-ocr page 1-

/ /. y

■W

The Solar T{otation
in June igii
from Spectrographic
Observations

I-«-

•iamp;r

. vY

■I .

B. HUBRECHT

-ocr page 2-

A. qu,
192

■M

-ocr page 3-

wsmmsm

»

fs\'M-ïÇvîÏÂii

r;

-ocr page 4-

wm

-ocr page 5-

• ••.\'Ut.\'

-ocr page 6-

m

-i

-ocr page 7-

THE SOLAR ROTATION IN JUNE 191 I
FROM SPECTROGRAPHIC OBSERVATIONS

-ocr page 8-
-ocr page 9-

THE SOLAR ROTATION IN JUNE 1911
FROM SPECTROGRAPHIC OBSERVATIONS

PROEFSCHRIFT TER VERKRIJGING VAN DEN GRAAD VAN DOCTOR IN
DE WIS- EN STERREKUNDE AAN DE RIJKS-UNIVERSITEIT TE UTRECHT
OP GEZAG VAN DEN RECTOR MAGNIFICUS DR. H. SNELLEN HOOG-
LEERAAR IN DE FACULTEIT DER GENEESKUNDE , VOLGENS BESLUIT
VAN DEN SENAAT DER UNIVERSITEIT TEGEN DE BEDENKINGEN VAN
DE FACULTEIT DER WIS- EN NATUURKUNDE TE VERDEDIGEN OP
DINSDAG 6 JULI 1915 DES NAMIDDAGS TE DRIE UUR

DOOR

JAN BASTIAAN HUBRECHT

geboren te utrecht

Cambridge :

Printed at the University Press
1915

-ocr page 10-

ffiambritige:

printed by john clay, m.a.
at the university press

-ocr page 11-

AAN DE NAGEDACHTENIS VAN MIJNEN VADER

51- ■

-ocr page 12-

Ni

■frv.--),-;\'^

quot;s

a..

■ ■^Ji

S

.m.

-ocr page 13-

Mijn dank wensch ik te betuigen aan de Faculteit der Wis- en Natuurkunde
welke mij vergunde voor haar te verschijnen met een proefschrift gesteld in de Engelsche
taal. Ik gedenk dan tevens de jaren, nu reeds geruimen tijd in het verleden liggend,
gedurende welke ik het onderwijs van de toenmalige leden der Faculteit genoten
heb. In het hijzonder ben ik veel verschuldigd aan mijnen hooggeachten Promotor,
Professor
Nijland. Hoewel mijne latere werkzaamheden op het gebied van het
zonne-onderzoek niet te Utrecht zijn uitgevoerd, was hij het toch die mijne belang-
stellingin de physische astronomie heeft wakker gemaakt, niet het minst door het mij
indertijd mogelijk te maken deel te nemen aan de eclips-expeditie naar Sumatra.

Op die expeditie werd ook op andere wijze de grondslag gelegd voor verdere arbeid,
door mijne kennismaking met Professor
Newall. Om onder zijne leiding te werken
vertrok ik in
1906 naar Cambridge. Zijne welwillendheid in het ter mijner be-
schikking stellen van de nieuwste instrumenten aldaar, zijn raad en daad in het oplossen
der practische vraagstukken die zich bij het gebruik daarvan voordeden, en zijne
voortdurende belangstelling en aanmoedigende critiek in de latere ontwikkeling van
het onderzoek hebben het mij mogelijk gemaakt deze bijdrage tot de kennis van de
zon te leveren.

Zonder de bijzonder nauwkeurige metingen voor mij door den heer Tunstall
te Manchester, gedurende mijn verblijf aldaar, uitgevoerd, zouden de verkregen uit-
komsten zeker niet het gewicht hebben dat de lezer hen, op grond van hunne onderlinge
overeenstemming, misschien zal toekennen. Ook zijn deel aan de volgende bladzijden
is dus niet gering en moge hier met waardeering herdacht worden.

-ocr page 14-
-ocr page 15-

TABLE OF CONTENTS

§ i. Introductory

PART I. OBSERVATIONS AND REDUCTIONS

§ 2.nbsp;Instrument and method of observation

§ 3.nbsp;Record of observations

§ 4.nbsp;Measurements

§ 5.nbsp;Reduction to velocities ,

§ 6.nbsp;Additional corrections .

§ 7.nbsp;Complete table of results

PAGE
i

2
4
9

II

14

16

PART IL DISCUSSION OF RESULTS DERIVED FROM LINES OF
DIFFERENT WAVE LENGTHS.

§ 8. Comparison of results for individual lines .

• • • •

§ 9. Search for a cause of the variation of velocity-difference with wave

length ........

§ 10. Evidence of a similar effect in earlier investigations
§ ii.
Conclusions as to individual lines and elements

PART III. DISCUSSION OF VELOCITY-DIFFERENCES AT
DIFFERENT LATITUDES.

§ 12. Results for pairs of plates.....

§ 13. Probable errors......

§ 14. Symmetry with respect to the solar axis
§ 15.
Symmetry with respect to the solar equator

§ 16. Reduction to one quadrant.....

§ 17. Rotation law for the epoch of observation
§ 18.
Tentative explanation of plate-to-plate results
§ 19.
Comparison with earlier investigations
§ 20.
Summary.....

41

44

50

51

52

56

57
60

63
65

69

71

76

-ocr page 16-
-ocr page 17-

§ i. Introductory

The rotation of the sun as determined by spectroscopic means has been
the subject of several important investigations since the publication of Duner\'s
well-known memoir
Recherches sur la rotation du Soleil in 1893. Both in
this work as in his later research^ Duner deals with visual observations only,
as does also Halm in his account of the work done on similar lines at Edinburgh 2.
Since then the subject has been taken up photographically by Adams at Mount
Wilson^, Storey and Wilson at Edinburgh^ J. S. Plaskett and De Lury at Ottawas,
Evershed and Royds at Kodaikanal®, Schlesinger at Allegheny\', H. H. Plaskett
again at Ottawa« and the present author at Cambridge The International
Solar Union has considered the subject of enough importance to institute a special
committee for the solar rotation. This committee met at Mount Wilson in 1910
and again at Bonn in 1913. On the latter occasion the principal subject of dis-
cussion was the discordance of the results obtained by the different observers.
It was unanimously agreed that the main object of each of the investigators at
present occupied with the work should be to clear away this discordance^®. It
is with that object in view that in the present paper the author proposes to deal
more at length than is usual with some of the instrumental and observational
details of the work as well as with the measurements and reductions. Possibly
light may thus be thrown on the causes of these differences which so far seem
to be greater than is compatible with the probable error claimed by each
investigator^ for his results.

In a former paper already alluded to^ the author has published some results
obtained at Cambridge. Two sets of observations were dealt with, one con-
cerning only the solar rotation at the equator and made at epochs extending
over a considerable range of time (Dec. 1910—Oct. 1911), the other made in the
first half of June 1911, giving comparisons of radial velocities at points all round
the sun. The latter set consisted of one series of plates out of four which had
been taken. The other three series have since been measured by Mr N. Tunstall,
a student of the Victoria University of Manchester. It appeared at once that
the consistency of his measures was a good deal greater than that of the author\'s
original measurements of the first series, and accordingly this first series was
remeasured by Mr Tunstall. The results relating to all four series may thus
be regarded as affording homogeneous material for discussion.

1 Nova Acta Reg. Sac. Upsala, 4, i, No. 6, 1906.nbsp;® A.N. 173, 294. 1907-

® Astrophys. J., 26, 203, 1907; 29, no, 1909; Carnegie Institution of Wasliington, Publ. 138, 1911.

« M.N. Lxxi, 674, 1911.nbsp;® Trans. R.S. of Canada, 6, 3, 1912.

® M.N. LXXIII. 554, 1913.nbsp;\' Publ. Allegheny Obs., 3, 13, 1914.

® Journal R. Astr. Soc. of Canada, 8, 307, 1914.nbsp;® M.N. lxxiii, 5. 1912.

Trans. Int. Union for Solar research, iv, 123.

h.nbsp;i

-ocr page 18-

Part I. Observations and Reductions

§ 2. Instrument and method of observation

The observations were made with the instruments which are called the MClean
Solar Instruments. A ccelostat mirror of 16 inches (40 cm.) diameter reflects the
sun\'s rays on to a secondary mirror of similar size which reflects them in a hori-
zontal direction, due North, on to an achromatic 12-inch (30 cm.) lens having a
focal distance of 60 feet (18 m.). These three optical parts are all mounted in a
little building immediately South of the
Newall dome of the Cambridge observatory.
Fig.
i gives a diagrammatic presentation of
their arrangement.
C is the ccelostat mirror,
with its normal perpendicular to the polar axis
on which it is rotated by clockwork. The axis
is supported in a stout frame which can-be
moved up or down an inclined bed
ah worked
parallel to the polar axis on a heavy wedge-
shaped casting. Thus the ccelostat mirror
can on any day of the year be so placed
as to direct the reflected beam on to the
secondary mirror 5 whatever the sun\'s decli-
nation may be. The whole casting supporting
the ccelostat mirror can further be moved
East or West parallel to itself along a couple
of rails
cd and ef in order to obtain at every
hour of the day full illumination of the
secondary mirror and therefore also of the image lens
0. The beam of light
travels, unenclosed, right through the Newall dome and the image is formed on
the slit of the spectrograph which is installed in a room adjoining the dome on
its North side. The image, which at the epoch of observation had a mean
diameter of 172 mm., can be moved across the slit by means of cords which
work the slow motions of the secondary mirror. Another cord connection makes
it possible to move the image lens along a sHde
ghik in the line of the beam
and so adjust its focus.

II

w-

The spectrograph is a horizontal instrument of the Littrow form, fitted
with a plane grating of about 60,000 effective rulings. It was designed by
Professor Newall for work on sunspots and solar rotation and described by him
elsewhere as well as in the author\'s paper already referred to. Its description
therefore need not be repeated; reference is only made to the most important
features of both instrument and method of observation in the following remarks.

1 M.iV. LXVIII, 6, 1907.

-ocr page 19-

§ 2]nbsp;Instrument and Method of Observationnbsp;3

The whole spectrograph is capable of rotation round its horizontal axis so
that the slit can be placed tangentially or radially to any required point of the
sun\'s limb. A scale is provided giving the position angle from an arbitrary zero
reading.

The overlapping parts of the spectra of different orders are separated by
means of a small angled prism with dispersion at right angles to the dispersion
of the grating.

The spectra of the two points of the sun\'s limb each time to be compared
were not photographed simultaneously. The exposure at one point was taken
as nearly as possible midway between two half exposures of the other point.
By proceeding in this way no error is introduced provided that any gradual
change in the position of-the lines during the total length of the exposures is of
a linear kind. This condition was amply satisfied as appeared from many tests.
The divided exposure has not in a single case interfered with the definition of
the lines,—a fact which affords sufficient justification of the method.

The region investigated extended from A 4300 to A 4400, this being half the
region allotted to Cambridge in the cooperative scheme decided upon at the meeting
of the Solar Union held at Mount Wilson in 1910. With the great dispersion
used (fourth order, i Â. u. = 1-13 mm.) one plate does not cover the whole region ;
two plates had always to be taken with
A 4325 and A 4375 approximately central
on each respectively. Ilford Empress plates were
used throughout, giving comparatively fine grain
without being too slow.

With regard to the position angles, that of the
parallel is always first found by rotating the in-
strument until, when letting the solar image trail

across the slit plate, it remains tangential to a r ---

line drawn upon this plate perpendicularly to thenbsp;^

slit. The spectrograph is then further rotated

through an angle computed from the Ephemerisnbsp;,

given in the Companion to the Observatory until

the slit is tangential to the sun at a point of the

required latitude. Other lines are engraved on thenbsp;. ^

vx 1 , 1 • -u 1nbsp;,nbsp;Fig. 2. Sht plate to show method

silt plate which make it possible to compare, of setting solar image tangential

without again rotating the instrument, the spectra or radial to sht.

not only at the ends of a solar diameter, but also at points separated by 90° from

one another. These are shown diagrammatically in Fig. 2 where SS\' is the

slit, TT the line scribed at right angles to the slit already mentioned, while

Pi\' p2quot;-gt; Pigt; p2quot;-\' ^^^ short lines scribed in such a way that when, as in

the figure, the sun\'s limb is made to coincide with p^ and p-l the centre s of

the slit is at a definite distance h inside the point of the sun\'s limb where the

tangent to the limb is parallel to the sht. Coincidence of the Hmb with p2

and would bring upon the centre of the slit a point just inside the limb at

-ocr page 20-

the other end of the diameter belonging to the latitude in question. But by
bringing the limb in coincidence with p^ and p^ or p^ and p^ we can throw upon
the centre of the slit light from a point just inside the limb at a distance of
90
from the first point. The instrument remains untouched between the two obser-
vations required for each plate; in one observation the slit is tangential, m the

other the slit radial to the sun\'s image.nbsp;, . ..t,

An adjustable diaphragm is placed in front of the slit so that either the

central millimetre s was exposed (single aperture s) or else the two millimetres d

adioining it on either side (double aperture d).

Throughout the series of observations here discussed, plates were taken
comparing pairs of points 90° apart from one another. With the instrument
fixed and the slit therefore in one position angle four
plates were taken, one comparing the spectrum at a
point
I (Fig. 3) with that at a point 2, the next that
at 2 with that at 3, the next
3 with 4, and finally
4 with
I. This was repeated for the second region of
the spectrum. The slit was then moved to another
position angle by rotating the instrument round its
horizontal axis and a second set of eight plates was
taken with a different starting point. Care was
always taken not to begin the plates of the new set
immediately after the instrument had been moved;
a sufacient interval of time was given to allow
temperature and other conditions to settle down.
A complete quot;seriesquot; of observations consists of six of these sets of eight plates,
starting from 0°
e., 15°, 30°, 45°, 60° and 75° s.e. respectively^. Such a series
contains therefore observations taken at intervals of
15° round the suns limb.

§ 3. Record of Observations

Four complete quot;seriesquot; were secured in the first fortnight of June 1911,
as already mentioned on page i. The almost perfect weather conditions
prevailing at the time made it possible to obtain within that short mterval the
192 plates involved. In Table I a complete hst of these plates is given.

Only plates which have been measured and of which the results are
discussed in the present memoir are included in this table. In the fourth
column
A denotes the region A 4300—A 4350, B the region A 4350-A 4400. The
exposure times, given in column
5, show considerable variation, especially short
exposures
(15 seconds) having been possible after a second pohshmg of the ccelo-
stat mirror on a day when also the atmosphere attained maximum transparency

» The notation o°e., 15° s.e. etc. for points on the sun\'s limb is used throughout the present
publication for the points at the East end of the solar equator, at solar latitude 15 m the solar
S.E. quadrant etc.

-ocr page 21-

Record of Observations
Table I. List of Plates

I

Date

2

Hour

3

Plate
number

4

Spectral
region

5

Ex- i
posure

6

Latitudes

7 8
Temperature

9

Pes. angle
spectro-
graph

10

Her.
reading
ccelostat

Inside

Outside

1911

A.M.

seconds

June i

7-30

N 5

B

60

o°E. d

90° s. s

i6-2

16-3

358° 45\'

96

7-38

n 6

B

60

90° S. 5

w. d

i6-2

i6-6

f f

7-45

n 7

B

60

o°w. d

90° N. S

i6-2

16-7

ff

7-50

n 8

B

60

90° N. 5

E. d

16-3

16-9

i f

7-59

n 9

a

60

E. d

90° s. s

16-3

17-0

8.6

n 10

a

60

go° s. s

w. d

16-3

17-1

8.20

n ii

a

60

90° N. s

o°E. d

16-3

17-5

J

10.20

n 20

a

60

30° S.E. d

60° s.w. s

17-1

20-6

10.30

n 21

a

60

60° s.w. s

30° N.W. d

i7-i

20-7

a

10.36

n 22

a

60

30° N.W. d

60° N.E. S

17-2

20-8

a

10.42

N23

a

60

60° N.E. S

30° S.E. d

17-2

2i-i

) i

ii.o

n 24

B

60

30° N.W. d

60° N.E. S

17-4

21-2

II

quot;It

ii.6

n 25

B

60

60° N.E. S

30° S.E. d

17-4

21-4

-J \'

11-43

n 26

B

60

45° N.W. d

45° N.E. s

17.8

22-6

13° 30\'

quot;It

11.49

n 27

B

60

45° N.E. s

45° S.E. d

17-8

22-7

11.58

15 tvyt

n 28

a

60

45° S.E. d

45° s.w. s

17-9

22-8

II

; f

jr.ivl.

12.4

n 29

a

60

45° s.w. s

45° N.W. d

17-9

22-9

it

12.10

n 30

a

60

45° N.W. d

45° N.E. s

i8-o

23-0

ff

12.16

n 31

a

60

45° N.E. s

45° S.E. d

i8-i

23-1

II

»»

96

12.29

N32

a

60

15° S.E. d

75° S.W. s

i8-i

23-2

12.34

N33

a

60

75° S.W. s

15° N.W. d

i8-2

23-3

gt;t

12.43

N34

a

60

15° N.W. d

75° N.E. s

18-3

23-3

11

12.50

N35

a

60

75° N.E. S

15° S.E. d

18-4

23-4

gt;»

12.57

n 36

B

60

15° S.E. d

75° s.w. s

18-4

23-6

f »

1.4

N37

B

60

75° s.w. s

15° N.W. d

i8-5

237

ff

1-9

n 38

B

60

15° N.W. d

75° N.E. S

i8-6

237

ft

1.14

N39

B

60

75° N.E. s

15° S.E. d

i8-6

237

ff

3.12

n 40

a

60

15° S.E. d

75° s.w. s

19-3

24-1

343° 30\'

3.20

n 41

a

60

75° s.w. s

15° N.W. d

19-4

24-1

3-33

n 42

a

60

15° N.W. d

75° N.E. s

19-5

24-1

ft

3-38

N43

a

60

75° N.E. s

15° S.E. d

19-5

24-2

a

3-48

N44

b

60

15° S.E. d

75° s.w. s

19-6

24-2

if

3-54

N45

b

60

75° s.w. 5

15° N.W. d

19-6

24-2

ff

4.0

N 46

B

60

15° N.W. d

75° N.E. S

197

24-1

ff

4-5

N47

B

60

75° N.E. 5

15° S.E. d

19-7

24-0

328° 30\'

ff

4.29

N 48

b

60

o°E. d

90° S. S

19-8

24-0

ff

4-34

N49

B

60

90° s. s

w. d

19-8

23-9

ff

4-39

N50

b

60

w. d

90° N. S

19-8

23-9

ff

4-45

a tv/t

N51

b

60

90° N. S

o°E. d

19-8

23-8

II

ff

June 2

a* jvl •

quot;•37

N56

a

150

E. d

90° 8. S

i6-6

20-6

329° 12\'

ft

If

11.46
P.M.

N57

a

150

90° S. 5

w. d

i6-6

20-9

ft

12.33

N58

a

150

w. d

90° N. 5

i6-8

21-5

ff

12.43

N59

a

150

90° N. S

o°E. d

16-9

21-7

ff

3-34

n 60

B

150

30° S.E. d

60° s.w. s

i8-i

22-6

359°12\'

»» i R

3-44

n 61

B

150

60° s.w. 5

30° N.W. d

i8-i

22\'7

It

4-49

tj -vf

n 62

a

60

w. d

90° N. S

i8-6

22-4

329° 12\'

II

June 3

jr.mt

1-25

N63

B

60

45° S.E. d

45° s.w. s

18-5

22-0

44° 30\'

1-35

a ht

n 64

B

60

45° s.w. s

45° N w. d

i8-5

22\'i

June 4

a.m.

10.50

N65

B

60

60° S.E. d

30° s.w. s

18-4

20-3

29° 30\'

11

10.57

n 66

B

60

30° s.w. s

60° N.W. d

18-4

20-5

»

f *

* Set completed by N 62.
t Set completed by N 63 and N 64.
II To go with plates N9-11. Mirrors polished
To go with N 26 and N 27.

t Set completed by N 60 and N 61.
§ To go with N 24 and N 25.
before taking this plate.

-ocr page 22-

Solar Rotation in Jtme 1911
Table I. List of Plates {continued)

1911
June 4

Hour

Plate
number

Spectral
region

Ex-
posure

a.m.

seconds

ii.2

N 67

B

60

ii.7

N 68

B

60

ii.16

N 69

A

60

ii.21

N 70

A

60

11.27

N 71

A

60

11-33

N 72

A

60

7.17

N 77

A

120

7-25

N 78

A

120

7-34

N 79

B

120

7.42

N 80

B

120

7-50

N 81

B

120

7-58

N 82

B

120

8.8

N 83

A ■

120

8.16

N 84

A

120

9.22

N 85

A

120

9.31

N 86

A

120

9.39

N 87

A

120

9-45

N 88

A

120

10.31

N 89

B

120

10.38

N 90

B

120

10.45

N 91

B

120

IO-53

N 92

B

120

ii.21

N 93

B

120

11.28

N 94

B

120

11.38

N 95

B

120

11.47

N 96

B

120

11.56

N 97

A

120

p.m.

12.4

N 98

A

120

12.10

N 99

A

120

12.20

N 100

A

120

3.12

N 105

A

120

3.20

N 106

A

120

327

N 107

A

120

3-34

N 108

A

120

3-44

N 109

B

120

3-52

N 110

B

120

3-59

N iii

B

120

4.6

N 112

B

120

a.m.

6-55

N 113

B

180

7-5

N 114

B

180

7-15

N 115

B

180

7-25

N 116

B

180

7.40

N 117

A

150

7-50

N 118

A

150

8.3

N 119

A

180

8.12

N 120

A

180

p.m.

12.39

N 129

A

120

12.54

N 130

A

120

a.m.

10.23

N 131

B

90

10.30

N 132

B

90

10.38

N 133

B

90

ro-45

N 134

B

90

10.55

N 135

A

60

ii.2

N 136 1

A

60

60° S.E. d
30° s.w. s
60° N.w. d

Temperature

Pos. angle
- spectro-
graph

Hor.

reading
ccelostat

Inside

Outside

18-5

207

29° 30\'

96

18-5

20-8

18-5

2I-0

i8-6

2I-0

i8-6

21-4

18-7

217

i8-6

17-6

75°quot;I8\'

u

i8-6

17-8

ƒ

i8-6

17-9

i8-6

i8-o

i8-6

i8-o

i8-6

i8-2

i8-6

i8-6

i8-6

18-9

i8-8

20-2

45quot;I2\'

i8-8

20\'4

i8-9

207

i8-9

20-9

19-2

21-8

I5°quot;l2\'

19-3

22-0

19-4

22-3

19-4

22-5

19-6

23-0

0°\'l2\'

197

23-0

197

23-2

19-8

23-5

19-9

23-8

19-9

23-8

20-0

23-8

20-0

24-0

2I-0

25-4

345° 12\'

2I-0

257

2I-I

25-8

a

2I\'I

25-8

21-2

25-8

21-2

25-8

21-3

25-8

21-3

25-8

quot;

187

16-9

o°42\'

96

187

17-0

187

I7-I

gt;t

187

17-3

gt;i

187

17-5

187

17-8

187

i8-o

187

i8-o

19-9

22-2

30°42\'

19-9

22-4

15-9

17-0

31° 0\'

i6-o

17-0

gt;gt;

i6-o

17-0

i6-i

I7-I

igt;

i6-i

17-4

16-2

17-5 1

gt;gt;

s

t To go with N 77 and N 78.
§ To go with N 129 and N 130.

Date

Latitudes

60° N.w. d
30° N.E. s
60° S.E. d
30° s.w. s
60° N.w. a;
30° N.E. 5

75°N.w. ci

15° N.E. S
75° S.E.
d

15° s.w. s
75° N.w.d
15° N.E. 5
75° S.E. d

15° s.w. s

45° S.E. d

45° s.w. s
45°
N.w. d
45° N.E. S
45° S.E. d
45° s.w. 5
45° N.w. d
45° N.E. S
30° S.E. d
60° s.w. s
30° N.w. d
60° N.E. S
30° S.E. d

60° s.w. 5
30° N.W. d
60° N.E. s
I5°S.E. d
75° s.w. 5
15° N.w. d
75° N.E. S
I5°S.E. d

75° s.w. s
15°
N.w. d
75° N.E. S

30° N.E. S
60° S.E. d
30° S.W. 5
60° N.W. d
30° N.E. S
60° S.E. d
15° N.E. 5
75° S.E.
d

15° s.w. s
75° N.W.
15° N.E. S
75° S.E. d
15° s.w. 5
75° N.w. d
45° s.w. 5
45°N.w. rf
45° N.E. S
45° S.E. d

45° s.w. 5

45° N.W. d
45° N.E. S
45° S.E.
d

60° s.w. s
30° N.w.
60° N.E. S
30° S.E. d
60° s.w. s

30° N.w. d
60° N.E. S
30° S.E. d
75° s.w. 5
15° N.w. d
75° N.E. s
15° S.E. d
75° s.w. s
15° N.w. d
75° N.E. s
15° S.E. d

June 5

d

90° s.

S

s

0° w.

d

d

90° N.

s

s

0°E.

d

d

go°s.

s

s

0° w.

d

d

90° N.

s

s

0°E.

d

60° S.E. d 30° S.w. s
30° S.w. S 60° N.w. i

June 6

0°E.
90° S.
w.
90° N.
0°E.

go°s.
w.

90° N.

June 7

30° s.w. 5
60° N.w. d
30° N.E. 5
60° S.E. d
30° N.E. 5
60°
S.E. d

30quot; N.E. S
60° N.w. d
30° N.E. S

and N 84.
Set completed by N 135 and N 136.

* bet completed by N 83
} Ccelostat mirror polished,

-ocr page 23-

Record of Odserva^ions
Table L List of Plates {continued)

§3]

7

Temperature

Pos. angle
spectro-
graph

Hor.
reading
coelostat

Plate
number

Spectral
region

Ex-
posure

Date

Hour

Latitudes

Inside

Outside

1911
June 7

June 9

a.m.

11.30

n 137

a

11-35

n 138

a

11.40

n 139

a

11-43

n 140

a

11-53

n 141

b

11.56

n 142

b

p.m.

12.2

N143

b

12.6

n 144

b

12.23

N145

b

12.26

n 146

b

12.29

N147

b

12.33

n 148

b

12.37

n 149

a

12.41

n 150

a

12.44

n 151

a

12.48

n 152

a

2.48

n 153

b

2.53

N154

b

2.57

N155

b

3-0

n 156

b

3-5

n 157

a

3-9

n 1-58

a

3.12

n 159

a

3-15

n 160

a

3-40

n 161

a

3-43

n 162

a

3-47

n 163

a

3-51

n 164

a

3-56

n 165

b

3-59

n 166

b

4-3

n 167

b

4-7

n 168

b

a.m.

7-25

N177

a

7.29

n 178

a

7-33

n 179

a

7-37

n 180

a

7-43

n 181

b

7-50

n 182

b

7-56

N183

b

8.0

n 184

b

9-45

n 187

a

9-50

n 188

a

9-54

n 189

a

9-57

n 190

a

10.7

n 191

b

10.II

n 192

b

10.17

n 193

b

10.21

n 194

b

11.9

n 195

b

II.14

n 196

b

II.18

n 197

b

11.23

n 198

b

11.29

n 199

a

11-33

n 200

a

11-37

n 201

a

11-43

n 202

a

a.m.

7.18

n 207

a

second

45

75°s.E. d

45

15° s.w. s

45

75° N.w. d

30

I5°N.E. s

30

75°s.E. d

30

15° s.w. s

30

75° N.w. d

20

I5°N.E. S

15

45°s.E. d

15

45°s.w. s

15

45° N.w. d

15

45°N.E. s

15

45°s.E. d

15

45° s.w. i-

15

45° N.w. d

15

45°N.E. 5

20

I5°S.E. d

20

75° s.w. s

20

15° N.w. d

20

75°N.E. s

20

I5°S.E. d

20

75° s.w. s

20

15° N.w. d

20

75°N.E. s

20

30°S.E. d

20

60° S.w. s

20

30° N.w. d

20

6o°n.e. s

30

3o°s.E. d

30

60° s.w. s

30

30° N.w. d

30

6o°n.e. s

40

6o°s.e. d

40

30° s.w. 5

40

60° N.w. d

40

30°n.e. s

40

6o°s.e. d

40

30° s.w. 5

40

60° N.w. d

40

30°N.E. S

30

75°s.E. d

30

\'15°s.w. s

30

75° N.w.

30

I5°N.E. 5

30

75°s.E. d

30

15° s.w. s

30

75° N.w. d

30

I5°N.E. S

30

o°E. d

30

90° s. s

30

o°w. d

30

90° N. 5

30

0°e. d

30

90° s. s

30

o°w. d

30

90° N. S

90

45°s. . d

75°s.E. d

16-3
16-3
16-3
16-3
16-4
i6\'4

16-4
16-5
i6-6
i6-6
i6-6
16-5
i6-6
167
16-7

16-7
X7-I

17-I
17-2
17-2
17-3
17-3
17-3

17-3

17-4

17-5
17-5
17-5
17-5
17-6
.17-6
17-6

15-0
15-0
15-0

I5-0

15-0
15-0
15-0
15-0
15-7

15-7
15-7
15-7
15-8
15-9

15-9

15-9

16-5
i6-6
i6-6
i6-6
167
167
i6-8
16-9

177

46° o\'

17-9

17-9

18-i
\'i8-i
18-3

i8-3

18-5
18-5
i8-8
i8-8
i8-8
i8-8
i8-9

18-9

19-0

19-0

20-0
20-3
20-5
20-5
20\'5
20gt;6
20-6
207
20-8
20-9
20-8
20
-g

20-9
20-9
20-9
20-9

15-0

I5-0
I5-0

I5-I
15-2
15-3
15-6

15-7
i8-2
i8-5
i8-6
187

18-9

19-0
19-2

19-3

20-6
20-8
20\'9

21-0
2I-I
2I-I
21-2
21-3

16-8

I5°N.E. s
75°s.E.
d

45° s.w. s
45\'\'n.w. d

45°N.E. 5
45°s.E.
d

45° s.w. s
45°N.w.
d
45°N.E. s
45°s.E.
d

75° s.w. s
i5°N.w.
d

75°N.E. s
I5°S.E.
d

75°s.w. s
15° N.-w.d

75°n.e. s
i5
°s.e. d
60° s.w. s
30°N.w.
d
6o°n.e. s
3o°s.e. d
60° s.w. 5
30°N.w.
d
6o°n.e. s

30°s.e. d

30° s.w. s
60°
N.w. d
30°N.E. S

6o°s.e. d
30° s.w. s
60° N.w.
d
30°n.e. s
6o°s.e.
d
15°s.w. s
75°
n.w. d

I5°N.E. s
75°s.E.
d

15° s.w. s
75° N.w.
d

I5°N.E. S
75°s.E.
d

90° s.
o°w.
90°
N.
0°E.

