Universiteit Utrecht

https://hdl.handle.net/1874/344715

A.gw. 192, 1939.

echt

DE KRISTALSTRUCTUUR VAN KWIKCHLORIDE EN KWIKCHLOROBROMIDE

W. SCHOLTEN

DE KRISTALSTRUCTUUR VAN KWIKCHLORIDE EN KWIKCHLOROBROMIDE

DE KRISTALSTRUCTUUR VAN KWIKCHLORIDE EN KWIKCHLOROBROMIDE

PROEFSCHRIFT

TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN DE WIS- EN NATUURKUNDE AAN DE RIJKSUNIVERSITEIT TE UTRECHT, OP GEZAG VAN DEN RECTOR-MAGNIFICUS, DR. F. H. QUIX, HOOGLEERAAR IN DE FACUL-TEIT DER GENEESKUNDE, TE VERDEDIGEN VOOR DE FACULTEIT DER WIS- EN NATUUR-KUNDE OP MAANDAG 18 DECEMBER 1939, DES NAMIDDAGS TE 4 UUR PRECIES

DOOR

WILLEM SCHOLTEN

GEBOREN TE AMSTERDAM

AMSTERDAM — 1939 N.V. NOORD-HOLLANDSCHE UITGEVERS MAATSCHAPPIJ

Aan mijn Ouders. Aan mijn Vrouw.

Denn aus der Kräfte schön vereintem Streben Erhebt sich wirkend erst das wahre Leben. SCHILLER.

Bij het verschijnen van dit proefschrift gevoel ik mij gedrongen mijn dank te betuigen aan allen, die tot mijn wetenschappelijke vorming hebben bijgedragen.

In het bijzonder geldt dit U, Hooggeleerde BIJVOET, Hooggeschatte Promotor. Voor Uw nimmer falende belangstelling en welwillende hulp bij de bewerking van dit proefschrift ben ik U grooten dank verschuldigd. Ik acht het een voorrecht mij Uw leerling te mogen noemen.

INHOUD

		DIZ.
EERSTE GED	EELTE. Algemeene Beschouwingen.	
Hoofdstuk 1.	Doel van het onderzoek	1
Hoofdstuk 2.	De structuur der kwikhalogeniden, in het bijzonder die van kwikchloride	6
HOOFDSTUK 3.	Het systeem $HgCl_2-HgBr_2$	11
HOOFDSTUK 4.	De bouw van de a- en $\beta\text{-mengkristallen}$	16
TWEEDE GE	DEELTE. Bepaling der kristalstructuur van kwikchloride (Hg Cl_2).	
HOOFDSTUK 5.	Bepaling der kristalstructuur van kwikchloride $(HgCl_2)$	19
DERDE GEDI	EELTE. Bepaling der kristalstructuren in het systeem $HgCl_2-HgBr_2$.	
Hoofdstuk 6.	De kristalstructuur der a-mengkristallen	56
HOOFDSTUK 7.	De kristalstructuur der β -mengkristallen	63

EERSTE GEDEELTE. ALGEMEENE BESCHOUWINGEN. HOOFDSTUK 1.

Doel van het onderzoek.

Dit onderzoek is een deel van een reeks structuurbepalingen, welke in het kristallografisch laboratorium te Amsterdam werden uitgevoerd, waarbij de anorganische verbindingen van de algemeene formule AX_2 (waarin A een tweewaardig kation en X een halogeen is) nader onderzocht werden.

Het doel dezer onderzoekingen is het verkrijgen van een overzicht over de verschillende hier optredende structuurtypen en een inzicht in de voorwaarden waaronder bepaalde structuurtypen tot stand komen.

De hoofdtypen der verbindingen AX_2 werden reeds door V. M. GOLDSCHMIDT¹) geordend (zie fig. 1).

Zij vormen een der fraaiste voorbeelden van de door V. M.

Fig. 1.

¹) GOLDSCHMIDT, V. M., Geochemische Verteilungsgesetze, speciaal No. 8 (1926) pag. 101 vlg. Zie voorts: A. E. VAN ARKEL en J. H. DE BOER: Chemische Binding als Electrostatisch Verschijnsel (Amsterdam, 1930).

GOLDSCHMIDT geformuleerde hoofdwet der kristalchemie: "De kristalstructuur van een stof wordt bepaald door de verhouding der hoeveelheden, de verhouding der grootten en de polarisatie-eigenschappen van zijn bestanddeelen" 1).

Bij de verbindingen van de reeks AX_2 is de eerste factor constant, zoodat de structuur bepaald wordt door de verhouding der grootten en de polarisatie-eigenschappen.

De halogeniden en hydroxyden AX_2 blijken in hoofdzaak tot 4 structuurtypen te behooren (zie fig. 2).

Dit zijn:

- 1º. de fluorietstructuur, voorkomend bij de fluoriden met groote kationen en bij chloriden met zeer groote kationen (SrCl₂), een omringingsstructuur met coördinatie 8 en 4,
- 20. de rutielstructuur, voorkomend bij fluoriden met kleinere kationen, een omringingsstructuur met coördinatie 6 en 3,
- 30. de cadmiumchloridestructuur en
- 40. de loodjodidestructuur, beide lagenroosters, doch verschillend in de stapeling der lagen. De CdCl₂-structuur komt hoofdzakelijk voor bij de chloriden met niet te groote kationen, de PbJ₂-structuur overheerscht bij de bromiden, jodiden en hydroxyden. In beide structuren is het kation door 6 anionen omringd.

Men vindt het schema van fig. 2 en zijn begrenzingen uitvoerig besproken in de dissertatie van W. NIEUWENKAMP²).

In het kristallografisch laboratorium te Amsterdam zijn nu in hoofdzaak die verbindingen onderzocht welker structuren hetzij overgangen tusschen twee der bovengenoemde hoofdtypen vormen, hetzij aan de grens van deze hoofdtypen liggen.

Zoo heeft $CaCl_2$, gelegen op de grens van fluoriet-, rutiel- en $CdCl_2$ -structuur een gedeformeerde rutielstructuur ³) ⁴).

¹) Door A. E. VAN ARKEL werd reeds eerder op het verband tusschen de kristalstructuur, de grootte der ionen en de polariseerbaarheid gewezen (Physica 4 (1924) 286-301).

²⁾ NIEUWENKAMP, W., Dissertatie, Amsterdam 1932.

³) NIEUWENKAMP, W., en VAN BEVER, A. K., Z. Kristallogr. A. 90 (1935) 374-376.

⁴) Volgens W. DÖLL en W. KLEMM zou ook CaBr₂ een dergelijke structuur bezitten. Zie: Z. Anorg, Allg. Chemie 241 (1939) 239-58.

			unionide	grootre a	or marror	icili	H		and the second s
Kation		F	Cl	•	Br		J		ОН
Ra	CaF ₂								
Ba	CaF ₂								
Pb	CaF ₂	PbCl ₂	PbCl ₂	lid'e	PbCl ₂		PbJ ₂		
Eu	CaF ₂								
Sr	$Ca F_2$		CaF ₂						14
Yb	ī						PbJ ₂		
Ca	CaF ₂		TiO ₂ ¹)			CdJ_2	PbJ ₂	PbJ ₂	
Cd	CaF ₂		CdCl ₂	CdCl ₂	W ²)	CdJ ₂	PbJ ₂	PbJ ₂	
Cu	CaF ₂								
Ge							PbJ ₂		
Mn	TiO ₂		CdCl ₂		PbJ_2		PbJ ₂	PbJ ₂	
Fe	TiO ₂		CdCl ₂		PbJ ₂		PbJ ₂	PbJ ₂	
Zn	TiO ₂		CdCl ₂				PbJ ₂		$Zn(OH)_2$
Co	TiO ₂		CdCl ₂	1. 	PbJ ₂		PbJ ₂	PbJ ₂	
Ni	TiO ₂		CdCl ₂	$CdCl_2$	W ²)	CdCl ₂		PbJ ₂	
Mg	TiO ₂		CdCl ₂		PbJ ₂	CdJ ₂	PbJ ₂	PbJ ₂	
Pd	TiO ₂		PdCl ₂				1		
Be	SiO ₂ 1)								

Fig. 2. Structuurschema der Dihalogeniden en Dihydroxyden, gerangschikt naar afnemende grootte der kationen.

De overgang tusschen $CdCl_{2}$ - en de PbJ_{2} -structuur is bijzonder interessant bij de cadmiumhalogeniden. Beide structuren zijn opgebouwd uit hexagonale lagen X-A-X; in de $CdCl_{2}$ -structuur liggen de kationen van de volgende laag recht boven de holten tusschen drie kationen van de vorige laag, terwijl in de PbJ_{2} -structuur de

- ¹) gedeformeerd.
- ²) W = Wisselstructuur.

kationen van de volgende laag recht boven de kationen van de vorige laag liggen. Dientengevolge bevat de elementaircel bij CdCl. drie lagen, bij PbJ2 slechts één. In energetisch opzicht is de eerste structuur voordeeliger wat de Coulomb'sche aantrekking en afstooting betreft; daarentegen is de tweede structuur, zooals uit berekeningen van NIEUWENKAMP 1) bleek, voordeeliger wat de polarisatieenergie betreft. Dit verklaart het optreden van de laatste bij de sterker polariseerbare anionen.

Cadmiumbromide²) nu heeft behalve een modificatie welke de gewone CdCl₂-structuur vertoont, nog een tweede modificatie, welke bestaat uit een onregelmatige afwisseling van korte stukjes CdClaen PbJo-structuur. De energetische voorkeur voor één dezer stapelingen blijkt hier dus zeer gering. - Een dergelijke wisselstructuur vindt men ook bij nikkelbromide 3) ---. Cadmiumjodide vertoont behalve de éénlagige PbJ2-structuur, nog een structuur 4), die opgebouwd is uit twee lagen. Daarbij liggen de kationen van de tweede laag als bij CdCl2 boven de holten van de eerste laag; de kationen van de derde laag liggen echter niet zooals bij CdCl, boven de holten van de tweede laag èn die van de eerste laag, doch recht boven de kationen van de eerste laag. Ook deze structuur vormt dus weer een duidelijken overgang tusschen de CdCl2- en de PbJ2-structuur. - Deze tweelagen structuur komt ook voor bij calciumjodide en magnesiumjodide 5) -...

Gaat men bij de chloriden en bromiden over naar grootere kationen, dan vindt men geheel nieuwe structuren. Zoo treedt bij loodchloride en loodbromide 6) een onregelmatige omringing van het kation met 9 anionen op (waarvan twee op grooter afstand), welke verklaard kan worden uit de tamelijk groote polariseerbaarheid van het loodion. Het dimorfe loodfluoride vertoont zoowel deze structuur als de fluorietstructuur 7); een verwante omringing van het

- HASSEL, O., Z. Physikal. Chemie B 22 (1933) 333. BLUM, H., Z. Physikal. Chemie B 22 (1933) 298. 5)
- 6)
- NIEUWENKAMP, W., en BIJVOET, J. M., Z. Kristallogr. 84 (1932) 49. 7)

¹⁾ NIEUWENKAMP, W., Dissertatie, Amsterdam 1932.

²⁾ BIJVOET, J. M., en NIEUWENKAMP, W., Z. Kristallogr. 86 (1933) 466.

³⁾ KETELAAR, J. A. A., Z. Kristallogr. 88 (1934) 26.

⁴⁾ ARNFELT, H., Arkiv Mat. Astron. Fysik 23 B (1932) No. 2;

KETELAAR, J. A. A., Z. Kristallogr. 84 (1932) 62: SCHUMANN, H., Centr. Mineral. Geol. 1933 A. 122.

kation met 9 anionen vindt men bij een der modificaties van het strontiumbromide 1) 2).

Terwijl het grondschema van de dihalogeniden in zijn vier hoofdtypen — omringingsstructuren met coördinatie 8:4 en 6:3, lagenstructuren met perioden van 3 lagen, resp. 1 laag — zeer overzichtelijk is, blijkt derhalve nog een groote verscheidenheid van overgangsstructuren met beperkter existentiegebied te bestaan. Het doel van dit proefschrift was (1934) het schema aan te vullen met de structuur van HgCl₂ (zie hoofdstuk 2 en 5); later is hieraan toegevoegd het röntgenonderzoek van het systeem HgCl₂–HgBr₂ (zie hoofdstuk 3) en de structuurbepaling van het nieuwe roostertype, dat hier in de buurt van de samenstelling HgClBr blijkt op te treden (zie hoofdstuk 4 en 7).

¹) KAMERMANS, Z. Kristallogr. A 101 (1939) 406/11.

²) Volgens W. DÖLL en W. KLEMM zou de loodchloridestructuur ook voorkomen bij BaCl₂, BaBr₂, BaJ₂, EuCl₂ en SmCl₂ en de strontiumbromidestructuur bij EuBr₂ en SmBr₂; hun gevolgtrekkingen zijn echter uitsluitend gebaseerd op de analogie der poederdiagrammen. Zie: Z. Anorg. Allg. Chemie 241 (1939) 239/58.

HOOFDSTUK 2.

De structuur der kwikhalogeniden, in het bijzonder die van kwikchloride.

Wat is de plaats der kwikhalogeniden in het bovenomschreven schema der verbindingen AX2? Kwikfluoride vertoont de fluorietstructuur 1), waarin het kwikion een straal van 1.08 Å heeft. Kwikjodide (d.w.z. de roode modificatie) aan den anderen kant van de reeks heeft een uitgesproken lagenstructuur 2), waarin de afstand Hg-J slechts 2.75 Å bedraagt (de straal van het J-ion is 2.2 Å). Deze lagenstructuur is van een ander type dan de overigens zooveel voorkomende cadmiumchloride en cadmiumjodidestructuren daar tengevolge van den kleinen straal het kwikatoom zich slechts met vier anionen omringen kan. Bij de structuren van het bromide 3) en het chloride 4) treedt nu een nieuw verschijnsel op: tengevolge van de sterk polariseerende werking van het diep in de electronensfeer der anionen dringende kwikion worden hier molecuulstructuren gevormd. In deze structuren vindt men in de naaste omgeving van een kwikion slechts twee halogeenionen, de andere halogeenionen bevinden zich op aanzienlijk grooteren afstand. In het rooster onderscheidt men duidelijk moleculen HgBr2, resp. HgCl2. Deze moleculen zijn bij beide stoffen rechtlijnig gebouwd en liggen bij beide in de vlakken (100) op nagenoeg dezelfde wijze gerangschikt (zie fig. 3).

De opeenvolging dezer vlakken is echter geheel verschillend: in HgBr₂ vormen de moleculen een soort lagenrooster met het kwik in de vlakken $(010)_0$ en $(010)_{\frac{1}{2}}$ ⁵); in HgCl₂ zijn de kwikatomen over de vlakken $(010)_{\frac{1}{8},\frac{3}{8},\frac{5}{8},\frac{2}{8}}$ verdeeld. Dit verklaart het verschil in

1) EBERT, F., en WOITINEK, Z. anorg. Chemie 210 (1933) 269.

⁴) BRAEKKEN, H., en SCHOLTEN, W., Z. Kristallogr. A 89 (1934) 448—455.
⁵) De verticale as van het model van fig. 5c wordt hier de b-as genoemd in

 γ de verdene us van het model van hg. 5c wordt hier de *b*-as genoemd in overeenstemming met de benaming der assen in HgCl₂.

CLAASSEN, A. F. P. J., BIJVOET, J. M., en KARSSEN, A., Proc. Acad. Amst. 29 (1926) 529.

³) VERWEEL, H. J., en BIJVOET, J. M., Z. Kristallogr. A 77 (1931) 122-139.

splijtbaarheid naar (010): bij $HgBr_2$ volledig, bij $HgCl_2$ onvolledig. Daarentegen splijt $HgCl_2$ goed naar (120) (volgens de nomencla-

Fig. 3. Ligging der moleculen HgCl₂ in het vlak (100)₀ Kleine cirkels: Hg; groote cirkels: Cl.

tuur van GROTH (011)), hetgeen aan het model van de structuur zeer duidelijk te zien is. In fig. 4 ziet men telkens twee opeenvolgende vlakken (120) met chlooratomen bezet; de samenhang tusschen dergelijke met gelijksoortige atomen bezette vlakken is natuurlijk zeer gering.

Deze verschillende stapeling van $HgCl_2$ en $HgBr_2$ vindt wederom haar verklaring in het verschil in polariseerbaarheid tusschen chloor en broom: bij het sterker polariseerbare broom ontstaat een soort lagenrooster (tegelijk moleculerooster), bij het minder polariseerbare chloor komt een meer gelijkmatige verdeeling tot stand (enkel moleculerooster). De modellen der vier kwikhalogeniden vindt men in fig. 5 afgebeeld, terwijl tabel 1 een overzicht van de atoomafstanden geeft.

Fig. 4. Model van HgCl₂ met de vlakken (120) horizontaal.

Fig. 5. De modellen van a: HgF₂, b: HgCl₂, c: HgBr₂, d: HgJ₂ (De schaal is niet voor alle modellen dezelfde).

De afstand Hg–Cl in kwikchloride bedraagt 2.2_5 Å, hetgeen goed overeenkomt met de waarde door BERGMANN en ENGEL 1) uit het dipoolmoment berekend (2.40 Å), terwijl zij nauwkeurig overeenkomt met de waarde, die BRAUNE en KNOKE 2) uit electroneninterferenties voor dampvormig kwikchloride afgeleid hebben (2.20 Å).

¹⁾ BERGMANN en ENGEL, Z. physik, Chem. B 13 (1931) 247-267.

²) BRAUNE, H., en KNOKE, S., Z. physik. Chem. B 23 (1933) 163.

104100-001	1444	inter a	1	1.00
17 2		1.7	D	
1.1.1	B	PS -	100	
1 2 3		1.12	A	

Atoomafstanden in de Mercurihalogeniden (in Å)

Verbinding	Hg — X uit de kristal- structuur	Hg — X uit electronen- interferenties	X — X uit de kristal- structuur	Straal X volgens Goldschmidt	
HgF ₂ HgCl ₂	2.41 2.25	2.20	3.4	1.33 1.81	Straal Hg ⁺⁺ = 1.08
Hg (Cl, Br) ₂	2.44	2 40	3.6	1.96	
HgJ ₂	2.75	2.55	4.2	2.20	1
NH4HgCl3	2.34				*1
K ₂ HgCl ₄ . H ₂ O	2.4				
CsHgCl ₃	2.72				
$Hg (NH_3)_2 Cl_2$	2.86				

De afstanden Hal-Hal zijn bijna gelijk aan den dubbelen ionenstraal; de sterk verkorte afstand Hg-Hal bij de moleculestructuren toont de sterk deformeerende werking van het kwikion.

De coördinatie van de chloorionen om het kwikion is vrij regelmatig; de beide tot het molecule behoorende chloorionen (afstand 2.2_5 Å) vormen met vier andere op een afstand 3.4 Å een zeshoek, terwijl nog twee andere chloorionen op bijna denzelfden afstand (3.5 Å) liggen.

