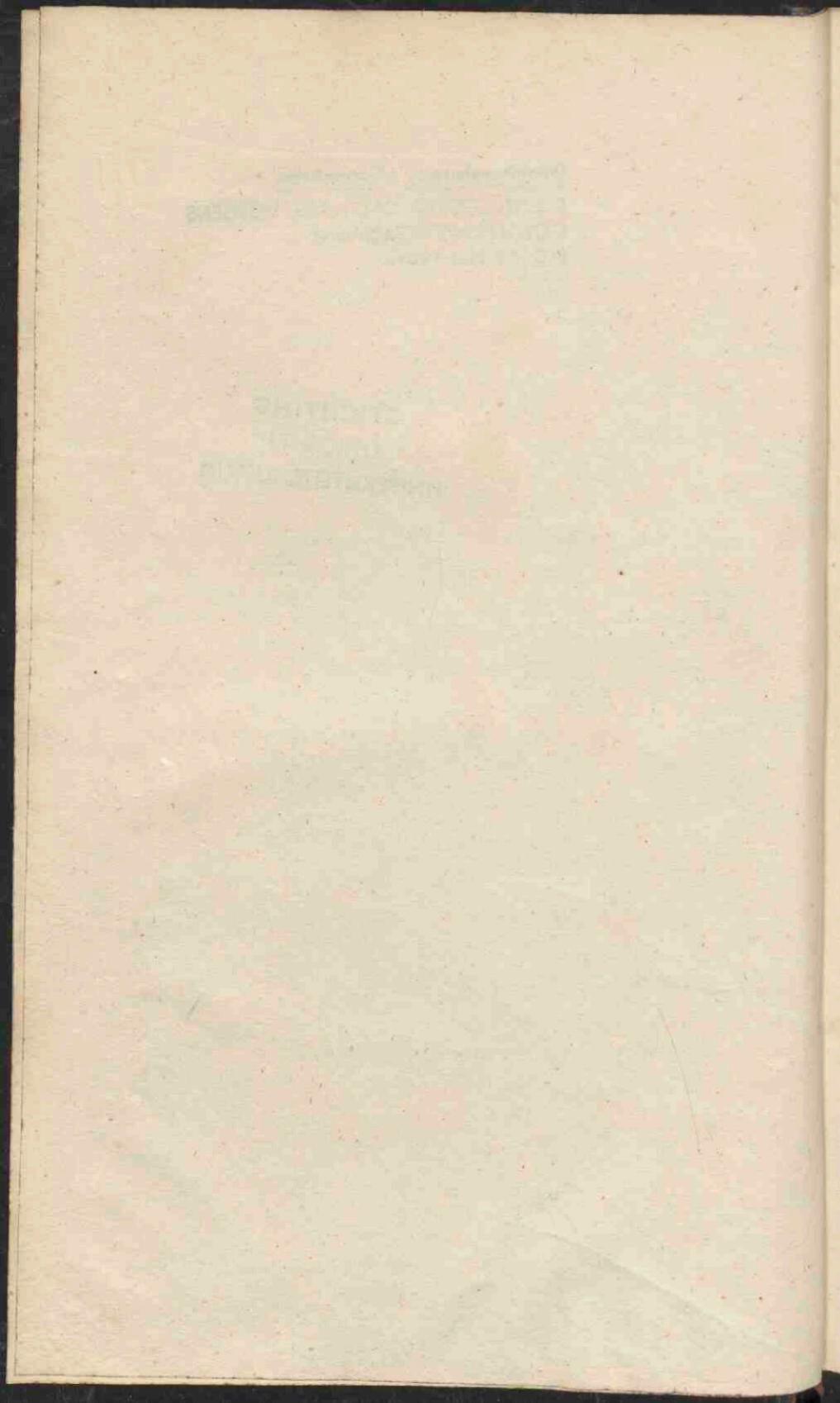
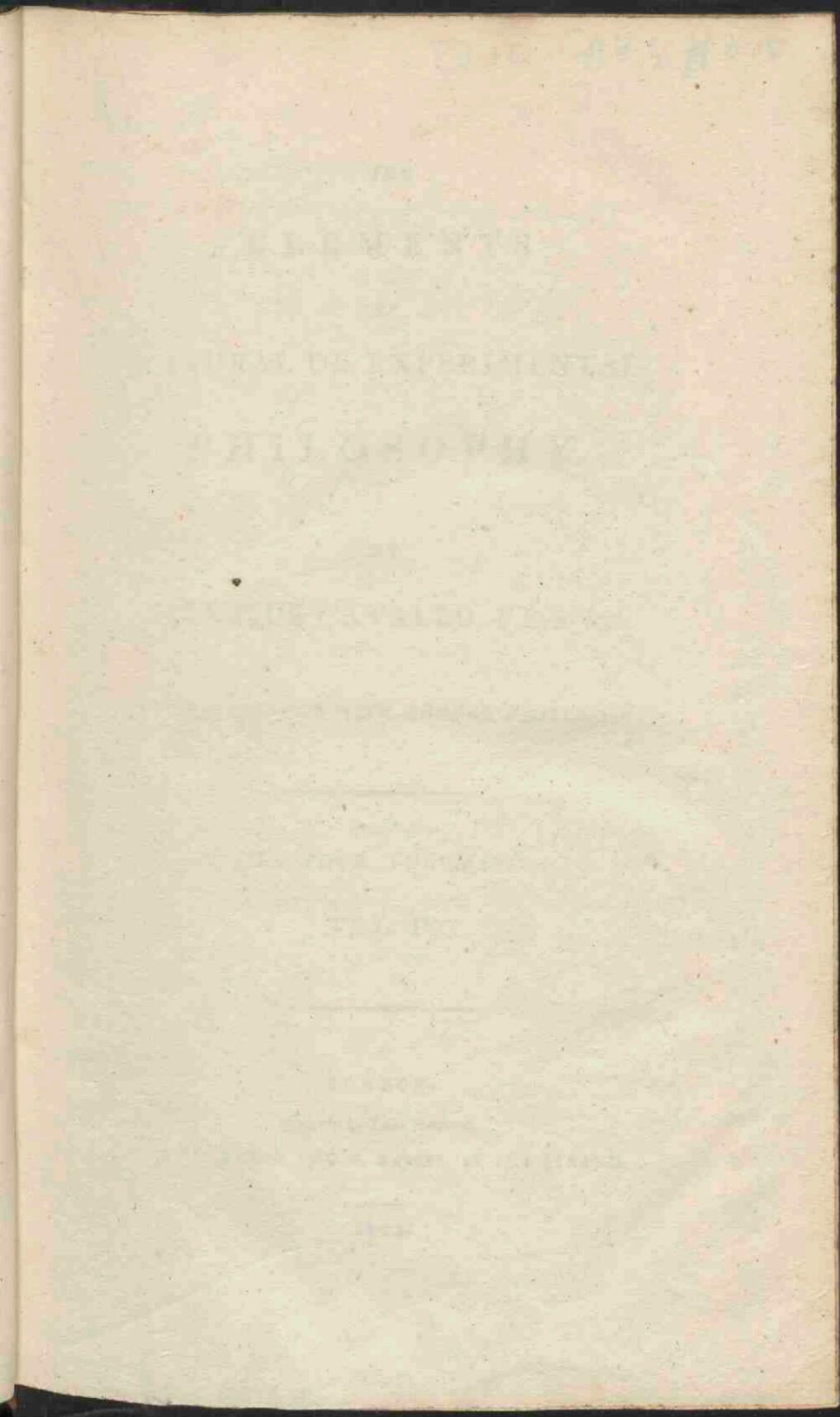


The elements of natural or experimental philosophy

<https://hdl.handle.net/1874/359589>

UTRECHTS
UNIVERSITEITS
MUSEUM


No. 10 4


1886 e

Rijksinkoopbureau, 's-Gravenhage.

RECHTSREKKE BESTELLING, VOLGENS
GENTLEMEN'S AGREEMENT
D.D. 29 MEI 1961.

STICHTING
UTRECHTS
UNIVERSITEITSMUSEUM

Q 10 CAV 4 Haud

THE
ELEMENTS
OF
NATURAL OR EXPERIMENTAL
PHILOSOPHY.

BY
TIBERIUS CAVALLO, F.R.S. &c.

ILLUSTRATED WITH COPPER PLATES.

IN FOUR VOLUMES.

VOL. IV.

LONDON:

Printed by Luke Hansard,
FOR T. CADELL AND W. DAVIES, IN THE STRAND.

1803.

Luke Hansard, Painter,
Great Turnstile, Lincoln's-Inn Fields.

ELEMENTS OF
NATURAL PHILOSOPHY.

PART IV.

ASTRONOMY.

THE nature of the luminous objects that are seen in the heavens, and of which the moon is the nearest to us; their number, their distances, their movements, with the appearances which arise therefrom, and the useful purposes to which the human species has applied the knowledge of those particulars, form the science of *astronomy*.

To the vulgar eye the heavenly bodies offer an unprofitable, confused, but pleasing, spectacle. The least observation shews that the seasons, the lengths of days and nights, the vicissitudes of heat and cold, &c. are connected with particular situations of the celestial bodies. Farther observations point out the entire dependance of the former upon the latter, as

also the periodical returns of the same circumstances.

The periods of the most remarkable phenomena have been ascertained from time immemorial; and when we consider the accuracy of certain observations, the scarcity of opportunities, and the want of the telescope as well as of other instruments, we are forced to acknowledge and to applaud the ingenuity of our forefathers.

Every age has added something to the stock of astronomical knowledge; but, since the sixteenth century, the advancement has been much more rapid than the simple proportion of the times; and we may with satisfaction boast of the astronomical discoveries which have been made within the last 30 years.

The present knowledge of this most noble science can assign a proper reason for almost every particular phenomenon; it subjects them to strict, to unanswerable, calculation; and deduces essential benefits from the results.

The vulgar, whose minds seldom connect more than two ideas, may laugh at the employment of examining with unwearied toil, what is so far removed from us; and they may wonder that astronomers should be so anxious to ascertain not only the day or the hour, but even the very moment when a certain celestial appearance is to take place, or when a star, which is hardly visible, will come within a certain distance of the sun, or of the moon.

But whoever endeavours to trace the influence, whether immediate or remote, of those peculiar accuracies upon science in general, and upon the various human affairs; whoever considers that they afford the means, and the only accurate means, by which the mariner can navigate the oceans, and can find his exact situation at sea; which afford the accurate measurement of time; by which the real distances of places upon the surface of the earth can be determined; which furnish standards of weights and measures, &c. whoever, I say, considers this various and extensive influence, will undoubtedly find abundant reasons for admiring and for encouraging the utmost diligence and the most scrupulous accuracy in the study of astronomy.

Were the motions of the celestial objects uniform and regular, the calculation of their aspects would be accomplished with facility. But the apparent irregularities of those objects, render the investigation of their movements, and the calculations for their appearances, extremely intricate; nor could the science have attained the present much improved state, had it not been assisted by all the sublimest branches of mathematics, and by the admirable mechanical improvements of later times; such as time-keepers, telescopes, quadrants, and other instruments.

Before we enter into the particular statement of the number, the order, the motions, and the

mutual dependence of the celestial objects; as also before we endeavour to determine their real from their apparent motions and situations, it will be necessary to state certain principles, which, though obviously true, will however much assist the beginner in the comprehension of the science, as also will render the subsequent chapters more perspicuous and concise.

CHAPTER I.

PRELIMINARY PRINCIPLES.

IT has been shewn in the principles of optics, (vol. III.) that our sight judges of the distances of objects of unknown sizes and shapes, only by the converging of the optical axis, and by the parts of those objects appearing more or less distinct; but when the object is beyond a certain limit, which hardly exceeds a few miles, the inclination of the optical axis of our eyes becomes unalterable, and distinct vision becomes doubtful. Therefore those objects which are at immense distances from us, as the celestial bodies, appear as if they were situated on the internal surface of an hollow sphere, and we might easily be led to believe that they are equally distant from us, had we not other most conclusive proofs of their being variously removed from us, as well as from each other.

It is almost useless to observe that the angular distances of objects are quite different from their linear or true distances. The angular distance relates to a particular point as a centre, and is measured by the arc of a circle which has that point for centre.

Thus, to a spectator at A, fig. 1. Plate XXVI. the angular distance of the two objects, B and C, is measured by the arc FG, of the circle HFG, whose centre is A; and it is immaterial whether this circle be large or small; for the arc which is intercepted by the lines AB, AC, (whose inclination BAC is the angular distance between the objects B and C) bears always the same proportion to the whole circle of which it is a part; viz. FG is such a part of the circle HFG, as *fg* is of the circle *hfg*.

The arc FG may happen to be a tenth or a thirtieth, or, in short, any other part of the whole circle; but for the convenience of expressing this part, the whole circle is divided, or is supposed to be divided, into 360 equal parts called *degrees*, each degree is subdivided into 60 equal parts called *minutes*, each minute is divided into 60 equal parts called *seconds*; each second is likewise divided into 60 equal parts called *thirds*, and so on; but divisions, smaller than a second, are more commonly expressed in decimals of a second; then if the arc FG be the tenth part of the circle, it is said to be equal to 36 degrees; because 36 is the tenth part of 360; if it be the 30th part of the circle, it is said to be equal to 12 degrees, because 12 is the 30th part of 360; and so forth.

Instead of the word *degrees*, a small ° is more commonly placed on the right hand side of the number, and a little above it; instead of the word *minutes* a little stroke is more commonly annexed to the

the number; and two such strokes denote seconds, &c.: thus, the expression $24^{\circ}, 13', 22\frac{1}{2}$, means 24 degrees, 13 minutes, 22 seconds, and half a second, or 5-tenths of a second.

It is evident that in fig. 1, to a spectator at A, the objects B and C; or D and C, or D and E, or B and E, have exactly the same angular distance, though their real distances from each other are so evidently various. Hence it follows, that the movements of a distant body cannot be known, except by the change of the angular distance between that and some other body which is either fixed or moving in a determinate way. When a body moves in a straight line, either directly towards us or from us, we judge of its approaching to, or of its receding from, us, by the apparent enlargement or contraction of its dimensions; as is shewn by the plainest propositions of trigonometry; and from the measurements of those dimensions, and one or two more data, we can frequently determine the real size of the body.— That the same body in motion will appear to move either regularly or irregularly, or even to stand still, according to the different situations of the spectator, will be illustrated by the following example.

Let a body A, fig. 2, Plate XXVI. move regularly along the circumference of the circle ABCD, viz. suppose it to describe equal arcs in equal times; then it is clear that to a spectator situated at E, which is the centre of the circle, the body A will

appear to move equably and regularly one way, but if the spectator be situated at any other point within the circle, as for instance at H, then the same body A, will appear to move at different rates, according as it comes nearer to, or goes farther from, the observer; for, suppose the arcs A F, G C, to be equal, and of course to be described in equal times; then the angle A H F, being smaller than the angle G H C, the revolving body will appear to move slower from A to F, than from C to G. Yet it must be observed that the body A will always appear to move one way, and not to go back or to stand still during any quantity of time; as is the case when the spectator himself is in motion, or when he is situated out of the circle, but in the same plane. Let, for instance, a body move equably along the circumference of the circle A B D F P, fig. 3, Plate XXVI.; viz. to describe the equal arcs A B, B D, D E, E F, &c. in equal times; and suppose the spectator to be situated at O in the same plane in which the circle is, but out of its circumference; then when the body moves from A to B, its apparent motion is measured by the angle A O B, or by the arc H L, which it will appear to describe. In an equal portion of time the body describes the arc B D (equal to A B), and this apparent motion is measured by the angle B O D, or by the arc L M, which is smaller than the arc H L; and of course the body will appear to have slack'd its motion.— In another equal portion of time the body goes from

from D to E; but as this arc DE, nearly coincides with the line D M O, the body will appear to be almost stationary during that time. It then proceeds from E to F, in another equal portion of time, but now the body will appear to go back from M to I; viz. to be *retrograde*, and this retrograde motion will continue until the body reaches the arc Q P, where it will again appear to be almost stationary; then it will appear to go again from the left towards the right, &c.

This *optical inequality* (as the astronomers call it), must evidently be various, according as the spectator is situated near to or farther from the circular path; hence those, who are sufficiently skilled in the mathematics, may from the observations of those unequal movements, often determine the distance of such a moving body from the place of observation; and from the appearance of its motions, as seen from a certain place, they may determine what appearance its motions must have from some other given place.

If, instead of being in the same plane, the spectator be situated above the plane of the circular path, the motion of the body must likewise appear unequal; excepting however when the spectator is in some point of the straight line which passes through the centre, C, of the circle, and is perpendicular to its plane.

If, instead of moving in a circular, the body moved in an elliptical, orbit; similar apparent inequalities

qualities must evidently take place. Hitherto the spectator has been supposed to remain immovable, either within or without the circular path of the moving body. But when the place of the observer is itself also in motion, then the appearances will be very different, as may be easily conceived by reflecting on the apparent motion of bodies to persons on a sailing ship; or as it may be deduced from what has been said with respect to relative motion in the first volume of these Elements.—In this case not only the regularly moving body may appear to move irregularly, but quick motions may appear slow, and slow motions may appear quick; bodies at rest may appear to move, and moving bodies may appear to be at rest; or their movements may appear to be quite contrary to what they really are.

Before we conclude this chapter, and before we begin to examine what belongs to the celestial objects, it will be necessary to remove some erroneous ideas, which are pretty commonly entertained by un-instructed persons concerning the earth which we inhabit.

The shortness of our sight enables us to behold but a very small portion of the surface of the earth at one time, and that portion appears to be an immense plain with some accidental elevations, called mountains, hills, &c. and some depressions mostly filled with water, such as seas, lakes, &c.

A variety of easy but constant observations prove beyond

beyond a doubt, that what, at first sight, appears to be a vast flat, or plain, is, in truth, a convex surface; and upon a stricter inquiry, it appears to be the surface of an oblate spheroid, viz. of a globe a little compressed on two opposite sides.—Some of the observations which prove the reality of this figure, are hereto briefly subjoined. Others of a nicer nature will be found in other chapters of this part.

It is constantly observed by all mariners, that as they sail from any high objects, such as mountains, rocks, steeples of churches, &c. they first begin to lose sight of the lower parts of those objects, and then gradually lose sight of their higher parts. Also persons on the shore first discover the upper parts of the masts of approaching vessels, and then by degrees see the lower parts in proportion as the vessel comes nearer to the shore. In the same manner, when sailors approach a country, they first discover the highest parts of that country from the tops of the masts, and then see the lowest parts, or see the same parts from the deck of the ship.

In all those cases, the obstruction to the sight arises from the intervening curvature of the earth; and in this respect no assistance can be derived from the use of the telescope; for the telescope will only enable the observer to see more distinctly that part of the object which is not behind the convexity of the earth. Thus in fig. 4, Plate XXVI. the lowest part of the object A cannot be seen by the vessel at B, on account of the intervening curvature of the earth.

earth T. The vessel E will be able to see a smaller part of the same object A, because a greater quantity of curvature is between that object and the vessel E. When the vessel fails farther off, as at F, the object A disappears entirely.

So far the observations prove that the surface of the earth is convex; but that this curvature returns into itself, viz. is continued all round without any interruption, is proved by this; namely, that various navigators have sailed all round the earth, and at last have returned to the very same place from which they originally sailed. They have not indeed sailed in an exact circle, for that is prevented by the situation of the lands; but by going in and out according as the coasts happened to lie, they have kept on the same course upon the whole, and have arrived to the same place from another side.

Those who level grounds for the purpose of forming canals, &c. soon perceive that the real level is not a straight line, but a curve, whose centre is the same as the centre of the earth. The surface of water, which is level, follows the same curvature.

Were the earth a perfect sphere, the curvature would be the same in every part of its surface; but the most accurate observations and measurements which have been made with the nicest instruments, shew that this curvature differs a little in different parts, and from those differences, according to the latest measurements, it has been calculated, 1st, that

the

the real figure is not much different from that of a spheroid generated by the motion of a semi-ellipsis, about its minor axis; 2dly, that its axis or shortest diameter, viz. a line supposed to be drawn through its centre, from one of its flattest parts to the other, is nearly equal to 7893,5 English miles, and its longest diameter, viz. a line drawn through the centre from one most protuberant part of its surface to the other, is equal to 7928 English miles. The whole circumference is equal to 24855,43 English miles *. Since the figure of the earth differs so little from a sphere, therefore, for the purposes of astronomy, the earth is considered as a perfect sphere.

When we speak of the surface of the earth, we take no notice of mountains, hills, seas, &c. but we consider the whole as an uniform surface; for, in fact, the mountains and other elevations are to the surface of the earth, no more than grains of sand are to the surface of a globe of 8 or 10 feet in diameter. When the distance of the surface of the earth from its centre is mentioned in general, it is always meant of the surface near the level of the sea. All places above that level, viz. more distant from

* The French, according to their latest determination of their measures, suppose this whole circumference to be divided into 40 millions of parts, which they call *metres*. From the most accurate admeasurements, it appears, that, at the temperature of 62° Fahrenheit's Thermometer, the French standard metre is equal to 39,371 English inches.

the centre, are called *elevations*; below that level, are called *depressions*.

The surface of the terraqueous globe is irregularly spotted with lands and water. The greater part (viz. almost three quarters) of its surface is occupied by the latter. The shape and extent of those spots are usually delineated upon a globe, which of course represents the earth, and is called the *terrestrial globe**.

When the surface of the terrestrial globe with the shape of the lands, the coasts, &c. is delineated, either entirely or in part, upon a flat surface; such a delineation is called a *map* or *chart*. A complete set of such maps, has been called a *terrestrial atlas*.

The navigators of all seas and of all times; the travellers, and the inhabitants of all countries, see the same expanse of heaven over their heads, the same sun, moon, &c. which proves that the terraqueous globe is not attached to any other body, but that it exists by itself perfectly insulated in the unfathomable expanse of the Universe.

* Dr. Long endeavoured to determine what proportion the land bears to the sea by the following ingenious method. He took the slips of paper which are made for covering the surface of a terrestrial globe, and, by means of a pair of scissars, he separated that part which represents the land from that which represents the sea. He then weighed those two parcels of paper separately, and found that the papers which represented the land weighed 124 grains; the others weighed 349 grains. See his *Astrenomy*, page 168.

It is a consequence of this uncontrovertible theory, that all the inhabitants of the earth, being directed with their feet towards the centre of it, must be variously inclined to one another, like the spokes of a wheel; and the inhabitants of those countries, which are diametrically opposite, must have their feet directly opposite. Such people are called *antipodes* respectively, viz. those of one country are the antipodes of those of the other country.

Hence also it appears, that, with respect to the Universe, there is no real up or down; for what is upper or over the head of one person, is posited otherwise with respect to another person. But in relation to the globe we inhabit, the words up or down, above or below, mean the situations nearer to, or farther from the centre of the earth, than we, or than other given objects, are.

It is the general attraction of the matter of the whole terraqueous globe (as has been already explained *) that keeps us, and every particle of matter, tending towards the centre of it.— We shall presently see that this same power acts universally throughout, at least, the solar system; and that every phenomenon of astronomy, as far as can be traced, is regulated by the laws of motion, and by those of universal attraction.

* See Chap. V. of the first part of these Elements.

With respect to the heavenly space which surrounds the earth, the student of natural philosophy must relinquish several incoherent ideas, which he may have imbibed from common prejudices, and from allegorical, poetical, or superstitious, expressions. The canopy of heaven, the starry firmament, the celestial spheres, the crystalline sphere, the empyreal regions, the vaulted heaven, the *primum mobile*, and such like expressions, have no real and determinate meaning. They are fictitious, hypothetical, allegorical, and, upon the whole, useless words, which can only mislead and confuse the understanding.

What we perceive beyond our atmosphere is the sun, the moon, and a number of lucid and apparently small bodies, called stars, planets, and comets ; and those are demonstratively at different distances from us as well as from each other ; but of the immense space in which they exist and move, we have not the smallest knowledge either from reasoning or from experience. We see no boundary, no shell, no arch, no vault, no limit.—The blue sky, as is commonly called, is the colour of, or the reflection from, our atmosphere, which extends not many miles above the surface of the earth *. For, besides other reasons, when the moon is not full, viz. when only a portion of it is illumined, the other portion

* See vol. II. chap. VIII. of these Elements. Also Priestley's History of Vision, Light, and Colours. Period VI. Sect. III. Chap. IV.

of it appears blue, or of the colour of the sky, which would not be the case if the blue colour proceeded from some thing beyond the moon.

Since to our eyes the celestial bodies appear as if they were all equally distant from us ; therefore, in order to assist the understanding, or to instruct the students of astronomy, the stars and other celestial bodies are commonly represented upon a convex, and sometimes upon a concave, spherical surface of a few inches, or a few feet, in diameter. Such artificial representation of the celestial bodies is usually called a *celestial globe*. When all the stars or part of them only is delineated upon a flat surface, such delineation is called a *celestial planisphere*, or *map*, or *plate*, and a complete set of such plates has been called a *celestial atlas*.

C H A P. II.

OF THE APPARENT SYSTEM OF THE WORLD, AND
THE DEFINITION OF THE TERMS PRINCIPALLY
USED IN ASTRONOMY.

THE incomparably superior splendor of the sun in the day time, renders all the other celestial bodies invisible to our naked eyes, excepting the moon, which sometimes may be barely distinguished; and two or three much smaller bodies, which in some favourable circumstances may be just discerned, whilst the sun is visible yet *.

* In the day time, the refraction and reflection of the sun's light from the atmosphere renders the stars invisible to us even when we turn our backs to the sun; but if we look at the heavens through a very long tube in the day time, the abovementioned reflected light will not penetrate a great way within the cavity of the tube; and therefore the stars may be perceived through it. A tube sufficiently long to answer this purpose is difficultly constructed and managed; but deep pits, and deep wells, are in fact long tubes; hence, from the bottoms of those places the stars may be seen in the day time.—A good telescope will also shew the stars in the day time.

At night, viz. during the absence of the sun, the moon frequently affords more light than all the other celestial objects. The other numerous bright bodies, which we perceive besides the moon, are in general called *stars*. They appear to differ much in magnitude, but they seem to be vastly smaller than the moon. Eight of them are called *planets*; the rest are called *fixed stars*, for reasons which will be mentioned presently. The *comets* are luminous bodies, which are seen not very frequently, nor at certain or determinable times.

These, in short, are all the objects which we perceive in the heavens; the aspects and the motions of those objects form the whole subject of astronomy. And here we may observe, once for all, that the circles, the curves, the lines, axes, poles, points, and the figures of the constellations, of which frequent mention is made in astronomy, are not visible things; but they only exist in our imagination, and they have been adopted, and are used, for the necessary purpose of communicating our ideas to other persons, or for expressing measures, situations, motions, &c.

When an observer is situated on a large extended plane, or in an open sea, he will find his sight circumscribed by a great circle, which divides the visible part of the heavens from that which is hid in consequence of the opacity of the earth; or where the surface of the globe we inhabit seems to meet the heavens. That circle is called the *sensible horizon*.

rizon. The *rational horizon* is a circle in the heavens, supposed to be formed by the intersection of a plane, which passes through the centre of the earth, and is parallel to the sensible horizon. The planes of those two horizons are distant from each other by the semidiameter of the earth; but with respect to the heavens, they may be safely supposed to coincide; for the distance of the fixed stars from us is so immense, that the diameter of the earth is a mere nothing with respect to it. Hence the horizon divides the heavens into two equal parts; viz. the visible, which is above it, from the invisible which is below it.

With respect to the earth; viz. if by the horizon we mean the boundary of that part of the earth's surface which is seen by the spectator, then it is evident that the horizon is more extended in proportion as the situation of the observer is more elevated; for instance, if the observer be situated close to the surface of the earth, G D E F, fig. 5, Plate XXVI. as at *a*, he will see a very small portion of its surface; because the visual line is a tangent, (or nearly a tangent) to the surface of the earth at that point;—if he be situated at *b*, then the visual line *b* E will touch the earth at *E*, and of course the horizon will be the circle, which is denoted by the line *DE*.—If the spectator be situated at *c*, his horizon will be *G F*; and if the spectator stood at an immense distance, then his horizon would be equal to the circumference of the earth; viz. to

O I; so that he would see the half of its surface*.

It is evident, that every spectator has a different horizon; therefore, strictly speaking, the half of the heavens which is seen by any one spectator, is not precisely the same half that is seen by another spectator at the same time.

To us Europeans the sun, the moon, the planets, and most of the stars, appear to go continually round the earth, and to perform each revolution in about 24 hours. I say *about* 24 hours; for some of the celestial objects perform it slower than others. They rise on one side of the horizon, which is called the *eastern side*, pass obliquely over it, and descend on the opposite side, which is called the *western side* of the horizon; then they rise again, &c.

If a person will observe the heavens in the night time, he will find that the stars seem to perform, or to move along, different circles; some larger, others smaller; gradually diminishing towards a certain part of the heavens, until some of them per-

* The greatest distance bE , from which an eye situated any where above the surface of the earth, as at b , will perceive an object E on the surface of the earth, is one side of a plane triangle bEC , right-angled at E . Its other two sides are the radius EC of the earth, and Cb , which is the sum of the radius and height ab .—When ab is known, the distance bE is found by the following rule:—Add the height ab to the *diameter* of the earth; multiply the sum by the height ab ; then the square root of the product is the distance bE . This rule depends on Prop. 47th, B. I.; and on Prop. 6th, B. II. of Euclid's Elements.

form circles so small as not to be discerned without proper instruments. In short, the whole apparent sphere seems to move round an axis, and of course there are two points in the heavens, which, being the extremities of that axis, do not seem to move at all. Those points are called the *poles of the world*; one being called the *arctic*, or the *north, pole*; and the other the *antarctic*, or *south, pole*. The axis itself, or the line which joins those poles, is called *the axis of the world*.

In this metropolis we can perceive one pole only, namely, the north pole, which is elevated above the horizon at an angle of $51^{\circ} 31''$. In truth, we cannot perceive the pole itself; (which is an imaginary point) but we may determine the situation, or the angular altitude, of that immoveable point, by examining the stars, which, being near it, revolve without ever going below the horizon; for by taking a mean of the least, and greatest, observed altitudes of any one of those stars, we have the altitude of the pole itself; it being evident that in its circular revolution each star must rise as much above the pole as it descends below it.

A pretty large star, called the *north polar star*, is situated near the north pole, and to the naked eye it appears to be quite stationary; but when examined by means of a fixed telescope, or of other astronomical instruments, it is found to describe a small circle, which proves that it is not quite at the pole.

Besides the poles, there are several other remarkable points, determined and constantly used by the astro-

astronomers, which are therefore necessary to be described. One of those points is called the *zenith*, and is the highest point of the heavens, or that which is exactly over our heads. The opposite or lowest point of the heavens, which is directly under our feet, is called the *nadir*. If a plummet be freely suspended, and if it be supposed to be infinitely extended both upwards and downwards, its thread will pass through the zenith and nadir. Those points are also called the *poles of the horizon**. All circles, drawn through the zenith and nadir, which of course must be perpendicular to the horizon, are called *vertical circles*, or *azimuths*. Two of the innumerable circles, which may be described through those points, are peculiarly remarkable; viz. that which passes through them, and at the same time through the poles of the world, is called the *meridian*. This circle divides the sphere into two equal parts, one of which is the *eastern*, and the other the *western, hemisphere*. When the celestial bodies in their daily course arrive at that part of the meridian which is above the horizon, then they are said to *culminate*; viz. to be at their greatest elevation; for beyond the meridian they descend towards the horizon; and when they are at that part of the meridian, which is below the horizon, then they are said to be at their greatest depression; for beyond that limit they again

* In spheres every circle of the sphere has two poles, which are the points on the surface of the sphere, where a straight line, passing through the centre of the circle and perpendicular to the plane of it, meets the surface.

rise towards the horizon. Therefore the meridian divides the time of the celestial bodies course above the horizon, into two equal parts, and it also divides into two equal parts the period of their course below the horizon ; hence, when the sun is at the meridian in the day time, it is *noon* or *midday* (whence the meridian has derived its name) ; and when the sun is at the meridian below the horizon ; viz. at night, it is then said to be *midnight*.

The other remarkable circle amongst the azimuths, is that which is perpendicular to the meridian, and is called the *prime vertical*. This circle divides the eastern and western sides of the horizon, each into two equal parts. Those points of intersection are called the true *east* and *west* points ; so that the meridian and the prime vertical divide the horizon into four equal parts, and the points of division, viz. the *north*, the *east*, the *south*, and the *west*, have been called the *principal*, or *cardinal*, *points of the horizon* ; for each quarter of the horizon is subdivided into eight parts ; so that the whole horizon is divided into 32 parts, which are called the *rhumbs*, or the *points of the compass*, from their being generally marked upon the cards of the mariner's compasses.

The situation of the above-mentioned points is so commonly understood, that it will be almost superfluous to observe, that if we turn our backs towards the north pole, we shall then have the south exactly before us, the east on the left, the west on the right hand

hand side, the zenith over our heads, the nadir under our feet, the meridian passing over our heads, and under our feet, viz. through the north, the zenith, the south, and the nadir; and the prime vertical passing over our heads, and from our right to our left hand, through the east, zenith, west, and nadir.

It is evident upon the least reflection, that as the horizon is different for every spectator, or for every point of the surface of the earth, so the cardinal points, and the rhumbs in general, which are the divisions of the horizon, must be different for every spectator; and so must also be the zenith and the nadir, which are the poles of the horizon; but for a fixed observatory, or for a given spot, those circles and points are fixed and immovable. The meridian is the same, and the prime vertical is different for all those observers or spots which are in the same line, but only north or south of each other; whereas the prime vertical is the same, and the meridian is different for all those observers or spots, which are only east and west of each other.

That arc of the horizon of any particular place, which is intercepted between the meridian and azimuth circle that passes through a particular celestial object at any given time, is called the *azimuth of that celestial object*. The arc of the horizon which is intercepted between the prime vertical (viz. the east or west points of the horizon) and the azimuth circle, which passes through the celestial object, is called the *amplitude of that object*.

Another very remarkable, but fixed, circle of the sphere,

Sphere, is called the *equator* or *equinoctial*, which divides the sphere into two equal parts, and is perpendicular to the axis of the world, as also to the plane of the meridian. In this metropolis, when we place ourselves with our backs to the north, as has been mentioned above, the equator stands obliquely before us, viz. it passes through the east and west points of the horizon, and crosses the meridian at a point which makes an angle of $38^{\circ} 29'$ with the horizon. To those who are situated south of us, the intersection of the equator with the meridian is higher up, and to those who are north of us, that intersection is lower down. The poles of the world are the poles of the equator.

Now, if we suppose the planes of various meridians, as well as of the equator, and of the rational horizon, to cut the surface of the earth, then the same circles which are supposed to exist in the heavens, may likewise be conceived to exist on the surface of the earth. Also that point of the surface of the earth, which is exactly under the north pole of the world, is called the *north pole of the earth*; and the same thing must be understood of the south pole.

The use which is made of those points and circles on the surface of our globe, will be shewn hereafter; but we shall observe for the present, that the situation of the equator with its axis and its poles, which are the same as the axis and the poles of the world, appears differently situated to the different inhabitants

inhabitants of the earth. Those different situations may be reduced to three species, and these have obtained peculiar appellations; viz. to those persons who live exactly under the equator, the poles of the world must appear in the horizon, and the equator must be perpendicular to the horizon, viz. must cut it at right angles; hence that situation is called the *right position of the sphere*. To those who live under either of the poles of the earth, one of the poles of the world must be over their heads, and the equator must coincide with, or be parallel to, the horizon; hence that situation is called *a parallel sphere*. And lastly, to all the other inhabitants of the earth the sphere is said to be in an *oblique position*, because the equator is neither perpendicular nor parallel, but oblique, to the horizon. Thus in fig. 6. Plate XXVI. NEHS represents the celestial sphere, or a meridian; *acb* represents the earth, *N* and *S* are the poles of the world, *NS* is its axis, and *EE* is the equator. Now to us at *a*, who are neither under the equator at *c*, nor under the poles at *b*, the sphere is said to be oblique, because the equator *EE* is neither perpendicular, nor parallel, but oblique, to our horizon *HH*. To those who live at *c*, viz. under the equator, the sphere is said to be right, because the equator *EE* is perpendicular to their horizon, which is *NS*. And to those who live at *b*, viz. under the poles, the sphere is said to be parallel, because the equator *EE* coincides with, or is the same as, their horizon.

The

The apparent movements of the stars, which are performed in circles parallel to the equator, must, of course, appear to be performed in circles perpendicular to the horizon to those who live under the equator at a , and to them (who likewise see the poles of the world in their horizon) all the stars must appear to rise and to set in every revolution, and in every revolution they see all the stars successively. But to those who live under the poles at b , the stars move in circles parallel to the horizon, so that they never rise or set, and consequently those people can only see half the stars, viz. one hemisphere, whilst the other is never seen by them, it remaining constantly below their horizon. To those who live neither under the equator, nor under the poles, the stars appear to move in circles oblique to the horizon, and they see a greater or a smaller number of the stars pass in succession, according as they are situated nearer to the equator or nearer to the poles. Thus to us situated at a , all the stars which are situated within the portion PEH, OEH, are seen successively; but those which are about the south pole S, viz. in the portion HSO, are never seen by us, because, as the sphere revolves round the axis NS, the portion HSO, never rises above our horizon HH. And the stars, which are in the portion HNP, about the north pole N, are always within our sight, because that portion HNP, of the sphere, never goes below our horizon HH.

The circle HP, parallel to the equator, which
limits

limits the part HNP, that never goes below the horizon of any given place, is called the circle of *perpetual apparition*. The circle HO, parallel to the equator, which limits the part HSO, that never rises above the horizon of any given place, is called the circle of *perpetual occultation*.

Not all the celestial objects appear to a spectator in a fixed place, to rise constantly from, or to set at, the same respective points of the horizon; or, in short, to move constantly along the same circles.

The fixed stars properly so called, (which comprehend all the celestial objects, excepting the sun, the moon, eight planets, and some comets, which appear now and then) do move with that uniformity, viz. they move along the same tracks or circles, and preserve the same distances from each other; hence they have been denominated *fixed stars*; and therefore the astronomers use them as fixed points with which, and by which, the motions of the other celestial objects are compared and expressed. The whole sphere, or all the fixed stars, perform their revolution; viz. go from the meridian of a given place, and return to the same place, constantly in the space of 23 hours, 56 minutes, and 4 seconds.

The sun rises and sets every day at different points of the horizon, and it also crosses the meridian of any place every day at a different point; but it never goes farther from the equator than about

$23^{\circ} 28'$, either towards the north or towards the south of it. The time of its rising, setting, and of crossing the meridian, is not always the same ; it being sometimes later, and at other times sooner, than on the preceding day. The difference is progressively increasing and decreasing. Upon the whole it amounts only to a few minutes ; and, at a mean, its revolution (which is called the sun's daily revolution from its producing the vicissitudes of day and night) employs 24 hours, viz. $3', 56''$ longer than the revolution of the fixed stars ; or rather, we divide the mean time of the sun's daily revolution, into 24 parts, which we call *hours*. The sixtieth part of an hour is called a *minute* of time, and the sixtieth part of a minute is called a *second* of time.

If the very great splendor of the sun did not prevent our seeing the stars in the day time, we should find that the sun (which, as has been said above, moves slower than the stars) is left constantly behind ; viz. every day more towards the east, and likewise a little more towards the north, or towards the south. In short, if every day at noon, when the sun crosses the meridian of a given place, we marked the exact place of its centre in the heavens among the stars, and if when the sun has returned to the same point of the heavens, all which period takes up 365 days, 5 hours, $48', 49''$, and is called the *mean solar year*, we drew a line along all those marked

marked points, that line would be found to be a great circle of the sphere.

This circle intersects the equator at two opposite points, and its plane forms an angle of about $23^{\circ} 28'$, with the plane of the equator. This circle, which is the annual path of the sun, is called the *ecliptic*; the angle, which it forms with the equator, is called the *obliquity of the ecliptic*; and the points where it intersects the equator are called the *equinoxes*, or the *equinoëtial points*.

A broad portion of the heavens, which stretches about 8° on each side of the ecliptic, and of course follows its direction all round the heavens, is called the *zodiac*.

Since the ecliptic is a fixed circle, and every day the sun is found in a different point of it; therefore every day the sun seems to perform its revolution in a circle parallel to the equator, but which recedes farther and farther from it, until it reaches its greatest distance; which, as has been said above, is about $23^{\circ} 28'$ from it towards the north; after which the daily course of the sun is performed in a circle, which approaches the equator gradually until it coincides with the equator, then it begins again to recede from it towards the south, until it reaches its greatest southern distance, which is likewise equal to about $23^{\circ} 28'$; then it approaches the equator anew, and so forth.

Now when the sun is at its greatest distances from the equator, the circles parallel to the equator which

it

it nearly describes at those two points, are called the *tropics*, and that which is towards the north is called the *tropic of Cancer*, whilst that which is towards the south is called the *tropic of Capricorn*. The distance of the sun, as well as of any other celestial object, from the equator, is called the *declination* of that object, and it is *north* or *south declination*, according as the object is on the north, or the south of the equator.

It has been said above, that if the splendor of the sun did not prevent our seeing the stars which are near it, we should find it every day near a different star. But though we cannot see the stars that happen to be near the sun; yet, by means of proper instruments, we can obtain the result exactly in the same manner as if we saw them; for knowing the time of the revolution of the stars, and likewise knowing their respective situations, the astronomers, by examining the time of the sun's passage over the meridian, which differs a little in different days, as also by examining its daily altitude, when it crosses the meridian at noon, can determine with great precision which star must cross the meridian at the same time, and through the same point, or within a certain distance of it.

The moon appears to rise from, and to set every day at, different points of the horizon, and likewise to cross the meridian at different points; but with much more irregularity than the sun. It also moves much slower than the sun; so that if one night it

be

be found near a certain star, on the following night it will be seen much to the east of that star; viz. about 13° , or rather more; on the following night it will be found about as much more backward, and so on. It likewise advances at the same time towards the north or towards the south. Indeed, so rapid is its motion, that if any attentive person will watch its course amongst the stars during a few hours only, he will plainly perceive her change of place. All this retrogradation, which is called the *proper movement of the moon*, viz. from the time that it is seen near a certain star, and until it comes near it again, takes up about 27 or 28 days.

The different appearances (or as they are more commonly called the *phases*) of the moon, are the phenomena which are more particularly striking and more generally remarked in the heavens, even by the rudest nations of the earth. During the 27 or 28 days of her proper movement, we perceive the moon affording more or less light, or shewing a smaller or larger part of its illuminated disc. For about three days out of the 27, the moon is almost invisible; then we begin to see it in the evening towards the west, somewhat like a luminous arch with pointed extremities, properly called *cusps* or *horns*. In that state it is denominated a *crescent*: for its luminous part increases gradually until it appears after seven days, like a semicircle. It is then at the apparent distance of 90° from the sun, and we say that it is in *its first quarter*. It still continues to increase until

seven or eight days after, it gets quite opposite to the sun, and shines with its entire circular disc, in which state we call it the *full moon*. After that period the luminous part of the moon begins to decrease, and when it comes again within 90° of the sun, but on the other side, we say it is at its *last quarter*. It then gets too near the sun, where we lose sight of it for a short time, and the moment it passes beyond the meridian of the sun's centre, we call it the *new moon*; for, a day or two after this, we begin to see it again towards the west; and so forth. The convex part of the moon's illuminated portion, or the more convex of its two sides, is always turned towards the sun *.

Amongst the stars there are, as we have already noticed, eight luminous bodies, which the naked eye can hardly distinguish from the fixed stars; but which, when viewed through a telescope, have very different aspects; and when examined with respect to their motions, are found to be quite different from the fixed stars; for though they appear to move like the other celestial bodies, from east to west, yet each of them performs that apparent revo-

* The period of each of the four remarkable phases of the moon which is performed in the space of seven or eight days, and likewise the whole lunation or the period of its entire revolution which is performed in about 28 days, seems to have suggested the general custom of counting by months and weeks. See de la Lande's Astronomy.

lution in a different time: hence they all change their mutual distances, as well as their situations with respect to the fixed stars; for instance, one evening one of them will be seen near a certain star, the next evening it will be found near some other star, which is to the east of the former; on the following evening it will be found still more easterly, and so on for a number of nights; then perhaps it will appear to be stationary; viz. it will remain near the same star during some nights; after which it will move towards the west of that star, &c.

From such irregular or wandering movements, those eight celestial objects have been denominated *Planets*. The astronomers have given them peculiar names; and for the convenience of expressing them upon globes, tables, &c. they are often denoted by peculiar characters. Here follow their names and characters.

Mercury ♡; *Venus* ♀; *Mars* ♂; *Ceres Ferdinandea*; *Pallas*; *Jupiter* ♃; *Saturn* ♄; and the *Georgium Sidus*, or *Georgian Planet*, which, by some, has also been called either *Uranius*, or *Herschel* ♕.*

Since

* Mercury, Venus, Mars, Jupiter, and Saturn, have been known from time immemorial; the Georgian planet was discovered by Dr. Herschel about 20 years ago. The Ceres was discovered by Mr. Piazzi, an Italian astronomer, on the 1st of January 1801, or the first day of the present century. The last, or Pallas, was discovered by Dr. Olbers

Since the stars properly so called, are considered as fixed points in the celestial sphere, which serve to denote the movements peculiar to the sun, the moon, the planets, and the comets; and whose situations are likewise useful for other purposes; therefore astronomers have laboured with great assiduity to determine, with the utmost accuracy, their situations in the heavens, or their distances from each other; and such distances are laid down in books, or catalogues, or tables. This however has been more particularly the custom of latter times; for the observers of very remote antiquity parcelled the whole into irregular assemblages, to which they gave the names of men, of birds, of fishes, &c. according to some faint or distant resemblance, which that particular arrangement seemed to indicate. Then, in order to specify any particular star of a certain arrangement or imaginary figure, they spoke, for instance, of the star on the shoulder of Orion, or on the tail of the fish, &c. And such is the assistance which those imaginary figures afford to the memory, that this custom is still continued, viz. of expressing the stars by their situations in those imaginary figures of men, fishes, birds, &c. which are called *asterisms* or *constellations*. The modern more accurate astronomers use those constellations for the purpose of in-

of Bremen, on the 28th of March 1802.—I do not know that any particular characters have as yet been appropriated to the two last discovered planets.

dicating

dicating the general assemblage of stars in a certain portion of the heavens; but they distinguish each particular star by a Greek letter, or by the figures of numbers, as 1, 2, 3, &c. and mark its true place by mentioning its distances from particular points.

Some of the principal fixed stars have peculiar names, such as Aldebaran, Sirius, Regulus, &c.— We shall treat of the constellations, as also of the particular stars which are contained in them, in another chapter of this part; but for the present it will be necessary just to mention that the zodiac is occupied by twelve constellations, whose names and characters are as follow:

Aries ♈, *Taurus* ♉, *Gemini* ♊, *Cancer* ♋, *Leo* ♌, *Virgo* ♊, *Libra* ♊, *Scorpio* ♊, *Sagittarius* ♊, *Capricornus* ♊, *Aquarius* ♊, and *Pisces* ♊. Those constellations are supposed to divide the zodiac, or the ecliptic, into 12 equal parts; therefore 30 degrees are assigned to each of them; 12 times 30 making 360°, or the whole circle. They are situated in the order in which they are mentioned above from the west towards the east.

Having thus given a general or superficial view of the number and movements of the principal celestial bodies, as well as of the most remarkable circles and points that are used in the science of astronomy; it will be necessary to indicate some of the most striking effects that are produced by those movements, and likewise to shew the use of

the abovementioned circles and points, in determining distances and positions; but to this I shall briefly prefix a few of the more remarkable properties of the circles of a sphere, by way of refreshing the memory of the students, who are supposed to have previously studied spherical geometry, trigonometry, &c.

If a plane cut a spherical surface, the section will be a circle. If the plane pass through the centre of the sphere, the section is called a *great circle of the sphere*; it being the largest circle that can be drawn upon the sphere; but if the cutting plane do not pass through the centre of the sphere, then the section will be a *lesser circle*. Therefore all great circles of the sphere have the same common centre, and cut one another as well as the sphere, into two equal parts. But lesser circles have not the same centre with the sphere, and they may be cut unequally by a great circle, or by another lesser circle.

Parallel circles are those whose planes are parallel.

A *spheric angle* is the inclination of two great circles, and is measured by an arc of a great circle intercepted between the legs of that angle, at 90° distance from the angular point. When two circles intersect one another, the opposite angles are equal.

A *spheric triangle* is a figure formed on the surface of the sphere by the mutual intersections of three great circles.

The

The *poles of a circle* are those two points on the surface of the sphere, where a straight line passing through the centre of the circle, and perpendicular to its plane, meets that surface.

Both the poles of a great circle are equidistant from it; but those of a lesser circle are not equidistant. When two great circles are perpendicular to each other, they must pass through each other's poles; and then either of them is called *secondary* to the other. Thus the meridians are said to be secondaries to the equator, and the azimuths are secondaries to the horizon.

A great circle perpendicular to a lesser circle, must pass through the poles of the latter; but the reverse is not true.

The *projection* of the sphere is the representation of its circles, points, &c. upon a flat surface; and those representations of circles may be either straight lines, or circles, or ellipses, or other curves, according as the circles lie in the direction of the eye of the observer, or perpendicular, or oblique to it; and likewise according to the nature of the projection, of which there are several sorts.

We may now return to the astronomical circles, and shall, in the first place, shew their principal use upon the surface of the earth.

The equator on the earth, which is just under the celestial equator, is a great circle which divides the earth into two equal parts, namely, the northern and the southern hemispheres. This imaginary circle

passes through the continent of Africa, crosses the Indian ocean, as also the islands of Sumatra and Borneo; it passes along the whole extent of the Pacific ocean, and the continent of South America. This circle is commonly called simply the *line*, and when navigators go from one side of it to the other, they commonly say that they have *crossed the line*.

The shortest distance of a place on the surface of the earth from the equator, is called the *latitude* of that place, and is said to be *north* or *south latitude*, according as the place is situated on the northern or southern hemisphere. This latitude is measured by an arc of the meridian of that place; thus the latitude of London is said to be $51^{\circ} 31'$ north; the latitude of Lisbon is $38^{\circ} 42'$ north; the latitude of the Cape of Goodhope is $34^{\circ} 29'$ south, &c. Places that are exactly under the equator, have no latitude; and the latitude of those, which are exactly under the poles, is 90° north or south*.

A lesser circle passing through any place, parallel to the equator, is called a *parallel of latitude*; and, of course, all places through which that circle passes, have the same latitude.

The *longitude* of one place from another on the surface of the earth, or what is, more properly, called their *difference of longitude*, is the distance of their

* The latitude of a place is equal to the elevation of the pole of the same denomination, above the horizon of that place.

meridians

meridians from one another; which is measured by the arc of the equator, that is intercepted by those meridians; and is expressed in degrees, minutes, &c. In general, the longitude is reckoned from a certain meridian, and is called *east* or *west* longitude, according as the places lie east or west of that meridian.

Now the equator being a fixed and immutable circle, the latitude must unavoidably be reckoned from that line; but since there is no fixed and general meridian; therefore the longitude may be reckoned from the meridian of any place at pleasure. For a long time it has been the general custom to reckon the longitude from the meridian of Teneriffe, one of the Canary Islands; that island being for many years the most western land known. But at present the most prevailing custom is for every principal nation to reckon the longitude from the meridian of its capital. Thus the English begin to reckon from, or consider as, the first meridian, that which passes through London, or rather through the Royal Observatory at Greenwich. The French begin to count the longitude from the Observatory of Paris. Therefore, according to the French reckoning, the longitude of Greenwich is $2^{\circ} 25'$ west; and, according to the English reckoning, the longitude of Paris is $2^{\circ} 25'$ east.

Then, in order to state the situation of places upon the surface of the earth, it is necessary to specify

specify both their latitudes and their longitudes, and such statements are always found annexed to the names of towns, capes, &c. in geographical dictionaries, and other works on the subject of geography.

In order to estimate real distances in miles from the statement of the latitudes and longitudes of any two places, the reader must observe, 1st, That when the two places are under the same meridian, or have the same longitude, and differ only in latitude, then their difference of latitude converted into miles, at the rate of 69,043 English miles per degree, will give their real distance in miles*. 2dly, That when the places have the same latitude, and differ in longitude only, then their real distance cannot be had by converting their difference of longitude into miles, according to the above-mentioned rate, unless the two places are both under the equator; for since the meridians approach each other, according as they recede from the equator, and at last do all meet at the poles; therefore the distance between two places, which have the same difference of longi-

* A degree of latitude, or of longitude at the equator in nautical affairs, is generally reckoned equal to 60 miles, commonly called *geographical miles*; but since it appears from the latest measurements that the whole circumference of the earth is equal to 24855,43 English miles; therefore dividing this number by 360° , we have the length of one degree equal to 69,043 English miles.

tude, diminishes in proportion as their latitude increases, viz. according as they recede from the equator; the diminution being in the ratio of radius to the cosine of the latitude; viz. the length of a degree of longitude at the equator is to the length of a degree of longitude at a given latitude, as radius is to the cosine of that latitude. Therefore, when two places have the same latitude, convert their difference of longitude into miles, at the rate of 69,043 miles per degree; then say, as radius is to the cosine of the latitude of the two places, so is the number of miles just found, to a fourth proportional, which is the real distance in miles between the two places. 3dly, When the places differ in longitude as well as in latitude, then their real distance in miles must be found by the resolution of a right-angled spherical triangle, according to the rules of trigonometry; or it may be found mechanically, and with tolerable accuracy, upon a terrestrial globe, the use of which will be shewn hereafter.

In the heavens the distance of the sun, moon, and other objects from the equator, is called their *declination*, which is north or south, according as the object is north or south of the equator; and it is evident that the declination cannot be more than 90° . The fixed stars, being dispersed all over the heavens, are to be found in every degree of declination; but the declination of the sun never exceeds $23^{\circ} 28'$.

Great circles drawn through the poles of the equator,

equator, or the secondaries to the celestial equator, are also called *circles of declination*, or *meridians*, because upon them the declination is measured. Twenty-four of those secondaries, that are at 15° distance one from the other, and which, of course, divide the equator into 24 equal parts (for 360° , divided by 15° , quotes 24), are called *hour circles*; because the sun, in its apparent diurnal motion, passes over 15° in every hour.

The *right ascension* of a celestial body, is an arc of the equator intersected between one of the equinoctial points, called the first point of Aries, and a declination circle passing through that body. This arc is measured according to the order of the sun's apparent motion *. The *oblique ascension* of a celestial body is an arc of the equator, intercepted between the first point of Aries, and that point of the equator, which rises with that body in an oblique sphere. The *ascensional difference* is the difference between the right and oblique ascension.

Thus it appears that the distance from the equator, and the distance from a given meridian, which, for places upon the surface of the earth, are called the *latitude* and *longitude*; for celestial objects are called the *declination* and *right ascension*.

* It is called right ascension, because in a right sphere the declination-circle, which passes through the given body, rises with that body above the horizon.

The *latitude* and *longitude* of a celestial object, are its distance from the ecliptic, measured upon a secondary of the ecliptic (hence secondaries to the ecliptic are also called circles of celestial latitude); and its distance from a secondary of the ecliptic that passes through the first point of Aries (viz. where the ecliptic intersects the equator), or an arc of the ecliptic intersected by two of its secondaries, viz. one which passes through the first point of Aries, and the other which passes through the given body. If the celestial body be supposed to be seen from the centre of the earth, its longitude is called *geocentric longitude*. If it be supposed to be seen from the centre of the sun, it is then called *heliocentric longitude*. And the same thing must be understood of the latitude of the celestial bodies; viz. it may be *geocentric*, or *heliocentric*.

Let us now return to the course of the sun, and let us endeavour to explain the lengths of days and nights, the seasons, and other things which depend upon it. As the sun moves in the period of one year all along the ecliptic, from west to east, and as the ecliptic crosses the equator in two points, and is inclined to it at an angle of about $23^{\circ} 28'$; therefore the sun, twice in the year, must be in the equator, at which time its declination is 0° ; and twice in the year must be farthest from the equator, when its declination is about $23^{\circ} 28'$; once on the north side of the equator, and once on the south side of it. The former two of those points are called

the

the *equinoctial points*, (because when the sun is at those points, the days are equal to the nights) otherwise called the first point of *Aries*, and first point of *Libra*. A great circle, or a secondary to the equator, passing through those points, is called the *equinoctial colure*. The latter two points are called the *solstitial points*, because those points (which are the first point of *Cancer*, and the first point of *Capricorn*) are the last stations of the sun, after which it begins again to draw near to the equator. It is at those two points that the tropics touch the ecliptic. A secondary to the equator, passing through the solstitial points, is called the *solstitial colure*.

In fig. 7, Plate XXVI. *nabsb* represents the earth; NCSE represents the apparent celestial sphere, or our meridian, as situated with respect to our latitude, viz. $51^{\circ} 31'$ north; EE is the equator, CD the ecliptic, which intersects the equator at an angle COE of $23^{\circ} 28'$. CT is the tropic of Cancer, which is parallel to the equator, and touches the ecliptic at its most northerly point C, which is the first point of Cancer. RD is the tropic of Capricorn, likewise parallel to the equator, and touching the ecliptic at its most southerly point D, which is the first point of Capricorn. HH is our horizon, London being at z, and our zenith at Z. NS is the axis of the world, of which N is the north, and S the south, pole*.

O is

* For the sake of perspicuity the sphere in this figure is projected orthographically, and the meridian NCHSDT is the

O is one intersection of the ecliptic with the equator, or the first point of Aries. The other intersection, or the first point of Libra, being on the opposite side. C is one solstitial point; namely, the first point of Cancer; and D is the other solstitial point; namely, the first point of Capricorn.

Now, on the 20th of March the sun will be found at O, viz. where the ecliptic intersects the equator; therefore it will appear to move round the earth, together with the whole sphere, in about 24 hours, and its path will coincide with the equator. On the following day the sun will be found, not at O, but in another point of the ecliptic a little eastward of O, as, for instance, at P, and, with the whole sphere, will appear to turn round the earth in a circle parallel to the equator, for instance, along the dotted circle 1, 2, the arc E 1 being its declination for that day. On the ensuing day the sun will be found farther from O, as for instance at Q; and, moving with the whole sphere, will appear to turn in a circle parallel to, but a little farther from, the equator, and so on; until in about three months time, viz. on the 21st of June, it will reach the solstitial point C of the ecliptic; and on that day it will appear to turn with the tropic C T; its north

the primitive circle; therefore all the circles, whose planes are perpendicular to the primitive, such as the equator, the tropics, the ecliptic, &c. are represented by right lines.

declination

declination CE being an arch of about $23^{\circ} 28'$. After this, the sun will continue to move on the ecliptic, and after about three months longer, viz. on the 23d of September it will reach the other intersection of the ecliptic with the equator. Proceeding still farther, in about three months more, viz. on the 22d of December, it will reach the other solstitial point D of the ecliptic, at which time it will appear to move along the tropic DR. Near three months after, it will reach again the equinoctial point O; having performed the whole course of the ecliptic from the west towards the east, in the compass of 12 months; after which it begins to perform a second and similar revolution, &c.—This motion of the sun being once understood, the following consequences will be readily comprehended.

I. When the sun is at the point O of the ecliptic, and appears to move along the equator EE; then, since EE is a great circle, and the horizon HH is likewise a great circle; therefore they must cut each other into two equal parts; hence, at that time, half the apparent daily course of the sun is performed above the horizon, and the other half is performed below it; or, in other words, the day is equal to the night. When the sun is in any other point of the ecliptic, between O and C, its daily course will be performed in *lesser* circles parallel to the equator; which lesser circles are cut into two *unequal* parts by the horizon, because they are not perpendicular

perpendicular to the horizon; thus the circle C T is cut by the horizon H H, into two unequal parts, whereof C 3 is the largest, and 3 T the shortest; for since C T is cut at 5, into two equal parts by the great circle N O S; therefore C 3, being longer than the half C 5, must be much longer than the segment T 3. Of any one of those circles, along which the sun appears to perform each daily revolution, that portion, which is above the horizon, is called the *diurnal arch*, and that which is below the horizon, is called the *nocturnal arch*; the halves of which, viz. from the horizon to the meridian as 3 C, and 3 T; or as 1 y, and 2 y, are respectively called the *semidiurnal*, and the *seminocturnal arches*. Therefore, from the 20th of March, at which time the sun is at the point O, until the 21st of June, at which time the sun is at the point C of the ecliptic, the diurnal arches, or the days, grow continually longer than the nocturnal arches, or the nights. After that, the days begin to shorten, and the nights to lengthen, in proportion as the sun draws nearer to the autumnal equinox, and on the 23d of September, when the sun is exactly at that point, the day becomes equal to the night. Proceeding still farther towards the southern part of the ecliptic, the sun again performs its daily course in lesser circles, which are unequally divided by the horizon; with this difference, however, that now the *nocturnal* are longer than the *diurnal arches*; viz. the nights grow continually longer than the days, until the sun

reaches, on the 22d of December, the point D of the ecliptic, at which time the semi-diurnal arch R 4, or the day is the shortest, and the seminocturnal arch D 4, or the night is the longest. Then the days begin to lengthen again, &c.

In short, during the 12 months, four remarkable changes, or periods, or seasons, may be distinguished, viz. 1st. From the vernal equinox, on the 20th of March, when the sun is at O in the ecliptic, until the summer solstice, on the 21st of June, when the sun is at C. 2dly, From the last-mentioned time, until the sun reaches the autumnal equinox on the 23d of September. 3dly, From the 23d of September, until the 21d of December, when the sun reaches the winter solstice. 4thly, and lastly, From the last-mentioned time until the sun reaches again the point O, on the 20th of March; those periods form the four seasons of the year, which are attended with different degrees of temperature, different fertility of the ground, &c. Those differences arise from the following three causes, that is, 1st, because when the sun is longer above the horizon (as in summer) than below it, the ground, by being longer exposed to its rays, acquires more heat than when the sun remains a short portion of the 24 hours above the horizon; 2dly, because, when the sun gets nearer to our zenith, its rays, coming less obliquely, fall upon a given spot in greater quantity than when they are more oblique; and 3dly, because when the sun is nearer to the zenith, its rays go a shorter way

through

through the atmosphere, and, of course, are less obstructed by it, than when they are more oblique *.

II. The effects, which we have just described, are such as take place in our latitude; but in other latitudes they differ considerably, as will be easily comprehended by attending to fig. 7; and, by observing that when the sun is advancing towards the northern hemisphere, it must recede from the southern hemisphere; and therefore whilst the days are growing longer to us, and the nights shorter; the reverse must take place with respect to the inhabitants of the southern hemisphere; viz. the days must be diminishing and the nights must be growing longer, therefore, when it is summer to us, it must be winter to them, and *vice versa*. But when the sun is at the equinoctial points, the days are equal to the nights all over the earth, because the sun then moves along the equator, which, being a great circle, is cut into two equal parts by the horizon of every place.

III. Excepting when the sun is at the equinoctial points, the length of the same day, viz. of the sun's continuance above the horizon, is different accord-

* The disc of the sun appears, from measurement, to be a little larger in winter than in summer; therefore we infer that the sun is a little nearer to us in winter than in summer. But the difference is so small, that the effect which might arise therefrom, is vastly overpowered by the above-mentioned three causes.

ing to the difference of latitude; for in that proportion the parallels of declination are more or less inclined to the horizon; and, of course, are more or less unequally divided by the horizon of each particular place. Thus, for instance, on the 4th of May we have about 20 hours of day light, and about four hours of darkness; but on the same 4th of May those, whose latitude is farther north, have a longer continuance of day light, and a shorter of darkness; whereas those who live nearer to the equator than we do, have a shorter continuance of day light, and a longer of darkness. In short, to those who live under the equator, the days are always equal to the nights, because every parallel of declination, or every apparent revolution of the sun is divided into two equal parts by their horizon. But the horizons of other places cut the parallels of declination more and more unequally, in proportion as those places are more and more distant from the equator; whence the difference between the days and the nights increases accordingly. But to those whose latitude exceeds $66^{\circ} 32'$, either south or north, the sun remains above the horizon during several days successively in summer, and remains quite invisible during several days successively in winter.

In order to understand the reason of this phenomenon, it must be previously considered, that when an opaque globe, like the earth, is exposed to a very distant luminous object, like the sun, it can have not

more

more than half its surface illuminated at the same time, and the boundary of that illuminated part round the sphere, forms a great circle, the axis of which, if produced, will pass through the luminous object. Now when the sun is at the solstitial point C , it is then vertical to that part of the earth (viz. to the spot i), the latitude of which is about $23^{\circ} 28'$ north; for such is the angle COE . Now since the circle bb , which forms the boundary of light, being a great circle, is 90° distant from its pole i ; and since the arch en is likewise 90° ; therefore the distance bn of the boundary of light from the pole n , must be equal to $i e$, viz. $23^{\circ} 28'$; so that at that time the portion anh of the earth must be constantly illuminated; that is, the sun must appear to go round and round for several days, without ever setting. It is also evident that an equal portion bsf of the earth, round the south pole s , must remain as long in an uninterrupted darkness. The circles ba , and bf , which limit those spots, and which are about $23^{\circ} 28'$ distant from the poles (viz. as much as the tropics are from the equator), are called the *polar circles*, ba being the *north*, and bf the *south*, *polar circles*, otherwise called the *arctic*, and the *antarctic circles*. When the sun, after the solstice, draws nearer to the equator, the boundary of light must of course approach the poles; hence a smaller portion of the earth, round the north pole, will have constant day light, and an equal portion round the south pole will have constant darkness. But when

the sun, having crossed the equator, advances towards the southern hemisphere, then the boundary of light recedes from the north pole ; that is, a larger and larger portion of the earth round that pole, will be left in continual darkness, whilst an equal spot round the south pole will enjoy constant day light, and so on. Therefore the inhabitants of the north pole (supposing that some may live there) must see the sun above their horizon (which coincides with the equator) moving parallel to it during six months of the year ; viz. from the vernal equinox to the autumnal equinox ; and must altogether lose sight of it during the other six months ; whereas the inhabitants of the south pole must have a constant night during the former six months, and a constant day light during the latter six months.

IV. As the sun moves from one tropic to the other, and back again to the former tropic in the course of every year, and as the tropics are about $23^{\circ} 28'$ distant from the equator ; therefore the sun is vertical to, or passes over the zenith of, different places on the surface of the earth, provided the latitudes of those places do not go beyond $23^{\circ} 28'$ north or south of the equator. That portion or zone of the earth which is within those two latitudes, or which is between the tropics, is called the *torrid zone*, from the great heat to which it is exposed. The portions *hna*, and *fsb*, which are limited by the polar circles, are called the *north* and the *south frigid zones* ; the remaining parts of the earth, which

are

are between the tropics and the polar circles, are called the *temperate zones*. Thus the surface of the earth is supposed to be divided into five zones*.

After the above mentioned consequences of the sun's daily and annual course, it will be necessary to mention some irregularities respecting it, the cause of which will be explained hereafter; as also the length of the year, both solar and astral.

If we count the time from the vernal equinox to the autumnal equinox, and likewise the time from the autumnal equinox to the next vernal equinox, we shall find that the former period exceeds the latter by about eight days, which shows that the sun re-

* The following useless distinction respecting the shadows which are cast by the different inhabitants of the earth, is generally mentioned by the writers on astronomy. The inhabitants of the torrid zone are called *Amphiscesii*, because, at different times of the year, their meridian shadows are directed towards both poles, but when the sun is over their heads, then their shadow falls under their feet, or rather they form no shadow similar to the human body, and at that time they are called *Acesii*, or shadowless. Those who live in the temperate zones, are called *Heteroscii*, because their meridian shadows are projected towards one pole only at any time of the year. Lastly, the inhabitants of the frigid zones are called *Periscii*, because when the sun is constantly above their horizons, their shadows are successively directed towards all the points of the compass in 24 hours.

mains about eight days longer on the northern half of the ecliptic than on the other half of it.

Astronomers consider the year under two distinctions; viz. the *solar* and the *astral*. The *tropical* or *solar year*, upon which the seasons depend, is the exact time in which the sun moves all round from one equinox to the same again, and which period has been found to be equal to 365 days, 5 hours, 48' 49". The *astral year* is the time that the sun employs in going from one fixed part of the heavens, viz. from a given fixed star, all round, and again to the same precise point of the heavens; and this period or *astral year* is a little longer than that of the *solar year*, viz. it is equal to 365 days, 6 hours, 9', 12", which is longer than the *solar year* by 20', 23", of time; or to an arc of 50', 25" (for, in 20', 23" of time, the sun perculs an arch of 50', 25" *); so that the sun, as seen from the earth, arrives at the equinoctial point, viz. at the equator, a little before it arrives at that same precise point of the heavens, with which it coincided, when it crossed the equator on the preceding year. This difference between the period of the sun's going from one equinox to the same, and the period of its going from a given star,

* This is easily determined by means of the common rule of proportion; for since the sun's apparent daily motion performs an entire circle in 24 hours; therefore we say as 24 hours are to 360 degrees, so are 20' 23" to a fourth proportional.

or part of the heavens, to the same again, is called the *precession of the equinoxes*. This precession in one year is very trifling, but the accumulation of it after a number of years, produces a considerable difference, which can by no means be passed unnoticed; thus, in a hundred years (which is called the *secular precession*) it amounts to $1^{\circ}, 23', 45''$; and the difference, which it has produced since the stars were first observed, and their positions were delineated, is very striking.

Novices in astronomy do not, in general, readily comprehend the real meaning of the precession of the equinoxes; therefore it will be necessary to explain it in a more particular manner.

How can the sun return to the same equinox at the end of every year, without returning to the same spot in the heavens, or to the same fixed star? is the usual difficulty. In order to clear this difficulty the reader must recollect that the equator is a circle which, being equidistant from the poles, divides the celestial sphere into two equal portions. Now, if the poles were stationary, viz. coincided constantly with the same spots in the heavens, then the equator would likewise pass constantly over the same fixed stars, and would cut the ecliptic constantly at the same points; for the ecliptic is an invariable circle, viz. it passes always over the same stars. But it has been observed, that the poles are subject to a constant, though very small, movement; so that if

at

at one time any one of the two points in the heavens, which do not revolve with the daily revolution of the rest of the sphere, and which we, for that reason, call the poles, be near a certain star, some years after it will be found near some other star; or in other words, the polar star is not always the same. It appears from the result of calculations established upon the observations made during several centuries, that the path of either of the poles is a circle, the pole of which coincides with the pole of the ecliptic, and that the pole will move along that circle so very slowly, as to accomplish the whole revolution in 25791 years nearly. The diameter of this circle is equal to twice the inclination of the ecliptic to the equator, viz. to about 27° .

Now, as the ecliptic is a fixed circle in the heavens; but the equator, which must be equidistant from the poles, moves with the poles; therefore the equator must be constantly changing its intersection with the ecliptic. And from the best observations it appears that the equator cuts the ecliptic every year $50', 25$ more to the westwards, than it did the year before: hence the sun's arrival at the equinoctial point *precedes* its arrival at the same fixed spot of the heavens every year by $20' 23''$ of time, or by an arc of $50', 25$. Thus, by little and little, these equinoctial points will cut the ecliptic more and more to the westward, until, after the long period

of

of 25791 years, they will cut it again at the same point precisely.