90° s.
0° w.
90°
N.
0°E.

96

346

June 8

61quot; 30\'

.96

46° 30\'

46° o\'

96

-ocr page 24-

Solar Rotation in June 1911
Table I. List of Plates {concluded)

10

Temperature

Hor.

reading
ccelostat

Pos. angle
spectro-
graph

Ex-
posure

Spectral
region

Latitudes

Plate
number

Hour

Outside

Date

Inside

45° N.W. d
45° N.E. S
45° S.E. d
45° s.w. s

45° N.W. d

32° o\'

60° s.w. 5
30° N.W. d
60° N.E. 5
30° S.E. d
60° s.w. 5
30° N.W. d
60° N.E. 5
30° S.E. d
30° S.W. S
60° N.W. d
30° N.E. s
60° S.E. d
30° S.W. s
60° N.W. d
30° N.E. S
60° S.E. d

June II

45° N.W. 45° N.E. S
quot;N.E. s
45° S.E. d

45

30° S.E. d
60° S.w. s
30° N.W. d
60° N.E. S
30° S.E. d

60° s.w. s
30° N.W. d
60° N.E. s
60° S.E. d
30° s.w. s
60° N.W. d
30° N.E. s
60° S.E. d
30° s.w. s
60° N.W. d
30° N.E. s

47quot; 0\'

June 12

75° S.E. dnbsp;15° S.w. s

15° s.w. snbsp;75°N.W. ci

75° N.W.nbsp;15° N.E. s

15° N.E. snbsp;75° S.E. d

seconds
90
60
60

50
50

40
40

50
50

80
60
60
60
60
60
60
60
60
60
60
60
60
60

60
60
60
60

60

60
60
60

lt;16

46° o\'

i6\'9

I7-0

17-0

I7-I

17-2
17-4
17-4

13-0

I3-I
13-2
13-6
13-9

13-9

14-0

14-1

15-4
15-6
15-7

15-9

16-i

16-2
i6\'4
i6-6

17-0
I7-I
17-2

17-3

18-o

II-8
II-8

II-9

a.m.

7.24
7-3°
7-35
7.42
7.46
7-52
7-56
a.m.

8.45

8.50

8.56

9-7

9.19

925

9-30
9-35
10.30
10.38
10.43
10.48
II.O
II.7
II.
17
11.23

a.m.

11.28

11.32

II-37

11-43

p.m.

12.30
a.m.

8.7
8.13
8.22

17-8
17-8
17-8
17-8
17-8
17-8
I7-S

II-7
II-7
n-7

II-8
II-8

II-9
II-9

11-9

12-3
12-3
12-4
12-4
12-6
12-6
12-7
12-7

14-7
14-7
14-8

14-8

15-0

IO-8
IO-8
IO-8

1911
June 9

45°s.w. s
45° N.W. d
45° N.E. s
45° S.E. d
45°s.w. s

a
a
a
b
b
b
b

b
b
b
b
a
a
a
a
a
a
a
a
b
b
b
b

b
b
b
b

n 208
n 209
n 210
n 211
n 212
n 213
n 214

n 215
n 216
n 217
n 218
n 219
n 220
n 221
n 222
n 231
n 232
n 233
n 234
n 235
n236
n 237
n238

n 239
n 240
n 241
n 242

n 243

n 244
n 245
n 246

75° S.E. dnbsp;15° s.w. s

96

79° 24\'

15° s.w. s

75° N.W. d
15° N.E. 5

a
a
a

June 15

75° N.W. d
15° N.E. S
75° S.E.
d

(Tune 7th). The sixth column gives the latitudes of the two points on the solar
imrcompared The letters d and s denote double or smgle opening in front of
he sS according to the position of the diaphragm mentioned m the preceding
~apr The sht was in the case of the double opening
always tangential
Cthe sun\'s limb, in the other case always radial. The second latitude given in
tL colZn was always the one taken in one exposure
between two half-exposure
It tte otter. Columns
7 and 8 give the temperatures inside the tube of the
spectoj^aph, half-way between grating and slit, and of the room It is seen

tfa^ trthiik felt cLr which was carefully f ^^quot;quot;lar c\'lTfgivc
succeeded in making the variations inside small andnbsp;^^ 9 f vc

the position angle of the spectrograph This ang e

nosition of the North point of the sun\'s unage on the slit plate (n) the ange
bSweTn wfaris and North point for the date and (iii) the lati ude of the
reqlS To^t. The first alters slightly with the date, and it also alters largely

-ocr page 25-

§ s]nbsp;Record of Observationsnbsp;9

with the figure given in column 10 and referring to the adjustment in horizontal
position of the ccelostat mirror mentioned on page 2. Two positions were found,
96 cm. apart, which had the advantage of giving two positions for the North
point separated by exactly 30°. It was thus sometimes possible after having taken
a series of eight plates for one position angle of the spectrograph, involving four
points all round the sun at 90° apart, to move only the ccelostat mirror and then
at once, without rotating the instrument, to take a similar set of plates involving
four new latitudes differing by 30° from the first four and thus also forming part
of the required series. From footnotes attached to the last column, it can be seen
that sometimes sets of eight plates, belonging together, were taken at different
moments or even on different dates, owing to rejected plates or other causes.

§ 4. Measurements

As has been stated, all the measurements of these plates, discussed in the
present memoir, were made by Mr Tunstall.

The measuring instrument used is the Zeiss comparator B (1909), similar to
the one previously described by Professor Newall^. Two microscopes are fixedly
mounted over a slide which holds the plate underneath the one and, at a fixed
distance corresponding to the distance between the microscopes, a silver scale
100 mm. long and divided into xV mm. underneath the other. The eyepiece of
the scale microscope contains a micrometer arrangement allowing for the setting
of a double wire symmetrically over the nearest scale mark on the proper side.
The micrometer head is divided into 100 parts, while tenths of these divisions
can be estimated. In this way one ten-thousandth of a millimeter can be read
off ; the actual settings of the micrometer wire in the scale microscope were found
by special trial to be accurate within one or two units of this last decimal. The
bisection of spectral lines viewed through the other microscope is achieved by
the movement of the carriage bearing both plate and scale, actuated by direct
pressure of the finger without making use of the slow motion screw. Suitable
trials have shown that no advance in accuracy is obtained by using the slow
motion, while a great loss of time would be incurred. Anticipating a more
complete discussion of the measurements it may be stated that Mr Tunstall\'s
average probable error (due to both plate and scale settings) per displacement of
one line was 0-0004 mni. It is thus seen that the simple push method, advocated
by Professor Newall at the time of his first adoption of the Zeiss instrument, is
thoroughly justified, also for solar work. The excellent workmanship of the
sliding parts has made the method possible. When clean vaseline is apphed,
the smallest pressure of the finger keeps the sHde in motion with a minute velocity,
while as soon as this pressure is relaxed the sUde stops dead at once.

The plate was mounted on the stage parallel to the run of the slide (but see
also page 49). The wires in the plate microscope were then adjusted parallel to

1 M.N. LXV, 648.

H.

-ocr page 26-

the spectrum lines. A diaphragm or mask allows the observer to see either only
the central spectrum or only the two other spectra above and below. The settings
were made in the following succession. Bringing the wire into coincidence with the
first line in the top spectrum, the corresponding scale reading was noted. The mask
was then moved to the other position and the wire brought into coincidence with
the line as it now appeared in its displaced position. All bias is thus eliminated
except that in favour of setting wire and Hne to coincidence in the same manner
in both cases, supposing, for example, that there was anything to choose between
setting the wire on the centre of gravity of the line or midway between the two
edges. But it is clear that a bias of this kind favours consistent measurement.
Without touching the mask the slide is now moved and the wire set on the
next line in the central strip. The mask is then moved and coincidence made
between wire and line as visible in the upper strip. On the third line the first
setting is made in this upper spectrum, the second in the central, and so on alter-
nately. When the last line has been reached a return is made, but now setting
on central and lower spectrum until the first line is reached again. The plate is
taken out and replaced end for end on the stage and the whole process is repeated.
For each single measured displacement of a line we have thus eight settings, four
on the single spectrum and four on the double, consisting of two on the upper
and two on the lower spectrum.

Plates B

Table II. Selected lines

Plates A

Wave length
4299-149
4302-085

4314-248

4315-138
4320-907

4326-923

4331-811

4337725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

Element Intensity Remarks

Ca
Ti
Sc
Ti
Sc
Fe
Ni
Cr
Ti
Cr
Fe
Cr
Fe
Fe
Fe

Enhanced
Enhanced

Enhanced

Wave length

4351-000

4352-908
4358-670
4366-061

4371-442
4373-415
4373-727

4376-107
4379-396
4385-144
4388-571
4390-149

4395-20T

4396-008
4400-555

Element Intensity

Tinbsp;I

Fenbsp;4

Fenbsp;2

Fenbsp;2

Crnbsp;2

Crnbsp;I

Fenbsp;2

Fenbsp;6

vnbsp;4
Crnbsp;2
Fe
nbsp;3

Vnbsp;2
Tinbsp;3
Ti
nbsp;I
Scnbsp;3

Remarks

Chromospheric line

Enhanced

The whole measuring instrument was set up in a niche of blackened card-
board and covered up in such a way that no light whatever reaches the unused
eye. This considerably reduces the strain; an added advantage can be gained
by using one eye always for the plate microscope and the other for the scale micro-
scope. Artificial hght was employed, providing uniform constant illumination for
both plate and scale. A thick glass plate in front of the illuminating arrange-
ment diminished its heating effect on plate and scale.

Under such conditions of measurement Mr Tunstall was able to make 60
settings in 20 to 25 minutes and to devote as much as four hours a day to measuring

-ocr page 27-

without undue strain on his eyes. It is to be noted that he employed the ordinary
eyepiece throughout. The author\'s method of employing a cylindrical lens, as
in the measures discussed in the earlier paper, and as described in detail at the
time^, was tried by him but rejected in favour of the ordinary method.

Fifteen lines were measured in each of the two spectral regions, i.e. on each
plate. Table II gives the wave lengths, origins and intensities of the lines, while
it also shows which of them belong to the class of enhanced lines. No elements
of atomic weight greater than 59 have lines in this part of the spectrum, while
on the other hand the exposures were such that the hydrogen line B.^ at 4341
was unsuitable for measurement.

§ 5. Reduction to velocities

To obtain the wave length differences from the measured displacements
the dispersion

ds

must be known. This dispersion varies from one end of the plate to the other,
as well as from plate to plate. The general formula for the grating spectroscope
is

mX = h (sin « sin 6) ......................(i),

where m is the order of the spectrum, h the interval between two adjacent lines
on the grating,
i the angle of incidence and 6 the angle of emergence. In our
observations we had always w = 4 and h = 16933, when expressed in Angstrom
units. This formula has to be differentiated, keeping
i constant, in order to get
the dispersion along the plate. We get

d\\ bnbsp;^nbsp;/ X

.........................(2).

d6 m

Now it is clear that

de^ I
ds~f\'

where ƒ is the focal distance. We thus have

d\\ hnbsp;anbsp;f \\

=nbsp;........................(3)

for the mean dispersion. To find the correcting term wanted giving its variation
with the wave length on one plate we deduce

mf

= ....................

1 M.N. Lxxin, 28, 1912.

-ocr page 28-

and so, putting in ^ from (2)

d\\

=nbsp;......................(5)-

As to the variation of from the centre of one spectral region to the centre

of the other, there we get a different formula. In that case the grating has been
turned on going from one plate to the other so both
i and 0 have changed, but
for the centres of the plates respectively
i and B are equal and we have

mX= 2h sm 6 ..........................(6)

andnbsp;dk = —cos 0d0........................(7)

For the change in the dispersion in this case we thus get, by putting this into (4),

....................(8)-

In Table III

are given the numerical values for the dispersion for a pair of
plates. The figures for the observed dispersion are directly obtained from the
measured distance in mm. between two lines and their difference in wave length

Table III. Comparison,^ for two plates, of observed and calculated
dispersion {Angstrom units per millimetre)

Meannbsp;Observed Observed Calculated

wave length dispersion mean dispersion dispersion

4307nbsp;o-88i8nbsp;o-88i8

Plate N 208 4320nbsp;0-8799nbsp;0-8792nbsp;0-8797

(region^) 4333nbsp;0-8776nbsp;(for X 4324)nbsp;0-8779

4344nbsp;0-8765nbsp;0-8764,

4355nbsp;0-8781nbsp;0-8788

Plate N 215 4366nbsp;0-8770nbsp;0-8757 0-8773

(regions) 4379nbsp;0-8757nbsp;(for X 4377) 0-8754

4393nbsp;0-8734nbsp;0-8734

according to Rowland\'s table, the mean of these wave lengths being given in the
preceding column. The next column gives the observed mean dispersion for
the whole plate from the two lines at either end. From this mean dispersion the
calculated dispersion in the last column is obtained by applying the variation
found from formula (5), giving to 6 the value which we get from (3). The
agreement between observed and calculated dispersion is seen to be close, while
the difference between the observed mean dispersions for regions
A and B has the
value which it should have according to (8).

Accordingly, in the reduction a dispersion factor was employed for each
line calculated in the same way as those in the last column of Table III. For
each plate the observed mean dispersion had to be determined. Its general

-ocr page 29-

mean value for the A plates is 0-8795, for the B plates 0*8758, the range being in
either case not more than 12 units of the last decimal. The values were seen to
group themselves in sets of four, corresponding to sets of plates taken in immediate
succession with the instrument untouched. Some evidence of correlation between
dispersion and temperature appeared, as was to be expected. A double entry
table could now be constructed giving the dispersion factor for each line for each
value of the mean dispersion.

Table IV. Coefficients to convert displacements into velocities

mean dispersion A plates. .0-8790

0-8792

0-8794

0-8796

0-8798

0-8800

wave length

4299-149

62-45

62-46

62-47

62-49

62-50

62-52

4302-085

62-38

62-39

62-40

62-42

62-43

62-45

4314-248

62-10

62-11

62-12

62-14

62-15

62-17

4315-138

62-07

62-08

62-09

62-11

62-12

62-14

4320-907

61-92

61-93

61-94

61-96

61-97

61-99

4326-923

61-78

61-79

61-80

61-82

61-83

61-85

4331-811

61-66

61-67

61-68

61-70

61-71

61-73

4337-725

61-51

61-52

61-53

61-55

61-56

61-58

4338-084

61-51

61-52

6i-53

6i-55

61-56

61-58

4339-882

61-47

61-48

61-49

61-51

61-52

61-54

4343-861

61-36

61-37

61-38

61-40

61-41

61-43

4344-670

61-33

61-34

61-35

61-37

61-38

61-40

4346-725

61-30

61-31

61-32

61-34

61-35

61-37

4347-403

61-29

61-30

61-31

6i-33

61-34

61-36

4349-107

61-23

61-24

61-25

61-27

61-2«

61-30

mean dispersion B plates. .0-8754

0-8756

0-8758

0-8760

0-8762

0-8764

wave length

4351-000

61-46

61-48

61-49

61-50

61-52

61-53

4352-908

61-41

61-43

61-44

61-45

61-47

61-48

4358-670

61-27

61-29

61-30

61-31

61-33

61-34

4366-061

6I-ii

61-13

61-14

61-15

61-17

61-18

4371-442

60-98

6i-oo

6i-oi

61-02

61-04

61-05

4373-415

60-94

60-96

60-97

60-98

61-oo

6i-oi

4373-727

60-91

60-93

60-94

6o-95

60-97

60-98

4376-107

60-87

60-89

60-90

60-91

6o-93

60-94

4379-396

60-79

6o-8i

60-82

60-83

60-85

60-86

4385-144

60-64

60-66

60-67

60-68

60-70

60-71

4388-571

60-56

60-58

60-59

6o-6o

60-62

60-63

4390-149

60-53

6o-55

60-56

60-57

60-59

60-60

4395-20i

60-41

60-43

60-44

60-45

60-47

60-48

4396-008

60-38

60-40

60-41

60-42

60-44

60-45

4400-555

60-29

60-31

60-32

60-33

6o-35

60-36

In practice this step

was combined with

the next.

that of

obtaining the

iocity V in the line of sight from the wave

length difference.

The Doppler

(9),

d\\

V

V

so that for each wave length difference we get a further factor varying in inverse
ratio with the wave length to convert
dX into km. per second, if V, the velocity of

-ocr page 30-

light, is so expressed. The result of the combination is given in Table IV, where
the figures represent the values of

d\\ V R
Ts^ X R-h\'

of which product the third factor, constant for all plates and all lines and Uttle
different from unity, will be explained in the next section.

§ 6. Additional corrections

The correction for not exactly setting on the Umb is applied by the intro-
duction of the factor

R

R-h\'

just alluded to, into the velocity coefficient. R is the sun\'s radius in mm. and
h the distance, radially, inside the hmb. The latter distance is determined by
the manner in which the solar image is set on the sht plate, as is seen from Fig. 2.
The factor is in our case equal to 1-014. Variations in the diameter of the image,
caused by differences in the focus of the image lens, were found to change the
factor in maximo by one in one thousand and could therefore be neglected.

The application of the factor is further only rigorously correct in the case
of a body rotating as a sohd. Only then are we fully justified to take, as was
tacitly done by the method of measurement, the mean of the displacements
between the central spectrum and each of the adjoining spectra as representing
the displacement between the two points exactly central on the sht for the two
latitudes. The error, due to polar retardation, thus introduced amounts, however,
for our observations in maximo to 0-0005 km. per second and has been neglected.

Table V. Additional corrections for setting due to polar retardation

\'Pi

o°e.nbsp;90 s.

i5°s.E.nbsp;75°s.w.

qo°s.e.nbsp;6o°s.w.

45°s.e.nbsp;45°s.w.

6o°s.e.nbsp;30°s.w.

75°s.e. i5°s.w.

Additive
correc-
tion

km./sec.
0

0-005
o-oii
0-014
O-OII
0-003

lt;pl

Additive
correc-
tion

lt;tgt;i

km./sec.
o

-nbsp;0 003

-nbsp;0-003
o

0-003
0-003

90°s. o°w.
75°s.w. i5
°n.-w.
6o°s.w. 3o
°N.W.
45°s.w. 45°N.W.
30°s.w. 6o°n.w.
i5°s.w. 75°N.w.

o°w.nbsp;90°N.

I5°N.W.nbsp;75°N.E.

30°N.W.nbsp;6N.E.

45°N.W.nbsp;45°N.E.

60°N.W.nbsp;30°N.E.
75°N.W. I5°N.E.

Additive

Additive

correc-

02

correc-

tion

tion

km./sec.

km./sec.

0

9o°N.

0°e.

0

- 0-0 5

75°n.e.

i5°s.e.

0-003

- o-oii

6o°n.e.

3c)°s.e.

0-003

- 0-014

45°n.e.

45°s.e.

0

- o-oii

30°n.e.

6o°s.e.

- 0-003

- 0-003

i5°n.e.

75°s.E.

- 0-003

But the same phenomenon of polar retardation must affect the factor in
another way, as the points thus centrally on the sht being
radially inside the limb
are situated on solar parallels different from those belonging to the latitudes to
which we have set. This error is eliminated by applying a correction, tabulated in
Table V. Owing to its smallness it has been possible to convert it into an additive

-ocr page 31-

term, while only a rough approximation of the retardation was necessary to deter-
mine its amount^.

The errors introduced in the setting by bad definition of the sun\'s limb may
sometimes have amounted to as much as \\ % and so must have been quite com-
parable to these latter corrections. In the total results taken together they will,
however, be largely eliminated owing to their accidental nature.

With two other corrections we can deal very shortly.

The heliographic latitude of the earth was very small during the entire
fortnight of observation, as the earth passed through the node of the ecliptic
with the solar equator on June 6th, 1911. In maximo it amounted to 1° 10\'
(on June 15th). The correcting factor, equal to the secant of this angle, necessary
to convert velocities in the line of sight to tangential velocities parallel to the
plane of the solar equator thus amounted in maximo to 1-0002 and could therefore
be neglected for the whole of the material.

Neither was any account taken of a possible correction for the effect of the
glare caused by the scattered and integrated light of the whole disc. From some
experimental plates it had been found that on a day when the glare was so strong
that the light of the sun\'s Hmb was only three times as intense as the light of the
sky immediately adjoining, the displacements were diminished to about two-thirds
of the normal value. For ordinary days, when this ratio of sun to sky is about 50,
the diminution can therefore be assumed negligible. Moreover, during the
fortnight of observation the sky was generally abnormally transparent.

Corrections remain to be applied for the motion of the observer. As we
are dealing exclusively with
differences of velocities in the line of sight, no account
need be taken of the observer\'s own motion in that direction, except in so far as
this might affect the value of V. It is readily seen that neither the daily motion
nor the earth\'s orbital motion contains components in this direction large enough
to have any influence on the results in this way.

The motion, however, in the direction perpendicular to the line of sight causes,
as is well known, synodic velocities to be observed whereas sidereal ones are
the objective of the research. In the present case of comparison each time of
two points situated 90° apart the corrections for these two points will generally
be different. Duner\'s tables given in his second memoir ^ enable us to construct
a special table of corrections to be applied to convert our figures into sidereal
values. The use of Duner\'s tables is facihtated in the present case on account
of the proximity of the earth to the node between the ecliptic and the solar
equator, ©—^^ being smaller than 10° during the complete period of observation.
The error introduced by using the same corrections for the whole of the material

^ The correction term to be applied at one point of latitude comes out as

- Csin^lt;f)Coslt;i)

where C is the constant of the polar retardation. The formula for the other, neglected, correction contains
i?® in the denominator.

2 Nova Acta Reg. Sac. Upsala, 4, i, No. 6, 1906, pp. 23 and 24.

-ocr page 32-

is for the same reason very small; in no case does it exceed o-ooi km. per second.
The variation in the earth\'s orbital velocity during the period has an equally
negligible effect.

Table VI. Corrections to convert synodic into sidereal values

Additive
correc-
tion

Additive
correc-
tion

Additive
correc-
tion

Additive
correc-
tion

02

01

01

4gt;i

lt;tgt;t

01

0°e.nbsp;90 s.
i5
°s.e.

30°s.e.nbsp;6o°s.w.

;5°s.E.nbsp;45°S.W.

6o°s.e.nbsp;30°s.w.

75°s.e.nbsp;i5°s.w.

km./sec.

-nbsp;0-150

-nbsp;0-175

-nbsp;o-i88

-nbsp;0-189

-nbsp;0-176

-nbsp;0-151

90°s. o°w.
75°s.vs^. i5
°N.w.
6o°s.w. 3o°N.w.
45°s.w. 45°N.w.
30°s.w. 6o°n.w.
i5°s.w. 75°N.W.

km./sec.

-nbsp;0-116

-nbsp;0-074

-nbsp;0-026
0-024
0-072
0-115

o°w. 90°N.

i5°n.w. 75°n.e.

30°N.W.nbsp;6o°N.E.

45°n.w.nbsp;45°n.E.

6o°N.W.nbsp;30°N.E.

75°n.w.nbsp;i5°n.E.

km /sec.
0-150
0-175
0-188
0-189
0-176
0-151

90°n. 0°e.

75°n.e.nbsp;i5°s.e.

6o°n.e.nbsp;30°s.e.

45°n.e.nbsp;45°s.e.

30°n.e.nbsp;6o°s.e.

i5°n.e.nbsp;75°s.e.

km./sec.
0-116
-t- 0-074
0-026

-nbsp;0-024

-nbsp;0-072

-nbsp;0-115

Finally the observer\'s component velocity, perpendicular to the line of sight,
due to the earth\'s daily motion, amounts at the latitude of Cambridge m maximo
to about T^oth of the orbital velocity component. Corrections for this motion
would be smaller in the same proportion to those of Table VI and are also left

out of account.

§ 7. Complete table of residts

We can now give a table of the results, line for line and plate for plate,
as directly measured and after reduction to km. per second. A further reduction
to angular velocity is not possible until we have been able to deduce the velocities
at each point on the sun\'s limb separately from the point 90° away. The table
(Table VII) gives only the differences of velocities at such pairs of latitudes.
The reduction of each displacement was completed, in accordance with the
two preceding paragraphs, in two stages. First, the proper velocity coefficient
found from Table IV converted displacement into velocity-differences m km. per
second and introduced the general correction for setting, while secondly an
additive quantity At;, composed of two terms from Tables V and VI, constant
for each pair of plates and
B regions) and given in the upper rubric m the
table introduced the special correction for setting and converted mto sidereal
values The table gives the measured displacements As and the completely
corrected sidereal velocity-differences - v,, but not the figures^nbsp;^^

the intermediate stage. For each plate the observed mean dispersion dXjds {s^e
page 12) is also given. As regards sign, velocities away from the observer have

been taken as positive, in accordance with the usual custom.^nbsp;.01,

The material is divided into four complete series, each consisting ot 4« plates
and each containing observations all round the sun\'s limb in the manner described
on page 4. The division into series is to some extent chronological as is seen

from the outside dates for each:

-ocr page 33-

The grouping within each series always brings together on one page a set
of eight plates which contain observations regarding four points of the limb
all round the sun at 90° apart (cp. page 4 and Fig. 3).

Table VII. Results from all plates, line for line

-5th, 1911
-7th, 1911

Series III
Series IV

SERIES I

lt;p.=

0° E.

d},= go° S.

01= \'

W.

01= 90° N.

02= 90° S.

4gt;i= \'

W.

02= 90° N.

02 =

£iv=-

0-150

Av= -

0-116

At; = 4-0-150

At; = 4-0-Il6

As

As

Hi-Hi

As

As

Hi-H, ■

X

N

9

N 10

N 62

N

II

d\\

d\\

dX

8794

8794

8797

8794

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

4299-149

- 0-0284

- 1-924

- 0-0277

- 1-846

0-0284

1-925

4-

0-0288

4- 1-915

4302-085

293

- 1-978

- 278

- 1-850

4-

284

1-923

4-

288

4- 1-913

4314-248

269

- 1-821

280

- 1-855

288

4- 1-940

4-

.84

4- 1-880

4315-138

282

- 1-901

282

- 1-867

4-

276

4- 1-864

4-

286

4- 1-892

4320-907

- 276

- 1-860

278

- 1-838

4-

277

4- I 867

4-

282

4- 1-863

4326-923

282

- 1-893

288

- 1-896

275

4- 1-850

4-

290

i-go8

4331-811

- 285

- 1-908

276

- i-8i8

286

I-915

4-

270

4- 1-781

4337-725

277

- 1-854

270

- 1-777

284

4- 1-898

H-

280

1-839

4338-084

286

- 1-910

- 283

- 1-857

279

4- 1-867

4-

286

1-876

4339-882

278

- 1-859

294

- 1-924

4-

279

4- 1-866

4-

280

4- 1-838

4343-861

- 278

- 1-856

282

- 1-847

4-

282

4- 1-882

4-

281

4- 1-841

4344-670

282

- i-88o

272

- 1-785

4-

288

4- 1-918

4-

278

1-821

4346-725

280

- 1-867

272

- 1-784

4-

278

1-855

4-

272

4- 1-784

4347-403

- 285

- 1-897

286

- 1-869

4-

285

4- 1-898

4-

276

4- 1-808

4349-107

289

- 1-920

284

- 1-855

274

4- 1-829

4-

276

4- 1-806

N 6

N5

N7

N

8

il\\

d\\

d\\

d\\

^ = 0-8753

-T--0-

as

8755

ds ~

-8755

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

4351-000

- 0-0282

- 1-883

- 0-0288

- 1-885

4- 0-0279

1-865

4-

0-0281

1-843

4352-908

280

- 1-869

280

- 1-835

4-

276

1-845

4-

284

4- 1-860

4358-670

284

- 1-890

279

- 1-825

4-

280

4- 1-866

4-

283

4- 1-850

4366-061

276

- 1-837

281

- 1-833

4-

290

4- 1-922

4-

288

4- 1-876

4371-442

276

- 1-833

290

- 1-884

4-

292

1-931

4-

278

4- 1-811

4373-415

284

- 1-881

284

- 1-847

4-

280

4- 1-856

292

1-895

4373-727

289

- 1-910

286

- 1-858

4-

285

4- 1-886

4-

279

4- 1-816

4376-107

276

- 1-830

- 285

- 1-851

4-

280

4- 1-854

4-

285

1-851

4379-396

280

- 1-852

- 278

- I-806

4-

278

4- 1-840

4-

274

4- 1-782

4385-144

284

- 1-872

- 283

- 1-832

4-

282

4- 1-860

4-

276

4- 1-790

4388-571

278

- 1-834

290

- 1-872

4-

285

4- 1-876

4-

281

4- I-818

4390-149

286

- I-88I

290

- 1-871

4-

290

1-905

4-

283

4- 1-829

4395-201

278

- 1-829

275

- 1-777

4-

280

4- 1-841

4-

282

4- 1-819

4396-008

282

- 1-853

- 288

- 1-855

4-

278

4- 1-829

4-

282

1-819

4400-555

280

- 1-838

- 281

- 1-810

4-

278

4- 1-826

4-

278

1-792

H.

-ocr page 34-

Table VII. Results from all plates, line for line {continued)

SERIES I [continued)

75° S.W.
02= 15° N.W.
-0-077

15° S.E.
75° S.W.
-0-170

01= 15= N.W.
02= 75° N.E.
ai;= -f 0-170

75° N.E.
02= 15° S.E.
At; = 4-0-077

As

As

As

As

n35
g
=o.8797

N34

g = o-8796

N33

^^ = 0-8797

N32
= 0-8797

dX
ds

km./sec.

