-ocr page 1-

■ / cy-^tj

/ÛL
/

/ \'t . • \' f/

RECHERCHES
ASTRONOMIQUES

k

DE L\'OBSERVATOIRE

D\'UTRECHT

VII

■ Ji

utrecht; ,

J. VAN BOEKHOVEN

■ - . \' quot;-1917

/

^cht ^

-ocr page 2-
-ocr page 3-

1

f)-

ïï. \' ^ \'\' \'^■■■■■W ■i\'fwB\'iéf

........

■ vi V ■ \'

-ocr page 4-
-ocr page 5-

f^rnbsp;. S^f?« ■

-ocr page 6-

ERRATA.

Page 10,nbsp;line 14, read quot;magnitudequot; for quot;magnitudesquot;.

,, 18,nbsp;last line, read quot;a. differencequot; for quot;differencequot;.

„ 24,nbsp;in the table omit quot;H.A. 47quot;.

„ 37,nbsp;in formula (4) read

h

„ 38, line 12, readnbsp;for

„ 4(),nbsp;to the heading of table XIV add quot;in mms.quot;.

-ocr page 7-

THE HARVARD MAP OF THE SKY

and

THE MILKY WAY

PROEFSCHRIFT

ter verkrijging van den graad van doctor
in de wis- en natuurkunde aan de rijks-
UNIVERSITEIT te utrecht, op gezag van den
RECTOR-magnificus dr. p. van romburgh,
HOOGLEERAAR in de faculteit der wis- en
natuurkunde, volgens besluit van den
senaat der universiteit tegen de
bedenkingen van de faculteit der wis- en
natuurkunde te verdedigen op maandag
15 october 1917 des namiddags te 4 uur door

ISIDORE HENRI NORT

GEBOREN TE GRONINGEN

drukkerij J. van boekhoven - utrecht

-ocr page 8-

. ¥/I;lW Hm

. \' vfVi V;;!

••■V\'-. Vnbsp;O- ■

-^lyH

Vi .jq

\'JM^M

ï\'-V-,

• ■.quot;-■Vi,

.\'U-y

J V-

-ocr page 9-

RECHERCHES
ASTRONOMIQUES

DE L\'OBSERVATOIR

D\'UTRECHT

VIT

UTRECHT

j. van boekhoven

1917.

/
/

-ocr page 10-

i -J^J-

: ^ ;
; .s-\'f-;. V\'fV ï

rquot;quot;\' \' I ^ quot;

■x\'Tt- rr

. r- \'J

- M

V ^v

rf i:)::ivi rci

A \' ■

. •nbsp;..... . a*:, \'nbsp;\'

m.

- - \' ....
. V ......-

1

Jgt

is.-iilquot;

■■-«.a;-
• 1;

■. ■■ ■ -y- ft\':

■ ;

\' \'A\'\'

\'■\'MM

.. m.-,-

-ocr page 11-

THE HARVARD MAP OF THE SKY

and

THE MILKY WAY

by

H. NORT

-ocr page 12-

m

y.- .

mu

H

Hmâi:.\'\'\'.

rVi.\'quot;- ■■■

am

ywn \' ^i/um. m\'Yf

■«\'il,;

Bs-

il

: v \'Vquot; \' \'

-ocr page 13-

CONTENTS.

Page

Introduction .. • .............................................................................................l

Part I. Star-counts on the Harvard Map of the Sky.

Chapter I. The Harvard Map of the Sky............................................5

Chapter H. The counts ............................................................................U

Chapter III. The determination of the limiting magnitude....................22

Chapter IV. Reduction of the plates........................................................30

Chapter V. Determination of the limiting magnitude by means of

overlapping fields; the reduced plates............................48

Chapter VI. The catalogue of star-density............................................79

Part IL The Milky Way.

\'Chapter VH. The star-density and the galactic latitude....................93

Chapter VHI. The position of the galactic plane......................................104

Chapter IX. The star-density and the galactic longitude......................117

Chapter X. The light of the Milky Way.....................................122

Chapter XL The system of stars down to 11?0......................................130

Summary ............................................................................................134

Appendix L Catalogue of star-density........................................................139

Appendix IL Bibliography.....................................................169

Plates.

-ocr page 14-

f

V» ......

Ti ■

\'••quot;üt

gt; .ij

I

■ \'nbsp;\'\'\' U ■ . .

«V v.\'-,»:.-, \' ■

■ ■ -«fer

.V

m

-ocr page 15-

INTRODUCTION.

It is a well-known fact that star-counts by different authors and
the conclusions derived from them sometimes largely diverge. As to the
earlier counts, the circumstance that they are not based on a properly defined
photometric scale, may safely be considered to be the cause. However, there
exist two fairly recent counts, both of them based on a rigorously defined
magnitude-scale, and yet differing greatly from each other not only in
the number of stars of every magnitude, but also in the condensation
towards the Milky Way. I mean the counts by
KapteynI) and by Chapman

and Melotte^).

Although Kapteyn admits that part of this great difference must be
ascribed to the fact that for the fainter stars his counts are based on
Parkhurst\'s visual scale and for the brighter on Pickering\'s photometric
scale and that according to an investigation
by Nijland^) these two scales
diverge rather
considerably, he is still of opinion that for the remaining
difference
Chapman and Melotte must be held responsible. At any rate,
even after reducing
Kapteyn\'s counts of the faintest stars to Pickering\'s
scale there remains a great difference between the results of these two investig-
ations which it would be desirable to explain. So when in June 1915 Prof.
Nijland proposed that I should attempt to elucidate this and some other
unexplained points in various star-counts,
I readily accepted his suggestion
and at once started to collect all the literature on this subject
I could find.
Since a fairly complete list of papers on star-counts was nowhere to be found
- only
stroobanf gives a short list of twenty items in Tome XI, Fascicule II
of the „Annates de I\'Observatoire Royal de Belgique, Nouvelle sériequot; — this
collection took much time. In order to save other workers this trouble

C. Kapteyn, Publ. of the Astr. Lab. at Groningen, No. 18.

2) Chapman and Melotte, Memoirs R. A. S. 60, 145, 1914.

3 A A Nijland. Hemel en Dampkring, Sept. 1916. According to this investigation
the difference between the Harvard and the Parkhurst scales may be very satisfactorily
represented by the formula H-P=0\'^\'22 (H-9-33).

-ocr page 16-

the bibliography I brought together has been added to this paper as
Appendix II.

Under A I have assembled the titles of all papers on star-counts I
have been able to find; a great part of these papers also contain theoretical
considerations on the distribution of the stars. This part of the list is probably
fairly complete up to December 1915; after this date completeness could
not be attained on account of the abnormal conditions resulting from the war.

Under B are gathered the titles of different papers in which the various
magnitude-scales are discusscd. Since the value of any star-count largely
depends on the magnitude-scale used and hence no investigation on the former
subject can ignore the latter, I thought it useful also to publish this part of
the bibliography. Here, however, I have not endeavoured to be exhaustive,
I simply mentioned under this heading the papers consulted by myself.

While collecting this literature I came across an article by M. Selga,
entitled: El mapa celeste de Harvardi). In this article Selga gives a short
summary of a paper by
H. Henie on star-counts, carried out by the latter
on the Harvard Map of the Sky. Though
Henie\'s counts do not include
fainter stars than those of the eleventh magnitude, so that this author does not
nearly go so far as
Kapteyn or as Chapman and Melotte, still it seemed
to me from
Selga\'s short paper that these counts might prove of great
value, not only because the number of fields counted is much greater than in
any other count, but especially because the material used for them is much
more homogeneous.

It is particularly on account of this latter circumstance that I studied
Henie\'s paper 2) in detail. The result is contained in the following pages.
So the original plan, namely to attempt to make
Kapteyn\'s counts agree
with those by
Chapman and Melotte, has not been carried out. However,
I hope to return to it within a reasonable time^).

M. Selga. Revista de la sociedad astronómica de Espana y América, Ano V, Num. 43.

2)nbsp;H. Henie. Lunds Universitets Arsskrift. N. F. Afd. 2. Bd 10. Nr. 1.

3)nbsp;When the present paper was nearly ready for the press, I received Nr. 27 of the
Publications of the Astronomical Laboratory at Groningen, containing an investigation by
Van Rhijn on the difference Kapteyn-Chapman and Melotte. After his elaborate explanation
the investigation planned by myself would be superfluous.

-ocr page 17-

PART I.

Star-counts on the Harvard Map of the Sky.

-ocr page 18-

inbsp;V ■

■ - . .\'.)quot;■ ■ ■■ ■ . ■ •
^nbsp;• ^nfMt^ï^ quot;Ä.nbsp;■ ^ \'nbsp;quot;

m

-Mm

t«! ...

. X

.vr ■ .

t\' K

-Vu-: pa^i^T\'-Xk-:\' ^

. ■nbsp;V .. ■ •nbsp;•

Ik
\'■nïM\'
its

h^- m

\' \' ■ ■ quot; ■

\'■-.i\'-i

-ocr page 19-

CHAPTER I.

the harvard map of the sky.