The 12 constellations, which, as has been mentioned in the preceding pages, occupy the whole zodiac, have given their names to 12 equal portions of the ecliptic, each portion consisting of 30° , and each portion was marked by the sign, mark, or character, peculiar to the constellation to which it belonged, or with which it coincided when the constellations were first noticed, at which time the vernal equinox took place in the constellation of Aries, the summer solstice in that of Cancer, &c. but on account of the precession of the equinoxes, the constellations no longer coincide with those points; for instance, the vernal equinox is in the constellation of Pisces, and the constellation of Aries is now considerably removed from it, and is gone nearer to the summer solstice; and so are all the other constellations removed; yet their characters have been left to denote the same parts of the ecliptic; thus the vernal equinox is called the first point of Aries, and is marked ϖ ; and so of the rest.

From what has been said above, it appears that not only the equinoctial points, but also the solstitial points, must change accordingly.

It is now necessary to explain the *civil* or common way of reckoning the year.—It has been said above, that the length of the astral year is 365 days, 6 hours, 9', 12", and that the length of the mean tropical or solar year is 365 days, 5 hours,

48', 49". Then, since the seasons and the lengths of days and nights depend upon the latter, it is therefore natural to use the last, viz. the solar year, for the purposes of civil society. Now as the period of that year does not consist of a number of entire days; therefore, beginning to reckon from any day, one year after that, or the new year, ought to begin when 365 days, 5 hours, 48', 49", are elapsed; and the next year ought to begin when twice that period, or when 730 days, 11 hours, 37', 38", are elapsed; which would make an enormous confusion: on the other hand, if the 5 hours, 48', 49", be neglected, the accumulation of so many neglected 5 hours, &c. after a number of years, would produce a considerable difference between the solar and the civil year, and the seasons would not fall constantly on the same months.

It is easy to observe that the 5 hours, 48', 49", will amount to nearly 24 hours, viz. to a whole day at the end of every four years. Therefore Julius Cæsar, willing to remedy this irregularity, ordered that every fourth year should have an *intercolary day*, viz. should consist of 366 days; whereas every one of the other three years consists of 365 days; and this mode of reckoning, which has prevailed ever since, has thence been called the Julian method; and that every fourth or Julian year, has been universally called *Bisextile year*; in England, *leap year*. The additional day which that year has above every one of the three preceding, or of the three succeed-

ing

ing years, was by the ancient Romans added to the 23d of February; so that in a leap year they reckoned the 23d of February twice over, viz. according to their way of reckoning, in that year they had two sixth days preceding the calends of March. Hence (viz. from *bis sextus*) that year was called a *bissextile year*. At present we add the intercolary day at the end of February; so that the month of February has 28 days during three successive years; but every fourth, or leap, year, it has 29 days.

Thus the compensation would be sufficient, if the solar year consisted of 365 days and 6 hours, because the six hours of all the four years, amounting to 24 hours, would be exactly equal to the additional day, which is allowed to every fourth year. But since the odd time amounts to 5 hours, 48', 49", which is 11', 11", short of 6 hours; and the accumulation of those 11', 11", amounts to one complete day in about 130 years; therefore, the addition of one day every four years is evidently too much, by 4 times 11', 11"; viz. by 44', 44", or by about one day in 130 years. In fact, at the council of Nice (A. D. 325.) the vernal equinox fell on the 21st March; but the equinox continually falling back, it appeared at the time of Pope Gregory the 13th, that the sun came to the vernal equinox on the 11th of March, therefore the difference between the solar and the civil years, amounted to 10 whole days; in consequence of which the above-mentioned

Pope

Pope ordered that the calendar should be corrected, by taking 10 whole days out of it; and accordingly, in the year of our Lord 1582, the day following the 4th of October, instead of being called the 5th, was called the 15th; by means of which alteration the real equinox was restored to the 21st of March: and in order to prevent, as much as possible, the like irregularity in future, the same pope ordained, that every 100th year, which according to the Julian mode was to be a bissextile year, should be a common year, viz. of 365 days; but because that was too much, every 400th year was to remain bissextile. In other words, to leave out a bissextile-day in February at the end of every century of years not divisible by four, reckoning them common years of 365 days each; such as the 17th century, or the year 1700, the 18th century, or the year 1800, &c. and to retain the bissextile day in February at the end of those centuries, which are divisible by 4, such as the 16th, 20th, 24th centuries, &c. or the years 1600, 2000, 2400, &c. Thus the present year 1802 is said to be the sixth year after the leap year, for the year 1800, viz. the 18th century, being not divisible by 4, was reckoned a common year.

This new form of reckoning, viz. with the just and necessary correction which was ordained by Pope Gregory, is called the *Gregorian*, or the *new style*, and has been adopted by almost all the enlightened nations of the world. There are some, however,

however, who still reckon according to the old style, viz. as if no alteration had been made by Pope Gregory.

What has been said above, concerning the deviation of the true vernal equinoctial point from its usual day in March, must be likewise understood of the other equinoctial point, as also of the solstitial points; for according as one of them deviates from its usual day, so must the others evidently deviate from their usual days.

C H A P. III.

OF THE TRUE SYSTEM OF THE WORLD, OR OF THE
SOLAR SYSTEM.

THE apparent movements of the celestial bodies have been described in the preceding chapter, sufficiently to give a general and comprehensive idea of the whole. With this view, as also for the purpose of avoiding confusion of ideas, the most minute particulars, together with the practical methods of taking and calculating the same, have been reserved for future chapters. In that view several apparent irregularities have been pointed out, which, together with various other considerations, prove that the celestial bodies must move in paths different from what they appear to perform.

We have shewn in the first chapter of the present part, that regular movements may appear to be very irregular; as also that bodies actually in motion may appear to be at rest; or, *vice versa*, that bodies at rest may appear to be in motion, according to the situation of the spectator.

The evidence of our senses, frequently fallacious, and hardly ever correct, must be submitted to the

superiority of reason and demonstration. When the same appearances may be produced by various different causes ; that cause must be admitted, believed, or preferred, which is warranted by reason ; not that which implies an absurdity, or which bears no analogy to the known works of nature. When persons in different boats, move in different directions along the sea coast, they may at first sight imagine that they are standing still, and the land is moving ; but it is easy to conclude, that this is a fallacious appearance ; for, on account of the boats moving in different directions, the land ought likewise to move in different directions at the same time, which is an evident absurdity.

Thus also to a spectator on the plane, the clouds seem to be as high as the moon ; but that they are vastly distant from it, is clearly proved by those who ascend to the tops of high mountains ; for they see the clouds below their feet, at the same time that the moon seems to be as much above their heads as when they were upon the plane.

The sun, the moon, and especially the planets, appear to move with great irregularities round the earth ; therefore it is most probable that they move round some other centre, agreeably to some general laws of nature ; and analogous to the other, even what we call the meanest works of nature, which our utmost endeavours always find to be strictly conformable to, or depending on, some simple and general law.

Various hypotheses have been formed, or ideal systems of the world have been framed, for the purpose of accounting for the apparent irregularities; the principal of which systems we shall mention in this chapter; but in order to show how far any one of them may answer the desired object, it will be necessary previously to mention some of the most striking appearances, or difficulties, which they are intended to explain, and to obviate.

The moon and the eight planets are evidently opaque bodies, and they only shine by reflecting the light which they receive from the sun; which is deduced from this, viz. that their illuminated part is always that which is directly towards the sun, the rest being always dark. From the appearance also of the boundary of light and darkness upon their surfaces, we conclude that they are spherical or nearly spherical bodies; which is confirmed by most of them having been found to turn periodically round their axes.

The moon, we are led to suppose, keeps nearly within the same distance of the earth; for her apparent diameter does not vary much; and from often repeated measurements, it appears to be never less than $29'$, $30''$; nor ever greater than $33'$.

The moon comes to the meridian later every day, cuts it at different heights, and remains a different length of time above the horizon. Its phases, or appearances of its shining part, have already been described.

The

The planet *Venus*, the brightest of the planets, when viewed through a telescope, is found to undergo changes analogous to those of the moon. Her apparent diameter varies considerably, sometimes being five or six times greater than at other times. She is sometimes found to come to the meridian with the sun; it then precedes the sun, so as to appear to move from east to west, and this precedence increases until it becomes equal to 3 hours 10', or to an arc of $47^{\circ} 30'$. At this period Venus seems to be stationary for a short time, after which the time of her coming to the meridian before the sun decreases gradually, and at last they both come to the meridian at the same time. After this coincidence, she culminates later than the sun, and continues to move apparently from west to east, until she comes to the meridian about 3 hours 10' later, which is her greatest elongation from the sun; for at this period she again seems to remain stationary for a short time, then she appears again to move from east to west, and so on. The declination of Venus varies considerably; sometimes receding from the equator as much as 27° north or south of it. When Venus appears easterly of the sun, she sets after the sun, of course is seen in the evening, and is then called the *evening star*. When she appears westward of the sun, she then rises before the sun, and being seen in the morning, is called the *morning star*.

Mercury is seldom seen, on account of its short

distance from the sun, which never exceeds 1 hour 50' in time, or an arch of about 27° 30'. It performs its movements much quicker than Venus; but, as far as has been observed, it has been found to move like Venus, viz. to be sometimes direct, at other times retrograde, and at its greatest elongations from the sun, stationary.

The planet *Mars* sometimes appears to come to the meridian together with the sun, at other times it precedes or follows the sun. It is some time directly opposite to the sun, so as to be seen on the meridian at midnight. When Mars is thus opposite to the sun, its diameter is about five times greater than when it appears near to, and comes to the meridian at the same time with, the sun. The apparent motion of Mars is also sometimes direct, or from east to west; sometimes retrograde. Between those changes it appears stationary for a short time. Its phases may be clearly discerned through a telescope; for its shining part is sometimes full and round, and at other times gibbous, but never horned like the new moon.

The like remarks are true with respect to the other planets. They being also direct, retrograde, or stationary at different times, and, as far as can be observed, shewing different phases, like Mars.

The principal hypotheses or systems of the world, which have been formed in order to account for those phenomena, may be reduced to three, which

are

are known by the names of the *Ptolemaic*, the *Tycho[nic]*, and the *Copernican*, or *Newtonian*, systems.

Ptolemy, an Egyptian philosopher, who wrote about the year 140, endeavoured to establish the vulgar idea, which is derived from first appearances, uncontrolled by reason. He supposed that the earth was fixed and immovable in the centre of the universe, and that all the celestial bodies performed their revolutions about it in the following order, viz. the Moon was next to it, then came Mercury, Venus, the Sun, Mars, Jupiter, and Saturn; the other three planets not being known at that time. Beyond Saturn, he supposed the existence of various immense orbs, which he called the starry firmament, and the crystalline orbs under the names of *primum mobile*, and *calum empyreum*; all which were supposed to turn round the earth once in 24 hours, besides their having proper and peculiar movements.

If this system had been true, the planets Mercury and Venus ought sometimes to have been seen in opposition to the sun, which phenomenon was never observed. I need not adduce more objections; as they will naturally be manifested in speaking of the true system, which was revived by the genius of Nicholaus Copernicus, who was born at Thorn in Prussia, A. D. 1473, and which was afterwards established upon a safe foundation, by the incomparable Sir Isaac Newton.

I said the system revived by Copernicus ; for the same had long before been introduced into Greece by the great Pythagoras, and his disciples, who had probably learned it from the wise men of the East.

According to this system, which we shall presently describe in a more particular manner, the sun remains immoveable in the centre, and all the planets, reckoning the earth one of them, move round it at different distances, and in different times, Mercury being nearest to the sun ; then the others come in the following order with respect to their distances ; viz. Venus, the Earth, Mars, Jupiter, and, lastly, Saturn.

This system was adopted and retained, until Aristotle, and the philosophers that came after him, embraced the vulgar, or Ptolemaic, system ; and their authority imposed it upon mankind, till Copernicus revived the Pythagorean idea ; and the industry, the discoveries, and the reasoning of almost all the succeeding philosophers, established it upon the strongest foundation of rational evidence.

I have said almost all the philosophers, &c. ; because another system, which partakes of both the above-mentioned systems, was offered to the public by Tycho Brahe, a very distinguished Danish astronomer, who has otherwise rendered essential services to astronomy, and who wrote about the middle of the 16th century. This distinguished character seems to have admired the simplicity and the beauty

of

of the Copernican system; but a strict interpretation of, and his respect for, certain passages of the Bible, prevented his assent to the idea of the earth's motion, in consequence of which he formed the following system. He supposed the earth to stand immovable in the centre of the universe, and the sun to revolve about it every 24 hours: the planets he thought went round the sun in their periodical times, Mercury being nearest to the sun, then Venus, Mars, Jupiter, and Saturn, and of course to revolve also round the earth. But some of Tycho's disciples supposed the earth to have a diurnal motion round its axis, and the sun, with all the planets, to move round the earth in one year.

The embarrassment and perplexity, under which this system laboured, were too evident. The most inconsistent supposition was, that the planets performed their revolutions round two centres, viz. the diurnal round the earth, and the periodical round the sun. But its inconsistencies will be naturally manifested by the following description of the true or Copernican system, which soon after Tycho's time was confirmed and explained in almost all its parts, by the unanswerable arguments and wonderful discoveries of Kepler, Galileo, Newton, and others.

According to this system, the sun, an immense globe, constantly emitting abundance of heat and light, is situated in a part of the universe, where

it revolves about a centre, which centre is within its surface, and which has not been found to alter its distance from the fixed stars.

The planets (of which our earth is one) do all revolve about the sun at different distances, therefore in different *orbits* (viz. paths), and in different times. The comets, when they do appear, are also found to go round the sun. The order, in which the planets are situated with respect to their distances from the sun, is as follows: Mercury is nearest to the sun, Venus is the next, then comes the Earth, Mars, Ceres, Pallas, Jupiter, Saturn, and, lastly, the Georgian planet.

The Moon goes round the earth, and of course with it, round the sun. Jupiter, when viewed through a pretty good telescope, is seen to have four moons, which revolve in different paths about it, and go with it round the sun. Saturn also, when viewed through a powerful telescope, is found to be attended by seven moons, which revolve in different orbits round it, and go with it round the sun. Besides the seven moons, Saturn is also found to have a remarkable ring, which will be described hereafter. The Georgian planet, when viewed through the most powerful telescopes, appears to have six moons, which move in different orbits about that planet, and go with it round the sun. The other five planets have not been found to have any moons.

The above-mentioned moons are otherwise called

+

satellites,

satellites, or *secondary planets*; their respective *primary planets* being those about which they revolve. All the planets move from the east towards the west, and in the same direction do the moons revolve round their primaries; excepting those of the Georgian planet, which seem to move in a contrary direction.

Besides the above-mentioned movements round the sun, the earth and most of the planets have a rotary motion round their own axes, which motion is in the direction from east to west; and, reasoning from analogy, it seems probable that all the planets, as well as the satellites, move round their respective axes in the same direction, viz. from east to west.

Before we proceed any farther, it will be necessary to assist the learner in the comprehension of this system by a diagram. See fig. 8, Plate XXVI. which exhibits a view of this system, as it would appear to a spectator situated at a considerable distance above the sun, in a line perpendicular to the earth's orbit. But it must be observed, that in this figure the distances of the planets from the sun, and of the satellites from their primaries, are not represented in their due proportions, which the size of the plate cannot admit of; nor are their orbits represented in their true shapes, which are *elliptical*, but so little different from circles, that, in a diagram of this sort, they could hardly be distinguished from circular paths.

With

With respect to this figure, we need only observe that the motion of all the planets round the sun, which stands in the centre, is in the direction of the letters A B C D E, and the motion of the satellites round their primaries, is in the direction of the letters *a b c d e*. The marks or characters of such planets, as have any character given them by the astronomers, are marked upon their respective orbits in a line from the centre of the figure upwards. The astronomers denote the sun by the character \odot .

Thus (we have said above) would the planets appear to move, if the spectator were situated above the sun in a line perpendicular to the orbit of the earth. But suppose that the spectator should be situated sideway, viz. in the same plane with the orbit of the earth, but farther from the sun than any of the planets; then, it is evident, that if the orbits of the planets were all in the same plane, the spectator would see the planets move all in the same straight line. This, however, is not the case; for the orbits of the planets are a little inclined to each other; in consequence of which the spectator would see them move backwards and forwards, in lines inclined to each other, somewhat like those of fig. 9, Plate XXVI.

Of the real distances of the fixed stars from the sun, as also from each other, we are utterly ignorant. Certain it seems, that the distance of the nearest fixed star from us exceeds by a great many millions

millions of times the diameter of the largest planetary orbit, as that of the Georgian planet. It is not in our power to say whether the stars are of equal bulks, and appear of different sizes, only on account of their different distances; or they differ both in size and distance. Every circumstance we are acquainted with seems to shew that they shine by the emission of their own light, and that therefore they are of the nature of our sun. Probably each star is the centre of a particular system, and has a number of planets revolving about itself, and deriving both light and heat from it; but those planets, if existing, are quite invisible to us.

If it be supposed that each star is equal to our sun, the extremely small diameters under which they appear, and which cannot be measured with certainty by means of any micrometer, is sufficient to indicate the astonishing distances to which even the nearest stars are removed from us.

After having indulged our fancy in a short contemplation of so many suns, and so many systems, let us return to our solar system, and enquire what retains the planets in their orbits round the sun.

This question, which had long perplexed the most learned and inquisitive philosophers, was at length satisfactorily answered by Sir Isaac Newton's theory. A simple but general theory, which he deduced from the known laws of nature, which he demonstrated strictly to account for all the phenomena, and which has been wonderfully confirmed by all the subsequent

subsequent astronomical discoveries and calculations*.

I shall endeavour briefly to explain the principles of this theory; but, for the comprehension of what follows, the attentive reader should recollect what has been explained in the first volume of these Elements, respecting the doctrine of motion, especially concerning the curvilinear motion of a body, which is acted upon by two powers at the same time, one of which powers is uniform, and the other variable.

Newton observing, according to the known theory, that the attractive force of the earth acts at all those heights which are accessible to us, and that it decreases in proportion as the squares of the distances increase, naturally conjectured that it might act at all other distances under the same law of decrement; therefore the force of that attraction at any given distance being known, one may easily calculate the quantity of that force at any other given distance.

Newton likewise, observing that the attraction is mutual amongst the terrestrial bodies, justly supposed that all the bodies of the system might mutually attract each other, their attractive forces being as the quantities of matter directly, and the squares of the distances inversely.

Now if this attractive property alone had existed

* Newton's *Principia Math. Phil. Nat.*

in the world at its creation, it is evident that, sooner or later, according to their distances, the planets, both primary and secondary, would have all been drawn with an accelerated motion directly towards the sun, which is by far the largest body of the system; and the whole would have coalesced in one body. Therefore Newton supposed that at the creation each planet was impelled by a single stroke, such as would by itself compel it to move at some uniform rate in a straight line for ever, in a direction perpendicular to that of the sun's attraction; provided it moved in an unresisting medium, or with a proportionate retardation in a resisting medium *.

Now those premises being admitted, it necessarily follows, that the action of both powers, (viz. of the attractive force which acts unremittingly, and of the above-mentioned impulse) would compel each planet to move in a curve line concave towards the common centre of attraction, which centre must be within the sun, in consequence of the great size of that luminary †.

With those principles Newton began to calculate and strictly to demonstrate, the consequences which must necessarily arise therefrom, and proved that the periods, the distances, the velocities, and the very shapes of the planets, such as had been observed by astronomers, were conformable to those

* The medium through which the planets move, if not quite unresisting, must very nearly approach that state.

† See the 9th chapter of the first part of these Elements.

principles.

principles. The apparent inequalities of the motions of the primary planets, of the satellites, and especially of our moon, are all depending on the same ; and it is wonderful to remark, that every astronomical discovery or terrestrial measurement, made since Newton's time, has been found conformable to his theory.

Thus we have drawn a concise, comprehensive, but superficial sketch of the solar system. It is now necessary to enter into a more particular examination of its parts.—The sizes, shapes, and movements of each primary as well as secondary planet; their distances from the sun and from each other; their phases, their mutual dependence; and the best practical methods of ascertaining those particulars, will be described in the following chapters.

C H A P. IV.

DEFINITIONS, AND GENERAL LAWS, RELATIVE TO
THE PLANETS.

VENUS and Mercury certainly surround the sun, and their orbits are included within the earth's orbit; whence they are called the *inferior planets*.

That they really surround the sun is evident from their having been seen sometimes before, then on one side, then beyond, the sun, (which is proved by the diminution of their apparent size, and by their disappearing behind the sun) after which they are seen on the other side, &c. When they are before the sun, they generally are above or below its disc; but sometimes they appear like dark spots over the disc itself of the sun.

That their orbits are within the orbit of the earth is also evident; for otherwise they would sometimes be seen in *opposition* to the sun; viz. would appear to rise from the horizon when the sun appears to set, which is never the case.

On the contrary, the orbits of all the other planets include that of the earth; whence they are called

called the *superior planets*; and, in fact, at proper periods, they are seen in *opposition* to the sun, viz. they are seen to rise when the sun appears to set; or they are seen upon the meridian at midnight.

That the orbits of the planets are so situated is also proved from the appearance of their luminous faces; for of that half of each planet, which is illuminated by the sun, we can only see such a portion as the above-mentioned situations of their orbits can possibly admit of. Thus, when Venus V, fig. 10, Plate XXVI. is nearly in *conjunction* with the sun S, viz. is seen from the earth T, in the same part of the heavens, her bright face appears full and round; because all her illuminated face is turned towards us. On the contrary, when Venus is nearly between the earth and the sun, as at v , then its bright face is turned entirely from us, in consequence of which she disappears, or is seen like a dark spot upon the disc of the sun. When Venus is not quite between us and the sun, then she appears horned like the new moon, or more or less illuminated, according to its situation.

The superior planets are never seen horned, because they can never get between the earth and the sun, nor nearly so. Thus Mars M, whose orbit includes that of the earth T, and includes likewise the sun, always preserves a full and shining face, as at M or m ; but when it stands at O or P, it appears a little gibbous, or somewhat deficient from full.—

The same thing may be said of the other superior planets.

All the planets, the earth included, move in elliptical orbits, though not much different from circles ; and the sun is situated at, or near to, one of the foci of each of them. That focus is called the *lower focus*. If we suppose the plane of the earth's orbit, which cuts the sun through the centre, to be extended as far as the fixed stars, it will mark among them a great circle, which is the *ecliptic*, and with which the situations of the orbits of all the other planets are compared. A *trajectory* is the curve path in general of any celestial body.

The planes of the orbits of all the other planets do also pass through the centre of the sun ; but if extended as far as the fixed stars, they form circles different from one another, as also from the ecliptic ; one part of each orbit being on the north, and the other on the south, side of the ecliptic. Therefore the orbit of each planet cuts the ecliptic in two opposite points, which are called the *nodes* of that particular planet ; and the nodes of one planet cut the ecliptic in places different from the nodes of another planet. A line which passes from one of the two nodes of a planet to the other, or the line in which the plane of the orbit of that planet cuts the plane of the ecliptic, is called the *line of nodes*. That node, where the planet passes from the south to the north side of the ecliptic is called the *ascending node*, and the astronomers denote it by the cha-

racter &. The other node is called the *descending node*, as is denoted by the character &.

The angle, which the plane of a planet's orbit makes with the plane of the ecliptic, is called the *inclination* of that planet's orbit.

A perpendicular being let fall from a planet to the ecliptic, the angle, which is formed at the sun, by two lines, one drawn from the point where the perpendicular falls, and the other from the earth to the sun, is denominated the *angle of commutation*. The line between the above-mentioned point where the perpendicular falls, and the sun or the earth, is called the *curtate distance* from the sun or from the earth.

A line drawn from the lower focus of a planet's orbit, (viz. where the sun is) to either end of the conjugate axis of its orbits (which line is equal to half the transverse axis) is called the *mean distance* of that planet. But according to some authors, the *mean distance* is a mean proportional between the two axes of that planet's orbit.

The distance of either focus from the centre of the elliptical orbit, is called its *excentricity*.

The *apses*, or *apsides*, are two points in a planet's orbit, which are farthest and nearest to the sun; the former of which is called the *higher apsis*, or *aphelion*; the latter is called the *lower apsis*, or the *perihelion*. The diameter, which joins those two points, is called the *line of the apsides*, and is supposed to pass through the centre of the sun. They are not, however, always in the same straight line which passes through

through the sun; for they are sometimes out of a right line, making an angle greater or less than 180° ; and the difference from 180° is called the *motion of the line of the apsides*. When the angle is less than 180° , the motion is said to be in *antecedentia*; viz. contrary to the order of the signs of the ecliptic. When the angle is greater than 180° , the motion is said to be in *consequentia*, or in the order of the signs.

When the sun and the moon are nearest to the earth, they are said to be in *perigee*.—When at their greatest distance from the earth, they are said to be in *apogee*.

The *argument of latitude* is the angle formed in the planet's orbit, at the sun, by two lines, one of which comes from that planet, and the other from its ascending node.

The *true anomaly*, or, as is sometimes called, the *equated anomaly*, is the angle at the sun, which is formed by the *radius vector*, or line drawn from the sun to the planet, and the line drawn from the sun to the aphelion of the planet. The *mean anomaly* is the angular distance of a planet from its aphelion (taken at the same time with the true anomaly), supposing it to move uniformly with its mean angular velocity. The difference between the true and mean anomaly, is called the *equation of the centre*, or the *prostapheresis*.

" If a circle be supposed drawn on the line of the apsides as a diameter, and through the place of the

planet a perpendicular to the line of the apsides, be drawn till it meet the circumference of the circle; then the angle formed by two lines, one drawn from the centre of the planet's orbit to the aphelion, and the other to the point where the perpendicular through the planet's place, intersects the circumference of the circle, is called the *excentric anomaly*, or the *anomaly of the centre*."

The *direct motion* of a planet, as seen from the earth, is when it appears to move from west to east, viz. according to the order of the signs, or in *consequentiæ*. Its *retrograde motion*, or motion in *antecedentia*, is when it appears to move from east to west, viz. contrary to the order of the signs. But when the planet seems to remain a certain time in the same place, it is then said to be *stationary*.

When seen from the earth, it is evident that the inferior planets must have two conjunctions with the sun, and that they must be direct in their superior conjunctions, retrograde in their inferior conjunctions, and stationary some time before and after. But the superior planets are direct at the time of their conjunction with the sun, retrograde at the time of their opposition, and stationary some time before and after their opposition.

"The apparent velocities of the planets, whether direct or retrograde, are accelerated from one of the stationary points, to the midway between that and the following stationary point; from thence they are retarded until the next station. Their greatest

direct

direct velocity is in their conjunctions, and their greatest retrograde velocity is in the opposition of the superior planets, and in the lower conjunction of the inferior planets."

The inferior planets appear smallest in their direct motion, and largest in their retrograde motion. The superior planets appear largest in their opposition to the sun, and smallest in their conjunction. The inferior cannot appear to go farther from the sun than the angle which the radius of their orbit subtends at the earth.

Even when seen from the sun, the planets do not appear to move equably in their orbits. In other words the real movements of the planets, (the earth being one of them) are not equable in their orbits; for in some parts of their orbits they move faster, or percur a greater space, than in others, though they always move the same way. But those which at first sight may appear to be irregularities, will, upon strict examination, be found regulated by certain general, constant, and admirable laws; the principal of which are as follows:

I. If a straight line be drawn from a planet to the sun, and this line be supposed to be carried along by the periodical motion of the planet, then the areas, which are described by this right line and the path of the planet, are proportional to the times of the planet's motion; for instance, the area thus described in two hours is the double of that which is described in one hour, and a third part of that which

is described in six hours ; though the arc which is described by the planet itself in two hours, is not the double of the arc which is described by the same in one hour ; nor the third part of that which is described by the same in six hours.

II. The planets are at different distances from the sun, and perform their periodical revolutions in different times ; but it has been found that the cubes of their distances, or of the principal axes of their elliptical orbits, are constantly as the squares of their periodical times ; viz. of the times of performing their periodical revolutions.

Those two remarkable propositions are called Kepler's laws ; because Kepler was the first, who, by a careful examination of the distances and periodical times of the planets, found them out ; but it was Sir I. Newton, who demonstrated them on the principles of attraction, &c. according to his theory *.

This wonderful harmony, which has been found to regulate the motions of the planets round the sun, as also to regulate the motions of the satellites round their respective primaries ; and the want of

* The above-mentioned propositions, together with whatever relates to the velocities, &c. of bodies revolving in curves, round a centre of attraction, as the planets do round the sun, are demonstrated in the theory of curvilinear motion, which the reader will find in the first volume of these Elements, p. 138, and following.

all sorts of regularity, when the sun and planets are supposed to turn round the earth as a centre, are quite sufficient to confirm the Copernican system, were we even in want of any other proofs.

I shall endeavour to render the principle of this grand theory ; namely, the *universal attraction*, more intelligible to beginners, by means of the following familiar explanations and examples.

The centre of attraction of the solar system, which has been said to be within the body of the sun, must not be considered as a point endued with the attractive power ; but it must be considered as the point of equilibrium between all the bodies of the solar system. The point of equilibrium between the sun and any one planet, is nearer to the centre of the sun than to the centre of the planet, by as much as the bulk or attractive power of the planet is less than the bulk or the attractive power of the sun. Now, call this the first centre of equilibrium, then, if we consider a second planet, the centre of equilibrium between the first centre and this planet, will be nearer to the first centre than to the planet, by as much as the attractive force of the second planet is less than the combined attractive force of the sun and first planet. Thus we may take into the account a third planet, then a fourth, &c. Lastly, the common centre of attraction of them all will be found to be within the body of the sun, because the

bulk

bulk of the sun is vastly bigger than that of all the planets put together.

The attractive forces are not only to be observed between the planets and the sun, but they are mutual and proportional between them all; so that the planets attract each other; and, in fact, when they come near, they sensibly disturb each other's motion. The primary planets attract their satellites, and the latter attract the former. The moon raises tides in the ocean, in consequence of its attraction, &c.

The mutual attraction of bodies is familiarly illustrated by the example of a boat and ship upon water, and tied by a rope, whence a strong evidence of the true system is derived. " Let a man
" either in a ship or boat pull the rope (it is the
" same in effect at which end he pulls, for the rope
" will be equally stretched throughout) the ship
" and boat will be drawn towards one another; but
" with this difference, that the boat will move as
" much faster than the ship, as the ship is heavier
" than the boat. If the ship is 1000 or 10000
" times heavier than the boat, the boat will be
" drawn 1000 or 10000 times faster than the ship;
" and meet proportionably nearer the place from
" which the ship set out. Now, whilst one man
" pulls the rope, endeavouring to bring the ship
" and boat together, let another man in the boat
" endeavour to row it off sideways, or at right-
" angles, to the rope; and the former, instead of
" being able to draw the boat to the ship, will

“ find it enough for him to keep the boat from
“ going farther off; whilst the latter, endeavouring
“ to row off the boat in a straight line, will, by
“ means of the others pulling it towards the ship,
“ row the boat round the ship at the rope’s length
“ from her. Here the power employed to draw
“ the ship and boat to one another, represents the
“ mutual attraction of the sun and planets, by which
“ the planets would fall freely towards the sun with
“ a quick motion, and would also in falling attract
“ the sun towards them. And the power em-
“ ployed to row off the boat, represents the pro-
“ jeetile force impressed on the planets at right-
“ angles, or nearly so, to the sun’s attraction; by
“ which means the planets move round the sun,
“ and are kept from falling to it. On the other
“ hand, if it be attempted to make a heavy ship go
“ round a light boat, they will meet sooner than the
“ ship can get round, or the ship will drag the boat
“ after it.

“ Let the above principles be applied to the sun
“ and earth, and they will evince, beyond a possi-
“ bility of doubt, that the sun, not the earth, is the
“ centre of the system; and that the earth moves
“ round the sun as the other planets do.

“ For, if the sun moves about the earth, the
“ earth’s attractive power must draw the sun to-
“ wards it from the line of projection, so as to
“ bend its motion into a curve. But the sun being
“ at least 227000 times as heavy as the earth, by
“ being

“ being so much weightier as its quantity of matter
 “ is greater, it must move 227000 times as slowly
 “ toward the earth, as the earth does toward the
 “ sun; and consequently the earth would fall to the
 “ sun in a short time, if it had not a very strong
 “ projectile motion to carry it off. The earth
 “ therefore, as well as every other planet in the
 “ system, must have a rectilineal impulse to prevent
 “ its falling into the sun.

“ There is no such thing in nature as a heavy
 “ body moving round a light one as its centre of
 “ motion. A pebble fastened to a mill-stone by a
 “ string, may by an easy impulse be made to circu-
 “ late round the mill-stone; but no impulse can
 “ make a mill-stone circulate round a loose pebble,
 “ for the mill-stone would go off, and carry the
 “ pebble along with it.

“ The sun is so immensely bigger and heavier
 “ than the earth, that if he was moved out of his
 “ place, not only the earth, but all the other planets,
 “ if they were united into one mass, would be car-
 “ ried along with the sun, as the pebble would be
 “ with the mill-stone.” *

I shall conclude this chapter with a very plain and familiar illustration of the planet's elliptical orbits, taken from the same last quoted author, for the sake of those readers who are not qualified to read the de-

* Ferguson's Astronomy, Chap. III.

monstrations

monstrations of the theory of curvilinear motion, as given in the first volume of these Elements.

“ If a planet at B, fig. 1. Plate XXVII. gravitates, or is attracted toward the sun S, so as to fall from B to y in the time that the projectile force would have carried it from B to X, it will describe the curve B Y, by the combined action of these two forces, in the same time that the projectile force singly would have carried it from B to X, or the gravitating power singly have caused it to descend from B to y ; and these two forces being duly proportioned, and perpendicular to each other, the planet, obeying them both, will move in the circle B Y T U*.

“ But if, whilst the projectile force would carry the planet from B to b , the sun’s attraction (which constitutes the planet’s gravitation) should bring it down from B to i , the gravitating power would then be too strong for the projectile force; and would cause the planet to describe the curve B C. When the planet comes to C, the gravitating power (which always increases as the square of the distance from the sun S diminishes) will be yet stronger for the projectile force; and

* To make the projectile force balance the gravitating power so exactly, as that the body may move in a circle, the projectile velocity of the body must be such as it would have acquired by gravity alone in falling half the radius of the circle.

“ by conspiring in some degree therewith, will accelerate the planet’s motion all the way from C to K, causing it to describe the arcs B C, C D, D E, E F, &c. all in equal times.

“ Having its motion thus accelerated, it thereby gains so much centrifugal force, or tendency to fly off at K in the line K *k*, as overcomes the sun’s attraction; and the centrifugal force being too great to allow the planet to be brought nearer the sun, or even to move round him in the circle K *l m n*, &c. it goes off, and ascends in the curve KLMN, &c. its motion decreasing as gradually from K to B, as it increased from B to K, because the sun’s attraction now acts against the planet’s projectile motion, just as much as it acted with it before. When the planet has got round to B, its projectile force is as much diminished from its mean state about G or N, as it was augmented at K; and so the sun’s attraction being more than sufficient to keep the planet from going off at B, it describes the same orbit over again, by virtue of the same forces or powers.

“ A double projectile force will always balance a quadruple power of gravity. Let the planet at B have twice as great an impulse from thence towards X, as it had before; that is, in the same length of time that it was projected from B to *b*, as in the last example, let it now be projected from B to *c*; and it will require four times as much

“ much gravity to retain it in its orbit ; that is, it
“ must fall as far as from B to 4, in the time that
“ the projectile force would carry it from B to c ;
“ otherwise it would not describe the curve BD, as
“ is evident by the figure. But, in as much time
“ as the planet moves from B to C in the higher
“ part of its orbit, it moves from I to K, or from
“ K to L, in the lower part thereof; because, from
“ the joint action of these two forces, it must al-
“ ways describe equal areas in equal times through-
“ out its annual course. These areas are repre-
“ sented by the triangles BSC, CSD, DSE, ESF,
“ &c. whose contents are equal to one another,
“ quite round the figure.

“ Should it appear strange, that when one of the
“ two forces has got the better of the other, it should
“ not continue to carry the planet on in its direc-
“ tion ; the difficulty will be removed by consider-
“ ing the effects of those powers as described in the
“ preceding paragraphs. Suppose a planet at B to
“ be carried by the projectile force as far as from
“ B to b, in the time that gravity would have
“ brought it down from B to 1 ; by these two
“ forces it will describe the curve BC. When the
“ planet comes down to K, it will be but half as
“ far from the sun S, as it was at B ; and therefore,
“ by gravitating four times as strongly towards him,
“ it would fall from K to V in the same length of
“ time that it would have fallen from B to 1, in the
“ higher part of its orbit, that is, through four times

“ as

“ as much space ; but its projectile force is then so
“ much increased at K, as would carry it from K
“ to k in the same time ; being double of what it
“ was at B, and is therefore too strong for the gra-
“ vitating power, either to draw the planet to the
“ sun, or cause it to go round him in the circle
“ Klmn, &c. which would require its falling from
“ K to w , through a greater space than gravity can
“ draw it, whilst the projectile force is such as would
“ carry it from K to k ; and therefore the planet
“ ascends in its orbit KLMN, decreasing in its ve-
“ locity for the causes already assigned.”

C H A P. V.

OF THE MOTION OF THE EARTH ROUND THE SUN,
AS ALSO OF THE MOTION ROUND HER OWN
AXIS.

IT has been shewn in the preceding pages, that, on various accounts, the earth, analogous to the rest of the planets, moves round the sun, and not the sun round the earth. It is now necessary to examine the various particulars which belong to that motion, and to shew that the phenomena are the same as if the sun moved round the earth after the apparent manner which has been described in the second chapter of this part.

The real motion of the earth is in an ellipsis, near one focus of which the sun is situated*.

If

* According to De la Lande's determination, if we reckon the transverse axis of this elliptical orbit equal to 200000, then the mean distance of the earth from the sun, viz. from the focus, in which the sun is situated, is 100000; and the excentricity of its orbit is 1681,395.

According to the best estimates in round numbers, the mean distance of the earth from the sun is 95 millions of miles;

If we suppose that the plane of the earth's orbit be extended as far as the fixed stars, it will there mark a circle, which is the ecliptic, and so immensely great is the distance of the fixed stars from the solar system, that whether the earth be in one part or another of its orbit, the stars will constantly appear to have the same order, relative situation, and magnitude.

Since the plane of the earth's orbit passes through

miles ; the transverse axis of its elliptical orbit is twice that distance, viz. is equal to 190 millions of miles, and the excentricity is 1597325 miles.

Dr. Keill, calculating the true anomaly, on the supposition that the transverse axis of the earth's orbit is to the excentricity as 100000 to 1691, found it equal to $29^{\circ} 2' 54''$.

The greatest equation of the centre (viz. the difference between the true and mean anomaly) according to Dr. Maskelyne's determination for the year 1780, is $1^{\circ} 55' 30'',9$. It is generally allowed that this equation and the excentricity are subject to a regular diminution.

The earth's aphelion at present is when the sun is in $8^{\circ} 40' 12''$ of ss ; and the increasing annual motion of this aphelion according to the best observations, is about $1' 2''$. And the precession of the equinoxes being about $50'',25$ annually, we shall have $11'',75$ for the actual motion of the aphelion. The time required by the sun to pass over $11'',75$ of longitude, being added to the *sidereal year*, will give $365^{\text{d}}, 6^{\text{h}}, 14', 2''$, for the *anomolistic year*, or the time occupied by the earth in revolving from aphelion to aphelion. Mr. O'Gregory's *Astronomy*, §. 316.

the

the sun, it follows that, whilst we inhabitants of the earth, see the sun in the direction of a certain point of the ecliptic, an observer in the sun would see the earth in the direction of the opposite part of the ecliptic; thus, in fig. 11. Plate XXVI. S represents the sun, ABCD is the orbit in which the earth moves from the west to the east, so as to perform the entire revolution in the compass of one year. The external circle is the ecliptic, with the 12 signs marked upon it. Now a spectator at S will perceive the earth at A, as if it coincided with the sign ϖ . When the earth is at B, the same spectator will perceive it to coincide with ϖ ; and so on. But an inhabitant of the earth, when the earth is at A, will see the sun as if it were at ϖ , and when the earth is at B, he will perceive the sun as coinciding with ϖ , &c. It is evident from the figure, that whether the sun be supposed to move round the earth, or the latter round the former, the apparent annual motion of the sun along the ecliptic must be exactly the same.

Besides the above-mentioned annual motion, the earth has a motion round its own axis, which produces the vicissitudes of day and night, whence it is called the *diurnal rotation*; and which is analogous to the movements of the other planets; for, of the other planets, those which, from their having spots upon their surfaces, may be seen to move, have been found to have a similar motion round their own

axes, as will be more particularly specified hereafter.

This diurnal motion of the earth round its own axis, (viz. round an imaginary line) is performed from the west towards the east in 24 hours; and every point of its surface must describe a whole circle in the same time, excepting the two points which are at the extremities of the axis, viz. the *poles*. The different parts of the earth's surface must likewise describe larger or smaller circles, according as they are nearer to, or farther from, the poles; those parts, which are equidistant from the poles, describing the largest circle, which circle is the *equator*.

Now, as a spectator on the surface of the earth must turn with it in the direction from the west towards the east, it is evident that all the bodies of the universe which do not adhere to the earth, must appear to turn in a contrary direction, viz. from the east towards the west; and those celestial bodies, which are directly over the equator of the earth, must appear to describe the largest circles, whilst those which are directly over the poles of the earth, must appear to remain immoveable; hence we attribute to the stars, or to the heavenly sphere, the same axis, poles, equator, &c. as if that sphere turned, and the earth stood still.

In consequence of this rotatory motion of the earth, and because the parts of it, which, being nearer to the equator, describe larger circles, and of

course have a greater centrifugal force ; the equatorial parts of the earth are more removed from its centre, so as to give the earth the figure of an oblate spheroid*. And such is the case with the other planets ; viz. their equatorial diameter is larger than their polar diameter, whence they are also found to have an oblate spheroidal figure, which affords a most striking corroboration of the earth's diurnal rotation †.

I need hardly add that any given part of the earth's surface has day light, or night, according as it is turned towards the sun, or from it ; for that half of the earth, which is towards the sun, is illuminated, and a line drawn from the centre of the sun to the centre of the earth, is perpendicular to the circle of the intersection of light and shadow ; hence, when a spectator on any particular part of the surface of the earth, arrives at that circle in its way towards the sun, and begins to discover the sun, he imagines that the sun is rising above his horizon, &c.

* See the first volume of these Elements, p. 315.

† If it be asked, whence does the earth derive its diurnal rotatory motion ? The answer is, that probably the earth derived it from its having received that original impulse which counteracts the sun's attraction, not in the direction of its centre, but on one side of it. See the first volume of these Elements, chap. VIII.

If the axis of the earth had been situated in a position perpendicular to the plane of the earth's orbit, which is the same as the plane of the ecliptic, the circle of the intersection of light and darkness would have evidently passed through the poles of the earth, and of course the days would have been constantly equal to the nights. But the case is, that the axis of the earth is inclined to the plane of the ecliptic, and makes an angle with it of about $66^{\circ} 32'$. Therefore the plane of the ecliptic does not coincide with that of the equator, but must make an angle with it of $23^{\circ}, 28'$ (viz. an angle equal to the complement, or to what $66^{\circ} 32'$ wants, of 90° .)

This inclination of the axis, or of the ecliptic, varies a little as it ought to do, agreeably to the Newtonian theory *. In the year 1736, Dr. Maskelyne determined the *obliquity of the ecliptic*, as it is called, to be $23^{\circ}, 28', 10''$; and it appears that it diminishes at the rate of $50''$ in a century, or half a second in a year. But to prevent obscurity,

* About 2100 years ago, Pytheas found the obliquity of the ecliptic to be $23^{\circ}, 49', 30''$. about A.D. 880. Albattegnius found it equal to $23^{\circ}, 35', 40''$. A.D. 1140. Almacon found it equal to $23^{\circ}, 33', 30''$. A.D. 158. Tycho Brahe found it equal to $23^{\circ}, 29', 30''$. A.D. 1689. Flamsteed found it equal to $23^{\circ}, 28', 56''$. and A.D. 1736. Condamine found it equal to $23^{\circ}, 28', 24''$.

let us neglect this trifling variation, and in the following illustration, let us consider this inclination of the axis, as if it were constantly the same.

Then the axis of the earth, besides its retaining the same inclination towards the plane of the ecliptic, does also remain always directed to the same star; or in other words, if a line be drawn parallel to that axis whilst the earth is in any part of its orbit, then, when the earth is in any other part of its orbit, the axis will always be parallel to that line; excepting a regular and small variation.

Now the various seasons of the year and various lengths of days and nights, are owing to the above-mentioned inclination of the axis to the orbit, and to that axis moving round the ecliptic in a direction parallel to a line nearly immutable. The precession of the equinoxes is owing to the last-mentioned small variation. The effects, in short, are the same as have been explained in the chapter, where the phenomena were described on the supposition that the earth stood immoveable, and the celestial objects moved round it; yet it will be necessary to illustrate those effects on the true theory, by means of a diagram or two.

Fig. 2. Plate XXVII. represents the earth in different parts of its elliptical orbit; the sun S being in one of its foci. The spectator is supposed to be without the orbit of the earth at a considerable distance, and to look upon it obliquely.

In the first place it is observable, that whether

at A, or at C, or B, or D, the axis of the earth is always directed the same way, viz. the directions of the axis in all those situations of the earth, are all parallel to each other. The small deviation which produces the precession of the equinoxes, will be taken notice of in the sequel.

In the second place it should seem, that, on account of the above-mentioned constant direction of the axis, if, when the earth is at B, its axis is directed towards a certain star E; then, when the earth is at A, it ought to point towards some other star F, the distance of which from E must be equal to the transverse axis AB of the earth's orbit. The apparent distance of those stars is measured by the angle EAF, which, on account of the parallelism of the lines EB, AF, is equal to the angle BEA, which is the angle under which the orbit of the earth would be seen from E; hence the angle AEB, or EAF, is called the *parallax of the great orbit*.

It is easy to conceive that the farther the points E and F are from the earth's orbit, the smaller must the angle EAF, or BEA, be. Now from the most accurate observations, it appears that this angle is less than one minute; and it is not known how much smaller it really is; hence we may perceive that the distance of the stars is astonishingly great*.

The

* If the angle AEB, or its equal the angle EAF, could be known with certainty, the distance of the stars would be

The cause of the inequalities of the days and nights at different times of the year, as also the different seasons, will be easily conceived by inspecting the figure; for they both arise from the inclination of the axis of the earth to the orbit.

First, In the spring, when the earth is in that part of its orbit, in which a spectator in the sun would see the earth coincide with the sign Δ , Libra, of the ecliptic, the inhabitants of the earth see the sun in the direction of ϖ , Aries. At that time the circle *terminator* of light and darkness, passes through the poles n , s ; therefore the earth in its diurnal rotation about its axis n , s , has every part of its surface as long in the light as in the shade; viz. the days are equal to the nights; the sun at that time being successively vertical to the equatorial parts of the earth.

Secondly, As the earth proceeds in its orbit from the west towards the east, along the signs m , λ , and ϖ , the sun is seen to advance along the signs \wp , π , and ω ; and gradually becomes vertical to those parts of the earth which are on the north of the equator. So that when the earth is in ϖ , the sun

be found by an easy trigonometrical calculation; for in the triangle AEB, one side AB is known, being the transverse axis of the earth's orbit, the angle EBA is equal to the inclination of the axis of the earth to the orbit; therefore, knowing likewise the angle AEB, the other parts would be easily calculated.

is in ω , and is perpendicular to those parts of the earth, which are under the tropic; viz. about $23^{\circ} 28'$, from the equator; therefore the inhabitants of the northern hemisphere will enjoy summer, on account of the solar rays falling more perpendicularly, &c.; and they will have their days longer than the nights in proportion as they are more distant from the equator; but those whose latitude exceeds $66^{\circ} 32'$ north, will have constant day light; for, by inspecting the figure, it will be perceived that the earth, at that time, in its daily revolution, has all the part ynn , within the polar circle, in that half of its surface which is illuminated by the sun.

At the same time the inhabitants of the southern hemisphere have winter; their days being shorter than their nights, in proportion as they are farther from the equator; and those, whose latitude exceeds $66^{\circ} 32'$ south, have constant night.

The earth then continues its course along the signs ω , \times , and ν , at the same time that the sun is seen to move along the signs α , π , and ω ; at which time the circle terminator of light and darkness passes again along the poles n , s , of the earth; therefore the days are equal to the nights all over the earth.

After this the earth advances along the signs π , ν , and \mathfrak{S} , at which time the inhabitants of the northern hemisphere have winter, their days being shorter than their nights, &c.

The

The four points of the ecliptic, in which the earth is represented in the figure, are called its *cardinal points*; ϖ and \wp being the solstitial points, whilst \approx and \wp are the equinoctial points; but it must be observed, that those four situations of the earth, at the two equinoxes and two solstices, are not equidistant; because the sun is not in the centre, but in one focus of the earth's elliptic orbit. This will be made more evident by means of fig. 3. Plate XXVII. where the earth's orbit is delineated, as it would appear to a spectator situated above the plane of it. S is the sun in one of the foci of the ellipsis A C B D. A, B, C, D, are the situations of the earth at the two solstices, and at the two equinoxes, (as in fig. 2.) P is the centre of the ellipsis; therefore the distance B P is equal to A P, E P is equal to P F, and the elliptical arcs A E, E B, B F, F A, are all equal to one another. But the sun is in the focus S, which is on one side of the centre P; therefore in summer, when the earth is at B, the sun is farther from it than in the winter when the earth is at A; B S being evidently longer than A S; and, in fact, the diameter of the sun appears larger in winter than in summer; its greatest apparent diameter, in winter, subtending an angle of $32' 38'',6$, and its least diameter, in summer, subtending an angle of $31' 33'',8$.

Farther, the sun becomes perpendicular to the equatorial parts of the earth; (that is, the equator intersects the ecliptic) when the earth is at C, and likewise

likewise when it comes to D (for they must evidently be in the same line with the sun); but BE being equal to EA, and BC being longer than BE; BC must be much longer than CA; and for the same reason, BD is also longer than DA; consequently the earth has a longer arc, CEBFD, to percur from the vernal equinox to the autumnal equinox along the signs Δ , m , f , w , z , and x , than the arc DAC along the signs v , s , n , w , q , and m ; the sun, during the same periods, appearing to move along the opposite signs. Hence the earth employs about eight days longer in going from the first point of Libra to the first of Aries, than in going from the latter to the former. Or, which amounts to the same thing, the sun appears to be in the northern hemisphere about eight days longer than in the southern.

Those eight days longer, which the earth employs in going from Δ to v , are not entirely owing to the greater length of the arc CBD; but is partly owing to the earth's moving along that arc at a slower rate than along the arc DAC; the reason of which is, that the centre of attraction S is farther from the former arc than from the latter, also that the *areas* SyB, ASx, and not the *arcs* By, Ax, are proportionate to the *times* of the earth's moving along those arcs By, Ax, (see page 85, of this volume).

Thus let the earth be at B, from which place, in a certain time, it goes to y; and the line which joins

joins the earth and the sun, describes the area SBy . When the earth is at A , let it move along an arc Ax , until the area SAx , which is described by the above-mentioned line, may be equal to the area BSy ; then the earth will be found to have moved along the arc Ax in the same compass of time that it moved along the arc By . But those arcs Ax , By , are unequal, Ax being longer than By ; for they are nearly in the inverse proportion of their distances from the sun S . Hence the apparent motion of the sun along the ecliptic, or the real motion of the earth in her orbit, as seen from the sun, is not equable, it being slower in the summer than in the winter *.

The precession of the equinoxes, which has been described above, as an irregularity, according to the apparent motion of the celestial bodies, is easily explained on the true theory of the solar system.

The earth has been already described to be an oblate spheroid, viz. to have a greater quantity of matter accumulated about its equatorial parts, in consequence of which those equatorial parts, being attracted with greater force both by the sun and the moon, are drawn sooner under them than if they were not so prominent, by about $20', 18''$, of

* The difference of those motions is such, as that the sun sometimes appears to be even 2° shorter, or more advanced, than it ought to be if it moved equably.

time, or $50^{\circ}, 25'$ of a degree in a twelvemonth*. The effect of this is, that the axis of the earth does not remain exactly parallel to itself, though it retains the same inclination to the plane of the ecliptic; so that if at present it points towards a certain star, in about 72 years time it will be found directed to another point of the heavens, which is to the west of that star, and at that rate it will proceed to move constantly westward, and of course it will describe a circle round the pole of the ecliptic, the radius of which is equal to the inclination of the axis of the earth to the axis of the ecliptic, viz. to about $23^{\circ}, 28'$. That circle will be accomplished in about 26 thousand years, at the end of which time the axis of the earth will again be parallel to the situation, *ns*, of fig. 2. Plate XXVII. In the half of that time, viz. in about 13 thousand years, the half only of that circle will be accomplished, so that at the end of 13 thousand years, the axis of the earth will stand in the situation of the dotted line *op*.

As the poles, or the axis of the earth, performs the above-mentioned movement, it is evident that the solstitial and equinoctial points must likewise move at the same rate.

This motion is said to be *westward*, or in *antecedentia*, viz. contrary to the order of the signs;

* De la Londé's Astronomy, B. XXII.

whereas

whereas the other motion, whereby the earth and the planets are carried round the sun, is *eastward*, or in *consequentia*, meaning in the direction of the signs, viz. from Aries to Taurus, then to Gemini, Cancer, &c.

In consequence of this motion of the axis of the earth, or of the precession of the equinoxes, the constellations which formerly coincided with the cardinal points of the ecliptic, are now removed from them. Thus the constellation of Aries, which at the time of Hipparchus was near the vernal equinox, viz. near the intersection of the equator with the ecliptic, is now removed from it, or rather that intersection is removed from the constellation of Aries, by about 30° , or nearly a whole sign, and in the same manner are all the other constellations removed about one sign from their former situations; yet the twelve portions of the ecliptic, which are called *Dodecatimoria*, still retain the same names and characters which they had at the time of Hipparchus. Thus the intersections of the equator and the ecliptic are called the beginning of $\text{\texttt{v}}$, and the beginning of $\text{\texttt{a}}$: but the constellations of Aries and Libra are now removed from those intersections. For the sake of distinction the twelve portions of the ecliptic are called *anastrous signs*, viz. signs without stars; and the constellations themselves are called *starry signs*.

What

What has been explained in this chapter respecting the motion of the earth in her orbit round the sun, is applicable, with very little variation, to the motions of the other planets in their respective orbits, as will be shewn hereafter.

C H A P. VI.

OF THE PHASES AND MOTIONS OF THE MOON.

AFTER the sun, the moon is by far the most splendid of the celestial objects ; and as such it has at all times been distinguished, both by the rude and by the most civilized nations of the earth. It revolves round the earth, and of course it goes with it round the sun. Its orbit is nearly an ellipse, one of whose foci is within the body of the earth. But that orbit is subject to considerable variations ; with respect to figure, excentricity, &c. which are incomparably greater than the variations of the orbits of the earth, or of the other primary planets. This arises from the action of the sun upon the moon, which sometimes conspires with, and at other times is contrary to, the earth's action upon the same. Yet those apparent irregularities are all conformable to, and depending upon, the grand law of universal attraction or gravitation. Previous to the enumeration and illustrations of the lunar movements which arise therefrom, it will be proper to describe the body itself of the moon as far as it is known,

known, and its *phases*, or various appearances under which it is seen from the earth.

The moon is an opaque body, like any of the planets; therefore that half of it, which is turned towards the sun, is illuminated by it, whilst its other half receives no light from the sun; and of its illuminated half, we see such a portion as its situation in her orbit can admit of.

Were the surface of the moon smooth and polished like the surface of a looking glas, the image of the sun, which, in certain situations, would be reflected to us, would only appear like a very bright point. But the surface of the moon is far from being smooth, and its inequalities reflect the sun's light in all directions; hence we see all those parts of that surface which are illuminated by the sun, and which are at the same time within the direction of our sight.

Even to the naked eye some of those irregularities of the moon's surface appear like less bright or darkish spots, which appearance has suggested the vulgar idea of the moon's having a face with eyes, &c. But when viewed through a telescope, the surface of the moon appears covered with vast irregularities, with ridges, mountains, and pits of infinite variety; but we can speak only of the half of its surface, viz. of that which is turned towards the earth; for it is remarkable that the moon always turns nearly the same side towards the earth, and of course its other half is quite invisible to us.

I said

I said it turns *nearly* the same side ; for sometimes she turns a little more of one side, and at other times a little more of the other side, towards us. This is called the *moon's libration*, and is owing to her equable rotation about her own axis once in a month, in conjunction with her unequal motion in her orbit round the earth. " For if the moon moved in a circle, whose centre coincided with the centre of the earth, and turned round her axis in the precise time of her period round the earth, the plane of the same lunar meridian would always pass through the earth, and the same face of the moon would be constantly and exactly turned towards us. But since the real motion of the moon is in an orbit nearly elliptical, having the earth in one of its foci, and the motion of the moon about her axis is equable ; that motion, as seen from the earth, must be unequal ; for every meridian of the moon by its rotation, describing angles proportional to the times, the plane of no one meridian will constantly pass through the earth. Dr. Gregory, in his Elements of Astronomy, divides the libration of the moon into the following three kinds*.

1st, " *Her libration in longitude*, or a seeming motion to and fro, according to the order of the signs of the zodiac. This libration is nothing, twice in every periodical month ; viz. when the

* Mr. O. Gregory's Astronomy, §. 463, &c.

moon is in her apogee, and when in her perigee; for in both these cases, the plane of her meridian, which is turned towards us, is directed alike towards the earth."

2dly, " *Her libration in latitude*, which arises from hence, that her axis not being perpendicular to the plane of her orbit, but inclined to it, sometimes one of her poles, and sometimes the other will nod, as it were, or dip a little towards the earth; and consequently she will sometimes shew more of her spots, and sometimes less of them, towards each pole. This libration, depending on the position of the moon, in respect to the nodes of her orbit, and her axis being nearly perpendicular to the plane of the ecliptic, is properly said to be in *latitude*. It is completed in the time in which the moon returns again to the same position in respect of her nodes."

3dly, " There is also a third kind of libration; by which it happens, that although another part of the moon be not really turned to the earth, as in the former libration, yet another is illuminated by the sun. For, since the moon's axis is nearly perpendicular to the plane of the ecliptic, when she is most southerly, in respect to the north pole of the ecliptic, some parts near to it will be illuminated by the sun, while, on the contrary, the south pole will be in darkness. In this case, therefore, if the sun be in the same line with the moon's southern limit, then, as she proceeds from conjunction with the sun to-wards

wards her ascending node, she will appear to dip her northern polar parts a little into the dark hemisphere, and to raise her southern polar parts as much into the light one. And the contrary to this will happen two weeks after, while the moon is descending from her northern limit; for then her northern polar parts will appear to emerge out of darkness, and the southern polar parts to dip into it. And this seeming libration, or rather these effects of the former libration in latitude, depending on the light of the sun, will be completed in the moon's synodical revolution."

Since the moon moves round the earth in an orbit nearly elliptical, the earth being in one of the foci, therefore this opaque globular body must appear larger or smaller in proportion as it comes nearer to, or goes farther from, the earth; and, in fact, its apparent diameter has been found sometimes to measure as much as $34'$, and at other times not more than $29', 30''$. When the moon is at its mean distance from the earth, its apparent diameter is $31', 8''$, nearly. Its mean distance from the earth is 240000 miles, or probably somewhat shorter than 240000 miles; hence its diameter is reckoned equal to about 2180 miles; which is to that of the earth as 1 to 3,65. Therefore the surface of the moon is to that of the earth as 1 to 13,3225 (viz. as the squares of their diameters); and the bulk of the moon is to that of the earth as 1 to 48,627 (viz. as the cubes of their diameters). But on the suppo-

fition that the moon is more dense than the earth in the proportion of 5 to 4, the quantity of matter in the moon must be to the quantity of matter in the earth, as 1 to 38,9.

The spots which are seen on the surface of the moon, are not mere variations of color, or of light and shade, but they arise from real inequalities of surface, such as mountains, vales, pits, ridges, hollows, &c. which is evidently proved by their shadows, which they cast in due direction, according to the situation of the sun, and by the elevated parts becoming illuminated by the sun before the lower parts.

In every situation of the moon the elevated parts of its surface cast a shadow on the adjoining lower parts in the direction from the sun. But the cavities are dark on the side of the sun.

When the line, which separates the light from the shade on the disc of the moon, is turned towards us, we see it through a telescope, not as a regular line, but notched and full of irregularities, especially some small bright dots or ridges a little distant from the illuminated part of the disc, which are the tops of mountains and other elevated parts, that are illuminated by the sun, before their lower parts * can receive its rays.

That

* By means of micrometrical measurements, and proper calculations, the heights of the lunar mountains have been measured

That edge of the moon's disc, which, by its being turned towards the sun, is on the illuminated side of it, appears always smooth and well defined, even through very good telescopes; whereas, considering the roughness of the moon's surface, we might perhaps expect to see it jagged or uneven. But it must be considered, that all the parts adjoining to that edge of the moon, are full of irregularities, and that the elevations of some parts may stand before the hollows of other parts, so as to form upon the whole the appearance of a smooth surface. It is probable, however, that the atmosphere of the moon may contribute to the production of an apparent smooth edge.

Some of the spots, however, of the moon seem not to be merely the shadows of elevated places; for they have been found to vary a little in intensity.

measured and expressed in miles (the method will be described hereafter). But those measurements by different astronomers, who have used different methods, and more or less accurate instruments, do not agree with each other. From the latest and most accurate observations, it appears that the moon has mountains of about 25000 English feet, and upwards, in height; viz. much higher than our mountains. See Herschel's Paper on the Mountains of the Moon. Philosophical Transactions, volume for 1780; and Schroeter's Work on the Heights of Lunar Mountains.

A bright speck or two, or even three, have sometimes been observed on the dark part of the moon's disc, and so far from the illuminated part as not to depend upon the sun's rays. Those lucid spots have been conjectured to be the eruptions of volcanoes, which after a certain time become extinct and disappear. Dr. Herschel in 1787 saw three of those volcanoes at once in the dark part of the moon; two of which were barely visible or almost extinct; the third was more vivid and exhibited an elongation like an eruption or lava of luminous matter, resembling a small piece of burning charcoal, covered by a very thin coat of white ashes *.

If there be fire or combustion in the moon, it seems necessary that the moon should have an atmosphere; yet, until very lately, it has been generally believed that the moon had no atmosphere. However, the nicer observations of latter times made with the most improved instruments, seem to prove that the moon has really an atmosphere, which is manifested by the following facts.

It has been remarked by certain astronomers, that the moon does not always appear equally bright, which may probably be owing to its atmosphere being more or less loaded with vapours. It is perhaps for the same reason that, in total lunar eclipses, the colour of the moon is not always the same, and that

* See the *Philosophical Transactions* for 1788.

in total solar eclipses, a luminous circle round the moon has sometimes been observed. Cassini asserts to have observed, that Saturn, Jupiter, and the fixed stars, had their circular figures changed into elliptical, when they approached either the dark or the illuminated edge of the moon; which may naturally be attributed to the refraction of a lunar atmosphere. Schroeter observes, that the two *cusps* or apexes of the luminous horns, in a new moon, appear tapering in a very sharp and faint prolongation, which is a strong indication of a lunar atmosphere. He also observed, that when once Jupiter came very near the moon, two of its satellites appeared indistinct for a short time before they went quite behind the body of the moon*.

If we allow to the moon an atmosphere which, with respect to density, &c. bears the same proportion to its size, as our atmosphere does to the size of the earth, we must conclude that the obscure parts of it, when viewed from the earth, cannot subtend an angle as great as one second in addition to the apparent size of the moon; and such an atmosphere seems to be perfectly compatible with the above-mentioned facts.

Excepting the above-mentioned small variation in the intensity of some of the spots of the moon, and the volcanic appearances, the rest of the moon's surface is not subject to any perceptible changes;

* See his Paper in the Philosophical Trans. for 1792.

hence astronomers have had ample opportunity of delineating and of describing the irregularities of its surface. In fact, several astronomers have published the *selenographia*, or maps of the face of the moon; and some have given maps of its appearance in all the different states of the moon, from the day that the new moon becomes visible until it vanishes. In order to distinguish the mountains, or other remarkable spots of the moon from each other, some astronomers, as Hevelius, have given them the names of known places on the surface of the earth; whilst others have given them the names of distinguished persons, such as the names of Plato, Archimedes, &c. The best selenographers are Florentius, Langrenus, Hevelius, Grimaldus, Cassini, Ricciolus, and De la Hire. A very good drawing of the moon's visible surface was lately made with great care and attention by a distinguished artist, John Russell, Esq. R. A. an engraving of which will probably be speedily published.

That the phases of the moon depend on its situation relatively to the earth and the sun, has been already briefly mentioned in the preceding pages; but it will be necessary in this place to explain and to illustrate them by means of a diagram.

In fig. 4, Plate XXVII. RZ represents part of the earth's orbit, T is the earth. The circle ABCDEFH represents the moon's orbit, with the moon in different parts of it. S is the sun. Here in the first place it must be observed, that in every

every situation, that half of the moon, as well as of the earth which is facing the sun, is illuminated by it, whilst the other half is in darkness. MN represents the circle which separates the illuminated from the dark part of the moon. PO (which, considering the size of the moon with respect to its orbit, may be taken for a right line) represents the circle which divides that half of the moon, which is visible to us, from that which is not visible to us; and which therefore may be called the *circle of vision.*

Now it is evident, that when the moon is at A, viz. in opposition to the sun, its illuminated half is turned entirely towards the earth, or the circle of vision coincides with the terminator of light and darkness. In that situation we say the moon is *full*, and in that case it shines all night long; for the sun and the moon being in opposition, the one must appear to rise when the latter appears to set; hence the moon is on the meridian at midnight.

When the moon comes to B, then its illuminated half is not turned entirely towards the earth; therefore we see the moon as is represented at *b**; viz. the illuminated part will not be quite circular, but will appear gibbous.

When

* Should the novice ask what produces the difference between the representation of the moon at B, and at *b*, he is informed that at B the moon is represented as it would appear

When the moon is at C, so that the *elongation*, viz. the angle made at the earth by two lines CT and ST, drawn from the moon and from the sun to the earth, may be a right angle, then the half of its illuminated part is visible from the earth, viz. the moon appears as at *c* *. In this case the moon appears to be *bisected*, and is said to be at its *last quarter*, or in her *quadrant aspect*, or *quadrature*, because it then appears to be a quarter of a circle removed from the sun, STC being a right angle.

pear to a spectator situated in the heavens above the plane of the moon's orbit, whereas *b* is as it appears to a spectator on the earth at T. The same thing must be understood of A and *a*, C and *c*, &c. and he may easily render this and other phases familiar to himself, by placing a candle at some distance from himself, and holding a ball of any kind in the fingers of one hand, which he may place round his head in various aspects. In this case the candle represents the sun, the ball represents the moon, and the experimenter represents the earth.

* The angle of elongation STL, in every situation of the moon, is always nearly equal to the angle MLO, the arc of which MO is that part of the moon's illuminated disc, which is visible to us. Thus, when the moon is at F, produce SL towards X; then the angles TLP and MLS are equal, being both right angles; the vertical angles OLS, and PLX are also equal; therefore MLO is equal to TLX. But TLX is the external angle of the triangle STL, therefore equal to the angles LST, LTS; and because the sun is at an immense distance, and the angle LST is exceedingly small, therefore STL is nearly equal to TLX, or to MLO.

When the moon is at D, then, as a small part of its illuminated part is turned towards the earth, we see it horned as at *d*. All this time the moon has been waning or decreasing in the extent of its illuminated part, and it continues to do so until it reaches the point E, which is called its *conjunction* with the sun, they both appearing to be in the same point of the ecliptic. In that situation the dark part of the moon is entirely turned towards the earth, of course the moon disappears, and in that state we call it the *new moon*, because presently after that it begins to make its appearance anew, and continues to increase until its *full*, viz. when it comes again at its opposition A. When the moon is at F, a small part of its illuminated face is turned towards the earth, and we see it as at *f*, viz. as we saw it when it stood at D; with this difference, however, that when at D, the convex side of the luminous part was turned towards the east, but when at F, that convex side is turned towards the west; for in both cases it is turned towards the sun, and in the first case the moon rises not long before the sun; whereas in the latter case it sets not long after the sun.

When the moon is at G, viz. again in a quadrate aspect, GTS being a right angle, it looks as it did when it stood at C, excepting that now the convex part is turned towards the west, whereas before it was turned towards the east; observe *g*. In this situation, viz. when the moon is at G, we commonly

monly say that it is at its *first* quarter. The moon then continues to increase, so that at H it looks gibbous, as represented at h; then full, &c.

It must be remarked, that when we first begin to see the new moon, besides the bright part as at f, we see the rest of the moon's disc faintly illuminated; the reason of which is, that in that situation the greatest portion of the earth's illuminated half is turned towards the moon; so that the earth performs the same office to the moon as the moon does to us; and much more so; for the earth appears about 15 times bigger to a spectator in the moon, than the moon appears to us; therefore the earth reflects a great deal more of the sun's light upon the moon, than the moon reflects upon the earth. By inspecting fig. 4, it will be clearly perceived, that the earth presents the same phases to the moon, as the latter does to us; it being full to the moon when the moon is new to us; new to the moon when the moon is full to us, &c.

The position of the moon's cusps, or a right line touching the points of her horns, is always perpendicular to the ecliptic, but is differently inclined to the horizon at different times of the same day. Sometimes that line is perpendicular to the horizon, and then the moon is said to be in her *nonagesimal degree**.

The

* It is then in the highest point of the ecliptic above the horizon, which is 90° from both sides of the horizon, where it

The moon, the earth, and the other planets, being opaque bodies, must necessarily cast a shadow on the side opposite to the sun; and as every one of the planets is smaller than the sun, that shadow must evidently be conical. Now the earth's conical shadow is longer than the distance T A of the moon; and the shadow of the moon, though shorter than that of the earth, is likewise longer than the said distance; therefore, when the moon is at E, viz. between the sun and the earth, its shadow must fall upon part of the earth's surface (it cannot cover a whole hemisphere, because the moon is much smaller than the earth); during which time the inhabitants of that part of the earth lose sight of the sun, and this is called an *eclipse of the sun*. A spectator in the moon would at the same time see a round spot pass over the illuminated disc of the earth.

When the moon is at A, then the earth is between it and the sun, in consequence of which the shadow of the earth covers the whole disc of the moon, and this is called an *eclipse of the moon*. At

it is then cut by the ecliptic. This never happens when the moon is on the meridian, except when she is at the very beginning of Cancer, or Capricorn. The meaning of this note will be illustrated by the description of the movements of the moon, which will be found in the subsequent part of the present chapter.

the

the same time, a spectator in the moon would lose sight of the sun*. By inspecting fig. 4, it will be clearly perceived that an eclipse of the sun can only happen at the time of the new moon, and an eclipse of the moon can only happen at the time of full moon. Here it may be naturally asked why does not an eclipse of the sun take place at every new moon, viz. at every conjunction of the sun and moon; as also why does not an eclipse of the moon take place at every full moon, viz. at every opposition? The answer to this question is, that the moon, either at the conjunction or opposition, seldom passes across the line which joins the centres of the sun and of the earth, but generally goes either below or above that line; often however the moon passes, not with its centre, but with some other part of its body, across that line, and then the eclipses are not *total* but *partial*, viz. a part only of the sun's disc, or of the moon's disc, is eclipsed; but the particulars which relate to the time, duration, and quantity of eclipses will be examined after the explanation of the moon's movements.