1-352
-f 1-338

4- 1-382

1-332
i-39i

4- 1-276
1-373
4- 1-296
4- 1-308
4- 1-307

4- 1-256
1-347
I-34I
1-255
4- 1-290

km./sec.
2-295
-f 2-267
2-283
2-226
2-252

2-290
4- 2-262
2-287
2-250
2-286

-f 2-215
4- 2-299
2-292
2-286
2-315

mm.
4- 0-0204
4- 202

km./sec.

-nbsp;1-452

-nbsp;1-425

-nbsp;I-53I

-nbsp;1-425

-nbsp;1-391

-nbsp;1-449

-nbsp;1-447

-nbsp;1-370

-nbsp;1-437

-nbsp;1-455

-nbsp;1-403

-nbsp;1-427

-nbsp;1-414

-nbsp;1-414

-nbsp;1-486

mm.
0-0340

336
340
331
336

343
339

344

338

344

333
347
346

345
350

km./sec.

-nbsp;2-257

-nbsp;2-149

-nbsp;2-103

-nbsp;2-151

-nbsp;2-171

-nbsp;2-148

-nbsp;2-120

-nbsp;2-183

-nbsp;2-109

-nbsp;2-175

-nbsp;2-123

-nbsp;2-115

-nbsp;2-182

-nbsp;2-126

-nbsp;2-ii2

mm.
0-0220

216
234

217
212

222
222
210
221
224

216
220
- 218

218
230

mm.
0-0334

317

3quot;

319
■ 323

320

-nbsp;316

327
315

326

-nbsp;318
317

-nbsp;328

-nbsp;319
317

4299-149
4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107


-f



4-





210
202
212

194
210
198
200
200

192
207
206
192
198

4-
4-
4-

4-
4-
4-
4-
4-

4-
4-
4-

n 39
f=o.8„7

n38
g=o-876o

N37
f=o-8757

N 36

km./sec.

1-381
1-355
4- 1-278
4- 1-312

1-273

4- 1-272

1-314

1-344

1-372

1-333

1-355
4- 1-258
4- 1-286
4- 1-297
4- 1-271

km./sec.
4- 2-211
2-247
2-254
4- 2-194
2-305

4- 2-274
2-199

2-235
2-201
4- 2-269

4- 2-248
2-278
4- 2-176
4- 2-188
4- 2-209

mm.
4- 0-0212
208
196

202
196

196

203
208

213

207
211

195

200
202
198

km./sec.

-nbsp;1-510

-nbsp;1-404

-nbsp;1-407

-nbsp;1-471

-nbsp;1-383

-nbsp;1-406

-nbsp;1-503

-nbsp;1-386

-nbsp;1-366

-nbsp;1-436

-nbsp;1-337

-nbsp;1-512

-nbsp;1-382

-nbsp;1-491

-nbsp;1-392

mm.

0-0332



km./sec.

-nbsp;2-138

-nbsp;2-087

-nbsp;2-132

-nbsp;2-139

-nbsp;2-122

-nbsp;2-090

-nbsp;2-144

-nbsp;2-125

-nbsp;2-092

-nbsp;2-118

-nbsp;2-151

-nbsp;2-096

-nbsp;2-ii6

-nbsp;2-109

-nbsp;2-i66

mm.
0-0233

216

217
228

-nbsp;214

218

-nbsp;234

215
212
224

208
237

216
234
218

mm.
0-0320
312
320
322

320

315
324

321

-nbsp;316

321

327

-nbsp;.318

322
321

331

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396

4385-144
4388-571

4390-149

4395-201

4396-008

4400-555

338
340

331
350

345

333

339

334

346

343
348

332
334
338

4-
4-

4-

4-
4-
4-
4-
4-

4-
4-
4-
4-

4-

4-







-ocr page 35-

SERIES I {continued)

01= 30° S.E.

60° S.W.
AJ;= -0-177
^6,= 60° S.w.
lt;tgt;^= 30° N.W.
Av= -0-029
lt;/.i= 30° N.W.
02= 60° N.E.
Av= 0-177

60° N.E.
02= 30° S.E.
A.v= 0-029

As

N 20

d\\

—=0-

ds

8794

mm.

km./sec.

- 0-0332

- 2-251

322

- 2-186

340

- 2-289

- 338

- 2-276

- 318

- 2-147

326

- 2-192

- 324

- 2-175

326

- 2-183

332

- 2-220

319

- 2-139

- 335

- 2-233

330

- 2-202

- 334

- 2-225

324

- 2-163

331

- 2-204

N 60

d\\

^=0-8757

4299-149

4302-085

4314-248

4315-138

4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403
4349-107

As

N 21

d\\

^ = 0-8793

mm.
0-0130
128

134

124
132-

126
132
138

128
132

120
132
136
128
132

km./sec.

-nbsp;0-841

-nbsp;0-828

-nbsp;0-861

-nbsp;0-799

-nbsp;0-847

-nbsp;0-808

-nbsp;0-843

-nbsp;0-878

-nbsp;0-817

-nbsp;0-841

-nbsp;0-766

-nbsp;0-839

-nbsp;0-863

-nbsp;0-814

As

ds

-nbsp;0-838

d\\
ds

ds

N 61
= 0-8757

N 22
=0-8793

km./sec.

2-345
2-349
2-382
2-319
- - 2-401

2-340
2-336
2-306
2-343
2-360

mm.

0-0347



348
355

345
359

350
350

346
352
355

348
357
340

345
344

2-313
2-367
2-262
2-292
-f 2-284

N 24
=0-8757

As

N23

d\\ -
-=0-8793

mm.
0-0116
123

no
109
117

108

112
111
no

109

113

116
98
108
108

km./sec.
0-754

0-797

0-712
0-706
0-754

0-696
0-720
0-712
0-706
0-699

0-723
0-741
0-630
0-691
0-691

N 25
- = 0.8756

km./sec.
0-711
0-742
0-715
0-763

0-737

0-718
0-724
0-674
0-655
0-721

0-720
0-731
0-736
0-681
0-735

km./sec.
2-347
2-302
2-304
2-341
2-355

2-286

2-255

2-272
2-324
2-288

-f 2-291
2-266
2-177
2-273
2-276

km./sec.

-nbsp;o-8io

-nbsp;0-778

-nbsp;0-863

-nbsp;0-799

-nbsp;0-773

-nbsp;0-901

-nbsp;0-797

-nbsp;0-881

-nbsp;0-807

-nbsp;0-818

-nbsp;0-792

-nbsp;0-756

-nbsp;0-815

-nbsp;0-875

-nbsp;0-789

km./sec.

-nbsp;2-218

-nbsp;2-i6i

-nbsp;2-236

-nbsp;2-188

-nbsp;2-129

-nbsp;2-189

-nbsp;2-237

-nbsp;2-186

-nbsp;2-159

-nbsp;2-173

-nbsp;2-188

-nbsp;2-157

-nbsp;2-189

-nbsp;2-200

-nbsp;2-179

mm.
0-0111
116
112
120
116

n3

nbsp;* 114

nbsp;106

nbsp;103

nbsp;114

mm.

0-0353



mm.
0-0332

323
336

329

320

330
338
330

326

329

333

327

333
335
332

mm.
0-0127
122
136
126
122

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-201

4396-008
4400-555

346

347
354
357

346
341

344
353

348

349

345

331

347

348



-t-

-f



143

126
140
128
130

126
120
130
140
126

114

116

117
108
117

3—2

-ocr page 36-

Table VIL Results from all plates, line for line {continued)

SERIES I {continued)

45° S.W.
4.,= 45°N.W.
Ay = 0-024

45° S.E.
45° S.W.
ii.v= -0-175

45:N.W,
45° N.E.
Aw = 0-175

45° N^^-

45quot; S.E.
Aw= -0-054

As

As

As

As

N31

=0-8796

Q/S

N30

S-.8797

N 29

^^=0-8797

N28

^4=0-8796

km./sec.

-nbsp;0-043

-nbsp;o-iii

-nbsp;0-080

-nbsp;0-074

-nbsp;0-0i2

-nbsp;0-049

-nbsp;0-073

-nbsp;0-067

-nbsp;0-086

o-ooi

-nbsp;0-135

-nbsp;o-ii6

-nbsp;0-061

-nbsp;0-049

-nbsp;0-122

km./sec.

2-375
2-316
2-424
2-461
2-356

2-469
2-230

2-329

2-366
2-414

2-398
2-378
2-371
2-334
2-387

mm.
- 0-0003
14
9

km./sec.

-nbsp;0-063

-nbsp;0-038

-nbsp;0-026
0-024

-nbsp;0-081

-nbsp;0-013

-nbsp;0-056

-nbsp;0-050

-nbsp;0-044

-nbsp;0-025

-nbsp;0-074

-nbsp;0-050

-nbsp;0-050

-nbsp;0-013

-nbsp;0-031

mm.

0-0352



km./sec.

-nbsp;2-262

-nbsp;2-272

-nbsp;2-300

-nbsp;2-386

-nbsp;2-282

-nbsp;2-333

-nbsp;2-273

-nbsp;2-268

-nbsp;2-280

-nbsp;2-303

-nbsp;2-263

-nbsp;2-255

-nbsp;2-248

-nbsp;2-150

-nbsp;2-356

mm.
0-0014
10

mm.
0-0334
336
342
356
340

349
340
340
342
346

340

339

- 338
322
356

4299-149

4302-085

4314-248

4315-138

4320-907

4326-923

4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

343
362
368

352
371

333
350
356
364

362

359
358
.352

361

o

17

6
13

12
ii










7
10

4
18

15

6

4

16

16
12
12

6
9

N27

S = o.8„6

N 26

N64
= 0-8758

N63

ds

mm.

km./sec.

mm.

0-0360

2-389

- 0

-0008

355

2-356

0

364

2-406

4

356

2-352

-

6

357

2-353

10

358

2-358

-

10

361

2-375

5

358

2-355

-

10

360

2-364

-

2

358

2-347

ii

360

2-356

i

366

2-391

-

2

363

2-369

-

4
f-

359

2-344

6

356

2-322

6

km./sec.

-nbsp;0-073

-nbsp;0-024

-nbsp;0-049

-nbsp;0-061

-nbsp;0-085

-nbsp;0-085
o-oo6

-nbsp;0-085

-nbsp;0-036
0-043

-nbsp;o-oi8

-nbsp;0-036

-nbsp;0-048

-nbsp;o-o6o

-nbsp;o-o6o

km./sec.

-nbsp;0-044

-nbsp;0-087
0-042
0-048

-nbsp;0-013

-nbsp;0-037

-nbsp;0-013
0-012

-nbsp;0-098

-nbsp;0-006

-nbsp;0-055

o

0-048

-nbsp;0-048

-nbsp;0-018

km./sec.

-nbsp;2-253

-nbsp;2-233

-nbsp;2-308

-nbsp;2-266

-nbsp;2-146

-nbsp;2-291

-nbsp;2-284

-nbsp;2-209

-nbsp;2-291

-nbsp;2-286

-nbsp;2-173

-nbsp;2-246

-nbsp;2-224

-nbsp;2-223

-nbsp;2-238

mm.
- o-ooii
18

mm,
0-0338

335
348
342
323

347
346

334

-nbsp;348

-nbsp;348

330
342

339
339

342

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107

4379-396
4385-144

4388-571
4390-149

4395-201

4396-008

4400-555

3

4
6

10
6
2

19

5

13

4
4
12

7

-ocr page 37-

SERIES I {continued)

01= 60° S.E.
02= 30° S.W.
Lv= -0-165

As

X

N 69

d\\

^=0-8795

mm.

km./sec.

4299-149

4302-085

4314-248

4315-138

4320-907

-nbsp;0-0330

-nbsp;318
339
330
332

-nbsp;2-227

-nbsp;2-150

-nbsp;2-271

-nbsp;2-214

-nbsp;2-222

4326-923
4331-811

4337-725

4338-084

4339-882

329
336
320
326

324

-nbsp;2-199

-nbsp;2-238

-nbsp;2-134

-nbsp;2-171

-nbsp;2-158

4343-861

4344-670

4346-725

4347-403

4349-107

333

336
331

- 343

337

-nbsp;2-209

-nbsp;2-277

-nbsp;2-195

-nbsp;2-268

-nbsp;2-229

N65
-=0-8760

4351-000

4352-908
4358-670
4366-061
4371-442

mm.

-nbsp;0-0333

-nbsp;335

330

-nbsp;336

331

km./sec.

-nbsp;2-213

-nbsp;2-224

-nbsp;2-I88

-nbsp;2-220

-nbsp;2-185

4373-415
4373-727

4376-107
4379-396

4385-144

-nbsp;338

-nbsp;336

-nbsp;332
333

-nbsp;338

-nbsp;2-226

-nbsp;2-213

-nbsp;2-187

-nbsp;2-185

-nbsp;2-216

4388-571
4390-149

4395-201

4396-008
4400-555

333

334
333

335
339

-nbsp;2-183

-nbsp;2-I88

-nbsp;2-178

-nbsp;2-189

-nbsp;2-2XO

01= 30° s.w.

02= 60° N.W.
Av= 0-075

As

N 70

d\\
- = 0-8795

mm.
0-0120
no

108
117
in

no
114
no
no
no

112
112
98
122
120

km./sec.
0-825
0-762
0-746
0-801

o 763
0755

0-778
0-752
0-752
0-751

0-762
0-762
0-676
0-823
0-818

mm.
0-0113
118

-1-

104
117

113

114

107
121

108

113

112
116
116
no
119

N66
- = 0-8760

km./sec.
0-770
0-800
0-713
0-790
0-765

0-770
0-727
0-812
0-732
0-761

0-754
0-778
0-776
0-740
. 0-793

01= 60° N.W.
02= 30° N.E.
Av= 0-165

As

N71

d\\

- = 0-8795

mm.
0-0347

nbsp;351

nbsp;348

nbsp;350

nbsp;354

350
349
357

352
343

348
338
354

353
347

km./sec.

2-333
2-356
2-327
2-339
2-358

2-328
2-318
2-362
2-331
2-274

2-301
2-239
2-336
2-330
2-291

N67

^=0-8760
ds

km./sec.
2-336
2-273
2-268
2-275
2-264

343

343

345

344

343
355

346

343
349

352

353

347
347
353

mm.

0-0353



2-257
2-329
2-272
2-251
2-283

2-298
2-303
2-263
2-262

2-295

01= 30° N.E.
02= 60° S.E.
Af = - 0-075

As

N 72
= 0-8795

ds

km./sec.

-nbsp;0-906

-nbsp;0-843

-nbsp;0-845.

-nbsp;0-870

-nbsp;0-893

-nbsp;0-860

-nbsp;0-877

-nbsp;0-863

-nbsp;0-857

-nbsp;0-856

-nbsp;0-891

-nbsp;0-847

-nbsp;0-927

-nbsp;0-860

-nbsp;0-847

N68

d\\

-=0-8761

mm.
0-0129

137

125
134

127

131

123
122
130
130

128

132

127

129

126

km./sec.

-nbsp;0-868

-nbsp;0-917

-nbsp;0-841

-nbsp;0-894

-nbsp;0-850

-nbsp;0-874

-nbsp;0-825

-nbsp;o-8i8

-nbsp;0-866

-nbsp;0-864

-nbsp;0-851

-nbsp;0-875

-nbsp;0-843

-nbsp;0-854

-nbsp;0-835

mm.
0-0133

123

124
128

132

127

138

128
127

127

133

126

139

128
126









-ocr page 38-

Table VII. Results from all plates, line for line {continued)

SERIES I {concluded)

0.= i5°S.W.

75° N^.

Av= 0-118

N.E.
S.E.
Av= -0-118

0,= 15°

1gt;2= 75°

0,= 75°S.E.

i5°S.W.
At;= -0
-148

75° N.W.
lt;/,,= iN.E.
Aw = 0-148

As

As

As

As

N78

N77
g =0-8797

N84
f = o-8796

N83
g=o-8796

mm.

km./sec.

- 0-02i8

- 1-480

210

- 1-429

220

- 1-485

216

- 1-460

212

- 1-432

224

- 1-503

218

- 1-463

212

- 1-423

219

- 1-466

214

- 1-434

216

- 1-444

226

- 1-505

226

- 1-504

220

- 1-467

228

- 1-515

km./sec.
2-198
2-258
2-335
2-210

2-193

2-213
2-221
2-216
2-241
2-227

2-248
2-192
2-246

2-233
2-243

km./sec.
1-412
1-379

1-435

1-373
1-339

1-373
1-327

1-367

1-367
1-397

1-407
1-358
1-376
1-338
1-374

mm.
0-0328

km./sec.

-nbsp;2-i6o

-nbsp;2-177

-nbsp;2-161

-nbsp;2-173

-nbsp;2-162

-nbsp;2-138

-nbsp;2-135

-nbsp;2-148

-nbsp;2-124

-nbsp;2-129

-nbsp;2-131

-nbsp;2-100

-nbsp;2-111

-nbsp;2-117

-nbsp;2-139

mm.
0-0207

202


mm.
0-0322

325

324

326

325

322
322

325

321

322

323
- 318

320

321

325

4299-149
4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

338
352

332
330

334
336
336
340
338

342

333
342
340
342














212

202
197

203
196
203
203
208

210
202
205
199
205




■f


N82
= 0-8759

N8I
=0-8760

ds

N 80

N 79

ds

km./sec.

-nbsp;1-459

-nbsp;1-464

-nbsp;1-461

-nbsp;I-45I

-nbsp;1-436

-nbsp;1-472

-nbsp;1-471

-nbsp;1-409

-nbsp;1-468

-nbsp;1-459

-nbsp;1-451

-nbsp;1-450

-nbsp;1-472

-nbsp;1-441

-nbsp;1-409

km./sec.
2-220
2-206
2-190
2-276
2-198

2-185
2-263
2-219
2-143
2-247

2-148

2-177

2-209
2-093
2-090

mm.
0-0218
219

219

218
216

222
222
212
222
221

220
220
224

219
- 214

km./sec.

1-434

1-347
-f 1-356
1-323

1-363

1-362
1-337
1-318
1-298
1-338

1-419
1-305

1-339
1-290
1-397

mm.

0-0337



km./sec.

-nbsp;2-196

-nbsp;2-077

-nbsp;2-147

-nbsp;2-062

-nbsp;2-161

-nbsp;2-069

-nbsp;2-141

-nbsp;2-091

-nbsp;2-082

-nbsp;2-114

-nbsp;2-075

-nbsp;2-086

-nbsp;2-058

-nbsp;2-063

-nbsp;2-066

mm.

0-0214



mm.
0-0333

314

326

313
330

315

327

319

-nbsp;318
324

-nbsp;318

320

-nbsp;316

317

-nbsp;318

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571

4390-149

4395-201

4396-008

4400-555

335

333
348

336

334
347

340

328

346

330

335

341

322
322

200
202

197

204

204

200
197
194

201

216
196

202
194
212










•f







-ocr page 39-

SERIES II

01= o°E.
02= 90° S.
-0-150

01= go°S.
02= o°W.
Av= -0-116

01= o°W.
02= 90° N.
Av= 0-150

01= 90° N.
0a = 0° E.
A
d= 0-XI6

As

As

As

As

N56
^=0-8796

N57

dX

^ = 0-8797

N58

dX „ ^
^=0-8796

N59
d\\ ^
^ = 0-8797

km./sec.

-nbsp;1-893

-nbsp;I-99I

-nbsp;1-989

-nbsp;1-852

-nbsp;1-910

-nbsp;1-912

-nbsp;1-871

-nbsp;2-046

-nbsp;1-873

-nbsp;2-032

-nbsp;1-851

-nbsp;1-862

-nbsp;1-825

-nbsp;1-830

-nbsp;1-804

km./sec.

-nbsp;1-866

-nbsp;1-814

-nbsp;1-831

-nbsp;1-886

-nbsp;1-857

-nbsp;1-835

-nbsp;I-800

-nbsp;1-864

-nbsp;1-778

-nbsp;1-924

-nbsp;1-823

-nbsp;1-951

-nbsp;1-827

-nbsp;1-809

-nbsp;1-936

km./sec.
1-918
2-072
1-840
1-932
2-009

1-782
1-810
1-996
1-898
1-934

1-912
1-899
1-831
1-763
1-878

mm.
0-0279

295

296
274

284

285

279
308

280
306

277
279

273

274

270

km./sec.
1-828
1-870
1-750
1-992
1-851

mm.

-nbsp;0-0280

272
276

-nbsp;285
281

-nbsp;278

273
284
270
294

278
299

279
276
29.7

mm.
0-0283

mm.

0-0274



4299-149

4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

308
272
287
300

264
269
300

284
290

287

285

274

263
282

281
263
302

280

257

300

282
279
288

231
318

281
285
284

1-705
1-967
1-852

1-833

1-887

1-534

2-068
1-840
1-864
1-856

N48
^=0-8763

N49
-=0-8764

N50

d^

-=0-8763

N51

dX

^=0-8762

km./sec.

-nbsp;1-833

-nbsp;1-807
^ 1-968

-nbsp;1-872

-nbsp;1-862

-nbsp;1-653

-nbsp;1-543

-nbsp;1-767
.- 1-668

-nbsp;1-773

-nbsp;1-759

-nbsp;1-807

-nbsp;1-852

-nbsp;1-893

-nbsp;1-734

km./sec.
•860

•877

•757
■851

•908

km./sec.
1-707
1-841
1-861
1-747
2-012

1-687
1-888
1-911
1-909
1-819

1-908
1-792
1-771
1-921

1-954

km./sec.
1-919
1-966
1-772
1-860

1-795

1-763
1-781
1-877
1-776
1-731

1-771
1-843

1-785

1-815
1-842

mm.
0-0278
281
262

278
288

272
296

279

325

291

265

260

270\'

262

264

mm.
0-0279
275
302
287

286

252

234

271

255
273

271
279

287
294
268

mm.

0-0253



mm.
0-0293

301

4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379-396

4385-144

4388-571
4390-149

4395-201

4396-008
4400
-555

275
279

261

305

252

289

289

275

290
271
268

293

299

270
285

275

270

273

289

273

266

273

285

276
281

286

809
1-955

1-850

2-127

1-917

- I

-nbsp;1-757

-nbsp;1-725

-nbsp;1-783

-nbsp;1-734

-nbsp;1-743

-ocr page 40-

Table VII. Results from all plates, line for line {continued)

SERIES II {continued)

75° S.W.
I
N.W.
^v=- 0-077

15° S.E.
75° S.W.
At»= -0-170

I5°N.W.
75° N.E.
Atgt;= 0-170

01= 75°N.E.
0,= I5°S.E.
Av= 0-077

As

As

As

As

N43

g=o-8798

N 42

N41

N40
g.0.87,7

mm.

km./sec.

0-0198

1-314

204

1-350

197

211

1-388

204

I-34I

199

1-307

198

1-299

206

1-345

207

1-351

196

1-283

207

1-348

199

1-298

203

1-322

188

1-230

197

1-284

km./sec.
2-301
2-286
2-277
2-282
2-308

2-297
2-286
2-239
2-269
2-249

2-209
2-251
2-292
2-188
2-196

mm.

0-0341


km./sec.

-nbsp;1-477

-nbsp;1-444

-nbsp;1-475

-nbsp;1-419

-nbsp;1-478

-nbsp;I-431

-nbsp;1-410

-nbsp;1-444

-nbsp;1-425

-nbsp;1-430

-nbsp;1-459

-nbsp;1-390

-nbsp;1-414

-nbsp;1-414

-nbsp;1-388

km./sec.

-nbsp;2-145

-nbsp;2-212

-nbsp;2-190

-nbsp;2-150

-nbsp;2-178

-nbsp;2-099

-nbsp;2-157

-nbsp;2-i2i

-nbsp;2-103

-nbsp;2-126

-nbsp;2-147

-nbsp;2-128

-nbsp;2-133

-nbsp;2-157

-nbsp;2-094

mm.
0-0224
219

225
216

226

219
216
222

219

220

225
214

-nbsp;218

-nbsp;218

-nbsp;214

mm.

■nbsp;0-0316

327
• 325

■nbsp;319
324

-nbsp;312
322
317
314

-nbsp;318

322

319

320

324
314

4299-149
4302-085

4314-248

4315-138

4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

339

339

340

345

344
343
336

341

338

332

339

346
329

347










N47

^=0-8762
ds

N46

^=0-8762
ds

N45

^=0-8762
ds \'

N44

= 0-8764

dX
ds

km./sec.
1-307
1-337
1-297

1-325

1-340

1-279

1-327
1-288
1-239

1-297

1-332

1-271
1-292
1-328
1-284

mm.
0-0200
205

km./sec.
2-262
2-268
2-175
2-250

2-233

2-244
2-243

2-278
2-239
2-240

2-249

2-2o6
2-184
2-219
2-228

mm.
0-0340

341


km./sec.

-nbsp;1-467

-nbsp;1-392

-nbsp;1-414

-nbsp;1-417

-nbsp;1-420

-nbsp;1-407

-nbsp;1-412

-nbsp;1-460

-nbsp;1-452

-nbsp;1-431

-nbsp;1-453

-nbsp;1-446

-nbsp;1-395

-nbsp;1-425

-nbsp;1-368

km./sec.

-nbsp;2-151

-nbsp;2-143

-nbsp;2-065

-nbsp;2-115

-nbsp;2-142

-nbsp;2-140

-nbsp;2-176

-nbsp;2-162

-nbsp;2-038

-nbsp;2-106

-nbsp;2-146

-nbsp;2-085

-nbsp;2-117

-nbsp;2-074

-nbsp;2-156

mm.
0-0226
214

218

219

220

- 218
219
227

226
223

227
226
218
223
214

mm.
00322

321

309

318

323

323
329
327
307

319

326
316

322
- 315

329

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107

4379-396
4385-144

4388-571

4390-149

4395-201

4396-008

4400-555

199

204
207

197

205

199
191
201

207

197

201
207

200













327
340

338

340
340
346

340

341

343
336

333

339

341









4-

-ocr page 41-

SERIES II [continued)

lt;tgt;i= 30° S.E.

01= 60° S.W.

01= 30° N.W.

01= 60° N.E.

02= 60° S.W.

02= 30° N.W.

02= 60° N.E.

02= 30° S.E.

Av= -0\'i77

Av= -0-029

Av= 4-0-177

Av= 0-029

As

As

H1-H2

As

Vlt;tgt;i-Vlt;lgt;2

As

X

N

97

N98

N99

N roo

d\\

d\\

3-=0\'88OO
as

^=0-8797

^=0-8798

•8798

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

4299-149

- 0-0307

- 2-096

- 0-0113

- 0-735

4- 0-0313

4- 2-133

4- 0-0107

0-698

4302-085

330

- 2-237

118

- 0-766

344

4- 2-325

4-

114

0-741

4314-248

330

- 2-228

124

- 0-800

330

4- 2-228

4-

quot;5

0-744

4315-138

310

- 2-103

108

- 0-700

338

4- 2-277

4-

112

0-723

4320-907

349

- 2-340

140

- 0-897

357

4- 2-389

4-

III

0-717

4326-923

337

- 2-261

130

- 0-833

344

4- 2-304

4-

124

0-796

4331-811

339

- 2-269

137

- 0-874

340

4- 2-275

4-

120

0-770

4337-725

320

- 2-147

140

- 0-891

350

4- 2-332

4-

120

0-768

4338-084

324

- 2-172

130

- 0-829

355

4- 2-362

4-

no

0-706

4339-882

320

- 2-146

133

- 0-847

361

4- 2-398

4-

103

0-663

4343-861

327

- 2-185

134

- 0-852

352

2-339

4-

III

0-711

4344-670

327

- 2-184

128

- 0-815

343

4- 2-282

106

0-680

4346-725

- 338

- 2-251

113

- 0-722

353

2-343

4-

117

0-747

4347-403

333

- 2-220

133

- 0-845

361

4- 2-391

4-

lOI

0-649

4349-107

324

- 2-163

144

- 0-911

372

2-457

4-

112

0-715

N93

N94

N95

N96

d\\

d\\

d\\

8732

-=0-8760

^ = 0-8762

^=0-8761

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

mm.

km./sec.

4351-000

- 0-0325

- 2-169

- 0-0136

- 0-866

0-0353

4- 2-348

4- 0-0107

0-687

4352-908

336

- 2-235

132

- 0-840

323

4- 2-162

4-

103

0-662

4358-670

- 332

- 2\'206

130

- 0-826

358

4- 2-372

4-

117

0-746

4366-061

306

- 2-042

112

- 0-714

352

4- 2-330

4-

120

0-763

4371-442

339

- 2-239

132

- 0-835

350

4- 2-313

4-

121

0-767

4373-415

- 328

- 2-170

141

- 0 889

353

4- 2-330

4-

120

0-761

4373-727

305

- 2-030

140

- 0-883

346

4- 2-286

4-

III

0-706

4376-107

322

- 2-132

quot;5

- 0-730

351

2-315

4-

114

0-723

4379-396

315

- 2-087

126

- 0-796

342

4- 2-258

4-

no

0-698

4385-144

- 328

- 2-161

130

- 0-818

347

4- 2-283

4-

quot;3

0-715

4388-571

329

- 2-164

- 136

- 0-853

365

4- 2-389

4-

105

0-665

4390-149

337

- 2-2II

145

- 0-907

332

4- 2-l88

4-

100

0-635

4395-201

- 316

- 2-081

- Ill

- 0-700

330

4- 2-172

4-

no

0-694

4396-008

- 330

- 2-164

130

- 0-815

344

4- 2-256

4-

104

0-657

4400-555

- 312

- 2-053

139

- 0-868

4-

346

4- 2-265

4-

no

0-693

H.

-ocr page 42-

Table VIL Results from all plates, line for line {continued)

SERIES II {continued)

45°S.E.

45° S.W.
Av= -0-175

0,= 45° S.W.
0,= 45° N.W.
Az; = 0-024

1gt;i= 45° N.W.
02=
45° N.E.
Ad
= 0-175

01= 45°N.E.