De in de kristalstructuur geconstateerde sterke binding van twee chloorionen aan het kwikion komt in verschillende eigenschappen van het kwikchloride tot uiting. Zij verklaart den bekenden geringen ionisatiegraad van kwikchloride-oplossingen; ook het lage smelten kookpunt is begrijpelijk wanneer men bedenkt dat de binding tusschen de moleculen onderling zwak zal zijn.

Dezelfde moleculen HgCl2 vindt men terug in de structuren van

 $\rm NH_4HgCl_3$ ¹) en K₂HgCl₄. H₂O²), ofschoon de afstand Hg-Cl daar iets grooter is. Daarentegen vindt men bij CsHgCl₃³) een volkomen regelmatige omringing van het kwik met zes chloorionen op grooteren afstand; doorzichtiger is de verbreking van het HgCl₂-verband bij Hg(NH₃)₂Cl₂⁴), waar het kwikion twee sterk polariseerbare NH₃-groepen aan zich heeft getrokken en vier chlooratomen op grooteren afstand liggen (voor de afstanden zie tabel 1).

1) HARMSEN, E. J., Z. Kristallogr. A 100 (1938) 208-211.

2) MAC GILLAVRY, C. H., DE WILDE, J. H., en BIJVOET, J. M., Z. Kristallogr. A 100 (1938) 212-220.

3) NATTA, G., en PASSERINI, L., Gazz. chim. ital. 58 (1928) 472.

4) MAC GILLAVRY, C. H., en BIJVOET, J. M., Z. Kristallogr. A 94 (1936) 231-245.

HOOFDSTUK 3.

Het systeem HgCl₂-HgBr₂.

Nadat vastgesteld was, dat de structuur van het kwikchloride gedeeltelijk overeenkomst, gedeeltelijk verschil vertoont met die van het kwikbromide, scheen het interessant, den overgang van de eene structuur in de andere in het systeem HgCl₂-HgBr₂ te bestudeeren. In het bijzonder rees daarbij de vraag of de in de literatuur somtijds gesignaleerde phase in de buurt van de samenstelling HgClBr bestaat en zoo ja, of zij wellicht een afwijkende structuur bezit, die een overgang vormt tusschen de structuren van HgCl₂ en HgBr₂.

De eerste die zich met het systeem $HgCl_2-HgBr_2$ bezig hield was LUCZIZKI ¹), die het ternaire systeem $HgCl_2-HgBr_2$ -alcohol onderzocht. Ditzelfde systeem werd ook door VAN NEST ²) onderzocht, die tevens het smeltpunt der aldus verkregen kristallen bepaalde. Beiden constateerden zoowel aan den kant van het $HgCl_2$ als aan den kant van het $HgBr_2$ de vorming van mengkristallen. LUCZIZKI meende bovendien dat zich bij 50 % $HgCl_2$ een dubbelzout $HgCl_2$ -HgBr_2 afscheidt; volgens VAN NEST heeft dit dubbelzout de samenstelling $HgCl_2$. 2HgBr_2 en vormt het mengkristallen met $HgCl_2$ en $HgBr_2$, zoodat het gebied van dit type zich uitstrekt van \pm 54 mol % tot \pm 71 mol % $HgBr_2$. (De kristallen zijn volgens VAN NEST rhombisch) (zie fig. 6 en 7).

Door VAN PELT en DE BOER³) werd echter uit alcoholische oplossing slechts één soort mengkristallen gevonden, welker gebied zich van 0 tot \pm 60 mol % HgBr₂ uitstrekt.

Het binaire systeem $HgCl_2$ - $HgBr_2$ werd verder onderzocht door LOSANA⁴). Zoowel aan de zijde van het $HgCl_2$ als aan die van het $HgBr_2$ constateerde hij mengkristallen, welke bij circa 71 mol % $HgBr_2$ en 223° C. een eutecticum vormen. Bovendien constateerde hij bij circa 52 mol % $HgBr_2$ een onregelmatigheid in de smeltlijn,

¹) LUCZIZKI, W. J., zie Z. Kristallogr. 46 (1909) 297.

²) VAN NEST, J. S., Z. Kristallogr. 47 (1910) 263.

³) VAN PELT JR., A. J., en DE BOER, F., Z. physik. Chem. A 170 (1934) 256.

⁴⁾ LOSANA, L., Gazz. chim. ital. 56 (1926) 309-311.

welke hij toeschrijft aan de vorming van een verbinding HgClBr, welke zoowel met HgCl₂ als met HgBr₂ mengkristallen vormt (zie fig. 6). Deze verbinding moet volgens hem instabiel zijn en bij iets lagere temperatuur (221° C. voor de samenstelling HgClBr) ontleden, daar men haar bij gewone temperatuur niet gevonden heeft.

Later heeft STRATTA¹) getracht het bestaan van de verbinding HgClBr röntgenographisch te bevestigen. Hij constateert dat een smelt met 50 mol % HgCl₂ en 50 mol % HgBr₂ een ander poederdiagram vertoont dan een mengsel van HgCl₂ en HgBr₂ en con-

Fig. 6.

a) Het systeem HgCl₂-HgBr₂ volgens VAN NEST (uitgedrukt in gew. %).
 b) Het systeem HgCl₂-HgBr₂ volgens LOSANA (uitgedrukt in gew. %).

cludeert dat hier een verbinding HgClBr aanwezig is. Hij ziet echter geheel over 't hoofd, dat het diagram van de smelt een opvallende gelijkenis vertoont met dat van HgCl₂, zoodat hij klaarblijkelijk niet anders in handen heeft gehad dan de mengkristallen met kwikchloridestructuur (door ons verderop *a*-mengkristallen te noemen), welker existentiegebied zich uitstrekt van 0 tot \pm 50 mol % HgBr₂.

Door ons 2) werd door röntgenographisch onderzoek de aard der

¹⁾ STRATTA, R., Industria chim. 7 (1932) 726-727.

²) Zie MEERMAN, P. G., en SCHOLTEN, W., Rec. Trav. Chim. Pays-Bas 58 (1939) 800-804. Ik wil niet nalaten den heer MEERMAN ook op deze plaats hartelijk dank te zeggen voor zijn hulp bij het vervaardigen der röntgenogrammen en het verrichten van het dilatometrisch onderzoek.

phasen in het geheele systeem $HgCl_2-HgBr_2$ bij gewone temperatuur vastgesteld. Het bleek dat uit de smelt tusschen 0 en \pm 50 mol %

Fig. 7.

Het systeem HgCl₂-HgBr₂ bij 25° C. volgens verschillende onderzoekers. *a* mengkristallen met HgCl₂-structuur (*a*-mengkristallen). β id. met afwijkende structuur (β -mengkristallen). γ id. met HgBr₂-structuur.

HgCl₂ mengkristallen (*a*-modificatie) met de structuur van het HgCl₂ verkregen worden, tusschen \pm 50 mol % en \pm 85 mol % HgBr₂ treden mengkristallen op met een afwijkende structuur (β -modificatie), terwijl boven 85 mol % HgBr₂ de structuur van het HgBr₂ optreedt. Daarbij kon niet met zekerheid uitgemaakt worden of de HgBr₂-structuur enkele procenten HgCl₂ onder mengkristalvorming opneemt.

Bij 25° is de volgorde als volgt: van 0—54 mol % HgBr₂: α -mengkristallen, van 54—56 %: heterogeen mengsel van α - en β -mengkristallen, van 56—60 %: β -mengkristallen, van 60—100 mol % HgBr₂: heterogeen mengsel van β -mengkristallen en HgBr₂ (wellicht ook van 5—0 mol % HgCl₂ mengkristallen met HgBr₂-structuur) (zie fig. 7). Hiermede worden dus de resultaten van VAN NEST (afgezien van kleine wijzigingen in de grenzen der gebieden) bevestigd. De temperaturen van den overgang $a-\beta$ voor verschillende samenstellingen vindt men in fig. 8 weergegeven.

De β -modificatie heeft celdimensies welke zoowel in de a- als in de c-richting vrij aanzienlijk (circa 4 %) verschillen van die van de α -modificatie (alleen de b-richting is gelijk). Dit komt ook duidelijk uit wanneer men een naaldvormig kristal verwarmt onder een binoculairloupe. Bij de omzettingstemperatuur constateert men aan het plotseling kromtrekken van het naaldje de uitzetting van de c-as, welke op de microfoto's van fig. 9 ook zeer duidelijk te zien is.

Desondanks bleek het niet mogelijk de omzetting dilatometrisch te registreeren. Dit vindt zijn oorzaak hierin, dat de wijzigingen van a- en c-as elkaar vrijwel compenseeren. Bij het bepalen van de celdimensies aan één praeparaat (45 mol % HgCl₂) boven en beneden de overgangstemperatuur werd het volgende gevonden:

> a-modificatie: a = 6.21 Å b = 13.11 Å c = 4.24 Å. β - ,, : a = 6.47 Å b = 13.33 Å c = 4.12 Å. Inhoud a-cel = 345 ± 5 Å³. , β -cel = 349 ± 5 Å³.

Binnen de waarnemingsfout komen de inhouden der beide modificaties dus overeen.

 $\begin{array}{ccc} & & & & & & \\ \text{Fig. 9.} & & & & & \\ a\text{-Hg}(\text{Cl},\text{Br})_2 & & & & & & \\ \text{De uitzetting in de richting der c-as is duidelijk te zien.} \end{array}$

We vinden hier in het onderzoek naar de β -modificatie weer eens een voorbeeld, waarin het kristallografisch (röntgenanalytisch) onderzoek de voorkeur blijkt te verdienen boven het dilatometrisch, microscopisch, thermisch of phasentheoretisch onderzoek, ook voor het louter constateeren der nieuwe phase.

2

HOOFDSTUK 4.

De bouw van de a- en β -mengkristallen.

De a-mengkristallen bezitten de structuur van het kwikchloride. De structuur van de β -mengkristallen sluit zich hierbij ten nauwste aan; zij kan uit de kwikchloridestructuur afgeleid worden door een lichte kanteling van de moleculen om het eene halogeenatoom als draaipunt. De moleculen, welke evenals bij HgCl₂ rechtlijnig zijn, vormen dan een hoek van 18° met het (100)-vlak (bij HgCl₂ liggen zij in dit vlak). De coördinatie van de chlooratomen om het kwikatoom is nagenoeg gelijk aan die bij het kwikchloride (zie fig. 10 en 11).

Projectie van HgCl2 langs de c-as.

Fig. 10.

Projectie van β -HgClBr de c-as. De Cl-atomen 1 blijven op hun plaats.

De vraag rijst nu hoe de verdeeling van het chloor en het broom zoowel in de a- als in de β -mengkristallen is. In beide structuren

Fig. 11. Model van β -Hg(Cl,Br)₂.

bevat de elementaircel vier moleculen en bezetten de acht halogeenatomen twee viertallige posities (I en II). Men heeft dan drie mogelijkheden:

a: al het chloor in pos. I, al het broom in pos. II,

b: ,, ,, broom ,, ,, I, ,, ,, chloor ,, ,, II,

c: chloor en broom willekeurig over de posities I en II verdeeld. De berekeningen (vergl. het 3de gedeelte) toonden aan dat geval c, zoowel bij de α - als bij de β -mengkristallen als het waarschijnlijkste moet worden beschouwd. Geval c omvat echter weer drie mogelijkheden, welke röntgenographisch niet van elkaar te onderscheiden zijn:

c1: het kristal bevat uitsluitend moleculen HgCl₂ en moleculen HgBr₂, welke op willekeurige wijze dooreen liggen;

c2: het kristal bevat uitsluitend moleculen HgClBr, waarbij chloor en broom willekeurig over de posities I en II verdeeld zijn; c3: het kristal bevat zoowel moleculen HgClBr als moleculen HgCl₂ en HgBr₂, m.a.w. het chloor en broom zijn op willekeurige wijze over de beschikbare plaatsen verdeeld.

Het Ramanonderzoek van de mengsels van kwikchloride en kwikbromide ¹) heeft nu aangetoond, dat de verdeeling c3 als de waarschijnlijkste beschouwd moet worden. Bij de mengsels treden zoowel in oplossing als in vasten toestand nieuwe Ramanlijnen op, die aan het HgClBr worden toegeschreven; de lijnen van het HgCl₂ en HgBr₂ verdwijnen echter ook in mengsels met 50 mol % HgCl₂ niet.

De oude strijdvraag naar het bestaan van een verbinding HgClBr kan derhalve zóó beantwoord worden: In de buurt van de samenstelling HgClBr ontstaat een nieuw roostertype, dat slechts stabiel is wanneer het meer broom bevat dan met de samenstelling HgClBr overeenkomt; in dit roostertype komen zoowel moleculen HgClBr als moleculen HgCl₂ en HgBr₂ voor.

¹) DELWAULLE, Mile., Comptes rendus Acad. Sciences, Paris 206 (1938) 1965–1967.

TWEEDE GEDEELTE. HOOFDSTUK 5.

Bepaling der kristalstructuur van kwikchloride (HgCl₂).

§ 1. Bekende gegevens.

Kwikchloride kristalliseert volgens GROTH rhombisch-bipyramidaal. Door BRAEKKEN en HARANG¹) waren reeds eerder de afmetingen van de elementaircel alsmede de ruimtegroep bepaald.

§ 2. Afmetingen der elementaircel.

Uit draaidiagrammen werden de volgende identiteitsperioden afgeleid:

100]	5,96	Å			
[010]	12,77				
[001]	4,32				
[101]	7,36	,,	7,37	Å)	
[210]	17,52		17,47		berekend uit de eerste drie.
[212]	19,55	**	19,55)	

Een tijdens dit onderzoek door BRAEKKEN²) uitgevoerde nauwkeurige bepaling van de afmetingen der elementaircel had tot resultaat:

a =	5,963	\pm	0,005	Å
<i>b</i> =	12,735	<u>+</u>	0,005	Å
c =	4,325	<u>+</u>	0,005	Å

waaruit volgt:

```
a:b:c=0,4682:1:0,3395
```

terwijl volgens GROTH:

$$a:b:c=0.4674:1:0.3391.$$

De formule, waarmede de reflecties geïndiceerd werden, luidt: $10^3 \sin^2 \vartheta = 14.42 \ h^2 + 3.161 \ k^2 + 27.42 \ l^2.$

¹⁾ BRAEKKEN, H., en HARANG, L., Z. Kristallogr. A 68 (1928) 132.

²) Zie BRAEKKEN, H., en SCHOLTEN, W., Z. Kristallogr. A 89 (1934) 448 -455.

§ 3. Aantal moleculen per elementaircel.

De dichtheid van HgCl₂ bedraagt 5.4, het gewicht van de elementaircel 1733×10^{-24} gram en het aantal moleculen (het gewicht van het HgCl₂-molecule is $271.5 \times 1.65 \times 10^{-24} = 448 \times 10^{-24}$ gram) per cel is 3.87. In de elementaircel moeten dus 4 moleculen ondergebracht worden. De röntgenographisch gevonden dichtheid is 5.58.

§ 4. Vaststellen van de ruimtegroep.

Uit de tabellen 4 t/m. 7 blijkt de indiceering der draaidiagrammen om de assen [001] [210] [010] en [100]. Het blijkt dat de volgende systematische uitdoovingen optreden:

(hol) uitgedoofd wanneer h + l = 2n + 1

$$(ko)$$
 ,, $k = 2n + 1.$

Pinakoidvlakken komen derhalve slechts in oneven ordes voor. Deze uitdoovingen wijzen, in verband met de bipyramidale symmetrie, op de ruimtegroep Pmnb (V_{h}^{16}).

Teneinde de ruimtegroep met zekerheid vast te leggen werden alle in aanmerking komende ruimtegroepen systematisch onderzocht.

Daarbij bleek dat behalve in V_h^{16} ook in $C_{2\nu}^2$, $C_{2\nu}^7$, $C_{2\nu}^9$ en V^4 een structuur gevonden kan worden, welke de waargenomen intensiteitsverhoudingen goed weergeeft. Deze structuren leiden echter alle tot dezelfde ruimtelijke rangschikking der atomen, zoodat in het vervolg alleen met V_h^{16} als de waarschijnlijkste ruimtegroep rekening zal worden gehouden.

§ 5. Bepaling der coördinaten.

a) De coördinaten der Hg-atomen.

Aangezien het verstrooiend vermogen van het kwik circa $6 \times zoo$ groot is als dat van het chloor, kan de bijdrage van het chloor in eerste instantie verwaarloosd worden.

Het kwik kan alleen de 4-tallige coördinatencombinatie:

bezetten, met den structuurfactor:

 $S = F_{hkl} \cos 2\pi \left\{ \frac{1}{4} \left(h_1 + h_3 \right) + uh_2 \right\} \cos 2\pi \left\{ \frac{1}{4} \left(h_2 + h_3 \right) + vh_3 \right\}.$

De parameter u. De reflecties:

(020)	(220)	(420)	(620)
(060)	(260)	(460)	(660)
(0.10.0)	(2.10.0)	(4.10.0)	
(0.14.0)	(2.14.0)		

zijn geen van allen gevonden, terwijl

(040)	(240)	(440)	(640)	\sim	ms
(080)	(280)	(480)	(680)	\sim	zs
(0.12.0)	(2.12.0)			~	zm

Hieruit volgt:

$$u = \pm \frac{1}{8}, \pm \frac{3}{8}.$$

Deze waarde moet vrij nauwkeurig zijn, aangezien zelfs (0.14.0) nog geen merkbare intensiteit bezit.

De parameter v. De reflecties:

(002)	(202)	(402)	(602)	\sim	ms
(004)	(204)	(404)		\sim	0-zz
(101)	(301)	(501)	(701)	\sim	zz-z
(103)	(303)	(503)		\sim	S

Hieruit volgt:

cos	$2\pi 2v$	\sim	ms	$v = 0 - \frac{1}{12}, \frac{5}{12} - \frac{1}{2}$
cos	$2\pi 4v$	~	0	$v \sim \pm \frac{1}{16}, \pm \frac{3}{16}, \pm \frac{5}{16}, \pm \frac{7}{16}$
sin	2πυ	~	0	$v \sim 0, \frac{1}{2}$
sin	$2\pi 3v$	\sim	S	$v \sim \pm \frac{1}{12}, \pm \frac{3}{12}, \pm \frac{5}{12}$

Derhalve:

$$v\sim\pm\tfrac{1}{16},\pm\tfrac{7}{16}.$$

De verschillende combinaties van u en v leiden tot dezelfde ruimtelijke verdeeling der kwikatomen.