* The shadow of the moon upon the earth, in a solar eclipse, is always circular, and the edge of the shadow of the earth on the moon is always a circular arch, which is another strong proof of both the moon's and the earth's being globular, or nearly so.

The moon moves along its whole orbit round the earth from the west towards the east, at a mean, in 27 days, 7 hours, 43', 5", which compass of time is called a *periodical month*, or revolution; but the moon, in going from one conjunction to the next, employs a longer time, viz. 29 days, 12 hours, 44' 3", which time is called a *synodical month*, or a *lunation*. For whilst the moon in its proper orbit finishes its course, the earth, together with the moon and its orbit, are going on their way round the sun, and are advanced almost a whole sign of the ecliptic towards the east; so that the point of the moon's orbit, which in the former position was placed in a right line joining the centres of the earth and the sun, is now more westerly than the sun; therefore, when the moon has again arrived to that point, it will not yet be seen in conjunction with the sun.

Thus, let A B, fig. 5, Plate XXVII. represent part of the earth's orbit, with the earth at T, and the moon at L, viz. in conjunction with the sun S. Then, as the moon performs her course about the earth in her orbit L A C D, and by the time it has arrived to the same point of her orbit, the earth will have moved from T to t , and the above-mentioned same point of her orbit will be at l , (tl being parallel to TL), which is not in the line ts ; so that the moon arrives at l , and describes its whole orbit before its conjunction with the sun; for the accomplishment of which conjunction, the moon must go

over

over the arch lM , and something more; for whilst the moon is moving along that arc, the earth continues to move on in her orbit. Upon the whole the moon performs a synodical revolution, or whole luna-
tion, (viz. from new moon to new moon) in 29 days, 12 hours, and $44' 3''$, being 2 days, 5 hours, and 58 seconds, longer than her mean periodical month *.

The arc Tt , which the earth performs whilst the moon goes from one conjunction with the sun to the next conjunction, is similar to the arc lM ; for TS being parallel to tl , the angles tST , and Stl , are equal; then since those angles are at the centres of the arcs tT and lM , it follows that those arcs must be similar. Every day the moon appears to recede from the sun by about 12 degrees and some minutes: this is called the *diurnal motion of the moon from the sun*.

The orbit of the moon is not in the same plane with the orbit of the earth, viz. in the plane of the ecliptic, but is inclined to it at an angle of

* The above-mentioned mean periodical month is the revolution from a fixed point, with respect to the equinoxes, and to the same point again; but on account of the precession of the equinoxes, the mean periodical month with respect to the fixed stars, viz. the time employed by the moon in going from a given fixed star, all round the earth, and again to the same star, is a little longer; viz. it is 27 days, 7 hours, 43', and 12".

about

about 5° ; and those two planes cut each other in a right line, which passes through the centre of the earth; therefore the centre of the moon cannot be seen to coincide with the ecliptic, excepting in the two points at the extremities of the said right line, where the two circles intersect each other. Those two points of intersection are called the *nodes*, (as has been said of the planets) one of which is called the *ascending node*, or the *dragon's head*, and is marked α ; beyond this node the moon moves along that half of its orbit which is on the north side of the ecliptic. The other point of intersection is called the *descending node*, or the *dragon's tail*, and is marked β . Beyond this node, and until it reaches the ascending node, the moon moves along the southern side of the ecliptic. The right line, which passes through the centre of the earth, and joins the two nodes, is called *the line of nodes*. Now it is to be remarked that those nodes are not constantly in the same place; or, which is the same thing, the moon's orbit does not constantly intersect the ecliptic in the same points; so that the line of nodes continually moves from the east towards the west, contrary to the direction of the signs of the ecliptic; therefore, if the moon be observed to cross the ecliptic at any particular place, at the next lunation it will be found to cross the ecliptic at another place, which is a little westward of the former. By this continual shifting from the east towards the west, the line of nodes performs the whole revolution in the com-

pass of about 18 years, 228^{d.} 5^{h.}; after which time the nodes return to the same points of the ecliptic.

It is evident that the centre of the moon is farther from the ecliptic, according as it is farther from the nodes. The points of her orbit, which are farthest from the ecliptic, and which are called the *limits*, must evidently be equidistant from the nodes. The above-mentioned distance of the moon from the ecliptic, when she is in different parts of her orbit, and which does not exceed $5^{\circ} 18' 6''$, is called the moon's latitude; for the latitude of a celestial object is its angular distance from the ecliptic, and is measured by an arc of a circle drawn through the moon, and perpendicular to the ecliptic.

This description of the moon's motion in her orbit, the inclination of that orbit to the ecliptic, and the retrogradation of the nodes, naturally shew why are the eclipses both of the sun and of the moon, sometimes partial, and at other times total, why they do not take place at every new and full moon; and lastly, why the eclipses return very nearly in the same order after about every 19 years.

Thus, for the sake of perspicuity, we have described what relates to the inclination of the moon's orbit to the ecliptic in a general manner; but there are several irregularities to be noticed with respect to the inclination and the shape of that orbit, as also to the motion of the moon in it.

Upon the whole, the shape of that orbit is elliptical, or nearly so, as in fig. 6, Plate XXVII. with the

the earth at T in one of its foci. AP is the greater axis, and is likewise the line of the *apsides*, or the line of the moon's nearest and greatest distance from the earth. A is the *highest apsis*, and is called the *apogeon*, or *apogee*, where the moon is farthest from the earth. P is the *lowest apsis*, and is called the *perigeon*, or *perigee*, where the moon is nearest to the earth. TC is the *excentricity*.

We shall express the principal irregularities in the following seven paragraphs.

1st. The line of the apsides has been observed to have an angular motion round the earth from the west towards the east, or in the direction of the signs of the ecliptic, but not always constantly so; viz. the apogee of the moon's orbit, when she is in the syzygies, goes forward, with respect to the fixed stars, at the rate of $23'$ each day, and backwards in the quadratures by $16' 20''$ per day; therefore the mean annual motion is 40° ; hence it performs the whole circle, and returns to the same situation, in the space of almost nine years*.

2dly. When the earth (and of course the moon also) is in the aphelion, the moon's motion is somewhat quicker than when the earth, &c. is in perihelion; hence the periodical months of the moon are somewhat shorter in the former case than in the latter.

3dly. When the moon is in the syzygies, then,

* De la Lande states the tropical revolution of the apogee at $8^y. 311^d. 8^h. 34'. 57''$. the sidereal revolution at $8^y. 312^d. 11^h. 11'. 39''$ and the diurnal motion at $6'. 41'', 0698.$

cæteris paribus, she moves round the earth quicker than when she is in the quadratures. For its gravity towards the earth is, by the action of the sun, increased in the latter case, and diminished in the former; so that from the conjunction to her first quadrature, the gravity of the moon towards the earth is continually increased, and she slackens a little its motion; from that quadrature to the opposition, her gravity towards the earth is gradually diminished, and she keeps increasing her motion; from the opposition to the other quadrature, her gravity increases again, and her motion is again gradually diminished; and lastly, from that quadrature to the conjunction, that gravity is gradually diminished, and that motion is again gradually increased*. The moon is more distant from the earth at the quadratures than at the opposition to, or at the conjunction with, the sun.

4thly. Besides the above-mentioned cause, the unequal motion of the moon in her orbit arises also from the elliptical figure of that orbit, which has the earth in one of its foci; for as the moon must describe equal areas in equal times round the earth (in the same manner as the planets have been said to describe round the sun), it evidently follows, that *cæteris paribus*, the moon must move quicker in her perigeon than in her apogeeon.

* The famous Tycho Brahe, who first discovered this inequality in the moon's motion, called it the *moon's variation*.

5thly. The orbit itself of the moon undergoes various changes during every revolution; so that its excentricity is continually increasing and decreasing. It is greatest when the line of the apsides coincides with the syzygia, and least when the line of the apsides coincides with the quadratures. The difference is so great as to exceed the half of the least excentricity.

6thly. The nodes of the moon's orbit move very irregularly; so that the line of nodes successively acquires all sorts of situation with respect to the sun; and in the course of every year it passes twice through the syzygies, and twice through the quadratures. During one whole revolution of the moon, the nodes go back from east to west with considerable quickness when they are in the quadratures; but having passed those points, they gradually slacken their motion, and are quite at rest when they come to be in the same direction with the syzygies.

7thly. The inclination of the plane of the moon's orbit to the ecliptic (which has been said to make in general an angle of 5°) varies by several minutes, and is greatest when the moon is in the quadratures, and least when she is in her opposition or conjunction. The above-mentioned inclination also increases, and is at its maximum, when the nodes are in the syzygies; but the inclination diminishes as the line of nodes has passed the syzygies, and is at its minimum when that line coin-

cides with the quadratures. Upon the whole, it seems that the inclination of that orbit to the ecliptic is at the least about 5° , and at the most about $5^{\circ} 18' 6''$.

All the irregularities of the moon's motions are rather less in her opposition than in her conjunction.

Those which we have called irregularities of the moon's motion, are so far from being real errors or defects, that they are the just and natural consequence of that grand law of nature, the universal and mutual gravitation of matter; and the works of nature would be truly defective if the above-mentioned apparent irregularities were not found to exist, as has been abundantly demonstrated by the great Newton. What renders the calculation of the moon's influence, motions, and situations, at different times, extremely intricate and perplexing, is the difficulty of determining the quantities of those forces which act upon the moon, and upon which the theoretical calculations are established. The quantities of those forces must be deduced from their effects, viz. from observations; and those observations require exact instruments, and diligent observers. In fact, it is owing to the industry of late and present astronomers, as also to the mechanical and mathematical improvements of the short period which has elapsed since Newton's time, that the tables of the lunar motions have been brought

to a wonderful degree of accuracy, and that they are daily receiving farther corrections.

The only equal motion of the moon, is its revolution round its axis, which, either in part or in all, is performed exactly in the same time, in which she performs her revolution in her orbit round the earth; hence she always presents the same half of its surface to us, whilst its other half is never seen by us; yet on account of the moon's orbit being elliptical and not circular, as also on account of the inclination of that orbit to the ecliptic, we can at times see part of that half of the moon, which, in general, is not visible to us; and this is the *libration* of the moon, as has been mentioned in the preceding pages.

It follows from the above-mentioned rotation of the moon round her axis, that in the compass of one year we inhabitants of the earth have nearly $365 \frac{1}{4}$ days, whereas the inhabitants of the moon, if there be any, have only about $12 \frac{7}{8}$ days; every one of their days being equal to about $29 \frac{1}{2}$ of our days.

From observations carefully made on the spots of the moon, and from proper calculation, it has been determined that the axis of the moon is inclined to the ecliptic at an angle of $88^\circ 17'$ very nearly *.

* Cassini found that the nodes of the moon's equator agree with the mean place of the nodes of its orbit; therefore, they have the same mean motion.

The above-mentioned apparent irregularities of the moon's motion produce several remarkable phenomena, with respect to the moon's rising to its setting, and to its continuance above the horizon of those places which are not under the equator. Two of those phenomena have obtained peculiar appellations, viz. the *harvest moon*, and the *hunter's moon*.

It has been mentioned in the preceding pages, that the moon appears to recede from the sun at the daily rate of about 12° and some minutes; but it does not follow that the moon must rise every day later by a proportionate length of time, viz. by about 50 minutes of time; for, on account of the different angles made by the horizon and different parts of the moon's orbit, this retardation differs considerably in places of high latitude, and it is only equable or nearly so, with respect to places situated under the equator. The cause of those phenomena is clearly and familiarly explained by Mr. Ferguson, in the 16th chapter of his astronomy, from which I shall make the following abridgement.

The plane of the equinoctial is perpendicular to the earth's axis; and therefore, as the earth turns round its axis, all parts of the equinoctial make equal angles with the horizon, both at rising and at setting; so that equal portions of it always rise or set in equal times. Consequently, if the moon's motion were equable and in the equinoctial, at the rate of $12^{\circ} 11'$ from the sun every day, as it is in her orbit, she would rise and set 50 minutes later every day than on the

preceding day; for $12^{\circ} 11'$ of the equinoctial rise or set in $50'$ of time in all latitudes.

But the moon's motion is so nearly in the ecliptic, that we may consider her at present as moving in it. Now the different parts of the ecliptic, on account of its obliquity to the earth's axis, make very different angles with the horizon; and in equal times, whenever this angle is least, a greater portion of the ecliptic rises than when the angle is larger, as may be easily perceived by looking at a common celestial globe. Thus in fig. 7 and 8, Plate XXVII. L represents the latitude of London, AB is the horizon, FP the axis of the world, Ee the equator, Kk the ecliptic. Now, on account of the oblique position of the sphere in the latitude of London, the ecliptic has a high elevation above the horizon, making the angle AUK of about $73^{\circ} \frac{1}{2}$, as represented in fig. 7, when the sign of Cancer is upon the meridian, at which time Libra rises in the east. But when the other part of the ecliptic is above the horizon, viz. when the sign of Capricorn is upon the meridian, and Aries rises in the east, then the ecliptic will make with the horizon the much smaller angle kUA, as represented in fig. 8, which angle is only about $26^{\circ} \frac{1}{2}$, that is 47 degrees smaller than the former angle. And by inspecting those figures, it may be easily conceived that, as the celestial sphere appears to turn round the axis FP in a given portion of time, as for instance, three or four hours, a greater portion of the ecliptic will rise during that time, when the ecliptic

ecliptic is in the situation of fig. 8, than when it is in the situation of fig. 7.

In northern latitudes, the smallest angle made by the ecliptic and horizon is when Aries rises, at which time Libra sets; the greatest when Libra rises, at which time Aries sets. From the rising of Aries to the rising of Libra (which is 12 sidereal hours) the angle increases; and from the rising of Libra to the rising of Aries, decreases in the same proportion; hence it appears that the ecliptic rises fastest about Aries, and slowest about Libra.

On the parallel of London, as much of the ecliptic rises about Pisces and Aries in two hours, as the moon goes through in six days; therefore, whilst the moon is in these signs, she differs but two hours in rising for six days together; that is about 20' later every day or night than on the preceding, at a mean rate. But in 14 days afterwards, the moon comes to Virgo and Libra, which are the opposite signs to Pisces and Aries; and then she differs almost four times as much in rising; namely, one hour and about 15' later every day or night than the preceding, whilst she is in these signs. As the signs, Taurus, Gemini, Cancer, Leo, Virgo, and Libra, rise successively, the angle of the ecliptic with the horizon increases gradually; and decreases in the same proportion as they set; and for that reason, the moon differs gradually more in the time of her rising every day whilst she is in these signs, and less in her setting: after which, through the other six signs, viz. Scorpio,

pio, Sagittary, Capricorn, Aquarius, Pisces, and Aries, the rising difference becomes less every day, until it be at the least of all, namely, in Pisces and Aries.

The moon goes round the ecliptic in about 27 days and 8 hours; but not from change to change in less than about 29 days and 12 hours: so that she is in Pisces and Aries at least once in every lunation, and in some lunations twice.

If the earth had no annual motion, the sun would never appear to shift his place in the ecliptic; and then every new moon would fall in the same sign and degree of the ecliptic, and every full moon in the opposite; for the moon would go precisely round the ecliptic from change to change. So that if the moon was once full in Pisces or Aries, she would always be full when she came round to the same sign and degree again. And as the full moon rises at sun-set (because when any point of the ecliptic sets, the opposite point rises) she would constantly rise within two hours of sun-set, on the parallel of London, during the week in which she were full. But in the time that the moon goes round the ecliptic from any conjunction or opposition, the earth goes almost a sign forward; and therefore the sun will seem to go as far forward in that time, namely, $27^{\circ}\frac{1}{2}$; so that the moon must go $27^{\circ}\frac{1}{2}$ more than round, and as much farther as the sun advances in that interval, which is $2^{\circ}\frac{1}{2}$, before she can be in conjunction with, or opposite

to,

to, the sun again. Hence it is evident, that there can be but one conjunction or opposition of the sun and moon in a year in any particular part of the ecliptic. This may be familiarly exemplified by the hour and minute hands of a watch, which are never in conjunction or opposition in that part of the dial-plate where they were so last before.

As the moon can never be full but when she is opposite to the sun, and the sun is never in Virgo and Libra, but in our autumnal months, it is plain that the moon is never full in the opposite signs, Pisces and Aries, but in these two months. And therefore we can have only two full moons in the year, which rise so near the time of sun-set for a week together, as has been mentioned above. The former of these is called the *harvest moon*, and the latter the *hunter's moon*.

When the moon is in Pisces and Aries, it must rise with nearly the same difference of time in every revolution through her orbit, which is exactly the phenomenon of the harvest moon; but it passes unobserved, because in winter those signs rise at noon, and, being then only a quarter of a circle distant from the sun, the moon in them is in her first quarter, and rises at about noon, at which time her rising is not noticed. In spring those signs rise with the sun, for the sun is in them, consequently the moon being in them too, is in conjunction with the sun, and therefore its rising is invisible. In summer those signs rise at about midnight, and the sun is

three signs, or about 90° before them; therefore the moon in them must be in her third quarter, when it gives little light, and rises late, on which accounts the phenomenon of her rising for some nights with little difference of time, passes unnoticed. In autumn, however, the case is different; for the signs of Pisces and Aries then rise at about sun-set, and therefore the moon being in them, is in opposition to the sun, consequently full, and rises in great splendour when the sun sets, and seems to prolong the day for the advantage of the husbandman at about the harvest time.

In northern latitudes, the autumnal full moons are in Pisces and Aries; and the vernal full moons in Virgo and Libra. In southern latitudes, just the reverse, because the seasons are contrary. But Virgo and Libra rise at as small angles with the horizon in southern latitudes, as Pisces and Aries do in the northern; and therefore the harvest moons are just as regular on one side of the equator as on the other.

As these signs, which rise with the least angle, set with the greatest, the vernal full moons differ as much in their times of rising every night, as the autumnal full moons differ in their times of setting; and set with as little difference as the autumnal full moons rise; the one being in all cases the reverse of the other.

Hitherto, with respect to these phenomena, we have supposed that the moon's orbit coincided with the

the plane of the ecliptic ; but since her orbit makes with it an angle varying from 5° to $5^{\circ} 18'$, and crosses it only in the nodes, therefore her rising when in Pisces and Aries, will sometimes not differ above one hour and $40'$ through the whole of the seven days ; and at other times, when in the same two signs, the time of her rising, in the course of a week will differ full $3 \frac{1}{2}$ hours, according to the different positions of the nodes with respect to those signs ; which positions are constantly changing, the nodes going backward through the whole ecliptic in about 18 years and 228 days. This revolution of the nodes will cause the harvest moons to go through a whole course of the most and least beneficial states, with respect to the harvest in about 19 years. The following Table shews in what years the harvest moons are most or least beneficial, from the year 1800 to 1861 : the columns of years under the letter L, are those in which the harvest moons are least beneficial ; those marked M, shew when they are the most beneficial ; the former falling nearest the descending node, the latter nearest the ascending node*.

* Mr. O'Gregory's Astronomy, chap. XVI.

Harvest Moons							
M	L	M	L	M	L	M	
1800	1807	1816	1826	1835	1844	1853	
1801	1808	1817	1827	1836	1845	1854	
1802	1809	1818	1828	1837	1846	1855	
1803	1810	1819	1829	1838	1847	1856	
1804	1811	1820	1830	1839	1848	1857	
1805	1812	1821	1831	1840	1849	1858	
1806	1813	1822	1832	1841	1850	1859	
	1814	1823	1833	1842	1851	1860	
	1815	1824	1834	1843	1852	1861	
		1825					

“ At the polar circles, when the sun touches the summer tropic, he continues 24 hours above the horizon ; and 24 hours below it, when he touches the winter tropic. For the same reason the full moon neither rises in summer, nor sets in winter, considering her as moving in the ecliptic. For the winter full moon being as high in the ecliptic as the summer sun, must therefore continue as long above the horizon ; and the summer full moon being as low in the ecliptic as the winter sun, can no more rise than he does. But these are only the two full moons which happen about the tropics ; for all the others rise and set. In summer the full moons are low, and their stay is short above the horizon, when the nights are short, and we have least occasion for moon-light : in winter they go high, and stay long above

above the horizon, when the nights are long, and we want the greatest quantity of moon-light*."

I shall conclude this chapter with a short account of the singular appearance of what is called the *horizontal moon, and horizontal sun.*

In the first place it must be remarked, that both the sun and the moon, when they are near the horizon, appear not quite round, but a little oval, the longest axis being parallel to the horizon. This arises from the different refractive power of the atmosphere at different elevations, in consequence of which the lowermost limb of the sun, (and the same must be understood of the moon) appears more elevated than the upper limb; hence the vertical diameter is shortened a little, whilst the horizontal diameter remains unaltered.

But the most singular phenomenon is, that both the sun and the moon, when near the horizon, appear to the naked eye much larger than when they are higher up or upon the meridian, which enlarged appearance must undoubtedly be an optical deception; for if the diameter both of the sun and the moon be measured by means of proper instruments, such as a quadrant, a micrometer, &c. they will be found to be smaller in the former than in the latter situation, which is as it ought to be; because when they are upon the horizon, those celestial objects are evidently farther from us by the semi-diameter

* Ferguson's Astronomy, § 293.

of the earth, than when they are upon the meridian.

The explanation of this phenomenon has exercised the genius of diverse able philosophers, who have attempted it, and have offered their various hypotheses to the public; yet the phenomenon is far from being thoroughly understood. One of the best of those hypotheses is, that as the moon appears less bright and less distinct near the horizon, than higher up, on account of its rays passing through a greater quantity of atmospherical air, vapours, &c. in the former case than in the latter; we imagine it to be at a much greater distance than when she is higher up; for near objects appear, *cæteris paribus*, more bright and distinct than those which are farther off. Then as the visual angle of the moon is nearly the same at all elevations, and as our imagination makes us conceive it to be a great deal farther off when near the horizon; therefore, in that case we also conceive it to be a much larger object; for of two unequal objects that subtend the same angle at the eye, the largest must necessarily be the most distant. But upon this principle it should seem that, whenever the moon, or the sun, at a high elevation, happens to be rendered indistinct by the interposition of vapours, &c. it ought to appear as large as it does near the horizon, which does not seem to be the fact.

Another hypothesis is, that the lower part of the apparent celestial hemisphere seems to us larger

than the higher part of it ; for instance, if we guess at the altitude of a celestial object we always conceive it to make a greater angle with the horizon, or to be more elevated than it really is ; therefore any portion of that lower part of the hemisphere, or of any body in it, appears larger than when the same is higher up. But then one may naturally ask, what makes us conceive the lower parts of the apparent celestial hemisphere to be larger than those which are higher up * ?

* On this subject the reader may consult Dr. Wallis's Works, Des Cartes's Works, Dr. Desagulier's Philosophy, Rowning's Philosophy, Dr. Smith's Optics, Dr. Priestley's History of Light, &c. Ferguson's Astronomy, and almost all the modern Writers on Astronomy.

C H A P. VII.

OF THE TIDES, OR OF THE EBBING AND
FLOWING OF THE SEA.

THE singular phenomena of the *ebbing* and *flowing* of the sea, viz. of its alternately rising and falling on the shores of most countries; and the connection which seemed to exist between those phenomena and the movements of the moon, has been remarked and is mentioned by the writers of great antiquity *. But it was Kepler who first shewed that the *attraction* of the moon was the real cause of it. Newton, in a masterly manner, enlarged and demonstrated the various parts of the same theory, which has also received farther corrections and improvements from the observations and calculations of subsequent philosophers.

Every day, a short time after the moon's passage over the meridian, the waters of the ocean are seen to rise on the shores of the adjacent lands; and this is called the *tide of flood*. From that time they

* Such are Homer, Aristotle, Herodotus, Diodorus Siculus, Plutarch, &c.

gradually subside, until about six hours after they are at the lowest, which is called the *tide of ebb*. They then gradually rise again, and make another tide of flood, or are at their highest a short time after the moon has passed the inferior part of the meridian. After that, the waters ebb again, and so forth. The earth by its daily rotation round its axis goes from the moon to the moon again (or the moon appears to move round the earth from a given meridian to the same again) in about 24 hours and 50'; hence in that period there are two tides of flood and two of ebb.

The tides are more considerable about a day and a half after the new, or the full, moon. They are, *ceteris paribus*, also greater when the moon is in her perigee than in her apogee; and likewise higher about the equinoxes; so that the highest tides are observed when the above-mentioned three circumstances take place at the same time, viz. when the moon is either new or full, at the same time that it is in her perigee, and about the time of the equinoxes.

Those, and other less considerable, phenomena relative to the tides, are easily shown to depend on the attractions and positions both of the sun and the moon, but principally of the moon; for though the sun is immensely larger than the moon, yet as he is vastly more distant, and the attraction decreases inversely as the squares of the distances, it follows that the effect of the moon's attraction on the waters of

the sea, is much more considerable than that of the sun's attraction. At a mean, that of the former is reckoned to be to that of the latter, as 5 to 2 *.

It is evident, that if three or more bodies, be at different distances from the moon, the nearest of them will be attracted more forcibly than that which is a little farther off; this more forcibly than the next, and so on. After the same manner it must be considered that the attraction of the moon towards the different parts of the earth is not exactly the same; because those various parts are not equally distant from it. Thus, in fig. 9, Plate XXVII. where M is the moon, and A B C the earth, the parts of the earth at A are attracted with greater force than those at B, and the latter more than those which are at C. This difference of attraction is not greater than the force wherewith the solid parts of the earth adhere to each other, therefore it does not produce any derangement of figure among them; but it produces a very sensible effect upon the fluid parts of this globe; that is, upon the waters of the oceans. Thus the waters at A immediately under the moon, being attracted more than the centre B of the earth is, are caused to recede from

* As by Mr. Daniel Bernoulli. See the paragraphs *sur le flux & reflux de la Mer*, in De la Lande's Astronomy.

it more than the waters at D and E, which, as also the centre B, are equidistant from the moon; therefore the distance BA must become greater than the distance BD, or its equal BE. Also the parts at D, B, and E, being attracted with greater force than the more distant waters at C; it follows, that the distance BC must likewise become greater than BD or BE; hence it appears that the waters which surround the earth, must form, (as far as the situations of continents, islands, &c. will permit) an oblong, or oval, or spheroidal figure, whose greater axis is *a e*, in the direction of the moon M, and whose shorter axis is *d e*.

The orbit of the moon being elliptical, having the earth in one of its foci, it follows, that the moon's distance from the earth varies considerably, and of course its attraction must vary accordingly; hence the tides are more considerable when the moon is in her perigee, and less so in her apogee.

The attraction of the sun produces a similar elongation of the fluid which surrounds this globe; but, as has been mentioned above, not near so considerable as that which is produced by the moon. The effect is likewise greater when the sun is nearer to the earth, as in the winter time, than when he is farther from it, as in the summer time.

It will be readily understood, that, according to the different situations of the sun, and the moon, the tides which are raised by their respective attractions, will either conspire with, or counteract, each other,

in a greater or lesser degree. Thus in fig. 1, Plate XXVIII. T is the earth, M the moon, and S the sun. Then ACBD is the spheroidal figure of the fluid part of our globe, which is formed by the action of the moon, whereof AB is the greater axis, and CD the lesser; viz. the waters at A and B, or under and opposite to the moon, are higher than their usual level; but at C and D they are lower than their usual level. EFHG represents the oblong figure, which is produced by the action of the sun; viz. the waters are higher than their usual level under the sun at E, and opposite to it at F; but they are lower than their usual level at H and G. Now by inspecting the figure it will be easily comprehended, that if the longer axes of both those spheroids coincide, as is the case at the time of a full and of a new moon; viz. when the moon is in conjunction with, or opposition to, the sun; then the effect is greater than in any other situation of those luminaries. The very high tides, which are raised in those cases, are called *spring tides*. On the other hand, when the lesser axis of one of those spheroids coincides with the greater axis of the other spheroid, as is the case at the quadratures, viz. when the moon is 90° distant from the sun; then the two powers counteract each other more or less, according as either of them is more or less powerful. The tides in those cases, being not so high as in ordinary, are called *neap tides*. Thus, where the lesser axis CD of the moon's spheroid ACBD coincides with the

greater axis EF of the sun's spheroid EHFG, there the two opposite powers nearly balance each other, and of course the rise or fall of the water is nearly insensible. But where the greater axis AB of the moon's spheroid ACBD coincides with the lesser axis HG of the sun's spheroid EHFG, there the elevation of the waters at A and B (viz. about the extremities of that greater axis) will be very little less than if it were not so counteracted.

The situations of the sun and principally of the moon, with respect to their declination or distance from the equator, produces another remarkable phenomenon relative to the tides; which is, that the two successive tides of the same day are more or less unequal, according as the moon declines more or less from the equator; so that they are equal only when the moon has no declination, viz. when it is in the equator. Thus in fig. 2, Plate XXVIII. where the moon M is over the equator QR, any given part of the earth will have the two successive tides equal; for when, by the diurnal rotation of the earth round its axis NS, the part R comes to Q, the elevation of the water will be as great as in its former situation at R; and the same is the case with any other given part at r , for either when this part stands at r ; or when about 12 hours after it comes to q , the floods, or the elevations, rd , qd , of the waters are exactly equal. But when the moon is distant from the equator, as is represented in fig. 3, Plate XXVIII. then the same part of the earth

earth will have the two successive tides of the same day unequal; for when the given part r is at r , the elevation dr of the water is not equal to the elevation qd , which is the high water or tide of the same part, when, about 12 hours after, this part is, by the diurnal rotation of the earth, come to q .

“ In short, when the moon declines from the equator towards either pole, the tides are alternately higher and lower at places having north or south latitude. For one of the highest elevations, which is that under the moon, follows her towards the pole to which she is nearest, and the other declines towards the opposite pole; each elevation describing parallels as far distant from the equator, on opposite sides, as the moon declines from it to either side; and, consequently, the parallels described by these elevations of the water are twice as many degrees from one another, as the moon is from the equator; increasing their distance as the moon increases her declination, till it be at the greatest, when the said parallels are, at a mean state, 47° from one another; and on that day, the tides are most unequal in their heights. As she returns towards the equator, the parallels described by the opposite elevations, approach towards each other, until the moon comes to the equator, and then they coincide. As the moon declines toward the opposite pole, at equal distances, each elevation describes the same parallel in the other part of the lunar day, which its opposite elevation described before. Whilst the

moon

moon has north declination, the greatest tides in the northern hemisphere, are when she is above the horizon; and the reverse whilst her declination is south*."

The same thing must be understood with respect to the effect which is produced by the sun's attraction; allowing for the difference of powers.

When both the sun and the moon are in the equator, and the moon is in her perigee, that is, nearest to the earth, especially when new or full; then the tides are the highest; because the attraction of the moon is greatest, because it coincides with that of the sun, and because they act upon the equatorial parts of our globe, which have the greatest centrifugal force. And the effect would be increased still more, if at the same time the sun could be nearest to the earth. But, as the sun is nearer to the earth in winter than in summer, therefore it is nearer to it in February and October, than about the time of the equinoxes in March and September; hence the greatest tides take place sometimes after the autumnal equinox, and return a little before the vernal equinox.

With respect to the time of the return of the tides it is necessary to observe, that the tides do not return always at equal intervals of time. In order to comprehend the reason of this inequality, we must consider the changeable situation of the earth's

* Ferguson's Astronomy, §. 304.

axis with respect to the moon; for that axis, in every lunation, inclines once towards the moon, once from the moon, and twice sidewise to her; moving gradually from one of those situations to the other, exactly as it does with respect to the sun in the course of one year; the moon going round the ecliptic in one lunar month, as the sun goes round the ecliptic in one year.

Farther, as the greatest axis of the fluid spheroid, formed by the attraction of the moon, is always directed towards the moon, if we imagine that a plane be drawn along that greater axis, and perpendicular to the moon's orbit, it is evident that this plane marks the two opposite or successive tides of flood, so that when any given place on the surface of the earth crosses this plane, which it does twice a day, it must then have high water. Now it is easy to conceive, that when the axis of the earth is inclined towards or from the moon, it must then lay in the above-mentioned plane, which plane in either of those cases must evidently cut each parallel of latitude into two equal parts; consequently, since the earth turns equably round its axis, a given point on the surface of it must be as long in going from one intersection with that plane to the other intersection on one side of it, as from the latter to the former on the other side of it. Or, in other words, the tides return to the same place at equal intervals of time. But when the axis of the earth inclines sidewise to the moon, then the parallels

of

of latitude are cut unequally by the above-mentioned plane; consequently, in that case, the tides return to the same place at unequal intervals of time; for that place, having a certain latitude, will be a longer time in going from one intersection with the plane to the other intersection, than from the latter to the former.

From the foregoing theory, it follows that "when the earth's axis inclines to the moon, the northern tides, if not retarded in their passage through shoals and channels, nor affected by the winds, ought to be greatest when the moon is above the horizon, least when she is below it; and quite the reverse when the earth's axis declines from her; but in those cases they return at equal intervals of time. When the earth's axis inclines sidewise to the moon, both tides are equally high; but they happen at unequal intervals of time. In summer, the earth's axis inclines towards the moon when new; and therefore the day-tides in the north ought to be highest, and night-tides lowest about the change: at the full, the reverse. At the quarter, they ought to be equally high, but unequal in their returns; because the earth's axis then inclines sidewise to the moon. In winter the phenomena are the same at full moon, as in summer at new. In autumn the earth's axis inclines sidewise to the moon, when new and full; therefore the tides ought to be equally high and unequal in

in their returns at these times. At the first quarter the tides of flood should be least when the moon is above the horizon, greatest when she is below it; and the reverse at her third quarter. In spring the phenomena of the first quarter answer to those of the third quarter in autumn; and *vice versa*. The nearer any time is to either of those seasons, the more the tides partake of the phenomena of these seasons; and in the middle between any two of them, the tides are at a mean state between those of both *.

Those general rules are perfectly verified by experience as long as no extraneous disturbing causes interfere.

It has been but slightly mentioned in the preceding pages of this chapter, that the greatest elevation of the waters takes place sometime after the moon's passage over the meridian; and the same thing is true with respect to the spring tides, viz. that they take place sometime after the conjunction, or the opposition of the sun and moon. This is the case even in open seas, where, at first sight, it might be expected that the greatest elevation of the water would be directly under the moon, where the attraction is strongest. But an observation similar to that which has been made (page 89, vol. III.) relative to the greatest heat of the day, which takes place a considerable time after the sun's passage over

* Ferguson's Astronomy, §. 307.

the meridian, will easily explain the above-mentioned phenomenon of the tides; namely, that when a certain power communicates an energy, and though the action of that power be actually decreasing; yet the effect, or the accumulation of the energy, will still continue to increase as long as the waste of that energy in a given time is less than the addition which is made to it in the same time. Thus, suppose that a person's expenditure amounts to 10 pounds per day; then, if to-day he receives 20 pounds, to-morrow he will have left 10 pounds; for he must spend the other 10 to-day. Then if to-morrow, instead of receiving 20 pounds, he receives 15, and, as usual, he spends 10 pounds out of it, he will have left, in all, 15 pounds; and if the day after to-morrow he receives only 12 pounds, and as usual spends only 10, he will have left upon the whole 17 pounds; which evidently shews that though his daily receipt is constantly decreasing, yet his stock is increasing, and will continue to increase as long as the daily receipt exceeds the daily expenditure.

Now, with respect to the tides, it must be considered, that the waters of the oceans, once put in motion by the attraction of the sun and moon, would of themselves continue to move for a considerable time, though the action of the sun and moon should be suspended. Like a basin of water, or like a pendulum, which, if once put in motion, will, without the renovation of the impulse, continue to

to vibrate for a considerable time after. In the like manner, if the moon's attraction should cease, the moment she has passed the meridian, the waters of the oceans would still continue to rise for some time after, in consequence of the impulse received before the cessation of the moon's action; and therefore they must continue to rise much more when that action, instead of being annihilated, is only diminished.

The time which elapses between the moon's passage over the meridian, and the high water or flood, even in open seas, is not always the same; but it is sometimes longer and at other times shorter than ordinary, which arises from the concurring action of the sun; for when the moon is in her first and third quarters, the tides raised by the moon are accelerated by the sun, because in those cases the tides raised by the sun alone would come on earlier than those of the moon. And when the moon is in her second and fourth quarters, the tides raised by her are retarded by the sun; because, in those cases, the tides raised by the sun alone would come on later. In general, the greatest height of the water in open seas, takes place about an hour after the moon's meridional passage.

Besides the acceleration or retardation which arise from the influence of the sun, the tides are considerably affected, in point of height and of periodical return, by local circumstances. In the open seas the rise of the water is small in comparison to what

it

it is in contracted channels, wide-mouthed rivers, &c. where the water is accumulated by the contraction and opposition of the banks.

“ The tides are so retarded in their passage through different shoals and channels, and otherwise so variously affected by striking against capes and headlands, that to different places they happen at all distances of the moon from the meridian; consequently at all hours of the lunar day. The tide propagated by the moon in the German ocean, when she is three hours past the meridian, takes 12 hours to come from thence to London bridge; where it arrives by the time that a new tide is raised in the ocean: and therefore, when the moon has north declination, and we should expect the tide at London to be greatest when the moon is above the horizon, we find it is least; and the contrary when she has south declination. At several places it is high-water three hours before the moon comes to the meridian; but that tide which the moon pushes as it were before her, is only the tide opposite to that which was raised by her when she was nine hours past the opposite meridian.

“ There are no tides in lakes, because they are generally so small, that when the moon is vertical she attracts every part of them alike, and therefore, by rendering all the water equally light, no part of it can be raised higher than another. The Mediterranean and Baltic seas have very small elevations, because the inlets by which they communicate with

the

the ocean are so narrow, that they cannot, in so short a time, receive or discharge enough to raise or sink their surfaces sensibly *."

The time of high water in different parts of the world, or rather the time which elapses between the high water tide and the moon's arrival at the meridian, can only be learned from experience; and therefore the observations made in different places relative to this, are collected into tables, which are to be met with in several almanacks, and in treatises on navigation, such as Robertson's, Bouguer's, &c.

The action of the moon upon the atmosphere has been noticed in the second volume of these Elements, page 242, and following.

* Ferguson's Astronomy, § 309 and 310.

C H A P. VIII.

OF THE NATURE AND MOVEMENTS OF THE SUN
AND PLANETS.

THE movements, the appearances, and the mutual influence, of the sun, the earth, and the moon, are undoubtedly more striking and more interesting to us than those of the other celestial objects: hence particular notice has been taken of the same in the preceding chapters of this volume. But in describing the appearances and the movements of the other celestial objects we shall endeavour to be more concise, especially because the similarity of their motions to those of the earth, will, in a great measure, supersede the necessity of giving very minute explanations of several particulars.

In order to facilitate the comprehension of what follows, the reader is requested to recollect what has been in a particular manner explained before, relatively to the planets; namely, that the planets, both primary and secondary, move in elliptical orbits; and that the primaries, together with the sun, move round a common centre of gravity, which centre

centre of gravity is not coincident with the centre of, but is not out of the body of, the sun. Also the secondaries, or moons, or satellites which belong to a planet, revolve round a centre of gravity common to them and to their primary ; so that in truth the point, which describes the planetary orbit round the sun is not the centre of such a planet as has satellites, but is the common centre of gravity of that planet and its satellites ; thus it is not the centre of the earth, but the common centre of gravity of the earth and moon, that describes the annual orbit round the sun. This centre of gravity is as much nearer to the centre of the earth than to that of the moon, by as much as the quantity of matter in the moon is less than the quantity of matter in the earth, viz. as 1 to 38,9 ; therefore, since the distance of the moon from the earth is 240000 miles *, by dividing this distance in the above-mentioned proportion, we shall find that the common centre of gravity of the earth and moon is only 6015 miles distant from the centre of the earth, which distance being but trifling, we have, for the sake of avoiding prolixity, not noticed it in the explanation of the annual movements of the earth.

The reader is likewise requested to recollect Kepler's general laws relative to the planets ; namely, that the areas described by a right line

* See page 115 and 116 of this volume.

connecting the centre of attraction and the revolving planet, are always proportional to the times in which they are described, and that the cubes of their distances from the sun are as the squares of the times of their periodical revolutions.

For the sake of brevity, as also for the convenience of comparison, the diameters, distances, revolutions, and other remarkable particulars relatively to the sun and planets, have been disposed in a table which stands at the end of this chapter, and concerning which we shall subjoin the following explanations; we shall then add such other particulars as could not conveniently be stated in the form of a table.

The 1st column of the table, which immediately follows the names of the principal bodies of the solar system, contains the apparent mean diameters of those bodies; that is, when they are at their mean distances from the earth. Those diameters have been ascertained by means of micrometrical measurements; but some uncertainty exists with respect to the two new planets, Ceres and Pallas; for the measurements of their diameters, as given by different astronomers, do not agree with each other. The most accurate observations hitherto made upon Mars, Jupiter, Saturn, and the Georgium Sidus, prove that there is a sensible difference between their equatorial and polar diameters; the former being longer than the latter, which is undoubtedly owing to the greater centrifugal force of their equatorial

parts;

parts; as is the case with the earth. Though it be not proved by actual observations, yet analogy induces us to believe, that a similar difference exists between the equatoreal and polar diameters of all the other planets.

The 2nd column of the table contains the diameters which the planets would appear to have to a spectator in the sun. Those are obtained by computation.

The 3d column contains the real mean diameters in English miles. Those diameters are obtained by computation from their respective apparent diameters and distances.

The mean distances of the planets from the sun, in round numbers of English miles, are contained in the 4th column of the table. Should any person wish to have those distances more accurately, he may easily deduce them from the proportional numbers of the 5th column, and by the common rule of proportion; supposing that the mean distance of the earth, viz. 95 millions, is sufficiently accurate.

The mean density of all the parts which form each planet, compared to that of water, is contained in the 6th column; and the 7th column contains the proportion between the quantity of matter in the sun, as also in each planet, and that of the earth, which is reckoned one, or unity; thus Jupiter is reckoned to contain somewhat more than 312 times as much matter as the earth, &c.

The inclinations, or the angles which the orbits of the planets form with the plane of the ecliptic, are contained in the 8th column.

The 9th column shews the inclinations of the axes of some celestial bodies to their respective orbits. This column is deficient on account of the very great difficulty of making the necessary observations; for this inclination of the axis of a planet is only to be deduced from the oblique or curvilinear motion of the spots of the planet.

The diurnal rotations of the 10th column are also derived from the motion of the spots.

The 11th column contains the tropical revolutions, viz. the time employed by each planet in passing over the 12 signs of the zodiac. And the time which each of them employs in going from any fixed star to the same again, is contained in the 12th column. The particulars of this, as well as of the two preceding columns, are expressed in days, hours, minutes, and seconds.

The 13th column contains the aphelia of the different planets, viz. the higher apsis, or the place of the ecliptic, towards which the planet is directed when it stands at that point of its orbit, which is the most distant from the sun. Those parts of the ecliptic are expressed in signs, degrees, minutes, and seconds.

The 14th column contains the secular motions of the aphelia of the preceding column; viz. the motion of the aphelion of each planet in 100 years.

This

This is obtained by dividing the difference between the place of the aphelion, as determined many years ago, and as ascertained lately, by the number of centuries, or fractional parts of a century, elapsed between the above-mentioned two determinations.

Column the 15th, contains the eccentricities of the orbits, each mean distance being reckoned 100000. From this and the 4th column, the eccentricity of each orbit may be had in miles. Thus the earth's mean distance from the sun is 95000000 of miles, and the eccentricity of its orbit is 1681,395; therefore say, as 100000 : 1681,395 :: 95000000 to a fourth proportional, viz. to 1597325,25, which is the eccentricity of the earth's orbit in miles.

The 16th column contains the greatest equations of the centres, viz. the difference between the true and the mean anomaly for each planetary orbit.

The 17th column shews the place of the ascending node of each planetary orbit, which gives the situation of the line of nodes. This may be expressed either by the characters of the signs of the zodiac, or by the number of signs, always reckoning from the first point of Aries; together with the odd degrees, &c. Thus $1^{\circ}, 15^{\circ}, 20^{\circ}, 43''$, is the same as $8, 15^{\circ}, 20^{\circ}, 43''$, and $3^{\circ}, 7^{\circ}, 55', 32''$, is the same as $25, 7^{\circ}, 55', 32''$.—The same observations may be applied to the 13th column.

The secular motion of the nodes, or movement in 100 years for each planet, is contained in the 18th column. Those are obtained in the same manner as has been said of the 14th column.

It was impossible to avoid some inaccuracies among the particulars of the annexed table, principally because the observations, hitherto made, do not always afford very accurate results; we shall, however, endeavour to point them out in the following paragraphs; wherein the reader will find several particulars relative to the sun and planets, which could not be expressed in the form of a table.

The splendor of the sun even long before the discovery of telescopes has been observed to vary at different and uncertain times; when viewed through a telescope, the surface of the sun is almost always found to contain certain dark spots of various sizes and duration. It is from the motion of those spots that the sun has been found to move round its own axis, and that its axis has been found to be inclined to the ecliptic.

The constant emanation of heat and light from that immense body, has long suggested the idea of the sun's being a globe of fire, of the spots being the scoria of the burning matter, and of some accession of matter being necessarily required to supply the constant waste which arose from the emanation of heat and light. But the more or less powerful

powerful telescopes used by different observers, and the tendency of preconceived systems, have given birth to a variety of opinions relative to the nature of the sun. Thus the spots have been supposed to be bodies of very irregular figures revolving about the sun, and very near its surface. Those spots have also been considered as the tops of rocks or mountains, on the supposition that the sun is an opaque body covered with a liquid igneous matter. They have likewise been looked upon as excavations in the luminous matters of the sun. In the year 1788, a very learned and worthy gentleman published a dissertation concerning the light of the sun, in which he advanced that *the real body of the sun is less than its apparent diameter; and that we never discern the real body of the sun itself, except when we behold its spots; and that the sun is inhabited as well as our earth; and is not necessarily subject to burning heat; and that there is in reality no violent elementary heat existing in the rays of the sun themselves essentially* *.

Several years after the publication of the last mentioned opinion, Dr. Herschel began to publish in the Philosophical Transactions, his theory concerning the nature of the sun, and to which he was led by his numerous observations made with his most improved instruments, and the most persevering industry. This theory, in brief, is as follows :

* Morsels of Criticism by Edward King, Esquire, F.R.S. and A.S.

The sun, he thinks, is a most magnificent habitable globe surrounded by a double set of clouds. Those, which are nearer its opaque body, are less bright and more closely connected together than those of the upper stratum, which form the luminous apparent globe we behold. That luminous external matter, as Dr. Herschel observes, is neither a liquid nor an elastic fluid of an atmospheric nature; for in either of those two cases, it could not admit of any chasms, or openings. Therefore, it must be concluded, that this shining matter exists in the manner of empyreal, luminous, or phosphoric clouds, residing in the higher regions of the solar atmosphere. The doctor then is of opinion that the spots, commonly so called, are only accidental openings between the luminous clouds, through which we behold the opaque body of the sun, or the inferior, less luminous clouds; hence the spots appear of different shades. In consequence of this theory, Dr. Herschel rejects the old names of spots, nuclei, penumbrae, faculae and luculi, which other astronomers had given to the various appearances on the visible surface of the sun; and adopts the following terms, which we shall express in his own words; and from an explanation of which the reader may acquire a more competent idea of his hypothesis*.

* See Dr. Herschel's Papers in the Phil. Trans. for the years 1795 and 1801.

“Openings”

“ *Openings* are those places where, by the accidental removal of the luminous clouds of the sun, its own solid body may be seen; and this not being lucid, the openings through which we see it may, by a common telescope, be mistaken for mere black spots, or their nuclei.”

“ *Shallows* are extensive and level depressions of the luminous solar clouds, generally surrounding the openings to a considerable distance. As they are less luminous than the rest of the sun, they seem to have some distant, though very imperfect resemblance to penumbræ; which might occasion their having been called so formerly.”

“ *Ridges* are bright elevations of luminous matter, extended in rows of an irregular arrangement.”

“ *Nodules* are also bright elevations of luminous matter, but confined to a small space. These nodules, and ridges, on account of their being brighter than the general surface of the sun, and also differing a little from it in colour, have been called *faculæ*, and *luculi*.”

“ *Corrugations*, I call that very particular and remarkable unevenness, ruggedness, or asperity, which is peculiar to the luminous solar clouds, and extends all over the surface of the globe of the sun. As the depressed parts of the corrugations are less luminous than the elevated ones, the disc of the sun has an appearance which may be called mottled.”

“ *Indentations*

“ *Indentations* are the depressed or low parts of the corrugations; they also extend over the whole surface of the luminous solar clouds.”

“ *Pores* are very small holes or openings, about the middle of the indentations.”

The planet next to the sun is Mercury. The proximity of this planet to the sun, renders it seldom visible, consequently the astronomers have not had many opportunities of making numerous and accurate observations upon it. No spots have as yet been discovered upon its disc, consequently neither its rotation about its axis, nor the position of that axis, can be determined; yet Mr. Schroeter is induced, by some of his observations, to believe that the period of Mercury’s rotation about its axis is 24 hours and 5 minutes *. That, according to its situation with respect to the earth and the sun, this planet must shew phases, in great measure similar to those of the moon, has already been mentioned, and I think it needs no farther illustration. The transit of Mercury over the disc of the sun does by no means take place at every revolution of the planet; for since its orbit is inclined to the ecliptic, making with it an angle of about seven degrees, and crossing it at the two nodes, it is evident that the planet cannot be seen to pass over the disc of the

* De La Londe’s History of Astronomy for 1800.

sun, unless its nodes happens to be in, or sufficiently near, the line which joins the sun and the earth.

Venus, vulgarly called the morning or evening star, according as it precedes or follows the apparent course of the sun, is a very brilliant planet, situated between us and Mercury. It has long been doubted whether any spots were really visible upon its disc ; and indeed even at present it is far from being ultimately determined. Some astronomers have perceived spots and even mountains upon its disc. Dr. Herschel, however, could never see any such appearances ; hence he is of opinion, that neither the rotation of this planet, nor the position of its axis, can as yet be determined, that it has a considerable atmosphere, and that from its apparent diameter, Venus seems to be larger, and not as commonly believed smaller than the earth. The same observations, which have been made with respect to the phases of Mercury, and to its transit over the sun, must be understood of Venus also. Those transits are of great use to astronomy ; but the transit of Venus being much more useful on account principally of its moving slower ; no pains have been spared in calculating the times of its taking place, or in observing it at the actual time. "The chief use (says Dr. Halley) of these conjunctions, is accurately to determine the sun's distance from the earth, or its parallax, which astronomers have in vain attempted

tempted to find by various other methods; for the minuteness of the angles required, easily eludes the nicest instruments. But in observing the ingress of Venus into the sun, and her egress from the same, the space of time between the moments of the internal contacts, observed to a second of time, viz. $\frac{1}{15}$ of a second of an arch, may be obtained by the assistance of a moderate telescope, and a pendulum clock, that is consistent with itself exactly, for the space of 6 or 8 hours. Now, from two such observations rightly made in proper places, the distance of the sun within a 500th part may be certainly concluded."

Of the earth and moon, enough has already been said in the preceding chapters.

Mars is the planet which comes next to the earth in order from the sun. The appearance of this planet is by no means so bright as that of Venus, or even that of Jupiter which is much farther from the sun. Its colour is somewhat inclining to red. The best or most recent observations on this planet, seem to be those which have been made by Dr. Herschel, who observed several remarkably bright spots near each pole of Mars, which spots seemed to have a small motion*. The results of his observations are that the inclination of the axis of

* Philosophical Transactions for 1784.

Mars to the ecliptic is $59^{\circ}, 22'$; the node of its axis is in $\propto 17^{\circ}, 47'$; the obliquity of Mars's ecliptic is $28^{\circ}, 42'$; the point Aries on its ecliptic answers to our $1^{\circ} 19', 28'$. Its equatorial is to its polar diameter nearly as 16 to 15.

Next to Mars come the two new planets, viz. the Ceres Ferdinandea, and Pallas, which, on account of their remarkably small size, Dr. Herschel proposes to discriminate by the appellation of *asteroids*. Nothing particular has as yet been discovered with respect to the appearances of those planets. They sometimes appear round and well defined, at other times they appear to be surrounded by a coma or haziness, the density and extent of which seem to vary with the state of the atmosphere. It is said that Mr. Schroeter suspects that the Ceres has two satellites. This, however, is much in want of confirmation.

The beautiful planet Jupiter is the next in order. With respect to splendour, this planet yields, upon the whole, only to Venus. When viewed through a tolerably good telescope, some zones or belts are seen upon its disc, which run parallel to its equator or nearly so. Those belts are of a darker shade and variable in number, in breadth, and in intensity; hence they have been generally supposed to be assemblages of clouds, probably driven by certain winds of Jupiter's atmosphere, which may blow in particular directions in different parts of that atmosphere,

mosphere, somewhat like our equinoctial winds; or the monsoons. Some large spots have often been seen in those belts, which have vanished with the contiguous belt. Sometimes the belts are not continuant, but interrupted or broken; in which case the broken end shews, that the belts as well as the above-mentioned spot revolve in the same time; but it is remarkable that those which are nearer the poles of the planet revolve somewhat slower than those which are near its equator; but this time of rotation varies a little, and the time of rotation of the same spot diminishes*.

According to Schroeter, Jupiter's rotation about its axis is performed in $9^h, 55^m, 37^s$. This rotation is much quicker than that of the earth about its axis; hence the difference between the equatorial and the polar diameters of Jupiter, is much greater in proportion than that which has been found between the two diameters of the earth; the equatorial parts of Jupiter having a very great centrifugal force. By the best measurements, the polar diameter of Jupiter is to its equatorial diameter as 12 to

* Dr. Herschel, in the year 1788, observed that the time of revolution of a certain spot altered in the following manner. From February 25, to March 2, it revolved in $9^h, 55^m, 20^s$. From the 2nd to the 14th of March, in $9^h, 54^m, 58^s$; and from the 7th to the 12th of April in $9^h, 51^m, 35^s$.

13. The axis of Jupiter is nearly perpendicular to its orbit; so that upon it the change of seasons must be next to nothing.

Jupiter is surrounded by four moons, or satellites, of different sizes, which move about it in different times and different limits of elongation. In consequence of their different movements, those satellites, which can never be seen without a telescope, are found always differently situated. Fig. 4. Plate XXVIII. exhibits the situation of Jupiter and its four satellites on a particular night; and fig. 5, exhibits the same as they would appear to a spectator situated in the heavens, perpendicularly over their orbits. The numbers 1, 2, 3, and 4, denote the satellites, and the circles which pass through them in fig. 5, represent their orbits; that satellite which performs its revolution nearest to the planet being called the *first*, the next being called the *second*, and so on.

It is from a variety of appearances, somewhat like those of fig. 4, that the knowledge of the real distances, periods, and other particulars relative to those satellites, has been derived; and the principal observations which have furnished it are as follows:

1. Each satellite is sometimes seen on the eastern, and at other times on the western, side of the planet. The greatest distance from the primary, at which each of them is seen, points out the extent of its orbit; for this greatest elongation is as much on one

side of the planet as on the other side. The time which elapses between those two elongations, is about half the satellite's periodical revolution, or half the time of its greatest elongation on one side, and the next elongation on the same side.

2. Every one of the four satellites, in going from the western to the eastern side of the planet, certainly goes beyond or behind the planet; for in that case they are sometimes hid by the planet, and at other times are seen either above or below it, but never over its disc; whereas in their course from the eastern to the western side of the planet, those satellites which passed behind, now pass over the disc of the planet, those which passed above, now pass below, and *vice versa*; which evidently proves that they move round Jupiter in the direction from the west towards the east, the same way that all the planets move round the sun.

3. " The paths of the satellites being reduced to their respective planet's centre, sometimes appear rectilinear, passing through that centre, and inclined in a certain direction to its orbit. Afterwards they change more and more into ellipses, during one quarter of the planet's annual revolution; and all the superior conjunctions are then made *above* the planet's centre, and the inferior conjunctions *below* it: during a second quarter of the planet's revolution, these ellipses become narrower, the satellites are nearer the centre in their conjunctions, and at

the

the end of a second quarter of the revolution, all the ellipses are again become right lines with equal inclination, but in a contrary direction. In the third quarter of the revolution, they are formed a-new into ellipses, the superior conjunctions are made *below* the centre, and the inferior ones *above*. Lastly, in the fourth quarter of the revolution, when the planet is returning to the same point of its orbit, these ellipses again decrease in breadth, and all returns to its first state."

4. "The times of the superior and inferior conjunctions of the satellites, being compared, their intervals are nearly equal to their semi-revolution."

In short, all those observations prove that the satellites move all one way, and almost equably round their primary, in curves that return into themselves; the planet being in one of the diameters of each curve; that the planes of the orbits of the satellites are inclined to the plane of the orbit of the primary, and each crosses it at two points, called the *nodes*, of which one is the *ascending*, and the other the *descending* node; that when the earth happens to be in the direction of that line of nodes, then the satellites appear to move in straight lines; otherwise they appear to move in ellipses, the planes of which are turned with one side or with the other towards the earth, according as the earth happens to be situated

on one side or the other of the above-mentioned line of nodes*.

Every one of the satellites of Jupiter, like our moon, are liable to be eclipsed by passing through the shadow of their primary. Knowing the situation of Jupiter with respect to the sun, which gives the direction of its shadow, and the movements of the satellite, one may easily calculate the time of an eclipse of that satellite. In fact, tables of all the eclipses of those satellites are annually published in the Nautical Almanac, and other annual publications of the like kind.

The calculations and observations of those eclipses are not merely matters of useless curiosity; but they answer a most useful purpose, which is that of finding the longitude of one place from another on the surface of the earth, as will be particularly explained hereafter. Another grand discovery was originally deduced by Mr. Roemer from those eclipses, and

* It is evident that the motion of the satellites round Jupiter is produced by the same causes as that of the planets round the sun; viz. they are attracted by the planet, at the same time that they are actuated by an impulsive force which prevents their falling upon the planet; hence they must follow Kepler's laws; viz. each of them must describe round the planet areas proportionate to the times; and the cubes of their mean distances from the planet must be as the squares of their periodical times.

has afterwards been confirmed by means of other observations, especially those made by Dr. Bradley upon the fixed stars; namely, that light moves not instantaneously, but progressively, employing a certain time in going through a certain space; viz. it moves at the rate of almost 200000 miles in one second of time; which was first determined by observing, that when the earth is between the sun and Jupiter, in which case the earth is nearest to Jupiter, the eclipses of the satellites appear to take place *sooner* by about $8\frac{1}{4}$ minutes, than they should appear according to the calculation as stated in the tables; whereas, when the earth is farthest from Jupiter, or when Jupiter is beyond the sun, then the eclipses of the satellites appear to take place about $8\frac{1}{4}$ *later* than they ought to appear according to calculation; therefore light takes up a longer time in percutting a greater distance; and, as the difference between the two distances of Jupiter from the earth in the above-mentioned two situations, is equal to the diameter of the earth's orbit, which is equal to about 19000000 miles, we naturally conclude that light employs twice $8\frac{1}{4}$, or about $16\frac{1}{2}$ minutes in percutting 19000000 miles.

The elements, or the periods, distances, and other particulars, relative to Jupiter's four satellites, are stated in the following table; from which the configuration, and the eclipses of those satellites may be calculated. It must be observed, however, that

Such a table requires to be corrected from time to time, and according as more accurate observations are made; for the motions of those satellites are subject to irregularities similar to, and even greater than, those of our moon; they being subject to the same disturbing causes, and likewise to their mutual actions upon each other.

The Satellites of Jupiter.

	III.	III.	III.	IVth.
Revolution { periodic	-	-	-	-
Revolution { sydnic	-	-	-	-
Distance in semi-diameters of Jupiter	-	-	-	-
Distance in miles	-	-	-	-
Mean distance, when Jupiter is at its mean distance	-	-	-	-
Semi-diameter of the shadow, in time	-	-	-	-
Semi-diameter of shadow, that of Jupiter being = 1	-	-	-	-
Semi-duration of eclipse 90° from the node, when the inclination is least	-	-	-	-
{ greatest inclination	-	-	-	-
For circular shadow { mean	-	-	-	-
For elliptical shadow { greatest	-	-	-	-
Epoch of conj. 1760 for the meridian of Greenwich	-	-	-	-
Mean place of node 1760	-	-	-	-
Annual motion of node	-	-	-	-
Diurnal motion of satellites	-	-	-	-
Secular motion	-	-	-	-

Saturn comes next to Jupiter in order from the sun. This planet can hardly be distinguished from a fixed star by the naked eye; but when seen through a good telescope, Saturn exhibits a most singular appearance. In short, it is surrounded by a thin, flat, broad, and luminous ring, as is represented in fig. 6, Plate XXVIII. which does not touch the body of the planet; leaving a considerable space all round. Besides the ring, this planet is surrounded by seven moons of different sizes, which revolve about it in different periods; but those satellites cannot be seen without a most powerful telescope.

Upon the body of Saturn, belts, similar to those of Jupiter, but much less distinct, are also visible; and those belts seem to be parallel to the plane of the ring, and to the planet's equator, which is in the direction of the ring; the diameter of the planet in that direction, being to the diameter perpendicular to it, or to its polar diameter, as 11 to 10 nearly. From the motion of some broken parts of the belts or spots, it has been lately determined that Saturn turns round its axis, like the other planets, in the direction of the signs, in 10^h , 16^m , 2^s , nearly.

Saturn's ring is divided into two parts by a strong, permanent, and well defined dark line *aaa*; and its outer edge, though very thin, seems however, in the opinion of Dr. Herschel, to be not flat, but convex.

The ring in general looks brighter than the body of

of the planet itself; and from its casting a strong shadow upon the planet, it has been naturally conjectured to be of a solid nature. The following dimensions of this double ring of Saturn were determined by Dr. Herschel.

MILES.

Inner diameter of the smaller ring	- - -	146345
Outside diameter of ditto	- - - -	184393
Inner diameter of the larger ring	- - -	190248
Outside diameter of ditto	- - - -	204883
Breadth of the inner ring	- - - -	20000
Breadth of the outer ring	- - - -	7200
Breadth of the vacant space, or dark zone		2839

Both the planet and its ring turn round the same common axis; but the ring seems to turn a little slower; viz. the ring turns in its own plane, in 10° , 32° , $15^{\circ}, 4.$ The shape of the ring is nearly circular; but, in consequence of its oblique situation, which is always parallel to itself, it appears of an elliptical figure, and this ellipse appears most open when Saturn is 90° from the nodes of the ring upon the orbit of the planet, or when the longitude of Saturn is about 2° , 17° , and $8^{\circ}, 17^{\circ}$. " In such a situation the minor axis is very nearly equal to half the major, when the observations are reduced to the sun; consequently the plane of the ring makes an angle of about 30° , with the orbit of Saturn. Or, according to some observations, the inclination of the ring to the ecliptic is about $31^{\circ}, 22'.$ "

Since

Since the oblique position of Saturn's ring remains always parallel to itself; or, which is the same thing, since the axis of that ring, like the axis of the earth, is always directed towards the same point in the heavens; therefore twice in a saturnian year the ring must be turned with its edge towards the earth, in which case it disappears for a short time; unless it be viewed through a most powerful telescope (indeed I may say, unless it be viewed through Dr. Herschel's 40-feet telescope); for through it the edge of the ring appears like a very slender ray of light passing across the disc of Saturn*. It is evident that as Saturn moves and recedes from one of those limits in which the ring is turned edgewise towards the sun, so one side or surface of the ring becomes illumined by the sun at the same time that the other surface is in the dark; and when Saturn has passed the other limit, then the latter surface of the ring becomes illumined, and the former is deprived of light.

The satellites of Saturn have not as yet proved so useful to astronomy or geography as those of Jupiter; principally because they cannot be seen unless very powerful telescopes be used. Five of those

* " According to Dr. Maskelyne, the plane of the ring
" passed through the earth on January 29, 1790; the earth
" passing from the northern, or dark, to the southern or en-
" lightened side of the ring; the ring, therefore, then be-
" came visible, and will continue so till 1803."

satellites

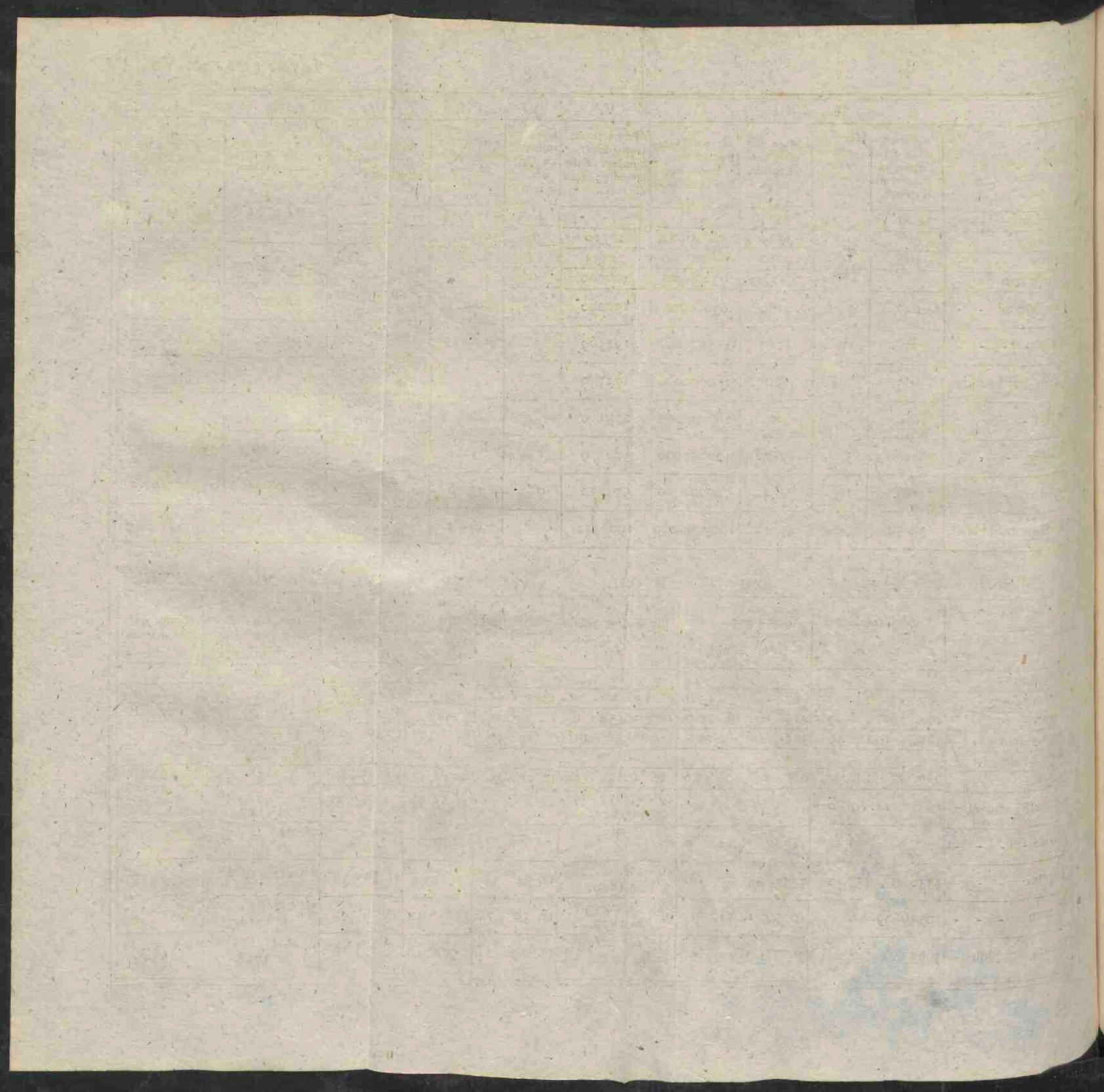
satellites were discovered in the year 1685, by Cassini and Huygens, who used telescopes consisting of two simple lenses, but upwards of 100 feet in length; and those were called 1st, 2d, 3d, &c. reckoning from the planet. Two others were discovered by Dr. Herschel in the years 1787 and 1788, and these are smaller and nearer to the planet, on which account they ought to have been called the first and second, at the same time that the other five ought to have been called 3d, 4th, 5th, 6th, and 7th; but, imagining that this might create some confusion in the reading of old astronomical books, the five old satellites have been suffered to retain their numerical names, and the two new satellites are now called the 6th and the 7th; so that the 7th is the nearest to the planet, then comes the 6th, then the 1st; and this is followed by the 2d, 3d, 4th, and 5th.

The inclinations of the orbits of the 1st, 2d, 3d, and 4th satellites, to the ecliptic, are from 30° to 31° . That of the 5th is from 17° to 18° . Of all the satellites of the solar system, none, except the 5th of Saturn, has been observed to have any spots, from the motion of which the rotation of the satellite round its own axis might be determined. Then the 5th satellite of Saturn, as Dr. Herschel has discovered, turns round its own axis; and it is remarkable, that, like our moon, it revolves round its axis exactly in the same time that it revolves round its primary.

The

The following table states the particulars which have been ascertained with respect to the satellites of Saturn. Speaking of the satellites of Saturn, we might have added, that they are retained in their orbits by the attraction of their primary; that they act upon each other, that their periods and other particulars are found by the means of peculiar observations, &c. but having said enough with respect to those particulars in our account of Jupiter's satellites, it will be sufficient in this place to say, that all the remarks which have been made with respect to the satellites of Jupiter, are also applicable, with few obvious alterations, to the satellites of Saturn.

The Satellites of Saturn.


The Georgium Sidus, with its six satellites, have been entirely discovered by Dr. Herschel. The planet itself may be seen with almost any telescope, but its satellites cannot be perceived without the most powerful instruments, and the concurrence of all other favourable circumstances. One of those satellites Dr. Herschel found to revolve round its primary in $8^d\cdot 17^h\cdot 1^m\cdot 19^s$; the period of another he found to be $13^d\cdot 11^h\cdot 5^m\cdot 1^s\cdot 5$. The apparent distance of the former from the planet is $33''$; that of the second $44\frac{2}{3}''$. Their orbits are nearly perpendicular to the plane of the ecliptic.

The other four satellites were discovered a considerable time after, and of course Dr. Herschel has had less time to make observations upon them. They are altogether very minute objects; so that the following particulars must be considered as being not accurate but probable. "Admitting the distance " of the interior satellite to be $25'',5$, its periodi- " cal revolution will be $5^d\cdot 21^h\cdot 25^m$.

" If the intermediate satellite be placed at an " equal distance between the two old satellites, or " at $38'',57$, its period will be $10^d\cdot 23^h\cdot 4^m$. The " nearest exterior satellite is about double the dis- " tance of the farthest old one; its periodical time " will therefore be about $38^d\cdot 1^h\cdot 49^m$. The most " distant satellite is full four times as far from the " planet as the old second satellite; it will therefore " take at least $107^d\cdot 16^h\cdot 40^m$. to complete one re- " volution. All these satellites perform their revo- " lutions in their orbits contrary to the order of the " signs; that is, their real motion is retrograde."