In Harvard Circular Nr. 71 Pickering gives a description of a photo-
graphic map of the whole sky which will henceforth for the sake of brevity be
called the Harvard Map. By means of two small anastigmatic lenses, one of them
mounted at Cambridge and the other at Arequipa, and both with an aperture
of one inch (2.5 cms.) and a focal length of about thirteen inches (33 cms.),
a large number of photographs were taken. Each plate, measuring eight by
ten inches (20 by 25 cms.), covers a region of over 30 degrees square. With
exposures of about one hour, stars as faint as the twelfth magnitude were,
in some cases, obtained.

From the plates obtained in this manner a set of 55 was selected,
covering together the whole sky and constituting the Harvard Map. Of
this original at the Harvard Observatory copies on glass have been made
by double contact printing and put at the disposal of astronomers. In table
I the current numbers of the plates are given, followed by the right ascension
and declination of the centre of each plate and its time of exposure. The
plates 1—^21, 24—^27 and 29 were taken at Cambridge, the others at Arequipa.

On the copy of the Harvard Map at Lund counts were carried out by
H. Henie, who gives the following description of this copyi): quot;As regards
quot;the images, these latter are generally very fine in a considerable part of the
quot;centre of the negative, even those of the faintest stars being visible. Towards
quot;the margins the images of the brighter stars are distorted and
those of the

1) H. Henie. Lunds Universitets Arsskrift, N. F. Afd. 2. Bd. 10. Nr. 1, p. 4.

-ocr page 20-

TABLE L

centres and times of exposure of the plates of the harvard map.

Time

of
expo-
sure

Time

------ _:r~

Time

Plate

R.A.

Dcc.

Plate

R.A.

Dec.

of
expo-
sure

Plate

R.A.

Dec.

of
expo-
sure

1

90°

39quot;

15

150°

30°

56*quot;

29

210°

73°*

2

0

60

63

16

180

67

30

240

} gt;

60

3

45

....

17

210

gt;}

68

31

270

gt;gt;

60

4

90

n

....

18

240

tf

64

32

300

60

5

135

n

59

19

270

,,

56

33

330

f}

60

6
7

180
225

II
gt;1

71

58

20
21

300
330

n
yf

62
69

34

35

0
30

-30

II

60
61

8

270

II

70

22

0

0

58

36

60

68

9

315

II

60

23

30

II

60

37

90

60

10

0

30

57

24

60

»1

71

38

120

60

11

30

62

25

90

II

73

39

150

61

12

60

II

59

26

120

II

64

40

180

67

13

90

II

75

27

150

II

65

41

210

60

14.

120

II

59

28

180

gt;1

65

42

240

II

60

Time

of
expo-
sure

Plate

43

44

45

46

47

48

49

50

51

52

53

54

55

R.A.

Dec.

270\'
300
330
0
45
90
135
180
225
270
315
0
210

-30\'

60quot;
\'61
61
61
64
60
60
72
60
61
60
60
60

-60

-85
-75

\'fainter ones difficult to discover.quot; The precise meaning of Henie\'s remark
(the italics are mine) I have failed to understand, since in my opinion it applies
not only to the marginal but also to the central images. On any photograph
of the sky the images of the stars will come out more faintly as the stars are
fainter themselves. This increasing faintness of the images is gradual and not
sudden, until finally the limit of visibility is reached. So on any star-photograph,
as well at the centre as near the margins, scarcely visible images will occur
and this will also have been the case\'on the copy of the Harvard Map used by
Henie. Only if he had stopped at a certain limit and so had not included
in his counts all stars down to the limit of visibility, his remark could be
understood, in which case it is to be regretted that he has not defined this
limit more sharply, especially in regard to the determination of the limiting
magnitude.

At any rate it appears from Henie\'s words that he was greatly pleased
with this copy of the Harvard Map and that he thought it very suitable for
carrying out counts. Now since the Utrecht Observatory also possesses a

P

-ocr page 21-

copy of this Map, placed at my disposal through the kindness of Prof. Nijland,
it was not difficult to examine whether this copy also possesses the same
excellent qualities as the one used by
Henie. I examined the plates with special
reference to the shape of the images and to the transparency of the plates.

As to the first point, forty-three out of the fifty-five plates show at the
centre and round it within a distance of about six centimetres perfectly
sharp circular images. On the remaining plates the images of the stars are
elongated, also at the centre, not always in the same direction. Near the
margins of the plates the images are
always elongated and often strongly
distorted. Especially the deformation shown in fig. 1, /e, is very frequent.
On the 43 plates showing sharp round images at the centre, this deformation
of the marginal images is symmetrical with respect to the centre and is there-
fore only a
consequence of the size of the field. On the 12 other plates the
deformation of the images seems to be the combined effect of the size of the
field and of the guiding-error. The different manners in which the deformation
of the images appears are schematically represented in fig. 1. The short lines
in the four quadrants show the
principal direction of the deformation, not
its true
size, this latter often varying as well in the four quadrants of a single
plate as from one plate to another.

d

e

a

/

\\

/

\\

/

\\
/

/

\\

\\

\\

/

\\

/

/

\\

/

\\

s

/

t

/

N

\\

/

——

\\

\\

\\

-

J

/

/

0

k

/

/

h

Fig. 1.

f

-ocr page 22-

In table II the appearance of the images on each of the 55 plates is
shown. The letters in the column lieaded quot;shape of the imagesquot; refer to the
different types represented in fig. 1. In the column headed quot;transparency
of the platesquot; the Roman figures indicate the four quadrants of every plate.
It has been assumed that the plates lie with the glass side upwards and that
the quadrants are numbered in the order shown in fig. l
a.

TABLE II.

discussion of the plates of the harvard map.

Numb.

Shape
of the

images

1

h

2

a

3

a

4

a

5

h

0

d

7

a

8

d

9

a

10

a

1]

a

12

a

13

b

14

a

15

a

16

a

17

e

18

g

19

a

20

a

21

a

22

a

23

a

24

a

Transparency of the plates.

I and IV fogged at the margins.

I and IV fogged at the margins; also II partly.

Ill partly fogged.

Ill fogged at the margins.

I and IV fogged at the margins.

I and IV slightly fogged at the margins.

nearly clear.

almost entirely slightly fogged,
quite clear.

I and IV slightly fogged.

I, II and III fogged at the margins.

nearly clear.

the margins of I and a great part of III and IV fogged,
nearly clear.

all quadrants partly fogged,
part of III badly fogged,
nearly clear.

fogged everywhere at the margins, III almost entirely
part of III slightly fogged.
Ill very slightly fogged,
nearly clear.

Ill and IV slightly fogged.

-ocr page 23-

Table II. (continued).

Shape

Numb.

of the

Transparency of the plates

images

25

r

nearly clear.

26

a

27

a

28

a

jj gt;gt;

29

/

fogged everywhere at the margins. III to a great extent.

30

a

IV very badly fogged.

31

a

II very badly fogged, also the margins fogged.

32

a

nearly clear.

33

a

II badly. III shghtly fogged.

34

a

II and III fogged at the margins.

35

a

quite clear.

36

a

I and IV rather badly fogged.

37

c

nearly clear.

38

a

II and III almost entirely fogged.

39

c

II, III and IV rather badly fogged at the margins.

40

a

I badly fogged.

41

a

Ill slightly fogged.

42

a

nearly clear.

43

a

))

44

a

II and III rather badly,I and IVslightly fogged at the margins.

45

a

nearly clear.

46

a

Ill slightly fogged.

47

a

nearly clear.

48

a

)} gt;gt;

49

c

II strongly fogged in the corner.

50

a

nearly clear.

51

a

)) )gt;

52

a

I and IV slightly fogged.

53

a

fogged everywhere along the margins.

54

a

I, II and IV almost entirely fogged.

55

a

nearly clear.

By examining a single copy of the Harvard Map it cannot be settled,
of course, what part of the small deficiencies, enumerated in table
II, originated

-ocr page 24-

in the reproduction and what part is already present in the originals, but it
would seem to me that this latter part cannot be small. If this be really the
case, the small defects mentioned in table II will also for the greater part
be present in the plates counted by
Henie, in which case his enthusiasm
about the Harvard Map would seem rather unjustified.

Doubtless these plates were not taken with the pre-conceived purpose
of carrying out counts on them; for other purposes they have proved eminently
serviceable to many astronomers. For star-counts, however, the plates of
the Harvard Map are only suitable in those portions where no deformation
of the images is observed. Obviously, if we want to determine the limiting
magnitude at various distances from the centre of the plates by a
direct method
i.e. by estimating the diameters or the blackening of the images, their imperfect
circularity is a serious drawback. Evidently
Henie has also felt this; in fact,
he determined the limiting magnitudes by an indirect method, namely by
basing the amount of its variation from centre to margin on a somewhat
arbitrary relation between the magnitudes and the numbers of the stars.

It would seem to the present author that this method of determining
the limiting magnitudes is essentially wrong. For it is exactly in order to arrive
at such a formula that, among other things, star-counts are undertaken and
to assume
a priori the validity of such a formula- cannot but render the results
uncertain. Hence photographic plates, if they must serve for starcounts will
have to allow an exact determination of the limiting magnitudes by a direct
method and this condition is only partly fulfilled by the Harvard Map. Only the
central portion of the plates (a circular area of say six cms. radius) can be success-
fully used. Therefore it is important that Prof.
Pickering should have placed
at the disposal of astronomers a Second Harvard Map, composed of 55 plates,
the centres of which appear near the corners of the plates of the first set. By
using these two sets combined and carrying out the counts only in the central
parts, we shall have a most suitable and probably very homogeneous material.

