-ocr page 1-

The Proper Motions
of 1418 Stars in and near the

clusters h and %
Persei

-ocr page 2-
-ocr page 3-

; ■. M

wmm

-ocr page 4- -ocr page 5-

» gt;

!

Ik/
1\' \'

■ *\'.

mt

y

»

• t.

• ■

p..

.. y.

. ■

«

» t

■f

• ■ •«■ . Vnbsp;^nbsp;•I,-\'\'*

\' ■ quot; ■ 1\' ... \' •

V,

Vi

« ^

■., ■

S-.

V

P

■\'i-M

■T

lt; t

. .. ■• .■■• ■ïj.\'ff.\'ï^^

Ié.

-ocr page 6-

■-»\'S?

Klt;

\'f

- -

s

m

pi-;-:,-;:

f

\' f

i :

t

- 1-.

» fP

V*:

» *

à.

«

■f •\'• -t

H

k \' . «

y »

-ocr page 7-

THE PROPER MOTIONS
OF
1418 STARS IN AND NEAR THE
CLUSTERS
h AND X
PERSEI

//

-ocr page 8-

UNIVERSITEITSBIBLIOTHEEK UTRECHT

3168 164 0

-ocr page 9-

The Proper Motions
of 1418 Stars in and near the

clusters h and %
Persei

UTRECHT
j. van boekhoven
i91i

Proefschrift

ter verkrijging van den graad van Doctor in de Wis- en Sterrekunde aan de Rijks-
Universiteit te Utrecht, op gezag van den Rector-Magnificus, Mr. D.
SlMONS,
Hoogleeraar in de faculteit der Rechtsgeleerdheid, volgens
besluit van den Senaat der Universiteit tegen de
bedenkingen van de Faculteit der Wis- en
Natuurkunde te verdedigen op Vrijdag
2 Juni 1911, des namiddags te 4 uur,
door

ADRIAAN VAN MAANEN
geboren te sneek

-ocr page 10-

\'ï.\'. »...

te-

■1V, I

W-

-ocr page 11-

AAN

MIJNH OUDHRS

-ocr page 12-

■ Â \' .

-.

■ \'À.
-^.i\'iLquot;\'\'\' \' ■

fe:.-:

S

fj\'
iix

iv-!^

...
^ - • •

Vit-
ä

-ocr page 13-

Wanneer ik, op het punt Utrecht te verlaten, mijn blik laat gaan langs
de schare van hoogleeraren in de Faculteit der Wis- en Natuurkunde, dan zie
ik met vreugde daaronder enkelen, die zich door hun onderwijs of door de mij
bij meerdere gelegenheden betoonde belangstelling, eene blijvende plaats in mijne
herinnering hebben verzekerd. Ik wil hier niet in bijzonderheden treden en slechts
eene uitzondering maken voor U, Hooggeleerde
Nijland, mijn Pro7notor.

Menig jaar heb ik onder uwe leiding gewerkt en veel van U geleerd. Uwe
mij zoo veelvuldig betoonde hulpvaardigheid stel ik op hoogen prijs; vooral in
den laatsten tijd kwam ik U bijna dagelijks met mijne vragen en tallooze bezwaren
lastig vallen; steeds vond ik U bereid mij te helpen. Dat gij dit proefschrift hebt
waardig gekeurd om weldra te verschijnen als een deel der annalen van Uw

Observatorium, is mij hoogst aangenaam.

Dal de herinnering aan den op „Zonnenburgquot; door gebrachten tijd tot
de aangenaamste zullen behooren, die ik uit Utrecht medeneem, is voor een groot
deel ook aan U te danken, waarde
van der Bilt; moge de goede verstandhouding,
die reeds zoo menig jaar tusschen ons heeft bestaan, van blijvenden aard zijn.

De hulp, mij door U, loaarde Blokhuis, verleend, heb ik dankbaar
aanvaard; de vertaling kon moeilijk in heter handen zijn terecht gekomen; de
belangeloosheid, waarmede Gij die taak op U hebt genomen, maakt het mij
moeilijk mijn dank daarvoor op deze plaats in woorden te brengen.

Hooggeleerde J. C. Kapti-yn. Uw laboratorium te Groningen en Uw
huis hebt gij voor mij opengesteld; niet alleen heb ik van U veel geleerd, neen,
gij hebt mij de wetenschap doen lief krijgen; de hartelijkheid, die Gij mij steeds
hebt betoond, vat ik op als het bewijs van eene vriendschap, welker weldadigen
invloed ik steeds meer heb ondervonden; moge ik die nimmer onwaardig blijken
le zijn.

-ocr page 14-

■ ii

■1

A. ■

vV,...nbsp;. A adÉÏ

.....\'mn^

\'fiV\',.

-ocr page 15-

CONTENTS

T n T-/-gt;1-1 1 n

page
))

1

Chapter

I

Object of the investigation ................

3

Chapter

II

The material ............................

5

Chapter

III

Explanation of the method of measuring----

}}

8

Chapter

IV

The apparatus and measurements ..........

gt;gt;

10

Chapter

V

The method of reducing ..................

gt;)

13

Chapter

VI

The equations of condition ................

)gt;

17

Chapter

VII

The normal equations and their solution ----

})

19

Chapter

VIII

Systematic errors depending on position----

))

23

Chapter

IX

Systematic errors depending on magnitude----

}j

27

Chapter

X

28

Chapter

XI

The mean error of the Proper Motions......

))

33

Chapter

XII

})

36

Chapter

XIII

Determination of the magnitudes............

J J

38

Chapter

XIV

The frequency of the Proper Motions........

J J

42

Chapter

XV

Remarkable Proper Motions................

))

47

Chapter

XVI

)}

48

)!

50

Tables .

))

51

-ocr page 16-

. : • . \'

\' - - . \' quot; ■ ■ ■
■ ij» ^

\' \'a

■v.l.nbsp;.-nbsp;■nbsp;_nbsp;-nbsp;V ■ .

1 sfsqnbsp;......;.........

^nbsp;...... . fKiHfi^it^\'f.\'f« uf^ .j.j .tii««?^\'

•nbsp;— ; —nbsp;.....■ im^imn\'^\'

\'nbsp;. . . .nbsp;U-\'ü; gt;0 ÏMHli \'ht

..nbsp;...........tiUiKi^lÊ,

_nbsp;1.. .bvf ,HmS \'

........ ,.nbsp;liQ^lihr -- raiîbïnî-- uil

■f * \' - . ..

- \' \' w-• uotJi^vM.! au v.-;.ïtgt;H\'jq-»i.t -taoïin

■ ■nbsp;^nbsp;. v\',..r-nbsp;■-\'ïiT

•-if \' •• ....... ^iUHh-^,\' tï^iii-f} ..f) V\'v 10Î3amp; I;-. •■

\' ■nbsp;............. yii^U - ^rii:

?nbsp;\'nbsp;rnbsp;■ \'nbsp;■nbsp;i

■ quot; . . .............. \'•iJWtfTpf^ni \',-ffî Iquot;, nui, ■ ■nbsp;•

.... ......... . .c\'îOijfjî.^nbsp;\'

%\' ■ ................... , . tfr quot;rtN-

........................... -tUii-i

)

irnbsp;................. . .

\'• , . quot; \' \' \' , î

■ »• -.V -

S\'-i\'-\'

, .

.-.■\'.iM.!

Il A-xr-\'kAiil
fU

V M il f-HJ
IV
-

V , •

iHv iiioiu
X I

y

h m\')

s : i/.l! )
.....

lt;■■ \'- Ci\'

i \' \' \' ■ i

_. - - ^i^ithiiÉm^i 11 SiiiiMiÉiiiMlîf r-■^

-ocr page 17-

INTRODUCTION.

When on suggestion of Professor J. C. Kapteyn of Groningen, I under-
took in June 1008 the measurement and reduction of some photographic
plates of the star-clusters
h and / Persei, in order to determine the proper
motions of a number of stars in this region,
I had a twofold object in view.

Firstly I wanted to try and find the P. M. of the two clusters them-
selves.

Secondly I wished to determine the frequency of the P. M. according
to its amount and to the magnitudes of the stars for this region of the sky,
tlie stars belonging to
h and / Persei being of course left out of account.

It would have been impossible to accomplish this task without the help
of several astronomers who all assisted me in the kindest way. I wish to
express my sincere thanks to:

Professor Anders Donner of Helsingfors and Dr. S. Kostinsky of
Pulkovo for the great number of plates, taken with the greatest possible
interval, whicli they put at my disposal;

Professor E. F. van de Sande Bakhuyzen of Leyden and Professor
kiistner of Bonn who were so kind to furnish me with the most recent
meridian observations of some twelve stars, to be used as fundamental stars;

Dr. J. H. ZwiERS and Mr. J. Voute of Leyden and Dr. C. Monnicii-
meyer
of Bonn who took much pains in making these observations;

-ocr page 18-

Professor A. Auwers of Berlin who had the kindness to procure Prof.
Kapteyn all the earher observations of these stars, reduced to the equinox
1875,0;

Professor J. C. Kapteyn of Groningen for the interest he has continually
taken in my work, for the advice he gave me on many occasions and particu-
larly for the many marks of friendship I have received from him during these
last three years;

Professor A. A. Nijland of this observatory who not only during the
preparation of this paper assisted me with his valuable advice, but who
moreover determined the brightness of some faint stars which I needed
so much;

Mr. K. Blokiiuis of the Gasworks at Haarlem for translating my paper
into English and for translating a Russian paper, bearing on my subject.

-ocr page 19-

CHAPTER I.

Object of the Investigation.

It has already been remarked in the introduction that the object of
tlie present paper is a twofold one.

In the first place I wished to try and settle whicli stars do and which
do not belong to tlie clusters
h and y Persei. It is obvious tliat this may be
decidcd by accurate determinations of the proper motions. Tliis has been
done for two otiier star-clusters, namely the Pleiades and tlie Hyades. In tlie
former case the P. M. afford a very good method, as
Newcomb says, ,,of
distinguishing between a star which belongs to the cluster and one which
probably lies beyond it. The amount of tlie proper motion is about 7\' per
century. The first accurate measures made on the relative i)ositions of the
stars of the cluster were tliose of
Bessel, about 1830. In recent years several
observers have made yet more accurate determinations. The most thorough
recent discussion is by
Elkin \'). One result of his work is that there is as yet
no certain evidence of any relative motion among the stars of the group.
\'Ihey all move on together with their common motion of 7\' per century,
as if they were a single mass.quot;

For the Hyades the P. M. have been determined i)hotographically-).
The plates were taken by
Donneu, measured and discussed by Kapteyn
and de Sitter. The adopted final motion of the grouj) is

fjL, = o\'.0!)0
jjij = _ o\'.osf).

Transactions of the As(r. Olxs. of Yale University 1.
Publ. of the Astr. Lab. at (Ironingen, 14.

-ocr page 20-

The question which stars were members of the groups h and y Persei
became doubly important after the publication of: Parallaxes of the clusters
h and 7 Persei, measured and discussed by Prof. J. C. Kapteyn and W. de
Sitter Sc. D
. Although a definite conclusion as to a parallax of the two
clusters was not arrived at, yet
de Sitter remarked on page 34:

,,In conclusion attention may be drawn to the fact that the foregoing
discussion affords the material from which the parallaxes of the clusters h
and
7 Persei relative to the surrounding stars may be derived with extreme
accuracy, as soon as we shall be able by a discussion of the proper motions to
decide with certainty for each of the stars of the plates, whether it belongs to
either of these clusters or not.quot;

Hence if we could arrive at positive results about the P.M., this would
imply the answer to the important question what position both clusters occupy
in space.

In the second place it is possible for this part of the sky to determine
the frequency of the P. M. according to magnitude and to the amount of P. M.
Material of this kind is unfortunately somewhat scarce as yet. To be sure
Kapteyn has given tables for this 2) and we also possess the data of W. G.
Thackeray but in either case only stars of greater brightness than mag.
9.5 are dealt with. For fainter stars the distribution has until now only been
determined by
Turner in „Three notes on the number of faint stars with
large proper motionsquot;
Turner goes as far as mag. 12.0, but by the rather
rough methods adopted he only gives proper motions exceeding 0\'.20 and ()\'.15
annually. I hoped that the method followed by me would allow me to advance
further in both respects. My plates contained stars down to mag. 14.0 and
the accuracy reached allowed me to go as far as O\'.OlO annually. Already
a priori I could expect a fairly high accuracy, so that it might be anticipated
that the work would not be undertaken in vain. For, the best of the already

1)nbsp;Publ. of the Astr, Lab. at Groningen 10.

2)nbsp;Publ. of the Astr. Lab. at Groningen 11.

3)nbsp;Monthly Notice.s of the R.A.S. 67, 145.

Monthly Notices of the R.A.S. 69, 57, 69, 491, 71, 45.

-ocr page 21-

available maesuremeiits of the plates for the Carte du Ciel gave ± 0\',237 as
mean error of one coordinate.

If in order to obtain proper motions new plates are taken after some
time, the change of one of the coordinates will be determined with a mean
error of ± 0\'.237
V2 = ± 0\'.334.

This gives for plates taken with an interval of 12 years, in the P. M.
both in a and o, a mean error of ± 0\'.028.

If we have, as in our case, one pair of plates with an interval of 17
years and 2 pairs with a 12 years\' interval, we miglit expect, even starting
from such
absolute measurements, in our final results a mean error of ± 0 \'.0I4.

That with the differential method, followed by me, this accuracy has
certainly been suipassed, is fully proved by the results. I shall extensively
discuss this point in Chapter XL

The labour involved in an accurate determination of the P. M. is of
course very considerable. Hence it is impossible to determine the frequency
for so many parts of the sky as could be done by
Turner\'s method. And the
distribution extending over a small part of the sky has in itself little value.
However, similar data of equal accuracy may within a reasonable time bo
expected in addition to my plates and then the obtained results will be lielpful
in the solution of the problems, arising in the investigation of the structure
of the stellar universe.

CHAPTER II.

The Material.

In tlie Astronomical Laboratory at Groningen, wliere I did the measure-
ments and ])art of tiic reductions, in the si)ring of 11)09 seven pliotogra])hic
l)lates of h and y Persei were available, taken by Kostinsky at Pulkovo
partly in 1890,
i)artly in 1908. After Kostinsky had used them for a paper

-ocr page 22-

on the use of the stereocomparator for the determination of proper motions i)
he had ceded them to Prof.
Kapteyn, authorising him to measure them and

to pubUsh the results.

The existence was also known of two plates of the same region of the
sky, taken in 1890 and 1892 by
Donner at Helsingfors and measured by Miss
Bronsky and Miss Stebnitzky^). At my request Prof. Donner was so kind not
only to lend me these plates, but he moreover promised to take an additional
number of photographs of h and x Persei in 1909. So I finally possessed the
following plates:

Epoch

Designa-
tion

30quot;quot;
30
60
20
20
30
50
15
20
10
5
60

60
12
15
15

A, 103
A, 106

A,nbsp;115

B,nbsp;126
B, 132
B, 136
B, 147

2
4

7
10

2

8
4
1
9

1896,
1896,
1896,
1908,
1908,
1908,
1908,
1890,
1892,
1895,

1895,

1896,

Sept. 22
Oct. 1
Oct. 9
Oct. 22
Oct. 24
Oct. 31
Dec. 28
Sept. 5
Sept. 20
Apr. 17
Apr. 17
Aug. 18

1909, Sept. 10
1909, Sept. 13
1909, Sept. 14
1909, Sept. 15

Time

of
expos-
ure

Hour
angle at
the middle
of

exposure

Central
object

Observer

Remarks

— 0*

14m

h Persei

Kostinsky

very good images

0

39

h

]

quot; i

Kostinsky

good images

0

1

x

i

gt; J 1

Kostinsky

very good images

0

54

X

!

) )

Kostinsky

fairly good images

0

16

h

1 gt;

Kostinsky

good images

-I- 0

12

h

gt; t

Kostinsky

very good images

— 0

1

h

\')

Kostinsky

indifferent images

— 4

36

h

gt;)

Dreijer

bad images

O

17

h

M

Dreijer

very good images

h

))

Dreijer

h

1 1

Dreijer

45

Ji

n

Sundman

fairly good images

1
1

amp; Donner

— 2

50

h

) )

Donner

good images

— 4

36

h

gt; \'

Donner

good images

_ 2

18

h

) gt;

! Donner

good images

_ 2

17

h

) t

Iversen

very good images

1) Bull, de l\'Acad. de St. l\'étersbourg, 1908, Vie Série, N«. 17.

Mem. de l\'Acad. Imper, des Se. de St. Pétershourg VIIIc serie 2, Xo. 7.

-ocr page 23-

Nos. 7 and 10 had been taken at lower culmination and hence had to
be discarded. Unfortunately all the remaining material could not be worked
up. I therefore selected six plates, all containing good images in approxima-
tely equal numbers and having h Persei at the centre. These were the following:

by Kostinsky: A 103 and A 106 of 1896
B 132 and B 136 of 1908.

by Donner: No. 4 of 1892.

No. 9 of 1909.

I originally intended also to investigate a couple of plates with an
hour\'s exposure, but for this the necessary time lacked. Such plates might
be a valuable contribution towards answering the question whether the stars
of a cluster range through a scale of brightness as wide as the stars in general.
If the clusters
h and x Persei had a large proper motion, which will presently
appear not to be the case, it would certainly repay the trouble, with a view
to this (juestion, to scrutinise the plates with a long time of exposure in
regard to P. M. But even in our case some results might be obtained by count-
ings, as was done for the Pleiades by Bailey, for the cluster in Coma Berenices
and for Praesepe by
Newcomb^). Possibly 1 shall later have an opportunity
to do this.

After the measurements and reductions had been (piite Ihiished, I
discovered that still two older photographs of the clusters
h and / existed.
The lirst of these was taken by the brothers
Henry in 1884. A reproduction
of it is found in Sirius,
18, 256. When comparing this reproduction, which is
stated to be a direct rejjroduction of the photograph without any retouching-),
with copies of
Donner\'s ])lates of 1892 and 1909, I found such a large num-
ber of deviations, however, from these mutually well according i)lates, tliat I
must doubt tlie correctness either of
Henry\'s plate, which is one of their
oldest i)hotographs or of the reproduction.

It is also doubtful whether I should have been able to obtain a second

The St;ir.s, .study of the Univer.sc, i\'.IOt, p. 258 soq.
Cf. Sirius, 18, 210.

-ocr page 24-

plate, taken with the same apparatus in recent years. Yet this would have been
desirable in order to obtain great accuracy in the determination of the P. M.

The second one of the plates mentioned, is by Roberts and was taken
in 1890.1). The time of exposure was three hours and by this circumstance
alone it differed too much from the plates measured by me, so that it could
not have been of great service in the determination of the P. M.

CHAPTER III.

Explanation of the method of measuring.

Until now for the photographic determination of P. M., plates have
mostly been used containing the images of both epochs. I have to explain why
this method was abandoned.

The method applied by Kapteyn and de Sitter in the publications
of the Astronomical Laboratory at Groningen has in comparison with my
method four advantages and one disadvantage.

The first advantage is that the observations are the direct difference
in distance of the two positions of the same star at different times, whereas
in my method each star has to be made to coincide with a scale-division of
the measuring apparatus. The consequence of this is that in the numbers,
yielding by reduction the P. M., to the unavoidable error of pointing on the
star, the error of setting on the scale-divisions is added twice. But this error
is so small that the chief point is the saving of time since tlie number,
yielding in
Kapteyn\'s method the P. M. directly by reduction, is obtained
from no less than four numbers with my method.

More important is the second advantage, viz. the small influence of a
distortion of the sensitive layer in the method followed by
Kapteyn and de
Sitter
, if only the images of different epochs are in close proximity. The

1) Phot, of Stars, Star Clusters and Nebulae, 1893.

-ocr page 25-

result, however, of many measurements by both, has completely confirmed
the opinion already expressed in Publ. of the Astr. Lab. at Groningen 1, that
a distortion of the film does not exist. And this holds not only for the differ-
ential distortion, but generally. For those who fully accept this result the
second advantage consequently vanishes.

Thirdly, if the plate is not accurately plane, this fault will affect my
measures in an uncontrollable way.

As to a fourth error, viz. a possible minute instability of the plate as
fixed in the maesuring apparatus, I shall treat of this in Chapter IV.

On the other hand the method followed until now has a great drawback.
It seems to be difficult to keep the undeveloped plates for more than 6 or
8 years i) and this would limit the interval for the determination of P. M. to
this maximum. A developed plate on the contrary may be kept for an indefinite
time and be compared with a later photograph, at any rate if no distortion
takes place. So in the present case the difference of epoch is with
Kostinsky\'s
plates 12 years, with Donner\'s 17. And this is an essential advantage for the
determination of P. M., since the accuracy of the P. M. is proportional to
this difference.

The systematic errors, depending on the position on the plate, which
will be extensively dealt with in Chapter VIII seem to justify the opinion, that
also in the plates used by me there is no cjuestion of a distortion of the film,
at any rate that it is too small to have an apjireciable influence on the P. M.
itself, as long as stars are concerned at a distance of no more than
40\' from the
centre. For stars nearer the edge we are not justified rigorously to maintain this
statement. I am of opinion, that in deriving proper motions photogra])hically
it will in general be safe not to consider stars, lying near the edge of the i)lates.
If we exclude the marginal stars, the advantage of the method here followed
very probably outweighs the advantages of the older method.

Cf. Publ. of the Astr. L:il). at Groningen, 19, X.

-ocr page 26-

CHAPTER IV.

The apparatus and measurements.

The measuring apparatus of the Groningen laboratory which I used
needs no special description, since it is identical with the instrument of which
H. G. van de Sande Bakhuyzen gave a detailed account in the Bulletin
de la Carte du Ciel, 1, 169—173, with the only difference that it was mounted

at an inclination of 45°.

Concerning the periodic and progressive errors of the screw I refer to Publ.

of the Astr. Lab. at Groningen 1. These errors appeared not to be so large that

they could not be explained by errors of observation and even if they had been

real, their influence on the.final results is so much reduced that they can

liave no sensible influence on the P. M. Since for the measurements in a and o

each star was always made to correspond to the same scale-division on all

six plates, also systematic or accidental errors of the scale could not have

any influence on the final results. Besides, the progressive errors of the screw

are entirely eliminated by this process, since for any particular star always

the same part of the screw was used and consequently these errors could only

affect the difference of the readings of the same star on two plates amounting

in maxima to 0\'.852.

The influence of a possible dead run of the screw was avoided by

always turning it in the same direction.

The instrument was as far as possible covered by a case of thick card-
board in order to preclude the effect of radiation from the observer\'s body
on its parts.

Before and after each series of measurements the run of the screw
was determined by measuring the interval between two successive scale-
divisions; for this purpose the divisions 300 and 301 were chosen. The deviations
of the individual values from their mean lay without exception within the prob-
able measuring errors, so that in no case a correction for a changed value of
a part of the screw had to be applied.

In order to discover whether the plate shifted while being measured in

-ocr page 27-

one position, which operation occupied from 8 to 19 days, the distance between
a sharply defined point on the plate and the nearest scale-division was meas-
ured at least three times during each series of measurements.

In order to detect a possible rotation of the plate with respect to the
apparatus, before and after each series of measurements the distances of the
four most suitable stars from the nearest scale-divisions were measured.
These stars should not lie too near the edge, as their images had to be sharp;
on the other hand, in order to reveal any rotation they had to lie as far as pos-
sible from the centre of the plate and preferably symmetrically to it. The
following stars were chosen:

No.

A;

y

1-28

260\'.5

6 6\'.6

254

266 .7

13 6 .6

1401

344 .2

66 .7

1421

333 .4

132 .4

In the first column the number of the star in the tables is given, in
the second and third their positions on the plate in rectangular coordinates.
It should be mentioned that the centre of the plate lay near = 300.0,
y = 100.0.

The result was that neither a shifting nor a rotation manifested
itself of such an amount that the discrepancies should not rather be attrib-
uted to accidental measuring errors than to a real displacement of the
plate. Hence no corrections were applied for it.

That no corrections for a real sliifting were necessary, appeared also
from the following consideration. The twelve fundamental stars already chosen
at the outset were measured 3 or 4 times in each i)osition of the plate, each
star being i)ointed at at least three times; the comparison of the measurements
of the individual stars yielded a mean error of ()\'.0ir)4 on the average. If the
necessary corrections for an assumed shifting are taken into account, this

-ocr page 28-

m. e. works out at 0^0160. The difference is so. small that the corrections

for shifting are undoubtedly unreal.

Two settings were always made on the remaining stars and also on the
scale-divisions. I shall return to the error of pointing when discussing the

mean error in Chapter XI.

The measurements were all made with daylight, reflected towards the

plate by a horizontal mirror. On the average 200 stars were measured daily
in one position of the plate. Only during the winter months this number could
not be reached owing to early twilight. It would have been possible to work
with artificial hght then, but I feared that this might introduce a systematic
error in the readings, which has now been completely avoided.

The plates were measured in two positions, with East at the left
and with North at the left. By means of two pairs of stars, each differing
little in S and much in a, the plates were mounted as nearly as possible
according to the parallel of 1900.0. For the second position the orientation
was obtained by turning the plate through 90° by means of the circle of

position.

Since the readings of the micrometer screw increase when the vertical
wire of the micrometer is moved from left to right (i. e. with decreasing a and
decreasing o), we get, after applying the necessary corrections which will be
discussed in the following chapters, calling the star-readings at the first epoch
1 and at the second 2:

Pos. I: (1—2)a = P- M. in a (great circle);
Pos. II: (1—2)j = P. M. in 5.

Other observers usually execute the measurements in four i)ositions by
also turning the plate 180° and 270°; this is done in differential measurements
in order to eliminate the personal error depending on the size of the images.
In my opinion, however, this error is still better eliminated not by meas-
uring the same plate twice, but by taking two different plates. So I did
not hesitate to give up the measurement in four positions and to measure
instead as many plates as possible in two positions.

-ocr page 29-

The six plates that were enumerated above, were combined in the
following three sets:

A 106 — B 132, Interval 12^063,
A 103 — B 136, „ 12\'\'.107,
Donner 4. 1892 — Donner 9. 1909,
Interval 16\'\'.984.

The values (1—2)« and (1—2).? are given for these pairs in the tables

anbsp;. 1nbsp;^

under the headings-----— respectively

^ M, M, Manbsp;Ml M, Ma

CHAPTER V.

The method of reducing.

In order to derive the P. M. from the differences M, found in the pre-
ceding chapter the principle was applied, explained by
Kapteyn in the „Plan of
selected areasquot; with this difference that also the quadratic terms were taken
into account. If m\'a and m\'j are the components of the annual P. M. of a star
and Q the factor, reducing the P. M. over the interval between the two ejiochs
and ex])ressed in
V as unit, to the annual P. M. in 1\' as unit, we may assume
m\'« = [Ma—a—bA;—cy—dA;2—eA;y—fy-J Q,

m\'j = [U^—zi\'—h\'x—c\'y—d\'x--e\'xy—i\'y\'] Q.

It-is evident that in whatever way the twelve constants of these for-
mulae are determined (Q is determined sei)arately) the aj^i^lication of these
corrections to M involves corrections for:
shifting of tlic plates inter se,
rotation of the plates inter se,
alteration of the scale value,
differential refraction,

precession and nutation,
„ aberration,
the reduction of ^ and y to a and o,

the inclination of the plates when taken and when measured

-ocr page 30-

Higher terms than those of the second degree with respect to a
fixed point,
in casu the point where the readings of the scale of the measuring
instrument\'were = 300.0 and y = 100.0 are disregarded. The formulae for
these corrections which must be applied, whenever photographic platesare
measured, are fully dealt withe, g. in the Bulletin du Comm. Int. Perm, pour
l\'exécution phot, de la Carte du Ciel. So it would be superfluous to enter

further upon this subject here.

In order to determine my constants, I started from the assumption,

as Kapteyn puts it: „that, for the very faint stars on the plate (after having
excluded those which by a first reduction appear to have a very sensible
p. m.), the mean proper motion both in a and o
is the same over the whole of
the plate.
Starting from this supposition, the whole of these faint stars will at
once furnish us with very reliable values of the constants b c d e f b\' C d\' e\' f.
The two remaining ones (a and a\') shall
be derived from the standard proper
motions determined at the meridian instrumentquot;.

Before proceeding to this determination I want to explain, why I adopted

a differential method for determining the P. M.

An absolute method has the advantage that each observation can
directly be used for determining the P. M. after other plates, taken at a later
date, have been reduced. In my case I might have comi^uted a and ^ for

each star for:

1892.7; 1896.7; 1896.8; 1908.8; 1908.8 and 1909.7.

In order to determine from these tlie position a, o for the epoch 1900.0
and the P. M. I might have combined these epochs into three sets e. g. 1892.7,
1896.8 and 1909.1 and for each star the following equations would then
have been ol)tained:

a — 7.3 {JLa =................

a — 3.2 {Jia =................

a 9.1 |Xa =................

and a similar set for o and jie?. By the method of least squares I could have
determined from these equations a, o, and jxj for 1900.0. Later observations
could easily have been linked to these.

-ocr page 31-

But in order to obtain the second members of the above equations
we should have had to apply to the measurements the following corrections:

1.nbsp;corr. for the systematic and accidental errors in the scale-divisions

of the measuring instrument;

2.nbsp;corr. for the progressive errors of the micrometer screw;

3.nbsp;corr. for the periodic errors of the micrometer screw;

4.nbsp;corr. for the curvature of the cylinder of the measuring instrument;

5.nbsp;corr. for the tilting error (occasioned by turning the microscope
round a cylindrical horizontal axis from star to scale);

6.nbsp;corr. for the inclination of the plate relative to the optical axis

of the microscope;

7.nbsp;corr. for the inclination of the plate relative to the ojitical axis of

tlie refractor;

S. corr. for an erroneous value of a scale-division;

1).nbsp;corr. for the reduction of ;V and y tot a and 5;

10.nbsp;corr. for refraction;

11.nbsp;corr. for aberration;

12.nbsp;corr. for precession and nutation;

13.nbsp;corr. for an erroneous orientation of the plates.

Corr. 1 is usually obviated by referring the star to the preceding and
following scale-division and by moreover measuring the plate in 4 positions.
The labour of measuring is thereby a little more than doubled.

Corr. 2 3, 4, 5 and 0 are usually small if a good instrument is used
and so may either be disregarded or easily taken into account. The measuring
instrument has beforehand to be closely examined in regard to these errors.
In corr. 11 the terms of the second degree may as a rule be neglected.
Corr. 12 and 13 may be combined to a single one.
Corr. 7 cannot be applied in most cases since the inclination of the photo-
graphic plate to the optical axis of the refractor is seldom determined and
depends among other things on the flexure. That it may reach such a value
that it must not be neglected in the determination of P. M., has already
more than once been noticed and is again confirmed by my measurements.

-ocr page 32-

Summing up it is clear that the absolute method requires much more

labour than the differential one.

As to the accuracy which may be reached it already appeared in Chapter I,
that with the absolute method, using six plates, as I did, a mean error in each
of the coordinates of the P. M. may be expected of ±
O\'.OU. This holds for
the Carte du del plates (from Potsdam and Paris); each P. M. thus obtained
requires for the Potsdam plates 36 settings, for the Paris plates 48.

The result of my measurements is a mean error in the proper motion
of ± 0\'.008 in each coordinate. And this P. M. was obtained from 24 settings,
two on the star in each plate, two on the scale-division.

In this respect Kapteyn\'s method is a little easier still, giving a m. e.
of
O\'.OlO with 12 settings. It is questionable, however, whether my m. e. would
have become K 2 as large, namely
O\'.OU, if I had only once set on star and
line, since the error of pointing is not the only cause of the m. e. of the P. M.

Now, since with the differential method not only all sources of errors,
so far as they are functions of the 0th, 1st and 2nd powers of the star-coordi-
nates, are taken into account even such as are at present unknown; but since
also with less labour a higher degree of accuracy is reached, the method I
followed is, in my opinion, fully justified.

If later photographs of the same region of the sky will have to be
compared with the plates I used, it will still be possible, availing ourselves of
Kapteyn\'s investigation on the measuring instrument used, to derive a and
0 from my measurements. But the differential method would then require
the utmost precautions and it is even questionable whether the errors of the
measuring instrument may be regarded as constant in the long run and if
this cannot be stated with certainty, it is absoluty necessary to remoasure
my plates if one wishes to use an accuratc differential method.

-ocr page 33-

CHAPTER VL
The equations of condition.

The stars that may serve for the determination of the twelve constants
a b c d e f a\' b\' c\'d\' e\' f have to satisfy various conditions. The assumption
from which we started on page 14, that the mean proper motion both in
a and o is the same over the whole plate, is only allowed for faint stars^
since with these a possible difference quot;in the parallactic proper motion can only
exist to a very small extent. For this reason the brighter stars must be
rejected at once. But in our case also the stars, belonging to the groups
h
or -f had obviously to be dicarded. Besides, the stars with large P. ]\\I.
might have an undue influence in the determination of the constants, so
that these also had to be avoided.

As the magnitudes themselves had not yet been determined, this first
condition was settled by means of the diameters; all stars having a diameter
over 0\'.!)0() were rejected. It appeared later that this maximum diameter
corresponds to mag. 10.o. The only way for excluding the stars belonging to
the groups h and -/ Persei was to determine the extent of the clusters by
counting the number of stars in different parts of the plate. Since it is more-
over desirable to distribute the stars, serving for the determination of the
constants, as symmetrically as possible, all stars had to be e.xcluded, whose
distance from the centre of the plate are less than 32\'.5.

Also stars near the edge could not be used for determining the constants,
since it could not be settled a priori what weight had to be given to the equa-
tions of condition furnished by them, while it might be assumed that this weight
is the same for all the other stars. Hence 1 left out all stars, lying at more than

r)2\'.o from the centre of the plate.

In order to exclude the stars with large i)roi)er motions, which were
not known a priori, a number of simi)lilied ecpiations of condition, containing
only the constants a b c a\' b\' C, were fornred and solved. The P. M. so ob-
tained for the jKiir of plates A 100—B 132 indicated which stars it would be

-ocr page 34-

desirable to drop in the final determination of the constants on account of
their large proper motions. The limit for this rejection I drew at a P. M. of
O\'.OSO annually in one of the coordinates. Finally I rejected all stars which
had not been measured on one or more of the plates or had received a mark
of uncertainty. This gave the advantage that for all pairs of plates, as well
in a as in 0 the coefficients of the unknown quantities were the same in the
conditional and hence in the normal equations. Otherwise the labour of com-
putation which was very considerable as it was would have been greatly
increased.

With all these restrictions 210 \'stars were left. The following table
contains their numbers in the final tables.

51

103 i

157 \'

255

437

591

897

1209

1338

1402

52

105 ;

159 ;

263

438

602

898

1211

1339

1403

53

108 ■

160 i

265

439

603

910

1216 i

1351 \'

1405

54

109

164

266

441

605

1022

1223 \'

1354 !

140?)

55 1

111

165

267

443

607

1023

1225

1355 !

1410

5() I

131 ;

166 \'

268

444

648

1025

1226

1359 \'

1411

50 ;

132 !

167

269

445

, 649

1028

1263

1360 ;

1414

()0

134 1

168

270

459

650

1045

1265

1361 ;

1418

04 !

13« 1

169

272

462

654

1050

1266

1362

1419

05 i

137

171

321

j 464

668

1051

1

1267

1364

1422

70 ;

138

172

322

465

669

1 1114

1268

1374

i 1423

85

139

173

324

466

i 670

i 1117

1270

1375

1438

8()

141

174

325

: 467

672

; 1118

1277

1376

^ 1439

88

143

1 186

328

532

673

: 1119

1291

1377

1440

1)1

145

190

33(5

533

747

! 1120

1294

1378

1442

93

14()

191

337

535

748

1122

\' 1296

1379

1445

94

148

192

338

536

i 765

1123

1300

1380

! 1447

97

149

i 246

339

538

\' 766

1127

1 1327

! 1382

1454

98

151

i 248

340

539

\' 892

1140

: 1329

i 1383

1 1479

100

152

249

343

550

1 895

1142

1330

1385

\' 1481

lOI

156

i 254

435

589

i

896

1

1146

1335

1386

1482

Starting from the assumption that for these stars the mean proper
motion is the same all over the plate and denoting this in a and o by A jXa and

-ocr page 35-

A {jilt;? each star furnishes a pair of equations of the form:

Ajxa = (Maa—hx—cy—dx-—exyiy^) Q,
A
[X(7 = (Mja\'—h\'x—Cy—d\'x\'^—e\'xyt\'y^) Q.

In practice Ajx^ and Afjtj cannot be separated from the constants
Qa and Oa\' and are combined with them. The constant Q is calculated
separately, ^^\'hen the constants have been determined we find for each star
the components m\'« and m\'lt;? of the P. M. from the tormulae:

m\'a = (Ma—a—hx—cy—dx^—exy—fy^) Q.
mV = {M^—a.\'—h\'x—C\'y—d\'x^—e\'xy—i\'y^) Q.

To the relative P. M. found in this way the corrections A jx\'« and A p.\'j,
deduced from some twelve fundamental stars, have to be ai)plied, by which
the absolute P. M. are obtained.

CHAPTER VII.

Tun normal equations and their solution.

In order to obtain the conditional and normal equations the rectangu-
lar coordinates which in surveying the plate had been found in ()M,
p being
very nearly equal to 1were exjiressed in degrees by means of tables I had
nt my disposal in the Astronomical Lalx)ratory at Groningen. These tables give
two decimals. In the same way .v-, y- and
xy were determined for all 1418
stars and besides .v^ f, .vy\'-, .v-y, .v^y^, .r\\v, .xy for the 210 stars,
furnishing the equations of condition for the determination of the constants
a b c d e f a\' b\' C d\' e\' f\'.

Since M« and M«? never contain more than three figures (Cf. ]). 10)
and the above mentioned coefficients were only in exceptional cases greater
than l.(Mi, it was always possible to use multiplication tables for making uj)
the normal ecpiations.

-ocr page 36-

It has already been stated in the preceding paragraph that for all
three pairs of plates the same stars have been nsed as well in . as m o; the
consequence of this is that in the normal equations

[1 1] a [1nbsp; [1 .yjc [1nbsp; [1nbsp; [1 -y\']« = [\'

a ..]b .y]c ..^cl nbsp; nbsp;= L^ m

[y .1] a [y b [y .y] c [y d [r ^ •gt;quot;]\' = ^^

] a [.y.x] b [.y.y] c M d nbsp;« [-r-r] f =

J a [y^b [/- .y]c ryquot;- d [y\' ..y] o •/■] f = [y^ .M]

the first men,bers were always the same. This gives (or the determination of
the constants the following sets of normal equations:

H-2lO.OOna-30.2n0b 7.770c .5.5.24.,d 1.080e 42.070f = n .Ml
_ .S0.200a .5.5.24.5b 1.080c - 17.1«0d 0
.2r,5c - 2.01.5 = . .M
7.770a ..quot;80b 42.070C n.2«.5d - 2.0.5e \'= y^
245a - 17.100b 0.20.50 22.710d 0.n70c (i.310f = r»^-.MJ
quot;L080a 0.2f,3b - 2.01.5C 0.070d 0.310e nbsp;= .«1

42.070a .- 2.01.5b 1.025C «.Hlod n.02.5e 13.20.5f = [y-.M|

The second members of these equations for the different sets of plates,

arc as follows:

AlOC)—B132
1
quot;

A10:{-B13()

a

D1802—i)ii)on

a

5^815

3^442

8\'.753

0 .703

0 .300

8 .854

— 2 .528

1 .800

0 .448

0 .979

0 .908

.— 1 .499

1 — 0 .132

0 .299

0 .292

1 1 .528

1

i ■

0 .549

1 .901

pi8lt;.)2—Dinoo

fJ

13\'.308

—nbsp;1 .333

—nbsp;0 .813
2 .558
0 .352
4 .013

a lo:^—p. 1
0

A10() -Bi:}2
J

ir.470
1 .420
3 .908
1 .808
— 0 .273
2 .052

nbsp;8^()^)7
0 .183

—nbsp;4 .853

—nbsp;1 .251)
0 .38(5

—nbsp;2 .411

For the solution the method indicated by Encke in the Berliner Jahr-
buch of 1835 was mainly followed. The following table gives a summary of
the results obtained with their mean errors.

-ocr page 37-

D 1892 — D 1909, a

A 103 — B 136, a

A 106 — B 132, a

0M»590± 0^0100
0 .0222 ± 0 .0056

—nbsp;0 .0729 ± 0 .0056

—nbsp;0 .0752 ± 0 .0209

—nbsp;0 .0531 ± 0 .0142

—nbsp;0 .0272 ± 0 .0250
0\'.0044± 0\'.0087
0 .0227 ± 0 .0049
0 .0439 ± 0 .0049
0 .0470 ± 0 .0183
0 .0580 ± 0 .0124
4- 0 .0052 ± 0 .0219

a
b
c
d
e
f

—nbsp;0\'.0335 ± 0M)1()7

—nbsp;0 .2273 ± 0 .0060
0 .0009 ± 0 .0060

—nbsp;0 .1574 ± 0 .0224

—nbsp;0 .0290 ± 0 .0152
0 .0033 ± 0 .0268

A 106 — B 132, 6

D 1909, 0

D 1892

A 103 — B 136, 0

—nbsp;0^0276± 0 .0090

—nbsp;0 .0006 ± 0 .0050

—nbsp;0 .1064 ± 0 .0050
0 .0423 ± 0 .0188
0 .0320 ± 0 .0127

—nbsp;0 .1061 ± 0 .0224
(r.0537 ± 0\'.0073
0 .0507 ± 0 .0041
0 .0827 ± 0 .0041

a\' =
b\' =
c =
d\' =
e\' =
f\' =

—nbsp;0 .0079 ± 0 .0152

—nbsp;0 .0282 ± 0 .0103

—nbsp;0 .0104± 0 .0182
0\'.0222 ±nbsp;0\'.0109

—nbsp;0 .0029 ±nbsp;0 .0061

—nbsp;0 .1722 ±nbsp;0 .0061

—nbsp;0 .0109 ±nbsp;0 .0229

—nbsp;0 .0036 ± 0 .0155
0 .2496 i- 0 .0274

These constants, substituted into the original observations of all
tlie stars, gave (after multiplication by Q) the values for ni\'a and m\'j of
the tables.

0 was determined sei)arately for a and o ,from the differences in a and
0 of three jniirs of stars taken from A. G. Hels, viz.:

for a:

1947

1957

2056

2221

2209

2106

for o:

2019

20()4

21 15

2052

2067

2108

The mean distance of two scale-divisions of the measm-ing apparatus,
(ItM-ived from the measurement of 11 intervals, was loMlo a»ul the epoch
differences were:

12.063, 12.107 and 16.984 years respectively.

-ocr page 38-

The Q\'s proved to be mutually concordant for each pair of plates.
Moreover the Q\'s for a and o appeared to be perfectly equal, namely:

for A 106 — B 132 Q = 0.489
„ A 103^ — B 136 Q = 0.487
D 1892 — D 1909 Q = 0.349.

The formation and solution of the normal equations was checked
by double calculation. Moreover, the values found for the unknown quanti-
ties were substituted into the normal equations. Also the check [nn.6]
= [oo] was applied. This gave:

j

[nn.6]

[ÔÔ]

A

106

— B

132,

a ....

0.250

0.251

A

106

— B

132,

3 ----

0.199

0.203

A

103

— B

136,

% \' \' • •

! 0.192

0.193

A

103

— B

136,

J . . • •

1 0.130

0.133

D

1892

— D

1909,

a . . . •

1 0.278

0.288

D 1892

— D

1909,

J ----

! 0.288

0.302

When substituting the constants in the formulae of reduction for
the remaining 1208 stars, suitable checks were applied if feasible. Where this
could not be done the calculation was made twice.

A few constants are greater than O.\'lOO, with Donner\'s ])lates even
f = 0\'.2r)0 occurs. This would seem to show that in the coeflicients y .f-
xy y-
more than 2 decimals should have been taken if the computation of the P. M.
is to be carried to 3 decimals. This also explains the differences between
[nn.6l and [oo]. But it should be borne in mind that in order to obtain the
components of the proper motions in seconds i)er year the values

M a—a—b-r—cy—d.x-—e.vy—fy-
and M
s—^\'—h\'x—c\'y—d\'x^—ii\'xy—i\'f

must be nmltiplied by Q. Hence in the values m\'a and m\'j, given in the
tables, the 3 decimals are ciuite justified as far as the computation is concerned..

-ocr page 39-

CHAPTER VHL
Systematic errors depending on position.

Although, speaking generally, the method followed by me for determ-
ining the constants of the plate, as
Kapteyn puts it i) „seems to promise
a priori a very thorough elimination of all systematic errors depending on the
position of the starsquot; yet the present case is a very unfavourable one, since the
210 stars, furnishing the constants, are not evenly distributed all over the
plate but lie within a ring with radii 32\'.5 and 52\'.0. As well the central as the
marginal parts had to be excluded for the reasons mentioned on page 17.
The great uncertainty resulting from this in the determination of the constants
ad e f a\' d\' e\' f\' is confirmed by the small weights of these constants.
That the rejection of the central stars is a chief reason of this may easily be
seen in the following way. Let us put the imaginary case that to determine
the constants 100 more stars had been used, all of them with = 0 and y = 0,
then the weights of the constants are calculated to be:

Wa =nbsp;112.4

Wb =nbsp;41.3

Wc =nbsp;41.1

Wd =

whereas I found:

Wc ---nbsp;(5-2

=nbsp;7.4

M\'a =

Wh =nbsp;J^f.o

Wc =nbsp;.\'»gt;.3

zc/,1 =nbsp;2.8

Wc =nbsp;0.1

WI =nbsp;2.0

Publ. of the Astr. Lab. at Groningen, 1, C4.