	I.	II.	III.	IV.	V.	VI.	VII.	VIII.	IX.	X.
	Apparent mean diameters, as seen from the earth.	Mean diameters as seen from the sun.	Mean diameters in English miles.	Mean distances from the sun, in round numbers of miles.	More accurate proportional numbers of the preceding mean distances.	Densities to that of water, which is 1.	Proportions of the quantities of matter.	Inclinations of orbits to the ecliptic in 1780.	Inclinations of axes to orbits.	Rotations diurnal, or round their own axes.
The Sun - - -	32° 1' 5	- -	883246	- - -	1 $\frac{2}{3}$	333928	- - -	82° 44' 0''.	25 ^d . 14 ^h . 8 ^m .	
Mercury - - -	10''.	16''.	3224	37000000	38710	9 $\frac{1}{6}$	0,1654	7° 0' 0''.		
Venus - - -	58''.	30''.	7587	68000000	72333	5 $\frac{1}{3}$	0,8899	3° 23' 35''.	0 ^d . 23 ^h . 21 ^m .	
The Earth - - -	17'',2	7911,73	95000000	100000	4 $\frac{1}{2}$	1	0°. 0' 0''.	66°. 32'.	1 ^d .	
The Moon - - -	31° 8''.	4°,6	2180	95000000	100000	5 $\frac{1}{2}$	0,025	5° 9' 3'' at a mean.	88°. 17'.	
Mars - - -	27''.	10''.	4189	144000000	152369	3 $\frac{2}{7}$	0,0875	10°. 51' 0''.	59°. 22'.	
Ceres Ferdinandea	1''.		160	260000000	273550			10°. 37' 56'',6 in 1801.		
Pallas - - -	0'',5		80	266000000	279100			34°. 50' 40'' in 1801.		
Jupiter - - -	39''.	37''.	89170	490000000	520279	1 $\frac{1}{24}$	312,1	1°. 18' 56'' in 1780.	90°. nearly.	
Saturn - - -	18''.	16''.	79042	900000000	954072	0 $\frac{13}{32}$	97,76	2°. 29' 50'' in 1780.	60°. probably	
Georgium Sidus -	3°. 54''	4°.	35112	1800000000	1908352	0 $\frac{9}{105}$	16,84	0°. 46' 20'' in 1780.		

	XI.	XII.	XIII.	XIV.	XV.	XVI.	XVII.	XVIII.
	Tropical revolutions. d. h. m. s.	Sidereal revolutions. d. h. m. s.	Places of Aphelia, January 1800.	Secular motions of the Aphelia.	Excentricities; the mean distances being 100000.	greatest equations of the centres.	Longitudes of Ω ; or places of ascending nodes in 1750.	Secular motions of nodes.
The Sun - - -								
Mercury - - -	87. 23. 14. 32,7	87. 23. 15. 43,6	8°. 14°. 20'. 50''.	1°. 33'. 45''.	7955,4	23°. 40'. 0''.	1°. 15°. 20'. 43''.	1°. 12'. 10''.
Venus - - -	224. 16. 41. 27,5	224. 16. 49. 10,6	10°. 7°. 59'. 1''	1°. 21'. 0''.	498	0°. 47'. 20''.	2°. 14°. 26'. 18''.	0°. 51'. 40''.
The Earth - - -	365. 5. 48. 49	365. 6. 9. 12	9°. 8°. 40'. 12''	0°. 19'. 35''.	1681,395	1°. 55'. 30'',9		
The Moon - - -								
Mars - - -	686. 22. 18. 27,4	686. 23. 30. 35,6	5°. 2°. 24'. 4''	1°. 51'. 40''.	14183,7	10°. 40'. 40''.	1°. 17°. 38'. 38''.	0°. 46'. 40''.
Ceres Ferdinandea	1681. 12. 9. 0		10°. 25°. 57'. 15'' in 1802.		8140,64	9°. 20'. 8''.	2°. 20°. 58'. 40'' in 1802.	
Pallas - - -					24630		5°. 22°. 28'. 57'' in 1802.	
Jupiter - - -	4330. 14. 39. 2	4332. 14. 27. 10,8	6°. 11°. 8'. 20'' in 1800.	1°. 34'. 33''.	25013,3	5°. 30'. 38''.	3°. 7°. 55'. 32'' in 1750.	0°. 59'. 30''.
Saturn - - -	10746. 19. 16. 15,5	10759. 1. 51. 11,2	8°. 29'. 4'. 11'' in 1800.	1°. 50'. 7''.	53640,42	6°. 26'. 42''.	3°. 21°. 32'. 22'' in 1750.	0°. 55'. 30''.
Georgium Sidus -	30637. 4. 0. 0.	30737. 18. 0. 0	11°. 16°. 30'. 31'' in 1800.	1°. 29'. 2''.	90804	5°. 27'. 16''.	2°. 12°. 47'. 47'' in 1788.	1°. 44'. 35''.

C H A P. IX.

O F C O M E T S.

SOME other celestial bodies seem likewise to revolve about the sun; but they differ from the nine planets that have been already described, principally in the following particulars: 1. The curves which they describe round the sun as a focus, if they do return into themselves, as is most probable, are ellipses so very eccentric, that any of those bodies is only visible to us whilst it percius that part of its orbit which is in the vicinity of the sun; but during the much greater part of its course, it is quite invisible to us. 2. Their periodical times are so very long, and difficult to be ascertained, that it hardly falls to the lot of one man to see the same body return twice to the neighbourhood of the sun; and even then it would be difficult to identify it. 3. Their shapes are neither well defined nor constant; but most of those bodies are surrounded by an indefinite faint light, a tail, a hairy irradiation, or *coma*; from which they have been denominated *comets*. They are likewise vulgarly called *blazing stars*.

We

We are utterly ignorant of the number and of the use of comets in the fabric of the world.

The number of comet that have been seen and are recorded, is very great*. But a vast number must have escaped notice; for there are several comets so very small as to be visible only through telescopes, and such have frequently been seen of late years, when particular attention has been paid to the subject.

With respect to the nature and the use of comets, various opinions have been entertained by different great and learned philosophers; but as nothing very probable has been advanced, I shall refer those who wish to examine such opinions to the works of other authors†.

The apparent motion of comets, like that of all other celestial bodies, is from the east, towards the west, which arises from the diurnal rotation of the earth in the contrary direction. But comets have a proper and peculiar motion, each different from the others, and this motion is determined by tracing the situation of a comet with respect to the fixed stars.

* Riccioli reckons 154, until the year 1651. But Lubienietz reckons 415 until the year 1665.

† Pliny, lib. II. chap. 25. Arist. *Meteor.* lib. 6. Plutarc *de plac. Phil.* Aulus Gellius. Seneca, lib. VII. Riccioli, *Alm.* II. 35. De la Lande's *Astronomy*, book XIX. Newton's *Principia*, book III. Vince's *Astronomy*. Gregory's *Astronomy*, chap. XXI.

Some comets perform their proper movements from the west towards the east, which is the direction followed by all the planets. But others move in the contrary direction, viz. from the east towards the west. Some of them move in the plane of the ecliptic, or within the zodiac; whilst others go in different directions, even perpendicular to the plane of the ecliptic.

Upon the whole, it appears that every comet moves in a particular curve which has the sun in its focus; that it moves so as to describe round the sun areas proportionate to the times; and that the curve appears to be an exceedingly excentric ellipsis; which clearly indicates that the comets are retained within certain limits by the same general law of nature, the universal gravitation of matter; that they must be actuated by an impulsive force, which prevents their falling towards the common centre of attraction, and that therefore they move in orbits like the planetary orbits, only much more excentric. Yet it must be considered, that since we see a comet only during a very small part of its periodical course, from which small part we must calculate and determine the whole orbit and the periodical time, every small error committed in the observations of that small part, produces a considerable difference in the result of the whole; nor can the quantity of that error be easily verified and corrected by future observations; first, because the period or the return of a comet is very long; and secondly, because the

comet itself cannot be identified. Indeed, the only reason astronomers have for saying that a certain comet has returned two or three or more times, is, that when the period of a comet has been determined from the observation of that small portion of its orbit, which comes within the reach of observation; if after the lapse of that period a comet appears about the same part of the heavens, they conclude that it probably is the same comet. Not above six or seven comets, amongst all those which have been seen, have as yet been calculated with accuracy sufficient to render their period tolerably well known, which shews that the subject is still in its infancy, and a vast number of farther observations is still wanted for the purpose of generalizing and correcting the theory. But the opportunities for making such observations seldom occur; therefore the progress of knowledge, relative to comets has been but slow. The wisest ancient philosophers considered the comets as periodical celestial bodies. Sir Isaac Newton concluded, that they might describe very excentric ellipses, and might re-appear at every revolution. Dr. Halley verified this grand idea, by actual calculations upon the observations of several comets. It is supposed that it was the same comet which appeared in the years 1456, 153¹, 1607, 1682, and 1759; so that this comet's period is about 75 years. Another comet, which was seen in the year 1532, is supposed to be the same that was seen in the year 1661, and was expected about the

the year 1789 or 1790; but did not appear. According to Halley, the great comet of the year 1680 is to re-appear in the year 2254; and is supposed to be the same that appeared at the time of Cæsar, and that appeared also in 219 and 2349 before our Saviour's birth*.

Even supposing that the period of a comet could be calculated with sufficient accuracy; yet, considering the various causes which must disturb the regular motion of that comet, we may easily imagine that the return of that comet may thereby be shortened or lengthened, or diverted, to such a degree as to give it the appearance of a different comet. In consequence of the excentricity of their orbits, the comets must in their courses cross each other, and likewise cross the planetary orbits; hence they may come so very near one another, or so very near any of the planets, as to disturb their motion, and even so as to strike against and destroy any of them. Indeed, from such an action, it is not improbable that the path of a comet may be changed into a parabola,

* Several of those who wish to account for the deluge upon the agency of natural causes, attribute that great convulsion to the near approach of that comet to the earth; for if the attraction of the moon alone is capable to raise considerable tides, the near approach of a body so much larger than the moon, must act with vastly greater force. See Whiston's New Theory of the Earth; and De la Lande's *Reflexions sur le Comète*, Paris 1773.

or some other curve, and thus the comet may never return again. As for the methods of computation of the orbits of comets, I must refer the ingenious reader to other works*; but I shall only mention in this place, that the paths of comets have often been said to be parabolical, and have been calculated upon that principle, not because they are really so; for if they were parabolical, they could not return into themselves; hence the comets would continue for ever to recede from the sun; but because the properties of a parabolical curve are calculated with much greater ease and expedition than those of an elliptical curve; and at the same time the nature of a parabola is so very near the nature of a vastly eccentric ellipsis, that the result of the calculation upon either of them is nearly the same.

The times during which comets remain in sight are various, but they hardly ever exceed six months, and some comets have not been seen for more than a few nights. Of those which have remained

* See the Third Book of Newton's *Principia*. De la Lande's Astronomy, B. XIX. Vince's Astronomy. Clairaut's *Theor. du Mouvem. des Comètes*. D'Alembert's *Opusc. Mathem.* tom. II. Gregory's *Astron.* chap. XXI. which is a concise and satisfactory Dissertation on Comets: also Bode's Papers on the Orbits of Planets and Comets, in the Memoirs of the Berlin Academy, from 1786 to 1787; and Sir Henry Englefield's Work on the Orbits of Comets.

in sight for six months together, one is said to have appeared in the year 64, at the time of Nero; another appeared about the year 603, at the time of Mahomet; a third comet of that continuance was seen in 1240, at the time of the irruption of Tamerlane; a fourth appeared in 1729, which remained in sight from July the 31st, 1729, to the 21st of January, 1730. Comets that have appeared for shorter periods are recorded by several writers and particularly by Riccioli.

The proper movements of comets are also different from each other, and very variable with respect to the same comet. From the nature of planetary orbits in general, it is easy to conceive that as the comets descend towards the sun, so they must quicken their pace, until they reach the perihelion, after which limit, they slacken their pace, and continue to do so in proportion as they recede from the vicinity of the sun. When they are going off, and nearly vanishing, they sometimes move so very slowly as to be hardly discernable amongst the stars. But some comets have been observed to move with incredible quickness. The comet which appeared in 1472, passed through 120° in one day. The comet of 1760, altered its longitude by $41\frac{1}{2}^{\circ}$ in one day. The comet of 1664, moved 164° in 17 days, &c.

Were the comets near the earth, the above-mentioned quick movements would not excite any wonder; but when we consider their prodigious

distances, which in general far exceed the distances of the most remote planets, we cannot but be astonished at the wonderful velocity with which they must move. Another source of inequality in the apparent motion of comets, arises from the motion of the earth, the effect of which must vary according to the direction both of the earth and of the comet.

That the comets are at most astonishing distances from us, is derived from their having little or no *parallax*; viz. when they are viewed from different parts of the surface of the earth, and are referred to the fixed stars, they appear to stand at the very same point of the heavens, or nearly so; which would not be observed if they were even within double the distance of the Georgian planet. I shall render this more intelligible by means of a diagram or two.

Let ABG, fig. 7, Plate XXVIII. be the earth, and D a comet. Then, if the comet D be seen from the centre T of the earth, or in that direction, viz. from O; the place of that comet referred to the fixed stars, will appear at G; but when seen from the surface of the earth or place A, the same comet will appear at E. The former is called the *comet's true place*, and the latter its *apparent place*. Now the distance GE between the true and the apparent places, is called the *parallax* of that comet. By inspecting the figure, it will be easily comprehended, that the farther the comet D is from

the

the earth, the smaller will the distance GE be, and *vice versa*; therefore, when that distance or parallax is little or nothing, the distance of the comet is prodigiously great; nor can we assign the quantity of it. The nature of parallaxes will be better explained hereafter.

The precise place of a comet at any particular time of its appearance, may be determined by measuring its distance from any two contiguous fixed stars; and that place may be marked upon a planisphere or globe; thus its different situations in different times during its appearance, may be marked down, and a line drawn through those points will represent the track of the comet. The above-mentioned distances must be taken by means of a quadrant, or a micrometer; but even without any such instruments, and merely by the use of a thread, we may find out whether a comet have any parallax, as also ascertain its place. A comet, when just going out of sight, moves so slowly as not to change its place sensibly in a few hours time. In this case therefore let the situation of the comet be observed twice during the same night, viz. once when it stands very high above the horizon, and another time when it stands near the horizon, which amounts to the same thing as to observe it from two different places at the same time. Then if the comet on both observations appears to retain the same situation with respect to the stars, we may conclude that it has no sensible parallax. The simple way of

finding the situation of the comet for this purpose, is to hold a thread with your two hands, and extending it between you and the comet, to move it by trial until it covers two contiguous stars, at the same time that it passes through the comet; which shews that the comet is in the direction of the two stars, &c. If the place of the comet be required more accurately for the purpose of delineating its track, you must observe once every night, or oftener, by means of a thread, the situation of the comet, with respect to four stars, such as are contiguous to it, and are marked upon a celestial globe or planisphere; for by this means you may every time make a dot at the precise place upon the globe, and afterwards, by joining those points with a line, you will have the track of the comet. Thus let the comet be at A, fig. 8, Plate XXVIII. between the four stars, B, C, D, E; so that the line joining the stars B, D, may pass through the comet; and so may also be the case with the line which joins the stars C and E. Then if you extend a thread, or place the edge of a piece of paper through the stars C and E, upon a globe or planisphere, where such stars are marked, and extend another thread through the stars B and E; the intersection of the two threads will point out the place A of the comet upon the globe, or planisphere, where a mark may be made, &c.

Nothing certain can be said with respect to the distances

distances of comets. Most of them move entirely beyond the planetary orbits, but some comets have descended below Mars, and it is said even below the orbits of the inferior planets.

The figures and sizes of comets vary considerably, and even the same comet alters its figure in the course of a few days. Some comets seem to be nothing more than a congeries of vapours ill defined, transparent throughout, and reflecting very little light. Others are of a similar nature, excepting that a denser substance more opaque, commonly called a *nucleus*, is seen within the rare or vapour-like substance. Almost all comets are surrounded by dense atmospheres, which partly reflect the sun's light, and at the same time prevent that light's falling in a considerable quantity upon the nucleus, or what may be considered to be solid part of the comet; so that the solid part, or nucleus, though brighter than the surrounding part, is, however, not so bright as Jupiter, or as part of the moon. But the brightness of a comet changes according as it recedes from, or approaches, the sun; and at the same time it puts forth certain elongations of luminous matter, which have been called *beards*, or *comas*, *hair*, or *tails*, according to their different positions and appearances; for those elongations sometimes are very short and hardly visible, whereas at other times they are extended to a prodigious degree; and it is remarkable that this luminous elonga-

elongation or tail, is always directed from the sun, as is shewn in fig. 9, Plate XXVIII. where the comet A is represented as it appeared successively in two different parts of its progress round the sun S. When the comet is eastward of the sun, and moves from the sun, it is said to be *bearded*, because the luminous elongation goes before it. When the comet is westward of the sun, and sets after him, it is then said to have a *tail*, because the luminous elongation follows it; and when the earth happens to be directly between the sun and the comet, then the train of light is hid behind the body of the comet, and a little of it only is seen on the sides of the comet, which is thereby said to have a *coma* or *hairy* appearance.

“ The tail of a comet, at its first appearance, is very short, and increases as the comet approaches towards the sun; immediately after its perihelion the tail is longest, and most luminous, and is then generally observed to be somewhat bent, and to be convex towards those parts to which the comet is moving; the convex side being rather brighter and better defined than the concave side. When the tail arrives at its greatest length, it then quickly decreases, and soon vanishes entirely; and about the same time the comet itself ceases to be seen. The matter of which the tail is formed is exceedingly rare, and so very pell-mell, that the light of the smallest stars suffers no diminution

diminution in passing through it, as is remarked by Newton in his *Principia*, lib. III. prop. 41."

The splendour of comets increases in proportion as they approach the sun, though at the same time their diameters, in consequence of their receding from the earth, may appear to diminish.

The sizes of the bodies of comets, as well as of their tails, is so various, as that some of them cannot be seen without a telescope, whilst others have even equalled the disc of the sun; and such was that which Seneca relates to have appeared at the time of the emperor Nero. The comet which Hevelius observed in the year 1652, seemed to equal the apparent size of the moon, but it had a pale, dim, and dismal aspect. Several comets have been seen, whose apparent size exceeded more than four times the disc of Jupiter or of Venus.

The tails of comets are, in general, more expanded and less dense, in proportion as they recede from the bodies of the comets. The comet of the year 1744, had the luminous elongation, somewhat like a fan, divided into various branches. The extension of the tails of comets is sometimes astonishingly great. They have often been observed to extend more than 90° , or even half a circle; whence it has been calculated that their real lengths must exceed 60 or 80 millions of miles.

miles. It is remarkable that the tail of the same comet, observed at the same time, appears of different lengths from different parts of the earth's surface, and it appears longest from those places which have a lower latitude, which probably arises from the superior clearness and serenity of the sky in those places.

Whether the tails of comets be a train of pure light or of vapours, or of something electrical, similar to the *aurora borealis*, is impossible to be decided; but it appears that both the increase of splendour of a comet, and the appearance of a tail, are derived from the sun.

“ The great comet which appeared in the year 1680, after its departure from the *perihelion*, projected such a tail as extended itself more than 40° in the heavens; nor can this be a wonder; for it was so near the sun, that its distance from his surface at the *perihelion* was but a sixth part of the diameter of the sun's body; and therefore the sun seen from the body of the comet, would appear to fill the greatest part of the heavens, and its apparent diameter would not be less than 120° ; and therefore the heat it received from thence must be prodigiously intense beyond imagination; for it exceeded above 3000 times the heat of red-hot iron. And therefore we must allow, that the bodies of comets, which can

“ bear

“ bear so great a heat, must be very dense, hard,
“ and durable bodies; for if they were nothing
“ but vapours and exhalations, raised from the
“ earth and planets, as some have dreamt, this
“ comet, at so near an approach to the sun, must
“ have been quite destroyed and dissipated.”—
Keill’s Introduction to Astronomy, Lect. XVII.

C H A P. X.

OF THE FIXED STARS.

BESIDES the planets both primary and secondary, and the comets which are seen at uncertain times, all the other lucid and brilliant objects, which, during the absence of the sun, we perceive in the heavens, are the *fixed stars*, so called from their preserving, as far as we know, their situations with respect to each other, without any deviation.

The fixed stars appear to our eyes of different sizes; but it is not in our power to say, whether that difference arises from their real difference of size, or from their being at different distances, or from both those causes conjointly. The gradation of apparent size from the largest to the smallest stars, is great and indefinite; yet for the use of description and discrimination, astronomers distinguish them into six, or more, orders, which naturally are of a vague and indefinite nature; calling the largest of them *stars of the first magnitude*; the next, *stars of the second magnitude*, and so forth. The stars of the sixth magnitude are those which can barely be distinguished

tinguished by the naked eye. Those which can only be seen by the help of the telescope, are called *telescopic stars*.

Several of the brightest and most remarkable stars are distinguished by peculiar names; but the difficulty of discriminating the particular situations of them all, even of those that have peculiar names, suggested an expedient which has been adopted from the remotest antiquity, and has been followed and improved in subsequent periods. By this method the stars are supposed to be, as they appear, in the concave surface of a sphere, upon which the figures of men, beasts, and other objects, are supposed to be delineated; then the situation of each star is described by saying, that it is near the tail of a certain fish, in the bull's eye, just over the shoulder of Hercules, &c.

The ideal delineations of those figures of animals, and other objects, which are called *constellations*, or *asterisms*, are dispersed all over the heavens, and a particular situation is assigned to each, as may be seen upon a common celestial globe, or upon a planisphere; yet some spaces remained here and there, which were out of the bounds of the contiguous constellations. The stars which were contained in those places, were called *unformed stars*; but most of them are now comprehended into constellations newly adopted.

It is impossible to say what suggested the idea of adopting each particular constellation; but as far as can

can be conjectured from the dark documents of history, of tradition, and of fable, they seem to have been derived from different causes, such as from the rainy season, which usually came on when a certain assemblage of stars appeared above the horizon; from the resemblance, however imperfect, of certain groups of stars to particular objects; from the desire of recording some remarkable event, or of paying homage to some distinguished person, &c.

Thus, by mentioning the particular constellation to which each belongs, the stars may be pretty nearly, though by no means accurately, described; and this probably was the only mode of describing the situations of the stars during several centuries; but at the revival of learning and science, when particular attention began to be paid to astronomy, the above-mentioned indeterminate mode was gradually improved by the particular description of the stars' apparent magnitude, by annexing a Greek letter, or a Roman letter, or a number, to each star, and by forming catalogues of their right ascensions and declinations, by which means each particular star may be readily and accurately known *.

The

* The most accurate method of describing the brightness or magnitudes of the stars, is undoubtedly that which Dr. Herschel has adopted in his excellent catalogues of the comparative brightness of the fixed stars, the first of which catalogues

The following list contains the names of the constellations, the number of stars, as far as those of the sixth magnitude, that are contained in each constellation, as also the names and magnitudes of those more remarkable stars of the annexed constellations, to which particular names have been given.

catalogues is published in the Philosophical Transactions for 1796. The others in the following volumes.

This method is to refer a given star to two other stars, one of which is somewhat brighter, and the other somewhat less bright than the given one. "I place, (*he says*) each star, instead of giving its magnitude, into a short series, constructed upon the order of brightness of the nearest proper stars. For instance, to express the lustre of D, I say CDE. By this short notation, instead of referring the star D to an imaginary uncertain standard, I refer it to a precise and determinate existing one. C is a star that has a greater lustre than D; and E is another of less brightness than D. Both C and E are neighbouring stars, chosen in such a manner that I may see them at the same time with D, and therefore may be able to compare them properly. The lustre of C is in the same manner ascertained by BCD; that of B by ABC; and also the brightness of E by DEF; and that of F by EFG."

CONSTELLATIONS OF THE ZODIAC.		
Names of Constellations.	Number of Stars.	Names of principal Stars, and their Magnitudes.
Aries - - -	66	
Taurus - - -	140	Aldebaran - - - - 1
Gemini - - -	85	Castor and Pollux - 1.2
Cancer - - -	83	
Leo - - -	95	Regulus - - - 1
Virgo - - -	110	Spica Virginis - - 1
Libra - - -	51	Zubenisch Mali - - 2
Scorpio - - -	44	Antares - - - 1
Sagittarius - -	69	
Capricornus - -	51	
Aquarius, and	108	Scheat - - - 3
Pisces - - -	112	

Constellations on the North Side of the Zodiac.		
Names of Constellations.	Number of Stars.	Names of principal Stars, and their Magnitudes.
Ursa minor -	24	Stella polaris - - - 2
Ursa major -	87	Dubhe - - - - 1
Cassiopeia -	55	
Perseus - -	59	Algenib - - - 2
Auriga - -	56	Capella - - - 1
Bootes - -	54	Arcturus - - - 1
Draco - -	60	Raftaber - - - 3
Cepheus - -	35	Alderamin - - - 3
Canes Venatici, viz.		
Asterian and		
Chara - -	25	
Cor Caroli -	3	
Triangulum -	10	

Constellations on the North Side of the Zodiac.

Names of Constellations.	Number of Stars.	Names of principal Stars, and their Magnitudes.
Triangulum		
minus - - -	5	
Musca - - -	6	
Lynx - - -	44	
Leo minor - -	24	
Coma Berenicis -	40	
Camelopardalus -	58	
Mons Menelaus -	11	
Corona Borealis -	21	
Serpens - - -	50	
Scutum Sobieski	8	
Herculus, cum		
Ramo et		
Cerbero - - -	113	Ras Algiatha - 3
Serpentarius five		
Ophiuchus - -	67	Ras Alhagus - 3
Taurus Poniatowski - - -	7	
Lyra - - -	22	Vega - - 1
Vulpecula et		
Anser - - -	37	
Sagitta - - -	18	
Aquila - - -	40	Altair - - 1
Delphinus - - -	18	
Cygnus - - -	73	Deneb Adige - 1
Equuleus - - -	10	
Lacerta - - -	16	
Pegasus - - -	85	Markab - - 2
Andromeda - - -	66	Almaac - - 2

Constellations on the South Side of the Zodiac.		
Names of Constellations.	Number of Stars.	Names of principal Stars, and their Magnitudes.
Phœnix - - -	13	
Officina sculptoria	12	
Eridanus - - -	76	Achernar - - - 1
Hydrus - - -	10	
Cetus - - -	80	Menekar - - - 2
Fornax Chemica -	14	
Horologium - -	12	
Reticulus Rhomboidalis - -	10	
Xiphias - - -	7	
Celapraxitellis -	16	
Lepus - - -	19	
Columba Noachi -	10	
Orion - - -	78	Betelgueſe - - - 1
Argo Navis - -	50	Canopus - - - 1
Canis major - -	30	Sirius - - - 1
Equuleus Pictorius - -	8	
Monoceros - -	31	
Canis minor - -	14	Procyon - - - 1
Chameleon - -	10	
Pixis Nautica -	4	
Piscis Volans -	8	
Hydra - - -	60	Cor Hydræ - - - 1
Sextans - - -	4	
Robur Carolinum	12	
Machina Pneumatica - -	3	
Crater - - -	11	Alkes - - - 3
Corvus - - -	9	Algorab - - - 3
Croſiers - - -	6	

Constellations on the South Side of the Zodiac.

Names of Constellations.	Number of Stars.	Names of principal Stars, and their Magnitudes.
Musca - - - -	4	
Apis Indica - - - -	11	
Circinus - - - -	4	
Centaurus - - - -	36	
Lupus - - - -	24	
Quadra Euclidis - - - -	12	
Triangulum Australe - - - -	5	
Ara - - - -	9	
Telescopium - - - -	9	
Corona Australis - - - -	12	
Pavo - - - -	14	
Indus - - - -	12	
Microscopium - - - -	10	
Octans Hadleianus - - - -	43	
Grus - - - -	14	
Toucan - - - -	9	
Piscis Australis - - - -	20	Fomalhaut - - - 1

The whole number of stars, as reckoned in the preceding lists, amounts to 3186. But the naked eye can seldom distinguish a third part of that number; in more favourable climates some persons' eyes can distinguish more stars, in certain constellations, than those which have been stated in the lists. I do not attempt to add how many stars of one magnitude or of another are to be found in each constellation, as this cannot be determined with precision.

Besides the separate stars, a sharp eye in a clear night may observe a few whitish spots called *nebulæ*; but a most remarkable broad and much extended whitish track may be observed at all times in the heavens. This is called, from its whiteness, the *galaxy*, *via lactea*, or *milky way*. This remarkable zone is irregularly extended, and varies in breadth from 4° to 20° . It passes through Cassiopeia, Perseus, Auriga, the foot of Gemini, Orion's Club, part of Monoceros, the tail of Canis major, through Argo Navis, Robur Carolinum, Crux, and the feet of the Centaur: beyond which it divides into two parts; its eastern branch passes through Ara, the tail of Scorpio, the eastern foot of Serpentarius, the bow of Sagittarius, Scutum Sobiescianum, the feet of Antinous and Cygnus. Its western branch passes through the upper part of the tail of Scorpio, the right of Serpentarius and Cygnus, and ends in Cassiopeia.

Such are the objects which may be discerned by the naked eye in the region of the fixed stars; but, by the assistance of the telescope, the number, the beauty, and the variety of wonderful objects is increased to an astonishing degree; and much more so in proportion to the power of the telescope. An immense quantity of new stars is discovered. Several stars, which appear as single stars to the naked eye, and even through ordinary telescopes, when viewed with higher powers, appear to be double, or treble, or quadruple, &c. viz. are found to be two or three,

or

or more stars, so near to one another as to appear, through ordinary telescopes, as a single star *. They are also mostly found to have peculiar colours, or tints, so that one star will be of a greenish tint, another of a reddish, or bluish, &c. †. The numbers of nebulae that can be discovered by the assistance of a powerful telescope, amounts to some thousands †. The via lactea, and several of the nebulae, are found to consist of an astonishing number of apparently small stars, situated very close to each other; so much so, that in a small part (as of about one degree in diameter) of some of those nebulae, or of the via lactea, there appears to be a greater number of stars than can be seen by the naked eye in the whole celestial sphere.

It is remarkable that though the stars appear vastly to differ from one another in apparent grandeur, as they certainly do in point of brilliancy; yet their apparent diameter cannot be measured; for they always look like incommensurable points; and if when viewed through certain telescopes, they seem to have a sensible diameter; that effect arises from some imperfection of the telescope, since it increases

* α Herculis; δ Lyrae; α Geminorum; γ Andromedæ; μ Cygni; and a great many more, are double stars; ν Tyræ, is treble; λ Orionis, is quadruple, &c. &c.

† See Herschel's catalogues of double stars and nebulae in the Philosophical Transactions.

and decreases in proportion as the telescope is more or less perfect, and according to its adjustment.

This observation, together with their total deficiency of parallax, shews the most incomprehensible distance at which even the nearest of the fixed stars must be situated.

That the stars shine not by reflected or borrowed light, like the planets ; but by being self luminous, like the sun, may be easily and satisfactorily concluded from the following consideration. The apparent size of the stars is certainly smaller than that of the satellites of Jupiter or of Saturn ; their distances from us are likewise incomparably greater than those of the satellites ; but those satellites cannot be seen by the naked eye, and some of them even require most powerful telescopes ; therefore, if the stars shone by reflecting the light of the sun, as the satellites do, they ought to be much less visible than the satellites ; which is not the case. We may therefore safely conclude, that the fixed stars are self luminous like the sun. They probably are of the same nature, and equally large, if not larger. And since such immense bodies, so far removed from us as to be mostly out of our sight, could not be intended for our use, nor to interfere with the solar system ; it is most likely that they are the suns, or the centres, of as many systems, and that a number of planets and comets is revolving round each star, from which they derive the vivifying influence of heat and light.

We

We may advance our conjecture a step farther, and suppose that possibly some of the comets of each system, which move in very excentric orbits, may, in their aphelia, come within the attractive power of some other star or sun, so as to pass from one system to another; and thus form a sort of communication between the different systems; but as there is no end to conjecture, let us return to matter of fact.

Though the stars are called fixed, as they are in comparison to other celestial bodies; yet they must not be considered as perfectly immoveable and unchangeable. Indeed the little movements, to which they have been observed to be subject, must not be considered as their proper movements; for they are to be accounted for upon the motion of the earth, the motion of light, &c. as will be shewn in the sequel; but independent of motion from their respective situations, several changes have unquestionably been observed amongst the stars, and probably a great many more will hereafter be observed; for the accurate catalogues of the sizes, appearances, and situations of the stars which have been lately made, and the powerful instruments that are now in use, will enable the astronomers to discover the most minute variations of size, of brilliancy, and of situation.

Two stars of the second magnitude, which were formerly visible in the stern of the constellation *Argo Navis*, are now no longer to be seen. At the time of

of the emperor Otho, a new star appeared in Cassiopeia, which disappeared some time after. In the year 1600, Kepler observed a new star in the swan's breast, which remained visible during several years; but it became invisible from the year 1660 till the year 1666, when it was again observed in the very same place by Hevelius, as a star of the sixth magnitude. A star in the neck of the whale has the remarkable property of appearing and disappearing alternately. Other stars appear to have their size or brilliancy increase and decrease periodically. A star of this sort is in *Hydra*, another in *Cygnus*, and a most remarkable one, called *Algol*, is in *Medusa's head*. This *Algol* seems to have a period of 2 days and 21 hours, during which it varies from the size of the second magnitude to that of the fourth in about $3\frac{1}{2}$ hours, then returns to the former size in the same time, and retains that size for the rest of the above-mentioned period. Such periodical changes in the brightness of stars, may probably be owing to their performing periodical rotations round their axes, and to their having spots on some part of their surfaces; so that when that part happens to be turned towards us, the star must appear less bright than at other times. After the same manner the entire disappearance and reappearance of certain stars may perhaps be accounted for.

If the reader wish to learn the situation of the constellations, and the names of the most remarkable

able stars, or to find the particular situations of certain stars, we must refer him to the catalogues, and to the celestial atlases of Flamsteed, Bode, and others. A competent knowledge of the same may, however, be obtained by means of a common celestial globe, which being duly situated and rectified for the particular time of making the observation, will indicate the situation of the stars with sufficient accuracy; so that the learner, having situated the globe (according to the precepts which will be given hereafter) in an open place and a serene night, when the moon does not shine, by looking at any particular constellation or star on the upper part of the globe, and imagining that a straight line, drawn from the centre of the globe, and through the given star or constellation on the surface of the globe, be extended as far as the heavens, he will readily find the real star or assemblage of stars in that identical spot, which is pointed out by the imaginary line*.

In this part of the world the most conspicuous constellations, and therefore the best for a learner to begin with, are the *Great Bear* and *Orion*; and from the direction of the principal stars of those constel-

* The best globes, both celestial and terrestrial, with the latest engraved and most correct plates, as far as I know, are at present made by J. Cary, philosophical instrument maker, in the Strand, London.

lations,

lations, he may, by referring to the globe, learn the contiguous stars, then those which are farther off, and so forth. The Great Bear is undoubtedly the most useful, because for this part of the earth it never sets. Orion is visible in the winter time towards the south, and the arrangement of its stars is so remarkable, that once known, it is not afterwards easily forgotten.

C H A P. XI.

OF PARALLAX, REFRACTION, THE ABERRATION
OF LIGHT, AND NUTATION.

WHEN a body, situated between us and the region of the fixed stars, is observed, and its place is referred to the stars, it is evident that it must appear to be nearer to one star or to another, at the same time, according as it is viewed from one part of the earth's surface or from another. Thus an observer on the surface of the earth at A, fig. 10, Plate XXVIII. will imagine that the celestial body H, coincides with the star O; at the same time that an observer on the surface of the earth at B, will observe the same body H, to coincide with the star N. Here it must be observed, that the spectator B is in the right line which joins the centre of the earth, and the celestial body H; therefore he sees that body perpendicularly over his head, and in the same manner (viz. against the same star), as if he saw it from the centre of the earth; whereas this is not the case with the spectator at A, or with a spectator situated any where else upon the surface of the earth. Now the difference between the true place

of

of a celestial body (meaning the place which it seems to have when viewed in the direction of the centre of the earth*), and the place which it seems to have in the celestial sphere, when viewed from any other part of the surface of the earth, is called by the astronomers the *parallax* of that body. Otherwise, in general terms, the parallax of an object is the difference between the places, that object is referred to in the celestial sphere, when seen at the same time from two different places within that sphere; or it is the angle under which any two places in the inferior orbits are seen from a superior planet, or even from the fixed stars.

In the abovementioned figure, N is the true place of the body H; O is its apparent place; and the arc ON is its parallax. It is evident that the nearer the body H comes to the vertical line CZ, the smaller its parallax becomes; for when the body is in that vertical line as at b, the two lines, viz. that which passes through A, and the body b, as also that which passes through C, and the same body b, coincide; and of course, when the bdy is in the vertical

* The situations of celestial objects are calculated always with respect to the centre of the earth, and in all the precepts that are given for the solution of astronomical problems, the distances and situations of celestial objects are always reckoned from their centres; hence the place which a celestial object seems to have when viewed from the centre of the earth is called its true place.

line, or in the zenith; it cannot have any parallax. On the contrary, when the body is at I, v. z. in the horizon of the spectator A, then it has the greatest parallax *on*; because the place of observation A, on the surface of the earth, is then the farthest possible from the other place of observation *b*, which is in the direction of the centre C.

It is also evident that, *ceteris paribus*, the farther a celestial body is from the earth, the smaller its parallax must be; thus the body P, which is farther from the earth *ABb*, than the body H, has its parallax *Np*, evidently smaller than the parallax *ON*, of the body H.

With respect to the measure of the above-mentioned parallax, it must be observed that the parallax *NO* of the body H, is the difference of the angles *ZCH* and *ZAH*; that is, of the angles *ZCN* and *ZAO*; which difference is equal to the angle *AHC*, or *NHO*; for the external angle *ZAH*, of the triangle *AHC* (Euclid's Elements, B. I. prop. 32.) is equal to the two internal and opposite angles *AHC* and *ACH*; therefore *AHC* is the difference between the two angles *ZAH* and *ACH*, or *ZCH*; hence this angle *AHC* (which is equal to *NHO*) measures, or is itself called, the *parallax* of the body H in that situation. *AHC* then is the angle under which the semidiameter *AC* of the earth appears to an eye situated at the celestial body H. The angle, which the diameter of the earth's orbit would subtend

to

to an eye situated in a celestial object, is called the *parallax of the great orbit*.

From what has been said above, the following useful theorem is easily derived; viz. *the sine of the parallax is to the sine of a celestial body's angular distance from the vertex as the semi-diameter of the earth is to the distance of that body from the centre of the earth*. Thus the sine of the angle AHC is to the sine of the angle ZAH, as AC is to CH. For the sides of plane triangles are as the sines of the opposite angles; hence in the triangle AHC, the sine of the angle AHC is to the sine of the angle CAH (or ZAH), as AC, the semidiameter of the earth, is to CH, the distance of the body H from C. Therefore, if the parallax of a celestial body, when that body is at any given distance from the vertex, be known, we can easily find by the theorem, its parallax at any other distance from the vertex.

It also follows from the preceding explanation, 1st, that when bodies are at unequal distances from the centre of the earth, the sines of their parallaxes are reciprocally as those distances; 2dly, that when the bodies are at equal distances from the centre of the earth, the sines of their parallaxes are as the sines of their apparent distances from the zenith; and 3dly, that when the bodies are at unequal distances both from the centre of the earth and from the zenith, then the sine of the parallax of one body is to that of another body, in a ratio compounded of

the

the inverse ratio of the distances from the centre of the earth, and the direct ratio of the sines of the apparent distances from the zenith.

The general effect of the parallax of a celestial body is to let that body appear nearer to the horizon than it really is; therefore, in order to deduce the proper places of celestial objects from the observations, it is necessary to deduct the effects of the parallax; for the relative situations of celestial objects are always reckoned with respect to their centres and to the centre of the earth; whereas the observations cannot always be made in the direction of the centre of the earth.

The effect of the parallax being greater in proportion as the object is nearer to the earth, it follows that the moon which is the nearest to us, is subject to a greater parallax than any other celestial body, and that parallax varies according to the different altitudes and different distances of the moon; then since the situation of the moon must be ascertained for various useful astronomical purposes, those various parallaxes of the moon are calculated, and are set in tables, which are to be met with in nautical almanacs, ephemerides, &c. The horizontal parallax of the moon varies from about $61' 32''$, to $53' 52''$. The mean horizontal parallax of the sun is about $8'',75$. The parallaxes of the other celestial objects are so very minute as seldom to require our attention.

Besides the necessity of allowing for the effects of parallax in estimating the exact altitudes of celestial objects, the ascertaining of parallaxes answers another very essential purpose in astronomy, viz. they are useful for finding the dimensions and principally the distances of the celestial bodies from the earth; as also the dimensions of their orbits.

When the distance of a celestial body from the earth is known, its horizontal parallax, and hence its parallax at any altitude, may be easily found; for in the right-angled triangle ACI, fig. 10, Pl. XXVIII. three parts being known (viz. the semi-diameter of the earth AC, the distance of the body CI, and the angle A, which is a right angle), the angle AIC, which is the horizontal parallax of the body I, is easily found, by trigonometry; also, if we have the parallax, we may easily determine the distance of the celestial body from the centre of the earth; for in that case the three angles and the side AC of the same triangle being known, the side or distance CI is easily determined*. When the distance of the celestial body is greater than 15000 semi-diameters of the earth, then that semi-diameter seen from that celestial body, subtends an angle so small

* When the distance and apparent diameter of a celestial body are known, the real diameter of that body is thereby easily determined.

as not to exceed $14''$, and of course very difficult to be observed with certainty.

Hitherto we have mentioned the effect of the parallax with respect to the altitude only of a celestial body, and have shewn that in consequence of that parallax, the body always appears to be somewhat lower than it really is, except when it stands in the vertical line, or in the zenith. But it must be observed, that if the apparent place of a celestial object, relatively to the zenith, is different from its real place, the apparent relative situation of the same body, with respect to other circles, must also be different from its real situation; viz. its apparent longitude, latitude, right ascension and declination, must be different from its real longitude, latitude, &c. or from the longitude, latitude, &c. it would have, if it were viewed from the centre of the earth. Now the difference of longitude observed from the centre (or in the direction of the centre) of the earth, which is called the *true longitude*, and that seen from some other point of the surface of the earth, is called the *parallax of longitude*; the difference between the latitude, as observed from the centre, and that observed from the surface of the earth, is called the *parallax of latitude*; the difference of right ascension, as observed from the centre, and that observed from the surface of the earth, is called the *parallax of right ascension*; and lastly, the difference between the declination, as observed from the centre, and

*Of Parallax, Refraction, and
that observed from the surface of the earth, is called
the parallax of declination.*

REFRACTION, as has been explained in the third volume of these Elements, is the bending of the rays of light, which is occasioned by their passing obliquely from one medium into another medium of a different refractive power.

The atmosphere, which surrounds the earth, is a refractive medium, and of course the rays of light which fall obliquely upon it, are bent by it; therefore the celestial objects which are necessarily seen through part of the atmosphere, must appear to be in situations different from their real places, unless they be in the zenith; for in that case the rays of light which come from the celestial bodies to our eyes, fall not obliquely, but perpendicularly, upon the atmosphere; in which case they suffer no bending or refraction. It naturally follows that the lower the situation of the body is, the greater, *ceteris paribus*, must its refraction be; for the rays of light fall more obliquely upon the atmosphere.

Were the atmosphere of an uniform density, the ray, which fell obliquely upon it, would be bent only at its entrance into the atmosphere, and would afterwards proceed straight through it; but as the atmosphere is increasing in density in proportion as it approaches the surface of the earth, therefore the ray of light is continually bent more and more as it approaches

approaches the earth, so as to become a curve line like AB, fig. 11, Pl. XXVIII.; and since to a spectator at B, upon the surface of the earth, the object C must appear in the direction which the ray of light CAB has, when it enters the eye at B; therefore the object, which really stands at C, must appear, in consequence of the refraction, to stand at D.

The refractive power of the atmosphere varies according to its gravity, to its temperature, and to its humidity; therefore the real quantity of refraction must be deduced from the compound effects of all those causes.

Various experiments have been instituted with great care and attention for the purpose of determining the quantity of refraction which accompanies each particular degree of the air's gravity, temperature, and moisture; but as it is impossible to ascertain the actual state of the upper regions of the atmosphere with respect to those particulars, it follows that the actual refraction for any given time cannot be known with certainty; yet from the indications of the barometer, thermometer, and hygrometer, the refractive power of the atmosphere for any particular altitude, such as is given in the tables of refraction, may in great measure be corrected*; but for ordinary purposes the mean refractions of the table are quite sufficient.

It appears therefore that the celestial bodies are seen out of their real places, not only in consequence

* See Dr. Bradley's Rules in his Works.

of the parallax, but likewise in consequence of the refraction of the atmosphere ; and that the parallax causes them to appear lower than they really are, whilst the refraction makes them appear higher than their real places ; therefore, in order to determine their real from their apparent places, a correction for the effect of refraction is also to be applied ; and for this purpose the refractions for different altitudes, at a mean state of the atmosphere, are calculated and stated in a table, called the *table of refractions in altitude*.

Besides the refraction in altitude, there are four other sorts of refraction, the nature of which will be easily understood from what has been said with respect to the different sorts of parallax. In short, if the effect of the refraction causes a body to appear in a place different from its real place, it follows that the apparent situation of that body with respect to other circles, must be different from its real situation ; viz. in consequence of the refraction, the *real* longitude, latitude, right ascension, and declination of that body, must differ from its *apparent* longitude, latitude, &c. and those differences constitute, or are called, *the refraction of longitude, the refraction of latitude, the refraction of right ascension, and the refraction of declination*.

The quantity of refraction for every degree of altitude in a mean state of the atmosphere, is shewn by the following table, which consists of two columns repeated. The first column contains the apparent

apparent altitudes, and the second shews the correspondent refraction, or the quantity which must be subtracted from the apparent altitude of the celestial object. Thus when a celestial body appears to be 36 degrees above the horizon, you will find against 36 degrees of apparent altitude in the table, 1° 18"; which means that the refraction makes the object appear 1° 18" higher than it really is; hence that quantity must be subtracted from 36°, and the remainder 35° 58' 42", is the altitude of the object corrected of the effect of refraction.

Mean Astronomical Refraction in Altitude.

Apparent Altitude.	Refrac- tion.	Apparent Altitude.	Refrac- tion.	Apparent Altitude.	Refrac- tion.	Appa- rent Altitude.	Refrac- tion.
0° 0' 33" 0"	5° 0' 9' 54"	23° 2' 14"	44° 59"	0 532 10	5 30 9 8	24 2 7	45 57
0 10 31 22	6 0 8 28	25 2 2	46 55	0 15 30 35	6 30 7 51	26 1 56	47 53
0 20 29 50	7 0 7 20	27 1 51	48 51	0 30 28 22	8 0 6 29	28 1 47	49 49
0 40 27 0 9	9 0 5 48	29 1 42	50 48	0 50 25 42	10 0 5 15	30 1 38	52 44
1 00 24 29 11	11 0 4 47	31 1 35	54 41	1 20 22 15 12	12 0 4 23	32 1 31	56 38
1 40 20 18 13	13 0 4 3	33 1 28	58 35	2 0 18 35 14	14 0 3 45	34 1 24	60 33
2 20 17 4 15	15 0 3 30	35 1 21	65 26	2 40 15 45 16	16 0 3 17	36 1 18	70 21
3 0 14 36 17	17 0 3 4	37 1 16	75 15	3 20 13 34 18	18 0 2 54	38 1 13	80 10
3 40 12 40 19	19 0 2 45	39 1 10	85 5	4 0 11 51 20	20 0 2 35	40 1 8	90 0
4 30 10 48 21	21 0 2 27	41 1 5			22 0 2 20	42 1 3	
		43 1 1					

The horizontal refraction varies from $31'$ to $36''$. The refractions for other altitudes are also variable, but less and less in proportion as they recede from the horizon. In consequence of the causes which have been mentioned above, namely, the temperature, gravity, &c. the refraction is greater in cold weather and cold climates than in warmer; it is generally greater in the morning than in the evening, &c. In consequence of the refraction, the sun, planets, stars, &c. begin to appear when they are actually below the horizon.

A very remarkable effect of the refraction of the atmosphere is known under the name of *twilight* (*crepusculum*), and it is the light which we perceive when the sun is actually several degrees below the horizon; in which case it is evident that if the rays of light, which proceed from the sun, were not bent by the atmosphere, they could not possibly reach us; that light, therefore, which we receive from the sun, either before its rising or after its setting, and in consequence of the refractive power, as also the reflection, of the atmosphere, is the *twilight*. At a mean the twilight begins to appear in the morning, or ceases to appear in the evening, when the sun is about 18° below the horizon. Whatever increases or decreases the refractive power of the atmosphere, will, of course, increase or decrease the duration of the twilight, viz. will cause the twilight to begin when the sun is more or less than 18° below the horizon. Thus, *cæteris paribus*, the twilight in cold climates

lasts longer than in warmer climates. When the sun, during the night, does not descend below the horizon more than 18° , as is the case with this island in the summer time, then the twilight lasts all night, or it is said that there is no night. Within the polar circle, the sun in consequence of the refraction of the atmosphere, especially in that cold climate, begins to make its appearance some days before it ought to appear according to its real situation. According as the sun either in its rising or in its setting is a longer or a shorter time in percurring the 18° below the horizon, which arises from the different obliquity of its course, so the twilight begins sooner or later before sun rise, and continues longer or shorter after sun set. Hence, in this country, the twilight is longer in the summer time than in the winter; hence also, *ceteris paribus*, the twilight lasts longer in higher latitudes than near to the equator.

THE ABERRATION is an apparent movement of the stars, which was discovered towards the beginning of the last century, by Dr. Bradley, then astronomer royal. This apparent movement is the compound effect of the progressive motion of light, and of the motion of the earth in its orbit; in consequence of which each fixed star appears in the course of one year, to describe a small ellipse, whose greater axis is about $40''$.

In order to comprehend the cause of this apparent movement, let E, fig. 13, Plate XXVIII. be a star, from

from which a ray of light proceeds towards us, and consider this ray as a small body moving from E to B. Let A B be a portion of the earth's orbit; for instance of $20''$, and let CB represent the space per-
curred by the light whilst the earth has moved from
A to B; so that the small body or particle of light
is at C, when the earth is at A; and both at the
same time arrive at B. Thus CB and AB represent
the respective velocities of the light and of the earth
in $20''$ of time. Draw CD equal and parallel to
AB, and complete the parallelogram DCAB. Then, agreeably to the principles of the compo-
sition and resolution of forces (see the first volume
of this work), the velocity of light CB may be con-
sidered as the result of two velocities in the direc-
tions CD and CA; of which the velocity CD, being
in the same direction, and equal in quantity to the
velocity of A B of the earth, cannot be perceived;
for the eye of an observer on the earth cannot
be struck by a body which moves with the same ve-
locity and in the same direction as the eye itself;
therefore that part of the velocity of light which is
in the direction CA, is what affects the eye of the
observer; and hence we perceive the star in the di-
rection AC or BD, which is parallel to AC. Then
the angle CBD is called the *aberration*. In short,
CBD is the angle by which a star seems to be re-
moved from its true place, in consequence both of
the progressive motion of light, and of the motion
of the earth in its orbit.

This

This compound effect being rather difficultly comprehended by beginners, I shall subjoin Dr. Bradley's own explanation, which places the phænomenon in a different light*. The doctor imagined CA, fig. 12, Plate XXVIII. to be a ray of light falling perpendicularly upon the line BD; that, if the eye be at rest at A, the object must appear in the direction AC, whether light be propagated in time, or instantaneously. But if the eye be moving from B towards A, and light is propagated in time, with a velocity that is to the velocity of the eye as CA to BA, then light, moving from C to A, whilst the eye moves from B to A, that particle of it, by which the object will be discerned, when the eye comes to A, is at C when the eye is at B. Joining the points B, C, he supposed the line CB to be a tube, inclined to the line BD in the angle DBC, of such a diameter as to admit but one particle of light. Then it was easy to conceive, that the particle of light at C, by which the object must be seen, when the eye as it moves along, arrives at A, would pass through the tube BC, if it be inclined to BD in the angle DBC, and accompanies the eye in its motion from B to A; and that it could not come to the eye placed behind such a tube, if it had any other inclination to the line BD. If, instead of supposing CB so small a tube, we imagine it to be the axis of a larger tube; then, for the same reason, the particle of light at C would

not pass through that axis, unless it is inclined to BD in the angle CBD. In like manner, if the eye moved the contrary way, from D towards A, with the same velocity, then the tube must be inclined in the angle BDC. Although, therefore, the true, or *real* place of an object is perpendicular to the line in which the eye is moving, yet the *visible* place will not be so, since that, no doubt, must be in the direction of the tube; but the difference between the true and apparent place, will be, *ceteris paribus*, greater or less, according to the different proportion between the velocity of light and that of the eye. So that if we could suppose that light was propagated in an instant, then there would be no difference between the real and visible place of an object, although the eye were in motion; for in that case, AC being infinite with respect to AB, the angle ACB, viz. the difference between the true and visible place, vanishes. But if light be propagated in time, it is evident, from the foregoing considerations, that there will be always a difference between the real and visible place of an object, unless the eye is moving either directly towards or from the object: and, in all cases, the sine of the difference between the real and visible place of the object will be to the sine of the visible inclination of the object to the line in which the eye is moving, as the velocity of the eye is to the velocity of light.

The doctor then shews, that if the earth revolve round

round the sun annually, and the velocity of light be to the velocity of the earth's motion in its orbit, as 1000 to 1, that a star really placed in the very pole of the ecliptic, would, to an eye carried along with the earth, seem to change its place continually; and neglecting the small difference on account of the earth's diurnal revolution on its axis, would seem to describe a circle round that pole, every way distant from it $3\frac{1}{2}'$; so that its longitude would be varied through all the points of the ecliptic every year, but its latitude would always remain the same. Its right ascension would also change, and its declination, according to the different situations of the sun, with respect to the equinoctial points, and its apparent distance from the north pole of the equator, would be 7' less at the autumnal than at the vernal equinox.

The greatest alteration of the place of a star in the pole of the ecliptic, or which, in effect, amounts to the same thing, the proportion between the velocity of light and the earth's motion in its orbit being known, it will not be difficult, he observes, to find what would be the difference, upon this account, between the true and apparent place of any other star at any time; and, on the contrary, the difference between the true and apparent place being given, the proportion between the velocity of light and the earth's motion in its orbit may be found.

Now, since the apparent declination of the star, called γ Draconis, on account of the successive propagation

propagation of light, would be to the diameter of the little circle which a star would seem to describe about the pole of the ecliptic, as $39''$ to $40'',4$; the half of this is the angle A C B. This, therefore, being $20'',2$, A C will be to A B, that is, the velocity of light will be to the velocity of the eye (which in this case may be supposed the same as the velocity of the earth's annual motion in its orbit) as 10210 to 1 ; from whence it will follow, that light moves as far as from the sun to the earth in $8', 12''$. This, Dr. Bradley observes, is very probably the truth, because it is a medium between 7 and 11 , which were the times which it had before been supposed to take up, according to different observations of the eclipses of Jupiter's satellites. Comparing his observations on other stars, he afterwards concluded that light is propagated from the sun to the earth in $8', 13''$; and the near agreement of his observations induced him to think that this supposition could not differ so much as a second of a degree from the truth; so that the time which light spends in passing from the sun to us may be determined by these observations within $5'',$ or $10'',$ which is such a degree of exactness as we can never hope to attain from the eclipses of Jupiter's satellites.

The near agreement of the result of Dr. Bradley's observations on the light of the stars, which we have all the reason to suppose that they shine by their own lustre, with the result of Mr. Roemer's observations

observations on the light of the satellites of Jupiter, which shine by reflecting the light of the sun, not only confirms the progressive motion of light, but likewise shews that the velocity of light is the same before as after reflection.

The aberration arising from the compound motion of light and of the earth, does also affect the planets, and the sun; and though it be very little; yet in nice computations of occultations and other problems, this aberration must be calculated from the known velocities of light, the velocity and direction of the earth, and the distance of the planet in question. The sun's aberration in longitude is constantly $20'$; for the earth moves through that space in $8^m 7^s$, which is the time employed by light in passing from the sun to us.

“ Dr. Bradley, by his continued observations on the stars, perceived each year the period of the aberrations confirmed, according to the rules he had lately discovered; but besides this, he found from year to year other differences, the consideration of which led him to another brilliant discovery, that of the *nutation of the earth's axis*. This is a kind of libratory motion of the earth's axis, by which its inclination to the plane of the ecliptic is continually varying backwards and forwards, by a small number of seconds. The whole extent of this change in the inclination of the axis, or, which is a consequence of it, in the

apparent

apparent declination of the stars, is about $19''$, and the period of the change is little more than nine years; or, the space of time from its setting out from any point and returning to the same again, about 18 years and 7 months, being the same as the period of the moon's motions, on which indeed it chiefly depends, being the effect of the inequalities of the joint action of the sun and moon upon the spheroidal figure of the earth, by which its axis is made to revolve with a conical motion, so that the extremity of it describes a small ellipsis, having its diameters $19'',1$, and $14'',2$, each revolution being performed in the time above-mentioned. This is a natural consequence of the Newtonian system of universal attraction, and had been hinted at by some, ever since the publication of the *Principia*.*

Thus we have pointed out the different apparent movements of the stars, and have shewn that they arise from the parallax, from the refraction of the atmosphere, from the progressive motion of light, and from the movements of the earth. Yet it must be acknowledged, that inde-

* Mr. Gregory's Astronomy, Chap. XXII. For further information on the subject of the nutation, see the Philosophical Transactions for 1784. Dr. Maskelyne's Astronomical Observations, 1776; and De la Lande's Astronomy, Vol. III.

pendent of those apparent movements, some of the fixed stars have been found to have a proper though exceedingly small motion. The present state of astronomical knowledge cannot well account for this movement; perhaps the stars or whole systems, though immensely distant from each other, may also have a mutual tendency or attraction; perhaps a congeries of systems, or the whole assemblage of them all, may turn round a common centre of attraction; but we must leave those speculations to posterity.

C H A P. XII.

OF THE DIVISION OF TIME, AND OF THE EQUA-
TION OF TIME.

ACCORDING to the common or vulgar signification, the *day* and the *night*, mean respectively the time of the sun's remaining above the horizon, and the time of its remaining below it. For the sake of distinction, this day is called the *artificial day*. The *natural day* is the time employed by the sun in its apparent motion all round the earth, from one meridian and to the same again. This time is divided into 24 hours; each hour is divided into 60 minutes; each minute into 60 seconds; each second into 60 thirds, &c. When the intervals of time are longer than one day, they may be reckoned by the number of days, and parts of a day, or by certain assemblages of days together, with odd days and parts of a day. Those assemblages of days are called *weeks*, *months*, *years*, *cycles*, *periods*, &c.

The 24 hours, or 24 parts, of a natural day, are not always equal to the 24 parts of another natural day; or, in other words, the sun does not always

always employ the same time in its apparent motion round the earth, from a given meridian to the same again. This, as has been explained in the preceding chapters of this volume, arises from the earth's orbit being elliptical, from the earth's axis being inclined to the plane of the ecliptic, and from the precession of the equinoxes. But independent of the theory, the inequality of natural days is clearly manifested by means of the well known machines, called *clocks, regulators, time-keepers, chronometers, or longitude-watches*; for by observing the sun's transit over the meridian each day, it will be found that the sun's centre comes to the meridian sometimes before and sometimes after the lapse of such 24 hours, as are shewn by the going of the clock, or chronometer; but the mean natural days, viz. those that are between the longest and the shortest, are precisely equal to the 24 hours of the clock; hence these are called *hours of true or mean time*, viz. the 24 equal parts of *mean days*.

That upon the whole, well regulated chronometers, are equable measures of time, is proved by their agreeing among themselves, which they do within a trifling difference of a second or two, and which difference may be ascertained by the motion of the sun itself, or by the time of its arrival to the meridian; for as that time, whether longer or shorter than the period of 24 hours of mean time, has been calculated from theory, and being measured by the clock at the time of the sun's transit, the observer

will easily perceive whether the clock indicates the same excess or defect from the 24 hours of mean time, as has been obtained by calculation, and is registered in most almanacks. This excess or defect, which must be added to or subtracted from the 24 hours of mean time, or such as are shewn by a well regulated chronometer, in order to obtain the real length of a natural day, is called the *equation of time*; and it sometimes amounts to several minutes.

The natural day is either *civil* or *astronomical*. A different commencement of the civil day has been adopted by different nations. The British, French, Dutch, Spaniards, and others, begin the civil day at midnight; the ancient Greeks, Jews, Bohemians, Silesians, with the modern Italians and Chinese, begin it at sun-setting; the ancient Babylonians, Persians, Syrians, and modern Greeks, begin it at sun-rising.

The *astronomical day* at any place commences when the sun's centre is on the meridian of that place, and its 24 hours are reckoned from 1 to 12; and again from 1 to a second 12; distinguishing the first 12 by the initial letters P. M. which mean *post meridiem* or *in the afternoon*; and the second 12 hours by the initials A. M. which mean *ante meridiem*, or *in the forenoon*. Astronomers, however, generally reckon through the 24 hours from noon to noon; so that what is commonly called the hour of 10 in the morning of April the 6th, is called by the astronomers the 22d hour of April the 5th; and

and 3 o'clock in the morning of October the 20th, is expressed by the astronomors, October the 19th, 15^h, and so forth.

The sun's daily motion in longitude, which is measured by an arc of the ecliptic, or its daily motion in right ascension which is measured by the correspondent arc of the equator, being nearly equal to 59' 8", it follows that the above-mentioned astronomical day is measured by the sum of the whole equator (viz. 360°), and an arc of it equal to the sun's daily motion in right ascension (viz. 59' 8"), which sum is equal to 360°, 59', 8". For at the end of a diurnal rotation of the earth, which observations shew to be equable, the meridian comes to the same star or point of the ecliptic at which it stood on the preceding noon; excepting the very small difference which arises from the precession of the equinoctial points; whereas the sun, during that period, has removed from that star or point of the ecliptic to another, which has a greater right ascension by 59', 8"; therefore he must describe such an additional arc besides a whole circle, in order to return to the same meridian; hence a sidereal day, which is the interval between two successive returns of the same star, to the same meridian, is shorter than a mean solar day by 3 minutes and 56 seconds of time, which 3^m, 56^s, is the time employed by the sun in percurring the additional arc of 59', 8"; so that the mean solar day is 24 hours, whilst the

sidereal day is $23^h, 56^m, 4^s$, according to the clock, which shews mean time.

The solar days are equal, or the mean solar days take place when the sun's daily motion in right ascension is $59', 8''$, which takes place about the 15th of April, the 15th of June, the 1st of September, and the 24th of December; so that at those times the sun and the clock, or the sun-dial and the clock, agree very nearly, and of course no equation is wanted; at other times the sun-dial and the clock disagree more or less, and an equation is required. This equation is greatest about the 1st of November, when it amounts to $16^m, 14^s$.

It is evident, from what has been said above, that in several astronomical observations the equation of time, besides the other corrections for parallax, refraction, &c. must be duly attended to.

I need not inform the reader of the names and of the number of days which form a week.

A *month*, properly speaking, is the time of a lunation, or the period of time taken up by the moon in performing its course in the zodiac. Another month, which more properly is the *astronomical month*, and is nearly equal to the above, is the time in which the sun moves along one sign of the ecliptic. A *civil month* consists of a certain number of days, which number, however, is not always the same for every month, nor the same in all countries. The names of the twelve months, together with

the

the number of days in each, as are at present in use among the greatest number of civilized nations, are so well and so commonly known, that nothing more needs be said about them in this place.

What the sidereal, the solar, the anomalistic, and the civil years, are, has been already shewn in another place; but in order to present all those measures of time in one point of view, we shall briefly repeat their lengths in this place.

The *mean tropical or solar year*, consists of $365^d, 5^h, 48^m, 49^s$.

The *sidereal year* consists of $365^d, 6^h, 9^m, 12^s$.

The *anomalistic year*, which is the time employed by the earth, in going from aphelion to aphelion, consists of $365^d, 6^h, 14^m, 2^s$.

The *common civil year*, also called Julian year, such as is adopted by most nations, consists of 365 days; but every fourth year is called a *bissextile or leap year*, and consists of 366 days, viz. one day more than the common year; and this day is usually added to the end of February; excepting, however, the last year of every century, not divisible by four, which is to remain a common year of 365 days. See Page 61 and 62 of this volume.

The *lunar year* consists of 12 revolutions of the moon, from the sun to the sun again, and it contains nearly $354^d, 8^h, 48^m, 36^s$.

A *cycle* is a perpetual circulation of a certain fixed and determined time. Thus the *cycle of the sun*

sun is a revolution of 28 years, in which time the days of the months return again to the same days of the week; the sun's place returns to the same signs and degrees of the ecliptic on the same months and days, so as not to differ one degree in 100 years; and the leap-years begin the same course over again with respect to the days of the week on which the days of the months fall. The *cycle of the moon*, commonly called the *golden number*, is a period of 19 years, in which time the conjunctions, oppositions, and other aspects of the moon, are within about an hour and a half of being the same as they were on the same days of the months 19 years before. The *indiction* is a revolution of 15 years, used only by the Romans for indicating the times of certain payments made by the subjects of the Republic. It was established by Constantine, A. D. 312.

The year of our Saviour's birth, according to the vulgar æra, was the 9th year of the solar cycle, the first year of the lunar cycle; and the 312th year after his birth, was the first year of the Roman *indiction*. From this we may easily find the correspondence between the subsequent cycles.

The *olympiads* consisted each of four years, and the mode of reckoning by olympiads was used by the Greeks. The first olympiad began 775 years (according to other chronologists 777 years) before the birth of our Saviour.

Different nations and at different times various points

points or commencements of the numeration of years have been adopted. Some reckoned from the supposed time of the creation of the world. The Romans counted from the building of Rome; the Turks reckon from the flight of Mahomet, called the *begira*, or *Turkish æra*; almost all the nations of Europe and America reckon from the birth of our Saviour, and this is called the *Christian æra*; the modern French reckon from the abolition of their monarchical government; other nations have used other æras. But of all those æras the *Julian period* seems to be the most useful, as it includes almost all the other æras or periods. This Julian period consists of 7980 years, which number is the product of 15, 19, and 28, viz. of the Roman indiction, of the lunar cycle, and of the solar cycle; and the first year of this period was that wherein all those cycles began together.

In the following short table, I shall state the commencement or the correspondence of the principal æras, according to the more commonly received opinion; for the precise times of several remarkable events have been differently stated, and are as yet the subject of controversy; I must therefore refer the inquisitive reader to the professed works of chronologists with respect to those points.

Table of remarkable Æras, or Periods.

	Years before Christ.	Years of the Julian period.
The creation of the world, according to the more common opinion	4007	706
The deluge	2351	2362
The beginning of the olympiads	775	3938
The building { according to Varro of Rome { registers of the Capitol	753	3961
The æra of Nabonassar	752	3962
The supposed true æra of Christ's birth	746	3967
	4	4709
	Years after Christ.	
The Dionysian or vulgar æra of Christ's birth	0	4713
The Arabian or Turkish hegira	622	5335
The Persian <i>yosdegird</i>	631	5344
The Republican French æra	1792	6505
	Sept. 22	

C H A P. XIII.

OF ECLIPSES, OCCULTATIONS, AND TRANSITS.

WHEN our view of a celestial body is obstructed by the interposition of another celestial body, or of its shadow, the phenomenon is called an *eclipse*, an *occultation*, or a *transit*; yet not quite indiscriminately so; for the word *eclipse* is more particularly applied to the apparent obscuration of the sun by the interposition of the moon between it and the earth; to the obscuration of the moon by its coming within the shadow of the earth; and to the obscuration of the satellites of other planets by their coming within the shadows of their respective primaries. The word *occultation* is more commonly applied to the disappearance of the stars or planets, occasioned by the interposition of the moon. The word *transit* is more commonly used to denote the passage of the inferior planets, Venus and Mercury, over the disc of the sun.

Of all those phenomena, the eclipses of the sun and of the moon, are by far the most striking, and have at all times excited the fears of the vulgar, and

and the diligent attention of the most enlightened part of the human species. The present improved state of astronomy has brought all the particulars, which relate to eclipses, occultations, and transits, within the limits of calculation, whence the times, durations, and quantities of those phenomena may be foretold with wonderful accuracy.

Having elsewhere shewn the general nature of eclipses, we shall, for the sake of perspicuity, collect in this chapter all the most essential particulars relative to those phenomena, in order that the reader may see the subject under one point of view.

As the light of the sun falls upon the earth, a shadow of the latter must be extended in the heavenly space behind it; and this shadow is conical, because the sun is larger than the earth. But on the sides of this converging or conical shadow, there is a diverging shadow, the density of which decreases in proportion as it recedes from the sides of the former conical shadow; this, which is usually called the *penumbra*, is occasioned by the partial obstruction of the sun's rays in the places adjacent to the dense conical shadow. Thus, in fig. 1, Plate XXIX. the rays of the sun ASB, falling upon the earth ETF, are intercepted by it, whence the conical shadow EFC is formed, from no part of which the sun can be seen; but adjoining to and all round this cone, there is the diverging imperfect shadow or penumbra EFHG, from any part of which a portion only of the sun can be seen; and that

that portion of the sun's disc is larger according as the place is farther from the conical shadow EFC, hence the penumbra decreases in intensity; thus at Q, the portion zyB of the sun can only be seen, but from R, the portion vvB is seen; which portions are determined by drawing straight lines from the given places to the sun and along the surface F of the earth. The conical shadow EFC of the earth is extended much farther than the distance of the moon, but not near so far as the nearest planet which is Mars; therefore the moon alone can come within that shadow.

Now let O P be a portion of the moon's orbit; then as the moon, in its motion from the west towards the east, viz. from O towards P, enters the penumbra at O, it begins to be partly obscured on its eastern side; the obscuration gradually proceeds towards the western side of the moon, and increases in intensity; the moon then comes within the conical shadow EFC, at which time the obscuration is greatest. After this, it begins to emerge out of the conical shadow EFC, with its eastern side, and as it proceeds it becomes gradually more and more illuminated, until the end of the eclipse, viz. until the moon is got quite out of the penumbra at P. But it must be observed, that the moon is never perfectly eclipsed; or, in other words, during an eclipse, we never lose sight of the moon entirely, even when she is at L, in the middle of the conical shadow EFC; but in that situation she appears of a dark

dark dull red colour, which is owing to the refractive power of the earth's atmosphere (the same which produces the twilight), in consequence of which some of the sun's rays which pass close to the surface of the earth, and through its atmosphere, are bent or refracted by the latter, so as to enter the cone EFC, and in some measure diminish the perfect darkness which it would have if the earth had no atmosphere.

By inspecting fig. 1, and by attending to the above explanation, the following particulars will be easily comprehended. An eclipse of the moon can only happen at the time of full moon, when the sun, the earth, and the moon, are in the same straight line; but on account of the inclination of the moon's orbit to the earth's orbit, an eclipse cannot take place at every full moon. It can only take place when the full moon happens to be in one of the nodes of the moon's orbit, or so near it, as that the moon's latitude does not exceed the sum of the moon's apparent semidiameter and the semidiameter of the earth's shadow, where it meets the moon's orbit. And according as that latitude is more or less, or nothing, so the eclipse may be *partial, total, or central.*

The quantity of the moon's disc which is eclipsed (and the same thing must be understood of the disc of the sun in a solar eclipse), is expressed by twelfth parts, called *digits*, of that disc, viz. the disc is supposed to be divided by twelve parallel lines: then if

if half the disc is eclipsed, the quantity of the eclipse is said to be six digits; if one twelfth part is obscured, then the quantity of the eclipse is said to be of one digit, and so forth. And when the diameter of the shadow, through which the moon must pass, is greater than the diameter of the moon, then the quantity of the eclipse is said to be more than 12 digits; thus, if the diameter of the moon is to the diameter of the shadow as 4 to 5, then the quantity of eclipse is said to be equal to 15 digits; for $4:5::12:15$.