Very likely more reliable results might even be obtained by only
using the central parts of the only available set. Although this would
diminish the number of counted fields, the limiting magnitude might be
determined with much greater accuracy then when using the whole plate.

-ocr page 25-

CHAPTER H.

the counts.

We shall now discuss the manner in which Henie carried out his counts.
He himself says on this point i):

\'Tn order to get the number of stars per square centimeter a most
quot;simple method is applied. The plates are negatives and consequently the images
quot;of the stars are black points on a transparent ground. The plates are therefore
quot;placed on a paper divided into squares of one millimeter, with thick lines for
quot;everv centimeter.

quot;The density may by this means be determined in any part of the
\'\'negative.

quot;Two rectangular axes were drawn on the paper, and the plate was
quot;placed, so that the approximative centre of the photograph coincided with
quot;the origin, and the outlines parallel to the axes.quot;

And later: quot;The counts are all made in good day-light under the same
quot;conditions through a lens magnifying about 3 times.

quot;As the density is not as a rule great the counts are easily made, the
quot;millimeter lines giving an excellent assistance.quot;

The film-surface of the plates measures 19 by 21 cms. If the plate
is laid in the above manner on the squared paper, there will consequently
be 18
x 20 entire fields of a square centimetre. Of these 360 Henie counted
in each quadrant 25 fields, the counted fields lying symmetrically with respect
to the centre, as shown in fig.
1 of Henie\'s paper.

In doing this Henie tacitly assumes that in order to get information
Henie. 1. c. p. 4.

-ocr page 26-

on the apparent distribution of the stars it is not necessary to count the
whole sky, but that it is sufficient to count a number of regularly distributed
fields. Although it appears from the manner in which
star-counts have been
and are still being made that this is the general view of astronomers, I have
not been able to discover that it has ever been tried to determine the amount
of the error which may in this way be introduced into the
star-numbers.

I therefore made complete counts of four plates of the Utrecht copy
of the Harvard Map, covering a surface of 360 sq. cms. In order to obtain
results that would be comparable with
Henie\'s, I followed in the main his
method of counting, using reflected light and working in quot;good day-lightquot;,
although this manner of counting certainly is not the easiest one nor the most
desirable. Without doubt transmitted
artificial light is to be preferred Not
only the trouble of being continually obliged to count in the shadow of
one\'s head is then obviated, but, moreover, it is only in this way that it is
possible so to regulate the intensity of the light-source that there can be any
question of counting under the same conditions, which obviously cannot be
attained when counting by day-light in our climate.

In some other respects however I have departed from Henie\'s method.
So I dit not count on millimetre paper. Not only the greyish tint of this paper
makes an unsuitable background, but also the large number of lines is trouble-
some rather than being quot;an excellent assistancequot;. For one has to be very
careful not to count twice images of stars lying exactly on a line and for this
reason it is important to reduce the number of lines as much as possible.
I found that for plates outside the Milky Way lines at 1 cm. distance suffice
while for the Milky Way itself fields of 0.1 cm^. are not too large at all. The
necessary lines were drawn as fine as possible with Indian ink on white paper;
where images fell on the lines their grey colour contrasted clearly with the
blacker ink.

As to the optical means I had the choice between a BRiicKE-lens
magnifying five times, and an aplanatic magnifier by
Zeiss, magnifying ten
times. The former was kindly put at my disposal by Dr.
Moll, Lecturer in
the University of Utrecht, the latter by Prof.
Lorentz, Director of the
Physical Laboratory of
Teyler\'s Foundation at Haarlem. I wish to express

-ocr page 27-

PLATE 2.

_9 _8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6

C:

8 9

40

58

51

100 141

144

144

114 227

158

94 127 119 119

70

68 101

95

10

56

68

80

94

134

133 208 262 238

159

130

162

188 149 128 102 109 102

9

51

74

65

87 116 116 142 113 146

178 164 138 121

160 129 110 117

132

8

96

113

99 129

116

86 146 150 164

199 179

120

152 145 122

96 103 133

7

84 148 148 169 195 120 156 116 179

175

157 195 185 171

153 104

159

163

6

148 196 246 239 219 279 273 177 222

182

180 246 206 165 117

138

189 171

5

208 238 292 258 276 289 320 383 352

245 213 224 201

145

121

125 130 146

4

200 254 279 252 316 402 286 312 225

270 244 349 315 258 153 114

98 161

3

188 193 216 305 307 354 298 231 267

206

159 173 311

386 329 261 217

180

2

207 207 268 254 358 330 388 308 325

261 300 264 240 221 391 277 226 324

1

177 150 180 207 336 351 439 407 370

383 371

452 434 357 316 249 216 184

-1

92 100 138 188 302 319 391 392 431

366 398 422 377 264 242 210 162 251

-2

80

80

98 124 184 158 264 317 339

272 285 354 234 225 196 168 121

152

-3

117

120

90 121

180 176 229 219 310

224 240 258 193 108 151

123

92

113

-4

72

76

62

76

93

81

116 120 160

163

184 175 171

139

85 107

71

80

-5

64

61

62

65

77

67

72

107

91

128 140 109

99

87

76

63

57

48

-6

63

69

64

65

70

66

79

93 101

76

89

93

76

69

57

54

50

68

-7

65

67

78

81

80

62

82

117

114

81

89

94

76

52

49

37

39

52

-8

44

41

46

60

54

54

52

61

57

67

96

47

71

63

56

41

31

52

-9

26

36

40

35

42

34

42

57

50

58

56

35

37

42

38

42

49

34

-10

Centre at

\\b = -3°
.1 =84°

PLATE

6.

-9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

13

7

15

12

10

13

23

17

8

13

23

15

15

10

10

13

8

11

10

10

12

9

11

14

14

18

19

24

26

20

13

11

17

18

14 .

11

8

9

10

12

15

13

21

14

26

31

13

26

27

26

16

16

11

16

11

12

8

11

14

24

19

18

20

26

30

30

35

37

30

36

18

16

15

10

12

7

16

13

21

16

12

25

26

33

43

36

60

28

31

27

20

17

18

11

6

15

15

23

22

23

23

47

54

50

32

66

55

44

39

33

35

10

8

5

13

19

12

22

31

34

50

47

54

68

74

50

48

39

41

14

17

19

4

14

10

7

20

25

25

51

56

75

62

89

79

66

60

28

25

27

26

3

12

11

24

19

29

55

53

61

64

69

70

62

55

48

29

19

19

28

2

3

9

25

31

37

48

53

60

77

68

82

64

71

55

35

23

23

16

1

14

18

13

29

43

48

84

91

95

83

79

94

72

51

44

32

18

24

-1

14

14

21

16

35

41

47

69

95

67

63

66

65

52

48

19

21

20

-2

14

12

16

22

21

34

60

45

72

74

90

59

67

44

33

22

30

12

-3

14

18

21

41

27

25

37

61

61

57

56

47

46

37

36

15

17

9

-4

5

6

8

6

25

31

25

45

45

46

57

61

35

40

21

21

18

11

-5

11

6

7

15

17

11

39

36

53

25

70

83

49

46

33

8

10

23

-6

11

9

10

12

11

15

19

27

27

21

40

45

32

45

15

8

14

7

-7

7

2

6

5

10

13

7

9

11

14

23

20

22

15

9

9

5

7

-8

4

3

7

5

8

8

10

5

14

18

10

18

21

16

9

12

14

1

-9

2

6

5

9

2

5

13

8

17

9

12

7

16

13

9

5

9

10

-10

Centre at

b = 56°
101°

-ocr page 28-

PLATE 34.

9nbsp;13nbsp;10

9nbsp;9nbsp;5

ffnbsp;flnbsp;11

15nbsp;5nbsp;13

ISnbsp;17nbsp;8

19nbsp;21nbsp;12

7nbsp;11nbsp;14

17nbsp;20nbsp;12

20nbsp;10nbsp;15

8nbsp;17nbsp;11

18nbsp;11nbsp;12quot;
22nbsp;24nbsp;20
29
nbsp;15nbsp;13
34nbsp;10
nbsp;12
28
nbsp;17nbsp;9
18nbsp;12nbsp;22
ISnbsp;18nbsp;15
17nbsp;13
nbsp;14