-ocr page 40-

Now, if the P. jM. of the stars, belonging to the clusters h and 7 were
so great that we could make out which stars belong to the cluster and which
do not, which will appear in Chapter XII not to be the case, then, by including
such stars as certainly do not belong to the cluster, the plate constants could have
been determined with much greater accuracy. But even now it is still possible
to improve the values found for the P. M. by determining as well as possible
the systematic errors depending on the position of the stars on the plate
and applying the resulting corrections. This was done in the following
manner. The plate was divided into 21 squares, as shown in the table:

A;

250quot;

275quot;

300quot;

325\'\'

350quot;

1

50quot;

1

2

3

75\'^

4

5

C)

„ 1
/

8

1

100quot;

9

10

1 11

i

: 12

1

13

125quot;

14

1

15

IG

17

18

150\'\'

1

H)

20

1

! 21

Now it was assumed that the mean P. M. of the stars in each of tiie
squares must be constant. This assumption is entirely analogous to the sup-
position made in ChapterVI and is certainly justified by the large number of stars
in each field. We had to reject again the two clusters
h and 7 (this meant the
dropping of the whole square 11 and of the middle of square 10); all stars
with a large P. M. (I chose the limit at
0\'.07r) annually in one of the coordinates);
the stars that had not been measured on all three j^airs of i)lates.

In this manner a larger part of the plate could serve for determining
the constants than formerly. Each field furnishes for every ])air of i)lates
two equations of condition of the form

average m\\ = a \'^x -{y Ix^ zxy Cy-
average m\',- =»\'-[- \'^\'x 7\'y h\'x^ zxy cy,

-ocr page 41-

enabling us to determine the constants

a p Y S s C Y S\'s\' C,
after which to each of the calculated values m\\ and m\'j the corrections

B.xy — Cy-
- s\'jvy - C\'y-

— a —3.V

ox-

ly

— tV — s\'.v-

and

respectively are to be applied.

Weights were assigned to the different fields in the following manner.

Let n be the number of stars to be used in each field, s the mean error
of the average P. M. in a field on each of the three pairs of plates,
t the mean
error in the individual P. M. of the stars in the same field on the three pairs
of plates, then the weight to be assigned to each field is given by the fornmla:

w =

S\' I 2/«

It appeared that n as well ass and t did not diverge very much for the
fields 1, 2, 3, 4, 8, J), 13, 14, 18, 10, 20, 21 and this was also the case with
5, (5, 7, 10, 12, 15, 16 and 17. Therefore the fields were divided into two
groups, the marginal and the central fields. I thus found for

n

s

t

w

marginal fields lt;

a

■X
0

35

36

0\'.0()70
()\'.oo5n

O\'.Ol 16
O\'.OlOO

1
4

1 central fields
1 f

a

•s
0

68
68

0\'.0020
0\'.0()3{)

0\'.0()61)
0\'.0082

11
0 \'

For the values given under /, the averages were taken of the mean
errors of the mean of some five stars in each field. As was done throughout
this ])ai)er, the circumstance that the i)air of i)lates by
Donner had an epoch
difference of
17 years and both i)airs by Kostinsky of 12 years was taken
into account, by assigning to
Donner\'s pair the weight 2, to those of Kos-
tinsky
the weight 1.

The 12 constants were redetermined by the method of least squares,
the computation being done twice; for convenience sake the weight of the
central fields in a was taken as 0 instead of 1

-ocr page 42-

On applying the corrections:

— a — [ix — 7y — ox^ — zxy — Cy^
and — a\' — ^\'x — y\'y — — ^\'xy — C\'y^
respectively, to the mean P. M. \'of each of the 20 fields, I found that
the errors s had been much reduced by the above operation viz.:

^in a to 0\'.0062,
marginal fields \\

^nbsp;( „ 0 „ 0quot;.0035,

( „ a „ 0\'.0017,

central fields

I „ 0 „ O\'.OOSl.

The question now arose whether by repeating this process a further
improvement of the P. I\\I. could be achieved. Introducing the new values for
the errors s and retaining the old values for the errors
t, which play a much
less important part since they are divided by n, the formula now gave the
following weights:

1, 6, 11 and 9.

The change is none for a and so trifling for o that I felt justified in not
re-calculating the constants. Since, however, the errors s had been so much
more reduced in o than in a, I also re-determined the constants in a, using the
weights 4 and 9 for the marginal and central fields, in this case also, though
there was no a priori reason for doing so. The result was that the errors s
became:

0\'.0058 for the marginal fields,
O\'.OOIS for the central fields.

Since thus also a posteriori there appeared to be no reason at all why
the constants, based on the weights 4 and 9 should be considered more trust-
worthy than those, computed by assigning the weights 1 and 9, the corrections
found in the first determination were applied to the P. M. m\',^ and m\'j.
These corrections generally being small (only near the margins of some
plates the correction amounted to more than
O\'.OlO) they could be most
easily applied by means of diagrams. For this j)urpose for each pair of plates
curves in a and 6 were plotted for which the correction amounted to:
......— 0\'.002^ —
O\'.OOl® — 0\'.000=^ O\'.OOO® O\'.OOl^ 0\'.002\'\'____,

-ocr page 43-

the scale being such that the correction itself could be read directly for each
separate star with an accuracy of O\'.OOl. Thus the values m«\' and mJ\' in
the tables are transformed into (x\'a and These are the final relative P. M.
They were averaged, assigning the weights 1, 1 and 2, respectively to the 2
pairs of
Kostinsky and that of Donner. The results have been tabulated
in the last two columns of the pages on the right (see tables at end of
paper).

CHAPTER IX.

Systematic errors depending on m.\\gnitude.

The i)rincipal errors of this kind are the hour-angle error i) and the
guiding-error. In our case, however, the hour-angle error has been pretty well
eliminated, since the four plates by
Kostinsky were all taken very near
the meridian and both plates by
Donner at perfectly equal hour-angles.

Immediately after I had measured the six plates, proper motions were
derived without taking into account the (piadratic terms. With the results-
so obtained an investigation
was made about the systematic errors depending
on the relative magnitude by determining the mean P. M. in a and o of as many
stars as i)ossible of the same diameter. The curves plotted by means of these
results showed that only with the pair A UH\\ — B 132 in a a magnitude error
could be detected. The error was fairly well proi)ortional to the diameter

and amounted to

—()\'.();J3 X (diameter in revolution —1)^^)^)2).

This value ai)proximately corres])onds to ()\'.()()7 x (mag—13.0).
Hut the number of plates is too small to decide whether this magnitude error
in the i)air A 10(5 — H 132 is real. If it had been possible to distinguish
with certainty whether any given star belonged to the cluster or whether
it did not, these data might have afforded an excellent proof as to whether

Pul)l. of the A.str. Lab. at Groningen, 1. 6Ü.

-ocr page 44-

the differences in the average P. M. with different magnitudes should or
should not be ascribed to a magnitude error, since for these stars the
P. M. should of course have been equal for all magnitudes. Since my
measurements could not give certainty on this point,
I thought that I ought
not to take a magnitude error into account, as it is at any rate relatively
small (see Publ. of the Astr. Lab. at Groningen, 19, 35). Similarly its amount
was not re-determined from the final P. M., since the difference from my
determination can never be considerable, the stars of every magnitude
being pretty evenly distributed all over the plate.

CHAPTER X.

The standard stars.

In order to derive the absolute P. M. from the relative P. M. the
corrections
A |j.\'« and A [jl\'^, mentioned in Chapter VI are still to be applied to
{x\'a and [x\'e?. From the beginning a dozen bright stars had been selected for
this purpose, namely: A.
G. Hels 1938, 1981, 1997, 2057, 2061, 2071, 2088,
2093, 2113, 2150, 2177, 2217.
All these stars occurred in various other cata-
logues so that they could furnish good absolute P. M. when combined with
recent meridian observations; they were chosen so as to be distributed as
equally as possible over the whole plate. Prof.
Auwers had the kindness
to send me the catalogue positions of these 12 stars reduced to the equinox
1875.0; a summary of them is given in the following table, to which I added
a few positions given by
Pihl, Oertel, Schur, and the Misses Bronsky
and Stebnitzky; a star marked a; had no catalogue-number.

The abbreviations are the same as those used by Auwers in .\\.N. 4176.
The star A. G. Hels 1938 (No. 1563 in my list, see end of book) had to
be dropped after all. This star, although situated on the plates at
69\'.5 from
the centre, had been measured, but showed such a considerable mean error
in the P. M. that for the determination of A jx\'« and A (x-j I thought it
better not to compare this P. M. with that derived from catalogues.

-ocr page 45-

Current numbers of Catalogues usedfor Nos. (A.G.Hels):

Author-1 Aequi
ity 1 iiox.

2093

2113

2088

2177

2071

2217

2061

2057

199\'

1981

2150

Br.
Lai.
Pi.
Grb.
Tay. D.
Rob.
12v.
A. be.
12 y.
R. C.
Par. 1
Do. 50

r,y.
W\'ro. 2
Bo. VI
Pu. M.
Pu. M.0.
R. C. 2
Par. 2
Va.
N. 7 y.

P-

Pu. 2.0.

CA.
A.N.3212
A.G.Hels
Re. 1
Be.
Rbg.
Wa. 2
Kam 2

Bo. Hel.
Kü. 1
Strb. 2
L. G.

1755
1800
1800
1810
1835
1840
1840
1842
1845
1845
1845
1850
1850
1850
1855
1855
1855
18(50
18(50
18(50
18(54
18(55
18(55

1870
1870
1875
1875
1875
1875
1875
1875 \'

1875
1885
1885
1800

310
4139
27
485
739

311
4147
29
486
740

324

47

540
470

86
104

491! 493

2574

200

658

(550

2811

2815

322

303

1081 1007 2057
i I 140

328
4311

512
207

207
601
2010

142
110

316

35
488
744
406

323
4280

330
4374
65
508
782
518

2707

701

36
490
745
499

508
205

68(5

670

665
33

141

.v

217
2837

337

330

34(5

327

279
2835
1053 1055

2802
1072 1083

807
10

870
(53

877
61

a;

2177 2217

318
012 021

ct 64
0 8

400

2003 21 1312150
51

2061 2071 2088

53 i

403!
788
—00

48

551
484

777/8; 770

V 2

12
00
106

-ocr page 46-

Current numbers of Catalogues usedfor Nos. (A. G. Hels):

2113 21502177 2217

Inbsp;i

Aequi-
nox

Author-
ity

2071

2088 2093

1997 2057

2061

1981

n. lOy.

1890

i

1

759

760

Ru.Ps.ph.

1890

3

27

28i

A.N.3219

1892

A.N.3251

1892

1

Bm. 1

1895

98i

Pu.15. N.

1900

1 :
1 i

Ci. 3

1900

442

444!

L. G.2

1900

1
1

154,

Pihl

1870

1
1

Oertel

1890

Schur

1890 1

i

1

B. and S.

1890 i

199

i 216

34!
c

: 796

78 103 128

462 504; 630 843 993 1183

103i

i 468
161! 162; 165
78\'

1 m

765 768

ill52j
\' 448 451
! 156i 157

I 19

\' e

74
f \'

To the values of these catalogues, reduced to the equinox 1875.0
(including the third precessional term) systematic corrections were applied,
in order to reduce them all to the N. F. K. system
(A. N. 3927). In doing
this I availed myself as much as ])Ossible of
Auwers\' tables in ,,Krgänzungs-
hefte zu den
A. N.quot;, Nr. 7, making due allowance for the remark ]niblislied
N. 4200. For the catalogues not mentioned there I used if possible the
systematic corrections communicated by
Battermann \').

There remain a few catalogues occurring in neither of the i)ai)ers
named, viz.:

Pu. M. o.: a similar correction was a]^])lied as with Pu. M. 1855.

Bo. Hel.: Krüger\'s Heliometer observations; the position and syst,
corr. from
A. G. Hels, (8).

Ru. Ps. ph.: Rutherfurd Photographs of the Stellar Clusters h and /
Persei by S.
Young. Contr. from the Obs. of Columbia Un., 24.
Syst. corr. derived from the comparison with Krüger, given there on
page 67.

1) Beob. Ergeb. der Kön. Sternwarte zu Berlin, 12

-ocr page 47-

A.nbsp;N. 3219 and A. N. 3251: Beobachtungen von Vergleichsternen,
angestellt auf der K. Un. Sternwarte in Kasan. The system is that of the

Berliner Jahrbuch.

Pu. 15 N.: Publ. de I\'Obs. Central Nicolas, série II, 15. Syst. corr.

in the introduction itself.

Pihl: The stellar Cluster x Persei micrometrically surveyed, Christiania,
1901. Syst. corr. derived via the comparison by the Misses
Bronsky and
Stebnitzky, Mém. de 1\'Ac. de St. Pétersbourg, Série VIII, 2, 126.

Oertel: Neue Ann. der K. Sternwarte in Bogenhausen bei München, 2
Syst. corr. derived from the comparison with
Krüger, on page B. 79.

Schur: Astr. Mitt, von der K. Sternwarte zu Göttingen, 6. Syst.
corr. from a comparison with A. G.
Hels, page 82.

B.nbsp;and S.: Mém. de 1\'Ac. de St. Pétersbourg, série VIII, 2. Syst. corr.
from the
comparisons given there on pp.117 and 119 of the observations
mutually and of tliese observations with A. G.
Hels.

I was very sorry not to be able to make use of seven i)ai)ers named
iiereafter, either on account of inaccurate observations, or because il was
impossible to apply a reliable systematic correction, viz.:
Do. 50;
A. N. 3212;
Kam 2;

Lamont, DerSternhaufen// Persei, Ann. der K. Sternwartebei München, 17.
Bkhdichin
, Mesures micrométriciues du Groupe de Persée, Ann. de

l\'Obs. (le Moscou, 4, livre 2.

Vogel, Der Sternliaufen x Persei, Leii)zig, 1878.

Ball and Kambaut, On the relative position of 223 stars in the cluster

X l\'crsei, Trans, of the K. Irisli Ac. 30, part 4.

In addition to the i)ositions of the catalogues mentioned I was
fortunate enough to avail myself of some recent meridian observations,
taken at my re(iuest at Leyden and at Bonn.

As to the observations from i.eyden, the right ascensions after applying
tlie correction for magnitude, were based on the N. F. K. system. For the
(leclinations
Dr. Zwiers sent me the corrections to be adopted. Finally,

-ocr page 48-

in the observations from Bonn the „Helhgkeitsgleichungquot; (correction for
brightness) had beea directly eliminated by the use of wire gauzes; the system
was that of the N. F. K.

The weights to be assigned to the observations were taken either from
Auwers\' tables in A.N. 3615, 3616, 3844 and 38S8 or derived from the mean
errors by means of
Auwers\' table in A. N. 3616.

In the determination of the P.M. of the fundamental stars the method
of least squares was again exclusively followed. The result is given in O\'.OOl in
the following table under the headings C and C for the P. M. in a and o,
while under the heading w the weights are given, resulting from the com-
putation, but expressed in integers.

No.

No.
A. G. Hels

IX\'.

C

1

P-\'a

0

C-

0

w 1

P-\'J

c

0

C

-0

w

39*

2217

1

14

9

1

5

18

i

-1-

6

26

32

13

273

2177

i

8

8

16

i 17

6

9

3

8

358

2150

7

-1-

4

11

16

1

3

-1-

2

7

685

2113

10

2

8

7

10

25

15

4

798

2093

13

7

6

14

0

12

12

9

830

2088

7

5

2

1 16

1

17

18

13 ;

992

2071 !

7

7

0

1 o

19

9

10

4

1057

2061

32

15

17

I 16

4

1

3

19

1042

2057

-f-

54

55

1

15

1

9

16

7

i 12

1413

1997

11

15

26

1 7

1

1

1
I

0

2

1464

1981

62

6

56

i

i

4

1

,

5

0

Under and the P. M. of these fundamental stars are found,
as derived in Chapter VIII, under C—Othe values [la\'C—ix\'aOandfjt-jC—ji\'jO.
These values, averaged by means of the weights given in the table, I used as
the final corrections to be applied to the P. M. in the tables, in order
to transform the relative P. M. and |
jl\'c? are into absolute P. M. They are:

Ajx\'c = — 0\'.0()6 ± ()\'.()03(),
= ()\'.(I07 ± ()\'.0{)42.

-ocr page 49-

CHAPTER XI.

The me.-vn error of the Proper Motions.

In order to avoid the tedious process of writing down the squares of
some 8000 numbers, the mean error of the final
P. M. jx\'^ and jx\'j was
computed by an approximate method; the result is on the average 0\'.0089 and
O\'.OOSl in a and o respectively.

In order to investigate the difference in reliability of the P. M. for
the stars at the centre and near the edge, the m. e. was separately determined
for the stars within a circle with a radius of 50\'.2, inside the ring with radii
50\'.2 and 50\'.3 and inside the ring with radii 5G\'.3 and 62\'.0.

The result was:

distance
from centre

m. e. m

fX\'«

m. e. in
fJi\'J

less tlian SO\'.O
from 50\'.2 to 56\'.3
from 5G\'.3 to 62\'.0

0\'.0078
0\'.0118
0\'.0154

0-.0077
0\'.0092
O\'.OlOO

The increase in m. e. when approaching the edge is evidently, not-
withstanding the bad images of the marginal stars, so gradual that no sharp
line can be drawn for the stars that have to be rejected for further examination.
Consequently I used all stars, having a weight of at least 3, as well for determ-
ining tlie P. M. of tlie
star-clusters as for determining the frequency of
the P. M.

That the accuracy, corresponding to the m. e. of 0\'.0085 cannot be
readied by an absolute method has already been shown in the Chapters I
and V. This oi)inion was based on the m. e. of the Potsdam and Paris
astrograi)hic catalogues, to which I shall now add a few other mean errors:

-ocr page 50-

Catalogue

m. e.

Source

Potsdam
Paris

Helsingfors

Oxford

Greenwich

Misses Bronsky and

Stebnitzky
Rutherfurd
photogr.

0\'.237
0\'.237
0\'\'.241
0\'.577
0\'.400
0\'.318

0\'\'.390

Phot. Himmelskarte, 1,23.

Cat. Phot. [7].

Sur la préc. des dét. phot. ,79.

Astr. Cat. 1, 33.

Astr. Cat. 1, 36.

Mém. de I\'Ac. de St. Pt.

série VHI, 2, 117.
Contr. from the Obs. of
Columbia Un.
24, 37.

From this summary it is evident that in our comparison (Chapter I)
of the accuracy attainable by the absohite and differential methods we

remained on the safe side.

One of the unavoidable sources of errors is the error of pointing. We

shall therefore investigate its influence on the m. e. in the obtained P. M.

For this purpose the error of pointing was determined on each plate
for 40 to 60 stars of different diameters. A summary is given in the following
table :

diameter
Plate

gt; 0\'.750

0^.750—r .250

r.250—r.750

gt; r.750

A.

106

0^0102

0\'.0079

0\'.0()72

0\'.0089

B.

132

0 .0096

0 .0091

0 .0081

0 .0149

A.

103

0 .0110

0 .0089

0 .0088

0 .0119

B.

136

0 .0083

0 .0073

0 .0080

0 .0120

D.

1892

0 .0103

0 .0100

0 .0134

0 .0196

D.

1909

0 .0087

0 .0085

0 .0120

0 .0184

Mean

0 .0097

0 .0086

0 .0096

0 .0143

The large error of pointing with stars of diameters gt; r.THO on Donnkr\'s
plates is to be explained by the fact that there- the diameters are considerably

-ocr page 51-

..............\' ■nbsp;u

greater than on Kostinsky\'s and often exceeded 3^000. For convenience
sake these have all been collected under the heading gt; r.750.

The error of pointing on a scale-division was repeatedly determined
and found to be on an average 0\'.0037; if in order to facilitate calculation
the error of pointing of a star is assumed to be on an average 0\'.0106, we
find 0\'.0112 for the definitive total error of pointing in one of the numbers
M in the tables, derived from the mean of two pointings on two stars
and two scale-lines (Cf. Chapter IV).

It will be easily perceived that by the pointing on the scale-divisions
which is necessary in our method but is avoided in
Kapteyn\'s method the
accuracy of the final results is not perceptibly diminished and that con-
sequently the assertion made on page 8 is fully justified.

The value found for the m. e. in the numbers M gives by multi-
plication with 0.244 the m. e. in seconds of arc, caused by the error of
pointing in the average P. M. of the three plates. It works out at 0\'.0027.

It is evident that the error of pointing constitutes only a small
fraction of the m. e. resulting in the P.
U. If I had not pointed twice but
only once, as well on the stars as on the scale-lines, this would have increased
the m. e. in the final P. M. only from 0\'.0()89 and 0\'.0081 in a and o

respectively to 0\'.0093 and 0\'.0085.

Hence repeated pointing cannot increase the accuracy of the final
results in proi)ortion to the increase in labour.

The slight amount of the m. e. of the average P. M. (Cf. Chapter VIII)
proves that, the distortion of the film being exceedingly small, the principal
source of the final m. e. nuist be sought in irregularities of the images
themselves. This o])inion has already been exj^ressed by other observers, among
others by
Kapteyn,W\'ilsing and Perkine and is once more confirmed here.

To what extent the greater m. e. in the final P. M. and at the same
time the greater m. e. in (he
average P. M. of the marginal fields, discussed in
Chapter VIII nmst be ascribed either to erroneous values of the i)late con-
stants, or to the greater irregularities of the images or to a distortion of the film,
cannot be decided by my measurements. It would be i)ossible to decide this by
a reduction, (piite analogous to the present one, in which the plates of the same

-ocr page 52-

epoch were combined, since then, with more precise constants, an irregularity
of the images would not introduce systematic errors depending on the position
on the plate, whereas distortion would do so. The labour of reduction would
have been doubled by such an investigation.

CHAPTER XII.

The group stars.

Already at the first reduction it became apparent that the stars of the
groups
\'h and -/ Persei had such a small P. M. that it would prove impossible
to make out with certainty which stars are and which are not members of

the groups.

In order to determine the P. M. as accurately as circumstances per-
mitted I took the densest parts of both\' groups. After a first approximation
the stars whose P. M. differed to an appreciable amount from tlie minute
group drift were excluded. So I obtained for the average relative P. M.:

Group

l^\'a

Stars

h
7

0\'.0039
O\'.OOOB

()\'.0026
O\'.OOSO

49
42

The next step was to try and find out a possible relative movement
among the group-stars. For this purpose I drew the vector diagram of the
P. M. of the stars probably belonging to
h and -/ (which could be decided by
countings) for areas of 5 minutes square.
The result was negative.

Starting from the P. M as found above and from a probable error in

-ocr page 53-

the total P. M. of ± u\'.015, I found the following actual and theoretical
numbers of stars, probably belonging to
h and x, as classed according to the
deviation of the P. IL from the general group drift of the clusters:

Numbers of stars in

h Persei

X Persei

limits of deviation

actual

theoretical

actual

theoretical

O\'.OOS

61

98

78

101

O\'.OlO

173

178

174

182

0\'.015

230

230

233

236

0\'.020

257

257

264

264

I would not venture to draw from this a conclusion concerning a
swarming P. M., as de Sitter did for the Hyades (Publ. of the Astr. Lab.
at Groningen, 14, 20), the less so,
since it was found that for /j Persei as well
as for the surrounding stars the P.
M. showed a preference for two different
values, instead of one, viz:

= — O\'.OOf);nbsp;|x\'j = — O\'.OOl

= _ O\'.OOl;nbsp;[iV = O\'.OOS.

Although I would not assert that this i)lienomenon is caused by a real
P.
.M. of the stars of h Persei and although the small amount of the P. M. of
both clusters does not enable us to settle whether it is caused by a number of
stars, not physically belonging to
h, but possibly to y, or to what extent it
must be ascribed to systematic errors in the P.
M., yet I thought it necessary to

mention it here.

Since the small amount of the P. M. does not i)ermit to make out with
certainty which stars do and which do not belong to the groups, 1 refrained
from any attempt at determining the parallax of the clusters, by means
of
Kapteyn\'s and de Sitter\'s results mentioned in Chapter L We might surely
exclude with certaintv the stars with a large P. M. as not belonging to
h or x
Persei, but inversely a small P. M. in the same direction as that of h or x does

-ocr page 54-

not necessarily prove that a star is a member of either of the two clusters.

The final result is, that a conclusion as to this vital question will
have to be postponed till the P. M. have been determined with a consider-
ably greater degree of accuracy than was reached here, unless other means,
e. g. the radial P. M. of these stars, will furnish the necessary data.

CHAPTER XIIL
Determination of the magnitudes.

The diameters of all stars, except a few very faint ones, had been
measured on one of the plates, viz: A 106. Magnitudes were derived from
them by a graphical process. The bright and faint stars were treated
differently, while of part of the stars the magnitudes were determined in both
ways.

For the brighter stars (233) the magnitudes of the Bonn Durch-
musterung were used, after applying a correction to reduce them to the H. P:
system. For this purpose the magnitudes of the stars of this region of the
sky, occurring in Annals of the Astr. Obs. of Harvard College 54,

a = 2* 0quot;\' to 2\'^ 24\'quot;, o = 50° to 60°,
were compared with those of the B. D. The following tabic shows that the
systematic difference H. P. — B. D. is nearly constant for the rather
small area under consideration:

2* 6-quot;

o* jyquot;

I.

50°

-h o^-.is

0M6

55

0 .21

0 .25

60

-F 0 .15

0 .15

y gt; It does however depend on the magnitude, as will be seen from the
next table.

-ocr page 55-

mag.

6quot;\'.4 to 7quot;\'.4

7\'quot;.5 to 8\'quot;.4

8\'quot;.5 to 9\'quot;.5

H. P.—B.D.
number of stars

0quot;\'.24
39

0\'quot;.18
31

0\'M4
24

For the fainter stars (diameters lt; r.400) the magnitudes were deduced
from the numbers of stars of different diameters, counted on the plate, by
means of
Kapteyn\'s tables (Publ. of the Astr. Lab. at Groningen, 18). Of
course the groups had to be excluded from the discussion, their borders being

again found by countings.

Besides Prof. Nijland had the kindness to estimate the brightness

of 14 stars of mag. ± 13.5 and of 6 stars of mag. ± 11.2 in the Utrecht
refractor (aperture 26 c.iM.) and in its finder (aperture 7.5 c.M.), whose limits
of vision had been formerly found to be 13.9 and 11.5 respectively, in the H. P.
system (A.
N. 4116). The method used consisted in estimating how many
steps a certain faint star was above the limit of the instrument. Although
these observations are as a matter of course rather difficult. Prof.
Nijland
is yet of oi^inion that the m. e. in a magnitude determined by him in this
way, based on at least three observations, does not exceed 0quot;\'.2. A small
correction for atmospheric extinction was applied, taken from the tables in

Publ. des Astroi)h. Obs. zu Potsdam, 3, 285.

The corrected magnitudes derived by means of the three methods just
mentioned were plotted as ordinates with the diameters as abscissae and a
smooth curve was drawn through all the points thus obtained, discarding however
tlie B.I), stars witii magnitudes fainter than 9\'quot;.0, since it has already repeatedly
been found that among them numerous stars occur, whose magnitudes are
considerably (even as much as two classes) fainter than given in the B. D.

The agreement between the magnitudes, obtained by the widely
different methods was rather good on the whole. Still there are some dis-
crepancies, which may be explained in the following way.

From 8\'quot;.5 to 12\'«.() the magnitudes derived from the countings are on

-ocr page 56-

an average 0\'quot;.2 fainter than those indicated by the final curve. This deviation
may be largely if not totally explained by the supposition that, although I
tried to exclude the clusters, yet a number cf stars belonging to them has been
embodied in the countings.

On the other hand we find for magnitudes fainter than 12\'quot;.0 that the
magnitudes from the countings are brighter than those following from
Nijland\'s estimates. The reason is that there are very many small stars,
presenting such vague discs that there could be no question of a regular
measurement and which were consequently rejected from the beginning;
therefore the numbers of stars with diameters gt; 0\'.600 come out far too
small, as will appear from the following table, containing in the first column
the Hmits of the diameters, in the second the numbers of stars on a surface
of 1.38 square degree, in the third the ratios of these numbers.

diameter

number

ratio

r.400

5

1 .300

10

2.00

1 .200

17

1-70

1 .100

23

1.35

1 .000

39

1.70

0 .900

66

1.69

0 .800

103

1.56

0 .700

167

1.62

0 .600

272

1.63

0 .500

353

1.30

0 .409

378

1.07

These ratios are at first somewhat irregular, which must certainly be
ascribed to the small number of stars used, but they become fairly well con-
stant for the diameters
IMOO to O\'.GOO. With the smaller diameters the
decreasing ratio undoubtedly indicates that not all the stars with dia\'meters
between the assigned limits were taken into account. If the constant ratio 1.04
be applied throughout the table, the magnitude of the faintest stars is to be
estimated
13.5 from the countings, whereas Prof. Nijland finds 14.0. The
latter value has finally beend adopted.

-ocr page 57-

Though of no importance for the present paper, it is worth while to
remark that the photometric determination of
Parkhurst used by Kap-
teyn
almost exclusively for the magnitudes 14.0 and fainter are by no
means homogeneous with those of
Pickering.

It was already pointed out by van der Bilt in „Recherchss
Astronomiques de I\'Observatoire d\'Utrecht, 3, that there is a systematic
difference between
Parkhurst\'s and Pickering\'s magnitudes in the case of
the comparison stars for the variable stars U Geminorum and Nova Aquilae.

I therefore examined this systematic difference in the case of a few other
variable stars, viz.: T Andromedae, S Cygni and S Comae Berenices, whose
comparison stars are to be found in
H. A. 37 and in Parkhurst\'s Researches
in Stellar Photometry,
1906.

To these I added the comparison stars of W Andromedae and Y Cassio-
peiae, the brightness of which, expressed by
Nijland in the H.P. system, could
be compared with the values given by
Parkhurst. The result is that Park-
hurst\'s
and Pickering\'s observations agree well at 8quot;\'.0 and 9\'quot;.0, but that
for fainter stars the difference is considerable; at
12\'quot;.2 the difference Park.-
PiCK. even amounts to — 0\'quot;.04 (from 17 stars). Unfortunately the material
on which this conclusion is based is small and contains no more than 35 stars.

Besides the already mentioned systematic deviation in the magnitudes
of the stars of the B. 1). with mag. fainter than
9.0,1 still found large deviations
ill magnitude with some 10 brighter B. D. stars. These have been collected
ill the following table:

No.

No. B. D.

mag.
from diam.

corr. mag.
B.D.

48

56° 609

10.6

8.6

217

56°597

10.7

8.7

218

56°595

10.4

8.«

327

55° 600

9.6

8.5

408

56° 583

10.5

8.7

440

55° 597

9.9

8.4

457

57°550

10.2

8.«

569

56°551

10.1

8.4

«35

-f 56° 547

10.4

8.4

990

56° 497

10.3

9.0

-ocr page 58-

The stars B. D. 56° 497, 547, 551, 583, 595 and 597 are not found
on
Rutherfurd\'s photographs i), measured by Young. This points to a pos-
sible great difference between the photographic and visual magnitudes.

B. D. 56° 583 and 563 are called reddish by Vogel^). Nijland
assigns to the former a colour-shade 4^3. (In Schmidt\'s scale). The latter is
not shown in the table; photographically it is 9-7, while the corrected
visual mag.
(B. D.) is 9.4\'. Lohse^) has already drawn attention to the
remarkably small difference between the visual and photographic magnitude

for these this coloured star.

Also B. D. 56° 547 and B. D. 56°551 are called yellow by Nijland,

shade 3^7.

CHAPTER XIV.
The frequency of the Proper Motions.

While for the determination of the P. M. of the clusters h and y. Persei
1 had to start from stars, pretty certainly belonging to either of the groups
and consequently had to restrict myself to their densest parts, on the contrary
for the determination of the frequency of P. M. according to magnitude and
amount of P. U. I was only to use those stars which very likely were no mem-
bers of either of the two clusters.

Different ways could now be followed.

1.nbsp;All the stars could be used which visually appeared to fulfil this
condition.

2.nbsp;I might start from the stars whose P. M. differed from the P.M.
of the groups by more than 2 or 3 times the probable error in the P. M.

3.nbsp;I might take only the stars which for both reasons did not belong

either to h or to y Persei.

An enormous drawback of the two last methods is that a great part

of the stars whose P. M. lie between ()\'.()()()—()\'.0()9 and O\'.oio—()-.ol9 and

1)nbsp;Contr. from the Obs. of Cohnr.bia Un. 24, 51.

2)nbsp;Vogcl, Der Stcrnhaufen li Persei, Leipzig, 1878,12.

3)nbsp;A.N. 2650.

-ocr page 59-

even part of those stars with P. M. 0quot;.020—0\'.029 is excluded, which have the
P. M. in
common with the clusters h and y but are not physically connected with
them. If the P. M. is large as with the Hyades, this drawback is much less felt.
In our case we should have had to limit the discussion to P.M. exceeding
0\'.030
or make up for the deficiency in the smaller P.M. by introducing hypotheses
about the frequency of a certain value in various directions. This would have
led to all sorts of difficulties by which after all in the P. M. less than
0\'.030
a great uncertainty in the frequency would remain. Although I also followed
these ways, I shall here only give the results found by the first method. It is
quite possible of course that yet a number of stars were included that must
be reckoned to
h or y Persei, but I think this difficulty has been sufficiently,
overcome by taking fairly wide limits for the stars which visually are no
group-stars. The number of stars is hereby considerably lessened, but the
certainty is much
inci-eased. Thus 763 stars remained, the frequency of which
is given in the following table. The P. M. have been reduced to the
N. F. K. system.

13.0—14.0\'Total

11.6—12.5

12.C—13.5

10.0—11.5

«).()—lO.r)

8.(5—

7.6—8.5

(i.G—7.5

B-(i.5

36
77
40
23
7
1
1

45
98
67
28
10
2

0

1

28
65
40
13
4

9
12
12
5
I

16
32
22
5
3

142
300
191
78
29
6
4
4
0
1
4
2
0
0
1
1

3
8
()

3

4
o

O\'OOO-
0.010-
0.020-
0.030-
0.040-
0.050-
0.060-
0.070-
0.080.
0.090-
0.100-
0.150-
0.200.
0.250.
0.300.
0.350-

\'0.009
(}.019
0.02«)
0.039
0.049
0.059
0.069
0.079
0.089
0.099
0.149
0.199
0.219
0.299
0.349
0.399

-ocr page 60-

The remarkable phenomenon is now at once noticed that most P. M.
do not lie between the limits
O\'.OOO and 0\'.009 but between O\'.OlO and O\'.OlO.
This is also the case with the frequency of the P. M. according to magnitude
and amount of P. M. for stars, brighter than
6-.5, given by Kapteyn in Publ.
of the Astr. Lab. at Groningen, 11, 8. There the phenomenon is not found
with the stars of 6^.5 to O\'^.S, but then the numbers given for these are not
directly derived from observations; the subdivision of the P. M.
O\'.OOO-O\'.OOO
was, as Kapteyn puts it: „made by the aid of certain plausible conditions, which
are centainly or probably fulfilled by the numbers of small proper motionsquot;.
This phenomenon of relatively few small P. M. can be explained in

various ways.

1.nbsp;The corrections A {x\'« and A ii\'e may be inaccurate. They are
based on no more than 10 stars
and have m. e. of resp. O\'.OOSO and 0\'.0042.
So it is not impossible that the corrections
A jx\', and A jx\'j would come out
different if we started from a larger number of fundamental stars. But I doubt
whether this change would be such that the zero point of P. M. would shift

sufficiently to cause the phenomenon to disappear.

2.nbsp;It is perhaps better to base the P. M. on another system than the
N. F. K. In Publ. of the Astr. Lab. at Groningen,
9 Kapteyn reduces the
P. M. to
a system which is practically equivalent to that of Newcomb. In
order to reduce my P.M. to this
system, assuming that the systems
„Auwers—Bradleyquot;, „Fundamental-Katalog der A. G.quot; and „N. F. K.quot;
do not appreciably diverge, as far as P. M. are concerned, the absolute

P. M. should be corrected by

0\'.00035 0\'.00035 sin a tg o

and

0*.0053 cos a

in a and o respectively.

Since these corrections, amounting in the i)iesent cas: to
0\'.0053 and 0\'.()043,
do not shift the zero point in the right direction I thought it advi5a1)lc not
to apply them until more certainty about the best system will have been
obtained.

-ocr page 61-

3. The parallactic P. M. may be of influence. In order to find out
whether the relatively small number of stars with P. M. less than
O\'.OOO
may be ascribed to parallactic motion, I determined for 755 of the stars used
(the eight P. M. exceeding
O\'.lOO were discarded for practical reasons) the
frequency of the components u and x parallel and at right angles to the great

circle h Persei_Apex. We may assume symmetry in both cases, in the first

case with respect to the parallactic P. M. of the stars of my average magnitude,
in the second to the P. M.
O\'.OOO. For the direction of the parallactic motion
the position-angle was taken = 133°, corresponding to the Apex

a = 269°.7, 8 = 30°.8,

this being the latest determination from Prof. Kapteyn\'s data, which he
was so kind to give me. (Pos. values for u are counted towards the Antapex

(S. E.), for - towards N. E.)

The real frequency of and - is given in the following table:

Numbers

T ■

Numbers
u

Limits

O\'.OOO

to

0\'.005

0 .085

lt;gt;

-f-

0 .090

0 .080

gt;gt;

0 .085

0 .075

gt;gt;

0 .080

0 .070

gt;gt;

0 .075

0 .005

M

.0 .070

0 .000

»gt;

0 .065

0 .055

Jgt;

0 .060

0 .050

)gt;

0 .055

0 .045

)gt;

0 .050

0 .040

gt;»

0 .045

0 .035

0 .040

0 .030

gt;gt;

0 .035

0 .025

1)

0 .o:io

0 .020

Jgt;

0 .025

6 .015

})

0 .020

1
1

19
33

0
0
15

-ocr page 62-

Limits

Numbers
u

Numbers

T

-f 0 .010

to

0 .015

17

82

0 .005

}}

0 .010

23

85

0 .000

))

0 .005

54

99

0 .000

J J

0 .005

98

110

0 .005

J J

0 .010

132

123

0 .010

J J

0 .015

138

63

0 .015

}}

— 0 .020

106

43

0 .020

} 5

0 .025

75

23

0 .025

J5

0 .030

28 j

17

0 .030

5?

0 .035

19 1

9

0 .035

0 .040

8

5

0 .040

y)

0 .045

9

3

0 .045

) gt;

0 .050

1

1

0 .050

■ gt;3

0 .055

2

1 «

0 .055

J J

— 0 .060

0

1

0 .060

gt;gt;

0. 065

0

0

0 .065

))

0 .070

0

0

0 .070

gt;}

0 .075

0

0 .075

}gt;

— 0 .080

0

0 .080

)gt;

0 .085

0 •

— 0 .085

})

0 .090

0

From this table symmetrical curves were drawn; the maxinmm of
the u-curve lies at —0quot;.Oil in the direction of the Apex, that of the --curve
at _0\'.002 in the direction S. W. Hence the phenomenon cannot be explained
by parallactic motion either, since for stars of average magnitude irquot;.7, as we
have here, the latter is 0\'.0()05 in the direction Antapex.

None of the above given possible causes seems sufficient to explain the
small number of small P. M. and it remains an open question whether indeed
vcrv small P. M. are less numerous than larger ones. Much material will jirob-
ably be required before a definite answer to this ([uestion can be given.

-ocr page 63-

CHAPTER XV.

Remark.-^ble Proper motions.

The number of stars on the plates with large P. M. is very small. W\'hile
Turner i) among 13.000 stars finds 123 with an annual P. M. gt; 0M50,1 among
703 stars only find 8 with an annual P. M. gt; OMOO. These have been collected
in the next table:

Kost.

(X\'a

(X\'r?

No.

mag.

ix\'a

IJ-\'J

no.

044

11.7

8.0

0\'.107

0\'.034

0

O\'.lll

— 0\'.043

1024

0 .318

0 .215

8

0 .333

— 0 .247

1120

12.8

0 .107

— 0 .052

IIGO

12.4

0 .152

0 .004

7

0 .173

— 0 .023

1370

10.3

0 .087

— 0 .060

1508

0.0

0 .125

0 .017

3

0 .156

— 0 .012

1500

7.5

0 .251

— 0 .207

4

0 .284

— 0 .231

1530

11.3

0 .134

— 0 .003

1

0 .160

— 0 .000

In col. r,, 0 and 7 the numbers of these stars are given, as occurring in
.Kostinsky, Ueber die h:igenbcweging der Sterne in der Umgebung der
Sternhaufen h und
x Perseiquot;, A. N. 4300, and the fx\'« and jx\'j, derived

from the values there given.

These values do not very satisfactorily agree with mine. But since these

P. M. were measured by Kostinsky by means of a stereocomparator and

each of them is only referred to two faint, synunetrically situated comparison

stars, and since K(.stinsky cmi)hasises that he looks upon his results as

l)reliminary only, these differences did not seem to render it necessary to

discuss the relative values of my method and that of the stereocomparator.

M. N. of K. A. S. 71, no.

-ocr page 64-

Kostinsky derives from his results the existence of two drifts, forming
an angle ofnbsp;= 130°.6 and f = 103°.3),

I must confess that neither his figures nor his diagram are, in my opinion,
very convincing; for, the
p.m. of the first so-called drift vary from 0\'.030 to 0\'.414
annually, of the second from 0\'.044 tot 0\'.175. Now a great part of this P. M.
should be ascribed to the parallactic motion, for which p = l33°. There is little
reason to see in these stars two physically connected groups, although it is
possible that some of them form a physical system, as e. g. 1024 and 1500,
for which
Kapteyn and de Sitter also found fairly equal parallaxes, namely
0\'.12 and 0\'.13 i).

CHAPTER XVL
Final conclusions.

summarising the obtained results, I think it may be said tnat in
chapters V and XI it has been sufficiently proved that the method here followed
may give very accurate results and compares favourably with other methods.

Kapteyn\'s method, in which the images of both epochs are contained in. one
plate seems to be, at the first glance, the method giving the greatest possible
accuracy with the least possible labour. But on the other hand the non-
developing of the plates implies the use of an interval that has not yet begun
and therefore the method can never avail itself of earlier plates, whereas in
my method any early plate after the ,,Carte du Cielquot; pattern may even now
be combined with any other plate of the same region as soon as it is taken.

That I could not make out which stars belong to the clusters h and
y Persei (Cf. Chapter XII), must be ascribed to the very small P.M. of these
groups themselves.

The second aim of this investigation, the determination ot the frequency

1) Publ. of the A.str. Lab. at Groningen, 10, tabic 5.

-ocr page 65-

of the P. M. according to brightness and amount of P. M., may be said tot have

been reached for 763 stars.

In Chapter XIV I drew attention to the low number of small P. M. It
was also investigated there whether this phenomenon may be ascribed to :

1.nbsp;inaccurate values of A[i.\'ct and Afi-\'J;

2.nbsp;an incorrect system, to which the P. M. were reduced;

3.nbsp;the parallactic motion;

and it was proved that none of these three possible explanations accounts for

the shifting of the zero-point of P. M.

I further examined whether these small P. M. possibly lie in the
direction of one of Kapteyn\'s two star drifts. For the centre of the plate the
position angle (as asually counted from N. to E.) of the drifts are 122° and 240°.
whereas the P. found by me, besides having a maximum, pretty well
coinciding with the direction of the parall. P. M. (for which = 133°.) show
a second maximum for p = 302°. Hence also the two drift theory cannot

account for this second maximum.

Although it is still possible that this curious phenomenon is caused by

a magnitude error, since Apt\'« and Ajx\'j were determined from the P. M. of
very bright stars (which point cannot be settled with the material at my
disposal) and although consequently it cannot be said with certainty that
this maximum of P. M. is real, it deserves to be mentioned all the more since
it is in a direction parallel to the Milky Way and approximately towards
the Apex. It is nmcli to be desired that more certainty on this point could be
obtained unless it should appear that the above mentioned causes singly or
combined are the true reason. It is therefore to be hoped that within a reason-
able time similar material may be available for other parts of the sky in order
to be able to settle
whether perhaps we have here a drift of faint stars (the
average mag is 11.7). not
coinciding with the drifts known at present, or
whether we must think of a rotation parallel to the Milky Way, as was already

suggested by Schoni-eld\')•
1) V. J. S. 17. 255.

-ocr page 66-

Explanation of the tables.

The tables will require little explanation. Next to the current numbers
the diameters are given,
from which the magnitudes were derived in
Chapter XIII.

The columns 3—8 contain the values M^ M, M3 (See Chapter IV);

9—14 „ „ „ m, m^ ms ( „ „ VI);
22—27 „ „ » V-2 1^3 ( „ ,, VIII),
which, averaged with the weights 1, 1 and 2, furnish the final relative
P. M.\' fx\'« and [x\'j. In order to obtain the absolute P. M. the corrections
A {x\'a and A [x\'j which were calculated in Chapter X must be applied. These
corrections are given at the foot of each page of the tables. The sign î after
these stars indicates an uncertainty in the measurements, generally caused

by vagueness or oblongness of the images.