The eclipses of the moon are visible alike from all such parts of the earth as have the moon above the horizon at that time; but they are not seen at the very same time from places which differ in longitude; for instance, if a place B be 15 degrees westward of another place A, the observer at the latter place A, must see the commencement or the end of the eclipse an hour later than the observer at B, because on account of their difference of longitude when it is 10 o'clock at B, it is 11 o'clock at A, or when it is 11 at B, it must be 12 at A, &c. Hence, from attentive observations, made at two different places, of the commencement, or of the end of the eclipse, or of the arrival of the shadow at any particular spot of the moon; the difference of longitude between those two places may be determined.

The moon always enters the shadow with its eastern side, and comes out of it with the same eastern side foremost; for the proper motion of the moon

moon being swifter than that of the earth's shadow, the moon approaches the shadow from the west, and passes through it with its eastern side foremost, leaving the shadow westward.

The duration of a lunar eclipse is various, but it never exceeds two hours. In order to calculate the time, duration, and quantity of an eclipse, the following particulars must be known, and these are obtained from the almanacks and other astronomical tables.

The true time of the moon's opposition, for the particular place for which the computation of the eclipse is intended.

The apparent time of the same, and for the same place.

The sun's place in the ecliptic.

The moon's place in the ecliptic.

The place of the moon's node.

The moon's latitude.

The moon's distance from the earth, or its apparent diameter, at the time.

The sun's horary motion; and

The moon's horary motion.

The eclipses of the sun take place when the moon happens to be in conjunction with the sun, or between the sun and the earth, viz. at the time of the new moon, at which time the shadow of the moon falls upon the surface of the earth; hence, properly speaking, such eclipses should be called eclipses of the earth. But the whole disc of the earth can never

never be entirely involved in the shadow of the moon, because the moon is much smaller than the earth, and the shadow of the moon, being conical, the section of that cone at the distance of the earth is considerably smaller than the disc of the moon.

Thus, in fig. 2, Plate XXIX. the rays of the sun ASB, being intercepted by the moon CLD, form the conical shadow CDG, which falling upon the surface of the earth ETF, entirely deprives the portion *i o* of the sun's light, and of course the inhabitants of that portion will have a total eclipse of the sun, the eclipse being central at *n*. Beyond the dense conical shadow CGD, there is the inverted cone of the *penumbra* CDEF, which is occasioned by the moon's intercepting a part only of the sun's rays from those places which fall within the penumbral cone, and are out of the dense shadow CDG; thus from Z, the portion YYB of the sun can only be seen; consequently the inhabitants of the parts *o* F, and *i* E, or of the zone which goes all round the dense shadow, will have a partial eclipse, the quantity of which, for any particular place, is more or less, in proportion as that place is nearer to the dense shadow *i O*, or nearer to the borders EF of the penumbra.

Knowing the diameters of the sun and moon, as also the distances of the sun from the moon and from the earth, at the time of the conjunction; the extent of the conical shadow, and the diameter of its section at the surface of the earth may be easily calculated; or it may be drawn upon paper

with considerable accuracy, by taking the proportional dimensions from a scale of equal parts. Now from such computations made at different situations of the moon with respect to distance, it appears that, when the moon is at its greatest distance from the earth (that distance varying from 56 to 64 semidiameters of the earth) the apex of the conical shadow CDG does not reach the earth, as is shewn in fig. 3, Plate XXIX.; but the penumbra EF only falls upon the surface of the earth; therefore the eclipse will be partial all over the space EF; but with this difference, that whilst at one place within EF, the inhabitants lose sight of one part of the sun, at another place the inhabitants lose sight of some other part of that luminary, as may be easily conceived by inspecting the figure. Those who happen to be at the centre H of the penumbra, will lose sight of the middlemost part *kk* of the sun, and a ring of light all round the moon, or only the circular edge of the sun will at that time be seen. The eclipse is then said to be *annular*.

So far we have described the various phenomena as if at the time of an eclipse the sun, the moon, and the earth, remained in the same line for any length of time; but since that is not the case, and since the proper motion of the moon, is much quicker than that of the sun, therefore the following particulars necessarily take place.

The eclipse of the sun always begins somewhere on the western half of the sun's disc, and ends at the eastern; for the moon moves in that direction;

and

and so does the shadow move upon the surface of the earth; so that those parts of the earth which are more westward, will see the eclipse sooner than those which are more eastward. Since the shadow of the moon, and even the penumbra, is at all times much smaller than the half of the earth's surface, the same eclipse of the sun can never be seen by a whole hemispherical surface of the earth; and according as the different places on that surface are less or more distant from the line, which passes through the centres of the sun and of the moon, so the inhabitants of those places see the eclipse either partial or central, or not at all; and the particular quantities of those appearances, or the digits eclipsed, may be determined by computation, from the knowledge of the diameters of the sun and moon, their distances, the distance of the moon's node from the conjunction, and the particular situation of the place on the surface of the earth. With respect to the time when an eclipse of the sun is to take place, for it doe not take place at every new moon, the calculation may be conducted in a manner similar to that used for the eclipses of the moon; the particulars that are principally requisite, and which must be extracted from the astronomical tables, are the true time of the conjunction; the longitudes both of the sun and of the moon; the latitude of the moon, with its horizontal parallax, and its horary motion; the apparent diameters of the sun and the moon; and the sun's horary motion. But with respect to the particular

mode of performing the necessary calculations, I must refer the ingenious reader to the works written professedly upon the science of astronomy*; and shall only add a few other particulars, which deserve to be remarked with respect to solar eclipses.

" The middle of a solar eclipse will not be at the same time in all places on the same meridian; for the parallax of longitude will be different in different latitudes. The excess of the apparent diameter of the moon above that of the sun in a total eclipse, is so small, that darkness seldom continues more than four minutes in the latitude of London. In most solar eclipses, the moon's disc is covered with a faint light, which is attributed to the reflection of the light from the illuminated part of the earth. In total eclipses of the sun, the darkness is sometimes so great as to render visible the planets that are above the horizon, and stars of the first and second magnitude. In such eclipses the moon's limb is seen surrounded with a ring which appears much brighter and whiter near the moon's body than at a distance from it; this ring in all respects resembles the appearance of an enlightened atmosphere, viewed from a distance; but whether it belongs to the moon or the sun, is not entirely decided, though

* See Flamsteed's Method in Sir Jonas Moore's System of Mathematics, Vol. I. Keill's Astronomical Lectures, Ferguson's Astronomy, Vince's Astronomy, and Gregory's Astronomy, on the Subject of Eclipses.

it is generally supposed that it belongs to the former.

" With respect to the *number of eclipses* of both luminaries, it may be observed, that there cannot be fewer than two, nor more than seven, in one year; the most usual number is four, and it is rare to have more than six. The reason is obvious; for the sun passes by both the nodes of the moon's orbit but once in a year, unless he pass by one of them in the beginning of the year, in which case he will pass by the same again a little before the end of the year.

" Since the nodes move backwards $19\frac{1}{3}^{\circ}$ every year, they would shift through all the points of the ecliptic in 18 years and 225 days; and this would be the regular period of the return of the eclipses, if any complete number of lunations were performed in it, without a fraction; but this is not the case. However, in 223 mean lunations, after the sun, moon, and nodes, have been once in a line of conjunction, they return so nearly to the same state again, that the same node, which was in conjunction with the sun and moon at the beginning of these lunations, will be within $28' 12''$ of the line of conjunction, when the last of these lunations is completed; and in this period there will be a regular return of eclipses, till it be repeated about 40 times, or in about 720 years, when the line of the nodes will be $28' \times 40$ from the conjunction, and will, consequently, be beyond the ecliptic limits:

this is called the *Plinian period*, or *Caldean saros*; it contains, according to Dr. Halley, 18 Julian years, 11^d, 7^h, 43^m, 20^s; or, according to Mr. Ferguson, 18 years, 11^d, 7^h, 42^m, 44^s. In an interval of 557 years, 21^d, 18^h, 11^m, 51^s, in which there are exactly 6890 mean lunations, the conjunction or opposition coincides so nearly with the node, as not to be distant more than 11''. If therefore, to the mean time of any solar or lunar eclipse, we add this period, and make the proper allowance for the intercolary days, we shall have the mean time of the return of the same eclipse. This period is so very near, that in 6000 years it will vary no more from the truth, than 3 $\frac{1}{4}$ minutes of a degree*.”

After what has been said above concerning the eclipses of the moon, we need not say much with respect to the eclipses of the satellites of the other planets; for they must evidently be calculated after the same manner, and the calculations must be established upon similar particulars; as far, however, as may be obtained, considering that our knowledge of the irregularities of the movements of those satellites is as yet imperfect.

In calculating the times of the eclipses of the satellites of Jupiter, which indeed are, besides the moon, the only eclipses of satellites that are no-

* Gregory's Astronomy, Chap. XIX.

ticed, an allowance proportionate to the distance of the planet from the earth, must be made on account of the progressive motion of light, as we have elsewhere noticed; but besides this cause, it has been observed, that when viewed by different persons and through different telescopes, the eclipses of the satellites of Jupiter do not appear to take place exactly at the same time; the reason of which is, that as the satellite is progressively or gradually obscured when it enters the shadow of the planet, and gradually enlightened when it emerges from that shadow, its disappearance in the former case, and its reappearance in the latter case, must be seen sooner or later, according to the goodness of the telescope and the acuteness of the observer's sight. This cause of error in observation, cannot be remedied without ascertaining the power of the telescope, &c. from actual experiments, and making a suitable allowance.

The theory of eclipses is not a subject of useless curiosity; but several essential advantages are derived from it. From the various phenomena of the eclipses of the sun and moon, we derive a confirmation of the figures and sizes of those bodies, as also of the earth. All the eclipses, particularly those of the moon, and of the satellites of Jupiter, which happen much more frequently, are of very great use for determining the longi-

tudes of places on the surface of the earth. We may lastly add, that the knowledge of eclipses has been of great chronological utility, as the precise times of several remarkable events have been ascertained by calculating backwards the times of eclipses, which have been said in history to have accompanied, preceded, or followed those events.

The occultation of the fixed stars by the moon, and their reappearance, are also of great use for determining the longitudes of places upon the surface of the earth. Their disappearance is so sudden, that the time of it may be observed with great accuracy. The only difficulty which attends the subject of occultations, is, that the movements of the moon cannot be entirely calculated with all the precision which might be desired; yet it must be acknowledged, that the tables of those movements have of late been wonderfully corrected; so that the occultations as are now stated in the nautical almanack, and elsewhere, may be depended upon as being sufficiently useful for the purpose of determining the longitudes of different places. For instance, suppose that the occultation of a certain star by the moon, is, according to calculation, to take place at 11 o'clock, P. M. Greenwich time; but being observed from another situation, and making the necessary allowances, according to the precepts, it be-

found to take place at half past eleven, the conclusion in the last mentioned situation is $7\frac{1}{2}$ degrees east of Greenwich; for (by converting the time into space at the rate of 15° per hour), the half hour is equivalent to $7\frac{1}{2}$ degrees; and at a place which is $7\frac{1}{2}$ degrees eastward of another it must be $11\frac{1}{2}$ o'clock, when at the latter it is only 11.

Those stars whose latitude does not exceed 6° , $36'$, north or south, may suffer an occultation from the moon, such as may be observed from some part of the surface of the earth; but their occultations may be observed from all parts of that surface which have the moon above the horizon, when their latitudes do not exceed $4^\circ, 32'$ *.

With respect to the transits of Venus and Mercury over the disc of the sun, we have elsewhere shewn that they cannot take place at every conjunction, because the orbit of Venus makes an angle of $3^\circ, 23', 35''$, and that of Mercury makes an angle of 7° with the ecliptic; in consequence of which either of those planets cannot be seen over the disc of the sun, unless at the time of conjunction the planet be so near its node as that its geocentric latitude be less than the apparent semi-diameter of the sun.

* See the method of making the calculation for an occultation, in Vince's Astronomy, or in Gregory's Astronomy.

The chief use of the observations of those transits, which do not frequently happen, especially that of Venus, is to determine the distance of the sun from the earth, or its parallax; from which and the well known analogy between the periods and the distances of the planets, the distances of all the planets may be determined, as has already been done*.

* For the method of calculating transits, and other particulars relative to them, the reader may consult almost any of the late writers on astronomy.

C H A P. XIV.

OF THE ASTRONOMICAL INSTRUMENTS, AND
THEIR USE.

THE number of astronomical instruments which have, at various times, been contrived for a variety of astronomical purposes; the improvements which they have received from time to time, particularly of late years, and in this country, would form the contents of a curious history, such indeed as might be both agreeable and useful to scientific persons; but such an history cannot be expected, nor indeed is required in an elementary work like the present; yet it would be improper to let the reader remain perfectly unacquainted with those instruments, by the use of which most of the foregoing particulars have been determined, or may hereafter be verified. I shall therefore briefly subjoin a competent description of the principal instruments that are at present used by astronomers, and shall, at the same time, add very little more than the mere definitions of such other instruments as are either not essentially necessary, or that are too common to need a description.

The

The principal instruments for a fixed observatory, are a large fixed quadrant, or a circular divided instrument, chiefly for measuring vertical angles ; a transit instrument ; an equatoreal instrument ; a chronometer, or regulator ; one or more powerful telescopes ; a fixed zenith telescope, and a night telescope.

The quadrant, or *quarter of a circle*, divided into 90° , and each degree subdivided into minutes or smaller parts, has been made of various sizes ; some of them having a radius even of 8 or 9 or more feet in length. When those quadrants do not exceed one or two, or at most three feet in radius, they are generally fixed upon their particular stands, which are furnished with various mechanical contrivances, that are necessary to place the plane of the quadrant perpendicular to the horizon, and for all the other necessary adjustments. But large quadrants are fixed upon a strong wall by means of proper clamps ; hence they have been commonly called *mural quadrants*, and are situated in the plane of the meridian of the observatory. In either of those quadrants an index, which reaches from the centre to the edge of the arch, moves round that centre, or round a short axis which passes through that centre, so as to be moveable with its extremity all round that arc, and thus point out on the divisions of the arch, the angle which it forms with the horizon, or with the vertical line, in any given situation. This index carries a telescope, through

which

which the observer looks at any particular object, whose altitude he wishes to determine.

Fig. 4, Plate XXIX. represents a pretty simple construction of a small moveable quadrant, and fig. 5, represents a mural quadrant. Of the quadrant, fig. 4, CEB, is the arch divided into 90° , and generally subdivided into smaller divisions, such as half degrees, or third parts of each degree, &c. The centre of the arch is at A, and the whole is connected together by means of strong metallic bars, as is shewn between the letters ABC in the figure, in the centre A, a short axis is fixed perpendicular to the plane of the instrument, and to the upper part of this axis is fastened the index AD, which carries the telescope. This index generally has a small lateral projection, as at E, upon which the nonius is marked, by which means the minutes or smaller parts of each degree may be discerned *. The screw P, commonly called the *tangent screw*, with a nut that may be fastened to any part of the arch BC, screws likewise into the extremity of the index, and is useful for moving the index gently or more accurately than by the immediate application of the hand to the index itself.

Since the index is suspended at one end, viz. at A, if the other end D happens to be disengaged from the screw P, that lower end D of the index

* With respect to the nature of the nonius or vernier, see page 461 of the second volume of this work.

will naturally come down to C, on account of its own weight, and that of the telescope. Now, in order to avoid this tendency downwards, an arm Y of brass or iron, is frequently affixed to the upper part of the index, which carries the leaden weight Z, sufficient to balance the weight of the index and telescope; so that by this means, even when disengaged from the screw P, the index will remain in any situation in which it may be left. The whole frame ABC is supported upon a strong vertical axis FS, the lower part of which turns into the pedestal QKm, and carries an index Sx, which moves upon the divided horizontal circle Q, fixed to the pedestal. This serves to fix the plane of the quadrant in any azimuth that may be required. The lower part of the pedestal has three claws, with a screw m in each; by which means the axis FS may be set truly perpendicular. The plummet AO, suspended at A, serves to shew when the edge AC of the instrument is truly perpendicular, or when the first division of the arch at C is exactly in the vertical which passes through the centre A of the quadrant arc BC. The weight I of the plummet generally moves in a glass of water, which is fixed upon the arm GR; the object of which is to check the vibrations of the pendulum; which otherwise would be easily moved by every breath of air, and would continue to move for a considerable time after. I omit to mention the lenses or microscopes that are applied to read off the divisions at E, and at x, or to see the coincidence of the plummet-

Plummet-line, with a dot marked upon the arc at C, as matters that need no particular description.

In the eye-tube of the telescope AD, there are certain slender wires, placed in the focus of the eye-lens, and perpendicular to the axis of the telescope, which enable the observer to distinguish more accurately when an object, that is seen through the telescope, reaches the axis of the telescope, or as it is more commonly called, the *line of collimation*, &c. Now when the stars or planets are observed at night, those wires in the eye-tube cannot be seen; therefore, to render them visible, an arm or wire is fixed occasionally at the end of the telescope, which arm holds a small piece of ivory or card z, set aslant to the axis of the telescope; for when a lighted candle or lantern is situated at a little distance, and is directed so as to shine upon the above-mentioned ivory or card, the reflection of the light from it into the tube of the telescope will enable the observer to distinguish the wires at the same time that he beholds the celestial object.

The mural quadrant, fig. 5, Plate XXIX. is a larger instrument like the above, excepting that it has no stand; and its index is prevented from bending on account of its great length, by means of metallic bars d, f, b, c. This instrument is firmly fixed upon a wall exactly in the plane of the meridian of the observatory, for which purpose it has

clamps,

clamps, screws, and other adjustments. It has likewise a plummet.

This undoubtedly is the principal instrument of an observatory; for by observing the times by the clock, of the arrival of any celestial object to the meridian, the right ascension of that object is had immediately; and its declination is shewn at the same time by the index of the quadrant upon the divided arch; deducting the inclination of the equator, which is given by the latitude once ascertained of the observatory. It is by this means that exact catalogues of the places of the fixed stars have been made.

The principal defects of those quadrants are the change of shape, which they frequently suffer from the weight and stress of their own parts, and the difficulty of determining the error which is introduced amongst the divisions of the arch from that change of shape.

Principally with a view of remedying those defects, the late improved state of mechanics has introduced whole circles instead of quadrants; and these are fixed upon their own particular stands, quite independent of a wall. The index, with the telescope, of those circular instruments is as long as the diameter of the divided circle, and has two nonius divisions at its two extremities, which point to the like divisions on two opposite parts of the circle, provided the instrument be exact; otherwise by

by their pointing to dissimilar divisions, they instantly manifest the incorrect state of the divisions, or the derangement of the parts of the instrument.

I shall not subjoin a particular description of such circular instruments, first, because it is not essentially necessary for our present purpose; and, secondly, because it would take up more room than we can conveniently allow it in this work. A very good description, by the Rev. F. Wollaston, of an excellent instrument of this sort made by Mr. Cary, is to be found in the second part of the volume of the *Philosophical Transactions* for the year 1793.

The *transit instrument* consists of a telescope of any convenient length, fixed at right angles to an horizontal axis, which axis is supported at its two extremities; and the instrument is generally situated, so that the line of collimation of the telescope may move in the plane of the meridian. The use of this instrument is to observe the precise time of the celestial bodies passage across the meridian of the observatory.

Fig. 6, Plate XXIX. exhibits a transit instrument. NM is the telescope, in the eye-tube of which a fy em of parallel wires, such as is represented at NI is situated in the focus of the eye-lens. FE is the horizontal axis, in the middle of which the telescope is steadily fixed; so that by moving the telescope, the axis is forced to turn round its two extremities E and F, which rest in the notches of

two thick pieces, T, S, of bell metal, such as are delineated separately, and magnified at N. II. and III. Those pieces are generally fixed upon two pillars, either of cast iron, or, which is better, of stone, as are shewn in the figure; and they are constructed so as to be susceptible of a small motion by means of slides and screws, viz. the piece T backwards and forwards, and the piece S upwards and downwards; by which means the axis E F of the instrument may be set, and caused exactly horizontal, to move perpendicular to the plane of the meridian. In order to verify the first of those requisites, viz. to see whether the axis is truly horizontal, the long spirit-level P Q is suspended upon it by means of the metallic branches P O, and Q R; and the situation of the bubble in it will immediately shew whether the axis be truly horizontal, or which way it inclines, and of course where it must be raised or depressed. The other requisite, viz. whether the axis be perpendicular to the plane of the meridian, or not, may be verified by various means, the best of which is by observations on those circumpolar stars, which never go below the horizon of the observatory. Thus, observe the times by the clock, when a circumpolar star, seen through the telescope N M, crosses the meridian both above and below the pole; and if the times of describing the eastern and western parts of its circuit are equal, the telescope is then in the plane of the meridian, consequently the axis E F is perpendicular to that plane; otherwise the notched pieces T and

and S, which support the extremities E, F, of the axis, must be moved accordingly, or until upon observation it be found that the above-mentioned times of the stars' semi-revolutions be equal*.

The cylindric extremity F is perforated, and the perforation passes through the half of the axis, and reaches the inside of the telescope; that side of the telescope tube, which is exactly facing F, being also perforated. Within the said tube, and directly opposite to the perforation of the end F, a plane reflector, or a flat piece of ivory, is fixed, making an angle of 45° , with the axis of the telescope, and having an hole through it large enough to admit all the rays passing from the object-glass to the eye-glass of the telescope.

When stars or other celestial objects are to be observed in the night time, a small lantern Y is set upon a stand just before the perforation of the extremity F, so as to throw the light within the axis, and upon the slant reflector within the tube of the telescope, whence it is reflected upon the wires in the eye-tube M, and renders them visible. By placing the lantern nearer to, or farther from the

* When the instrument has been once so adjusted, a mark may be made upon a house, or rock, or post, at some distance from the observatory, so that when viewed through the telescope, this mark may appear to be in the direction of the axis of the telescope; by which means the correct situation of the instrument may afterwards be readily verified.

extremity F, the observer may illuminate the wires sufficiently for the purpose, and not too much.

To the other extremity E, of the axis, a divided circle, or sometimes a semi-circle, is fixed, which turns with the axis; the index being fixed to the pillar which supports the axis. Sometimes the situation of those parts is reversed; viz. the circle is fastened to the pillar, or to the brass piece which supports the axis, and the index is fastened to the extremity E of the axis. The use of this circle is to place the telescope in the direction of any particular celestial body, when that body crosses the meridian; which inclination is equal to the col-latitude of the place, more or less the declination of the celestial body, according as that declination is north or south.

The *equatorial instrument* is not so generally to be found in astronomical observatories; yet, when properly constructed, it answers several useful purposes; it serves almost instead of all other instruments, and saves a good deal of calculation in several cases; hence the portable equatorial instruments, have frequently been called *portable observatories*.

The principal parts of an equatorial instrument, are an axis fixed in a proper frame, so as to stand parallel to the axis of the world, and to turn round its two extremities, as if it were the axis of the earth upon its two poles. A circle divided into degrees,

degrees, and likewise into 24 equal parts or hours, with the subdivisions, &c. is fixed perpendicularly to, and about the middle of the axis. Therefore, this circle is in the plane of the equator, and it is on this account that the instrument has been called an *equatorial*. Upon the same or principal axis there is another circle, or a semi-circle, which moves in the plane of the axis, consequently perpendicular to the equatorial circle. This vertical circle carries the telescope, and is called the *declination circle*. Now if a celestial body move in the equator, then the declination circle must be set at 0° ; viz. the telescope is set parallel to the equatorial circle; and turning the whole instrument round its principal axis, so far from the meridian as the celestial body in question is from it, you will see that object directly through the telescope. But if the given body have any declination, viz. if it be not exactly in the equator, then the declination circle with the telescope must be set accordingly, &c. Such, in short, are the principal parts of an equatorial instrument for a fixed observatory, where those parts are adapted to masonry work, or to other steady supports. But a portable equatorial must have some other parts, which are necessary for rectifying it according to the latitude of any required place, for holding the whole machine steadily, &c.; hence it is furnished with a stand, an horizontal circle with spirit levels, &c. I do

not attempt to delineate or to describe all the uses of an equatorial, as our limits do not admit of it.

Various arrangements of the above-mentioned parts have been adopted by various artists; but the best instruments of the sort, both portable and for a fixed observatory, were unquestionably contrived and executed by that great mechanical genius, the late Mr. Jesse Ramsden. A short description of his portable equatorials was some years ago published by itself, and has been transcribed in various dictionaries of arts and sciences. The best large instrument of the kind, as far as I know, which was likewise constructed by Ramsden for Sir George Shuckburgh, is now in the possession of the same, who has published a very accurate description, and a delineation of it in the *Philosophical Transactions* for the year 1793.

Of all the different sorts of chronometers, or time-keepers, a pendulum-clock, when properly constructed, is undoubtedly capable of the greatest accuracy; it being liable to fewer causes of obstruction or irregularity; therefore such machines are most recommendable for an observatory. The situation of this clock must be near the quadrant, and near the transit instrument; so that the observer, whilst looking through the telescope of any of those instruments, may hear the beats of the clock and count the seconds.

I need

I need hardly observe with respect to telescopes, that they are of very great use in an observatory. Indeed a telescope for the same can never be too good or too large ; and it should be furnished with micrometers, with different eye-pieces, &c. ; but as a large instrument of that sort is not easily managed, nor is always required, so there should be two or three telescopes of different sizes and different powers in every observatory. With respect to the construction of telescopes enough has been said in the third volume of this work ; but I shall only observe in this place, that one at least of the telescopes ought to be fixed upon an axis which may move parallel to the axis of the earth ; for in this construction the celestial bodies may, with the telescope, be easily followed in their movements, as the hand of the observer is, in that case, obliged to move the telescope in one direction only.

A pretty good telescope, placed truly vertical in an observatory, is likewise a very useful instrument ; as the aberration of the stars, latitude of the place, &c. may be observed and determined by the use of such an instrument, with great ease and accuracy.

The night telescope is a short telescope, which magnifies very little ; but it collects a considerable quantity of light, and has a very great field of view ; it therefore renders visible several dim objects, which cannot be discovered with telescopes of con-

siderably greater magnifying powers; and hence it is very useful for finding out nebulae, or small comets, or to see the arrangement of a great number of stars in one view.

The principal instruments that are at present used for marine astronomy, or for the purposes of navigation, are that incomparably useful instrument called *Hadley's sextant*, or *quadrant*, or *octant*; a portable chronometer; and a pretty good telescope. With those few instruments, the latitudes, longitudes, hours of the day or night, and several other problems useful to navigators, may be accurately solved. The description and the various uses of Hadley's sextant, may be found in all the works on navigation of the last 30 or 40 years, as also in all the modern dictionaries of arts and sciences. I shall not say any thing with respect to other instruments of less essential use; such as a zenith sector, an equatorial sector, an equal altitude instrument, sun-dials, &c.*

* With respect to sun-dials, I must not omit to recommend the use of what is called the universal ring-dial, to those gentlemen who, in travelling, wish to set their watches within four or five minutes of common time, for common purposes; which in most country places, where even the church-clock is much out of the true time, cannot be easily accomplished. The ring-dial when properly constructed, and from four to six inches in diameter, is easily used in any part of the world; is a cheap, very portable, and durable instrument; and, when the sun shines, it shews the time of the day within less than five minutes; allowing for the equation of time, which is stated in almost every almanack.

Under the title of astronomical machines, some writers do also reckon orreries, planetariums, globes, machines for shewing eclipses or transits, &c. but those only serve to illustrate the theory of astronomy, and as such they are undoubtedly of use in a lecture room, or to instruct novices. For this purpose I would give the preference to a pair of globes ; for these are neither very expensive, nor easily put out of order ; and are, at the same time, useful for the solution of a great many problems, as will be shewn in the next chapter.

An orrery is a very fit machine to shew the system of the world, and some of them have been made at an enormous expence, with a great complication of wheels and other parts, by which means they have imitated the principal movements of the celestial bodies ; but even the best of them fall very short of real accuracy ; and of course they are quite unfit for the purposes of calculating the future situations of the celestial bodies. With respect to the description of orreries, planetariums, &c. I must refer the reader to the works of other authors, especially to Ferguson's Astronomy, and to his Lectures ; as also to the various tracts of Benjamin Martin.

C H A P. XV.

THE USE OF THE GLOBES, AND THE SOLUTION OF
VARIOUS ASTRONOMICAL PROBLEMS.

WO globes, one to represent the celestial sphere, and the other to represent the surface of the earth, are commonly made for the purpose of instructing students in astronomy and geography. They are made of various sizes, and have been variously mounted in frames furnished with magnetic needles, and a variety of extra pieces, intended by the workmen to answer different purposes. Those which are delineated in fig. 7 & 8, Plate XXIX. are of the most usual form, and such as are quite sufficient for the purpose of illustration, and for the solution of the problems which may be expected to be solved by means of the globes. And here I must once more request the reader to recollect that the circles, poles, &c. which are either delineated upon, or annexed to the frames of those globes, are by no means existing in nature; but they are ideal circles, or lines, or points, or zones, which are of use only for expressing our ideas, or measures, &c. On the real globe of the earth there is only the distinction of

of land and water. In the heavens we perceive the sun, the moon, the fixed stars, the planets, and now and then a comet; which bodies are undoubtedly at different distances from us; but since to common sight they appear to be all equally distant, therefore they are delineated upon the surface of a globe; and, if conveniency would allow it, they ought to be delineated on a concave spherical surface.

With respect to the astronomical problems, which must be solved by calculation, or by the use of instruments, I shall add in the note a few of them only that are of more common use and less operose. It would be impracticable to insert a complete collection of such problems in this work, and the reader, who is desirous of going deeper into the science of astronomy, will find abundance of them in the works written professedly upon that science, such as De la Lande's, De la Caille's, Vince's, Gregory's, and others (1).

The

(1.) I. *To find the Meridian of the Place of Observation, or to draw a Meridian Line.*

A line drawn from the floor of a room or elsewhere, and in the plane of the meridian, so that the rays of the sun coming along the edge of a window, or through a hole in the adjoining wall perpendicularly above one end of the line, may be upon that line whenever the sun is in the meridian at

The stands, with the frames which support the globes, are so simple, and so evident in the figure, as

at noon, is of great use for rectifying a globe, for situating a moveable quadrant in certain cases, for regulating a common watch, &c.

The easiest method of delineating it is as follows: On an horizontal plane describe three or four concentric circles; and placing a convenient stand near those circles, let a plummet, as BC, fig. 9, Plate XXIX. consisting of a thread, with a leaden shot at its lower extremity, be suspended from a projection AB of the said stand, so that its lower extremity C may be just over, but not touch, the common centre of the circles. A knot must be made somewhere, as at K, in the thread of this pendulum. When the sun shines in the morning, observe where the shadow of the knot K touches one of the circles, as for instance at D, and draw the line DC, viz. from the centre C to the mark D. After this time, the shadow of the knot will be found to fall within the circle until a certain time, after which, viz. in the afternoon, it will again approach that circle. Now when you find that the said shadow falls upon the same circle, as at F, mark that place, and draw another line CF from the centre C to it. Lastly, bisect the angle DCF, and the line of division CE is the meridian line, or line in the plane of the meridian of the place; for the projection of the shadow of CK upon the horizontal plane, is longer or shorter, according to the various elevations of the sun; consequently it must be equally long when the sun is at equal altitudes, viz. equally distant from the meridian. Therefore the middle situation CE between the two situations DC, FC, must be the true meridian line. This operation proceeds upon the superposition

as to require no particular description. Each of those stands supports, and is firmly fixed to, the broad

position that the sun is equally high above the horizon, at equal times from noon, which is not exactly the case, because the sun is continually changing its declination; yet that change is not so great as to occasion any sensible error in the above-mentioned operation. The best time of the year for drawing a meridian line is about Midsummer; the daily or hourly change of the sun's declination at that time, being very little.

When a meridian line has thus been drawn, another meridian line, in a more convenient situation near the same place, may be easily drawn. Thus suspend a thread and plummet just over the south end of the known meridian line, and suspend another plummet over the south end of the intended meridian line. When the sun shines, let an observer give notice when the shadow of the first mentioned plummet line falls exactly upon the known meridian line, and at the same instant let another person mark two points in the shadow of the second pendulum, viz. upon the plane where that other shadow is projected. Then a line drawn through those two marked points, is the other meridian line sought. A meridian line thus drawn, may be corrected by repeating the above-mentioned operation at other opportunities.

II. *To find the Latitude of the Place of Observation, and consequently the Elevation of the Pole for that Place.*

By means of a quadrant, find the sun's apparent meridional altitude; viz. the greatest altitude above the horizon that the sun does reach on the day of observation; and in order to deduce

broad circular piece $H\,h$, which represents the horizon. $M\,m$ is a brass circle, which fits two notches made

deduce the true altitude from this, which is the apparent altitude, you must apply the following corrections, viz. 1st, If you have observed the altitude of the sun's upper or lower limb, you must accordingly add or subtract the semi-diameter of the sun's disc (which is given in the nautical almanack for every day) so as to have the altitude of the sun's centre. 2dly, Subtract the refraction correspondent to the observed altitude; and, 3dly, add the sun's parallax in altitude (which particulars are to be had from the nautical almanack, and from the tables requisite to be used with it, from which some of the following problems are taken), and the result is the correct meridional altitude of the sun's centre. Subtract this corrected altitude from 90° , and the remainder is the true distance of the sun's centre from the zenith; which is to be called north or south, according as the zenith of the place is north or south of the sun's centre. Take the sun's declination for the day of observation, out of the almanack, observing if it be north or south declination. Then if the zenith distance and the declination be both north or both south, add them together; but if one be north, and the other south, subtract the less from the greater; and the sum in the first case, or the difference in the second case, is the latitude of the place, of the same name with the greater, viz. north or south.

In correcting the apparent or observed altitude, some other correction is sometimes necessary to be applied, which must be derived from the nature of the instrument with which the altitude is taken; for instance, if the observation be made with an Hadley's sextant, and an artificial horizon, you must take

made in the horizon Hb . It is fixed perpendicularly to it, and may be moved vertically, so that any part

take the half of the angle which is subtended at the eye by the sun and by its reflected image. If you observe the altitude at sea, and make use, according to custom, of the apparent horizon or boundary of the sea, you must subtract what is called the *dip of the horizon* (the quantity of which is found in the table requisite to be used with the nautical almanack); for according as the deck of the ship is more or less elevated above the surface of the sea, so the horizon appears to be more or less depressed.

Example. On the 13th of August 1802, the observed meridional altitude of the sun's upper limb was $53^{\circ} 54' 1''$
The sun's semi-diameter, which must be

Subtracted - - - - - $0^{\circ} 15' 51''$

The refraction, which must be subtracted $53^{\circ} 38' 10''$
 $0^{\circ} 0' 43''$

$53^{\circ} 37' 27''$

The parallax in altitude, which must be

added - - - - - $0^{\circ} 0' 6''$

and the sum, viz. $53^{\circ} 37' 33''$, is the corrected elevation, which being subtracted from 90° , leaves the north zenith distance equal to - - - - - $36^{\circ} 22' 27''$

The declination, which, being likewise

north, must be added - - - - - $14^{\circ} 33' 10''$

and their sum is the north latitude of the place of observation, viz. - - - - - $50^{\circ} 55' 37''$

part of it may be placed above the horizon; one half always remaining below the horizon. The globe is furnished with an axis, the extremities of which, or poles, N, S, pass through two sockets, or holes, made in the brass circle *M m*; and as the globe may be turned round that axis, and of course any part of its surface may be situated under the brass

III. *To find the Latitude of the Place from the observed meridional Altitude of a fixed Star.*

The meridional or greatest altitude of a star above the true horizon, is to be observed in the same manner as the altitude of the sun; but as the fixed stars have no apparent diameter, nor any sensible parallax, therefore the only correction that can be applied to the apparent, in order to obtain the corrected altitude, is the effect of refraction. Then proceed as has been said in the preceding problem, viz. subtract the corrected altitude from 90° , and the remainder is the zenith distance, which is north or south, according as the zenith is to the north or to the south of the star at the time of observation. Take the star's declination out of the tables requisite, &c. observing whether it be north or south. Then if the zenith distance and declination be both north or both south, add them together; but if one be north, and the other south, subtract the less from the greater, and the sum or difference will be the latitude of the place of observation.

Example. The meridional altitude of the star Procyon was observed at sea with an Hadley's sextant, and it appeared to be $77^\circ 27' 15''$, the zenith of the place being south of the

brass circle Mm ; therefore this circle is called the *universal meridian*, or *the brazen meridian*, in distinction from the meridians which are delineated on the surface

the star, and the height of the observer's eye being 22 feet above the surface of the sea. What was the latitude?

Apparent meridional altitude of Procyon = $77^{\circ} 27' 15''$
For the dip of the horizon, correspondent to

22 feet of the observer's altitude, subtract $0^{\circ} 4' 28''$

and there remains - - - - - $77^{\circ} 22' 47''$

Refraction, which must be subtracted - $0^{\circ} 0' 13''$

and there remains the true altitude of Procyon - - - - - $77^{\circ} 22' 34''$

which being subtracted from 90° , leaves the true south zenith distance of Procyon = $12^{\circ} 37' 26''$

The declination of Procyon, which being north, must be subtracted - - - $5^{\circ} 46' 39''$
and the remainder, viz. $6^{\circ} 50' 47''$, is the latitude south of the ship at the moment of taking the star's meridional altitude.

IV. To find the apparent Time by means of celestial Observations.

This useful problem may be solved various ways, of which however I shall subjoin such only as are less operose.

With a fixed instrument, such as a quadrant or a transit-instrument duly situated in the plane of the meridian, the exact time of apparent noon may be readily ascertained; for you need only observe, when the centre of the sun is exactly in the axis of the telescope. Also other times of the day, or of

surface of the globe itself, and which are the meridians of those places only over which they are drawn.

The

the night, may be ascertained by observing the meridian passage of some fixed star or planet, whose distance from the sun is known.

Though to observe the arrival of the sun's centre to the axis of the telescope may at first sight appear to be an operation sufficiently simple; yet as the practitioner will probably meet with some difficulty, I shall add the following directions:

In the eye-tubes of the telescopes of quadrants, circular instruments and transits, there always are certain perpendicular and parallel wires (generally five), by means of which the time of the approach of the sun's limb may be accurately observed; whence the time of the sun's centre being in the meridian may be determined. This time must be estimated by means of a clock or chronometer; or, in other words, the observer is to find what hour, minute, second, and part of a second, is shewn by the clock when the sun's centre is upon the meridian; then, by applying the equation of time for that day, in which the observation is made, he will ascertain whether the clock is right, or how much it deviates from mean time. In order to make the observation, set the telescope of the transit-instrument to the proper altitude, *viz.* the altitude which the sun must have at noon on that day, and which is had by taking the sum or difference of the co-latitude of the place and the sun's declination for that day, according as they are of the same or of different denomination. Then a few minutes before noon apply your eye (defended

The brazen meridian, being of a considerable thickness, cannot represent a real meridian, which is not more than a line; therefore one surface or one

(defended by a dark glass) to the telescope, and wait till you see the first limb of the sun enter it; which will be apparently on the west side, because those telescopes, being of the astronomical kind, invert the objects. When this happens, let your assistant attend to the watch; and, when the first limb of the sun touches the first wire, bid him mark the second and part of a second, which is shewn by the watch; and which must be set down in the first column of a paper that contains five columns, ready ruled for the purpose. He must then prefix the minute, and attend again to the watch. When the sun's first limb arrives at the second wire, bid him again to mark the second, &c. which must be set down in the second column of the paper, and after having prefixed the minute, he must attend again to the watch. And in this manner the times, when the sun's first limb arrives at every one of the wires, must be observed and noted down in its proper column. The times when the second limb arrives at each of the five wires must be observed in the same manner, and written in the proper columns under those of the first. If the wires in the focus of the telescope be so disposed, that there is not time to observe the first limb at all the five wires, before the second limb arrives at the first wire, the observation of the first limb at the fifth wire must be omitted; and, in this case, the observation of the second limb at the first wire may be omitted also, as it will be of no use.

The mean of the times, when the two limbs of the sun were at the middle wire, will be the time of apparent noon

one side only of it must be considered as the meridian; and, in fact, the holes for the extremities of the axis are not made in the middle of the thickness of

of

by the watch; and if the wires are equi-distant (as they ought to be), the mean of the two times, when the first limb was at the first wire, and the latter limb at the fifth wire, will also be the time of noon. Also the mean of the two times, when the first limb was at the second wire, and when the latter limb was at the fourth wire, will be the time of noon. Likewise the mean of the times when the first limb was at the fourth wire, and the latter limb was at the second wire, will be the time of noon. If the first limb was observed at the last wire, and the latter limb at the first, the mean of these two observations will also be the time of apparent noon: and the mean of all these results, if they differ as they most likely will, is the time of apparent noon by the watch. This done, take the equation of time for the day of observation from the almanack, and add or subtract it, according as is mentioned in the almanack, to the above-mentioned noon time, and the difference of the result from the 12 o'clock hour is the acceleration or retardation of the watch. Thus, if by the observation of the transit the apparent noon be at $12^h 3'$ by the watch, and the equation to be subtracted is $2' 30''$, you must subtract $2' 30''$ from $12^h 3'$, and the remainder is $12^h 0' 30''$, which shews that the watch is $30''$ too fast.

The above-described observation may be performed by a single person without any assistant, provided he has a clock so near the instrument as to hear the beats of its pendulum, and count the seconds whilst he is looking through the telescope; for he will have quite time enough to mark down the times of the sun's approach to the different wires.

of the circle Mm , but by means of two projections of brass, they are made so as to be even with the above-mentioned surface. This same surface of the brass

A second method of finding the time of the day when the latitude and longitude of the place of observation, the sun's declination at noon, and its altitude as taken by a quadrant, at any time, are known, is as follows:

Correct the observed altitude for the effects of refraction and semidiameter of the sun (according as the altitude of its upper or lower limb has been observed), subtract the natural sine of the corrected altitude from the natural sine of the meridian altitude (the meridian altitude of the sun is the sum or the difference of the colatitude of the place and the sun's declination, according as they are of the same or of different denomination); find the logarithm of the remainder, to which add the logarithmic secant of the latitude of the place, and the logarithmic secant of the sun's declination; their sum, rejecting 20 from the index, must be sought for in table XVI. of the table requisite to be used with the nautical almanack, under logarithmic rising, and the time corresponding to it, is the apparent time from the nearest noon, when the sun's altitude was observed; consequently, if the observation be made in the forenoon, the time, thus found, must be taken from 24 hours, and the remainder will be the apparent time from the noon of the preceding day.

Example. On the 5th of March 1780, in the afternoon, in latitude $16^{\circ} 24'$ north, and longitude 138° east, the altitude of the sun's lower limb was observed to be $47^{\circ} 8' 44''$. What was the apparent time when the observation was made?

brass circle, *Mm*, is divided into four quadrants of 90° each; two of which are reckoned from *M*, viz. from the middle, or where the equator cuts the meridian,

The sun's observed altitude	-	-	$47^{\circ} 8' 44''$
Refraction to be subtracted	-	-	$0^{\circ} 0' 53''$
			<hr/>
			$47^{\circ} 7' 51''$
The sun's semidiameter to be added	-	-	$0^{\circ} 16' 9''$
			<hr/>
The true altitude of the sun	-	-	$47^{\circ} 24' 0''$

Now with respect to the declination, it must be remarked that in the nautical almanack, the declination is given only for the noon of each day at the meridian of Greenwich; but as the sun's declination is altering continually, therefore the declination, as given in the almanack, must be altered according to the longitude of the place of observation, and the time of the day nearly. In order to facilitate this reduction of the declination, a table, viz. table VI. is given in the tables requisite, &c. by means of which the declination, as given in the nautical almanack for noon at Greenwich, may be reduced to the declination for any time under any other meridian.

From this table, the declination for the meridian of the place of observation, and for the time of making the observation (which was esteemed to be nearly $2\frac{1}{2}$ P. M.) was south $5^{\circ} 48' 7''$.

Now, as the declination is south, and the colatitude north, the lesser must be subtracted from the greater, viz.

$73^{\circ} 36'$	$5^{\circ} 48'$	<hr/>
		$67^{\circ} 48'$

and you have the meridional altitude - - - $67^{\circ} 48'$

The

ridian, towards each pole; the other two quadrants are reckoned from the poles towards the other intersection m , with the equator. When the globe is rectified

The natural sine of the meridional altitude, viz. of $67^{\circ} 48'$	
is	92587
from which subtract the natural sine of the correct	
altitude, viz.	73610
and the remainder is	18977
whose logarithm is	4,27823
to which add the logarithmic secant of the	
declination	10,00223
and the logarithmic secant of the latitude	10,01804
	24,29850

Reject 20 from the index of the sum, and the remainder, viz. 4,29850, must be sought for in table XVI. of the requisite tables, under the column of logarithms rising, and against it you will find the correspondent time, which is the time of making the observation, viz. $2^{\text{h}} 27' 2''$.

V. Having the Latitude of the Place of Observation, to find its Longitude.

It has been mentioned in the preceding chapters of this volume, that the longitude of one place from another may be ascertained by various methods. Those methods may be reduced to four, viz. it may be ascertained, 1st, by observing the time of an eclipse of a satellite of Jupiter; but this can only be done on land, when such eclipses take place, and the weather is sufficiently clear; 2dly, by observations made at the time of an eclipse of the sun or of the moon; 3dly, by

rectified for experiment, this divided side is usually turned towards the east, and the north pole, N, towards the real north.

The

means of a time-keeper or chronometer; and 4thly, by lunar observations, viz. by observing the distance of the moon from the sun or from some fixed star; which two last methods may be used almost at all times.

Respecting the first and second method, enough has been said in the preceding chapters. With respect to the fourth, which is the most difficult and operose, I must refer the reader to the modern astronomical works, and especially to the tables requisite to be used with the nautical almanack, where he will find the lunar method clearly and correctly described; whilst I shall only briefly describe the third method, viz. by the use of a time-keeper.

" If a chronometer or time-keeper be regulated to keep mean time exactly, and be set to the mean time at the meridian of one of the two places, whose difference of longitude is required; for instance, be set to mean time at the meridian of Greenwich observatory. It is evident that such a chronometer will continue to shew the mean time at that meridian as long as it continues to go at the same rate, whatever place it may be carried to; consequently, if a watch so regulated, be kept on board a ship, it will always shew the mean time at the first meridian. Hence, if the mean time be found in the ship, under any other meridian, by the preceding problem, the difference between it and the time shewn by the chronometer, when the sun's altitude was observed, being turned into degrees and minutes, at the rate of 15° to an hour, will be the longitude of the place where the sun's altitude was observed."

It

The horizon Hb , which is generally of wood covered with paper, has its upper side divided with several circles; the innermost of which is divided into 360° ; then come the twelve signs of the zodiac, distinguished by their names and characters, and each sign is divided into 30° .

It is not, however, absolutely necessary that the chronometer should either be set precisely to mean time at the first meridian, or be regulated to keep exactly mean time; both of which might, perhaps, be difficult, or, at least, tedious to effect. The only thing which is absolutely requisite in a watch, to render it equal to the task of finding the longitude, is, that it will go uniformly at some known rate; for instance, that it will accelerate or retard its going by a second or two, or more, every day; which acceleration or retardation is commonly called the *rate of the watch*, and being known, the mean time at the first observatory may be known by the chronometer, as well as if that machine shewed that mean time exactly. Thus, if the watch accelerates $10''$ each day, three days after the setting of the chronometer, I know that the noon at the meridian, where the chronometer was set, is when that machine shews 12^h and $30''$.

The few problems which are given in this note, are intended merely to give the student an idea of such operations. If he wishes to proceed farther in the science of practical astronomy, he is referred to the recent works written professedly on the science, and which have been frequently quoted in the preceding pages of this volume. A complete set of all the necessary astronomical problems, together with their demonstrations and examples, being absolutely incompatible with the limits of this work.

Next

Next to this circle there is the calendar, viz. the names of the twelve months with the divisions of the days correspondent with the signs of the zodiac. The outermost circle contains all the points of the compass, and the winds as they are denominated by the seamen.

On the meridian and round the north pole N, there is a circle C fastened to the meridian. This is called the *horary circle*, and is divided into twice twelve hours; the 12th hour at noon being on the upper part of the meridian; and the 12th hour at night being on the lower side of the meridian or towards the horizon. The extremity of the axis at N projects a little above the plane of this horary circle, and carries an index, which turns with the globe when the globe is turned round its axis, and indicates the hours, or how much a given part of the surface of the globe is removed from the meridian; since the time of a whole revolution is divided into 24 equal parts or hours.

The index is slipt upon the end of the axis, and may be easily moved; F is a flexible slip of brass, divided into 90° , and having a little clamp B, with a screw at one end, by which means it may be fastened to the meridian. This must be fastened always to the upper or middlemost part of the meridian, and its lower extremity is slipt in between the horizon and the globe, and may be placed in any azimuth. This slip of brass having the 90° numbered from the horizon up to the zenith, serves

to shew the altitude of an object on the surface of the globe; and hence it is called the *quadrant of altitude*.

There frequently is another appendage to the globes, which is called the *semicircle of position*. It is a pretty slender wire, whose extremities are fixed to the points of north and south on the horizon, so that the wire or semicircle can be moved freely from the horizon to the meridian, and may be raised to any position.

The principal circles marked upon the surfaces of the globes, and which, having already been described, need only be mentioned, are the following. The equator, divided into 360° , the numeration commencing at the vernal intersection with the ecliptic, which crosses the equator at the vernal and at the autumnal equinoctial points, viz. first degree of Aries, and first degree of Libra. The ecliptic is divided into 12 equal parts or signs, and each sign into 30° .

If on each side of the ecliptic we add a broad space of about 8° , we have the zodiac, and this is actually drawn upon the celestial globe, with its 12 constellations.

The two tropics, viz. that of Cancer being on the northern, and that of Capricorn on the southern side of the globe.

Near the poles are seen the two polar circles, viz. the north, or the arctic polar circle, near the north pole;

pole; and the south or the antarctic, near the south pole.

Besides those, there are other circles, which however are not common to both the globes. Thus the celestial globe has the two colures and the circles of latitude; it has also the constellations with the stars represented in their proper situations and magnitudes. The terrestrial globe has the meridians, the parallels of latitude, and the rhumbs; it has also the representations of countries, coasts, islands, seas, and generally the tracks of the most renowned circumnavigators. The principal problems which may be solved by means of the globes, are as follows:

I. A particular place upon the terrestrial globe being given, to find its latitude and longitude.

Turn the globe round its axis, until the given place comes just under the brazen meridian CBM, (viz. under the edge of its divided side, which side must always be understood when the meridian is mentioned), and the degree of the meridian which is just over the place (meaning the degrees of the two quadrants, which are numbered from the equator) is the latitude sought; and it is north or south, according as it is on the northern or on the southern side of the equator. At the same time the degree of the equator, which is just under the brazen meridian, is the longitude of the place in question.

N. B. In

N. B. In old globes, the longitude is reckoned from the island of Ferro, one of the Canary Islands. At present the longitude on the globes that are made in this country, begins to be reckoned from the meridian of the Royal Observatory at Greenwich.

II. *The latitude and longitude of a place being given, to find that place on the terrestrial globe.*

This is the reverse of the preceding problem, and is easily solved. Find on the equator the known degree of longitude, and turn the globe so as to bring that degree just under the brass meridian; then find the degree of the given latitude upon the meridian, observing whether it be north or south latitude, and exactly under it you will find the place in question.

III. *To rectify the globe for any particular place.*

If the latitude of the place be north, elevate the *north* pole as many degrees above the horizon *H b.* If the latitude be south, elevate the *south* pole above the horizon an equal number of degrees; for according to the lower or higher latitude of any particular place, so does the pole appear to be higher or lower at that place. The degrees of this elevation of the pole are counted upon the meridian. Thus in the figure, the north pole is elevated $51\frac{1}{2}^{\circ}$ above the horizon, the globe being rectified for the latitude of London.

Turn

Turn the globe till the given place comes to the meridian ; and that part of the meridian, which is just over it, and which is 90° distant from the horizon on either side, represents the zenith. To this point of the meridian the quadrant of altitude must be fastened, which serves to solve certain problems that will be described hereafter. Lastly, turn the whole frame of the machine, so that the north pole be directed towards the real north, and of course the south side towards the real south. Then the globe is situated just as the real earth is situated with respect to the given place. In order to place the instrument duly north and south, a magnetic needle is affixed to some globes ; but you must then allow for the magnetical variation.

IV. *Two places being given upon the surface of the globe, to find their difference of latitude and difference of longitude.*

Turn the globe until one of the places comes under the brazen meridian, and mark the degree of latitude which is just over it, observing whether it be north or south ; then turn the globe until the other place comes under the meridian, and mark likewise the degree of this place's latitude. Now, if both those latitudes be north, or both south, their difference is the difference of latitude between the two places ; but if one be south and the other north, then their sum is the difference of latitude between the two places. To find their difference of longitude,

when

when one of the places is under the meridian, mark the point or degree of the equator, which is at the same time under the equator; then turning the globe until the other place comes under the meridian, mark likewise the point of the equator which is cut by the meridian; and the number of degrees which lie between those two marks, is the difference of longitude sought.

If this number of degrees be turned into time at the rate of 15° per hour, you will have the difference between the apparent time at those places; for instance, if the difference of longitude be 35° , then the difference between the apparent times at the two places is 2 hours and 20 minutes; so that when it is noon at one of those places, it must be 2 o'clock and 20 minutes in the afternoon, or 2 hours and 20 minutes before noon, at the other place, according as the latter is eastward or westward of the former. But this difference of apparent time may be had likewise by the horary circle C; for if when one of the places is under the meridian, you place the index at the 12th hour on the horary circle, and then turn the globe until the other place comes under the meridian, you will find the index directed to the proper difference of time. Thus in the above-mentioned instance the index will be found directed either to 9^{h} , 40^{m} , or to 2^{h} , 20^{m} .

V. *To find the direct distance between two given places.*

The easiest and general way of performing this operation is by separating the quadrant of altitude from the meridian, and applying it to the two places on the surface of the globe. Then the number of degrees which are shewn by that quadrant to be between the two places, being converted into miles at the rate of $69\frac{1}{4}$ miles per degree, will give the distance in miles between the two places. Should the two places be farther asunder than the quadrant can reach, the operation may be performed by two measurements, viz. make a mark somewhere between the two places, and as nearly as you can in their direction; then apply the quadrant, and take the distance between one of the places and the mark, and in the same manner take the distance between the mark and the other place. Then the sum of those two distances is evidently the distance between the two places.

VI. *To find the sun's place in the ecliptic for any given day of the year.*

Find on the wooden horizon Hb , the given day of the month, and in the circle of the signs which is close to it, you will find the degree of the sign correspondent to it: now find that degree of that sign

on

on the ecliptic, which is marked upon the globe, and that is the place of the sun for the given day; where you may make a mark, or fix a bit of paper by means of a bit of wax, as this will be useful for the solution of other problems.

If you move the globe until the above-mentioned marked place of the sun comes under the meridian, then the number of degrees which are found on the brazen meridian to be between it and the equator, is the declination of the sun for that day, and it is north or south, according as the marked place is on the northern or on the southern side of the equator.

If you rectify the globe for any particular place, and then turn it until the marked place of the sun comes to the meridian, the number of the degrees, which are shewn by the meridian to be between the horizon and that marked place of the sun, is the meridian altitude of the sun for that place on the given day.

VII. *To find the time of sun-rising, and of sun setting, at any given place, and for any given day of the year.*

Find and mark the sun's place in the ecliptic for the day given (by the preceding problem). Rectify the globe for the latitude of the given place; and turn the globe so as to bring the sun's place to the meridian. In this situation keep the globe steady

steady, and direct the index of the horary circle to the 12 o'clock hour; then turn the globe until the sun's place comes to the horizon on the eastern side of the machine, and the index of the horary circle will point to the hour and part of the hour, at which the sun will be seen to rise on that day from the given place. If you turn the globe until the sun's place comes to the horizon on the western side of the machine, the index of the horary circle will shew the time of sun setting for the day and place in question; whence you have the length of the day.

VIII. To find the beginning and the end of the twilight for any place and day given.

Find the latitude of the place, and rectify the globe (by problem 1st and 3d); put the index of the horary circle to the 12th hour, the sun's place being in the meridian; then take the point of the ecliptic opposite to the sun's place, and turn the globe westward, as also the quadrant of altitude, till the point opposite to the sun's place cuts the quadrant of altitude in the 18° above the horizon. Then the index on the horary circle will shew the time when twilight begins in the morning. If you take the point opposite to the sun, and bring it to the eastern hemisphere, and turn it until it meets with the 18th degree on the quadrant of altitude, the index will shew when the twilight ends in the evening.

IX. *To find the length of the longest and shortest day in any given place.*

Rectify the globe for the latitude of the place; bring the solstitial point of that hemisphere (viz. the first point of Cancer, if the place have north latitude; or the first point of Capricorn, if the place have south latitude) to the eastern part of the horizon, set the index to the 12 o'clock hour at noon; turn the globe until the solstitial point comes to the western side of the horizon; and the hours passed over by the index give the length of the longest day or night at that place. The complement of which time to 24 hours, is the length of the shortest day or shortest night.

X. *To find on what day the sun will be vertical at any given place in the torrid zone.*

Find the latitude of the place on the brazen meridian; turn the globe, and observe the two points of the ecliptic that pass under the above-mentioned degree of the brazen meridian. Then seek for those points of the ecliptic in the circle of the twelve signs that are marked upon the horizon Hb , and against them you will find the days of the month in which the sun will be vertical to the given place.

XI. *At any given time to find all those places of the earth where the sun is then rising or setting, and where it is noon or midnight.*

Find the place where the sun is vertical at the given time; rectify the globe for the latitude of that place, and bring the place to the meridian. Then all those places, that are in the western half of the horizon, have the sun rising, and those which are in the eastern half of the horizon, have the sun setting; those who are under the meridian above the horizon have noon or the sun culminating, and those who are under the meridian below the horizon, have midnight; those who are above the horizon, have day, and those who are below it, have night.

XII. *A place being given within either of the polar circles, to find the time when the sun begins to be seen, and when it departs from that place; also how long he will continue to be seen, and how long he will be absent from that place.*

“ Rectify the globe for the latitude of the place; turn it, and observe what degrees in the first and second quadrants of the ecliptic are cut by the north point of the horizon (the latitude of the place being supposed to be north). Find those degrees in the circle of the signs on the horizon, and their corresponding

responding days of the month; and all the time between those days the sun will not set in that place."

" Again, observe what degree in the third and fourth quadrants of the ecliptic will be cut by the south point of the horizon, and the days answering; then the sun will be quite absent from the given place during the intermediate days; that day in the third quadrant shews when he begins to disappear; and that in the fourth quadrant shews when he begins to shine in the place proposed."

XIII. *The latitude of the place, and the day of the month, being given, to find the sun's declination, meridian altitude, right ascension, amplitude, oblique ascension, ascensional difference; and thence the time of rising and setting, with the length of the day and night.*

" Rectify the globe for the latitude of the place, and noon (viz. bring the place under the meridian); then the degree of the meridian over the sun's place is the declination. The meridian altitude is shewn by the degree the sun is above the horizon, and is equal to the sum or difference of the colatitude and declination. The sun's right ascension is that degree of the equator which is under the meridian."

“ Bring the sun’s place to the eastern part of the horizon ; then the amplitude is that degree of the horizon which is opposite to the sun. The oblique ascension is that degree of the equator which is cut by the horizon. The ascensional difference is the difference between the right and oblique ascensions. The ascensional difference converted into time, will give the time the sun rises before or after the hour of six, according as his amplitude is to the northward or southward of the east point of the horizon.”

XIV. The latitude of the place, day of the month, and the sun’s altitude being given, to find the azimuth and hour of the day.

Rectify the globe for the latitude of the place ; bring that place under the meridian ; fix the index to the 12 o’clock hour at noon ; and fix the clamp of the quadrant of altitude to the zenith. This done turn the globe, and move the quadrant of altitude until the sun’s place coincides with the given altitude on the graduated edge of the quadrant ; then that edge of the quadrant will cut the degrees of azimuth on the horizon Hb , reckoned from the north ; and at the same time the index will shew the hour of the day on the horary circle.

XV. *To dispose the celestial globe, so as to shew the actual appearance of the heavens at any given time and place.*

Rectify the celestial globe for the latitude of the place. Take the place of the sun for the given time, and bring it to the meridian; also set the index to the twelfth hour on the horary circle; then turn the globe until the index points to the given hour; then the globe will be situated like the celestial sphere, and every star upon the globe will point towards the real star in the heavens. The stars which are in the eastern half of the horizon, are rising; those in the western half, are setting; and those which are under the meridian, are culminating. If the quadrant of altitude be set to any given star, it will shew the altitude of that star, and its lower extremity will shew the azimuth of that star upon the horizon. If you turn the globe quite round, you will easily perceive those stars which are within the circle of perpetual apparition, as also those which are within the limits of perpetual occultation, viz. those which never go below the horizon, and those which never rise above the horizon, of the given place.

XVI. *To represent the situations of the planets.*

The celestial globe represents the fixed stars; but the planets cannot be delineated upon it, because the

latter are always shifting their places amongst the former. Therefore, when the planets are to be represented for any particular time, they must be stuck on occasionally; viz. little round pieces of paper, each having the mark or character of a particular planet on one side, and a bit of wax on the other (the philosophical instrument makers sell papers with the characters of the planets ready stamped for this purpose) are lightly stuck upon the globe in their proper places, which places are given in the ephemeris for every day of the year; then if you perform the preceding problem, you will have the representation of the planets in their proper places, as well as of the stars.

XVII. *To find the latitude and longitude of any given star.*

Place one extremity of the quadrant of altitude upon one of the poles of the ecliptic, viz. that pole which is nearer to the given star; and let its graduated edge fall upon the given star. Then the number of degrees which the quadrant shews to be between the ecliptic and that star, is the latitude of the same. The longitude is the degree on the ecliptic, which is cut at the same time by the quadrant of altitude.

XVIII. *To*

XVIII. *To find the right ascension and declination of a fixed star.*

Move the globe so as to bring the star to the meridian; then the degree of the meridian, which is just over it, is its declination; and the degree of the equator, which is cut by the meridian in that situation, is its right ascension.

XIX. *To find when a given star rises, sets, or culminates on any given place and day of the year.*

Rectify the globe for the latitude of the place, bring that place to the meridian, and set the index to the 12 o'clock hour at noon. Then move the globe until the given star coincides with the horizon on the eastern side, and the index will shew the time of its rising. If you turn the globe until the same star coincides with the horizon on the western side, the index will show the time of its setting, and if you bring the star to the meridian, the index will shew the time of its culminating.

The meridian altitude of the star, as also its oblique ascension and ascensional difference, are found in the same manner as for the sun. See problem the 13th.

XX. *To*

XX. *To find the apparent angular distance between two given stars.*

Lay the quadrant of altitude flat upon the globe, so that its graduated edge may pass over the two stars ; then the number of degrees that appear to be between those stars, is the angular distance sought.

ELEMENTS OF
NATURAL PHILOSOPHY.

PART V.

CONTAINING A FEW UNCONNECTED SUBJECTS.

A FEW particular subjects, useful to the student of natural philosophy, but which could not, with propriety, be inserted in the preceding volumes, will form the contents of the present or fifth part of this work; which, therefore, will be divided into sections that are quite unconnected with each other. The subject of aerostation will be briefly treated of in the first section. The next will contain an abridgment of facts and conjectures relative to meteors, and to the fall of stones from the atmosphere. The third section will exhibit a comparison of weights and measures. The last section will contain several additional facts, discoveries, observations, &c. relative to the different branches of natural philosophy, which have either been made, or come to notice, subsequent to the printing of the preceding parts of these elements.

SECTION

SECTION I.
OF AEROSTATION.

CHAPTER I.

DISCOVERY OF AEROSTATIC MACHINES.

THE art of flying, or of imitating the feathered tribe, has long been the object of earnest desire amongst men. The fanciful ideas of poets, the tales of amusement, the pretended discoveries of impostors, and the projects of mechanicians, relative to this art, have not been deficient in every age, and almost in every country. Cars, artificial birds, wings, and other mechanisms for flying, generally absurd, and always insufficient, have frequently been exhibited to the undistinguishing eye of the vulgar ; but the strictest enquiry into the accounts of authentic history, finds no mention of any success having ever attended the attempts of this nature previous to the year 1782. The recent discoveries made on the nature and properties of aërial fluids, by the industry of Black, Priestley, Cavendish,

Cavendish, and others, suggested, some time before the above-mentioned year, the practicability of forming machines sufficient to elevate considerable weights into the regions of the atmosphere. Mr. Cavendish was the first who ascertained the specific gravity of hydrogen gas, (then called inflammable air) and found it to be a vast deal lighter than common air. His experiments on this subject are published in the Philosophical Transactions for the Year 1766. In consequence of this discovery, it was natural to conclude, that if a large bladder, or bag, or envelope, were filled with hydrogen gas, and that if the weight of the envelope added to that of the contained gas, did not exceed the weight of an equal bulk of common air; the apparatus would mount up into the atmosphere for the same reason, and in the same manner as a cork would rise from the bottom towards the surface of the sea, supposing the cork were left at liberty in the former place.

Dr. Black of Edinburgh thought of filling the allantois of a calf with hydrogen gas, for the purpose of shewing at his lectures that such a body would ascend into the atmosphere; but he never put the project to the test of actual experience.

Early in the year 1782, I made the first attempts to elevate a bag full of hydrogen gas into the ambient air, and an account of my experiments was read at a meeting of the Royal Society on the 20th of June 1782.

The

The weight of hydrogen gas, the mean weight of atmospherical air, and the weight of the substance of which the vessel or bag is to be formed, being ascertained, it is easy from those particulars to determine by calculation, the dimensions of a vessel, which, when filled with hydrogen gas, might be lighter than an equal bulk of common air; for the surfaces of similar bodies are as the squares of their similar sides, or of their diameters, whilst their capacities are as the cubes of those sides or diameters; so that if the diameter of the globe A be 2 feet, its contents will be equal to 3 cubic feet nearly, and its surface will be equal to 6 square feet nearly; but if we increase the diameter of the globe, for instance, we make it 4 feet, then the contents or capacity will be 8 times what it was before, and its surface will be only 4 times what it was before; hence, let the thickness or weight of the substance, which forms the bag, be what it may, by increasing the diameter of the globe, one may always render it so that, when filled with hydrogen gas, the weight of the whole may be less than the weight of an equal bulk of atmospherical air.

Upon those principles, and for the above-mentioned purpose, I tried bladders, the thinnest and largest that could be procured. Some of them were cleaned with great care, removing from them all the superfluous membranes, and other matter that could be possibly scraped off; but notwithstanding

all those precautions, I found the largest and lightest of those prepared bladders to be somewhat too heavy for the purpose. Some swimming bladders of fishes were also found too heavy for the experiment; nor could I ever succeed to make any durable light balls by blowing hydrogen gas into a thick solution of gums, thick varnishes, and oil paint. In short, soap-balls, inflated with hydrogen gas, were the only things of this sort which I could succeed to elevate into the ambient air; and these, as far as I know, are the first sort of air balloons that were ever constructed.

After those trials I endeavoured to make bags or balloons of the finest sort of China paper, and to inflate them with hydrogen gas. The size of those bags was such, that had it been possible to fill them with the gas, they must have undoubtedly ascended into the atmosphere; but I had the mortification to find that though common air did not, yet the hydrogen gas passed through the pores of paper exactly like water through a sieve. After a variety of similar trials, being at last tired with the expence and loss of labour, I deferred the prosecution of such experiments to a future opportunity, and contented myself with giving an account of my attempts to the Royal Society.

Not long after this, news was received from France of the success which had attended an experiment of a similar nature made at Avignon, by Stephen Montgolfier; but the bag was not filled with hydrogen

hydrogen gas. It was filled with air rarefied by heat, which of course was lighter than an equal bulk of common air, of the usual temperature.

It is said that the two brothers, Stephen and John Montgolfier, began to think on the experiment of the aerostatic machine as early as the middle or latter end of the year 1782. The natural ascension of smoke, and of the clouds in the atmosphere, suggested the first idea; and to imitate those bodies, or to enclose a cloud in a bag, so that the latter might be elevated by the buoyancy of the former, was the first project of those celebrated gentlemen.

Stephen Montgolfier, the eldest of the two brothers, made the first aerostatic experiment at Avignon, towards the middle of November 1782. The machine consisted of a bag of fine silk, in the shape of a parallelopipedon, open on one side, the capacity of which was equal to about 40 cubic feet. Burning paper, applied to its aperture, served to rarefy the air, or to form the cloud; and, when sufficiently expanded, the machine ascended rapidly to the ceiling of the room. Thus the original discovery was made, which was afterwards confirmed, improved, and diversified by different persons in different parts of the world.

As soon as the news of Mr. Montgolfier's successful experiment reached Paris, the scientific persons of that capital, justly concluding that a similar experiment might be made by filling a bag with hydrogen gas, immediately attempted to verify the supposition.

Opposition. A subscription for defraying the expences which might attend the accomplishment of the project, was immediately opened; persons of all ranks ran with eagerness to sign their names, and the necessary sum was speedily raised. Messrs. Roberts were appointed to construct the machine, and Mr. Charles, professor of experimental philosophy, was appointed to superintend the work.

The obstacles, which opposed the accomplishment of this first attempt, were many; but the two principal difficulties were to produce a large quantity of hydrogen gas, and to find a substance sufficiently light to make the bag of, and at the same time impermeable to the gas. At last they constructed a globular bag of a sort of silk stuff, called *lutestring*; which, in order to render it impervious to the gas, was covered with a certain varnish, said to consist of dissolved elastic gum (*caoutchouc*). The diameter of this bag (which, from its ball-like shape, was called a *balloon*, and gave the name of *air-balloons* to those machines in general) was 12 feet 2 inches French, or about 13 feet English. It had only one aperture, like the neck of a bladder, to which a stop-cock was adapted. The weight of the balloon, when empty, together with the stop-cock, was 25 pounds.

The attempts to fill this bag commenced on the 23d of August 1783. But the operators met with many difficulties and disappointments, from inadvertencies, want of materials, want of precautions,

&c. so much so, that the accomplishment of the experiment, viz. the actual ascent of the balloon, did not take place before the 26th of the same month. On the morning of that day, the inflated balloon, having a small cord fastened to its neck, was permitted to rise only to the height of about 100 feet; but at five o'clock in the afternoon of the 27th, the balloon was disengaged from its fastenings, in the *Camp of Mars*, and rose majestically in the atmosphere before the eyes of a great many thousand spectators, and amidst a copious shower of rain. In about two minutes time it rose to the height of about 3123 feet. After remaining in the atmosphere only $\frac{3}{4}$ of an hour, this balloon fell in a field near *Gonesse*, a village about 15 miles from Paris. Its fall was attributed to a rupture that was found in it, and it was reasonably imagined that the expansion of the hydrogen gas, when the balloon had reached a much less dense part of the atmosphere, had burst it. When this balloon went up, it was found upon trial to be 35 pounds lighter than an equal bulk of common air.

