeert.

Is omgekeerd de eerste integraal convergent, dan is voor een
willekeurige & > 0 vanaf een zekere waarde van B:

N ¥ & N
£>'/‘7’k_£:) d?‘;N(ﬂ) ./-;I-—:—]::‘ 7676("?-
B B

De 2de term in het 2de lid van (1) ligt dus beneden een eindige,
van f§ onafhankelijke grens, waaruit de convergentie van de integraal

f :;—(_2 dr volgt.

In verband met stelling 1 der vorige paragraaf is dus de geheele
bewering bewezen,

Opmerking:
We kunnen zelfs bewijzen, dat bij convergentie, de veeks:

N
en de integraal.: / kgﬂ dr
r

op de constante factor k® na gelijk zijn.
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Immers uit formule (1) volgt met 0 < a<< 7

"N () N@ N@ f& i
- dr

Ty — :
k+1 f-: o o Ph+1

Kiezen we nu ¢ < 7;, dan is N (a) = 0, terwijl:

- 1 n (7) 'dﬂ(r)
ffkgﬂ dri=tr §_7+[7;

a

Merken we op, dat:

:L[ ~

f dn (7) Em

a
(de reeks convergent ondersteld) en dat de termen:

N (7) o (r)

rk 7k

-0 als 7 »20,

dan vinden we bij de limiet voor » — co:

), 11
rkﬂd _ic“}:/r:

0
2 N (7)
dus Zr::szmdr.
n=1 0
Stelling 2:
Wanneer voor een gegeven k >0 de integraal
log M(r)
f ) dr

convergeert, dan is ook de veeks:

convergent.



S
0

Bewijs:
Uit de formule van JENSEN:
l log 03) | 49 — 1 0) | - % (f)
— Ogll(?c)lf og |/ (0) | — = d
0 0

volgt, dat:

log M(7) = ’Lgf) dl = N(7),
0

zoodat uit het onderstelde volgt, dat voor voldoend groote 7 en

willekeurige & > 0:
2r

log M (r) dr _ N
>./‘;—~d>l~,M()/' >Aw)f}+1 1/+1 :

7

bijgevolg convergeert ook de integraal

o3

fil_ﬂ dr.

Hieruit volgt, in verband met stelling 1, dat dan ook de reeks

E o convergeert.
i'!

=1
Opmerking:
In dit geval is M(7) = o (%), want met 1 < R is:
log M(7) log M (7) __log M(R)
f‘ SEET T ) dr >[ pren =="]ogMR) yEFl T EREL
waaruit de bewering volgt.
§ 25 - Stelling van Hapamarp.
Hulpstelling:
Voor q geheel en positief heeft x9— 1 = 0
q worlels ay, a,, . ... a; melt modulus 1,

waarvooy geldt: (=0, 1, 2, ....)

Eq g als k een g-voud is.

a, = ;
! " 0 als k geen gq-voud 1s.
=
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Bewijs:
Uit de identiteit:
o 1 1 1
q = E :
2A—1 z—a 2—ay z—ay
ofwel:
q Z 2z z
qqz — + ST ,
21 —1 z—a; X— 0y Z— Qg

volgt door machtrecksontwikkeling:

q
o] Eﬂi

:ZEI__, voor |z]| >1,

k=0

> (3)
k=0
waaruit de bewering onmiddellijk volgt.

Stelling van HADAMARD.
Onderstelling: | (2) is geheel, mel eindige schijnorde o' en nulpunten ay:
0< |y | =s|la|l=|a|=....
Verder is [ (0) = 1.

Bewering:  In de formule van WEIERSTRASZ:
z 1 fz\?
o a——l--....+"5(a':)
o0 & ol
fz)=ef® I {1——)e
1 @n

o 1
met zmg <o, pse ; H(0)=0,
n=1

is H (z) een polynoom met graad k = o'

Bewiys:
Zij q geheel en >p". .
Zijn de wortels van ¥’ — 1 = 0: @), w,, .... w, dan is wegens
de vorige hulpstelling, als H (z) = E ol
n=1
(@) f (042) . . . | (0g2) = ¢ How8) ..o+ Hoa) I (1 _ﬂz—) o (1 _?2"):
1 ay L

xcchgq-{-q‘cgvg%_]___.. ﬁ(l___ iti) )
d
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Stellen we nu 2?7 = £ en:

F (§) = e%ef Hacag'+ ... 1? (1 Hs ?E )
Zij nu ¢ >0 en M, (R) het maximum van
| F (&) | voor |&| = R,
dan is op den duur:

p'+e ‘42 (p'+2¢)/
My(R)< e " (metr=wR)< e’ =80T

Dus is op den duur:

Ze—(g—p’)
log My (R) _ plo+2dl—1 _ p~ g
R —
Kies nu ¢<< 1% (¢ — '), dan blijkt dat:
log M,(R)

T - (0 voor R = oo .

Passen we nu de stelling van LANDAU toe, dan krijgen we:

F§) =1 (1——5—)

1 a,

2
dus: echf+QC1q£ + e - 1

waaruit volgt: ¢; = 0. .
Daar ¢ een willekeurig geheel getal > p" was, is hiermee de
stelling bewezen.

