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??? CHAPTER I. Introduction. Â§ 1. Phase transitions. In this introductory chapter we shall give a brief survey of thedifferent kinds of problems which arise when one tries to obtain amolecular theory of the equation of state of gases and liquids. First of all, one requires a theory that can explain the generalqualitative features of the behaviour of gases and liquids. The moststriking of these features is the existence of sharp phase transitions(condensation and evaporation). This means mathematically thatthe equation of state cannot be represented by one analyticalfunction but consists of several analytically different parts. Sincethis property is common to all substances one would expect it to bepossible to give a very general explanation demanding no exactknowledge of the interaction between molecules, since this isdifferent for every substance. The first attempt at such an explanation was the theory ofVan der Waals. In this theory the molecules of a

substance aretreated as mutually attracting elastic spheres. It is assumed that thisattractive force (the quot;Van der Waals forcequot;) acting between themolecules, is for each pair a function of the distance of s.^parationonly, and is independent of the velocities or of the positions ofother molecules. These forces are therefore the same in every stateof the substance. Forces of this kind are said to have the propertyof additivity because the total potential energy of a configurationis the sum of the potential energies of all the pairs. Starting from these assumptions and using the methods ofclassical statistical mechanics one can show that for very smalldensities the equation of state for 1 mol of gas is given by p = .....(!) where p is the pressure, V the volume, T the absolute temperature, 1



??? R the gas constant and a and b are constants'which are relatedrespectively to the attraction forces and to the diameter of themolecules. This equation is quite arbitrarily extrapolated by Vander Waals to the famous equation ^ a P ~^j{V-b) = RT......(2) which is claimed to be vahd for all densities. This equation doesnot show the desired properties. In fact it represents a completelyanalytical connection between p, V and T. However, below a certaintemperature T^, the critical temperature, the isotherms are notmonotonie functions, as they are for Tgt;T^, but consist of two partswhere (?´p/?´y)7-lt;0, connected by a part where (?´p/?”V^)rgt;0.Now a state with ( dpjd V)t gt; 0 does not represent a state of stableequilibrium. In order to remove this unstable part one introducesas an experimentally known fact the states of coexistence of vapourand liquid, giving a line p = const, which connects the two stableparts of the isotherm. These

stable parts are then interpreted as theisotherms of the pure vapour and of the pure liquid. The value ofthe pressure of the two-phase system is determined by a thermo-dynamical consideration (Maxwell rule). It will be clear that this theory cannot be considered as a realmolecular explanation of the transition phenomena but is rather asemi-phenomenological description. Only very recently a new and, as may be hoped, more successfulapproach to a real theoretical explanation of the phase transitionhas been put forward by Mayer and his collaborators i). The originof Mayer's theory lies in a quite different line of development.Because of the fact that all efforts to derive a general exactequation of state had been unsuccessful, Kamerlingh Onnes 2)proposed to represent the empirical data on the equation of stateof gases by a development in inverse powers of the volume Here the first term gives the ideal gas law, which holds at

largevolume (small density), and the following terms represent thedeviations from the ideal behaviour when the volume is diminished.



??? The quantities B(T), C(T), ...... 1) are called second, third....... vinal coefficient by Kamerlingh Onnes 2). For these coefficientsit is possible to derive exact expressions in classical statisticalmechanics, starting from the partition function (Zustands integral)introduced by GiBBS. These expressions were obtained from thefirst terms of a suitable expansion of thia partition function. Inorder to justify this procedure Ursell 3) has given a more detailedmathematical investigation of this development, which has been thestarting point of Mayer's theory. He tries to show that the develop-ment (3) is only convergent when the density of the gas is smallerthan a certain critical value, depending on temperature, and thatwhen the gas is compressed further the theory gives automaticallya pressure independent of the volume, corresponding to thecoexistence of vapour and liquid. The isotherm of the pure liquidremains unexplained in this theory. In the third chapter of this

dissertation we shall give an accountof Mayer's theory. There we shall show that it is possible toextend the considerations of Ursell and Mayer to quantumstatistics and that there exists a close analogy between Mayer'stheory and an older theory of Einstein 4) where a condensationphenomenon for an ideal BoSE gas was predicted. Furthermore wehope that from a mathematical standpoint this treatment will bemore satisfactory than Mayer's original one. The failure of this theory to explain the liquid isotherms may bedue to the fact that it is, just as the Van der Waals theory, anapproximation from the quot;vapour sidequot;. Perhaps a treatment startingfrom the crystalline state would be better suited for this purpose.There have been many attempts in this direction, but without com-plete success. Â§ 2. The Van der Waals forces. For the qualitative theory sketched in the foregoing paragraph 1nbsp; One sees immediately from (1) or (2) that in the VAN der

WAALStheory B(T) =b â€” a/RT. 2nbsp; In reality kamerlingh OnNES used a polynomial of six terms insteadof an infinite series and gave the name virial coefficients to the coefficients ofthis polynomial, which are not the same as the coefficients of the infiniteexpansion. We shall, however, always mean the latter coefficients in speakingabout virial coefficients.



??? an exact knowledge of the intermolecular forces is not necessary,but it is necessary if one wishes to find an exact quantitativeexpression for the equation of state. The determination of theseforces however is not a problem in statistical mechanics but aquantum mechanical one and will not be treated in this dissertation.Moreover London 5) has recently given an excellent survey of itshistory and present situation so that we will give only a briefdescription. Let us first consider the attractive forces. In the older pre-quantummechanical theories the intermolecular attraction wasattributed to two causes. In polar substances there will be an inter-action between the electric and magnetic dipoles (or higher poles)of the molecules. This interaction is called the orientation effect ofKeesom since it depends on the mutual orientation of the molecules.A priori there is an equal probability for a repulsive and an attractiveinteraction, but due to

the Boltzmann factor the positions givingrise to an attraction will be preponderant. On the average thereforethere will be an attraction which however decreases to zero withincreasing temperature. This very unsatisfactory property of theorientation forces led Debije to the consideration of a second effectwhich gives rise to an attraction independent of temperature. Thisis the so-called induction effect, which is due to the polarizationof the molecules by the fields of force of neighbouring molecules. There are two difficulties in these explanations: 10. These forces are not additive but vary with varying statesof the substance. For instance the polarization force almost dis-appears in a condensed state where each molecule is surroundeduniformly by its neighbours. This is contrary to all experimentalevidence which shows that the intermolecular forces have alwaysthe same order of magnitude. 20. For spherical symmetric molecules

(like helium) there wouldbe no attraction at all. These difficulties are removed in the modern quantum mechanicaltheory of the Van DER Waals forces which is chiefly due toLondon. Here the potential energy of two molecules at distance ris calculated by means of the perturbation calculus. The attractionappears then as a second order effect. This calculation can be inter-preted as follows. One considers not only the interaction of the



??? static multipoles of ttie molecules, but also the interaction of therapidly varying multipoles corresponding to the possible transitionsbetween the states of a molecule. This effect is called the dispersioneffect because the characteristic quantities of these multipoles, theoscillator strengths, also occur in the dispersion formula. It is foundthat the interaction between dipoles gives rise to an attractive inter-molecular potential which varies as the inverse sixth power of r.The consideration of higher poles leads to potentials which varyas the inverse of the eighth, tenth, etc. power of r. It is shown thatall these forces have the property of additivity which was assumedin the Van der Waals theory. Moreover it has been shown thateven in most polar molecules they are preponderant over thestatical orientation and induction effects. When two molecules are brought close together their attractionis replaced by a very strong repulsion. The older theories did notexplain it

but symbolized the repulsion by treating the moleculesas elastic spheres. In the new theory there are two reasons for arepulsion when the charge clouds of the molecules overlap: 10. The electrostatic repulsion of the atomic nuclei which arethen not completely screened by the electrons. 20. The Pauli principle, which forces the electrons to move tohigher states. For the potential of this repulsion one finds theapproximate expression Ce-'â€?''â€?Â? where r,, and C are two constants, characteristic of the moleculeconsidered. The approximate magnitude of the dipole-dipole interaction hasbeen determined by London for a number of substances by a semi-empirical method, using the experimental dispersion curve. For the interaction of two helium atoms extensive calculationshave been performed by several authors. Slater 6) and Slater andKirkwood'') have calculated the exponential repulsion and thedipole-dipole attraction. They find the potential /nbsp;n 140

\ V(r) = (77nbsp;erg, r in A . . (4) Vnbsp;J The dipole-quadrupole and quadrupole-quadrupole attraction



??? have been calculated by MargenauÂ?) and very recently by PageÂ?),Page's expression for the attraction is 0.149 , 1.75 3 99\ - -r^- (1 72- -, j 10quot;quot; erg. Â§ 3. Quantitative results for the equation of state. The problem of finding an exact expression for the equation ofstate when the intermolecular forces are known has as yet not beensolved. However, as we mentioned in Â§ 1, in classical statisticalmechanics one can give exact expressions for the virial coefficients,which are measurable quantities. In particular for the second virialcoefficient one obtains in the case of central forces CO B{T) = 2nN I'd (5) mol ' where N is the number of molecules per mol, r the intermoleculardistance in cm, V{r) the intermolecular potential and k Boltz-mann's constant. Two problems may be attacked by means of (5): 1.nbsp;When one has a theoretical expression for V(c) one cancalculate B{T) from (5) by a numerical or graphical

integration.This gives the possibility of an experimental verification of thetheoretical calculation of ^(r). 2.nbsp;On the other hand, when B{T) is known experimentally, eq.(5) gives an integral equation for V^(r). This fact has been exten-sively used by Lennard-Jones 10) for an empirical determinationof the intermolecular forces. Because the integral equation (5) hasnot been explicity solved, Lennard-Jones has assumed the followingexpression for V(r): = .......(6) Here the first term represents the repulsion and the second termthe attraction. It is obviously necessary that ngt; m. Lennard-Jonesfound that it is possible to represent the second virial coefficient ofmany substances by a suitable adaptation of the four arbitraryconstants in (6). This fact already indicates that the values of



??? B(T) in the regions of temperature used will not depend verysensitively on the exact form of ^(r), since the expression (6) willsurely not represent exactly the actual intermolecular force. This isconfirmed by the fact that a good agreement with experiment isobtained also by insertion of the Slater-Kirkwood potential (4)into (5) 11). The situation is quite different in the quantum theory. Theexpression ioT B(T) which one obtains here (see Chapter IV, Â§ 2)is not directly ?Švaluable in terms of V(r). Eq. (5) is the limit ofthis expression for high temperature. There are three reasons fordeviations from (5) at lower temperatures; 1.nbsp;Due to the wave character of the molecules they will notinteract according to the laws of classical mechanics but diffractioneffects will occur. These will be large when the de Broglie wavelength of the molecular motion is large, compared with the diameterof the molecules. This wave length is equal tonbsp;where his Planck's constant,

m the mass of the molecule and E its kineticenergy. The mean value of E is proportional to T and thereforethe mean de Broglie wave length is proportional to Ijl^mT. Wesee therefore that the diffraction effects will be large for lightgases and low temperatures. 2.nbsp;The classical Boltzmann statistics has to be replaced by theEinstein-Bose or the Fermi-Dirac statistics. It will be shown inChapter IV that this also gives deviations for light gases and lowtemperatures, 3.nbsp;When the attraction between the molecules is strong enough,discrete quantum states of the relative motion of two molecules willexist or, in other words, loosely bound quot;polarization moleculesquot; willbe formed. This will have an effect on the second virial coefficientat low temperatures. Since this effect depends on the magnitude ofthe attractive forces, it may become important even for heaviergases. The calculation of B{T) with a known V(r) turns out to bemuch more difficult than in the

classical theory, and the solutionof the inverse problem is almost impossible.



??? CHAPTER II. The Partition Function. Â§ 1. Classical and quantum theoretical form of the par-tition function. In our treatment of the equation of state we shall use throughoutGibbs' method of the canonical ensemble. We shall present thismethod directly in its quantum theoretical form. Let the system whose thermodynamical properties one wishesto investigate have energy states E, with weights G,. A largenumber of independent, identical systems is called an ensemble.This ensemble is canonical when at the temperature T therelative numbers of systems in the different states are given byGi exp {â€”EilkT). where k is Boltzmann's constant. It is assumedthen that the behaviour of the system in temperature equilibriumis given by the behaviour of the canonical ensemble in the sensethat the mean value of a macroscopic quantity may be obtained byaveraging this quantity over the ensemble, while the mean squarefluctuation is

given by the average of the square of the deviationsfrom the mean value. From this assumption it can be proved thatthe Helmholtz free energy, W=e~Tr] where e is the energy and rj the entropy, is obtained from theequation ....... The sum in (1), which is to be extended over all possible states, iscalled the partition function (Zustandssumme) of the system Anunessential arbitrariness is yet left in (1) because of the fact thatthe weights are only relatively defined numbers. This may beremoved by any convention about their absolute value. It is usual togive to each non-degenerate state the weight unity. Then G denotes



??? simply the multiplicity of the state With the determination ofW as a function of volume and temperature the problem of findingthe equation of state is solved. Other quantities may be obtainedimmediately from W by using simple thermodynamical formulae. We shall now proceed to the classical analogue of (1). This willbe done in two steps. Let the system consist of N identical molecules.Then the number of possible states is restricted by the symmetricalor by the antisymmetrical exclusion principle. These are the casesof Einstein-Bose (E. B.) or Fermi-Dirac (F. D.) statistics. Itwill be often convenient, however, to consider systems for which allthe states which are forbidden by one of the two exclusion principlesexist. This case, which is of course purely academical, is called thecase of Boltzmann statistics. For this case it is desirable to chooseanother convention for the absolute values of the weights, namelyto give to each non-degenerate state the weight

IjN!, so that ......(2) when Gi means again the multiplicity of the state With thisconvention the expressions (1) and (2) approach each other forhigh temperatures 1). The second step in the transition to classical statistical mechanicsis to replace the sum in (2) by an integral over the phase space.For a monatomic gas we have then, since to each single quantumstate corresponds a volume /i^^in phase space. Here r,, ...Tat are the coordinates of the N particles, p,,.. . pjv theirmomenta and H(pi,...p^, r,,...ta^) the Hamilton function of thesystem. The integration has to be extended for the momenta overall values and for each r^ over the volume V of the vessel in whichthe system is enclosed. Since H (pâ€ž... p^. râ€ž... r^) = J^nbsp;r^)