Under a; and y the rectangular coordinates of the stars are found,
referred to the middle of the plates: a = 2* 12quot;\' 3-5, S = 56^33\'. These

coordinates are given to OM, j) being about 1\'.

Under the heading B. D. or Br. and St. we find either the number
in the Bonn Durchmusterung or, for stars not included in this catalogue,
the current numbers, to be found in „Les Positions des étoiles de h et ■/
Persei et de leurs environsquot; by IMiss
Bronsky and j\\Iiss Stebnitzky (Mém.
de l\'Ac. Imp. des Sciences de St. Pétersbourg, série VIII, 2, nr. 7). The B. D.
stars occurring also in this paper are marked with an asterisk. Under a 1900.0
and
0 1900.0 we finally have the positions of the stars for the equinox 1900.0,
a being given to T and
0 to 0M. As far as these were measured by the Misses
Bronsky and Stebnitzky, a and 0 have been derived from their values;
for the remaining stars they were calculated from A;andy. Since the coordinates
a and o are only given to identify the stars, great accuracy was not wanted.

-ocr page 67-

TABLES

-ocr page 68-

M,

Ms

2/1 19«! r
f 0^094
185
9
72

0\'\'.f)74
0 .0.30
0 .818
0 .758
\\ .()20

0nbsp;.(i50

1nbsp;.292

0nbsp;.034

1nbsp;.172
0 .827

a =

0nbsp;.718

1nbsp;..391
0 .81 (i
0 .714
0 .!)88

0 .82.3
0 .()9B

0nbsp;.047

1nbsp;.248
1 .072

0 .721
0 .700

1nbsp;.055
0 .62()
0 .730

0 .980

0nbsp;.884

1nbsp;.078
0 .970
0 ..5()G

0 .032
0 .782
0 .882
0 .(598
0 .095

0 .632
0 .020
0.542

2nbsp;.063

a =

0 .945
0 .539
0 .060
0 .042
0 .560
0 .600

0\';.103
120
4
8
o

0\'-.085
91
25
58
53

35
56
!)

34

8

99
123
52
78
76

96
158
76

84

85

40
34
38
34
27

18
22

34
3()
19

9
80
25
68
58

04
42
82
40

138
112
74
70
L54

35

0^107
66
76
ï)9

0quot;.031
17
35
11
70

44
36
50
9

22
!)
12
()0
lt;)
a

164
II

2
2
7

41
79
16
II

2

12

24
0
9
50
24

105

no
108
127
87

61
54
125
26
78

()

7

8

O
]()

.11
12

13

14
I.T

irgt;

17

18
I!)
\'20

21

22
2:\\
24
2.5

20

27

28
2!)
:5()

.32
.\'5.3
34

30

37

38

39
39*

40

42

43

44

45

46

47

48

49
TJO

51

52

53
5i
55
5Ci

58

59

60
CI
62

19.3 t-
()
186
.30
107
1 Hm 1É2.» to

21 -
27 -

79
20
71
35
.33

70
42
15
25
19

19

2
32
45
01

28
25
47
18
lt;)

37
61
35
30
29

45
7

20
62
62

37
83
75
10

27
44
22

50
123
20

135
32
23
72
28

95

95
98

7
7

17
4

30
20
38

25
3
7
25
16

18
65
46
57
74

80

96
21

178

35
132
48

59
17

60

1

20
43
12
52


■I-

-I-



4-

1 -

48
10
57
89
54

= 2/1 18»

1.31
(gt;9
18
74

19

-I-

-1-

-I-

-1-

h

18
03
73
106

84
36
75
(13
3

51
102
54
38
79

7
5

92
40
6

29 —

55

18
35
14

4
31
9
11

8

21
122
35
2
40

21
34
26
22
a

14
45
31
48

15

2
13
01

62

53
38
10
1
1

11

90
32
101

243
311
228
255
194
181

123
123
107
130

121
47
72
160 —

—nbsp;165

-nbsp;106
- 212
- 193

17

2/1 17«i 4j7s

to

23s.

61
96
40
56

— 65

59.«.

267
57

32
49
73

01
1.50
()8
6
11

27
23

33
22
Hi

27
.52

23
20
86

39
82
46
127
46

45
14
37
54
2/1 18ni
51

90

91
108

10

diameter

No.

I\\I

M,

to a =
f 0^028

M,

M,

nil

2/1 19wi Is
f 0\'-.032
5
44
9

K- 110

24

— 30

60
7
25
17
50

29
3

32
46
36

81
6
52
19
63

0.761
0.876
0.767
0.065
0.628

0.784
0.758
0.698
0 .543
0.534

0.844
0.503
0 .541
0.638
0.532

0
29
11
1

44
17
73
28 4
23

85
84
63
19
39

56
2
47
3
12

27
43
46
33
50

27
0
16
3
18

10
6
19
26
13

42
2
18
3
24

1
14
45 —

34
38
8
06

39
70
72
6
38

31
3
17
46
46

3
26

31
13

26
30
7

83

100
9
16
3
24

33
47
19
38
36

1
15
46
25

37
nij

— 0quot;.002
6
31
38
19

24
9

7
10

8

08
7

13

14
10

7
25
21
18

13

17
9
21
30

4

15
3
15
17

0

22
48
6
10
9

1

27
2
19

2
11
6
33
17

14


— 1

/

13

9
40
12
11
17

3
0
2
5
8

—nbsp;3
5

7
7

—nbsp;45

— 28 —

24
5
12
7

9
16
13
7

3

7
1

22
0
5

28
13

33
62

34

34
22
31
2

6
19
19
25
16
4

2
7
12
3
6

3
1

17
7
13

19
13
22
16
inj

1113

0quot;

.023
53
9
14
11

31
19
34
17
.33

- 0quot;.073 U 0\'\'.023

0quot;.007

59/\'.2

7

58.3

4

57.5

16

.58.4

10

.59.0

1

_

57.8

3

.59.1

4

00.3

17

60.0

11

.58.7

7

_

53.0

2

,54.5

1

.52.8

(]

54.4

4

5.5.1

12

_

55.1

9

55.7

18

57.1

14

.54.4

4

54.3

12

_

50.9

5

52.7

14

55.2

6

50.8

3

53.1

14

_

55.8

12

55.5

8

53.4

10

55.1

16

53.3

15

_

55.9

14

56.4

1

55.6

5

54.6

5

56.5

1

_

53.0

27

57.6

7

55.9

33

51.8

47.3

50.4nbsp;—
47.2

48.5
49.2

50.1

47.2
50.9

50.8
52.1
52.0

48.9
50.9
49.8
48.7
50.0

7

5
0

6

3
7
5
7
17

7

14
22
26
12
19

18

47.9 —
49.5 —

51.0nbsp;

50.1nbsp;
50.3

1900.0

B. D.

or Br.—St.

No.

Mag.

F «

in 2

12$

0quot;.060$

1

1—

70::

8::
o-

quot;iquot;

3$

14::

__

5;:

9::

4.3::

9::

_

78$

_

28$

2.3::

46$

24$

_

56$

_

.55$

56$

9$

_

14$

_

6$

11$

13$

16$

9$

2$

4$

13$

2::

16$

45$

4t

5$

11$

14$

27$

36$

4$

77$

36

42

21$

41$

_

10

_

19

31

3

32

10

_

19

12

20

19

4

_

11

31

4

27

= 2/t 19« 171
2/1 19i« 15s 56°
19 8
19 1
19 7
19 11

019

_

0quot;.004$

23

—•

17$

5

13

n

13

19$

11

_

6$

24

10$

3

2$

19

—.

23$

9

0$

22

_

15::

33

10;:

2

9::

15

1::

14

13$

25

_

21$

58

18::

18

9::

25

22::

26

-

4::

4

H-

4

12$

7

21$

4

14$

3

3$

3

_

21$

1

19::

8

14::

10

4::

11

11::

0

10$

36

9::

6

19J

3t

14

3t

16

ot

6

29$

22

8$

6

31$

31

2t

24

40$

7

12$

23$

49$

12$

9

7::

a = 2k ;19m 1.5 to ^

1297

11.9

1287

12.3

1276

11.0

1286

11.3

56°.021t

7.7

1682

12.1

56°. 620 t

8.7

12.2

1684,a

9.2

1283

10.9

a = 2h :

8«i 12s to

1218

11.0

56°.()16 t

8.4

1212

10.9

1233

11.6

56°.615 t

10.1

1245

10.9

1254

11.7

1269

12.1

.56°.613 t

8.9

50°.612 t

9.0

1200

11.0

1205

11.1

56°.617 t

9.7

1263

12.3

1210

11.5

.56°.018 t

i 10.1

1247

10.6

.56°.611 t

9.0

56°;614 t

10.1

1213

12.9

12.3

1255

11.2

1240

10.0

1223

11.7

1252

11.8

1202

12.3

1681

12.4

1242

13.0

Ö5°.612 t

1 6.5

\'X = 2h :

I7m 47s to

57°.563 t

10.3

1670

13.1

1154

12.0

1000

12.2

1163

12.9

1175

12.5

1152

11.3

56°.609 t

10.6

1185

11.3

1201

12.0

1198

12.3

1160a

11.2

1184

11.3

1166

11.7

1159

13.0

1167

13.1

1156

10.8

1667

13.4

1182

13.0

12.2

1169

13.1

18/\'. 1
17.Ö

11.4

7.8

2.3

1.9
8.1
8.0

10.0

24.r)

24.3
21.8

20.4
20.2

19.3
IG.3

14.8

13.7

13.1

11.9

9.2
8.9
8.9

8.4
().1
5.9
4.lt;i
0.2

1.6
7.2
11.0

18.2

18.8

19.4

19.8

22.9

30.0

37.7

32.1
31.9
30.7

27.2
26.7

24.9
20.1
19.7
18.6

15.3

13.9
11.0
10.2

5.2
5.1

3.6
2.0

1.7
2.0

3.3

0quot;.039

25

43

i-

20

79

_

70

-h

29

02

44

24

77

49

22

18

20

20

10

24

53

()9

_

20$

33

55

10

17

45

09

43

38

21$

_

37

1

12

55

55$

_

30

70

68

15

32

39$

17

23

-

24$

33

7

23

11

23

13

26

33

6

49

9

11

4

- 17$

0quot;.009t
40t
22$
ij
24t

44
32
47t
4:;
40t

71t
4::
12
0
1$

3:
28:
0:
22t
28t

1.5J
17t
1.3t
17t
19t

1.5:
7:
18
18:

50:

39$

It

44$

73

45:

44$
34$

0quot;.007
1
30
43

25

30
10

14
9

15

64
11

17

18
14

3
20
20
23
18

22
14

26
35

9

20
3
21
23
12t

28J
41
1

17

2

6

35
6
26

.56\'.0

56.3
51.6
50.2
40.6

41.2
37.0

30.8
30.0

28.9

7i 59s.
57° 3\'.3
3.1
0.6
50° .5i)\'.3

59.0

58.1

55.2

53.6
.52.6
.52.0

.50.6
50.2

48.1

47.8

47.9

47.2
45.0
44.8
43.5
38.8

37.4
31.8
28.0
20.8

20.3

19.7
19.2
16.2

9.4

0quot;.012
20
9
5
2

47
13
42
15
3,3

71
8

5
12

4

6
21
13

3
1

18

4
1

20
7

1

13
3

5
36

36
11

25
54

30

31

45
40
9

5

3
1

7
24

17

2

14

4
10

14

3

8

5

4
0

18
10
20
11

15

0quot;.022
32
3
2
13

82 I
20
21
16

2
18
22
56
3

87
38
32
56
34

60
()5
07
13
19

25
15
1

24
7

27
1

17
17

14

27
0
22
11

27
38

7
20
19

30
62
22
29
.30

8
8

11

8
7

1

5
12
14

6

7

8
!)

10

11
12

13

14

15

10

17

18
It)
20

21
22

23

24

25

20

27

28
2«)
30

32

33

34

35
30

37

38

39
39*

40

42

43

44

45
40

47

48

49

50

51

52

53

54

55
50

58

59

60
61
02

19nbsp;1

19nbsp;10

19nbsp;17

19nbsp;15

19nbsp;6

a = 2/1 18
18»» 31.S-

18nbsp;42

18nbsp;29

18nbsp;40

18nbsp;45

18nbsp;45

18nbsp;48

18nbsp;59

18nbsp;39

18nbsp;38

18nbsp;57

18nbsp;26

18nbsp;43

18nbsp;55

18nbsp;28

18nbsp;48

18nbsp;46

18nbsp;31

18nbsp;42

18nbsp;29

18nbsp;46

18nbsp;49

18nbsp;43

18nbsp;35

18nbsp;48

18nbsp;23

18nbsp;56

18nbsp;43

18nbsp;12

2
12
2
27
3

32
20
11
15
10

31
37
14
18
11

S
9
11
2

8
10
8

3
8

10
25
2

7

4

1
10

8
20

0

5
5
0

11

4

12
9
13

5
10

H-

1
12
()
3
11

6

35

14
7

15

19
25
18
43

3

33

3

17
12

14

4
20

7

37
29
12
10

23s.

57° 16\'.5
10.9
10.8
9.6
0.1
5.5

3.9
56° 59\'.0

58.6
57.4
54.2

52.9

50.0

49.2

44.3

44.1

42.0
41.0

37.4
37.0

35.7

gm

a = 2/1 1
ih 17m 51s

18nbsp;13

17nbsp;49

17nbsp;59

18nbsp;3
18nbsp;10

17nbsp;48

18nbsp;14
18nbsp;13
18nbsp;23
18nbsp;21

17nbsp;59

18nbsp;12
18nbsp;5

17nbsp;56

18nbsp;5

17nbsp;50

18nbsp;1
18nbsp;12
18nbsp;5

— 2
85
42
49
28
49

17
27
39
12
41

9
9
15
20$
14

7
17
2
14
10

12
11

27
2
4

10

22
32
25$
17

47

17
29

18
13

3

30
20
17

11
28
9
10
11

13
21
8
12
2

2
6
28
0
11

— 54

19
21
11
11

3

14
12
13

4
11

10
18
23

15
22

9$
1$
5t
0$
2

15
1
2

13
2

3
11

14
8

10

24
26
16

— 3


6

2
13
5

10

5
7

I

1
7
10
12
13

— 7

3
11
20
13
12

3

4
23
11
20

— 18

-ocr page 69-

0quot;.024
14
30
11

^ 24

— 11

3|

36$
28$
33$
28$

0quot;.002

_

0quot;.021

_

0quot;.011

0quot;.035

1

1 -

0quot;.010

7

.3

14

10

_

8

--

7

0

8

22

4

4

13

()

2

7

:

40

13

5$

33

10

21

10

17

_

4


\'

1

:

7$

17$

15$

10

13

9

7

7

23

7

:

48

10

11$

28

20

31$

25

3$

5

3

24

15

_

8::

_

30

6

10

19

4::

25

7

33

20

4::

26

15

51$

23

1.3::

33

25

50$

23

43$

_

0

3

77

9

29::

12

7

15

33

20::

44

_

22

9

17

13::

0

0

24

21

10::

1

_

10

21

12

13

1

28

12

_

29

_

7

24

12

27

17

1

_

12

18

12

15

7

_

15

2

29

20

30

_

18

6

5

1

7

0

17

5

_

10

10

0

19

22

12

10

_

16

10

4

3

18

0

2

0

2

6

2

12

0

12$

(!

10

3

19

8

1

9

—.

3

20

2

1

5

1

6

1

10

1

16

5

9

7

_

2

3

14

14

1

11

2

17

1

_

10

4

8

5

7

4

4

2

2

19

3

8

4

5

4

5

0

10

2

5

0

0

12

3t

10

_

7

7

8

10

3

16

2

26

5

0

19

8

1

19

19

15

14

13

6

0

8

2

30

8

9

_

5

14

14$

25

47

22

33

24$

18$

— .

2$

24

9

12

5

12

21

10

31

10

2$

20

4

5$

23$

n

16

4

14

1

2$

9

2

4$

0$

20

3

9$

44

19$

5

1

10

27

0$

32

12

29

_

34

8

11

5

8

6

22$

9

11

3

—■

15

10$

10

0

15

19

12$

9

7

25

16

35

18

28

Reduction to absolute P.M.: A uquot;^ = — 0quot;.000; A pi\'\'^ = 0quot;.007.

B. D.

Mag.

or Br.—St.

56°. 608 t

1

i 10.3

1159a

12.3

1059

12.3

11.58a

10.6

1190

12.3

56°.610 t

9.5

1158

11.8

1001

11.9

12.4

1153

12.2

1102

12.5

1100

12.5

1155

12.0

1058

1.3.2

a. = 21gt; 17m 12.5 to

1136

12.8

1123

11.9

57°.559 t

9.4

1145

11.0

1122

10.9

1050

13.1

1634

11.9

50°. 606 t

9.0

1623a

12.3

114G

11.1

1131

11.7

1138

10.9

56°. 007 t

10.1

1119

12.1

1144

13.1

1106

11.9

1107

12.0

1125

11.7

56°. 605 t

9.7

1138a

11.9

1139

11.7

1127a

12.2

1126

11.0

1140

10.2

1109

11.8

1128

10.4

1136a

12.7

1111

10.8

1129

11.4

1112

12.1

1120

11.8

1134

11.7

1132

13.1

1137

12.8

1147

11.8

1148

11.4

1114

12.3

1121

11.8

1625

13.0

:/ = 2/1

I6m 36« to

1080

12.2

1595

10.9

57°.554 t

8.3

1072

11.5

1090

11.3

1100

10.8

57°.556 t

10.1

1900.0

y-.

\' 1

0quot;.064
5
8
3
.\'52$

K- 0quot;.029
30
0
10
12

50° 35\'.7 hf
29.7 -
28.4 —
24.3 -

24.2

24.0

21.3
20.9
17.3
15.9

2h ]7mnbsp;47.«

17nbsp;58

17nbsp;49

17nbsp;r)()

18nbsp;1!)

18nbsp;10

17nbsp;53

17nbsp;51

18nbsp;8

17nbsp;49

18nbsp;1
17nbsp;.59
17nbsp;4!)
17nbsp;4.8

a = 1

1, 17\'»nbsp;.3(5 s

17nbsp;26

17nbsp;21

17nbsp;42

17nbsp;20

17nbsp;38

17nbsp;20

17nbsp;39

17nbsp;12

17nbsp;43

17nbsp;33

17nbsp;38

17nbsp;40

17nbsp;22

17nbsp;41

17nbsp;l.\'{

17

29
22 ^
40
13

17
5
22
2
30

1

2
27J
38

22$
15
41
]8
10

72 -
43
55

m -

04 -
40$
40
1

8

2

23
29$
11
38

••51$
3
45
9
7

14.2
(i.l

5.4

4.7

m 44-\'.
57° 18\'.3

17.7

I,5.9

14.2

II.0
1.9

1.1

0.8

50° 59\'.8
.55.0
55.0

53.9
52.0

51.8

51.3

40.8

45.9

45.8
45.7
40.7

34.9

34.2
33.5

32.3

31.4
30.0

28.5
26.7
25.7
25.0

23.2

21.5

18.6
12.5
11.7

9.8

6.7
5.6
0.1

Im 10.-.
57° 28\'.3

26.5

23.6
17.5

17.3
13.2
12.5

29
12

5
43
5

7

31
20
20
9

7

5
1
1

6

19

5
1
9

20

15
0
17
14
13

6
1

10$
3

19

17$

8
11$

20
55

36
3
13
24
o

6
26
2
ot

29

27
22
23
3

33

18
17
48
1
36

3
5
18
39
3

3
16
14

1
9

11

4
4

14
18

H-

17

12

17

27

17

33

17

38

17

39

17

28

17

28

17

39

17

14

17

29

17

37

17

15

17

30

17

17

17

23

17

35

17

33

17

38

17

43

17

44

17

19

17

23

17

14

a =

2h 1

2h lOm 52s

10

48

16

45

16

46

16

57

17

7

16

53

— 25
8
21
16
15

18
35
25
34
14

36
29
3
11

6t
6
8

8

19
16:
29:
14

32
6:
10

3
44

6
5
9
22
17

12$
39$

19
14

2
23
31
42
27

-ocr page 70-

ni3

0quot;.008
0
2
11
13

3
1
13
2
3

8
1
15
10
13

3
10
0
0
0

diameter

No.

1900.0

No.

M,

M,

Mn

M,

M,

M.

nil

1ti3

m,

0\'\'.539
0 .893
0 .538
0 .839
0 .502

0 .008
0 .740
0 .000
0 .844
0 .731

0 .508
0 .01!)
0 .479
0 .778
0 .715

0 .504
0 .019

0nbsp;.023

1nbsp;.000
0 .80()

0 .804
0 .i)28

0nbsp;.004

1nbsp;.090
0 .590

0 .010
0 .584
0 .503
0 .004
0 .789

0 .888
0 .712
0 .590
0 .935
0 .510

0 .803
0 .032
0.650
0 .574
0 .734

0 .481
0.589
0 .074
0 .000

0nbsp;.599

1nbsp;.095
0.832
1 .330
0.745
0 .530

0 .585

0nbsp;..500

1nbsp;.100
0 .464
0.897

0 .491
0.522
0.702 ■
0.730 -

0 .750

19()
1!)7
198
li)i)
200

201
202
20;}

204
20.T

207

205

209

210
211

212
2i;{

214
2W
21(i

217

215

219

220
221

222
22;}
22.\')
220

227

228

229

231

232
23.3

234

235

230

237

238

240

241

242

243

244

245
240

247

248

249

250

251

252

253

254

255

256

257

258

259

0^043-I- 0\'\'.011 -f O\'-.OOS






l-l-

— 0\'-.020 r

0^.003 0\'-.070 0quot;
20^

,000
5
19
24
0

11
15

18.
11
()

15
4

0
28

2
37
21
11

8

np-7

17.6
17.3

io.y
10.1

15.0

14.3
13.8

12.4
12.3

9.0

9.1

8.8
9.0
8.«

8.4

7.8

0.4
C.4
(gt;.2

0.0

5.2

3.7
3.Cgt;

.3.3

2.3

1.7

1.rgt;

1.4

0.0
0.2

1.0

2.1

2.9

3.1
4.0

4.2
5.0

6.8

0quot;.018
1
2

-F 0quot;.010
10
20
5
9

190

197

198

199

200

201
202

203

204

205

207

208

209

210
211

212

213

214

215

216

217

218

219

220
221

222
223
225
220

227

228

229

23:^

234

235

230

237

238

240

241
240

243

244

245
240

247

248

249

250

251

252

253

254

255
250

257

258

— 0quot;.020

56° 56quot;.8

50.7
50.0
.56.1
55.4

54.8
.5.3.6
.53.0

51.7

51.0

48.9

48.4

48.1
48.3

47.8

47.7

47.1

4.5.8
4,5.7
4.5.0

45.3

44.6

43.2

42.9
42.9

42.7

41.7
41.0

40.8

40.8

40.2
39.0

37.5

37.2
30.5

30.3
35.3

35.2

33.9
32.0

30.3
29.9
28.8
28.0
27.2

2.5.0
24.7

2.3.9
1.5.0
14.7

12.4
10.7

7.1
0.0
;i.i

2.8
1.7

55° 53\'.9
53.0

)m 57\'.
57° 18\'.7

0quot;.003

34?\'.7
30.1

30.1
35.5
35.5

35.5

37.0
30.5

35.2
;^7.i

32.8
34.8
;M.4
34.5

37.4

37.2

33.3

35.1
36.7

34.5

2h 16m 17s
16 20
10 27
16 22
16 22

16nbsp;22

i 16nbsp;33

i 16nbsp;29

10nbsp;19

10nbsp;33

10nbsp;1

10nbsp;16

10nbsp;13

10nbsp;14

10nbsp;35

16nbsp;33

10nbsp;5

10nbsp;18

16nbsp;29

10nbsp;14

10 19
10 0
1
7

5

1022
1044a
1045
1038

1035

1036
1053
1040

1029
10.52

1004
1021
1575
1010
1059

1056
1560
1020

Ö6°.599 t
1014a

56°.597 t
56°.595 t

1003
Ö6°.590 t
1000

999b
1509
1033
1040
1011

1000
1002

1005
1047
1015

1028

1044

1039a

15.54

1017

1030
1023
1020
1005a
1010

56°.600
1010a
.56°.598 t
1019
1505

1550

1057
55°.605 t

1031
,5,5°. 602 t

;i8

()7 rF-
78
29

9

()9

97 H-
54
08

45
78
121--

hf

74^
82 -f
r?7
48

73
70
30
01
54

78
53
7
22
11

40
20

58 I-
58
40

15
31
1
15

15
32
7
20

1

13
12
10

4

7

5

14
0

13

2
27
19
11
10

10
J2
10

54

73
23
01

4
30
28
20
10

22

5

;io

5

32

1

00

50
15
44

35
;!8
28
3
22

15
15
55

33

51

- 17

10

50

50
10

51
3()

(gt;l l |

18 1-

-i-
20 4-
79^

08
()5
()3
49
38

53
51
33
38
33

03
70
17
29

4

04 -
1 -

19 -

40 -

23
51

8
8
9

7
20
2!)
15
4

24
12

7
4
11

9
7
7

3
2

4nbsp;-
3

;}

2

3nbsp;-

0 -
10 4-

9 pF
OH-
4i-

25
5

14

15

12
1

0
5

21
12

IS
47
(J5
37
1

50
;}()
8
15
29

— 2;}

() -

-1-
4 -

57 H-
73 H-
9 Lh
42-

17
104

18
43

42

25

23
29

0
10

43
27
34
01
47

27

24
51
29 —
20 f

00 [f
25-

19 H-

29 f
13 f

30
30
4

20 I-
2

4-

i

5() j-

23
28
1

17
9 -

35 -
;59 -

0

13
12

7
23
45

15
119
15

50
5

f

44 j-
25
29
21

09
52
55
00-

10nbsp;—

0
1

1 —
10 [f
18

0 -
19 -
15 —
11 -
7 —

10 —
9 —
1
22
131-

7
25
15
9

12 -

3nbsp;-
2 -

13
0

4

7
;}
0

15

19

3

53
12

20

8

4

5
37

-I-

f

1-
f

-I-

f

f

16
10
10

37
24

9
5.1,
32

1
31
53

9
35

52
20
51
15
00

37
25
23
7
11

15nbsp;59

16nbsp;9
16nbsp;21
16nbsp;24
16nbsp;12

81

H-

0
20
12

29.-

3;$

rf

58.-
45-
11
,39 —
14 -

4

5

57 ^
17 —

7 H-

58
36
011-

1 -

2
12

231-

rl-

5
0
12
3

11 ^

10
16
10

0
14

0 j-

21
34

04
15
44
8
34

10

58
40
52
33

10nbsp;28

10nbsp;14

10nbsp;19

10nbsp;26

16nbsp;23

16nbsp;2

16nbsp;14

16nbsp;20

10nbsp;17

10nbsp;15

16nbsp;5

10nbsp;8

10nbsp;33

10nbsp;11

10nbsp;20

16nbsp;15

10nbsp;7

10nbsp;0

10nbsp;34

10nbsp;33

10nbsp;20

10nbsp;0

0

20
5
1

4
1

27
0
3

5
17

59
24
15
9 -
15 -

17

20 —

6nbsp;-

-f

13 -

27
0

13 4-

105
1
29
13

18
53
0
05
19

4
19
16
40

12J-

21
16
27
12
3

7 —
2 -
3 -

7

45
23

14
10

05

11 -1-

78
1
47

42
0
0 fh
3 f
47

31nbsp;f
82--
35 —
04--

115 —

195 —
02 -
112 -
41 -

54--

55--

32nbsp;-
68-

105 f
90-

64 -
41 f-
128-
82--
2h 15»k

13
72
17 ^
r)7 f

57s.

45

f

53

43

f

60

f

82

f

9

f

22

f

24

f

141

f

9

f

140

f

77

f

1

f

41

4-

156

t-

22-

201-

62
27
77
76

51 4-

08 rh

30 -
101 —
74 —

34
103
68
00

84 -h

56--
77 —
52

27^
40

03
4
11
35
7

58
17
51
6
42

1

34
4
19
10

28

I.3.0
12.0

II.9
12.5
12.5

12 -

5nbsp;

6nbsp;-
23 -

18
11

8

30

106
19
56
22
14

126
58
37
18
30

32
52
2
21
12

47 -I-
4
22
10
13

50
4

4-

4
7
0
37

34

35

21 ^
4

14
1

7 fl-
20
O^t-

13
0
10
0
10

12
30
20
11

1

9
3
10
14

1

6

23
7

4

0 —

40
77
59

19
1

102
142
07« 15m 2;
31

89
91
49

70-1- 56 4-

0 f
f

26
06
63
9

1 4-

23

7

14

8

2A 1
ih 13 m 49s

10
16
16
16

f

30

f

1010a
1568

a = 2/1 llE

1529

4

s to

a =

13 -h

201 --

7 —

5 -h

14 -h


4-

- 151-
01

H 81-

1 -

18H-
36 —

22 -

1 -

4 —

11

10

_

35.3

11

5

33.5

5

-f

8

;32.8

7

12

33.0

. 2

7

33.4

2

8

_

32.6

2

-

2

33.9

18

9

35.0

7

3

36.0

15

13

34.3

18

5

_

32.7

Ö

1

32.9

17

13

33.2

21

3

36.7

3

0

34.7

18

6

_

35.4

6

4

30.4

8

3

35.9

12

11

33.1

0

5

34.8

13

20

_

35.6

10

27

35.2

3

19

35.0

5

11

33.0

4

17

34.1

33

20

_

37.6

8

4

34.5

9

6

35.8

8

15

35.2

7

5

34.0

7

22

_

33.1

1

8

37.9

17

18

37.9

14

3

36.1

3

18

33.3

21

34

36.4 -

11

30

34.2 -

11

30

35.4 -

10

38 ■

34.5 -

20-

30.6 --

9.1
9.5
10.7

-1- 11.4
-f 12.2

O\'.Ol 1

4-

0quot;.015

0quot;.005

0quot;.019

j-

0quot;.008t

0quot;.009

0quot;

.009

_

0quot;.007

10

2

4

-1-

10

20

7

4

5

-1-

24

1

4-

14

4-

32

27

3

13

0

-1-

29

11

0

0

2

12

4

_

(gt;

5

13

4-

4

14

21

14

0

16

-t-

10

20

4-

4

7

4quot;

0

4

11

_

2

20

48

4-

1

4-

27

8

2

4-

17

4

13

5

4-

1

3

7

14

1

9


10

4-

5

2

13

5

3

4-

4

_

0

11

12

8

17

4-

1

4

4

4-

2


-F

20

4-

4

1

12

4-

11

4-

8

4-

6

4-

4

1

4-

17

2

2

1

4-

1

4-

3

4-

1

4-

26

8

4-

18

15

4-

3

4

-H

5

4-

12

7

1

2

10

4-

1

5

33

8

9

3

4-

17

14

4-

2

3

3

4-

20

0

28

4-

2

4

4-

0

_

8

42

9

4-

5

36

31

10

4-

15

12

10

11

14

4-

5

4-

23

4-

■ 0

14

4-

10

16

0

11

4-

21

■ 7

4-

5

1

4-

6

13

7

1

1

4-

20

0

4-

4

4-

5

_

4

_

12

4-

8

4-

15

4-

10

_

6

4-

11

4

15

30

3

4-

15

5

10

4-

5

6

19

19

0

4-

9

4-

8

13

6

5

4-

7

14

4-

15

3

4-

12

6

4-

9

13

3

17

19

4-

0

7

11

7

4-

13

4-

12

_

7

3

4-

2

8

4-

3

4-

4

7t

4-

5

0

53$

4-

2

2

0

14

11

3

4-

9

4h

13

4-

22

4-

9

4-

0

4-

13

25

18

10

19

11

3

4-

0

3

17

9

8

4-

8

4-

19

13

4-

2

4-

13

0

_

0

4-

1

4

4-

22

4-

()

0

4-

9

5

4-

8

4

4-

5

4-

10

4-

2

4-

1

4-

5

19

4-

19

16

4-

37

4-

21

12

4-

1

8

11

—.

12

8

0

17

3

4

6

5

4-

9

10

4-

7

4-

7

4-

1

4

4

25

4-

5

4-

10

4-

19

4-

22

_

5

4-

15

8

10

11

21

4-

37

2

4-

5

11

4-

11

(]

2

32

4-

8

12

4-

4

15

7

9

1

10

4-

45

9

4-

12

6

4-

15

4

1

2

23

4-

3

4

0

4-

5

_

22f

33

4-

22

10$

4-

21

23

4-

13

1::

4-

30

4-

7

18

13

4-

29

4-

11

13

2\'

8

10

11

0

4-

21

0

15

0

4-

15

4-

2

8

4-

8

13

4-

5

i

6

4-

22

4-

0

4-

18

1

1

4-

19

4-

10

9

4-

64

4-

42

4-

45

_

3

_

30

_

18

4-

49

i

17

4-

28

0

1

4-

4

4-

11

4-

7

4-

7

4-

7

4-

19

4-

17

4-

10

7

0

9

17

4-

1

12

21

9

1

4-

10

4-

20

7

~r

12

12

18

4

4-

3()

4-

9

10

!)

4-

10

20

_

18

3

4-

32

_

5

4-

27$

1

4-

20

17

11

14

4-

34

4-

3

4-

13

14

4-

10

4-

9

15

2

16

15

12

2

14

2t

4-

1

11

4-

00

4-

10

4-

, 4$

4-

5

4-

21

4-

1

15

4-

10

10

2

10

4-

1

8

4-

1

7

_

4

4-

25

_

20

_

20

0

_

12

4-

9

4-

25

11$

4-

04

4-.

12

28$

3

4-

5

36

4-

15

4-

m

4-

00

10

19$

4-

4

4-

3

57t

16

4-

2t

4-

0

■ 15

27::

17

10

0

6

4-

9

0

14

nt

I

9

-ocr page 71-

No.

diameter

a

Ml

M,

M3

M,

200

0\'\'.014

1

\'-f

0\'-.019

0\'-.056

CfMr»

2Gi

0 .837

-1-

87

5

13

49

2()2

0 .597

4

-1-

21

88

19

263

0 .687

-I-

47

-1-

36

-1-

49

-1-

8

_

264

1 .088

-1-

47

9

-1-

55

H-

12

205

0 .740

45

_

2

40

()

_

2()G

0. 77.3

8()

56

H-

(i2

10

_

2(i7

0 .722

77

(i

29

20

Hquot;

268

0 .834

.30

0

18

4

-1-

2(i9

0 .742

-1-

31

13

59

22

270

0 .6.30

20

-1-

37

quot;h

32

18

271

0 .918

•I-

31

-I-

.3.3

---

()3

42

272

0 .602

-1-

35

5

-f

32

41

27.3

1 .718

-I-

79

-1-

11

02

20

274

0 .484

75

II

45

85

275

0 .8.34

-1-

102

-1-

41

-f-

0,3

49

-1-

27((

0 .878

-1-

63

3

-H

.36

21

-1-

277

0 .684

H-

19

-1-

3lt;)

37

20

278

0 .().58

33

5

33

4

279

0 .597

59

-h

21

15

4

280

0 .084

42

8

31

17

281

1 .428

-1-

49

29

48

()5

282

0 .766

.38

40

20

25

283

0 .687

84

24

40

54

284

0 .579

27

28

H-

50

22

285

1 .068

24

35

01

0

_

286

0 .040

40

-h

24

20

20

287

0 .806

H-

42

48

34

13

289

0 .G-W

-1-

2li

11

22

1

290

0 .902

-1-

53

-i-

01

7

10

291

0 .029

61

35

42

2()

292

0 .7.59

31

20

13

25

293

0.727

.58

1

41

14

294

0 .528

1()8

1.58

233

45

295

0 .719

H-

15

8

28

12

296

0 .008

53

18

34

47

_

208

0 .959

25

29

27

28

299

0 .454

53

53

34

-1-

5

300

0 .650

35

2

27

2

301

0 .060

70

55

13

1

302

0 .562

41

-j-

44

47

4

303

0 .830

46

57

7

15

304

24

31

305

0 .048

63

44

53

12

306

0 .529

82

53

44

6

307

0 .801

25

33

9

19

308

1 .030

44

49

15

8

309 1

49

310

0 .998

23

40

7

19

311

0.061

8

25

24

13

312

0 .781

26

15

47

25

313

0 .520

25

4

30

21

314

0 .826

■f

34

39

56

33

315

0 .830

42

6

35

19

316

0 .523

33

14

74-

15

317

0 .812

■f

32

-f

22

■f

30

11

■f

318

0.921 -

f

39

18

f

14

34 -

f

319

0.579 -

f

39

18 -

f

26 -

f

33 -

f

320

0.850 -

f

35

-f ■

9 -

f

69 -

48 -

f

321

0.034 -

f

44

47 ■

f

39 -

16 -

f

(5

M,

15
30
20
32

48
12
18
12
64

B. D.

or Br.—St.

Mag.

1900.0

a

i)

Itquot;

a

u.
\' 1

r S

fs

12.7 :

l/t 15m

27^

! .57°

13.3

0quot;.001J -

r

0quot;.009t tf

0quot;.004

0quot;.017

t

0quot;.00Gt

0quot;.004

0quot;.010

10.8

15

29

10.8

21 •

3 ^

11

14t

0quot;.025

1

1

9

12.6

15

28

10.7

23J

10

IG

1?

m

13t

5

4

11.8

15

27

4.0

3

.

14

2

5

-F

11

4

5

0

9.0

15

43

.3.3

5

G

2

2

14

31

1

19

11.5 i

15

47

2.9

5

3

4

5

5

30

1

_

15

11.2

15

30

2.3

23

20

6

15

5

• 39

15

24

11.G

15

25

2.3

18

4

5

2

19

30

1

10

10.9

15

38

2.3

4

2

10

5

2G

30

6

10

11.4

15

51

0.3

0

10

4

3

7

24

0

9

12.3

15

57

5()

,5G\'.8

_

1

-1-

14

6

-1-

3

\'

11

{)

0

0

10.4

15

42

56.5

0

13

5

15

3

7

6

1

12.5

15

52

56.2

3

0

6

14

7

9

4

-f-

1

7.4

15

55

,55.8

25

1

-1-

4

-1-

4

2

21

8

9

13.6

15

27

53.9

20

2

o.t

H-

.38

27

23

-h

(gt;

5

10.9

15

50

50.3

39

15

4

22

5

10

15

2

10.6

15

37

49.6

16

3

5

9

5

8

1

0

11.8

15

35

49.2

6

15

4

14

5

G

0

5

12.0

15

52

48.7

5

3

(i

0

5

4

2

]

12.0

15

30

48.0

14

6

11

2

17

G

0

2

11.8

15

24

48.3

5

0

5

7

12

10

1

10

8.3

15

49

47.3

13

9

1

32

0

1

-h

5

8

11.3

15

26

46.8

4

10

7

12

3

4

1

2

11.8

15

34

] ■

46.3

27

7

2

27

9

8

7

13

12.7

15

57

45.9

3

9

IJ

12

27

7

3

13

9.7

15

25

45.0

1

13

5

4

15

_

0

0

_

G

12.2

15

55

44.8

9

7

12

7

1

0

2

1

10.7

15

43

44.6

-1-

10

18

6

9

2

3t

4

1

12.1

15

49

44.3

3

10

11

3

7

10

7

7

10.5

15

52

44.3

16

24

16

2

9

3

2

3

12.3

15

34

44.3

17

13

2

16

16

3

0

9

11.3

15

35

43.6

2

5

12

16

12

1

4

7

11.5

15

34

43.3

15

5

2

10

21

14

1

15

13.2

15

57

43.1

73

72

63

19

33

68

23

11.0

15

42

43.0

3

1

8

2

1

6

5

2

12.0

15

54

42.7

17

3

7

26

6

7

1

8

10.2

15

45

41.8

3

9

9

8

9

0

1

4

13.8

15

23

41.6

14

21

4

8

5

9

7

5

12.1

15

46

41.4

8

6

9

4

3

3

4

3

12.0

15

29

41.2

22

22

21

5

4

10

0

7

12.8

15

51

40.9

11

15

2

7

10

15

5

12

10.9

15

56

40.8

14

21

21

2

15

13

2

2

15

25

40.4

25

21

19

25

20

12.1

15

56

39.9

23

15

1

0

17

G

9

1

13.1

15

31

39.4

29

21

1

4

12

2

12

3

11.1

15

39

38.9

3

11

14

17

3

0

_

3

5

9.8

15

39

37.8

12

17

12

5$

0

14

1

8

15

40

37.7

17$

34.t

17

34

10.0

15

32

37.5

22

15

15

1

14

2G

9

9

12.0

15

27

36.4

7

7

8

16

1

1

4

3

11.2

15

24

35.8

3

2

1

_

2

1

IG

1

8

13.2

15

57

35.7

6

5

7

21

0

7

3

9

10.9

15

39

35.7

8

12

2

5

4

9

G

2

10.9

15

29

35.1

11

4

5

1

0

10

1

4

13.2

15

25

34.3

26

0

9

5

5

2

2

1

11.0

■ 15

32

34.3

6

4

_

7

18

10

5

1

9

10.4

15

53

33.4

13

1

15

3

8

1

4

2

12.7

15

53

33.1

13

16

11

29

5

22

0

17

10.8

15

43

30.6

11

3

6

7

11

15

5

3

12.2

1 15

33

27.4

15

31

4

13

11

18

6

15

Jfo.

M,

in,

ni3

nil

nij

nis

i

k 0quot;
-1-

0^212
175
142
122
40

.003
18
2()
0
2

2
20
15
7
4

0quot;.011
— 1
-i- 12
IG

—nbsp;4

—nbsp;1

28
- 2
0

- 7

260
261
262
2G3
2(\',4

2G5
266

267

268
2()!)

270

271

272

273

274

275
270

277

278

279

280
281
282

283

284

285
280
287
289
2!)()

291

292

293

294

295

296

298

299

300

301

302

303

304

305
300

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

0quot;.008
7
20
G

34?\'. 1
31.«
31..\'5

24.0

23.0

23.1
23.0

23.0nbsp;j

21.1

17.0
17.3
1C.9
lO.O

14.0

11.0
10.3

9.8

9.3
9.2

9.2

7.9
7.2
0.9

, 0.0:

5.7

5.4
5.2
5.0
4.9

4.9

4.2
3.9
3.1.

3.0

3.3

2.3
2.2
2.0

1.8

1.4
1.0

0.0

0.5

1.7

1.8
2.0
.3.1

3.7

3.8
3.8
4.4
5.2

5.2

6.1

6.3
8.8

12.1

0quot;.019
Hi
1

3
1

4

14
4
4
4

3
IG

15

4
39

22
10
13
1

3

9
33
10
28
12

G
7
10

4
1

17
17
11
19
1

27
7
10

5
7

949
954

948
5Gquot;..\')89 t

981
50°.585 t
941

969

986

998

974

987
56°. 593 t

1510

995
56°. 587 t

966
990

956

939
.56°.591 t
945

964
997

56°.584 t
994
977

983

988

965

967
962

975

992a
56°.590 t

937
980
952

984
995a

1503

996

957

970
5G°.588 t

5G°.58G t
947

938

999

971
954a
943

958
56°.592 t

992

976
960

-!- 0quot;.005
— 2

—nbsp;14

—nbsp;5

—nbsp;31

30
39

31

30
24

0

7
9

21
23

10

8
G
4
7

27/\'. 8
28.1
28.0
27.8

30.2

30.6

28.3
27.6

29.3
31.2

32.0

30.0

31.4

31.8

28.1

32.0

29.4

29.1

31.5

28.5

27.6
31.1
28.0

29.1

32.2

27.9

32.0
30.4

31.2
31.G

29.1

29.3

29.1
32.3

30.2

-I 0\'

.019
4

()
19

0
10
14
21
2

G
2
2

3
22

0
0
0
1

13

8

4
7

17
1

7 —

41
12
33
37
41

7
()
1

10
50

8
10
11
13
40

30
4
2
2()
G2

21
()

13
23

27

44

37

0
10

1

4
7

I!)
2()

35
IG

50
44

25
21
91
f)
23

28
23
17

14

38

75
70
()2
24
11

4
1
21
IG

34
12
10
0
10

1

8
0
23
2

31
35
42
40

32

77
52

52
04
(i2

21

50
20
64
42

42

33
70
«1
40

47
23

49
31

51

G5
58
76
1
12

17

53

85
4

50
26
28
33

2

19
2
62
36
40

18
0
18
0
9

3
12
19
10
12

16
10
21

7

27

16

8
2

75
2

G
12

24

3

25

19

25

19

24

14
21
21
18
10

5
1

IG
0

4

H-



igt;
23

3nbsp;

4nbsp;

5nbsp;
2

11

7
G

4
9
2

2
0

13
33

5

G
1

8
2
9

14
12
18

7
3

8
2
7
12

1
lt;)
1

G7

4

3

5
1
5

18

2
17

22
3
2

11

9

-I-

13
2
11

GS
8

12
2
10
3
18

G
9

18

25

12

8
17
13
5

10
13
9
1
0



















31.8
30.G
27. G

30.8nbsp;—
28.4, —

31.4

32.2

27.9

32.3
28.7

29.9
29.9
30.0
28.9
28.2

— 19

G

1
23
1

13


0

18

G

1
18

0
22
4
3

1

4

30
18

5

3

4
8

10
1

— 1

13

24

3

14
6

7

8

4

3
1
20
13

15nbsp;—

2G
11

1
1

4
7

30

2
9
9
7
11

— 12

27.8
32.4

29.9
28.C
28.0

29.0

31.8

31.9
30.6
29.2

4
11
7
9
1

20
2
30
5
15

11

8

5
12
1
27

— 14

-ocr page 72-

M,

j

M,

M3

M,

M2

.322

0\'-.553

1 quot;

0^004 ()\'-.008

0^072

0\'-.029

-f-

0\'\'.048

323

0 .872

34

2()

-1-

53

1_

80

41

.324

0 .497

2()

14

H-

02

1_

81

91

325

0 .770

21

30

88

_

119

()()

327

1 .074

39

5

55

102

38

328

0 .522

0

25

75

_

111

37

329

0.544

119

-i-

45

20

80

125

_

330

1 .032

73

19

74

206

52

_

331

0 .700

144

11

42

105

87

_

a =

2A

14\'» 4

to X

=

2/\' 15\';

■ 22.V.