§ 26 — Verband tusschen orde, schijnorde en geslacht van geheele
functies.

We stellen ons nu de volgende vraag:

Gegeven zijnde een geheele functie f (z) van eindige schijnorde
o', wat is er dan te zeggen van de orde g en het geslacht p van
/()2

We onderscheiden hierbij 2 gevallen:

le Geval: o' is niet geheel, dus de graad % van H (2) is kleiner dan o'
Nu is de orde p = p’, want uit ¢ < p’ zou wegens § 18 volgen,
dat van af zekere 7

r
—

M) < e’
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waarin ¢ een zoodanig positief getal is, dat
o' —o >penpg —o >k,

hetgeen echter in strijd is met het onderstelde, dat

g
M@ >¢

voor oneindig veel waarden van 7 = co. Daar steeds ¢ = o' was,

besluiten we dus tot ¢ = ¢’ en bijgevolg is het geslacht p gelijk

aan het grootste geheele getal, dat in o begrepen is.

2e Geval: p' is geheel.
Nu moet een der getallen % en p gelijk zijn aan g’, anders zijn

'—e

we weer in strijd met het onderstelde, dat M (r) >¢’ voor
0o veel 7 - oo.

Is k = o', dan heeft p een willekeurige waarde = p". In dit ge-
val is p = p’.

Is 2 < o', dan moet noodzakelijk ¢ = @’ zijn. Voor het geslacht
is in dit geval onzekerheid. Men heeft p = ¢’ — 1 ofwel p = p'
naargelang de reeks

oo

Samenvattend hebben we dus het volgende resultaat:

Bij iedere geheele functie van niet geheele schijnorde o' is de orde
e = o' en het geslacht p = [o'].

Is de functie van geheele schijnorde, dan kan de orde gelijk zijn aan
of kleiner zijn dan de schijnovde. In het eerste geval is p=p'of o' — 1,
in het tweede geval is p = o'

1

Ay

P :
convergeert of divergeert.

§ 27 — Andere definitie van de schijnorde als in § 7.
Zij de integraal

2}

log M
./ _Ogﬁf(i)' dr convergent.

R,
Omdat voor een niet constante geheele functie M(r) monotoon
toeneemt, volgt uit deze convergentie, dat voor iedere ¢ > 0 en
iedere voldoend groote r:
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A
M(r)< e .
Immers, ontkenning beteekent, dat er willekeurig groote waar-
den van 7 zijn, waarvoor:
log M () > &,
Zij nu:
I e T T ey I SRR
met 7, > 2ry—1 een 11 getallen, waarvoor
log M(rx) > erh.
Dan is:

Fr

log M (7) er 1 1
f‘*;:’r”d">—’1—’(i—— ,\) =

.rn—l ?;.

?:e-—l

niet kan convergeeren.

Hieruit volgt deze definitie van de schijnorde:
Een geheele functie f(z) heeft de schijnorde o, als de integraal:

0

/ log M (r) I

7,.?.~|»-1

convergeert voor A > p' en divergeert voor << ¢’. (Voor 1= p’
kan de integraal convergeeren of divergeeren).
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§ 28 — De karakteristieke functie T (r) van R. NEVANLINNA [8].

Zij f (z) een meromorfe functie van z, d. w. z. een in het geheele
eindige vlak holomorfe functie van z met uitzondering alleen van

eventueele polen.

Zij 2 =0 noch nulpunt, noch pool van f(z). De nulpunten
van f (z) binnen den cirkel | z | = R stellen we voor door a;, a,, . . .
en de polen door B, f., . ... Bp; hun aantal respectievelijk door

n (R) en p (R). We voeren nu de volgende notaties in:

0 lan| <R
; R
b (t
P (R) = f%df:Z log _ﬁ}"‘
0 |Bol <R

2w
1 + :
m (R) = -szlog | f (Re®) | dop,
0

log # als u > 1

.I.v
waarin log u# beteekent 3 0 als 0 < u < |

We stellen verder:
T (R) =m (R) + P (R).
Is in ’t bijzonder f (z) geheel, dus P (R) =0, dan is:

2
1 i :
T (R) = m (R) = Zf log | / (Re?) | dop.
0



54

De formule van JENSEN voor geheele functies:
2x

g 1101 = Y 105 |% |+ [los 1/ (kM 100 (0
[oa] <R 0
kunnen we nu anders schrijven.
Vooreerst is:
2x 2w

2
4 f Re%) 146 — = [ 102 | f (Re® P i
o og |/ (Re™) | = G log |/ (Re™ ) | —F 10g1f
] 0 0

1
Ll

= my (R) — my; (R).
Maar voor f (2) geheel is

my (R) = Ty (R),
terwijl:

mijy (R) = Tyt (R) — Pyjj (R) = T1j; (R) — N (R),

1
omdat de polen van T de nulpunten zijn van f (z), zoodat:

R
Py (R) f*t—) = N;(R).
Verder is:
ay
Z log || =—N;i(R);

zoodat tenslotte (1) overgaat in:

log |/ (0) | = T4 (R) — T'wy1 (R)
ofwel: Ty (R) =T} (R) 4 O (1) (2)
waarin O (1) voor R = oo begrensd is.
§ 29 - Eigenschap der Kkarakteristiecke functie. Verband met
log M (r).