??? where m is the mass of a molecule and V{r.....r^) the potential energy of the system, we can perform the integration over themomenta and find then Xiv ?’ â€? â€? â€? jdr, .. .nbsp;. Vnbsp;V where '=2-^m~kT........(5) The integrand exp (â€”VjkT) represents the relative density ofprobability in configuration space for the canonical ensemble. A function which plays the same role in the quantum theory canbe easily found. Consider namely the expression where the summation has to be extended over all the normalisedeigenfunctions 9?, *).We have Vnbsp;V when the eigenfunctions 99. are normalized according to V V It is clear that the expression (6), which we shall call the Slatersum represents the relative density in configuration space forthe canonical ensemble, since (p* 9;,- represents this density for eachstate. The strict analogue of the classical Boltzmann factorexp (â€”VjkT) is the function =nbsp;.... (7)



??? In the case of BoLTZMANN statistics we shall, in conformitywith (2), define the Slater sum by = .... (8) where now the eigenfunctions 99, are no longer restricted by anexclusion principle. Â§ 2. A transformation of the Slater sum. The eigenvalues and eigenfunctions of the system and thereforealso the Slater sum are completely determined by its Hamiltonianoperator H{pi,...pN, r,,...rAr), where now p should be understoodas the operator hd/lmdr^^ 1). It is possible to write the Slater sum in a form which clearlydemonstrates this fact. By repeated application of ff to the SCHRODINGER equation H lt;Pi = Ei lt;pi follows W (p, = Equot; lt;pi. Therefore nlkquot; Tquot; ynbsp;nlk^Tquot; y When we define2) e-HlkT^ i 1)quot; -'-Uquot;.....(9) then the Slater sum may be written as 5 (r,,... r^^) = cp* e-Hikr (p,.....(10) 1nbsp; In tiie following the classical HAMILTON function will be written ?’?’, whilethe corresponding operator will be denoted by H. 2nbsp; This definition

should be used with some care. When i and g are non-commuting operators, for instance the parts of H corresponding to the kineticand the potential energy, then f gf^g ^g ^fThe inequalities become equalities when ?’ and g commute.



??? We shall now introduce a new complete orthogonal set of normalizedfunctions (r,.... r^). Then each may be developed in termsof the u,^: qgt;i = S Ciâ€ž, m and 5 (r,.... r^) = ^ 2quot; 2- cL cu ul = 2 ul e-Hlkr â€žâ€ž . (i n â€?mlnbsp;â€ž since ctm Cil=dâ€žl. As the set uâ€ž is quite arbitrary, (11) expresses the Slater sum inthe most general way. Â§ 3. Connection between classical and quantum theoreticalexpressions. Examples 13). The Slater sum has been defined as the analogue of the classicalexpression One should therefore expect S^ to be the limitof 5 either for ft 0or for r CO, for in the last case the high quantum states play theprincipal role. Before discussing this correspondence in general weshall illustrate it by some examples. a. As the simplest system we choose a single mass point whichmay move freely on a line segment of length L. Then (12) becomes 00 5e (x) = j^dp e-p-V^-^r ^ _!â€” 00 for 0 lt; X lt; L,

whereas 5, (;c) = 0 for all other jc. In order to calculate the Slater sum we observe that thenormalized eigenfunctions are ^ \ ' . nnx f 2 \ sinnbsp;n=l,2,... (Pr, v^ ; L



??? and the eigenvalues 8 m U- Therefore For large L the exponential factor changes slowly with n, while forX not in the neighbourhood of the boundaries the factor sin^innxjL)changes rapidly. We therefore may replace the latter factor by itsmean value Yi and replace the sum by an integral over n. This gives5 â€” 5e . At the boundaries however the different terms are in phaseand we must now replace the unchanged expression by an integral.This gives 5(x)=nbsp;......(H) for small x and the same expression with Lâ€”x instead of x at theother end of the segment 1). We see therefore that 5(x) is equalto 5c(x) except in regions of the order of magnitude I at the endsof the segment, where it drops to zero. As 2 0 for /z 0 or forT 00 this shows clearly the correspondence mentioned above. For a particle moving in a cubical box of more dimensions theSlater sum is simply the product of (14) for each dimension. b. Let us now consider a linear harmonic oscillator of

frequencyV. The Hamiltonian is 2 m and therefore 1 5c(x) = ye .......(15) jmv' h with y = 2nx 1nbsp; For a more formal derivation of (14) see Note 1.



??? and kT- In the quantum theory we have the eigenvaluesEâ€ž = {n i)hv, n = 0, 1,...and the eigenfunctions where Hâ€ž (y) is the n* Hermitian polynomial and /^Ji^nvYI* 1 V C: h J Therefore the Slater sum is ^nbsp;n=onbsp;n! The summation, which can be performed exactly gives â€?SW-tIi^-^J ^ V â€? â€? â€? (16) which clearly goes over into (15) for 0 ^ 0. c. A simple example of a system of several particles is furnishedby two mass points which move freely on a line segment of length L.Let and Xg be the coordinates of the two particles. Then Sc (xj, X2) â€” In the quantum theory we shall treat the cases of BoLTZMANN, E. B.and F. D. statistics separately. In each case the eigenvalues are 8m L^



??? In Boltzmann statistics each state with n^ ng is degenerate,having the two eigenfunctions 2 . TiiJiXi .nbsp;Xj 9?quot;' = sm â€”^ stn , L Lnbsp;L and m ^ â–  rijn x, . n, 71X-, w^^i ~ sin-Fâ€” sin--â€”^. L Lnbsp;L According to (8) we obtain in the same way as in case a = . . . (18) which is again equal to S^ except when one of the particles is neara boundary of the segment 1). Now the exclusion principle removes the degeneracy by allowingonly one definite linear combination of Q9lt;quot; and qjP' . In E. B. ^nbsp;Tilnbsp;^ statistics this is the symmetrical combinationnbsp;in F. D. statistics the antisymmetrical combination (gsj^quot;^ â€”95ÂŽ^)/|/2.The originally non-degenerate levels with nj = n2 remain unalteredin E. B. statistics and disappear in the F. D. case. Therefore theSlater sums are (19) Se.b. (xâ€žnbsp;^nbsp;f sin ^^ sin ^^ iv n, gt;n2nbsp;\nbsp;Lnbsp;L smnbsp;sin ^ j Z^ e-quot;nbsp;sm^ ^ sin^nbsp;] and . n^n X\ . njn X2stn â€”=â€”sin / 2 L,

nigt;n2 ' (20) â€” sin-iâ€” sin L / 1nbsp; Like (14) this expression holds for x^ lt; LI2, x'2lt;LI2, whereas in theother half of the segment we have to replace x^ by L â€” and :gt;;2 by L â€” X2.The same will be the case in the expressions which will be given afterwards.



??? These expressions may be written as 1 CO 00nbsp;f U' n,= l n.,= \ Â? sinnbsp;smnbsp;j = 5e.b.sf.d. n,nxx . n2 Jt Xjsm â€” sm-fâ€” 2 e-n'h-'l^'nkTL-' si^iijquot; =t e ti=i 5m ^ U n=l nn ,nbsp;,nbsp;njr ,nbsp;j cos -J- {X1â€”X2) â€”cos (x, X2) j â€” W'K'timkTL' 2quot; e Â? 2L2 Again replacing summation by integration we get y.. (22) 5E.B. = SbÂ? â€” e )F.D. For the discussion of (22) we first remark that for / 0 it goesover into as we should expect. The term exp { â€” ^2)2/22 }is less important since it has finite values only when both particlesare at the boundary. The essential term is exp {â€”â€” Xo)^!?.^}which causes a maximum in the E. B. case and a minimum in theF. D. case for x^^xo. Therefore there is an apparent attractionbetween E. B. particles and an apparent repulsion between F. Dparticles. In an x^, Xo diagram (fig. 1) we have the following situation-



??? Almost everywhere 5 is equal to Se. Deviations occur, however,along the sides, especially at the corners, and along the diagonal X^ '^2* d. We turn next to the consideration of an ideal gas. Theessential characteristics of such a gas are illustrated by the precedingexample. Let the gas consist of N mass points of mass m, movingfreely inside a cube of side L and let rk(xk,yk,Zk) be the coordinatesof the k'^ particle. It is immediately seen that in the classical theory 5c = ~J3N ........(23) In the quantum theory the cases of BoLTZMANN, E. B. and F. D.statistics must again be discussed separately. For BoLTZMANNstatistics one finds easily Ss = ~JlS(xk)S(yk)S(zk).....(24) where S{xk), S{yk), S{zk) are equal to the Slater sum discussedin example a. It is of interest here to discuss how the equation of state whichfollows from (24) differs from the ideal gas law.We have L e = i-, n^ jJ^dxk dyk dzk S{xk) S{yk) S(zk).0 For S(x) â€”5c (x) = 1// this gives - WjkT â€”

..... 1 y N ~ P^N! and therefore, using the formula P â€” we obtain the ideal gas law. pV=NkT........(25) av.



??? For S{x) as given by (14) we haveinbsp;mnbsp;LI2 JS{x)dx=2 j's{x)dx = j j'il-e-'^^^ndx- 0 0 Therefore - 'I'lkTâ€” ^J__L ?’â– _ ^ N![ 2 anS i . (26) NkT NkT P â€” This deviation from the ideal gas law is in all practical cases com-pletely negligible. In helium, for instance, 2 = 0.755 X IQ-^/l/r cmand so for a volume of 1 cm3 and a temperature even as low as1Â° abs. the value of Vquot;'/Â? A/2 is only 0.38 X 10-7. When we now turn to the E. B. and F. D. gases we may expectthat the deviations from the ideal gas law due to the deviations ofthe Sl.^ter sum from Sc at the boundaries of the vessel are againnegligible and the only important deviations will be due to thedeviations of S from Sc when some of the particles are near together,corresponding to the deviations along the diagonal in fig. 1. Thisis the reason why we shall not start from wave functions whichfulfill the true boundary conditions but from the running waves 1 , L with

hk



??? where k^ is a vector whose components can have all positive ornegative integral values. The eigenvalues are then 2m k=i '' In E. B. statistics we must take the symmetrical eigenfunction 2 Hi â€”^â€” y' p 't=i LJ Kn; P where P is any permutation of the indices k, Pk is the index whichreplaces k after the application of P and the summation is to be N extended over all different eigenfunctions exp \2ni 2' {p^^.rp^)lh\. 1 ^ k=\ N np is the number of these eigenfunctions. In P. D. statistics we havethe antisymmetrical eigenfunction Ly 7â€”2 Ope Knp P where is i for an even and â€” 1 for an odd permutation. In computing the Slater sum we can eliminate, as in the transitionfrom (19) and (20) to (21), the disagreeable factors Hp by summingfor each particle independently over all values of the k^. Thesummation over the permutations has to be extended then over allthe permutations and we have to divide the result by N!. Replacingthe summation over k^ by an

integration over p^. we obtain 5EKâ€” ^ ^ r r^Â? wÂ? V Vnbsp;-?šfl/'' ^.l^Pk-rp'k) 1 1 ^ N!



??? In the same way one obtains for F. D. statistics N = . , . ,28) In these sums over all permutations the term corresponding to theidentity gives Sb whereas the other terms represent the deviationsarising from the exclusion principle. For later use we shall write down for the case of E. B. statisticsthe function (rj,... r^) which, according to (7) corresponds tothe classical BoLTZMANN factor: I - ^ . . . (29) It is clear that We.b. -gt; 1 when all the particles are far away fromeach other, whereas We.b. gt; 1 in all regions of configuration spacewhere some particles are near together. This corresponds to theapparent attraction between the particles of an ideal E. B. gas, whichwas already mentioned in example c. One should point out thatthis attraction can not be represented by a potential which has theproperty of additivity. We shall now calculate in first approximation for the ideal E. B.and F. D. gases the deviations from the ideal gas law.

This firstapproximation is obtained by taking only those permutations intoaccount which consist of the interchange of two particles. Whenwe observe that there are N{N~ 1 )/2 different simple interchangeswe find e ^'RB/Arr )nbsp;1 1 /nbsp;\T(]\j_-,\nbsp;\ M Vnbsp;2 J and therefore PP.D. ~ ^ V y 16 v[7i m kfy



??? Eq. (30) contains the well known expressions for the second virialcoefficients of an ideal E. B. and F. D. gas; - ^ I.....(31) nmkl ) Comparison of (26) and (30) shows clearly the difference incharacter of the deviations from the ideal gas law in the two cases.In (26) the deviation is independent of the density of the gas, in(30) it is proportional to it. The reason is that in the BOLTZMANNgas the deviation is caused by the interaction of each molecule withthe walls of the vessel, giving, just as the main term, a contributionproportional to N. In the E. B. or F. D. case, however, the deviationis caused by the apparent interaction between pairs of moleculeswhich gives a contribution proportional to the number of pairs orto N2. In Chapter III, Â§Â§4 and 5, a treatment of the equation of stateof the ideal E. B. and F. D. gases will be given in which all thepermutations in the expressions (27) and (28) are taken intoaccount, e. In the foregoing examples we have always

treated the particlesas simple mass points. It often occurs however that the moleculesof a gas possess an intrinsic, constant angular momentum. We shallnot investigate here the influence of the small magnetic forces whichare associated with this spin, but only its influence on the weightsand symmetry properties of the different states. Consider ^tyo identical particles with an angular momentum shjln.This spin can have 25 1 different directions in respect to a fixedaxis, all with the same energy. In Boltzmann statistics, where thetwo spins can choose their directions independently, each state is(2s 1)2-fold degenerate and the partition function is simplymultiplied with this factor. Here the spin has no influence on thethermodynamical properties of the system. In E. B. and F. D. statistics on the contrary, the spin has a greatinfluence. First consider E. B. statistics. Without spin only statesoccur whose wave functions are symmetrical in the coordinates.When the

particles have a spin, however, the wave functions mustbe symmetrical in respect to a simultaneous interchange of thecoordinates and of the spin directions, whereas the orbital wave