332

0 .635

13

7

2

31

123

333

0 .550

58

_

27

H-

13

_

30

_

100

334

0 .0()()

50

44

3

11

_

53

335

0 .6(il

-1-

4

30

77

0

70

330

0 .714

44

.35

54

24

43

337

0 .738

34

-f-

14

71

54

2

338

0 .815

30

12

57

79

_

41

339

0 .570

-1-

45

20

11

5

19

.340

0 .709

10

20

33

23

7

341

0 .9()8

14

15

3

18

_

19

342

0 .900

89

97

H-

134

22

58

.343

0 .627

_

19

-1-

15

51

_

29

_

35

344

0 .589

55

10

H-

127

10

34

345

0 .()91

9

11

80

58

0

340

0 .090

2

37

53

52

10

347

1. 199

()

0

40

11

40

348

0 .454

43

50

43

37

0

349

0 .800

5

23

21

15

31

350

0 .039

28

12

31

59

1

351

1 .052

20

24

45

8

7

352

0 .534

50

27

15

10

41

353

1 .320

_

8

8

30

_

9

6

354

0 .002

29

19

8

3

40

355

0 .024

40

30

52

15

34

357

0 .555

19

60

04

1

01

358

1 .912

23

0

77

3

21

359

0 .491

28

_

2

38

_

7

9

362

0 .094

05

IG

40

44

38

303

0 .018

20

29

3

2

18

304

0 .031

74

21

12

37

30

365

0 .488

78

78

39

27

42

366

_

7

367

0 .703

40

10

40

5

42

368

0 .017

80

32

30

0

27

309

0 .099

31

23

7

18

37

370 1

0 .408

82

28

17

32

52

371

0.750

■f

34

15

17

H-

15

22

372

0 .554

■f

74

0

23

1

69

373

0 .852

■f

4

14

■f

29

9

0

374

0 .872

■f

07

21

■f

35

2

25

370

0 .541

-

58

0 •

28 ■

7

40

377

0 .523

■f

50

7 ■

10

16

28

378

0 .528

f

48

21

77 •

-f

4

30

■f

379

0 .474

-h

40

23

■f

02 ■

■f

50

70

■f

380

0 .951

f

8

10 ■

-t-

42 ■

18

23

380*

■f

59 ■

f

43

41 -

•f

381

0.073

f

40

f

22 -

f

22 -

39

f

20 -

f

382

0.774

f

14

f

30

f

34 -

73

f

49 -

383

0 .636

•f

20

-f-

30 -

1 -

f

5

7 -

f

384

0 .808

23

-t-

3

f

57 -

f

41 -

4

f

385

0 .749

f

34

f

34

f

20 -

17-

12

f \'

M,

78
28
4

28

40

74
83
33
42

47

20
32
37
9

m,

nij

0quot;.020
20

—nbsp;4

—nbsp;0
3

27
30

49

— 49

12.9
12.0
12.0
11.0
11.5

11.0
12.8

11.7
10.2
10.5

12.3
12.0

11.8
11.8

9.1

13.8
11.1
12.2

9.7
13.1

8.0
12.0

12.3

12.9
0.9

13.5
11.8

12.4
12.3

13.5

1499
803
889
857
1474

930

932
5G°.579 t
872

1494
850
888
845a
5G°.5G5 t

1459

847
904

50°.582 t
1481

56°.577 t
834
1457
1440
50°.508 t

1407
913a
846
901
927

926

848
883

920
907

921
880

50°.580 t
873

Id
5

39
9

0

0

1

20
7

31

21
10
20

12
4

2

7
9

3
3
10
1
10

12
0
9

8
2

3
3
8
3
0

14
2

13
2

3

15
18

1

4

21
5
25
23
7

17
7

28
4
7

0
25
4
23
9

24.7nbsp;—
25.9 —

23.4nbsp;—

25.5nbsp;—

20.8nbsp;—

1 —
9 —

4
10
13

4
10

7
19
0

5
9
2
7

B. D.

or Br.—St.

No.

m.

29?\'.4 17?\'. 1
31.7 19-8

0\'\',.01f

—nbsp;9
0

—nbsp;10
— 29

322

323

324

325

327

328

329

330

331

332

333

334

335
330

337

338

339

340

341

342

343

344

345

340

347

348

349

350

351

352

353

354

355

357

358

359

302

303

304

305

306

307

308

309

370

371

372

373

374

370

377

378

379

380
380*

381

382

383

384

385

0.003
7

14
0

10

19
10

20
0

30

19
0
13
2

15

3
2

15
1

19

7
18

4
2

23

901

985
940
944
55°.000 t

23.3
I 25.2
29.(i

nbsp;32.0

nbsp;44.8

nbsp;46.0

nbsp;49.0

_ 55.8

_nbsp;51.0

-nbsp;49.8
_nbsp;47.rgt;
_nbsp;41.7
_nbsp;37.2

_ 36.9
_ 32.2
_ 31.0

_ so.r)
_ sa.*^

_ 30.1

-nbsp;17.8

-nbsp;17.4

-nbsp;10.7:

-nbsp;10.2

_nbsp;14.4

-nbsp;13.4 i

-nbsp;12.5 j|
_nbsp;10.2
_nbsp;10.1

_nbsp;9.4

_nbsp;8.9

-nbsp;8.3
_nbsp;8.1

-nbsp;7.7

-nbsp;7.1

-nbsp;6.0
5.9
5.0
5.4

5.3

5.3
5.2
4.0

4.8

4.71

4.3\'

4.0

3.7

3.4

3.2

3.1

2.9
3.0

2.8

2.8
2.7
2.4

2.3

2.2

28.0

28.3

32.1

28.8
31.0
32.9
29.9

— 21.8

20.7
23.0
24.0

23.4
25.0

20.7

20.8
20.9
25.9

24.2

20.9

23.4
24.9

23.2

22.3

23.9
23.3

25.0
20.8
25.9

20.1

22.5
23.8
22.0
23.1

0
43
10
11

17

20
8
1
7

19

31
10

3

2

13.2
13.0
9.8
11.7

y. = 2/i 14m 45s to
12.2

953
1526
55°.601

10

20.8
23.4
24.8

20.4

25.7

20.5

24.8
20.7
24.5
23.5

24.7
25.0
25.2

22.9
25.9

25.9
24.0
23.0
24.2
24.4

11.7
12.4
11.7

13.7

11.3
12.9

10.8
10.0
13.0

13.2
13.2
13.7
10.2

876
887
893
56°.566 t

i

0
1
1
3

— 0

913
860
851
865
871

9
0
14
21

12

0

5

21

_

9

14

_

7

0

_

3

0

1

1

9

• 2

31

24

1

3

7

13

0

28

11

10

17

28

.—

16

0

20

Mag.

12.9
10.0
13.4
11.2

9.0

11.9
11.2
12.2
11.0
11.4

a

1900.0

2/lt;

15»«

34s

5G°.22\'.5

1

15

51

19.8

j

15

24

10.3

15

26

14.4

15

52

10.0

15

28

7.7

15

43

55°

55\'.0

15

56

53.8

15

35

50.8

a

_ I

2A If

im 22s.

14»! 45s

57°

34\'.9

15

22

30.7

14

57

28.9

15

5

20.7

14

56

20.9

15

11

10.4

15

20

10.1

15

20

11.4

15

20

10.8

15

13

9.7

15

1

9.5

15

20

9.3

14

54

50°

57\'.2

15

5

50.8

14

53

50.0

14

40

55.7

14

58

53.8

14

53

52.9

15

9

51.9

15

18

49.6

15

11

49.5

15

12

48.8

14

47

48.4

14

56

47.8

14

48

47.6

14

51

47.1

15

2

46.5

15

11

46.0

14

53

45.3

15

8

45.0

15

18

44.9

15

18

44.8

14

53

44.8

15

3

44.7

15

14

44.4

15

10

44.2

15

15

44.2

15

3

43.8

15

17

43.4

15

1

43.2

14

53

42.9

15

2

42.7

15

4

42.0

15

0

42.3

14

49

42.5

15

11

42.3

15

11

42.2

14

57

42.1

14

54

41.9

14

59

41.8

15

0

41.7

.005

0quot;.004

o\'.ooe

15

!

4

^—

3

11

10

3

11

5

12

10

13

3

2$

1

0

47$

33$

24

5

1$

59$

20

9$

29

4

11$

58

_

10$

10

50

17

13

29

11

14

9

13

0

10

9

11

10

8

5

1

10

19

10

10

3

18

7

15

18

48

34

33

7

3

_

4

8

32

25

5

14

20

17

0

25

3

4

1

1


23$

2

18

10

5

4

3

4

7

8

0

7

10

9

21

1

_

2

_

5

7

16

4$

18

4

9$

20

9

7

3

14

3

_

4

_

2

_

10

4

1

8

11

15

21

0

11

24

34

2

_

18

3

4

0

20

12

4

1

7

18

25

10

9

2

3

_\'

9

20

4

7

13

3

5

17

7

2

12$

1

4

12

_

1

_

21

_

8

6

12

7

15

0

13

9

3

24

0

8$

6

_

7

_

9

14

2

0

14

14

27

3

6

1

13

6

nbsp;0quot;.015

nbsp;8

nbsp;4

0quot;.001
3

24
1

13
0

0
5
9

4
20
■ 7
24

nbsp;2

— 12

22
25
3
2
5

2
12
3
14
34

5

_

15

2

2
3

7

— ■

4

2

0

0

0

7

1

9

4

3

4

7

1
1

14

— 18 —

2

4

7

1

7

5

4

7

_

3

11

0

7

5

0

5

2

1

5

_

8

9

10

13

1

15

4

2

8

0

0

1

0

3

5

0

4

0

0

7

in,

h- 0quot;.00f)
12
8

—nbsp;14

—nbsp;18

0

—nbsp;47

—nbsp;23

—nbsp;57

1113

\' 1

O\'.OOO
8
12
9
9

5
13
0
10

0quot;.009
1
0
15
1

0^.013
11

3

19
31

4
39
20t

12$

23
12

5
3

10

28
12
1
1
1

23
2
22

20
10

0quot;.000

4
16

2
14

17

17$

19

5

0quot;.024

50
18
IG
10

7
4r)
07
!)1

257

32c
.350
420
289
240

235
205
100
177
114

149
0

32
43
29

40
00
70
78
83

03
01
97
40

19

80
01

14

15
40

29
28
10

30

20

9
29
5

4
10
25
37$

— 2()

— 23$

— 44$

— 7

50
55
28
9
11

9 —
10 —

13
6
7
4
21

7$

42$
12

5
9
18
10
15

9

15
1
11
37

7
35
17
9
7

10
12
10

12
3
18
20
10

7
9
5
2

18

0
29
20
14
18

11

2

3

8
10

4

5
18

1

12

5
50

21
7
13

1

13
1

7
18

4

14
1

5
18

0
14
11

23
4

1

13
2

11

14

35
1
29

24
29

3
22
8
11
3

25
9
0

13
11

7
12
12
17
20

25
12
0
11

13

4
10
15
29
0

1

7

14
9

37

14
10

2
1
3

25
2
9

5
1
7
1
1

3
22
1
20
11

14
8
7
6

3

2
1

6
IJ

4

16
0
11

0

15

3

1

22
3
21

2
10
17
13

7

15
10
13

0
1
0
10

2

2
9
12
0

27

9
17
17
0
10

6

3
12
18

10
2
7

4
0

4
0
28
4

12
5
11
18

4
25
10

4
10

5

6
28

1$
11$

4

15
13
12

16

1

15
0

0

—nbsp;4

—nbsp;2
1
— 1

nbsp;8

nbsp;8

nbsp;4

nbsp;3

—nbsp;17

18
15
9
5

3

4
1

11

9
3

17

20
3
0
0

4
13
10
31
3

16$
31
7
25
3

-ocr page 73-

i)

M3

O\'-.OIO
58
11
3!)

32

23
19

24
70
90

57
50
50

— 1

19
7
31
35

42

50
45
1
40
10

33
27
33

7
30

43
30
23
10
45

25
47
18

— 0 -

— 30

in.

nij

\'009
10
14
24
8

42
12
32
10
10

5
11
8
88
17

20
0
0
19
21

29
40

7

7

13

8
17
21
12
11

4
0

30
9

28

34
0
29
9
28

14
12

2

H-

-I-


0

10

14
7

33
11

3

o
12
30
5

17

18
3

33
0
52

50
28
13
10

11

23

0
12
2
3
5

Mx

Mj

M3

M,

M,

1 38(5

0\'\'.573

0\'-.05()

-f

0\'\'.0quot;3{

0\'-.014

0\'-.049

-f-

O\'-.OIO

4

.387

0 .547

-f-

00

,3

(iO

-h

12

-h

12

.388

1 .4,50

12

4-

30

03

0

3

389

I .00(i

11

-1-

12

75

-f

10

_

4

-f-

390

0 .()20

19

-1-

24

1

0

-I-

10

.391

0 .5()()

52

_

27

()9

H-

20

-1-

55

392

1 .132

-1-

15

-I-

4

4

53

18


393

0 .44()

-1-

103

29

13

4-

()4

112

394

0 .701

-1-

7

2

69

-f-

2

-h

47

.395

0 .424

()0

17

-1-

58

14

20)

390

0 .610

1-

,50

-1-

14

1-

.3

-I-

1

4

.52

-1-

397

0 .778

17

-1-

14

-I-

0(1

4

-1-

Ki

-1-

398

1 .164

-1-

53

-1-

0

-1-

.3.3

11

-1-

15

-1-

;!99

0 .501

-I-

218

0

-1-

7(!

400

I .085

-1-

I

-1--

19

23

(;

-1-

10

401

0 .548

10

_

49

-1-

()5

_

25

23

4

402

0 .03!)

I-I-

26

-1-

37

.52

21

42

403

0 .428

H-

37

-1-

44

8

10

H-

72

404

1 .132

2

H-

34

24

4-

20

12

405

0 .736

8

-t-

,3

39

42

25

406

1 .261

_

22

H-

20

54

_

34

_

10

407

0 ..541

-1-

130

10

4-

29

0

-1-

40

408

0 .898

20

75

7

—.

4

-1-

41

409

0 .553

22

4-

29

10

_

31

47


410

0 .551

04

79

20

9

59

411

0 .()04

50

29

20

_

0

31

412

0 .514

70

17

8

33

88

413

0 .770

5

16

6()

12

54

414

0 .949

10

0

4-

21

04

1

415

0 .517

5(!

26

5

-h

.39

4

01

410

0 .558

H-

26

16

_

1

41

45

417

0 .638

47

21

21

0

28

4

418

0 .598

109

23

59

38

27

419

0 .588

14

4-

4

4-

20

28

00

420

0 .534

1

25

10

55

93

65

421

0 .512

101

2

12

_

12

66

_

422

0 .558

32

4-

14

42

5

4-

40

423

0 .548

91

73

4-

53

40

02

424

0 .756

12

7

4-

45

—.

50

20

425

0 .427

87

29

54

30

31

426

0.548

01

_

27

4-

101

_

25

57

427

0.634

6

27

69

17

4-

28

428

0 .058

33

18

47

05

35

429

1 .337

26

15

3

101

19

430

0 .,531

1

03

67

0

89

431

0 .010

5

7

88

_

15

44

4

432

0 .588

32

13

4-

47

-f

11

4

77

433

0 .625

86

-f

13

■f

78

04

4

08

■f

435

0 .829

■f

38

-f-

57

-f

68

123

0

430

0 .831

7

■f

35

104

-

173

19

437

0 .593

f

14

■f

34

4-

04

_

117

■f

72

■f

438

0.758 •

5

f

24

■1-

03

130

f

103

f

439

0 .488

f

23

11

f

49

98 ■

f

82

f

440

1 .018

19

f

10

f

28

151 ■

f

55

441

0.524

f

48

f

22

f

74

-

134 ■

f

90

f

442

0.980

f

15

f

45

f

38

190 -

f

60

f

443

0.582 ■

25

f

27 -

f

23

96 ■

f

70

f

444

0.659

6

f

13 -

f-

66

96 -

f

62

445

0.615

f

5

f

73 -

f

93

113 -

f

79

446

1 .061 -

f

7

f

30 -

f

55

157 -

f

29

f

10
10

45
43
42 —

1113

-I-

1 —

4 ■
33

10
5
13
2
3

3

111,

111 2

.008

4 0\'

\'.032

0quot;.009

10

1

14

8

11

11

Ki

15

14

17

13

8

(]

i

11

18

4

14

10

\'

35

23

8

40

4

40

1

13

10

4

8

: H-
; -f

10

2

2

9

4

9

H-

10

1 -1-

12

•h

7

7

-1-

1

4

4

7

-1-

-1-

22

4

■ 4

12

Kl

1 —

11

_

2

_

4

6

0

_

30

_

8

5

4

19

-f

21

22

9

1

30

3

4

7

i—

7

_

23

-1-

2

4

7

4

10

7

0

10

5

4-

7

4

4

6

4

13

5

8

0

4-

9

27

20

4

13

4

18

-h

9

4

5

43

17

10

30

4

14

13

31

0

-f

5

13

4

4

8
6

31

4

4

1

4

10

7

33

4

15

4

9

4

7

4

15

2

4

16

4

1

4

6

33

4

13

3

9

0

_

6

2

4

24

5

0

4-

11

20

7

5

10

_

0

10

24

35

9

23

4

18

4

17

4

20

_

5

4

2

4

30

4

10

14

0

4

5

11

22

32

4

23

42-

. 24

10

14

0

-f

9

18

4

10

-f

4

4

4

4

2

4

5 ■

20-

11

10-

10

4

6

0-

35 -

11

4

7 ■

4

10-

5

-t-

7 ■

4

10-

8-

19

4

6 -

2-

4 -

13-

27

Ko.

B. D.

or Br.—St.

Mag.

a

1900.0

t?

a

f)

u
\' 1

^^3

.\'!80

902

12.8

\\2!gt; 15m

8.S

56° 41\'.5

\\

0quot;.013J

4

0quot;.015

0quot;.011

4

0quot;.029

0quot;.005

_

0quot;.004

4

O\'.OOl

4

0quot;.004

:!S7

860

13.0

14

59

; 41.4

-r

14

3

4

7

11

4

4

13

4

0

8

.quot;188

50°.570 t

8.2

14

57

41.2

^—

10

-i.

11

4

8

4

8

12

11

4

4

()

.\'18!)

56°.572 t

10.0

14

59

40.!)

20

4

1

4

12

11

13

-1-

7

1

-h

3

3!)()

923

12.4

15

15

40.7

4

4

7

10

4

0

2

4

7

3

391

1498

12.9

i 15

21

40.7

__

38

19

4

8

10

4

18

,4

1

_

10

9

392

56°.571 t

9.4

1 14

57

40.7

8

3

13

32

19

0

9


-f

3

393

894

13.9

1 15

6

40.7

36

19

11

37

44

2

1

21

394

868

11.7

14

59

40.6

12

3

4

10

4

7

4

12

18

1

4

14

395

1445

14.0

14

49

40.6

4-

14

4

4

8

2

4

2

25

9

4-

12

396

853

12.4

14

54

40.4

4-

9

4

2

12

4

0

4

14

4

13

3

4

11

3!)7

861

11.2

14

57

40.0

7

4-

2

4

9

4

4

3

4

11

4

3

4

0

398

56°..575 t

9.3

15

5

40.0

-f

12

3

4

4

1

3

11

0

4-

5

39!)

12.9

1 15

5

,39.9

H-

92t

n

4

26$

42

4-

20

400

56°.578 t

9.6

15

14

39.9

13

4

5

7

4

9

0

6

0

2

401

875

13.0

15

1

39.8

22

28

4

8

5

0

4

1

8

_

1

402

870

12.2

15

0

39.7

2

4

14

4

3

3

32

3

4-

4

10

403

804

14.0

14

58

39.5

n

17

11

4-

2

4

23

4-

5

0

4-

9

404

50°.576 t

9.4

15

6

39.5

15

12

24

4

19

5

7

13

4

7

405

903

11.5

15

8

39.4

17

3

2

27

4

1

4

9

6

11

406

56°. 574 t

8.9

15

3

39.2

25

5

4

4

10

19

14

3

0

407

899

13.0

15

7

39.2

4

50

0

5

4

4

4-

8

10

4

10

4

8

408

56°.,583 t

10.5

! 15

20

39.1

3

4

32

13

5

4

10

0

4

1

4-

1

409

895

12.9

i 15

6

39.1

3

4-

10

19

8

4

11

11

8

4

0

410

856

12.9

14

55

39.1

17

34

7

4

3

4

17

1

4

9

4

5

411

911

12.5

15

11

38.7

12

4-

9

8

4

5

4

4

4-

7

1

4

1

0

412

874

13.3

15

1

38.5

21

13

12

4

24

4

30

5

4\'

4

16

41.-}

845

11.2

^ 14

52

38.5

17

4

3

4

10

4

15

4

13

7

1

4

10

414

56°.,573 t

10.2

15

3

37.9

8

5

8

4

40

13

1

7

6

415

• \' i

909

13.3

15

10

37.8

4

15

4

8

13

4

27

4

18

7

1

4

15

410

918

12.9

15

13

37.4

0

4

3

10

4

28

4

10

4

11

_

7

4

15

417

8!)7

12.2

15

6

36.5

10

4

5

8

4

10

0

4

10

0

4

8

418

880

12.5

15

4

36.3

40

4

0

4-

5

4

28$

0

5

4

14\'

9

419

!)29

12.0

15

19

36.3

5

3

!)

3

4

20

4

1

6

5

420

905

13.1

15

,9

36.2

24

1

4

4$

30

19

4

13$

4

4

2

421

1492

1.3.3

15

19

35.9

38

4

12

4

5

4

19

11

4

2

0

422

12.9

15

7

3,5.5

4

4

1

1

13

4

5

4

15

4

1

4

12

423

9231)

1.3.0

15

10

35.2

.33J

4

30

4

3

30

17

7

4

17

4

8

424

910

11.3

15

10

33.9

5

2

0

,—

12

2

—■

2

2

4

425

14.0

15

9

33.8

32

8

4

3

5

1

10

4

12

0

420

837

13.0

14

47

32.8

18

19

4-

22

4

1

4

9

4

5

4

11

5

427

877

12.2

15

2

32.8

8

19

4-

8

23

4

2

3

4

4

428

858

12.0

14

50

29.1

0

4-

3

4

2

—-

14

3

4

19

4

3

4

5

429

5G°.507 t

8.6

14

50

26.8

3

0

12

28

32

10

5

20

430

923a

13.1

15

15

25.1

7

4

22

4

0

20

4

21

4

21

4

7

21

431

879

12.4

15

2

24.7

11

5

4

14

4

10

_

2

4,

8

4

3

4

7

432

934

12.6

15

21

22.0

4

10

15

1

-f

33

13

4

2

2

12

913b

12.3

15

11

21.0

4

30J

4

4

11

4

4

8

4

17

4

14

4

!)

435

8,52

10.9

14

54

17,4

4

14

19

4

9

27

30

4

(•)

4

13

11

436

56°.509 t

10.!)

14

53

15.2

1

4

8

4

21

47

22

4

3

12

10

437

837a

12.0

14

47

1,5.0

4

2

4

7

4

8

19

-f

2

15

4

6

3

438

842

11.3

14

50

1,3.8

6

4

2

4

7

23

4

18

4

8

-1-

2

4

3

439

1449

13.5

14

52

!).9

4

10

16

4

2

1

4

4

4-

19

0

4

10

440

55°.597 t

9.9

15

5

8.8

9

6

8

25

9

7

8

5

441

922

13.2

15

15

7.5

4

24

1

7

15

4

8

4

25

4

9

11

442

55°.594 t

10.1

14

49

7.0

7

4

11

2

_

40

_

9

4

24

4

3

0

443

891

12.7

15

5

7.0

11

1

10

4

5

3

17

8

4-

9

444

931

12.0

15

20

0.9

1

5

4

4

4

6

0

4

3

0

4

1

445

844

12.4

14

51

5.3

4

4

4

24

4

17

0

0

4

3

4

15

4

1

440

55°.596 t

9.7

15

3

3.9

0

4

2

4

1

18

26

4

8

4

2

7

1113

0quot;.018
0

2/\'.l
l.i)
1.8

1.4
1.2

1.2
1.1\'
l.I\'
1.1
1.0quot;\'

O.i)
().(i
0.5
0.4
0.5

0.3
0.2
0.1
0.0»
0.0\'

0.2
0.2
0.3
0.4
0.4

0.8
1.0
1.0
1.0
1.7

2.1
3.0
3.2

3.2

3.3

3.5
3.9quot;
4.3
5.0

5.7

6.8
0.8

10.4
12.8
14.4

■.006
11
13
5
2

1

2
0
10
23

11
9
9

25iquot;.0
24.3
24.0

24.3

20.5

27.4
24.0

25.2

24.3
22.9

23. (!

24.0

25.1

25.1

26.3

24.6nbsp;—

24.4

24.2

25.3
25.6

14
4
10

10
0
10
0

T)
5
0
4
8

25
17
20
15
0

8
3
35
13
37

12
10
()
2
11

— 8

24.9
25.4
27.3

25.2

23.8

25.9
24.0

23.3
24.8
25.8

26.3
25.3
25.0
27.2

— 3

11

13
13
9
5

13

2
5
16

14

17

4
2

13
1

3

9
2
12
0

18

16

9

5
5
0

— 25.7

27.2

25.4
26.6
26.0
25.8

22.7

24.8
24.0

23.2

20.7

24.9

27.5
26.2

23.8
23.7

22.9

23.4

23.6

25.5
26.9

23.3

25.5

27.6
23.6
25.2

1
11

10
10
0
3
20

2
11
0
22
11

nbsp;14.9

nbsp;17.5

nbsp;18.0

nbsp;22.2

nbsp;24.5

nbsp;24.7

nbsp;25.9

nbsp;29.8

nbsp;30.9

nbsp;32.2

nbsp;32.8

nbsp;32.8

nbsp;32.9

nbsp;34.6

nbsp;35.8

14

5
1
27
0

-ocr page 74-

No.

diametei

a

1

Ml

Mj

M.

447

0\'-.987

1

0\'\'.009!4- 0\'\'.02i;

Î 4-

448

0 .882

5i —

IJ

i

gt;_

449

0 .085

2(

i -f

n

Î 4-

fj

r_

4.50

0 .(gt;00

i

r)\'2

! 4-

97

r

451

0 .058

101

4-

24

t 4-

T.i

1 —

4,52

i 0.510

_

68

4-

45

4-

92

_

Î «

2//. 14m

9 s

to a

2A 14

4

45,3

0 .801

M-

4;j

34

12

1 4-

4.54

0 .713

1

9!]

i -1-

3il

\'

97

4,55

0 .001

:-

21

1.1

, -1-

29

\' 4-

4.50

0 .,573

-

21

14

■ 4-

77

4-

457

0 .905

-1-

1(1

1 —

24

■ 4-

18

4-

4,58

0 ..502

-1-

54

5.3

4-

1

4-

4,59

0 .012

-1-

(i4

4-

42

23

-F

460

0 .(gt;,54

-I-

17

50

4-

5

461

0 .870

-1-

2,3

4-

4

4-

13

4-

4 (gt;2

0 ..5,58

l-h

22

_

29

4-

50

404

0 .041

-I--

.52

_

,30

4-

21

4()5

0 .024

-

8

_

20

19

40(gt;

0 .001

0

_

29

_

19

,

407

0 .686

09

4-

4

4-

25

4-

408

0 .960

12

_

9

_

7

4-

4()9

0 .018

41

22

4-

31

4-

470

0 ..5()0

-1-

,30

20

4-

3

4-

471

0 .(i03

-1-

07

4-

29

4-.

52

4-

472

0 .540

07

4-

17

4-

57

473

0 ..522

31

4-

37

4-

63

4-

474

0 .872

4-

10

53

36

4-

475

0 .(Î23

4-

99

4-

14

4-

77

47()

0 .903

4-

00

4-

24

4-

16

4-

477

0 .005

4-

80

4-

25

4-

51

478

0 .512

4-

130

4-

72

4-

16

4-

480

0 .903

4-

13

15

0

481

0 .451

4-

1,50

4-

32

4-

19

4-

482

1 .010

4-

34

quot;I-

33

4-

11

4-

483

0 .038

4-

24

4-

13

4-

13

484

0 .508

4-

32

4-

44

4-

55

485

0 .6.32

4-

50

4-

3

4-

86

_

480

0 .502

4-

57

5

4-

70

4-

487

0 .078

-1-

17

4-

03

4-

68

488

0 .850

-1-

19

4-

.35

4-

11

489

0 .047

4-

10

4-

29

4-

62

_

490

0 .889

H-

18

4-

17

4-
4-

15

_

491 i

0 .,582

19

4-

37

37

4-

492

0 .470

36

4^

47

4-

92

j-

493

0 .058

22

7

4-

35 ■

494

0.073

50

4-

25

4-

1

495

0 .,542

4-

22

4-

61

4-

,38-

497

0 .031

4-

22

4-

11

50

498

0.002

4-

10

4-

3

4-

36-

499

0.033

4-

19

33

4-

18 ■

500

0.620

4-

17

4-

1

4-

38-

,501

0 .981

H-

17

4-

30

4-

67-

502

0 .594

4-

24

17

4-

5-

50.3

0 .792

4-

0

4-

20

4-

35-

504

0.613 ■

-{-

50

5

4-

20-

505

1 .064 -

21

4-

25

4-

47-

500

0 .701

4-

28

4-

30 -

f

28-

508

0 .540

4-

18

f

10 -

f

35-

509

0.649 ■

4-

38 -

36-

17-

510

0.748 -

f

25 -

f

10-

6-

M,

24
2.\'!
4
31
13 —

20
24
2!)
43
o

50.9

55.2
53.4

53.3

50.7 T-

37\'.0
34.7
31.0
30.3

f

0quot;.000 ■

r-

0quot;.003

9

23

5 -

7

17

f

11

42

3

23$

f

7

21

7

0

f

28

40

0

48$

0

27 -

0

8$-

20

1

25

28$-

18

23

f

8

22 •

9

5

12

33

7

28 -

12

0

4-

3

23 -

.3

.5$-

10

9 -

9

9

4-

14

9

4-

8

11

f

18

20

25

20

f

0

8

4-

11

18

f

11

41$

4-

35

10

8

51

4-

15

5

Hh

15

10

4-

5

0

4-

21

3

0

6$

4-

1

11

4-

29

12

4-

10

12

4-

13

12

4-

7

9

4-

15

2

4-

21

9 ■

5

5

4-

10

8

4-

28

10

4-

3
1

H-

9nbsp;H-

9

11nbsp;H-
0

10nbsp;[f

0quot;.002
3
18Î
15
Ot

0quot;.030
40
20
39
1

llî

12$
2.5$
1

17

34$

31$-
10:
4
17

4
1$

7
9

25

20
2
11
24

3

4
4

8nbsp;j-
10

0

24.3
21.9
20.0nbsp;—
19.5nbsp;—

19.4nbsp;-

14.2nbsp;-
9.1nbsp;-
9.1nbsp;—

8.9nbsp;-

0.0nbsp;f

0.0nbsp;-
.3.7

.50° 58\'.4 -
55.8

55.3

9nbsp;-
18

0nbsp;-

5nbsp;f

11 -

1nbsp;H-

17

18

2

12
1

7
0

9nbsp;I-

14

21nbsp;-

10nbsp;-
0

0nbsp;-

f

I- 9 —

7nbsp;—

3nbsp;-

5nbsp;-

0nbsp;-

9nbsp;-

14

3nbsp;-

34nbsp;-
14
9

54.7nbsp;--
.5.3.8nbsp;--
,51.7nbsp;f

51.0nbsp;f
,50.9nbsp;f

51.1nbsp;f

50.8nbsp;-

50.0nbsp;f

50.3nbsp;—

49.9nbsp;—

49.4nbsp;—

48.3nbsp;f

47.1nbsp;f

40.0nbsp;—

40.2nbsp;-

45.9 —

45.7nbsp;--

45.4nbsp;-

45.3nbsp;—

45.1nbsp;—

44.9 f

44.8nbsp;--
44.0 —

44.3nbsp;—

43.4nbsp;—

41.4 -

41.2nbsp;—
41.0 —

40.9nbsp;—

40.3nbsp;f

40.0 —
39.9 —
39.8 —
39.0 f
38.7 —

10
20
17
12

4

12

5nbsp;]-
1

22

1 J-

40
11
11
13
12

13
4
10
20
25

10

2
5

5 I-

2nbsp;-

8nbsp;-

3nbsp;-

6nbsp;-

f

f

13 f-


0
15 -
1
4
7

3
12
12
0

0 T-

1

14
9
0
5

5
3
3
18
13

11nbsp;-U

8nbsp;Lf-

11nbsp;-
2

22nbsp;-

1nbsp;-

10 I-
4
10
0
0

27 H-
2
10
3

0quot;.008
23

H- «

T- 0quot;.01C
8
0
34
5

f 0quot;.007 — 0quot;.002 -

22
10
37$
19$

f

12
{)

8

24 I-
49
1
10$

2
0
.32
23

12
12
4
7
26

7
3
1
3
7

11
7
11

16
7

3

4
32

4-

1$
61$^

13 -

11
7

19
2
10

10

13

41$

4-

21

-

35

7$

12

2

1-

23$

3

4-

13

4- ■

0

10

4-

4

4-

23

11

4-

11

3

3

4-

8

10

14

f

11

1

0

4-

10

4-

23

2

f

9

f

2

5

4-

3

1

18

4-

1

• —

13

19

12

4-

1

4-

1

3

13

12

11

1

4

0

8

8 ■

2

34

4-

9

10

5

4-

9

4-

1

41

4-

9quot;.

20

20

22 .

12

10

4-

10

8

12

4-

2

9

• —

8

4-

10

8

10

4-

17

_

2

7 ■

11

7

4

4-

15

4-

9

10 •

1

2

0 ■

4

1

21

4-

9

23

4-

7

4-

11

4-

4

4

4-

10

0

2

4-

10

2

5 ■

1

4-

1

24$

4-

6

13

4-

2

4

1

4-

15

4-

2

4-

12

4-

2

4-

10

4-

7

4

3

2

_

6

1

0

4-

3

4-

0

4-

4

2

4-

2

3

15

2

7

3

2

4-

1

4-

14

2

4-

7

5

4-

7

11

0

9

0

4-

5

2

4-

5

4-

5

1

4-

3

3

2

5

10

4-

1

4

7

0

7

11

14

4-

8

4-

3

7

4-

11

1900.0

Mag.

H-

4-

75

4-

80

_

4-

27

4-

85

168

4-

121

4-

169

()4

—.

81

4-

48

4-

48

4-

4-

21

4-

4-

8

854

, 10.1 S

;/» 14m

55s

908

! 10.6

15

9

11.8

15

15

12.5

14

55

915

12.0

15

11

1.3.3

15

15

a = 2/i 14»

9s to a =

= 2/i 14m 4

11.1 i

!/t 14m

9s

11.6

14

17

812

12.0

14

39

789

12.8

14

20

.57°. ,550 t

10.2

14

30

788

12.8

14

20

807

12.4

14

30

750

12.1

14

12

1989

10.7

14

21

750

12.9

14

14

700

12.2

14

18

811

12.3

14

39

810

12.5

14

40

804

11.8

14

35

50°.500 t

10.2

14

27

829

12.4

14

45

1394

12.9

14

15

815

12.5

14

40

805

13.0

14

30

748

13.2

14

11

50°.558 t

10.6

14

15

798

12.3

14

33

50°.5e2 t

10.2

14

39

813

12.5

14

40

765

13.3

14

18

56°.559 t

10.2

14

14

786

13.9

14

24

56°.561 t

9.9

14

32

1990

12.2

14

27

785

13.3

14

22

1408

12.3

14

24

764

13.4

14

17

823

11.9

14

42

749

10.7

14

11

793a

12.1

14

29

783

10.6

14

22

819

12.7

14

41

792

13.6

14

28

801

12.0

14

34

790

11.9

14

20

808

13.0

14

30

761

12.3

14

15

780

12.5

14

21

820

12.3

14

41

821

12.4

14

41

754

10.1

14

14

787

12.6

14

25

832

11.1

14

40

830

12.4

14

40

56°.563 t

9.7

14

40

820

11.3

14

43

752

13.0

14

13

833

12.1

14

40

793

11.4

14

28

4}

Of)
15
17
44

25
15
;i2
2

70

5T

23
3
5
5

14

34
1
73
31
10

80
23
21
27

—nbsp;25

31
12

30
37
50

1
10

15

8

—nbsp;10

22
40
8
2
25

33
23
40

Ik

14

4-

4-

18

4-

4-

24

4-

4-

33

4-

4-

45

4-

4-

.52

4-

4-

17

4-

4-

31

4-

40

4-

-L

38

-

15

4-

4-

48

4h

39

4-

Hh

40

4-

_

7

4-

4-

41

30

4-

35

4-

-ocr page 75-

a

d

No.

diameter

Ml

i

M,

M3

M,

i

M,

511

0\'\'.7.30

0\'\'.040

0\'.015

-1-

0\'\'.047

_

0\'-.0]4

H-

0\'\'.044

4-

512

0 .570

-h

34

()

■1-

.38

4-

10

4-

00

4-

514

0 .0.3(;

-1-

.38

31

-1-

(18

4-

57

-1-

,50

4-

5I()

0 .725

-1-

(i4

-1-

45

-h

18

0

1-

57

4-

517

i 0 .621

-1-

20

-1-

17

-1-

38

3

4-

59

4-

518

0 .535

59

-1-

33

78

_

4

\'r

81

4-

519

0 .728

2.3

2

9

4-

14

4-

53

4-

520

(» „5,59

04

(53

H-

75

.38

4-

7C

4-

.521

0 .,580

107

158

-1-

250

175

70

522

0 .8,30

■i-

.32

22

-1-

84

57

4-

77

4-

.523

0 .062

5

-I-

5

-1-

58

_

51

4-

97

524

0 .()24

-1-

29

-I--

5.3

92

40

4-

100

1-

525

(1 .(gt;01

12

-I-

19

H-

29

.34

4-

5!)

520

0 .(),52

27

-1-

5

45

31

4^

77

_

.527

0.741

-1-

29

-I-

41

quot;

40

4-

01

.528

0 .782

_

0

_

17

-1-

79

_

41

4-

43

4-

529

0 .758

-1-

2(i

19

4-

57

(50

4-

09

4-

.5.30

0 .400

51

-1-

.30

4-

52

2

4-

66

4-

.531

0 ..502

40

27

4-

34

15

70

5.32

0 .450

-1-

10

3

4-

6(5

55

110

533

0 .()()3

_

41

-1-

15

4-

2

_

109

4-

55

_

5.35

0 .019

71

29

4-

46

199

4-

77

4-

53()

0 .09()

,34

4-

3.3

4-

49

1(50

98

537

0 .412

38

55

4-

18

80

4-

144

4-

538

0 .56.3

9

-1-

33

4-

85

204

4-

96

539

0 .781

_

20

73

4-

.58

_

147

4-

118

4-

.540

0 .058

7

20

4-

70

174

4-

03

4-

.541

0 .592

59

23

4-

08

113

4-

103

4-

542

0 .400

3

10

4-

79

87

4-

141

4-

54,3

0 .704

74

59

4-

90

145

4-

77

4-

a =

2h

13m

i3s

to a

=

2h li,

J 10s.

544

1 .120

03

4-

141

82

4-

545

1 .032

12

6

4-

34

94

30

4-

540

0 .598

12

31

1

,34

30

4-

547

1 .194

2

36

6

4-

70

75

4-

548

0 .532

45

20

4-

8

4-

30

4-

37

4-

549

0 .543

100

5

_

15

_

24

_

78

4-

550

0 .790

10

48

62

28

4-

14

5.52

0 .502

27

0

4-

1

4-

30

30

4-

553

1 .009

7

1

4-

18

4-

43

17

4-

554

0 .508

24

41

18

4-

84

4-

2

4-

555

0 .553

_

13

18

_

19

_

40

4-

29

556

0 .723

29

13

4-

72

9

13

557

0 .788

19

4

4-

,52

4-

42

9

558

0 .0,50

54

34

4-

41

4-

28

4-

9

559

0 .713

7

24

4-

47

4-

7

4-

14

500

0.498

04

10

4-

39

4-

28

4-

10

4-

561

1 .091

53

14

4-

47

4-

14

28

4-

562

0 .563

15

8

22

20

4-

19

4-

503

0 .672

39

0

4-

17

4-

23

4-

23

505

0 .590

4

72

4-

47

4-

28

4-

55

4-

500

0 .695

20

19

4-

32

4-

10

4-

08

4-

508

1 .115

13

5

4-

30

10

4-

4

4-

509

0 .971

8

15

4-

19

2

4-

55

570

0.583

113

21

4-

7

4-

29

4-

40

.571

0.778

13

5

9

8

4-

75

4-

.572

0 .070

f

21

H-

1

f

.52

12

4-

21

4-

573

0 .680

f

47

7

■h

02

13

58

4-

,574

0 .024

f

96

■f

22

■f

55 ■

18

4-

40

4-

570

0 .603

f

94

f

64

f

141

38

f

8

677

0.773

f

21

9

f

00 ■

-t-

33 ■

1

■f

25

9
30
34
40
54

- 13

■1-

ni3

m,

in.

nis

5 4- 0\'

\'.007

4-

0quot;.005

4-0-.

003

0quot;.005

21/^0

^

(5

4-

18

4-

10

1 4-

]]

_

18.2

4-

1 -1-

13

-]-

40

4-

C.

4-

20

22.1

4-

) —

5

4-

14

9

0

22.3

4-

5 -f

3

4-

13

0

4-

7

20.7

4-

t

18

4-

15

4-

18

4-

5

_

19.2

4-

[ —

7

23

4-

5

4-

8

_

20.4

4-

» 4-

15

4-

36

4-

10

4-

15

21.7

) -1-

78

()5

57

57

22.1

4-

! -4-

18

7

4-

14

4-

5

22.2

4-

) -1-

12

4

4-

23

_

10

19.0

4-

$ 4-

22

0

4-

24

4-

7

_

20.9

4-

i -h

1

4-

7

4-

.3

5

19.0

4-

4-

7

4-

10

4-

11

4

_

18.7

4-

r —

13

5

3

-1-

12

18.7

4-

I

18

4-

4

_

5

4-

2

20.0

4-

gt; 4-

11

(5

4-

0

4-

12

_

18.9

4-

» 4-

10

4-

29

2

4-

10

_

17.9

4-

i -1-

1

4-

27

4-

3

4-

7

20.9

4-

i 4-

12

19

4-

17

4-

1

21.3

4-

)

9

4

_

11

0

_

19.4

4-

gt; 4-

3

34

4

4-

14

_

21.8

4-

; 4-

0

13

4

4-

9

_

19.2

4-

5

4-

29

4-

20

4-

13

_

19.5

\' -f-

20

29

4-

1

11

18.3

1

8
13

4-

2

4-

12

4-

1

_

21.2

4-
\' 4-

4

17

2

_

18.8

4-

12

4-

31

4-

1

—.

12

_

19.4

4-

i 4-

15

4-

55

17

10

_

20.5

4-

i

17

4-

34

10

15

21.3

-

23

4-

81

_

10

_

57

12.1

\' 4-

8

4-

46

0

0

_

15.5

_

3

17

0

5

_

14.1

_

3

4-

34

25:

9

_

12.2

_

4-

1

4-

16

4-

29

4-

13

13.4

7

14

_

30

4-

8

12.7

25

4-

11

4-

11

4-

8

_

14.9

_

2

4-

14

4-

12

13

_

12.4

_

4-

2

4-

20

13

_

4

_

14.4

_

9

4-

41

4

19

13.5

9

20

4-

8

4

13.4

4-

20

4-

5

14

_

52

_

10.8

4-

13

4-

21

13

_

37

_

10.7

_

4-

11

4-

10

0

_

30

_

14.1

_

4-

13

4-

6

3

25

14.5

10

4-

17

_

C

22

14.0

4-

14

4-

11

20

_

12

_

12.7

_

11

6

3

_

11

_

13.5

_

4-

2

4-

14

0

_

0

_

15.2

_

13

4-

20

4- ■

12

4-

3

1.3.5

4-

7

4-

12

4-

17

_

3

14.0

4-

5

4-

1

15

10

ie.7

_

4-

2

4-

11

4-

9

12

_

15.0

_

0

4-

25

0

4-

21

13.0

_;

10

4-

14

4-

19

1

17.5

15

4-

8

_

12

4-

0

13.3

4-

4-

15

9

4-

0

4^

0

10.9

4-

4-

14

8

3

4-

3

15.0

4-

4-

43

0-

19

14

10.9

4-

4-

15

35-

12

3

15.7

4-

B. D.

or Br.—St.