0,= 45° S.E.
Av= -0024

As

As

Hi-Hi

As

As

X

N85

d\\ ^ ^
-=0-8796

N 86
§=0.879,

N87

^ = 0-8797

N88

d\\

^=0-8797

4299-149
4302-085

4314-248

4315-138
4320-907

mm.

-nbsp;0-0347

335

-nbsp;354
330

-nbsp;335

km./sec.

-nbsp;2-343

-nbsp;2-266

-nbsp;2-375

-nbsp;2-255

-nbsp;2-251

mm.

0

- 0-0010
2

15

9

km./sec.
0-024

-nbsp;0-038
0-0I2

-nbsp;0-069

-nbsp;0-031

mm.
0-0361

354
360-
346
360

km./sec.
2-431
2-385
2-412
2-436
2-405

mm.
- 0-0009
5
5

11

12

km./sec.

-nbsp;o-o8o

-nbsp;0-055

-nbsp;0-055

-nbsp;0-092

-nbsp;0-098

4326-923

4331-811

4337-725

4338-084

4339-882

349

325

-nbsp;348

-nbsp;347

-nbsp;346

-nbsp;2-333

-nbsp;2-180

-nbsp;2-317

-nbsp;2-311

-nbsp;2-303

4
14

4
10

5

-nbsp;0-001

-nbsp;0-062
0-049

-nbsp;0-038

-nbsp;0-007





362

351

355
357

352

2-413

2-341

2-360

2-373

2-340

0

3

1

5

4

-nbsp;0-024

-nbsp;0-043

-nbsp;0-030

-nbsp;0-055

-nbsp;0-049

4343-861

4344-670

4346-725

4347-403

4349-107

352
325
346

- 337
360

-nbsp;2-336

-nbsp;2-170

-nbsp;2-297

-nbsp;2-242

-nbsp;2-381

3
20

0

4
19

0-006

-nbsp;0-099
0-024

-nbsp;0-001

-nbsp;0-092





363

360

355
352

364

2-404
2-384
2-353
2-334
2-405

13

10
12
9

I

-nbsp;0-104

-nbsp;0-085

-nbsp;0-098

-nbsp;0-079

-nbsp;0-030

N89

N 90

N91
^=0-8756

N 92
-=0-8760

4351-poo

4352-908
4358-670
4366-061

4371-442

mm.

-nbsp;0-0343

342
342

-nbsp;- 350

340

km./sec.

-nbsp;2-284

-nbsp;2-276

-nbsp;2-271

-nbsp;2-315

-nbsp;2-249

mm.
- 0-0010
8
8

3

4

km./sec.

-nbsp;0-037

-nbsp;0-025

-nbsp;0-025
4- 0-006

0

mm.
0-0359
359
353
360

356

km./sec.
2-382
2-381
2-339
2-376
2-347

mm.
- 0-0008
6

4
12

2

km./sec.

-nbsp;0-073

-nbsp;0-061

-nbsp;0-049

-nbsp;0-097

-nbsp;0-012

4373-415
4373-727

4376-107
4379-396
4385-144

335
346
342
- 347
342

-nbsp;2-2I8

-nbsp;2-284

-nbsp;2-258

-nbsp;2-285

-nbsp;2-250

9
10

7
9
10

-nbsp;0-030

-nbsp;0-037

-nbsp;0-0x9

-nbsp;0-031

-nbsp;0-037





362
357

355
357

356

2-382

-)- 2-351

2-337

2-346
2-335

16

7
10
10
7

-nbsp;0-122

-nbsp;0-067

-nbsp;0-085

-nbsp;0-085

-nbsp;o-o66

4388-571

4390-149

4395-201

4396-008

4400-555

334
344
342

-nbsp;345

-nbsp;358

-nbsp;2-199

-nbsp;2-258

-nbsp;2-242

-nbsp;2-259

-nbsp;2-334

II

2
2
8
2

-nbsp;0-043
0-012

0-0I2

-nbsp;0-024
0-012




360
359
352
368

350

2-356
2-349
2-303
2-398
2-286

6

6
18
5
3

-nbsp;o-o6o
0-012

-nbsp;0-085

-nbsp;0-054

-nbsp;0-042

-ocr page 43-

SERIES II {continued)

01= 30° S.W.
02= 60° N.W.
Av= 0-075
01= 60° N.W.
02= 30° N.E.
Av= 0-165

01= 60° S.E.
0a = 30°S.W.
Av= -0-165

01= 30° N.E.
02= 60° S.E.
Av= -0-075

As

As

As

As

N136

d\\

^ = 0-8795

N135

d\\

-=0-8794

N 130

d\\ .
-=0-8797

N 129

d\\

-=0-8795

km./sec.

-nbsp;0-887

-nbsp;0-918

-nbsp;0-839

-nbsp;0-870

-nbsp;0-911

-nbsp;0-835

-nbsp;0-877

-nbsp;0-857

-nbsp;0-875

-nbsp;0-905

-nbsp;0-898

-nbsp;0-860

-nbsp;0-860

-nbsp;0-854

-nbsp;0-890

km./sec.
2-314
2-262
2-389

2-345

2-315

km./sec.

-nbsp;2-233

-nbsp;2-187

-nbsp;2-309

-nbsp;2-177

-nbsp;2-203

-nbsp;2-217

-nbsp;2-176

-nbsp;2-202

-nbsp;2-208

-nbsp;2-219

-nbsp;2-172

-nbsp;2-159

-nbsp;2-232

-nbsp;2-201

-nbsp;2-ii9

km./sec.

0-744

0-799
0-758
0-795
0-756

0-767
0-741
0-740
0-783
0-727

0-732
0-799
0-786
0-750
0-761

mm.
0-0130

135

123
128

135

123
130

127
130

135
134

128
128
127

133

mm.
0-0344
336

mm.
0-0331

324

345

324
329

332

326

331

332
334

327

325

337
332
319

mm.
0-0107
116

4299-149
4302-085

4314-248

4315-138

4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403
4349-107

358
351

347

344
342

345
347
347

355
344

356

350

351

no
116
no

112
108
108

quot;5

106

107
n8
n6
no
112

2-291
2-275
2-288
2-301
2-299

2-344

2-276

2-348

2-311

2-315

N 134

g-875.

N133

d\\

^=0-8759

NI3I

N 132

km./sec.

-nbsp;0-874

-nbsp;0-904

-nbsp;0-823

-nbsp;0-888

-nbsp;0-905

-nbsp;0-831

-nbsp;0-867

-nbsp;0-848

-nbsp;0-878

-nbsp;0-881

-nbsp;0-814

-nbsp;0-832

-nbsp;0-837

-nbsp;0-866

-nbsp;0-835

km./sec.
2-293
2-328
2-304
2-329
2-270

km./sec.

-t- 0-733
0-720
0-835
0-729
0-740

0-807

0-733

0-751
0-750

0-755

0-772

0-735

0-746
0-740
0-708

km./sec.

-nbsp;2-256

-nbsp;2-137

-nbsp;2-157

-nbsp;2-164

-nbsp;2-252

-nbsp;2-153

-nbsp;2-176

-nbsp;2-205

-nbsp;2-221

-nbsp;2-161

-nbsp;2-183

-nbsp;2-151

-nbsp;2-178

-nbsp;2-152

-nbsp;2-150

mm.
0-0130

135

122

133

136

124

130
127

132

133

122

125

126

131

126

mm.

0-0346



mm.
0-0340
321

325

327
342

326
330
335
338
329

333

328

333

329
329

mm.
0-0107
105

4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-20Inbsp;■

4396-008
4400
-555

352

349
354
345

356

350

344
349

345

354
345

351
345
337

124

107
109

120

108
in
in
112

115

109
ni
no
105

2-336
2-298
2-260
2-288
2-258

2-310

2-254

2-286
2-249
2-198

4—2

-ocr page 44-

Table VIL Results from all plates, line for line {continued)

SERIES II {concluded)

75° N.W.
0,= 15° N.E.
Av= 0-148

i5°N.E.

0.= 75\'=S.E.

Av= -o-ii8

15° S.W.

75° N W.
Au= 0-118

is-sw.

Au= -0-148

As

As

As

As

N 140

N 139
=0-8793

N 138
= 0-8794

N 137

ds

ds

4299-149

4302-085

4314-248

4315-138
4320-907

4326-923

4331-811

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403
4349-107

mm.
0-0311

317
313

328

-nbsp;316

-nbsp;325

316

-nbsp;314
330

-nbsp;318
321

319
325
325

-nbsp;325

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396

4385-144

4388-571
4390-149

4395-20I

4396-008

4400-555

mm.
0-0327

303
■ 331

-nbsp;315

335
310

321

-nbsp;318

320

321

322

-nbsp;314

-nbsp;318

316
326

mm.
0-0202

206

196
203

207

203

204

204

202
199

183

203

197

km./sec.
1-380

1-403
1-336
1-378

1-400

1-373
1-376
1-373
1-361

1-342

1-241

1-363

1-326
1-375
1-361

km./sec.

-nbsp;2-191

-nbsp;2-039

-nbsp;2-204

-nbsp;2-104

-nbsp;2-223

-nbsp;2-064

-nbsp;2-128

-nbsp;2-104

-nbsp;2-117

-nbsp;2-122

-nbsp;2-124

-nbsp;2-074

-nbsp;2-098

-nbsp;2-085

-nbsp;2-145

























205
203

N 141

ds

km./sec.
1-360
1-334
1-301
1-493
1-399

1-355
1-336
1-372
1-334
1-343

1-335
1-329

1-278

1-356
1-324














N 142
g = o.8756

km./sec.

mm.

- 2-060

0-0202

- 2-095

198

- 2-066

193

- 2-153

225

- 2-075

210

- 2-129

203

- 2-073

200

- 2-060

206

- 2-154

200

- 2-077

202

- 2-092

201

- 2-079

200

- 2-112

192

- 2-III

205

- 2-108

200

km./sec.
2-291
2-270
2-241
2-290
2-297

2-200
2-190
2-228
2-234
2-245

2-210
2-246
2-270
2-251
2-243

mm.
0-0337

339
320

350

340

334
342

344

364
330

344

345
345
338

341

N143.
=0-8755

km./sec.
2-220
2-230
2-109
2-287
2-222

2-184
2-231
2-242
2-361
2-149

2-232
2-237
2-208
2-189
2-204

mm.
0-0343

340

337

345
347

332
331

338

339

341

336

342

346

343
342

mm.

km./sec.

- 0-0217
227

216

217
224

-nbsp;1-474

-nbsp;1-534

-nbsp;1-460

-nbsp;1-465

-nbsp;1-505

219
212
216
223
214

-nbsp;1-471

-nbsp;1-426

-nbsp;1-447

-nbsp;1-490

-nbsp;1-434

215
212
224
217
228

-nbsp;1-438

-nbsp;1-419

-nbsp;1-492

-nbsp;1-448

-nbsp;1-515

\'N 144

mm.

km./sec.

- 0-0220
228

215

216
221

-nbsp;1-470

-nbsp;1-518

-nbsp;1-436

-nbsp;1-438

-nbsp;1-466

236
218
_ 214
230
225

-nbsp;1-556

-nbsp;1-446

-nbsp;1-421

-nbsp;1-516

-nbsp;1-483

226
220
213
228
218

-nbsp;1-487

-nbsp;1-450

-nbsp;1-405

-nbsp;1-495

-nbsp;1-433

-ocr page 45-

SERIES III

01= o°E.
0j= 90° S.
Ay= -0-150

01= 90° S.
02= o°W.
At)= -o-n6

01= o°W.
0j= 90° N.
Av= 0-150

01= go°jN.
02= o°E.
Av= 0-116

Hi-Hi

As

As

As

As

Hi-Hi

Hi-V4gt;i

Hi-Hi

N 117

d\\ .
- = 0-8797

N 118
— = 0-8796

N 119

d\\

^=0-8794

N 120
-=0-8796

km./sec.

-nbsp;1-912

-nbsp;1-948

-nbsp;1-791

-nbsp;1-976

-nbsp;1-860

km./sec.

-nbsp;1-853

-nbsp;1-882

-nbsp;1-763

-nbsp;1-917

-nbsp;1-851

-nbsp;1-853

-nbsp;I-800

-nbsp;1-864

-nbsp;1-815

-nbsp;1-851

-nbsp;1-829

-nbsp;1-834

-nbsp;1-821

-nbsp;r-815

-nbsp;1-801

km./sec.
1-856
1-929
1-834
1-920

I-941

km./sec.
1-847
1-770
1-856
1-824
1-851

1-915
1-714
1-864
1-827
1-789

1-903
1-890
1-846
1-864
1-838

mm.
0-0282
288

264
294
276

278

265
275
293

282

283

284

274

268

275

mm.
0-0278

283
265
290

280

281
273

284

276

282

279

280
278

277
275

mm.

0-0274



mm.

0-0277



4299-149

4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

285
271
285
289

284

282

283

279

278
281

274

283

279
271

265
280

275

280
291

259

284
278
272

291
289
282

285

281

-nbsp;1-869

-nbsp;1-785

-nbsp;1-843

-nbsp;1-953

-nbsp;1-885

-nbsp;1-888

-nbsp;1-893

-nbsp;1-831

-nbsp;1-794

-nbsp;1-835

1-906
1-890
1-892
1-867
I-860

1-875
1-831
1-886
I-86I
1-810

N 113
^ = 0-8760

N114
§=O.8„8

N115
= 0-8758

N116

d\\

-=0-8759

ds

km./sec.
1-878
1-883
1-940
1-783
1-980

2-065
1-942
1-947

km./sec.

-nbsp;1-819

-nbsp;1-842

-nbsp;1-893

-nbsp;1-840

-nbsp;I-8I2

km./sec.
1-832

1-978
1-753
1-828
1-849

1-823
2-157

1-791

I-86I
1-857

1-758

1-830
1-669
1-856
1-745

km./sec.

-nbsp;1-884

-nbsp;1-809

-nbsp;1-915

-nbsp;1-862

-nbsp;1-877

-nbsp;1-851

-nbsp;1-814

-nbsp;1-837

-nbsp;1-877

-nbsp;1-903

-nbsp;1-847

-nbsp;1-858

-nbsp;i-8i8

-nbsp;1-884

-nbsp;1-887

mm.
0-0281
282

mm.
0-0282
270

288
280

283

279
273

284

289

280
282
276

287

288

mm.
0-0277

281
290

282
278

287

278

271

272
282

289

274

279
281
284

mm.

0-0279



4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-201

4396-008

4400-555

303

267
280
284

280
335

275

287

287

271
283

257

288
270













292

267
300

314

294

295

268
263

287
276
266

296
290

•866
•810
-766
-770
■827

-780

•746

•889
-821
-758
■938
■899

-nbsp;1-867

-nbsp;1-775

-nbsp;I-8O2

-nbsp;1-813

-nbsp;1-829

-ocr page 46-

Table VII. Results from all plates, line for line {continued)

SERIES III [continued)

01= 15° N.W.
02= 75° N.E.
Aw = -4-0-170

01= 75° N^.
0,= i5°S.E.
At/=
0-077

s.w.

N.W.

01= 75
-0-077

i5°S.E.
0,= 75°S.W.
Ai;= -0-170

As

As

As

As

N 108

§=0.8795

N 107

N 106

N 105

= 0-8795

ds

km./sec.

1-367

km./sec.
2-263
•f 2-273
2-301

2-344

2-255
2-210

2-373
2-219
2-152
2-200

2-184
2-287
2-292
2-225
2-327

mm.
0-0206
202

km./sec.

-nbsp;1-552

-nbsp;1-525

-nbsp;1-363

-nbsp;1-555

-nbsp;1-542

-nbsp;1-357

-nbsp;1-3quot;

-nbsp;1-480

-nbsp;1-400

-nbsp;1-381

-nbsp;1-459

-nbsp;1-415

-nbsp;1-488

-nbsp;1-408

-nbsp;1-413

mm.
0-0335
337

km./sec.

-nbsp;2-151

-nbsp;2-161

-nbsp;2-096

-nbsp;2-201

-nbsp;2-150

-nbsp;2-117

-nbsp;2-126

-nbsp;2-226

-nbsp;2-096

-nbsp;2-095

-nbsp;2-135

-nbsp;2-152

-nbsp;2-133

-nbsp;2-108

-nbsp;2-106

mm.

-nbsp;0-0236

232
207
238
236

207
200
228

-nbsp;215
212

225
218
230

217

218

mm.
■ 0-0317

319

310

327

319

-nbsp;315
317

-nbsp;334

313

-nbsp;313

320
323
320

-nbsp;316

316

1-338
1-326
1-301
1-287

4299-149

4302-085

4314-248

4315-138

4320-907

4326-923

4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107













201

197
195

212

211

195

212

197

223
190
192
203
197

343
350
336

330
357
333
322
330

328

345

346

335
352













1.388
\'1-379
1-277
1-382
1-289

1-446
1-243
1-255
1-322
1-284

N 112
g=0.8„8

N III

N no

^=0-8760
as

N 109

^=0-8760
ds

km./sec.
1-307
1-306

1-370

1-404
1-462

1-235
1-308
1-216

1-293

1-369
1-234

-f 1-325

1-286
1-249
1-265

km./sec.
2-261
2-284
2-175
2-224
2-226

2-194

2-260
2-265
2-086
2-257

2-279

2-ii4
2-207
2-I5I
2-269

mm.

0-0200

km./sec.

-nbsp;1-381

-nbsp;I-441

-nbsp;1-426

-nbsp;1-379

-nbsp;1-590

-nbsp;1-424

-nbsp;1-448

-nbsp;1-466

-nbsp;1-366

-nbsp;1-424

-nbsp;1-428

-nbsp;1-355

-nbsp;1-443

-nbsp;1-418

-nbsp;1-410

mm.

km./sec.

-nbsp;2-132

-nbsp;2-179

-nbsp;2-144

-nbsp;2-076

-nbsp;2-067

-nbsp;2-109

-nbsp;2-163

-nbsp;2-155

-nbsp;2-092

-nbsp;2-iii

-nbsp;2-157

-nbsp;2-io8

-nbsp;2-092

-nbsp;2-067

-nbsp;2-142

mm.

■ 0-02i2

222

220

- 213

248

221

225
228
212

222

223
211

226
222
221

mm.
■ 0-0319
327

322
312
3quot;

-nbsp;318

327

326
316
320

328
320

_ \'318

-nbsp;314

-nbsp;327

0-0340

344

327

336

337

332

343

344

315

344

348

321

337

328

348

200
211
217
227

190
202
187
200

213

191
206
200
194
197

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-201

4396-008

4400-555













-ocr page 47-

SERIES III {continued)

-

01= 30° S.E.
02= 60° S.W,
Av- -0-177

As

vlt;lgt;i-Hi

\\

N 161
^ = 0-8796

4299-149
4302-085

4314-248

4315-138

4320-907

mm.

-nbsp;0-0334

-nbsp;330

-nbsp;339
330

335

km./sec.

-nbsp;2-264

-nbsp;2-237

-nbsp;2-284

-nbsp;2-233

-nbsp;2-253

4326-923
4331-811

4337-725

4338-084

4339-882

-nbsp;324

-nbsp;334
326

331
330

-nbsp;2-180

-nbsp;2-238

-nbsp;2-184

-nbsp;2-214

-nbsp;2-213

4343-861

4344-670

4346-725

4347-403

4349-107

334

335

339

340
- 338

-nbsp;2-228

-nbsp;2-232

-nbsp;2-256

-nbsp;2-262

-nbsp;2-248

N 165

dX

^=0.8759

4351-000

4352-908
4358-670
4366-061
4371-442

mm.

-nbsp;0-0333

-nbsp;338
331

-nbsp;325
330

km./sec.

-nbsp;2-225

-nbsp;2-254

-nbsp;2-206

-nbsp;2-164

-nbsp;2-191

4373-415
4373-727

4376-107
4379-396
4385-144

332

329

330
- 336

330

-nbsp;2-202

-nbsp;2-182

-nbsp;2-187

-nbsp;2-221
- 2-179

4388.571
4390-149

4395-20I

4396-008
4400
-555

315
332

-nbsp;338
344

-nbsp;342

-nbsp;2-O86

-nbsp;2-188

-nbsp;2-220

-nbsp;2-255

-nbsp;2-240 ,

lt;tgt;i= 60° s.w.
02=
30° N.w.
At;= -0-029

As

N162

d\\ -
^ = 0-8795

mm.
0-0124
138
132
129

128

121

113

129

135
125

128
128
120

137

120

km./sec.

-nbsp;0-804

-nbsp;0-890

-nbsp;0-849

-nbsp;0-830

-nbsp;0-822

-nbsp;0-777

-nbsp;0-726

-nbsp;0-823

-nbsp;0-860

-nbsp;0-798

-nbsp;0-815

-nbsp;0-815

-nbsp;0-765

-nbsp;0-869

-nbsp;0-764

mm.
0-0131
127
127

137

117

135
131
135

129

133

130
127
127
130

118

N 166
-=0-8760

km./sec.

-nbsp;0-835

-nbsp;0-809

-nbsp;0-808

-nbsp;0-867

-nbsp;0-743

-nbsp;0-852

-nbsp;0-827

-nbsp;0-851

-nbsp;0-814

-nbsp;0-836

-nbsp;0-817

-nbsp;0-798

-nbsp;0-797

-nbsp;0-814

-nbsp;0-741

01= 30° N.W.
02= 60° N.E.
Ai;= 0-177

As

N163
^ = 0-8796

km./sec.
2-364
2-274
2-339
2-332
2-395

2-335
2-336
2-338
2-270
2-299

2-332

2-319
2-330
2-379
2-248

mm.

0-0347



346
348
353

351

344

351

343

346

355

347

344
344

344

345

N 167
- = 0-8760

km./sec.
2-311
2-303
2-311
2-336
2-319

2-275
2-317
2-260
2-282
2-331

2-280
2-261
2-257
2-255

2-258

mm.

0-0350



336

348
347

358

349

350

351
340
345

351

349

351

359
338

01= 60° N.E.
02= 30° S.E.
Av= 0-029

As

N164

d\\ -
^=0-8795

mm.
0-0106

iii

104

113

no

106
112
109
104

107

112

112

113

quot;5
124

km./sec.
0-691
0-722
0-675
0-731
0-711

0-684
0-720
0-700
0-669
0-687

0-717
0-716
0-722

0-734

0-789

N 168
dX _

^ = 0.8759

mm.
0-0114
115

108
124
114

114
107

109
in
117

117
in
107
109
121

km./sec.
0-730
0-736
0-691
0-787
0-725

0-724
0-681
0-693
0-704

0-739

0-738
0-701
0-676
0-688
0-759

-ocr page 48-

Table VIL Results from all plates, line for line {continued)

SERIES III {continued)

45° N.E.
Av = -
0-024

45° N.W.

45° N.E.

Aj;= 0-175

45° S.W.
45° N.W.
Av= 0-024

0,= 45° S.E.

45° S.W.
Av= -0-175

V^l-V^i

As

As

As

As

N 149
^=0-8793

as

mm.
• 0-0336

■ 338
350

-nbsp;350
340

353

-nbsp;341

347
350

328

-nbsp;341
340

-nbsp;347

-nbsp;348
336

4299-149

4302-085

4314-248

4315-138

4320-907

4326-923

4331-811

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403
4349-107

km./sec.

-nbsp;2-273

-nbsp;2-284

-nbsp;2-349

-nbsp;2-348

_ 2-281

-nbsp;2-356

-nbsp;2-278

-nbsp;2-310

-nbsp;2-328

-nbsp;2-192

-nbsp;2-268

-nbsp;2-261

-nbsp;2-302

-nbsp;2-308

-nbsp;2-232

mm.
0-0330
■ 347
337
354

-nbsp;356

-nbsp;343
330

320

-nbsp;335

342

-nbsp;343
328

340

-nbsp;347
339

4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379.396

4385-144

4388-571
4390-149

4395-201

4396-008

4400-555

N 145

km./sec.

-nbsp;2-204

-nbsp;2-307

-nbsp;2-240

-nbsp;2-339

-nbsp;2-347

-nbsp;2-266

-nbsp;2-I86

-nbsp;2-123

-nbsp;2-212

-nbsp;2-249

-nbsp;2-253

-nbsp;2-161

-nbsp;2-230

-nbsp;2-271

-nbsp;2-220

N 150

1=0.8,«

km./sec.
2-411

2-415

2-436
2-366
2-404

2-399

2-284
2-316
2-396
2-431

2-397
2-334
2-407
2-535
2-361

mm.

mm.

0-00I2

20
12
6
18

17

7

12
6
2

12

17

13

4
2

O\'

•0358

359

364

353

360

360

342

348

361

367

362

352

364

385

357

km./sec.
_ 0-051

-nbsp;o-ioi

-nbsp;0-051

-nbsp;0-013

-nbsp;0-087

-nbsp;0-081

-nbsp;0-019

-nbsp;0-050

-nbsp;0-013
0-012

-nbsp;0-050

-nbsp;0-080

-nbsp;0-056

-nbsp;0-012
0-012

N147

N 146

f^=o-8757
as

mm.

0-0353



km./sec.

-nbsp;0-105

-nbsp;0-025

-nbsp;0-013

-nbsp;0-013

-nbsp;0-006

0-006

-nbsp;o-ii6
0-036

-nbsp;0-085

-nbsp;0-152

o

-nbsp;0-055
0-054

-nbsp;0-157

-nbsp;0-0I2

367
350
359
356

350
371

335
354
354

358
354
375
375
357










mm.
- 0-0021
8
6
6
5

3

23

2
18

29

4

13

h 5

30
6

N 151
^^ = 0-8792

N 152

1=0.8793

km./sec.

2-345

2-429
2-320
2-370
2-347

2-308
2-435
2-215
2-328
2-322

2-344

2-319
2-441
2-440
2-

mm. ■
- 0-0012
16
3

10
10

km./sec.

-nbsp;0-099

-nbsp;0-124

-nbsp;0-043

-nbsp;0-086

-nbsp;0-086

13
8
6
12
12

-nbsp;0-104

-nbsp;0-073

-nbsp;0-061

-nbsp;0-098

-nbsp;0-098

16
3

II

17

19

-nbsp;0-122

-nbsp;0-042

-nbsp;0-091

-nbsp;0-128

-nbsp;0-140

N 148

mm.
- 0-0024
8
12
14

I

km./sec.

-nbsp;0-172

-nbsp;0-073

-nbsp;0-098

-nbsp;O-IIO

-nbsp;0-030

8
12
25

I

9

-nbsp;0-073

-nbsp;0-097

-nbsp;0-176

-nbsp;0-030

-nbsp;0-079

7

II

13
6
15

-nbsp;0-066

-nbsp;0-091

-nbsp;0-103

-nbsp;0-060

-nbsp;0-114

-ocr page 49-

SERIES III {continued)

01= 60° S.E.
02= 30°S.W.
Av= -0-165

.

As

Hi-H-2

X

N177

d\\ .
^ = 0-8794

mm.

km./sec.

4299-149
4302-085

4314-248

4315-138
4320-907

-nbsp;0-0342

-nbsp;316

-nbsp;318
310

-nbsp;343

-nbsp;2-302

-nbsp;2-137

-nbsp;2-140

-nbsp;2-090

-nbsp;2-289

4326-923
4331-811

4337-725

4338-084

4339-882

340

326

-nbsp;328

-nbsp;336
333

-nbsp;2-266

-nbsp;2-176

-nbsp;2-183

-nbsp;2-232

-nbsp;2-212

4343-861

4344-670

4346-725

4347-403
4349-107

330
333
337
328

335

-nbsp;2-190

-nbsp;2-208

-nbsp;2-231

-nbsp;2-176

-nbsp;2-217

N 181

4351-000

4352-908
4358-670
4366-061
4371-442

mm.

-nbsp;0-0347

341

-nbsp;330
332
329

km./sec.

-nbsp;2-298

-nbsp;2-260

-nbsp;2-188

-nbsp;2-194

-nbsp;2-172

4373-415
4373-727

4376-107
4379-396
4385-144

330
321

331

333
337

-nbsp;2-177

-nbsp;2-i2i

-nbsp;2-180

-nbsp;2-190

-nbsp;2-209

4388-571
4390-149

4395-201

4396-008
4400-555

335

331
- 338
323
325

-nbsp;2-194

-nbsp;2-169

-nbsp;2-208

-nbsp;2-116

-nbsp;2-125

mm.
0-0128
iii

mm.
4- 0-0109
106

01= 60° N.W.
02= 30°N.E.
Av— 4-0-165

As

N 179

d\\

^=0-8793

mm.
4- 0-0354
4-
4-
4-
4-

352
339

352

345
344

364

353

351
338

360

351
330
337

341

km./sec.
4- 2-377
4- 2-361
4- 2-271
2-350
4- 2-302

4- 2-291
4- 2-410

2-337

4- 2-325
4- 2-243

2-375

4- 2-318
4- 2-188
4- 2-231
2-253

ds

mm.
0-0345

341

357
342

360

349
354
352

350
346

350
350
346
352
350

N183
= 0-8757

km./sec.
4- 2-286
4- 2-260
2-353
4- 2-256
4- 2-361

4- 2-293

4- 2-322
4- 2-308
2-293
4- 2-264

2-285
2-284
2-256
2-291
2-276

01= 30° N.E.
02= 60° S.E.
Af = - 0-075

As

N 180

d\\

^ = 0-8792

mm.
0-0126

129
141

137

131

132

130
136
130

134

121
140
121
127

135

km./sec.

-nbsp;0-862

-nbsp;0-880

-nbsp;0-951

-nbsp;0-926

-nbsp;0-886

-nbsp;0-891

-nbsp;0-877

-nbsp;0-912

-nbsp;0-875

-nbsp;0-899

-nbsp;0-818

-nbsp;0-934

-nbsp;0-817

-nbsp;0-854

-nbsp;0-902

N 184

d\\nbsp;0

^=0-8757

mm.
0-0123

132

123
150
132

128
132
121
130

■ 136

127

124

128

134
137

km./sec.