13nbsp;11nbsp;13

14nbsp;8nbsp;18

-9 -8 -7 -6 -5 -4 -3 -2 -1 1

3nbsp;4

15nbsp;18

17nbsp;19

16nbsp;19
38nbsp;17

23nbsp;22

21nbsp;17
20nbsp;28

24nbsp;38
35nbsp;33
30nbsp;33

\'42~U

33nbsp;37

51nbsp;42

29nbsp;20

26nbsp;23

25nbsp;21
29nbsp;22

22nbsp;20
25nbsp;21

18nbsp;23

10nbsp;15

11nbsp;9
13
nbsp;12

9nbsp;12

12nbsp;18
10nbsp;20

18nbsp;17

19nbsp;23

11nbsp;19
21nbsp;24
15
nbsp;\' 23

9nbsp;22

12nbsp;28
10nbsp;23
21nbsp;16
15nbsp;19
18nbsp;18
10nbsp;10

0nbsp;15

15nbsp;22

12nbsp;10

13nbsp;16

13nbsp;19

2.3nbsp;25

10nbsp;22

21nbsp;28

17nbsp;22

31nbsp;23
20nbsp;28

32nbsp;24

13nbsp;22

13nbsp;21
15
nbsp;21
18nbsp;24

14nbsp;21
18nbsp;19
28
nbsp;34
44nbsp;28
39
nbsp;39
30nbsp;48

7nbsp;22

26nbsp;11

21nbsp;13

22nbsp;10
17nbsp;23
27nbsp;35
27nbsp;23
34nbsp;35
30nbsp;37
27nbsp;40

30nbsp;29

18nbsp;37

29nbsp;41

18nbsp;31

10nbsp;35

21nbsp;27

13nbsp;23

14nbsp;22
10nbsp;15
17
nbsp;21

40nbsp;37

37nbsp;42

30nbsp;40

34nbsp;24

23nbsp;30

25nbsp;15

22nbsp;19

15nbsp;24

18nbsp;23

21nbsp;22

50nbsp;49

41nbsp;45

47nbsp;44

38nbsp;33

37nbsp;32

20nbsp;24
19nbsp;28
23nbsp;30
22nbsp;27

21nbsp;17

-80°
340°

Centre at

5

0

7

8

9

15

10

12

9

12

10

9

25

10

18

15

9

14

14

15

12

9

8

20

30

19

13

24

7

20

21

7

10

10

0

28

29

33

19

20

5

29

29

31

23

20

4

35

30

27

21

24

3

41

27

28

21

23

2

29

20

23

28

25

1

32

33

27

28

18

-1

40

42

31

31

25

-2

43

30

29

20

30

-3

25

40

34

15

44

-4

33

31

23

27.

27

-5

20

28

20

18

15

-0

23

20

13

18

18

■ -7

13

28

28

15

8

-8

19

14

13

12

15

-9

17

19

18

13

5

-10

PLATE 50.

10
9
8
7
0
5
4
3
2
1
-1
-2
-3
-4
-5
-0
-7
-8
-9

-9 -8 -7 -0 -5 -4 -3 -2 -1

28 29 22 49 54 41 49 51 65
50 01 58 62 57 GO 71 102 00
62 73 02 08 99 248 405 135 157
71 100 225 147 195 258 190 219 105
81 71 109 109 199 141 179 290 315
78 105 129 219 193 190 274 332 435
105 123 145 209 273 291 394 474 458
102 170 247 307 428 489 497 605 679
199 307 380 357 538 585 583 680 881
188 231 267 339 398 450 618 778 839

44 53 71 67 52 30 31
76
66 203 199 55 60 52 51
86 102
189 251 112 108 74 08 71
188 157 170 229 131 144 123 104 86
337 273 178 162 162 153 J72 165 86

489nbsp;584 465 272 248 232 235 228 167
452 451 393 297 283 287 238 228
454 455 520 463 287 289 243 292 233
359 636 448 528 404 336 283 233 235

490nbsp;517 008 618 553 443 304 247 IQI

176 355 334 369 368 353 359 475 603
239 304 272 442 357 433 504 487 018
331 416 389 423 436 515 688 770 895
393 543 639 593 584 576 71410^ 1138
296 398 542 519 397 287 400 653 888
282 482 528 612 490 319 226 668 815
341 449 497 448 464 406 339 247 458
168 216 243 227 206 174 243 235 251
116 106 137 121 87 121 147 143 127
63 51 87 82 76 79 79 57 68

598 560 672 596 653 GdY^sTE^^
600 094 990 854 730 711 079 529 508
848 807 956 1183 912 817 782 040 510
973 9431025 893 990 779 903 098 466
912 889 670 573 620 728 677 566 394
715 578 269 298 318 316 313 269 269
368 345 250 207 214 276 224 218 168 \'
227 215 214 194 184 166 173 173 99
152 95 135 191 181 163 131 84 38
84 68 90 112 79 104 69 73 55 ■

Centre at •

-ocr page 29-

my sincere thanks to both these gentlemen. After a number of provisional
counts with both instruments the
Zeiss magnifier was. chosen for the final
counts; although its field of view was a little Smaller than with
Brücke\'s
instrument, it was superior to this latter in clearness and was moreover easier
to handle by its much smaller size.

When selecting the four plates to be counted, I was led by the consider-
ation that they should be representative, as far as was possible with such a
small number, of the different cases met with on the Harvard plates. So the
numbers 2, 6, 34 and 50 were chosen. The first two of these plates were taken
at Cambridge, the other two at Arequipa. The plates 6 and 50 cover regions
of small star-density, the other two parts of the Milky Way.

The results of my counts are schematically represented on pp. 13 and 14and
need no further explanation. It should only be noticed that the numbers for
b
and ^ under each scheme indicate the galactic latitude and longitude of the centre
of the plate and that the itaUcised figures are from fields counted also by
Henie.

It is now easy to ascertain how far the star-numbers which would have
been obtained for each of these plates by
Henie\'s method agree with the
numbers obtained by complete counting. In plate 2 e.g. I counted:

in I 15972 stars
in
II 17761 „
in
III 11945 „
in
IV 13261 „
total 58939 stars

With Henie\'s method we should have counted:
in
I 4425 stars
in
II 5050 „
in
III 3424 „
in
IV 3648 ..

total 16547 stars
which would yield for the whole plate by calculation

59569 stars

i.e. only 630 stars or 1.07 % more than the number actually found.

These results for plate 2, with the corresponding numbers for pi. 6,
34 and 50 have been collected in table III.

-ocr page 30-

TABLE III.

plate

Ca—Co

Calcul-
ated

Co

3648
774
639
11328

58939
10170
7967
119947

59569
9936
8035
117868

1.07%
—2.30
0.85
—1.73

Complete count in

By Henie\'s metl

Plate

I

II

III

IV

I

II

III

2

15972

17761

11945

13261

4425

5050

3424

6

2864

2309

2121

2876

742

632

612

34

2066

1622

1851

2428

567

447

579

50

21617

22115

34356

41859

5805

6090

9518

IV Counted

In the first column of this table the number of the plate is given in the

next four the numbers found by complete counting in each of the four quadrants-

in the following four columns the numbers which would have been found

by Henie\'s method for each of the four quadrants; in the tenth column the

actually counted total for each plate; in the eleventh the total number which

would have been calculated by Henie\'s method. In the last column the percent

age is given by which the numbers based on Henie\'s method exceed the
actually counted numbers.

From table III it is seen at a glance that there is no question of a
systematic difference between the star-numbers obtained by either method For
although one of the Cambridge plates, when counted by
Henie\'s method gives
more and the other fewer stars than when completely counted and although
the same holds for the Arequipa plates, still at Cambridge it is the Milky
Way plate that gives more stars, while at Arequipa this is the other way about

Also the absolute value of the error is very small. If we consider
the whole of the four plates, covering together an area of the sky of more than
3600 square degrees, the total of the stars found by Henie\'s method (in which
only about a quarter of the total surface is actually counted) would be
195408
while the complete count yields 197023 stars. So the error amounts only to
0.82 % of the exact number. This amount is certainly far exceeded by errors
resulting from other sources, viz. from the inaccuracy in determining the
limiting magnitude and from the uncertainty whether a spot on a plate is
caused by
a star or by a dust-particle.

-ocr page 31-

So we may take it as settled that in star-counts it is sufficient to
count a number of separate fields. However, a condition of paramount import-
ance is that these fields are spread as regularly as possible over the celestial
sphere.

When for the above-stated purpose I had completed my counts of
four plates of the Harvard Map, it seemed worth while to compare my
numbers with those found by
Henie for these four plates. The results are
given in table IV. In the first column the number of the plate will be found,
in quot;the second that of the quadrant. The third column contains the numbers
of stars counted by
Henie, the fourth the numbers found by myself. Of my
complete counts only those fields were, of course, retained which were also
counted by
Henie. The last column states, in a percentage of Henie\'s
numbers, the difference H.—N.

TABLE IV.

comparison of counts.

Numbers of stars

H.—N.

Plate

Quadrant

counted

Henie

Nort

H.

2

1

I 1

4469

4101

8.23 %

f}

II

3890

5050

—29.82

tf

III

3080

3384

— 9.87

ft

IV

4821

3284

31.88

6

1 I

591

742

—25.55

f}

II

639

632

1.10

yy

III

560

612

— 9.29

n

1 IV

574

764

—33.10

34

i I

753

567

24.70

gt;gt;

II

626

438

30.03

fgt;

III

718

579

19.36

gt;gt;

IV

993

639

35.65

50

I

7956

5805

27.04

gt;1

II

8223

6090

25.94

fi

III

19171

9518

50.35

ft

\\

IV

19389

11328

41.57

-ocr page 32-

This table reveals a very striking fact. In five out of sixteen cases Henie
counted fewer stars than I, in all other cases more. Bearing in mind the different
power of the optical apparatus used by
Henie and myself, I — from personal
experience — should have been inchned to expect a very different ratio.
The absolute value of the difference between
Henie\'s numbers and mine
varies from
1 % in the second quadrant of plate 6 to 50 % in the third quadrant
of plate
50, and in 11 of the 16 examined cases amounts to more than 25 %.
The cause of these enormous differences may of course lie either in the plates
themselves or in the counts or in both.