Wij schrijven:

$$u = \frac{3}{8}$$
 $v = \frac{1}{16}$

Deze ligging der kwikatomen wordt bevestigd door het draaidiagram om de as [212]. Hierop zijn de aequator, de 4de en de 8ste zone sterk, de 1ste, 3de, 5de, 7de en 9de zone zwak, terwijl
de 2de, 4de en 6de zone ontbreken. De kwikatomen moeten derhalve op de as [212] op elkaar volgen in afstanden 0, $\frac{1}{4}$, 1, $\frac{5}{4}$ etc., hetgeen ook uit de gevonden ligging volgt.

b) De coördinaten der Cl-atomen.

De chlooratomen kunnen twee viertallige combinaties:

of één achttallige combinatie:

Nu is gebleken (men ziet dit het beste bij vergelijking van den aequator en de tweede zone op het draaidiagram om de [100]-as (tabel 2)), dat algemeen geldt:

$$I(hkl) = I(h+2, kl).$$

Derhalve zou $x \sim 0$ moeten zijn; aangezien bij de achttallige combinatie twee chlooratomen in x y z en $\overline{x} y z$ moeten liggen en dus ongeveer zouden samenvallen, is deze combinatie uitgesloten. De chlooratomen liggen dus evenals de kwikatomen in de spiegelvlakken en bezetten daarin twee viertallige combinaties.

De parameters u. In de reeks (040) (080) (0.12.0) valt de groote intensiteit van (080) tegenover (040) en (0.12.0) op. Dit verschil kan slechts ontstaan doordat het chloor bij (080) met het kwik samenwerkt, doch bij (040) en (0.12.0) het kwik tegenwerkt. Dit vereischt dat althans de helft van het chloor een u-parameter heeft die $\frac{1}{8}$ van dien van het kwik verschilt; de intensiteitsverhoudingen maken het echter waarschijnlijk dat dit met beide chlooratomen het geval is, zoodat $u_{\rm Cl_1} = \frac{1}{2}$ en $u_{\rm Cl_2} = \frac{1}{4}$ zou moeten zijn.

De bepaling der *v*-parameters is niet zoo eenvoudig. Op grond van de intensiteitsverhoudingen alleen is geen doeltreffende keuze te maken, daar de bijdrage van het chloor tot de intensiteit van een reflex verder nergens zoo in het oog springt als bij (040) en (080). Men moet dus ruimtelijke overwegingen te hulp roepen. In een ionenrooster zou de afstand Hg-Cl ongeveer 2.9 Å moeten bedragen, de afstand Cl-Cl circa 3.6 Å. Met deze afstanden blijkt

TABEL 2.

Vergelijking van aequator en tweede zone van het draaidiagram om de as [100].

A	Aequator Tweede		eede zone	A	equator	Twe	Tweede zoneReflexIntensiteit282m.10.0		
Reflex	Intensiteit	Reflex	Intensiteit	Reflex	Intensiteit	Reflex	Intensiteit		
011	ms	211	S	082	zm	282	m		
021	z	221	zm	0.10.0		2.10.0			
040	z—zm	240	m	053	z	253	z		
031	ms	231	s	0.10.1	zz	2.10.1	zz		
041		241	ZZ	063	ms	263	s		
051	3	251	ms	092		2 92			
002	{ s	202	2	073	zm	273	ms		
012)	212	§ ms	0.11.1	zm	2.11.1	ms		
060		260		0.10.2		2.10.2	×		
02 2	zz	222	zz	004	2	204	1		
032	2	232	ms	014	5 2111	214	§ mis		
061	5 m	261	z	083		283			
042	ZS	242	zs	024		224			
071	zm	271	m	0.12.0	zz-z	2.12.0	zm		
052	zm	252	m	034	zm	234	ms		
080	m	280	ms	0.12.1		2.12.1			
062	N	262		044	2	244	2		
081		281		0.11.2	5 -	2.11.2	5 210		
013	zm	213	m	093	zz	293			
023	m—ms	223	ms	054	zm	254	zm		
072	zz	272	zz—z	064	zz	264	z		
033	ZZ	233	z	0.13.1) i i	2.13.1			
091	zm	291	m	0.10.3	ms—s	2.10.3	S		
043	9	243		0.12.2)	2.12.2			

het echter niet mogelijk, de Cl-atomen in de elementaircel te plaatsen (zie fig. 12).

Fig. 12.

Bepaling van de positie der Cl⁻⁻-ionen.

De centra der Cl⁻⁻-ionen moeten op 0, ¹/₄, ¹/₂ of ³/₄ der *b*-as liggen; zij mogen echter niet binnen de gearceerde cirkels (met straal 2.9 Å rondom de Hg-atomen) liggen en moeten minstens 3.4 Å van elkaar verwijderd zijn.

Dit wettigt het vermoeden, dat $HgCl_2$, evenals $HgBr_2$, een moleculestructuur zal bezitten. De afstand Hg-Cl in een moleculerooster is moeilijk te voorspellen. Vergelijkt men de ionenstralen met de afstanden Hg-Halogeen in HgJ_2 en $HgBr_2$:

straal van het J-ion = 2.2 Å

dan schijnt het wel verantwoord voor den afstand HgCl in $HgCl_2$ tenminste 2.2 Å aan te nemen.

De afstand halogeen-halogeen in HgJ_2 , $HgBr_2$ en vele andere lagen- en moleculeroosters is vrijwel steeds gelijk aan den dubbelen

ionenstraal; den kleinst mogelijken afstand tusschen twee chlooratomen in $HgCl_2$ kunnen we dus veilig op 3.4 Å stellen.

Bepaling van de positie der Cl-atomen.

De centra der chlooratomen moeten aan 4 voorwaarden voldoen:

- 10. Zij moeten op 0, $\frac{1}{4}$, $\frac{1}{2}$ of $\frac{3}{4}$ der *b*-as liggen.
- 20. Zij moeten buiten de zwaar gearceerde cirkels (dorrsneden van bollen met straal 1.7 Å om de symmetriecentra met het vlak (100)) liggen.
- 30. Zij moeten buiten de licht gearceerde cirkels (met straal 2.2 Å rondom de Hg-atomen) liggen.
- 40. Zij moeten minstens 3,4 Å van elkaar verwijderd liggen.

Aan deze voorwaarden voldoen slechts de combinaties A_1 - A_4 en B_1 - B_4 .

Met deze afstanden en de bovengevonden *u*-parameters kan men twee verschillende posities voor de chlooratomen vinden, die beide een goede stapeling en coördinatie opleveren (zie fig. 13—16):

A:	$Cl_1 : u_1$	$1 = \frac{1}{2}$	$v_1 = \frac{2}{5}$
	$Cl_2 : u$	$_2 = \frac{3}{4}$	$v_2 = \frac{4}{5}$
B:	$Cl_1 : u$	$1 = \frac{1}{2}$	$v_1 = \frac{7}{10}$
	$Cl_2 : u$	$_2 = \frac{3}{4}$	$v_2 = \frac{1}{10}$

Het bleek echter dat alleen voor geval A een bevredigende overeenstemming tusschen berekende en waargenomen intensiteiten verkregen kon worden; voor geval B is dit niet mogelijk (vergl. tabel 3).

 c) Röntgenographische beperking der parameters.

Om betrouwbare intensiteitswaarden voor nauwkeuriger bepaling der parameters te verkrijgen, werden cylinders vervaardigd uit groote, uit de smelt geïsoleerde kristallen, zooals door NIEUWEN-KAMP en BIJVOET bij PbBr₂ toegepast 1).

Bij cylinders heeft men geen last van onregelmatige absorptie; het verschil in intensiteitsverhoudingen, dat door onregelmatige absorptie bij gewone draaidiagrammen kan optreden blijkt duidelijk uit tabel 4 (zie vooral de verhoudingen 040— 240 en 080—400).

1) NIEUWENKAMP, W., en BIJVOET, J. M., Z. Kristallogr. A 84 (1932) 49.

[100]0

[100]]

Eerst werden twee draaidiagrammen voor cylinders uit verschillende kristallen om de [001]-as opgenomen en toen de intensiteiten nauwkeurig overeen bleken te komen, een fotogram van den aequator vervaardigd. Nu werden door systematische variatie van de 3 u-parameters de berekende met de waargenomen intensiteiten in overeenstemming gebracht; de verkregen waarden waren:

> $u_{\rm Hg} = 0.376 \pm 0.003$ $u_{\rm Cl_1} = 0.514 \pm 0.008$ $u_{\rm Cl_2} = 0.742 \pm 0.008.$

the second		The second s	e a ser a			
Reflex	Intensiteit	Intensiteit berekend				
	geschat	Geval A	Geval B ¹)			
112	zm	20	6			
132	zz—z	14	23			
032	m	25	14			
212	ZZ	5	17			
132	z	14	24			
212	ZZ	5	14			
052	zm-m	25	7			
432	zm	12	9			
173	zz—z	8	12			

Vergelijking van de berekende intensiteiten voor de gevallen A en B uit figuur 13-15 voor enkele reflecties van het draaidiagram om de as [210].

Deze bepaling geschiedde vrijwel uitsluitend met behulp van de gegevens van den aequator; de eerste zone werd hoofdzakelijk voor controle gebruikt en om uit te maken of u_{Hg} iets grooter of iets kleiner dan $\frac{1}{8}$ is. De gevonden *u*-parameters zijn derhalve vrijwel onafhankelijk van de ruwe *v*-parameters.

Om in te zien dat de kleine afwijkingen der chloorparameters van de ruwe waarden inderdaad door de waargenomen intensiteitsverhoudingen geëischt worden, kan men b.v. de naburige reflecties (160) en (320) nemen. De door het kwik geleverde intensiteit is bij beide reflecties nagenoeg gelijk, terwijl het verschil door variatie van u_{Hg} practisch niet veranderd wordt. Met $u_{\text{Cl}_1} = \frac{1}{2}$ en $u_{\text{Cl}_2} = \frac{3}{4}$ is het aandeel der chlooratomen 0; pas door een kleine verandering

¹) De hier weergegeven waarden gelden voor de in den tekst aangegeven parameters. Door systematische variatie van de parameters werd vastgesteld, dat ook door andere combinaties geen overeenstemming te verkrijgen is.

der chloorparameters wordt het waargenomen intensiteitsverschil goed weergegeven. Iets dergelijks ziet men bij (400) en (360).

Voor de beperking van de v-parameters werden twee draaidiagrammen van cylinders uit verschillende kristallen om de [210]-as vervaardigd ¹). Daar deze kristallen lastiger te bewerken waren, waren de diagrammen niet zoo fraai als de eerste twee; de waargenomen intensiteiten kwamen echter voldoende overeen. Door systematische variatie van de v-parameters werden de volgende waarden gevonden:

$$v_{
m Hg} = 0.053 \pm 0.008$$
 $v_{
m Cl_1} = 0.37_5 \pm 0.02_8$
 $v_{
m Cl_2} = 0.77_8 \pm 0.02_8$

Aangezien de waarden voor v_{Cl_1} en v_{Cl_2} nogal afwijken van de oorspronkelijk aangenomene, werd met de gevonden *v*-parameters de eerste zone van het draaidiagram om [001] nogmaals berekend onder variatie van de *u*-parameters, met het resultaat dat u_{Hg} en u_{Cl_2} onveranderd blijven, terwijl $u_{\text{Cl}_1} = 0.517 \pm 0.008$ wordt, dus geheel binnen de foutengrens van de eerste bepaling ligt. De definitieve waarden der parameters luiden dus:

$$\begin{split} u_{\rm Hg} &= 0.375 \pm 0.003 = 135^{\circ}, 5 \pm 1^{\circ} = 4.79 \pm 0.04 \text{ \AA} \\ v_{\rm Hg} &= 0.053 \pm 0.008 = 19^{\circ} \pm 3^{\circ} = 0.23 \pm 0.04 \text{ \AA} \\ u_{\rm Cl_1} &= 0.517 \pm 0.008 = 186^{\circ} \pm 3^{\circ} = 6.5_8 \pm 0.1 \text{ \AA} \\ v_{\rm Cl_1} &= 0.37_5 \pm 0.03 = 135^{\circ} \pm 10^{\circ} = 1.6_2 \pm 0.1 \text{ \AA} \\ u_{\rm Cl_2} &= 0.742 \pm 0.008 = 267^{\circ} \pm 3^{\circ} = 9.4_4 \pm 0.1 \text{ \AA} \\ v_{\rm Cl_3} &= 0.77_8 \pm 0.03 = 280^{\circ} \pm 10^{\circ} = 3.3_6 \pm 0.1 \text{ \AA} \end{split}$$

De met deze waarden berekende intensiteiten vindt men in de tabellen 4 en 5 en in figuur 17 weergegeven. Later gelukte het nog cylinders om de assen [010] en [100] te vervaardigen, die ter

¹) Aanvankelijk kon geen cylinder om de [100] verkregen worden; dit gelukte eerst veel later.

contrôle eveneens met de boven weergegeven parameters berekend werden. Het resultaat daarvan vindt men in de tabellen 6 en 7.

135 max 131 19 ANC 120 ---- bil -----4 - Bigmest - 040 19 - Millitette 200 ANUSA 211 141 221 Negette -----Statistic 240 100 ANA 160 William 15 1988 State 320 1000 311 251 and the 10 ·***** 071 331 100/435 5 Manager 080 Contingen ----- 351 271 100000 400 WAREHAW 140 411 18 distant with and the state 95 091 451 1040 - 140 -3 371 united a 4 South 110.0 Ŷ 451 291 3 520 0111 391 471 551 1411 16 4 -Prestanti-14 1000 1000 1000 1000 1000 1000 1000 535 -----30.300 551 211 1 1000 and 1000 4 49 E 3111 591 4 9 631 1131 1140 9 2131 651 8 4151 591 5100 4180 9 36 720 100 103 140

Fig. 17. Cylinderdraaidiagram om [001] met de indiceering en de berekende intensiteiten.

0	-	
~		
_		

Draaidiagram	om	de	as	[001]

TABEL 4. Koperstraling Ka

HgCl₂

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{berekend}}$	Reflex hkl	Intensiteit (cylinder) geschat	Foto- gram	Inter bere	isiteit kend	Intensit, niet afgedraaid kristal
9.0	33	32	120	S	16	191		m
12.2	60	59	040	m	7	40	- ×	m
13.0	68	67	200	zs	21	177	1.0	zs
		76	140			0		
		82	220			0	8	
18.0	127	126	240	ms	13	73		zm
		133	060			0		
		150	160	zs	48	202		S
19.6	168	166	320	s—zs	30	132		s
		200	260			1		-
M		210	340			0		17
25.0	236	236	080	s—zs	16	101	- ₁ -	zm
		253	180			2		1
26.9	268	269	400	S	17	106		S
27.8	284	284	360	1	07	154	154	
		284	420	j zs	21	154	0	ms
28.8	302	303	280	ZS	35	180		S
30.3	332	328	440	zm	9	53		zm
		369	0.10.0			0		
33.0	385	386	1.10.0	7	0	62	60	
		387	380	б ^т	0	02	2	2111
		402	460			1		
35.5	434	435	520	1	8	86	86	
		436	2.10.0	S ^{m—ms}	0	00	0	ms
		479	540		11.1	0		
38.9	502	505	480	ms—s	18	138		ms
39.7	518	520	3.10.0	z—zm	7	52		z—zm
40.3	530	531	0.12.0	z	4	28		z
	6 M	548	1.12.0			0		
41.4	552	553	560	ms—s	14	109		ms
~ 43.8	~ 600	599	2.12.0	1 .	14	121	52	mss
		605	600	5	1.4	121	69	

Poly of Classic Street	1		1	and the second se		and the second se	THE OWNER WHEN THE PARTY NAMES	the second se
Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit (cylinder) geschat	Foto- gram	Inte	nsiteit ekend	Intensit, nie afgedraaid kristal
		620	620			0		
		638	4.10.0	100		0		- b - 1
		656	580			1		
47.0	663	664	640	zz—z	5	36		710
		683	3.12.0			0		2111
		723	0.14.0			2		
51.0	737	738	660	1			0	
	6 d	740	1.14.0	S-ZS	19	113	113	ms
~ 54.3	\sim 794	789	5.10.0	5 1 1 6			41	· ·
:.: . :	- · · · ·	790	2.14.0	{ m	12	89	3	z—zm
		800	4.12.0) 64		1	45	zm
57.1	838	838	720	1 1 13			59	
		841	680	∫ ^{s—zs}		161	102	S
59.4	870	874	3.14.0	S		102		m—ms
				1.1				
3.4	35	36	011	z	s 1.	44		
6.8	50	47	021	1	X		10	
5		49	101	∫ zz		18	8	
7.8	54	52	111	m	- L	59		
9.6	65	64	121	1 6-4	ei e i		18	
		65	031	ý ^m		73	55	
11.9	84	82	131	zs		108		
		91	041			0		
14.2	105	103	211	ms—s	16.48	73	1.1	
14.6	110	108	141	z		24		
15.1	115	114	221	zz—z	8 8	17		
15.8	123	124	051	zm—m		30		
16.4	132	132	231	s—zs		89		
17.2	141	141	151	s—zs		98	11	
		158	241			1		
19.2	166	165	061	ZZ		9		
	- 13	182	161			8	12.5	
1997 - H. J.	¢.,	183	301			6		

TABEL 4	(vervolg	$\gamma).$
---------	----------	------------

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Afstand in mm.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit (cylinder) geschat	Foto- gram	Inten bere	siteit kend	Intensit. niet afgedraaid kristal
191 251 s 96 52 198 321 10 22.8 217 213 071 zs 101 24 216 331 zs 101 77 23.9 233 230 171 ms 55 37 24.5 243 242 341 z 18 2 26.6 278 275 351 zs 118 74 28.2 305 304 411 ms 48 2 28.2 305 304 411 ms 48 2 29.0 318 316 361 z 17 6	21.0	191	187	311	7			44	1.000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			191	251	s –		96	52	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 7 - 1	198	321			10		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22.8	217	213	071	1			24	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			216	331	(ZS		101	77	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	23.9	233	230	171	1			37	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			232	261	§ ms		55	18	6 1 - Br
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24.5	243	242	341	z		18		1. J. A.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		er e E Pi	268	081	t ter	, I.	2		
280 271 5 118 44 285 181 8 28.2 305 304 411 ms 48 29.0 318 316 361 z 17 6	26.6	278	275	351	1		112	74	
285 181 8 28.2 305 304 411 ms 48 29.0 318 316 361 7 17			280	271	5 45	÷	- 110	44	
28.2 305 304 411 ms 48 29.0 318 316 361 2 17 6		1.75.8	285	181		k i si	. 8		1 T T T
29.0 318 316 361 / z 17 6	28.2	305	304	411	ms		48		
	29.0	318	316	361	1 -		17	6	
316 421 11			316	421	§ * T	1.	17	11	
29.8 333 331 091 26	29.8	333	331	091	11 - 11			26	
334 431 s 90 61			334	431	s		90	61	
335 281 3			335	281	2		1.1.14	3	1 M
30.7 349 348 191 ms 47	30.7	349	348	191	ms		47		
360 441 0			360	441	1.6124		0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
31.7 366 364 371 zm 29	31.7	366	364	371	zm	10	29	. Tu	- 1 W T I-
33.3 394 393 451) ms_s 82 37	33.3	394	393	451	1		82	37	
398 291) 113 5 02 45			398	291	5		02	45	
401 0.10.1 5			401	0.10.1			5		
34.5 418 418 1.10.1 77 11 5	34.5	418	418	1.10.1	1 77		11	5	
419 381 5 6			419	381	1		1.	6	
35.3 434 434 461 zz 11	35.3	434	434	461	ZZ		11		lat "
36.5 456 452 501 7 33 4	36.5	456	452	501	1 -	1_ P	33	4	
456 511 29			456	511	1			29	La Carlos
37.1 468 467 521 7	37.1	468	467	521	77		15	7	
468 2.10.1 1 8			468	2.10.1	3			8	
							04.1		
		al.	4	te i dite			F-5 .	je i	

TABEL 4 (vervolg).