Mag.

a

1900.0

0

«

u
\' 1

814

11.5 ^

gt;h 14w

40s

50°

.38\'.0

f

0quot;.004

f

0quot;.003

0\'.005

f

O\'.OOl

f

0quot;.007 -

0quot;.002

f

0quot;.004

4-

0quot;.001

757

12.8

14

15

37.0

1 -

C

4-

4

f

13

14

f

14

0

4-

14

824

12.2

14

43

37.5

4-

4

20

11

-f-

36

10

4-

23

f

1

4-

23

827

11.0 !

14

44

30.4

4-

10

4-

17

7

4-

10

f

13

4-

3

4-

5

4-

7

799

12.4

14

33

30.1

2

3

1

4-

8

f

13

f

10

4-

1

4-

10

782

13.1

14

22

34.9

4-

13

11

16

4-

10

4-

22

4-

8

4-

14

-F

12

■ 794

11.5

14

30

34.4

4

4

9

4-

18

4-

9

4-

11

0

4-

12

818

12.9

14

40

33.4

18

-h

20

4-

13

4-

32

4-

19

4-

18

4-

17

4-

22

822

12.7

14

42

30.5

4-

40

4-

72

76

09

54

54

H-

00

58

5C°.5G4 t

10.9

14

43

30.4

4-

4

4-

5

16

11

4-

17

-h

8

4-

1

10

5

774

12.0

14

20

30.4

17

3

4-

10

9

4-

20 ■

0

0

4-

1

800

12.3

14

34

29.0

f

2

f

20 .

4-

20

5

4-

27

-f-

11

4-

15

4-

11

773 .

12.5

14

20

28. C

19

f

3

1

4-

2

4-

0

1

4

4-

1

707

12.1

14

18

27.9

4-

1

4

5

4-

5

-1-

14

0

4-

2

4-

5

708

11.4

14

18

27.5

4-

2

f

14

15

0

4-

0

4-

10

3

4-

9

797

11.2

14

31

27.3

15

16

10

1

2

4-

0

0

4-

2

771

11.3

14

19

20.4

1

-h

2

9

11

4-

9

4-

10

4-

5

4-

8

1390

13.8

14

12

23.3

4-

14

f

7$

8

4-

23

4-

5

4-

15

4-

9

4-

14

1422

13.4

14

34

20.4

4-

12

f

5 -

1

4-

22

4-

6

4-

12

4-

4

4-

13

8041)

13.9

14

30

13.4

4-

1

11

4-

10

4-

13

19

4-

7

4-

2

4-

11

12.0

14

22

11.7

25

3

11

10

9

4-

7

12

_

1

810

12.4

14

38

4.2

35

1-

3

1

40

2

4-

22

If
i

0

775

11.8

14

20

1.7

10

f

3

4

20

4-

5

4-

18

1

4-

5

781

14.0

14

22

1.5

18$

14

u

4-

22

4-

27$

4-

22$

4

4-

23

1392

12.8

14

13

1.2

4

-H

3

4-

18

37

4-

2

2

4-

9

10

803

11.2

14

34

55°

59\'.2

7

4-

22

0

5

13

11

7

4-

7

702

12.0

14

10

50.2

4-

1

2

4-

11

12

16

4-

9$

4-

5 quot;

2

770

12.0

14

21

,53.8

24

3

4-

10

4-

23

2$

n

2

4-

0

1,3.8

14

28

49.0

4-

10$]

8$

1-

13$

4-

47$

4-

n$]

3$

7

hf

14

11.7

14

34

40.2

20

4-

12

1.5$

4-

25$

16

It

f

4

4-

2

a = 2h 13

» 33.? to a

= 2h 14m

10s.

20$

73$

57°.544

9.4

Ih 13m

34s

57°

42\'. 1

4-

4

48$

20

7

732

9.8

13

58

20.2

33

f

5

5

4-

40$

4-

6

11

4

4-

17

715

12.5

13

48

23.4

34

7

0

23$

4-

6

0

13

4

57°.545 t

9.1

13

33

20.8

41

10

5

27

19

4

15

0

709

13.1

13

42

19.3

01

5

1

4-

10

4-

35

4-

18

17

4-

20

700

13.0

13

37

10.7

12

9

9

20$

24

12

4-

1

5

724

11.1

13

.52

9.9

38

19

27

4-

5

4-

16

4-

11

28

4-

11

093

12.8

13

34

0.2

18

1

3

4-

8

4-

17$

10

0

4-

1

,50°.549 t

9.7

13

48

50°

59\'.9

27

1

0

4-

14

8

1

0

4-

1

708

12.8

13

42

59.0

41

-h

22

10

35

1

10

10

4-

1

704

12.9

13

41

.59.3

37$

7

10

20

4-

13

1

10

4

741

11.0

14

0

.54.0

12

0

4-

18

0

9

50

4-

4

27

50°.552 t

11.1

14

5

54.0

35

4-

2

4-

11

4-

10

8

35

3

15

713

12.1

13

40

53.1

1

17

4-

10

4-

10

1

27

9

11

718

11.0

13

49

,52.8

24

12

4-

12

0

4-

2

22

3

10

712

13.4

13

45

52.3

4-

4

7

4-

9

4-

11

1

_

19

4-

4

7

5e°.548 t

9.0

13

35

51.1

1

7

4-

13

4-

5

22

9

4-

4

9

700

12.8

13

41

51.1

19

4

12

12

1

8

12

7

725

11.9

13

54

50.9

7

0

1

4-

9

4-

4

3

1

4-

2

703

12.0

13

41

40.3

22

30

4-

12

4-

14

16$

0

8

4-

10

719

11.8

13

49

45.9

10

11

6

4-

0

4-

21

0

2

7

56°.553 t

9.5

14

4

42.5

14

4

4-

3

4

11

7

3

7

o6°.551 t

10.1

13

50

41.9

10

10

4-

1

4-

5

4-

13

9

0

0

701

12.7

13

37

41.7

-1-

34

13

1

19

4-

4

24$

4-

5

4-

18

56°.557 t

11.2

14

10

40.9

25

5

12

9

4-

23

4-

2

13

4-

9

702

11.9

13

39

37.3

10$.

3

4-

14

4-

2

8

4-

9

4-

4

4-

3

738

11.9

14

5

35.2

f

0

7

f

14

4-

3

10

4-

9

4-

7

4-

8

727

12.3

13

50

34.4

f

30

f

7

H-

13

2

0

4-

0

10

4-

3

739

12.5

14

5

33.7

f

30

f

27

4-

42

0

10

11

35

11

729

11.2

13

50

33.2 .

7

0

4-

14

4-

29

9

4-

1

4-

5

4-

5

M3

in,

0quot;.000
5
0
12
0

9
8
14
3()
0

20
1

22
; 2
1

18

2
II
9
1

20
35
10
18
3

0
2
22
13
22

l/\'.O
2.0
2.0\'

•u

4.8
5.2
0.2
!).]
(».I

9.;!
]0.0

11gt;
12.2

I;5.2
10..\'!
10.2
26.i

28.2

35.6

38.2

38.3

38.7

511

512
514
51G

517

518

519

520

521

522

523
•524
525
52c

527

528

529

530
53]

532

533
535
53C

537

538

539

540

541

542

543

544

545

546

547

548

549

550

552

553

554

555
550

557

558

559

5C0

561

562
503

505

506
5C8
509

570

571

572

573

574
57G
577

48
75
12

32

20

33
50

1()2
15

28
I!)
14

14

33

4
30
23
12
4

4
48
40
52

15

23
23
4
10
20

313
325
207
230
284

240
190
75
97
52

94
09
29
12
0

i i

-I-

51.«
53.8

02.8

47.0

44.1
41.5

40.0

37.3
30.5
20.8

20.4

20.1

19.8

15.2

14.5

I.3.7
13.2

12.8;

II.0

11.6
11.4

0.8

0.3
2.9
2.3
2.1

1.3

2.2

4.4
5.2
0.0
0.4

32

33
41
01

11
40
21
30
44

40
15
38
4
27

1
4
22
10
20

14
18
20
30
29

14
2
20
20
10

—nbsp;4

nbsp;10

Hnbsp;18

nbsp;1

nbsp;3

nbsp;24

—nbsp;5

—nbsp;4
nbsp;4
nbsp;19

14

5
5
2
2
34

9
2
8
11

3

1

5
9
29
2

32
2
7
88
23

34
27
19
32
4

-ocr page 76-

Mo

O\'-.OOO
17
50

44
89

50
80

45
8

23

5

;U)
85
01
130

140
77
57
144
77

79
103
53
01
57

A

7

\'2

ma

.021

. 0quot;.00(

gt;

lG/\'.7

-1-

7/\'.l

18

12.7

-f-

8.lt;gt;

0

1

1.J

12.8

8.7

b

i

gt;

1.3.2

8.7

1(:

i —

(:

! —

14.9

10.0

4

IS

»_

14.9

-f

11.8

13

!

s

gt;_

10.8

14.0

8

!

u

10.8

-H

15.1

20

7

_

17.4

-h

1.5.3

19

18

17.0

10.0

29

1

7

_

17.3

4-

18.2

17

14

10.9

22.2

0

\'

1

L5.1

-f

30.lt;\'

11

18

14.7

-f

30.8

24

^

33

1,5.2

,33.2

19

5

_

14.5

-1-

41.8

11

14

1,5.8

44.2

21

18

_

17.2

H

17

10

15.8

50.9\'

10

5

17.3

4-

52.0

18

_

38

_

7.9

54.8

59

70

10.0

__

52.7

10

6

8.7

_

49.3

15

33

10.7

_

18

13

7.0

43.1

10

0

_

11.8

38.8

39

4

_

11.7

_

38.Ö

3

14

_

8.5

_

34.2

5

15

_

7.5

_

32.9

59

0

7.3

29.3

4

14

_

8.3

28.8

0

3

_

11.4

_

20.4

31

—.

1

8.0

_

20.8

0

7

12.2

_

19.7

10

13

10.5

15.2

13

_

17

_

11.9

_

11.7

0

7

10.9

_

8.2

0

5

9.0

_

6.0

7

0

12.2

_

5.8

7

0

7.9

4.0

4

_

8

9.7

2.8

5

6

_

10.8

_

1.9

10

8

_

10.1

_

1.0

20

3

_

8.4

_

0.2

2

4

12.0

-H

0.0

15

9

12.4

4-

0.,3

0

21 •

9.2

4-

0.5

11

3

9.7

4-

1.3

8

12-

11.9

4-

3.3

1

18-

8.1

4-

4.0

3-

6-

8.8

4-

5.1

17

16

12.3

4-

0.8

10

20-

11.0

-h

7.7

11

8-

9.0

■f

13.2

7 ■

■f

15-

12.0

4-

15.1

0

-f-

14-

10.0

4-

20.7

0

-h

2-

8.8 ■

4-

22.2

30

f

8-

9.7 ■

■f

23.0

12 ■

■f

16-

10.0 ■

4-

23.8

3

f

27-

12.0 ■

4-

24.1

diameter

No.

M,

M,

M.

M,

M,

m,

mj

ms

m,

I

578

0\'-.734

578*

57!)

0 .502

580

0 .520

581

0 .0.32

582

1 .101

_

583

0 .482

584

0 .003

585

1 .370

58()

I. 091

587

1 .132

.588

0 .811

589

0 .03()

H-

5!)0

0 .500

5lt;)l

0 .518

592

0 .409

_

5lt;)3

0 .801

594

0 ..540

5!)5

0 .003

_

5!)(i

0 .(gt;00

a =

12/«

5!)9

0 .720

1

(iOO

] .140

001

0 .904

-1-

()02

0 .701

003

0 .484

004

0 .600

()05

0 .017

-i-

(iOO

0 .52,3

()()7

0 .020

008

0 .522

009

0 .073

()10

0 ..580

012

0 .923

013

0 .034

015

0 .539

()10

0.014

017

0 .505

018

0 .512

019

0 .030

021

0.803

023

0.773

024

0 .582

025

0 .451

020

0 .721

027

0 .015

028 !

0.570

029

0 .673

030

1 .191

031

0 .521

032

0 .088

033

0 .521

034

0 .054

-f

035

0.919 -

030

0.570 -

f

037

0.501 -

f

039

0.014 -

f

()40

0.518 -

f

042

0.847 -

f

043

0.527 -

f

044

0.475 -

f

43
12

3

4

37

10

14

18
7
22
5
40

33
22
!)7
50

131
10
!)3
14

85

r- 0\'\'.00.3 j— 0\'\'.01!)

k- 53
5
24
1!)

4- 0\'\'.043

■f 0^005

0\'-.021 f- 0quot;.021 J- 0quot;.012

nbsp;23

^ 43 U 42 Unbsp;(i

10 1 nbsp;8

- 18 i;} nbsp;((

k- 0quot;.02I

-i- 0quot;.008

- 12

2((
4!)
11

•19
II

31

50
()8

8
3

1

25
18

2
5

17

21
13

20
13

28

9
40
19

1

22

14
4
3

10
II

15
15
18

3
7
2

24
.32 —

29
18
32
7
2

I!)
18

8!)
72
25
37

71

70
57
!)4
5()
!()(»

72
72
8!)

II!)
100
13«i
II
105
34
11
37

20
21
15

24
43

30
2
33
27
45

13
.30
2
53
99

40
8
18
27
45

19

18

3
10
21

4

7

5

8
19

13
0

41

14
14

9

14

3
7

10

1
18
10
29
11

9
0
17
21

4

15
40
15
15

4

8
24
50
77
3

100
103

141
143
83

150
181
100
149
138

H-

43
25
!)
15
37
5.« to a
58
118
55
52
31

18
10

22
32

25

1

37

10

4

10

7

0

10

11

13

8

22

0

4

3

— 53

= = 2h

35s.

40 -
27 -
59
11
7

281
108 —
348
403
235

19
35
2
35
2 —

18
11
33
37

3
0
10
9
15

5
9
5
20
2

3
8
1

12
17

7
12

5
9

4

0
10
0
17

11

27
5
12
11

10
5
20
17
11

10

5
9
4
14

19
7

14
9
3

0
13
1

22
12

9
1

17
12

18

7
12
32
9
0

0

15
0

o
3
10
31
7

5
33
35
7
25

21
20
1

30

31

17

4

8


31
19
4
2
0

4
7

5
5

10








— 0

10
1

3
22

4

17

3

240

80

53

13

2

02

240

H-

3

38

34

30

13

239

125

52

23

15

7

150

83

-t-

()3

29

33

-

1 18

102

59

7

_

32

24

12

201

_

05

0

01

58

15

154

_

55

31

5

10

48

111

_

78

10

8

25

13

127

38

25

8

28

11

44

25

10

_

8

14

_

2

19

47-

21

10

4

34

69

_

30

10

27

r

20

37

57

_

70

41

94

18

20

43

52

5

11

4

-1-

20

17

43

7

24

_

31

49

7

81

17

40

44

52

45

52

3

19

47

22

50

10

27

16

13

100

14

_

27

36

15

25

47

33

33

10

20

17

13


49

57

26

20

25

60

81

19

7

22

25

25

11

25

21

20

31

31

47

_

13

3

11

29

50

02

35

59

11

_

2

00

6

19

34

0

24

18

50

_

21

3

14

20

35

03

_

19

6

6

47

42

19

_

30

11

32

40

49

37

14

6

50

_

64

02

32

58

1 ■

2-

70

05

3

23

27

13

92

14

17

39

26

70-

02

53

40

*

3 ■

6 ■

1 -

1

101

1

84

70

3
39
20
1

No.

B. D.

or Br.—St.

Mag.

ex.

1900.0

t?

a

H- «

f3

u
\' 1

578

735

11.5

Ih 14m

3s

50°

32\'.5

_

0quot;.018

_

0quot;.014

1

4-

0quot;.007

4-

0quot;.015

0quot;.018

4-

0quot;.010

__

0quot;.004

4-

0quot;.004

378*

13

34

31.1

1

4-

21

15

4-

21

15

579

1349

13.4

13

30

31.0

39

8

9t

f

2

4-

3

4-

18$

16

4-

10

.580

701a

13.2

13

38

31.0

rl-

4

-1-

0

4-

2

4-

40

2

4-

M
/

4-

3

4-

13

.581

721

12.3

13

50

28.8

rquot;

10

4-

4

0

4-

13

-h

19

2

1

4-

7

582

50°.5ö0t

9.3

13

51

28.0

16

7

24

5

1

.—

8

4-

10

__

5

.583

1372

13.6

14

4

25.0

15

10

4-

17

4-

10

10

4-

0

4-

1

4-

11

584

730a

12.5

14

4

24.0

6

k

1

4-

1

4-

8

5

4-

18

■4-

2

4-

10

585

50°.55öt

8.5

14

8

24.4

-—

7

4-

4

^

4

2

23

2

|4-

1

7

-580

50°.Ö50 t

!).6

14

10

23.7

18

4-

13

H-

10

9

16

4h

23

4-

7

4-

5

.587

50°.554 t

9.4

14

8

21.4

1

4

4-

20

22

20

4h

12

4-

9

_

0

.588

1374

11.0

14

4

17.0

5 •

20

4-

12

17

15

-H

20

0

2

.\'58!)

722

12.2

13

51

9.2

f

0

f

14

4-

25

22

2

8

4-

17

1

.\'500

717

12.9

13

48

9.1

7

4-

27

4-

12 •

23

9$

4-

25

4-

11

4-

4

.591

723a

13.2

i 13

52

0.0

Ï

20

]—

13

4-

27

4-

10

4-

26

4-

41

4-

15

4-

29

592

714

13.7

13

40

55°

58\'.1 -

14

f

7

f

17

0

4-

20$

-h

15:

4-

7

4-

11

593

55°.589 t

10.7

13

55

55.7 -

8 -

2

f

14

10

10

3:

4-

4

8

.594

740

13.0

14

5

54.8 -

43J-

19

f

20

7

20$

n

5

10

595

12.5

13

55

49.0

17$ ■

23$

f

30$

4-

1.5;

4-

17$

4-

3$

4-

5

4-

!)

Ö90

12.5

14

6

48.0 -

18

f

2

f

23$

4-

23:

10

4-

8::

4-

7

4-

()

a = 2h

12™ 55s

to

a = 2h 13n

: 35s.

599

11.0

Ih 13m

2s

57°

34\'2.

4-

16 ■

15 ■

3

4-

21$

12

30$

1

13

COO

57°.542 t

9.4

13

22

32.1

38 ■

47

39

4-

10

53

03

41

42

coi

651

10.5

13

8

28.7

0 ■

10

12

4-

24

4

4-

13

10

4-

11

C)02

677

11.7

13

23

20.0

30

10

0

0

9

4-

39

10

17

C03

634

13.6

12

55

22.4 •

3

5

12

10

13

7

8

9

604

686

12.5

13

30

18.1

19

9

4-

15

4-

5

9

-f

8

G05

683

12.4

13

29

17.8

4-

3

8

7

4-

44

9

8\'

4-

14

000

646

13.2

13

0

1,3.5

.38$ ■

12

11

23

-h

2

4-

19

18

4-

4

007

638

12.4

12

59

12.3

4-

21

-h

32

4-

10

1

4-

10

11

-f

18

,3

008

036

13.2

12

57

8.8

4-

3

4-

30$

4-

12

24

54

4-

4

10

17

009

644

11.9

13

4

8.2

_

8

4-

2

9

4-

4

4-

9

4-

18

_

6

4-

12

010

679

12.7

13

27

5.9

3

4-

5

23

4-

21

4-

11

4-

7

11

4-

11

612

56°.544 t

10.4

13

0

0.3

0

11

1

2

26

4-

2

5

6

013

690

12.2

13

32

50°

59\'. 1

4-

7

4-

7

5

4-

0

5

4-

10

4-

1

4-

8

015

672

13.1

13

20

54.7

11

13

4-

2

18

11

10

-f

1

12

016

685

12.4

13

30

51.1 -

10 -

7 -

6

4-

4

9

14

_

9

_

8

017

678

12.8

13

23

47.7 ■

4

11

4-

2

2

4-

4

4-

10

3

5

018

1341

13.3

13

13

45.5

11

4-

3

4-

9

4-

13

4-

4

4-

8

-h

2

-H

8

019

688

12.3

13

32

45.3

f

13

4-

18

4-

30

4-

11

3

4-

3

4-

23

3

021

639

11.0

13

0

43.7

4-

1

4

0

4-

4

3

3

4-

2

1

023

663

11.2

13

14

42.4

2

4-

1

4-

7

12

8

_

5

3

3

624

673

12.7

13

21

41.5

4-

17

4-

6

12

4-

26

9

4-

9

4-

12

13

025

664

13.9

13

10

40.6

4-

3

1

4-

6

4-

28

6

-F

11

4-

3

4-

11

020

642

11.0

13

4

39.8

18

4-

10

-h

6

0

4-

30

0

1

7

027

686a

12.4

13

30

39.5

8

4-

15

2

4-

18

4-

6

4-

7

-F

3

4-

9

028

691

12.8

13

33

39.3

5

4-

5

4-

3

4-

15

_

11

4-

12

4-

1

4-

7

029

656

11.9

13

10

39.1

4-

4

4-

10

9

19

4-

10

4-

24

1

4-

19

030

.56°.545 t

9.1

13

13

38.3

14

7

9

6

7

0

10

3

031

082

13.2

13

29

36.2

9

4-

7

4

4-

23

5

4-

15

4-

1

4-

12

032

040

11.8

13

2

35.7

15

0

1

4-

24

4-

2

21

0

4-

17

033

049

13.2

13

7

34.6

4$

33

4-

5

4-

10

6

_

3

_

7

4-

2

034

089

12.1

13

32

32.9

9

21

1

4-

1

14

4-

20

8

4-

7

035

5G°.547 t

10.4

13

27

32.0

29

0

4-

2

4-

1

7

4-

24

8

10

030

G57a

12.8

13

13

26.4

0

4

1

3

8

4-

12

2

4-

3

037

094

13.4

13

34

24.6

3

2

4-

7

0

4

4-

20

4-

4

4-

9

039

669

12.4

13

19

19.1

4

0

4-

15

_

1

_

4

4-

19

4-

5

4-

8

640

647

13.2

13

0

17.5

-H

17

9

n

2

_

4

-F

7

4-

2

2

042

56°. 546 t

10.8

13

13

16.8

2

4-

3

4-

2

12

28

4-

14

4-

2

3

043

671

13.2

13

19

16.0

4-

10

3

4-

21

0

10

4-

22

4-

14

4-

8

044

695

13.0

13

34

15.7

n-

12

5

14

4-

5J

4-

33

7

4-

14

-ocr page 77-

No.

B. D.

1900.0

a

or Br.—St.

Mag.

a

3

u
\' 1

fiquot;«

r s

i\'z

045

\' 007

i 13.8

2)1 13m

17.«

50quot;

14\'.3

0quot;.008ï

0quot;.001

0quot;.028

0quot;.010

0quot;.015

0quot;.010

0quot;.016

0quot;.003

rgt;4(J

605

11.9

r 13

16

12.2

-f-

14

17

1

—•

1

—■

6

8

8

1

047

! .55°.581 t

i 9.8

13

3

7^8

17

30

37

29

25

7

30

10

048

! 1343

13.2

13

18

7.4

33

11

16

1

28

26

14

6

049

1345

1,3.1

13

30

6.1

11

11

21

30

3

29

10

6

050

653

12.0

13

8

.5.1

_

16

16

28

7

15

3

14

_

4

051

070

! 13.0

13

19

4.2

1

14

8

20$

19$

5

0

12

052

.55°.582 t

, 10.8

13

13

4.2

0

12

17

56

21

1

12

19

C53

052

! 13.3

13

7

0.3

48

49

54

73

66

52

51

61

0.54

059

13.1

13

13

55°

,54\'. 7

9

31

17

4

2

12

14

6

055

001

13.2

13

13

.53.1

_

17

3

39

9

1,5

38$

14

25

050

.5.5°..587 t

9.0

13

35

,52.2

37

18

23

46

17

3

16

17

0.58

\' 1

19(58

1

13.3

13

15

47.9

8

2

19

18;;

8$

1.3$

11

13

«00

13.0

13

9

45.!)

9

25$

41$

19$

20

29$

29

24

001

[

12.7

13

35

42.8

21$

28

30$

—■

«Ï

9$

17

2

002

5.5°.585

10.8

13

33

42.4

8

12

.35$

29$

7

19$

22

18

003

a = 2h :

2«i 17.S to

a = 2h V.

\\m 58.*

37

22

7$

1

i 12.7

2h 12m

44.^

.57°

\'37\'.8

7$

.32$

22

18

0()4

1 •

12.0

12

17

3.5.2

13

28

4

1,3$

T

31

6$

6

8

0()7

532

13.0

12

21

30.2

4

1

4

12

3$

47

1

27

0()8

: 504

12.1

12

31

26.8

13

14

4

0

-

11

38

9

16

009

628

11.2

12

.52

2.5.1

_

5

6

3

15

6

30

4

20

070

598

12.2

12

41

21.1

29

19

6

1

16

42

15

25

071

627

12.0

12

51

17.0

.52

27

33

13

-

30

10

36

16

072

562

11.9

12

30

16.4

10

2

9

21

-

8

7

1

11

073

557

12.5

12

28

1.5.0

1

13

30

—■

1

-

10

18

18

6

074

57°.541 t

9.0

12

36

12.7

10

16

20

0

34

17

16

_

17

075

5()°.539 t

10.4

12

41

9.0

19

11

10

8

-

10

4

15

8

070

5,50

12.9

12

20

7.2

23

13

15

3
11

-

11

15

16

4

077

623

13.0

12

50

0.1

4$

12$

—■

13

--

8$

12

4

7

078

.537

13.9

12

24

2.8

9

5

10

11

13

28

11

20

079

56°.536 t

9.8

12

37

2.4

_

27

4

10

7

-

23

3

13

6

080

593

11.3

12

41

1.1

18

18

10

6

-

3

5

14

3

082

559

1.3.5

12

29

50°

59\'.4

25

3

32

10

0

18

9

6

C83

582

13.0

12

37

57.2

7

4

15

15

-

14

15

8

8

084

635

12.8

12

55

52.5

10

4

1

2

10

32

4

13

085

56°.543 t

8.1

12

53

51.4

_

22

12

2

10

--

14

39

2

25

086

577

13.4

12

30

48.8

3

5

10

14

1

3

5

087

56°.537 t

10.8

12

36

48.5

■2

9

8

43$

20

-

10

11

6

4

088

13.1

12

35

48.4

10$

9$

5$

18$

17

14

089

566

12.9

12

31

47.4

9

21

8

20

4

5

7

3

690

621

13.3

12

50

47.5

_

17$

9

3

23

19

17

3

19

091

540

13.9

12

24

40.5

6

3

1

0

1

11

3 !

5

092

552

12.3

12

26

46.1

10

10

7

6

7

6

3

0

093

617

12.2

12

49

46.1

5

15

—■

9

18

28

2

2

12

094

505

12.0

12

30

45.9

4

17

14

5

12

4

10

6

095

548

12.5

12

25

45.7

19

6

—•

5

14

9

9

6

10

090

553

11.8

12

27

43.7

11

10

6

15

-

14

12

4

6

097

620

13.3

12

50

43.4

1

15

3

20

6

7

2

10

099

555a

11.9

12

27

42.1

0

18

2

12

1

7

5

0

700

503

12.8

12

30

41.9

9

13

3

1

14

0

2

3

701

555

12.1

12

27

41.6

22

4

12

—.

3

_

7

4

0

0

702

550

13.7

12

27

41.0

13$

10

1

40

-

3

8

0

13

703

632

13.3

12

54

40.9

4

37

3

33

20

14

10

20

704

Ö6°.535 t

9.5

12

26

40.6

3

0

5

10

-

25

12

2

2

705

554

11.2

12

27

39.4

9

20

14

18

8

9

0

11

700

56°.533 t

11.0

12

24

39.2

23

12

6

10

_

27

19

6

5

707

610

11.3

12

40

39.0

28

18

— ^

1$

23

-

10

10$

3

8

708

580

12.7

12

36

38.7

2

16

20

9

1

18

6

11

709

56°.538 t

10.0

12

38

37.8

24

18

7

21

-

9

1

—•

7

3

710

50^.534 t

9.0

12

25

37.0

11

3

—•

10

-

23

4

5

1

•lü

:

2i-

î

122

» _

i

8(!

\\ -

(

) -1-

! -(-

Of

(

) -I-

! -1-

12.n

()1

.

112

1

7

■ H-

()4

12C

12/».

17s

v. =

2h

12w i

92

1

107

71

1.30

1 —

8(i

i —

33

!)5

27

9

7.3

53

23

83

34

_

15

31

58

31

193

39

85

09

23

!)

__

90

44

105

100

17

43

40

30

(iO

34

39

02

(i8

13

44

50

19

05

18

_

17

_

44

35

45

44

124

1

110

84

10

29

42

13

!)

10

21

_

1

_

07

9

47

05

20

40

41

20

104

41

44

5

22

18

_

19

72

7

19

38

21

42

47

30

39

50

35

22

19

13

_

30

32

31

5

■f

55 ■

32

21

53

42

17

■f

30 •

■f

31

10

7 ■

5 ■

■f

13 -

81 ■

29 ■

20 ■

■f

42 -

f

82 -

f

2 -

f

48 -

f

4 -

8 -

f

34 -

35 -

f

18 -

f

4 -

18 -

0 -

f

9 -

F

43 -

15 -

52 -

F

38 -

73 -

^

2 -

30 -

4 -

F

25 -

f-

2 -

27 -

H

0nbsp;.518

1nbsp;.224
O .513
O .542
O ..583

O .8,52

O ..57()
O .0.58
O .545
O .049

O .783
O .(gt;41
O .0()3
0.072

0nbsp;.009

1nbsp;.218
O .918
O .551
O .,542

0nbsp;.448

1nbsp;.040
O .7.54
O .491
O .,541
O .572

()()2
(m

(i(i4
(Ki?
()()8

(Ui!)
()7()
()7I
()72

m

fi7\'I
075
(i7(gt;

077

078

079

080
082
08B

084

085
080

087

088

089

090

091

092

093

094

095
090
097
099

700

701

702

703

704

705

700

707

708

709

710

8

58

4

39

38

08

35

48

-f

88

58

54

7

40

41

09

28

37

78

7

02

9

23

47

27

2

1 .472
O .505
O .851
0.530
O .551

O .514
O .451
O .030
O .042
O .004

0.598
O .092
O .510
0.072
O .573

O .054
O .400

0nbsp;.508

1nbsp;.100
0.777

0.810
O .705
0.570

0nbsp;.990

1nbsp;.071























-ocr page 78-

1900.0
a J

a

1^-2

j

•J.
\' 1

1

h 12m 34i

r; 50° 30\'.0

0quot;.014

1

0quot;.012

1

1

0quot;.001

0quot;.020

_

0quot;.001

12

39

.30.1

1

11

1__

3

15

3

12

37

i 30.0

5

10

5

30

0^

: -f-

12

30

35.7

10

4

8

0

11

12

43

33.0

1

8

9

14

8

17

12

40

33.3

18

1

;

3

1

3

2

_

8

_

12

24

33.1

18

10

!

18

21

10

12

57

32.9

12

9

8

20

2

12

47

32.8

5

8

0

19

0

12

22

32.0

4

18

i

25

29

0

12

44

.32.0

_

8

_

4

—.

3

10

_

23

_

12

24

32.4

15

—\'

5

3

0

1

12

50

32.3

44

59

27

-

0

22

12

34

32.1

15

27

8

0

3

12

41

31.1

10

10

1

19

24

12

48

30.5

18

8

13

14

7

_

12

41

29.7

13$

38

5$

13

23

12

44

27.5

18

2

19

-

1

0

12

24

27.3

0

-1-

11

3

30

1

12

30

20.5

2

9

22

11

15

12

33

20.0

_

13

1

2

0

0

12

24

2.5.0

1

9

1

12

2

12

29

23.9

12

13

5

3

6

12

41

2.3.2

5

5

0

-f

7

30

_

12

44

22.9

15

18

0

-

18

13

12

38

21.5

8

7

4$

-

0

_

14

12

40

21.2

3

18

9

3

1$

12

24

19.1

12

11

2

3

27

12

38

10.1

12

0

12

-

21

15

12

40

10.1

3

12

4

1

5

12

41

15.3

_

12

13

4

_

17

_

24

12

45

14.7

1

4

0

-

13

_

14

12

52

13.2

6$

12

4

-

14

7

12

35

9.0

1

8

10

-

29

13$
8

12

28

0.4

7

1

8

-

10

12

40

4.1

4

14

14

_

15

6

12

44

0.9

10

1

15

-

4

6$

_

12

49

55°\'57\'.4

9

5

11

-

16

_

21t

_

12

50

50.0

39

20

0

5

12

37

55.7

11

36

35

-

24$

4

12

48

54.8

9

17

25

_

57

29

12

42

52.5

28

22

15

-

31

_

21

_

12

37

51.0

9

2

24

-

20

_

2

_

12

55

48.0

10

8

30

40

_

29

_

12

39

40.0

1

18

-j-

18

36

14

12

58

45.8

-H

3

10

35

27$

9

= 2h IS

m 25 s.

12»»

4s

57° 42\'.G

44$

12

9

40.7

11

45

-

37

12$

24$ ■

12

8

32.5

f

5

26

26

43

9

11

57

32.3

f

17

18

14

23

4

12

7

26.3 ■

6

15

_

9

7

11

12

1

16.2 -

f

19

25

8 ■

15

20

11

40

6.4 -

4

8 ■

10 -

13

0

11

49

3.9

15

2

3

12

0

56° 59\'.9 ■

4

-t-

4 ■

4

24 ■

8

11

58

57.7 -

f

28

f

35

■f

20 -

22 ■

18 -

11

50

57.5 -

f

3

6

3

-f-

12

1

12

17

57.3 -

f

9

14 ■

7 •

7

4 •

11

49

51.6 -

1-

0

9 -

3 -

7 ■

-f

4 -

11

40

49.4 -

9

f

5 ■

1

6 -

43 -

P- «

0quot;.008
6
5
1
10

0
5
23
8

0quot;.000
4
1
1

7

2
10
3

3
18

4
3

39
14
1

9
10

5
1

8

2
2
3
0
2

0quot;.010

7

3

3

4

5
17
10

2

9
4
14

3

4

0
11

4
9

5

0
10
5
9
10

0
7
7
7
3

10
3
3
0

3

12

4
10

0
11

30
30
10
25
21

11
8
14
4
11

10
4
12
4
12

4
13
9
7
4

lit
13

2

3
9

0
7
10
7
2

20

4
13

lot

13

18
3r)t
18t
lot

17t

— 2

7
9
4

2
2
0
10
0

3

4
23
29

19

20
14
22
13

21

- m

— 14

3t
5t
48t
42$

21
4
12
30
22

9
19
11
24
14

13
0

32
28

11
11

1
19
15

14
12

8
13
10

32
18
7

10
2
4

4
2

20
1

5
2
1

-ocr page 79-

1900.0

or Hv.—St.

iviag.

a ^

u.
\' 1

F «

5G°..531 t

10.2

2/i 12 m

15s .50° 47\'.2

_

0quot;.000

_

0quot;.001

0quot;.000

0quot;.019

0quot;.008

4-

0quot;.002

_

0quot;.002

4-

0quot;.004

510

11.8

12

13

47.1

10

4

-j-

1

7

0

3

1

377

12.2

11

40

47.1

19

-

15

5

11

4-

5

4-

1

11

4-

4

50°..509 t

10.3

11

47

40.0

30

-

14

8
9

11

4-

2

2

9

4-

2

400

12.7

12

4

40.2

28

-

8

0

3

21

4

13

409

11.9

11

51

45.5

_

40

0

10

23

14

11

_

0

3

408

13.0

11

50

45.5

11

-

14

0

22

14

18

4

_

7

405

13.8

11

50

45.2

37

-

10

12

30$

: 4-

11

12

18

4-

0
8

380

11.5

11

47

45.1

5

4

3

20

8

1

4-

1

4-

.500

12.5

12

12

44.8

31

1

29

3

4-

14

4-

24

7

4-

15

414

11.4

11

52

44.5

_

4

-

2

0

5

4-

9

11

1

_

2

393

12.9

11

48

43.3

17

-

12

1

1

4

1

7

0

517

11.1

12

15

43.3

30

-

4

1

30

15

17

10

_

5

427

11.3

11

55

43.1

10

-

17

7

1

1

12

5

_

5

50°..521 t

10.8

12

0

43.0

22

4

8

2

20

4-

5

0

2

480

13.7

-12

0

42.0

_

.37$

-

14

14

22

15

15

__

0

_

0

431

12.0

11

50

42.5

10

-

13

0

11

4-

8

4-

0

4

4-

8

50°.530 t

0.9

12

12

42.4

45

-

9

14

4

0

20

7

12

407

13.7

12

4

42.4

5

10$

0

1

4-

2

4-

1

4-

8

4-

1

404

12.1

j

11

50

42.0

7

-

13

9

23

8

8

9

0

420

^ 12.5

11

53

41.9

_

22

-

11

3

5

4-

9

10

_

7

_

1

511

1 12.4

12

13

41.9

13

5

11

32

4-

3

1

4-

3

4-

8

,50°.510 t

10.5

1 11

53

41.7

23

-

20

13

1

2

7

4

4

.5G°.518 t

11.1

i 11

57

41.7

25

-

10

7

24

1

14

14

1

429

13.2

11

1

50

41.5

10

27

0

7

4-

9

4-

0

9

4-

7

440

14.0

11

58

41.5

_

34

-

9

2

2

12

4-

2

_

12

_

1

50°.517 t

10.3

11

54

41.4

27

-

11

9

17

8

4-

1

5

4-

3

470

10.7

12

5

41.3

28

-

11

10

21

15

15

5

0
3

447

11.3

1 11

59

41.3

23

-

1

2

2

1

4

5

__

475

11.3

12

5

41.1

1.5

-

19

11

9

1

2

3

3

435

11.7

11

57

41.1

20

-

2

17

11

4

_

1

__

14

4-

1

439

12.4

11

58

41.1

17$

-

14

3t

31Ï

4-

2

8$

0

4-

4

50°..520 t

10.3

11

59

41.0

20

-

12

0

4

24

12

8

11

50°.519 t

10.1

11

57

41.0

50

-

13

8

15

18

4-

4

12

4-

1

400

11.1

11

49

40.9

7

2

9

14

4-

1

4-

8

4-

3

8

13.4

11

49

40.8

20$

-

27

23}

_

20

4-

14

12.0

11

50

40.8

It

-

12

71}

4-

5}

0

4-

38

403

11.8

11

50

40.7

4

3

11

10}

4-

2

.51}

5

21

,533

11.0

12

21

40.8

25

-

1

12

17

0

4-

9

0

4-

9

411

12.9

11

51

40.8

14

-

10

0

0

4-

10

4-

10

0

4-

12

,50°.515 t

9.5

11

52

40.0

24

-

10

1

2

11

4-

11

_

9

4-

2

443

11.8

11

59

40.0

9

-

15

20

4-

2

4-

1

4-

8

4-

4

-L

5

457

11.0

12

1

40.0

25

-

17

0

4-

10

13

9

7

5

430

11.2

11

50

40.0

24

1

2

4-

19

0

10

5

4-

10

512

12.5

12

13

40.5

14

-

7

11

4-

3

4quot;

10

0

0

0

424

12.8

11

54

40.5

19$

-

4

10

9

_

2

_

18

_

1

_

7

434

11.7

11

57

40.5

28

-

17

13

4-

19

7

15

5

lo

öe°..5ic t

9.5

11

40

40.4

17

15

17

0

29

0

0

\' 9

50°..522 t

0.7

12

3

40.4

40

-

0

12

4-

14

14

34

5

17

50°.Ö25 t

9.8

12

8

40.4

39

-

20

0

4-

2

25

11

18

11

491

14.0

12

8

40.2

fit

-

18$

13

39

_

11:

4-

32

_

12

4-

23

.50°..527 t

8.0

12

9

40.1

—•

30

-

10

19

4-

3

4-

2

27

0

12

484

13.2

12

7

40.0

4-

11

-

22

3

-j-

18

4-

38

4-

31

1

4-

29

483

1.3.0

12

7

39.9

-

14$

143

4-

20

4-

20

4-

5

4-

24

50°..529 t

10.3

12

12

40.0

-

35

-

15

15

10

0;

13

20

4-

10

5G°.520 t

9.2

12

9

39.9

-

20

-

19

3

18

r_

L

22

4-

12

_

10

_

4

480

11.3

12

7

39.8

-

9

3

5

4-

32

4

4-

7

4-

1

4-

10

5G°.524 t

9.0

12

5

39.8

-

23

-

10

14

4-

11

4-

8

4-

3

3

4-

0

419

12.3

11

53

40.0

-

10

-

18

13

4-

17

3

9

2

4-

8

428

12.9

11

55

40.0

4

1

7

4-

31

13

3

4-

2

4-

0

- -

-

No.

diameter

1
1

Ml

780

\' 0\'-.958

1

0\'-.048

-1— I

781

0 .093

f

38

f

782

0 .038

f

21

78.\'}

1 0 .9.35

■ —

13

784

0 .577

f

2

im

0 .081

__

35

4-

78(i

0 .542

f

81

787

0 .4.53

17

788

0 .7.35

48

4-

789

0 .598

8

791

0 .7.50

49

__

792

0 .5()0

22

79.3

0 .795

Is

_

794

0 .758

-I-

24

795

0 .849

■f

■ 9rF

790

0 .404

_

21

-—

797

0 .,591

-f-

21

_

798

1 .902

39

799

0 .408

-f

(i()

-t-

801

0 .045

-f-

40

802

0 .,599

■f

8

_

80.3

0 .017

1-

20

f

804

0 .907

4-

7

805

0 .791

2.

80()

0 .527

H-

33

807

0 .432 —

10-

808

0.944 -

U

1 -

809

0 .8()0 -

5-

810

0.750 H-

7

f

811

0 .704

f

22 -

812

0 .712

f

12

f

813

0 .020

-f

18-

814

0 .933

1-

11 -

815

0 .970 -

49-

810

0 .788

38

f

817

0 .498

0

818

0 ..588

f

51 -

819

0 .085

f

44

f

820

0 .720

f

1

f

821

0 .500

f

25-

822

1 .115

f

3

823

0 .087

f

.35

824

0 .713

f

1

825

0.784

f

3

f

820

0 .002

f-

24

827

0 .572

f

13

828

0 .708 -

4-

829

1 .094

f

19-

830

1 .970 ■

30

831

1 .043 ■

29

832

0 .420

f

40

833

1 .342

11

834

0 .520

74-

835

0 .550

830

0.948 -

20

837

1 .178 -

3

838

0 .755 -

1-

32

f

839

1 .234 -

1-

3

1 840 i

0 .020

h

19

841

0 ..500 L

h

44

t-

-ocr page 80-

M3

f 0\'-.013

3

9

1

24^
17
21

•f

54
7

30
1

31

20
27
40
17

34 ff-

M,

M,

0^034

()\'-.013

f

41

f

34

20

f

47

f

2

f

48

f

17

f

43

f

73

f

19

-t-

17

f

47

f

32

0

4-

1

f

7

-h

24

f

25

4-

7

8

4-

44

-H

57

34

f

18

4-

21

H-

,38

4-

0

f

29

14

f

27

f

30

f

30

4-

11

-h

15

-L

18

4-

36

■i-

15

4-

04

f

9

7

f

24

2

4-

14

-1-

32

4-

46

-1-

40

4-

46

f

24

40

f

7

f

47

f

35

10

0-

34

f

37

f

10

1-

.30-

45

f

58

f

54

1-

24

f

23

f

29

71

1-

53

f

42 -

f-

01

f

M,

43 I—
76
53
13
86

53
32
62
74^
21 -

19 -

41 j-
21
45

12
17
6
3
17

48-
2 —

22
9
19

45 f
34 -
72
43
68

55 h-
40
81
49
85 J-

No.

diameter i-

Ml

M,

m,

f 0\'\'.004
4
10
39
37

8
16
1
16
19

iTia

H- O\'-.OO!) -L ()r.031

842
S4:}
i?44
845
84()

847

848
84»

850

851

8.52
85;]
855
85()

857

858
85!)
800
801
802

8().3
8()4
8()5
80()

807

808
80!)
870

871

872

873

874

875
870
877

0\'-.55()
0 .553
0 .598
0 .49!)
0 .825

0 .494
0 .458
0 .570
0 .()!)2
0 .702

0 .580
0 .519
0 .598
0 .451
0 .498

0 .507
0 .,545
0 .978
0 .035
0 .558

0 .741
0 .540
0 .55!)
0 .,59!)
0 .015

0.417

0nbsp;.884

1nbsp;.120
0 .558
0 .570

0 .019
0 .902
0.000
0 .003
0 .552

0quot;.018
19
1

17
()

13
11
43
24
.3

9
11
17
!)
11

-f 0quot;

f
4-

018
9
10
8
4

2
0
11
10
10

20
0
10
4

13

33

14

0

4
2

5
10

1
10
2

0
3
0
5
1

51 —
38 rh
20--
10 f

43-
20-
57 —
20 —
19

I-

f

[f
If
■f
f
f

f
f
f
f
f

f
f

f

f

f
f
f
f
f

f

f
f
■f
f

34
(gt;
30

17

22 —

18
84
43

0

24
18
29
13
17

27
11

40
0
20

10
41

31
10

28
17
106
27
33

4-
4-
4-
4-

4-
4-
4-

4-
4-

4-

4-

4-

4-

4-
4-
4-
4-
4-

4-

H-

17
28

31

18^
7
10
10

21
91

7
47

50 -1-

08
50
0
07
20

1 -

02 -
,52 -
73 f
73 f

37 —
14--
41
03 -i-

40
2!)
3
25
1

59^

18
17

24

^ 4

0

4
28

5
15

- 10

- 22
5
12

53

17^
25
19
20-

9-
15 -
0 —
3-
18--

12-
9-
32 f
30 f
14--

28
2

21-

29
11
15

7
9

8
11

3
5

4

1

8

-f
f
4-
4-

4-

4-
4-
4-
4-

4-
4-
4-
4-

4-

4-

4-

4-

9 -
20 -
7
4
2

58

15

7--
57 f
.50 f
29--

2 \'f
43-
12 —
25 .f
29--

60-
14--
85 ^
43

■f

■f
■f
■f

■f
■f

878

0.851

f

879

0 .556quot;

f

880

0 .763

f

881

0 .,588

f

S82

0.518

t-

883

0.803

f

884

0.633

f

885

0 .507

1-

880

0 .710

f

887

0 .009

f

889

0.739 -

890

0 .518

j-

891

0.844 -

892

0 .590

893

0 .504 -

894

0 .604

l-

895

0 .550

f

890

0 .649

f

897

0 .730

f

898

0 .590

899

0 .554

f

901

0.570 -

902

0.582 -

2h

903

0 .538

f

i.