As to the first cause, the plates counted by Henie and myself are copies
of one and the same original and it is quite possible that these two copies
are not equivalent. One copy may be weaker than the other, either through
shorter exposure or, more probably, on account of less full development.
This would in itself not be serious. On the weaker copy one would count fewer
stars, to be sure, but on the other hand one would find a limiting magnitude
of less depth. This assertion is only true if the copies have been carefully
made, so as to bear the same ratio of density to the original all over the plate
If this were not the case the reduction of the plates would lead to very meagre
results. For in this reduction we start from the assumption, which probably
holds for the original so far as it is free from local fogging, that the limiting
magnitude is the same at equal distances from the centre. Now, if in taking
the copies, the various quadrants were unequally weakened, the above-stated
condition would no longer be fulfilled and the foundation on which the whole
reduction of the plates is based then becomes unreliable. How far this is true
can only be settled by one and the same observer counting different copies
under conditions as similar as possible. Since, as far as I know, only a single
copy of the Harvard Map is to be found in the Netherlands, namely at the
Utrecht Observatory, I requested Prof.
Pickering to be so kind as to send me
another copy of plates
2, 6, 34 and 50. To my disappointment the circumstances
occasioned by the war made it impossible to forward these plates, so that
this part of the investigation had to be given up for the present.

As a second possible cause of the large deviation between Henie\'s
numbers and mine the counts themselves were mentioned. Not only difference

-ocr page 33-

PLATE 6.

PLATE 6.

counted by mr. g. v.
12 3 4 5 6

biesbroeck.
7 8 9

-9 -8 -7 -6 -5 -4 -3 -2 -1

-9 -8 -7 -6 -5 -4 -3 -2 -1

counted by
2 3 4 5 6

THE AUTHOR.
7 8 9

10

5

7

6

7

9

13

12

6

7

11

7

7

8

3

11

7

6

10

13

7

15

12

10

13

23

17

8

13

23

15

15

10

10

13

8

11

10

8

10

7

8

9

10

10

14

9

13

7

13

8

16

15

10

9

8

9

10

12

9

11

14

14

18

19

24

26

20

13

11

17

18

14

11

8

9

6

8

10

11

15

11

17

22

11

18

12

16

9

12

10

10

7

7

8

10

12

15

13

21

14

26

31

13

26

27

26

16

16

11

16

11

12

8

13

8

12

14

10

11

18

19

28

18

21

16

22

10

11

9

6

7

7

11

14

24

19

18

20

26

30

30

35

37

30

36

18

16

15

10

12

7

11

9

12

12

12

12

22

17

26

25

46

21

23

16

14

12

10

9

6

16

13

21

16

12

25

26

33

43

36

60

28

31

27

20

17

18

11

6

8

8

13

16

16

18

34

36

27

22

41

47

38

32

21

16

4

5

5

15

15

23

22

23

23

47

54

50

!

32

66

55

44

39

33

35

10

8

5

8

12

9

9

21

25

35

37

46

49

46

43

40

27

34

5

12

11

4

13

19

12

22

31

34

50

47

54

68

74

50

48

39

41

14

17

19

4

8

10

4

11

21

18

39

47

49

39

50

38

40

40

20

13

16

18

3

14

10

7

20

25

25

51

56

75

62

89

79

66

60

28

25

27

26

3

9

9

13

15

18

29

35

36

38

47

48

43

. 42

40

17

16

17

17

o

12

11

24

19

29

55

53

61

64

69

70

62

55

48

29

19

19

28

2

1

8

10

24

28

33

33

44

50

43

52

33

47

35

31

20

20

17

1

3

9

25

31

37

48

53

60

77

68

(

82

64

71

55

35

23

23

16

1

9

10

8

26

34

26

49

46

48

52

37

47

38

40

26

25

13

20

-1

14

18

13

29

43

48

84

91

95

83

79

94

72

51

44

32

18

24

-1

10

13

9

7

15

22

30

46

57

31

42

36

41

32

37

17

13

11

1

14

14

21

16

35

41

47

69

95

67

63

66

65

52

48

19

21

20 ;

_o

9

7

9

18

10

28

33

27

45

50

42

45

45

34

21

12

15

6

-3

14

12

16

22

21

34

60

45

72

74

90

59

67

44

33

22

30

12

-3

8

9

10

15

10

8

28

47

31

32

34

27

29

31

33

12

12

4

14

18

21

41

27

25

37

61

61

57

56

47

46

37

36

15

17

9

-4

4

6

3

3

10

27

25

35

29

19

41

22

19

28

11

14

10

9

-5

5

6

8

6

25

31

25

45

45

46

57

61

35

40

21

21

18

11

-5

8

6

4

7

9

9

23

21

23

20

40

58

21

21

14

6

7

9

-6

11

6

7

15

17

11

39

36

53

25

70

83

49

46

33

8

10

13

-6

8

6

5

9

4

9

13

17

18

16

13

16

13

17

6

10

10

8

-7

11

9

10

12

11

15

19

27

27

21

40

45

32

45

15

8

14

i

7

-7

5

2

7

3

6

9

6

8

7

17

10

16

13

14

10

6

3

5

-8

7

2

6

5

10

13

7

9

11

14

23

20

22

15

9

9

5

7

-8

4

3

5

4

4

5

8

3

7

10

5

10

14

9

7

12

13

2

-9

4

3

7

5

8

8

10

5

14

]

18

10

18

21

16

9

12

14

1

1 1

-9

2

-

8

5

7

2

5

10

6

13

10

ID

7

15

11

10

5

8

8

-10

2

6

5

9

2

5

13

8

17

9

12

7

16

13

9

5

9

10

-10

o

-ocr page 34-

in tlie circumstances of illumination and in the strength of vision of the ob-
servers may of course lead to considerable discrepancies, but also their
appreciation of what are star-images and what specks. The part played by
the individuality of the observer may be ascertained by having the same
plate examined by two different persons under conditions as similar as possible
It is owing to the kindness of Mr.
G. van Biesbroeck, astronome adjoint
of the Royal Observatory at Uccle (Belgium), who temporarily resided at the
Utrecht Observatory, that this part of the investigation could be carried out
At my request Mr.
van Biesbroeck counted plate 6 with the same magnifier
and on the same background as were used by me. Page 19 shows the
comparison of our results.

It follows from this comparison that Mr: van Biesbroeck counted
only 2/g of the number found by me and this ratio is about the same in the
four quadrants; in I and II 0.67, in III and IV 0.62. In order to discover the
cause of this very considerable difference we recounted immediately after
each other various fields of plate
6. Although Mr. van Biesbroeck\'s numbers
now came somewhat nearer to mine, which according to him must be attributed
to the fact that during our conference the sky was clearer than when he had
counted alone, still the difference between his results and mine subsisted
So we both made sketches of some fields, containing everything shown by the
magnifier. It then turned out that the fact was not that one of us saw more
or fewer spots on the plate than the other, but that the difference must only
be ascribed to a difference in appreciating which of these spots represented
stars and which not.

That this difference in appreciation may lead to totally different
results is particularly disappointing, as it cannot be made out in practice
whose appreciation is the true one. That two observers, both of them doing
their very best to count accurately, both having a normal strength of vision
and both having sufficient routine for such counts, may arrive at so widely
diverging results, proves in my opinion that the need is pressing that photo-
graphs which must serve for counts, should be so arranged that it is possible
to decide with greater accuracy than with ordinary photographs whether or
not one has to do with a star-image.

-ocr page 35-

A last remark may be made on Henie\'s counts, the results of which
are found on pp.
7—34 of his paper. Henie omits to state whether he includes
star-clusters in his counts. If this be so, it would perhaps afford a partial
explanation of the excessively high number of stars computed by
Henie
from his counts of plate 50. This number namely amounts to 216329, while
by direct counting I found
119947. In the field containing the cluster N.G.C.
3114 Henie counted 678 stars against my 269 and in the field containing the
cluster N.G.C.
3523 he counted 1590 stars against my 990. I cannot state
with certainty, however, whether for these two fields the large difference
must be ascribed to this cause, since also in fields, certainly containing
no clusters, our numbers often diverge very much.

-ocr page 36-

CHAPTER III.

the determination of tiie limiting magnitude.

It is clear that to count the stars in different fields of a photographic
plate for statistic puri)oses is void of meaning unless the limiting magnitude
in those fields is accurately fixed. It is not sufficient to determine the limiting
magnitude at a single point of the plate; especially with plates covering such
a large area of the sky as those of the Harvard Map there is a great difference
between the limiting magnitude at the centre and near the margin. So we must
either determine the limiting magnitude for all the counted fields individually
or we must by means of a formula for the number of stars down to any magni-
tude derive from the limiting magnitude at a few points of the plate and from
the star-numbers found, a relation between the limiting magnitude at any
point of the plate and its distance from the centre.

\'fhis second method compares unfavourably with the former. In the
first place because it compels us to assume an
a priori formula for the number
of stars of every magnitude, which generally is exactly the aim of
star-counting.
Secondly because it is then tacitly assumed that the limiting magnitude has
the same value for all points at the same distance from the centre. Now with
the
original plates this will often be the case, at any rate if the centre was
focused and the plate was at right angles to the optical axis of the telescope.
But for
copies, printed by the double contact process, it is by no means certain
that this condition is satisfied, unless exceptional care has been taken in the
reproduction.

Henie used the second of the methods mentioned for determining the
limiting magnitudes. He himself writes on this account;!) quot;In order to determine
1) Henie. 1. c. pp. 42 and 43.