Stelling:
T (r) 1s een positieve, niet dalende functie van v.
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Opmerking:
Deze stelling, die ook geldt voor meromorfe functies, zullen we
alleen bewijzen voor het geval f (z) geheel is.

Bewijs:
Volgens de algemeene formule van JENSEN is voor |z|< R:

2x
I Reef—I—z) ;
1 = = 1 %) | qa.
og1/() = log + g5 0 R g 1 (R |
| an | <R 0
Nu is echter voor |z|< R,|as |< R:

ﬂy;) R

(z—a ) an

[aul

R

(z—ay) R
(2 — ay) an

Hiervan gebruikmakend vinden we wegens

i
Si(R—F—T—)>0 voor |z | <R:
Re?

]

am

g 111 = 5= (RS2 log 1/ ke 100 ()

=

0
dus wegens |f(z)|=0:

2x

+ 1 Re% + 2\ + .
log | f(2) | = 5, m( . )log[f(Rae‘)ldo.
0

Nemen we nu aan beide zijden der gevonden ongelijkheid het
gemiddelde over een cirkel met straal » < R, dan vinden we:

2 2o
1 1 Re% 4 7e%H\ +
r0) = 22 2 (Pt——ba,_,m log | (R | dof 4
0 0

Nu is:

ox
1 R + re?‘ 1 [Re% 4 7% az _ :
2x Re% — 7e® ~ 2m ReP — 7% 2
0 Iz| =r



zoodat we vinden:

I =T(R),
waarmee de stelling bewezen is.
Is z = 7e%,
dan volgt nog uit de ongelijkheid (1) wegens:
Re% 4 2 R:— 2
R (Rg b —z) ~ R® 4+ 7* —2Ry cos (0—p)
voor 0 < » < R:
: R | v
@i ‘
log |/ (re%) | = T T (R),
waaruit voor M (¥) > 1 volgt:
R+»
log M () = T I ()]

Verder volgt uit de definitie van 7 (r) nog, dat voor M (r) = 1

geldt:
T (r) = log M (7)

zoodat we hebben:

Is f(z) een geheele functie met M () > 1, dan geldt voor iedere
(=¥r<a R 2

y
T{r)=logM (r) = Rir

Nemen we in het bijzonder R = 27, dan is:
T (r) =log M (r) = 3T (27).

Deze ongelijkheden bewijzen, dat de 7ol van T (v) in de theorie
der geheele functies wordt overgenomen door log M (v).

T (R).

Uit het voorgaande volgt nog, dat we de schijnorde ¢’ van
een geheele functie ook kunnen definieeren als:

P log 7' (r) .
R T !

en dat de integralen:

= <] @

log M (7) T (v)
f—;m_—l— dr ell[ m dr
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gelijktijdig convergeeren of divergeeren, zoodat we in verband
met § 27 kunnen zeggen:
De geheele functie f(2) heeft de schijnorde o', als de inlegraal:

[ T
/ ;A-l-l (i?’

Convergeert voor A >p' en divergeert voor A< g’.

§ 30 — De functie T (r) voor functies samenhangend met f(z).
Hulpstelling:

ZUn ay, a,, . ... an positieve getallen, dan is:
+ 4 + +
log (ma,. . ..ay) = loga, -+ logas + . ...+ log an.
5 + +
log (ay +ag+.... +an) Sloga, .. - logan 4 logn.
Bewijs:

+
Het eerste volgt onmiddellijk uit de definitie van log, terwijl
we voor het bewijs van het tweede gebruik maken van:

a+a,+....+ ap S Nag+1 Ag42. . .. Ay,
indien de eerste % getallen a kleiner zijn dan 1, de overige min-
stens 1. —
Gebruik makend van deze hulpstelling vinden we de volgende
stellingen voor de functie 7
Stelling I:
Is A een constante, dan 1s:

9 Ti+4 (R) = Tt (R) + O ().
Bewijs:

2
. _ | iF ; + :
Tyea () 1/ (R) = g [ 108 11 (Re¥) + 4 [-1og |/ (Re¥) {
0

2n

o
I + 1
é'g;fglogul|—E—10g2{dcp:2a'[0(l)dq:r_-0(l)
0

St el oD
Is A een van nul verschillende constante, dan 1s:

T4t (R) = T4 (R) + O (1).
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Bewngs:

1 ot + _ + &
TA:(R)—Tf(R)ﬁ'Qﬁf’lUglA|+10g|f(R8""‘)|—108lf(Rﬁ )¢ do
0

2w
1 3r
- Ef-[log[Aldqa::O(l).
0

Stelling 3:

Is la b
s F+0 (@, b, ¢, d constanten)
dan 1s:
Ty (R)=T¢(R) + 0(J).
of +d
Bewijs:

Deze stelling volgt door combinatie der twee vorige stellingen
en van (2) van § 28, indien we schrijven:

af + b ad — be 1
cf +d c Ccef+d°
Opmerking: A
De vorige stellingen zijn bewezen voor het geval f (z) geheel is;
ze gelden eveneens indien f (z) meromorf is.

a
C

§ 31 — Belang van het vooraigaande. — Toepassingen.
Bepaalt men = (r) en P (r) voor de functie