??? functions need not be symmetrical. From the (2s1)2 differentspin functions in Boltzmann statistics one can form (s l)(2s 1)symmetrica] and s{2s 1) antisymmetrical combinations. In orderto make the complete wave function symmetrical the first ones haveto be multiplied with symmetrical orbital wave functions, theothers with antisymmetrical ones. Therefore in the Slater sum thestates with symmetrical orbital wave function will appear withweight (5 1) (2s 1) and the states with antisymmetrical orbitalwave function with weight s{2s 1). In this way we get = (5 1) (2 5 1) 5i?.'a 5 (2 s 1) 5i??o. . . (32) Here the upper index on 5 denotes the value of the spin.In the same way one obtains for F. D. statistics â– sf'd. = (s 1) (2 5 1) S (2 S 1) 5s?!b. . . (33) We remark that, when s is large, and are mixed in almostequal proportions and we obtain practically the Slater sum forBoltzmann statistics. One can express this by saying that the

spinhas the tendency to diminish the influence of the exclusion principle. For systems of more than two particles the consideration of thespin becomes much more complicated. We remark only that the function W (ri,... r^^) has now to be defined by = ..... Â§ 4. Connection between classical and quantum theoreticalexpressions. General theory. The examples in the foregoing paragraph all showed a correspon-dence between the Slater sum and the classical expression insuch a way that the first went over into the second when the para-meter which represents the de Broglie wave length correspondingto a mean temperature motion, became small. For a general gas oneshould expect the particles to behave almost classically when theirde Broglie wave length is small compared with the distances inwhich their potential energy undergoes considerable changes. These



??? latter distances are clearly of the order of magnitude of thedimension of the molecules, say d, where d is a sort of moleculardiameter. We therefore expect a development of the form S = Se(^l c,â„? c, . . . . (34) Kirkwood 15) has investigated the connection between 5 and Scfor a non-ideal, monatomic E. B. or F. D. gas. We shall present histreatment only for the E. B. case; the F. D. case is completelyanalogous. The theory is based on the general form (11) of the Slater sum.The Hamiltonian of the gas has the form ^ iii kâ€”\ Now a suitable choice for the set of wave functions has to bemade. In any case all the uâ€ž must be symmetrical in the particlesfor otherwise the inverse of the transformation of the eigen-functions of the gas into the would not exist. We shall take thesymmetrical combination of running waves which was used inexample d of the foregoing paragraph. This means that the wallcorrections will be neglected. For the Slater sum one now

obtains(comp. eq. (27)) Nnbsp;N 11/'/*nbsp;--- (Pk-'Pk)nbsp;-Tâ€” {Pk-'k) ^ =nbsp;â€?â€?â€?jnbsp;^ ^nbsp;e ^ ^ ^ (35) where 1 kT- Consider now the function -r- ^ iPk-'-k) F(p.,...p^.r,....rJ = e e quot;nbsp;' . . (36) By differentiating (36) with respect to we see that F is a solutionof the so-called Bloch equation 16) Â?F |f = 0.......(37) d/?



??? with the initial condition (F),3=o = e If in (35), instead of the operator li we had written the classicalHamiltonian function H, we should have N I -VjkT -w ^'k-'Phl S =--p yo which differs from S^ only by the occurrence of the apparent inter-molecular forces due to the E. B. statistics. For V = 0 this is exactand the same as (27). When we therefore put N (38) w e then w represents the other quantum effects. Introducing (38) into(37) one finds for tv the equation aw ihnbsp;^ Â? = ^ iJ^P^ â€?nbsp;(p^ â€? V, i^) i Â? ^ ^^nbsp;(V, V)' with (w),3=o = 1. As we wish to see how S is approximated by it is appropriateto develop w in powers of h: z^h ..........(40)



??? We introduce (40) into (39) and compare equal powers of h. Thisgives successively, after a simple integration, quot;^0=1 :g2 N If, N 2 kZx 1 (41) pi i N 3 f 1 / N m \ k=i 8 71^ m '4 / N (P. â€? V, V) i=l In this way all the may be obtained in succession. When wenow introduce this solution into (35) we find the following develop-ment for 5: 5 = 5.2-6p (42) 1 N 1 â€?vj â€?Pk 8 k' T' k=i 6kT\ (It must be understood here that the operator Vi acts only on V). In the case of Boltzmann statistics only the identical permutationshould be taken into account. Then ...|.(43) N 1 5B=5e 1 2- (Ai V- (V. vy T'kZi 2kT This development has indeed the form (34) when we observe thatthe first derivatives of V play the role of 1 jd. The further terms of(43) will contain higher powers of h, higher derivatives and higherpowers and products of the lower ones. This method of obtaining successive approximations for 5, startingfrom Sc. shows a great resemblance to the W. K. B. method

ofsolving the schrodinger equation. But the latter method is not



??? directly applicable to our problem. In Chapter IV we shall howeverencounter a case where either Kirkwood's method or the W. K. B.method may be applied, both methods giving identical results. The development (42) is of course only valid when the function Vis differentiable any number of times. It will converge rapidly when/I Vt VjkT, PAk VjkT, etc. are small compared with unity, that isto say, when V, measured in units kT, does not change much overthe distance X. Â§ 5. The product property. In this paragraph a property of the Slater sum will be discussedwhich is fundamental for the theory of the next Chapter. Consider the function Wa, = W (rj,.., r^^) as defined in (7) forgases of resp. 1, 2, ... A^ ... particles in the same volume V. TheWn are symmetric functions of the arguments r,,... r^^. FurthermoreWi = 1 for a monatomic gas without external forces 1). The product property may now be stated as follows. When wedivide

the particles into different groups containing a^, Â?2' â€?â€?â€?particles, then for configurations where particles of different groupsare so far away from each other that their interaction (includingthe apparent interaction due to E. B. or F. D. statistics) vanishes,we have .........(44) This property is a consequence of the fact that in these configura-tions the Hamiltonian is separable into the sum of the Hamiltoniansof the different groups. In the classical theory (44) follows immedi-ately from this fact. In the quantum theory it is easiest to considereq. (35) (or the analogue for F. D. statistics). For Boltzmannstatistics, where only the identical permutation must be taken intoaccount, our property is then again immediately clear. For E. B. andF. D. statistics observe that the integration over p^^ leaves zero whenthe points r^ and Vp^ are far away from each other. Therefore onlythose permutations give a non-vanishing result where the k^^

andthe P/c'''particle are in the same group. But then the integrand of 1nbsp; As follows from Â§ 3, example a, this is true exactly in the classical theoryand almost exactly in the quantum theory.



??? (35) may be written as a product of the analogous expressions foreach group and therefore also the integral has the product property. It should be stressed that for this proof it is not necessary toassume the additivity property of the intermolecular forces *). Thefunction W^ has in general not the property that it can be split intofactors, each containing only a pair of molecules, as is the case inthe classical theory when the forces are additive.



??? CHAPTER III. The Theory of Condensation. Â§ 1. The problem. In this chapter we shall investigate how far the qualitative featuresof the equation of state of gases and liquids may be understood bymeans of statistical mechanics. The main properties in which weare interested are illustrated by fig. 2 where two isotherms of a pure substance are drawn, one for a temperature above the criticaltemperature T^ and the other for a temperature below T^. For largevolumes (small densities) both curves are shaped according to theideal gas law. It is clear theoretically that this should be so, becauseat small densities the interaction between the molecules may beneglected. For smaller volumes deviations from the ideal behaviouroccur, due to the intermolecular forces. These deviations are quitedifferent for the two temperatures. For T gt; T^ the isotherm isalways a smooth curve while for Tnbsp;the curve consists of three analytically

different parts, namely one representing the vapour, a



??? second horizontal part representing the saturated vapour in equili-brium with the liquid, and a third one representing the liquid. The problem can now be stated as follows: Suppose one has Nmonatomic molecules of mass m in a vessel of volume V, then thefree energy W(V, T) is determined by: (1) Nl Qn-= V 'vnbsp;/ where W(r,,...rj^) and / are defined by (11,7) and (11,5) andwhere the integral over each r/, has to be taken over the volume V. The pressure follows from W according to: ........ The question now is whether one can prove from (1) that at suffi-ciently low temperatures p as a function of V consists of threeanalytically different parts. The following remarks may help to elucidate the problem. a.nbsp;As was already mentioned in the first chapter, the Van derWaals theory does not give a solution of this problem, since herethe real stable isotherm is not derived directly from the integral (1). b.nbsp;One might think perhaps that this stable isotherm

cannot bederived from the integral (1) without further assumptions. Oneargues then that (1) gives the free energy for one homogeneousphase. One should make a separate calculation for the case whenthe system consists of two phases. For each volume one would obtaintherefore two values for the free energy, corresponding to one orto two phases, and the real isotherm would be determined by thelowest value of the free energy. In our opinion this argument is notcorrect. The integral (1) contains all possible states of the system *)and the W which one calculates from (1) will describe the most



??? probable state, which is the state of stable equilibrium. The realstable isotherm should therefore follow automatically from (1)without further assumptions. c.nbsp;On the other hand, from the mathematical standpoint, it ishard to imagine, how from (I) it can follow that W (and thereforep) as a function of V consists of three analytically different parts.It seems to us that this is possible because we are really onlyinterested in a limit property of W. The problem has a physicalsense only when N is very large. One may expect then that for afixed specific volume the free energy W will become proportional to N. Or in other words,the limit V {v, T) = Lim W{V,N.T).....(3) for V ^ CO, N CO, VjN = v fixed, will exist. Strictly speaking theproperty mentioned above has to be proved for xp as function of v.It is not surprising that this function can consist of analyticallydifferent parts. d.nbsp;One may remark that the stable isotherm does not

representall states of the system which are realizable. There is for instancethe well known phenomenon of supersaturation, which is representedby the continuation of the vapour part of the isotherm beyond thepoint of condensation. These states however are not states of stableequilibrium, except in vessels which are everywhere so narrow thatcapillary phenomena become of importance. Since we shall discussthe integral (1) only for the case that the vessel becomes large inall directions, it is clear that we shall not obtain the states cor-responding to the supersaturated vapour. Â§ 2. The development of Ursell. Ursell 3) has shown that it is possible to write the integral (1)as a polynomial of the degree in the volume. His procedure wasbased on classical statistical mechanics but can easily be extended



??? in order to include the quantum theory. One introduces a set offunctions t/(ri,r2,... r;) = Ui, which depend symmetrically on thecoordinates of / molecules in the volume V. They are expressed interms of the probabilities W^, W2, â– â– â–  W; by means of the relations: W(rO = fi{r.) = lW(râ€žr,)=U{râ€žr,) U(r,)U(r2) U (râ€ž r3) U (r.) U (r,. r,) U (r,) U (r.) U (r,) U (r,) ' and so on. The general rule is the following. We divide the Iparticles which occur in Wi into a number of groups, and form theproduct of the functions U, which depend on the particles of thesegroups. Then Wi will be the sum of these products for all possibleways of division of the / particles. The Ui in terms of W^, Wg,... W;are uniquely defined by these relations. One finds for instance: U{râ€žr,)^W(râ€žr,)-W{r,)W(r2)nbsp;j U(r,.r2, r,)= W(râ€žrâ€žr^) ^(r,)-^(r^. r,) W{r,)- (5)-W{r,. r,) W{r,) 2 W(r,) W{r,) W(r,). ' The rule which expresses the U in the W, is the same as therule which expresses the W in

the U, except for a coefficient(â€” ' (kâ€”1).', when k is the number of groups into which the Iparticles are divided. This will be proved at the end of this para-graph. The importance of the development (4) lies in the followingfundamental property of the functions Ui. When we divide the Iparticles into different groups, containing /Sg, ... particles, then,for configurations where particles of different groups are so faraway from each other that their interaction vanishes, we haveU, = 0. Less exactly one may say that Ui is different from zero onlywhen all the particles are near each other 1). The proof of this theorem follows from the product property ofthe Wn which has been explained at the end of the second chapter. 1nbsp; Tills does not mean, however, that each particle is interacting with allothers, but only that all particles are linked together.



??? For U^ for instance it can be verified immediately from the explicitexpression (5). In this way one could give a general proof. It issimpler however to consider the configuration mentioned in theproduct property of W^. Develop both sides of (II, 44) accordingto (4). The right hand side will then contain no U, referring toparticles of different groups. The sum of those terms on the lefthand side, which contain [// of this kind, must therefore be zero forthis configuration. By applying this argument successively to WÂ?,Wg, etc., one shows by induction that each Ui of this kind must bezero, as the theorem requires. A consequence of this theorem is that the integral of t/, over thecoordinates of the I particles will become proportional to the volumeV, when V is very large. To see this first perform the integrationover the coordinates of /â€”1 particles, keeping the coordinates ofthe particle fixed. Because of the fundamental property of U,

theresult will be independent of the volume and independent of theposition of the particle, provided that V is sufficiently large andill approaches zero sufficiently fast when the /â€” 1 particles areseparated from the particle. The integration over the coordinatesof the particle will then contribute a factor V to the integral.We shall write: (6) j'... j'dr^...dr,U,= Vl!b, . . . . It will be clear now that by integrating the development (4) forWn, one will obtain for Qjya polynomial of degree N in V. Theresult can be written in the following form: =nbsp;nnbsp;......(7) /=i mil The mi are positive integers or zero. The summation sign meansthat one has to sum over all sets of values of the m,, which fulfillthe condition: n 2^lmi = N........ (8)



??? To prove this, consider a definite partition of N in m^ groups ofone particle, mg groups of two particles, and so on. The m; will thenclearly fulfill (8). To a definite set of values of mi correspond manyterms in the development (4), due to the different ways of distri-buting the N particles over the groups. All these terms will give thesame result after integration, namely: n(vi!b,r........(9) /=i The number of these terms will be: nnbsp;1 N! n ..........(10) since the permutation of particles in one group and the permutationof groups of equal size will not give rise to new terms. By multi-plying (9) and (10) and by summing over the m; one obtains (7). Sometimes it is useful to write Ursell's development (7) in adifferent form, namely N -[/k k Qn=N! 2nbsp;n ba.....(11) k=\ k! i=i Here the a, are positive non-zero integers and the round summationsign means that one has to sum over all sets of values of the a,-which fulfill the condition: k I at=iN........(12) Iâ€”1 To prove (11), first

consider the partition of N into the two groupsai and 02. Then ai and 02 fulfill (12) with k â€” 2. To this partitioncorresponds again a number of terms in (4) which give the sameresult after integration, namely V^ aja^lba, fea,.The number of these terms will be a,! 03!