-ocr page 37-

quot;the limiting magnitude I have solely usedHAGEN\'s^^/as Stellarum Variahilium
quot;together with the photometric measurements of Pickering. This atlas,
quot;containing charts of variable stars with the surrounding comparison stars
quot;has previously been used by Prof.
Charlier to determine the limiting

quot;magnitude of\'Cartes du Ciel.

quot;The atlas gives for every chart an index of the magnitudes of the
quot;comparison stars in different scales. The scale used in this discussion is always
quot;the Harvard Scale. I have proceeded in the following manner. When the
quot;part of the negative, that corresponds to the Hagen chart is found, I have for
quot;each comparison between chart and plate noted the magnitude of the star
quot;in the Harvard Scale and the intensity of the photographic image of the
quot;same star, beginning with the brightest. In this way I get two series, one giving
quot;the increasing magnitudes, the other the decreasing intensities of the images.
quot;As the
Hagen charts generally contain fainter stars than the photographs,
quot;I accordingly arrive at a point, where the comparison star has no corres-
quot;ponding image on the plate; then the limiting magnitude is passed.quot;

This description and the accompanying table VP) give rise to the

following remarks:

1.nbsp;Henie explains how he states that the limiting magnitude is
passed, but not how it is determined. This is to be regretted, since it cannot
be made out now whether
Henie counted everything that was just visible
on the plates or whether he put himself a quot;limit of countingquot;. According
to
Van Rhijn^) the plates of the Selected Areas, which were counted at
Groningen, are only complete down to stars 0?6 brighter than the faintest
stars visible on the plate, so that it is necessary to fix a limit of counting if
the numbers of the faintest stars counted shall be reliable.

2.nbsp;In the second column of table VI Henie gives under n quot;the number
of comparisonsquot;. Without doubt the knowledge of this n will be necessary
for an appreciation of the limiting magnitude obtained, but the exact meaning
of this number of comparisons cannot be gathered from his description.

3.nbsp;If one refrains from determining the limiting magnitude for each

1)nbsp;Henie. i.e. pp. 43. 44 and 45.

2)nbsp;Van Rhi jn, Publications of the Astronomical Laboratory at Groningen, Nr. 27, pp. 10,11.

-ocr page 38-

individual field and therefore wants to derive a relation between the limitin

magnitude at any point of the plate and its distance from the centre itquot;!

essential that the number of points for which this limiting magnitude is directly

determmed be as large as possible. In this way, obviously, it is possible to

find such a relation without the intervention of a formula for the number of

stars of any magnitude. Henie evidently has felt this himself for on ^l^e

40 of his paper he says: quot;The table of the limiting magnitude of the different

quot;negatives. Table VI, shows in the cases in which this quantity has been

quot;determined in a series of points on the same plate, that the magnitude decreases

quot;from the centre of the j^late towards the margin. The problem is now to find

quot;the law of this decrease. An attempt to derive this law direct from the obser-

quot; vations failed because of the relative great probable errors in the determinatioi!^^

quot;and because of the observations being too scattered.quot; It is all the more surp^^

ing that Henie did not nearly use all the material at his disposal. For a first

and very striking example I take plate 2 0, since the number of points for which

Henie determined the limiting magnitude is largest for this plate, namely

seven. He used the surroundings of the variables V Vulpeculae, W Vulpeculae

TX Cygni, U V Cygni, S Y Cygni, VX Cygni and V Y Cygni. But besides
these variables we find on this plate:

H.A.nbsp;H.A.nbsp;H.A.

T Y Cygni, 57nbsp;Z Delphini, 57nbsp;S Aquilae 57

^ quot;nbsp;W „ ,63; 47 R Wnbsp;^ gg

T Sagittae, 57

» , 37nbsp;5

W W „ Tnbsp;„ , 57nbsp;R „ 63

Vnbsp;W „ Vnbsp;„ ^ 57; 47nbsp;V „ \' 57

quot;nbsp;Znbsp;„ , 57 RR Vulpeculae, Q3

W X „, 57 V Lyrae , 57nbsp;Rnbsp;37

R W „nbsp;R Unbsp;„ ,57 quot; \'

W Z „nbsp;Snbsp;„ ^ 57

U X „, 57nbsp;R Snbsp;„ ,57

U Y „, 63nbsp;R Vnbsp;,63

Vnbsp;X „, 63nbsp;Unbsp;„ ,57
T X „, 63

T W „ ,57

-ocr page 39-

i.e. 33 variable stars having sequences suitable for this purpose. These sequences
are found in the volumes of the Harvard Annals, mentioned in the second
column. So
Henie might have determined the limiting magnitude at 40 points
of the plate instead of at 7.

As another instance I take plate 24. At a single point only of the plate
the limiting magnitude has been determined, namely in the vicinity of
X Ceti.
But besides this variable we find on the plate:

H.A.nbsp;H.A.

U Arietis, 57nbsp;RX Tauri, 57

R Tauri ,37nbsp;R Orionis, 57

S Tauri ,37

so that the limiting magnitude might have been determined at 6 points.

Besides the three points mentioned there is still another question, passed
over by
Henie, but still of great importance. I mean the fundamental error inher-
ent in the method followed by
Henie — and also by others — of determining
the Hmiting magnitude, namely that the limiting magnitudes of photographic
plates are determined by means of
Hagen\'s visual magnitudes. Calling, as is
customary, the difference: photographic magnitude minus visual magnitude of
a star its colour-index, it is obvious that the above-described method must
have caused errors in every case in which the comparison stars had colour-
indices of a somewhat considerable value.
Kapteyn, who also used this method
of determining the limiting magnitude of plates, pointed this out emphatically.
He says^): quot;The results of the present paper are valid for
visual magnitudes
quot;and this though, for the greater part, the countings have been made onphoto-
quot;graphs. The fact is that the limiting magnitudes have been invariably yzswa/Zy
quot;determined. If we count all the stars equal to or brighter than any determined
quot;star S, then the fact that the countings are not made visually in the sky,
quot;but on photographs, will introduce an error in the case in which the difference
quot;between the photometric and visual magnitude of this star S is
exceptional.

1) J. C. Kapteyn. Publications of the Astronomical Laboratory at Groningen, Nr. 18, p. 5.

-ocr page 40-

2(5

quot;In this way errors must have been introduced in the results for the individual
quot;regions. But as, for the several regions, this error has a purely accidental
quot;character a
systematic influence on the final results need not be feared It is
quot;only the agreement of the separate results which must have suffered. In order
quot;to diminish as far as possible the errors for the individual plates, no single
quot;star has been used to define the limiting magnitude, if its difference in
quot;magnitude with one or more stars in its vicinity, as estimated on the photo-
quot;graph, seemed to be in conflict with the value of this difference
as determined
quot;visually at the photometer. Great part of our determinations are based on
quot;a fairly considerable number of photometrically determined stars. For these
quot;determinations even the accidental error in question must be insignificantquot;
From this quotation it appears that
Kapteyn not only thought it
necessary to point out this error in the method, but also that he attempted
to neutralise it as far as possible.
Henie did neither and this is the more
regrettable since it seems to me that
Kapteyn\'s remark that quot;for the several
quot;regions this error has a purely accidental characterquot; is not quite correct and
that quot;a systematic influence in the final resultsquot; is indeed to be feared, unless
measures are taken, as was done by
Kapteyn, to prevent this influence
My opinion is based on the following considerations. The amount of these
errors depends on the value of the colour-indices of thé comparison stars
Now if equal positive and negative values of the colour-index were equally
frequent in all parts of the sky, the errors would indeed present a purely
accidental character. This supposition, however, is not justified, as appears
from what follows:

In Harvard Ann. 64, 144, Pickering has tabulated the numbers
of stars of the different spectral classes, brighter than visual magnitude 6.25
in terms of their galactic latitudes. The latitudes quoted in the first column
are the average latitudes of each of eight approximately equal zones, beginning
with the one round the north galactic pole and ending with that which surrounds
the south galactic pole. This table I have inserted here as Table V, giving
percentages, however, instead of the original numbers. Of all stars brighter
than magnitude 6.25, occurring in the zone of average galactic latitude 62?3,
1 % accordingly belongs to spectral class B, 33 % to class A, etc. Here

-ocr page 41-

Pickering\'s division of the spectral types is somewhat different from the
usual one. viz.

B = O—B8;
G =F5—G2;

A = B9—A3;
K =G5—K2:

F = A4—F2.
M = K5—N.

TABLE V.

distribution of stars of different spectral classes.

Galactic

Spectra]

i Class

latitude

B

A

F

G

K

M

62?3

1

33

14

11

31

10

41.3

5

33

10

12

31

9

21.0

9

35

11

9

28

8

9.2

20

30

9

9

25

7

— 7.0

16

37

12

8

23

4

—22.2

16

29

12

10

26

7

—38.2

9

25

15

9

32

9

—62.3

6

20

15

13

38

9

Entire Sky

12

31

12

10

28

7

For each of these six spectral classes I computed the colour-indices
from the numbers given by
Pickering on page 7 of Vol. 71 of the Harvard
Annals, as follows:

Spectral class Bnbsp;A F G

Colour-index —0?25 0?04 0?29 0?66

K
1^12

M
1?56

Now firstly it appears that equal positive and negative values of the
colour-index have not only a different frequency, the positive values occurring
in a larger number of cases, but moreover these positive values have in part
much larger absolute values. Secondly we see that the frequencies of the
different values of the colour-index also depend on the galactic latitude. For if

-ocr page 42-

wc combine tlie northern and southern zones of the same galactic latitude we
find that for a galactic latitude of G2?3 thirty percent of the stars, brighter
than Cquot;\'2r), belong to classes A and B (blue stars), while lt;)■}% belong to class
M (red stars). These numbers arc for a galactic latitude of 8fl, respectively
511 % and 51 %.