-nbsp;0-831

-nbsp;0-886

-nbsp;0-829

-nbsp;0-992

-nbsp;0-880

-nbsp;0-855

-nbsp;0-880

-nbsp;0-812

-nbsp;0-866

-nbsp;0-900

-nbsp;0-844

-nbsp;0-826

-nbsp;0-849

-nbsp;0-884

-nbsp;0-901

01= 3o°S.W.
02= 6o°N.W.
Ai;= 0-075

As

N 178

d\\

^ = 0.8793

km./sec.
0-875
0-768
0-671

0-733
0-781

0-656
0-815
0-789
0-733
0-813

0-750
0-688
0-737
0-774

0-736

96

106
114

94
120
116

107
120

110
100

108
114
108

N 182

d\\

5^ = 0-8755

km./sec.

0745

0-726
0-810

0754

0-844

4- 0-782
4- 0-879
4- 0-775
4- 0-744
4- 0-730

4- 0-741
4- 0-741
4- 0-740
4- 0-764
4- 0-732

120
iii

126

116
132

quot;5
110

108

no
no
no
114

109

h.

-ocr page 50-

Table VII. Results from all plates, line for line {continued)

SERIES III [concluded)

01= IS\'S.W.

75° N W.

Ai;= 0-118

0,= 15° N.E.
02= 75° S E.
Av= -0-118

75° S.E.
i5°S.W.
Ar;= -0-148

01= 75° N.W.
0\',= 15° N E.
At; = 4-0-148

As

As

As

As

N 190

d\\ o

- = 0-8791

N 189
= 0-8793

N 188
g =0-8791

N 187

rfX
ds

km./sec.
4- 1
-367

4- 1-403
4- 1-391
4- 1-372
1-394

1-385
1-358
4- 1-404
4- 1-361
4- 1-366

4- 1-327
1-357

km./sec.

-nbsp;2-128

-nbsp;2-157

-nbsp;2-104

-nbsp;2-135

-nbsp;2-161

-nbsp;2-094

-nbsp;2-121

-nbsp;2-215

-nbsp;2-123

-nbsp;2-109

-nbsp;2-112

-nbsp;2-148

-nbsp;2-110

-nbsp;2-153

-nbsp;2-095

mm.
0-0200
4-

mm.
• 0-0317
322

■ 315

320

325
315

320

-nbsp;336

321

319

320

326
320

327

-nbsp;318

4299-149

4302-085

4314-248

4315-138

4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

206

205
202

206

205

201

209

202

203

197

202

206

210
202








4-
4-
4-
4-
4-

1-381
4- 1
-405
1-355

N 191

N 192
g=o.8,57

mm.
4- 0-0340
345
333
338
340

338

338

340

337

331

335

341

339

338

km./sec.
4- 2-272
4- 2-300
4- 2-216
4- 2-246
4- 2-254

4- 2-236
4- 2-232
4-
2-240
4- 2-221
4- 2-183

4- 2-204
4- 2-239
4- 2-226
4- 2-220
4- 2-187

4-

4-

4-

4-
4-
4-

4-
4-

4-
4-
4-
4-
4-

333

N 193
g=o.8„7

mm.

km./sec.

- 0-0220

- 1-492

198

- 1-353

218

- 1-472

210

- 1-422

230

- 1-542

216

- 1-453

219

- 1-469

220

- I-47I

225

- 1-502

212

- 1-421

220

- 1-468

218

- 1-455

217

- 1-448

224

- I-49I

221

- 1-471

N 194

km./sec.

-nbsp;1-391

-nbsp;1-476

-nbsp;1-448

-nbsp;1-390

-nbsp;1-460

-nbsp;1-423

-nbsp;1-513

-nbsp;1-525

-nbsp;1-438

-nbsp;1-441

-nbsp;1-433

-nbsp;1-378

-nbsp;1-411

-nbsp;1-501

-nbsp;1-409

km./sec.
4- 2-250
4- 2-206
4- 2-226
4- 2-202
4- 2-228

4- 2-178
4- 2-244
-F 2-255
4-
2-240
4- 2-186

4- 2-178
4- 2-189
4- 2-148
4- 2-178
4- 2-162

mm.
0-0207
221
217
208
220

214
229
231
217

-nbsp;218

217
208

-nbsp;■ 214

229
214

km./sec.

1-415

1-347
4- 1
-387

4- 1-261

-4- 1-430

4- 1-380
4- 1-379

1-336

1-359
1-434

1-275
1-323

4- 1-309

1-338
1-354

mm.
4-
0-0342

km./sec.

-nbsp;2-140

-nbsp;2-151

-nbsp;2-091

-nbsp;2-129

-nbsp;2-100

-nbsp;2-117

-nbsp;2-141

-nbsp;2-097

-nbsp;2-131

-nbsp;2-138

-nbsp;2-075

-nbsp;2-049

-nbsp;2-IOO

-nbsp;2-099

-nbsp;2-169

mm.

4- 0-02ii

mm.
0-0324
326

317
324

320

323

-nbsp;327

320
326

-nbsp;328

-nbsp;318
314
323
323

335

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-201

4396-008

4400-555

335
339

336
341

333
344
346

344

336

335

337

331

336

334

4-
4-
4-
4-

4-
4-
4-
4-
4-

4-
4-
4-
4-
4-

200
207
187

215

207
207
200

204
217

191
199
197

202

205

4-
4-
4-
4-
4-
4-

4-
4-
4-

4-
4-
4-
4-
4-

-ocr page 51-

SERIES IV

01= o\'E.
02= 90° s.
Ai;= -0-150

As

N 199
_ = O-8792

km./sec.

-nbsp;1-911

-nbsp;1-878

-nbsp;1-870

-nbsp;1-907

-nbsp;1-847

-nbsp;1-905

-nbsp;1-864

-nbsp;1-836

-nbsp;1-854

-nbsp;1-859

-nbsp;1-868

-nbsp;1-831

-nbsp;1-854

-nbsp;1-781

-nbsp;1-791

N 195

d\\ ^
^-0-8757

mm.
0-0275

282

277

283

278

280

280

279

277

278

276

277

281

279
281

4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379-396
4385
-144

4388-571
4390-149

4395-201

4396-008

4400-555

Ian./sec.

-nbsp;1-841

-nbsp;1-882

-nbsp;1-848

-nbsp;1-880

-nbsp;1-846

-nbsp;1-857

-nbsp;1-856

-nbsp;1-849

-nbsp;1-834

-nbsp;1-836

-nbsp;1-822

-nbsp;1-827

-nbsp;1-848

-nbsp;1-835

-nbsp;1-845

mm.
0-0282
277

277

283

274

284

278
274

277

278

280
274
278
266
268

4299-149

4302-085

4314-248

4315-138

4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

01= 90° S.
02= 0°W.
Av= -0-116

As

N 200

d\\ -
^=0-8792

mm.
0-0277

275
283
280

277

285

280

276

277

282
274

281

282

278

274

km./sec.

-nbsp;1-846

-nbsp;1-832

-nbsp;1-874

-nbsp;1-854

-nbsp;1-832

-nbsp;1-877

-nbsp;1-843

-nbsp;1-814

-nbsp;1-820

-nbsp;1-850

-nbsp;1-798

-nbsp;1-840

-nbsp;1-845

-nbsp;1-820

-nbsp;1-794

ds

mm.
0-0283
280
274
279

276

278

274
283
278

275

277

277
274

278
278

N 196
= 0-8756

km./sec.

-nbsp;1-856

-nbsp;1-836

-nbsp;1-795

-nbsp;1-822

-nbsp;1-800

-nbsp;1-811

-nbsp;1-785

-nbsp;1-839

-nbsp;1-806

-nbsp;1-784

-nbsp;1-794

-nbsp;1-793

-nbsp;1-772

-nbsp;1-795

-nbsp;1-793

01= o°W.

01= 90° N.

02= 90° N.

02= E.

Aü= 0-150

Av= 0-ii6

As

As

Hx-V4gt;i

N 201

N 202

d\\

■8791

d\\

•8792

mm.

km./sec.

mm.

km./sec.

0-0275

1-868

0-0278

1-852

273

1-853

275

1-832

275

1-858

274

1-818

279

1-882

283

1-873

272

1-834

277

1-832

274

1-843

277

1-828

273

1-834

279

1-837

278

1-860

280

1-838

278

1-860

272

1-789

273

1-825

273

1-794

278

1-856

280

1-834

284

1-892

278

1-821

-1-

280

1-867

275

i-802

■f

278

1-854

280

1-832

280

1-865

275

I-800

N 197

N198

d\\

8757

^=0-8755

mm.

km./sec.

mm.

km./sec.

■f 0-0275

1-841

0-0276

1-813

281

1-876

273

1-793

280

1-866

279

1-826

277

1-843

276

1-803

277

1-840

286

1-861

274

1-820

275

1-792

280

1-856

274

1-785

273

1-812

278

1-809

275

1-822

270

1-758

280

1-849

282

1-827

287

1-889

272

1-764

274

1-809

279

1-805

275

1-812

284

1-832

279

1-835

277

1-789

281

1-845

276

1-781

5—2

-ocr page 52-

Table VIL Results from all plates, line for line {continued)

SERIES IV {continued)

01- 75° S.W.

15° N.W.
Av= - 0-077
0,= 15° N.W.
lt;!gt;,= 75°N.E.
Ai;= 0-170

01= 75° N.E.

15° S.E.
Av= 0-077

01= 15° S.E.

75°S.W.
Aw= -0-170

Hi-Hi

As

As

As

As

N 160
=0-8795

N 159

N 158

N 157
f = 0B„5

ds

km./sec.

1-345
1-350
1-313

1-400
1-415

1-313

1-335
1-375
1-369

1-338

1-342
1-304
1-316

1-365
1-259

km./sec.
2-257
2-230
2-239
2-226
2-221

2-241
2-267
2-188
2-232
2-206

2-257
2-256
2-231
2-267
2-314

km./sec.

-nbsp;i-

-nbsp;I

-nbsp;I

-nbsp;I

-nbsp;I

km./sec.

-nbsp;2-188

-nbsp;2-155

-nbsp;2-177

-nbsp;2-170

-nbsp;2-140

-nbsp;2-148

-nbsp;2-138

-nbsp;2-127

-nbsp;2-164

-nbsp;2-156

-nbsp;2-159

-nbsp;2-140

-nbsp;2-139

-nbsp;2-144

-nbsp;2-130

mm.
0-0203

204


mm.
0-0334

330


mm.
0-0216
218
212
228

211

234

223

212
232
226

224
210
216
210
205

mm.
■ 0-0323
318

323

322

318

320

319
318

324
.323

324

321

321

322

320

427
438
394
493

384

4299-149
4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

199
213
216

200

204
211
210

205

206
200
202
210

193

333

331
331

335
340

328

335

331

340
340

336
342
350

523

453
381
505

467

452

366
402

365

333

N155

^ = 0-8763

N156
=0-8760

N154
.g = o-8765

N153

- = 0-8760

ds

km./sec.

1-345
1-306
1-396
1-380
1-273

nbsp;1-340

nbsp;1-284

nbsp;1-326

nbsp;1-306

nbsp;1-406

nbsp;1-229

nbsp;1-301

nbsp;1-317

nbsp;1-280

nbsp;1-260

km./sec.
2-292
2-076

2-255

2-219
2-258

2-244
2-188
2-193
2-251
2-216

2-201
2-176
2-281
2-225
2-198

km./sec.
- 1-430
380
408

392
402

mm.
0-0206
200

km./sec.

-nbsp;2-132

-nbsp;2-137

-nbsp;2-151

-nbsp;2-103

-nbsp;2-160

-nbsp;2-134

-nbsp;2-145

-nbsp;2-162

-nbsp;2-117

-nbsp;2-137

-nbsp;2-104

-nbsp;2-127

-nbsp;2-099

-nbsp;2-152

-nbsp;2-131

mm.
0-0345
310

mm.
0-0220

212
217

215
217

230
214
221

221
217

219

222

216

213

217

mm.
0-0319
320

323

316

326

322

324

327

320

324

319

323
319

328

325

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107

4379-396
4385-144

4388-571

4390-149

4395-201

4396-008

4400-555

-nbsp;I

-nbsp;I

-nbsp;i

-nbsp;i

-nbsp;i

-nbsp;I

-nbsp;I

-nbsp;i

-nbsp;I

-nbsp;I

-nbsp;I

-nbsp;I

-nbsp;I

-nbsp;i

215
213

196

207

198
205
202
219

190
202
205

199
196

340
335
342

340

331

332
342

337

335

331

349
340

336

480

382

423

422
394

405
425

383
364
387

-ocr page 53-

SERIES IV {continued)

01= 30° S.E.
0sj= 60° S.W.
At;= -0-177
01= 60° S.W.
02= 30° N.w.
Av= -0-029
01= 30° N.W.
02= 60° N.E.
Ay = 0-177

01= 60° N.E.
02= 30°S.E.
At; = 0-029

As

As

As

As

N 222
dX „
5j=o-8793

N 221

dX

^=0-8792

N 220

d\\

^ = 0-8793

N 219
=0-8794

ds

I

km./sec.
0-704
0-765
0-782

0-737

0-599

0-746
0-707
0-786
0-663
0-687

0-698
0-679
0-612

0-777

0-703

km./sec.
2-370
2-255
2-351
2-244
2-456

2-334

2-385
2-318
2-299
2-341

2-325
2-263
2-329
2-329

2-345

km./sec.

-nbsp;0-897

-nbsp;0-903

-nbsp;0-861

-nbsp;0-818

-nbsp;0-859

-nbsp;0-863

-nbsp;0-874

-nbsp;0-724

-nbsp;0-866

-nbsp;0-785

-nbsp;0-765

-nbsp;0-734

-nbsp;0-844

-nbsp;0-771

-nbsp;0-948

km./sec.

-nbsp;2-201

-nbsp;2-130

-nbsp;2-221

-nbsp;2-220

-nbsp;2-190

-nbsp;2-192

-nbsp;2-268

-nbsp;2-257

-nbsp;2-189

-nbsp;2-243

-nbsp;2-245

-nbsp;2-195

-nbsp;2-311

-nbsp;2-I02

-nbsp;2-314

mm.
0-0108
118

mm.

0-0351



mm.
0-0324

313
329
329

325

326
339

338

327

336

337

329

348

314

349

mm.
0-0139
140

134

127

134

135
137

quot;3

136
123

120

115
133

121
150

4299-149

4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107

333
350

333
368

349
358
348
345
352

350
340

351
351

354













122
114

92

116
no

123
103
107

109
106

95
122
no










N2I8
^ = 0-8756

N 217

dX

^ = 0-8754

N216
dX „

-=0-8754

N 215

d\\

^=0-8755

km./sec.
0-687

0-735

0-709
0-726
0-663

km./sec.
2-199

2-394

2-310
2-292
2-330

2-243
2-297
2-302
2-402
2-300

km./sec.

-nbsp;0-853

-nbsp;0-821

-nbsp;0-764

-nbsp;0-824

-nbsp;0-840

-nbsp;0-858

-nbsp;0-797

-nbsp;0-778

-nbsp;0-813

-nbsp;0-842

-nbsp;0-798

-nbsp;0-816

-nbsp;0-875

-nbsp;0-911

-nbsp;0-832

mm.
0-0107

115


km./sec.

-nbsp;2-230

-nbsp;2-204

-nbsp;2-175

-nbsp;2-261

-nbsp;2-196

-nbsp;2-170

-nbsp;2-145

-nbsp;2-150

-nbsp;2-305

-nbsp;2-178

-nbsp;2-158

-nbsp;2-187

-nbsp;2-159

-nbsp;2-194

-nbsp;2-194

mm.
0-0329
361
348
346
353

339

348

349
366

350

352
345
335

351
365

mm.
0-0134

129
120

130

133

136

126
123

129

134

127

130

140
146

133

mm.
0-0334

330

326

341

331

327

323

324
350
330

327

332

328
334
334

4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-201

4396-008

4400-555














III
114
104

106
106
98

104
no

109
117
in
in
120

0-675
0-675
0-626
0-661
0-696

0-689

0-737

0-700
0-699
0-754

2-309
2-266
2-201
2-297
2-382

-ocr page 54-

Table VII. Results from all plates, line for line {continued)

SERIES IV [continued)

0I=45°S.E.
45°S.W.

Av= -0-175

01= 45° S.W.

0,= 45° N.W.
Ai;= 0
-024

01= 45° N.w.
02=
45° N.E.
Atgt;=
0-175

01= 45° N.E.
02= 45°S.E.
Af = -0
-024

As

As

As

As

\\

N 207

N 208

d\\

-=0-8792

N 209

d\\

-=0-8792

N 210

4299-149
4302-085

4314-248

4315-138

4320-907

mm.
- 0-0351
349

329

347
326

km./sec.

-nbsp;2-367

-nbsp;2-352

-nbsp;2-218

-nbsp;2-329

-nbsp;2-194

mm.
- 0-0019
3
9
8

. 2

km./sec.

-nbsp;0-095
0-005

-nbsp;0-032

-nbsp;0-025
0-036

i

mm.
0-0355

358
356
359
357

km./sec.

2-394
2-409
2-386
2-404
2-386

mm.
- 0-0015
20
8
4

15

km./sec.

-nbsp;o-ii8

-nbsp;0-149

-nbsp;0-074

-nbsp;0-049

-nbsp;0-117

4326-923

4331-811

4337-725

4338-084

4339-882

314
329

-nbsp;333

-nbsp;338

337

-nbsp;2-115

-nbsp;2-204

-nbsp;2-224

-nbsp;2-254

-nbsp;2-247

14

6

I
20
10

-nbsp;0-063

-nbsp;0-013
0-030

-nbsp;0-099

-nbsp;0-037

361
374
354
357
355

2-406
2-481

2-353

2-371
2-358

9

3

II
I
18

-nbsp;0-080

-nbsp;o-oo6

-nbsp;0-092

-nbsp;0-030

-nbsp;0-135

4343-861

4344-670

4346-725

4347-403

4349-107

344

-nbsp;344

342
347

-nbsp;331

-nbsp;2-286

-nbsp;2-285

-nbsp;2-272

-nbsp;2-302

-nbsp;2-202

14

4
6

4
7

-nbsp;0-062

-nbsp;0-001

-nbsp;0-013

-nbsp;0-001

-nbsp;0-019

355
359

363

362
355

2-354
2-377
2-401
2-394
2-349

0
16
8
7

II

-nbsp;0-024

-nbsp;0-122

-nbsp;0-073

-nbsp;0-067

-nbsp;0-091

N 211

d\\

^=0-8755

N 212

d\\

-=0-8757

N 213
^=0-8756

N 214
^=0.8756

4351-000

4352-908
4358-670
4366-061
4371-442

mm.

-nbsp;0-0339

-nbsp;361
325

339

-nbsp;341

km./sec.

-nbsp;2-259

-nbsp;2-393

-nbsp;2-167

-nbsp;2-247

-nbsp;2-255

mm.
- 0-0011

II

15
8
6

km./sec.

-nbsp;0-044

-nbsp;0-044

-nbsp;0-068

-nbsp;0-025

-nbsp;0-013

mm.
0-0360

350
343
359
360

km./sec.
2-388
2-325
2-277
2-370
2-371

mm.
- 0-0014
10

7
0

8

km./sec.

-nbsp;o-iio

-nbsp;0-085

-nbsp;0-067

-nbsp;0-024

-nbsp;0-073

4373-415
4373-727

4376-107
4379-396

4385-144

337
330
324
- 338
340

-nbsp;2-229

-nbsp;2-186

-nbsp;2-148

-nbsp;2-230

-nbsp;2-238

5

4

18
2

15

-nbsp;0-006
0-048

-nbsp;0-086

0-0I2

-nbsp;0-067

365

347
346
367
358

2-400
2-289
2-282
2-407

2-347

14
12
4
4
12

-nbsp;0-109

-nbsp;0-097

-nbsp;0-048

-nbsp;0-048

-nbsp;0-097

4388-571

4390-149

4395-201

4396-008

4400-555

343
340

323
342
- 335

-nbsp;2-253

-nbsp;2-234

-nbsp;2-127

-nbsp;2-241

-nbsp;2-195

9
0

7
9
10

-nbsp;0-031
0-024

-nbsp;0-018

-nbsp;0-030

-nbsp;0-036

353
361
352
363
365

2-313
2-361
2-302
2-368
2-376

7

13

- II

5

14

-nbsp;o-o66

-nbsp;0-103

-nbsp;0-090

-nbsp;0-054

-nbsp;0-108

-ocr page 55-

SERIES IV {continued)

01= 60° S.E.

30°S.W.
AD= -0-165
lt;tgt;^= 30° S.W.
02= 60° N.W.
At;= 0-075
01= 60\'\'N.W.
02= 30° N.E.
Av= 0-165

01= 30° N.E.
03= 60° S.E.
Av= - 0-075

Hi-Hi

As

As

As

As

N231
^ = 0-8796

N 232
-=0-8796

N233

d\\

^=0-8794

N234

d\\

=0-8794

km./sec.

-nbsp;2-352

-nbsp;2-193

-nbsp;2-209

-nbsp;2-339

-nbsp;2-228

-nbsp;2-229

-nbsp;2-201

-nbsp;2-264

-nbsp;2-214

-nbsp;2-268

-nbsp;2-228

-nbsp;2-202

-nbsp;2-232

-nbsp;2-225

-nbsp;2-2ii

km./sec.

0-737

0-824
0-715
0-758
0-695

0-749

0-741
0-826
0-697
0-752

0-695
0-725

0-743

0-768
0-767

km./sec.
2-239
2-393
2-308
2-320

2-333

mm.
0-0350

325

329
350

333

334

330

341

333

342

336
332

337
336

334

km./sec.

-nbsp;0-856

-nbsp;0-980

-nbsp;0-833

-nbsp;0-907

-nbsp;0-831

-nbsp;0-909

-nbsp;0-932

-nbsp;0-875

-nbsp;0-863

-nbsp;0-893

-nbsp;0-885

-nbsp;0-891

-nbsp;0-854

-nbsp;0-927

-nbsp;0-957

mm.
0-0106
120

mm.
0-0332

357

mm.
0-0125

145

122

134

122

135
139

130
128

133

132

133

127

139

144

4299-149

4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107













103

110

100

109

108
122

101

no

lOI

106

109

113
113

345
347
350

359
354
354
353

341

347

346
346
345
353

2-384

2-349

2-344

2-337

2-262










2-295
2-288
2-287
2-281
2-327

N235

d\\

5^=0-8757

N236

d\\

5^=0-8755

N 237

N238

km./sec.
2-255
2-346
2-329
2-323
2-288

2-329
2-310
2-290
2-287
2-288

2-310
2-266
2-322
2-279
2-276

km./sec.

-nbsp;2-108

-nbsp;2-100

-nbsp;2-175

-nbsp;2-096

-nbsp;2-154

-nbsp;2-201

-nbsp;2-096

-nbsp;2-193

-nbsp;2-129

-nbsp;2-ioo

-nbsp;2-128

-nbsp;2-097

-nbsp;2-165

-nbsp;2-219

-nbsp;2-155

km./sec.
0-813
0-720
0-731

0-735

0-728

0-794
0-794
0-733
0-738
0-730

0-705
0-741
0-739
0-782
0-696

km./sec.

-nbsp;0-954

-nbsp;0-86I

-nbsp;0-780

-nbsp;0-882

-nbsp;0-899

-nbsp;0-825

-nbsp;0-837

-nbsp;0-867

-nbsp;0-902

-nbsp;0-900

-nbsp;0-863

-nbsp;0-880

-nbsp;0-909

-nbsp;0-824

-nbsp;0-859

mm.
0-0316

315

328

316
326

334

317

333

323
319

324
319
331
340
330

mm.

0-0340



mm.

0-0i20

105

mm.
0-0143
128

115

132

135

123
125
130

136
136

130

133
138

124

130

4351-000

4352-908
4358-670
4366-061
4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571
4390-149

4395-201

4396-008

4400-555

355
353

353

348

355
352

349

349

350

354
347
357
350
350

107

108

107

118
118

108

109
108

104
no
no

117

103






















-ocr page 56-

Table VII. Results from all plates, line for line {concluded)

SERIES IV {concluded)

75°S.E.

0j= 15° S.W
kv= -0-148

As

N 243

d\\

^ = 0-8791

mm.
0-0320

317
330
314
327

317

326
312

319
314

321

317

■ 318
326

323

4299-149

4302-085

4314-248

4315-138
4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403

4349-107





.







km./sec.

-nbsp;2-146

-nbsp;2-125

-nbsp;2-197

-nbsp;2-097

-nbsp;2-173

-nbsp;2-106

-nbsp;2-158

-nbsp;2-067

-nbsp;2-110

-nbsp;2-078

-nbsp;2-118

-nbsp;2-092

-nbsp;2-097

-nbsp;2-146

-nbsp;2-126

N 239

d\\nbsp;Q

5^=0-8755

mm.
0-0321
320

317
313

320

319

326

318

•nbsp;325

320
320

327

•nbsp;310
■ 321

•nbsp;324

4351-000

4352-908
4358-670
4366-061

4371-442

4373-415
4373-727

4376-107
4379-396
4385-144

4388-571

4390-149

4395-201

4396-008
4400-555













km./sec.

-nbsp;2-122

-nbsp;2-114

-nbsp;2-091

-nbsp;2-o6i

-nbsp;2-100

-nbsp;2-093

-nbsp;2-134

-nbsp;2-084

-nbsp;2-124

-nbsp;2-089

-nbsp;2-087

-nbsp;2-128

-nbsp;2-021

-nbsp;2-087

-nbsp;2-102

01= I50S.W.

02= 75° N.W.
Ai;=
0-118

As

N244

d\\

- = 0-8790

mm.

0-0202

201

205
201

195

206
198
203

196
198

201

207
201

193

203

km./sec.

379
372
391

366

325

391

339

367
324

335

351

388

350

301
361

mm.
0-0204
210

200

200

201

197

203
200
205

204

197
210

198

193

200

N 240
^=0-8756

km./sec.

1-372
1-408

1-344
1-341

1-344

1-319
1-355
1-336
1-365
1-356

1-311
1-390

1-314

1-284
1-324

01= 75° N.W.
02= 15quot; N.E.
At; =
0-148

Hi-Hi

N245
dX o

^ = 0-8791

mm.
0-0332

329


338
334

334

349

344

345
345

337

340
340

350

338

335

km./sec.
2-221
2-200
2-247
2-221
2-216

2-304
2-269
2-270
2-270
2-220

2-234
2-233

2-294
2-220
2-199

mm.

0-0341



346
333

331
346

330
337

339

340

339

340

332
355
330
346

N 241
-=0-8756

km./sec.
2-244
2-273
2-189
2-171
2-259

2-i6o
2-201
2-212
2-216
2-204

2-208
2-159
2-293
2-141
2-235

As

01= 15» N.E.
02= 75° S.E.
Av= -o-ii8

As

Hi-v^,

N246

mm.

-nbsp;0-0218

-nbsp;215
226
216
222

km./sec.

-nbsp;1-479

-nbsp;1-459

-nbsp;1-521

-nbsp;1-459

-nbsp;1-493

229
219

221
- 214

222

-nbsp;1-533

-nbsp;1-468

-nbsp;1-477

-nbsp;1-434

-nbsp;1-483

221
223
225
220

222

-nbsp;1-474

-nbsp;1-486

-nbsp;1-497

-nbsp;1-466

-nbsp;1-477

N 242

mm.

-nbsp;0-0222

213

-nbsp;214
217
220

km./sec.

-nbsp;1-483

-nbsp;1-426

-nbsp;1-430

-nbsp;1-445

-nbsp;1-460

220
220
222
219
212

-nbsp;1-459

-nbsp;1.458

-nbsp;1-470

-nbsp;1-450

-nbsp;1-404

207
216
219
210
216

-nbsp;1-372

-nbsp;1-426

-nbsp;I-44I

-nbsp;1-386

-nbsp;1-421

-ocr page 57-

Part II. Discussion of Results derived from
Lines of Different Wave Lengths

§ 8. Comparison of results for individual lines

It will be convenient first to discuss these results from the point of view
of line to line concordance. By such a scrutiny an unexpected dependence of
velocity on wave length has been brought to light which will have to be dealt with
at some length before we can proceed to the consideration of the mean results,
plate to plate, i.e. round the sun\'s limb.

As for each velocity-difference shown for a particular line on a particular
plate in Series I there exist three corresponding velocity-differences in the other
three Series, means from four values can at once be taken out, and a quot;Normal
Seriesquot; thus be constructed.

For a further averaging of the plates from the point of view of fine to line
effect it is best to group the material in such a way that velocity-differences of
about the same amount are brought together. Table
VIII shows the manner of

Table VIII. Arrangement of material in groups with approximately the same

numerical velocity-difference

-2-2
km./sec.

2.3
km./sec.

±1-9
km./sec.

±1-4
km./sec.

±o-8
km./sec.

O-O

km./sec.

01 02

01 02

01 02

01 02

01 0a

15° S.E. 75° s.w.
30° S.E. 60° s.w
45°
S.E. 45° s.w.
00 S.E. 30° s.w.
75°
S.E. 15° s.w

15° N.w. 75° N.E.
30° N.w. 60° N.E.
45° N.W. 45° N.E.
60° N.W. 30° N.E.
75° N.W. 15° N.E.

o°E. 90° s.
90° s. w.

W. 90° N.
90° N.
E.

75° s.w. 15° N.w.
15° s.w. 75° N.w.
75° N.E. 15° S.E.
15° N.E. 75° S.E.

60° s.w. 30° N.w.
30° s.w. 60° N.w.
60° N.E. 30° S.E.
30° N.E. 60° S.E.

45° S.W. 45° N.W.
45° N.E. 45° S.E.

this grouping. There are five combinations of latitudes which give velocity-

differences approximating to - 2-2 km./sec., and also five which give about

2*3 km./sec. We need for the purposes of line to line comparison regard only

the numerical values, disregarding the sign. Hence in the next three columns in

each case two positive and two negative velocity-differences can be grouped

together, just as we might have taken together the ten observations of the first

two columns. The observations of the last column will give no information with

regard to line to line effect, but may afford a useful check in the matter of accidental
errors.

H.

-ocr page 58-

Taking means from the figures of the quot;Normal Seriesquot; in this way, results
are obtained as shown in Table IX. The headings are the same as in the preceding
table, while also the total number of plates is given for each column.