??? when ai a^ and 2!a~Ia]! when aj = Â?2. In order to obtain the contribution to Q^; of all partitions of N intotwo groups we can sum over all integral values of a^ and Â?2 whichfulfill the condition (12) when we observe that each partition withÂ?1 ^ Â?2 will occur twice in this summation. The contribution of thesepartitions to Q^ is therefore The extension of this reasoning to partitions into more than twogroups gives immediately (11). Finally we shall show that can be expressed by means of thegenerating function .......(13) where x{t)=IbitK-.......(H) This means that Q^ is equal to the coefficient of t^ in the expansionof (13) in powers of t 1). For the proof of (13) we may start either from (7) or from (11).If we multiply each ^ in (11) by iÂ?- then we may sum over al]integral values of a,- independently and afterwards fulfill the con-dition (12) by talcing the coefficient of t^ in the resulting expression.The generating function is therefore I ^

lt;.,!, â€? â–  â–  â–  â–  â–  Â?gt; = B lt; ,1 gt;gt;: The sum over k may be extended to infinity since the terms with 1nbsp; The term â€” 1 in (13) is miessential since 1.



??? kgt; N give rise only to powers of t higher than the N^^ one. Thisgives immediately the expression (13). From (13) we can find the expression of b, in Q,, Q2, ... Q,and therefore the coefficients in the expansion (5). The expressionof Q^f by means of (13) can be written as ......(15) which is equivalent to Vx{t) = log(l J V N=1 N! y Therefore the generating function of V bi is One finds easily that this is equivalent to the following expressionfor V bI, which is analogous to (11): Vb,= inbsp;n^ .... (16) k=inbsp;knbsp;Pi! where the round summation sign means that one has to sum over allsets of values of the /S, which fulfill the condition ....... . (17) Comparison of (16) and (11) leads immediately to the values ofthe coefficients mentioned after eq. (5). Â§ 3. The equation of state for the vapour phase. Mayer has shown how to derive from the development of Ursella general expression for the equation of state of the vapour phase.We shall give here essentially his first

derivation which, althoughnot rigorous, is very simple and gives the correct result. In Â§ 6 anexact proof will be given.



??? Suppose that all b, are positive, (which they probably are at suffi-ciently low temperatures), then for large N one may approximatethe sum (7) by its largest term. To find the set of m, which givesthis maximum term, one proceeds in a way which is quite analogousto the usual derivation of the Maxwell-Boltzmann distributionlaw in statistical mechanics. One then finds, using Stirling'sapproximation for m,.', that this maximizing set of m, is given by: m,= Vbiz'........(18) where the parameter z has to be determined by the condition (8),so that N 1 v = T = ....... By introducing this set of m, one finds that log Q,^ is approximatedby log Qn = log N! â€” Nlogz-\-V 2 b, z'. 1=1 From (1) and (2) one obtains then for the pressure p = kT 2 b,z'.-.......(b) 1=1 In order to find an explicit expression for the equation of state,one has to eliminate z between the equations (a) and {b). Born i7)and Mayer have given a formal solution of this problem.

Theirresult can be stated as follows 1). Define a function lt;p{S)= 2 r=l in such a way that P b, is equal to the coefficient of f'-i in theexpansion oi exp {Icp). This gives the bi expressed in terms ofthe [iy. One can solve these equations successively for and thusexpress the uniquely in terms of the With the help of the 1nbsp; For a simple proof see Note 2.



??? functionnbsp;the solution of eq. (a) can be written in the form -(I) z= â€” e v By introducing this into {b) one obtains / pv = kTi 1- ^ (19) = 1 V 1 The expression of the in terms of the b, gives then pV=NkT (20) N- (-3 18^2^3-20 bl) ...This has the form of the expansion in virial coefficients (I, 3) with B = -Nb2..........(21) (22) C = N^-2b3 4bl) D = N^-3b^ \amp;b2b3-~-20bl). . (23) These expressions for the virial coefficients were already knownin older theories and may be obtained directly from Ursell'sexpansion 1). All the other thermodynamical quantities can easily be expressedin terms of z and the b The following expressions are found:Free energy (24) (25) W=-pV NkTlog (Pz)Thermodynamic potential W pV=NkTlog{Pz) 1nbsp; In reality one obtains in this wayB = â€” (iVâ€”1) b2 C = 2 (Nâ€”l) (2Nâ€”3) 2 (Nâ€”1) (Nâ€”2) 63which coincides with (21) and (22) for large N.



??? EntropyEnergy 1=1 dT (27) Specific heat at constant volume - 3 AT,. ,nbsp;S db, Cy=T z' I'frquot; P b, z' 1=1 (28) 1 = 1 d 1 ^ Compressibility 1 ^dV-^ y 1 '=1 (29) V\dp l=\ The eq. (25) shows the thermodynamic meaning of the parameter Â§ 4. The ideal Einstein-Bose gas. The equations (a) and {b) show a remarkable analogy to theequation of state of an ideal E. B. gas as given by Einstein 4). Heobtained: (a,) JVnbsp;1_ g A' V V ~ p ,fi ri^ kT p ri-'...... from which again the equation of state results by elimination of A.



??? Eqs. (a) and [b) become identical with (a^) and [b,) by putting^ =nbsp;= .......(30) This analogy is especially of interest, since ElNSTElN has shown thatthe equations (a^) and (b,) give rise to a condensation phenomenon.Furthermore the case of the ideal E. B. gas furnishes an examplewhere the bi, which are characteristic for the behaviour of a realgas, can be determined explicitly. The equations (a^) and (bi) were derived by Einstein fromthe E. B. velocity distribution law. According to this law the numberof particles with velocity components between | and f nbsp;and yj drj, and f df is Vm' d^dridC h^ 1 A where I (f^ '^' C^)- In this form of the distribution law the quantization of the transla-tional motion is neglected. The parameter A is determined by thecondition (31) and the total energy is Vm^ m r ' . . . (32) s : 1 ^ A From the last equation the pressure may be obtained by using thevirial theorem pV=is.



??? The equations (aj and are then obtained by developing theintegrands of (31) and (32) in powers of A exp {â€”ElkT), whichis possible for A lt; 1, and by integrating term by term. An alternative derivation of Eqs. {a^) and (t^) will show moreclearly the origin of their analogy with (a) and (b). In chapter IIwe have found the expression (II, 29) for the function W^ of anideal E. B. gas: W]si= 2 e 0-'nbsp;......(33) The integral Q^ can now be written in the same form as Ursell'sdevelopment (7). Observe namely that by integrating one term of(33), corresponding to a definite permutation P, overdr^...dr oneobtains a power of V which is equal to the number of cycled intowhich this permutation can be decomposed. The sum (33) is there-fore analogous to the development (4) of in the U,. Supposethat the permutation P can be decomposed into cycles of oneparticle, m.^ cycles of two particles and so on. The m, will thenagain fulfill the

condition (8). To a definite set of values of m,there will correspond many terms in (33), each of which gives the same contribution to the integral Q^. The number of these termswill be n N! n 1 ......(34) '=1 r'mi! â€? â–  â–  â€? This is different from (10) because only the / cyclic permutationsof the particles in one cycle will not give rise to new terms. Toobtain Qjv in exactly the same form as in (7) we must write V lb,for the integral over the coordinates of the particles of a cycle oflength I. Therefore: (35) where ry.= |r,â€”The contribution of a term of (33) correspon-ding to a definite set of values of m, will then be niVlbP........(36)



??? By multiplying (34) and (36), and by summing over the m, oneagain obtains (7). The integral (35) can be performed straightforwardly1). Onefinds then for fc, the result (30) and we have already seen that withthis value of the equations (a) and {b) of Mayer become theequations (a^) and (fe^) of Einstein. Â§ 5. The condensation phenomenon. The reasoning by which Einstein derived the condensationphenomenon for an ideal E.B. gas from Eqs. (a^) and (fc^) is asfollows. For small values of the density the corresponding value ofA will be small. By increasing the density A will increase mono-tonically. This goes on until for a finite value of the density, Areaches the value one. Then: V ~ X^ if, VL ~ X'..... A: r 0= 1nbsp;kT P =nbsp;A =nbsp;â€? â€? â€? â€? For A gt; 1 the series (aj) and (bi) diverge. According to EinsteinIjvc is the maximum density which can be reached. By furthercompression of the gas, the superfluous particles will quot;condensequot;'into

the state of zero energy and will not contribute to the pressurenor to the density so that the pressure will remain p,. We havetherefore indeed a kind of condensation phenomenon, which hashowever some uncommon features, for instance: a.nbsp;The volume of the condensed phase is zero. b.nbsp;There does not exist a critical temperature. In order to get a closer idea of this condensation phenomenonwe shall give the expressions for some of the thermodynamicquantities in the vapour phase and in the region of equilibrium 1nbsp; See Note 3. Tiie same integral occurs in a paper of KRAMERS^ÂŽ)ferromagnetism.



??? between vapour and quot;liquidquot;. W=-pV NkTlogA 5 pV= y ^--Nk log A In the vapour phase we have ;nbsp;C = NkTlogA 3 pV - A' KdVjr' 'A3 V 4 r and in the two phase system 5 p._l5p.V 3'2 -0 The differences between the values of the thermodynamical quan-tities for the two phases are obtained from the last group of formulaeby putting V=V^ and V = 0 respectively. We see that f is equalfor both phases, which is the thermodynamical requirement for eachphase transition. Furthermore this phase .transition is one of thefirst kind since the volume and the entropy are different for the twophases, the differences being V^ and 5 p, VdlT respectively. From(38) follows ^ _ 5 p^ _dT 2 r quot;quot; A V which is Clapeyron's equation. On the other hand we remark twoother points in which this phase transition differs from the con-densation of a real gas, namely c.nbsp;(dp/dV)r has no discontinuity for d.nbsp;Cv has no discontinuity

for Vnbsp;1). 1nbsp; The continuity of C^ has been remarked by london iÂ?). His conclusionhowever, that this would mean that we have to do here with a phase transitionof the third kind, seems to us incorrect when one uses the term in the sense givenby Ehrenfest''quot;).



??? This follows from the fact that 2' 1//''^ diverges. In fig. 3 we (=1 have drawn some isotherms of the ideal E. B. gas, according to(ai), (b,) and (38). The reasoning by which Mayer first derived the condensationphenomenon for a real gas is quite analogous to the argument ofEinstein. It can be expressed as follows. Suppose that the series(a) and {b) have a certain finite convergence radius z, and thatthey are still convergent for z = z 1). When in addition the bi are positive, then by increasing thedensity the corresponding value of z will increase monotonically tillthe maximum value z = Fis reached. For higher densities the series(a) and {b) cease to have significance. Using a physical inter-pretation of the equations, Mayer tries to show that by furthercompression of the vapour condensation will occur, while thepressure remains constant and equal to the value . . . (39) 1=1 1nbsp; In fact, Mayer tries to prove that for large I the bj become asymptotically equal to

bg'^/Pk, which would make the analogy with the ideal E. B. gas stillcloser. This result of Mayer seems to us incorrect (see Â§ 7); it does not affecthowever his explanation of the condensation phenomenon.



??? These explanations of the condensation phenomenon are certainlynot yet complete. An instructive example is furnished by the idealFERiVlI-DlRAC gas. One shows easily that for this case the equationof state is determined by V V ~ p li,''nbsp;p......(32) kT 0=nbsp;A' ...... when A ^ 1. At first sight one might think that these equations willalso predict a condensation phenomenon. This however is not cor-rect. Although the series (ag) and (62) are convergent only forA^l, they represent analytic functions of A. which can be continuedalong the positive real axis for all values of Agt; 1, so that thepressure will be given by one analytic function of v for all valuesof the volume. This can also be seen directly when one derives theequations (ag) and (62) in analogy with Einstein's derivation of(ai) and (fej. The formulae for N and e are obtained from (31)and (32) by replacing the â€” 1 by 1 in the denominator. Theseintegrals, in contrast

with (31) and (32), are convergent for allpositive values of A. Only for A ^ 1 they give rise to the series(as) and (62). This is in contrast to the case of the ideal E. B. gas,where the point A=1 is a singular point of the functions (a^)and (bi). It can be shown (see Â§ 6) that for the real gas also anessential condition for condensation is that the functions (a) and(b) have a singularity on the positive real axis of z. Another objection against the reasoning of Einstein has beenraised by UhlenbecK 21). The Eqs. (a^) and {bx) are derivednamely by neglecting the quantization of the translational motionof the molecules. Instead of the integrals (31) and (32) one shouldwrite sums over all the possible discrete states. In the alternativederivation this corresponds to the neglect of the influence of thewalls of the vessel in the calculation of b,. This neglect is justifiedfor small values of A, but it becomes dangerous in the neighbour-hood or A = 1. In

fact, when we regard the sum which should beused instead of the integral (31), we see that the term for the loweststate (which may always be taken as the zero for the energy scale)



??? becomes infinite for A t= 1 and therefore the number of particlesdoes not remain finite when A approaches 1, so that the abovereasoning fails. It remains true however that for densities largerthan 1/fc the isotherm will be almost horizontal, and that this willbe more pronounced the larger the volume is. Only in the limitV ^ 00 will the isotherm consist of two different parts. When wealways understand the condensation phenomenon in the sense ofsuch a limit property (comp. remark c of Â§ 1) then this objectiontherefore loses its validity. Â§ 6. The rigorous treatment. We shall start from Ursell's development, but instead of makingthe approximations of Â§ 3, we shall now determine strictly forN 00, V ^ 00, V/N â€” v finite Q dt 1/2V ^'quot;quot;(wj........HO) which according to (1) and (3) is equal to Pexp(â€”ylkT) 1). UsingCaucHY's theorem of residues the expression of Ursell's develop-ment by means of the generating function (13) can be written inthe form

Qn 1 = ..... where the integral has to be taken around the origin of the complex^-plane, excluding the singularities of xi^)- The function x(t) isthe fundamental function of the problem. The first method which presents itself for treating the integral(41 ) is the method of steepest descents **). We have found anothermethod, however, more appropriate for the discussion of thelimit (40). 1nbsp; The Q^ are of course all positive, since they are integrals over the pro- babilities Wjy.