904

0 .502

30
91
12

38
0

10
38
35
32

0 H-

140 —

98--

f

31nbsp;f
51nbsp;f

32nbsp;f
12 f
20 f

8 f
1
f
15 f
19 f
2-

30 -
41 --
24-
28-
05--

19
21
2
2
11

11

13
11

5

30
11
4
9

9
11

4

5
26

25
17

22
49--
11 f
0-
3 -

f

9
50
20
9
32

22

24 -
1 -
44 -

36
13

2

29

37

30
0

21
1 -

15 -
8 -
3 -

3-
2-
31 --
11

75-^-

45
53
22
00
27

44
80
59
1
48

15
7
27
7

14

3
5

4
3

11

7
9
2

60

79

80nbsp;[f

40
58
29
01
49

45

42
02

43
23

83

97 H-

109f- 39 -
07
14
90
107

24
30
15 J-

10

13nbsp;-

14nbsp;f-
0 -

13

f

f

101
118

29

77
104
153
168
132

-nbsp;441-

-nbsp;38

12
10

■f

45 -

103 ^
85 ^
02
119 -

70 -

2k-
15
14
14

2

1
31
43
5
10

54

55
47

411

374

7
7
10
4
1

3
34
13

28
13
10

51 --
18 f
^ 70 -h

43-
131 --
- 05-
2a 11m 1,51 s.
102nbsp;20 rf-

142 -I- 9.3

7 —
70-
34

01
98
163 if

141
147
105

25
2

4-

32
3
19

- 24
4- 11

to

0
OLf

17

k- 0

01
51

12
14 -f

4-

20
27 -
22

38

39

4-

f

y.

/

gt;2

ras

\'.02c

\' 4-

0quot;.007

\'

l/\'.l

- 0/\'.3

9

1 _

11

1.0

. 0.1

2

\' 4quot;

7

1.7

. 0.1

3

3

i

2.0-

0

0

! 4-

2.1

0.1

17

4-

2

!

0.5

4quot;

0.1 \'

3

2

:

0.0

4-

0.2 1

27

4-

30

\'

1.5

4-

0.Ö

24

4-

3

: 4-

2.1

0.7;

10

5

\' 4-

1.0

0.7

22

4-

8

0.7

4-

0.!)

quot;1

4-

20

1 _

0.7

1.0

18

4-

12

0.0

-H

1.1

9

2

4-

0.0

1.2 \'

13

4-

23

0.7

1.2

14

4-

12

4-

0.5

-f

1.3

10

5

2.3


4-

1.5

21

4-

16

4-

2.1

1.0

!)

20

0.7

-j-

1.7

4

1

1.5

4-

1.8

32

1

4-

2.1

4-

1.9

29

0

0.4

4-

2.0

12

4-

8

0.2

2.0^

4

4-

1

1.4

4-
4-

2.1

17

4-

11

0.9

2.7

25

1

4-

0.8

4-

2.8

11

11

4-

0.0

2.9^\'

29

7

4-

2.3

3.3

10

3

0.5

4-

3.0

15

10

1.4

4-

5.1

1

4-

13

0.5

4-

5.1

18

2

0.8

5.9

17

10

4-

2.1

6.0

4

4-

1

1.2

4-

0.0

0

4

0.1

4-

0.2

11

4-

8

_

0.1

4-

9.9

11

0

1.3

4-
4-

10.8

1

4-

10

1.9

11.8

14

4-

14

0.1

4-

13.2

3

4-

7

1.7

4-

16.8

10

4-

3

2.3

4-

17.5

20

7

2.0

4-

21.8 1

1

10

4-

0.6

4-

21.9

17

7

4-

1.4

4-

22.1

0

0

0.0

4-

23.0

10

_

12-

1.7

4-

28.4

12

f

0 ■

■f

0.3

4-

29.0

37 -

14 ■

4-

0.0 -

•f

29.2\'

2 -

13

1.6 -

■f

31.1 \\

7 -

10-

1.7 -

f

31.2 i

4 -

1 -

2.1

f

33.2 J

0 -

f

8 -

2.5 -

f

34.8 j

18 -

18 -

f

0.2 -

f

35.4

9 -

5

0.0 -

f

30.9 i

11 -

9 -

3.0 -

f

37.2

14 -

6\'-

I-

0.2 -

f

46. Ö

14 -

40 -

L

1.2 -

F

52.3

9 -

14 -

0.5 -

1-

57.8

3-

11 -

f-

5.8 -

59.7

10-

23 -

5.8 -

59.0 ^

No.

B. D.

or Br.—St.

Mag.

a

1900.0

S

a

u.
\' 1

f-i

u.
\' 1

842

i 428a

1.3.0

2h 11m

56s

! 50°

40\'.0

0quot;.008

:—

0quot;.019

1

0quot;.018

4-

0quot;.021

0quot;.017

0quot;.010

0quot;.000

4-

0quot;.006

843

501

12.9

12

11

39.8

0

20

4-

9

4-

20

0

8

0


4-

1

844

! 525

12.5

12

16

39.8

0

0

4-

10

4

4-

1

10

4-

3

4

845

390

13.4

11

49

39.7

35

18

4-

8

4-

0

0

0

9

4-

4

840

389

10.9

11

48

39.0

33

4-

5

4-

4

4-

13

3

1

5

3

847

452

13.5

12

0

39.0

4

i—

14

4-

2$

4-

40

14$

5

1

3

9

848

849

1327

13.8

11

59

39.4

12

12

4-

0

4

0

4-

1

3

0

417

12.7

11

53

39.1

3

44

11

4-

21

24

4-

33

5

-f

10

850

394

11.8

11

48

39.1

12

25

4-

10

4-

5

21

6

4

1

851

412

11.3

11

51

39.0

15

4

4-

10

4-

17

13

4-

8

j

0

4-

5

852

494

12.7

12

8

38.8

14

4-

8

-f

20

4-

9

19

4-

11

4-

11

4-

3

853

492

13.2

12

8

38.7

4-

21

12

0

4-

27

4-

4

4-

23

4-

2

4-

19

855

490

12.5

12

8

38.5

20

18

10

4-

22

15

4-

15

4

4-

9

856

444

13.9

11

59

38.4

I

10

4

4-

10

6

4-

1

1

4-

3

857

441

13.4

11

58

38.4

0

12

13

4-

9

10

4-

26

3

4-

13

858

448

13.3

12

0

38.3

9

17

4-

33

1

11

4-

15

14

4-

4

859

383

13.0

11

47

38.1

0

—•

9

4-

14

4-

20

7

4-

8

4-

5

4-

7

800

5e°.513 t

10.1

11

48

38.1

24

23

4-

0

4-

1

18

4-

19

9

4-

5

861

493

12.2

12

8

38.0

8

6

4-

4

4-

15

0

4-

23

4-

2

4-

14

862

515

12.9

12

14

37.9

12

13

4-

2

14

4-

7

4-

4

5

4-

7

863

.5G°.514 t

11.4

11

48

37.8

24

30

5

11

—.

29

4-

4

_

10

_

2

864

453a

13.0

12

0

.37.7

4-

0

12

4-

10

4-

18

26

■—

3

4-

3

_

3

865

459

12.9

12

2

37.0

4-

2

10

1

13

•9

4-

11

3

4-

0

866

514

12.5

12

14

37.6

4-

11

4-

0

10

4-

29

1

4

9

4-

9

867

433

12.4

11

57

37.0

11

8

4-

2

4-

30

—■

14

4-

14

0

4-

11

868

14.0

11

58

30.9

_

0

9

0

4-

30

22$

4-

2

_

1

4-

3

869

440

10.6

11

5!)

30.7

17

12

4-

3

4-

30

8

8

0

4-

1

870

5G°.511 t

9.4

11

47

30.3

4

4

0

4-

12

26

4

2

5

871

482

12.9

12

7

30.1

4-

7

0

5

4-

24

7

0

4-

3

4-

4

872

421

12.7

11

53

34.0

4-

5

4-

3

4-

1

4-

14

12

7

4-

2

3

873

449

12.4

12

0

34.0

lot

4-

1

4-

2

4-

31

4-

2

4-

10

3

4-

10

874

5e°.528 t

10.2

12

9

33.8

18

9

8

30

15

1

11

4-

0

875

390

12.0

11

48

33.7

4-

5

10

4-

25

4-

• 21

14

7

4-

10

2

876

420

12.0

11

54

.3.3.7

4-

5

4-

12

4-

17

4-

45

1

4-

4

13

4-

13

877

471

12.9

12

4

33.5

8

12

4-

5

4-

31

4-

3

4-

7

2

4-

12

878

56°..523 t

10.8

12

4

29.8

18

4-

4

14

4-

19

8

4-

11

3

4-

8

879

507

12.9

12

12

29.0

2

31

4-

10

4-

43

8

4-

4

2

4-

11

880

529

11.3

12

17

28.0

12

12

4-

14

4-

30

4-

4

20

4-

1

4-

18

881

468

12.6

12

4

26.5

5

5

4-

5

23$

11

4-

18

0

4-

12

882

522

13.2

12

10

23.0

0

10

4-

8

4-

8

1

11

4-

1

4-

7

883

531

11.0

12

20

22.3

4-

18

10

3

13

_

8

4-

7

0

4-

5

884

1945

12.3

12

18

18.1

—■

5

12

5

12

18

2

7

8

885

445

12.8

11

59

17.9

29

4-

3

4-

4

0

1

0

10

_

3

886

422

11.0

11

53

17.7

4-

9

6

4-

3

9

15

3

4-

2

7

887

463

12.0

12

3

10.2

4-

10

4-

25

11

7

-f

2

5

4-

5

-f

1

889

523

11.5

12

10

11.4

23

4-

9

7

1

12

_

0

_

1

7

0

890

455

13.2

12

1

10.9

4-

37

13

9

8

10

4-

11

4-

8

4-

1

891

55°.574 t

10.8

11

59

10.7

14

2

4-

2

39

35

9

3

23

892

415

12.0

11

52

8.8

4-

13

4-

14

7

14

1

7

4-

3

7

893

520

13.4

12

15

8.7

1

8

4-

31

9

10

6

4-

5

894

530

12.5

12

19

6.0

4-

2t

4-

7t

7$

4-

10$

5$

4-

6$

_

1

4-

7

895

534

13.0

12

21

,5.1

15

4-

27

7

0

5

15

4-

7

4-

0

896

458

12.1

12

2

4.5

4-

14

4-

13

10

23

—.

17

11

4-

2

15

897

404

11.5

12

3

3.0

4-

14

16

4

28

4-

10

2

—.

2

3

898

547

12.0

12

25

2.7

2

4-

7

1

10

10

2

1

0

899

460

12.9

12

2

55°

53\'.5

4-

30t

24$

4

4-

43}

4-

14}

4-

15}

0

4-

22

901

12.7

11

55

47.7

1

4-

11

35$

37

4-

14

—•

30}

15

2

902

12.7

12

7

42.3

25t

8

14$

4-

19$

9}

1}

15

4-

2

a = 2/i

llm Is to

ce = 2/( 1

I m ,51«.

903

13.1

2ft 11m

57°

39\'.0

4-

12t

62

-L

■ 10

4-

7$

4-

8$

0}

7

4

904

13.4

11

20

38.9

lit

52

-

16

5$

4-

21}

12}

_—

24

0

ni,

4- 0quot;.030
34
4

15
22

49
5

30
14

20 —

18

30

31
25
18

29
10
24
22

.39

39
21
33
23

40
45
30
54
40

28
52
39
32
17

22
3
10
1
3

9
3
28
8
41

20
11
12
17
1

55
50
33

17
15

4-

4-

t-

-ocr page 81-

Ml

0\'\'.012 0\'-.396
444
300
81
270

211
184
198
107 ^
190 -

210 -
1.\'53 -
104
120
90

104
120
58
71
10

0

diameter

No.

1900.0

a ^nbsp;(?

No.

Mag.

M,

M,

0\'-.04» —
89 —
35
II

M3

0\'\'.020 -
30
79
22
07

M,

M,

mi

0.quot;024
7

14

47
4

m^

—■ 0quot;.007
29
5
18
0

1113

m,

raj

013

\' 1

0^750

4- 0\'

0.717

4-

0 .0:58

1 .2(i7

-f-

0 .798

4-

0 .037

f

0 .,591

4-

0 .020

4-

0.059 !

f) .()28 4-

1 .09:5

0 .573

0 .731

4-

0 .806

4-

0 .619

1-

005

007

008
1)0!)
OIO

014

015
OKi
018
010

020
022
02.\')
»21
025

020
!)27
028
020
o;{o

o;m

0.\'52

».\'54
!);55

0.\'50
».\'57
».\'58
0.\'5ü
»41

042
»4;3
»44
045
lt;)40

»47
048
»4»
»50
»51

9.52
»5.3

954

955
950

957

958

959
»00

901

902
90.3

904

905
900

907
909
970
972
974

0\'\'.001
40
()2
2.\'5
00

905

907

908

909

910

914

915

916

918

919

920

922

923

924

925

926

927

928

929

930

931

932

933

934

935

930

937

0,38
939

941

942

943

944

945

946

. 947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

969

970

972
974

4- 0quot;.010
3

0quot;.008
1
12
27
5

11
13

OJ

3

lOJ

7
10
3
2
25

0quot;.012

0quot;.002t
17t
25
17
24

4- 0quot;.017
4- 21
4- 15
62
2

14
7
3

— 0\'

4-

•.002
30
12
04

7

14

8

17
8

18

34
12
4
10

2

7
14

8
1

29

4- 0quot;.022

0/\'.4
.3.8
3.7
0.7
5.7

,3.0
4.1
7.7
4.7

3.1

7.0

7.2

4.0
3.5
0.0

5.4
0.2
4.9

7.1
0.5

4.3

4.5

3.4

7.0

3.2

0.3

5.5

4.3

4.4

4.5

5.2
6.9

2.6

7.2

6.3

7.2

6.3
4.3
4.3
7.5

ail

7.1

4.5

5.3

5.5

5.6
5.1
0.0
4.8

5.0

3.1
6.8
5.0
5.5

7.3

5.2
6.5
4.8
6.2

0quot;.008}
44
19
58
13

19
12
21
12
22

37
15
7

13

120 -
i:50 -
199 4-
110 -

118 -
»1 -
88 -
4» -
04 -

41 -

58 f
.57 -
.57 -
108 f

41 —
04 -
31 -

45 -
08 -

.\'52 -
60 —
.35 -
70 -
30 —

101 -
70 —
,50 —
177 ^

74 i-

4- 0quot;.007
— 0
— 4
30
0

27nbsp;4-
20

129
4

14
2
16
16
12

11
17

28
30 4-
71 4-

4- 0quot;.010
4- 33
4- 21
47

4- 13

50.-3
42.2
41.Ö
40.\'J

30.1;

29.2

27.1

20.3
24.9

22.2

18.4
17.\'»
17.2
1,5.(\'

I,5.5
15.2

14.7
14.2

12.8

II.9
11.8

10.5

9.0
9.Ö

8.9
8..5

8.1
7.9
7.7

27
34
8

33

37
10
14
11

2

27
(i5

29
18
21

24
16
21
2
27

43

14
7

15
22

19
9
43
43
18

24

30
10

0

20
20}
57
3

10

3
1
2

12

5

4
2
3

21

2
0
8
12

4-

11

28 -
h 44-

4-
12 —

4-

75
81
()0
58
71 I-

73

19
27

20
(i i-

13
0
2

19
11

22
12
12
11

14

19 —

5 —

28
1

5
2

11 k-

7
5
1
0
9

0
2
3
7
23

10
7
5
12
3

f

14
5
12

7

5

22
20
9
9
11

8
9
1
1
0

1

17
28
9

4

10
12
14

6
1

5
2

41

3
5

1

14

3
8
9

13
5
7
12
12

7
12
16

3

4

5

7

8
4
1

3
0
3
7

6

1

15 —
29 —

,52 —
70 —
4 —
41
47

4
20
27
49
51

27
44
24 —
12 —
.\'50 —

0 —
2 —

28nbsp;[f
7

101-

10

7 —
223 f
0 —
20 —

0
0

8

20
38
2
17
20

0
10
11
22
23

12
20
11
0
17

3
1
14

3

4-

4-

4-

2 4-

10 -I-

,\'57
89
57
53
15

80
70
.\'55
81

02

52
42
78
123
28

52nbsp;(
128

53
29
25

18
56
20
9
12

15
7
12
11
18

34
5
2
0
13

10

0
34
34
9

15
21

19

3

4

30
9
0

9$
0

20
11

15
9
55

21
22
9
24
13

13
13

5
32

9
8
2
1
17

0
10
12

4-

10
,\'5

2
9n

4-

4-

4-

4-

0 .750
0 .038
0 .870
0 .943
0 .,501 \'

0 .788
0 ..501
0 .740
0 „524
0 .704

0 .479
0 .012
0 .511
0 .4(gt;0
0 .0()1

0 .741
0 .040
0 .707
0 .,571
0 .709

0 „557
0 -.5.58
0 .738
0 .848
0 .774

0 .430
0 .598

0nbsp;.0.50

1nbsp;.108
0 .521

0nbsp;.023
0.075

1nbsp;.4.59
0.874
0 .600

0.809
0.040
0 .981
0 .530
0.848

0.805
0 .860

0nbsp;.779

1nbsp;.158
0 .644

f
H-
H-
4-
-I-

4-
4-

4-

f

■f

4-

f

42
25
;-55
13
45

78
17
3
10
31

24
3
72
71
20

25
17
12

57
52 -

58nbsp;-
10
32;
14 4-
29 \'

19
7 -
23
10
10 -

12
7

0
7
1

10
17

5
2
20

22
25
55
14
14

36J
17
11
25
1

20
11

54

4-

21
7

19
1

20

14
0
7

52
o

1

3
11
21

0

4
0

19
1
■ 7

1

3
11
21

()

4
0

19
1

12
24
1

13
3

3

14
0

10
10

3
7
36
7
3

25 4-
28
58
10
17

15
100
12

4-

28

5
10

7

0
17

3

13

13

0
10
39

4
0

2
11

15

14

6

17
7

4
21
11

9

16
34
23

5

5
4

29
26
3

6

15
17
11

2

4
12
11

4-

4-
4-
4-
4-
4-

4-

4-



4-
4-
4-

4-
4-
4-

4-

4-

4-
4-

4-

4-
4-
4-

4-
4-

4-
4-

68
73

39
20

8
28
4

22

13
57
10
12

20

30
22
23
21

31
16
28
21

2

23

40

14
10
10

17
23
7

14

4-

.1

2
5
14

3

7

8

113
1

4

4-

4-

52
71

4-

49
9
200
33-
20-

87 f
62 f
310 —
43 —
38 —

33
46

37t-
-t-
f

10
39
96
18 —
21 -

4 -
2

12
4-

4-

4-

4-

4-

4-

4-
4--

7.7

7.2

7.1
0.9\'
6.9

6.8
0.7
6.5

6.3
6.3quot;

5.8
5.7
5.3
5.3

5.2

5.1

4.9
5.1
.5.1

4.7

4.3

3.1

2.8
2.7

2.7

2.2
2.2

1.8
1.7
1.3

12
0
123
7
7

4
14

5
1

10

11
0
9

7

14

2
3

8

4-

30
35
58
48

46
26
79
77
40

0
123
7
7

4
14

5
1

10

11
0

9
7

14

109
4
13

13
18
9

4-

— 10

18
28

19

20
19

29

—nbsp;14

—nbsp;20

—nbsp;19

Ot

—nbsp;21

—nbsp;44

—nbsp;12
— 8

—nbsp;14

—nbsp;15

—nbsp;20

—nbsp;5

—nbsp;12
— 6

— 11
7

—nbsp;7
12

—nbsp;13

89-
25 —

25
35
20
15
27

73
17
30
521-

64
20
14
18
13

42

23
29

17
112

41

43
21
48
25

20

24
7

01
12

19
51

25

18
10

15
21
28
12
22

7
10
7

22
27

3
7

37
20

13

3
20
48
27
35

15
30
17
34

14

39
18
15
0
15

29
20
24
18
64

30

31
0

33
22

22
22
14
41
17

21
37
24
20
4

4-

12

43 —
23 -

2
1
5

3

13
7
9
12
11

4

4
13

5

3

4
10
12
11
10

7
10
7
13
12

4-

18

17

3

14

4
7

18

4-

4- 36

84
60
88
70
14

61
63

76
37
41

58
53
53
72

77

— 15

53 ^

47 L
52^
21
122^

72
80
10

25
39

50
38
24
29
22

36
43
4
41

17

26
33

18

15
37 -
01

28
20

14

15
12

4-

4-

29

33
84
18
0

401—

4-

4-

4-

19
22
3
21
10

2

3 „.

6}

19
31

20
2

2
1
26
23
0

3
12
14

4-

4-

59
23
33
9
7

41

43
3
0

48

44
24
21
32
01

14
18
11

0
20

2
3
3
7
7

3
3
2
6

12J

33
13
41
20
20

4-

8

00

5

4-

71

30

4-

38

__

13

4-

9

118

4-

15

4-

10

4-

12 -
42 -
21 -
25

k- 18

46 I—
4
43
22
31

28
94
3

15

34 —
11 —

4-

4-

- 37

32
1
29

14
10
28
12
21

71
62
53
70
91 —

10
7

17 4-

- 3

12
28
15
11
5

3
2
6

— 12

33j-

4-

4-

— 13

4-

- 15 4-

4-

9
1
1
56
18

B. D.

or Br.—St.

11.4

2?I 11m 16«

1 57° 35\'.7

4-

0quot;.020

0quot;.008

343

11.6

11

36

1

29.6

4-

5

30

344

12.2

11

37

21.5

4-

14

6

.57°.536 t

8.9

11

14

21.2

4-

47

4-

17

289

11.1

11

22

20.3

4-

4

4-

5

345

12.2

11

37

9.5

4-

15

20

336

12.6

11

33

8.7

4-

2

4-

4

233

12.4

1 11

7

i

0.0

0

4-

5

56°.499 t

10.2

11

29

.5.7

17

1

359a

12.3

! 11

41

4.3

8

9

56°.487 t

9.0

11

13

1.7

19

21

250

12.8

11

11

56°

57\'.9

9

37}

338

11.5

11

34

.57.0

9

1

346

11.0

11

38

50.7

8

18

284

12.4

11

20

,5,5.1

17

25

ö6°.496 t

11.3

11

25

.5,5.0

10

1

278

12.2

11

18

,54.8

4

11

315

10.0

11

28

,54.2

20

12

56°.488 t

10.3

11

11

,53.7

13

23

270

13.4

11

16

52.3

4-

14

24

332

11.1

11

32

51.5

17

13

325

13.4

11

30

51.4

3

21

349

11.5

11

39

.50.1

15

12

258

1,3.2

11

13

49.1

4-

3

7

3,55

11.3

11

40

49.1

16

18

270

13.0

11

18

48.5

4-

18

4

297

12.4

11

24

48.1

4

2

334

13.3

1 11

32

47.7

3

15

330

i;i.8

11

32

47.5

4-

Ö6J

4-

2}

327

12.0

! 11

31

47.2

6

0

307

11.4

1 11

20

47.2

6

3

262a

12.1

11

14

40.7

—■

35}

4-

1

371

11.7

11

44

40.7

4-

100

4-

108

251

12.8

11

11

40.5

14

5

56°.492 t

11.3

11

18

40.4

17

14

252

12.9

11

11

40.3

11

14

275

12.9

11

18

40.3

17

19

3.35

11.5

11

32

40.1

24

8

333

10.8

11

32

45.9

8

9

241

11.2

11

9

45.9

18

10

317

14.0

11

28

45.0

_

3

29

1313

12.5

11

17

45.2

0

21

255

12.1

11

12

44.9

—r

3

15

56°.502 t

9.5

11

31

44.9

18

10

301

13.2

11

25

44.9

-j-

31

13

1910

12.3

11

23

44.7

4-

7

20

1908

11.9

11

23

44.5

4-

11

23

56°.500 t

8.2

11

27

44.7

33

4

50°.491 t

10.6

11

10

44.7

10

22

320

12.5

11

29

44.3

9

11

312

10.7

11

27

44.0

4-

1

_

15

1320

12.2

11

41

42.7

10

19

56°.489 t

10.1

11

14

42.5

44

12

1319

13.1

11

27

42.3

23

7

296

10.8

11

24

42.3

31

21

249

10.7

11

11

41.9

11

_

11

304

10.7

11

25

41.8

--

26

8

272

11.2

11

17

41.5

13

18

56°.501 t

9.3

11

29

41.3

30

9

280

12.2

j

11

19

1

41.0

10

14

L- 12
7
0
7
1

4-

4-

4-

4-

-ocr page 82-

-I-

132^
170
109

32

29 -
4 -

M,

Ms

m,

0\'\'.02S

i 4- 0\'\'.02£

1 —

0\'.022

t 4-

74

1 —

2

!

42

! 4-

62

; __

C

5!]

22

t

53

i -f

Tc

)

2C

) —

01

_

c

) —

!]

1 —

Hi

i 4-

2(:

1 —

1(;

t —

19

1_

17

\' —

11

__

55

1

4-

10

1 —

12

8

,34

(i!)

0

1-

5

4-

78

4-

31

2

4-
4-

31

4-

12

10

41

1-

40

4

23

49

1-

20

40

4-

35

33

_

29

51

13

_

29

__

18

2()

_

30

_

87

4-

1.30

_

,30

_

70

4--

8

14

92

_

IB

_

8

78

00

18

_

53

14

3

4-

49

4-

25

!)

42

3

20

32

4-

5

_

2

_

63

4-

11

17

_

40

15

24

__

101

37

28

_

44

24

32

70

_

27

_

9

75

4-

18

21

34

4-

15

24

4-

70

21

20

43

5

41

118

5

__

38

15

5

81

32

12

_

47

20

5

90

4-

4

1

100

f

1

19

_

92

24

8

4-

109

8

8

377

580

4-

319

4-

75 -

f

10

13

109 -

f

7

13 -

110 -

8

3 ■

f

80 -

37

0 -

81 -

f

44

21 -

89 -

f

22

f

11 -

55 -

117

4-

8 -

f

80 -

41

0 -

f

93 -

4

f

15 -

25 -

F

409 -

f

29 -

94 -

h

301 -

h

83 -

t-

80 H

h

335 -

14 -

6 H

437 -

18 -

17 H

388 4

L

5 -

7 4

321 4

h

65 4

L

.3 4

258 4

f-

20 4

h

No.

B. D.

or Br.—St.

Mag.

a

1900.0

3

a

i)

y\'cc

380a

1

13.1

2/i 11m

26s

! 50°

41\'.0

i quot;

0quot;.018

4-

0quot;.003

4-

0quot;.011

4-

0quot;.012

!_

0quot;.012

4-

0quot;.003

4-

0quot;.002

0quot;.001

357

13.1 i

11

40

40.8

2

4-

28

4-

1

4-

56

4-

12

16

4-

8

4-

4-

9

303

13.0\' j

11 i25

40.0

!-

2

20

9

4-

35

4

4-

15

10

15

i 1316

12.4 ji

: 11

24

39.4

--

21

0

7

4-

17

4-

3

2

_

3

6

Ï 351

12.3

11

38

39.2

10

25

6

4-

28

4-

1

0

13

4-

7

340

\' 12.2

11

35

39.0

;--

5

15

4-

3

j-

31

4

___

6

_

3

6

274

13.9

11

17

38.8

-

12

45

3

4-

7

19

4-

3$

_

10

1

56°. 504 t

9.5

11

39

38.3

-

7

5

0

4-

14

16

10

3

_

5

361

1 12.4

11

41

38.3

14

10

,—

6

37

2

4

3

4-

8

56°.505 t

10.7

11

42

36.6

30

6

4-

1

4-

31

20

5

8

0

271

13.2

11

10

36.1

9

0$

2

25

4-

5

_

4

4-

3

4-

5

268

12.8

11

15

36.0

2

4-

7

8

5

4-

9

4-

9

2


-p

5

260

13.1

11

13

35.5

-

0

11

2$

4-

34

14

4-

3

4-

2

6

287

12.3

11

21

35.4

19

1

28

10

8

4-

15

19

9

56°.495 t

10.7

11

19

35.3

-

36

4-

4

6

4-

18

4

4-

8

11

4-

7

56°.497 t

10.3

11

22

34.0

-

25

7

7

()

12

13

_

11

11

.347

; 11.0

11

38

34.3

-

26

11

14

9

3

5

16

_

1

56°.498 t

8.3

11

22

32.8

-

33

12

4-

9

1

21

7

_

7

_

9

294

j 12.8

11

22

32.7

33$

45

43$

4-

10$

4-

12

4-

47$

41

29

370

10.8

11

45

32.3

-

11

7

4-

1

4-

21

4-

5

4-

4

4

4-

8

310

12.5

11

28

32.0

-

5

11

4-

4

4-

5

4-

15

__

3

2

4-

3

288

12.9

11

21

30.9

-

m

4

7

4-

25

4-

6

.—

20

_

8

2

1318

11.8

11

27

3C.6

0

10

11

4-

12

5

2

_

3

4-

1

280

12.5

11

21

30.4

,-

6

0

7

4-

33

9

11

4-

2

11

1314

12.5

11

17

30.3

-

17

2

0

4-

14

12

4-

2

8

4-

1

368

12.7

1 11

43

29.8

4-

1

25

3

4-

28

15

4-

5

_

-4

4-

6

259

12.3

1 11

13

28.4

14

4

8

28

3

4-

8

8

4-

10

273

12.1

11

17

27.6

21

2

7

4-

8

12

1

9

1

279

12.5

11

18

27.0

25

25

4-

4

4-

18

4-

14

9

_

10

3

56°.494 t

9.8

11

21

25.4

29

16

2

12

14

4

12

2

56°. 503 t

9.9

11

35

24.5

6

7

5

o

_

1

__

4

_

6

3

281

11.7

11

19

23.8

18

2

5

4-

13

0

12

7

4-

9

56°.493 t

9.5

11

19

23.2

21

4-

10

4-

1

4-

5

20

4-

11

2

4-

2

313

12.7

11

27

18.2

18

23

15

8

()

0

18

3

56°.507 t

9.1

11

42

17.9

39

4-

4

6

1

18

4-

5

()

2

13.0

11

13

15.6

4-

7

14

11

16$

_

3

4-

2

50°.490 t

10.5

11

15

14.6

3

0

— ■

22

35

24

4-

2

12

14

350

10.9

11

38

13.0

11

3

12

27

3

4

_

10

_

9

337

11.0

11

33

12.7

4

4-

5

18

32

20

2

_

9

_

14

291

12.4

11

21

10.7

0

4

22

20

4-

1

4-

8

12

2

12.4

11

43

8.7

4-

20

6

1

2

4-

3$

5

4-

4

4-

3
8

339

12.7

11

34

6.6

7

4-

1

21

22

2

4

12

373

11.3

11

44

0.2

8

5

14

32

4-

6

4-

2

_

10

_

5

55°. 570 t

8.9

11

21

6.2

4-

319

343

4-

318

254

231

201

4-

324

_

222

295

12.2

11

22

5.0

13

10

13

10

12

8

12

3

372

12.0

11

44

3.6

13

1

4-

67

_

12

4-

5

4-

5

4-

30

4-

1

55°.569 t

10.5

11

20

55°

56\'.2

5

17

40

17

1

7

17

8

308

11.3

11

20

55.6

2

7

18

16

.—

12

.—.

10

_

11

_

15

55°.571 t

8.6

11

41

54.8

23

7

22

43

15

4-

12

__

18

_

8

1925

12.0

11

44

51.4

8

1

22

29$

13

0$

!)

10

55°.572 t

10.6

11

50

51.3

4-

5

4-

13

5

44$

_

29

_

48$

4-

7

_

42

55°. 573

10.8

11

51

50.1

3

4-

18

25

35$

15

23$

9 j

_

24

12.4

11

20

42.8

10$

4

27$

4-

7$

16$

19$

12

_

12

a = 2/( 1

3™ 29.5 to 5

= 2h

l\\m

lis.

12.3

2/1 10m

48s

57°

38M

4-

25$

28

2

26$

4-

5$

4-

3$

2

_

4

10.4

10

32

37.4

4-

79

4-

24

4-

44

4-

18$

31

31$

48

19

57°.533 t

7.4

10

29

33.5

16

31

3

15

_

29

_

6

_

13

_

6

182

12.0

10

47

30.2

20

35

18

0$

4-

7

40

_

23

4-

22

170a

12.1

10

40

29.8

4-

3

16

4-

2

20$

4-

17

4-

25

__

2

4-

12

57°.535 t

7.0

10

55

26.2

4-

64

4-

41

4-

57

4-

30

4-

10

4-

12

4-

55

4-

10

1876

14.0

10

48

17.4

4-

21

4

4-

4

4-

8

4-

1

4-

16

4-

8

4-

10

a
M,

O\'-.OU
()5
32
4
44

21
82
2
24
.3

20
28
.34
12

\'gt;•2

No.

cliaineter

Mx

nbsp;O\'-.OIO

-f-nbsp;57

nbsp;4!)

■[-nbsp;8

nbsp;20

-I-nbsp;40

-I-nbsp;20

-I-nbsp;30

-I-nbsp;7!)

-nbsp;12

I- (i7
I- .50
f- .34

I- 7
27

5

- 7
23
23

M,

M,

111 2

0quot;.004
29
19
5
24

14
44

4

15

1113

ni,

m3

4- 0quot;.001
— 19

075
!)7()
!)77
!)78
i)7i)

080
081
082
i)8;{
!)84

!)85
!)8()
!)87
i)88
08!)

!)!)()
!)!)!
!)!)2
!)!).\'}
!)!)4

905
!)!)(!
!)!)7
!)!)!)
1000

1001

1003

1004

1005
100()

1009

1010
1011

1013

1014

1015
lOlC

1017

1018

1019

1020
1022

1023

1024

1025

102G

1027

1028
1029

1031

1032

1033
1035

103G

1037

1038

1040

1041

1042
1045

0\'-..534
0 .534
0 ..540
0 .018
0 .023

0 .044

0nbsp;.4.50

1nbsp;.110
0 .01 (i
0 .802

0 ..522
0 ..571
0 .533
0 .02!»
0 .803

0 .930

0nbsp;.817

1nbsp;.405
0 ..570
0 .844

0\'-.022
■12
78
37
()4

o^-.ois
108
()6
20
40

52
3
17
()4
48

.37
23
56
17
21

.30
2
22
1
21

12
26
0
43
4

27
2!)
15
.3
12

0quot;.011
1

—nbsp;9
7

—nbsp;0

IP.3
1.1

1.0
0.2
0.4

0.7
0.0

1.3

1.4
.\'i.1

3.7

4.1

4.2
4.4

5.1
5.4
0.9
7.0

7.4

7.7
8.0
!).1
9.0

9.5

0quot;

4-

4-
4-

4-

4-

.021
05
44
26
37

40
16

23
46
40

.34

5
44
25

27

3
18
9
20
30

15

35
22
43

24

37

38
18

28
9fgt;.

0quot;.015
!)
7
0
2

1

22
19
1

5/\'.l

3.2

5.3
5.5
.3.4

4.0

6.4

3.4

3.1
3.0

6.5
6.7

7.0
.5.8
0.1

5.7
3.5
.5.7
,5.7
2.5

4.9 I

5.8
.5.0
,5.9
0.4

2.8

7.1
0.4
6.3

5.9

4-

975

976

977

978

979

980

981

982

983

984

985
980

987

988

989

990

991

992

993

994

995
990
997
999

1000

1001

1003

1004

1005

1006

1009

1010
1011

1013

1014

1015

1016

1017

1018
1019

13
0
3

!)
1
13

7

8

4-

4-

41
70
46
()2

41

(i7
85
57
1.37
75

78
88
31
182
40

42

78
85
37
77

30
80

79
47
051—

4-

4-

4-

4-

8
2
28
(i

7

14
9
43
1

4
7
11
7
0

4-

4-
4-

4-
4-

4-
4-
4-
4-
4-

4-
4-
4-
4-
4-

4-
4-

4-
4-
4-

1

13
()

15
8
10
44
1

6
23

_ o

w
!)
II
79
1

0
10
12
45
0

10
4
10
0

2

24
4
2
2,5
10

7
2

10
23

4

14

0

3

5

4

0
1

5

343
10

1

16

8
7
2

13
18

15
6

24
!)

2

12
3
8
11
14

18
5
14
12

16

3
2

0 .002
0 .553
0 .093
0 .000
0 .000

0 .585
0 .023

0nbsp;.051
0 .000

1nbsp;.047

1 .018

0nbsp;.703

1nbsp;.090

0nbsp;.582

1nbsp;.190

0 .540
0.904
0 .830
0 .819
0 .010

0.011
0.574

0nbsp;.709

1nbsp;.201
0 .044

0 .000
0 .900

0nbsp;.704

1nbsp;.331
0 .001

0.874
0 .841

0 .014

a.
0
.031

0nbsp;.923

1nbsp;.092
0.008

0nbsp;.055

1nbsp;.877
0 .430

34
12
42
.30

8
()

34
15
10

35
9

13
34

14

5

17
41
23
33

0
31
21
.39
23

18

36
23

741
18

— 1

42
12
0
10

25 f-

4-

9.0
11.3
12.1
12.8
14.3

nbsp;15.2

nbsp;16.0

nbsp;16.5

4-nbsp;21.7

4-nbsp;21.9

Ö
4
12
7

7

4
2

5
5
1

15
0

4-

22
7

13

14

50

30
12

3
10
14

51

7

8
000

20

22
17
10
50

4

4

22

04 -
73 -
.55
97
27

43
14
34
75
58

85
137
128
140
132

93
139
164
017
132

7
9

4-
4
1

4-

4-
9
4-
4-

4.0
6.2
6.3
5.0
3.0

23
15
2
11

— 20

14

26
5
22
0

0
24
16
21
15

9
11
21
243
4

24.2
25.2
26.9
27.1\'
29.1

7.0
6.8
3.5
4.2!
5.9 !

125
82
101
122

41nbsp;-

108nbsp;-

83nbsp;-
8.52

95nbsp;-

147 -
170 —
101 -
103 -
102

22
12
18
22

1
21
14
318
13

4-

4-

2
3
5

232
13

4-nbsp;31.1

nbsp;33.2

4-nbsp;33.7

nbsp;33.7

4-nbsp;34.9

0
9
4
206
3

2.8
4.1

2.7

5.8
5.7

32
79
29 -
29 -
42

73 f-
83
49

a

941—
13

229
215

4-

3s to

20
108
132
2/» 11
71
51

-nbsp;247

-nbsp;233

-nbsp;177
n 11,5.

00

In 10m 2
174
-I- 288

27
25

30
34
15
42

4-

85
75
121
241
142

97
103
02
58
11

86
117
61 -
100

58 -f

37
71

29

-ocr page 83-

B. D.

ATQ rc

1900.0

u

or Br.—St.

Mag.

a

S

ftquot;«

f\'l

u.
\' 1

i 225

10.1

2h llm

4s

I

11\'.8

__

0quot;.020

0quot;.005

1

0quot;.006

4-

0quot;.007

,4-

0quot;.001

_

0quot;.004

0quot;.003

0quot;.000

162

12.3

10

38

i

11.1

-j-

9

29

1

7

8

4-

4

4-

2

_

8

0

205

11.8

10

57

10.4

10

5

6

2

4-

5

4-

10

_

8

4-

9

180

11.4

10

40

4.7

2

12

4-

11

10

4-

21

27

-i-

3

4-

10

215

12.9

11

1

i

4.3

8

33

4-

20

12

25

4-

11

4-

20

4

50°.486 t

0.9

11

2

1

3.2

34

20

3

1

9

4-

2

_

15

1

200

11.2

10

57

0.0

-1-

1

18

2

4

1

4-

0

4-

17

-

3

10

222

12.3

11

3

0.0

0

7

J.

4

2

5

4-

22

0

4-

12

184

11.1

10

47

50\'^

50.4

16

15

-i.

7

0

11

4-

12

4

4-

3

50°.483 t

9.9

10

46

50.4

9

2

2

2

4-

8

8

2

4-

5

104

13.1

10

39

.54.7

15

5

4-

8

4-

43

13

4-

10

4-

6

12

22!)

12.(i

11

5

49.0

57

26

2

4-

30

4-

2

4

4-

9

7

170

n.o

10

40

47.3

1

16

4-

30

9

20

30

4-

22

22

1!)8

12.3

10

54

4.5.3

25

29

0

4-

11

8

14

13

_

G

50°.482 t

!1.3

10

38

44.1

30

21.

4-

12

4-

10

10

4

7

2

178

12.1

10

45

43.0

5

33

2

4-

30

23

_

7

_

8

2

190

11.8

10

51

42.9

10

13

4-

5

4-

8

3

15

_

5

_

6

191

12.1

10

51

42.5

25

-1-

10

4-

38

4-

9

4-

2

5

4-

28

4-

5

236

12.9

11

7

41.5

24

10

4-

2

4-

11

20

10

4-

4

7

171

13.1

10

43

41.4

0

9

-j-

18

4-

19

0

3

4-

7

4-

2

186

11.9

10

48

41.1

31

8

4-

4

2

4-

3

_

5

_

8

1

229a

12.8

11

5

40.0

9

10

4-

10

4-

28

13

1

_

1

4-

3

203

11.0

10

50

39.9

32

15

7

4-

7

4-

1

4-

5

_

8

4-

4

193

13.4

10

52

39.0

39

24

4-

4

4-

36

4-

7

1$

4-

6

4-

10

172

11.9

10

43

38.3

25

11

4-

3

4-

2

4-

10

12

7

3

165

11.2

10

39

37.9

3

0

1

4-

18

_

8

4

-0

4-

4

165a

10

39

37.8

15

4-

21

12

4-

7

4-

19

1

56°.485 t

8.0

1 10

49

37.6

30

r—

19

4-

10

1

19

4-

1

7

4

179

12.9

10

46

37.5

3

-

19

10

25

7

2

_

10

4-

201

12.5

10

55

37.3

13

-

11

12

4-

20

1

— ■

0

12

2

50°.481 t

10.3

10

35

37.3

24

-

8

0

4-

20

_

25

2

_

5

0

175

12.5

10

45

36.9

20

-

15

4-

15

11

1

2

__

1

4-

1

223

12.0

11

3

30.0

23

31

4-

10

31

30$

0

4-

18

4-

15

159

11.3

10

37

35.2

23

-

12

4-

4

10

5

2

7

4-

2

200

1.3.4

10

55

34.7

8

-

1

22

4-

70

12

11

13

4-

!)

166

13.2

10

39

34.4

5

-

23

4-

3

12

_

24

_

7

_

5

6

219

13.7

11

2

33.0

10

7

4-

2

4-

13

4

4

0

0

246

11.0

11

10

32.1

4-

18

-

8

J-

1

4-

18

4-

2

4-

4

4-

3

4-

7

209

13.7

10

58

31.6

13

-

10

10

4-

53

5

4-

3

2

4-

13

230

13.3

11

5

31.5

21

-

18

4-

5

14

14

4-

6

7

4-

10

207

1.3.1

10

57

31.3

21

-

10

4-

10

25

4-

0

_

4

1

4 \'

4-

6

212 [

1.3.2

11

1

30.7

29

-

13

10

21

8

_

!)

_

1

1

183

10.7

10

47

29.2

24

-

17

18

4-

20

10

4-

7

_

19

4-

6

213

12.0

11

1

29.0

7

2

0

5

-I.