AL,
fz) —a

waarin a een van z onafhankelijk eindig complex getal voor-
stelt, en stelt men kortheidshalve:

do

2y
hx! % I I
m (? ’ a) T~ Ox 0og Jf (7,393') e
0
r

P (7;a) :f 1z(i;a) dt,

]
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waarin # (¢ ; a) het aantal binnen den cirkel | z | = ¢ gelegen nul-
punten van de functie f (z) — @ voorstelt, terwijl als a = co we
de vroeger gedefinieerde m (7) en P () nemen, dan volgt dus uit
de vorige stellingen, dat voor iedere a geldt:

m(r;a) + P(r;a)=Ti() + O (1) (1)

We kunnen zeggen, dat de som i (7 ; a) + P (r; a) de ,,attractie’”’
meet van de complexe waarde a Op de functie f (z) voor » = 0.
Deze som bestaat uit 2 ,,componenten’”” m en P, waarvan de eerste
des te grooter is, naarmate de som van de bogen van cirkel C (r),
waar f (z) dicht bij a ligt, grooter is, aangezien het gemiddelde
m (r ; @) alleen van de bogen van C () belangrijke bijdragen krijgt,
waarop de functiewaarde dicht bij e ligt; terwijl de tweede com-
ponent bepaalt, hoe dicht de punten liggen, waar de functie deze
waarde a werkelijk aanneemt.

(1) zegt nu, dat deze attractie voor alle waarden van a even
sterk is, op een voor iedere 7 begrensde term na —.

Liggen dus bij een gegeven geheele functie f (z) voor een zekere
waarde van a de punten, waar f () = a, niet zeer dicht,dan moet
dit gecompenseerd worden door ecn sterkere ,,gemiddelde conver-
gentie” van [ (2) naar die waarde @ omgekeerd wordt een zwakke
gemiddelde convergentic” maar een of andere waarde a door een
grootere dichtheid der punten, waar f (z) = a, gecompenseerd,
266 dat de totale som m -+ P toch de door de fundamentaal-
grootheid T (r) der beschouwde functie bepaalde grootte bereikt.

Opmerking:
Is f (0) = a, dan wordt P (r ; a) oneindig; we definieeren daar-
om in dit geval:

v

tia)i=—1y
}'"(1';c::)“:’[ﬁi--—i;)—;l dt + vlogr

0
als z = 0 een y-voudig nulpunt is van f(z) —a.

In het bijzonder kunnen we de stelling:
Ty () = Ti () + 0 (1)

als volgt interpreteeren:
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Ty en Ty blijken dus even snel te groeien.

Als nu f(2) ,weinig nullen” heeft, d. w. z. | @n | sterk groeit
met 7, dan heeft 1/f(z) weinig polen, dus groeit Pij niet snel. Bij-
gevolg moet #11); snel groeien om te zorgen, dat 7'y /t» Ty kan bijhou-
den. Dus moet het minimum van |/ | snel dalen, Heeft daaren-
tegen f(z) veel nullen, dan blijkt door een analoge redeneering,
dat het maximum van | f| snel moet groeien.

We kunnen zeggen:

T’y meet de attractic van de waarde co op de functic | (2) voor r = o0,
terwijl Ty de attractic meel van de waarde 0 op f (z) voorr = co.

T oepassingen:
In het voorafgaande hebben we steeds stilzwijgend ondersteld,

dat f(z) niet constant is. Immers is f () =« (a constant), dan

worden 7 (v ; @) en P (r;a) oneindig en zijn dus niet meer te

gebruiken. Voor iedere a  a is in dit geval

1

a—a

1
Pr;a) =0en m(r;a) = log

en de som m -4 P dus constant en emndig.

Omgekeerd geldt de stelling:

Als wvoor de geheele functie f (z) de som m (r;a) + P (r;a) voor
dén waarde van a begrensd is, dan is f (z) constant.

Bewijs: .

Zij f(0) = a, dan moeten we dus bewijzen, dat flz)=a. Is
dit niet het geval, dan zou volgens (1) de som m - P voor iedere a
begrensd zijn, dus speciaal voor a = a, wat echter niet zoo 1S,
daar P (r,a) - co voor r = oo. (Voor P de uitdrukking te
nemen gegeven in de opmerking!)

Is f (z) een rationale geheele functie, dus een polynoom, dan is

T (r) = O (log 7).
Immers is:
[ =ag+ a4 az? 4+ . ... 4 ag

dan is: m (r) = qlog v + O (1), terwijl P (r) = 0.

Omgekeerd is iedere geheele functie, waarvoor T (r) = O (log 7)
een polynoom.
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Bewijs:
Uit T () = O (log ) volgt, dat de integraal:

[« 2]
T (r)
convergeert,
72 5

bijgevolg is de schijnorde van f (z) < | wegens de definitic van g’
gegeven in § 29, zoodat volgens de stelling van HADAMARD

f&) = Pr(a),
waarin C een constante voorstelt en P (z) het uit de nulpunten
gevormde kanonische product. We mocten dus nog alleen be-
wijzen, dat het aantal nulpunten van f (z) eindig is. Nu is:
Ny (1) = Pay () = Tay (7) + 0 (1) = Ty () + 0 (1) = O (log),

zoodat uit de definitie van Ny (r) mede volgt, dat # (r) voor iedere 7
begrensd is, waaruit de bewering blijkt.