??? Consider the power series where the different Q;v have to be taken for the same value ofVjN â€” v1). According to the well known theorem of Cauchy thelimit (40) is now just equal to the inverse of the radius of con-vergence R of F{x). On the other hand the series (42) defines ananalytic function of x. and we can therefore find the convergenceradius R by determining the singularity of this function which isnearest to the origin. Another expression of F(x) can be found as follows. Introduce(41) into (42); then the summation and integration can be inter-changed when X is so small that on the whole contour ! llt; 1 where: ........(43) It is always possible to find such an x because \^{t)\ is bounded onthe contour. The summation of the geometric series gives then ynbsp;.....(44) The integral can be calculated by means of the theorem of residuesThe only poles of the integrand within the contour are f = 0 andthe zeros of the function

l~xi{t). For sufficiently small x thisiunction^ has only one simple zeropoint. One sees this fromCauchy's integral. The excess of the number of zeros over thenumber of poles of 1â€”within the contour is given by 2.711 X \-xHty 1nbsp; The series (42) is completely different from the series (15) where all Owere taken for the same value of V.nbsp;v ; c an



??? The integral has always a certain finite value, so that n â€” p can bemade as small as one pleases by taking x small enough. Thereforen â€” p must be zero, since it can assume integral values only. Now1â€”x^{t) has one simple pole within the contour, namely ^ = 0,and therefore also one simple zero, say at ^ = ^oâ€? The evaluation of (44) by means of the theorem of residues gives then ......lt;-) where: l-xf(^o) = 0.......(46) If we start from the origin and move along a definite path in thex-plane, the equation (46) will determine t^ as an analytic functionof X. Along the corresponding path in the fo'Plane 1) /(fg) will beagain an analytic function of f,, and therefore of x. In this way (45)defines an analytic function of x, which for small x coincides withthe power series (42), and which therefore represents its analyticalcontinuation. We have now to determine the singularity of F(x) which isnearest to the origin. One needs to consider only real positive valuesof x,

because of the fact that the series (42) has real and positivecoefficients, so that the real positive point on its circle of convergencewill be a singularity of F(x) 22). Qne sees from (45) and (46) thatthe possible singularities of F{x) are the values of x which cor-respond to the zeros of the denominator 1â€”and whichcorrespond to the singularities ofnbsp;Whether these values of x are actually singularities of F(x) and which of them is nearest tothe origin depends on the properties of the function /(tg) and onthe value of v. We know that for small values of to. /J^o) ^ ^o- Weshall assume further: a.nbsp;has a [inite radius of convergence equal to r. has a singularity z on the real positive axis; i may begreater than or equal to r. The latter case will occur for instancewhen all the b' are positive. c. X (z) and / (z) are finite; the point 2 will therefore be a branchpoint of ;t;(?o). 1nbsp; Whicii also starts from the origin, since ^o = 0 for .r = 0.



??? d. The inverse function ofnbsp;is singular at the point cor- responding to tQ=z. ^oZ'(^o) is monotonically increasing on the real axis betweentQ â€” 0 and to=z*); this will again be the case when the b, arepositive. To find the singularities of F(x) we shall start from the originand move along the real positive axis in the x-plane. When v islarge enough one sees that the first singularity of F(x) which onemeets will be determined by the zeropoint of the denominator in(45). Let us call this zeropoint to=z, so that vzx'iz)=^l.......(47) The corresponding value of x, and therefore the radius of con-vergence R, according to (46) will be /? = zeâ€”'ZW This is therefore the inverse of the limit (40), from which oneimmediately obtains the expression for the pressure p = kTx{z)........(48) The equations (47) and (48) are identical with the Eqs. (a) and{b), which are now therefore rigorously proved when v is largeenough. It should be pointed out that

for this proof none of theassumptions aâ€”e are necessary. Because of assumption e1) theequations (47) and (48) will remain valid, until v = =nbsp;.......(49) zx(z}nbsp;^ ' In the case that z gt; r, and for values of z between r and z, theequations (47) and (48) are no longer identical with the series(a) and {b), but represent their analytical continuations. Foi; allthese values of v the pressure remains a smooth function of thevolume. Because of assumption c, v^ has a finite value. Suppose now that v 1nbsp; When this assumption is not fulfilled, so that tox'(ia) has at least onemaximum (say at fo = then for a value of v corresponding to z =7, (dp/dp)j.becomes infinite (comp. eq. (29)). This has been pointed out by BORN andFUCHS=^ÂŽ). It gives the physical reason for the assumption e.



??? is smaller than v^. When we again move along the real positivex-axis, we shall reach the point corresponding to tQ!= z beforemeeting a zero of the denominator of (45). Because of assumption dthis value of x will be a singularity of F(x). In this case therefore This corresponds to the constant pressure: P=Ps = kTx{z).......(50) When zâ€”r this is identical with equation (39) of Mayer. Thepressure as a function of v consists therefore of two analyticallydifferent parts, namely the curve represented by (47) and (48) forvgt;v^ and the horizontal line (50) for vCv^. Â§ 7. Further remarks. 10. In Â§ 3 we have introduced the quantities /S^ in a formal wayin order to perform the elimination of z between the equations (a)and (6). Mayer and BoRN were led to these quantities by theconsideration of the integrals defining the in the case of classicalstatistical mechanics. They showed that these integrals can be splitup into the sums of products of certain

quot;irreduciblequot; integrals, whichare immediately related to the /S,. We have not been able togenerahze this physical interpretation of the for the quantumtheory. 20. Mayer and Born have tried to derive from the expressionof the bi in terms of the /Sâ€ž certain general properties of thecharacteristic function In particular Mayer has tried to makeplausible that in a certain region of temperatures below the criticaltemperature, b; behaves asymptotically for large I as toquot;' (51) One would obtain this by writing the expression of fe; in terms ofthe /Sr in the form ......



??? and applying the method of steepest descents to this integral. Aconsequence of (51) is that {dpldv)T becomes zero at the con-densation point v = just as in the case of the ideal E. B. gas. These considerations seem to us very doubtful, since they arebased only on the formal expression (52) for the b,. The physicalinterpretation of the is nowhere used. Since the quantities ^^can be defined uniquely by means of (52) for each arbitrary setof quantities b,, this would mean that each infinite set would behaveasymptotically like (51). This is of course nonsense. It is clear thatone can hope to make a further advance only by going back to thephysical meaning of the or the A.. In particular it seems to usimpossible to say anything in general about the behaviour of(dpldv)T near the condensation point. This will depend on the series CO ^ Pbli' 1=1 which may be divergent or convergent. In the first case (dp/dp )rwill be zero (or v=v^ while

in the latter case it will have a finitevalue. 30. From the further investigation of the integrals representingbi must follow especially the properties aâ€”e (Â§ 6) of x{z). whichare necessary to explain the condensation phenomenon. An essentialdifficulty seems to us to lie in the fact that even with the assumptionsaâ€”e oi it is impossible to obtain the third part of the isotherm,corresponding to the liquid state. The reason is that for all v lt; v,the singularity of F(x) which is nearest to the origin, is determinedby the singularity z of x{z), which is independent of y. Thereforethe isotherm will remain horizontal for all v It is clear that the origin of this difficulty has to be found in theneglect of the dependence of the b, on the volume V. It is true ofcourse that for every finite / the quantity b, has a definite limitfor V 00. We have assumed however more than this, since theproperties of ;;(z) depend on the behaviour of fe, for large I. Thereis clearly a

double limiting process involved and it may be that thesolution of the difficulty will be found by a more correct treatmentof these limits.



??? CHAPTER IV. The second virial coefficient of a monatomic gas. Â§ I. Introduction. The foregoing chapter was chiefly devoted to an explanation ofthe qualitative features of the equation of state. However we havealso shown that the isotherms in the gaseous state are exactly givenby the development of Kamerlingh Onnes and we have obtainedexpressions for the virial coefficients in terms of the integrals b,,such that the nquot;' virial coefficient contains the b, up to /1= n. Thisgives us the possibility of treating the last problem mentioned inthe first chapter, namely the investigation of the intermolecularforces from the equation of state. For, in order to calculate the nquot;'virial coefficient, we do not have to consider the whole gas but onlysystems of at most n particles. If this calculation in terms of acertain assumed intermolecular potential is possible, comparisonwith experiment can decide whether the assumed potential is a goodapproximation. For this

purpose the second virial coefficient is bestsuited, because its calculation is simplest and the most reliableexperimental data are obtained for this coefficient. Many investi-gations have been performed on these lines, most starting from theclassical expression for the second virial coefficient. It will be ourprincipal purpose to investigate the influence of the quantum theory.According to the general considerations of the second chapter, thisinfluence will be largest for low temperatures. Â§ 2. The general expression for the second virial coefficient. In chapter III, eq. (21) we found that the second virial coefficientwas equal to B = -Nb,



??? where 1 c r V V V V Therefore the classical expression isN 5c = where V(r) is the potential energy of two particles at distance r.We now introduce the coordinates of the centre of gravity and therelative coordinates of the two particles. Integration over the firstgives a factor V, For the relative motion we introduce polarcoordinates. Then the angular integration may be performed andwe get the well known expression 00 = .....(1) 0 This expression has the great advantage that it can always beevaluated, at least numerically, when the potential V{r) is known.This is not the case with the quantum theoretical expression whichwill be derived now. For particles with no spin we have (comp. (II, 7)) N P r r B = - 2v jj dr, drills {râ€žr2)-S(r,) S(r2)\ . . (2) The integraljyL?ri dr2 S{ri, Tj) is equal to the partition function of a two particle system, whereas the integral j^dr, dr^ 5(ri) 5(r2) can be written as two times the partition function of an

idealBoltzmann gas of two particles. Let us first consider the Boltzmanngas. Then (comp. (11,2))



??? where the first term refers to a system of two noninteractingparticles. Both terms can be written as the product of two partitionfunctions, the first referring to the translation of the centre ofgravity, the second to the relative motion. The first factor for bothterms is equal to l^l^Vjl^ (the factor lquot;!-' arises from the fact thatthe mass of the whole system is 2m) and therefore where now the partition functions refer to the relative motion only.We shall introduce polar coordinates r, lt;fgt; and group the statesaccording to the radial, azimuthal and magnetic quantum numbers,n, I, m. The states which differ only in m have the same energy,so that each state has a (2Z l)-fold degeneracy. Therefore lâ€”Qnbsp;n The quantities and are the eigenvalues of the radial waveequations and (0)quot;nbsp;(0) (0)nbsp;1(1 1) (0)nbsp;/.V vâ€ž! H--câ€ži Vni--^â€” vâ€ži.....^o; where Vnijr and fÂŽ /r are the radial parts of the wave functions. Inaddition to these equations there is a

boundary condition for thewave functions, because the particles are enclosed in a finite vessel.Since the final result for the virial coefficient is always obtained asa limit for infinite volume we may choose the boundary conditionarbitrarily, if only it is the same for (5) and (6). As the simplestchoice we shall assume the vâ€ži and ff/ are zero for r = R,where R is large compared with the range of V(ir). Without sucha condition the spectrum of (6) is entirely continuous. But theboundary condition at r = i? will make of this a finely spaceddiscrete spectrum. On the other hand, eq. (5) may have somediscrete eigenvalues when V(r) has a strong enough attractive part.



??? corresponding to the formation of quot;polarization moleculesquot;, but thelargest part of its spectrum will be continuous. With the conditionat r ?’? this part will also be discrete 1). It will be clear that thisdiscrete spectrum is completely determined by the values of thewave function for large r. The unnormalized solution of (6) which behaves regularly forrt=0 is Here ,(0) _ Iny'mEfl â€” h........ For large r this solution is proportional to sin kfj r ( (0) ' ^ 2 and therefore the A:ÂŽ are determined by I (0) rgt; Kt R â€” â€” = nn.......(8) Eq. (5) is for large r identical with (6). Its solution for large r istherefore a linear combination of the two fundamental solutions of (6) or, asymptotically, of sinfnbsp;and cos f /câ€ž,râ€”â€”\This 1 .nbsp;V 27 V 27 can also be written as Vni^ sin^kn,râ€”~-nbsp;.....(9) The quantity tj^in) represents the phase shift of the wave vâ€ž,compared with the free wave yW. It is determined by the conditionthat vâ€ži

becomes zero at least as r for r = 0. The quot;continuousquot; eigen-values of (5) are determined by kniRâ€”''~ r]i{n) â€” nn......(10) 1nbsp; For convenience we shall refer to this set as to the quot;continuousquot; spectrumin contradistinction to the original discrete states which are not affected by theboundary condition.



??? Now we can transform (4) by changing the summation over thequot;continuousquot; part of n by an integration. Observing that, because of(8) and (10), in the first term of (4) dn = ~dk n and in the second nnbsp;n dk we find Bb= 2 {2l \)Bi......(11) 1=0 gt;. . . (12) with Bl- B/, discr. B/, cont. n Ji Jnbsp;dk and ,2 4n^mkT Innbsp;. . =nbsp;= ^......(13) The negative quantities are the discrete eigenvalues of (5).We shall now consider the E. B. gas. Instead of (3) we have now Nl^nbsp;m -E^Â°'gt;lkTnbsp;-EilkT =nbsp;e -2G, e ). . . (14) The first term is the same as in (3), but the second is different. Theseparation into translational and relative motion is the same asbefore. In the summation over the different states of relative motionwe must take only those states into account whose eigenfunctions aresymmetrical in the two particles. Now interchange of the particlesmeans replacement oi q) hy cp n and of ^ by n â€” â– d. As is wellknown, the angular part of the

wave function remains unchanged



??? under this substitution for even I, whereas it changes its sign forodd I. Instead of (4) we get therefore fiE.B, = 2''. n^m 1 (2/ 1) ^nbsp;_ ) 1=0nbsp;nnbsp;[ } â€? â€? (15) -2 ^ I evennbsp;nnbsp;' If the gas, for which we want to calculate B, were an ideal E. B. gas,then we should have to replace the in the second sum of (15)by But in this case we already know the expression for B(Ch. II, eq. (31)). Therefore (15) may be written as BE.B. =nbsp;Tk NP 2 (2 / 1) 2- (e-^-^quot;quot; - e-''-''^ ^ ^nbsp;/eiiennbsp;â€ž We can now proceed in the same way as for the Boltzmann gasand find NP 5e.B. = -^ 2 (2/ l)fi, . . . . (16) ^nbsp;I even where Bi is again given by (12). For F. D. statistics one obtains in the same way NX^ Bf.D. = ^ 2 2- (2Z l)fi, .... (17) ^nbsp;I odd The general formulae (11), (12), (16) and (17) for the secondvirial coefficient have been found by Uhlenbeck and Beth 24). The expression (12) fornbsp;was obtained

independently by Cropper 25). We may generalize these expressions to include the case wherethe particles possess an angular momentum shjln. In Boltzmannstatistics, as we have seen in Ch. II. the spin has no influence. ForE. B. and F. D. statistics we obtain easily from the considerationsin Ch. II, Â§ 3, example e d(^) _ S 1 â€ž(0) , S _(0) d(Â?) _ 5 1 d(0) , s r.(01 nbsp;. . . (19) where and are the expressions (16) and (17). For large sboth (18) and (19) reduce to Bb.