3

3

_

1

0

197

11.9

10

54

28.7

0

-

27

4-

1

20

4-

2

14

8

4-

12

244

12.6

11

10

27.8

22

-

12

13

4quot;

23

4-

7

4-

5

_

15

4-

10

208

13.1

10

58

27.3

11

-

0

-j-

1

54

2

4-

4

4-

2

4-

15

220

12.0

11

4

20.9

8

-

47

12

4-

20

4-

2

4-

4

16

9

50°.484 t

9.5

10

45

20.2

33

-

13

1

4-

23

0

4-

3

__

11

7

224

11.8

11

4

25.5

17

8

2

4-

22

4-

0

13

3

0

220

11.7

11

2

23.5

8

4

14

4-

4

___

5

_

3

_

8

_

2

173

1.3.0

10

44

23.5

13

4-

4

4-

3

9

4-

1

4-

24

1

4-
4-

14

237

13.3

11

7

23.3

-1-

3

4-

24

4-

3

11

12

4-

5

4-

8

8

204

11.1

10

57

23.2

19

0

2

4-

29

0

4-

0

6

4-

9

107

12.8

10

39

23.0

30$

23

28

4-

9-

4-

31

4-

7

—-

12

4-

13

227

12.7

11

4

21.5

19

22

4-

4

_

8

_

4

4-

6

4-

12

0

109

13.5

10

39

18.3

8

4-

8

15

9

21

1

3

_

8

1306

11.8

11

2

15.0

0

10

13

8

4-

0

4-

2

9

1

211

13.3

11

0

14.4

11

4-

19

15

4-

22

4-

1

4-

6

0

4-

9

247

12.0

i

11

10

12.0

1

4-

0

17

22

11

4-

3

7

7

-

-ocr page 84-

M3

— 0^047
97
00
124
124

105
121
140
129
131

123
210
174
212
372

f- 178

106
177
170

29 -

H-

-f-

13

L- ;10 -

0 .083
0 .622

0 .880
0 .714
0 .674

0 .050
0 .011
0 .031
0 .554
0 .451

0 .054
0 .665
0 .7.52
0 .572
0.770

0nbsp;.779

1nbsp;.498
0 .891
0 .409
0 .030

0.534
0 .705
0 .607

0nbsp;.038
0.579

1nbsp;.215
0 .571
0 .620
0 .672
0 .470

0.711
0 .916
0 .470
0 .498
0 .502

or)
13

Zh !);« 5;5s
204
222

107
140

23

52 -I-

to a —

a ~
55
83
49

199 -

255

2h \\0m 3!]

36
116
114

48
42
K- 53

-K ■ 377
-f- ,344
-t- 250

70
50

17

50
20
5
33
32

144 —

210-
159-
92-
170-
107 --

.58--
78--
69--
91 --
08-

78--
08
f
11 -

!)3 -

08--

54-
35 -
33
4-
49-

24
95 -
19 -
45 -
71 -

78--
82 f

79--
81 -

295
265
262
235
235

216
219
120

170
147

171

8

121 —

30 -f-
f- 73 —

,5
20
18
10

80

1

6
7
23

■f
1-

.1.

i-
■f

■h

■f
■f

f
-

f
f
f

12 -
17 —

20 H-
7
9
t)

21
14
18

18
6
27
68
2

57
5

34
14
21

4
16
4
10

29

20
1
03
84
14

142
55
40
22

30

50

f

08
24

1.57 -f-
122
147

34
01
10
47
40

3
5

43
8

4

11

20
20
32
9

I-

4
17
68
28 -
29

10

08
10 j-
45

5nbsp;-

31 --
23 -
71 -
9-
58

diameter

No.

M,

M,

f 0\'\'.045
• 23

M,

0\'.044
122
IOO
145
121

96
143
168
102
1,52

112
20()
99
114

M,

0\'-.097
74
50
!)9
98

M3

4- 0^018

_

15

_

4-

46

_

54

4-

4-

4

13

_

29

_

4-

59

4-

4-

37

8

m,

0\'-.531
0 .060
1 .479
0 .052
0 .523

0 .522
0 .50!)
0 .508
0 .402
0 .0!)5

0nbsp;.570

1nbsp;.303
0 .458
0 .508
0 .509

0 .788
0 .528
0 .7\'40

0nbsp;.400

1nbsp;.273

1113

1114

1115

1117

1118

1119

1120
1121
1122

1123

1124
i 125
1120
1127

1129

1130

1131

1132

1133

1134

1135
1130

1137

1138

1140

1141

1142

1143

1144

1145

1140
1148

1150

1151

1152

1153

1154

1155
1150

1157

1158

1159

1160
1102

1103

1104

1165

1166

1167

1168

1169

1170

1171

1173

1174

0\'\'.009

14

15

f

1

15

8
9

7
10
25
(5
19

7
47
0
4
84

21

2
50

()
28
14
2.3
43

22
20

30
10

1.58

31

2.3
77
0
28

33
108

H-
29 -

3 -I-

3
!)
02
2
29

21
!)!)

5
2
202

19
25
40
29
105

111

45
117
108
90

92}-

7

15
91
18
148

0

7(gt;
133
93
22

1!)8
III

229
94
1!)2

100
129

02
,32

2

1
16
34
II
10

119
82

103 I-
100
108

2
7
31

35 U

21 -
48-
10 -
7-

43 I—
38
51—

15

16nbsp;j-

49
14
25
41
30

18

59 -
7

19

23

124
128
74
70

46 -
20 -
30
(it

-f 50 k-

13-1-
29

1401-
72
353
122
50

f
f

32
82
14
72

33

82
72
101
19
01

83
89
102
81
09

23
15

108
41

201—

f 404

-f-

25-
18-

24
32
50
44
14

29 - 116 -

20 -
,39 -
320
10
19

47-
27 —
7 -
12 —

124
82
65
72

17
43
1
0

34 -

20
15
9
12
1

110 -

1175
1170

1177

1178

1179

0 .518
0 .581
0 .050
0 .551
0 .001

95
21
33 -
25 f-
52--

1.30

03
72
136
51

14
27
20
27
13

15 —
30 -
29 —
18
1 —

mj

0quot;.011
10
5

15
21

13
19

24
18
18

16
50
34
46

107

h 38

14
34
37

40
02

nbsp;5,5.8

4-nbsp;59.0

-nbsp;61.1

—nbsp;00.5

—nbsp;42.7

—nbsp;41.9

—nbsp;40.0\'

—nbsp;37.7

19
15

28
37
0

11
7
11
4
10

12

29
2

22
13

24

30
67

37
49

38
36
22

9

7.9

9.8

34
11
21

4-nbsp;15.4

4-nbsp;1,5.5

4-nbsp;17.7

4-nbsp;10.0

4-nbsp;15.9

4-nbsp;13.8

28
2
24
20
6

4
8
8
3
21

9
23
17

— 2

-F

7

15 -f

13
34

11
19
15
7

17

4- 16.3 — 36.7
I- 14.2 — 35.0

20 -f

0
20
II

10
3
22

3

4

-f-

,32.0

24.8
21.6
21.1
21.1

19.5

14.6
13.4

12.0
12.2

12.1

11.9
10.4

5.9
,5.8

0.3
0.1
0.7
0.8
1.11

1.3
1.5
1.9

3.1\'
3.2

4.4
5.4
0.0
0.7
7.4

4-nbsp;14.3

4-nbsp;10.8

4-nbsp;10.3

I-nbsp;14.3

I-nbsp;17.4

4- 14.0
4- 13.3
4- 16.9\'\'
15.2=
4- 14. P

12.8
14.9\'\'
-t- 12.9
4- 14.1
15.7

3
28
I

19

0-f

3 -I-
.52 —
19 —

— 1

- 19

12
10

0 -f

33
7
22
15
0

1
15
10

3

4

12
12
34
5
29

11

24
4
7
18

-f

8
4

10

8

155
10
13

-f

-f-

10
20
10
19
28

— 17

4-

10
2
15
21
4

4-nbsp;17.4

4-nbsp;14.3

4-nbsp;12.8

4-nbsp;13.6

4-nbsp;14.3

-f

25
o

— 17

10
10 -f

23
14
45
50

7
1

17

24
3

0
15
3
2

14.2
17.0
13.5
13.5

13.3

10
7
0

in
10
0

15
17

85
44
41
30 -f
33 —

4-nbsp;15.1

4-nbsp;13.4

4-nbsp;12.5

4-nbsp;13.5

4-nbsp;15.0

4-

17
25
150
11
10 4-

29
21
3
1

1

0
22
0
10

m,

ni2

m3

-f 0^008
4

-H 17

— 18
2

0quot;.004
5
8
19
11

15

32
12
8
I

10
34

8

30
105

-f- 0quot;.020
— 10

—nbsp;30

—nbsp;20
— 8

28?\'.2\'\'
28.8
29.2
4- 29.-7
30.3=

0quot;.000
11
20
0
0

0
20

4-nbsp;107^.5

4-nbsp;7.9

4-nbsp;10.6

4-nbsp;10.7

-fnbsp;7.3

1119

1120
1121
1122

1123

1124

1125

1126
1127

1129

1130

1131

11.32

11.33

11.34

1135
1130

1137

11.38

1140

1141

1142

1143

1144

1145

1140
1148
11.50

1151

1152

1153
11,54

U.55
11.50

1157

1158
11,59
llOO
1162
1163

1104

1105
1100

1167

1168

1109

1170

1171

1173

1174

1175

1176

1177

1178

1179

0
17

30
2
20

30.7

30.8
30.!)
31.4
31.8

4 4-

104-
21
13
3

7.7

7.7

9.8
9.8

■f 9.9-\' 4-

3
33
19
17

4- 34.2

nbsp;38.!gt;\'

4-nbsp;,39.1

4-nbsp;42.2

nbsp;51.8

4-nbsp;10.2

nbsp;8.0

4-nbsp;10.1

4-nbsp;11.0

4-nbsp;8.1

15
12
9
48

1

19
9

17

22

20

0
37
14
72

— 21

13
17
9

30
10

1
41
14
51

0

23
49

48
32
3

3
5
14
3

3

4
9
8

5
10

11
7
9

38

6

.52.1
,52.2
,52.7
53.4
53.0

8.4
8.3
7.8

10.7

8.5nbsp;

32
18

30 -f-

.50 - 14

10 -f 20

No.

B. D.

or Br.—St.

Mag.

a

1900.0

0

a

p.quot;«

a
\' 1

1877

13.1

\'2h 10»! 48 s

1

! 56° ir.5

0quot;.00IJ

4-

0quot;.005$

lt;

: 4-

0quot;.011

4-

0quot;.015

0quot;.001

4-

0quot;.012:

t

0quot;.006

4-

0quot;.010

8

234

12.0

11

7

11.0

0

5

10

21

10

0

6

55°.564 t

8.1

10

48

10.7

14

7

4-

5

41

19

4-

21

1_

3

_

4

185

12.1

10

47

10.2

4-

9

18

15

31

4-

1

14

_

10

__

14

253

13.2

11

11

9.4

8

4-

11

21

19

4-

1

4-

0

—\'

- 10

1

239

13.2

11

8

9.2

0

15

\' 13

5

4-

7

0

12

0

240

13.3

11

9

9.1

9

32

1 —

19

28

25

0

_

20
8

i_

16

195

13.3

10

54

9.0

-f

20$

11

24|

41

4-

9

4-

25

_

J 4-

4

190

13.8

10

54

8.4

5

7

18

10

4-

t

17

_

12

4-

7

194

11.8

10

52

8.1

18

_L
1

2

18

32

1

4-

1

13

8

1305

12.8

10

51

,5.0

4-

8

-

9

17

— ■

9

4

4-

1

_

9

3

55°.568 t

8.7

11

0

1.0

47

-

33

51

45

14

4-

0

_

45

_

12

192

13.8

10

51

0.8

0

-

7

35$

: -h

7

-f

12

32

_

19

_

11

177

12.8

1 10

45

55° .57\'.0

4-

3

--

29

47

4-

4

9

8

_

30

5

12.8

1

0

48.2

87$

-

103

108

48

64$ —

101

59

11.1

11

4

47.9

4-

1

-

11

39$

1.5$

: —

1

_

1.3$ —

22

10

1,3,2

: 11

5

47.8

2$

-

15

4-

27:

19

i

8

4-

4

11.5

! 11

8

47.3

11

4-

11

151

28:

9

23:]

7

21
8

13.8

10

48

40.6

4-

27$

28$

1

,35::

-1-

.37:

17

10:]

, 18

55°.567

8.8

11

3

40.1

39

1_

1

14

r

38

8:

22

27^

32

10

11.9

11

8

44.2

-1-

45

12

47$

4-

0$

4quot;

20

_

n

15

4-

3

12.3

10

54

41.1

4-

10

4-

22

03$

4-

34;

4-

7\\

SI

23

,4-

8

a = 2a 9

in 53 s to !

= 2h 10

m 39s.

!

5T.532

10.0

2h 10«

9s

57° 40\'.4

-f

66::

7

4-

17$

4-

.37$

4-

38|

171

23

4-

10

11.0

10

8

39.8

4-

46::

21

11$

4-

21$

7

20:1

4-

1

_

9

78

11.9

i 9

53

21.9

4-

18

12

4

7

25

0

0

4-

4

91

12.1

I

! 10

1

21.2

4-

51

4-

9

4-

20

7

4-

2

17

4-

28

4-

7

105

12.4

10

0

19.4

27

4-

2

0

15

4-

11

13

4-

7

4-

5

134

12.3

10

22

17.0

4

23

4-

23$

24

11

4--

16

i 4-

5

1

95

12.9

10

4

1,5.9

4-

35

4

4-

18

12

9:

4-

9

4-

17

1

18,55

13.9

10

19

13.4

34$

5

4-

5

m

4-

38

4-

15

4-

10

4-

14

126

12.1 \'

10

19

11.4

18

4-

2

3

13

7

16

_

2

4-

3

89

12.0 !

10

0

4.1

4

29

7

0

16

4-

32

_

5

4-

12

97

11.4

10

4

1.0

5

2

4

7

17

12

4-

4

4-

2

5

127

12.8

10

19

0.0

6

20$

-H

2

14

4

4-

25

2

4-

8

82

11.2

9

50

0.5

5

1

4-

20

4-

1

14

4-

15

4-

8

-f

4

121

11.2

10

17

50° 59\'.0

4-

1

13

4-

8

2

0

-f

26

4-

1

4-

13

56°.480 t

8.0

10

20

54.1

1

-H

11

4-

22

2

49

28

4-

13

27

56°.474 t

10.5

10

0

53.0

39

34

—\'

18

18

10

66

27

_

41

110

13.7

10

12

52.1

12

5

9

-I.

29

4-

2

36

_

3

_

10

131

12.2

10

21

51.8

0

29

20

3

2

47

17

25

149

13.1

10

31

51 4

7

12

13

4-

24

4-

2

36

11

11

110

11.7

10

15

51.4

16

24

11

2

12

_

35

_

15

21

8

147

12.5

10

29

49.9

16

-h

4

4-

5

4-

13

7

_

20

0

133

12.2

10

21

45.5

28

■—

7

-1-

7

4-

0

4-

0

_

8

_

5

1

108

12.7

10

10

45.3

5

18

5

11

1

7

8

0

56°.473 t

9.0

9

58

39.9

19

17

11

0

__

15

4-

10

14

4-

I

129

12.8

10

20

39.7

11

25

4-

7

4-

10

4-

10

1

_

5

4-

5

1.50

12.4

10

31

89.0

4-

172$

4quot;

150

4-

1,55

4-

0

23

_

14

.4-

158

11

139

11.9

10

25

38.8

37

11

11

4-

9

4-

4

___

20

17

7

128

13.7

10

20

38.5

10

10

4-

12

4-

18

15

5

2

4-

3

130

11.7

10

20

38.3

13

29

11

4-

13

4-

9

4-

1

10

4-

6

50°.470 t

10.4

10

0

38.1

39

21

4-

9

4

4-

3

4-

15

_

10

-h

9

140

13.7

10

20

37.7

4-

3

3

4-

9

4-

35

4-

19

2

4-
4-

4i

4-

12

8

143

13.4

10

26

36.5

2

1

4-

0

4-

46

22

-f

3

2

4-

1303

13.4

10

27

36.4

30

5

7

2

1

4-

4

12

4-

1

115

13.2

10

14

35.2

24

1

11

4- ■

75

4-

8

4-

2

0

4-

22

144

12.7

10

26

34.2

11

4-

0

4-

9

4-

34

4-

11

4-

8

3

4-

4-

15
8

155

12.1

10

33

33.7

5

22

4-

6

4-

31

4-

17

8

4

141

12.9

10

26

33.0

8

0

16

4-

20

4-

5

_

9

_

10

4- ■■

2

116a

12.0

10

15

32.2

5

10

-h

16

4-

23

1

4

7

4-

8

-ocr page 85-

B. D.
)r Br.—St.

Mag.

a

1900.0

0

«

u
\' I

152

11.4

1

i2/i 10m

31s

56°

31\'.4

_

0-.019

_

0quot;.013

0quot;.007

4-

0quot;.013

_

0quot;.

001

_

0quot;.012

_

0quot;.011

0quot;.003

153

12.5

i 10

32

31.3

16

2

0

4-

28

1

0

11

4

4-

1

123

14.0

10

18

31.1

39

15

13

4-

89

4-

26

3

7

4-

15

113

11.7

10

14

30.3

16

1

5

4-

13

24

4-

1

G

4-

10

56°.477 t

9.8

10

5

.30.2

20

2

10

4-

31

16

10

10

1

148

13.1

10

30

30.0

4-

5

12

.—

10

4-

36

1 4^

10

13

_

7

5

137

13.3

10

25

29.8

20

4-

1

2

4-

31

5

17

6

2

93

13.0

10

3

28.3

11

7

5

4-

35

4-

12

4

2

4-

10

90

13.8

10

1

28.1

24

2

4-

1

.4-

17

22

4-

2

5

11

118

12.6

I 10

16

26.9

4

13

0

28

4-

13

17

4

4-

2

98

10.3

10

5

26.7

22

9

4-

4

31

4-

14

9

_

G

4-

7

13.4

10

8

26.4

13

4-

12

1$

4-

44

2

81

1

4-

14

56°.479 t

9.1

10

16

26.0

49

0

4-

4

4-

17

1

3

—■

10

4-

2

120

14.0

10

17

24.2

4-

17$

8

4-

19

4-

65

4-

.32

4-

6

4-

12

4-

27

94

13.2

10

3

23.9

30

4

4

4-

33

5

23

10

4

135

i 13.2

! 10

23

22.2

17

4-

10

5

4-

13

0

21

1

_

7

107

13.1

; 10

8

21.1

15

15

4-

2

4-

51

4-

5

6

1 4-

1

4-

17

103

12.2

10

6

20.3

6

4-

1

4

5

4-

2-

11

3

6

124

12.5

10

18

19.7

20

4quot;

2

2

4-

15

4-

5

3

5

4-

3

99

10.7

10

5

18.7

18

4-

1

1

0

4-

14

4-

4

5

4-

5

56°.478 t

8.6

10

10

18.3

51

30

9

11

G

4-

3

25

0

104

11.5

10

6

17.3

15

16

15

4-

14

151

4-

24

15

4-

19

125

13.3

10

19

16.5

37

4-

2

4-

11

14

4-

7

4

3

4

96

12.9

I 10

4

1G.5

4-

1

4-

1

j4-

14

29

4-

3

4-

13

4-

7

14

132

12.4

10

21

14.9

16

13

62

4-

3

4

3

32

2

101

13.2

10

5

14.8

0

4-

4

7

11

4-

7

11

_

.2

4-

4

122

13.6

10

17

12.5

4

t —

5

: 4-

4

8

quot;r

9

8

0

4

136

10.4

10

25

12.5

30

1

18

7

14

; 4-

1

6

15

_

6

146

12.7

. 10

29

11.2

4-

4

17

5

4-

8

10

—•

6

6

4-

1

1852

13.7

; 10

16

2.7

4-

39

20$

13

4-

21

10$

4-

3

2

4-

9

138

10.9

10

25

1.3

16

4\'

5

23

18

4

_

10

_

14

10

117

12.1

10

15

1.3

10

6

5

23

4-

11

—.

18

6

___

12

156

11.0

10

33

55° 57\'.4

18

0

0

38

3

171

4

_

19

12.1

10

39

48.0

4-

10$

4

18

29$

8$

21

58:

7

_

31

a = 2/i

J m 22s to

a = 2/i IC

m 1^.

1817

12.1

2/j 9»

42s

57°

26\'. 3

4-

61$

3$

4-

3

4-

38:1

;

271

: 4-

49^

: 4-

16

4-

41

33a

10.8

9

24

25.7

4-

41

22

0

0

4-

53

4-

141

: 4-

5

4-

20

1818

1.3.2

9

48

23.6

4-

80

22

2

4-

24

251

: 4-

22

-1-

15

4-

23

68

12.1

9

49

22.3

56

7

4-

4

1

20

4-

24

4-

14

17

1798

12.3

9

32

17.8

4-

35

21

19

14

15

8

6

11

56

11.0

9

40

13.2

4-

9

n

9

4-

15

13

■f

4

4-

6|

4-

9

70

11.3

9

49

11.9

4-

10

2

4-

5

4-

2

4-

23

14

4

4-

13

32

12.7

9

22

8.G

44

-L.

14

4-

.3

4-

IG

11

4-

13

4-

16

4-

13

56°.467 t

9.8

9

31

4.1

4-

5

-

2

7

4-

2

4-

5

4-

16

3

4-

10

39

11.9

9

27

3.6

4-

3

-

9

8

26

4-

10

4

4-

2

2

52

12.4

9

38

2.6

4-

3

-

8

1

10

4-

171

: 4-

19

2

4-

11

57

10.7

9

40

0.2

4-

2

-

16

4-

10

—,

16

_

8

4-

5

4-

1

_

3

73

12.5

9

51

0.0

7

11

4-

27:

: 4-

12

7

4-

10

37

13.2

9

27

56°

.54\'.9

4-

17

4-

10

13

4-

14

15

.—

42

0

21

54

11.3

9

39

52.2

4-

21

41

4-

33

7

14

41

32

_

26

64

12.5

9

47

49.7

4-

18

12

4-

9

7

4-

1

4-

11

4-

6

4-

4

1787

12.5

9

23

48.7

4-

30

22

4-

3

_

1

4-

13

___

26

4-

3

_

10

36

12.4

9

26

42.5

12$

5

10

1

4-

16

_

9

4-

1

__

1

49

11.8

9

35

42.3

10

4

21

0

4-

2

_

7

14

_

3

61

12.4

9

45

38.4

3

—■

11

4-

12

4-

28

4-

3

7

4-

4

4

34

13.8

9

23

37.4

20

4-

17

7

4-

9

4-

13

10

4

0

5G°.471 t

G.4

9

52

35.4

44

12

4-

35

4-

32

4-

19

_

31

4-

3

_

3

38

12.7

9

27

34.8

0$

4-

13

16

4-

16j

2

20

—.

5

6

51

12.5

9

36

34.8

13

4

6

4-

23

2

1

_

5

4-

5

56°.468 t

11.7

9

33

34.3

3

4

3

4-

9

4-

6

20

1

6

5G°.470 t

7.1

9

47

33.8

38

-

3

4-

12

4-

13

4-

4

4-

1

4

4-

5

3

m,

m.

.007

4-

0quot;.023

0quot;.003

0

4-

38

_

2

14

4-

49

4-

24

4

4-

23

4-

22

0

41

18

10

4-

46

8

1

4-

41

7

G

4-

45

4-

10

2

27

4-

20

1

4-

.38

4-

11

4-

41

4-

12

0

4-

54

4

4-

27

_

3

20

75

30

3

4-

44

6

6

4-

24

_

1

3

4-

62

4-

4

3
1

4-

6

4-

1

4-

26

4

0

4-

n

4-

13

8
14

0

4-

5

4-

25

4-

14

12

3


4-

6

15

4-

40

2

G1

14

5

G

0

G

5

4-

3

4-

8 -

G

3

0

4

4-

19

4-

9 -

12

4-

33

4-

10

22

6

_

4-

4

11

11

1

25

3-

28

4-

6

2 -

5

4-

48

23

3

10

50 -

4

4-

34

4-

21

0

4-

9

16 -

17

4

18 -

11

4-

24

J.

10

7

4-

11

4-

20 -

5

4-

25


4-

8 -

5

11

2 ■

10

17

-i-

7 -

1

1

4-

14 -

12

7

__

11 -

6

2

4-

24 -

11

23

17 -

34

4-

2 ■

1() -

10 ■

4-

2

1 -

5 ■

4-

8

4-

11 -

12 -

■j-

8 ■

4-

14-

20 -

4-

9

0-

13 ■

f

38 ■

4-

1 -

5

4-

19

4-

11 -

36 -

f

42 ■

4-

17-

14 -

f

26-

4-

5 .

f

33 -

4-

2 -

f

19 -

f

4-

13 -

f

23 -

f

24

-ocr page 86-

141 -
112
129
178

4-

131 -
100 -
108
95
103 [f

172 -
129 -
139

21.

■f

f

17 -I- 182 I-
31
52
0
4

230
123 -
143
173

142
155
212 -

93 4

4-

45
10
12
02

25 j- 178 l-

M,

M,

Ma

0\'-.04]

1 4- 0\'-.09\'

i -1

0\'-.02(

^

5!

)

J —

f 4-

7;

) —

^ 4-

! 4-

01

1

It

) --

1(

gt; 4

r__

2(

) 4-

3!)

\' 4-

91

22

1

8

4-

lOli

2

51

4-

112

13

_

112

■f

07

112

4quot;

20

4-

no

!)0

51

4-

102

4-

22

89

4-

55

20

_

05

4-

97

.30

__

88

4-

51

4!)

07

4-

110

24

\\

83

77

H-

23

_

187

101

31

4-

128

4-

70

54

4-

149

119

41

4-

180

4-

85

20

4-

84

f

121

___

10

4-

105

f

101

37

52

f

107

10

4-

139

f

99

—-

40

90

f

107

10

4-

1,54

f

125

__

21

4-

91

f

131

2

-f

117

f

130

19

107

f

100

40

~f

170

-1-

1,53

19

quot;f

195

f

137

44

f

214

f

152-

39

f

92

f

104-

17

f

140

4-

1.58

f

58

f

51 -

31

4-

.529

4-

12

0

.541

4-

1

f

44

4-

222

4-

11

■f

4()

4-

271

4-

24

27

4-

132

-1-

4

f

04

155

4-

8

4-

52

4-

127

4-

41

f

37

4-

1,58

-f

5

f

47

4-

129

37

f

29

9

1 ■

f

53

53

19

f

24 ■

f

20

f

10

f

44 ■

75

45 -

f

02 -

60

f

15 -

f

15 ■

47

f

0 -

f

43 -

19

29 -

f

29 -

30 -

1-

51 -

11 -

71 -

f

20 -

h

39 -

9 -

f

29 ,

h

90 -

27 -

f

84 H

h

20 -

93 -

h

29 ^

h

44 ,

h

14 H

h

21 4

74 H

h

15

20 -1

143 -1

h

58 -

39 -1

9 H

h

75 4

f-

31 4

49 -

38 4

[-

m,

\'.008 a

23
10
39

8

80
0
75

4 -
14 -
13
21 i-

15

34 -
20 -

29

15 -

1900.0

u

i)

1VT« ^

ftquot; ^

Mag.

a

r s

u
\' J

12.1

2h

9m

48»

56°

32\'.5

_

0quot;.004

0quot;.001

4-

0quot;.00ö

4-

0quot;.028

4-

0quot;.011

4-

0quot;.008

4-

0quot;.002

4-

0quot;.014

12.0

9

47

30.0

19

4-

10

7

4-

29

9

4-

10

0

4-

10

1.3.6

9

47

20.5

4-

20$

0

3

4-

11

4

0

4-

8

1

9.9

9

54

24.4

35

21

5

8

11

4-

9

16

4-

4

12.1 -

9

41

23.2

12

7

18

22

10

4

8

4-

()

12.4

!)

50

20.3

_

20

9

10

4-

2

-f

1

4-

12

17

7

13.4

9

28

19.8

24

1

4-

17

5

4-

3

4t

4

4-

7

11.6

9

54

19.4

10

4-

5

—■

20

2

4-

11

0

13

4-

2

13.6

1

9

51

18.3

4-

38

4-

44

4-

35

31

12

34

4-

38

28

1,3.4

9

40

10.8

13

1

25

8

4-

38

4--

11$

29

1

2

11.8

j

!)

4!)

16.4

_

18

12

5

4-

1

4-\'

4

4-

11

_

10

4-

7

8.2

!)

41

10.3

,37

7

4-

()

18

19

4-

10

8

—.

4

10.9

9

28

15.1

4-

2

4-

9

5

4

0

7

0

4

7.4

!)

58

1.5.2

57

20

4-

n

14

21

13

14

15

13.3

i
i

!)

89

15.0

4-

.3

4-

18

15

4

4-

(i

—■

5

2

2

12.2

9

41

12.6

_

8

]

8

3

9
31

10

4-

12

_

5

1

13.5

9

38

9.8

4-

30

18

14

1

—•

8

2

12

12.1

10

1

8.0

7

10

4-

10

23

—•

14

10

4-

3

—.

17

12.0

!)

53

7.9

12

-f

1

17

33

4-

n

12

. 5

12

12.0

!)

40

7.7

4-

3

5

7

52

10

5

4-

3

18

13.7

9

28

0.8

4-

82:1:

40$

18

1$

4-

6}

4

0

_

1

13.2

!)

50

4.5

4-

1

i

4$

19

7

4$

13

8

!)

13.0

!)

38

2.7

4-

70

6

19

4-

23

4-

27

4

4-

11

4-

10

9.7

!)

31

1.4

4-

8

2

10

18

7

10

2

14

13.3

9

50

55°

59\'.9

4-

20

6

10

7

3

7

4-

3

2

11.5

9

33

59.4

42

4-

16

■—.

4

23

4-

5

.—

111

12

_

10

11.7

9

35

,59.3

4-

23

16

—■

3

4-

!)

8

ö|

quot;0

4-

2

12.2

!

9

56

,57.2

4-

01$

-f

3

15

2$

-f

7

4-

4-

8

4-

3

1.3.5

!)

40

51.1

4-

89$

4-

37

3$

10$

9$

20}

17

18

11.7

9

51

49.4

Hh

31

11

17$

10$

13

1!)}

3

!)

10.8

9

53

48.2

4-

1

11

8$

18$

4-

5

29}

_

0

_

18

10.0

9

48

48.0

4-

11

4

11$

27$

4-

12

29;

4

_

18

12.8

9

55

46.9

4-

10$

lit

17$

4-

35$

4-

17$

23:

9

1

12.8

9

41

43.9

4-

17

4-

3

17$

18$

4-

13$

1}

3

4-

7

39s to a

= 2h 9m

21i.

11.0

27.

8 m

43s

57°

36\'.7

4-

1$

4-

40$

4-

11$

4-

29$

11$

49$

16

4

29

11.5

8

39

35.1

4-

14$

1

4-

38

4-

3$

2$

58$

4-

15

4-

29

11.4

8

57

18.6

4-

30

8

4-

14

8

4-

13

1

14

4

1

8.9

9

2

16.7

4-

28

2

11

2

13

4-

20

12

4-

13

11.0

9

11

9.4

4-

32

4-

22

14

20

27

10

20

17

9.2

9

11

9.0

4-

18

17

4-

11

7

4-

18

2

4-

0

4

2

13.1

8

42

8.5

4-

21

4-

5

0

13

4-

8

_

10

4--

3

_

0

12.8

8

48

7.1

14$

54$

8$

29

4-

4-

31

4-

21

5

10.8

9

11

0.2

3

17

1

11

4-

—■

4

5

3

12.1

8

43

50°

.59\'.8

4-

16

8

7

4-

9

9

40

2

20

9.7

8

47

57.3

13

4-

11

20

9

4-

2

51

13

27

12.4

9

17

57.1

4-

9

9

17

17

_

10

_

20

_

8

__

20

10.8

8

50

50.0

15

13

26

3

—■

3

57

—.

13

30

13.0

9

13

56.5

4-

26

20

4-

5

29

7

52

4-

2

31

11.5

9

14

54.2

4-

36

2

3

4-

1

—■

10

44

7

20

12.1

9

17

.53.0

0

4

13

4

4

32

7

18

1,3.2

9

4

52.7

4-

36

3

2

4-

8

12}

_

35

4-

7

_

18

10.9

9

15

51.5

25

4-

20

4-

19

30

31

47

4-

21

39

13.2

9

9

51.2

4-

25

8

30

4-

7

_

7

—.

25

11

12

13.0

8

50

47.3

4-

30

22

1

4-

10

4-

14

26

1

7

12.8

8

53

44.0

4-

42

4-

41

4-

43

43

22

45

4-

42

39

12.9

8

40

43.3

4-

29

31

4-

7

4-

11

_

12

_

8

4-

3

_

4

11.8

9

0

43.2

6

3

2

i2i

4-

4

7

0

—•

5

12.7

9

5

37.3

21

5

22

7

34

4-

13

17

4

13

10.7

9

3

36.1

4-

8

4-

19

4-

20

4-

21

32

4-

21

4-

17

4-

8

13.8

9

12

33.1

26

i

1

--

11

10

14

-

14

4-

1

13

1113

3

X

\'.OOJ

5

18/lt;\'.8

1(

)

18.9

4quot;

(

i

18.9

r

gt; -f

18.0

4

=

19.8

4-

11

4-

17.7

i

3

21.6

4-

1

4-

18.0

35

18.4

4-

29

4-

20.1

4-

10

18.8

10

4-

19.9

4-

7

21.7

4-

14

4-

17.4

4-

5

4-

20.2

4-

11

4-

19.9

4-

9

4-

20.4

18

^f

17.1

4-

14

18.3

4-

0

19.4

4-

5

4-

21.8

4-

15

4-

18.8

4-

0

4-

20.4

4-

18

4-

21.4

4-

10

4-

18.8

13

4-

21.2

7

4-

20.8

1

4-

17.9\'\'

4-

30

4-

20.1

4-

24

4-

18.7

4-

18..\'^

4-

19.1 l-f

diameter

No.

B. n.
or Br.—St.

Ml

M,

M,

1113

m,

1248

12.51

12.52
125:i
12.54

12.5()

12.57

12.58
12.5!)
12(gt;()

12()1
12()2
i2(;;{
12()4
12()5

12()()
1207
]2()8
120!)
1270

1271

1272
127.3
1275

1277

1278
127!)
1280
1281
1282

1284

1285
1280
1288

1289

1290

1291

1292

1294

1295

1290

1297

1298

1300

1301

1302

1303

1304

1305
1300

1.307

1308

1309

1310

1312

1313

1314

1315

1317

1318

0\'-.G53
0 .005

0nbsp;.483

1nbsp;.02!)
0 .05(i

0 .010
0 ..50(i
0 .719
0 .481
0 .501

0nbsp;.085

1nbsp;.440

0nbsp;.824

1nbsp;.721
0 .513

0 .034
0 .480
0 .051
0 .592
0 .007

0 .470
0 .520

0nbsp;.482

1nbsp;.008
0 .510

0\'\'.0.32\'-|-nbsp;0\'-.027

4i nbsp;48

■ nbsp;41
— 14

I-nbsp;18

|.quot;001
4- 10

4-

22
— 8

0quot;.007
0
4
4
. 17

15
1
19
30
0

4
8
3
12
13

1
12
11
10
!)

4- 0quot; 038 4- 0\'
4- 39
4 21
18

4- 33

■.009
11
5
12
9

0
4
10
13
10

71
45
48

31
8
12
!)()
14

22
(i3
12
103
17

4-

15
8!)
45
120
92

15
2()
01
.3

7!)

27
8
11
48
37

42
58
08
02
09

89
25
04
142

44

45
5!)
45
78

to a
45

44
35
20
30
44

4
104
40
14
27

102

130
172

17
145

1.37
105
151

80
100

131
105

82
100
100

187
175
181
103
149

— 29 —

10

23
4

43

24

13
8
7
21

17

10
20

18
1

13
28
9
20
49

12
7
7
3
7

2
20
11
21
40

11

5
35
0
19

10
22
15

3

4

8
19
35
10

21
40
1
00
0

11
34
5
10
1

4-

-f

()9

56°.409 t

40
50°.475 t
55

4-

20
1
22
5

11
1

14
7
10

0
4
27
7
3

4-

-f

-f

f

4-

10
75
17
25
()

27.2nbsp;:

30.0
31.8
31.9\'

32.1

33.0

35.3

37.2
38.5
40.0 I

4-

4-

4-

102
4

144
2
40

70
30
105
51
32

48
2
4
0
4

13
19

1

34

14

4-

7
20

42
23
01
41
33

4-

0 .7.32
0 .700
0 .038
0 .494
0 .70(!

0 .838
0 .875
0 „570
0 „572

0 .805

f
f
■f
f

144
139
L50
1.34
109

55°.558 t
50
18.32
1813

■h
H-
f
f

30 f
12 f
13 f
7 f

2h 8m 3t
128 f

1

13
1

15

0
9
15
15

15

9
17

14
10

13

3
11

1

4

23

15

24
7
1

11

7

8
14

0

13
18

14

142
- L53
104
173
2h 9quot;»
108

14 -
7 -
14 -
1 -

41 f

4
13
49
.32

89

34
34
28
0

40

50

- 5

18.1
20.2

27.0

27.5
2.5.4
24.7
23.0
23.5

27.5

20.7
23.5
27.5
20.9=

22.8
20.5
23.4
23.3
22.9

24.7
23.2
23.9=
20.7
20.2

27.2

25.3

24.7
25.0

23.8

1-

14

-f

0nbsp;.729
0.7.50 |f

1nbsp;.240 ji-

0nbsp;.723

1nbsp;.177

H-

151
175-
1.58 --
1.55 f
120 -

f

39
7
1

23
10

0
55
10
7
11

4-

7
1
7
11

2

1
10
10

30
15

57°.527 t
56°.465 t
5G°.4GG t

10 -f

■f
f

4-

— 13

4-

0 .531

0nbsp;.571
[ 0 .840
I 0 .055

1nbsp;.000

0 .011
0 .841
0 ..550
0.740
0.050

0 .528
0 .822
0 .519
0 „540
0 .502

0 .558
0 .090
0 ..580
0 .859
0 .454

129
114

79
107

44 |f

89--
39 f
123-1-
141
00--

139
110 f
114-
110-

130nbsp;f

109 -

01 f
Of
58 f
89 f

f
f
f
f

17
10

7
11

18

4
20
21
31

4
20
2
18
0

4-

0 —

12
1
0
40

51

20
57

52
44
32

35
47

25 4-
25 4-
44 -f

1

4
11

0

12

5
5

18
0

14
33
9
12
24

13
2
33
33
16

4-

178

228

4-

4-

9
13

20
2

4:1—

4-

0
20
10
5

4-

•f

0
48
8
31
103

152
82
220
102
31

31
20
20
24
30

23
0
20
3
21

— 3

4-

4-

20

4-

21

_

8

28

4-

22

4-

1

4-

41

45

31

4-

9

4-

3

0

6

20

4-

18

4-

22

4-

2

9

17 —
21
10
19
34

20
3
2
31
0

f

0
4-
4-
4-
4-

0
15
23
13

4-

-

-ocr page 87-

M,

M,

0\'-.093

77
130
79
87

0\'-.014

0quot;.027

4-

59

24

4-

12

4-

3

4-

9

6

8

20

4-

12

_

10

4-

10

25

4-

10

4-

38

4-

5

17

2

19

21

_

21

18

13

4-

8

20

18

14

7

\\

8

4-

12

4-

10

20

4-

10

21

4-

20

4-

90

4-

59

30

4-

47

-

15

83

607

_

11

4-

291

21

4-

280

8

4-

287

4-

22

4-

234

4-

24

4-

228

2

4-

202

14

4-

203

27

10

4-

4-

46
124
81
1,53
90

70
20
8

43
35

73
31
108
28
29

45
10
102 -
7
22

58
109
50
103
124

121

100
80
109
82

108
128
108
134
43

41
16
95 —
33
7

H-

4-

37
24

9 4-

12
2
2
3
22

26

13
45
11
62

14
9
3
9

34

1

21
28
17
23

2
20
27
54
37

1

47
21
20
0

if

176
186 1-
189
159 I-

31

17
13

5

31
11
9
7
10

12
12

18
4
7

54
45

631-
37
26

5
26

11

35
57
109
74

19
63

210

185nbsp;-

67nbsp;-

245nbsp;-

.58nbsp;-

4-

3
1
41
23
43

4
12
1
13
31

27

28
23

6
20

51
62
73
108

09
76
62

f

4-

f

4-

11
87
32
31

25 f

221 -
127 -
208 -
104 -
259 -

166
168
159
124
75

19
7

28

20nbsp;4-

91
104 ,

43
17

3
10

100

4

7

8
15
75
7 P.I
8.2

diameter

No.

Ml

M,

M3

-nbsp;0M,53

-nbsp;145

-nbsp;175

-nbsp;165
-■nbsp;200

-nbsp;203

-nbsp;1.58

-nbsp;188

-nbsp;194

-nbsp;175

-nbsp;1.54

-nbsp;200
- 102

-nbsp;1,50

-nbsp;103

-nbsp;173

-nbsp;107

-nbsp;180

-nbsp;145

-nbsp;173

83

2/i 8m 4
120

-nbsp;230

-nbsp;195

-nbsp;170

M

1

— 0\'.015
11
59

itli

iiij

— 0quot;.009
4

1113

m,

111,

1319

0^844

1320

0 .845

1321

0 .400

1322

0 .019

1.323

0 .025

1.324

0 .002

1.325

0 .819

1327

0 ..599

1.329

0 .82()

1330

0 .7.53

1331

0 .504

1335

0 .621

1336

0 .8.59

1337

0 .492

1338

0 .033

1339

0 .527

1.340

0 .484

1341

0 .4,54

1.342

0 .495 ■

1.343

0 .623

1344

0 .510

a =

1.340

0 .688

1:547

0 .728

1.348

0 .480

0^0l3
9
40
23
(gt;

- 10

i:54!)

0nbsp;..527

0^012
24
07
- 11
23

0quot;.002
6
0
7
17

20
3
12
10

5

0
10
1
1
1

4-

22
48
50
42

16
22
6

14
0
0

12

15

1
8
1
11

3

5
11
1

2
5

25

59

13

4
18

22
27

35
12
105

71
4
7

4

14

20
22
0
18
0

19

5
66
19
12

58
39

05
42
55
20
:52

53
70
58
7(gt;
51

08
;59
75
74
70

9
27
101 !

11

29

20
15
33
12
9

4-

7
95
99

95
110
i;53
04
70

144
127

92

166
80
114
88

117

114

118
51

93
130

174

100
01

()

02
44
75

29
122

42
31
88
01

30

49
5
51
08
98

22

29

34 hf
21
30
34

0
13
21

13
12

2

14
71
30

9

21

10

3
30
20

4
16

15
29

4-

20
28
32
90
53

105 4
70
18
77
158

4-
4-
4-
4-

4-

4-
4-

4-

4-
4-

-H

4-

— 7

4-

124
2/i 8»!
4 s
f- 100
F 07
I- 93
h 1.52

137
to a =
84
4

— 131

hi.


4-
4-

4-

4-
4-
4-

4r

4-
4-

4-

4-

30

13

14
3
()

7
9
0
7
71

95
9

15

5
1
50
35

5
29
32
59

4-

12
10

1:5.\') 1
1:5.54

13i)5
1350

1.3.57
13.58
1.3.50
1.300

1301

1302

1303

1304
1300

1307

1308
1300

1370

1371

1372

1373

1374

1375
1370

1377

1378

1379

1380

1381

1382

1383

1384

1385
1380
1.387

0 .000

1nbsp;.437
0 .712
0 .001

0nbsp;.420

1nbsp;.120
0 .801
0 .558
0 .029
0 .590

0 .733
0 .499
0 .452
0.597
0 .072

0.574
0 .708
0 .934
0 .528
0.940

0 .018
0 .020
0.003
0 .041
0 .024

0 ..582
0.719
0 .098
0 .540
0.042

0.787
0.568
0.669
0 .664
0 .574

1.55
101

73
1,55

20

.37 -
.57 —
12 -
f 211 f

193
140
188-
140
0

18 f-
1
30
12

198
91
110
120
146

83
79
112

138
60

141
4

15
10-

28 I- 245 I-

731-
147
232
1.53

4-

52
0
14
19

29

0
2
21

30
3

10
0
16
5
23

4
31

8
21
8

14

5

67
10
4

4-

45

7
65
20
39
35

42
57
2
55

38

10
19
100
8
03

64
46
37
35
2

1
32
151

39
188

39-
84-
62-
49
8

181 I-
234
170
184
101

4

15

7

4

5

8

16
82

1
21

17

5
2
5

4-

4-

j- 34--
15 f
153 -
23-
52 If

50 [f
13
27

220 —
233 —
4,35 —
182
136.