How far the results here obtained must be modified for fainter stars
cannot be stated with certainty, since for these stars the necessary data as
to the spectrum are lacking. From
Pickering\'s remark^): quot;more than half
quot;of the stars of the ninth magnitude and brighter have spectra of Class A and
quot;the proportion is probably greater for faint stars, especially in the Milky Wayquot;
we should conclude that also for the fainter stars the colour-index depends
on the galactic latitude, that also for these stars positive values of the colour-
index are much more frequent than negative values and that consequently
also for these stars the danger of making
systematic errors in the determination
of the limiting magnitude of photographic plates, if this is done by
Henie\'s
method, really exists.

Although objections may be raised not only to the manner in which
Henie carried out his counts but also to his method of determining the limiting
magnitude and in these respects his counts certainly compare unfavourably
with those by
Kapteyn and by Chapman and Melotte, still for certain
purposes
Henie\'s material may be considered valuable for the following
reasons:

1.nbsp;Henie counted many more separate fields than the other
astronomers mentioned.

2.nbsp;Henie\'s material is much more homogeneous than that used
by
Kapteyn. It is especially this last advantage which should not be under-
rated. Very truly
Eddington^) says as recently as 1914: quot;much statistical
quot;matter that has been used up to now depends on the ingenious adaptation
quot;and correction of data which were initially rather unsuitable.quot;

These considerations induced me to use the results of Henie\'s counts

1)nbsp;Edw. C. Pickering, Harv. Ann. 71, 6.

2)nbsp;A. S. Eddington, Stellar Movements and the Structure of the Universe, p. 185.

-ocr page 43-

for some investigations in stellar statistics. It was necessary, however, to
re-reduce the results given by
Henie on pp. 7—34 of his paper. Since in
this method, of reduction I have departed from the way followed by him,
the manner of reducing will be dealt with in the following three chapters.

-ocr page 44-

CHAPTER IV.

reduction of the plates.

At the end of the preceding chapter it was remarked that the results
of
Henie\'s counts are not directly comparable among themselves. One of the
causes is that a square centimetre on the plate does not correspond to a constant
area on the celestial sphere. Therefore the numbers per square centimetre
have been reduced to numbers per square degree. The method by which this
is done is the same as that explained by
Henie^). We start from the supposition
that in taking the plates the centre has always been focused, that the focal
surface is a sphere and that the plates are tangent to this sphere.

Let r be the radius of the focal surface, du one of its surface-elements
corresponding to a sohd angle
dta and a surface da on the plate; let further
be the distance
oi da from the centre of the plate and qp the angle under
which e is seen from the centre of the focal surface, then

du {r^ 4- gquot;)nbsp;3

da =nbsp;^ {r^ e\') _ {r\'\'

cos tfnbsp;f 1nbsp;y

As the focal length of the lenses used for photographing is 13 inches
(30.00 cms.)2)j as din is expressed in units of solid angle and as 47r of such
units are equivalent to
41253.4 square degrees^) we have

(33^-f-e^f = 0.0000092308 (33=^ ?^......(1).

1)nbsp;Henie, 1. c. p. 36.

2)nbsp;Pickering gives about 13 inciies and this rougli estimate of the focal length would
entitle us to only two decimal places in the reducing factors. As however a direct
measurement
of the plates gave 33.00 cms. I have retained 5 decimal places, the last one, of course
being unreliable.

3)nbsp;Following Seeliger I took for a square degree a surface bounded by the parallel
circles Dec. = %° and Dec. = ~ and two hour-circles differing 1° in R.A.

-ocr page 45-

For the coefficient in formula (1) Henie found 0.0000092294. I have
not been able to discover the cause of this difference which appears to have
no influence on the coefficients of reduction.

By means of formula (1) it is now easy to calculate for each of the
360 fields of a plate the number by which the star-number per square centimetre
must be multiplied in order to obtain the star-number per square degree.
These numbers, multiplied by 1000, are found in table VI. The coefficients
for the fields usually counted by
Henie are printed in italics.- Since however
Henie sometimes departed from his usual scheme it was necessary to calculate
these coefficients for
all fields.

TABLE VL

reduction from square c.m. to square degree.

1

2

3

4

5

6

7

8

9

374

375

377

380

383

388

394

401

409

10

365

366

368

371

375

380

385

392

400

9

358

359

361

364

367

372

378

384

392

8

351

352

354

357

361

365

371

378

385

7

346

347

349

351

355

360

365

372

380

6

341

342

344

347

350

355

361

367

375

5

337

338

340

343

347

351

357

364

371

4

335

336

337

340

344

349

354

361

368

3

333

334

336

338

342

347

352

359

366

2

332

333

335

337

341

346

351

358

365

1

Centre of the plate.

The so reduced star-numbers, which I have not inserted here in order
not to become too elaborate, are not yet directly comparable among them-
selves. The limiting magnitude, namely, for which these numbers hold, has

-ocr page 46-

no constant value, it varies on each plate from centre to margin and from
one plate to another. The reduction of all fields to a single magnitude would
be very simple if we knew the limiting magnitude in each of the counted
fields. This is not the case, however. The number of points on each plate for
which the limiting magnitude is known is very limited and indeed far too
small to derive even an approximate law for the decrease of the limiting
magnitude from the centre towards the margin. So this law must de derived
in another way.
Henie proceeds as follows. He assumes that the star-density
shows no systematic decrease towards the margin if this is not the case with
the magnitude. But since the limiting magnitude decreases the density will
do the same. Now if the law of decrease of the density were known and also
the relation between density and magnitude the law for the decrease of the
magnitude could be deduced.

In order to arrive at a law for the decrease of density Henie divides
every plate into seven zones by circles, having their centres at the centre of
the plate and with radii of resp. 2, 4, 6 etc. cms. Four of these zones lie entirely
on the plate, the three others only partially. For all 55 plates the average
star-density is now calculated for each of the seven zones, expressed in the
number of stars per square degree. Several of the fields counted by
Henie
are of course intersected by the circles, in which case Henie considers such a
field as belonging to the zone in which the greater part of it falls. This is not
very accurate and in my opinion not justified if, as
Henie does, the average
densities are given in two decimals. This procedure has moreover the drawback
that zone VII (the outer one) contains only two fields which, for a reliable
result, is not sufficient.

Therefore, following for the rest Henie\'s method, I have calculated
the ratio of the parts of the intersected fields; the results arc for the upper
part of the plate represented in fig. 2. The numbers in the fields, usually
counted by
Henie, are underlined.

-ocr page 47-

-6

-I

-6

-5

-4=

-2

-1

1

.1.

2

3

5

6

7

8

9

Lop_

65y

V

95

/OO

il

63

68

i^—-
SS

98

98

83

___^

63

99

100

/oo

50y

/oo

/oo

66 .

9Z

/oo

/OO

/OO

/oo

/oo

/OO

/oo

/OO

9Z

66

/oo

\\

/oa

Jpo

/oo

^Oy/
/60

/oo

/OO

so

S6

.91

9$

86

80

/OO

/oo

/oo

/OO

too

fo/
/eo

/oo

97

A

M 60

-

/OO

/oo

too

/OO

/OO
_ p

/OO

/oo

/OO

97

a

/oo

/oo

^ /
A

/oo

97

/7S

/OO

96

56
^

z^
SO

B

9S

80

96

fOO

2Z

/oo

\\66

\' 32

/oo

/W

/OO

quot;A

/ay \'

/CO

/oo

/OO

/oo

/oo

/oo

/oo

60\\

/oo

Y
M. \\

so /
k

r-

/oo

96

i

r

7 sz

/OO

A

3/^
69

M

96

/oo

3l\\

96

/oo

\\S0
?b\\

/Oo

fOO

fzj

/oo

56 /

m

/oo

//6

/OO

/oo

/OO

/oo

K\'

/OO

w

«A

/oo

/oo

J
/ 86

/oo

/ so

/oo

3/ /
69

/QO

68y

/32

^

9/

\\

/oo

/oo

so\\

/oo

S6 \\

/oo

^00

93

/oo

9S

/amp;0

96

/OO

y

/ 9/

/oo

/OO

quot; 1

/oo

quot; 1

/Oo

/oo

9S

/oo

Fig. 2.

In computing tlie average density in each zone the parts of the
intersected fields are now related to the zone in which they really lie.
Six observations then fall in zone VII instead of two. The results of these
calculations are given in table VII. In the first column the number of
the plate is given, in the seven following columns the average density in each
of the seven zones, in the last one the average density of the whole plate, all
expressed as the number of stars per square degree.

10
9
8

1
^

5
^

3

2
J

-ocr page 48-

TABLE VIL

the densities in the seven zones and the mean densities of the plates.