§ 32 — Hulpstelling over de logarithmische afgeleide van f (2).
Hulpstelling:
Is f(z) een geheele functie, dan is voor 0 <7< R:

i ] + .
my (r) <2log R+ 3log g—, +2 g7 (B) + 0 (2).
/

Bewijs:

We onderstellen, dat op |z| =7 en |z ]| = R geen nulpunten
van f (z) en f’ () liggen.

Stellen we: g(2) = ﬁf%:)
waarin a,, a,, . . . . ax de nulpunten van / (2) binnen cirkel |z | = R

voorstellen, dan is g (z) holomorf en 7 0 voor |z | = R, zoodat
volgens de stelling van § 2 voor |z e=tie

2n
1 40 5 )
logg(z)=Ci+§;tfloglg(¢)lmd9 met ¢ = Re?,
0



waaruit volgt:

logf(z)m(,i—l-z,—fglogu l-——ZlogU—aﬂj‘ +2d8—1-

lasl< R

lax| < R
_A+Bz+2—flog{/t)|r—-d9+210g ="
lan (< R
Dus
W_1f
f (z I
T == 08170 g da—!—Z(z__a" z_a)
0 las | < R
Bijgevolg is voor |z | =7 < R:
2n ] |
') R an— an
P =J’!(R—"'7')2 loglf(t)l}d0+ ‘(z—-—«-a,,.) (a -'-2')
0 lax| < R
Nu is:
a'—ay R*— | a,|?
(z — au) (an — 2) |z—~—a,,||Rz—a,,.,]
R(Rz-——|au|2) Rz—anz R R2~anz
T IR —anz|®  |Rie—an)| S R—72 |Rz—an)

wegens:
| R2—anz | = R2P—|ay |7 > R(R—17),

zoodat we vinden

/()

{ (2)

2R 2
(R—7)? ; an
0

Nu is, als x >0, steeds

{

—0nl
log | 1 (t) Jdﬂ—{- Z(RZ—an

2| <R

+ ar Al
| log % | =10gx+log~x~
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zoodat:
()
f (2)

< JTR) g Tt (R) + may (R) + Z’ "z:a::

an| <R
(R—r ’ E ‘R(zn—

274 (R) + 0 (1) } |
|anl <R

=

Anl

wegens:
mayj (R) = Ty (R) — Ny (R) = Ty (R) = Ty (R) + O (1).

Hieruit volgt:
+
¥k

lan <R

R2 A anz

+
log

t'(2) + it
m‘< log R + 2log 3

+ +
+ log n (R) -+ log T¢ (R) + O (1).
bijgevolg:

Ry -+ Z L § ey () +

Jug| <R Riz—aa)

+ +
myy (r) < log R + 2 log

+ +
+ log n (R) 4 log Ty (R) + O (1).
Nu bewijst men gemakkelijk, dat de formule van JENSEN voor
een meromorfe functie f(z) luidt:

g1/ (0) | = ¥ 1og\ﬁ’+§:10g

2w

l+2 flog”(z,@*)ldﬁ

|anl<r | Bal <7
ofwel:
log | f (0) | = — Nt (r) + Ny (r) + my (r) —may ().
Passen we nu deze formule toe op de functie:

R2—-a;2

F@) = REz—an
met |z| =7 < R, dan is voor 1l = e

-+
| F(2) | =1, dus log = 0 ofwel myr (r) = 0.

1
i3

Verder heeft F (2) in |z]|< R geen nulpunten, zoodat ook
Np (r) = 0, waaruit tenslotte volgt dat:
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oy (7) =Iog|a—| , VOOr 7 < |as | < R, en

; Y= _I_B_ 1 % R

JH'F(r)__ Og]aul _Ogianl =10g7v00r Ian|<?’.
Bijgevolg:

+ -+
+ logn (R) 4 log Ty (R) +

+ + 1
gy (r) < log R+ 2 log T

R R
—i—-n(r)logT—{— Z log (o] + O (1).

r<la,l <R
Nu is echter:
R R R
n () log = Z log [ % () log = ar

r<|Q| <R

(1)
R R
-I—fwdx=f?—gldx=N(R)—N(r) = 0 (1)

dus:

+ + 1 + +
gy (1) < log R + 2 log R —, T logn (R) + log Ty (R)+0(1).

We kiezen nu een getal R’ in het interval R< R’ = 2R en
passen (1) toe met

’

in plaats van ?( f ,

R
R
onderstellende, dat ook op cirkel |z | = R’ geen nulpunten van
f (2) liggen.

We vinden dan:

r

R
n(R)log = < N(R'), dus:

N (R’ I : '
a(R) = SR Ry o

logﬁ

weg ens:
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R R R'—R R'— R
log o — log el log |1 — 7 > v

| iF
Iog 2 (R) < log R' - log R T log TH(R') + O (1),
waaruit volgt:

1
myp () < log R -2 log T 4= log T (R) -

1 +
o TR o =—p +log Ty (R) + 0 (1).