??? The expressions (16) and (17) for B consist of three parts whicheach have a definite physical meaning. The first term represents theeffect of the apparent attraction in an E. B. gas or of the apparentrepulsion in a F. D. gas. In the second term the part containingâ€?B/, dis^T. shows how the pressure is lowered by the diminishing of thenumber of independently moving particles, due to the formation ofpolarization molecules. It is in fact possible to derive this termdirectly according to this interpretation by means of the formulaefor dissociative equilibrium. The part in the second term whichcontains Bisect, represents the effect of the collisions between themolecules. As we have seen, it depends only on the asymptoticbehaviour of the wave functions of the relative motion of twoparticles, represented by the phase shifts t]^{k). The calculation of B consists therefore in the calculation of thediscrete eigenvalues Eâ€ži and of the phase shifts Â?^/(fc). These

latterquantities also play a fundamental role in the theory of atomiccollisions, and it is in connection with this theory that the existingcalculations on the f]j{k) are performed. For this reason we shall givein the following paragraph the fundamental formulae of the collisiontheory, together with the formulae for the transport phenomena ingases, which are closely related to them. Â§ 3. Collision theory and transport phenomena. When a beam of particles, moving with a velocity v, falls on aparticle at rest, many of them will be deflected in different directions.Suppose the density of the beam to be such that an area of 1 cm2perpendicular to the beam is traversed by one particle per second.We shall call /(^) d?“ the number of particles which is scatteredper second into a solid angle dm in a direction which makes anangle with the original beam. The number of particles scatteredbetween ?? and ?? d?? will be called the differential cross-section da =

2nl{??)sinamp;damp;......(20) The total number of particles scattered per second is the total cross-section 71 a=::27ij I{amp;)sinamp;damp;......(21)



??? The problem of collision theory is to calculate ?’(#) and a asfunctions of the velocity when the potential between the interactingparticles is known. We shall suppose that the scattering and scattered particles havethe same mass m but are nevertheless distinguishable for themoment *). The expression for the differential cross-section will begiven for the system where the centre of gravity of the two inter-acting particles is at rest. In this system, which is moving with avelocity vjl, the two particles move before and after the collisionwith the equal and opposite velocity y/2. The angle of scattering inthis system, d, is twice the corresponding angle -d' in the originalsystem, as may be seen from a simple geometrical consideration.Hence the results obtained for the differential cross-section in themoving system can be transformed to the original one. The totalcross-section is of course the same in the two systems. In the originalsystem

the angle between the directions of the two particles aftercollision is 90Â°. For 1{B) one obtains the result 26) = . . (22) where , nmv .........(23) Plicos 0) are the Legendre polynomials and r]j(k) is the phase shiftin the radial part of the wave function of the relative motion of thetwo particles, as defined in eq. (9). From (22) one obtains for thetotal cross-section 0 = ^ J^{2l l)sin'ri,(k).....(24) We shall now give the formulae for the case when the exclusionprinciple is taken into account. Because the two interacting particlesare indistinguishable the cross-sections will now refer to the pro-



??? bability of finding a scattered particle, and it will not be possibleto conclude whether this particle is the incident particle or the oneoriginally at rest. For particles without spin one obtains /e.b.(lt;9) = ^ i 2- (2/ l)(l-e^''quot;w)p,(co5(9)|2 . . (25) Â?c /even =nbsp;(2/ 1) (l-e2'''/W)A(cos(9)p. . (26) K I odd 2 {21 \) Sin'VI (k) .... (27) = ^ 2 {2l l)sin'r],{k) .... (28) K I odd For particles with spin s, one has (if the spin directions of bothparticles are isotropically distributed) =nbsp; nbsp;. . (29) =nbsp; nbsp;. . (30) and analogous expressions for the total cross-sections. The values of the transport quantities in gases can be expressedin terms of the collision cross-sections 27), One finds in firstapproximation for the coefficient of viscosity in E. B. and F. D.statistics 101X2^^/1_1_ v =---^-â€? â€? . . (31) 0 and for the coefficient of heat conduction = ........(32) Here c^is the specific heat per gram of the ideal gas, 3kj2m, k^ is



??? defined by (13) and a.j.{k) is the so-called transport cross-section n a.j.{k) = 2ji ^ I{6)sin^6de......(33) 0 with I{e) given by (25) or (26). From these results we see that in the theory of collisions and oftransport phenomena the problem is the same as in the theory ofthe second virial coefficient, namely the calculation of the phaseshifts ri^{k). It is therefore possible in principle to correlate theexperimental data on the second virial coefficient with the resultsof colhsion experiments and with the measurements on viscosityand heat conduction. Â§ 4. Qualitative remarks about the phase shifts. For a general potential V{r) it is not possible to give an exactanalytical expression for the quantities rj^ik) and we have to makeuse of numerical or graphical calculations or of approximationmethods. First we shall try to get a general idea about the shape ofas a function of k. This function was defined as the difference inphase between the

asymptotic solutions of the one dimensionalSchrodinger equation v['(k.r) ^\E-Q(r)\v.(k,r) = 0,nbsp;= (34) (35) with 4 71'' m r^ and of (34) with ....... both solutions being determined by the condition that they becomezero at least as r for r 0. Because is a term in the phase of thewave function, and the sign of the wave function is arbitrary, onemay always add an arbitrary multiple of n to its value. Of coursethis arbitrariness has no influence on the expressions for the second



??? virial coefficient and for the collision cross-sections. Therefore thisarbitrary constant may be fixed in any convenient way. We shalldo it always in such a manner that r/^ becomes a continuous functionof k. When the potential V(r) is finite everywhere it is possible forinstance to fix rj^ in such a way that it approaches zero for k large,because then the disturbance of the wave function by the field offorce becomes small. Before we examine a V(r) of the type which actually occursbetween two molecules it will be useful to give the values of r]^ whenthe molecules are considered as noninteracting elastic spheres ofdiameter q. In this case rj^ can be calculated exactly. The potentialis now l/(r)=oo, rlt;e V(r) = 0, rgt;Q The solution of (34) will be that linear combination of the twofundamental solutions of this equation for V(r) = 0 which isdetermined by the condition of being zero for r = Â?gt;. The funda-mental solutions are |/7/, v.(/cr) and |/7(/cr)and therefore the

required linear combination is (kQ) ?’/ â– /. (fc r)nbsp;(kQ) J-t-^u {kr)! From the asymptotic expressions for the BesSEL functions follows â€? â€? â€? (37) which for large k becomes asymptotically , â€” tan {kg), I eventanâ€žik)=]nbsp;.... (38) so that one can take for instance â€” kg, I even for k large.



??? The actual potential V(r) consists of a strong repulsion when ris small which for larger r goes over into a short ranged attraction.The effective potential in equation (34) is for Z 0 the sum of thisV{r) and of the potential of the centrifugal force. This effectivepotential has therefore the shape of fig. 4. We can now find the behaviour ofnbsp;when k is very large or very small. Consider first the case I ^ 0. When k is very small the wave function willbe negligibly small in the region where V'(r) is large, because thecentrifugal repulsion acts like a potential barrier. The wave functionis therefore practically undisturbed by V{r) and with a suitablechoice of the arbitrary constant it becomes zero for A: = 0. In factwe shall show in the next paragraph that tj^ik) behaves as the(2 / power of k for small k. When k is somewhat larger thewave function will be perturbed by the attractive part of V(r). Thiswill make positive because in regions where V(r)

is negative thewave function oscillates more rapidly than the corresponding wavefunction for V(r) = 0, which means an increase of the phase. When



??? k becomes so large that the wave function has considerable valuesin the region where V(r) is positive, will begin to decrease andfinally becomes negative. For very large k1) the tj^ will be entirelydetermined by the repulsion and behave approximately as the 37 (A:)of an elastic sphere of diameter ro, where rg is the classical distanceof closest approach. For / = 0 the behaviour for large k is the same, whereas thediscussion for small k is a little more complicated. One can showhowever in a way indicated by Fermi 28) thatnbsp;behaves like k for small k, in conformity with the result for / i^?Š 0. The asymptoticsolution of the wave equation for Z = 0 Vo(k, r) = Asin JArr ^W?Ž must for small k go over into the asymptotic solution for k = 0,which is clearly t^o (0.r)=z6(a r).This gives the two equations for small k and therefore A k cos r]g (k) = bA sin rjQ {k) = ab tany]o{k) â€” ak.......(40) or 7]oik) = ak........(41) It will be of interest for later discussion to investigate the

casewhere the potential field possesses a discrete or virtual level closeto zero. For simplicity we shall assume V(r)=:0 for r gt; r^.Consider first the (exceptional) case where this level lies just atenergy zero. In this case the wave function for k = 0 outside thefield of force is a constant or, in other words, the tangent of thewave function is horizontal at r = rj. Now eq. (41) breaks downand has to be replaced by f]o{k) = n!2 for small k. When theattraction is a little stronger so that there exists a discrete level close 1nbsp; That means here that the energy is large compared with the attractivepart of V{r). It must not be so large that the molecules can be excited for thentheir description as simple centres of forces becomes invalid.



??? to zero, then the wave function for A: = 0 will be a little more curvedand will have a small negative derivative (taking the wave functionitself as positive) at r = r^. This means that a is large and negative.Because of (41) fj^ik) will therefore decrease very rapidly withincreasing k till it reaches the value â€”nj2 1 ). On the other hand,when the attraction is a little less, there will be a virtual level and awill be large and positive. One can easily see that in both cases thevalue Â? nj2 of rj^ will be reached for an energy of the order of theenergy of the virtual level or of the absolute value of the energy ofthe discrete level. For a virtual level one can see this as follows.The level is defined as the energy corresponding to the minimumratio of the amplitudes of the wave function outside and inside thefield of force. This is obviously the case when the wave functionhas a horizontal tangent at r = r]. But then the wave functionoutside has the form

Acos{krâ€”kri) = A sin {kr â€” kr^ n/2) so that the phase, because of the smallness of kr,, is practicallyequal to 7i/2. When there is a discrete level of energy â€”h^ kx^j'in^m,its wave function will be A exp (â€”k^r) for r gt; r,^. The wavefunction for k lt;= 0 will have practically the same derivativeâ€”k^Aexpiâ€”fciTi) for r = rx, so that a = â€”ir,â€” l/Ar^ ^â€”l//ci,which means that Voi^) 'S of the order unity for k ^ k^. Â§ 5. Born's approximation. After this qualitative discussion we shall try to calculate the 7]^{k)by approximation methods and shall use the results to calculate thesecond virial coefficient. There are two standard methods available,namely that of Born 29) and that of Wentzel, Kramers andBrillouin (W. K. B. method) so). The approximation of BoRN consists in treating the potentialV(r) as a small perturbation in equation (34). We may expect that 1nbsp; If one prefers to have tjoik) for k^ Q change continuously with varyingfield

of force one has to put J?o(0) = n instead of Â??o(0) =0 when there is onediscrete level, or, more generally, Â??o(0) = nn when there are n discrete levelswith 1 = 0. Analogously one has to take Â??; (0) as many times ji as there arediscrete levels with azimuthal quantum nimiber I. For a V(r) which is finiteeverywhere this choice of j?,(0) will give obviously Â??,(A:) =0 for oo.



??? this method will yield reliable results when V(r) is small comparedwith the total energy in those regions where the solution of theunperturbed equation has considerable values. As we saw in theforegoing paragraph, this condition is only fulfilled fornbsp;and small A:. A calculation of the second virial coefficient by using Born'smethod throughout can therefore not be expected to yield goodresults. We can however make the following, rather academic,statement. Suppose that V{r) is small for all r (contrary to theactually existing potential fields), then for high temperatures theenergies of the particles will be large compared with V{r), and wemay apply Born's approximation. But for high temperatures theclassical theory is valid, so that we can expect that the resultsobtained with Born's approximation will be the same as thoseobtained with the classical formula (1) when one introduces theapproximation corresponding to V(r) fcT. This statement isconfirmed by

the calculation. The well known formula for ri^{k) which resuhs from Born'sapproximation is (42) This will be introduced in eq. (11) for the second virial coefficientin Boltzmann statistics, where we may neglect the contributionfrom the discrete states. This gives = _ J (2 / 1) Cdk ^ = ^ 1=0nbsp;J dk 0 A/' 00nbsp;r = - -4-r- ^ (2/ 1) \dkkni{k)==n atq^ /=onbsp;j 0 00nbsp;CO (43) Ti-'NP r 'Jdrr V(r)Jcifc/ce-W J (2/ nbsp;= kT 0 =nbsp;V(r)J'dfcFe-W^^?’