The special feature of this table is the diminution of the velocity-differences
on going from shorter to longer wave length, at any rate for the larger values.
This feature is even more apparent if they are plotted graphically, as is done in
Fig. 4. The abscissae are there the wave lengths; the mean velocity-differences
per group, from Table IX, determine the ordinates. Each division of the figure
corresponds to a column in the table. The zero points on the axis of ordinates
are different in each case, being always, except for the bottom figure, a long way
off the page. The scale is otherwise the same for all.

Table IX. Mean velocity-differences for individual lines from material grouped

according to numerical value

Mean v^^

-2-2

■f 2-3

\\

(20 plates)

(20 plates)

4299-149

2-227

2-309

4302-085

2-190

2-309

4314-248

2-221

2-320

4315-138

2-206

2-312

4320-907

2-212

2-325

4326-923

2-189

2-314

4331-811

2-189

2-306

4337-725

2-193

2-298

4338-084

2-187

2-297

4339-882

2-182

2-292

4343-861

2-195

2-297

4344-670

2-176

2-291

4346-725

2-203

2-305

4347-403

2-183

2-301

4349-107

2-191

2-302

4351-000

2-189

2-293

4352-908

2-188

2-283

4358-670

2-170

2-273

4366-061

2-167

2-289

4371-442

2-172

2-292

4373-415

2-169

2-273

4373-727

2-163

2-285

4376-107

2-155

2-268

4379-396

2-167

2-278

4385-144

2-165

2-271

4388-571

2-152

2-279

4390-149

2-150

2-252

4395-201

2-146

2-253

4396-008

2-162

2-245

4400-555

2-167

2-257

±1-9
(16 plates)

±0-8
(16 plates)

o-o
{8 plates)

0-801

0-066

0-824

0-076

0-791

0-044

0-794

0-048

0-795

0-059

0-789

0-052

0-804

0-043

o-8o6

0-034

0-784

0-058

0-788

0-042

0-780

0-071

0-782

0-074

0-769

0-052

0-798

0-043

0-814

0-068

0-798

0-082

0-791

0-053

0-780

0-041

0-807

0-034

0-793

0-029

0-807

0-057

0-789

0-047

0-773

0-056

0-777

0-049

0-794

0-058

0-776

0-042

0-780

0-030

0-777

0-029

0-787

o-o6i

0-783

0-047

±1-4 ^
{16 plates)

1-879

1-422

1-896

1-409

1-848

I-41I

1-896

1-418

1-869

1-416

I-86I

1-408

1-840

1-390

1-871

1-394

1-855

1-405

1-874

1-385

1-837

1-395

1-876

1-382

1-835

1-395

1-835

1-379

1-837

1-385

1-848

1-407

1-862

1-390

1-839

1-385

1-841

1-389

1-869

1-406

1-830

1-386

1-853

1-392

1-840

\'1-381

1-829

1-378

1-826

1-397

1-827

1-366

1-823

1-372

1-798

r-359

1-843

1-372

1-823

1-357

It is at once apparent that some systematic effect is present. The dots do
not cluster round horizontal lines as might be expected, but round lines of down-
ward inclination towards the right (greater wave lengths). There is no evidence
of discontinuity at the central points which separate the two spectral regions.

-ocr page 59-

Region B

Region A

Km/sec

Km/sec
2-23

2-21

2-19

-2-2

(20 platesj

2-17

2-15
213

2-34

2-32
2-30
2-28
2-26

. 2-3

(10

plates)

1-90
1-88

2-24

±1-9
(16 platesj

1-86

1-84

1-82

1-44

.1-80

1-42

1-40
r-38
1-36
1-34

±1-4

(16 plates)

0-85
0-83
0-81
0-79
0-77
0-75

±0-8

(16 plates)\'

0-10
0-08
0-06
0-04.
0-02
0-00

0-0
(8 plates)

4300 4310 4320 4330 4340 4350 4360 4370 4380 4390 4400

Fig. 4. Graphical representation of Table IX. Mean velocity-differences for individual lines
from material grouped according to numerical value.

6—2

-ocr page 60-

The inclination is most marked in the two upper diviiions of the figure, less so
in the three foUowing ones, and practically vanishes in the bottom division.
The amount of the inclination varies approximately with the amount of the
numerical mean velocity-difference for the groups of plates. If, as seems a
sufhcient approximation, we suppose the dots to cluster round straight lines, we
find for the diminution in - v^^ from A 4300 to A 4400, indicated by the
incHnation of these lines, values as in Table X. The constant ratio is fairly
evident. Both lines of the table being expressed in km./sec., we get for the
amount of the diminution for the 100 A involved 3 %.

Table X. Diminution along the plate as determined from the six

divisions of Fig. 4

Mean V4,, - v^,nbsp;2-2nbsp;2-3nbsp;I\'Qnbsp;iH

(numerical)

Diminution from o-o6onbsp;o-o66nbsp;o-o6onbsp;0-048nbsp;0-030nbsp;0-006

x 4300 to x 4400

A discussion of this result, including an exhaustive search into its probable
cause, will be found in the following section. It may be stated already in this
place that no definite conclusion is reached in the discussion. No evidence
is forthcoming in support of the view which explains the anomaly either as caused
in the reductions or by the special method of observation employed. We find

that the simplest way in which to express the anomaly is to state

......................

Aj— Aq

where Xq = 4350, the wave length centrally situated in our region and A^ another
constant.

§ 9. Search for a cause of the variation of velocity-difference

with wave length

The first thought which comes to the mind in reviewing the facts of the
preceding section concerns the possibility of having introduced the anomaly
in the course of the reductions. To investigate this point we must especially
deal with that part of the reduction in which a different coefamp;cient was appUed
to each separate measured displacement; more particularly, with the two com-
ponents of the figures in Table IV (page 13) which depend respectively on the
dispersion and Doppler\'s law. The third component, the one that is needed to
introduce a general correction for the setting of the sun\'s image on the slit, is
constant for the whole of each plate and so cannot have introduced the effect in
question. It is true that with regard to this latter factor, the question may be
asked whether it ought not in reality to have been different for the different wave

-ocr page 61-

lengths. Such would have been necessary if the solar image had varied in size
with the wave length. A brief consideration shows that in order to get a 3 %
effect, from A 4300 to A 4400, the solar radius would have to differ by the same
percentage for light of those wave lengths, that is, by about 2-5 mm. for our
image of 172 mm. diameter ; a supposition which is untenable.

That the application of the dispersion and of Doppler\'s law has been correct
as to direction of run, is evident from the following considerations. Both the
dispersion and the velocity law make the displacements at the red end of our
region greater than at the violet end, allowing, in the case of the dispersion,
for the jump in the factor on going from one plate (A 4300—^A 4350) to another
(A 4350—^A 4400). Owing to both causes the coefficient given in Table IV must
therefore diminish when going from smaller to greater wave length as was found
to be the case in the construction of the table.

As to the numerical values of the coefficient, beginning with the part due to
instrumental dispersion, we recall the example given on page 12. It was there
shown that the dispersion factors used represented the observed dispersion,
determined directly from the plate, to an amply accurate degree, at any rate for
the two plates dealt with. Comparisons similar to those given at the place
referred to, were made for 24 plates. In no case does the dispersion determined
directly from the plate differ by more than o-i % from that adopted in the
preparation of Table IV. The systematic effect cannot therefore have been
introduced in this way.

It is to be noted that we are thus now able to rule out all causes which would
affect the dispersion equally with the displacements. All purely instrumental
causes fall under this category. If through any purely instrumental effect the
displacements were larger at one end of the plate than at the other, the same
influence would necessarily be at work on the mean separations from line to line
and would therefore have been detected in these dispersion checks.

The Doppler law component of the velocity-coefficient, expressed as \\/F,
cannot have caused the anomaly,
V, the velocity of hght being a constant, while
the wave lengths are known to a degree of accuracy far within that of the error of
observation of the present investigation.

\' We must now examine the method of observation as a possible source of an
apparent variation. The best way to deal with this aspect of the case is first to
recall the way in which the observations were made. In Fig. 5 the sun is repre-

^r^x^ ^^^ ^^^ ^^^ appears on the slit plate. The South pole is at the top,
the North pole at the bottom. Each dotted line connects two points of which the
spectra are compared in one observation (pair of plates, one for each region
A
^d B). To avoid confusion only 16 such lines are drawn, whereas in reahty there
are in each series 24 observations; those relating to latitudes 30°.and 60° in the
tour quadrants are missing in the figure. As was stated in § 3 (page 8) each plate
gives a comparison between two spectra of which one was formed with a double

-ocr page 62-

opening in front of the sHt and this latter tangential to the limb, the other with
a single opening in front of the sht, with the slit radial to the limb at a pomt 90°
away. The slit openings thus used are denoted in the figure by short, thick lines.
Their distance inside the hmb and their length are reproduced on a much larger
scale than the solar image itself. We see that in the
s.e. and n.w. quadrants the
sht was always tangential, in the s.w. and
n.e. quadrants always radial. Going
from the sun\'s East point through s., w.,
n. back to e. the nearer point was always
photographed in two half-exposures between which the continuous exposure for
the spectrum of the further point was taken. Thus in observation 4—7 the
exposure of the double spectrum (sHt tangential) of 7 was sandwiched in between
the two half-exposures on the single spectrum (slit radial) at 4. On the other

hand, in observation 7—10 two half-exposures are taken at 7 of the double spectrum,
respectively before and after the continuous exposure of the single spectrum at 10.

Is it possible that this method of obtaining the material has caused the anomaly
which we are investigating? To enable us to judge about this it is necessary to
know the behaviour of the velocity-differences along the plate for
each of the
observations separate. So far we only dealt with this behaviour as it appeared
after grouping them together in the way given in the precedmg paragraph.
Without giving the complete details it may be stated that if we regard the obser-
vations of the Normal Series (mean of the four series), not only is the diminution
of the velocity-difference with increasing wave length always apparent, but it

-ocr page 63-

also occurs, as far as the accidental errors allow us to judge, in always the same
ratio, amounting to about 3 % of the mean value on the plates in question. In
no case is the effect either markedly smaller or markedly larger. Even in
the single plates or pairs of plates of each of the original series the diminution is
apparent in approximately this constant ratio, as can be judged from a survey
of Table VII.

With this further evidence in mind we can at once rule out many further
hypothetical sources of the anomaly, as follows.

(a)nbsp;In the first place it is clear that there can be no question of an additive
displacement, varying with the wave length, but independent of the solar latitude.
All pure limb-centre influences are hence inadmissible as causes of the variation.

(b)nbsp;Nor can an additive effect, due either to our using tangential double
spectra in two of the quadrants, or to the single opening radial exposures in the
other two opposite quadrants, but otherwise independent of the latitude, have
existed. In such a case observations 11—2 and 2—5 would show the anomaly
to the same amount, whereas it is large in the former and vanishes in the
latter.

(c)nbsp;It is not easy to imagine an influence, existing only in two opposite
quadrants but now varying with the latitude, which would give the observed
result. Observations i—4, 2—5, 3—6 are all affected to about the same degree;
while observation 11—2 is unaffected, whereas, as in
(b), it should also in this
case undergo the same variation as 2—5.

(d)nbsp;A combination of two causes, one acting on the tangential spectra,
and one on the radial, might be regarded as
d priori possible, for instance,
a combined effect arising from a difference of tilt in the lines. The lines in
the double (tangential) spectra might be tilted one way through some one
cause, those in the single (radial) spectra the other way through another cause.
In the Southern hemisphere such tilts might well combine to give total relative
tilts of equal amounts for observations i—4, 2—5, 3—6 and so introduce equally
large anomalies in the observed v^^ — v^^ along the plates. But here again the
observations at 45° prevent us from accepting this explanation. Whatever the
cause of the quot;radialquot; tilt it will be of the same amount and in the same direction
for 5 and 11. For 2 it is identical in the two observations so the relative tilt must
also be the same in the observations 2—5 and 5—11. The displacements are in
one case considerable, in the other approximately zero. It is highly improbable
that the same relative tilt would cause a large anomaly to be introduced in the
one case, and none in the other.

While dealing with tilts it may be well to mention a possible cause of their
appearance. A tilt could occur, due to variation of the velocity along the length
of the slit owing to different latitude, in the tangential case; also due to varying
distance from the limb, in the radial case. Such tilts would vanish for the
equator-pole plates. They cannot therefore be the source of the effect under
discussion as these plates show it to the full amount (third graph of Fig. 4).

-ocr page 64-

{e) The divided exposure might have introduced an error of some kind,
by broadening the Hnes in a manner varying from one end of the spectral region
to the other. But such an error would not vary from observation to observation
and could therefore not cause an anomaly proportionate in amount to the mean

velocity-difference.nbsp;.

(ƒ) The observed anomaly cannot reside solely in one of the hemispheres,

because observations dealing solely with the other hemisphere would in such a
case not show it, whereas it exists all round the sun. Similar reasons make it
impossible for a special influence solely existent in either Eastern or Western
half to have been its source. Further the fact that observations 2—5 and 8—11
both show the effect fully, makes it impossible to locate the disturbance
exclusively in the equatorial or exclusively in the polar regions.

Altogether it seems reasonable to conclude that the special effect in question
has not been caused by the method of observation at all. Whereas Fig. 4 has
enabled us to conclude that an apparently linear diminution exists for v^-v^^
all along the spectral region amounting to 3 % from end to end, and which may
be expressed in a formula

K-nbsp;.................

where A« = 4350, the centre of our region, and A^ is another constant determined
by the amount of the diminution, we now conclude that if absolute determinations
of the velocities had been made under otherwise similar circumstances, a
similar relation

......................

would have been brought to Hght. To the investigation of the source of this
relation, which is to hold for all values of
lt;fgt; and for X within our spectral region,
the problem of this section is now reduced.

Is it possible that the measurement has been subject to a systematic error?
Errors introduced by tilt or broadening of the slit, where these phenomena vary
with the use of tangential and radial sht, or with divided and undivided exposure,
have already been considered. A systematic error introduced by a change of
temperature of the plate during measurement would have affected the mean
separations between the lines just as much as the displacements for each line and
would therefore have been detected in the dispersion checks (page 45) • A vanation
of the value of a drum division of the scale microscope, during the measurement,
must be ruled out unless such a variation reached a maximum at the moment
of turning from quot;outquot; to quot;home,quot; a most unlikely hypothesis. A change in the
relation between drumhead division and scale interval, owing to a progressive
variation in the latter, would have been detected by the repetition of each measure-
ment with the plate end for end. In the dispersion checks a systematic difference

-ocr page 65-

between the dispersions as determined from plates quot;red to rightquot; and plates
quot;red to leftquot; would then have occurred, whereas such was not the case. A careful
search has been made for systematic differences between the measurements
quot;goingquot; and quot;returning,quot; as well as between those quot;red to rightquot; and quot;red to
left,quot; but none were detected. From the original measurements the mean errors
were also computed as determined from first and second settings on the same
line in the quot; single quot; spectra or from top and bottom settings on the same line of
the quot;doublequot; spectra. No difference between these appearing, the conclusions
reached with regard to influence of tilt or broadening of lines are confirmed.

As to the parallehsm of the wire with the lines it is true that this was not
absolute. In § 4 it was stated that when the spectrum was parallel to the run
of the sliding stage the micrometer wire was parallel to the spectrum lines. This
would have been rigorously true for plates with A 4350 in the centre. Owing to
the dispersion in the direction parallel to the slit, caused by the small-angle
separating prism, the resultant dispersion in our two regions is along contiguous
parts of a slightly curved line. Parallelism of the spectrum with the run is judged
to exist for each plate when a movement to and fro of the whole sliding stage
brings the spectrum at either end of the run to the same position in the field of
view. It is thus evident that there will be a slight angle between the direction of
the absorption lines in the field for the two regions
A and B. The micrometer
wire was carefully set, once for all, in a direction halving this angle. It is, however,
extremely unhkely that an error has been introduced by this procedure. The
angle actually amounted to 0° 5\' so that the micrometer wire was never more than
2\'-5 out of its true position on this account. The sine of this latter angle being
0-0007 it is outside all probabihty that the 3 % effect has been caused by it. More-
over, as for the whole of each of the two plates constituting an observation this
inclination between micrometer wire and spectrum line remains constant, any
effect caused by it should show a discontinuity in the values on going from one
plate to the other rather than a continuous diminution all along the total region.
We have noted that in Fig. 4 there is no sign of such a discontinuity.

The method of reduction, the instrumental equipment, the method of
observation—including the effect of regional differences on the sun—and the
measurement have all been reviewed and the conclusion has been reached that it
IS unlikely that the source of the anomaly is to be found in any of these.

Accordingly it would appear that in the^sun itself some physical cause is
active in producing an effect (at all points of the limb) which is, within the limits
of spectrum here examined, expressed by formula (12). Light of different wave
lengths reaching the observer along a given ray may originate in different levels
on the sun. This in itself would not give rise to a varying velocity in the line
of sight.
A varying velocity in the line of sight would result if the rays were
curved while passing through these levels.
The curvature, again, would be different
for different wave lengths on account of the change of refraction with wave

H.

-ocr page 66-

length. The latter cause wonld generally make the velocities smaller for the inore
refrangible rays, the former cause larger. If the former preponde^te an efiec
of the kind oteerved might be the result. It appears at
any rate as if the facts
LrdiLssed and first
presented in § 8, may have an miportant bearmg on the
S\'stSrof the true place of origin of the absorption lines in the spectrum of

the limb.

§ 10. Eviience of a similar effect in earlier investigations

The most important confirmation of the anomaly appearing in the hne-to-
line lomp^SL of^he present results is found in Adams\' earher serjes of obser-
vations ^^Uished in\'his larger monograph. H we — »f^ToT ^
icq of that work, we see that apart from the residuals for the lines ot tne

Sent\'llhaLm and of cyanogen, for which lines Adams ^^

of special behaviour, there is a preponder^ce ofnbsp;Tav ^

half of the table and of negative ones m the lower half, that is to say, there
ev Lncrof ^creasing velocity with increasing wave length, just as m our case.
Looking through the records for individual plates which make up the series m
ouestrol
190^7) we find that a certain number of plates are more especially
afected tharoth rs. If we
pick these out, obtain velocities per line for each
MHude Id express the residuals with the mean velocity per f itf®^ P^quot;
cquot;; ^get a result as shown in Table XI. There can be no doubt about the

Table XI. Residuals from 12 selected Mount Wilson plates, 1906-07

-S-nbsp;»3-nbsp;3»-nbsp;if quot;.7

\'!nbsp;°Lnbsp;V.nbsp;I\'

4-3-73°nbsp;■

; h: r»:!nbsp;I?.? Toi

4232-887nbsp; 1-2nbsp; 0-6nbsp; 09nbsp; 04

4257-815nbsp; nbsp; nbsp; ° 9nbsp; nbsp; 0-7nbsp;0-0nbsp; 0-2

4258-477nbsp; 0-2nbsp; nbsp;I onbsp;_ 0-4nbsp; 0-4nbsp;-
4265-418nbsp;- 0-3nbsp; 0-5nbsp; 1-2nbsp; 0-6
l26iS8inbsp; 0-3nbsp; 0-7nbsp; o-inbsp; ° 9nbsp; 0-4nbsp;- o-i 0-0
J268-915nbsp; 0-3 o-o o-inbsp;-0-5nbsp;-0-2nbsp;-0-3
1276-83-6nbsp;-0-3nbsp;-0-2nbsp;0-0nbsp;-04 5nbsp;_

4284-838nbsp;- 0-3nbsp;- 0-6nbsp;- 0 4nbsp;0 0nbsp;^ 3nbsp;^ /nbsp;_

4287-566nbsp;-0-7nbsp;-07nbsp;-13nbsp;_

4288-310nbsp;-0-9nbsp;-0-6nbsp;-06nbsp;04

4290-377nbsp;ii\'inbsp;_o.6nbsp;-0-5nbsp;-0-5nbsp;-0-7

4290-542nbsp;- I 3 00nbsp;onbsp;_nbsp;_nbsp;_ 0-8

--o -o.i -0-5 -0-6

systematic nature of the arrangement of these residuals in thenbsp;^u^

iminution of velocity-differences with mcreasmg wave

a special selection has been made for the purpose of showmg the effect m full
strength But it has been quite impossible to find
twelve plates from wtach
aLy other kind of systematic arrangement of residues -fquot;ave resulted. ^
plates in question were
to 3, 30, 31. 35. 30. 37\' 4O\' 02, 07, 00, oy duu yu. XX

-ocr page 67-

have no other special feature in common and were taken at different epochs from
May 1906 to June 1907. Three of them were measured by Adams, the others by
Miss Lasby. Each latitude appearing in the table occurs on six of the plates,
whereas in the total 1906—7 series it thus occurs from 12 to 20 times.

Evershed and Royds found in 1911 a lower value for the equatorial velocity
as determined from plates in the green region than as from plates in the violet^,
the difference amounting to about 3 %. Again Schlesinger finds a diminution
of I % between velocities as determined from region A 4100 and from A 4250^,
The possibility is suggested that the difference between the rotational velocities
as found by the different observers is to some extent due to the fact of their
dealing with different parts of the solar spectrum, and so, in accordance with the
conclusions of the preceding paragraph, with different points or levels on or
near the solar surface.

§ II. Conclusions as to individual lines and elements

It remains to complete the investigation of the special behaviour of
individual lines. We may assume formula (12) to represent the average state
of things, whatever its ultimate interpretation may be. We can then see how
far individual lines depart from this average. This has been done, combining
all the material together. A value of 7600 for the constant Aj represents the

Table XII. Mean residuals from systematic effect for individual lines

4299-149
4302-085

4314-248

4315-138

4320-907

4326-923
4331-811

4337-725

4338-084

4339-882

4343-861

4344-670

4346-725

4347-403
4349-107

^ M.N. LXXIII, p. 561.

Element Intensity Residual

Element Intensity Residual

7o

-

Ti

7o

Ca

3

0-2

4351-000

I

0-4

Ti

2

o-o

4352-908

Fe

4

O-I

Sc

3

- O-I

4358-670

Fe

2

- 0-5

Ti

3

0-3

4366-061

Fe

2

O-I

Sc

3

0-5

4371-442

Cr

2

0-7

Fe

2

- O-I

4373-415

Cr

I

0-2

Ni

2

- 0-3

4373-727

Fe

2

0-3

Cr

3

O-I

4376-107

Fe

6

- 0-3

Ti

4

- O-I

4379-396

V

4

- O-I

Cr

3

- 0-2

4385-144

Cr

2

0-4

Fe

2

- O-I

4388-571

Fe

3

- 0-2

Cr

4

- O-I

4390-149

v

2

- 0-5

Fe

2

0-0

4395-201

Ti

3

- 0-8

Fe •

I

- 0-2

4396-008

Ti

I

0-2

Fe

2

0-3

4400-555

Sc

3

0-0

3 % ratio of diminution. With this value average figures have been calculated for
each of the columns of Table IX and residuals (c—o) obtained with the observed
values shown in that table. These have been expressed in percentages and then
combined together for each line having due regard to weight. The result is shown
in Table XII. No systematic arrangement remains in the residuals. None of

\' Allegheny Publications, p. 112.

7—2

-ocr page 68-

them exceeds 0-8 0/, which value appears with a negative sign for the Titanium
line 4395. When grouped according to origin or intensity no evidence of special
bLiour appearsquot;^ We are thus justified in regarding the residuals as whoUy
due to accidental error. The mean error for one line amounts under those cir-

cumstances to 0-3 %.

Part III. Discussion of Velocity-Differences at Different Latitudes

§ 12. Results for pairs of plates

The conclusions drawn in Part II as a result of the line-to-line comparison
of all the available material need not deter us from attaching fu 1 weight to most
of the results which can be obtained from a review, plate-to-p ate, of the same
material Average velocity-differences were obtained for each pair of plates
(region
A and region B) from the figures of Table VII. These mean values must
be affected by the influence which, as we saw, has caused the velocity-differences
to decrease with increasing wave lengths. But even so we found this diminu-
tion to be proportionate in amount to the mean velocity-difference on the
plate and the presumption is therefore very great that these means themselves,
if they have been affected at all, are changed also in the same proportion, that is
bv a factor constant for all. Although it is unfortunate that, on this score, the
results obtained in the present investigation will carry little weight as to the
absolute value of the sun\'s rotational velocity, yet the comparison of the velocities
obtained at the various points all round the sun\'s hmb may be fully carried through
with the conviction that any
relative results, such as have regard to the latitude
law, the behaviour in different solar hemispheres, or the g^^^^f
the velocities for the epoch of observation, should carry the full weight which

their internal agreement entitles them to.nbsp;. . r 1 x x

Table XIII (pp. 54, 55) gives these means per observation (pair o plates)
obtained from the available material. The first column gives the latitudes
compared, then follow four groups of five columns each for the four
series and
finally a column containing the mean velocity-diferences per observation from
the four series and so constituting the Normal Series. For each observation
plate numbers and date (or dates) are given, while the mean
velocity-ditterence
v.-v. appears in the next column. Then follows, with the last decimal as
unit (i m /sec.), the difference between the two mean
velocity-differences for
regions
A and B which constitute the observation in question. The last column
in each group gives this amount in percentage of v^-v^^. The sign in both
these columns is that of
numericalnbsp;minus numericalnbsp;They

are included in order to confirm the conclusion drawn on page 42 (§ 8) with

-ocr page 69-

regard to the continuity, on passing from region A to region B, of the diminu-
tion of the observed velocity-difference with increasing wave length.

The table is seen to be further divided in six horizontal divisions. Each
division contains four observations which belong together in the way which
follows from the method of observation. Taking as an example the second
division from the top we see that the velocity-differences involved are

^ISS.E. \'^7SS.W.

\'^JSS.W. ^ISN.W,
^15 N.W. ^75 N.E.

and it is clear that their sum must be identically zero. This sum as it appears
from the observations is given in each case in the table. It is seen that the largest
error amounts to — 0-028 km./sec., while the average numerical deviation from
zero amounts to o-oii km./sec., and in the Normal Series to 0-004 km./sec. It
may be claimed that these considerations give confidence in the method of obser-
vation and in the results.

Such confidence\'is also derived to a considerable extent from a first glance
at the agreement between the figures given for the four series respectively. The
greatest range which we find when comparing the values along the horizontal
lines of the table amounts to 0-046 km./sec. (for 60°
s.e.), while the mean
range is not more than 0-021 km./sec., corresponding to a probable error per
observation, on the supposition of accidental errors only, of

± o-oo6 km./sec.

-ocr page 70-

Table XIII. Mean velocity-differences per observation,
regions
A and B combined

Series I

Series II

01 02

Plates
A B

Date
June
1911

Hi-H,

a a
1 1

li

B a
p p

u a
1

Same
in
per
cent.

Plates
A B

Date
June
1911

on

ft a
1 1

a a
p p

a a
1

Same
in

per ^
cent.

E. 90° S.
90° s. W.

0° W. 90° N.
90° N. 0° E.

N 9, 6

10.nbsp;5
62, 7

11,nbsp;8

i
i

2, i

i

km./sec.

-nbsp;1-874

-nbsp;1-844
1-877
1-841

o-ooo

m./sec.

30
2

19

21

%

1-6
o-i
i-o
i-i

N 56, 48

57,nbsp;49

58,nbsp;50

59,nbsp;51

2, i
2, i
2, i
2, i

km./sec.

-nbsp;1-874

-nbsp;1-820
1-874

1-833

0-013

m./sec.

59
67

49
26

%

3-2

3-7
2-6

1-4

15° S.E. 75° S.W.
75° S.W. 15° N.W.
15° N.W. 75° N.E.
75° N.E. 15° S.E.

N 32, 36

33,nbsp;37

34,nbsp;38

35,nbsp;39

i
i
i
i

-nbsp;2-135

-nbsp;I-43I
2-254
1-318

0-006

26
4- 9

41

10

1-2

0-6
1-8
0-8

N 40, 44

41.nbsp;45

42.nbsp;46

43.nbsp;47

i
i
i
i

-nbsp;2-132

-nbsp;1-429

2-249
1-310

-nbsp;0-002

22
9
27

14

i-o

0-6
1-2
i-i

30° S.E. 60quot; S.W.
60° S.W. 30quot; N.W.
. 30° N.W. 60° N.E.
\'60° N.E. 30° S.E.

N 20, 60

21,nbsp;61

22,nbsp;24

23,nbsp;25

I, 2
i, 2
i
i

-nbsp;2-196

-nbsp;0-825
2-312
0-717

0-008

20

15
43
- 3

0-9
1-8
1-9

- 0-4

N 97. 93

98.nbsp;94

99.nbsp;95
100, 96

5
5
5
5

-nbsp;2-172

-nbsp;0-822
2-303
0-714

0-023

57
- 2
38
17

2-7
- 0-2
1-7
2-4

45°S.E. 45° S.W.
45° S.W. 45° N.W.
45° N.W. 45° N.E.
45° N.E. 45° S.E.

N 28, 63

29,nbsp;64

30,nbsp;26

31,nbsp;27

I. 3
I, 3

i
i

-nbsp;2-264

-nbsp;0-029
2-368

-nbsp;0-059

o-oi6

37
21
12
27

1-6
0-5

N 85, 89

86,nbsp;90

87,nbsp;91

88,nbsp;92

5
5
5
5

-nbsp;2-277

-nbsp;0-020
2-368

-nbsp;0-064

0-007

24
4
34
2

i-i

1-4

60° S.E. 30° S.W.
30° S.W. 60° N.W.
60° N.W. 30° N.E.
30° N.E. 60° S.E.

N 69. 65

70,nbsp;66

71,nbsp;67

72,nbsp;68

4
4
4
4

-nbsp;2-204
0-767
2-302

-nbsp;0-864

0-001

7
3
40
ii

0-3

0-4

1-7
1-3

N 129, 131
130,132

135.nbsp;133

136,nbsp;134

6.7
6.7
7
7

-nbsp;2-I9I

0-757

2-298

-nbsp;0-868

-nbsp;0-004

21

13

28

17

I-o

1-7
1-2
2-0

75° S.E. 15° S.W.
15° S.W. 75° N.W.
75° N.W. 15° N.E.
15° N.E. 75° S.E.