Dit geldt nu ook zonder de aanname, dat
f(e)#0isop [z| = R',

omdat 77 (R), dus ook lgg T;(R) een monotoon niet dalende
functie van R is.
Kiest men nu R’ zoo, dat:
R' 47 Ry
R'"— R = R—v, dus R#—-é_—t- en R — R = 9...?’

o

dan gaat de bovenstaande ongelijkheid over in:
+ LR t 1 S
myyi(r) < log R -+ log R' + 3log = -+ log Ty (R)
o1 Iog T;(R') + 0O(1),
+ I ki
myyp (r) < 2 log R’ -+ 3log Ry - 2log Ty (R') + O (1)
waarmee de stelling bewezen is.

§ 33 — Toepassingen van de hulpstelling.
Uit de vorige hulpstelling volgen de onderstaande stellmgen
Stelling 1:
Is f(2) geheel en van eindige schijnorde, dan is:
myy (r) = O (log 7).

Bewijs:
Is f () van eindige schijnorde, dan is:

o
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log Tt (v) = O (log 7).

Neemt men R = 27, dan is log R = log » - log 2, verder 1‘; dan:

+ 1
log e 0 (1)
en log T4 (R) = O (log 7) ,

zoodat in verband met de hulpstelling de bewering juist blijkt.

Stelling 2:
Is de geheele functie | (z) van eindige schijnorde, dan heeft [’ (z)
dezeljde schinorde.

le Bewijs:
Schrijft men: = ’; TS
dan volgt hieruit: my = mypjf + my,

wegens de hulpstelling van § 30; omdat
mp =Ty en my= Ty is,
vinden we dus: Tp = 0 (log7) + T7.

Hieruit volgt de stelling in verband met de definitie van de
schijnorde gegeven in § 29.

Z2e Bewiys:
Is ¢' de schinorde van
an

10=Y an

en g, de schijnorde van

1e(2)= E nanz* .
n=1
Zij verder M, (r) het maximum van |/’ (2) | op [z| =7
Volgens CAUCHY is voor |z l o g I
0]

2m (£ — 2)? b
(R)

zoodat voor R = 2
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] | 4w M2 2M (2)
I ]’ (Z) Ié 2-_:.: A 72 = 7 :
2M (2
ofwel M, (r) = 1,( r),

waaruit volgt: o, = o'

Verder is:
f(2) = f(0) —l—ff' () dz,
0
bijgevolg:
1F @)= 1F0) |+ 2] My (=]),
dus: M) = |7(0) | + »My (7),
waaruit volgt: o' = o,

Dus moet g, = o’ zijn.

§ 34 — Onderste grens van een geheele functie.

Stelling van HADAMARD.
Legt men om de nulpunien ap van ecn geheele functie f (2) van de
schijnorde o cirkels met stralen

lan| % (h >0,
dan geldt buiten deze cirkels bij willekeurig gegeven ¢ >0 en voor
voldoend groote |z | = 7!

—pbicte
[f@) >’
Bewys:
Zonder aan de algemeenheid te kort te doen onderstellen we
f(0)=1.
De formule van JENSEN geeft voor

z=7 |ay | < Ren 0<7< R:

on

A RE 12 0i
P G R2 + 72— 2Ry cos (6 - @) log | f (Re™) | a0
0

(z—an) R
(.Z 2= a;) an

g |f (z) | = E log

lag| <R

5*
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zoodat:
o
2~ Gn | R2 ;2 + 1
log|f(z) | = Zlog _[REJ_yﬂ—2chos( _(p)log f(Rsa") <
la"|< R
R—I—r
>Zlog"’*~“ﬂ|—zlog (Resr)=r 2l T].'f (R).
|ag |l < R |an | < R '

Leggen we nu om de nulpunten a, cirkels met stralen | a, |—h

waarin /i > p’, dan bedekken deze cirkels niet het geheele vlak,

o0
omdat de reeks & |a,| " convergeert. Nemen we R = 2r en
0

onderstellen we, dat op |z | = R = 2r geen nulpunten van f (2)
liggen, dan is, als we de genoemde cirkels uitsluiten, voor vol-
doend groote |z | << R:

Elog | z—ap | >—mn (27) . /1. log 27,
lan <R
zoodat we wegens T = 1y + O (1) vinden:
log | f (2) | >—mn (27) hlog 2vr — n (27) log v — 3T (27) — O (1).
Nu is echter volgens de hulpstelling van § 8:
n (27) log 2 = log M (4r)
terwijl verder:
T (27) = log M (27),
bijgevolg wordt:
log [/ (2) | >—j ; log M (47) log 27 — %ﬂ’—)logr—
—3log M (2r) — O (1),
zoodat voor willekeurige ¢ >0 en voldoend groote r geldt:

log [/ ()| >c"

§ 35 — De stelling van BoreL [2].

In § 18 hebben we gezien, dat bij iedere geheele functie van
eindige, miet geheele schijnorde, orde en schijnorde gelijk zijn,
terwijl als de schijnorde geheel is, de orde kleiner kan zijn dan de
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schijnorde. Dit laatste resultaat kunnen we nu verscherpen door
de volgende stelling van BOREL:

Is de schijnorde van de geheele funciie f (z) geheel, dan is de orde
van de functies f(z) — A, waarin A cen willekeurig complex getal
voorslell, gelijk aan de schijnorde, hddgstens vooy één waarde van 1
uitgezonderd.