Thus in the years 1782 and 1783, it was ascertained that bags full of hydrogen gas, or of rarefied common air (either of which is lighter than common air in its usual state), would ascend into the atmosphere, and that they might take up considerable weights. The principal experiments and improvements that were made in pursuance of those discoveries, will be mentioned in the next chapters; but

it will be previously necessary to make the following remark; namely, that this discovery, though in itself very remarkable, is far from amounting to the art of flying. The only effect that an aerostatic machine can produce, is to elevate, and to keep suspended, a certain weight in the atmosphere; but with respect to its progressive motion, it can only follow the course of the wind; nor has any method been discovered by means of which the balloon may be caused to deviate from that course in any useful degree.

C H A P. II.

PROGRESS OF AEROSTATION.

SOON after the success of the first attempt, the Montgolfiers repeated the experiment in the open air, and with bags of different sizes; but their first grand and public exhibition in the presence of a very respectable and numerous assembly, was made on the 5th of June 1783, with an aerostatic machine or bag that measured 35 feet in diameter. The machine inflated by the rarefied air, ascended to a considerable height, and then fell at the distance of 7668 feet from the original place of ascension. This experiment was described and recorded with great accuracy; and accounts of it were immediately forwarded to the court of France, to the academy of sciences, and almost as far as literary and entertaining correspondence could reach. The youngest Montgolfier, arriving at Paris not long after the above-mentioned public exhibition, was invited by the Academy of Sciences to repeat his singular aerostatic experiment; in consequence of which invitation, that gentleman began to construct an aerostatic machine of about 72 feet in height, at

the

the expence of the academy. But while this operation was going on, and as a successful experiment with an inflammable air balloon, had already been performed on the 27th of August, the project of making balloons became general, and those who wished to make the experiment on the smallest scale, soon calculated the necessary particulars, and found that the performance of the experiment was far from being either difficult or expensive. The baron de Beaumanoir, at Paris, by the suggestion of a Mr. Deschamps, was induced to try gold-beater's skin, and soon made a balloon by glueing several pieces of that skin together. This balloon was no more than 19 inches in diameter; it was of course easily filled with hydrogen gas, and on the 11th of September 1783, it mounted with rapidity into the atmosphere.

In consequence of this experiment of the baron, several persons endeavoured to make balloons still smaller than his, and some succeeded to make them of not more than six inches in diameter, which weighed between 30 and 40 grains. These were filled with the utmost facility, and served well enough to shew the experiment in a room; but as they were necessarily formed of skins extremely fine, consequently more porous than the usual thicker skins, the gas soon escaped from them, and the diminutive balloons hardly floated longer than a minute or two.

Mr. Montgolfier, having completed his large aerostat, agreeable to the desire of the academy, made a private experiment with it on the eleventh of September, which succeeded. On the following day another experiment was made with the same, before the commissaries of the academy, and a vast number of other spectators; but this experiment, in consequence of a violent shower of rain, was attended with partial success; and the aerostat was thereby considerably damaged.

Another similar machine was speedily constructed by the same Mr. Montgolfier, with which the experiment was performed at Versailles on the 19th of September, before the royal family of France, and an innumerable concourse of spectators. The preparation for filling the machine with rarefied air consisted of an ample scaffold, raised some feet above the ground; in the middle of which there was a well or chimney, about 16 feet in diameter; in the lower part of which, near the ground, the fire was made. The aperture of the aerostat was put round the chimney or well, and the rest of it was laid down over the well and the surrounding scaffold. As soon as the fire was lighted, the machine began to swell, acquired a convex form, stretched itself on every side, and in 11 minutes time, the chords being cut, the machine ascended, together with a wicker basket or cage, which was fastened to it by means of a rope, and in which a sheep, a cock, and a duck,

duck had been placed. These were the first animals that ever ascended with an aerostatic machine. The apparatus rose to the height of about 1440 feet, and remained in the atmosphere during 8 minutes ; then fell at the distance of about 10200 feet from Versailles, with the animals safe in the basket.

After the success of this experiment with the animals, &c., and when ten months had scarcely elapsed since Mr. Montgolfier made his first experiment of this sort, Mr. Pilatre de Rozier publicly offered himself to be the first adventurer in the newly invented machine. His offer was accepted, his courage remained undaunted, and on the 15th of October 1783, he actually ascended into the atmosphere, to the astonishment of a gazing multitude. The aerostat with which he ascended, was of an oval shape, its height being about 74, and its horizontal diameter 48 feet. The aperture or lower part of the machine had a wicker gallery about 3 feet broad, with a balustrade both within and without, about 3 feet high. The inner diameter of this gallery, and of the neck of the machine which passed through it, was nearly 16 feet. In the middle of this aperture an iron grate, or brazier, was supported by means of chains, which came down from the sides of the machine. In this construction, when the machine was up in the air, with a fire lighted in the grate, it was easy for a person who stood in the gallery, and had fuel with him, to keep up the fire

in the opening of the machine, by throwing the fuel on the grate through port-holes made in the neck of the machine. By which means the machine might be kept up as long as the person in its gallery thought proper, or till he had fuel to supply the fire with.

After this Mr. de Rozier repeated the experiment with the same and with other similar machines, and his success shewed to the world that human beings might safely ascend with those machines. In fact, the experiment was afterwards repeated by a variety of people of both sexes; and it is remarkable, that in those aerial excursions, no giddiness, nor sickness was experienced by the travellers.

The first aerial voyage, with an inflammable air balloon, was performed subsequent to the above-mentioned experiment, viz. on the 1st of December 1783. Mr. Charles and Mr. Robert, who had constructed the first balloon of this sort, as has been mentioned in this chapter, were the first adventurers. The balloon was globular, its diameter being $27\frac{1}{2}$ feet. A net went over the upper hemisphere, and was fastened to a hoop, which went round the middle of the balloon. From this hoop ropes proceeded, and were fastened to a boat which swung a few feet below the balloon. In order to prevent the bursting of the machine by the expansion of the gas, in an elevated region, a valve was made on the upper part of it, which, by pulling a string, would

would open and let out part of the gas. There was likewise a long silken pipe, through which the balloon was filled.

The apparatus for filling it consisted of several wooden casks placed round a large tub full of water, every one of which had a long tin tube, which terminated under a vessel or funnel, that was inverted into the water of the tub. A tube then proceeded from this funnel, and communicated with the balloon, which stood just over it. Iron filings and diluted sulphuric acid were put into the casks; and the gas which was extricated from those materials, passed through the tin tubes, then through the water of the tub, and, lastly, through the tube of the funnel into the balloon.

When Messrs. Charles and Robert placed themselves in the boat, they had with them proper philosophical instruments, provisions, clothing, and some bags full of sand, by way of ballast. With this preparation they ascended at $\frac{1}{4}$ after one o'clock. At the time they went up, the thermometer, Fahrenheit's scale, stood, at 52° , the mercury in the barometer stood at 27 inches, from which they deduced their altitude to be nearly 600 yards. During the rest of their voyage, the mercury in the barometer moved generally between 27 inches, and 27,65; rising and falling according as part of the ballast was thrown out, or some gas escaped from the balloon. The thermometer stood generally between 53° and 57° .

Soon

Soon after their ascent, they remained stationary for a short time; then they went horizontally, in the direction of N. N. W. They crossed the Seine, and passed over several towns and villages, to the great astonishment of the inhabitants, who did not expect to see such a spectacle, and who had perhaps never heard of this new sort of experiment. This delicious aerial voyage lasted one hour and three quarters. At last they descended in a field near *Nesle*, a small town, about 27 miles distant from Paris; so that they had gone at the rate of about 15 miles per hour, without feeling the least inconvenience; and the balloon underwent no other alteration, than what was occasioned by the dilatation and contraction of the gas, according to the vicissitudes of heat and cold.

The success of the experiments, which have been already described, spread a universal enthusiasm throughout Europe, and the aerostatic experiments, both in the diminutive, and in the large way, were soon undertaken in different countries. The first experiment of this sort was shewn in London on the 25th of November 1783, with an inflammable air-balloon of 10 feet in diameter, by Count Zambeccari, an Italian gentleman. The first aerial voyage undertaken in England, with an inflammable air-balloon, of 33 feet in diameter, made of oil silk, was performed by Mr. Lunardi, another Italian, on the 15th of September 1784.

During

During the above-mentioned and the three following years, the daily papers, and other periodical publications, gave frequent accounts of aerial voyages having been performed in various parts of Europe, and even in America. The small inflammable air-balloons were exhibited at public lectures, and almost in every private assembly. Small aerostatic machines of fine paper, to be elevated by rarefied air, were publicly sold in great plenty, some of them even for the trifling price of a single shilling; and as these formed a pretty spectacle in the night time, on account of the burning combustible which was appended to their aperture for the purpose of rarefying the air, a great many of them were every night seen to move over London, in the direction of the wind.

The simple construction of those diminutive aerostatic machines for rarefied air, is as follows. Pieces of that sort of fine paper, which is sold in London under the name of *fan paper*, or *silver paper*, are cut in an oblong shape, gradually tapering at the two extremities. Those pieces are stuck together successively, edge to edge, so as to form a globular paper bag. Part of this globe is then cut off so as to leave a circular aperture of about 10 or 12 inches in diameter, to the edge of which a fine iron or brass wire is adapted by way of strength, and is fixed by turning and pasting a little of the edge of the paper over it. Two straight and pretty thin iron wires

are

are also to be placed across each other in the above-mentioned aperture, and their extremities are fastened to the circular wire, which goes round the aperture. This cross of wire serves to support the fuel, viz. in the middle of it a ball of spun wool is fastened also by means of fine iron wire, which when the experiment is to be performed, must be soaked in spirit of wine, or in spirit of turpentine, and then lighted, whilst an assistant holds the balloon (which need not be larger than a yard in diameter) by the top. The combustion immediately swells the balloon with rarefied air, and when this has taken place, the assistant relinquishes his hold, and the balloon mounts, &c.

The aerostatic experiments, originally undertaken for mere curiosity, soon became the object of gain, and almost all the aerial voyages were undertaken for the sake of profit. Persons entirely unacquainted with any branch of natural philosophy, offered to make aerial voyages, and to perform experiments in the atmosphere, for which they were not in the least qualified, and with instruments, of which they did not understand the use.

In consequence of this practice, the aerial voyages, though numerous, have not however been productive of much information. Yet the variety of situations, of machines, and of accidental circumstances, added to the observations of able persons, have un-
doubtedly

doubtedly shewn a variety of facts which deserve the attention of the philosopher. Therefore omitting the particular account of all the useless voyages, I shall only mention those which have been attended with any particular and remarkable occurrence that may appear capable of establishing some useful fact, or to remove some preconceived objection.

The Abbé Bertholon seems to have been the first person who made use of small balloons for exploring the electricity of the atmosphere, which must be a very useful method, particularly in calm weather, when electrical kites cannot be raised. He raised several air-balloons, to which long and slender wires were attached; the lower extremity of the wire being fastened to a glass stick or other insulated stand, whereby he obtained from such wires electricity enough to shew its kind, and even sparks.

On the 13th of January 1784, an aerostatic machine, of about 37 feet in height, and 20 in diameter, was launched from the castle *de Pisançon*, near Romans, in Dauphiné. It rose with surprising velocity, and as the wind was north, it went southward; but when the machine had ascended to the height of about 1300 feet, it went back towards the north, and in less than five minutes time it ascended to the height of above 6000 feet. In less than ten minutes it fell at the distance of nearly four miles.

This experiment, and indeed the similar success of many others, shews that there frequently are in

the

the atmosphere currents of air in different, and sometimes quite opposite, directions; this, however, is far from being always the case. If different currents could always be met with at different heights above the surface of the earth, the method of guiding balloons would be extremely easy; for the aerial traveller would have nothing more to do than to place himself in the favourable current, which he may do by throwing out either some ballast or some inflammable gas, according as he wishes to go higher or lower.

The largest aerostatic machine ever made, and filled with rarefied air, was launched at Lyons on the 19th of January 1784; with not less than seven persons in its gallery, amongst whom were Joseph Montgolfier, and Pilatre de Rozier. The height of this machine was about 131 feet, and its horizontal diameter about 104. Its weight, when it ascended, including passengers, gallery, &c. was about 1600 pounds.

This machine, having suffered considerably in consequence of previous trials, was by no means in a perfect state when it ascended; nevertheless, when the action of the fire had inflated it, the seven persons, who in spite of every remonstrance had placed themselves in the gallery, refusing to relinquish their places, the machine was released from the ropes which confined it, and ascended majestically into the atmosphere. At a certain height, the wind turned it towards the west; but it afterwards proceeded

ceeded east-south-east, ascending, at the same time, until it was at least 1000 yards high.

The effect which was produced on the spectators by this spectacle, is described as the most extraordinary that was ever occasioned by any production of human invention. It was a mixture of the strangest nature imaginable. Vociferations of joy, shrieks of fear, expressions of applause, the sound of martial instruments, and the discharge of mortars, produced an effect more easily imagined than described. Some of the spectators fell on their knees, and others elevated their suppliant hands to the heavens; some women fainted, and many wept; but the confident travellers, without shewing the least appearance of fear, were continually waving their hats out of the gallery.

At about 15 minutes after the ascent, the wind shifted again; but it was so feeble that the machine stood almost stationary for about four minutes. Unfortunately about this time a rent was made in the machine, which occasioned its descent; and when it came within 600 feet of the ground, its velocity was considerably accelerated. It is said that no less than 60000 persons, besides the *Marechaussee*, ran to the spot, with the greatest apprehension for the lives of the adventurous aerial travellers. They were immediately helped out of the gallery, and luckily no person had received any hurt, except Mr. Montgolfier an insignificant scratch. The machine was torn in several places, besides a vertical rent of upwards

upwards of 50 feet in length ; which clearly shews how little danger is to be apprehended from the use of those machines, especially when they are properly constructed and judiciously managed.

On the 5th of April 1784, Messrs. de Morveau, and Bertrand, at Dijon, ascended with an inflammable air-balloon, which, according to their barometrical observations, seems to have reached the extraordinary height of 13000 feet, when the cold was so great, that the thermometer stood at 25°.

On the 15th of July, the duke de Chartres, the two brothers Roberts, and another person, ascended with an inflammable air-balloon, from the park of St. Cloud, at 52 minutes past seven in the morning. This balloon was of an oblong form, its dimensions being 55 feet by 34. It ascended with its greatest extension nearly horizontal ; and after remaining in the atmosphere about 45 minutes, it descended at a small distance from its place of ascension. But the incidents that occurred during this aërial excursion, deserve particular notice, as nothing like it had happened before to any of the aërial travellers. This machine contained an interior small balloon, filled with common air ; by which means it was supposed that they might regulate the ascent and the descent of the machine, without any loss of the hydrogen gas, or of ballast. The boat was furnished with a helm and oars, that were intended to guide the machine, but which were in this, as well as in every other similar, attempt found to be quite useless.

On

On the level of the sea, the mercury in the barometer stood at 30,25 inches, and at the place of ascension it stood at 30,12. Three minutes after its ascension, the balloon was lost in the clouds, and the aerial voyagers lost sight of the earth, being involved in a dense vapour. Here an unusual agitation of the air, somewhat like a whirlwind, in a moment turned the machine three times from the right to the left. The violent shocks which the adventurers suffered, prevented their using any of the means prepared for the direction of the machine; and they even tore away the silk stuff of which the helm was made. Never, said they, a more dreadful scene presented itself to any eye, than that in which they were involved. An unbounded ocean of shapeless clouds rolled beneath, and seemed to forbid their return to the earth, which was still invisible. The agitation of the balloon became greater every moment. They cut the cords which held the interior balloon, which consequently fell on the bottom of the external balloon, just upon the aperture of the tube that went down to the boat, and stopped up that communication. At this time the thermometer was a little above 44°. A gust of wind from below drove the balloon upwards, to the extremity of the vapour, where the appearance of the sun shewed them the existence of nature; but now both the heat of the sun, and the diminished density of the atmosphere, occasioned such a dilatation of the gas, that the bursting of the balloon

was apprehended ; to avoid which, they introduced a stick through the tube, and endeavoured to remove the inner balloon, which stopped its aperture within the external balloon ; but the dilatation of the gas pressed the inner balloon so forcibly against that aperture, as to render every attempt ineffectual. During this time, they continually ascended, until the mercury in the barometer stood not higher than 24,36 inches, which shewed their height above the surface of the earth to be about 5100 feet. In these dreadful circumstances they thought it necessary to make a hole in the balloon, in order to give exit to the gas ; and accordingly the duke himself, with one of the spears of the banners, made two holes in the balloon, which opened a rent of about seven or eight feet. In consequence of this, they then descended rapidly, seeing at first no object either on earth or in the heavens ; but a moment after, they discovered the fields, and that they were descending straight into a lake, wherein they would inevitably have fallen, had they not quickly thrown over about 60 pounds weight of ballast, which occasioned their coming down at about 30 feet beyond the edge of the lake. Notwithstanding this rapid descent, none of the four adventurers received any hurt ; and it is remarkable, that out of six glass bottles full of liquor, which were simply laid down in the boat, one only was found broken.

In the course of the summer 1784, two persons, viz. one in Spain, and another near Philadelphia, in America,

America, were very nearly losing their lives by going up with rarefied-air machines. The former, on the 5th of June, was scorched by the machine taking fire, and was hurt by the subsequent fall, so that his life was long despaired of. The latter, having ascended a few feet, was wasted by the wind against the wall of a house, and some part of the machinery was entangled under the eaves, from which he could not extricate it. At last the great ascensional power of the machine broke the ropes or chains, and the man fell from the height of about 20 feet. The machine presently took fire, and was consumed.

I shall now relate one of the most remarkable aerial voyages that were ever made with an aerostatic machine. It is the crossing of the English channel in an inflammable air-balloon of 27 feet in diameter. The enterpriser of this dangerous voyage was Mr. Blanchard, an intrepid Frenchman, who had already made five other aerial voyages with the very same balloon, both in France and in England. Mr. Blanchard is remarkable for having made a greater number of aerial voyages in England, in France, and elsewhere, both before and after the crossing of the English channel, than any other enterpriser recorded in the history of aerostation. The only trial worth remarking which Mr. Blanchard appears to have made in his aerial excursions, is the ineffectual use of oars, wings, &c. for directing the balloon. Profit seems to have been

the principal if not the sole object of his numerous excursions.

On Friday the 7th of January 1785, being a fine clear morning, after a sharp frosty night, and the wind being about N. N. W. though hardly perceptible, Mr. Blanchard, accompanied by Dr. Jeffries, an American gentleman, departed in the old balloon of 27 feet diameter, from Dover Castle, directing their course for the French coast. Previous to the departure, the balloon, with the boat, containing the two travellers, several necessaries, and some bags of sand for ballast, were placed within two feet of the brink of the perpendicular cliff before the castle. At one o'clock the intrepid Blanchard desired the boat, &c. to be pushed off; but the weight being too great for the power of the balloon, they were obliged to throw out a considerable quantity of ballast, in consequence of which they at last rose gently and majestically, though making very little way, with only three bags of ballast of ten pounds weight each. At a quarter after one o'clock, the barometer, which on the cliff stood at 29,7, was fallen to 27,3; and the weather proved fine and warm. Dr. Jeffries describes with rapture the prospect which at this time was before their eyes. The country to the back of Dover, interspersed with towns and villages, of which they could count 37, made a beautiful appearance. On the other side the breakers, on the Goodwin Sands, appeared formidable.

formidable. Upon the whole, they enjoyed a view perhaps more extended and diversified than was ever beheld by mortal eye. The balloon was much distended, and at 50 minutes past one o'clock it was descending, in consequence of which they were obliged to throw out one bag and a half of sand. They were at this time about one third of the way from Dover, and had lost distinct sight of the castle. Not long after, finding that the balloon was descending very fast, all the remaining ballast was thrown over, as also a parcel of books, in consequence of which the balloon rose again. They were now at about half way. At a quarter past two o'clock the rising of the mercury in the barometer shewed that they were descending; in consequence of which the remaining books were thrown into the sea. At 25 minutes after two, they were at about three-fourths of the way, and an enchanting view of the French coast appeared before their eyes; but the lower part of the balloon was collapsed, owing to the loss or condensation of the gas, and the machine was descending, which obliged them to throw over provisions for eating, the oars or wings of the boat, and other articles. "We threw away," said Dr. Jeffries, "our only bottle, which, in its descent, cast out a steam like smoke, with a rushing noise; and when it struck the water, we heard and felt the shock very perceptibly on our car and balloon." But the balloon still approaching the sea,

they began to strip and cast away their clothes. They even intended to fasten themselves to the cords and cut the boat away, as their last resource; but at this critical point, they had the satisfaction to observe that they were rising; their distance from the French shore, which they were approaching very fast, was about four miles. Fear was now vanishing apace; the French land shewed itself every moment more beautiful, more distinct, and more extended; Calais, and above 20 other towns and villages, were clearly distinguished. Exactly at three o'clock, they passed over the high grounds about midway between Cape Blanc and Calais; and it is remarkable that the balloon at this time rose very fast, and made a magnificent arch; probably owing to the heat of the land, which rarefied in some measure the hydrogen gas. At last they descended as low as the tops of the trees in the forest of Guinnes, and opening the valve for the escape of the gas, they soon after descended safe to the ground, after having accomplished an enterprise which will probably be recorded to the remotest posterity.

The following is the melancholy account of an experiment which was attended with the death of two aërial adventurers, one of whom was Mr. de Rozier, the first person that ever ascended with an aerostatic machine.

Mr. Pilatre de Rozier, desirous of diversifying and improving the new method of travelling through

the

the air, formed a plan of combining the two species of aerostatic machines, from which he expected to render their joined buoyancy more lasting, and of course more useful. His plan was to place an inflammable air-balloon at top, and to affix to it, by means of ropes, a rarefied air-balloon, so that a space of several feet might intervene between the two. The passenger or passengers were intended to take their places in the gallery of the lower machine, whence they could regulate the fire, and might, by a proper management of the fuel, elevate or depress the whole, without the necessity of losing any inflammable gas from the upper balloon.

Accordingly this plan was put in execution. The upper or the inflammable air-balloon was of varnished silk, lined with a fine membrane, like gold-beaters' skin. The other aerostat was of strong linen. On the 15th of June 1785, at seven o'clock in the morning, every thing being ready, Mr. Pilatre de Rozier and a Mr. Romain, placed themselves in the gallery of the aerostat, with plenty of fuel, instruments, and other necessary articles; and rose in the atmosphere. The machine seemed to take the best possible direction, but the wind being both feeble and shifting, they changed their direction two or three times; but when they were at a considerable height, and not above $\frac{3}{4}$ of a mile from the place of ascension, the machine appeared to be in flames, and presently the whole was precipitated

down to the ground. The unfortunate adventurers were instantly killed, their bones disjointed and dreadfully mangled by the tremendous fall.

How the inflammable air took fire, is variously conjectured; but it is natural to suppose, that the sparks of fire must have flown from the lower to the upper or inflammable air-balloon. On the ground, the bag of the upper balloon was in great measure burned or scorched; that of the lower was entire.

Omitting the various uninteresting, though not numerous, aerial voyages undertaken in various parts of the world, during the 17 years subsequent to the above-mentioned dreadful accident of Pilatre de Rozier and Mr. Romain, I shall only add the account of two aerostatic experiments lately performed in England by Mr. Garnerin, a French aeronaut. The first of those is remarkable for the very great velocity of its motion; the second for the exhibition of a mode of leaving the balloon, and of descending with safety to the ground.

On the 30th of June 1802, the wind being strong, though not impetuous, Mr. Garnerin and another gentleman ascended with an inflammable air-balloon from Ranelagh-gardens on the south-west of London, between four and five o'clock in the afternoon; and exactly in three quarters of an hour they descended near the sea, at the distance of four miles from Colchester. The distance of that place from Ranelagh

Ranelagh is sixty miles; therefore they travelled at the astonishing rate of 80 miles per hour. It seems that the balloon had power enough to keep them up four or five hours longer, in which time they might have gone safe to the continent; but prudence induced them to descend when they saw the sea not far off.

The singular experiment of ascending into the atmosphere with an inflammable air-balloon, and of descending with a machine called a *parachute* (*the breaker of a fall, or of a shock*) was performed by Mr. Garnerin on the 21st of September 1802. He ascended from St. George's Parade, North Audley Street, and descended safe into a field near the Small-Pox Hospital at Pancras.

The balloon was of the usual sort, namely, of oiled silk, with a net, from which ropes proceeded, which terminated in, or were joined to, a single rope at a few feet below the balloon. To this rope the parachute was fastened in the following manner.

The reader may easily form to himself an idea of this parachute, by imagining to see a large umbrella of canvas of about 30 feet in diameter, but destitute of the ribs and handle. Several ropes of about 30 feet in length, which proceeded from the edge of the parachute, terminated in a common joining, from which shorter ropes proceeded, to the extremities of which a circular basket was fastened, and

in

in this basket Mr. Garnetin placed himself. Now the single rope, which has been said above to proceed from the balloon, passed through a hole in the centre of the parachute, also through certain tin tubes, which were placed one after the other in the place of the handle or stick of an umbrella, and was lastly fastened to the basket; so that when the balloon was in the air, by cutting the end of this rope next to the basket, the parachute, with the basket, would be separated from the balloon, and, in falling downwards, would be naturally opened by the resistance of the air. The use of the tin tubes was to let the rope slip off with greater certainty, and to prevent its being entangled with any of the other ropes, as also to keep the parachute at a distance from the basket.

The balloon began to be filled at about two o'clock. There were 36 casks filled with iron turnings, and diluted sulphuric acid, for the production of the hydrogen gas. These communicated with three other casks or general receivers, to each of which was fixed a tube that emptied itself into the main tube attached to the balloon.

At six, the balloon being quite full of gas, and the parachute, &c. being attached to it, Mr. Garnetin placed himself in the basket, and ascended majestically amidst the acclamations of innumerable spectators. The weather was the clearest and pleasantest imaginable; the wind was gentle and about west

west by south; in consequence of which Mr. Garnerin went in the direction of about east by north. In about eight minutes time, the balloon and parachute had ascended to an immense height, and Mr. Garnerin, in the basket, could scarcely be perceived. While every spectator was contemplating the grand sight before them, Mr. Garnerin cut the rope, and in an instant he was separated from the balloon, trusting his safety to the parachute.

At first, viz. before the parachute opened, he fell with great velocity; but as soon as the parachute was expanded, which took place a few moments after, the descent became very gentle and gradual. In this descent a remarkable circumstance was observed; namely, that the parachute with the appendage of cords and basket, soon began to vibrate like the pendulum of a clock, and the vibrations were so great, that more than once the parachute, and the basket with Mr. Garnerin, seemed to be on the same level, or quite horizontal, which appeared extremely dangerous: however, the extent of the vibrations diminished as he came pretty near to the ground. On coming to the earth, Mr. Garnerin experienced some pretty strong shocks, and when he came out of the basket, he was much discomposed; but he soon recovered his spirits, and remained without any material hurt.

As soon as the parachute, &c. was separated from the balloon, the latter ascended with great rapidity, and,

and, being of an oval form, turned itself with its longer axis horizontal.

If it be asked, what use can be made of the parachute, we can only answer, that it may be used as a precaution; viz. it may be attached to a balloon; and, in case the balloon should take fire or burst, the aeronaut might descend by the assistance of the parachute.

For farther particulars relative to the discovery of aerostatic machines, and of the various aerial voyages made soon after that discovery, as also for the practical part of the subject, see my *History and Practice of Aerostation*.

C H A P. III.

FACTS ESTABLISHED BY THE VARIOUS AEROSTATIC EXPERIMENTS.

TWENTY years are now fully elapsed since the aerostatic machines were first invented. The experiments in this new branch of natural philosophy have been frequently repeated, and often diversified. Few accidents have happened; but a vast number of aërial voyages have perfectly succeeded; and if it be considered that most of the adventurers have been persons little, if at all, skilled in philosophy or mechanics, we may with more propriety wonder that a greater number of disagreeable accidents has not happened. The similarity with which a vast number of such experiments has been performed, might enable the historian to describe a great many aërial voyages with the very same words, saving the change of date, and of a few other uninteresting particulars; we have, therefore, selected for the preceding chapter, such experiments as were attended with more remarkable results, whence the reader may derive a competent idea of the whole subject; and, in order

to

to assist as much as possible the formation of an idea sufficiently comprehensive of aerostation in general, we shall subjoin a statement of the most remarkable particulars that have been deduced from the results of experiments.

Two sorts of aerostatic machines have been discovered, viz. one to be filled with rarefied common air; the other to be filled with hydrogen gas (inflammable air). The effect of those machines is to lift up a certain weight into the atmosphere, wherein they rise to a greater or less height, according as they are more or less light than an equal bulk of common air. The first sort may be filled either by applying a fire close to its aperture, only before it goes up, which introduces a quantity of heated and rarefied air into the machine; or by adapting a fire-place to the neck of the machine, wherein the fire may be continued. In the first case, the aerostat remains only a short time in the atmosphere, viz. until the enclosed air cools, and becomes nearly of the same temperature as the circumambient air. In the second case the machines remain in the air as long as the fire is continued in the fire-place. The inflammable air-balloons remain in the air as long as a sufficient quantity of gas remains within them, which amounts in general to several hours, according to the quality of the stuff which forms the envelope.

The air rarefied as much as is practicable in such machines, is by no means so light as an equal bulk of hydrogen gas; hence, in order to support a given weight,

weight, an aerostatic machine, with rarefied air, must be larger than one with the gas. In order to support a single man of a mean size, a machine of the first sort ought to be about 30 feet in diameter; of the latter sort it will just do if the diameter be 20 feet.

In the atmosphere, the machine is at rest with respect to the surrounding air; hence it moves with that air; and hence the aeronauts feel no wind, nor any disturbance whatever, excepting in the above-mentioned case of the duke of Chartres; so much so, that they hear their least whispers with great distinctness, and it is remarkable that they feel no sickness or giddiness.

Several attempts have been made to direct the aerostatic machines out of the direction of the wind; but the contrivances have not met with any useful effect. The oars or wings, or such other mechanisms, intended to let the balloon move in a direction either contrary or oblique to that of the wind, have a very trifling effect; for instance, in a perfect calm, by the management of the above-mentioned wings, the machine might perhaps be moved at the rate of about half a mile per hour; then if the balloon, with a moderate breeze, move in a certain direction at the rate of about 30 miles per hour, it is evident that the action of the wings, when managed by one or two strong men, can hardly cause the deflection of the balloon from the direction of the wind in any sensible or useful degree.

What

What is the use, and what is the advantage, which the human species has derived, or is likely to derive, from the use of such machines, is an important question, to which as much attention should be paid as the state of the subject will admit of. During the first five or six years after the discovery, aerostatic machines excited an unparallelled enthusiasm throughout the civilized part of the world; persons of every rank eagerly sought to learn, to see, and to promote, the new discovery. Liberal subscriptions have assisted the enterprisers in almost every part of Europe and elsewhere; and perhaps an indifferent eye was never turned away from the exhibition of aerostatic experiments; yet independent of the pleasure which arises from a view or from the performance of such experiments, the human species has not derived any real advantage from the subject of aerostation. The expence, the time, and the trouble, which attend the construction, and the use of aerostatic machines, will perhaps ever prevent their being used as vehicles for travellers, especially considering that they can only move in the direction of the wind, which is frequently unfavourable, and always uncertain. Nevertheless in certain cases the use of balloons might be not only advantageous, but the only one practicable. During the late wars on the continent, it is said that the French made great use of balloons for reconnoitring the position of the adjacent country, or of the armies of their enemies. For this purpose, an inflammable air-balloon,

balloon, just sufficient to hold a single person, was fastened by a slender cord, and was permitted to rise not higher than three or four hundred feet, from which elevation the observer could easily form a plan of the country, or army, &c.

With respect to philosophical experiments in the atmosphere, little has been done by means of balloons; nor can much be expected to be done, unless persons of real knowledge and ability be employed and assisted in the enterprise.

It has been generally observed by aeronauts, that during the absence of the sun, the cold in the upper regions is considerable; but the direct rays of the sun produce much heat, which is rendered more likely by considering that the air about the aeronaut and balloon, is respectively at rest, and cannot dissipate the heat, as the wind does with respect to a person who stands on a mountain. The cold of the atmosphere increases, *cæteris paribus*, with the increase of distance from the earth; but the greatest height, to which aeronauts have ascended, though not precisely known, seems to be about 16000 feet. They seldom speak of having felt any uneasiness with respect to respiration, or other animal function.

I was told of a magnetic experiment said to have been made by three gentlemen, who ascended with an inflammable air-balloon from the vicinity of London, on the 3d of June 1785. They observed that a magnet, when in the atmosphere, would not

hold nearly as much weight as it did when it stood as usual on the surface of the earth.

Relative to the construction of aerostatic machines, the following particulars may be of use to those who are desirous of performing such experiments.

The two sorts of aerostatic machines have their peculiar advantages and disadvantages. Those with rarefied air are less expensive, though they must, *ceteris paribus*, be larger than those of the other sort. The former, if small, are made of paper; and when they are required to lift up considerable weights, such as men and other things, they are made of strong coarse linen, which has sometimes been lined with paper. When made, it would be not improper to dip them once in a solution of alum, and then to dry them; in that state being less liable to take fire. But the greatest objection to the use of such aerostats, is, that they require a considerable quantity of fuel, which, beyond a certain measure, cannot be admitted into the gallery; in fact, the aerial voyages that have been made with this sort of machines, have all been of short duration. Besides, the necessity of keeping up the fire is a continual source of trouble and of danger. However, as the materials and the fuel for the construction and use of such machines, may be found almost every where and at a moderate rate, their use may justly be recommended for experiments, especially where the materials necessary for the other sort of balloons cannot be procured.

The inflammable air-balloons are considerably more expensive. Nothing has been found more advantageous for their envelope, than oiled, or rather varnished silk; which is by no means a cheap article, especially in England. Respecting the production of the gas, the only method practicable for this purpose, is to use the iron turnings, which may be had at various iron manufactories, and diluted sulphuric acid. I do not proceed to state in this place the utmost quantity of hydrogen gas that a chemist can extract in his laboratory, from a given quantity of iron and acid; since that precision of operation cannot be expected with large processes, such as are necessary to fill a balloon in the open air, and with a coarse apparatus; but I shall state one of the most economical operations for filling a balloon, which came to my notice when Mr. Blanchard made an aerial excursion with a balloon of only 20 French feet (about 21 English) in diameter, from which the reader may judge of similar operations. That balloon was completely filled by the use of 1000 pounds weight of iron turnings, and 1250 pounds weight of sulphuric acid. The iron, however, was too much, and 900 pounds weight of it might have sufficed. The capacity of that balloon was 4849 cubic feet, English measure. The apparatus for the operation of filling it consisted of only four casks, each having a tube which communicated with a common receiver inverted in water, whence the gas was conveyed into the balloon, which was suspended

over it. The capacity of each cask was 120 gallons. The operation lasted between 10 and 11 hours.

Notwithstanding the much greater expence and trouble which attend the construction and the filling of this sort of balloons, it must be acknowledged that they are by far the most useful and most pleasant aërial vehicles. Once full, they require very little attendance ; and, by a proper management of the ballast, the aeronauts may keep them up for a considerable time. A balloon of this sort, not above 36 feet in diameter, if properly constructed, properly filled, and dexterously managed, might keep up in the atmosphere two persons of moderate weight, perhaps longer than 30 hours—time sufficient, with a pretty good wind, to cross the whole continent of Europe.

SECTION II.

OF METEORS; AND OF THE STONY SUBSTANCES,
WHICH, AT VARIOUS TIMES, ARE SAID TO HAVE
FALLEN FROM THE SKY.

GENERAL and frequent observation shews that fogs, mists, dews, rain, snow, and hail, fall more or less copiously from the atmosphere upon the surface of the earth; and that all those bodies consist of the same substance, namely, water, either in the state of steam, or of fluid water, or, lastly, under a congealed form.

Though we cannot rightly understand the mechanical operation by which water is converted into vapour, and *vice versa*, yet it is in general known, that water reduced into vapour, ascends in the atmosphere, and forms the clouds; also that afterwards the clouds are resolved into water, which, according to its quantity, and according to the various temperatures or other states of the atmosphere, descends, under various forms, on the surface of the earth.

The electricity, which experiments shew (as has been mentioned in the preceding volume) to be produced at the time of the conversion of water into

vapour, and likewise at the conversion of vapour into water, seems sufficient to account for the thunder and lightning, which pretty often accompany the clouds. But independent of those effects, there have been observed in the atmosphere two other sorts of phenomena, which the present state of philosophical knowledge is not sufficient to explain; nor can even offer an hypothesis sufficiently plausible for their explanation. I mean, first, those luminous apparitions generally known under the name of *meteors*; and, 2dly, the stony substances which at various times are said to have fallen on the surface of the earth.

The concurrence of several observations seems to shew, that there is a considerable connection between those phenomena, and it is on this account that a compendious examination of both has been placed in this same section.

CHAPTER I.

OF METEORS.

THE sudden apparition and short duration of luminous bodies in the sky, of different size, and generally of quick motion, seems to have been observed from time immemorial; for we find accounts of such apparitions in a variety of ancient authors, who, according to the different shapes of those phenomena, gave them the names of *faces*, or *globi*, or *flamme*, &c. and in latter times they are denoted by the different names of *shooting-stars*, *balls of fire*, or *meteors*.

Not much information can be derived relative to those phenomena from ancient accounts, which are mostly too short and incorrect; or they are involved in mystery, and distorted by exaggerated expressions; but the observations of latter times, especially those which come within our remembrance, afford much more satisfactory information. The most magnificent meteor of latter times, was seen on the 18th of August 1783; and as I had the good fortune to observe it from a most eligible situation,

viz. from the terrace of Windsor castle ; I shall transcribe the account which I sent to the Royal Society ; from which the reader may form a competent idea of meteors in general. I shall then subjoin the observations made on other meteors, whence the similarity or the dissimilarity of particular circumstances may be easily seen.

The following account was formed from the concurring observations of a few intelligent friends with whom I then happened to be in company, every one of whom made some particular remark,

On the evening of the 18th of August 1783, we were standing upon the north-east corner of the above-mentioned terrace. The weather was calm, and agreeably warm ; the sky was serene, excepting very near the horizon, where a haziness just prevented the appearance of the stars. A narrow, ragged, and oblong cloud stood on the north-west side of the heavens, reaching from the extremity of the haziness, which rose as high as 18 or 20 degrees, and stretching itself for several degrees towards the east, in a direction nearly parallel to the horizon. It was a little below this cloud, and consequently in the hazy part of the atmosphere, about the N. by W. $\frac{1}{2}$ W. point of the compass that this luminous meteor was first perceived. Some flashes of lambent light, much like the *aurora borealis*, were first observed on the northern part of the heavens, which were soon perceived to proceed from a roundish luminous body, nearly as big in diameter as the semi-diameter

diameter of the moon, and almost stationary in the above-mentioned point of the heavens. It was then about 25 minutes after nine o'clock in the evening. This ball at first appeared of a faint bluish light, perhaps from being just kindled, or from its appearing through the haziness; but it gradually increased its light, and soon began to move, at first ascending above the horizon in an oblique direction towards the east. Its course in this direction was very short, perhaps of five or six degrees; after which it directed its course towards the east, and, moving in a direction nearly parallel to the horizon, reached as far as the S. E. by E. point, where it finally disappeared. The whole duration of the meteor was half a minute, or rather less; and the altitude of its track seemed to be about 25° above the horizon. A short time after the beginning of its motion, the luminous body passed behind the above-mentioned small cloud, so that during this passage we observed only the light which was cast in the heavens from behind the cloud, without actually seeing the body from which it proceeded for about the sixth or at most the fifth part of its track; but as soon as the meteor emerged from behind the cloud, its light was prodigious. Every object appeared very distinct; the whole face of the country in that beautiful prospect before the terrace, being instantly illumined. At this moment the body of the meteor appeared of an oblong form; but it presently acquired a tail, and soon after it parted into several

several small bodies, each having a tail, or elongation; and all moving in the same direction, at a small distance from each other, and very little behind the principal body, the size of which was gradually reduced after this division. In this form the whole meteor moved as far as the S. E. by E. point, where, the light decreasing rather abruptly, the whole disappeared.

During the phænomenon, no noise was heard by any of our company, excepting one person, who imagined to have heard a crackling noise, something like that which is produced by small wood when burning. But about 10 minutes after the disappearance of the meteor, and when we were just going to retire from the terrace, we heard a rumbling noise, as if it were of thunder at a great distance, which, in all probability, was the report of the meteor's explosion; and it may be naturally imagined that this explosion happened when the meteor parted into small bodies, viz. at about the middle of its track.

Now if that noise was really the report of the explosion, which happened at the above-mentioned place; the distance, altitude, course, and other particulars relating to this meteor, must be very nearly such as are expressed in the following list; they being calculated with mathematical accuracy upon the preceding particulars, and upon the supposition that found travels at the rate of 1150 feet per second. But if the noise we heard was not that of the meteor's

meteors explosion, then the following results must be considered as quite useless and erroneous.

Distance of the meteor from Windsor	
castle - - - - -	130 miles.
Length of the path it described in the	
heavens - - - - -	550 miles.
Diameter of the luminous body when	
it came out of the clouds - - -	1070 yards.
Its height above the surface of the earth	56 $\frac{1}{2}$ miles.

The explosion must have happened perpendicularly over Lincolnshire*.

Such is the account which I wrote the day after the appearance of the meteor; and it is remarkable that the above-mentioned particulars were almost entirely confirmed by various other accounts of the same meteor, which were afterwards either sent to the Royal Society, or inserted in different publications.

Those accounts, which were sent from various parts of this island, as also from the continent, confirmed, as nearly as can be expected, the above-mentioned results respecting its size, velocity, elevation, and explosion, over Lincolnshire; but this meteor must have certainly had its origin much farther north than we imagined; and indeed, on

* Philosophical Transactions for the year 1784. Article IX.

account of the intervening cloud, it was impossible for us to perceive it at an earlier part of its course. It is also probable that it must have gone or terminated at a much greater distance than it appeared to us; for as its light diminished until it vanished, we must naturally have lost sight of it sooner than those who stood farther south on the continent. The various accounts seem to establish, that its course commenced beyond the northern extremity of this island, probably somewhere over the northern ocean. It passed a little westward of Perth, and perhaps a little eastward of Edinburgh: it proceeded over the south of Scotland, Northumberland, the bishopric of Durham, Yorkshire, Lincolnshire, over which it seemed to have deviated gradually to the westward, and in the course of that deviation, to have suffered the bursting or partition. It then passed over Cambridgeshire, Essex, and the Straits of Dover, entering the continent probably not far from Dunkirk, where, as well as at Calais and Ostend, it was thought to be vertical. It was seen at Brussels, Paris, Nuits in Burgundy, and, it is said, even at Rome. Upon the whole it must have described a track upwards of 1000 miles in about half a minute; an astonishing rate of going, vastly swifter than the motion of sound.

Such are the particulars of this magnificent meteor, which undoubtedly was one of the largest, and with which several other accounts may be compared

compared for the sake of forming some general idea of the subject.

I am unwilling to assert, though I have no particular reason to deny, that the large meteors, such as we have described, and those which are commonly called shooting-stars, have a common origin, or are of the same nature, and differ only in size. Our utter ignorance of their nature, and the want of accurate observations, do not enable us to form any other distinction. It appears then, that the number of meteors is immense ; for the shooting-stars, or the meteors of the smallest size, are to be seen in plenty every clear night. Some of them are so small as to be accidentally seen only through telescopes, others are visible to the naked eye that happens to be directed to that part of the sky ; whilst others, by casting more or less light, excite attention, and are remarked.

The apparent size of those meteors is various ; but their apparent motions, when they happen to direct their course nearly at right-angles to the spectator, seem not to differ much : whence we may conclude that they are nearly at equal distances from the earth ; and of course they must actually differ in size. This point, however, is much in want of confirmation, and it might be wished that three or four observers, in a pleasant autumnal evening, were situated at certain distances (for instance 10 or 20 miles) from each other, and would endeavour to remark the altitudes of all the shooting-stars they saw,

saw, together with the time of their appearance. The altitude may be easily ascertained by observing the stars over or near which the meteor passes, and by referring it to a common celestial globe, rectified for the latitude of the place and time of the apparition, &c. By this means the altitudes above the surface of the earth, of those diminutive meteors, might in great measure be ascertained. With respect to large meteors, whose altitudes have been pretty well estimated, it is remarkable that they have been found to be nearly at the same height. A meteor mentioned in the 51st volume of the Philosophical Transactions, seems to have attained the height of nearly 50 miles. In the acts of the Academy of Sciences at Paris, for 1771, a meteor is described which was seen on the 17th of July 1771, and it was reckoned to have been 54 miles high when it began, and 27 when it exploded. The greatest altitude of the meteor of the 18th of August 1783, was about 56 miles with respect to size; a region where the air is at least 30000 times rarer than near the earth.

This same meteor of the 18th of August, was certainly one of the largest; some accounts, however, make mention of a few larger meteors having been seen; but it must be observed that the dazzling light of such bodies always tends to impress the mind of the observer with an enlarged idea of their sizes.

The shapes of such bodies have been differently described. They have been compared to torches, pillars,

pillars, barrels, paper kites, &c. &c. which shews that they must really be of different forms; yet it is evident that most of those varieties must arise from the different positions of those bodies with respect to the observers. Their most usual form is nearly globular, generally having a sort of tail or elongation, which is of various lengths in different meteors, and changeable in the very same meteor. Some meteors seem to preserve their shapes during their appearance, others change it, and frequently they are divided, or burst, into smaller bodies. The same meteor has been sometimes observed to burst more times than once during its appearance.

At the time of the apparent bursting, a hollow sound, like that of distant thunder, or a much sharper sound, has often been heard; and some of the meteors that have come nearer to the earth, have been attended with a hissing, or a sort of rattling noise, during the greatest part of their course.

The colour and splendour of meteors vary considerably in different meteors, as also in the same meteor throughout its course. In general it is white, with a shade of blue. Their lustre has sometimes exceeded that of the moon, and it is related that meteors have been seen even in the broad day-light, and full sun-shine.

The duration of the appearance of meteors has hardly ever exceeded half a minute; and it is often so instantaneous as to be barely perceptible.

That meteors have, lastly, ended their course upon

the

the surface of the earth, or that something hard has fallen from them, has been asserted in various accounts ; amongst which I shall transcribe the following, which is very circumstantially related by John Lloyd Williams, Esq. in the Philosophical Transactions for 1802. This gentleman being in India, and having heard of an extraordinary phenomenon which had just happened, made particular inquiries concerning it. " The information," he says, " I obtained was, that on the 19th of December 1798, about 8 o'clock in the evening, a very luminous meteor was observed in the heavens, by the inhabitants of Benares, and the parts adjacent, in the form of a large ball of fire ; that it was accompanied by a loud noise, resembling thunder ; and that a number of stones were said to have fallen from it, near Krakhut, a village on the north side of the river Goomty, about 14 miles from the city of Benares.

" The meteor appeared in the western part of the hemisphere, and was but a short time visible : it was observed by several Europeans, as well as natives, in different parts of the country.

" In the neighbourhood of Juanpoor, about 12 miles from the spot where the stones are said to have fallen, it was very distinctly observed by several European gentlemen and ladies ; who described it as a large ball of fire, accompanied with a loud rumbling noise, not unlike an ill discharged platoon of musquetry. It was also seen, and the noise heard, by various

various persons at Benares. Mr. Davis observed the light come into the room where he was, through a glass window, so strongly as to project shadows from the bars between the panes, on a dark-coloured carpet, very distinctly; and it appeared to him as luminous as the brightest moon-light.

" When an account of the fall of the stones reached Benares, Mr. Davis, the judge and magistrate of the district, sent an intelligent person to make inquiry on the spot. When the person arrived at the village near which the stones were said to have fallen, the natives, in answer to his inquiries, told him, that they had either broken to pieces, or given away, to the Tefieldar (native collector) and others, all that they had picked up; but that he might easily find some in the adjacent fields, where they would be readily discovered (the crops being then not above two or three inches above the ground), by observing where the earth appeared to be recently turned up. Following these directions, he found four, which he brought to Mr. Davis: most of these, the force of the fall had buried, according to a measure he produced, about six inches deep, in fields which seemed to have been recently watered; and it appeared from the man's description, that they must have lain at the distance of about 100 yards from each other.

" What he further learnt from the inhabitants of the village, concerning the phenomenon, was, that about 8 o'clock in the evening, when retired to

their habitations, they observed a very bright light, proceeding as from the sky, accompanied with a loud clap of thunder, which was immediately followed by the noise of heavy bodies falling in the vicinity. The first circumstance which attracted their attention, was the appearance of the earth being turned up in different parts of their fields, as before-mentioned, where, on examining, they found the stones.

" At the time the meteor appeared, the sky was perfectly serene; not the smallest vestige of a cloud had been seen since the 11th of the month, nor were any observed for many days after.

" Of these stones, I have seen eight, nearly perfect, besides parts of several others, which had been broken by the possessors to distribute among their friends. The form of the more perfect ones, appeared to be that of an irregular cube, rounded off at the edges; but the angles were to be observed on most of them. They were of various sizes, from about three to upwards of four inches in their largest diameter; one of them measuring $4 \frac{1}{4}$ inches, weighed two pounds and 12 ounces. In appearance they were exactly similar: externally, they were covered with a hard black coat or incrustation, which in some parts had the appearance of varnish, or bitumen; and on most of them were fractures, which, from their being covered with a matter similar to that of the coat, seemed to have been made in the fall, by the stones striking against each other,

other, and to have passed through some medium, probably an intense heat, previous to their reaching the earth. Internally, they consisted of a number of small spherical bodies, of a slate colour, embedded in a whitish gritty substance, interspersed with bright shining spiculæ, of a metallic or pyritical nature. The spherical bodies were much harder than the rest of the stone: the white gritty part readily crumbled, on being rubbed with a hard body; and, on being broken, a quantity of it attached itself to the magnet, but more particularly the outside coat or crust, which appeared almost wholly attractive by it."

It seems from this account, that the meteor consisted of a large body, which burst at the time when the report was heard, and that its fragments fell to the earth.—The principal remarks, which have been made concerning those and other stony substances, said to have fallen from the sky, will be found in the following chapter.

nothing can be more difficult to find in any nation or country, than to find a man who will believe that such a body as this, which has been suspended in the air, and which has been in the possession of such a man, is not the work of a devil. But this is the case with the people of the country where this stone was found.

C H A P. II.

**OF THE STONY BODIES WHICH ARE SAID TO HAVE
FALLEN FROM THE SKY.**

THE writings even of the remotest antiquity, the verbal traditions of most nations, and various circumstantial accounts of modern times, assert that stones, or stony and metallic concretions of various sizes, have, at different times, fallen from heaven upon the surface of the earth.

Ignorance and superstition have frequently attributed a sacred character to those extraordinary stories; but since superstition and imposture are nearly allied, and as the formation of such solid bodies in the sky is utterly unaccountable in the present state of philosophical knowledge, the fall of those celestial stones, though generally believed by the vulgar, has been as generally disbelieved by the learned, part of the human species.

Every single account of this sort might perhaps be rejected without impropriety; but the repeated assertions of a great many authors in almost every age; the accounts of recent cases of this sort that have happened in the presence of witnesses, living

at

at this very time, who have been examined and interrogated with all the formality and circumstantial minuteness that scepticism could demand ; and, above all, the strong evidence which arises from the chemical analysis of various stones of this sort, which have been collected at different times, and in most distant countries, are more than sufficient to establish the general fact in the minds of impartial persons ; and only leave for posterity the duty of examining with the greatest attention, and of recording with minuteness, all the circumstances that may attend future cases of this sort ; whence the origin and the nature of such wonderful phenomena may be satisfactorily investigated.

We are much indebted to Edward King, Esq.* and to Dr. Chlodni †, for having collected a great number of accounts relative to this subject, and for having ably compared them with each other ; and we are principally indebted to Edward Howard, Esq. for a careful analysis of various stones said to have fallen from heaven.

The fall of ashes, and even of red-hot stones in the vicinity of volcanos, at the time of an eruption, are so evidently owing to the eruption, that no doubt

* See his *Remarks concerning Stones said to have fallen from the Clouds, both in these Days, and in ancient Times.*—London, 1796.

† See his Tract concerning the supposed Origin of the Mass of Iron found by Dr. Pallas in Siberia.—Riga, 1794.

can be entertained concerning the fact. The ignited matter, accompanied with very dense smoke, is seen to rise from the crater of the volcano, and is projected into the air, even to the perpendicular height of several miles * ; the thick, dark smoke forms a cloud of vapour and ashes, which is extended by the wind in its direction, over a great extent of country, sometimes amounting to several hundred miles ; upon which it drops ashes †, and in the nearest parts even stones of different sizes, according to the various distances. But independent of those evident volcanic productions, the stones of considerable size, which are said to have fallen at different times, seem to have a different origin ; first, because they have frequently fallen at immense distances from any volcano ; and, secondly, because those falls have mostly happened at times when no volcanic eruption was known to have taken place. It is not improbable, however, as Mr. King seems to conjecture, that sometimes, when an extensive cloud of ashes, or earthy and pyritous particles, has been projected from a volcano, and has been driven by the wind

* See Sir William Hamilton's Account of an Eruption of Mount Vesuvius, in the Philosophical Transactions for 1795, page 91 and 92.

† At an eruption of Vesuvius, anno 471, the ashes went almost all over Europe, and in plenty even to the city of Constantinople. Carolus Sigonius, and Marcellinus Comes, make express mention of that great eruption.

to a great distance, those particles may have undergone an effervescence, a combustion, and a subsequent agglutination, which formed the stone. The facts, however, do not always seem to admit of such a supposition. But before we attempt to assert or to refute any hypothesis, it will be proper briefly to mention some of the latest and best attested facts of this nature ; which I shall mostly transcribe from the above quoted work of Mr. King.

“ The well known and celebrated Cardan, in his book *De Varietate Rerum*, lib. 14, cap. 72, tells us, that he himself, in the year 1510, had seen 120 stones fall from heaven ; among which one weighed 120 and another 60 pounds ; that they were mostly of an iron colour, and very hard, and smelt of brimstone. He remarks, moreover, that about three o'clock, a great fire was to be seen in the heavens ; and that about five o'clock the stones fell down with a rushing noise.”

“ It is related by Dr. Halley (Philosophical Transactions, N° 341), that on the 21st of May 1676, a fire ball was seen to come from Dalmatia, proceeding over the Adriatic sea ; it passed obliquely over Italy, where a hissing noise was heard ; it burst S.S.W. from Leghorn, with a terrible report, and the pieces are said to have fallen into the sea, with the same sort of noise as when red-hot iron is quenched or extinguished in water. Its height was computed to be not less than 38 Italian miles ; and it is said to have moved with immense velocity. Its form was ob-

long, at least as the luminous appearance seemed in its passage."

The Abbé Stutz, assistant in the imperial cabinet of curiosities at Vienna, in a book printed at Leipzig in 1790, describes two stones said to have fallen from the clouds; one in the *Eichstedt* country in Germany, and another in the *Bechin* circle in Bohemia, in July 1753. He also describes two more which were seen to fall not far from Agram, the capital of Croatia in Hungary; concerning which, he relates that the bishop of Agram caused seven eye-witnesses to be examined upon oath, and the substance of their evidence is, "that about six o'clock in the afternoon of the 26th of May 1751, there was seen towards the east, a kind of fiery ball, which, after it had burst into two parts, with a great report, exceeding that of a cannon, fell from the sky, in the form and appearance of two chains entangled in one another; which was attended with a loud noise, as if a great many carriages rolled along. After this a black smoke was seen, and a part of the ball seemed to fall in an arable field; on the fall of which to the ground a still greater noise was heard, and a shock was perceived somewhat like an earthquake.

" This piece was afterwards soon dug out of the ground, which had been particularly noted to be plain and level, and ploughed just before; but where it was now found to have made a grert fissure, or cleft, an ell wide, whilst it singed the earth on the sides.

" The

" The other piece, which fell in a meadow, was also dug up, and weighed 16 pounds."

The stone which fell in the Eichstedt country, as mentioned in the preceding page, is said to consist of ash-grey sand, agglutinated together, and intermixed with fine particles of native iron, and with particles of yellowish brown iron ochre. In short, it seems to consist of siliceous sand and iron. Its hardness is not very great. Its surface is covered all over with a solid malleable coat of native iron, like a blackish glazing, about two lines thick, which was supposed to be quite free from sulphur. The whole exhibited evident marks of having been exposed to fire.

The testimony of the fall of this stone is as follows: A labourer at a brick-kiln, in winter, when the earth was covered with snow, saw it fall down out of the atmosphere immediately after a violent clap of thunder. He instantly ran to the spot to take it out of the snow; but, finding he could not effect it on account of its heat, he was obliged to wait until it cooled. The diameter of this stone was about half a foot. It was covered all over with a black coat like iron.

" It is related in the History of the Academy of Sciences 1769, p. 20, that three masses fell down with thunder, in provinces very distant from one another; and which were sent to the Academy in 1769. They were sent from *Maine, Artois, and Cotentin*; and it is affirmed, that, when they fell, a

hissing

hissing was heard ; and that they were found hot. All three were like one another ; all three were of the same colour, and nearly of the same grain ; and small metallic and pyritical particles could be distinguished in them ; and, externally, all three were covered with a hard ferruginous coat ; and, on chemical investigation, they were found to contain iron and sulphur."

" On the 13th of September 1768, about half an hour after four in the afternoon, there was seen near the castle of Lucé in Maine, a tempestuous cloud ; from which was heard an explosion of thunder, like the firing of a cannon, but without the appearance of lightning : there was then heard a remarkable whizzing noise in the air ; and some persons travelling, on looking up, saw an opaque body descending in a curved line, which fell in a green patch of ground near the high road to Mons. They all ran instantly to the spot, and found a kind of stone, one half of which was buried in the soil, and which was so burning hot, that they could not possibly touch it.

" This stone weighed seven pounds and a half ; was of a triangular, or rather of a *pyramidal*, form. The part which was buried in the earth was of a grey-ash colour, and that which was exposed to the air was extremely black, covered with a very thin black crust, somewhat puffed up in places, and which appeared to have been melted. The interior part of the stone, when examined with a magnifying glass,

glass, appeared of a grey pale ash colour, spotted with a prodigious number of minute brilliant metallic spots, and of a pale yellow. The interior part, when stricken with steel, would not yield any sparks; but the exterior coating did.

“ The specific gravity of the stone was 3,535. And the chemical analysis of it, shewed it to contain, in 100 parts, 8 $\frac{1}{2}$ of sulphur, 36 of iron, and 55 $\frac{1}{2}$ of vitrifiable earth.”

“ On the 16th of June 1794, a tremendous cloud was seen in Tuscany, near Siena, and Radacofani; coming from the north, about 7 o'clock P.M. sending forth sparks like rockets, throwing out smoke like a furnace, rendering violent explosions, and blasts, more like those of cannon, and of numerous muskets, than like thunder; and casting down to the ground hot stones; whilst the lightning that issued from the cloud was remarkably red, and moved with less velocity than usual.

The cloud appeared of different shapes, to persons in different situations, and remained suspended a long time; but every where was plainly seen to be burning, and smoking like a furnace; and its original height, from a variety of circumstances put together, seems to have been much above the common region of the clouds.

“ The testimony, concerning the falling of the stones from it, appears to be almost unquestionable; and is evidently from different persons, who had no communication with each other.

“ For,

“ For, first, the fall of four stones is precisely ascertained; one of which was of an irregular figure, with a point like that of a diamond, weighing $5\frac{1}{2}$ pounds, and had a vitriolic smell. And another weighed $3\frac{1}{2}$ pounds, was black on the outside, as if from smoke; and, internally, seemed composed of matter of the colour of ashes, in which were perceived small spots of metals, of gold and silver.

“ And besides these, Professor Soldani of Siena was shewn about 15 others, the surfaces of which were glazed black, like a sort of varnish; resisted acids, and were too hard to be scratched with the point of a penknife.

“ Signior A. Montaulli, who saw the cloud as he was travelling, described it as appearing much above the common region of the clouds, and as being clearly discerned to be on fire; and becoming white, by degrees, not only where it had a communication, by a sort of stream of smoke and lightning, with a neighbouring similar cloud, but also, at last, in two-third parts of its whole mass, which was originally black. And yet he took notice, that it was not affected by the rays of the sun, though they shone full on its lower parts. And he could discern as it were the basin of a fiery furnace in the cloud, having a whirling motion.

“ This curious observer gives an account also of a stone, which he was assured fell from the cloud, at the feet of a farmer, and was dug out of the ground into which it had penetrated; and he says, that it was

was about five inches long, and four broad, nearly square, and polished; black on the surface, as if smoked, but within like a sort of sand stone, with various small particles of iron, and bright metallic stars."

Other stones are described by him, which were said to have fallen at the same time, were triangular, and terminated in a sort of pyramidal or conical figure; and others were so small as to weigh not more than one ounce.

In the year 1795, a stone of remarkable large size was said to have fallen from heaven, near the *Wold Cottage*, Yorkshire, which stone was afterwards exhibited in London. The account of its fall is as follows:

" In the afternoon of the 13th of December 1795, near the *Wold Cottage*, noises were heard in the air by various persons, like the report of a pistol, or of guns at a distance at sea, though there was neither any thunder or lightning at the time; two distinct concussions of the earth were said to be perceived, and a hissing noise was also affirmed to be heard by other persons, as of something passing through the air; and a labouring man plainly saw (as we are told) that something was so passing, and beheld a stone, as it seemed, at last, (about 10 yards distant from the ground) descending, and striking into the ground, which flew up all about him; and, in falling, sparks of fire seemed to fly from it.

" Afterwards

“ Afterwards he went to the place, in company with others, who had witnessed part of the phæno-
mena, and dug the stone up from the place, where it was buried about 21 inches deep.

“ It smelt (as it is said) very strongly of sulphur, when it was dug up; and was even warm, and smoked. It was found to be 30 inches in length, and $28\frac{1}{2}$ inches in breadth; and it weighed 56 pounds.”

This stone, as it was exhibited, appeared to have a dark, black crust, with several concave impressions on the outside, which must have been made before it was quite hardened; just like what is related concerning the crusts of those stones that fell in Italy. Its substance was not properly a granite (as described in the printed account that was distributed); but a sort of *grit-stone*, composed (somewhat like the stones said to have fallen in Italy) of sand and ashes. There were in it a great many pyritous particles, and some small rusty specks, perhaps decomposed pyrites. It did not effervesce with acids. It seems that, this excepted, such kind of stones have never been found in any part of England.

“ Mr. Southey relates an account, juridically au-
thenticated, of a stone weighing 10 pounds, which
was heard to fall in Portugal, February 19, 1796,
and was taken, still warm, from the ground*.”

* Letters written during a short residence in Spain and Portugal, page 239.

From the above and other similar accounts, which might hereto be annexed *, the general fact of stones having actually fallen from the sky, seems to be established beyond the possibility of a doubt. On account of the explosion, which generally attends their fall, those stones have often been called *thunder-stones*, or *thunder-bolts*; and it is vulgarly and pretty generally believed, that every clap of thunder is attended with the fall of a stone. But a wide distinction must be made between the above-mentioned phenomena and the common thunder and lightning, which are the effects of electricity discharged from the clouds; and which have nothing to do with the fall of stones. Yet it must be observed, that sometimes the two species of phenomena are combined, and take place both at the same time, as may be gathered from the preceding accounts; and the present state of knowledge does not enable us to make a due distinction between them. The last account of the preceding chapter, describing the fall of stones near Benares, and the circumstances which have attended similar phenomena, seem to indicate that every meteor,

* Besides the above quoted works of Mr. King and Dr. Chladni, the reader will find similar accounts in Falconet's papers upon Boetilia, inserted in the *Hist. des Inscriptions et Belles Lettres*; Zahn's *Specula Physico-Mathematica Historiana*; *La Fisica Satterranea di Giacinto Gemma*; and Mr. Howard's elaborate and satisfactory Paper in the Philosophical Transactions for the year 1802.

such as have been described in that chapter, is owing to the formation, or ignition, of something solid, which moves with wonderful rapidity, mostly through the regions of the atmosphere vastly above the usual clouds, and which, besides the hissing noise that mostly accompanies its course, generally bursts with one or more explosions, and lastly falls down upon the surface of the earth in a few or in a great many pieces. It seems, however, that the fall of the stone, which fell in Yorkshire, was not attended with any luminous appearance.

Whence do those meteors or solid bodies derive their origin and their motion? is the great *desideratum*; the important question, which the present state of knowledge does not enable us to answer, any more than by the suggestion of hypotheses. A brief statement of those hypotheses will conclude this chapter; but previous to this, it will be necessary to adduce what may be called the strongest evidence of such stones having really fallen from the sky, viz. that evidence which arises from their chemical analysis, and their general external characters.

The mineralogical description of the stones from Benares, the stones from Yorkshire, one of the stones from Italy, and a stone from Bohemia; all said to have fallen from the sky, as given by Count de Bournon, is inserted in Mr. Howard's paper in the *Philosophical Transactions* for 1802, from which, in addition to what has been already mentioned in the preceding accounts, it appears, that all those stones,

stones, whatever their size may be, are entirely covered with a thin crust of a deep black colour, unless they have been broken in their fall or otherwise; for, in this case, the surface of the broken side has no crust. Their surface is quite destitute of metallic gloss, and is sprinkled with asperities. When broken, their internal texture is granulated, resembling, more or less, a coarse grit-stone. By the use of a lens, their component particles seem to be of four species, the proportion of which seems to vary a little in the different specimens. Those ingredients are, 1st, A great abundance of grey or brownish globules of different sizes, which may be easily broken in all directions; their fracture is conchoid, with a smooth, fine, compact, and somewhat glossy surface; their hardness is such as to afford a few faint sparks when struck with steel; 2dly, A granulated martial pyrites, of a reddish yellow colour, but black when powdered. This substance, which is irregularly distributed through the mass of the stone, is not attractable by the magnet; 3dly, Small particles of iron in a perfect metallic state, which render the whole stone attractable by the magnet; 4thly, A substance of an earthy consistence, and whitish grey colour, which seems to cement and unite the other three ingredients, and from which all the others may be easily separated with the point of a knife, or even with the nail.

“ The black crust with which the surface of the stone is coated, although it is of no great thickness,

emits bright sparks, when struck with steel: it may be broken by a stroke with a hammer; and seems to possess the same properties as the very attractable black oxide of iron. This crust is, however, like the substance of the stone, here and there mixed with small particles of iron in the metallic state: they may easily be rendered visible, by passing a file over the crust, as they then become evident on account of their metallic lustre."

The specific gravities of those stones are:

From Benares	-	-	-	3,352.
From Yorkshire	-	-	-	3,508.
From Italy	-	-	-	3,418.
From Bohemia	-	-	-	4,281.

Those which have a greater specific gravity, evidently contain a greater quantity of iron.

The first stone of this sort, that was chemically analyzed by the French Academicians, was found on the 13th of September 1768, yet hot, by persons who saw it fall, as has been said in the preceding pages.

Another stone of the same nature, but little differing in appearance, was analyzed by Mr. Barthold, who found that 100 parts of the stone contained 2 parts of sulphur, 20 of iron, 14 of magnesia, 17 of alumine, 2 of lime, and 42 of siliceous earth.

Mr. Howard instituted a very particular analysis
of

of the four distinct bodies which form the stones from Benares, and ascertained the following particulars: The external coat contains a good deal of iron attractable by the magnet, and some nickel, which form its principal components. The shining or pyritous particles, irregularly disseminated through the stone, being carefully separated and analyzed, were found to contain 2 parts of sulphur, $10\frac{1}{2}$ of iron, nearly 1 of nickel, and 2 of extraneous earthy matter. The globular bodies contained 50 parts of silica, 15 of magnesia, 34 of oxide of iron, and $2\frac{1}{2}$ of oxide of nickel. Lastly, the earthy matter, which formed the cement or matrix for the other substances, was found to contain 48 parts of silica, 18 of magnesia, 34 of oxide of iron, and 2 of oxide of nickel.

The stone from Siena, on being analyzed, was found to contain 70 parts of silica, 34 of magnesia, 52 of oxide of iron, and 3 of oxide of nickel.

The stone from Yorkshire was found to contain 75 parts of silica, 37 of magnesia, 48 of oxide of iron, and 2 of oxide of nickel.

The stone from Bohemia was found to contain 25 parts of silica, $9\frac{1}{2}$ of magnesia, $23\frac{1}{2}$ of oxide of iron, and $1\frac{1}{2}$ of oxide of nickel.

The great similarity which the chemical analysis, and a careful examination of the mineralogical or apparent formation of those stones, shew to exist among specimens collected at different times, and

brought from various parts of the world so very remote from each other, undoubtedly is the strongest proof of their being different from common minerals; and of their owing their origin to the same general cause. The mineralogists, who have examined them, find them different from any other sort of mineralogical substance ever described by the writers on that subject. Those facts alone seem to convey perfect conviction concerning the accidental descent of those stones upon our globe; but a careful examination of all the circumstances, the similarity of the accounts, as given by various persons of different nations, and unknown to each other, who could not possibly accord in a false account; the nature of those stones, and the ancient accounts related by a variety of credible authors, or handed down by tradition; all those circumstances, I say, when duly considered, seem to establish the general fact of the fall, &c. beyond the possibility of doubt. We shall therefore conclude this subject with a concise statement of the most rational hypotheses that have been offered in explanation of those phenomena.

Unwilling to force upon the reader any particular hypothesis concerning meteors and the fall of stones, I have confined the preceding chapter to the former of those subjects, and the present to the latter only; yet, by the last account in the preceding chapter, and by various accounts in the present, the reader must naturally remark the great connection which appears to exist between the two phenomena.

Without attempting to decide definitively upon the subject, we may nevertheless place the hypothetical part of both phenomena under one point of view. The vague opinions entertained by the ancients, of the stones coming from the sun or the moon, need not be formally refuted.

It was Doctor Halley's opinion, that a stratum or train of inflammable vapour, gradually raised from the earth and accumulated in an elevated region, suddenly took fire at one end, and the successive inflammation of the stratum, like the inflammation of a train of gun-powder, produced the apparent motion as it were of a ball of fire which constituted the meteor*. But the least examination of the different parts of this hypothesis, will readily manifest its imperfections.

In a dissertation on this subject by Professor Clap, of Yale College, in New England, we find a supposition, that the bodies which form the meteors, may be solid bodies revolving round the earth, as the comets revolve round the sun, and now and then some of them coming so near as to fall upon it. This hypothesis seems, at first sight, to be attended with apparent improbability; yet a little consideration may perhaps render it more intelligible to the speculative philosopher, and more applicable to the explanation of the phenomena.

* Philosophical Transactions, N° 360.

With respect to those phenomena I am inclined to propose the following explanation. Imagine that a revolving body moves round the earth with a velocity somewhat like that of the moon, or of the earth in its orbit; also suppose that the attractive force in proportion to the centrifugal, is rather stronger than that which is required to keep the revolving body in the same immutable orbit; and that consequently the said body must move in a sort of spiral, coming continually nearer and nearer to the earth. Now when this body comes within a certain part, however rare, of the atmosphere, with its immense velocity, the friction it suffers may possibly heat it to the degree of incandescence, checking at the same time its centrifugal force, which consequently increases the gravitating or attractive power. The great heat, which the body acquires in consequence of the friction, produces two natural effects. In the first place, it partly melts or vitrifies the external surface, which forms the common black crust of the body (viz. the black crust of the stones said to have fallen from the sky); and, secondly, by expanding unequally the parts of the body, causes it to break with explosion, in the same manner as stones often do in a common fire.