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit (cylinder) geschat	Foto- gram	Inter bere	nsiteit kend	Intensit. niet afgedraaid kristal
37.8	481	478	0.11.1				33	
		482	391	1			40	
		482	471	ZS		158	33	
		485	531				52	
38.5	494	495	1.11.1	z		39		
13		511	541			12		
		537	481			3		
41.1	544	544	551)====		444	52	
		546	2.11.1	}s—zs		114	62	
		552	3.10.1			4		
		563	0.12.1			1		
43.1	581	580	1.12,1	ZZ		14		
-		585	561			4		
44.0	598	600	491	z—zm		37		
45.7	630	630	3.11.1)			34	
*		631	2.12.1	m	- E.	58	2	
		633	571)			22	
46.3	641	640	611	zz	u - "h	32		
e . 91		652	621	2		18	8	
		656	0.13.1	5	19.13		10	
48.0	671	670	4.10.1)			7	
		670	631	S		91	42	
		672	1.13.1	2			42	
		688	581			5		
1 - Age	- 1	696	641			0		
		715	3.12.1			13		
51.1	724	723	2.13.1	1 zzm		45	18	
		729	651	1	6.54	15	27	
52.4	746	747	4.11.1	1 5		83	52	
		751	591)		00	31	
		755	0.14.1			4		
		770	661			8		
		772	1.14.1			1		

TABEL 4 (vervolg).

Afstand in m.m.	$10^3 \sin^2 \frac{\vartheta}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit (cylinder) geschat	Foto- gram	Inter bere	siteit kend	Intensit. niet afgedraaid kristal
56.2	804	807	3.13.1	zm—m	7	38		
57.4	821	818	671	3			24	
		821	5.10.1	zm		34	3	
		822	2.14.1)			7	
		832	4.12.1			2		
60.1	857	855	701	3			3	
		859	711	ms		36	21	
		862	0.15.1)			12	
12.1	187	187	042	z		62		
		195	202			28		i i
		199	212			10		
		203	142			0		
		210	222			4		
16.2	219	220	052	ZZ		25		
17.3	228	228	232	z		42		
		237	152	1376		10		-
20.0	255	254	242	m		109		
		260	062			1		
22.1	278	277	162	m		68		-
23.0	288	283	312)		74	30	
		287	252	1 S Zm		71	44	
23.6	294	294	322	m		76		
24.9	310	308	072	2		28	6	
		312	332	5 22		20	22	
26.2	327	325	172	1		20	18	
		328	262	5 44		20	2	· · · · · ·
		338	342			0		
29.3	366	364	082	z		22		
		. 371	352			8		
	-	376	272			10		
		381	182			2		
	A							

TABEL 4 (vervolg).

Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit (cylinder) geschat	Foto- gram	Inter bere	nsiteit kend	Intensit. niet afgedraaid kristal
31.7	401	396	402	2			20	
- inf		400	412	5 z	E-p)	28	8	
32.7	412	411	422	1			1	
- 1 5-0		412	362	} zm		56	55	
34.0	431	427	092	y I di			6	
t (+ Ra	e Stabil	430	432	ms		76	30	
• •	1.1	431	282)			40	
35.0	445	443	192	z		32		
36.0	459	455	442	ms		82		
		460	372			16	1976	
38.2	492	489	452	ZZ		34		
		494	292			10		
1. A		497	0.10.2		- L - I	2		
39.8	514	513	1.10.2	1	-		64	
		515	382	ý m		00	2	
	133				a 1-	1		

1.2

TABEL 4 (vervolg).

Draaidiagram om de as [210]

TABEL 5. Koperstraling Ka

HgCl₂

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{\vartheta}{2}$ berekend	Reflex hkl	Intensiteit gesch at	Inten berel	siteit kend
0.0	33	32	120	ZS	. 95	
12.8	66	64	121	z	18	
18.2	130	126	240	3		36
1012	100	128	002	zs	68	32
20.4	161	158	241	,		1
2012		159	122	S	97	96
26.2	256	254	242	ZS	109	
27.8	285	284	360	s	77	
29.7	320	316	361	<u>,</u>		6
		319	123	ý zz	6	0
34.5	413	412	362	1	-	55
		413	243	ý ^m	55	0
39.1	506	505	480	1	PT 4	69
		510	004	y ms	71	2
40.8	540	537	481	1		3
		542	124	§ ZZ	9	6
		571	363	1	1	
45.6	636	633	482	1	20	32
	1 de 1 de 1	637	244	s zm-m	30	6
54.0	789	789	5.10.0	3		21
		792	483	z—zm	24	1
		794	364	1		2
	ž ž		August 1			
9.6	39	36	011	m	44	i i
11.6	56	52	111	m	30	
14.5	85	82	131	S	54	ex. 5
18.5	134	131	012)	51	6
		132	231	5	31	45
19.6	150	148	112	zm	20	1
21.6	180	178	132	zz—z	14	5
22.3	192	191	251	m—ms	26	20
24.5	228	228	232	zm—m	21	er l

TABEL 5	vervolg	()	i,
---------	---------	----	----

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inter bere	nsiteit ekend
27.2	275	275	351	ms	37	
28.1	289	287	252			22
		291	013	j m	34	12
29.0	308	308	113	zm	14	
30.7	340	337	133	ZZ	3	
32.0	365	364	371	zm	15	
32.4	373	371	352	ZZ	4	
33.2	388	388	233	zz	4	
36.2	447	447	253	ZZ	6	
36.8	460	460	372	zz	8	
37.9	482	482	471	zm	16	
39.5	514	514	014	zm	21	
40.4	532	531	353	2	10	4
		531	114	§ zm	18	14
41.8	561	560	134	m	27	
		577	472	l a la station	4	
43.8	600	600	491	zm	18	
44.4	612	611	234	zm	18	
44.8	620	619	373	zz	9	
47.4	669	670	254	zm	18	
		695	492		4	
51.1	738	737	473	zm	11	
52.0	754	751	591	2		15
		754	354	5 m	35	20
10.1	51	47	021	}	18	10
		49	101) 44	10	8
		76	140		0	
		82	220		0	
16.0	109	108	141	z—zm	12	
16.3	114	114	221	z	8	
18.6	142	142	022	ZZ	2	

Afstand in m.m.	$10^3 \sin^2 \frac{\vartheta}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inter bere	nsiteit kend
		200	260	11 11 12	0	0
- C - H -		203	142	1 <u>5</u>	0	0
		210	340	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	0
		210	222	-5	2	2
24.7	235	232	261	zz—z	9	u
25.1	242	242	341	ZZ	9	
28.6	303	302	023	1	105	37
		304	103	S zs	105	68
		328	262		1	-
		338	342		0	9 -
31.8	363	363	143	z	19	
32.2	369	369	223	zm—m	33	
		387	380		0	
		402	460	0	0	-
		419	381		3	
		434	461		6	
38.1	486	487	263	zmm	41	
38.6	496	497	343	zz—z	16	
		515	382		1	
		525	024)	2	3
		529	462	\$	3	0
Carlos and an and		586	144		0	
		592	224	0	3	
		638	4.10.0		0	
		656	580		0	
47.6	671	670	4.10.1			3
		675	383	{ m	43	40
48.5	687	688	581	5		2
		689	463	∫ ^{zm} —m	35	33
1000		710	264		. 2	
		721	344		0	
		765	4.10.2		1	
- 11		784	582		0	
10		104	382		0	

TABEL 5 (vervolg).

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inter bere	isiteit kend
55.8	812	812	025			35
- Xi		814	105	ms—s	55	20
60.0	871	873	145	ms	46	20
60.5	878	-880	225	ms	34	
		1 . S		1.1.1.1		
				in the second		
9.8	53	52	111	m	30	
11.7	68	65	031	m—ms	55	
15.3	105	103	211	m-ms	36	
18.4	144	141	151	s	49	
18.9	150	148	112	m	20	
19.8	162	160	032	m	25	
22.5	201	199	212	ZZ	5	
23.5	217	216	331	m	38	
24.7	238	237	152	zz	5	
27.3	281	280	271	m	22	
28.9	311	308	113	y i i i		14
46	i 1 1.	312	332	m	25	11
29.5	321	320	033	ZZ	4	
31.6	360'	358	213	z—zm	11	
32.5	377	376	272	ZZ	5	
33.3	393	393	451	2		18
		396	153	ý ^m	23	5
		472	333	1 i - 1	3	
38.0	484	482	391	zm	20	
38.4	492	489	452	z	17	
40.5	535	531	114	3		14
2		535	273	zm—m	27	13
41.0	544	544	034	zm	19	
42.9	581	. 578	392			14
VI 51		581	214	ý ^m	34	20
45.0	620	. 620	154	m	22	
45.7	633	633	571	z	11	
		1.14.14.14.1				

				the second se		COLUMN TWO IS NOT
Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inten berel	siteit kend
		648	453		5	
40.0	695	695	334	zm—m	24	
19.0	055	728	572		6	
51.3	736	737	393	77.	7	
51.8	745	747	4.11.1	m	26	
52.5	756	758	274	z	13	
52.5						
89	62	59	040	m	20	
9.4	66	64	121	3		9
		67	200	۶ s	98	89
		91	041		0	
18.0	151	150	160	ms	50	
18.6	159	159	122	ms	48	
19.2	167	166	320	m	33	
		182	161		4	
20.8	189	187	042	ms	62	ŝį.
21.4	198	195	202	1	22	28
		198	321	\$ m	33	5
26.5	277	277	162	zm	34	*4
27.6	295	294	322	m	38	12.1
28.1	304	303	280	m	45	
		319	123		0	
29.5	328	328	440	z	13	****
	N 1 7 17 2 1	335	281	h	2	÷.,
	1.00	346	043		0	0
	1 Bar - N B	360	441	in an	0	s
35.2	431	431	282	zm	20 .	of it
		437	163	1.1.12	0	R
36.4	454	453	323)	41	0
		455	442	1	11	41
39.8	519	520	3.10.0	Z	13	
		542	124	et in and in a	3	26

TABEL 5 (vervolg).

-	A	3EL	5	vervol	g).
---	---	-----	---	--------	-----

		The second se	April 1997	the second s	-	and the second division of the second divisio
Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{berekend}}$	Reflex hkl	Intensiteit geschat	Inte ber	nsiteit ekend
41.5	552	552 553	3.10.1 560	} zm	29	2 27
		569	044		3	
		578	204		2	1.1
		585	561	1. Pate (2	
		591	283		0	
		615	443		0	
46.6	646	648	3.10.2	zm	28	
		660	164		1	
48.3	676	676	324)		3
		680	562	\$ z	24	21
1.1.1						
						-
9.8	85	82	- 131	ms	54	-
12.1	103	103	211	m	36	
14.6	126	124	051	m	30	
19.2	179	178	132	z	14	
19.9	189	187	311	zm	22	
20.8	200	199	212	zz	5	
22.4	222	220	052	zm—m	25	
23.0	232	230	171	zm	18	
26.4	284	283	312	zm	15	
28.9	325	325	172	ZZ	9	
29.4	333	334	431)		30
		337	133	ý ^m —ms	33	3
30.9	359	358	213	z—zm	11	
32.2	.381	379	053	zz—z	6	
33.2	399	398	291	zm—m	23	
34.9	430	430	432	zm	15	
35.6	442	442	313	z—zm	12	
37.9	484	485	173	zz—z	8	
e in the		494	292		5	
41.2	544	544	551	zm	26	

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	teit end
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
47.3 652 653 293 zz 4 47.9 664 665 314 z 12 50.5 706 708 174 z—zm 14 51.5 723 725 3.11.2 z 12	
47.9 664 665 314 z 12 50.5 706 708 174 z—zm 14 51.5 723 725 3.11.2 z 12	
50.5 706 708 174 zzm 14 51.5 723 725 3.11.2 z 12	
51.5 723 725 3.11.2 z 12	
100 111	
10.2 110 108 141 z 12	
10.8 115 114 221 z 8	
133 060 0	
16.7 166 165 061 zz 9	
183 301 6	
203 142 0	
210 222 2	
253 180 0	
260 062 1	
26.0 285 284 420	0
285 181 5 22 4	4
27.9 316 316 421 zz 6	
30.9 363 363 143 zm 19	
31.2 369 369 223 m 33	
381 182 1	
411 422 1	
34.2 421 420 063 ms 40	
35.2 438 436 2.10.0)	0
438 303 ý ^m s—s 56	56
468 2.10.1 4	
479 540 0	

TABEL 5 (vervolg).

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Intensiteit berekend
		511	541		6
41.1	540	540	183	ms	46
		564	2.10.2		2
43.0	571	571	423	m	26
	ET - 46	586	144	in , da a la	0
	문한 김 영화	592	224	1. N. 19	3
		607	542		0
1.1.20	· · · · ·	643	064		3
BP	- 10 - 10 - 1	683	3.12.0	1.27	0
51.8	714	715	3.12.1	ZZ	6
52.3	722	723	2.10.3	z	16

TABEL 5 (vervolg).

Draaidiagram om de as [010]

TABEL 6. Koperstraling Ka

 $HgCl_2$

Afstand in mm	$10^3 \sin^2 \frac{9}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inter bere	nsiteit kend
11.2	51	49	101	z	16	
13.0	68	67	200	s	177	
18.2	129	128	002	m	32	
22.0	185	183	301	ZZ	12	
22.7	197	195	202	s	56	je -
27.0	270	269	400	ms	106	Q
28.9	305	304	103	ZS	136	
33.7	398	396	402	m -	40	
35.8	439	438	303	S	112	
		452	501		7	
		510	004		2	Ř.
42.7	579	578	204	ZZ	4	-
44.0	605	605	600	m	69	11.
49.3	706	707	503	ms	87	. S.
50.7	732	732	602	z	30	
53.4	778	779	404	1.1.1.1.1	3	11
55.5	812	814	105	m	40	
				e gade		
			114	1.12		
9.1	38	36	011	zm	44	
11.2	55	52	111	S	59	2
16.0	105	103	211	ms	73	
	di sa biji	131	012		6	
19.4	149	148	112	m	40	
22.0	187	187	311	m	44	
22.8	201	199	212	zz	10	
27.6	283	283	312	zm	30	id.
28.1	292	291	013	z	12	e tra
28.8	305	304	411	1 ma	76	48
		308	113) IIIS	70	28
31.7	359	358	213	zm	22	
33.9	403	400	412		8	

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{\vartheta}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Intensiteit berekend
35.9	442	442	313	zm	24
36.6	456	456	511	z	29
39.5	514	514	014	z	21
40.7	529	531	114	z	28
41.3	552	551	512	z	21
41.7	560	560	413	z	17
42.9	582	581	214	z—zm	40
45.8	639	640	611	z	32
47.2	665	665	314	z	24
49.6	710	711	513	z	18
		736	612		5
53.7	781	783	414	zm	33
					- <u></u>
100	22	22	120		05
0.0	32	32	021	111	95
9.1	47	1/	121	44	18
11.4	CO	04	220	2111	18
160		02	220		17
16.0	114	142	022	2-211	17
10.0	150	142	122		2
19.6	159	159	122	zs	90
20.1	100	100	520	m	10
22.2	198	198	521	z	10
23.0	211	210	100	ZZ	F
		284	420		70
28.0	294	294	322	ZS	70
28.4	302	302	023	m	3/
29.3	316	316	421	ZZ	11 11
	050	319	123)	- 0
32.1	370	369	223	S	00
34.3	412	411	422		1
35.6	435	435	520	m	43
		453	323		0

TABEL 6 (vervolg).

Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Intensiteit berekend	
37.1	467	467	521	77	7	
0711	107	525	024	22	3	
40.9	542	542	124	7.	6	
41.8	561	562	522	ms	53	
42.4	571	571	423	ms	52	
		592	224		6	
		620	620		0	
46.6	651	652	621	ZZ	8	
47.9	675	676	324	zz	6	
		722	523	· · · ·	0	
		747	622		2	
	1. F	794	424		6	
56.1	812	812	025	ms	35	
		829	125		0	
57.5	836	838	720	m	29	
		870	721		5	
60.8	877	880	225	s	68	
63.0	904	907	623	ms	40	
			0			
8.2	66	65	031	m	55	
10.7	82	82	131	ZS	108	
16.0	131	132	231	s—zs	89	
18.3	159	160	032	zm	25	
19.7	178	178	132	zm	28	
22.5	217	216	331	ms—s	77	
23.3	229	228	232	ms	42	
28.5	312	312	332	z	22	
		320	033	Z2	4	
29.8	336	334	431	1	67	61
		337	133	§ m	07	6
32,8	389	388	233	z	8	
35.1	431	430	432	ш	30	
						4

TABEL 6 (vervolg).

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	$\frac{3}{2} \sin^2 \frac{9}{2}$ Reflex Intensi erekend hkl gesch			Intensiteit berekend	
37.2	471	472	333	ZZ	6		
38.0	485	485	531	m	52		
41.2	545	544	034	z	19		
42.0	560	560	134	m	54		
43.1	580	581	532	ZZ	16		
43.6	589	589	433	ZZ	7		
44.8	610	611	234	m	36		
48.1	669	670	631	zm—m	42		
49.6	694	695	334	m	48		
1		740	533		5	-	
54.0	766	767	632	z	22		
57.0	810	812	434	m	32		
		831	035		0		
		848	135		2		
63.0	885	888	731	m	38		
11.6	108	108	141	zm	24		
13.7	126	126	240	zm—m	36		
		158	241		1		
19.3	188	187	042	s	62		
		203	142		0		
		210	340		0		
23.3	242	242	341	z	18		
24.2	255	254	242	ZS	109		
28.9	329	328	440	z—zm	26		
		338	342		0		
0		346	043		0		
31.0	363	360	441	1	20	0	
		363	143	∫ ^m	38	38	
		413	243		0		
36.2	454	455	442	S	82		
		479	540		0		

TABEL 6 (vervolg).

Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inten bere	isiteit kend
38.6	496	497	343	m	32	
39.4	512	511	541	ZZ	12	
42.7	569	569	044	zz	3	
43.6	586	586	144	ZZ	1	
		607	542		0	
		615	443		0	
46.6	636	637	244	z	6	
48.1	665	664	640	z	18	
		696	641		0	
		721	344		0	
54.9	767	766	543	zm—m	24	
56.7	791	791	642	S	59	
60.3	837	838	444	z	4	
	5, T - Tas	857	045		0	
64.0	875	873	145	zs	92	
8.6	124	124	051	ш	30	
11.2	141	141	151	ms—s	98	
17.1	192	191	251	ms—s	52	
19.7	221	220	052	zm—m	25	
21.1	238	237	152	z	10	
24.1	276	275	351	ms—s	74	
25.0	288	287	252	ms	44	
30.7	371	371	352	ZZ	8	
31.3	380	379	053	ZZ	6	
32.1	393	393	451	1		36
		396	153	ms	46	10
35.6	448	447	253	Z	12	
38.2	490	489	452	m	34	
40.7	531	531	353	z	8	
41.6	545	544	551	m	52	
45.2	602	603	054	z	19	

TABEL 6 (vervolg).

Afstand in m.m.	$10^3 \sin^2 \frac{\vartheta}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Intensiteit berekend
46.3	620	620	154	m	44
		640	552	- -	6
48.2	647	648	453	ZZ	10
49.7	671	670	254	m	36
53.9	729	729	651	zm	27
55.8	754	754	354	ms	40
59.8	800	799	553	z	8
62.0	823	825	652	zm	24
67.3	870	872	454	m—ms	30

TABEL 6 (vervolg).

Draaidiagran	n om de as	[100]

TABEL 7. Koperstraling Ka

HgCl₂

Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$ \begin{array}{c c} 10^3 \sin^2 \frac{9}{2} \\ \text{berekend} \\ \end{array} $ Reflex hkl		Intensiteit geschat	Inten bere	isiteit kend
9.7	38	36	011	ms	88	
11.1	50	47	021	z	20	
12.5	63	59	040	z—zm	40	
13.0	68	65	031	ms	110	
	-	91	041		0	
\sim 18.1	~ 128	124	051	3		60
		128	002	s	104	32
		131	012)		12
		133	060		0	
19.4	146	142	022	zz	4	
20.6	164	160	032	2	60	50
		165	061	۶ ^m	68	18
22.3	190	187	042	ZS	124	
23.9	216	213	071	zm	48	
24.4	225	220	052	zm	50	
25.2	239	236	080	m	101	
		260	062		2	
		268	081		4	
28.2	292	291	013	zm	24	
28.9	305	302	023	m—ms	74	
29.1	309	308	072	ZZ	11	1
29.9	324	320	033	ZZ	8	8
30.4 .	333	331	091	zm	52	
		346	043		0	
32.1	366	364	082	zm	43	- 1
		369	0.10.0		0	
32.9	382	379	053	z	12	
34.0	404	401	0.10.1	zz	10	
35.0	423	420	063	ms	80	
		427	092		12	
37.3	470	468	073	zm	29	
37.8	480	478	0.11.1	zm	66	

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Intensiteit berekend	
		407	0 10 2		4	
1.1.1		510	004		4	
39.6	516	514	014	7.00	42	
0010	510	523	083	2111	3	
10 T		525	024		6	
40.4	532	531	0120	77 7	28	
41.0	545	544	034	7m	38	
		563	0.12.1	2111	2	
		569	044		6	
42.4	573	574	0.11.2	-	15	
43.0	585	586	0.11.2		0	
44.0	605	603	054	700	38	
46.0	644	643	064	2111	50	
46.7	657	656	0.13.1	14	0	20
	0.57	656	0.10.3	1	115	20
		659	0.12.2	(ms-s	115	51
		035	0.12.2	1		01
					1	
· · · ·		22	100			
6.3	31	32	120	ms	95	
9.3	49	49	101	ZZ	8	
9.8	53	52	111	ms	59	
11.2	64	64	121	zm	18	
		76	140		0	
13.2	83	82	131	S	108	
15.7	110	108	141	zm	24	
18.3	142	141	151	S	98	
18.9	150	148	112	1	141	40
		150	160	5 °	1.11	101
19.6	160	159	122	S	96	
21.0	180	178	132	1	26	28
		182	161	§ 2m	30	8
		203	142		0	
24.3	231	230	171	zm	37	

TABEL 7 (vervolg).

Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inten berel	siteit kend
24.7	238	237	152	7	10	
21.7	230	257	180	4	10	
27.1	270	255	167	177 d	68	
27.1	286	285	181	1115	8	
27.5	306	203	103	1	0	68
20.0	500	308	113	s	96	28
-		310	123		0	20
20.8	328	375	172	77	18	
30.4	338	337	133	77	6	
31.0	350	348	101	700	47	
31.8	364	363	143	710	38	
51.5	501	381	182	2.111	2	
33.0	387	386	1 10.0		30	
33.0	300	306	153	7	10	
55.0	399	418	1 10 1	2	5	
		427	163		0	
25.0	145	1.57	102		37	
36.0	440	495	192	Zm	16	
38.1	480	105	1/3	2	20	
38.0	496	495	1.11.1	2111	59	
39.5	514	513	1.10.2	ms	10	-
40.4	531	531	114	z—zm	20	02
40.9	542	540	100	{ ms	98	92
		542	1 1 2 0	1	0	0
41.0	561	540	1.12.0		54	
41.9	570	500	1.12.1	m—ms	14	
42.0	579	500	1.12.1	46		
12.1	500	500	1112		27	
43.4	590	602	1.11.2	42	15	
44.0	602	620	193	2	44	
44.9	618	620	104	m	11	
47.1	660	660	1 1 2 1	ZZ	2	40
47.6	669	672	1.13.1	{ zm	42	42
		6/3	1.10.3			0

TABEL 7 (vervolg).

TABEL 7	(vervola)	>
	(according)	10

Afstand in m.m.	$10^3 \sin^2 \frac{9}{2}$ gevonden	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{berekend}}$	Reflex hkl	Intensiteit geschat	Inte	Intensiteit berekend	
		676	1 12 2		0		
49.6	706	708	174	700	28		
51.4	737	740	1.14.0	zm_m	57		
	la serie			And In	51	1.	
				Nation	6.0		
9.6	102	103	211	s	. 73		
11.2	114	114	221	zm	17		
12.8	127	126	240	m	36		
13.4	132	132	231	s	89		
16.0	157	158	241	ZZ	1		
19.0	191	191	251	ms	52		
19.4	196	- 195	202	1		28	
	L	199	212	ms	38	10	
		200	260)		0	
20.5	210	210	222	ZZ	4	Ŭ	
21.9	228	228	232	ms	42		
22.1 -	231	232	261	z	18		
23.8	255	254	242	ZS	109	3	
25.6	282	280	271	m	44		
26.1	288	287	252	m	44		
27.1	304	303	280	ms	90		
	المترج ومرا	328	262		2		
		335	281		3		
30.6	360	358	213	m	22		
31.2	370	369	223	ms	66		
31.5	375	376	272	zz—z	10		
32.4	390	388	233	z	8		
32.9	399	398	291	m	45		
1 - E	an an tao an	413	243		0		
34.9	432	431	282	m	40		
		436	2.10.0		0		
35.7	446	447	253	z	12		
37.0	469	468	2.10.1	zz	8		

Afstand in m.m.	$\frac{10^3 \sin^2 \frac{9}{2}}{\text{gevonden}}$	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit geschat	Inten bere	siteit kend
38.1	488	487	263	s al	82	
	1 - E	494	292		10	
40.9	537	535	273	ms	26	
41.3	544	546	2.11.1	ms	62	
42.4	563	564	2.10.2	zz	4	
43.5	582	578	204	2 ms	42	2
		581	214) 1115	10	40
	fere en est	591	283	1	6	0
		592	224	,		6
44.4	596	599	2,12.0	zm	26	
45.2	610	611	234	ms	36	1.14
		631	2.12.1		2	
46.9	638	637	244	1 7m	20	6
		641	2.11.2) 2m	20	14
	0.000	. 653	293		8	i para
48.8	669	670	254	zm	36	1
51.4	710	710	264	z	4	i la su
52.2	722	723	2.13.1) - saller		18
		723	2.10.3	S	109	32
		726	2.12.2	2		59

a second of the second second second products for an

TABEL 7 (vervolg).

DERDE GEDEELTE.

BEPALING DER KRISTALSTRUCTUREN IN HET SYSTEEM HqCl₂—HqBr₂.

HOOFDSTUK 6.

De kristalstructuur der a-mengkristallen.

Reeds uit de poederfilms blijkt duidelijk, dat de *a*-mengkristallen dezelfde structuur als het kwikchloride bezitten, natuurlijk met iets gewijzigde celdimensies en intensiteiten, daar het broomatoom een grooter volume en verstrooiend vermogen heeft dan het chlooratoom.

De vraag was nu slechts of de halogeenatomen willekeurig over de beschikbare plaatsen verspreid zijn, dan wel of een zekere ordening plaats vindt, in dien zin dat al het broom de plaats van Cl_1 of van Cl_2 inneemt. Dit moet het duidelijkste uitkomen bij samenstellingen met ongeveer 50 mol % HgBr₂. Dan zijn de volgende drie gevallen mogelijk:

. (Al	het	chloor	in	de	positie	Hal-1	CI Ha Pa
a. (. ,,	**	broom		,,		Hal-2	CI-IIg-Dr
h	w.	` ,,	broom	,,	,,	.,	Hal-1	Br-Ha Cl
. [.,,	,,	chloor	\overline{m}	<u>.</u>	.,	Hal-2) DI-IIg-CI

c. Statistische verdeeling van chloor en broom: Hg(Cl,Br)2.

De voor deze drie gevallen berekende intensiteiten vindt men in de tabellen 8 en 9 vergeleken met de waargenomen intensiteiten op twee draaidiagrammen om de assen [010] resp. [001], opgenomen met cylindervormig afgeslepen kristallen.

Hieruit blijkt — men vergelijke vooral de reflecties (101), (301), (141), (341) met naburige reflecties — dat geval c de waargenomen intensiteiten het beste weergeeft. In de α -mengkristallen zijn de halogenen derhalve statistisch over de beschikbare plaatsen verdeeld.

-	 -	7	
-		r	
٦		۰.	
2			
,			

TABEL 8.		
Koperstraling	$K \alpha$	

Draaidiagram om de as [010]

a-HgClBr

Aristand in m.m. in m.m. gevonden10° sin² $\frac{1}{2}$ berekendRefres hklintensitien geschatabc11.04947101zz1371212.96763200s24424424418.0127124002z—zm14322221.3175173301zz—z128922.3190187202m25573926.1254253400ms14814818528.5298295103s19118018532.6376377402z19412934.9421421303 \langle ms157167149159660046011659920411034341.9564568600zm9696903735011zm39474311.05350111ms—s5476701270123011189.03735011zm39474311.05350111ms—s52444821.3178177311zm45233314.1145143112m—ms<5244	A.C. 4 1	103 . 2.9	$10^3 \sin^2 \frac{9}{2}$ berekend	Reflex hkl	Intensiteit	Intensiteit berekend					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	in m.m.	gevonden			geschat	a		Ь		с	
12.9 67 63 200 s 244 244 244 18.0 127 124 002 z —zm 14 32 22 21.3 175 173 301 zz —zm 14 32 99 22.3 190 187 202 m 25 57 39 26.1 254 253 400 ms 148 148 148 28.5 298 295 103 s 191 180 185 32.6 376 377 402 z 19 41 29 34.9 421 421 303 ms 157 167 18 159 41.9 564 568 600 zm 96 96 96 96 9.0 37 35 011 zm 39 47 43 11.0 53 50 111 ms 59 30 43 11.1.0 53 50 111 zm 30 1	11.0	49	47	101	ZZ	1		37		12	
18.0 127 124 002 $z = -zm$ 14 32 22 21.3 175 173 301 $zz = -zm$ 1 28 9 22.3 190 187 202 m 25 57 39 26.1 254 253 400 ms 148 148 148 28.5 298 295 103 s 191 180 185 32.6 376 377 402 z 19 41 29 34.9 421 421 303 μms 157 167 188 148 424 501 ms 157 0 167 18 159 6 41.9 564 568 600 zm 96 96 96 96 96 96 43 9.0 37 35 011 zm 39 47 43 43 11.0 53 50 111 ms 59 30 43 43 12.7<	12.9	67	63	200	S	244		244		244	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.0	127	124	002	z—zm	14		32		22	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.3	175	173	301	zz—z	1	1	28		9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.3	190	187	202	m	25	k d	57	_	39	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26.1	254	253	400	ms	148		148		148	
32.6376377402z19412934.9421421303ms157167149159153424501ms1570016718196649600460110315741.9564568600zm96969647.4671672503m12111518189.03735011zm394743311.05350111ms593043315.710198211ms—s6476701270123011119.1145143112m—ms524444821.3178177311zm4523331902121004427.0272270312m41343728.6302298113m28493831.1348346213m33202635.1426425313m53235640552338.9502500014zz22222222222239.6516515114zz—z1729222222	28.5	298	295	103	S	191		180		185	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32.6	376	377	402	z	19		41		29	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34.9	421	421	303)	1.57	157	107	149	150	153
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			424	501	§ ms	157	0	107	18	159	6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			496	004		6		0		1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			559	204		11		0		3	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41.9	564	568	600	zm	96		96		96	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	47.4	671	672	503	m	121		115		118	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								i - C			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9.0	37	35	011	zm	39		47		43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11.0	53	50	111	ms	59		30		43	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15.7	101	98	211	ms—s	64		76		70	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			127	012		3		0		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	19.1	145	143	112	m—ms	52		44		48	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	21.3	178	177	311	zm	45		23		33	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			190	212	11. a 🖬 🗆	10	F.	0	-	4	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	27.0	272	270	312	m	41		34		37	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			283	013		18		11		14	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27.9	289	287	411	m	44		52	Ť 👘	47	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	28.6	302	298	113	m	28		49		38	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31.1	348	346	213	m	33		20		26	þ.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			380	412	1	7	1	0		3	
428 511 1 33 30 30 16 33 23 38.9 502 500 014 zz 22 22 22 39.6 516 515 114 zz—z 17 29 22	35.1	426	425	313	11 5 -	52	23	56	40	55	32
38.9 502 500 014 zz 22 22 22 22 39.6 516 515 114 zz—z 17 29 22			428	511	§ m	55	30	50	16	55	23
39.6 516 515 114 zz-z 17 29 22	38.9	502	500	014	zz	22		22		22	7.1
	39.6	516	515	114	zz—z	17		29		22	
Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit		Intensiteit berekend					
---------	---------------------------	---------------------------	--------	-----------------	------	----------------------	-----	----	-----	-------	
in m.m.	gevonden	berekend	hkl	geschat		а		b		с	
		521	512		29		24		26		
40.4	532	535	413	7	26		16		20		
41.9	562	563	214	z	41		40		40		
- 17,	i i i fra			1.1			10		10	1	
6.7	33	30	120	m	91		87	-	89	15. L	
2.00		45	021		12		8	1	10	l	
11.1	63	61	121	ms	56		43		50		
	the second	77	220		4	h l	5		0	1	
15.8	111	108	221	z	16		22		19	-	
18.2	140	138	022	źz	12		2		6		
19.4	157	154	122	1	100	104		98		101	
		156	320	∫ ^{ZS}	168	64	159	61	163	62	
21.7	190	187	321	z—zm	35		26		30		
22.4	201	201	222	zz—z	19		4		10		
	. ' 'I	267	420		3		3		0		
27.2	281	280	322	S	81	. ev 1	77		79		
28.0	295	293	023	z—zm	35		34		35		
1.0		298	421		13		9		11		
1.642		309	123		5		2		0		
31.3	355	356	223	m	64		61		62		
		391	422		14		3		7		
34.0	407	407	520	ZZ	42		40		41		
35.6	437	435	323)	26	4	10	2		0	
1.1		438	521	1 44	20	22	19	17	20	20	
		510	024		8		10		9		
40.1	526	526	124	7 700	62	5	63	8	(2)	7	
		531	522) 2-2111	.05	58	05	55	03	56	
41.0	544	546	423	zz—z	51		49		50		
					E 71						
9.2	62	63	031	m	61		62		62		
11.2	78	78	131	ZS	112		159		134		
16.1	127	126	231	S	102	- 2	104		102		
18.5	156	156	032	z	24		47		34		

TABEL 8 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit Intensiteit berekend			cend	1		
in m.m.	2 gevonden	2 berekend	hkl	geschat	а		b		с	
19.7	172	171	132	z	20		38		28	
22.1	206	205	331	ms	81		114		97	
23.0	220	219	232	IIIS	41		81		59	
27.9	299	298	332	ZZ	16	-	30		22	
28.7	313	311	033	2		2		3	-	2
		315	431	j m	12	70	74	71	12	70
	19 C 1	327	133		6		1		3	
		374	233	1 ¹ 1	3		5		4	
33.9	408	408	432	z	30	10	59	- 1	43	
36.2	451	453	333	1	(0)	5	-	1	60	3
		455	531) ^z	60	55	78	77	68	65
40.1	525	527	034	ZZ	21		20	10.00	21	
41.0	543	543	134	1	OF	74	76	54	00	64
		548	532	∫ ^z —zm	60	11	76	22	80	16
		563	433							
43.3	587	591	234	ZZ	39		37	6	38	
45.5	626	631	631	ZZ	48		49		48	
47.7	666	670	334	z	66		48		57	
			ar eg							
11.2	104	103	141	z	61		8		29	
13,2	121	119	240	ZZ	16		. 18		17	
		150	241	11 A. A. A.	2		3		2	100
19.0	183	180	042	ms	93		63		77	
		196	142		0		0		0	
	h i the state	198	340		0		1		0	1
22.7	233	229	341	ZZ	45		7		22	PL
23.5	245	243	242	ZS	165		111		137	
27.6	307	309	440	ZZ	13		14		13	
		322	342		0		0		0	
	11 °-1 1°	335	043		0		0		0	
		340	441		1		2		2	
30.2	350	351	143	z	18		22		20	
		398	243		1		0		0	
	1				1			l.	l	

TABEL 8 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{7}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit	Intensiteit berekend					
in m.m.	gevonden	berekend	hkl	geschat		a		Ь		c
34.8	429	433	442	ms	122		83		102	
		449	540		0		0		0	
37.3	473	477	343	1	15	15	~ 1	19		17
		480	541	∫ ^{zz—z}	45	30	24	5	32	15
41.4	546	552	044		1		9		3	
	•	568	144		1		3		2	
1 - D		573	542		0		0		0	
		588	443		0		0		0	
45.0	609	615	244	zz—z	1		17		6	
			2							
8.7	120	119	051	zm	35		25		30	
11.1	135	135	151	ms	97		137	- II	117	
16.5	182	182	251	m—ms	61		43		52	
19.3	213	212	052	z	26		43		34	
		228	152	- -	6	- L	4		5	
23.2	261	261	351	m—ms	74		104		88	
24.2	274	275	252	m—ms	47		76		61	
1.8	- , tabi	354	352		5		3		4	
		367	053	18 11	3		8		5	
30.7	370	372	451	z	44		31		37	
31.5	382	383	153	z	12		4		8	
34.3	427	430	253	zz	5		16		10	
36.2	457	464	452	z	36		58		46	
39.1	505	509	353)		11		3		6
		511	551	§ zm	64	53	77	74	69	63
43.4	575	583	054	ZZ	17		19		18	
44.5	593	599	154	m	62		45		53	
Pr -						1				

TABEL 8 (vervolg).