Bewzjs:
Onderstel er zijn 2 uitzonderingswaarden a en b voor 4. Dan is:

f(z)—a= ¢l P, (2),
f &) —b =™ Py (a),

waarin H, en H, polynomen zijn van den graad p’ en P, en P,
kanonische producten van de orde < g".
Aftrekking levert:
Plf’.H‘ —_ PEBH“ = b—a, (1)
waaruit volgt:
P]c"‘rl""Hn = P, + (b —4) e (2)
Omdat H, een polynoom is van den graad o' geldt:

K
lc——H]' ~ ¢ Kr

waarin K een constante 1s.

Het linkerlid van (2) moet dus van de schijnorde ¢° zijn en
daar P, van een orde < o' is, volgt er uit, dat H, — H, een po-
lynoom is van den graad g’

Differentiéeren we (1), dan vinden we:

(P,H, -+ P}) e — (PyH, + Py) e = 0. (3)

Daar de schijnorde van P; volgens § 33 gelijk 1s aan die van P,
is dus de schijnorde van P, ook < g, zoodat de coéfficiént van
¢ in (3) een schijnorde << o' heeft, terwijl voor de coéfficiént
van e hetzelfde geldt. Verder zijn die coéfficiénten niet identiek
nul, daar anders P,e™ en Pye™ constanten zouden zijn, dus ook f(z).

Na uitrekening kunnen we (3) schrijven als:

P, it p, eHitHy _
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waarin Hy en H, polynomen zijn van den graad = ¢’ — 1 en P,

en P, kanonische producten van een orde < o’,

13
: H—H,+H—H, — 4
ofwel: Al o DA (4)
Nu is, als g, en g, de orden zijn respectievelijk van P, en P,,
voor voldoend groote 7:

pate€
[Pyl

terwijl oneindig vaak:

e
|P3|>3 i E)

zoodat oneindig vaak:

P pate o pate
!__4 <gr +7

Py

ofwel:

T'U
-
=SSO

P,
Py

waarin ¢ << g’, immers p, en p, zijn beide < o', dus ook gz -} £
en p, - e, als ¢ klein is.
Maar op iederen voldoend grooten cirkel ligt een punt, waar:

Kl
e

\ g i Hak Hy—H, |

(K = constante),
want H, — H, 4+ H; — H, is een polynoom van den graad p', dus:

Hy—H,+ Hy,— H, = az’ + ... = |a| %" (14 ().
Dus het reéele deel van H,— H, + H,— H, is gelijk aan
ja | " (1 +£() > Kw”', als op iederen cirkel (r) het argument
@ van z z00 genomen wordt, dat a - ¢’ = 0 (mod. 2z).
We vinden dus, dat (4) een contradictie oplevert, waarmee de
bewering bewezen is.

Opmerking:
Een waarde van 4, waarvoor de orde van [ (2) — 4 kleiner is
dan de schijnorde van f(2), zullen we een

B — witzonderingswaarde voor f (2)
noemen.
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§ 36 — Hulpstelling.
Als f (2) een geheele functie is van de schijnorde o', dan geldt in

het gebied buiten de cirkels met stralen vn (h > @), omde nul-

punten a, beschreven (ry > I):

‘/’ (2)

/()

<X (K constant)

Bewjs:
Gaan we uit van den vorm volgens WEIERSTRASZ:
Hz
f &) =" P ),

waarin H (z) een polynoom is van den graad g en P (z) een kano-
nisch product, dan is:

PRI gy o

/(2) P(z)
Nu is VH' (2) | < Ko™,
terwijl:
P’ (2) 1 Mz s = 7 Z
P (2) =Z} pyears A T _nz_:; (z—an)a?
= =

We fixeeren een vast getal & en stellen N = n (kr), dan 1is:
N N

£ 2: = = Z T NEV Py e K, Stpite

» 7|
n=1 T [?’ A n=1

voor voldoend groote 7, omdat:
N = n (kr) < log M (2kr) < (2k7)P ¢
Verder is, daar de reeks
|

@

p 41
E 7,”,'1
n=1

convergeert, de rest:

- I u_]"_,._ 2 S __l_ K.t
n=N-+1 n=N-+1
omdat:
s E—1 1
f’at—'?':?"'n‘”""g-" A ;’::

Uit (1) en (2) volgt direct de bewering.
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& 37 — De stelling van BoreL voor de enkel- en tweevoudige nul-
punten.

We beschouwen nu alleen de enkelvoudige nulpunten en bewijzen
de volgende:

Stelling:

Als [ (2) een geheele functie is van de eindige schijnorde o', dan
2yn er niet meer dan twee waarden van A, waarvoor de convergentie-
exponent van de enkelvoudige nulpunten van f(z) — 4 kleiner is
dan p'.

Bewijs:

Om dit te bewijzen, onderstellen we, dat er 3 zulke waarden
van 1 zijn, b.v. a, b en c.