The greatest objection to this hypothesis seems to be, that the revolution of so many bodies round the earth as are necessary to form all the meteors, comprising

comprising the numerous shooting-stars, seems rather unlikely.

The supposition that meteors are the effect of, or nothing more than, a separate quantity of electric matter, though, at first sight, may appear to be warranted by certain electrical phenomena, is, on mature consideration, liable to very great objections.

I shall lastly subjoin Mr. King's hypothesis concerning the fall of stones at Siena in Italy.

This very learned gentleman establishes his supposition upon a careful examination of all the circumstances that seemed to be at all concerned with that wonderful phenomenon. He remarks that the space of ground within which the stones fell, was from three to four miles; that the phenomenon took place the very day after the great eruption of Vesuvius, which is not less distant from Siena than 200 miles, and that Vesuvius is situated to the south of the spot; whereas the cloud came from the north, about 13 or at most 18 hours after the eruption. Mr. King then briefly mentions his former observations on the formation of stones and rocks, either by the means of fire or of water; after which he says, "It is also well known, that a mixture of pyrites of almost any kind, beaten small, and mixed with iron filings and water, when buried in the ground, will take fire, and produce a sort of artificial volcano; and surely then, wherever a vast quantity of such kind of matter should at

“ any time become mixed together, as flying dust
“ or ashes, and be by any means condensed toge-
“ ther, or compressed, the same effect might be
“ produced, even in the atmosphere and air.

“ Instead, therefore, of having recourse to the
“ supposition of the cloud in Tuscany having been
“ produced by any other kind of exhalations from
“ the earth, we may venture to believe, that an im-
“ mense cloud of ashes, mixed with pyritical dust,
“ and with numerous particles of iron, having been
“ projected from Vesuvius to a most prodigious
“ height, became afterwards condensed in its de-
“ scent, took fire, both of itself as well as by means
“ of the electric fluid it contained, produced many
“ explosions, melted the pyritical, metallic, and ar-
“ gillaceous particles, of which the ashes were com-
“ posed; and by this means had a sudden crystalli-
“ zation and consolidation of those particles taken
“ place which formed the stones of various sizes
“ that fell to the ground; but did not harden the
“ clayey ashes so rapidly as the metallic particles crystal-
“ lized; and therefore gave an opportunity for in-
“ pressions to be made on the surfaces of some of the
“ stones as they fell, by means of the impinging of
“ the others*.”

* Remarks concerning Stones said to have fallen, &c.
page 11.

SECTION III.

OF MEASURES AND WEIGHTS.

CHAPTER I.

OF THE STANDARD MEASURE.

THE fluctuating nature of the bulks of all sorts of bodies, such as are within our grasp, the general expansion and contraction which arise from heat and cold, the shrinking and warping which are the effects of the evaporation and absorption of fluids, and the loss of matter from the surfaces of most bodies, arising from friction, or abrasion, render it extremely difficult to form a certain invariable length or standard measure, of any sort whatever, with which other extensions may, in future, be compared.

It is true that several standard measures of glass, of brass, of iron, or of other metal, that are now preserved in diverse public and private repositories for the regulation of measures and weights in civil economy, when duly examined, are found to agree

so well with each other, as that the error or difference seldom amounts to the thousandth part of the whole; and such difference would indeed be too trifling to deserve notice, were it not for the accumulation of the error which takes place when that measure comes to be repeated a great number of times. Thus, if I measure a certain extension with a foot ruler, which ruler is one thousandth part of a foot deficient, or less than the real standard, it is evident that when I have measured 1000 feet with such ruler, my measurement is one foot less than the truth. Now such error would be of very great consequence in a variety of cases *.

On the above-mentioned accounts, and because it is not easy to send an accurate standard measure from place to place, wherever it may be wanted, or to prevent its being lost or broken by accidents in process of time, various plans have been proposed for forming a standard measure at any time; or, in other words, plans have been proposed for instructing a person how to form, or to determine, the measure of a foot, or of a yard, or of any other given denomination by means of words only, viz. without actually shewing him that measure.

Of the different plans which have been proposed for this purpose, two are undoubtedly the best, and those I shall endeavour briefly to explain.

* See General Roy's Paper on the Measurement of a Base Line on Hounslow Heath, *Philosophical Transactions*, Vol. LXXV.

1st, The length of the pendulum which vibrates seconds, has long been used for a standard of measure; for if you fasten a leaden ball, or any other weight to a flexible thread, and, having suspended the upper part of the thread to a nail, you cause it to vibrate; and, by observing with a clock or watch, you count the vibrations, and lengthen or shorten the thread, until that pendulum performs 60 vibrations in one minute, or 3600 vibrations in one hour; then the length of that pendulum, in the latitude of London, will be little more than 39,1 English inches. In any other latitude the length of the pendulum that vibrates seconds, must be longer or shorter than 39,1 inches, according as the place is nearer to one of the poles, or nearer to the equator of the earth; but the quantity by which the pendulum must be shortened or lengthened, in order that it may vibrate seconds in any given latitude, may be easily calculated *; hence that pendulum or a pendulum that vibrates any other ascertained number of times in a minute, may be used as a standard of measure in any known latitude. But the inaccuracy to which this method is liable, arises principally from the difficulty of measuring the precise distance between the real point of suspension, and the centre of oscillation of the pendulum.

In order to obviate in great measure the errors to which the above-mentioned method is liable, the

* See a table of those lengths on the other side of this leaf.

late ingenious Mr. Whitehurst contrived a machine, or piece of clock-work, having a pendulum with a moveable centre of suspension, whence it might be lengthened or shortened at pleasure, and which of course might be adjusted so as to vibrate any number of times in a given interval of time. He then proposed to use as a standard of measure, not the length of the whole pendulum, but the difference of the lengths of the same pendulum, when it performed

* A Table, shewing how much a pendulum which vibrates seconds at the equator, would gain every 24 hours in different latitudes, and how much the pendulum need to be lengthened in those latitudes in order to vibrate seconds.

Degrees of Latitude.	Time gained in one day, in seconds.	Lengthening in decimals of an inch, necessary to vibrate seconds.
5°	1,7	0,0016
10	6,9	0,0062
15	15,3	0,0138
20	26,7	0,0246
25	40,8	0,0369
30	57,1	0,0516
35	75,1	0,0679
40	94,3	0,0853
45	114,1	0,1033
50	134-	0,1212
55	153,2	0,1386
60	171,2	0,1549
65	187,5	0,1696
70	201,6	0,1824
75	213.	0,1927
80	221,4	0,2033
85	226,5	0,2050
90	228,3	0,2065

performed a certain number of vibrations in one hour, and when it performed another certain number of vibrations likewise in one hour; by which means the above-mentioned sources of error would in great measure be obviated*.

After the death of Mr. Whitehurst, Sir George Shuckburgh Evelyn resumed the subject, and, being possessed of the very same machine which Mr. Whitehurst had constructed, he made all the experiments which that machine was capable of performing; and at last he came to the following conclusion, which we have already transcribed in the second volume of this work. "It appears," he says, "that the difference of the length of two pendulums, such as Mr. Whitehurst used, vibrating 42 and 84 times in a minute of mean time in the latitude of London, at 113 feet above the level of the sea, in the temperature of 60°, and the barometer at 30 inches, is equal to 59,89358 inches of the parliamentary standard; from whence all the measures of superficies and capacity are deducible†."

2dly. The other method, which was lately practised by the French Academicians, for determining an invariable standard measure, is to use a certain

* See Mr. Whitehurst's *Attempt to obtain Measures of Length, &c. from the Mensuration of Time, or the true Length of Pendulums.* London, 1787.

† *Philosophical Transactions* for 1798, page 174.

portion of the whole circumference of the earth. For this purpose the extent of several degrees of the meridian, are actually measured with any given ruler, from which measurement it is easy to calculate the extent of the whole meridian; that is, of the whole circumference of the earth; then a certain portion of that circumference is to be used as a standard measure; for instance, if that circumference should be found equal to one million times the above-mentioned ruler, then the millionth part of that circumference, or that identical ruler, may be the standard measure. Should a nation, or a person in any other country, and at any distance of time, wish to form a standard measure equal to the above, they must actually measure some degrees of the meridian with any ruler at pleasure; whence they may calculate the number of such rulers that are equal to the whole circumference of the earth; lastly, taking the thousandth part of that extent, they will have the standard measure as above.

Now, the French Academicians have taken the forty millionth part of the whole circumference of the earth for their standard measure, they have formed rulers, or scales, exactly equal to that part which they call *metre*, and which, by a careful comparison, with accurate scales of English inches, feet, &c. at the temperature of 62° , has been found equal to 39,371 English inches*.

* Journals of the Royal Institution of Great Britain, N° 8. Or, *La Bibliotheque Britannique*, N° 148. In

In short, the inch of standard English measure, 12 of which form a foot, &c. and with which all other measures are compared, is an extension which, if it be multiplied by 59,89358, the product is equal to the difference of the lengths of two pendulums, one of which vibrates 42, and the other 84 times in a minute of mean time, at the temperature of 60°, and, in the latitude of London, 113 feet above the level of the sea*. Or the above-mentioned English inch is an extension, which, if multiplied by 39,371, the product is equal to a French metre, 40 millions of which (at the temperature of 62° Fahrenheit's thermometer) are equal to the whole meridian or circumference of the earth.

* " Such are the inches that are marked on Mr. Bird's Scale of Length, now preserved in the House of Commons; which is the same, or agrees within an insensible quantity, with the ancient standards of the realm." Philosophical Transactions for 1798, page 175.

C H A P. II.

OF BRITISH MEASURES AND WEIGHTS.

Lineal English Measures, or Measures of Length.

HAVING shewn in the preceding chapter how to determine the length of an English inch, or number of inches, we shall now proceed to state the measures of other denominations that are used in this island, by shewing the number of inches to which they are equal; thus, from the following table, it appears that 12 inches make a foot; that 36 inches, or 3 feet, make a yard; that 198 inches are equal to $16\frac{1}{2}$ feet, or to $5\frac{1}{2}$ yards, or to one rod; that 7920 inches are equal to 660 feet, or to 220, or to 40 poles (otherwise called rods) or to one furlong, &c.

Inches.	Feet.	Yards.	Pole, or Furlong.	Mile.
			Rod.	
12	1			
36	3	1		
198	16,5	5.5	1	
7920	660	220	40	1
63360	5280	1760	320	8
				One

One degree of a great circle of the earth is commonly reckoned equal to $69\frac{1}{4}$ miles, or to 365640 feet.

A fathom is equal to six feet, and is generally used in measuring depths.

For measuring of cloth the following measures are used.

Inches. Nails. Quarters. Yards. Ell.

2 $\frac{1}{4}$	1				
9	4	1			
36	16	4	1		
45	20	5	1 $\frac{1}{4}$	1	

The following are used for measuring long extensions of land.

Inches. Links of Feet. Yards. Poles, Chains. Mile.
a Chain. or Rods.

7,92	1					
792	100	66	22	4	1	
63360	8000	5280	1760	320	80	1

The heights of horses are generally measured by bands. A band is equal to 4 inches.

Square English Measures.

Sqre. Inches. Sq.Feet. Sq.Yrds. Sq.Pol. Sqre. Sq. Sq.
Roods.Acre.Mile

144	1					
1296	9	1				
39204	272,25	30,25	1			
1568160	10890	1210	40	1		
6272640	43560	4840	160	4	1	
4014489600	27878400	3097600	102400	2560	640	1

Lineal Scotch Measures.

Inches.	Feet.	Ells.	Falls.	Furlongs.	Miles.
12	1				
37,2	3,1	1			
223,2	18,6	6	1		
8928	744	240	40	1	
71424	5952	1920	320	8	1

Inches.	Links of a Chain.	Feet.	Ells.	Falls, or Chains.	L. Rood.	M.
					Short Roods.	
8,928	1					
892,8	100	74,4	24	4	1	
		III	36	6	1,5	1
					80	53 $\frac{1}{3}$

Square Scotch Measures.

Sq. Inches.	Sq. Feet.	Sq. Ells.	Sq. Falls, or Sq. Roods.	Sq. R.	Sq. A.	Sq. M.
144	1					
9,61	1					
345,96	36		1			
13838,4	1440		40			
55353,6	5760		160	4	1	
						640 1

Correspondence between English and Scotch Measures.

24,8 English yards are equal to one Scotch chain.

One English mile is equal to 71 Scotch chains.

6150 Square English yards are equal to a Scotch acre.

One

One English acre is equal to 0,787 (or to little more than $\frac{1}{4}$) of a Scotch acre.

One Scotch acre is equal to 1,27 (or to little more than $1\frac{1}{4}$) English acre.

Of English Weights.

The standard of lineal measures being once ascertained, a standard weight is thereby easily determined; for if you take a body of a uniform substance, and of any given dimensions, the weight of that body will serve for the standard weight. Thus it has been determined, that a cubic inch of pure distilled water, when the barometer is at 29,74 inches, and the thermometer at 66° , weighs 252,422 parliamentary grains, 5760 of which make one pound troy*.

There are three sorts of weights principally used in Great Britain; namely, *Troy weights*; *Avoirdupois*, or *Avoirdupoize*, *weight*; and *Apothecaries weight*; but the *Troy* pound, consisting of 5760 grains, as mentioned above, is considered as the best integer to adopt as the standard of weight.

* Viz. According to the standard weights made by Mr. Harris, Assay Master of the Mint, under the orders of the House of Commons in the year 1758, which are kept in the same custody with Mr. Bird's Scale of Length, and appear to have been made with great care, as a mean result from a great number of comparisons of the old weights in the Exchequer. Philosophical Transactions for 1793, page 173.

Troy Weights.

24 grains make *one penny weight.*

20 penny weight make *one ounce.*

12 ounces make *one pound.*

Avoirdupois Weights.

16 drams make *one ounce.*

16 ounces make *one pound.*

14 pounds make *one stone.*

28 pounds make *a quarter of a hundred weight.*

4 quarters of a hundred (or 112 pounds) make
one hundred weight.

20 hundreds weight (or 2240 pounds) make
one ton.

Apothecaries Weights.

20 grains make *one scruple.*

3 scruples make *one dram.*

8 drams make *one ounce.*

12 ounces make *one pound.*

Correspondence between Troy and Avoirdupois Weights.

41 ounces Troy are equal to 45 ounces Avoirdupois, or

1 ounce Troy is equal to 1,09707 ounce
Avoirdupois, or

1 ounce Avoirdupois is equal to 0,91152
ounce Troy.

1 pound

1 pound Troy is equal to 0,82274 of a pound Avoirdupois.

1 pound Avoirdupois is equal to 1,21545 pound Troy, or to 1 pound 11 penny weights and 20 grains Troy*.

The Troy weights are used for weighing gold, silver, costly liquors, and a few other articles.

The Avoirdupois weights are used in commerce for weighing all kinds of grocery, fruit, tobacco, butter, cheese, iron, brass, lead, tin, soap, tallow, pitch, rosin, salt, wax, &c.

The apothecaries and chemists compound and sell their medicines by the above-mentioned *apothecaries weights*; but they buy their articles by the Avoirdupois weights.

There are a few weights of other denominations used in commerce, or in particular parts of England, for weighing wool and a few other articles; but for those we must refer the reader to the works on commerce.

Trone or old Scotch Weight.

20 ounces make *one pound*.

16 pounds make *one stone*.

Hay, wool, Scotch lint, hemp, butter, cheese,

* This correspondence is taken from the experiments made in the year 1744, by Martin Folkes, Esquire, President, and several other gentlemen, members of the Royal Society.

tallow, &c. are always sold in Scotland by Trone weight.

English Dry Measures of Capacity.

Pints. Quarts. Pottles. Gallons. Pecks. Bushels. Quarts. Way, or Last Load.

2	1							
4	2	1						
8	4	2	1					
16	8	4	2	1				
64	32	16	8	4	1			
512	256	128	64	32	8	1		
2560	1280	640	320	160	40	5	1	
5120	2560	1280	640	320	80	10	2	1

The capacity of a Winchester bushel is equal to 2150,42 cubic inches.

A striked bushel is to a heaped bushel as 3 to 4, viz. a heaped bushel is one-third more than a striked bushel.

The capacity of a peck is equal to 537,6 cubic inches.

The avoirdupois weight of a bushel of wheat, at a mean, is 60 pounds : ditto of barley is 50 pounds; ditto of oats is 38 pounds.

The weight of a pint (or $\frac{1}{16}$ part of a peck) dry measure, in avoirdupois ounces, at a mean of wheat, is 15 ounces; of barley is $12\frac{1}{2}$ ounces; of oats is $9\frac{1}{2}$ ounces.

Sixty solid, or cubic, feet of Newcastle coal make one London chaldron. A cubic foot of ditto generally

nerally weighs 50 pounds avoirdupois. An heaped bushel thereof generally weighs 83 pounds avoirdupois, and 36 bushels (or one chaldron) weigh 26,67 hundred weight; that is, 2988 pounds avoirdupois.

In Scotland, a lippie, or a feed for a horse, is equal to 200,345 cubic inches.

English Liquid Measures.

The following table shews what number of measures of one denomination make up one of another denomination, as also the number of cubic inches to which each measure is equal. Thus, for instance, it shews that the capacity of one barrel is equal to 34 gallons, or to 136 quarts, or to 272 pints, or to 9588 cubic inches, according to the country measure; also it shews that $35 \frac{1}{4}$ cubic inches are equal to a pint, 2 pints are equal to a quart, 4 quarts are equal to a gallon, &c. The like explanation must be applied likewise to the table of wine measures, as also to that of the Scotch liquid measures. Beer measure for London is 36 gallons to the barrel. Ale measure for ditto is 32 gallons to the barrel. Beer and Ale measure for the country is 34 gallons (viz. a mean between the two former) to the barrel.

Beer and Ale Measures.

	Cubic Inches.	Pints.	Quarts.	Gallons.	Barrels.	Hhds.
Beer - - - -	15228	432	216	54		
Ale - - - -	13536	384	192	48	1 $\frac{1}{2}$	1
Country Measure	14382	408	204	51		
Beer - - - -	10152	288	144	36		
Ale - - - -	9024	256	128	32	1	
Country Measure	9588	272	136	34		
Beer - - - -	{	282	8	4	1	
Ale - - - -						
Country Measure						
Beer - - - -	{	70 $\frac{1}{2}$	2	1		
Ale - - - -						
Country Measure						
Beer - - - -	{	35 $\frac{1}{4}$	1			
Ale - - - -						
Country Measure						

Wine Measures.

Cubic Inches.	Pints.	Quarts.	Gallons.	Barrels.	Hogheads.
14553	504	252	63	2	1
7276,5	252	126	31 $\frac{1}{2}$	1	
231	8	4	1		
57,75	2	1			
28,875	1				

231 cubic inches make one gallon wine measure by act of parliament 5th of Q. Anne; but the standard gallon, at Guildhall, contains only 224 cubic inches.

Scotch

Scotch Liquid Measures.

Cubic Inches.	Gills.	Mutchkins	Chopins.	Pints.	Qrts.	Gallons.	Hoghd.
13235,7	2048	512	256	128	64	16	1
827,23	128	32	16	8	4	1	
206,8	32	8	4	2	1		
103,404	16	4	2	1			
51,7	8	2	1				
25,85	4	1					
6,462	1						

The *stirling Jug*, containing one Scotch pint, is the original standard of all liquid and dry measures, and of all weights in Scotland. It contains 103,404 cubic inches. When accurately filled with the water of Leith, the water weighs 3 pounds and 7 ounces of Scots Troy (equal to 55 ounces, or to 26180 English Troy grains); so that one ounce weighs 476 English Troy grains.

By the act of Union, the barrel for English country measure of 34 gallons, the capacity of which is 9588 cubic inches, is reckoned equal to 12 Scots gallons, making 9926,7 cubic inches.

C H A P. III.

OF FRENCH MEASURES AND WEIGHTS.

PREVIOUS to the late French revolution, the principal lineal measures of that nation were *lines, inches, feet, and toises*; 12 lines are equal to one inch; 12 inches make one foot; and 6 feet make one toise.

One English foot is equal to 0,9383 of a French foot.

One French foot is equal to 1,06575 English foot.

One French toise is equal to 6,3945 English feet.

The Paris *arpent* consists of 100 square *perches*; each is 18 Paris feet lineal measure, viz. 324 square feet, which, multiplied by 100, gives 32400 square Paris feet (or 36720 square English feet) for the *arpent*; that is, in round numbers, about $\frac{5}{6}$ of the English acre. But according to the *mesure royale*, a *perche* has 22 feet of lineal measure, and consequently is 484 square feet, which, multiplied by 100, gives 48400 square Paris feet (or 54853,36 English feet) to the *arpent*. This *arpent* is above $1\frac{1}{4}$ English acre. But the former *arpent* of 32400 feet was the measure used about Paris.

The

The cubic Paris foot or inch is to the cubic English foot or inch, nearly as 1,21 to 1; so that one cubic Paris foot, or inch, is about $1\frac{1}{3}$ English cubic foot or inch: hence 5 Paris cubic feet make 6 English cubic feet. 16 *litrons* make a *boisseau*; 3 *boisseaux* make one *minot*; 2 *minots* make one *mine*; 2 *mines* make one *septier*; and 12 *septiers* make one *muid*.

The Paris *septier* for wheat contains 6912 Paris cubic inches, which are equal to 8363 English cubic inches, or 4 English bushels nearly. The Paris *septier* for oats is double the one for wheat.

The French Poids de Marc.

72 grains make one *gross*, 8 *grosses* make one *ounce*, and 16 *ounces* make one *pound*. One French grain is very nearly equal to 0,8203 of an English troy grain. One ounce *poids de marc*, which contains 576 French grains, is equal to 472,49 English troy grains.

Since the French revolution, all the measures and weights of that nation are deduced from the *metre*, which we have already said to be equal to the 40 millionth part of the whole circumference of the earth, and to be equal to 39,371 English inches; the English scale being at 62° of temperature, and the French metre at 32° .

Measures of Length, or Lineal Measures.

These new French measures, as well as the weights, proceed in a decimal order; for instance, the millimetre is the 10th part of the centimetre; the latter is the 10th part of the decimetre, the decimetre is the 10th part of the metre, and so on. The numbers which are annexed to the following names of the French measures, express the number of English inches or Troy grains to which they are equivalent.

Millimetre	-	-	-	-	0,039371	Eng. in ²
Centimetre	-	-	-	-	0,39371	
Decimetre	-	-	-	-	3,9371	
Metre	-	-	-	-	39,371	
Decametre	-	-	-	-	393,71	
Hecatometre	-	-	-	-	3937,1	
Chiliometre	-	-	-	-	39371,	
Myriometre	-	-	-	-	393710.	

	English	Miles.	Furl.	Yds.	Feet.	Inches.
A decametre is equal to	0	0	10	2	9,7	
A hecatometre	-	-	0	0	109	1 1
A chiliometre	-	-	0	4	213	1 10,2
A myriometre	-	-	6	1	156	0 6

Eight chiliometres are nearly equal to five miles.

Measures of Capacity.

Millilitre	- - -	0,06103	English cubic inches.
Centilitre	- - -	0,61028	
Decilitre	- - -	6,1028	
Litre	- - -	61,028	
Decalitre	- - -	610,28	
Hecatolitre	- -	6102,8	
Chiliolitre	-	6102,8	
Myriolitre	-	610280	

A litre is nearly equal to $2\frac{1}{4}$ English wine pints.

14 decilitres are nearly equal to three English wine pints.

A chiliolitre is equal to one tun, and 12,75 English wine gallons.

Weights.

Milligramme	- - -	0,0154	English troy grains.
Centigramme	- -	0,1544	
Decigramme	- - -	1,5444	
Gramme*	- - -	15,4440	
Decagramme	- -	154,4402	
Hecatogramme	1544,4023		
Chiliogramme	15444,0234		
Myriogramme	154440,2344		

A decametre is equal to 6 penny weights and 10,44 grains English troy weights, or to 5,65 avoirdupois drams.

* A gramme is the weight of a cubic centimetre of pure water at its maximum of density.

An hecatogramme is equal to 3 ounces and 8,5 drams avoirdupois.

A chiliogramme is equal to 2 pounds, 3 ounces, and 5 drams avoirdupois.

A myriogramme is equal to 22 pounds 1,15 ounces avoirdupois.

100 myriogrammes are equal to 1 ton, wanting 32,8 pounds.

Agrarian Measures.

A square *decametre* is equal to 3,95 perches.

An *hectare*, equal to 2 acres, 1 rood, and 35,4 perches.

For Fire-wood.

A *decistere*, equal to $\frac{1}{10}$ stere, equal to 3,53¹⁷ English cubic feet.

A *stere*, equal to one cubic metre, equal to 35,3¹⁷ English cubic feet.

C H A P. - IV.

OF THE MEASURES AND WEIGHTS OF VARIOUS
NATIONS.

I HAVE endeavoured in the preceding chapters to give an accurate statement of the measures and weights of Great Britain, and of the French nation, because these have been determined with all the accuracy which the present state of knowledge relative to philosophy and mechanics could suggest. It is much to be desired, that other nations would follow their example, and either establish or make known their invariable standard, or adopt the measures of one of the above-mentioned nations. The weights and measures lately established by the French, are undoubtedly the most rational in theory, the least perplexing in practice, and the most easily remembered; yet it must be acknowledged that great innovations of this sort, though evidently for the better, are not relished by most nations. In this case they might at least determine with accuracy the standard of their ancient measures and weights, and make it known to the world for the advantage of philosophy and commerce.

In

In collecting the standards of measures and weights of the principal nations of Europe, I have met with a much greater difficulty than I at first expected. The unsettled state of those measures in certain countries, the variety of measures used in the same country, the difficulty of obtaining direct and authentic information, and the disagreement between authors who describe the measures and the weights of the very same nation, have prevented the making of as complete a statement of the general measures and weights of different nations as might have been wished. I have therefore stated those particulars only which, from the concurrence of the most creditable authors, seem to be best ascertained. In this statement the reader will find the value of the different measures, &c. expressed in English measures and weights.

Sir George Shuckburgh Evelin, having examined various ancient rules, and having measured several ancient buildings, says, "The mean result of these experiments, gave me for the length of the ancient Roman foot - - - 11,617 English inches
" Ditto; as before from the
" rules - - - - 11,606 ditto.
" The mean of the two
" modes of determination 11,612 ditto.

" I may add, that in the Capitol is a stone, of no very ancient date however, let into the wall, on which

" which is engraven the length of several measures,
" from whence I took the following :

" The ancient Roman foot = 11,635 English inches
" The modern Roman palm = 8,82 ditto
" The ancient Greek foot = 12,09 ditto *

Eng. feet.

The ancient Roman <i>mile</i> (by Plinius)	= 4840,5
The ancient Roman <i>mile</i> (by Strabo)	- 4903
The <i>stadium</i> of the ancient Romans	- 606
The <i>stadium</i> of the Egyptians	- - - 730,8
The <i>li</i> of the Chinese	- - - - 606

Eng. inches.

The <i>archine</i> of Russia	- - - - = 28,35
The <i>Rynland</i> foot of Denmark	- - - - 12,36
The Swedish foot	- - - - - 11,692
The Vienna foot in Austria	- - - - - 12,44
The Amsterdam foot	- - - - - 11,17
The Amsterdam <i>ell</i>	- - - - - 26,8
The <i>varas</i> of Madrid	- - - - - 39,16
The Spanish <i>vara</i> { of Seville	- - - - - 33,12
of Castille	- - - - - 32,952
The Turin foot	- - - - - 20,17
The Turin <i>trabucco</i>	- - - - - 121,02
The Turin <i>ras</i>	- - - - - 23,5

* Philosophical Transactions for 1798, page 169.

	Eng. inches.
The Genoa palm	= { 9,6 9,8
The Genoa canna	- - - - - 87,6
The Venice foot	- - - - - 14
The Venice braccio	{ for measuring silk - 25,3 for measuring cloth - 27
The Florence braccio	{ - - - - - 22,8 - - - - - 22,91
The braccio of Rome	{ for architects - - 30,73 for merchants - - 34,27
The Roman canna	- - - - - 78
The Naples palm	- - - - - 10,31
The Naples canna	- - - - - 82,9
The braccio of Milan	- - - - - 20,7
The Bologna foot	- - - - - 15
The braccio of Parma and Piacenza	- - - - - 26,9
The braccio of Lucca	- - - - - 23,5
The braccio of Brescia and Mantua	- - - - - 25,1
The royal foot of China	- - - - - 12,6

The Swedish foot is divided into 12 inches. The Swedish kanne (which contains 8 quadrantes, each of which contains $12\frac{1}{2}$ Swedish cubic inches) is equal to 107,892 English cubic inches. But an English gallon, wine measure, is equal to 231 cubic inches; therefore the Swedish kanne is to the English gallon as 107,892 to 231; viz. equal to little less than half a gallon.

The Amsterdam Weights.

$29 \frac{1}{8}$ grains	make	1 drop
16 drops		1 ounce
16 ounces		1 pound
16 pounds		1 stone

One English pound troy, is equal to 0,757 of a pound of Amsterdam weight.

SECTION IV.

ADDITIONAL ARTICLES.

VOL. I. page 159. After line the 9th of the note, by way of illustration add.

viz. $b^2 = annd$; and (substituting for a its value $\frac{d}{2-nn}$) $b^2 = \frac{d}{2-nn} nnd = \frac{dd\ nn}{2-nn}$. Then by extracting the square root, we have the semi-conjugate $b = \frac{nd}{\sqrt{2-nn}}$.

VOL. III. After the second line of the note in page 54, add. Though the freezing point of quicksilver be -39° ; yet that metal requires a temperature of -45° , in order to assume its perfectly solid state. Philosophical Transactions for 1801, page 133.

VOL. III. Note to the paragraph in the middle of page 95.

Mr.

Mr. Bouguer, after many trials, concluded, that the light of the sun is about 300000 times greater than that of the moon.

Dr. Smith (Optics, Vol. I. Art. 95.) thought that he had proved, from two different considerations, that the light of the full-moon is to our daylight, as one to about 90900, if none of the rays incident from the sun upon the surface of the moon were lost by the irregularities of the latter.

Vol. III. page 115. The experiment, which is described in that page, may be performed with a single reflector; for if the thermometer be placed in one of the conjugate foci, and the burning charcoal, or the ice, be placed in the other of those foci, the same effect will take place, but not so effectually, nor at so great a distance as when two reflectors are used.

A remarkable difference is to be observed between the radiant heat from the sun, and that from a common fire; viz. the former will pass through water, glass, &c. and will hardly heat them; but the radiant heat of a fire, heats those substances, and is almost entirely stopped by them.

Vol. III. page 328. To be added after the fourth line.

Dr. Hulme, in a second paper on the spontaneous light of fish, &c. (Philosophical Transactions for 1801. Art. XXI.) relates several new experiments

and observations, the principal results of which are contained in the following paragraphs.

“ These experiments prove, that objects which abound with spontaneous light in a latent state, such as herring, mackerel, and the like, do not emit it when deprived of life, except from such parts as have been some time in contact with the air.

“ They likewise shew, that the blast of a pair of bellows does not increase this species of light, as it does that which proceeds from combustion.

“ It appears that oxygen gas does not act upon this kind of light, so as to render it much more vivid than it is in atmospherical air, which is quite contrary to what some authors have alledged.

“ It is a remarkable circumstance, that azotic gas, which is incapable of supporting light from combustion, should be so favourable to the spontaneous light which is emitted from fishes, as to preserve its existence and brilliancy for some time *when applied upon a cork*; yet that it should prevent the *flesh* of the herring and the mackerel from becoming luminous, and also extinguish the light proceeding from rotten wood.

“ It appears that hydrogen gas, in general, prevents the emission of spontaneous light, and also extinguishes it when emitted; but at the same time it does not hinder its quick revival when the subject of the experiment is again exposed to the action of the atmospherical air, although the light may have been a considerable time in an extinguished state.

“ Carbonic

“ Carbonic acid gas, or fixed air, has also an extinguishing property with respect to spontaneous light; but, in general, the light returns, if the object of experiment be taken out and exposed to the open air.

“ It appears that sulphurated hydrogen gas extinguishes spontaneous light much sooner than carbonic acid gas, and that, in general, the light returns much more slowly when the subject is exposed to atmospheric air.

“ Nitrous gas, we observed to have totally prevented the emission of light, and to have quickly extinguished that which had been emitted: likewise that the luminous objects which had been under its influence (except the glow-worm) did not experience a revival of their light, when taken out and kept for some time in common air.

“ A piece of shining wood was put under the receiver of an air-pump; the light diminished in proportion as the air was exhausted; but revived on the re-admittance of the air.

“ The same thing took place with the luminous matter of a herring.

“ It appears that solar light, when imbibed by Canton’s phosphorus, is subject to the same laws, with respect to heat and cold, as the spontaneous light of fishes, rotten wood, and glow-worms, viz. heat disposes the phosphorus to yield the light quickly, but soon exhausts it; whereas cold pre-

vents, in great measure, both its emission and its dissipation."

See the same paper (*Philosophical Transactions* for 1801, page 426) for an improvement in the construction of Canton's phosphorus.

VOL. III. To be added after the 7th line of page 193.

An ingenious application of the principle mentioned in the above, and a few preceding pages, was lately made by Dr. Wollaston; viz. he has rendered it capable of measuring the refractive and dispersive powers of various substances. The paper, with the account of those improvements, was lately published in the *Philosophical Transactions* for the year 1802. Art. XII. from which I shall transcribe the following paragraphs.

" Since the range of inclination, within which total reflection takes place, depends not only on the density of the reflecting prism, but also on the rarity of the medium adjacent to it, the extent of that range varies with the difference of the densities of the two media. When, therefore, the refractive power of one medium is known, that of any rarer medium may be learned by examining at what angle a ray of light will be reflected from it.

" In examining the refractive powers of fluids, or of fusible substances, the requisite contact is easily obtained; but, with solids, which can in few instances

stances be made to touch to any great extent, this cannot be effected without the interposition of some fluid, or cement, of higher refractive power than the medium under examination. Since the surfaces of a stratum so interposed are parallel, it will not effect the total deviation so a ray passing through it, and may therefore be employed without risk of any error in consequence.

“ Thus, resins, or oil of sassafras, interposed between plate-glaſs and any other prism, will not alter the result.

“ If, on the same prism, a piece of selenite, and another of plate-glaſs, be cemented near each other, their powers may be compared with the same accuracy as if they were both in absolute contact with it.

“ For such a mere comparison of any two bodies, a common triangular prism is best adapted; but, for the purpose of actual measurement of refractive powers, I have preferred the use of a square prism, because, with a very simple apparatus, it shews the sine of refractive power sought; without the need of any calculation.

“ Let A, fig. 14, Plate XXVIII. be a square or rectangular prism, to which any substance is applied at *b*, and let any ray of light, parallel to *cb*, be refracted through the prism, in the direction *bde*.

“ Then, if *ef* and *ed* be taken proportional to the sines that represent the refractive powers of the prism,

and

and of air, fg , which is intercepted between f , and the perpendicular eg will be the corresponding sine to represent the refractive power of the medium b . For, since edg (opposite to ef) is the angle of refraction, efg (opposite to ed) must be equal to the angle of incidence bdb ; and $ef:fg::bd:db::$ sine of abi : sine of bdb .

“ All therefore that is requisite for determining the refractive power of b , is to find means of measuring the line fg . On this principle the instrument, fig. 15, Plate XXVIII. is constructed. On a board ab is fixed a piece of flat deal cd , to which, by a hinge at d , is jointed a second piece de , ten inches long, carrying two plane sights at its extremities. At e is a second hinge, connecting ef 15;83 inches long; and a third at the other extremity of ef , by which fg is connected with it. At i also is a hinge, uniting the radius ig to the middle of ef ; and then, since g moves in a semicircle egf , a line joining e and g would be perpendicular to fg .

“ The piece cd has a cavity in the middle of it, so that when any substance is applied to the middle of the prism P , it may continue to rest horizontally on its extremities. When ed has been so elevated that the yellow rays in the fringe of colours (observable where perfect reflection reminates) are seen through the sights, the point g , by means of a vernier which it carries, shews by inspection the length of the sine of refraction sought.

“ The advantages which this method possesses
above

above the usual mode of examining refractive powers, are greater than they may at first sight appear.

“ The facility of determining refractive powers, is consequently such as to render this property of bodies a very convenient test in many philosophical inquiries. For discovering the purity of essential oils, such an examination may be of considerable utility, on account of the smallness of the quantity requisite for trial.”

For such purposes, the refractive power of opaque substances, which could not be learned by any means at present in use, may often be deserving of inquiry. For, in the usual mode, a certain degree of transparency is absolutely necessary; but, for trial by contact, the most perfect opacity does not occasion the least impediment.

With respect to the experiments which Dr. Wollaston made with the above-mentioned machine, I must refer the reader to the paper itself.

F I N I S.

THE

INDEX.

A.

ABERRATION of lenses, iii. 220, 221. 267—of the stars, iv. 207.

Accelerative force, 41.

Accord, ii. 353—perfect and imperfect, ii. 385.

Acetic radical, 12. ii. 15.

Acetors, acid, ii. 555—fermentation, ii. 555.

Achromatic, refraction, iii. 195—telescope, iii. 222—lenses, iii. 223, 224, 225.

Acidifying principle, ii. 523.

Acids, different sorts of, ii. 524, 525.

Acoustics, ii. 309.

Adhesion, of two leaden bullets, ii. 141—of solids, ii. 142.

Adjutages, ii. 185—different, their actions, ii. 187.

Aërial, fluids, ii. 200—fluids, their expansibility, ii. 40—telescope, ii. 277—voyage, the first, iv. 327.

Aerostatic machines, discovery of, iv. 319—particulars relative to their construction, iv. 331. 330. 334.

Aerostation, iv. 316—progress of, iv. 324.

Affinity, ii. 19. 134. 496. 514.

Aggregation, ii. 19. 116, 117.

Agriculture, ii. 13.

Augustine, ii. 532. 534.

Air, atmospherical, ii. 198—necessary to animal life, to combustion, &c. ii. 199—its chemical properties, ii. 200. 520—its

I N D E X.

its mechanical properties, ii. 200—its invisibility, ii. 203—
its pressure, ii. 198, 204, 206, 220—its elasticity, ii. 221—
its compressibility, ii. 222—table of its expansion, ii. 273—
theory of its movements, ii. 280—use of its movements, ii. 402—
vessel of a forcing pump, ii. 434—pump, described, ii. 465—
oxygen, ii. 520—its resistance, ii. 480, 481, 482—its
weight, vessel proper for ascertaining it, ii. 489—its expansion
by heat, iii. 41, 43—its electricity, iii. 437, 442—balloons,
iv. 321—their powers, iv. 350—their use in general, iv. 350.
352.

Albuminous matter of vegetables, ii. 553.

Alcohol, ii. 88, 556.

Alembics, ii. 501, 505

Alkali, 13, ii. 533, 534—vegetable, 13—fossil, 13—volatile,
13, ii. 534—fixed, ii. 5, 33.

Alkaligen, principle, ii. 534.

Altitudes, measured by the barometer, ii. 248—table of, ii. 258
—the best method of measuring them by means of the baro-
meter, ii. 269.

Alumine. See *Argil*.

Alum earth, preparation of, iii. 46.

Amalgam, for electrical purposes, iii. 383, 384.

Ammoniac, or volatile alkali, 14, ii. 16.

Ammoniacal gas, ii. 521.

Amphisces, iv. 59.

Amplitude, of projection, 341, 350—of projection, greatest,
341—of projection, determined, 342—of a jet of fluid, ii.
196—of a celestial object, iv. 25.

Analysis, ii. 18, 495.

Anamorphoses, iii. 162.

Anatomy, ii. 12.

Anemometer, ii. 449.

Angle, of elevation in projecting engines, 341, 354—of reflec-
tion, how measured, iii. 165—of incidence and refraction,
proportion of their sines, iii. 169—of dispersion or dissipation,
iii. 172—of mean refraction, iii. 172—of deviation, 180—
spheric, iv. 38.

Angular distances, iv. 5.

Animal electricity, iii. 451—analogous to the voltaic battery,
iii. 508.

Animalcules.

I N D E X.

Animalcules, 28.
Animal kingdom, ii. 12.
Animals under the receiver of the air-pump, ii. 478.
Animal substances, their ingredients, ii. 556—their putrefaction, ii. 557.
Annular eclipse, iv. 259.
Anomalistical year, iv. 96. 247.
Anomaly, iv. 83—equated, mean, &c. iv. 83—excentric, iv. 84.
Antarctic pole, iv. 22.
Antimony, 13. ii. 15. 529.
Antipodes, iv. 15.
Apogee, iv. 83. 131.
Apparatus, electrical, described, iii. 378.
Apparitions, circle of perpetual, iv. 29.
Aphides, iv. 82, line of, iv. 82—motion of the line of, iv. 83.
Aqueous humor of the eye, iii. 244.
Arches, luminous, ii. 8.
Archimedes's screw-engine for raising water, ii. 437.
Arctic pole, iv. 22, and antarctic circles, iv. 53.
Areometer, ii. 66.
Argentine snow, ii. 529.
Argil, 13. ii. 16. 529. 532.
Argillaceous earth, its contraction by heat, iii. 44.
Argument of latitude, iv. 83.
Armature of a magnet, iii. 523—of animal members in Galvanism, iii. 468.
Armour of preparations for Galvanism, iii. 468.
Aroma of plants, ii. 552.
Arsenic, 13. ii. 16. 531.
Artificial magnets, iii. 513. 520. 545. 549—Canton's, iii. 550.
Ascending node, iv. 129.
Ascension, right and oblique, iv. 44.
Ascensional difference, iv. 44.
Ascii, iv. 59.
Aspect, line of, iii. 304.
Asterisms, or constellations, iv. 36. 207.
Astronomical, telescope, iii. 274— instruments, iv. 268—quadrant, iv. 268.
Astronomy, ii. 6, iv. 1.

Atlas,

I N D E X.

Atlas, terrestrial, iv. 14—celestial, iv. 17.

Atmosphere, ii. 198, 240—its pressure on any given surface, ii. 220. 484—its density and altitude, ii. 226—its density different at different distances from the earth, ii. 227. 229—its altitude influenced by the sun and the moon, ii. 242—its flux and reflux, ii. 245, &c.—uses of, ii. 396—electrical, iii. 353. 359. 406—of the moon, iv. 118.

Atmospherical, electricity, iii. 436—electricity, laws of, iii. 442—electrometer, iii. 438.

Attraction, 37. 54. ii. 19—proportionate to the quantity of matter, 55—four sorts of, ii. 19—of aggregation, ii. 19. 23. 140—of cohesion, ii. 20. 23. 496—of composition or of affinity, ii. 20. 496—of water to glass, ii. 117. 132—of water in capillary tubes, ii. 121—amongst other bodies, ii. 132. 134. 136—of mercury, ii. 133. 135. 138—corpuscular, ii. 170—between air and water, ii. 410—of electricity, iii. 336. 359. 402—magnetic, iii. 513. 516.

Aurora, borealis, ii. 7—Australis, ii. 7—supposed to be an electrical phenomenon, iii. 444—affects the magnetic needle, iii. 539.

Axioms of philosophy, 5—respecting the declination of the magnetic needle, iii. 538.

Axle, or Axis, 220—in peritrochio, 231—of a reflector, iii. 156—of a magnet, iii. 528—of a lens, iii. 228—of the world, iv. 22.

Azimuth, iv. 23—of celestial objects, iv. 25—compass, iii. 565.

Azote, 12, ii. 15. 520.

Azotic gas, ii. 520, 521.

B.

Balance, 221. 228—defects of, 229—of forces, 121—hydrostatic, ii. 55.

Baldwin's phosphorus, iii. 318.

Balloons, air, iv. 321—their powers, iv. 350—their use in general, iv. 350. 352.

Barometer, or Baroscope, ii. 208—indications of the weather from its various altitudes, ii. 209—its mean altitude, ii. 218—its use in measuring altitudes, ii. 232. 248—a regular movement

I N D E X.

ment of, observed at Calcutta, ii. 256—its construction various, ii. 456—Ramsden's, ii. 464.

Baryt, 13. ii. 16. 529. 532.

Bath, sand or water, ii. 511.

Battery, electrical, iii. 366. 387—voltaic, iii. 474. 482. 486.

Benzoic, radical, 13, ii. 16.

Bellows, hydrostatal, ii. 443.

Bismuth, 13, ii. 15. 529.

Bissextile year, iv. 60.

Bituminous minerals, ii. 550.

Bob of a pendulum, 176.

Body, 2—15, three principal states of, ii. 18—iii. 74.

Boiling point, iii. 17—of water, iii. 31. 34, 35.

Bolonian stone, iii. 317.

Bombic radical, 13,—ii. 16.

Bones of animals are mostly levers, 228.

Boracic radical, 12—ii. 55.

Botany, ii. 13.

Bubbles, of glass for determining the specific gravities of liquors, ii. 70—of air, not mere nothing, ii. 202—indicate the strength of spirits, ii. 202.

Bulk, 22.

Burning-glasses and speculums, iii. 112.

Black lead, its use in diminishing friction, 277—lead, ii. 531—objects, perception of, iii. 259.

Blazing stars, iv. 189.

Blind persons, acuteness of their hearing, 349.

Blocks, Garnett's, 280.

Blowing machine, by water, ii. 444.

Brafs, ii. 529—attractable by the magnet in certain cases—iii. 525.

Breadth, 22.

Brittleness, ii. 139.

C.

Calcareous earth, ii. 533.

Callipers, gunners, 351.

Caloric, 12—ii. 15, 16. 516—combined, ii. 518—iii. 9—free, ii. 518—iii. 10—iii. 2—theory of, iii. 3. 9—specific, table of, iii. 70—total privation of, iii. 76.

I N D E X.

Calorimeter, iii. 80.
Camphoric radical, 13—ii. 16.
Camera obscura, iii. 240, 270.
Cannons, 342—experiments with, 354—proper charge of, 356.
Capacities of bodies for caloric—iii. 7. 63. 66. 79—permanent, iii. 76.
Cantons, phosphorus, iii. 319.
Capes, or Head-lands, ii. 10.
Capillary attraction, ii. 118. 121.
Capstans, 232.
Carbon, 12—ii. 15. 521.
Carbonated hydrogen gas, ii. 522.
Carbonic acid gas, ii. 521—acid, ii. 523.
Cassegrainian telescope, iii. 287.
Catacoustics, ii. 309.
Catadioptric, or reflecting telescopes, iii. 274. 282.
Card of the mariner's compass, iii. 564.
Catch, or Click, 262.
Catoptrics, iii. 143, 144.
Cause, 17.
Caustics by reflection, iii. 155—by refraction, iii. 220. 236.
Celestial atlas, iv. 17—globe, iv—planisphere, map, or plate, iv. 17.
Centre, of attraction, 54—of repulsion, 54—of gravity, 58—of gravity how ascertained, 74—of gravity how ascertained by the method of fluxions, 78—of gravity of a straight line, 81—of gravity of a cone, 83—of gravity of an hemisphere, 83—of gravity, use of, exemplified, 323. 325—of gravity, improper use of, 327—descent of, ii. 26—of oscillation, 200. 201—of oscillation is the same as the centre of percussion, 203—of percussion, 201.
Centrifugal force, 54. 138.
Centripetal force, 54. 72. 138.
Ceres Ferdinandea, iv. 173.
Charge of a Leyden phial, does not displace the air, iii. 419.
Charged electrics, iii. 362, 363.
Channel English, crossed in a balloon, iv. 340.
Charcoal, combustion of, iii. 83.
Chart, or map, iv. 14.
Charts of magnetic declination, iii. 531.

I N D E X.

Chemical operations or processes, ii. 495, 536.
Chemistry, principles of, ii. 18. 495.
Choroides, iii. 242.
Chrome, 13, ii. 16. 531.
Chronometers, iv. 278—their rate of going, iv. 297.
Circle, division of, iv. 6—greater and lesser of a sphere, iv. 38
—of vision respecting the moon, iv. 121.
Circles simple galvanic, iii. 476—the most active, iii. 478, 479,
480—have a positive and a negative electric side, iii. 481—
their action, iii. 490.
Circles of perpetual apparition and occultation, iv. 29,
Circular astronomical instruments, iv. 272.
Civil year, iv. 59.
Clamminess, ii. 139.
Clay, ii. 532. See *Argil*.
Clouds, luminous, 8, ii. 8, 404. 410—formation of, ii. 412—are
generally electrified, iii. 437.
Cliffs in music, ii. 381.
Cobalt, 13, ii. 15, 529.
Cogs, 265.
Cohesion, ii. 116. 496.
Cooling of certain bodies produces electricity, iii. 429. 431.
Collector of a prime conductor, iii. 380.
Collimation, line of, iv. 271.
Cold, iii. 3. 10—a privation of caloric, iii. 86—communication
of, iii. 89—reflected, iii. 116—production of, iii. 118—pro-
duced by ventilation, iii. 118—produced by evaporation, iii.
119—produced by the application of ice, iii. 122—produced
by the solution of salts, iii. 124—produced by the expansion
of air, iii. 128.
Colours, of light, iii. 172, 173. 180—compounded, iii. 188—
by inflection, iii. 202—of thin plates, iii. 206—Newton's
theory of, iii. 212—produced by various means, iii. 215—
prismatic, marked upon glass by the force of electricity,
iii. 369.
Colure, equinoctial and solstitial, iv. 46.
Combinations, simple, of conductors, laws respecting them, iii.
474—of the first and second order, iii. 476.
Combustible bodies, ii. 537—for common fires, iii. 99.
Combustion, ii. 512. 537, 538.

I N D E X.

Comets, ii. 6. iv. 19. 189—their parallax, iv. 198—their nucleous, iv. 201—their beards, comas, hair, or tails, iv. 201.

Comma, ii. 376.

Commutation, angle of, iv. 82.

Compass, mariner's, iii. 529—different sorts of, iii. 562—best sort of, described, iii. 563, 564—azimuth, iii. 565.

Composition of forces, 124, 125.

Compound magnet, iii. 549.

Compressibility of non-elastic fluids, ii. 21—of air, ii. 222.

Condenser of electricity, iii. 424.

Condensing vessel of a forcing pump, ii. 434—engine ii. 491, 492, 494.

Conductor, prime, iii. 378, 380.

Conductors of electricity, ii. 519—of heat, ii. 517. iii. 6. 338—electrics, list of, iii. 341—for the lightning, iii. 447—combinations of, and their effects, iii. 474—perfect and imperfect, iii. 474—in magnetics, iii. 550.

Congelation, line of, upon mountains, iii. 94.

Conjunction of planets with the sun, iv. 80—of the moon with the sun, iv. 123.

Consonance, ii. 353, 369.

Continents, ii. 10.

Constellations, iv. 36. 207. 210—of the zodiac, iv. 37. 210.

Contracted vein, ii. 182.

Contraction by cold, iii. 4.

Cooling, iii. 3.

Copernican system, iv. 70, 71.

Copper, 13, ii. 16. 528.

Cornea, iii. 242.

Coronas, or Halos, ii. 8. iii. 309.

Corpuscular attraction, ii. 170.

Cranes, 232. 261, ii. 427—best sort of, ii. 428.

Crescent, iv. 33.

Crow, 228.

Crucibles, ii. 510.

Crystalline humour of the eye, iii. 244.

Crystallization, ii. 509.

Culmination, iv. 23.

Cuppels, ii. 510.

Cupping glasses, action of, ii. 402.

I N D E X.

Curtate distance, iv. 82.

Curves, logarithmic, their principal properties, ii. 233—useful for illustrating the various densities of the atmosphere—ii. 233.

Cycles, iv. 247.

Cycloid, 178—its generating circle, 178—its base, 178—its axis, 179—its properties, 179.

Cycloidal, oscillation, 181—pendulum, 182.

Cytric, radical, 13. ii. 15.

D.

Darkness, iii. 133.

Day, natural, artificial, &c, iv. 242—civil and astronomical, iv. 244.

Days and nights, their different lengths, iv. 49. 51.

Declination of the magnetic needle, iii. 514. 530—lines of, iii. 531—charts of, iii. 531—list of, iii. 532—hourly, iii. 537—mean for each month, iii. 537—axioms respecting it, iii. 538.

Declination, of celestial objects, iv. 32. 43—of the sun, iv. 43—circles of, iv. 44.

Deflagration, ii. 512.

Degrees, of the thermometer, iii. 17—of a circle, iv. 6.

Depressions, iv. 14.

Descending node, iv. 129.

Descent, of bodies, 283—line of quickest, 195.

Detonation, ii. 512. 538.

Dew, ii. 413.

Diacoustics, ii. 309.

Diamond, the hardest body known, ii. 148—the body of greatest refractive power, iii. 178—combustible, iii. 178.

Diaphragm, iii. 286.

Diffraction of light, iii. 200.

Digester, Papin's, iii. 35.

Digestion, in chemistry, ii. 513.

Digits of an eclipse, iv. 254.

Dilatation by heat, iii. 4. 12.

Dioptrics, iii. 143. 168.

Dioptric telescope, iii. 274.

Dip of the horizon, iv. 287.

I N D E X.

Dipping, of the magnet, iii. 515—needle, iii. 541. 566—in various places, iii. 544.

Directive property of the magnet, iii. 513. 527, 528.

Dissolution of metallic substances in acids, ii. 548.

Discharge of fluids through different apertures, ii. 187—hindrances to it, ii. 189.

Discharger, universal, iii. 388.

Discharging, rod, iii. 388—electrometer, iii. 391.

Dispersion of light, iii. 172—angle of, iii. 172—by different media, iii. 173. 175.

Diffonance, ii. 369. 353.

Distance, of objects, how judged of, iii. 257. iv. 5. 7. 42—mean of planets, iv. 82.

Distillation, ii. 501—pneumato-chemical, ii. 504.

Distinct vision, 248. 255—limit of, iii. 251.

Divisibility, 21. 24.

Diurnal, arch, iv. 49—rotation of the earth and planets, iv. 97—motion of the moon from the sun, iv. 128.

Dodecatimoria, iv. 109.

Dome of a furnace, ii. 511.

Draco volans, ii. 8.

Drum, in mechanics, 262.

Dryness, of places, ii. 415—extreme, point of, ii. 419.

Dry way of performing chemical operations, ii. 512.

Dynamics, 219.

E.

Earth, a planet, 6—dimensions of, ii. 9. iv. 13—gravitation of, 54—decrease of its gravitation, 61—division of its surface, 10—a great magnet, iii. 546. 555—its figure, iv. 11.

Earthquakes, affect the magnetic needle, iii. 538.

Earthen-ware, ii. 532.

Earths, or earthy substances, ii. 528.

East, iv. 24.

Eastern hemisphere, iv. 23.

Ebbing and flowing wells, ii. 430—of the sea, iv. 147, 148.

Echo, ii. 399. 344.

Eclipses of the sun and of the moon, iv. 125. 251. 261—of the satellites of Jupiter, iv. 178. 262.

Ecliptic,

I N D E X.

Ecliptic, iv. 31. 81—its obliquity, iv. 31.
Eddies, ii. 171.
Eel, electrical, iii. 456.
Effect, 17.
Elastic bodies, 91, 92. 101.
Elasticity, of metallic substances, ii. 147—of air, ii. 221—of air, not diminished by long continued pressure, ii. 225.
Electrical, machine, iii. 337—atmospheres, iii. 353. 359. 422—battery, iii. 366—machine and apparatus, described, iii. 378—experiments, iii. 395—machine of Harlem, iii. 385—machine, management of, iii. 395—organs of fishes, iii. 451.
Electric, fluid, 12, ii. 15, 16. 519—appearances, iii. 337—shock, ii. 362—fluid, course of, shewn by the flame of a wax taper, ii. 418—jar, iii. 365—well, iii. 399—atmospheres, iii. 400—fluid, course of, shewn by the discharge of a jar, iii. 417.
Electricity, iii. 331—excited by friction, iii. 336—attraction of, iii. 336. 359—light of, iii. 336. 337—vitreous and resinous, iii. 344. 347—theory of, iii. 349—plus, or positive, minus, or negative, iii. 349—communicated, iii. 352. 361—its effects upon animals and vegetables, iii. 357. 367—taste and smell of, iii. 358—its passage from one body to another, iii. 353. 359—its action on the human body, iii. 376—production of, iii. 421—how to ascertain the existence of a small quantity of it, iii. 422—produced by melting and coagulation, iii. 429—produced by heating or cooling, iii. 431—produced by evaporation, iii. 434—atmospherical, iii. 436. 442—animal, iii. 451—produced by the contact of metallic bodies and other conductors, iii. 472—its identity with Galvanism, iii. 508.
Electrics, iii. 337—*par se*, iii. 338—list of, iii. 339—charged, iii. 362—coated, iii. 386.
Electrometer, or electroscope, iii. 346. 389—Canton's, iii. 390—quadrant, iii. 390—atmospherical, iii. 438—bottle, iii. 392.
Elements, 11, 12, ii. 14.
Elevations, iv. 14.
Elongation of the moon, iv. 122.
Emanation from a centre, law of, 62.
Endless screw, 261.
Engines, fire, ii. 436—screw for raising water, ii. 437—compound, 253—estimation of their powers, 255.

I N D E X.

Equation, of the centre, or posthapheresis, iv. 83—of time, iv. 244.

Equator, of a magnet, iii. 528, or equinoctial, iv. 26. 98.

Equatorial instrument, iv. 276.

Equinoctial colure, iv. 46.

Equinoxes, or equinoctial points, iv. 31. 46—precession of, iv. 57.

Eras, or *Æras*, iv. 249, 250.

Essay instrument, ii. 66.

Ether, ii. 556.

Ethics, 2.

Evaporation, ii. 403—promoted by the wind, by agitation, by heat, ii. 404—quantity of, how measured, ii. 406—in London, ii. 408—at Liverpool, ii. 408—facts relative to it, ii. 411—in chemistry, ii. 501—produces electricity, iii. 434. 446.

Evening star, iv. 67.

Eudiometer, ii. 508.

Euphon, ii. 323.

Excentricity of the planetary orbits, iv. 82.

Excitation, electrical, iii. 337.

Experimental philosophy, 2.

Experiments, with the air-pump, ii. 476—easy to illustrate the properties of lenses, &c. iii. 235—electrical, iii. 395.

Expansion of air, table of, ii. 273—of mercury, table of, ii. 254—by heat, iii. 4. 12—of fluids, iii. 26—of aerial fluids, iii. 40—of solids, iii. 58.

Expiration, ii. 398, 399.

Extension, 21, 22.

Eye, iii. 239—description of, iii. 241—dimensions of, iii. 245.

F.

Falling, bodies, 69—bodies, problem relating to, 71—stars, ii. 7.

Fata Morgana, ii. 8, iii. 314.

Fatuus, ignis, ii. 8.

Fecula of vegetables, ii. 553.

Fermentation, ii. 554—vinous or spirituous, ii. 554—acetous, ii. 555—putrid, ii. 555.

Filaments of running fluids, ii. 170.

Filtering,

I N D E X.

Filtering, paper, ii. 500—stones, vessels, &c. ii. 500.
Filtration, ii. 499.
Finder, for a telescope, iii. 290.
Fish, their phosphoric light, iii. 323. iv. 422—electrical, iii. 508.
Fire, iii. 3—engines, ii. 436—places, general rules concerning their construction, iii. 100.
Firths, ii. 11.
Fixed, alkali, ii. 533—stars, iv. 29. 206—stars, their distances, sizes, &c. not known, iv. 74—stars, their apparent magnitudes, iv. 206—stars, telescopic, iv. 207.
Flame, ii. 538.
Flash, of light, produced by Galvanic combinations, iii. 500.
Flat mood, in music, ii. 377.
Flats, in music, ii. 378.
Flight of shots, 341. 350.
Floating bodies, ii. 114.
Flowers, of antimony, ii. 529—of bismuth, ii. 529.
Flowing of the sea, iv. 147.
Fluid, ii. 2—electric, iii. 349—magnetic, iii. 557.
Fluidity, 16, ii. 139.
Fluids, ii. 2—perfect, ii. 22—particles of, ii. 25—different, their pressure against each other, ii. 42—non-elastic, their actions when in motion, ii. 99—their compressibility, ii. 21—their motion through holes, pipes, &c. ii. 166—theory of their motion, ii. 167—their motion in open channels, ii. 170—their motion through apertures, ii. 177—their lateral communication of motion, ii. 178—permanently elastic, ii. 200. 518.
Fluoric, radical, 12, ii. 15—acid gas, ii. 521.
Flux and reflux of the atmosphere, ii. 245. 257.
Flying, dragon, ii. 8—kite, ii. 8—art of, iv.
Focal distance, iii. 156—principal of a lens, iii. 228.
Foci conjugate, iii. 218. 237.
Focus, of the rays of heat, iii. 106. 109. 111—of the rays of light, iii. 156—virtual, iii. 154—principal of a convex reflector, iii. 154—of incident rays, and of reflected rays, iii. 156—principal of a concave reflector, iii. 156—of a lens, iii. 218. 228—of incident and of refracted rays, iii. 218, virtual, iii. 154. 219—of lenses, how found out, iii. 228. 230. 236.
Fogs,

I N D E X.

Fogs, ii. 8. 404—formation of, ii. 412. 413.
Force of the wind, how ascertained, ii. 451.
Forcing pump, ii. 434.
Formic radical, 13, ii. 16.
Forks tuning, ii. 383.
Forte piano, ii. 354.
Franklinian theory of electricity, iii. 348.
Free caloric, iii. 10.
Freezing point, on thermometers, iii. 17.
Friction, 272, 330—wheels, 278—rollers, 278.
Frigid zones of the earth, iv. 54.
Frogs, their great susceptibility of electricity, or of Galvanism, iii. 462. 464. 490—best preparation of for Galvanic experiments, iii. 467.
Fruit, under the receiver of an air-pump, ii. 479.
Fulcrum, 81. 224.
Full moon, iv. 123.
Furnaces, ii. 511.
Fusee, 268.

G.

Gages, for the air-pump, ii. 484—to 489—for a condensing engine, ii. 493.
Galaxy, iv. 214.
Gales, ii. 8.
Galilean telescope, iii. 279.
Galvanic, batteries, see Voltaic batteries—circles, iii. 476. 478—circles of the first order, iii. 479—circles of the second order, iii. 480.
Galvanism, iii. 462—its identity with common electricity, iii. 508—probably useful in medical cases, iii. 501.
Gallic radical, 13, ii. 15.
Gas, ii. 520—various species of, ii. 521—produced by the action of the Voltaic batteries, iii. 501.
Garua, ii. 414.
Geocentric longitude, iv. 45.
Geography, ii. 11.
Geology, ii. 13.
Georgian planet, ii. 6. iv. 187—its satellites, iv. 187.

Gib.

I N D E X.

Gib, 261.
Gimbolds, iii. 564.
Glass, ii. 532.
Globes, terrestrial and celestial, iv. 14. 17. 281—description and use of, iv. 282—problems to be performed with them, iv. 300.
Glow-worms, iii. 316.
Gluten, vegetable, ii. 553.
Glutinous, ii. 139.
Glucine, ii. 532, 533.
Gold, 13, ii. 16. 527.
Golden number, iv. 248.
Gravimeter, ii. 66.
Gravitation, 21. 37—of the earth, 54—decrease of, 61.
Gregorian, telescope, iii. 284—style, iv. 62.
Gudgeons, 263.
Guinea and feather apparatus, ii. 481.
Gulfs, ii. 10.
Gum, of vegetables, ii. 552—resins, ii. 553.
Gun-powder, fired in *vacuo*, ii. 540—its force attributed to the expansion of water, iii. 32.
Gymnotus electricus, iii. 451. 456.

H.

Hadley's sextant, iv. 280.
Hail, ii. 8. 404, 405—generally electrified, iii. 437. 442.
Halos, or Coronas, ii. 8. iii. 309.
Hard bodies, 91.
Hardness, 16, ii. 139—of different substances, ii. 145, 146. 148
—of metals and semimetals, ii. 147.
Harmony, ii. 353.
Harvest moon, iv. 136. 140.
Hearing trumpet, ii. 351.
Heat, elementary, iii. 9—list of the effects produced by certain degrees of, iii. 50—latent, iii. 67—production of, iii. 87. 95. 97—communication of through fluids, iii. 101—emanation of, iii. 104—reflection of, iii. 115.
Heating, iii. 3. 10—of certain substances produces electricity, iii. 431.

Hegira,

I N D E X.

Hegira, iv. 249.
Height of a projectile's path, 341.
Heliocentric longitude, iv. 45.
Hemisphere, eastern and western, iv. 23.
Hemitones, ii. 372. 376.
Hepatic gas, ii. 521.
Herschel's telescope, iii. 288.
Heteroscii, iv. 59.
Hills, ii. 10.
Horary circle of a globe, iv. 298.
Horizon, sensible, iv. 19—rational, iv. 20—its eastern and western sides, iv. 21.
Horizontal, moon, iii. 258—sun, iv. 144.
Hottest time of the day and of the year, iii. 88.
Hour, circles, iv. 44—of the day how found out, iv. 289.
Hours, iv. 30. 242.
Horse, its power in mechanics, 271. 337.
Humid way of performing chemical operations, ii. 512.
Hunter's moon, iv. 136. 140.
Hurricanes, ii. 8. 303—prognostics of, ii. 304.
Husbandry, ii. 13.
Hydraulics, 220, ii. 21.
Hydrogen, 12, ii. 15. 520. 546—gas, ii. 520—gas, its expandability, iii. 40—gas, combustion of, iii. 83—gas, sulphurated, ii. 521—gas, carbonated, ii. 522—gas, phosphorated, ii. 521—gas of marshes, ii. 522.
Hydrography, ii. 11.
Hydrodynamics, 220, ii. 21.
Hydrometer, ii. 66—recommended in certain cases, ii. 71.
Hydrostatical balance and apparatus, ii. 55. 70—bellows, ii. 443.
Hydrostatics, 220, ii. 21.
Hydrology, observations in, ii. 422.
Hygrometer, or Hygroscope, ii. 412—principle of, ii. 413—De Luc's, described, ii. 420—its mean height, ii. 423—Leslie's, ii. 423—De Saussure's, ii. 429.
Hygroscopic bodies, ii. 418.

I N D E X.

I.

Jack-a-lantern, ii. 8. iii. 328.
Jar, electrical, iii. 365.
Jargonia, or Zirgonia, i3, ii. 16. 530. 533.
Ice, iii. 4—houses, iii. 122—how produced in India, iii. 123.
Jet of fluid, ii. 190. 193—table of the heights of, ii. 195—its amplitude, ii. 196.
Jewelled holes for watch work, &c. 278.
Ignis fatuus, ii. 8, iii. 328.
Ignition, ii. 537.
Illumining power of the differently coloured rays of light, iii. 198.
Image formed by refraction, iii. 233—its brightness, iii. 234.
Impenetrability, 21. 32.
Imperfection of the scale of musical sounds, ii. 386.
Impulse, 41, oblique, 126.
Incidence, angle of, in mechanics, 129—in optics, iii. 141, 142.
Incident light, iii. 141.
Inclination, of the magnetic needle, iii. 515—of the planetary orbits, iv. 82.
Inclined, planes, descent of bodies upon, 164—plane, 221. 239.
Indiction, iv. 248.
Inequality, optical, iv. 9.
Inertia, 21. 35. 45.
Infinity, 18.
Inflammable substances fired by electricity, iii. 371.
Inflammation, 538.
Inflection of light, iii. 199, 200.
Inspiration, ii. 398, 399.
Instruments, astronomical, iv. 268.
Insulation, iii. 338.
Intensity, diminution of, in emanations, 62.
Intercalary day, iv. 60.
Intermitting springs, ii. 430.
Intervals, musical, ii. 375, 376.
Intonation, ii. 10.
Iris, iii. 242.

I N D E X.

Iron, 13, ii. 16, 528—crow, 228.

Islands, ii. 10.

Isthmuses, ii. 10.

Jupiter, ii. 5, iv. 173.

K.

Kingdoms of nature, ii. 12, 55^c.

Kite, flying, 8—electrical, described, iii. 441—electrical, laws deduced from the experiments made with it, iii. 443.

L.

Lactic, or Laccic, radical, 13, ii. 16.

Lakes, ii. 11.

Lantern, 262—magic, iii. 272.

Lapis heracleus, or lapis nauticus, iii. 512.

Latent heat, iii. 67.

Lateral explosion, iii. 414.

Latitude, iv. 40—parallels of, iv. 40—of celestial objects, iv. 45
—in what manner is to be ascertained, iv. 285, 288.

Laws, of nature, 8, 17—of motion, 42, 53—of the planetary motions, iv. 85.

Lead, 13, ii. 16, 528.

Leap year, iv. 60.

Leathers for air-pumps, ii. 471, 473, 474.

Lee-way of a ship, ii. 108.

Length, 22.

Lenses, iii. 216—various sorts of, iii. 217—centres, axes, and vertexes of, iii. 217—their aberrations or irregularities, iii. 220, 221—their effects, iii. 262—combinations of, iii. 267.

Lever, 220, 224.

Levigation, ii. 493.

Leyden, phial, or experiments, iii. 365—effects of, iii. 366—theory of, iii. 373—experiments with it, iii. 405.

Librations, of a fluid in a bent tube, ii. 150—of the moon, iv. 113, 135.

Ligamentum ciliare, iii. 243.

Light, 12, ii. 15, 16, 516, iii. 133—Descartes's theory of, iii. 133—Newton's theory of, iii. 134—duration of its impression upon our eyes, iii. 135—motion of, iii. 136, 139, 140—particles

I N D E X.

cles of, iii. 137—momentum of, iii. 137—reflection of, iii. 141. 144—incident, iii. 141—inflection of, iii. 142—pencil of, iii. 142—whether material, iii. 321—lost by reflection, how measured, iii. 165—white in the sky, iii. 313—zodiacal, iii. 313—electrical, iii. 336—characteristic of the two electricities, iii. 346.

Lightning, ii. 8—an electrical phenomenon, iii. 436—conductors for it, iii. 447.

Lignum nephriticum, properties of its infusion, iii. 214.

Lime, 13, ii. 16. 530. 533—water, ii. 533.

Limits of the moon's distance from the ecliptic, iv. 130.

Line, of swiftest descent, 195—of direction, 227. 324—of aspect, iii. 304—of magnetic declination, iii. 531—of no declination, iii. 531—magnetical, iii. 542—or the equator, iv. 40—of collimation, iv. 271.

Lixiviation, ii. 500.

Load-stone, iii. 512.

Local heats, iii. 93.

Logarithmic curves, their principal properties, ii. 233—analogous to the densities of the atmosphere, ii. 233—atmospherical, ii. 241.

Longitude, in geography, iv. 40—of celestial objects, iv. 45—how found out, iv. 295.

Looking glass, iii. 163.

Lower focus of a planet's orbit, iv. 81.

Lunar rainbow, iii. 308.

Lunation, iv. 127.

Lungs, ii. 398.

Luting of retorts, &c. ii. 502.

M.

Machine, 253—Atwood's, 284—electrical, iii. 378. 381. 384.

Magic lantern, iii. 272.

Magnesia, 13, ii. 16. 530. 533.

Magnet, iii. 331—affected by electric shocks, iii. 370—natural and artificial, iii. 512, 513. 520—its armature, iii. 523—horse-shoe, iii. 523—its attraction and directive power, iii. 513. 524. 549—compound, iii. 549.