??? Here we have used the well known formula The formula (43) for Bb follows indeed from (1) by expanding theexponential. The introduction of (42) into the Eqs. (16) and (17)forfiinE.B. andF.D. statistics also gives rise to closed expressions.One finds NP , 2nN =nbsp;. (44) 000 = nbsp;. . (45) 0 For their derivation one has to use the formulae 3i) I evennbsp;\nbsp;J 1 { sin 2 / Finally we shall show that the behaviour of rj^{k) ior 1^0 andsmall k. as stated in the foregoing paragraph, follows from Born'sapproximation, which is valid in this case. Consider that in (42) notonly k, but also kr can be considered as small because, due to therapid decrease of V(r), large values of r do not contribute to theintegral. We may therefore insert the series expansion for theBessel function by means of which we obtain an expansion ofViik) in odd powers of k, starting with the {21 I)quot;' power. Â§ 6. The W. K. B. method, first approximation. In the

second chapter we have shown the connection between theclassical and the quantum theoretical expressions for the partitionfunction. In particular we have seen that the two expressionsbecome identical in the limit of high temperatures. By means of themethod of Kirkwood it was possible to approximate the quantumtheoretical partition function successively, starting from the classical



??? partition function. This method can be apphed directly 3i) to anapproximate calculation of the deviations of the second virial coeffi-cient from its classical values. These calculations will be performedin Â§Â§ 8 and 9. In this and the following paragraph we shall showthat the same result can also be obtained by applying the W. K. B,method to the calculation of the r]j(k). We start from the radial wave equation (34) and shall writefor its solution (46) 27li vi â€” equot; Gi will be developed into the series ......(47) 2ni 2nt By substitution of (46) and (47) in (34) and comparing equalpowers of h1), the terms of (47) can be obtained successively bysimple integrations. In this way one obtains the two independentsolutions r Vl = 4Qquot;(E-Q) 5Q'2 _1 32 Km 2 {E-Qfi^ )â€? (48) and dri^m{E-Q) 2ni 1 exp Vi = (E-Qfl^ u where the lower limit of the integration is arbitrary. 1nbsp; In order to get a good approximation to classical mechanics, one has todisregard in this

comparison the fact that Q(r) contaiins PlANCK's constant,since Q(r) must be considered as a classical quantity, namely the sum of thepotential energy and the energy of the centrifugal force.



??? The conditions of validity for this approximation will be discussedlater on. Here we remark only that (48) is certainly'invalid whenQ{r) = E. When there are several regions of r, separated by pointswhere Q{r) = E (the limit points of the classical motion), then theproblem arises how to determine the linear combinations of the twosolutions (48) (now with fixed integration constants) in the differentregions in order that the W. K. B. solution in these regions mayapproximate the same exact wave function. This problem has beensolved by Kramers. When in this way the W. K. B. solution isdetermined, it is easy to find the value ofnbsp;We shall develop fJiik) according to V,(k) = ri(l^k) rif){k) ........(49) where the successive terms arise from the successive terms in theexponent of (48). In this paragraph we shall be concerned with thefirst approximation only. As may be seen from fig. 4 there can exist one or three limitpoints of the classical

motion (except for special values of E wherethere are two). Consider first the case where there is one such pointwhich will be called iro(A:). We have now to determine the W. K. B.solution for r gt; Tq which approximates the exact solution whichbecomes zero at the origin. From Kramers' connection formulaeone finds for this solution (50) r â– â€?o h For large r this is asymptotically (51) / 00Videos \^kr-kro-~ J k^ - [ {r) - k) dr In order to obtain ri^(k) this must be compared with the free particlewave function. It is more consistent to make the comparison withthe W. K. B. solution for the free particle rather than with the



??? exact function 1). The W. K. B. solution for the free particle isfound from (51) by insertingnbsp; I )/r2 and performing the integration. The result is / V,,free ^ COS and therefore we find for the first W. K. B, approximation of CO ^(1) (k) = y 1/7(7 1) -kro j {[Xk^-fir) -k)dv . (52) â– â€?o and -1 c?r. . . (53) dk Â° ' J To When there are three limit points of the classical motion, rilt;r2lt;r3,one obtains ^-r3 rr. , ^ -Adr f ____dr (54) dk â– â€?3 The following theorem can now be proved. Let there be for fixed Iso many discrete levels Eâ€ži that the sum over n in the formula forthe second virial coefficient may be replaced by an integral. Then,using the first W. K. B. approximation for the calculation of Eâ€žiand ??j^ik), Vfe obtain 00 0 We shall prove (55) first in the case where / is so large that /(r)is monotonie for all r. In this case no discrete levels are present, sothat Bi = Bi,cont.. By introducing (53) in (12) one gets 0nbsp;râ€ž 1nbsp; For the calculation of drjjdk the use

of the exact and of the W. K. B.solution for the free particle give the same result.



??? 1 T This integral has to be transformed in such a manner that theintegration over k can be performed. When we do this 1) we obtain 11/1(1 1) (57) c/ Now the integration over x can be easily performed by takingXâ€”f{r) as a new integration variable. The result is f I// (7 1) ^ ot Xl-'NP df 1) which reduces to ( 55 ) by observing that __ CO y yw l) = ?’ dr (1 0 We may now consider the case that f{r) is not monotonie but stillalways positive. In this case also there are no discrete states. Butnow in a certain region of values of k there are three limit points ofthe classical motion and there we have to apply eq. (54) instead of(53). A calculation similar to the foregoing confirms (55) for thiscase too. When there are regions where /(r) is negative, there may bediscrete states. Nownbsp;is not given by the right hand side of (55). We shall give the calculation for Z = 0 only. The case 1^0 isquite analogous. Again the integral (56) has to be

calculated, butnow /(ir) = 47i2m V(r)//i2. Instead of (57) one finds p(i) _lJO,cont. - - (Xnbsp;u ro(0) m gt;(58) ,-xlko- dx 1nbsp; See Note 4.



??? We shall now add the contribution from the discrete states which,after replacement of the summation by an integration, can bewritten as 0 =nbsp;. . . (59) V â–  mm wherenbsp;is the minimum value of V(r). The energies are, according to the W. K. B. method, given by quot;â€?fc 2ji^m\E^l-V(r)\dr=(n i)h .... (60) where r^ and n are the two limit points of the classical motion.Therefore â€?'b quot;quot; dr......(61) -II dE E-V{r) Introducing (61) into (59) and substituting E^h^xlin^m (x ishere negative), we find 0 -^b,,,nbsp;Ti^NP rnbsp;r 1 (62) 0 rÂ?(0) f(r) Adding (58) and (62) we obtain .-xlko^ e dx \yx-f(r) 00 BS*' = - Npjdr (e-^Wquot;'^- 1) in accordance with (55). By means of (55) one can derive the first W.K.B. approximation



??? for the second virial coefficient. In BoLTZMANN statistics the resuh is 1 (2/ l)5Squot; =1 = 0 .nbsp;(63) = â€” NP Inbsp;1) 2 (21 1) equot;'lt;' ')/ Â?ynbsp;;=o 0 when we interchange summation and integration. For E. B. andF. D. statistics we have to sum over even, and over odd, values of Irespectively and to multiply by a factor two. The sum 2 (21 1=0 cannot be calculated exactly. However, Mulholland 32) has giventhe following asymptotic expansion for this sum, which furnishes anapproximation for high temperatures. (2 Z 1) e-m iWr'^ eWr' 1=0 -fc2,2 , 1 , 1 1 , (64) ^ k! (ko'r'Y^--- where and the Bernoullian numbers Bâ€ž are defined as the coefficients ofxquot;ln! in the expansion of â€” 1). The same expansion is obtainedfor twice the sum over even or odd Z. By inserting the first term ofthis expansion in (63) one obtains the classical expression (1). Itis premature to introduce here the second term of Mulholland'sexpansion

in order to obtain the first deviation from the classicalformula, since the second approximation of the W. K. B. methodwill give a contribution of the same order of magnitude. Â§ 7. The W. K. B. method, second approximation. It follows from the W. K. B. solution (48) that in the case of a



??? monotonic f(r) the second term in the approximation ofnbsp;is 'if (65) dr (k'-ffl The difficuky is that this integral diverges. An examination of thederivation of Kramers' connection formulae shows however thatthe integral (65) has to be interpreted as the half of a complexintegral in the r-plane, taken along the contour of fig. 5. Hada- Fig. 5. MARD33) has shown that this can be written in real form as thequot;principal partquot; of (65). This means one must integrate (65)partially so many times that the resulting integral becomes con-vergent while the infinite terms of the integrated parts have to bedropped. By using Hadamard's symbol for this principal part wefind after a partial integration that one can write for the secondapproximation to rj,{k) 1) . . (66) r (k^-ffl' and dn?{k)_5kdk 32 f' (67) (k^-ffU 1nbsp; Insertion of /(r) =/(/ l)/r2 in (66) gives, as shown in Note 5,nf\k) = â€”Jtll6[/l{l T). It is therefore more consistent to substract this valuefrom the expression (66).

This has of course no influence on the value of d^f'/dfc.



??? The energies of the discrete states are in second approximationgiven by and therefore â– â– J.nbsp;__/ 'â– b mnbsp;5h'nbsp;r , Qquot; â€? (68) 4 E-Qnbsp;J (E-Qfl^ By means of (67), (68) and the obvious extension of (67) for anon-monotonic f(r) we can now prove 1) that the second term inthe approximation of B, is given by 24jiVnbsp;f V h 0nbsp;(69) 471'm 1(1 1) y , p(i ]y\ i'{i m / rÂ? This has to be introduced in the formulae for the second virialcoefficient. For the sums over I which now occur we can giveasymptotic expressions for high temperature by differentiating (64)with respect to Ijk^'^f^. In this way we obtain J I (/ 1) (2 / 1)nbsp;k.' r' 1 = 0 i I' {1 1)^ (2 / 1) e-m mo^r' ^ 2 V1=0 By introducing these expressions one finds for the contribution of 1nbsp; See Note 5.



??? the second W. K. B. approximation to the second virial coefficient 00nbsp;CO 3kT 0 drre-^Â?'^ V. We have to add here the result which is obtained by introducingthe second term of (64) in (63): 00, ?’ 1). 0 Therefore 00nbsp;CO = ^ I'drie-^I^T-]) ^J^^Jdre-^lquot;^ V - drre-^'l''^ V. 0 Nx^ r 3kTj 0 By partial integration of the first term we see that the first and thelast term cancel. Therefore, finally CO 2 /' Y2 \nbsp;. . . . (70) Â§ 8. Approximation of Bi by means of Kirkwood's method. The results of the last two paragraphs can be obtained with muchless labour by applying the method of Kirkwood to the Slatersum of the relative motion of two particles. We have neverthelessthought it worth while to give the calculation with the W. K. B.method because the W. K. B. expressions for 7i^(k) may be of someuse for practical calculations and because this method shows moreexplicitly the contribution of the discrete levels, which in the methodof Kirkwood is completely

obscured.



??? In order to find the development for B, we have to applyKirkwood's method to the partition function of the relative motionof two particles after separation of the angular coordinates. Westart therefore from eq. (4) which we shall write as 00 i (2l l)B, = TI'NP i (2/ 1) rdri5,,fâ€ž,(r)-S,(r)! (71) 1=0nbsp;1=0nbsp;J 00 0 so that CD drS,{r)=i: e-^nif'T, 6 Then S, (r) = ^ e-^Ji'T (r) (r) = 2 t,;, e-^W nnbsp;n with K J' and Q(r) as given by (35). The vâ€ži are normalized according to R drvli(r)vni(r)=l. 0 Instead of the complete set we shall introduce the set with nh As was already remarked in chapter II the fact that this set doesnot satisfy the boundary conditions is not important. We have now GO 1 /*nbsp;2 --I inbsp;j_r 2 SI i



??? We can follow the scheme of Ch. II, Â§ 4, where now F=e The equation for w is - p rnbsp;â€”p pr â€”/3ff e = tv e quot; e dQ ^dr dr ^dQY (^3=0 = 1 with the solutionWo= 1 Wi = â€” dr 2 Jim dr ' m\dr j d'Q da 1 (73) W2 = dr' 'nbsp;ml dr Now developing Si according to S,(r)= i Sr'(r) (74) n = 0 we obtain, by introducing the solution (73) into (72) and performingthe integration over p 5f)(r) = 1 -QlkT ^ e X[/2 (75) 5lt;/' (r)=-0 dr^ 2kT\dr ) . g-Q/tr gt; _ Sf (r) = \2\/2nkT The corresponding functions for the free particles are obtained byputting Q(r) = /j2/(/ l)/47i2mr2 in these formulae. The terms in



??? the development of B, which corresponds to (74) are obtained byintroducing the solution (75) and the corresponding solution forfree particles into (71). In this way one easily finds that BÂŽ isgiven by the expression (55), fij') =0, while Bf) becomes after apartial integration identical with (69). Â§ 9. Approximation of B by means of Kirkwood's method. We have already seen that an expansion for B can be obtainedby introducing the expression for B, into the formulae for B andusing the asymptotic expansion (64) of mulholland for the sum-mation over /. The resulting expansion for B can however beobtained directly by applying Kirkwood's method to the partitionfunction of two particles without separation of the angular coor-dinates ). This procedure has the advantage that now one canalso give the expansion for E. B. and F. D. statistics. This was notpossible by starting from B, because of the fact that the expansionof Mulholland

remains unaltered for the sums over even or odd Iwhich occur in these statistics. Since we have already obtained in Ch. II the general expansionof the Slater sum for a gas of N particles, we shall start from theexpression for B before the separation of the motion of the centreof gravity, i.e. from eq. (2). Here we shall introduce eq. (II, 42)and then introduce relative coordinates in the integral. Let us first consider for simplicity the case of Boltzmannstatistics. Then, from (2) and (II, 43) R - ^Bb = ,Jj dridr^ 2 V, V K When we now introduce the variables r,.r = r,â€”r2, instead ofr,, rj, and make use of the fact that V depends only on r so that dr r dc (V, vy = (V, vy=(V vy = J,



??? then, after a partial integration GO , = 2jiNjc 1 1 24 ne T^ which indeed deviates from the classical expression by the term(70) 1). For E. B. statistics we obtain from (2) and (11,42) 2kT UnkT ^ (r , V y) - With {r.yV) = r^; (r . W V = r' this becomes after a partial integration=nbsp;Jrr^ (77) 1 V r2 V' y'2 3kT 3kT 2F r^' Â§ 10. Remarks on the actual calculation of B. a. The validity of the approximations used. We must investigatenow how far the methods represented in the foregoing paragraphsare suited to a practical calculation of the second virial coefficient 1nbsp; In the paper of UhLENBECK and BeTH the next term has beencalculated.