Draaidiagram om de as [001]

TABEL 9. Koperstraling Ka

a-HgClBr

Afstand	103 sin2 9	103 sin2 3	Reflex	Intensiteit Intensiteit berekend						
in m.m.	2	2 harokond	hkl	geschat	a		Ł	,	с	
	gevonuen	Derekend				_		6		
9.0	33	30	120	ms	182		174		177	
		56	040		18		19		18	
12.9	67	63	200	S	244		244		244	
		72	140		0		0		0	
		77	220		- 8		10		0	
17.6	122	119	240	zz	33		35		34	
		126	060		6		1		1	
19.2	144	142	160	s	231		256		243	
20.2	158	156	320	m	128		121		125	
	- Level	190	260		12		2		1	
		198	340		0		0		0	
24.4	225	225	080	m	142		129		134	
		240	180		0		10		3	
26.0	253	253	400	m	148		148	- 4	148	
27.0	270	267	420	1	192	5	203	7	199	0
		269	360	S m	102	177	205	196	100	188
28.0	288	288	280	m	250		231		240	
7.1	53	50	111	m	59		30		43	
9.0	65	61	121	1	117	56	105	43	110	50
		63	031	5 s	11/	61	105	62	112	62
11.0	80	78	131	S	112		159		134	
		87	041		1		2		2	
13.2	100	98	211	m	64		76		70	
14.0	107	103	141	1	77	61	20	8	10	29
		108	221	∫ ^{zz—z}	11	16	50	22	40	19
15.2	120	119	051	z	35		25		30	
15.8	127	126	231	S	102		104		102	
16.7	137	135	151	S	97		137		117	
	i	150	241		2		3		2	
18.4	158	157	061	zz	6		14	1	10	

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit	Intensiteit berekend					
in m.m.	2 gevonden	berekend	hkl	geschat	ě	ı .	ł	5		
19.6	174	173	161)		29		19		24
		173	301	m	75	1	56	14	62	5
	- 3Q -	177	311	1		45	Η.,	23		33
20.2	182	182	251	2	06	61	60	43	0.2	52
	1 - 1 - 1 - No	187	321	5 m	90	35	69	26	82	30
21.9	206	203	071		102	22	1.21	17	117	20
		205	331	∫ ms—s	105	81	151	114	117	97
22.8	219	219	171	1	45	35	4.0	23	17	29
		221	261) ^{zm}	45	10	48	25	47	17
23.5	230	229	341	ZZ	45		7		22	
	90 H	256	081	- 103	3		4		3	
25.5	262	261	351	1	114	74	125	104	100	88
	1.1.1.1.1.1	266	271) ms—s	117	14	135	31	123	35
		271	181	1.00	0	5.5	16		5	
27.0	286	287	411	zm	44		52	- 1	47	
27.7	298	298	421	1	34	13	22	9	20	11
		300	361	<u>۶</u>	31	21	25	14	29	18
28.7	315	315	091	3	-	24		36	1 .	30
	-	315	431	m	102	70	116	71	108	70
		319	281).		8		9		8
29.5	329	331	191	zm	51		36		43	
	5	340	441		1		2	e	2	
30.3	343	345	371	ZZ	29		19		23	
32.0	374	372	451	1	87	44	07	31	01	37
		378	291) m	07	43	57	66	91	54

TABEL 9 (vervolg).

HOOFDSTUK 7.

§ 1. Bereiding.

Zooals reeds vermeld wordt de β -modificatie verkregen door afkoeling van een smelt van HgCl2 en HgBr2 met iets meer dan 50 mol % HgBr2. Dit geschiedt het eenvoudigst door een toegesmolten buis, die de smelt bevat, langzaam uit een verticaal opgestelden electrischen oven te trekken. Daarbij sublimeert een gedeelte van het praeparaat in fraaie naalden, waarvan de langste as de c-as is. Aanvankelijk gelukte het alleen van deze naalden draaidiagrammen te verkrijgen, later konden deze ook van kristalstukken uit de smelt gemaakt worden, zoodat toen ook draaidiagrammen om andere assen ([100] en [010]) gemaakt konden worden. Getracht werd steeds een praeparaat te verkrijgen, welks samenstelling zoo dicht mogelijk in de buurt van de 50 mol % HgBr2 lag, teneinde de eventueele vorming van een verbinding HgClBr zooveel mogelijk te begunstigen. Wanneer men van de gesublimeerde naalden gebruik maakt moet men uitgaan van een mengsel, dat circa 65 mol % HgBr, bevat; dit werd door verschillende analyses bevestigd.

§ 2. Afmetingen der elementaircel.

Het bleek dat de diagrammen rhombisch geïndiceerd kunnen worden.

De identiteitsperiode langs de *c*-as werd op de gebruikelijke wijze gevonden uit het draaidiagram om [001], volgens de formule:

$$d=n\lambda \sqrt{1+\frac{r^2}{l^2}}$$

waarin d = identiteitsperiode, n = het getal der zone, $\lambda =$ de golflengte der Röntgenstralen (hier CuKa), r = de straal der camera (24,7 mm.) en l = de zonehoogte.

Aldus werd gevonden:

eerste zone : l = 9,8 mm. d = 4,18 Å.

De beide andere identiteitsperioden werden gevonden met behulp van een Schiebold-Sauterdiagram van den aeguator van het draai-

5

diagram om [001]. De dubbele afbuigingshoek volgt hierbij uit de formule:

$$tg \ 2 \vartheta = \frac{a}{r}$$

waarin r de afstand van het kristal tot de film (r = 3.5 cm) en a de afstand van een reflex tot het middelpunt van de film is.

Met behulp van de bekende formule van BRAGG: $n \lambda = 2 d \sin \vartheta$ kan vervolgens de identiteitsperiode berekend worden. Aldus werd gevonden:

Reflex	$a (\mathrm{mm})$	v	d	
200	19.1	$14\frac{1}{3}^{\circ}$	6.2	
400	54.0	$28\frac{1}{2}^{\circ}$	6.5	$a = \sim 6.5 \text{ \AA}$
040	21.0	$15\frac{1}{2}^{0}$	11.6	
080	56,1	29 °	12.7	b = ~ 12.5 Å

De gebezigde apparatuur was zeer primitief (uit meccano-onderdeelen samengesteld), zoodat de gevonden afstanden zeer ruw zijn.

Met de aldus gevonden ruwe waarden werd de formule:

$$10^{3} \sin^{2} \vartheta = \left(\frac{h^{2}}{a^{2}} + \frac{k^{2}}{b^{2}} + \frac{l^{2}}{c^{2}}\right) \frac{\lambda^{2}}{4}$$

(waarin h k l de indices der reflecteerende vlakken zijn) berekend en daarmede de lagere reflecties van het draaidiagram om [001] geïndiceerd.

Vervolgens werd door varieeren de meest passende formule gevonden en werden hieruit de nauwkeurige waarden voor de identiteitsperioden afgeleid. Zij luiden:

a = 6,78 Å b = 13,17 Å c = 4,10 Å.

De formule waarmede de reflecties geïndiceerd werden, luidt:

 $10^3 \sin^2 \vartheta = 12,9 \ h^2 = 3,42 \ k^2 + 35,3 \ l^2.$

Uit de gevonden identiteitsperioden wordt de verhouding der assen berekend als:

$$a:b:c=0,515:1:0,301.$$

§ 3. Aantal moleculen per elementaircel.

Daar de elementaircel van het β -Hg(Cl,Br)₂ slechts weinig in grootte verschilt met die van HgCl₂ en HgBr₂, ligt het voor de hand, dat zij evenals de beide laatstgenoemden vier moleculen bevat. De Röntgenographisch gevonden dichtheid is 5,62.

§ 4. Vaststellen van de ruimtegroep.

Uit de tabellen 11 tot 13 blijkt de indiceering der draaidiagrammen om de assen [100], [010] en [001]. Het blijkt dat nagenoeg alle reflecties vertegenwoordigd zijn, alleen de oneven ordes van h00, 0k0 en 001 ontbreken. Aangezien omtrent de makroskopische kristallographische gegevens van de β -modificatie niets bekend was, moest bij het bepalen van de ruimtegroep met de geheele rhombische klasse rekening worden gehouden. Indien men aanneemt dat de gevonden regelmatigheid vereischte is, komt alleen de groep $P2_1 2_1 2_1$ (V⁴) in aanmerking; neemt men echter aan, dat deze regelmatigheid geheel of ten deele aan toevallige waarden der parameters te danken is, dan komen bovendien de groepen $P2 2 2 (V^1)$, $P2 2 2_1 (V^2), P2_1 2_1 2 (V^3), Pm m m (V_h^1), Pm m (C_{2v}^1)$ in aanmerking. Men moet dan echter steeds minstens een der parameters zoo kiezen, dat alle atomen in pinakoidvlakken komen te liggen, welke op den halven elementairafstand van elkaar liggen. Dit zou medebrengen dat in een der richtingen de reflecties met indices 0 - 2 - 4 etc. of 1 - 3 - 5 etc. hetzelfde intensiteitsverloop moeten vertoonen, zooals dit bijv. bij $HgCl_2$ met de reflecties (*hkl*) en (h + 2, kl) het geval is. Hiervan nu is niets te bespeuren. Als eenig mogelijke ruimtegroep blijft dus over P212121, zoodat de β -modificatie tot de rhombisch-bisphenoidische klasse behoort.

§ 5. Bepaling der coördinaten.

In de ruimtegroep $P2_1 2_1 2_1$ is slechts één viertallige coördinatencombinatie mogelijk:

Deze leidt tot de volgende formule voor den structuurfactor:

$$S = \Sigma F \left\{ 4 \cos 2\pi \left(\frac{k-h}{4} + hx \right) \cos 2\pi \left(\frac{l-k}{4} + ky \right) \times \right.$$
$$\times \cos 2\pi \left(\frac{h-l}{4} + lz \right) - 4i \sin 2\pi \left(\frac{k-h}{4} + hx \right) \times \\\times \sin 2\pi \left(\frac{l-k}{4} + ky \right) \sin 2\pi \left(\frac{h-l}{4} + lz \right)$$

waarin F de atoomfactor van Hg, Cl, of Br is. Voor de 4 moleculen, die de elementaircel bevat, moeten 3 stel combinaties van 3 parameters aangegeven worden, zoodat in het geheel 9 parameters bepaald moeten worden (voor Hg, voor Hal–1 en voor Hal–2). Het schier onbegrensd aantal mogelijkheden dat hierbij opdoemt kan door de volgende overwegingen aanzienlijk beperkt worden.

Allereerst valt het op, dat de volgorde der reflecties 0k0 geheel overeenkomstig die van HgCl₂ is:

	β -Hg (Cl, Br) ₂	HgCl ₂
020		
040	zz	m
060	-	
080	S	zs
0.10.0	-	!
0.12.0	zz-z	zm

Dit wijst erop dat de *y*-parameters nagenoeg dezelfde zijn als de *u*-parameters van HgCl₂, t.w.

$Y_{ m Hg}$	=	±	38
Y_{Hal_1}	=	±	$\frac{1}{2}$
$Y_{ m Hal_2}$	=	±	$\frac{3}{4}$

(Aangezien het broomatoom sterker verstrooit dan het chlooratoom is de verhouding 040 : 080 bij β -Hg(Cl,Br)₂ kleiner dan bij HgCl₂).

Vervolgens valt het op, dat de coördinaten van β -Hg(Cl,Br)₂ voor het geval dat x = 0 overgaan in die van HgCl₂:

x	y	z	0	и	v
$x + \frac{1}{2}$	$\frac{1}{2} - y$	z	$\frac{1}{2}$	$\frac{1}{2} - u$	v
\overline{x}	$y + \frac{1}{2}$	$\frac{1}{2} - z$	0	$u + \frac{1}{2}$	$\frac{1}{2} - v$
$\frac{1}{2} - x$	$\overline{y} z +$	$\frac{1}{2}$	$\frac{1}{2}$	ū	$v + \frac{1}{2}$

Dit wekt tezamen met de gesignaleerde overeenkomst der *y*-parameters het vermoeden, dat mogelijkerwijs de projecties loodrecht op de *x*-as bij beide kristallen elkaar gelijken. In tabel 10 zijn de overeenkomstige (0kl)reflecties der beide kristallen met de waargenomen intensiteiten naast elkaar geschreven. De overeenkomst is duidelijk; de geringe verschillen kunnen hun oorzaak vinden 1⁰. in de veel sterkere verstrooiing van het broomatoom t.o. van het chlooratoom en 2^{0} . in kleine wijzigingen van de parameters. De gedetailleerde berekeningen waarvan het resultaat in tabel 13 te

D 0	Inten	siteit	D	Inter	isiteit
Reflex	HgClBr	HgCl ₂	Reflex	HgClBr	HgCl ₂
011	m—ms	ms	0.10.0		
021	z	z	033		zz
040	zz	z—zm	082	m	zm
031	ms—s	ms	043		
041	ZZZ	14 GC -	0.10.1	z	zz
060	1	, d. a.	053		z
051	§ ms—s	1	092		
002	1	\ • • •	063	S	ms
012	∫ ^{zm}		0.11.1	zm	zm
022	z—zm	ZZ	0.10.2)	- <u>^</u>
061	zzz	- 1	073	\$ ^{2m}	zm
032	S	m	0.12.0	zz—z	zz—z
042	S	zs	0.12.1	1 -	
071	z	zm	083	ý ^{zm}	
080	s	m	0.11.2)	z
052	ms—s	zm	004	ms	.
081			014)	zm
062	zz—z		024		
072	zz—z	ZZ	093	2	ZZ
091)	zm	034) s	zm
013	j s	zm	0.13.1	2	(niet vrij)
023	ms	m—ms	044	§ 2m	
					1

TABEL 10.

Vergelijking van de intensiteiten der reflecties 0kl bij HgCl₂ en β -HgClBr.

vinden is, wezen inderdaad uit dat de beste overeenkomst met de waargenomen intensiteiten verkregen wordt door kleine wijzigingen van de parameters van het HgCl₂. De overeenkomst van de beide projecties wordt daardoor echter niet aangetast.

De eerste conclusie is dus dat we te doen hebben met een $HgCl_{2}$ structuur welke in de richting der *x*-as gedeformeerd is.

Teneinde de aard van deze deformatie vast te stellen kunnen we uitgaan van een projectie der HgCl_2 -structuur loodrecht op de c-as (zie fig. 18).

Fig. 18.

- a: Projectie \perp c-as voor HgCl₂ (verticale moleculen) en β -Hg(Cl,Br)₂ (hellende moleculen).
- b: Doorsnede \perp b-as ter halver hoogte van de cel, aangevende de geringe bewegelijkheid der atomen X_1 .

Het blijkt dan dat de coördinaten van het eerste stel halogeenatomen slechts weinig in de x-richting varieeren kunnen, daar steeds 2 halogeenatomen naar elkaar toe bewegen en de afstand tusschen twee halogeenatomen (4.0 Å) slechts weinig grooter is dan de dubbele straal van het Cl'-ion of het Br'-ion volgens GOLDSCHMIDT (3.6 resp. 3.9 Å; de afstand Cl–Cl in HgCl₂ bedraagt 3.4 Å, de afstand Br–Br in HgBr₂ 3.7 Å). Daarentegen kunnen de coördinaten van de kwikatomen en die van het tweede stel halogeenatomen aanzienlijk varieeren zonder dat men op bezwaren van ruimtelijken aard stoot. We moeten dus in de eerste plaats trachten den x-parameter van het kwik ongeveer vast te leggen; de x-parameter van het halogeen–1 volgt uit bovengenoemde ruimtelijke overweging, terwijl die van het halogeen–2 hoogstwaarschijnlijk zoodanig met X_{Hg} samenhangt, dat het molecule HgX₂ gehandhaafd wordt.

Uit de intensiteiten (zie tabel 11) vinden we:

120,160	$\cos x \sim s$	
200,240	$\cos 2x \sim z$	
320,360	$\cos 3x \sim o$	
400,440	$\cos 4x \sim zm$	

Hierbij is telkens de intensiteit van (hk0) met die van (h(k + 4)0) vergeleken, teneinde den eventueelen invloed van de halogeenatomen zooveel mogelijk uit te schakelen. Deze invloed is bijv. bij de paren 200, 240, en 400, 440 duidelijk te zien: bij 200 en 440 werken de halogeenatomen met het kwikatoom samen, bij 240 en 400 werken zij het kwikatoom tegen. De intensiteit van het kwikatoom alléén moet dus ongeveer in het midden liggen. Dat 120 en 160 beide sterk zijn wil dus zeggen, dat hier ôf de beide halogeenatomen elkaar tegenwerken, ôf dat de intensiteit van het kwikatoom overheerscht, zoodat het mee- of tegenwerken der halogeenatomen er weinig toe doet.

Uit het tabelletje zien we dat x een der volgende waarden moet hebben:

 $\sim 30^{\circ}$ $\sim 150^{\circ}$ $\sim 210^{\circ}$ $\sim 330^{\circ}$

De beide middelste waarden stooten op bezwaren van ruimtelijken aard, doordat in dit geval de afstand Hg-Hal-1 ~ 1.9 Å zou worden, wat met de voor HgCl₂ en HgBr₂ gevonden afstanden moeilijk in overeenstemming te brengen is. De eerste en de laatste waarden geven structuren, die elkaars spiegelbeeld zijn; voor het verdere zal dus alleen rekening gehouden worden met het eerste geval.

De positie van het tweede halogeenatoom is niet zoo eenvoudig

Projectie 1 a-as

Projectie 1 c-as

Projectie \perp *b*-as Fig. 19. Elementaircel van β -HgClBr.

te bepalen. Nemen we aan dat het molecule nagenoeg recht zal zijn evenals in $HgCl_2$ en $HgBr_2$ dan moet X_{Hal_2} ongeveer 300° zijn; houden we ook rekening met een hoekig molecule, dan kan X_{Hal_2} elke waarde hebben tusschen circa 240° en circa 60°, bij een ongeveer normale waarde van den afstand Hg-Halogeen.