I- 1,52 J-

10.4
12.1

13.2

14.9
18.2
18.9

23.3

25.5

25.8

28.e

28.9
29.1
30.1

32.1

33.1

40.2

41.7
50.9

51.1

56.8

45.2

42.7
42.5

39.9

38.7

36.0

34.3
28.0®

28.0

27.1

25.3

24.4
22.3

20.8
15.0
11.9

9.0
0.3

No.

ms

1319

1.320

1.321
1322

1.324

1.325
1327
1.329
i:i3o

1331

1335

1337

1338

1.340

1.341
1342
1.343

1344

1340
1347
1.348

1349

1351
1.353
13,\'54
13,55
1.3.50

1357

1358

1359

1300
1.301

1302

1303

1304
1300

1307

1308

1369

1370
1.371

1372

1373
1.374

1375
1.370

1.377

1.378

1379

1380

1381

1382

1383
1.384
1385
1380

4- 0quot;.009 0quot;.005

— 0quot;.005
20

25P.5
25.7
25.1
22.7
23.6

4-
4-
5 4-

3

4-

24
— 3
•0

— 1

4-

7
1
24
14

4-nbsp;22.7

4-nbsp;23.6

4-nbsp;24.4

4-nbsp;26.3

4-nbsp;24.8

4-nbsp;24.0

nbsp;23.7

nbsp;24.95

4-nbsp;23.9

4-nbsp;25.2

3

4
32
12

5

23

49
19

5

0 4-

2.3.1
25.3
20.5
23.0
23.5

12
24
31

4-

— 23

.4-nbsp;26.2

4-nbsp;29.2

4-nbsp;32.4

4-nbsp;32.1

nbsp;31.6

09
1

3

7

4
3

5
2

.59

38

8
18

8
9

12
34

19
2
0

20
0

01
7

10

20
18
25
17
13

20
10
2

— 9

17
9

20
2
81

42
0
19
7
9

0
27
6
0
11

10
15
05
10

18

29.4
28.0
31.9
28.4
32.7

4-

4-nbsp;32.7

nbsp;28.8

4-nbsp;31.5

4-nbsp;28.8

4-nbsp;28.8

4-nbsp;28.3

4-nbsp;31.1

4-nbsp;30.7

4-nbsp;32.1

4-nbsp;28.4

4-

10nbsp;

5nbsp;4-

5nbsp;

8nbsp;

6nbsp;4-

4-

4-
4-

— 32

3

3

4
4

— 29

4-

32.4


4-

0.2

4-

30.0

1.8

4-

32.0

4-

4.6

4-

29.0

5.2

4-

30.9

4-

7.8

4-

32.1

4-

8.6

4-

29.9

4-

11.9

4quot;

28.8

4-

13.0

4-

27.5

4-

14.4

4-

28.7

4-

17.2

4-

31.7

4-

18.8

4-

29.4

4-

24.8

4-

28.7

4-

26.7

4-

28.1

4-

28.8

4-

28.0

4-

29.2

4-

30.5

4-

30.8

4-

28.2

32.7

4-

29.4

4-

32.9

4-

28.5

4-

33.9

4-

31.2

4-

38.4

B. D.

Br.-St.

Mag.

a

1900.0

t?

«

(quot;J

Fquot;«

Iquot;-,

yz

u.
\' 1

2

10.8

lfgt;

9/«

Os

50°

.32\'.4

__

0quot;.022

_

0quot;.008

0quot;.000

0quot;.001

O\'.OOO

_

0quot;.007

__

0quot;.007

0quot;.002

10.8

8

58

31.4

19

3

4-

4

12

2

4-

18

3

4-

11

1764

13.7

9

3

29.2

4-

-L

17

8$

4-

38

4-

25

4-

3

4-

2

4-

17

;50

12.4

9

20

27.5

1

-

21

9

4-

40

2

4-

4

10

4-

11

20

12.3

0

14

26.4

15

-

5

19

4-

32

4-

1

2

14

4-

7

31

12.5

9

21

24.8

_

0

4-

15

22

4-

10

4-

8

4-

0

_

9

4-

7

22

11.0

9

14

21.5

21

1

5

4-

4

4-

2

4-

8

7

4-

5

12

12.5

9

8

1

20.8

4-

42

-i-

8

14

22

4-

25

4-

7

4-

5

4-

15

10.9

8

55

10.3

13

-

10

■—

12

23

14

4-

3

12

1

11

11.4

9

0

14.2

10

-

13

7

20

5

4-

2

11

5

18

1.3.4

0

12

13.9

_

18J

4-

3

2$

17

4-

31

4-

9

_

5

4-

8

24

12.4

9

14

11.2

10

4-

10

18

24

9

5

9

11

1765

10.7

0

5

10.8

17

4-

3

3

32

4-

4

4-

4

5

5

1775

1:5.5

9

13

10.7

4-

17t-

4-

13

1

4-

2

8

5

4-

7

4

7

12.3

9

4

9.0

5

1

;5

4-

1

4-

5

2

3

0

1782

13.2

i

9

19

!

7.7

4-

12

4-

7

n

14

4-

3

4-

5

_

1

0

0

13.0

9

3

0.7

4-

18

8

5

4-

2

4- ■

4

7$

0

2

13.8

8

55

55°

.59\'.0

4-

27J

4

8

4-

59$

33$

12

4-

4

0

20

13.5

9

10

.58.1

4-

,59t

5

0

18

13

4-

25$

4-

10

4-

14

12.3

9

17

48.9

4-

45t

1

10$

5$

4-

4

28$

-U.

0

14

13.3

8

58

48.7

j-

BIJ

29

4-

27$

4-

8t

22$

21$

41

_

3

a = 2lgt;

4s to

=

2/( 8m

16s.

58i

11.8

Ih

8m 27 s

57°

30\'.0

12t

4-

9:;

4-

0::

40

4-

77$

4-

10

4-

28

11.5

8

4

24.4

19Ï

12

18::

0::

4-

21

-f

5$

11

4-

0

1.3.0

8

7

21.9

OJ

31

7::

4-

21$

7$

4

4-

12

13.2

8

11

21.7

4-

24

17\'

4-

2

lit

n

4-

11$

4-

11

4-

0

12.5

8

27

19.1

27

-1-

21

10

5

4-

19

0

4-

7

4-

3

■°.525

8.2

8

37

18.0

1

4-

20

4-

0

4-

7

4-

11

0

4-

10

4-

4

11.7

8

0

1,5.9

11

4-

34

4

24

4-

22

3

4-

4

2

12.0

8

35

13.0

4-

30

4-

11

4-

4

38

0

4-

4

4-

12

_

7

14.0

8

4

7.4

:4-

104$

4-

07$

70$

.59$

4-

79

66

;°.40i

9.4

8

4

7.3

4-

57

4-

70

4-

91

18

40

38

77

33

10.7

8

33

6.4

4-

5

3

4-

0

9

4

7

5

7

12.9

8

13

4.6

4-

19

8

18

4-

8

21

18

6

2

12.3

8

33

3.7

4-

24

5

4-

4

4

4-

9

4-

8

4-

7

4-

5

12.0

8

33

1.7

4-

34

14

28

32

7

9

9

14

11.5

8

37

0.2

5

4-

20

7

13

4-

2

12

4-

3

_

9

- 1.3.4

8

17

56°

54\'.4

4-

8

4-

22$

18

40

26

36

1

34

1.3.9

8

20

51.3

4-

27

0

4-

4

17

5

21

4-

7

16

12.0

8

10

48.4

4-

42

18

4-

1

4-

12

4-

1

5

4-

15

4-

1

11.9

8

38

39.8

9

4-

7

2

17

4-

12

4-

4

4-

5

4-

1

12.7

8

9

39.3

_

35

18

11

23

--

9

4-

16

_

19

0

11.7

8

27

37.7

10

4

19

4

4-

16

3

13

4-

4

10.3

8

12

34.9

89

65

85

76

64

65

81

07

13.2

8

34

34.3

27

18

4

4-

1

4-

11

4-

4

13

4-

5

;°.463

10.3

8

21

31.8

13

4-

13

18

5

4-

19

4-

6

4-

15

4-

0

12.4

8

12

31.0

4-

13

13

4-

14

12

4-

16

4-

16

13

4-

9

12.3

8

28

27.7

15

3

4-

2

4-

21

4-

5

4-

15

2

4-

14

12.5

8

30

20.0

23

1

5

4-

7

4

4-

22

8

4-

12

12.2

8

40

25.2

12

2

8

3

4-

9

4-

14

7

4-

10

12.3

8

37

22.4

18

20

4-

5

15

6

4-

10

7

0

12.7

8

16

20.8

4-

3

24

6

4-

21

4-

4

4-

10

8

4-

14

11.6

8

33

14.9

10

11

2

0

12

4-

7

8

4-

0

11.7

8

38

13.0

4-

30

4-

47

4-

38

2

4-

1

1

4-

38

1

1.3.0

8

43

10.9

4-

57$

9

26

n

4-

13$

4-

4

1

4-

4

12.2

8

43

10.5

4-

40

05

40

21

31

34

4-

46

30

11.1

8

26

8.9

2

11

11

4-

1

27

0

_

8

4-

7

12.8

8

42

7.0

4-

50$

4-

12

4-

10

j-

28

4-

1

4-

23

4-

8

12.0

8

34

6.8

4-

24

0

10

4-

7

4-

22

4-

2

4-

1

4-

8

12.0

8

40

,5.8

22

6

4-

25

7

4-

6

6

4-

16

3

12.7

8

21

1.3

4-

2

31$

24

21

31^

19

22

-ocr page 88-

a

«

I\'S

No.

diameter

M,

M

Mj

M,

Mj

]\\I

3

m,

m.

t

mj

m,

mj

ma

1.39P

0\'-.684

0^061

0\'\'.083

0\'-.I,54!—

0^084

O\'\'. 125

- O i-

.004

4- 0quot;.

044

0^

002

4- 0quot;.010

-f- 0quot;.025

0quot;.

,003

— 0quot;.008

4-

28/\'.4

4-

1.392

0 .475

■f

68

127

123

71

4-

113

16

4-

50

4-

21

4-

25

32

4

_

13

4-

30.3

-4-

1393

0 .721

25

4-

110

KiO

120

4-

142

4-

1

4-

6

4-

15

4-

15

-j-

6

j-

10

_

8

30.8

J-.

1394

0 ..5.5(i

23

01

130

107

H-

178

4-

27

4-

8

11

20

21

-U \'

27

2

28.7

-i\'

a

2/1 7»i 2(

.5 to

a —

2// 8»i 1

1.396

0 .934

12

4-

28

103

4-

4

4-

01

241

59

4-

23

13

4-

5

4-

17

11

quot;1quot;

34.2

1398

0 .00.3

-t-

(i8

4-

45

239

0

-1-

180

17

4-

29

__

5

2

2B

4-

.37.6

__

1399

0 ..52() H-

03

4-

38

186

4-

12

7

r

274

20

j.

20

4~

12

4-

7

19

8

.37.1

—•

1400

0 .7.52

4-

7(gt;

4

227

—-

2

4-

39

261

14

4-

()

8

0

-j-

4

4-

0

-i-

,34.5

1401

1 .002

f

37

18

2T0

-1-

10

4-

44

4-

118

29

5

2

4-

4

4-

2

24

4-

34.2

1402

0 .833

0

19

22J)

22

4-

58

4quot;

137

43

8

8

13

4-

0

6

34.4

140.3

0 .48.3

4-

.56

4-

23

235

66

j-

23

■f

39

14

4-

10

_

13

_

34

14

31

4-

33.2

__

1404

0 ..5,50

1-

38

4-

13

2,32

59

43

4-

43

— 1

21

4-

3

7

26

_

5

__

26

3,5.1

1405

0 .782

4-

26

4-

23

230

19

4-

55

4-

37

— i

26

4-

8

8

11

0

25

4-

33.8

1400

0 .713

■f

210

4-

138

2

22

4-

47

15

4-

70

4-

01

4-

74

-h

9

_

7

_

35

,35.0

1407

0 .841

4-

13

4-

18

210

19

4-

88

4-

42

22

3

3

0

4-

7

4-

2

4-

33.5

1408

1 .079

lt;57

4-

1

237

2

4-

K)

4-

9

59

13

_

6

2

15

8

4-

35.5

__

1409

0 .739

4-

11

4-

13

241

4-

17

4-

0)4

4-

70

21

7

11

13

_

0

15

4-

33.4

—.

1410

0 .592

4-

49

4-

31

210

24

107

4-

49

0

1

4-

1

5

4-

14

10

4-

34.2

—.

1411

0 .0,50

4-

20

4-

11

242

9

1.35

-f-

71

9

14

5

4-

5

4-

24

23

-f

36.3

4-

1412

0 .590

1

4-

55

293

4-

23

1-

1,30

4-

f)3

—■

13

2

20

4-

20

4-

18

4-

24

4-

37.0

1413

1 .233

75

4-

19

204

39

4-

6«)

42

50

13

0

0

_

11

4-

17

4-

32.6

4-

1414

0 .,580

4-

0

4-

48

18:2

4-

18

95

-f

37

!)

0

11

28

4-

1

15

4-

33.4

4-

,1415

0 .902

43

4-

10

210

36

4-

127

4-

01

30

21

4-

5

4-

.gt;

4-

15

25

34.8

4-

1416

1 .002

70

4-

70

218

59

4-

109

-U

.33

42

7

4-

2

7

4-

5

4-

16

f

34.8

4-

1417

0 .803

40

4-

81

242

38

4-

93

25

23

4-

7

1

10

0

14

4-

37.1

1418

0 .,557

4-

.33

f

24

228

_

84

-h

98

7

19

22

1

_

5

_

4

4-
4-

1

.34.8

4-

1419

0 .,5,54

0

4-

75

2,54

65

140

4-

69

4-

3

4-

2

9

.

4

j-

10

28

4-

35.6

4-

1421

0 .984

,32

f

108

109

1,57

4-

02

10

4-

23

4-

17

17

31

_

25

4

4-

33.4

4-

1422

0 .772 •

33

f

89

180

77

4-

125

4

8

4-

8

4-

9

4-

9

4-

0

0

4-

.32.8

4-

1423

0 .629

4-

52

f

150

191

63

4-

140

4-

50

4-

34

4-

37

4-

8

4-

17

4-

13

4-

18

4-

32.7

-4-

1424

0 .542

4-

10

4-

04

2,50

33

4-

144

20

16

7

8

32

4-

14

4-

7

4-

.35.2

1425

0 .7.55

20

4-

89

219

58

142

9

4-

4

2

4-

7

21

4-

11

4-

7

36.4

4-

1426

0 .568

4-

2

4-

31

210

98

4-

135

36

4-

18

27

2

4-

12

4-

7

17

4-

33.9

1427

0 .654

f

25

f

119

221

70

4-

1,53

4-

20

4-

30

4-

15

1

4-

26

4-

10

4-

1

4-

34.5

4-

1428

0 .747

7

4-

03

252

01

4-

141

9

4-

18

14

8

4-

35

9

10

4-

35.3

4-

1429

0 .900

4-

17

f

.50-

225-

112

f

1.33

28

31

19

4-

1

4-

13

4-

4

__

19

4-

35.1

4-

a ~

2/1

6quot;i 53

r to

a

= 2/i 7m i

7s.

1431

1 .373

4-

91

4-

171

,53

77

128

4-

62

8

93

4-

65

35

70

_

82

4-

40.1

1432

0 .745

4-

99

4-

77

255

4-

22

5

224

1

4-

44

1

4-

11

19

13

4-

41.4

1433

1 .034

35

9

338

0

4-

9

4-

()9

62

0

31

2

17

44

41.2

1434

0 .940

36

7

-

309

4-

11

4-

32

4-

68

25

3

38

1

8

38

4-

42.3

1435

0 .804

_

10

_

12

_

355

27

4-

39

4-

73

49

5

41

16

4

__

35

39.1

_

1436

0 .816

15

4-

8

339

4-

9

4-

29

2

32

0

30

0

14

44

40.7

1437

1 .084

17

9

—.

299

10

4-

53

8

45

10

13

9

4

44

41.7

1438

0 .739

18

4-

14

239

2

56

.

52

36

7

4-

7

3

9

4-

1

41.3

1439

j 0 .793

f

44

4-

92

100

75

4-

33

2

5

31

4-

31

38

20

17

40.5

1440

0 .665

4-

57

4-

30

_

242

4-

4

4-

26

4-

23

0

4-

2

2

2

_

22

_

8

37.7

_

1441

0.863

17

4-

29

229

21

4-

50

30

36

0

4-

7

10

12

5

.39.6

1442

0 .818

f

7

4-

7

217

40

69

4-

52

22

11

4-

14

20

3

3

4-

40.5

1443

0 .656

4-

76

4-

20

278

12

4-

64

73

11

5

10

5

0

4-

12

39.5

1444

0.643

l-

65

77

•-

240

0

4-

103

4-

73

8

4-

20

4-

8

0

12

13

4-

42.2

1445

0 .646

f

25

4-

37

__

181

4-

8

4-

83

4-

35

11

4-

1

28

4-

5

4-

1

4-

1

41.2

_

1447

0 .658

4-

51

4-

76

199

4-

11

4-

70

4-

3

12

4-

13

4-

15

4-

18

11

3

4-

37.8

4-

1448

0 .480

4-

97

102

211

39

102

38

4-

37

4-

23

4quot;

13

4

4-

3

4-

17

4-

38.0

1449

0.868

60

4-

63

245

42

71

4-

2

32

1

4-

6

4-

1

15

6

4-

40.4

4-

1450

0 .760

4-

27

4-

45

285

34

47

4-

30

4-

11

11

8

6

28

4-

16

4-

39.9\'

4-

1451

0 .576

_

15

4-

16

__

250

4-

19

4-

54

4-

75

9

24

3

4-

36

24

4-

31

4-

37.2

4-

1452

0.606

0

4-

25

241

11

114

4-

79

4-\'

1

22

4-

8

4-

20

4

33

4-

40.5

1454

0 .493

21

4-

81

231

95

4-

114

45

9

4-

6

4-

3

15

4-

4

4-

21

4-

37.2

4-,

1455

0 .462

__

12

4-

109

_

307

75

4-

108

4-

131

2

4-

18

18

0

0

51

38.8

4-

1456

0 .775

•-

34

4-

66

247

25 H-

140

4-

58

13

3

4-

1

4-

20

4-

18

4-

25

4-

38.4

4-

/

43.0
43.7
40.2

nbsp;0quot;.045

nbsp;51

nbsp;7

nbsp;8

10.5.
57°

4$

10$
It
8
4

19

— 4

22

22\'.5

lOt
7$
12$

0
12

17
11
12
70
7

10
15
3
9

24$

3
7

1
2

1
5

7
11
18

8
8

9
69

8

21
12
1
8
12

15

3
10

8

4

1

3
18

4
21

2
4
2
11
4

2

51
8
33
28

35
24
21
8
21

l

0
1
4

10

28 —
25$ 1

5

6
9

14:
17:
11

25
38

17$

0
4

7

13

4

1
()

8

14

5

15
24
18

11
1

15

42
18
19
1
14

O
4

14
3

17

9
19

0
10

1

15
6

42
2
6

21

10$
1$
153:
23$

1$

43$
4$
9$
6$

23$
7$

16

10
45

6
17
27
12
7

2
10
12

—nbsp;30
10

—nbsp;18
— 20
__ O

9
3
8
61
3

15$
20
76
15

52
14

7
2
O

44
3
24

36
17

24

8
20

5

37

19
7

20
32
19

32

5:
3:
57:
19

43$
26$

38
28

3

7
28
14
19$
10

3
19
44

25
17

3

7$
3

4$
7

12
6
2
13
4

11

2
19
9
10

5
15
26
5
12

13$
10
6$
15
7

4
23
8
4
14

3
2$
2ii
3:
14:

— 19

5
13
13
5
4

12$
2$
2$
3$
13$

20
11

40

3
6

23$
19
10

—nbsp;22$

—nbsp;79$

-nbsp;12$

—nbsp;45:

—nbsp;40:

—nbsp;36$

—nbsp;47

—nbsp;48

—nbsp;5
23

- 4$

— 15

59$
7$
37
44$ —

75
18$
16
7

3

13$

4
9

20

21
12
3
6
12

1
11

3
16
29

25
3$
3

n

17

91

43

3

4

0

1
10

7

31

2
O
10
4
21

2
15

25
2

46$
35$
18
2
26

7

2
9
15
2$

23
10
8$
1

13$

13
10

3
6
6

11

3

13

2

21

4-

3

5

7

4

4

10

4-

12

1

16

0

-L

2

5

4-

18

4

4-

16

6
4
10
2

— 3

24

25
14
44
18$

21$
19
9
21$
O

27
llj
24
15$

m

3$
2

23
.4$

— 50

20.3 —
20.1
19.2
12.0
7.5

3.2

I.9
0.4

50° 50\'.2

45.4

44.3
42.9
40.8
35.0
29.2

27.0
27.0

24.5
23.5
17.5

13.1
12.8

7.3
0.5
0.2

5.3
2 2

55° .59\'. 1
,58.0

50.4

5.5.1

37s.

57° 25\'.2
21.1
12.9

II.3

10.2

3.9
2.0
50° 48\'.7

48.5

48.5
47.8

47.0

40.7

45.2

44.3

30.3

28.1

21.8
20.0

18.7

18.4

15.6
15.1

14.8

1900.0

ccnbsp;tf

X

/\'3

0quot;.002

— 5

9
26

0quot;.009:
14
10.
2$

8$

21$
10:
8:
23
()

32
28
27
38
2

12
11

6
18
18$

12
10
20
11

0quot;.013

0quot;.007$

0.016

— 0quot;.001
3

0quot;.000

5.5° .58\'. 1
.50.8
50.1
53.0

20
6

21$
11$
17$

29
12
9

25
19

B. D.

or Br.—St.

No.

Mag.

1391

1392

1393

1394

1.390

1398
1899

1400

1401

1402

1403

1404

1405
I40(i

1407

1408

1409

1410

1411

1412

1413

1414

1415
1410

1417

1418

1419

1421

1422

1423

1424

1425

1420

1427

1428

1429

1431

1432

1433

1434

1435

1430

1437

1438

1439

1440

1441

1442

1443

1444

1445

1447

1448

1449

1450

1451

1452

1454

1455
1450

8»( 42s
8 28
8 24
8 40
= 2/1 8m
7m 51.s-

11.8 \'
13.0
11.0
12.9

20.5 to

10.3nbsp;!

12.5

13.2

11.4
10.0
10.9

13.0

13.0
11.2
11.0
10.8

9.0

11.5
12.0

12.1
12.0

9.0
12.0
10.5
10.0

10.7

12.9
12.9
10.1
11.2

12.3

13.0

11.3

12.8

12.1

11.4

10.5
Cm 53s to

8.5

11.4
9.8

10.3

11.0
11.0
9.0

11.5
11.1

12.0
10.7
11.0
12.1
12.2

12.1
12.0
13.0
10.7
11.3

12.7
12.5
13.5

13.8
11.2

= 2/-

43.3

41.1
40.8

33.3
28.3

23.8
22.5
21.0\'
10.8

5.9

7

26

7

30

7

50

7

52

7

51

8

1

7

47

7

57

7

48

8

1

7

46

8

2

7

56

7

41

7

.37

8

9

8

.3

7

54

7

54

7

38

7

55

7

49

8

5

8

9

8

10

7

53

7

44

8

2

7

58

7

53

7

54

50°. 4.58

50°.400
50°.45e

4.8
3.4

1.3

10.4

12.0
l2.ö
15.1
10.1
22.1

26.0
20.9

32.4

33.3

33.5

34.4

37.5

40.0

41.1
43.4

44.7

40.1

42.0
33.7

32.1

31.0

24.0
22.7

9.4
92

9.2

8.5

8.3
7.3

5.8

4.9
9.2

11.4

17.7
18.9

20.8

21.1
23.9

24.5
24.8

50°.402

50°.4.59
50°.457
50°.455

.55°..549
.5.5°..5.50

55°.548

a = 2/gt;
57°.521

50°.454

= 2/1 71»

7m 8s
0 58
7 1
6 53

17

0

0 59
7 4

5G°.453

30
10
9
17

0 58

5
31
20
14
17

37
13
37
20
29

-ocr page 89-

diameter

i

M,

M,

MG

M,

O\'-.GOG

1

0^042

f

O\'.llO

- 0\'-.228

0\'-.037

4-

0 .649

3C.

f

82

— 1!)7

09

4-

0 .449

117

4-

35

— 295

_

4

-i-

0 .433

-t-

53

!)4

— 248

0

4-

0 .680

8

51

- 241

78

-1-

0 .579

f

20

-H

85

- 240

4-

35

4-

0 .661

34 4-

12G

— 2,30

25

4-

1 .370

91

75

- 244

130

4-

0 .508

79

110

— 280

_

30

4-

0 .,595

1

4-

97

— 208

_

71

a =

2h (hi 2

Os

to a

= 2/lt; Gm

.59s.

0 .730

13

4-

49

1 — 318

_

28

4-

0 .610

-f-

92

4-

7

— 3.52

4-

8

4-

0 .4,52

— 410

4-

1,33

0 .705

9

4-

0.3

- 383

4-

15

4-

0 .780

10

4-

50

— 386

10

4^

0 .748

75

24

— 244

4-

57

1-

0 .74!)

(i4

2

- .348

9

0 .!)07

32

2

- 255

4-

22

-h

1 .211

71

10

- 277

4-

24

4-

0.720

f

26

f

11

- 275

30

4-

0 .905

f

19

f

GO

- 213

_

43

4-

0 .,5.57

f

15

1

- 275

4-

67

4-

0 .,598

-

37

f

27

- 292

89

4-

0 .562

71

f

130

- 288

35

4-

0 .896

88

f

34

- 270

2

4-

0 .001

42

f

101

- 245

8

f

0 .440

f

22

f

77-

- 298

f

18

4-

0 .625 -

42

f

107-

- 242

15

4-

0.0,54 -

*gt;

86

- 181

34

4-

1 .031 -

103

62

- 204

47

0 .019

f

48

-1-

40

- 198

_

12

-h

0 .540

30

-h

11

- 204

_

2

4-

1 .211

120

88

- 223

85

4-

0 .492

148

95

- 220

22

4-

1 .032

122

4-

80

- 250

95

4-

K =

2h

5m 4.\'

s to a =

= 2li Gm

19.?.

1 .229

127

4-

17

— 302

4-

50

_

0.800

25

4-

66

— 357

4-

48

-U

0 .(gt;42

50

4-

29

— 342

4-

21

4-

0 .008

35

4-

89

— 289

4-

7

4-

0 .574

07

4-

52

— 2.50

4-

16

4-

0.570

89

4-

21

- 385

4-

35

4-

0 .090

-f-

115

4-

51

- 270

4-

85

4-

1 .024

lie

4-

1

- 341

58

0 .590

■f

12

■f

48

— 304

_

11

0 .538

-1-

45

4-

104

- 2,52

4-

12

4-

0.539

121

4-

120

- 1,35 ■

6

4-

1 .234

207

4-

339

4- 98 ■

4-

19

4-

i 1 .074

-f

442

1

575

4- 487 ■

408

0 .038

9

55

- 342

26

4-

0.557

27

4-

4

- 271 ■

56

4-

0 .583

■f

60 ■

4-

78

- 259 -

15

4-

0 „573

f

39

4-

18

- 282 ■

H-

20 ■

4-

0 .669

34

4-

91

— 215

4-

2 ■

4-
4-

0 .858 ■

50

4-

48 ■

- 200 -

25 ■

0.9,50 ■

40 -

4-

49 -

- 215

f

24 ■

4-

-f-

22

4-

09 -

- 200 ■

f

01 •

4-

0.897 -

93 ■

-f-

53 -

- 227 -

42 ■

4-

0.078 •

f

17 -

f

84-

- 208-

12

4-

0.588 ■

f

60

- 159 ■

f

15

4-

0.864 -

80 -

f

71 -

- 251 -

I

3 ■

1

f

1900.0

Mag.

10.5
11.9

12.6
10.7

a

5

2li Im

14s\'

50°

10\'. 0

4-

0quot;.035

4-

0quot;.018

-f-

1 7

20

9.0 !

32 i

4-

4

4-

7

14 !

8.8

42

21

7

11

0.9

4-

45

4-

0$

4-

7

9

0.9

15

15

4-

i 7

18

6.6 i

4-

30 ,

4-

3

4-

7

19

6.5

I

4-

23

7

16

1.8 :

22

0

4-

7

13

55°

58\'.6|4-

05$

9 i

7

22

57.2

f

27$

3

4-

= 2h Gm .

)9s.

28

2h 6»!

40s

57°

19\'.6

30$

-H

6

45

19.0

4-

2$

4-

7

0

28

18.7

6

30

15.2

34$

4-

31

6

47

14.9

35$

4-

20

i 6

21

5.7

4-

7$

4-

5

4-

6

45

4.1

0$

5

6

40

2.9

45$

7

4-

6

40

2.8

64

14

6

43

50°

,57\'.4

12

5

6

20

54.4

_

10

10

-U

6

47

51.9

13

14

6

49

51.0

2

0

6

33

40.3

4-

27

4-

41

6

24

89.2

49

7

-f

6

43

,30.8

_

21$

22

4-

6

42

23.4

4-

18$

4-

5

i • 6

50

1.5.8

8::

-h

17

4-

i 6

40

9.5

4-

20$

0

-h

1 0

89

9.4

29::

12

4-

6

35

7.4

4-

44$

24

G

52

0.7

89$

37$

6

41

G.2

,38$

0

6

59

2.4

97$

4-

3

6

50

0.0

33$

7

4-

19.«.

i

2h 5m

43s

.57°

13\'.3

95$

4

5

52

7.5

40$

4-

24

6

9

5.9

1$

4-

6$

6

5

2.0

8$

4-

34

5

48

0.4

4-

11$

-f

13

4-

6

18

0.7

_

69

0

: —

5

53

5G°

.58\'. 1

30

4-

11

4-

5

54

53.7

72$

17

5

45

52.3

7$

4

-h

5

54

50.9

4-

10

-1-

32

4-

6

12

.50.4

-f

44

4-

44

4-

5

52

45.3

4-

94

4-

142

4-

5

55

44.5

-f

210

4-

251

4-

5

48

43.0

0$

4-

2

0

1

39.3

15

24

4-

6

11

38.3

4-

26

4-

13

4-

5

48

37.0

4-

20$

19

-r

6

2

26.0

7$

4-

10

4-

6

8

23.3

lU

13

4-

5

50

22.1

8J

14

5

52

22.0

4-

2G:

6

10

20.1

,32:

11

4-.

5

51

18.7

4-

27$

0

6

0

15.1

-j-

50$

4-

5

53

13.9

15Ï

10

1
1

0quot;.009t
10
15
4t

5t

p. a

4-

0quot;.017$

4-

0quot;.018 1

4-

4-

10::

4-

17 !

4-

4-

.38::

23

,55$

4-

15

4-

22$

4-

2

4-

4-

31$

4-

9

-f

28$

4-

9

4-

4-

7:

6

4-

22:

4-

13

4-

8:

4-

14

4-

0quot;.018
7

14
17

54
22
27

32
27

0

4
7

14

5nbsp;H

nbsp;40.8

H-nbsp;43.0

nbsp;44.2

-Inbsp;43.4

nbsp;43.9=

nbsp;47.2

nbsp;43.5

nbsp;43.2

nbsp;45.7

nbsp;47.0

56°.451
56°.452

56°.450

35
10 !

1485
1480

1487

1488

1^89 55°.542

20
2
14
4
10

28
41

4
2

12

5
25

7

34

13

0
11
17
4
32

44
141

250
1
25

11
21

7
10
17

8

14
4

39
29

44.5

44.8

42.9
45.3
45.5

3

14
0

4
18

0

14t

3

33
18

731

25
18

17

4

4
8

5
1

20G
10
11

19

15
IG
10

-t-

29
40
29

58
51
18
25
29

40

23
^

17
1

1490

1491

1492

1493
1495

1490

1497

1498

1499

1500

1.501

1.502

1503

1504
1500

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519
1,520
1521

40

nbsp;45.9\'

nbsp;4.3.0

nbsp;45.2

nbsp;42.7

nbsp;44.1

nbsp;51.9

nbsp;50.8

nbsp;48.4

nbsp;49.1

nbsp;51.3

55°.543

55°.544
a = 2h

17 —

3

13
29

4i

47.9=
50.8
50.8

52.0
50.8

48.3

51.3
50.8

51.8

50.1

48.7
52.0
.50.3

50.2
51.2

51.7

48.4

51.9
49.9

51.8nbsp;

5G°.448

10

20

0
30
210
4{
3C

34
IF
4(
4^

4:4

5S
41
G1
71
4g

H-

4
2
205
9
10

20
10
18
18

5G°.44G
50°.449




25

14
14
1

28|
6

43

— 14

56°.447

17
12
23
7

10
10
G
15
11

5
2
7
23

4

21

2
1

32

5

22
13
9
7
10

No.

B. D.

or Br.—St.

No.

M.,

M3

mi

0\'-.170

4-

O\'-.OOO

4- 0quot;.0,30

4-

113

4-

57

4-

27

97

4-

124

47

_

93

142

4-

41

4-

107

4-

81

4-

11

1,54

4-

103

4-

26

95

94

3

4-

132

4-

45

25

185

4-

98

4-

62

4-

104

4-

57

4-

24

1

172

_

41

4-

4

: 4-

243

-

3

29

4-

144

43

-h

129

-1

40

-f-

22

4-

71

41

4-

0!)

4-

107

0

-1-

13

4-

38

7

54

4-

34

52

_

28

4-

03

71

_

38

4-

57

20

49

56

_

18

4-

02

4-

90

21

50

4-

115

_

10

96

4-

101

4-

18

4-

75

4-

90

58

170

4-

106

_

29

4-

85

-f

68

4-

10

4-

117

4-

69

15

4-

147

121

14

120

72

35

113

4-

158

4-

38

_

1,59

4-

189

4-

34

128

4-

46

43

154

-h

74

-1-

98

132

4-

87

30

11

-H

78

_

102

4-

27

89

48

4~

40

4-

125

9

-h

14

4-

72

10

4-

35

107

4-

2

30

4-

74

_

77

04

4-

170

4-

27

87

4-

59

81

64

4-

91

17

-f-

92

4-

118

0

4-

69

4-

54

4-

35

4-

90

4-

118

4-

84

-f

335

574

4-

200

-i-

69

4-

1,58

10

4-

70

4-

97

25-

1,38

4-

106

4-

17

4-

127

58

4-

10-

141

4-

117-

10

4-

148

4-

102-

20-

121

4-

108-

17-

88 •

4-

149

4-

17

140

4-

99-

40-

114

4-

155

4-

19-

174

180

4-

42

131

4-

105-

23-

10
14
0

40

ms

0quot;.014
21
9
10
11

m,

m^

ms

1457

1458
145!)
]4(i()

1401

1402
140;i

1404

1405
1400

1408
]4(i!)

1470

1471

1472

1474

1475
1470
1477

1479

1480

1481

1482
148.\'$

1484

1485
1480

1487

1488

1489

1490

1491

1492

1493
14!)5

1490
1497
14!)8

1499

1500

1501

1502

1503

1504
1500

1.507

1508

1509

1510

1511

1512

1513

1514

1515
1510

1517

1518

1519

1520

1521

1457

1458

1459
1400
14C1

1462

1403

1404

1405

1406

1408

1409

1470

1471

1472

1474

1475
1470
1477

1479

1480

1481

1482

1483

1484

nbsp;29/\'.0

;nbsp;30.Ö

nbsp;30.8

;nbsp;32.7

nbsp;32.7

nbsp;33.0

Inbsp;33.1

Inbsp;37.8

Tnbsp;41.1

nbsp;42.4

0quot;.018

11.8
12.1
13.9
14.0
11.9

12.7
12.0
8.5

13.3
12.0

20s to

11.5

12.4
13.9

11.7
11.2

11.4

11.4
10.2

9.1

11.6

10.5
12.9
12.5

12.8
10.5

12.0

14.0

12.3

12.1

9.8

12.4

13.0
9.1

13.5

9.8
m 43 s t(
9.0

11.1
12.2
12.5
12.7

12.7

11.8
9.!)

12.0
13.1

13.1
9.0
7.5

12.2
12.9

12.7

12.8
12.0
10.7
10.2

0quot;

,031
0
9
11
4

18
10
0
30

0quot;.025

nbsp;40/\'.5

nbsp;38.8

nbsp;40.0

nbsp;40.9

nbsp;41.2

nbsp;40.0

nbsp;39.9

nbsp;40.3

nbsp;40.8

nbsp;89.G

0
25
2
19

1

19
10
4
2

29

()

38
42
()

00
31

23
40

47

30

38
35
14
29
14

20
1

32
28

48

12
32

31
21
11

0
9
20
29
27

12
8
4

19

17
31
47
35
43

18

20
7
2
1

24
0
G
4
IB

IG
0
15
43
30

55°. 547

12

39
25

15
2
02

4
7

21
10

5
7

20

27
29
22
18

0

5
25
20
19
12

31

40
1

38
4

18
10

3

4
1

10

33

34
13

1

9

5

203
17

28

0
9
11
1


— 10

= 2h d«

26$

33$
30$
49$

17$

36$

36t

25

17

14
2
13
20$
17

29

19

20

30
19

48i
42$

17|

20$

44$
28$
10$
24$
7$

20$
21$
13$
0$
10

H

19
221
34
19

23
0

34$
30:!
3i|

45

29$

48$

59$

30:1

40.5
39.9
3!).«

30.1
35.8

20.0
2.5.«
23.7
23.0

18.3

15.2

12.7

11.8
1.0
01

8.0
10.0
23.0

30.0

30.1

.32.1

32.8

33.3
37.1

38.9

34.4
28.0
20.0

23.0

21.4

21.7

19.1
14.7

13.3
11.9

11.4
0.B

5.8

3.9
0.2

0.8
2.1
1.3.2
15.9

17.1

17.2

19.1

20.5

24.2
25.4

19
17
35

2
11

4

22
lt;gt;

O
10
17

10

5
11

4
C

30

g

4
1(

2

2

20
2

10

5

33
17
7
25
17

43.9 —

43.3

45.0

45.4

43.1

— 35

-H

19 ,

4-

16

27

15

4-

2

0

4-

21

5

4-

49

:_

9

4-

131

-F

10

4-

257

214

3

9

3

1

4-

17

4-

13

4-

4-

8

-f

18

4-

22

4-

14

18

13

4-

21

4-

16

4-

28

4-

3

10

4-

28

4-

25

4-

53

4-

42

4-

8

4-

20

J = 4- 0quot;.007

0quot;.009$i
4$-
28$ —
32$-
4$ -

0quot;.0,30$
1
10
13
G

17
11

4
28
12$

18
10
35$

2
10

4
22

3
10
17

10

5
11

3
7

4-

50$

-1-

4-

21$

22$

4-

29::

4-

14::

Ot
2t
lot

13J

24:
38:
.54:
42:
49:

11
32

n
8

22$
0$
55$
2

14

15
17

1
0
20

33
23
29
12
0

17
0
12

3
0

10
7:
9:
36:
29:

33:
3
21$
i.5i
9$

17
12$
10$

3$

\'\'2$
31$

lot
28$
fit

18:
11
2
9
0

5$
28$
39$
18;
G:

14

0
208
22
33

12
4
5$
5$
19$

37$

n

5:
24:

15

18:
20:
1:
21:

35$
14$
10$
5$
21$

,54$
145
280$
G

1.3$

15:
10
.35:
40:
38:

22:

27:

43:

55$

29$


-ocr page 90-

CC

!

u
\' 1

gt;00$

0quot;.023$

,—

0quot;.007$

0quot;.011

0quot;.025$

0\'

\'.019

0quot;

.013

11

35$

14$

13

28$

25

21

19$

28$

30$

9

1

41

8$

29$

8

--

24$

1

21

4

6::

5$

12

—■

19$

22

14

8

0$

_

10$

_

15

_

6$

__

9

_

9

19

_

4$
3$

2::

7

2::

12

1

1

-f

25$

1

23$

21

5

151$

144::

118::

90$

93::

140

100

25

4$

-h

4::

1

10;

15

9

25

_

18$

_

42$

-L

5$

8$

—.

10

—.

5

5

9$

27$

-

9

Ot

—•

22

9

4

27::

3$

-

19

fit

13

2

19

35::

22$

-

21

12$

0

5

5

18$

16$

0

9$

—■

5

0

23

0:

—,

29$

0

12}

11

1

23$

25:

5t

-

9}

23

4

10

13

20$

14$

-

10

7

10

■—

4

14

35$

0$

-

19$

11

22

1

14

29$

20$

1

37}

11

14

59

95$

7$

13

22}

08

10

17

-1-

39$

1.5:

1

12:

14

10

24

28$

.38:

11

21}

12

23

18

37$

24:

9

21:

5

19

34

45::

7:

7

10:

1

5

20$

57|

13}

It

37}

-

26

22

20

49:

8:

18

20}

19

19

1

-1-

12:

:

3:

5

31}

8

17

28

30:

:

2}

-

24

,31}

10

10

8

35:

:

20}

28

19^

23

22

11

33$

:

18}

:

19

28}

:

8

23

1

38$

4

12}

:

30

9

7$

ni

:

13}

61

211

f

12

12

7

!

30$

:

1$

:

nquot;

11}

2

8

16

1

32}

:

17

12}

10

9

10

1

43}

30}

12

27

10

21$

14}

:

10}

:

4

14^

h _

11

10

20

54}

21}

53

27}

19

32

1900.0

2h O ni

Is

50\'-

12\'.e

0quot;.023t

0

19

9.2

19t

2h 5m

47s

OJ

2h 5m

15s

57°

7\'.7

5

30

0.0

53J

5

5

4.4

103$

5

27

.3.7

45$

5

29

3.3

00$

5

23
8

2.7

93$

.5

1.3

122$

5

35

50°

.59\'. 3

20$

5

24

57.0

29$

5

29

,54.1

7.5$

5

39

52.1

4$

5

9

50.0

!—

112$

5

29

49.9

.50$

5

32

49.8

- 80$

5

14

47.8

10$

5

41

47.8

14

5

35

44.5

33$

5

21

43.1

27$

5

42

38.2

22$

5

44

.37.8

.38::

5

21

37.1

33$

5

38

30.7

71::

5

12

27.1

50::

5

21

25.7

11$

5

19

25.1

0$

5

35

23.9

10$

5

27

21.0

3$

5

28

19.8

30$

5

25

17.2

21$

5

47

10.8

71$

= 2/i 5m 9s

21$

2h 5m

2s

50° 50\'. 1

4

45

48.1

02$

4

43

42.7

87$

5

8

30.0

13$

5

9

28.0

51$

4

31

57° 10\'.4

106$

-ocr page 91-

* quot; quot;quot;

■ ji-quot;

:• \' ...... ..... .

.......

----- .. ......\' i ... -.......... . • ■

---------------------

_______

\' ........... ;

;

\'M

. ■ • ■■

• ■ .

\'t

^ »

I.-. 1

quot;f

. - i

.-f

■ \' * \'

7quot;

; _t

■ : ■

.: .

■ \' ■ .

\' • i

• .

. ■ V.\' ■ ■ quot; :

. • gt;

quot;Ht

t

1

•y\'

Î

... . \'r , .; . . ■

VJl

v

gt; ^

1

\'^•jÊi\'-\'-\'

0

If:

Mi

. \' ... \' .. ■ ■

\\

•i.V.

■ . ... .

• \' ■ . iS

«.Vi

■l

lt; ■ ;

1 -

t-t \'ft.

■ , ■

■ ■■

• ï

quot; WVJ

• . S«O? ■

/

i\' ■

i . ■

-TT:

ui

■ \'UA

m

\'lia.

I

■i\'Mjt:

-ocr page 92-

STELLINGEN.

L

De beste bepaling van Eigen Bewegingen is die, waarbij fotogrammen
van verschillende epoche onmiddellijk onderhng worden vergeleken.

IL

De methode, aangegeven in ,,Plan of Selected Areasquot; voor de be-
rekening van E. B. is te verkiezen boven die, gevolgd in „Publ. of the Astr.
Lab. at Groningen,
14quot;.

IIL

Het door Tikhoff in „Apphcation des filtres sélecteurs à la recherche
de l\'affaiblissement sélectif de la lumière dans l\'espace interstellairequot;
gevonden verschil in aspect der Pleiaden, schrijft deze ten onrechte aan
absorptie in de ruimte toe.

IV.

De bewering van Miller Barr: „the elliptic elements, e and w, as
computed and pubhshed for the orbits of spectroscopic binaries, are probably
illusoryquot; 2), is ongegrond.

V.

Men mag a priori verwachten, dat bij visueele dubbelsterren de heldere
ster tot een later spectraaltype behoort dan de zwakkere.

VL

Bij het uitmeten van fotografische platen stelle men op elke ster slechts
eenmaal in.

VIL

Ten onrechte meent Barnard dat cluster-variabelen als controle
kunnen dienen voor het constant zijn der aardrotatie.

1)nbsp;Mitt. der Nikolai-Hauptsternwarte zu Pulkow, 26.

2)nbsp;The Journal of the R. A. S. of Canada, 2, 72.

3)nbsp;A. N. 4409.

-ocr page 93-

VIIL

g. H. Darwin\'s gétijdentheorie kan de denkbeelden van geown
brengenquot;quot;quot;nbsp;^^^ ^^^^^nbsp;nader to\'t elkfar

IX.

De „paradox van St. Petersburgquot; is niet paradoxaal.

X.

lijke foutquot;quot;nbsp;uitkomsten de ^middelbare fout op en niet de waarschijn-

XI.

met dequot;™Te b^ef quot;\'—«--gen is omgekeerd evenred,g

XII.

Het begrip van de ruimte wordt ons niet door den gezichtszin maar
door^den tastzin geleverd.nbsp;gezicniszin, maar

XIII.

Si rogas, quid sit tempus, nescio, si non rogas, intelligo (Augustinus).

XIV.

^ L\'emploi des modèles réduites rencontre des difficultés et donne lieu
a des disœrdances, qu\'il est impossible d\'éviter complètement parce qu\'elles
sont mherentes à la nature des choses. (
Appell).

XV.

De theorie van Sommerfeld voor de buiging bij een rechtliini^
begrensd, vlak scherm is boven die van
Kirchhoff te verkiezen. ^ ^

XVL

Ten onrechte tracht Hantzsch de begrippen chromoisomerieenhomo-
chromoisomerie m de scheikunde in te voeren.nbsp;^eiinomo

-ocr page 94-

^ r lt;quot; ■ \\

lt;

,.....

-ocr page 95-

■ .

• ■■■■

\'f \'\'\'-(\'y

■ ■ • ■ , ■ ■ gt; i ■ ;

; -■

-ocr page 96-

W

......

mêmMm

-ocr page 97-