??? when the intermolecular potential is known. We have already seenthat for potentials actually occurring the BoRN approximation can-not be used throughout. It can be used only for the calculation ofrj^{k) when Iz^Q and k is small. For theW. K. B. method and the equivalent method of Kirkwoodthe condition of validity was given in chapter II. The change overa distance k of the potential, measured in units kT, must be smallat least for values of r where V(r)lkT is not large. In order tocheck this condition we must know the function V(r). For that werefer to the quantum mechanical calculations mentioned in the firstchapter. The theoretical potential which has been discussed mostin connection with the second virial coefficient and the transportphenomena is that of Slater and Kirkwood for helium, eq. (I, 4).This potential, when inserted into the classical formula (1) for B,gives a good representation of the experimental values n).

Weshall see however that one cannot attach much significance to thiscorrespondence. From (1,4) we find that for r = 2.6A, where k dV _52amp;kT dr ~ Ti-' so that we may expect the W. K. B. method or the method ofKirkwood to give a good approximation only for T gt; 70Â° K. Forlower temperatures it is therefore certainly not permitted to usethe classical expression for B and the agreement with experimenthas to be considered as accidental. On the other hand, for T = 70Â°we have kT gt;=96 X 10â€”16 erg, whereas the minimum of V(r) isâ€”12.6 X 10-16 erg. For T gt; 70Â° therefore inaccuracy in theattractive part of V(r) will not have much influence on the resultingvalue of B. We can conclude only that the Slater-Kirkwoodpotential gives a good value for the atomic diameter of helium. In order to get an idea of the order of magnitude of the differentterms in (77) we have calculated some of them for the Slater-KiRKWOOD

potential for a temperature of 10Â° K. One finds forinstance for one mol of gas cfrr2(l-e-^quot;''')=-48.7 cm a IjiiV jquot; 3



??? dr r^ e-^quot;'quot;!'' = - 0.0536 cm^ a -itznJ P InN link' T' We see therefore that, while the deviation due to E. B. statistics issmall, the other quantum correction is much larger than the classicalvalue itself. b. Behaviour of B at very low temperatures. According to theclassical formula ( 1 ), B will go exponentially to â€” oo when T â€”gt; 0for every potential field V(r) which is somewhere negative. In thequantum theory the situation is not so simple. We shall take T sosmall that in eq. (16) we have to consider only the contribution ofI â€” 0. We can make an estimate for which temperatures this ispermitted. For 1 = 2 the function f{r) for the Slater-Kirkwoodpotential has a maximum of 0.189 ?‚â€”2 for r = 4.6 A. When there-fore /co2 lt; 0.189 ?‚-2 the value of Bj, cant and all B,,eonf. with I gt; 2will be small. This value of k^^ corresponds to a temperature of2.28Â° K so that our discussion strictly speaking will be valid only fortemperatures

from about 2Â° downwards. In this region we havetherefore, since hehum is an E. B. gas B = -^-ri-'NP 2nbsp;on,. . . (78) 2 '''nbsp;n We now have to discuss four different cases. 1. Let there be no discrete levels and let the energies of allvirtual levels be large compared with kT. Then in the calculationof Bo cont we can, according to the considerations at the end of Â§ 4and because k^^ is small, replace drjojdk by the constant a. Therefore Inserting the numerical values for helium one finds, for one mol â€ž 69.5 91.6 a ,nbsp;â–  anbsp;(79) S = â€”--^ cm^ ; a in A units . â€? W^) r



??? Eq. (79) represents the beginning of an expansion which can beobtained by inserting in the general eq. (16) for drjjdk its expansionin powers of k, which contains even powers only. The expansionobtained has therefore the form ^ = .....(80) Here the first term, the second virial coefficient of an ideal E. B.gas, is known. The second term depends on the value of a. Theabsolute value of a could in principle be determined experimentallyfrom the cross-section for slow collisions between two helium atomswhich, according to (27) is equal to \6na^, or from the values ofthe coefficients of viscosity and of heat conduction at very lowtemperatures, according to (31) and (32). The existing experimentalmaterial is however not sufficient for this determination. 2.nbsp;In the case when there are discrete levels whose energies inabsolute value are }) kT, and also the energies of the virtual levelsare }}kT, we have only to add their contribution

to the expressionfor B in the foregoing case. Therefore, in addition to theexpansion (80), we have one or more terms which go to â€”oo asâ€” exp{cjT)jT'U for T -gt;Q. 3.nbsp;Let there now be no discrete levels but one virtual level withenergy {{kT. As we saw in Â§ 4, rjo(k) will now increase rapidlyfrom zero to njl in an interval where exp (â€” k^jk^^) is practicallyconstant and then change more slowly. The integral in theexpression (12) for Ba^^ont. will therefore be practically equal tothis increase ofnbsp;or to nil. Therefore In order to calculate the next approximation, which depends on theratio of the energy of the virtual level to kT, one would have toknow more precisely the shape oi rig{k). 4.nbsp;When there is a discrete level whose energy in absolutevalue is {{kT and the energies of all virtual levels are )) kT, then10 W will decrease rapidly from 0 to â€”njl (or from n to njl).Therefore Bo, coâ€žf. will be the negative of the Bo,

cont. in case 3. In thecontribution from the discrete level we can replace the exponential



??? by unity and we then find that B is again given by (81). It istherefore not possible by using this first approximation to decideexperimentally between the cases 3 and 4. The theoretical calculations of the VAN der Waals forces forhelium (see Ch. I, Â§ 2) all exclude the cases 1 and2.The expressionsof Slater and Kirkwood, Maroenau, and Page all predict theexistence of a discrete level of about 0.5 X 10â€”16 erg, correspondingto a temperature of some tenths of a degree. On the other hand theattraction deduced by london from the dispersion curve of heliumis smaller and probably gives rise to a virtual level close to zero. The experimental values of B for helium are also decidedly infavour of case 3 or 4, i.e. they make it probable that there exists adiscrete or virtual level close to zero. If this were not the case, Bwould be determined by (79)*) with a ((2 for sufficiently lowtemperatures. Let us take for instance a = 1 A. Then for T =

3Â° weget B = â€” 43.9 cm^/mol, whereas from (81) one would obtainB = â€”120.3. The experimental values of Keesom and Kraak 34)are â€”117.2; â€”96.5; â€”74.7 for 7 = 2.58Â°; 3.09Â°; 4.22Â°. It is clearthat these values agree better with (81) than with (79). The case of a large discrete level can safely be ruled out.



??? NOTES.1. Calculation of the Slater sum for a onedimensional free particle. A formal derivation of eq. (11,20) is obtained by applyingPoisson's summation formula 35) to (II, 19), which gives S(x) = -j- 2 enbsp;2 e ^ ^^ ^ v = â€”CPnbsp;^ r = â€”00 This formula shows directly that S(x)nbsp;â€” x) and that (II, 20) is the first approximation of (II, 19) for small 2/L. 2. Elimination of z between the equations (III, a) and (III, 6). The problem is the following: When the equations ....... and ^ = .......(2) are given, to find the function y{x) in the form of a power series.This problem can be solved by using the following theorem, whichis a simple specialization of the theorem of LagrANGE36): When ?’ (f) is analytic within and on a contour C which surroundsthe origin, and the value of z is so chosen that on C i^mKifi........(3) then the equation x=zf(x) ........(4)



??? Conversely, when (5) is given, the expression of z in x is, for valuesof z which fulfil (3), given by (4). Now (1) can be put in the form (5) by introducing a functionin such a way that l^bi is the coefficient of in the expansionof exp (llt;p{^)), or has one solution within C, namely â–  Jn-l i=o 00 2quot;n=i nl 1 Pb,= (Z-1)/ Introducing (6) into (1) we find d^ CO r' e'f(^) 1 f=0 from which, by comparison with (5) and (4) follows ..... Introducing this in (2), we find y znbsp;Xnbsp;X =J^jdz= jquot;e?Wci(xe-fW)=x- J^xlt;p'(x)dx. 0 0 0 which is identical with equation (III, 19) of the text. 3. Calculation of bi for the ideal E. B. gas. (6) (7) (8)(9) f=0 We must calculate the following integral (1) where nj = | r, â€” r^ [ and the integral has to be extended over allpossible values of the variables. Consider first the integral dr, dr,. . .drie



??? Take the coordinates of the first particle as origin and the directionfrom the first to the second particle as x-direction, then 00 J=JJJdx2dy2dz2 e-Â?^^'-'^('â€?uâ€” â€? (3) Â?/S 71 ,--r-13 e Â? Now we can calculate I by successively integrating over r2, r^, etc.,always using (3). In this way we obtain gt; â€? (4) y 2 â€? 3 â€?â€?â€? / - n which is the result used in the text. 4. Calculation ofnbsp;in the first W.K.B. approximation. a. First let /(r) be monotonic, then cil, cont. - til ---1 â€? 71 rnbsp;Inbsp;r' / 1-nbsp;^ ^ â–  quot;nbsp;'â€?o where ro(/c) is the root of k'-f{r) = 0. It is not permissible simply to interchange the integrations over rand k. One has instead to proceed in the following way. Fix a valueof r which is so large that [{r) is practically equal to Z(Z l)/r2for rgt;R, or



??? By doing this we have divided the integration region into three parts (fig. 6). We shall calculate the integrals over these partsseparately in the limit R-^ co. The contribution of part 1 is dr _nbsp;Rnbsp;on Rko I/: 0 f(r) 00 _ ] r r - ( 1^1(1 I) -J 0nbsp;fM where x = k^. The contribution of part II is -1 Vk'-m Now To is so large for klt;k{R) that we may replace f(r) by r (2) V



??? Z(Z l)/r2. The integral over r is just r^ so that the contribution ofthis part vanishes 1). Finally, the integral over part III is 00 \ ( dknbsp;fdr I â€”__- 1 Jnbsp;Jnbsp;J m)nbsp;R We can again replace ?’ (r) by 1(1 1 )/r2 and perform the integrationover r. We get then Jnbsp;k'R k\yk'R'-l(l \) k(R) (3) , /--rnbsp;______/ JJnbsp;\ [ Adding (2) and (3) we obtain eq. (57) of the text. b. For 1 = 0 the calculation is simpler. We may perform theintegration over r to a large value R and then let R go to infinity.A calculation, similar to the derivation of (2) gives 1= Lim R-^ cc 'o(O)nbsp;CO 0nbsp;fir) I r . r equot;'/*Â?' dx ro(0) 0nbsp;- This is identical with eq. (58) of the text. 5. Calculation ofnbsp;in the second W.K.B. approximation. Before calculating B^fl^^^ we shall computenbsp;according to eq. (66) of the text for the case of a free particle. We have then 1nbsp; Tiiis result is obvious since drjWIdk vanishes for a free particle.



??? Putting 1(1 1 )/r2 = t2 one obtains t* 1 dt (k^-i^f 0 8 (//(/ 1) According to the definition of the principal value of an integral wemust integrate (2) partially till the resulting integral becomesconvergent and drop the infinite parts of the integrated terms. Weobtain then, because the finite parts of the integrated terms are allzero rjf (k) = - dt 1 (3) as stated in the footnote of p. 73. We shall now calculate fiÂŽ , for the case of a monotonie f(r). I, con t Then â€?'2 0(2) _Rlt;2)_ .... (4) 1= dkke-'W drjr-. (k'-fV^ We shall again divide the integration region into three parts as inthe foregoing note, so that ?’=?’, ?’â€ž ?’â€ž, with .h â– '2 f (k'-ffl' k{R)k{R) f'2 Ijj:= j dkke-'^-'l'quot;' dr â€?'2 f (P-fyi.- k{R]



??? First we remark that lu is zero. For here we may replace f(r) by/( / 1 )/r2and therefore the integral overr is proportional todrjf) jdkfor a free particle which, according to (3), is zero. By successivepartial integration and by dropping the infinite terms we can writeIl in the form fquot;{R) 5 \k'-f(RWI' 15 t'{R)\k'-f{R)ri'^ A fo^ _ rw\ 1 _ isy^fiR)' riRyjik'-mr'^ fnbsp;ffquot;quot; 4fquot;'fquot; 3fquot;'y 15 J{k'-fy\r' r^ 00 Ii= Jdkke-'^'l'quot;^- k(R) r(R) (5) Here the first two terms would give infinite results. They canhowever be compensated by Iju which after two partial integrationscan be brought into the form r (R) f'iR) I,11 = gt;(6) k{r) Cquot;2 r dr 15 u R By adding // and Iju and substituting 1(1 1)1 r^ for f(r) whenr^R we obtain ?’=// ?’/;/= I d/c/te-W yn' i)iR 00 '=?’ 4R 5l(l l)\Xk'-l{l l)IR' CO 1 _^_ 1 (7) 8 r dr ffquot; 15 J {k'-fY'\fquot; Afquot;'fquot; 3f â– //3 f'3 â– M f



??? For the first term of (7) one finds easily 5l(l \)nbsp;â–  â–  â–  On carrying through the integration over r the second term becomes 4 r dk e-^W B = 5Rnbsp;k y ni i)iR In order to calculate this we differentiate with respect to kg: dB 8 fnbsp;e-'-ZV _ ionbsp;f 5R J x'^nbsp;5|//(/ l) ' 0 / In the last term of (7) we may interchange the integrations and obtain then, after performing the integration over k R ,â€”nbsp;/nbsp;,, tnbsp;A f^f gt; f filnbsp;/â€?//^ \ 4/c ly-J quot;Hrâ€”r0 By partial integration this becomes â€” â€” / \ _ ^ f dre-f/^Â?'^ ( - Q ). (10)sni i)nbsp;15 ^oJnbsp;vf rv Addition of (8), (9) and (10) gives /cm fquot;2\ r_ 271nbsp;A\/71 r 5i//(/ f) 15/coJquot;'^ vr rv



??? By partial integration of the first term of the integral this can bewritten as 5|//(/ l) 15 V Jnbsp;I ... \ii) From (4) and (11) we immediately obtain eq. (69) of the text byinserting the expression (35), (50) for f{r) and by replacing thefirst term of (11) by the negative of the second term withf(r)==/(/ l)/r2. We shall not give here the calculation for a non-monotonic f(r)since it presents no special difficulties. iikik
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??? Bij geschikte ontladingen in moleculaire gassen kan men uit deoptische bepaling van de rotatie-energieverdeling van het molecuulen van het molecuulion besluiten of de ionen hoofdzakelijk in aan-geslagen dan wel in de grondtoestand gevormd worden.
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