Een nulpunt van f(2) —a, dat k-voudig is (£ > 1), is een
(2k — 2)-voudig nulpunt van [/’ (2)]%. Is P (2, @) het kanonisch
product gevormd met de enkelvoudige nulpunten van f (z) — a.
en P (z, b), P (z, ¢) de analoge producten voor f (2) — ben f (z) — ¢,
dan is, omdat 2% — 2 = %, het product:

Pz, a) P(z, ) P(z ¢ [f' (2))?
deelbaar door het product

(f (z) —a) (f (2) — b) (/ (z) — ),
m. a. w.
P(z,a) P(2,b) P(z, o) [{" ()2 -
TO—al@—n0@—a 79"
waarbij ¢ (2) een geheele functie is.
Volgens de onderstelling is P (z, a) P (z, b) P (2, ¢) van de orde
< o' en uit de hulpstelling volgt, dat:
%) ‘ /" (2)
fla)—al | fz)—0b

op oneindig veel cirkels.

Hieruit leiden we af, dat de functie (f (2) —c¢) @ (2) is van de
schijnorde < p’, dus ook van de orde < p’,dus & fortiori f (z) —¢
van de orde < po’. Hetzelfde geldt natuurlijk voor de functies
f(2) —a en f(z) —b. We zijn dus in strijd met de stelling van
BoRrEL, waaruit onze bewering volgt.

’ 2K
=0
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Stelling:

Als de geheele functie [ (2) de eindige schijnorde o’ heeft, dan s
er niel meey dan één waarde van A, waarvoor de convergeniie-exponent
van de reeks der enkel- en tweevoudige nulpunien van f (2) — A kleiner
is dan o'

Bewijs: .
Onderstel, dat voor A = a de genoemde convergentie-exponent
kleiner is dan p’. Het kanonisch product P (z, a) gevormd met

de enkel- en tweevoudige nulpunten is dan van de orde < g,
Het product:

[/ (2. [P (= @)
is deelbaar door (f (z) — a)?, omdat een k-voudig nulpunt (2 > 2)
van f (z) — a een (3k — 3)-voudig nulpunt is van /' (2)1%, terwijl
3k —3 =2k

Als de convergentie-exponent van de reeks der enkelvoudige
nulpunten van f (z) — b ook < o’ en P (z, b) het correspondee-
rende kanonische product voorstelt, dan is het quotiént:

(/" @ LP (z @' [P (z B)°
[f (z) — al*[f (z) — B
weer een geheele functie. Herhalen we nu de redeneering als in
de vorige stelling, dan leidt dit tot de onmogelijkheid, dat beide
waarden a en b B — uitzonderingswaarden (dus voor de reeks van
alle nulpunten) zijn.

Resumeerend.:

Het theorema van BOREL, volgens welk de orde van f () — 4 hoog-
stens vooy één waarde van A kleiner kan zijn dan de schijnorde, gaat
ook door, indien we alleen letten op de enkel- en twecvoudige nulpunten
van f(z) — A.
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STELLINGEN



STELLINGEN

I

Het bewijs van SiLvio MINETTI (Comptes Rendus, 1928, t. 187,
pag. 372), dat de

w ow
l 1 de i 1 M, dr
r 2T % e ——
reeks E oTET: en de mtegraa Prite
n=0 n 0

op de constante factor (¢ + £)* na gelijk zijn, is onjuist.

IT

Het bewijs, dat R. NEVANLINNA geeft inHoofdstuk IL, § I van
zijn artikel: Zur Theorie der meromorphen Funktionen (Acta
Mathematica, bd. 46, 1925) is te vereenvoudigen voor het geval
g = 0.

IT1

Voor de constante C, die Prof. Dr. J. WoLFF vindt bij zijn be-
schouwingen over ,,Séries de fractions rationnelles’ (Comptes
Rendus, 1928, t. 186, pag. 565), zijn twee grenzen aan te geven.

IV

De stelling van D’ALEMBERT is gemakkelijk af te leiden uit de
formule van JENSEN voor geheele functies.



V

De verwijzing van WANSINK in § 11 van zijn dissertatie: ,,Eenige
randproblemen der conforme afbeelding’’, naar aanleiding van
niet-euclidische beschouwingen, naar Hoofdstuk VI van de Analy-
tische Meetkunde van Prof. BARRAU, verwekt misverstand, daar
in 't proefschrift uit niets blijkt, dat de maatbepalingen uit de
dissertatie en genoemd leerbock geheel dezelfde zijn.

VI

Het zou nuttig zijn in leerboeken over Anal. Meetkunde er op te
wijzen, wat het ontbreken van een der codrdinaten in vergelijkingen
leerde aangaande den aard van de kromme of het oppervlak, door
die vergelijkingen voorgesteld.

Vil
De stellingen van § 137 en § 141 in de ,,Inleiding tot de Nieuwere
Meetkunde van het platte vlak’ van J. VERSLUYS zijn onvolledig.
VIII

Het is wenschelijk de begrippen ,totale dispersie” en , disper-
geerend vermogen’’ scherp te onderscheiden en beter te omschrijven
dan in de meeste natuurkundeboeken voor het M.O. geschiedt.

IX

De Kosmografie komt als ,, Wiskundige Aardrijkskunde’ op het
leerplan van het Gymnasium te zeer in het gedrang.
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