Magnetic fluid, 12, ii. 15. 16. 519. iii. 557—properties, iii. 512—polarity, iii. 514—poles, iii. 514. 527—meridian, iii. 514—needle,

I N D E X.

needle, iii. 514—*instruments of three sorts*, iii. 562—*experiments*, iii. 567. 529—*attraction and repulsion*, iii. 516. 525—*experiments said to have been made with an air-balloon*, iv. 353.

Magnetism, iii. 512—*communicated*, iii. 545. 547. 553—*of the earth*, iii. 546—*theory of*, iii. 555.

Magnifying power, of lenses, iii. 265, 266—*of telescopes ascertained*, iii. 276. 280. 284. 286. 289—*of microscopes*, iii. 295, 296, 297.

Magnitude, 22.

Malic, radical, 13. ii. 16.

Man, his power in mechanics, 270.

Manometer, iii. 40.

Manganese, 13, ii. 15. 530.

Map, iv. 14.

Marinet's compass, iii. 529. 562, 563, 564.

Mars, ii. 5, iv. 172.

Matter, 10. 15—*quantity of, in simple motion*, 49.

Maximum of the action of a fluid, on the sails of a wind-mill, or the rudder of a ship, &c. ii. 111.

Mean, arithmetical and geometrical, ii. 231—*temperature of a country*, iii. 86.

Measures, ii. 97—*standard*, iv. 393. 395. 397, 398—*British*, iv. 400. 407—*French*, iv. 410—*of various countries*, iv. 417.

Mechanical, law, 17—*powers*, 218. 220. 250—*paradox*, ii. 442.

Mechanics, 219.

Medicine, or the medical art, ii. 12.

Mediums, in optics, iii. 142.

Melody, ii. 353.

Melting of certain substances produces electricity, iii. 429.

Mercury, 13, ii. 16—*table of its expansibility*, ii. 254—*its freezing point*, iii. 53—*amalgam of, with other metals*, soon tarnishes, iii. 473—*the planet*, ii. 5. 528, iv. 170.

Meridian, magnetic, iii. 514—*astronomical*, iv. 23—*line, how drawn*, iv. 283—*universal or brazen, of globes*, iv. 284.

Metallic substances, ii. 525. 527—*their dissolution*, ii. 548, 549—*fused by means of electricity*, iii. 368, 369. 371. 411, 412—*their actions upon each other*, iii. 473.

Metallurgy, ii. 13.

Meteorology, ii. 7.

Meteors,

I N D E X.

Meteors, ii. 7—species of, ii. 8. iv. 359.
Metre, French, reduced to English measures, iv. 13. 398. 412.
Micrometer, iii. 291—mother-of-pearl, iii. 292—value of, how ascertained, iii. 293—for microscopes, iii. 298.
Microscope, iii. 263. 294—solar or lucernal, iii. 295—simple, limits of, iii. 295—compound, iii. 296—aqueous, reflecting, opaque, Wilson's, and reflecting, iii. 298.
Midday, iv. 24.
Midnight, iv. 24.
Mile, iv. 42. 400.
Milky way, iv. 214.
Mineral kingdom, ii. 12.
Mineralogy, ii. 13.
Minutes of a degree, iv. 6—of time, iv. 30.
Mirrour, iii. 141.
Mists, ii. 8. 404, 405. 410. 413.
Mixture, ii. 512.
Mobility, 21. 34.
Mock suns, and mock moons, ii. 8, iii. 311.
Moisture of places, ii. 415—extreme point of, ii. 419.
Molybdenite, 13, ii. 16. 531.
Momentum, 46. 49—of shots, 341. 358—of the wind, how ascertained, ii. 451.
Monsoons, ii. 8. 296.
Months, civil, astropical, &c. iv. 246.
Moon, ii. 5, 6.—mock, ii. 8—its light affords no sensible heat, iii. 95. 311—horizontal, iii. 258—its proper movement, iv. 33—its phases, its cusps, and its first quarter, iv. 33—full, and its last quarter, iv. 34—its phases, motions, apparent size, distance, spots, &c. iv. 111.
Moons or satellites, ii. 5, 6, iv. 72.
Moral philosophy, i.—its etymology, 2.
Morgana, fata, iii. 314.
Morning star, iv. 67.
Mortar, 342. 354, ii. 533.
Motion, 15. 40—absolute, 15—relative 15, 16—of bodies in their descent towards the earth, 61—accelerative, 61—compound, 114—rectilinear, and curvilinear, 134—theory of equable motion in circular orbits, 138—judgment of frequently

I N D E X.

mistaken, iii. 259—in antecedentia, or in consequentia, direct or retrograde, iv. 83, 84.
Mountains, ii. 10, temperature of, iii. 94—height of, ii. 258.
height of on the moon, iv. 116.
Mucilage of vegetables, ii. 552.
Muffle, ii. 510.
Multiplier of electricity, described, iii. 425.
Muriatic, radical, 12, ii. 15—gas oxygenated, ii. 521—acid, ii. 521.
Music, ii. 353, 356—effects of, ii. 393—fittest room for, ii. 350.
Musical, sounds, ii. 353—art, ii. 353, 356—instruments, ii. 356, 372.
Myopes, iii. 249.

N.

Nadir, iv. 23.
Natural philosophy, i—its etymology, ii.
Nebulæ, iv. 214, 215.
Needle, floating, ii. 138—magnetic, iii. 514, 529—dipping, iii. 540, 566.
New, style, iv. 62—moon, iv. 123.
Newtonian, telescope, iii. 282—theory of universal attraction, iv. 75, 76.
Nickel, 13, ii. 15, 530.
Night, iv. 242—telescope, iii. 282.
Nitrogen, ii. 520, 521.
Nitrous, gas, ii. 521—acid, ii. 524—produced by the action of electric shocks upon certain gases, iii. 373.
Nocturnal arch, iv. 49.
Nodes, of the planetary orbits, and line of, iv. 81, 129—of the orbits of the satellites, iv. 177.
Nonagesimal degree, iv. 124.
Non-conductors of electricity, ii. 519—iii. 338—list of, iii. 339.
Non-elastic bodies, 91.
Non-electrics, iii. 338.
Nonius, or Vernier, ii. 461.
Neon, iv. 24.

North,

I N D E X.

North, pole, iv. 22—polar star, iv. 22—point of the horizon, iv. 24.
Northern lights, ii. 7. iii. 312. 444.
Notation of musical sounds, ii. 380.
Notes of music, ii. 372.
Nutation of the earth's axis, iv. 239.

O.

Obliquity of the ecliptic, iv. 100.
Observatories astronomical, portable, iv. 276.
Occultation, circle of perpetual, iv. 29.
Occultations, iv. 251. 264.
Oceans, ii. 10.
Octaves, in music, ii. 375.
Oil, its use for reducing friction, 277—its effects upon water, ii. 161—used by seamen in certain cases, ii. 162, 163—light volatile, do not produce the same effect upon water, as the fat oils do, ii. 165—fat or volatile, ii. 552.
Olympiads, iv. 248.
Opaque bodies, iii. 143.
Opera glafs, iii. 280.
Opposition of the planets to the sun, iv. 79.
Optic nerve, iii. 244.
Optical, instruments, iii. 270—inequality, iv. 9.
Orrery, iv. 281.
Oscillation, 176—centre of, 200, 201—centre of, how ascertained, 207.
Otocautics, ii. 309.
Oxalic radical, 12, ii. 15.
Oxides, ii. 524.
Oxygen, 12, ii. 15—air, ii. 520—quantity necessary in certain combustions, iii. 83.
Oxygenated muriatic gas, ii. 521.
Oxygenation, ii. 523, 524.

P.

Pallas, iv. 173.
Panorama, iii. 258.

I N D E X.

Parachute, iv. 345.
Paradox, mechanical, ii. 442.
Paraselene, or mock moon, ii. 8, iii. 311.
Parhelia, or mock suns, ii. 8, iii. 311.
Parallax, of comets, iv. 198—of celestial objects, iv. 222—of latitude, of longitude, of right ascension, and of declination, iv. 227—of the great orbit, iv. 102.
Pendulum, 174—the length of, when it vibrates seconds, 194—compound, iii. 61—used as a standard of measure, iv. 395. 397—its vibrations in different latitudes, iv. 396.
Peninsula, ii. 10.
Penumbra of an eclipse, iv. . 257.
Percutient bodies, theory of, 91.
Percussion, centre of, 201—its situation ascertained, 207. 209.
Perigee, iv. 83. 131.
Periodical month of the moon, iv. 127.
Periods, iv. 242. 250. 262—Julian, iv. 249.
Permanently elastic fluids, ii. 200.
Périscii, iv. 59.
Perspective glass, iii. 278.
Pese liqueur, ii. 66.
Phases of the moon, iv. 112. 120.
Phenomenon, 2.
Philosophy, 1—its etymology, 2.
Philosophical wool, ii. 529.
Phonics, ii. 309.
Phosphorated hydrogen gas, ii. 521.
Phosphoric acid, ii. 523.
Phosphorescent bodies, iii. 316.
Phosphorus, 12, ii. 15. 523. iii. 316—Baldwin's, iii. 318—combustion of, iii. 83.
Photometer, iii. 299.
Physics, 2.
Physiology, 2.
Piano, ii. 354.
Pinion, 262.
Pipes, tuning, ii. 383—of an organ, altered by heat and cold, ii. 384.
Pitch,

I N D E X.

Pitch, of sounds, ii. 354. 357, 358—concert, ii. 383—affected by heat and cold, ii. 384.

Pits, greatest depth of, ii. 11.

Pivots, or Pêvets, 263.

Place, absolute or relative, 14.

Planets, ii. 5—their characters, iv. 35. 19—shine by reflecting the light of the sun, iv. 66—primary and secondary, iv. 73—inferior, iv. 79—superior, iv. 80—their diameters, periods, &c. &c. iv. 162.

Plate, flat glass, its effect with respect to refraction, ii. 226.

Platina, 13, ii. 16. 527—attracted by the magnet in certain cases, iii. 525.

Plinian period, iv. 262.

Plumbago, ii. 531.

Pluviometer, ii. 412.

Pneumatics, ii. 198.

Pneumatochemical distillation, operations for, ii. 504.

Point, 23,—of suspension, 174.

Points, their action in electricity, iii. 355, 356—of the compass, iii. 564, iv. 24—cardinal of the horizon, iv. 24—cardinal, iv. 105.

Polar circles, iv. 53.

Polarity, magnetic, iii. 514. 527.

Pole, use of in rope dancing, 327.

Poles of the world, iv. 22—of the horizon, iv. 23—of the earth, iv. 26—of a circle, iv. 39.

Pompholix, ii. 529.

Ponderous earth. See Baryt.

Porter, taste of, in different vessels, iii. 473.

Posthapherefis, or equation of the centre, iv. 83.

Potash, or vegetable alkali, 13, ii. 16. 533.

Powers, mechanical, 218—their number, 220. 250—moving, 253—active, 267.

Precession of the equinoxes, iv. 57. 107.

Precipitate and Precipitant, in chemistry, ii. 549.

Prespitæ, iii. 249.

Pressures, 124—on the bottoms or fides of vessels, containing fluids, ii. 33—centre of, ii. 37.

I N D E X.

Prime, conductor of an electrical machine, iii. 378. 380—conductor, positive or negative, iii. 399—vertical, iv. 24.
Principal or key note, in music, ii. 374. 376.
Prism, iii. 179.
Projectiles, 338—their paths deviate from parabolas, 350. 353
—greatest, 341.
Promontories, ii. 10.
Properties of matter, 2. 4. 10. 16—general, 21—passive and active, ii. 19.
Prussic radical, 13, ii. 16.
Ptolemaic system, iv. 69.
Pulley, 220—the moveable or system of pulleys, 233.
Pulverization, ii. 498.
Pump, water, ii. 431—water, estimate of its power, ii. 433—forcing water, ii. 434—air, described, ii. 465—short history of, ii. 467.
Pupil of the eye, iii. 243.
Putrid fermentation of vegetables, ii. 555—of animal substances, ii. 557.
Pyrolignic radical, 13, ii. 16.
Pyrometer, iii. 54, 55, 56, 57.
Pyro-tartaric radical, 13, ii. 15.
Pyro-mucic radical, 13, ii. 15.

Q.

Quadrant, astronomical, iv. 268—moveable, iv. 269—mural, iv. 271—of altitude, iv. 299.
Quantity of matter, 50. 52.
Quarters, or quadratures, of the moon, iv. 122.
Quicksilver. See Mercury.

R.

Radius vector, iv. 83.
Rachet wheel, 262.
Radical, ii. 17.
Rain, ii. 8. 298. 404. 410—facts relative to, ii. 411, 412, 413—quantity of, ii. 413, 414, 415—gage, ii. 412. 414. 424—generally electrified, iii. 437. 442—bow, ii. 7. iii. 301. 308
—bow, lunar, iii. 308—bow, imitation of, iii. 309.

I N D E X.

Ranges of shots, 341—method of determining them, 342—are as the charges of powder, 354.

Ratios, summation of, 255.

Rays, of heat, iii. 104—reflected, iii. 106. 115—refracted, iii. 108—of light, iii. 142—of light from a luminous point, iii. 145.

Receivers for an air-pump, ii. 476.

Reciprocating springs, ii. 430.

Reduction, in chemistry, ii. 549.

Reflection, of light, iii. 141—angle of, iii. 141—laws of, iii. 146—from a flat surface, iii. 147—from a convex surface, iii. 149. 153—from a concave surface, iii. 150. 154.

Reflecting telescope, iii. 274.

Reflectors, iii. 141—of various shapes, iii. 161—parabolical, iii. 162—flat, iii. 163.

Refracting angle of a prism, iii. 179.

Refraction, of light, iii. 141—angle of, iii. 142—of the atmosphere, iii. 168—from one medium into another, iii. 169. 191—of water, glass, and diamond, iii. 170, 171—increased a little by heat, iii. 174—table of, in different mediums, iii. 175—without dispersion, iii. 194—of celestial bodies, iv. 223—of longitude, of latitude, of right ascension, and of declination, iv. 230.

Refrigeratory, ii. 502.

Repulsion of electrified bodies, iii. 402. 404.

Resinous electricity, iii. 347.

Resins, ii. 553.

Resolution of forces, 124, 125.

Respiration, ii. 397. 540.

Rest, absolute and relative, 15.

Retina, iii. 244—insensible part of, iii. 251, 252.

Retorts, ii. 501, 502—tubulated, ii. 504.

Rhumbs, iii. 564. iv. 24.

Ring of Saturn, iv. 182.

Rivers, ii. 11, 173—permanent state of, and thread of, ii. 73—proportional lengths of various, ii. 174—inequality of the motion of, ii. 173—use of, ii. 177.

Rigidity, ii. 139.

Rod, discharging, iii. 388.

I N D E X.

Rollers, 278. 330.

Rope, machine for raising water, ii. 439.

Rotation, diurnal of the earth and other planets, iv. 97.

Rubber for exciting electrics, iii. 337. 379. 386.

Rules of philosophying, 7.

S.

Sach lactic radical, 13, ii. 16.

Salts, or saline substances, ii. 534.

Sand bath, ii. 511.

Sap of vegetables, ii. 552.

Satellites, ii. 6, iv. 73—of Jupiter, iv. 175—of Saturn, iv. 182. 184—of the Georgium Sidus, iv. 187.

Saturation, in chemistry, ii. 513.

Saturn, ii. 5, iv. 182.

Scale of musical sounds, ii. 372. 383. 357.

Scepticism, 9.

Schirocco, ii. 304.

Sclerotica, iii. 242.

Screw, 221. 248, 249—threads of, 249—engine for raising water, ii. 437.

Seasons of the year, iv. 50.

Sea-water, quantity of salt it contains, iii. 39—its freezing point, *ibid*—purified by freezing, *ibid*.

Seas, ii. 10.

Sebacic, radical, 13, ii. 16.

Secondaries, iv. 39.

Secondary sounds, ii. 391.

Seconds, of a degree, iv. 6—of time, iv. 30.

Security, personal, in time of a thunder storm, iii. 449.

Semicircle of position, iv. 299.

Semidiurnal and seminocturnal arches, iv. 49.

Semimetals, ii. 527.

Sextant, Hadley's, iv. 280.

Sharp mood, in music, ii. 377.

Sharps, in music, ii. 378.

Shock, electrical, iii. 362. 407. 414.

Shooting stars, ii. 7, iv. 359.

Shots, deflection of, 357.

Sieve,

I N D E X.

Sieve, ii. 498.
Siberian red-lead, ii. 531.
Siderites, iii. 512.
Sifting, ii. 498.
Sight affected by the application of metals, iii. 469, 470.
Signs of the ecliptic, iv. 37—onastrous and starry, iv. 109.
Sines of the angles of incidence and refraction, iii. 170.
Silica, 13, ii. 16. 529. 532.
Silver, 13, ii. 16. 527.
Silurus electricus, iii. 451. 459.
Size, 22.
Sky, blue, iv. 16.
Slip wire, for a receiver of an air-pump, ii. 480.
Smalt, ii. 530.
Smell produced by electricity, iii. 408.
Smelting, ii. 511.
Snow, ii. 8. 404, 405—generally electrified, iii. 437. 442.
Soda, or mineral alkali, or fossil alkali, 13, ii. 16. 533.
Soft bodies, 91.
Softness, ii. 139.
Solanos, ii. 302.
Soldering of metals, ii. 133.
Solids, ii. 2—floating, ii. 44—in fluids, ii. 39.
Soliststitial, points, iv. 46—colure, iv. 46.
Solution, metallic, ii. 548, 549.
Sonorous body, ii. 319.
Sounds, ii. 279. 309—stronger in dense air, ii. 310—variety of, ii. 310—height of, ii. 311—strength of, ii. 311—quality of, ii. 313, 314—high or low, acute or grave, sharp or flat, ii. 311—simple, ii. 314—velocity of, ii. 329—heard from great distances, ii. 340—transmitted through solids, ii. 336—reflection of, ii. 344—musical, ii. 353—scale of, ii. 372. 383. 357—conveyed by the air, ii. 402.
South, pole, iv. 22—point of the horizon, iv. 24.
Southern lights, ii. 7.
Space, absolute and relative, 14.
Spark, electrical, iii. 336. 355. 366—effects produced by it upon animals, &c. iii. 356—upon vegetables, iii. 357—rarefies

I N D E X.

fies and displaces the air, iii. 419—from a voltaic battery, iii. 497.

Speaking, trumpet, ii. 312—figure, ii. 341.

Spectacles proper for different sights, iii. 249, 250.

Specific, gravity, ii. 42, 52—gravity, rules for determining it, ii. 56—gravity, table of, ii. 74—gravity, use of, ii. 65—attraction, ii. 134—caloric, see *caloric*.

Spectrum, prismatic, iii. 180—divided nearly as a musical chord, iii. 183.

Sphère, right, parallel, and oblique, iv. 27.

Spherical, angle, iv. 38—triangle, iv. 38.

Spirit of wine, ii. 556.

Spirits, rectified, ii. 88—standard, ii. 89—proof, ii. 89.

Spirituos fermentation, ii. 554.

Spots of the moon, iv. 116—of the sun, iv. 167.

Spouts, water, ii. 8.

Spray of water at sea, ii. 158.

Squinting eyes, iii. 256.

Standard measure, iv. 393, 397, 398—determined, iv. 395.

Stars, ii. 6, iv. 19—fixed, 29, iv. 206—falling, ii. 7—great number of, iv. 213, 214, 215—changes among them, iv. 217—their peculiar movements, iv. 217, 241.

Statera romana, 230.

Statics, 219.

Stationary state of the planets, iv. 84.

Staves, 264.

Steam, ii. 410, iii. 4—elastic, force of, at different degrees of temperature, iii. 34.

Steel, ii. 529—various power of, for magnetism, iii. 553.

Steelyard, 230.

Stenterophonic tube, ii. 312.

Stills, ii. 501.

Stones said to have fallen from the sky, iv. 369, 372, &c.—their mineralogical description, iv. 384—their analysis, iv. 386—hypotheses concerning their origin, iv. 388.

Storms, ii. 8.

Straits, ii. 11.

Streams, of water, ii. 11—of fluids, laws relative to them, ii. 190.

Strings

I N D E X.

Strings of musical instruments, lengths of, ii. 372, 373, 383.
Strontian, 13, ii. 16. 529. 532.
Style, Gregorian, or new, iv. 62.
Suberic radical, 13, ii. 16.
Sublimation, ii. 505.
Succinic radical, 12, ii. 15.
Sucker, ii. 401.
Sucking, ii. 399—pump, 431.
Surface, 23.
Sugar, ii. 553.
Suspension, point of, 174.
Sulphur, 12, ii. 15.
Sulphurated hydrogen gas, ii. 521.
Sulphuric acid, ii. 523.
Sulphurous acid gas, ii. 521.
Sun, ii. 5—mock, ii. 8—its diameter, iv. 190—its nature, iv. 166—dial, ring universal, iv. 280.
Supports, in magnetics, iii. 550.
Syllables, number of, usually spoken in a second of time, ii. 347.
Sylvanite, 13, ii. 16. 530.
Synodical month of the moon, iv. 127.
Synthesis, ii. 18. 495.
Siphon, ii. 427—best sort of, ii. 428.
System of the world, or solar, iv. 64—various hypotheses concerning it, iv. 69.

T.

Tallow, its use in reducing friction, 277.
Tantalus's cup, ii. 429.
Tar, its use for reducing friction, 279.
Tarantula spider, its supposed effects, ii. 393.
Taste affected by the application of metals, iii. 469.
Tartaric radical, 12, ii. 15.
Telescope, dioptric, iii. 274—catadioptric, or reflecting, iii. 274, 282—astronomical, iii. 274—äerial, iii. 277—terrestrial, iii. 278—Galilean, iii. 279—night, iii. 280, iv. 279—Gregorian, iii. 284—Cassegrainian, iii. 287—Herschel's, iii. 288—zenith, iv. 279.

Tellurite,

I N D E X.

Tellurite, ii. 530.
Temperate zones of the earth, iv. 55.
Temperament, in music, ii. 387.
Temperature, iii. 10—mean, of a country, iii. 86. 90—mean, of Paris, iii. 90—mean, of London, iii. 91—mean, of pits, wells, &c. iii. 89.
Tenacity, ii. 139.
Terrella, iii. 528.
Terrestrial, telescope, iii. 278—globe, iv. 14—atlas, iv. 14.
Theory, of the motion of fluids, not consonant with experiments, ii. 166, 167. 170—of heat, iii. 3. 8—of magnetism, iii. 555—of chemistry, ii. 514—of electricity, iii. 415—of universal attraction, iv. 87.
Thermometers, iii. 13—mercurial, iii. 14—spirit, iii. 14—different, iii. 18, 19. 21—for shewing the highest degrees of heat and cold that have taken place during the absence of the observer, iii. 23—for the higher degrees of heat, iii. 43—Ashard's, iii. 43—Wedgwood's, iii. 44. 47—extent of their principal scales, iii. 49—correspondence of Fahrenheit's and Wedgwood's, iii. 50—axioms respecting their indications, iii. 91—their proper situation, iii. 92.
Thickness, 22.
Thin plates, colours of, iii. 206.
Thunder, ii. 8—stones or bolts, iv. 383.
Tides, iv. 147—spring, iv. 151—neap, iv. 151.
Time, absolute and relative, 16—in music, how denoted, ii. 380—in simple motion, 49—division of, iv. 242—mean, iv. 243—equation of, iv. 244.
Tin, 13, ii. 16. 528—glaſs, ii. 529.
Titanite, 13, ii. 16. 530.
Tones, ii. 356—major and minor, ii. 372. 376—names of, ii. 372—principal, ii. 374. 376—of a natural voice, ii. 381—musical, notation of, ii. 380.
Tornados, ii. 298. 303.
Torpedo, iii. 451.
Torricellian vacuum, ii. 478. 208—tube, ii. 208.
Torrid zone of the earth, iv. 54.
Tourmalin, its electric properties, iii. 431.

Trade

I N D E X.

Trade winds, ii. 8. 294.
Transferrer, ii. 476.
Transit instrument, iv. 273.
Transits, iv. 251. 265.
Transparent bodies, iii. 142.
Traversing of a magnet, iii. 514.
Trajectory of a celestial body, iv. 81.
Trituration, ii. 498.
Tropics, iv. 32.
Trundle, 262.
Tungsten, 13, ii. 16. 531.
Tuning forks and pipes, ii. 383, 384.
Twilight, iv. 232.
Tychonic system, iv. 70.

V.

Vacuum, 18—torricellian, ii. 208. 478.
Vapours, ii. 8. 518—formation of, ii. 412. 417.
Variation, of the magnetic declination, iii. 531—of the moon,
iv. 132.
Vegetable kingdom, ii. 12.
Vegetation, ii. 551.
Velocity, 46—of descending bodies, 64—relative, 104.
Venus, ii. 5—its nature, iv. 171.
Verdigris, ii. 528.
Vertical, cicles, iv. 23—prime, iv. 24.
Via lactea, iv. 214.
Vibration, 176—of strings, ii. 315. 318. 373—figures, ii. 324—
nodes, ii. 325—longitudinal, ii. 322—number of, performed
by musical strings in one second, ii. 360. 362. 364.
Vibratory motion of the air, use of, ii. 402.
Vinegar, ii. 555.
Virtual focus, iii. 154.
Vision, iii. 239—through lenses, iii. 262.
Vis motrix, and *Vis viva*, 51.
Visual angle, iii. 147.
Vitreous, humour of the eye, iii. 245—electricity, iii. 347.
Universe, 2.
Volcanic eruptions affect the magnetic needle, iii. 538.

Volcanos,

I N D E X.

Volcanos, influence of, iii. 89—in the moon, iv. 118.

Voltaic batteries, iii. 474. 482. 486—their powers, iii. 494—give a weak charge to a common Leyden phial, iii. 497—affect the electrometer, iii. 498—give sparks, burn combustible bodies, &c. iii. 497. 499, &c.—their chemical effects, iii. 501. 503.

Uranite, i. 13, ii. 15. 530.

W.

Washing, ii. 498.

Water, its decomposition, ii. 541—its formation, ii. 546—its boiling point, iii. 31. 34. 35—its expansion by cold, iii. 35. 36—freezing, iii. 36, 37, 38—under the receiver of an air-pump, ii. 478—pump, ii. 431, see *Pump*—works at London bridge, ii. 436—spouts, ii. 8. 14. 305—bath, ii. 511.

Waves, their action, ii. 153. 155, 156—their breadth, ii. 155—their heights, ii. 157—reflected, ii. 159—on different fluids, ii. 160.

Weather, glass, ii. 208—in great measure indicated by the barometer, ii. 209—indicated in some measure by the moon, ii. 218.

Wedge, 221. 242—its parts, 243.

Weight, 55.

Weights, absolute and relative, ii. 42, 43—British, iv. 405—French, iv. 410. 413—Amsterdam, iv. 419.

Well electrical, iii. 399.

West, iv. 24.

Western hemisphere, iv. 23.

Whalebone, expanded by moisture, ii. 420.

Wheel, carriages, 330. 332, &c., and axle, 220. 231.

Wheels, 330, 331—friction, 278—their most useful figure in certain cases, 333. 335.

Whirling table, 301—experiments to be performed with it, 307.

Whirlwinds, ii. 8. 305.

White of the eye, iii. 242.

Whispering galleries, ii. 313. 346.

Wind, ii. 8. 279—its various names, velocities, and actions, ii. 287. 290—its more usual direction in particular places, ii. 294—estimates of its force and duration, ii. 289—trade, ii. 8.

I N D E X.

294—its action upon sounds, ii. 232—table of its force and velocity, ii. 454—its action upon water, oil, &c. ii. 157. 160, 161—gage, ii. 449—pipe, ii. 398.

Winder, or winch, 262.

Windlass, 232.

Will with a wisp, ii. 8.

Wine, ii. 555.

Words, number of, spoken by certain persons in one hour, &c. ii. 347.

Y.

Year, mean solar, iv. 30. 247—solar and astral, iv. 56—civil, iv. 59. 247—Julian, or Bisextile, or Leap, iv. 60—Lunar, iv. 247—anomalistical, iv. 96. 247.

Yeast, ii. 555.

Z.

Zenith, iv. 22—telescope, iv. 279.

Zinc, 13, ii. 16, 529.

Zirgonia, or Jargonia, 13, ii. 16. 530.

Zodiac, iv. 31.

Zodiacal light, ii. 8. iii. 313.

Zones of the earth, iv. 54.

Zoology, ii. 12.

Zoonic, radical, 13, ii. 16.

ERRATA.

VOL. I.

Page 67, line 15; instead of *triangular*, read *triangle*.

VOL. II.

Page 5, line 7, from the bottom; instead of *six*, read *eight*.

— 6, line 1; after the Georgian planet, add two more planets, viz. *Ceres Ferdinandea*, and *Pallas*, which have been discovered since that sheet was printed.

— 6, line 3; instead of *seven*, read *nine*.

— 9, the dimensions of the earth as given in this page, have been corrected by subsequent measurements and calculations, for which see vol. iv. page 13.

— 16, line 10; instead of *Molybdenite* read *Molybdenite*.

— 29, line 1; instead of *line 18*, read *line 1L*.

— 41, line 15; instead of *cork is*, read *cork O is*.

— 70, line 15; add, *See fig. 19, of Plate X.*

— 78, line 12; instead of *Jungsten*, read *Tungsten*.

— 113, line 25; instead of *Desoguliers*, read *Desaguliers*.

— 120, line 22, add, *as in fig. 18, Plate XI.*

— 142, line 7; instead of *cobere*, read *adhere*.

— 187, line 3 from the bottom; instead of *fig. 22*, read *fig. 26*.

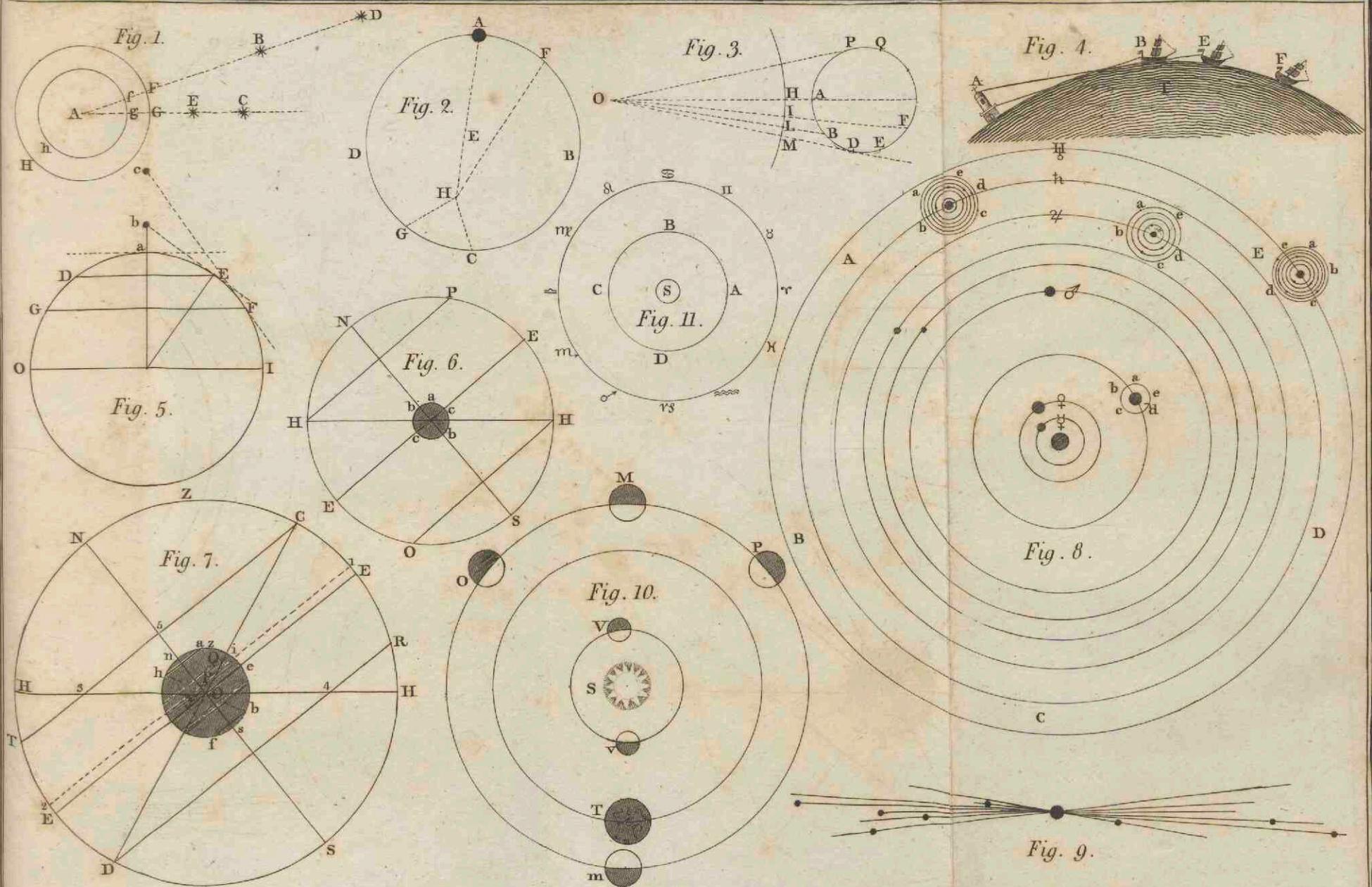
— 238, at the end of line 9, add, *fig. 11, Plate XIII.*

VOL. III.

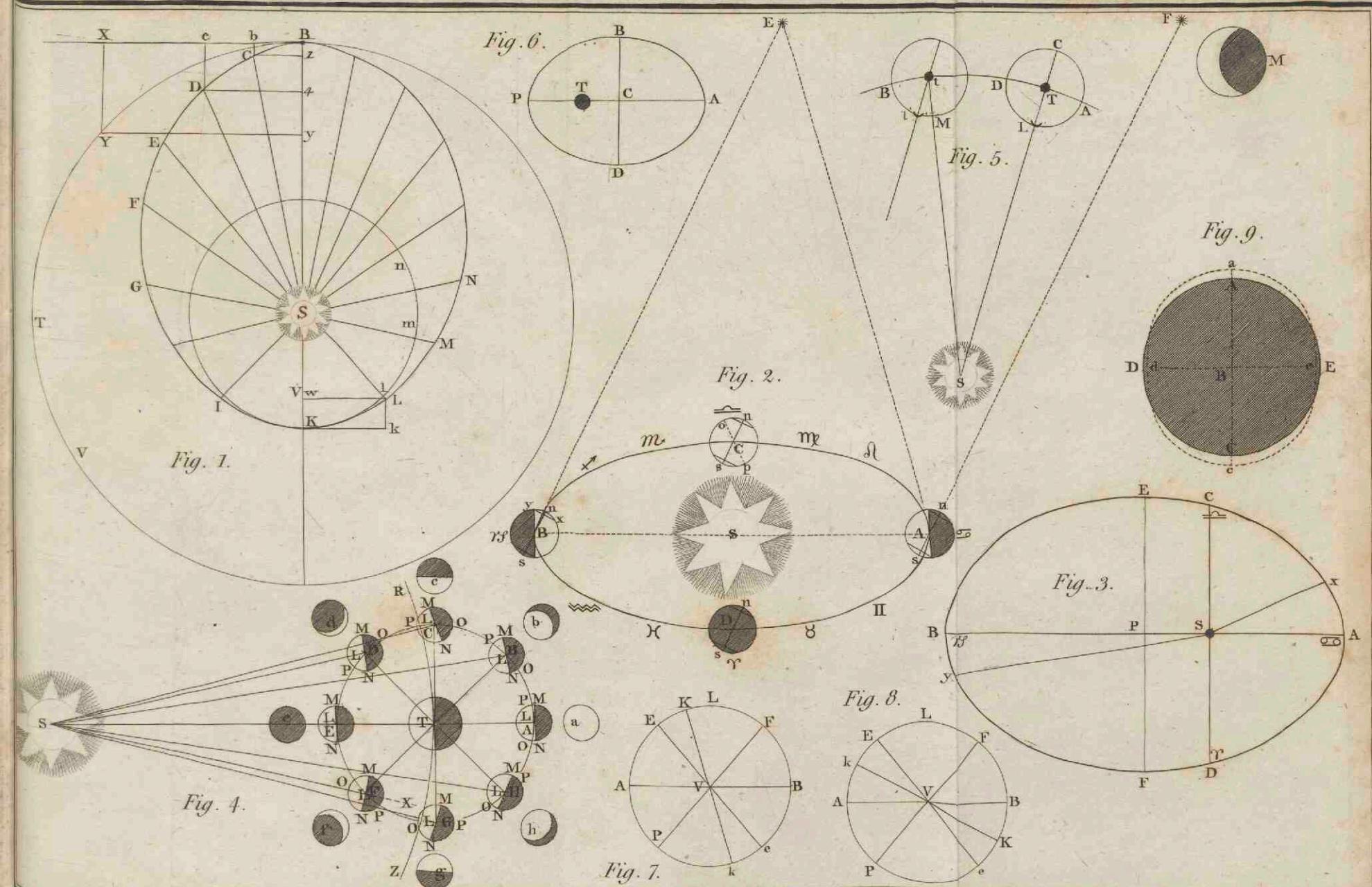
Page 33, line 4; instead of *rarefied*, read *condensed*.

9; instead of *rarefaction*, read *condensation*.

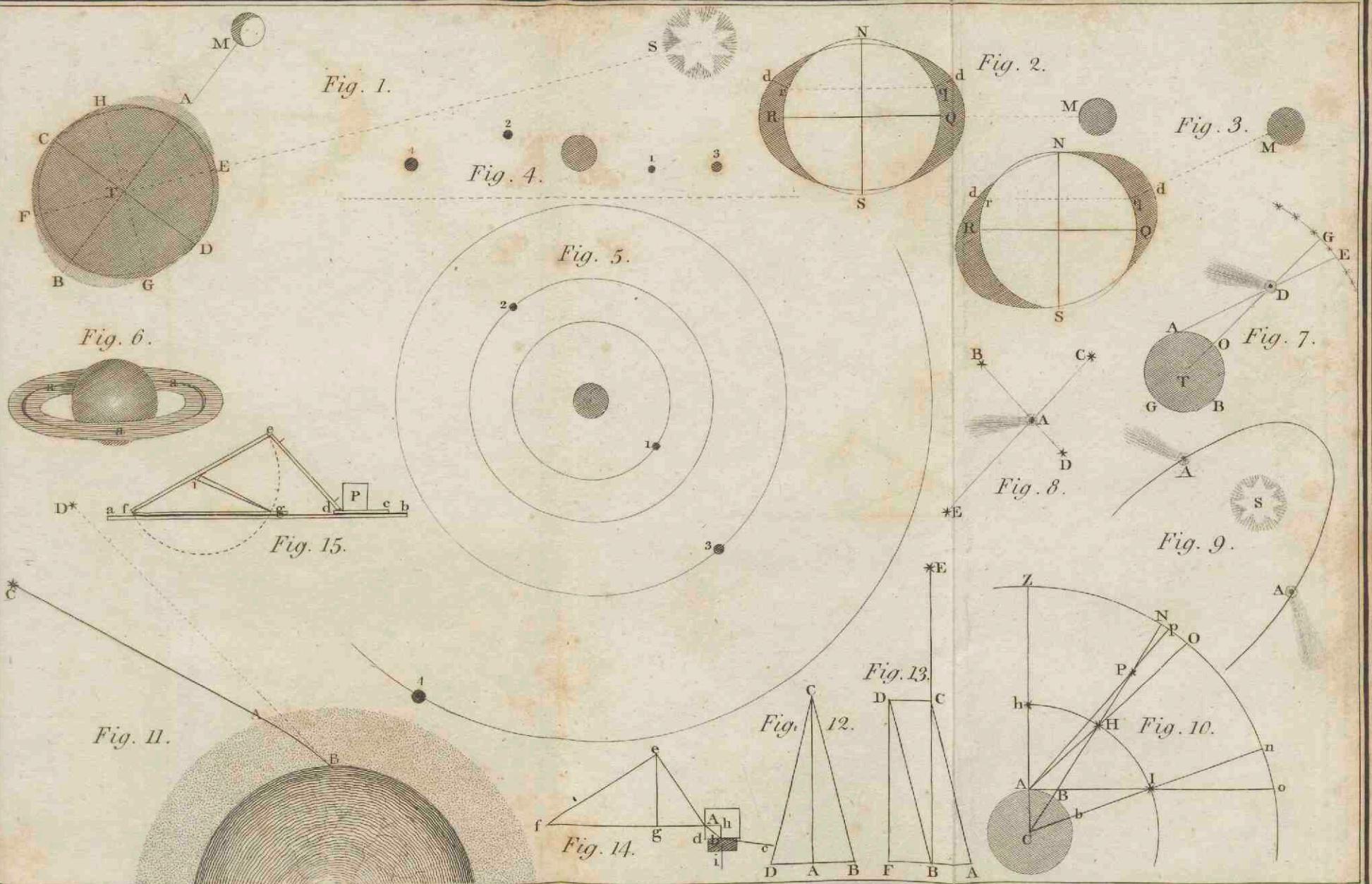
— 95, line 22; instead of *hundred*, read *thousand*.

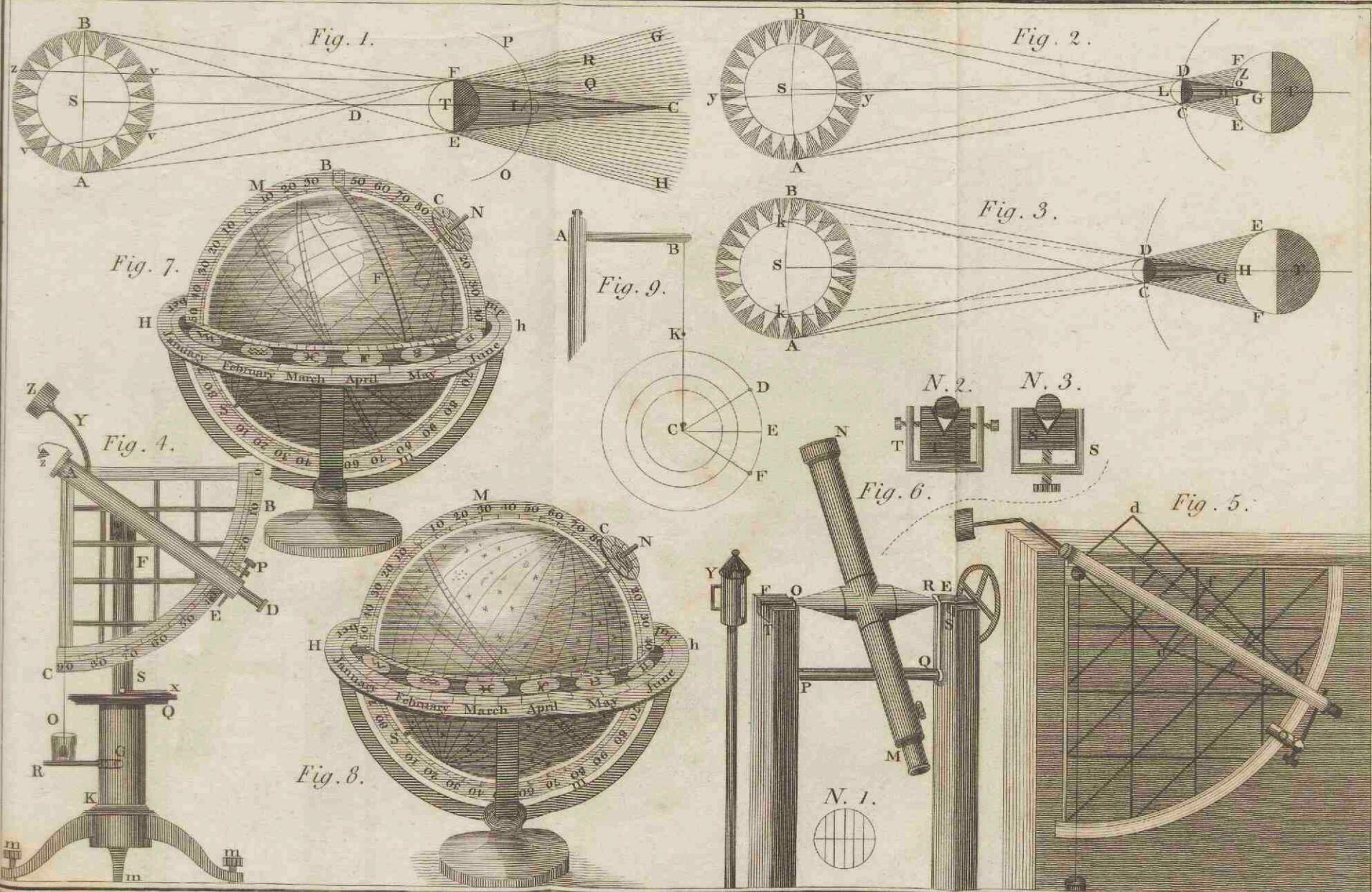

— 266, line 8; instead of *four*, read *five*.

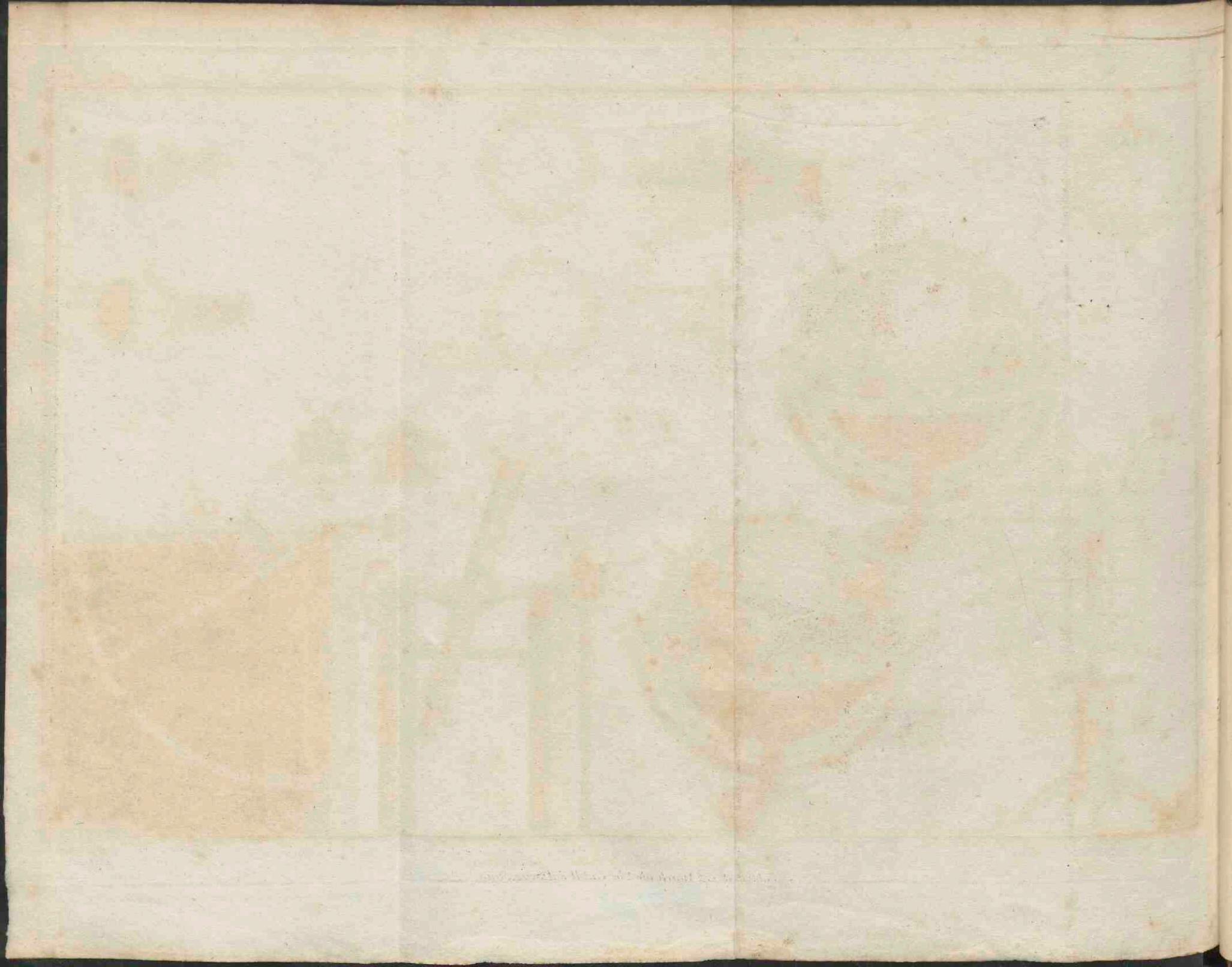
— 329, line 16; instead of *Beecari*, read *Beccari*.

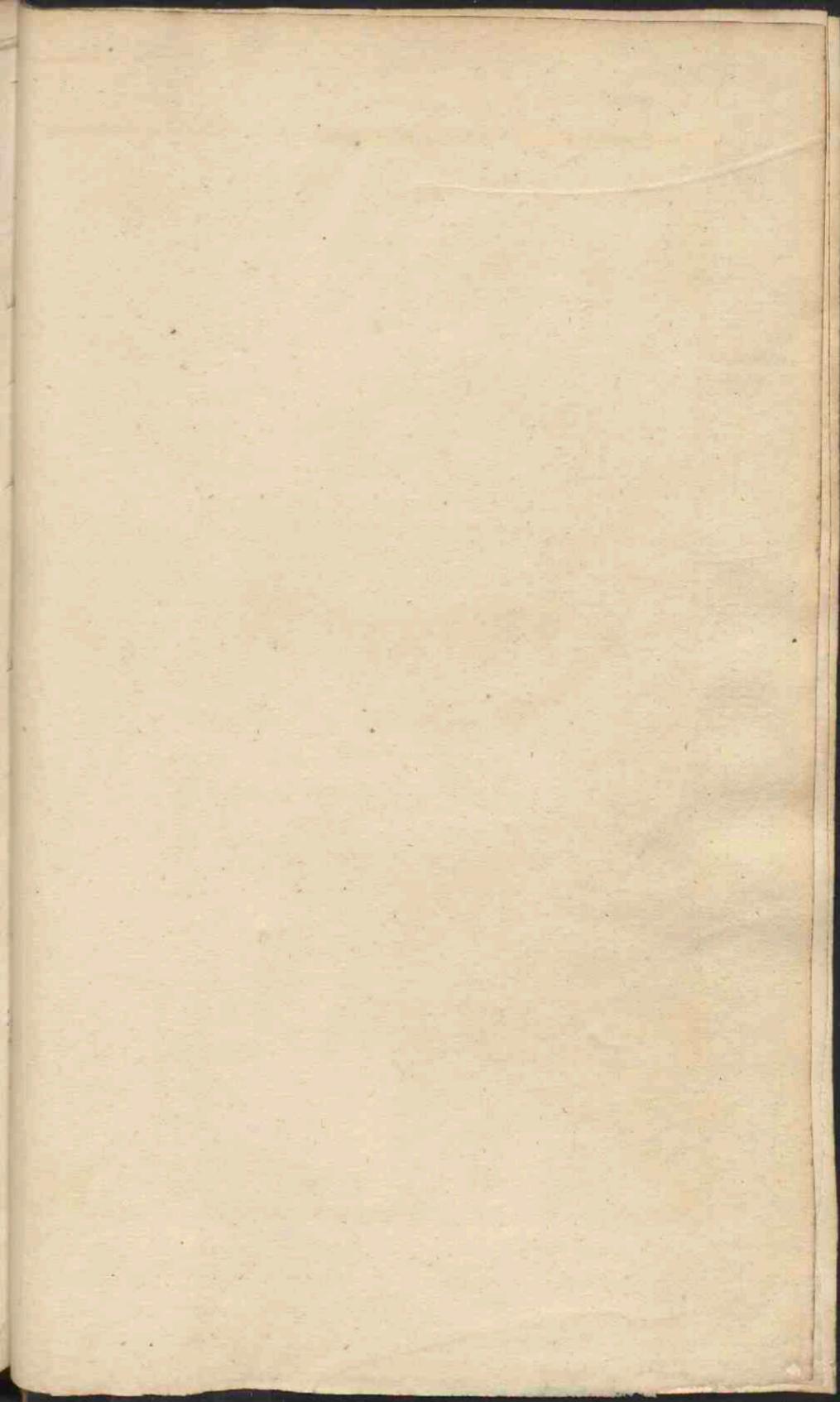

VOL. IV.

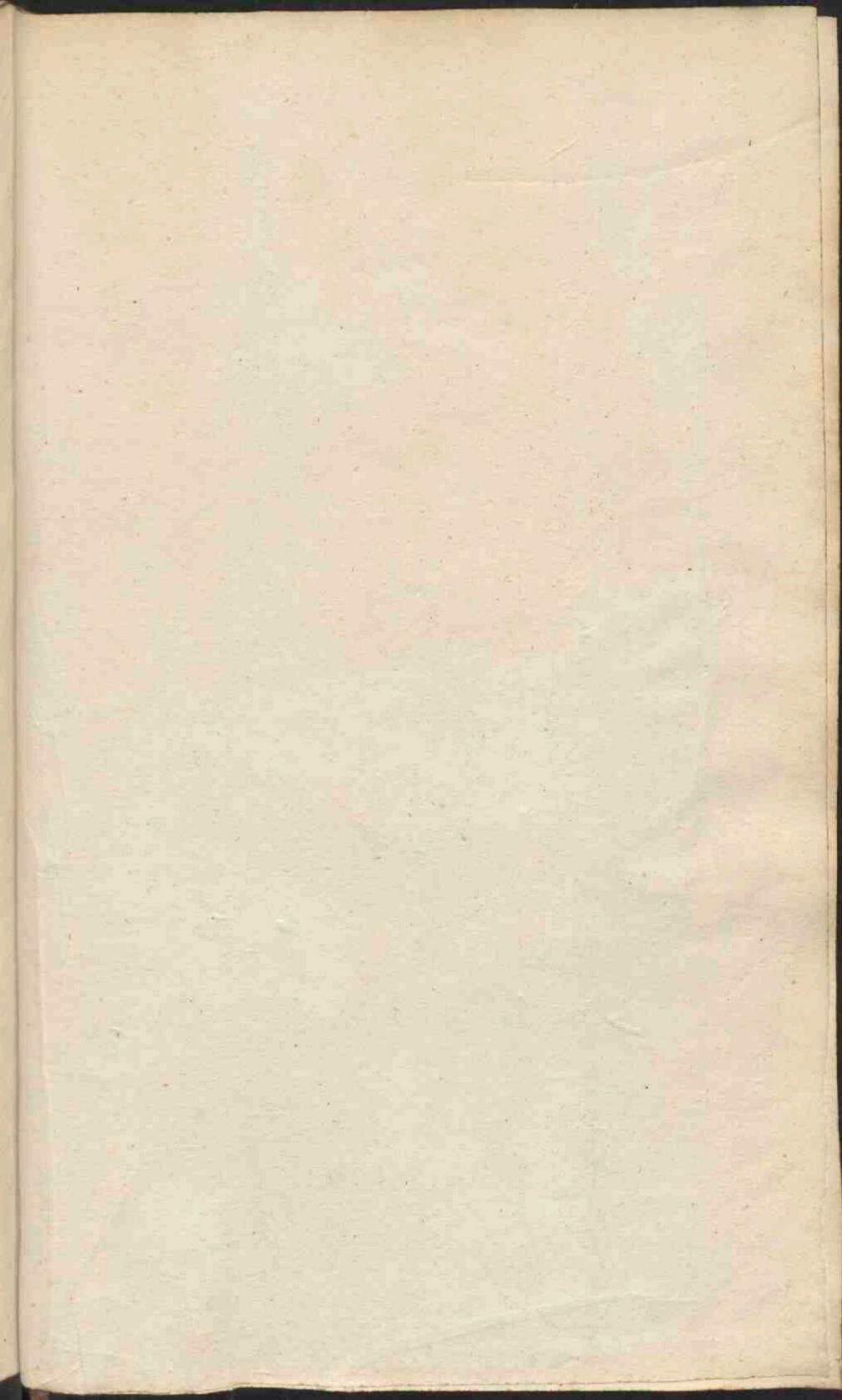
Page 398, line 25; instead of *and which*, read *and which at 32° of temperature*.

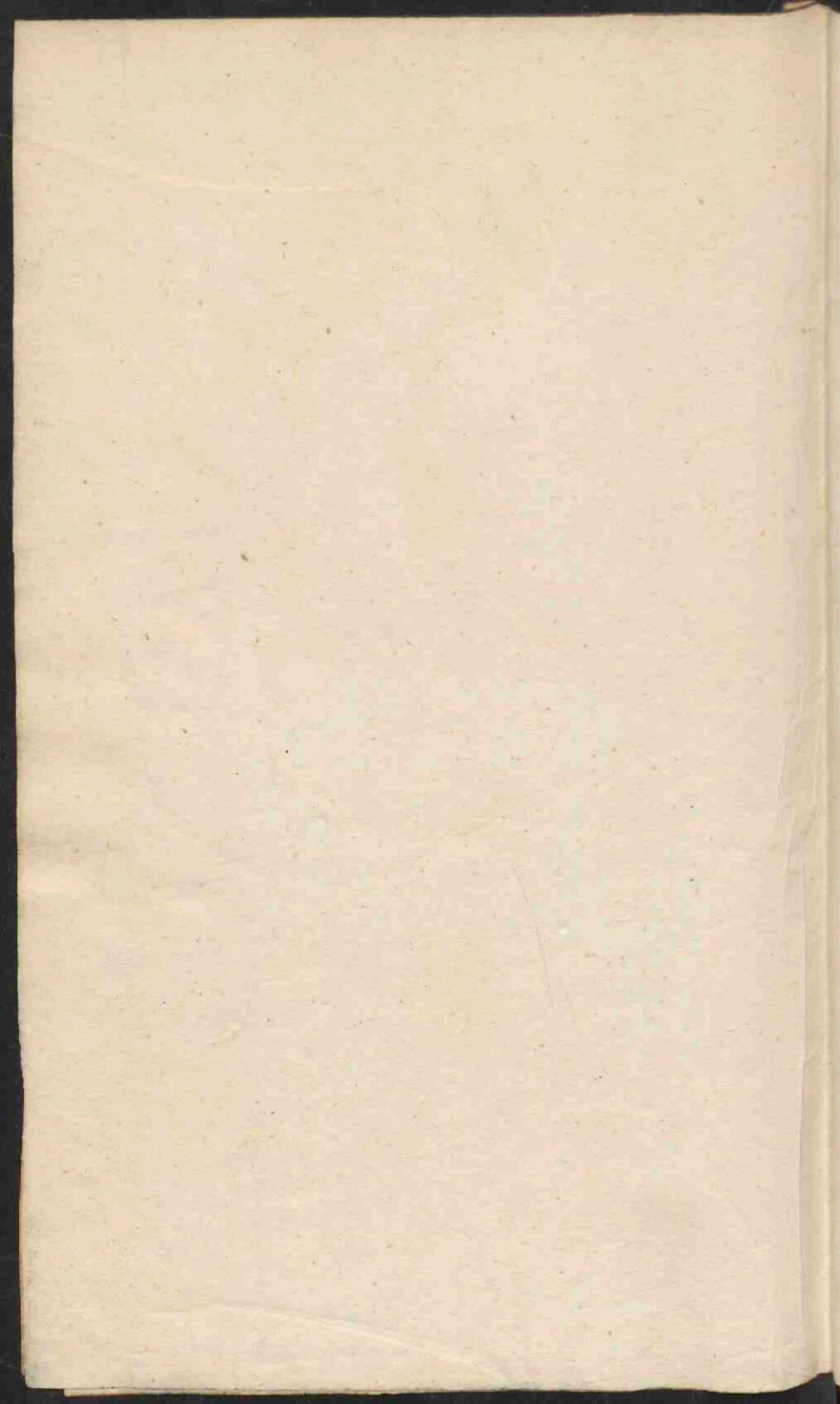

— 399, line 13; instead of *62°*, read *32°*.

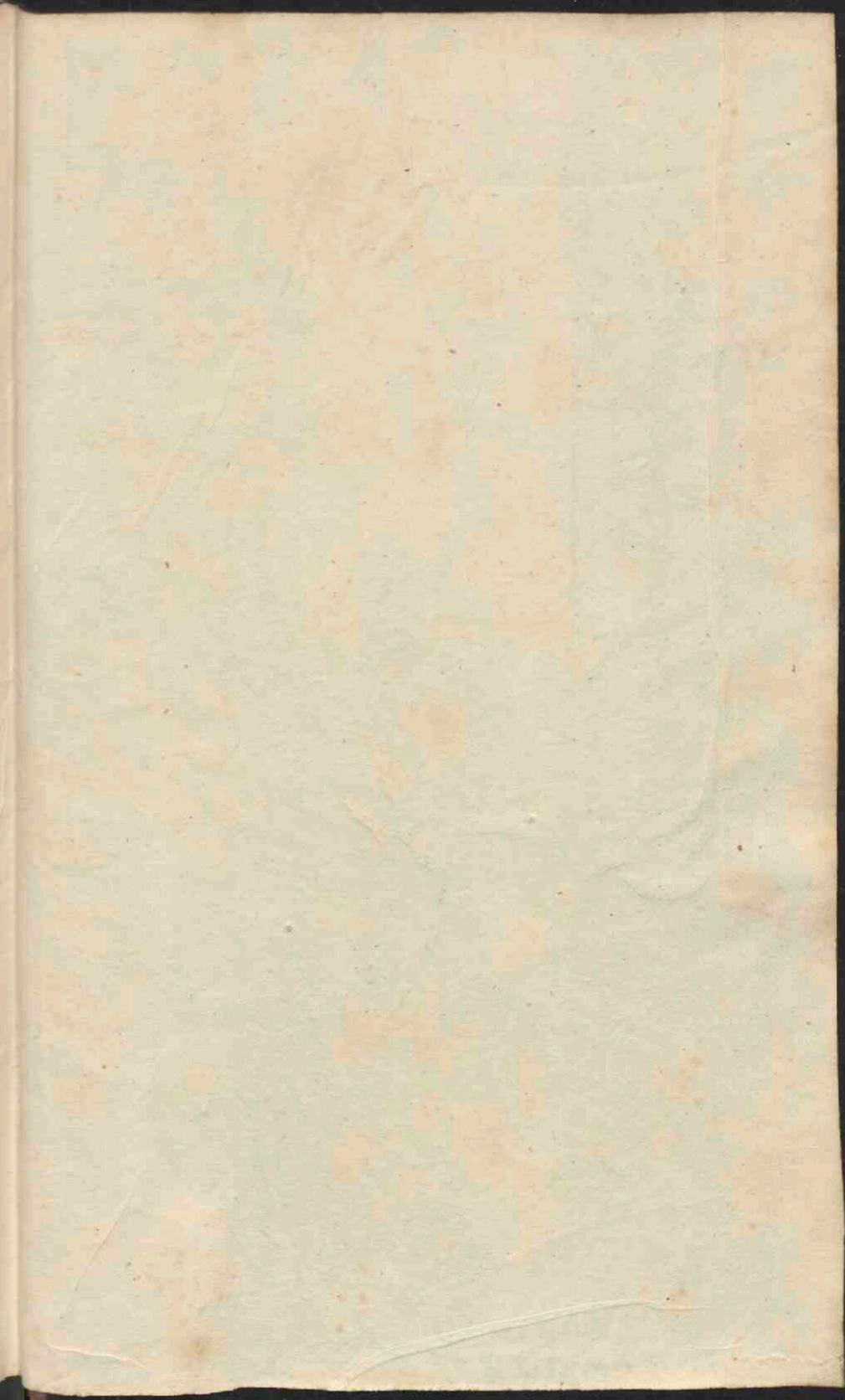


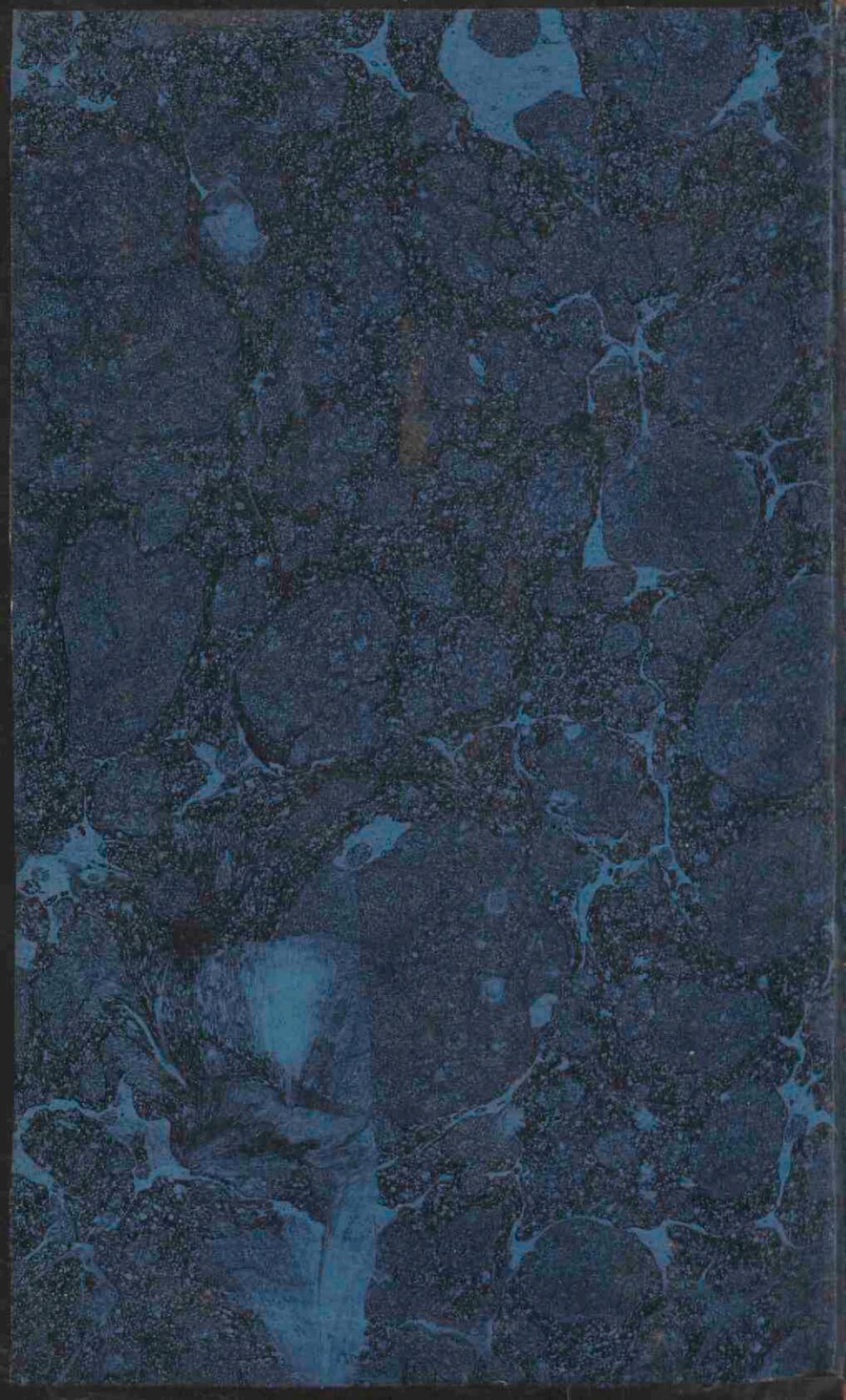


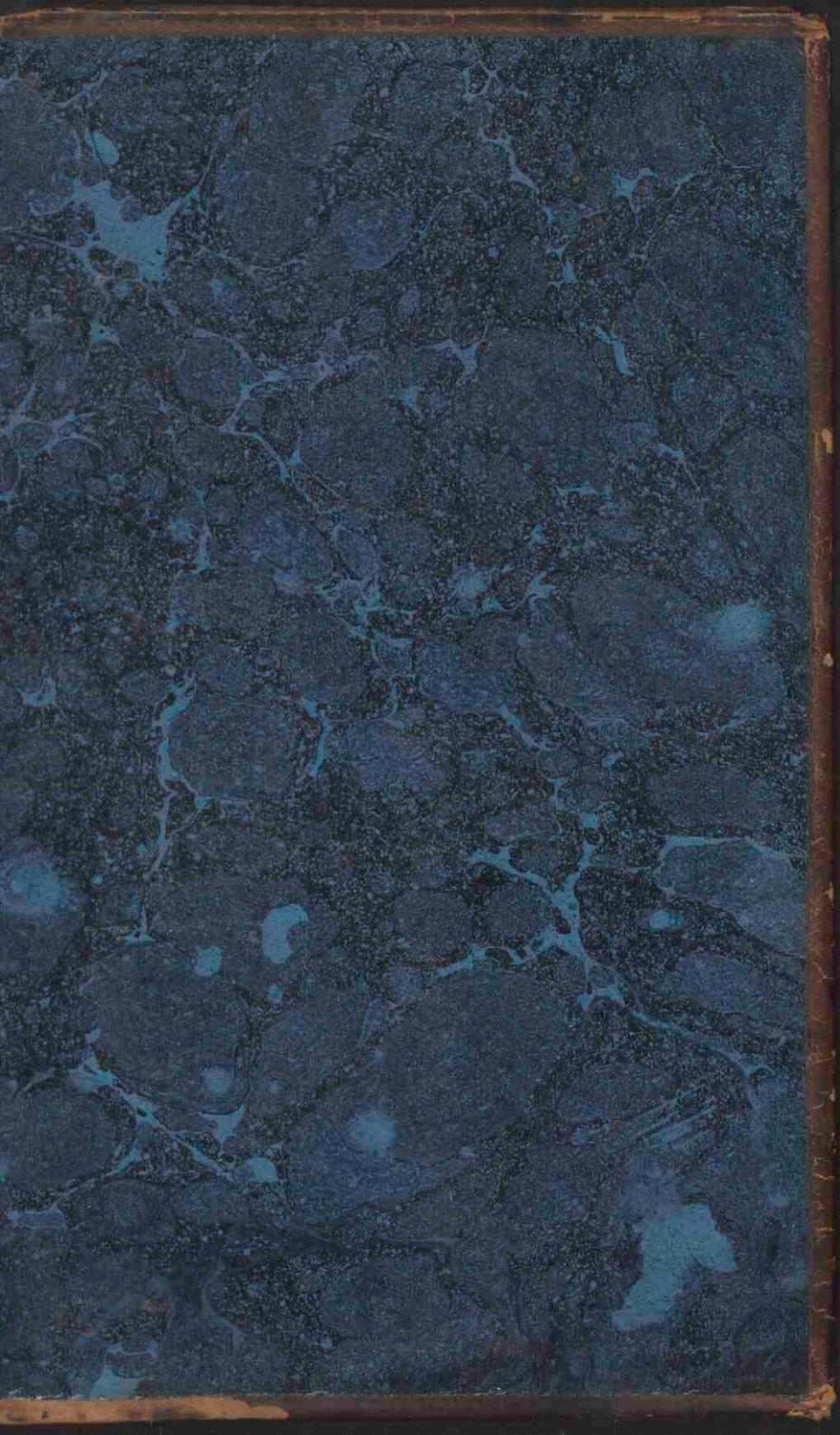











E7d6296