N 83, 79
84, 80
77
,81
78. 82

5
5
5
5

-nbsp;2-i20

1-362
2-212

-nbsp;1-460

-nbsp;0-006

41

27

41
15

1-9
2-0
1-9
i-o

N 137, 141

138,nbsp;142

139,nbsp;143

140,nbsp;144

7
7
7
7

-nbsp;2-i09

1-355

2-234

-nbsp;1-468

0-012

25
9
27
0

1-2
0-7
1-2
0-0

-ocr page 71-

Table XIII. Mean velocity-differences per observation,
regions
A and B combined {concluded)

Series III

Series IV

Plates
A B

Date
June
1911

» »

1 1
•a

a ä

3 3
d d
1

Same
in
per
cent.

Plates
A B

Date
June
1911

1 1
s s

3 3

a ö

1

Same
in
per
cent.

Normal
Series

N 117, 113
118, 114
quot;9. 115
120, 116

6
6
6
6

km./sec.

-nbsp;1-867

-nbsp;1-830
-f 1-880
1-840

0-023

m./sec.
9

15
- 6
i

7o
0-5
0
-8
- 0-3
o-i

N199, 195

200,nbsp;196

201,nbsp;197

202,nbsp;198

8
8
8
8

km./sec.

-nbsp;1-852

-nbsp;1-821
1-849
1-814

-nbsp;0-010

m./sec.
10

31

16
22

7o
0-6
1-7
0-9
1-2

km./sec.

-nbsp;1-867

-nbsp;1-829
1-870
1-832

0-006

N 105, 109

106,nbsp;110

107,nbsp;iii

108,nbsp;112

5
5

5

.}

-nbsp;2-129

-nbsp;1-435
2-239

1-317

-nbsp;0-008

17

16

43
16

0-8
i-i
1-9

1-2

N 157. 153

158,nbsp;154

159,nbsp;155

160,nbsp;156

7
7
7
7

-nbsp;2-143

-nbsp;1-416
2-230
I-330

0-001

19

21
24
26

0-9

1-5
i-i
2-0

-nbsp;2-135

-nbsp;1-428
2-243

1-319

-nbsp;0-001

N 161, 165

162,nbsp;166

163,nbsp;167

164,nbsp;168

7
7
7
7

-nbsp;2-218

-nbsp;0-814
2-308
0-715

35
0

36
- -7

1-6
0-0
1-6
- i-o

N219, 215

220,nbsp;216

221,nbsp;217

222,nbsp;218

ii
ii
ii
ii

-nbsp;2-207

-nbsp;0-831
2-316
0-703

25
6
28

15

i-i
0-7
1-2
2
-1

-nbsp;2-198

-nbsp;0-823
2-310
0-712

- 0-009

- 0-019

0-001

N149, 145

150,nbsp;146

151,nbsp;147

152,nbsp;148

7
7
7
7

-nbsp;2-266

-nbsp;0-043
2-373

-nbsp;0-092

-nbsp;0-028

50

- i

40
2

2-2

1-7

N 207, 211

208,nbsp;212

209,nbsp;213

210,nbsp;214

9
9
9
9

-nbsp;2-242

-nbsp;0-026
2-367

-nbsp;0-083

0-016

30

0

43
4

1-3
1-8

-nbsp;2-262

-nbsp;0-030
2-369

-nbsp;0-074

0-003

N177, 181

178,nbsp;182

179,nbsp;183

180,nbsp;184

8
8
8
8

-nbsp;2-195

0-761
2-301

-nbsp;0-878

-nbsp;o-oii

16
- 12
16
17

0-7
-
1-6
0-7

1-9

N 231, 235

232,nbsp;236

233,nbsp;237

234,nbsp;238

ii
ii
ii
ii

-nbsp;2-191
0-746
2-308

-nbsp;0-881

-nbsp;0-018

99
I
16
24

4-5

o-i

0-7
2-7

-nbsp;2-195
0-758
2-302

-nbsp;0-873

-nbsp;0-008

N187, 191

188,nbsp;192

189,nbsp;193

190,nbsp;194

8
8
8
8

-nbsp;2-123

1-365
2-219

-nbsp;1-452

0-009

16
20
27
20

0-8
1-5
1-2
1-4

N 243,239

244,nbsp;240

245,nbsp;241

246,nbsp;242

12
15, 12
15, 12
I5i 12

-nbsp;2-109
1-350
2-226

-nbsp;1-458

0-009

26
12
30
45

1-2
0-9
1-4
3-0

-nbsp;2-115

1-358

2-223

-nbsp;1-460

0-006

-ocr page 72-

§ 13. Probable errors

It wiU be of interest to compare the probable^error obtained ^«^y
mentioned at the end of the last paragraph with that which we get from the

internal agreement of the measured velocities on the plates.

Whether we compute this latter from the residuals of the figures m Table VII
withThe means as from Table XIII, or with the values for the velocrty-differences
recording to the law expressed in formula (12), or with the means for each region
TaCs respectively, we obtain much the same result in each case. The probable

error per line on one exposure varies from

± o-oi6 km./sec. to ± 0-030 km./sec.

and amounts therefore in the mean to

± 0-023 km./sec.

In accordance with this the probable error of the mean value on each plate
separately (one region) is

± 0-006 km./sec.

and that of the figures of Table XIII

± 0-004 km./sec.

We see that the probable errors per observation as obtained from internal and

external agreement are approximately equal.nbsp;, ..nbsp;„f la o

As the question of the accuracy of measurements on solar plates has of late

vears attacted ncreasi^ attention from various investigators it may be useful to

a tabf of probable errors as obtained on solar rotation p ates by the different
give a table ol proDnbsp;^ ^^^^ ^^ ^^^^ ^ companson

SeTL erroi^tf pquot;s observers and those just given, either the former have

ments were alwaysnbsp;the

td s^Lbining the reduction from displace
rents to velX-differences with that from velocity-differences to velocities. The

nrXable ifo were thus obtained from these latter quantities. The p-^edure
probame «
toquot;nbsp;numerical velocity-difference at

^ppT^Irrnbsp;twice the numerical velodty

Teither end It seems therefore best to convert the probable errors published
in fte^e other mvestigations into true probable errors of velocity-differences b

dispersion appearing at the top. Also it must be remembered that the lines

-ocr page 73-

the red end of the spectrum are less suitable for measurement than those in the

blue. The velocity-coefficient in Evershed\'s case is that for the enlargement

which he measured. The Kodaikanal measurements made directly on the plates

by the ordinary method give a larger probable error. The Edinburgh measures

were made with the plate in one direction only, while also a less sensitive instrument
was used.

Table XIV. Comparison of probable errors

Probable error

per line per

Velocity

Spectral

exposure

coefificient

region

km./sec.

± 0-038

26

6300

± 0-078

26

6300

± 0-016

37

5600

± 0-038

37

5600

± 0-078

37

5600

± 0-090

37

5600

± 0-088

37

6300

± o-oi8

48

4250

± 0-030

50

4250

± 0-030

52

4250

± 0-023

62

4350

± 0-096

90

4100

Measurer

Evershed, positive on negative*
Evershed, ordinary method * ...

Lasby f ...............

J. S. Plaskettt ..............

H. H. Plaskett ..............

De Luryf ..................

Edinburgh ..................

Mount Wilson 1908 J ........

Mount Wilson 1906-07 § ......

J. S. Plaskett ................

Tunstall.....................

Allegheny II ..................

* These values were obtained on one special plate. See Kodaikanal Obs. Bulletin, No. xxxii.
b-vershed\'s average error is slightly larger.

t These values were obtained on one special plate, taken at Ottawa. See Trans. R. S. of Canada,
ihird Ser., vi. sec. 3.

J Measurements nearly all by Miss Lasby.

§ Measurements mostly by Miss Lasby, some by Adams.

II Measurements by Miss Udick.

The conclusion arrived at by Plaskett and De Lury about the variety found
in the achievement of the different measurers is fully borne out.

§ 14.quot; Symmetry with respect to the solar axis

We have, so far, made no assumption about the distribution with respect
to the solar equator and the solar axis of the velocities themselves, having
up to the present dealt solely with velocity-differences. It will be convenient
first to see whether there is any evidence of symmetrical arrangement or not with
respect to the axis. Referring to Fig. 5 (p. 46) it may be recalled that in case
of such a symmetry velocity-differencesnbsp;and ^^„.
s.e. - should be

equal. Thus there should be pairs of equal velocity-differences all through
the series, except for the two observations 2—5 and 8—11 (Fig. 5) which
deal with the Northern and Southern 45° parallels and form, in each case, their
own counterpart. Table
XV gives the normal velocity-differences, arranged in
such a way that observations made symmetrically appear on the same line. It
IS seen at once that not only is the expected equality absent, but that also the
values in the left hand column are consistently smaller, taking the sign into
account, than those in the right hand column. The mean difference amounts to

H.

-ocr page 74-

four casesnbsp;, , ^

Series I - 0-029 km./sec.

Series II - 0-030 km./sec.

Series III - 0-032 km./sec.

Series IV - 0-031 km./sec.

^mmetry round axis
lt;tgt;i

45° S.E.nbsp;45° s.w.

60° S.E.nbsp;30° S.W.

75° S.E.nbsp;15° S.W.

90° S.nbsp;0° W.

75° s.w.nbsp;15° N.w.

60° s.w.nbsp;30° N.W.

45° S.W. 45° N.w.

30° s.w. 60° n.w.
15° s.w. 75° N.w.
w. 90° N.

15° N.w. 75° N.E.
30° N.w. 60° N.E.
45° N.W. 45quot; N.E.

One is inclined, at first sight, to attribute the effect so found to a difference
possibly onty apparent, in the velocities of approach at the East hmb as comp^d
Lh those of recession at the West limb. A simple consideration shows howeve^
That this explanation cannot hold. If such a difference existed it should certamly
be possible to express it either (i) by a change, for one half of t^« ^J^e
stants of the formula which gives the relation between velocity and latitude, or (n)
by the introduction for that half of a factor i e where e represents ^ ™n,
or again (iii) simply by an additive term for the velocities on f ^e of tfe^^^
The last case (iii) must at once be ruled out; for any quot;^^^tant additiw ^^^
existing say, on the Eastern limb, would vanish m velocity-differences like
T -Vnbsp;two points are compared which are both situated on the

Eastern h^Tof the sun. But also in the two other cases, (i) and (ii), y»...

at least should not show a difference fromnbsp;^

considerable extent. In fact, in these two other cases there should be a mmrnium

Table XV. Normal values compared Jor

lt;Pi

45° s.e.

lt;tgt;i

45° s.w.

Hi-Hi

Vih-Hi

2-262

30° s.e.

60° s.w.

- 2-198

- 2-195

15° s.e.

75° s.w.

- 2-135

- 2-I15

e.

90° 8.

- 1-867

- 1-829

15° n.e.

75° s.e.

- 1-460

- 1-428

30° n.e.

60° s.e.

- 0-873

- 0-823

45° n.e.

45° s.e.

- 0-074

- 0-030

60° n.e.

30° s.e.

0-712

0-758

75° n.e.

15° s.e.

1-319

1-358

90° n.

0°e.

1-832

1-870

75° n.w.

15° n.e.

-)- 2-223

2-243

60° n.w.

30° n.e.

2-302

4- 2-310

45° n.w.

45° n.e.

2-369

-ocr page 75-

approaching to zero for the difference between the two columns about the centre
of the table, whereas we have found there approximately a maximum.

A little reflexion shows that the effect can have been caused by the addition
to the velocities of, for the Northern solar hemisphere, a small negative velocity,
for the Southern a small positive one, these additive velocities reaching their
respective absolute maxima at the poles and vanishing at the equator. They
may have been only apparent. Some peculiar phenomenon may have caused
special displacements, largest one way at one pole of the sun, the other way at the
other pole and having regular intermediate values on both the intermediate
branches of the solar hmb. But it is far more plausible to assume at once that they
are real and that we are dealing with an added rotation round an axis in the solar
equator, i.e. with either a change of or an error in the axis of rotation. Regarded
in this way it is found, by a simple graphical method which need not be detailed,
that a shift of the solar axis amounting to

o°45\'

in the direction from n. to w. is entirely sufficient to account for the peculiar
differences in question. This shift may have been caused by an error in the
method of setting the points of required latitude on the centre of the slit. Such
an error should then have been constant and therefore purely instrumental; it
can have resided in the angle between the lines drawn on the slit plate, which
angle might have been different from 90° by the above amount. Careful measures,
instituted to elucidate this point, reveal indeed a small error in the required
direction, but amounting only to 0° 15\'. The remaining

o°3o\'

the author concludes to be the amount either of a real shift of the axis, from
N. to w., for the epoch of observation, or of a correction to be applied on account
of some undiscovered constant instrumental error.

If a real shift has occurred we must remember that the present investigation
extends over only one fortnight of the sun\'s life and therefore may have brought
to light a temporary change in the solar axis, caused by some unknown oscillation
or periodic variation of short period. The recent Greenwich investigation of the
position of the solar axis from sunspot movements by Dyson and Maunder^ contains
no evidence which definitely excludes the possibility of such a change. No
determination of the axis based on material obtained in so small an interval of
time has hitherto been made.

Some information may be gleaned from earlier spectroscopic work on the
rotation. All such work has been done by comparing points on the limb at
opposite ends of solar diameters. Evidence about the position of the axis can with
that method only be forthcoming if observations have been made for diameters
traversing both pairs of diagonally opposite quadrants. From what is published

^ Greenwich Observations, 1913.

8—2

-ocr page 76-

in Adams\' larger memoir^ we gather that from May 3 to June 1906, pjates had
been taken for quadrants
n.w.-s.e., while the senes Oet. ic^Dee, 18 of ^^
had dealt with points n.e.-s.w. Comparing the mean velocities at latitudes 0 ,
i^^p to for these two sets of plates (about ten velocities for each latitude

n\'eiM we find them generally larger for the secondnbsp;^Yo^equot;

considerably greater than is warranted by the probable erroi^. The fact, however
Zfako the velocities at 0° differ, points rather to a variation m the general rate
of rotttioS hnbsp;o^ L difference. The
1908 Mount Wilson plates

Im to have beL taken in only one pair of quadrants. None of the other papers
deXg Ih simUar researches afford sufficient data about the
for which the plates were taken. The results discussed suggest the desirabihty

\'TZ £tta;thTtquot;have explained as a velocity effect due to
erroi Lr chlnge of axis, and what appeared as an additive disp acement varyii^g
rglriy from N. to s. pole along the two branches of »^e mtervemng limb, .
^ellly dL to some other physical influence on the position of the lines. Be tte
as «may, the systematic nature of the
non-occurrence of symmetry found m
Se firTt instance allows us to conclude about a certain correction to be api^^d
2d at the same time about the existence for these observations of close symmetry imth
Tetpfet to irrTichanged or corrected) axis.
It is this latter conclusion which

should be specially borne in mind.

§ 15. Symmetry with respect to the solar equator

Table XVI gives the figures of Table XV corrected for the empirically
determined error in or change of axis dealt with in the preceding section^
TheTorrections are found by the graphical method already referred to which

ffave the amount of the error or change.nbsp;^nbsp;i

® I symmetry with respect to the equator existed it is clear that the va^es

of the table ought to be grouped symmetrically, except m regard to sign, with

iject to the i^ddle horiLnt^ hne of the table. We see that such is far from

b^rg the case. Supposing a distribution of velocities had occurred as is shown

fn fte Lompanying figure, where all velocities in the Northern hemisphere are

0 I to /sec. greater thL the corresponding ones in the Southern hemisphere,

we should thL have found for the velocity-differences amounts as given m square

tarts in Table XVI. We see that the nature of the asymmetry w^h

rlect to the central Une for these figures is the same as for the figures which

rfrie to our actual observations, the numerical values being larger or smaller

than the corresponding values on the other side of this line in the same cases

thus necessarily led to the view that for the period of observation
aU velocities in the Northern hemisphere were greater than the corresponding

1 Adams and Lasby, pp. 7—10.

-ocr page 77-

ones in the Southern. Owing to the method of observation we are, however,
unable to make a positive statement of this kind which is at the same time quite

Table XVI. Normal values corrected for change of axis

lt;pl

Hi-Hi

01

02

45° S.E.

45° s.w.

- 2-262

45° S.E.

45° s.w.

[- 3 0I

30° S.E.

60° s.w.

- 2-195

- 2-198

60° S.E.

30° s.w.

[-2-9]

[-2-9]

15° S.E.

75° s.w.

- 2-125

- 2-125

75° S.E.

15° s.w.

[-2-5]

E.

90° s.

-1-854

- 1-842

90° s.

w.

[-20]

[-2-0]

15° N.E.

75° S.E.

- I-44I

- 1-447

75° s.w.

15° N.w.

[-1-2]

[-1-2]

30° N.E.

60° S.E.

- 0-847 ■

- 0-849

60° s.w.

30° N.w.

t-o-6]

[-0-6]

45° N.E.

45° S.E.

- 0-044

- 0-060

45° s.w.

45° N.w.

[-0-1]

[-01]

60° N.E.

30° S.E.

0-738

0-732

30° s.w.

60° N.w.

[ 0-4] «

[ 0-4]

75° N.E.

15° S.E.

I-34I

1-336

15° s.w.

75° N.w.

[ i-o]

[ I-0]

90° N.

E.

1-849

1-852

w.

90° N.

[ 2-0]

[ 2-0]

75° N.w.

15° N.E.

2-231

2-235

15° N.w.

75° N.E.

[ 27]

[ 27)

60° N.w.

30° N.E.

2-304

2-307

30° N.w.

60° N.E.

[ 3-«I

( 3-1]

45° N.W.

45° N.E.

2-369

45° N.w.

45° N.E.

[ 3-2]

general. We can, however, go a Httle further in disentangling the velocities in
the two hemispheres in the following way.

-ocr page 78-

If we remember that there .s symmetry with regard to the new (corrected

or changed) axis, and if therefore we now put

. ........................

andnbsp;(14)

..........................

WP Shall be able to write down three pairs of identical equations, of which the
kn\'ow ^^ each case derived from entirely indepen^
in the following manner. A first consequence of relations (13) and (14) is tMt
we may convert the two columns of Table XVI into one by takmg means. We

then have

which we can write

-2-125.

Similarly lower in the table we find

= 2-233

from which follows

By subtracting the second from the first we find

-nbsp; (^73S.K. - ^75.. J =

NOW it is clear that an equation identical as regards tl^^ left-hand term

got from the determinations ofnbsp;and -^^ss... liiese, smtaoiy

combined, givenbsp;, n-rnc

Tn the same way, by combiningnbsp;with -quot;30«k., andnbsp;Vsos.e.

with 1!!-.3o Jand^educing everything to Eastern half of the sun only we

get the two equations

(t^3os.E. -nbsp; nbsp;-nbsp;= o-iio

andnbsp;(^3os.K. - ^30K.E.) (^^^cE. - = 0-113.

Finally, the top and bottom lines of the table give together

whUe the central line determines the same quantity

2 (^ ^^nbsp;= 4-0-104;

all the numerical terms beingnbsp;The agreement which we tod in each

fse for r two independent determinations of these quot; sums of veloaty-difierences
Xws that the method of observation has been an accurate one This con-
cSn Ts Lnfirmed if we deduce similar sets of equations from the four onginal
sSrierwe get results as in Table XVII. In the headings of the columns
expriJ^TuTe tnbsp;are used mstead of ..3..,-..,... without causmg confusion

on a^couS Tthrsymmetry with respect to the axis. For each series two sets of
TaluesTe Jv n oL set, designated by determined from the observations

-ocr page 79-

which would occupy the three top and the three bottom lines, if given in tables
similar to Table XVI, the other set h from the observations which would be thus
tabulated in the central five lines.

Table XVII. Comparison of Northern with Southern hemisphere

(flS\'N. -fis\'s.)
(f7S\'N. -
I\'TS\'S.)

(quot;SO\'N. -fs0°s.)

(f«o°N.-feo\'s.)

(fl6°N. ---- f75\'N.)

-(fl«\'S. ---- f7S°S.)

Series I

a
b

0-105
0-105

0-107
0-103

0-052
0-044

0-264
0-252

Series II ■

a
b

0-122

O-II6

4- O-I18
O-IIO

0-045
0-042

4- 0-285
4- 0-268 ■

Series III

a
b

0-103
0-103

0-098
0-108

0-054
0-067

0-255
4- 0-278

Series IV

a
b

•f 0-I02

0-097

0-II3
0-131

0-062
0-055

4- 0-277
4- 0-283

Final means

0-107

■f O-III

0-052

4- 0-270

The final column

is obtained by adding together the

figures of the three

-----------------V^. .iwI^VJXJ u-iivyivaci a.nbsp;(-iCLVVCCll UIIC sum U1 LllC

velocities in one hemisphere and that in the other. The column gives therefore
the values, as found in the present investigation, for the quantity
E of the author\'s
former publication^. The marked consistency of the figures in Table XVII,
together with the smallness of the probable error of Mr Tunstall\'s measurements
compared with those of the author\'s, justify the course of allowing their full weight
to the present results and of disregarding altogether the conclusions drawn in the
1912 pubhcation.

That the values in Table XVII are all positive does not necessarily mean
that
all the velocities in the Northern hemisphere are larger than the corre-
sponding ones in the Southern. In either or both of the two first columns one of
the two terms making up the observed total might be zero or even negative.
The observations in themselves afford no evidence in this respect, owing to the
method by which they were made. Some hypotheses may seem more likely
than others; we may leave their discussion to a later section.

§ 16. Reduction to one quadrant

As has been stated already, it is impossible to obtain, without further
assumptions, from the corrected velocity-differences as given on page 61 (Table XVI)
the actual velocities for the different points. The adopted method of observation
IS, however, in no way inferior in this respect to the usual method. From the
available material it is possible to infer by simple additions from each four velocity-
inerences which together complete a closed circle round the limb, four velocity-
inerences between points at the ends of two diameters, perpendicular to one
another, and so to convert the material into such as is usually obtained. Then,

^ M.N. LXVIII, p. 24, 1912.

-ocr page 80-

^an defuc oV v^Ifeences It the ends of two diameters symmetocaUy
T.tn soXt in Mo we have four determinations of n..nbsp;each case,

in tquot;he cL\'s oftquator and pole where we have only two^ The value^m
?Ws ly obtained from the figures of Table XVI are given m Table XVIII. The

Table XVIII. v,.. v,,. for the Normal Series, corrected for axis

2Vo

(- o-oio)
(- 0-005)

0-789
0-790
0-784
0-788

1-466
1-457
1-457
1-458

2-322

2-325

2-306
2-309

3-044
3-045
3-045
3-036

3-572
3-576
3-566
3-567

3-696
3.701

(- 0-007)

0-788

1-459

2-315

3-042

3-570

3-699

sen-,.:\':;;

L the last one if we had calculated the values from the fibres of table AV
tastefd of fZ\' hose of Table XVI. assuming symmetry with respect to the
mrorrect™s For each of the four series, the values of have
been^ without talcing into account the —n with re^
to axis The mean values thus obtained are given m Table XIX. The bottom

table XIX. Mean n.. v.^the four ori^nd^er^^

2^0

0-788
0-790
0-785
0-789
0-788

-nbsp;0-033

-nbsp;0-048

-nbsp;0-038

-nbsp;0-033

-nbsp;0-038

1-460

I-45I

1-464
1-465
1-460

2-316
2-322
2-320

2-305
2-313

3-0.47
3-031
3-047

3-046

3-043

3-718
3-701
3-708
3-668

3-699

3-573
3-572
3-570
3-565
3-570

Series I
Series II
Series III
Series IV
Means

line rives the total means from the four series and is seen to be practically identical
t^th that rf ^ XVIII. The exception is the figure of the last column. In
Tat xlx ; i comes out as considerably different from zero, indicating

-ocr page 81-

the necessity of a correction, which only for the poles is not ehminated when
taking means from the four quadrants.

It is important, especially with a view to the discussion about the latitude
law, to note the close agreement between the velocity-sums as found from the
four series. This agreement shows that within the interval covered by the
investigation neither did any change occur in the general rate of rotation, nor
did any local effects appear. An exception as to the latter conclusion must
perhaps be made for the equatorial velocity of Series IV. It is smaller than the
mean to a greater extent than is warranted by the general agreement of the
table. The observations from which the velocity-sum in question was obtained
were all made on June 8, 1911. Observations at other latitudes were made on
the same day which do not give diminished velocities for those latitudes. We
probably have to do, in this case, with the effect of a local disturbance on the
sun\'s limb either at 0°
e. or at 0° w., or else with a disturbance affecting the velocity
all round the equator, and so appearing at both these points.

The latter hypothesis, though at first sight the more unlikely one, fits in best
with the general results of the present work. We have already seen how strong
the evidence is for complete sj^metry with respect to the axis. We shall find
in the next section that great deviations from the usually assumed velocity-law
occur, which deviations remain constant for epochs like our period of observation,
while they affect the velocities on solar parallels as a whole.

§ 17. Rotation law for the epoch of observation

If, even with the differences which we have found between the Northern
and Southern hemispheres, the
mean velocities from both ranged themselves in
the usual way according to Faye\'s law, it should be possible to determine from
the bottom line of figures of Table XIX (or Table XVIII) the two constants
a and b of the formula expressing the law. It is unnecessary to give the details
of the efforts made in this direction. It was at once apparent that it is impossible
to represent the figures of the table by a formula

«\'^N. = - 26 sin2 (jy) cos (jgt; ...............(15)

of the kind required. The best way to demonstrate this is by showing the graph
which represents the
angular velocities corresponding to the mean velocity-sums
of the table, as well as that given by a representative formula of the above kind.
This is done in Fig. 7 where the continuous line is given by the formula

I = i4°-54 - 3°-5O sin2
and is taken from Adams\' Carnegie Institute pubhcationi, while the broken curve
connects points determined directly from the figures of Table XIX by reducing
to angular velocities. The diameter of the dots representing the observations
corresponds in scale exactly to the mean range in angular velocities found when

1 Adams and Lasby, p. 129.

H.nbsp;9

-ocr page 82-

rra^ontnbsp;eaXr ^^snlS T Jsi7e ot the dots is a _ ot the range ot vanafon

found between the results of the four individual series.

™ XX.nbsp;.elocUies. a.era,ei o.eriket.0 Hemispheres. oomputeA fron.

-C^Ai^f/tc /I1/I T^nhip. A I A.

45°

60°

75°

ii°-65

io°-39

io°-82

ii -68

10 -31

10 -86

ii -67

10 -41

10 79

ii -59

10 -42

10 -84

ii°-65

io°-38

io°-83

30°

i2°-5i

12 -45
12 -52
12 -51

I2°-50

15°

I3°-i6

13 -15
13 -15
13 -13
I3°-I5

i3°-22

13 -16
13 -19
13 -05
i3°-i6

Series I
Series II
Series III
Series IV
Means

• ci Tn both curve and table we have for the moment neglected the
I^erce «nbsp;southern hemispheres and are deahng with

average results from the two.nbsp;..... .. •

. :„ore complete table giving all the angular velocities deduced directly fron, the ohservatrou. .s

given on page 75.

-ocr page 83-

From Fig. 7 we see that the two curves differ entirely in character. It
is abundantly evident, if we also keep in mind the good agreement between the
four series, that the Faye formula cannot be applied to the present observations.
The author has, in fact, been unable to discover any simple formula with few
constants to which the observations approximate. It is unnecessary to detain
the reader with an enumeration of the forms which have been tried. It is
sufficient to say that all the more obvious combinations of trigonometrical terms
have been tested.

The task is naturally less hopeful, when instead of combining the
hemispheres account is taken of the asymmetry with respect to the equator.
We have seen in § 15 that the present observations do not afford means of
definitively determining the velocities at the various latitudes in the Northern and
Southern hemispheres, even under the adopted assumption of the existence of
symmetry about the axis. Only for the latitudes 45°, for which both
and v^^^ —v^^s. are known, can we assign definitive velocities, viz.,

7;,5 = 1-183 km./sec.

= I\'131 km./sec.

The equatorial velocity can also be directly deduced from the first column of
Table XIX, viz.,

v^ = 1-850 km./sec.

For the other latitudes 15° n., 15° s., 75° n., 75° s., and 30° n., 30° s., 60° n., 60° s.,
two sums of velocity-difference and four velocity sums are given in the bottom
lines of Tables XVII and XIX. If, for the velocities at two of these latitudes
(one in each group of four), arbitrary values are assumed, those at the remaining
six latitudes follow from the observations. For five pairs of such arbitrary values,
linear velocities have been deduced, and the corresponding angular velocities are
plotted in the graphs given in Fig. 8, which accordingly represents five alternative
interpretations of the results of the observations.

Certain features are bound to appear in all of them. The three angular
velocities at 15° s., 0° and 15°
n. must He on a straight line, whilst towards at
least one of the poles there must be an increase in angular velocity over that at
the corresponding neighbouring latitude 75°—requirements which are obvious
when we recall that the graph in Fig. 7 represents the mean of the Northern and
Southern parts of each one of the complete graphs of Fig. 8.

For selection between the latter we can only make use of d priori
considerations. But even these do not point convincingly to one of the
alternatives as the most probable. It seems as plausible to suppose that
the three angular velocities at 15° s., 0° and 15°
n. were equal, so that
a broad equatorial belt was at the time of observation rotating at a uniform
rate, as to assume a maximum on one side of the equator or the other.
It may further seem necessary to ehminate those curves which contain portions
where the gradient is too steep, because in the observations involving such

9—2

-ocr page 84-

points the deviations from the mean value would certainly have come out
m^h larger when comparing the four series, than in the other observations.
?rble X?X\'shows that\'ther! is no case of an —ding ra^^^^^^^^
for one latitude compared with the mean range for all, if we except the

one low value of tgt;. for Series IV, where there can be no question of maximum
gradient. We have, however, no right to reject curves with steep Porhons ^
fhese portions may after all stand for parts of the curve where there had been
sudden jumps and then again normal gradients in the sense required by the solar

theory of Emden.