Gedetailleerde berekeningen toonden aan, dat X_{Hal_2} inderdaad in de buurt van de 300° moet liggen, zoodat het rechtlijnige molecule klaarblijkelijk gehandhaafd blijft. De berekeningen leidden tot de volgende meest waarschijnlijke waarden voor de parameters:

$X_{\rm Hg} = 31^{\circ} \pm 3^{\circ}$	$Y_{\rm Hg} = 134^\circ \pm 1^\circ$	$Z_{\rm Hg} = 20^{\circ} \pm 5^{\circ}$
$X_{\rm Hal_1} = 0^\circ \pm 10^\circ$	$Y_{\rm Hal_1} = 180^{\circ} \pm 3^{\circ}$	$Z_{\mathrm{Hal}_1} = 150^{\circ} \pm 15^{\circ}$
$X_{{ m Hal}_2} = 300^{\circ} \pm 10^{\circ}$	$Y_{\mathrm{Hal}_2} = 262^\circ \pm 3^\circ$	$Z_{\mathrm{Hal}_2} \equiv 290^\circ \pm 15^\circ$

De met behulp van deze parameters berekende intensiteiten vindt men in de tabellen 11 tot 13 weergegeven, terwijl de projecties van de gevonden structuur langs de hoofdassen in fig. 18 zijn afgebeeld. Draaidiagram om de as [001]

TABEL 11. Koperstraling Ka

 β -Hg (Cl, Br)₂

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^{3} \sin^{2} \frac{9}{2}$	Reflex	Intensiteit	Foto-	-	Intensiteit berekend				
in m.m.	2 gevonden	berekend	hkl	geschat	gram		а		b		с
	a spirite and	14	020			6		5		0	
		16	110			22		25		23	
8.3	27	27	120	S	78	141		151		146	
10.6	44	44	130	zm	13	9		19		14	
11.2	51	52	200	z—zm	36	20		62		38	
11.9	57	55	210	2	100	214	193	140	\$ 125	175	\156
		55	040	§ s	109	214	1 21	143	1 18	1/5	(19
12.9	67	66	220 ·	2	40	25	5 25		5 44	24	\$ 34
		68	140	§ - m =	40	25	1 0	44	1 0	24	1 0
14.4	83	83	230	z	29	13		36		23	
15.8	99	99	150	m	43	51		30		40	
16.5	108	107	240	zz—z	16	37	141	3		16	
17.5	121	119	310	1	70	70	(79	01	j 79	02	1 79
		123	060	б ш	12	19	(0	91	1 12	02	1 3
	1	130	320			0	1	0		0	
18.7	137	136	160	1	156	1.9.4	ý157	182	§ 132	101	(144
	ų.	138	250	§ 45	150	101	(27	102	1 50	101	1 37
19.4	147	147	330	ms	92	85		85		85	
21.4	176	171	340	1	46	22	16	26	1 1	20	1 3
		175	260	§	10	25	(17	50	(35	20	1 25
21.7	181	181	170	m	61	67		39		52	
23.1	203	202	350	m	75	56		56		56	
23.6	212	206	400	2 -	20	34	ý 24	20	5 4	30	1 12
		209	410	5 2	23	51	(10	50	(26	50	(18
24.1	220	219	080) -			(116		(138		(127
		220	270	s	195	204	3 70	220	\$ 51	211	3 60
	1 I.	220	420	1		1.15	(18		31		(24
		232	180	5 C.	2 A.	11		5		8	
25.2	239	237	360)	66	108	5 14	64	5 4	84	\$ 8
		239	430	5	00	100	(94	01	(60	01	1 76
26.5	261	261	440	m ·	51	38		93		63	
27.0	270	271	280	m	49	35		79	10 1 0 -	55	
27.8	285	284	370	ms	85	73	-	73	11.1	73	
										N. D	

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Reflex Intensiteit		Foto- Intensiteit berekend						
in m.m.	2 gavonden	2 berekend	hkl	geschat	gram		a		Ь	-	с	
	gevonden	Derekend		_		_						
28.2	291	290	190)	70	74	6 0	67	5 3	70	5	1
		292	450	V ms	19	11	(74	07	1 64	15	1	78
30.2	330	326	510)			(13		(11		1	12
		329	290	ms	116	92	73	89	63	90	1	68
		329	460	1		- 6 ⁻ -	6	1 I I	15		1	10
30.6	337	335	380	1	127	112	13	96	1 3	103	ş	7
		337	520	5	121	112	(99	50	(93	100	t.	96
		342	0.10.0			4		15		8		
31.6	356	354	530) zm-m	44	68	(23	76	15	72	5	19
		355	1.10.0	1			(45		(61		1	53
32.5	374	374	470	ZZ	8	13	§ 10	20	19	17	5	15
		378	540	1			(3		(1	1.71	4	2
33.5	394	393	390	z-zm	29	35	34	43	\$ 34	38	1	34
		394	2.10.0	12			(1		(9			4
		409	550	denistra i	- 1 - A	0		4		2	t,	11
34.9	421	425	480	/ zz	- in 1	23	1 22	12	4	15	1	11
		427	1.11.0	1	20	54	(° 1	66	(0	60	6	4
36.1	445	446	560	zm	39	54	, e 14 5	00		00		
		458	3.10.0			9		1	1.10	4		10
37.1	466	464	600	1			10	20	1 10	20	1	10
		466	2.11.0	ZZ	23	31	1.20	52	1 21	32	1	21
		46/	610				1 1		1	0	Å	1
	400	4/8	620		21	2		25		22		
38.2	400	401	570	z	51	29	1 0	55	1 4	52	r	2
38.5	191	402	0.120	11 -	28	33	1 33	21	17	26)	24
	1.15	405	630	\ <u>`</u>	20	55	1 0		1 0		1	0
20.0	504	505	1 12 0	777	1	0	v v	i na		0	- 35	Ŭ
39.0	520	510	640	mee	113	187		196		191		
39.0	520	530	311.0		62	61		61		61		
10.2	520	3.50	3.11.0	2111-111	02	01		01		01		
		20	011			38		42		41		
<i>5</i> 0	40	30	101	3		30	1 5	-13	1 26	-11	0	13
5.8	48	10	021	m		28	1 22	42	1 16	33	1	20
1.6	162 B	49	021	2			23		10 10		10	20

TABEL 11 (vervolg).

TABEL 1	1 (vervol	g)
---------	-----------	----

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit Foto-			Int	ensite	it bere	kend	
in m.m.	gevonden	berekend	hkl	geschat	gram		a		Ь		с
6.4	51	51	111	m		46		15		28	
8.2	60	62	121	ms		68	. 4	73		70	
8.9	65	66	031	m	. 65	45		41		43	
10.8	79	79	131	s		133		157		143	
11.8	87	86	201	m		53		57		55	
12.2	91	89	211	1		22	\$ 26	077	\$ 25	20	1 26
3 • • • •		90	041	§ m		33	1 7	27	1 2	30	1 4
13.4	102	101	221	1		10	\$ 1	-	5 3	10	5 2
E _ []		103	141	∫z—zm		19	1 18	4	1 1	10	1 8
14.9	117	118	231	1		05	\$ 37	71	\$ 27	70	\$ 32
15.3	121	121	051) ms		60	1 48	/1	1 44	/8	1 46
16.3	133	134	151	mss		79		106	<u>×</u>	90	100
17.1	142	142	241	ZS		120		112		115	
17.8	150	151	301	zz		18		14		16	
18.7	162	154	311	2		13	§ 13	27	5 24	10	\$ 18
- <u></u>		158	061	<u>۲</u>		13	10	21	1 3	19	1 1
19.1	167	165	321	ms		138		131		130	
19.5	173	171	161) me		51	\$ 36	66	\$ 49	57	ý 42
		173	251)		51	(15	00	1 17	51	(15
20.3	184	182	331	z		7		14		10	
21.9	206	203	071)		67	§ 21	66	j 23	67	5 23
		206	341) m		07	(45	00	(43	0/	(44
		210	261			16		8		12	i .
22.4	214	216	171	zm		32	- -	16		23	
23.9	236	237	351)			(11		(18		(14
24.3	242	241	401	m		72	{ 44	80	{ 41	76	{ 43
		244	411	1		1	(17		(21		(19
25.1	255	254	081)			6		(1	-	(3
		- 255	271	z		26	{ 11	17	\$ 10	21	\$ 10
		255	421)			(9		(6	1	(8
25.9	268	267 ·	181	z		17		36		25	
26.3	273	272	431	2 .		120	ý 17	124	\$ 18	120	5 18
		274	361) I .		120	(103	121	(106	120	(102
27.5	294	296	441	m		64		67		65	

75

TABEL 11 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit	Foto-		Inte	ensitei	it berel	cend	
in m.m.	gevonden	2 berekend	hkl	geschat	gram		а		Ь		с
28.3	308	306	281	ms		80		77		79	
28.7	314	312	091	z		33		33		33	
		319	371			6		14		9	
29.3	325	325	191	1		07	\$ 50	41	5 14	60	\$ 29
		327	451	§ m =		-07	(37	41	1 27	00	(31
31.4	363	358	501)			(8		(1		(3
		361	511	(116) 70	115	89	111) 77
		364	291	ms		110	38	115	23	111) 30
		364	461	-)			(0		(2		(1
32.1	375	370	381	1 -		27	53	34	§ 5	30	1 4
		372	521	1 2		21	(24	51	(29	50	(26
		377	0.10.1			26		12		18	
33.0	392	389	531	1 m		60	ý 30	43	13	50	\$ 20
		390	1.10.1)		00	(30	15	(30	50	(30
34.0	411	409	471	1 m		44	ý 31	52	\$ 20	47	\$ 26
		413	541)			(13	52	(32		1 21
35.0	428	428	391	/ zm		13	$\int \Pi$	20	5 17	16	1 14
		429	2.10.1	1 2		10	(2		(3		1 2
36.2	451	444	551	(zm		33	\$ 21	20	8	25	1 13
		449	0.11.1)			(12		! 12		(12
36.7	461	460	481	1 5		122	59	145	60	133	59
		462	1.11.1	12			1 63		1 85		1 74
37.9	483	481	561	z .		21		24		22	
38.4	493	493	3.10.1	ms		76		81		78	
38.8	500	499	601)	e 1		10		10		10
		501	2.11.1	m—ms		81	34	62	19	71	26
		502	611				(47		(43		(45
	1.10	513	621	1		4		7		5	
		518	491			17		15		15	
40.2	526	526	571	1)			63		(79		(70
		527	0.12.1	ms		98	8	112	\$ 2	104	5
		530	631)	-		(27		(31		(29
	R.	540	1.12.1			4		1		3	

Draaidiagram om de as [010]

TABEL 12. Koperstraling *K*α

76

 β -Hg (Cl, Br)₂

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex Intensiteit		Intensiteit berekend						
in m.m.	2 gevonden	2 berekend	hkl	geschat		а		b		с	
	52	40	101		10		50		01		Ŧ
11.5	53	48	101	z	10		52		26		
11.9	- 57	53	200	zm	20		62		-38		
= 15.3	93	88	201	S	106		114		110		
19.3	145	140	002	zm—m	12		29		20		
20.3	160	153	301	ms	66	\$ 36	50	38	58	5	32
		153	102)		(30		(22		1	26
22.8	198	193	202	m	41		26		33		
23.9	216	209	400	z	24		4		12		
25.9	251	244	401	ms	88	8. 3	82		86		
26.6	263	258	302	m	51		51		51		
30.3	331	328	103	zs	113		126		120		
		349	402		7		13		10		
		362	501		16		2		6		
32.4	372	368	203	zm	37		27		32		
		433	303		6		1		1		
		468	502	1	10	1 2		(5		6	3
		471	600	Š.	12	(10	15	1 10	13	1	10
		506	601		1		1		1		
14 A 14		524	403		5		10		8		
		559	004		4		0		1		
		572	104		7		14		10		
44 4	612	611	602	3		1 77	-	1 45	10	1	60
	012	612	204	zm	81	1 4	55	1 10	67	3	7
	1.15	643	503		24	1 - T	16	1 10	20		1
47.6	675	677	701	5 · · · ·		0	10	1 1	20	6	2
17.0	0/5	677	304	m	81	1 72	73	72	75	3	72
	14 G (0/7	301		(12	e n j	(12	÷.	A.	12
9.8	43	38	011	m	38	1	43		41		
11.4	57	51	111	7	46		15		28		
11.9	61	56	210	s	97	12 C	63		78		
15.4	98	91	210	m	26		25		26		
17.8	120	121	310	mm	40		40		40		
17.0	129	121	510	m-ms	UL		UF		40		

Afstand	$10^{3} \sin^{2} \frac{3}{2}$	$10^{3} \sin^{2} \frac{9}{2}$	Reflex	Intensiteit	Intensiteit berekend			end		
in m.m.	gevonden	berekend	hkl	geschat		а		b		с
		143	012		5		0		2	
20.3	163	156	311	land.	60	§ 13		\$ 24	70	18
		156	112	∫ ^{ms—s}	60	(47	57	(33	58	! 40
22.9	203	196	212	ZZ	4		21		10	
24.0	221	212	410	zz	5		13		9	
26.0	255	247	411	zz—z	17		21		19	
26.7	267	264	312	m	38		36		37	
29.8	324	318	013	z	17	- 1	11		14	
30.5	337	331	510	1	62	5 7	61	6	60	\$ 6
		331	113	\ ^m ─ms	05	1 56	- 01	1.55	60	1 54
31.6	358	352	412	ms	78		77		76	
32.4	373	366	511	1	06	§ 70	110	\$ 89	104	ý 77
		371	213	1 ms	90	(26	110	1 29	104	(27
35.8	440	436	313	zm	37		42		39	
37.5	474	474	610)	14	50	10	10	17	50
		471	512	1 22	14	14	10	(18	17	1 17
39.5	514	509	611	zm	47		43		45	
40.3	530	527	413	zz—z	32		28		30	
42.0	564	562	014	zz	21	. P	20		21	
42.6	578	575	114	zz	19	A	25		22	
44.7	617	614	612	1	40	\$ 31		\$ 54	~ 1	(41
		614	214	§ ^{zm}	48	1 17	66	(12	54	(13
		45.9				111				
6.1	29	27	120	S	70		- 75		73	
9.8	53	49	021	z	23	1.1	16		20	
11.4	65	62	121	S	68		63		70	
12.0	71	67	220	z—zm	12		22		17	
		102	221		1		3		2	
		132	320		0	6 6	0		0	
19.5	158	154	022	z	8		1		4	
20.4	171	167	321	1	010	(138		(131		(130
		167	122	S zs	213	1 75	199	1 68	201	1 71
23.1	212	207	222	m	44	6 J 1	42		43	
	1 m 1									

TABEL 12 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit		Inte	ensite	it berek	tend	
in m.m.	gevonden	berekend	hkl	geschat		а		Ь		с
24.2	229	223	420	z	9		15		12	
26.3	265	258	421	zz	9		6		8	
		272	322		2		1		2	
30.2	334	329	023	m	33		37		35	
30.9	348	342	520	1	54	1 49		1 46	50	1 48
	. — F.	342	123	∫ ^m	54	1 5	22	19	55	(5
32.0	368	363	422	zm—m	35		31		33	
32.7	382	377	521	2	47	(24	40	5 29	477	5 26
		382	223	·{ ^{zm} —m	-17	(23	40	(19	47	(21
36.2	449	447	323	m	40		38		39	
38.0	485	482	522	1	20	1 38	4.4	§ 41	20	\$ 39
		485	620	́м т	39	1 1	44	1 3	39	10
		520	621		4		7		5	
40.7	538	538	423	z	18		18		18	
		573	024	- -	8		10		9	
		586	124		6		2		4	
45.2	624	625	622	1	76	ý 10	72	5 2	72	16
		626	224	5-	10	(66	12	(70	12	(66
46.8	654	656	720	1	33	j 28	24	ý 26	22	ý 27
		657	523	§ - 2m		1 5	51	18	32	1 5
48.8	691	691	721	1	20	(29	22	(32	21	1 31
		691	324	ý ^{zm}	29	10	32	10	51	10
53.8	776	782	424	ms	37		46		41	
54.9	794	796	722	1	04	(23	70	(24	01	(23
		800	623	§ ms	01	1 61	19	(55	01	1 58
6.0	44	44	130	zm	5		10		7	
9.8	66	66	031	ms	45		41		43	
11.5	79	79	131	zs	133		157		143	
12.0	84	84	230	ZZ	7		18		12	
15.6	121	119	231	m—ms	37		27		32	
18.2	152	149	330	ms	43	'	43		43	
19.8	173	171	032	ms	26		52	i i	38	
	1 1 1 1 I						1.11	1	1	(

TABEL 12 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit		Inte	nsitei	t berek	end	
in m.m.	gevonden	berekend	hkl	geschat		a		Ь		с
20.8	187	184 184	331 132	/ ms	46) 7 39	48) 14 (34	46	10
23.5	227	224	232	s	94		93		92	
24.6	244	240	430	m	47		30		38	
26.7	279	275	431	z	17		18		18	
27.5	292	289	332	m	39	. 1	38		38	
		346	033		2	-	4		3	
31.5	364	359	530	1	15	12	12	5 8	12	5 10
		363	133) z	15	1 3	12	1 4	12	1 2
		380	432	0	3		11		5	
33.5	400	394	531	1	56	\$ 30	44	5 13	40	\$ 20
		399	233	уш	50	1 26	11	(31	19	(29 .
37.0	466	464	333	zm	31	. II	37		33	
38.8	500	499	532	1	10	§ 19	10	19	10	19
		502	630	122-2	19	10	19	1 0	19	10
41.0	543	537	631	zz—z	27		31		29	1 - 1
41.7	555	555	433	zm	31		28		30	
43.5	589	590	034	ms	41	(B.	44		42	
44.2	601	603	134	ms	42		32		37	6 E
46.3	641	642	632	1	21	5 11	24	5 1	21	\$ 5
		643	234	§ 2m	21	(10	21	1 23	21	1 16
48.1	673	673	730	1	46	§ 18	25	§ 11	30	<u>§</u> 14
		674	533	5 2111	10	(28	35	1 24	55	1 25
9.7	93	90	041	ZZ	7		2	1	4	
11.5	106	103	141	z	18		1		8	4
12.1	112	108	240	zz	18		1		8	
15.8	147	143	241	ZS	120		112		115	
		173	340		3		0		1	
20.3	200	195	042	S	80		55		66	
21.3	214	208	341	1	56	1 46	56	§ 44	56	5 45
		208	142	§ ms	20	1 10	50	(12	50	(11
		248	242	, 4	5		11		8	
	A 19781	d l				1		1	1	-