-ocr page 85-

§ 18. Tentative explanation of plate-to-plate results

It is Emden\'s theory which perhaps affords the best clue towards an
explanation of most of these results. It will be re-
membered that Emden finds^ that in a rotating
gaseous sphere under what he calls polytropic
equilibrium surfaces of discontinuity must occur
which are surfaces of revolution having the solar
axis for their axis and which intersect a meridian
plane by lines as shown in the figure. A layer of
the solar mass between two such surfaces has, besides
a constant quot;polytropic temperature,quot; also a constant
moment of rotation, i.e. the angular velocity within
such a layer varies inversely as the square of the
radius. Passing through such a surface of dis-
continuity, outwards from the axis, we pass from
a layer with smaller to one with larger moment of
rotation2. The result is that
when plotting the angular velocities from goquot; s. to 90°
N. we should get, according
to this theory, a curve approximating to that given in Fig. 10. At the points

14\'

10\'

N

18quot;

12^

If

-

\\

/

\\

h

/

V

J/90°S 75°S 60PS 45°S 30°S 15°S (f 15°N 30°N 45°N 60°N 75°N 90°N
Fig. 10. Distribution of angular velocities following from Emden\'s theory of the sun.

where the surfaces of discontinuity intersect the limb there would be a sudden drop
in the angular velocity, while between these points it would
increase with the latitude
in the ratio required by the theory. We see from Fig. 8 that the observations

1nbsp;R. Emden, Gaskugeln, p. 429 sqq.

2nbsp;loc. cit. p. 440.

-ocr page 86-

may indeed be represented by a curve of this character. All we need assume is
that at the time, the planes of discontinuity were on the whole few and the jumps
fairly large. The increase in angular velocity which we then would have to find
on getting close to the pole is a special feature of our results. Equality of
angular velocities at 15° s., 0° and 15° N., a possible solution of our equations,
is also demanded by the theory so long as the surfaces of discontinuity do not
crowd together too closely near the equator. A considerable difference between
velocities at certain Northern latitudes compared with those at the similar Southern
latitudes would necessarily be found if, on account of only a slight asymmetry
between the hemispheres, in one case the point in question were situated on the
equatorial side of a surface of discontinuity, in the other on the polar side of the

same surface.

If this interpretation is correct, it may be that the reason why such results
have not been obtained before is because no previous observer has discussed data
taken so closely together in timei. In work extending over a considerable mterval
of the order of one year it is evident that many of the features of a curve like
that of Fig
10 will become smoothed out by the effect of the probable quot;accidentalquot;
changes and shifts of the positions of the surfaces of discontinuity. Possibly also
at periods of maximum solar activity, during which most previous investigations
of this kind have been made, the curve has more chance of being m itself smoothed
out owing to the mixing up of the masses on either side of the surfaces of dis-
continuity due to the formation of those vortices, which appear on the surface
as sunspots. The Cambridge observations were made nearly at a time of minimum
activity (the actual minimum occurring in 1913). The general diminution of
absolute angular velocity at the surface, which is strongly evident m the present
work and less so in other observations made in igii^, though in our case certainly
partly quot;accidental,quot; i.e. temporary, also follows for a time of sunspot mmimum
from Emden\'s theory. The diminution is in our case practically
non-existent at
75° nearest the pole^, in agreement with the consideration that at such high
latitudes there is less chance of extensive changes in angular velocity due to the
rising up of heated masses from layers with very much smaller Imear rotational

velocity.nbsp;. . •nbsp;

One point of great importance in the present investigation is the strong

evidence, which we found in § 14, of symmetry with respect to the solar axis.

This symmetry is in agreement with Emden\'s theory according to which the

surfaces of discontinuity are primarily surfaces of revolution so that the features

which they call into existence would be identical on either side of the axis.

Especially would this be the case at a time when very httle smoothmg out was

done by their rolling up through the formation of vortices, i.e. at sunspot

minimum. The arrangement of velocities in zones along parallels, giving an

1 An exception is H. H. Plaskett\'s investigation which ranges over an interval of only six days, and

which is referred to on p. 73.nbsp;ttv o

a See also p. 72.

-ocr page 87-

otherwise irregular retardation towards the poles, recalls the conditions found
on Jupiter, a planet which is supposed to resemble the sun in more than one
feature.

§ 19. Comparison with earlier investigations

Although probably, as has been stated, owing to the spreading out of the
observations over considerable lengths of time, effects such as have been dealt
with in the last sections do not come out clearly in hitherto published spectroscopic
investigations of the solar rotation, yet it is possible to find in these some con-
firmation of the present results. We must now see where this confirmation is to
be found, more especially with regard to deviations from Faye\'s law.

Taking first the Mount Wilson researches, if we divide Adams\' observations
into groups each taken within approximately one fortnight and plot the angular
velocities, the curves so obtained show in several cases a very different character
from that of the curves given by the formula

a-......................(16).

Only for three epochs, viz. for the observations of June 12—16, 1906 (8 plates),
those of Nov. 11, 1906 (5 plates), and those made on Dec. 18 of the same year
(5 plates), do the curves approximate to the ideal one^. In all the other cases the
difference is very marked, and of such a character as to suggest that it is not due
to accidental observational causes. Moreover the divergences for the individual
latitudes from the ideal curve are frequently greater than the probable error
which for such latitude at the special epoch of observation can be inferred from
the agreement between the plates. On several occasions, notably for the obser-
vations May 26—June 11, 1908 (10 plates), there is some evidence of a regular
waviness in the curve, on some we find an actual increase of angular velocity with
increasing latitude. These latter cases are presented as follows in tabulated
form (Table XXI). It is seen that the agreement between the plates, or between
the several observations on one plate, is such that considerable colour is lent to
the view which takes these increases as real. Adams does so regard the obser-
vations of the last division in the table, which were especially taken on a day
when a couple of sunspots were nearing the West limb of the sun.

Evershed and Royds, at Kodaikanal, find^ for the equatorial velocities
evidence of a diminution occurring between observations made in January 1911
and others in Febniary and March of the same year^. Their mean velocities for
the equator for each fortnightly period are deduced from observations at latitudes
ranging from 0° to 15°, on the assumption of Faye\'s law with Adams\' constants.

^ We have already noted, on page 60, the change which even in these observations occurs between
the spring and autumn of that year.

^ M.N. Lxxiii, p. 561.

^ A further diminution may have been due to the change to a different part of the spectrum and
was referred to on p. 51.

-ocr page 88-

Within each period there are not enough observations at latitudes near enough
to one another to afford trustworthy evidence of deviation from the assumed
law The total diminution may, therefore, have been caused by some such
deviation. Supposing an increase of angular velocity from 0° to 15 had been
the true state of affairs for January-March, 1911, the low value whi^h Evershed
and Royds find for the equatorial velocity would still be higher than the true
one of the epoch, and their observations would then in this respect tend even more
to confirm those obtained at Cambridge in June of the same year .

Table XXI. Cases of i increasing with increase of ^ in Mount Wilson

observations

Plate No.

Date
1907
Feb. 15
„ 28
„ 28
28
.. 28

Date
1907

Feb. 28
.. 28

ii°-69
II \'69

CO 61
lt;0 61

ii°69

59°-5
59 \'5

Means 59°quot;5

Plate No.

lt;0 56
lt;0 61
lt;0 61

0

69°-5
69 -5
69
\'5
69 \'5
69 \'5

I2°-4I

II -53

11nbsp;-53

12nbsp;-30
12 -27

i2°oi

0) 61
0) 61

Means 69°\'5

1907
May 10

10
30
„ 30
.. 30
30

i2°-28

11nbsp;-51

12nbsp;-30
12 -52
12 -82
12 -56

74°-4
74 -4
74 -8
74 -8
74 -8
74 -8

74°7

1907
May
10
,, 10

„ 30
„ 30
30
30

lt;0nbsp;83

lt;0nbsp;83

lt;0nbsp;85

ogt;nbsp;85
0) 85
lt;0 85

Means

ii°-i4

II \'45
II 74

11nbsp;-62

12nbsp;-58
12 75

ii°-88

63°-5
65 -5
63 -8
63 -8
63 -8
63 -8

63°-7

«0 83
o 83

85
85
85
85

Means

1908
June 10

,, ii
.. II

1908
June 9

I2°75
12 74
12 -66

I2°72

49°-4
49 \'5
49 \'5

49°-5

lt;0 132
« 134
0) 136

Means

i2«-54

12 \'39
12 -31

i2°\'4i

44°-5
44 \'5
44 \'5

44°-5

CB 128

i35i
® 1352
Means

ii
ii

1908
Sep. 15

„ 15
„ 15
15

1908
Sep. 15
M 15

„ 15
15

i3°-93

13nbsp;-83

14nbsp;-05

14 -oo
i3°-95

i4°\'9
14 quot;9
14
\'9
14 \'9

I4°-9

0) 173

o) 174

o) 175

6) 176
Means

I3°-63
13 -48

13 -88

13 -84

i3°7i

o°-o
o \'O

O -O

o -O
o°-o

® 173
lt;B 174
« 175

0) 176
Means

The observations of J. S. Plaskett and De Lury began on the date on which
the author\'s left off, June 15, iQH, and continued till the middle of the foUowmg
October They find a small diminution in the velocities, amounting to not quite
20/ when compared with Adams\' values^ this diminution is, however no greater
for their first epoch, the last fortnight of June 1911, for which period there are
eight observations all measured by J. S. Plaskett, than for the rest of their matenal,

X The mean linear equatorial velocity found by them for J^n.-Marchnbsp;is 1-961 km./sec.. while

that of the present work is 1-850 km./sec.. respectively i3°-95 and 13 16 per day.

2 Trans. R.S. of Canada, 6, 3i P- 35-

-ocr page 89-

obtained at subsequent dates. It should be noted that these June plates were
taken in a part of the spectrum (A 5600) very different from that of the present
investigation and so other causes may have come into play to account for this dis-
cordance. In De Lury\'s observations there is one clear case of increase of angular
velocity with increasing latitude, as shown in Table XXII. For the rest, each of

J. S. Plaskett\'s series of observations, one dealing with the period June 15_

Aug. i, 1911, the other with Oct. 3—9, 1911, shows its own special characteristics
as in the case of the Mount Wilson investigation; characteristics which again look
as if they cannot be attributed to accidental instrumental causes and which show
deviations from the simple latitude law larger than are warranted by the agree-
ment between the plates.

Table XXII. Case of i increasing with increase of ^ in Ottawa observations

Date

Plate No.

1911

Aug. 10

833

„ 10

834

.. 30

836

,, 30

837

» 30

838

30

839

Means

4gt;

Date

Plate No.

lt;fgt;

1911

i4°-9

I3°-O8

Aug. 10

833

29°-8

i3°-23

14 -9

13 -08

M 10

834

29 -8

13 \'31

14 \'9

13 -24

» 30

836

29 7

13 -20

14 \'9

12 \'21

„ 30

837

29 7

13 75

14 -9

12 \'64

30

838

29 7

13 -27

14 -9

13 -20

„ 30

839

29 7

12 -66

I4°\'9

I2°-9I

Means

29°7

i3°-24

At the same observatory, that of Ottawa, the observations measured and
discussed by H. H. Plaskett were made^. The dates covered are June 6—15,
1913. Here again the mean angular velocities from the 23 plates when studied
graphically at once reveal a great deviation from Faye\'s law. There is a big
drop from I4°\'i2 for the equatorial velocity to i3°-48 for latitude 15°. Both
in these observations and in those of J. S. Plaskett\'s Series I, there is an increase
in angular velocity on going from 80° to 85°. But at such high latitudes f
becomes very uncertain.

Table XXIII. Case of ^ increasing with increase of lt;!gt; in Allegheny observations

Date

Plate No.

lt;P

1

Date

Plate No.

lt;P

1912

1912

Sep. 30

252

2°-6

i3°-5

Sep. 30

254

I4°-6

Oct. I

258

3 \'4

14 \'4

Oct. I

260

10 -8

14 \'6

I

259

3 -4

14 -2

.. 4

263

2 \'2

13 -8

.. 4

264

II \'4

14 \'O

,, 14

268

I -8

14 \'3

„ 14

269

II -8

14 -2

.. 15

273

I -6

14 \'5

15

274

11-2

14 -o

Means

2-5

i4°-i

Means

II°-I

i4°-3

Schlesinger\'s investigation2 relating to material obtained between October
1911 and October 1912 comprises one series of observations sufficiently numerous
within a short space of time to afford evidence on the matter in question, viz. the
series Sept. 30—Oct. 15, 1912. The curve of observed velocities is again very
different from the ideal one, while an increase with increasing latitude also occurs,
in the zone near the equator. Particulars are given in Table XXIII.

1nbsp;Journal R.A.S. of Canada, 8, p. 307.

2nbsp;Publ. Allegheny Obs., 3, 13.

H.

10

-ocr page 90-

Finally, there are the cases, given by Adams, of the calcium line A 4227 and
the first hydrogen line
(Ha), where we are dealing with the solar atmosphere rather

Table XXIV. Mount Wilson case of ^ increasing with increase of ^ for A 4227

Date

Plate No.

lt;P

1

Date

1908

1908

Mar.

24

03 110

60° quot;4

i3°-8

24

03 no

65 -3

13 \'9

Mar. 24

May

15

03 115

60 \'5

13 -6

May 15

June

I

03 Il8i

60 \'4

13 -6

June I

I

03 1182

60 \'4

13 -8

.. I

9

03 122

59 \'5

13 \'4

M 9

9

03 123

59 \'5

13 -o

» 9

tt

9

03 I24i

59 \'5

13 -8

.. 9

9

03 1242

59 \'5

13 -6

.. 9

9

03 I25i

59 \'5

12 \'9

9

9

W 1252

59 -5

13 -4

.. 9

9

03 1261

59 -5

13 -I

.. 9

»

9

03 1262

59 \'5

13 -6

9

ti

9

0, I27i

59 \'5

13 -I

9

gt;gt;

9

03 1272

59 -5

13 7

.. 9

,gt;

10

03 129

59 \'5

13 \'4

10

10

03 X3O1

59 \'5

14 -o

„ 10

ti

10

03 I3O2

59 \'5

13 -I

gt;gt; 10

I)

10

03 I3I1

59 \'5

13 -6

„ 10

Aug.

10

Ü3 I3I2

59 \'5

12 -6

„ 10

5

03 141

59 \'9

13 -9

Aug. 5

ft

5

03 144

59 \'9

14 \'3

.. 5

27

03 171

60 -2

14 -o

.. 27

Means 59°\'89

1908
-0 /May 15
June

(D 116
lt;a II9i

63 1192

«137

03nbsp;138

03nbsp;142

03nbsp;143

03nbsp;172

60°-8
60 \'4
60 \'4
60 \'6
60 -6
59 \'9

59nbsp;\'9

60nbsp;\'2

6O°-4

i3°-4
12 \'8
12 -5
12 -6

12nbsp;\'6

1908
May 15
June
i
I

Aug. 4
M 4
.. 5
.. 5

M 27

03 no

75°\'2

15-0

03 115

75 \'9

14 -o

03 1181

75 \'9

14 \'3

03 1182

75 \'9

15 -2

03 122

75 -o

13 -2

03 123

75 -o .

13 \'4

03 1241

75 -o

14 \'3

03 1242

75 quot;o

14 \'3

0) i25i

75 \'o

13 7

lt;0 1252

75 \'o

13 -2

03 1261

75 -o

13 7

03 1262

75 \'o

14 \'5

03 i27i

75 \'o

14 -3

03 1272

75 -o

14 0

03 129

74 \'5

13-5

03 I3OJ

74 \'5

13 -8

03 i3o2

74 -5

14 \'3

o3i3i1

74 \'5

13 \'5

CÖI3I2

74 \'5

13 -3

03 141

74 \'9

15 \'3

03 144

74 \'9

15 \'5

03 171

75 \'o

16 \'4

Means

75°-oo

i4°\'20

03116

76°\'2

i4®-o

03 ii9i

75 -9

12 -8

0) 1192

75 \'9

12 -5

137

75 7

12 \'9

03 138

75 7

12 -g

03 142

74 -9

13 -i

03 143

74 \'9

13 -9

03 172

75 -o

14 \'3

Means

75°-5

i.3°-30

Date

Plate No.

0

?

Date

Plate No.

lt;p

1908

*

1908

Aug. 5

03 149

6o°-8

i2°-2

Aug. 5

03 149

75°-5

I3°-6

.. 5

03 150

60 -8

ii -9

.. 5

03 150

75 \'5

13 -0

„ 6

03 152

60 \'4

12 -4

„ 6

03 152

75 \'4

12 7

„ 6

W 153

60 \'4

12 \'1

6

lt;quot;153

75 \'4

12 \'1

„ 6

03 154

60 \'4

ii -6

M 6

03154

75 \'4

ii -8

.. 13

03 157

58 -4

12 \'O

.. 13

03 157

72 -o

10 -8

13

03 158

58 -4

12 quot;O

13

03 158

72 -o

12 \'2

.. 27

03 167

60 -o

13 -i

M 27

03 167

74 -8

12 -5

» 27

03 168

60 -o

13 -i

.. 27

03 168

74 -8

15 \'7

M 27

03 169

60 -o

12 \'6

.. 27

03 169

74 -8

15 \'4

.. 27

03 170

60 0

13 -6

.. 27

03 170

74 -8

14 -9

Oct. 22

03 188

60 \'O

12 \'4

Oct. 22

03 188

75 \'9

14 quot;3

.. 22

03 189

60 \'2

13 \'3

22

03 189

75 \'9

14 \'O

Means

60°-o

i2°-5

Means

74°-8

i3°-3

Table XXV. Mount Wilson

case of i increasing

with increase of ^ for Ha

Plate No.

.Q

s

y

quot;c ~
p

m

i3°-53

i
i

4

4

5
5

27

a

w

C

^^

c
IS

Aug.

13nbsp;\'3
13 -2

13 -3

I2°-96

Means

than with the reversing layer. Both these show a distinct increase in angular
velocity on going from 60° to 75°, the latter for observations both at the limb
and some distance inside it. Tables
XXIV and XXV give the details^. The

^ Adams and Lasby, pp. 104-108.

-ocr page 91-

observations are sufficiently numerous within a short time to suggest the reality
of the increase, even though for each plate the velocities depend on measurements
of only one line.

In the cases brought forward in detail (except the last two which probably
deal with velocities at high levels), there are no other observations available for
the times and latitudes specified. There is thus no reason, apart from that of
belief in the constant validity of Faye\'s law, to doubt the reality, in earlier
investigations, of local deviations at certain epochs from the average law, so that
even if the interpretation suggested in § i8 of the results of the present investi-
gation is not accepted, yet the desirability of making observations in groups
close together is clearly indicated.

In order, finally, to give facilities of comparing the particular cases given in
the last five tables with the results of the present investigation, the latter are
completely presented in terms of angular velocities, in Table XXVL These angular

Table XXVI. Angular velocities determined from the Cambridge observations on
the usual assumptions as to symmetry both about the uncorrected axis and about
the equator

15°

S.E.-N.W. S.W.-N.B

30°

. S.E.-N.w. S.W.-N.E.

45°

S.E.-N.W. S.W.-N.E.

60»

S.E.-N.W. S.W.-N.E.

75°

S.E.-N.W. S.W.-N.E.

Series I
June 1-5
1911

130.22

13 -23

I3°-I3

i3°\'i6
13 -18

i2°-4i

i2°-6o
12 \'60

ii°-54

II -61

ii°-68
ii 77

io°\'22

10 \'23

IO°-58
10 -52

io°-42

10 \'33

ii°-3i
ii -23

Series II
June 1
-7
1911

13 -14
13 -18

13 -11
13 -11

13 -22
13 17

12 -30
12 \'39

12 \'55

12 -57

II \'55
II \'59

ii -81
ii 78

10 \'20
10
\'17

10 -37
10
\'52

10 -36
10
\'53

ii \'27
ii -30

Series III
June
5-8
1911

13 \'15
13 \'23

13 -13
13 -09

13 -20
13
-17

12 \'45
12 -41

12 -58
12 \'62

ri \'61

ii \'47

ii 72

ii -86

10 \'20
10 \'12

10 -63
10 -69

10 \'42
10 -54

ii -05
ii
\'16

Series IV
June
7-15
1911

13 -07

13 \'03

13

13 -ii

13 -17

13 \'14

12 \'47
12 \'40

12 -55
12 -62

ii \'41
II \'49

ii 77
ii -69

10 -28
10
-15

10 -56
10 70

10 -43
10 -56

ii -18
ii -17

Means

i3°-i6

I3°-I5

I2°-50

ii°-65

IO°-38

io°-83

velocities have been computed from all the linearnbsp;^et^^^^^^^

got by combination of two correlated obs^™^\'/\'quot;nbsp;We hufgS

similar to Table XVIII, one for each of the senes of observations. We thus get

JO-2

-ocr page 92-

16 determinations for each latitude except for the equator, for which there are
only 8 values, while the 8 corresponding values relating to the velocities at the
pole are, for obvious reasons, not given in the table.

The figures given are uncorrected for change of axis, and thus the
table must show the effects which led to the conclusions about the axis. Except
again for the equator, the angular velocities are given for each latitude in two
columns, the left one containing those for the given latitude
s.e,—n.w., the right
one those s.w.
—n.e. The latter are seen to be always greater, progressively
so towards higher latitudes. The conclusions that, where we meant to observe
at latitude we really observed at latitudes lt;f) a and ^ — a in the two cases,
and that we ought therefore in the reduction to angular velocities to have applied
the cosines of these angles instead of cos ^ for both, or that in other words the
axis was to be shifted owing to an instrumental error or a real physical change
by the small angle
a from n. to w., seem amply justified.

The agreement of the figures apart from this is very satisfactory, even at
high latitudes. The impossibility of applying Faye\'s law is apparent. While
hitherto laws varying from

i = i4°-8i - 4°-2 sin2 lt;fgt; (Dunér)

tonbsp;$ = I4°\'i7 — 3°\'4 sin^ (Schlesinger)

have been found for the mean rotation at the sun\'s surface, the present series of
observations show that large and comparatively persistent deviations from
such average laws occur which require further investigation.

§ 20. Summary

Four series of observations were made in the first fortnight of June 1911
at Cambridge, of which each contains the material, consisting of 48 plates, from
which velocity-differences have been derived between pairs of points separated by
90° at intervals of 15° all round the sun\'s limb.

The comparison of results derived from different lines in the spectral region
examined has brought out the result that the velocity-differences observed, and
probably the velocities themselves, vary regularly from one end of the spectral
region to the other, becoming smaller on proceeding towards the red. An ex-
haustive discussion of the anomaly leaves the presumption that its cause must be
looked for on the sun. Clear traces of a similar effect have been found to exist
in the work of other observers.

Apart from this effect no special departure from the average has been found
to be characteristic of any one Hne or any one element.

-ocr page 93-

The results deduced from discussion of the mean velocity-differences derived
from the various photographs may, as far as they are relative, be assumed to
be unaffected by the above, and can be summarised under three heads.

1.nbsp;The velocities appear to be arranged with perfect symmetry with respect
to a diameter forming an angle of o° 30\' with the assumed axis, which diameter
presumably indicates the effective axis of rotation for the epoch of observation;
the difference being due either to systematic instrumental error or to true physical
change.

2.nbsp;With respect to the equator S5rmmetry is conspicuously absent. The
sum of the velocities in the Northern hemisphere is considerably greater than
that in the Southern, the total difference (for the five latitudes 15°, 30°, up to 75°)
amounting to 0-270 km./sec. For latitude 45° the individual difference
n.—s. is
deduced without ambiguity; it there amounts to 0-052 km./sec.

3.nbsp;When averaged together to one quadrant and reduced to angular velocities
the results are shown to be inconsistent with Faye\'s law or any other simple law.
This remains true if, on various hypotheses, the difference between the Northern
and Southern hemispheres is allowed for. The conclusion is reached that large
deviations from the usual average law occur which are—to account for what was
found under i—constant all along the respective parallels, and which persist
during periods of observation like that of this investigation. The deviations
occur especially at very low and at high latitudes. For these zones the angular
velocity is found to remain constant or even to increase with increasing latitude.

All these results, inclusive of the difference between the Northern and Southern
hemispheres, are consistent with Emden\'s theory of the sun. But even if no
stress is put upon this interpretation they merit attention on account of the
agreement between the four series of observations. For those given under 3 a
considerable amount of confirmation is found in work by other investigators.
Evidence with regard to the conclusions under i and 2 cannot be got from other
work owing to the hitherto employed method of observation together with the
tacit assumptions made in the reductions.

-ocr page 94-

©ambrilige :

PRINTED BY JOHN CLAY, M.A.
AT THE UNIVERSITY PRESS

-ocr page 95-

• TW

• •

H

»nbsp;,nbsp;.nbsp;Jt , • ~ gt; iiPi.-

■ \' \' ■ \'v i

•nbsp;W » quot;

nbsp;gt;

¥

»

»

» quot; «

fnbsp;.fc«

■nbsp;,gt;■■ ■

■nbsp;»i^

inbsp;T-

STELLINGEN

jnbsp;* y

•w»nbsp;■ «

-ocr page 96-

ff
\'ff.

• t

« •

*

t. *

4

■Î9ÎÇ;

-m

* i *

m

S\'-if\'S

-ocr page 97-

Inbsp;•

De formule v = {a — b sin^ fp) cos lt;P voor de omwentelingssnelheid op de zon drukt
slechts uit het over een geruim tijdsverloop en over de vier quadranten van den zonnerand
gemiddelde van den toestand.

II

In Juni 1911 was op de zon de verdeeling der omwentelingssnelheden sterk asymmetrisch
ten opzichte van den zonne-equator. Het mag aangenomen worden dat een zoodanige
asymmetrie eerder den normalen toestand voorstelt.

III

Op hetzelfde tijdstip was de verdeeling daarentegen symmetrisch ten opzichte van de
zonné-as; ook dit is waarschijnlijk meesttijds geldig.

IV

De theorie van EmdEN sluit zich. in de toepassing op het omwentelings-vraagstuk, van
alle zonnetheorieën het beste bij de waarnemingen aan.

V

Er zijn gronden om aan te nemen dat de zonne-as periodieke schommelingen om een
gemiddelden stand uitvoert.

VI

De absorptielijnen in het zonnespectrum hebben hunnen oorsprong des te dieper binnen
de zon naarmate zij van kortere golflengte zijn.

VII

De waarnemingen hebben tot nog toe weinig feiten aan het licht gebracht die numeriek
ter bevestiging van de zonnetheorieën van
JULIUS kunnen dienen.

VIII

In de evolutie van ons zonnestelsel heeft deeling een belangrijkere rol gespeeld dan. quot;
„capture.quot;

IX

Het bestaan van

de twee klassen der zoogenaamde reuzesterren en der dwergsterren
kan als vastgesteld worden beschouwd.

-ocr page 98-

Er is een belangrijke systematieke fout in de rechte klimmingen van de fundamenteele »
sterrencatalogi.

XInbsp;\'

Lijnenreeksen in spectra worden het beste verklaard door de theorie van BOHR.

XII

De

ontvanger in een telephoon (zwakstroom-installatie) kan vervangen worden door
een rechtstreeks ingeschakelden dunnen platinadraad (z.g. thermo-telephoon van
GWODZ ,
en DE LANGE). De voortreffelijke geluidswedergave van dezen ontvanger kan niet door
eenvoudige temperatuurwisselingen verklaard worden.

XIII

Ten onrechte elimineert AbeNDANON alle tangentieele drukking bij zijne theorie over het
ontstaan der plooiingen in den aardkorst.

XIV

De symbolische logica vormt den grondslag van alle wiskunde.

XV

De tegenstrijdigheid tusschen logica en ervaring wat betreft het begrip continuïteit kan
alleen verdwijnen met behulp eener mystieke natuurbeschouwing zooals die van
BERGSON.

XVI

Het is wenschelijk dat in Nederland een internationaal embryologisch instituut worde
gesticht.

i

-ocr page 99-

STELLINGEN

-ocr page 100-

JTS,

• r-v

-

s

SCi

-ocr page 101-

I

De formule v = [a-h sin2 cos voor de lineaire omwentelingssnelheid op
de zon drukt niet meer dan eene benadering van de werkelijkheid uit, gemiddeld
over een geruim tijdsverloop en over de vier quadranten der zonnerand.

II

In Juni 1911 was op de zon de verdeeling der omwentelingssnelheden sterk
asymmetrisch ten opzichte van de zonne-equator. Het mag aangenomen worden
dat een zoodanige asymmetrie eerder de normale toestand voorstelt.

III

Op hetzelfde tijdstip was de verdeeling wel symmetrisch ten opzichte van
de zonne-as; ook dit is waarschijnlijk over het algemeen geldig.

IV

De theorie van Emden sluit zich, in de toepassing op het rotatie-vraagstuk,
van alle zonnetheorieën het beste bij de waarnemingen aan.

V

Er zijn gronden om aan te nemen dat de zonne-as periodieke schommelingen
om een gemiddelde stand uitvoert.

VI

De absorptiehjnen in het zonnespectrum hebben hunne oorsprong des te
dieper binnen de zon naarmate zij van kortere golflengte zijn.

VII

De waarnemingen hebben tot nog toe weinig feiten aan het licht gebracht
die numeriek ter bevestiging van de theorieën van JuLius kunnen dienen.

VIII

In de evolutie van ons zonnestelsel heeft deeling een belangrijkere rol ge-
speeld dan „capture.quot;

-ocr page 102-

Het bestaan van de twee klassen der zoogenaamde reuzesterren en der dwerg-
sterren kan als vastgesteld worden beschouwd.

X

Er is een belangrijke periodieke fout in de rechte khmmingen van de funda-
menteele sterrencatalogi.

XI

Lijnenserieën in spectra worden het beste verklaard door de quantumtheorie
(Bohr).

XII

De symboHsche logica vormt de grondslag van alle wiskunde.

XIII

De tegenstrijdigheid tusschen logica en ervaring wat betreft het begrip
continuïteit kan alleen verdwijnen met behulp eener mystieke natuurbeschouwing
zooals die van
Bergson.

XIV

Het is wenschelijk dat in Nederland een internationaal embryologisch in-
stituut worde gesticht.

-ocr page 103-
-ocr page 104- -ocr page 105-

MM

Ir- ^iiir;»

J

-

-ocr page 106-

ImM

-ilV^-s.