TABEL 12 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^{3}\sin^{2}\frac{9}{2}$	Reflex Intensiteit			Intensiteit berekend					
in m.m.	gevonden	berekend	hkl	geschat		а		Ь		с	
25.2	268	264	440	m	19		46		31		
27.4	303	299	441	ms	64		67		65		
28.2	316	313	342	ms	50		47		48		
		370	043	1° 6, °	0		0		0		
32.3	385	383	540	1	27	1 3	18	$\int = 1$	22	5 2	
	the second	383	143	1 2	21	(24	10	(17	22	1 20	
33.6	408	404	442	zm	38		37		37		
34.5	424	418	541	1 -	18	\$ 13	43	\$ 32	28	5 21	
		423	243	<u>)</u> . "	10	1 5	15	(11	20	(7	
		488	343		1		1		1		
40.4	528	523	542) .	105	§ 12	106	5 8	105	§ 10	
		526	640)	105	(93	100	(98		(95	
		561	641		3		1		2	26.5	
43.3	580	579	443	z	34		22	-1-1	28		
	1	614	044	1.54.4	0		7		3		
45.9	625	627	144	ms	47		30		38		
48.3	665	666	642)	23	\$ 16	42	\$ 30	32	\$ 23	
		667	244	1 2111	2.5	(7		(12	52	1 9	
50.1	695	697	740	1.	79	$\int 1$	89	50	85	j 1	
•		698	543) "		(78		1 89		(84	
52.2	727	732	741	1 .	74	5 4	84	1 16	78	1 9	
	1.1	732	344	5	11	1 70		(68		1.69	
								145			

TABEL 12 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{-10}$	$10^{3} \sin^{2} \frac{9}{2}$	Reflex	Intensiteit	Intensiteit berekend					
in m.m.	2	2	hkl	geschat			b		C	
_	gevonden	Derekend							-	
10.1	41	38	011	m—ms	76		86		82	
11.5	53	49	021	z	46		32		40	
12.1	59	57	040	zz	21	I.	18		19	
13.3	71	67	031	ms—s	90	1. D	82		86	
15.5	95	92	041	zzz	14	e e pi	4	i na	8	
18.0	127	124	051	1	06	<u>(</u> 96	100	(88	05	(92
	1. 1. 20	127	060	sms—s	96	10	100	(12	95	13
19.2	144	141	002	5		112	20	(29	24	(20
	ern al	144	012	ý ^{zm}	22	(10	29	10	24	14
20.2	158	155	022	z—zm	16	1.4	2		8	
20.6	164	162	061	zzz	0		6		2	
21.4	176	173	032	s	51		104		75	
22.9	200	198	042	S	159		110		133	
23.5	210	208	071	z	42		44		43	
24.5	227	225	080	S	116	~ 10	138		127	
24.7	230	229	052	ms—s	57		90	5 N	73	
		260	081		12	1 - 1 in	2		6	
27.0	270	268	062	zz—z	13		4		8	
29.5	316	314	072	zz—z	23		3		11	
29.7	320	320	091)		(78	100	\$ 78	100	(78
	1.11	321	013	j s	112	1 34	100	1 22	106	1 28
30.4	333	332	023	ms	66		74	(En	70	111
		352	0.10.0	2	7	(4		(15	12	18
	1.1	350	033	- F	- 1	13	22	17	15	1 5
32.1	366	366	082	m	38		50		44	
		375	043		1	1.1	0	n i nati	0	
33.1	386	387	0.10.1	z	48		23		35	
		406	053	-	6		10	1.	8	h Se
		426	092		1		0	TH S	0	
36.0	443	444	063	S	115		88		101	1.22
36.8	460	461	0.11.1	zm	24		24		24	1.11
					-	e 11				
	199									

Afstand	103 sin2 9	$10^{3} \sin^{2} \frac{9}{2}$	Reflex	Intensiteit	it Intensiteit berekend					
in m.m.	gevonden	2 berekend	hkl	geschat	а		Ь			2
38.1	486	493	0.10.2	{ zm	19	4	16	5	17	(4 / 13
38.0	502	506	0.12.0	zz—z	27	. 15	13		20	1
40.6	537	541	0.12.1	a		1 22	10	\$ 8		14
10.0	551	543	083	zm	46	24	19	1 11	31	1 17
41.9	563	567	0.11.2	1	– – K	1 27		61	- 1	(43
128		565	004	ms	73	4	101	20	86	{ 1
	1 - C.	568	014)		42		(40	I	(42
		579	024		16		20		18	
43.3	591	603	093	2	00	(17	102	15	100	(16
		597	034	j s	99	(82	105	1 88	100	(84
45.0	624	630	0.13.1):	40	1 48	64	\$ 49	54	5 48
		622	044	∫ ^z —zm	19	1 1	01	1 15	51	1 6
46.0	644	647	0.12.2	zm—m	39		41		40	
	i.						1		F	
3.0	19	16	110	zm	11		13		12	
6.1	30	27	120	ms—s	70		75		73	
9.1	47	45	130	ZZ	5		10		7	
9.7	52	48	101	ZZ	5		26	$a, J \in$	13	22
10.2	56	51	111	z	46		15		28	
11.5	66	62	121	ms	68		73		70	
		69	140		0		0		0	
13.4	85	80	131	zs	133	-	157		143	1 B 🔤
15.2	104	101	150	z	26	-	15		20	
15.5	107	104	141	ZZ	18		1		8	
18.1	139	136	151	ZS	79	-	106		90	1.5
18.5	145	139	160	m	79		66		72	
19.5	159	154	102	ZZ	15		11		13	
19.7	161	157	112	m	47		33		40	
20.5	173	168	122	ms	75	1 n	68		71	
20.9	179	174	161	m	36		49		42	
21.5	188	185 186	170 132) m—ms	73	(34)	54) 20 34	62	(26 (36

TABEL 13 (vervolg).

TAPET	12	(manuala)
TABEL	13 1	(vervolg)

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^{3} \sin^{2} \frac{9}{2}$	Reflex	Intensiteit Intensiteit berekend								
in m.m.	2 gevonden	2 herekend	hkl	geschat	а		geschat a			ь		с
	gevonden	Derenena			1				_	<u> </u>		
23.2	214	210	142	= zz	10		12		11			
23.8	224	220	171	Z	32		16	1.00	23			
		238	180		6		3		4			
25.1	245	242	152	zz—z	18		24	ų – 1	21			
27.0	277	273	181	zz—z	17		36	5.0	25			
27.3	283	280	162	m	33		43	1. P.,	37			
		297	190		0		1		0			
		326	172		16		19		17			
30.1	332	331	191	3		(50		(14		(29		
		331	103	zs	163	\$ 57	132	63	143	60		
		334	113)	- 1	(56		(55		(54		
30.7	344	345	123	ZZ	5		9		5			
31.7	362	363	1.10.0	1	26	§ 23	25	ý 31	20	\$ 27		
	1	363	133	§22—2	20	13	35	1 4	29	1 2		
32.5	378	379	182	zz—z	8		10		9			
33.0	387	387	143	z	27		17		20			
33.5	397	399	1.10.1	z—zm	30		30		30			
34.5	416	419	153	zz—z	6	16	6		5			
35.5	435	437	1.11.0	2	47	10	36	1 4	40	5 2		
		438	192	f ms	-1/	(47	50	(32	10	1 38		
36.5	454	457	163	zz—z	14		17		14	й Ка		
37.3	471	472	1.11.1	ms	63		85		74			
38.9	503	503	1.10.2	m_ms	102	§ 61	02	5 46	96	\$ 53		
		503	173	1 m ms	102	(41	52	1 46	50	1 43		
		517	1.12.0		0		0		0			
41.4	551	552	1.12.1	1 ms	77	5 4	00	51	84	1 3		
	ll.d• . • .• •	556	183	5 1115		173	50	(89	01	1 81		
42.5	573	578	1.11.2)		(40		(34	1	(32		
		578	104	m	63	3 4	56	3 7	59	3 5		
		581	114)		(19		(15		(22		
					-	1.1		1.51		6.E.,		
0.8	55	55	210	zs	97		63		78			
5.6	67	66	220	m	13	1	22		17			

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^{3} \sin^{2} \frac{9}{2}$	Reflex	Intensiteit	Intensiteit berekend					
in m.m.	2 gevonden	2 berekend	hkl	geschat		a		Ь		с
	gevonden	Derentina				-			-	
9.2	85	84	230	ZZ	7		18		12	
9.7	89	87	201	m—ms	53	1.416	57		55	
10.2	92	90	211	m	26		25		26	
	1.1.1	101	221		= 1		3		2	
12.4	110	108	240	ZZ	19		2		8	
13.6	121	119	231	m	37		27		32	
15.7	142	140	250	m ?	14		25		19	
16.0	145	143	241	ZS	120		112		115	
19.0	181	175	251	1	24	§ 15	25	\$ 17	28	\$ 15
	a	178	260	∫ ^{zm—m}	21	19	35	(18	20	1 13
20.1	195	193	202	1	25	§ 21	34	5 13	27	5 17
	l le sur	196	212	б ш	23	(4	51	(21	21	1 10
21.2	209	207	222	m—ms	44		42		43	
21.6	214	213	261	z	16		8		12	
22.5	228	224	270	1	120	ý 35	110	§ 26	122	\$ 30
	L .	225	232	1 28	129	(94	115	(93	122	1 92
24.1	251	249	242	ZZ	5		11		8	
24.7	260	259	271	ZZ	11	1.5.3	10		10	- în
25.9	278	277	280	zm ?	18		40		28	
26.1	281	281	252	S	80		83		79	
28.0	311	312	281	S	80		77		79	
28.5	320	319	262	m	48		40		44	
29.5	336	336	290	m	37	1.14	32	1	34	
	i and i	365	272		6	1.00	15		10	
31.5	371	371	291	3	Εŭ.	(38		(23		(30
	(371	203	s	83	3 19	66	{ 14	73	3 16
	1.00	373	213)	1.1	26	((29		(27
32.2	383	384	223	zm	23		19	6	21	
33.2	400	402	2.10.0	2	26	50	36	5 5	31	5 2
		402	233	1 S m	20	(26	50	(31		(29
34.1	415	418	282	m	21		16		18	
		426	243		10		14		12	1.0
		438	2.10.1		2		3		2	

TABEL 13 (vervolg).

Afstand	$10^3 \sin^2 \frac{9}{2}$	$10^3 \sin^2 \frac{9}{2}$	Reflex	Intensiteit	eit Intensiteit berekend				
in m.m.	gevonden	2 berekend	hkl	geschat		а	Ь	c	
36.3	455	458	253	m	48		34	41	
37.5	477	476	2.11.0	{ z	30	§ 10	38	32 } 11	
38.4	493	496	263	z	7	1 20	11	9	
39.3	509	511	2.11.1	m	34		19	26	
41.0	540	543	2.10.2) ms	78	§ 18	65 5 22	72 5 21	
		543	273)		(60	(43	(51	
		556	2.12.0	1 Sec. 1.	3		0	2	
43.8	590	591	2.12.1	ms	78	56	71 54	74 55	
		595	283	1		(22	(17	(19	
45.2	614	617	2.11.2	<u>а</u>		(29	(45	(36	
		617	204	{ m	48	2	62 3 5	53 { 4	
		620	214)		(17	(12	(13	
45.9	626	631	224	m—ms	66		70	66	
46.8	642	645	2.13.0	1	22) 26	22 (24	22 (25	
		649	234	ý ^m	33	\$ 5	32 / 11	32 1 7	
		654	293	L _{man} - I	5		11	7	

TABEL 13 (vervolg).

Daarbij is wederom steeds rekening gehouden met de 3 mogelijkheden:

- a. al het chloor in de positie halogeen-1, al het broom in de positie halogeen-2: Cl-Hg-Br;
- b. al het broom in de positie halogeen-1, al het chloor in de positie halogeen-2: Br-Hg-Cl;
- c. chloor en broom willekeurig over de posities halogeen-1 en -2 verdeeld: (Cl,Br)-Hg-(Cl,Br).

Zooals men ziet is een definitieve keuze uit deze drie gevallen niet mogelijk. Geval a schijnt wel met zekerheid uitgesloten te kunnen worden: geval b kan echter niet met zekerheid uitgesloten worden, alhoewel geval c verreweg de beste overeenstemming met de waargenomen intensiteiten te zien geeft.

Het ligt natuurlijk voor de hand, dat de beste overeenstemming

voor geval a of b niet bij dezelfde parameters zal liggen als die voor geval c. Het blijkt echter dat men bij variatie van de parameters in de gevallen a en b wel op sommige punten een betere overeenstemming kan bereiken dan de tabellen te zien geven, doch slechts ten koste van een veel minder goede overeenstemming op tal van andere punten. Het totale beeld, dat men van de gevallen a of bkrijgt, wordt dus door parameterwijziging niet verbeterd.

Ook uit ruimtelijke overwegingen blijkt geval c het waarschijnlijkste te zijn. Berekent men n.l. met de gevonden parameters de afstanden Hg-X₁ en Hg-X₂, dan blijken deze binnen de nauwkeurigheidsgrenzen der parameters aan elkaar gelijk te zijn, nl. 2.4 Å. Dit zou men ook op grond van het geringe verschil in straal tusschen het Cl—ion (1.81 Å) en het Br—ion (1.96 Å) kunnen verwachten. Hiermede is ook in overeenstemming de waarneming dat de structuur over een tamelijk breed concentratiegebied stabiel is (nl. van \pm 50 tot \pm 85 mol % HgBr₂).

§ 6. Fourieranalyse.

Ter bevestiging van de gevonden structuur en in de hoop een definitieve keuze uit de gevallen a, b en c te kunnen doen, werd een Fourieranalyse van de beide projecties [001] en [100] gemaakt.

Hierdoor werden de gevonden parameters bevestigd, doch een verdere preciseering kon niet verkregen worden. Evenmin kon de vraag, welk van de gevallen a, b of c de voorkeur verdient, op ondubbelzinnige wijze beantwoord worden.

Tenslotte rest mij nog de aangename taak mijn welgemeenden dank te betuigen aan den amanuensis A. KREUGER voor zijn onvermoeide hulp bij het vervaardigen der röntgenogrammen.

FIR

I.

Bij de Röntgenanalyse van een kristalstructuur dient op een Fourieranalyse een controleberekening van de intensiteiten uit de parameters en de verstrooiende vermogens der atomen te volgen.

II.

De mengkristallen met de samenstelling HgClBr bevatten zoowel moleculen ClHgBr als moleculen ClHgCl en BrHgBr.

III.

Uit de gegevens van GOLDSZTAUB volgt, dat laurioniet — Pb(OH)Cl — de loodchloridestructuur bezit.

S. GOLDSZTAUB: Comptes rendus Acad. Sci. Paris 204 (1937) 702/3 en 208 (1939) 1234/5.

IV.

De kristalliethypothese van RANDALL c.s. inzake de structuur van glas verdient de voorkeur boven de netwerkhypothese van ZACHARIASEN.

> I. T. RANDALL, H. P. ROOKSBY en B. S. COOPER: Z. Kristallogr. A 75 (1930) 196.

> W. J. ZACHARIASEN: J. Amer. Chem. Soc. 54 (1932) 3841.

V.

De beschouwingen van MASON en PELLISSIER maken het aannemelijk, dat een hooge-temperatuur-modificatie van tin — het zgn. γ -tin — niet bestaat.

> C. W. MASON & G. E. PELLISSIER: Techn. Pap. Am. Inst. Min. Metall. Engrs. 1043, Metals Technology 6 (1939) No. 3.

De aanwezigheid van driewaardig mangaan in manganiet — Mn(OH)O — is zeer onwaarschijnlijk.

M. J. BUERGER: Z. Kristallogr. A 95 (1936) 163/174.
 S. V. KRISHNAN & S. BANERJEE: Trans. Faraday Soc. 35 (1939) 385/387.

VII.

De door HARTLEY gegeven verklaring van de oplosbaarheid van in zuiver water onoplosbare organische vloeistoffen in waterige zeepoplossingen, is onjuist.

> E. LESTER SMITH: J. Phys. Chemistry 36 (1932) 1401 en 1672.

> G. S. HARTLEY: Aqueous Solutions of Paraffin Chain Salts. Actualités Scient. et Industr. 387 pag. 41 vlg., Paris 1936.

VIII.

De verklaring door HOUWINK gegeven voor den grooten afstand tusschen de deeltjes van een kleisuspensie verdient de voorkeur boven die van MATTSON.

> S. MATTSON: Soil Science 33 (1932) 301.
> R. HOUWINK: Elasticity, Plasticity and Structure of Matter pag. 336/337, Cambridge 1937.

IX.

De door DUBRISAY verrichte schuimproeven kunnen niet voor de toetsing van het theorema van GIBBS dienen.

R. DUBRISAY: Koll. Z. 86 (1939) 273/279.

Х.

Uit het nieuwere feitenmateriaal volgt, dat in de door A. F. HOLLEMAN opgestelde reeks van naar de ortho- en paraplaatsen richtende substituenten, n.l. $OH > NH_2 > Cl > J > Br > CH_3$, de hydroxylgroep en de aminogroep van plaats dienen te verwisselen.

> A. F. HOLLEMAN: Die direkte Einführung von Substituenten in den Benzolkern. 1910, blz. 465/466.
> W. THEILACKER: Ber. 71 (1938) 2065/2070.

De beschermende werking van ascorbienzuur op verschillende gemakkelijk oxydeerbare stoffen is niet alleen een kwestie van oxydatie-reductiepotentiaal.

ABDERHALDEN: Fermentforschung 14 (1934) 367.

YAMANOTO: Z. physiol. Chem. 243 (1936) 266.

W. P. JORISSEN & BELINFANTE: Rec. Trav. Chim. Pays-Bas 55 (1936) 374.

W. P. JORISSEN: Natuurwet, Tijdsch. 19 (1937) 15.
 P. HOLTZ: Arch. Exp. Pathol. Pharmak. 182 (1936) 98 en 109.

XII.

De huidige gegevens omtrent de onverzadigde vetzuren, die een rol spelen o.a. in de stofwisseling van de huid, leveren geen voldoenden grond om deze als vitamine(n) aan te duiden.

> G. O. BURR & M. M. BURR: J. biolog. Chem. 82 (1929) 345. ibid. 97 (1934) 1. SPADOLA & ELLIS: ibid. 113 (1936) 205. H. P. KAUFMANN: Fette und Seifen (1938) 102. H. RUF: Deutsche Apothekerztg 54 (1939) 872/873.

XIII.

Bij het beoordeelen van de uitvindingsqualiteit van een octrooiaanvrage ten opzichte van de bekende literatuur wordt ten onrechte veelal een overheerschende beteekenis toegekend aan het tijdsverloop tusschen het verschijnen van de bekende literatuur en het indienen der octrooiaanvrage.

XIV.

Het is gewenscht, dat de studenten in de natuurwetenschappen verplicht worden zich op de hoogte te stellen van de beginselen van logica en kennisleer.

XV.

De universeele decimale classificatie is een betrouwbaar hulpmiddel voor het classificeeren van technische literatuur.

Kijanisyis voor Fsychopadien te Avereest,