Plate

1^5

Do

Dt

1

2

4

5

21 .quot;47
64.08
17.58
11.99
9.37

\'^T\'Tsf

85.42
16.27
14.33
8.69

31!08\'
75.30
17.88
12.26
6.00

26.79
59.93
15.02
8.88
6.15

23.90
51.29
10.17
8;i3
6.50

22.28
42.31
6.96
7.06
8.15

15.81
36.36
3.78
7.42
8.25

25.80
60.15
12.82
9.60
6.92

»

7

8
{)

10

11.13
20.01
14.89
23.54
54.03

\'12.4:5
16.94
13.84
24.80
51.96

10.02quot;

12.49

11.50
20.46
54.:}0

7quot;\'. 74
9.19
8.94
15.87
49.34

7.44
9. .32
8.97
12.14
45.22

7.59
7.55
7.47
9.11
40.28

7.86
8.89
6.00
5.57
42.73

8.6F

10.77
10.04
15.38
48.04

U
12

14
If)

27.83
50.21
51.70
39.87
30.18

24.74\'

53.01

42.71

42.92

29.92

23.45
41.30
;J3.60
;J2.00
31.28

19796
49.87
28.47
25.73
26.85

21.06
62.59
25.14
21.93
24.74

21.72
49.50
23.14
19.29
21.11

23.80
53.25
23.59
16.38
25.51

21.99
52.60
29.80
26.76
26.57

To

17

18

19

20

f4quot;.87
24.34
19.12
27.62
59.87

T7.74
25.79
17.18
23.41
40.20

16.85
24.24
13.61
22.22
29.00

12.82
22.49
11.29
19.13
21.39

13.26
24.90
9.94
18.34
18.57

13.98

21.99
7.95

17.36
15.84

18.05
23.76
8.20
15.04
18.44

14.55
23.90
11.70
19.60
25.00

21
22

23

24

25

33.17

13.95

16.96
28.30
58.30

24.26
16.82
18.16
29.64
64.20

16.44
16.43
25.39
67.29

20.00
19.00
14.94
23.;52
49.69

21.32
20.45
14.11
21.24
41.54

19.22
24.56

11.23
19.09
30.38

17.56
16.32
9.75
13.76
28.37

21.35
19.22
14.66
23.00
48.70

quot;26~

27

28

29

30

18.12
16.97
14.31
20.00
11.63

15.45
21.58
17.73
21.00
13.31

12.7^
21.10
13.13
21.67
11.80

10.42
19.15
10.70
19.01
11.65

9.46
18.86
10.22
17.23
11.18

7.31
17.33
11.30
14.51
14.86

5.53
17.21
10.24
15.10
22.40

10.75
19.26 .
11.89
18.42
12.44

31

32

33

34

35

26.70
15.39
16.09
9.37
19.21

16.85
17.91
16.08
12.49
17.84

21.90
20.10
14.31
11.80
12.88

16.94
16.94
11.77
10.44
11.27

16.93
15.52
12.71
10.69
13.32

15.01
13.08
15.53
11.56
.13.47

9.74
11.10
17.82
12.03
14.52

17.68
16.37
13.64
11.22
13.53

36

37

38

28.35
25.15
62.93

26.04
28.03
62.54

23.15
29.13
58.84

18.15
26..35
40.45

15.17
21.82
31.59

12.56
16.39
20.47

9.52
15.78
15.07

18.26
23.95
40.46

39

40

41.57
13.79

43.71
20.24

34.25
15.28

27.91
10.94

24.82
8.40

21.35
6.36

21.51
5.60

29.35
11.22

41

42

43

44

29.97

43.17
129.27

31.18

29.51
;^7.46
80.19
28.68

29.59
31.63
54.55
28.21

23.39
28.31
38.49
25.59

20.35
28.21
28.10
28.57

17.82
23.24
24.71
27.93

15.17
15.84
23.95
23.46

23.58
29.47
43.49
27.67

45

17.51

14.95

12.35

12.76

12.44

14.47

13.85

13.25

46

47

36.13
15.34

36.32
14.28

29.96
14.72

23.52
12.35

19.06
10.79

14.90
10.15

14.13
8.10

23.56
12.12

48

46.94

43.96

41.22

34.60

25.11

21.76

20.60

31.78

49

107.07

117.77

94.94

58.49

49.52

35.39

34.49

65.72

50 :

337.70

308.45

284.64

193.92

140.66

103.21

69.55

194.09

51

138.51

127.09

87.95

67.93

50.78

33.19

24.32

68.83

52

53

54

55

55.63
21.93
35.89
72.96

55.26
21.91
41.04
64.42

41.62
16.07
39.13
66.26

36.06
14.11
35.59
62.42

.33.27
14.61
28.04
50.48

26.57
12.42
18.09
39.56

22.26
14.72
14.10
41.74

37.13
15.48
32.61
56.34

Since it is our object to derive a law for the decrease in star-density which
applies to the entire set of plates, or, since this is scarcely attainable, for certain
groups of plates, individual peculiarities of each plate must be eliminated as

-ocr page 49-

far as possible. It is therefore desirable to calculate the relative density for
the zones of each plate,
i.e. the average density of a zone divided by the average
density of the whole plate. These relative densities are given in table VIII.

TABLE VIIL

the relative densities in the seven zones.

Plate

di

d2

d3

do

1

0.832

1.077

1.205

1.039

0.926

0.864

0,613

2

1.065

1.420

1.252

0.996

0.853

0.703

0.605 !

;5

1.371

] .269

1.395

1.171

0.793

0.543

0.295 i

4

1.249

1.493

1.277

0.925

0.847

0.736

0.773

6

1.354

1.256

0.868

0.889

0.939

1.178

1.193

(i

1.290

1.440

1.161

0.897

0.862

07880quot;

0.911

7

1.858

1.573

1.160

0.853

0.866

0.701

0.826

8

1.483

1.379

1.145

0.891

0.893

0,744

0.598

9

1.531

1.612

1.330

1.032

0.789

0,592

0.362

10

1.125

1.082

1.130

1.027

0.941

0.8,38

0.889

11

1.265

1.125

1.066\'

0.908

0.958

0.988

r.quot;082

12

0.955

1.008

0.785

0.948

1.190

0.941

1.012

13

1.735

1.433

1.128

0.955

0.844

0.776

0.792 1

14

1.490

1.604

1.196

0.962

0.820

0.721

0.612

15

1.136

1.126

1.177

1.011

0.931

0.794

0.960

16

1.022

1.219

1.158

0.881

0:912

0,961

1.241

17

1.018

1.079

1.014

0.941

1.042

0,920

0.994

18

1.634

1.469

1.163

0.965

0.850

0.679

0.701

19

1.409

1.194

1.134

0.976

0.936

0.886

0.767 1

20

2.395

1.608

1.160

0.8,56

0.743

0.634

0.738 !

21

1.654

1.136

1.022

0.937

0,999

0.900

0.822

22

0.726

0.875

0.855

0.989

1.064

1,278

0.849

23

1.157

1.239

1.121

1.019

0.963

0.766

0.665

24

1.230

1.289

1.104

1.014

0.924

0.830

0.598

25

1.197

1.318

1.382

1.020

0.853

0.624

0.583

26

1.685

1.437

1.184

0.969

0.880

0.680

0.515

27

0.881

1.121

1.096

0.994

0,979

0,900

0.893

28

1.204

1.491

1.104

0.900

0.859

0.950

0.861

29

1.086

1.140

1.176

1.032

0.935

0.788

0.820

30

0.935

1.070

0.948

0.937

0.899

1.195

1.801

31

1.510

0.953

1.239

0.958

0.958

0,849

0.551

32

0.940

1.094

1.228

1.035

0.948

0.799

0,678 1

33

1.180

1.179

1.049

0.863

0.932

1.138

1.306 !

34

0.835

1.113

1.052

0.930

0.952

1.031

1.073

35

1.420

1.319

0.952

0.833

0.984

0.996

1.073 i

36

1.553

1.426

1.268

0.994

0.831

0.688

0,522 1

37

1.050

1.170

1.216

1.100

0.911

0,684

0,659 I

38

1.555

1.546

1.454

1.000

0.781

0.506

0,372 i

39

1.416

1.489

1.167

0.951

0.846

0.727

0,733 i

40

1.229

1.804

1.362

0.975

0.748

0.567

0.499

41 -

1.271

1.252

1.255

0.992

0.863

0.756

0.643

42

1.465

1.271

1.073

0.961

0.957

0.789

0.538 i

43

2.972

1.844

1.254

0.885

0.646

0.568

0.551 1

44

1.127

1.036

1.019

0.925

1.033

1.009

0.848 !

45

1.321

1.128

0.932

0.963

0.9,39

1.092

1.045 i

46

1.533

1.542

1.272

0.998

0.809

0.632

0.600 \'

47

1.265

1.178

1.215

1.019

0.891

0.837

0.668 \'

48

1.477

1.383

1.297

1.089

0.790

0.685

0.648

49

1.629

1.792

1.445

0.890

0.754

0.538

0.525

50

1.740

1.589

1.466

0.999

0.725

0.532

0.358 !

51

2.012

1.846

1.278

0.987

0.738

0.482

0.353

52

1.498

1.488

1.121

0.971

0.896

0,716

0.600 i

53

1.417

1.416

1.038

0.911

0,944

0.802

0.951

54

1.101

1.256

1.200

1.091

0.860

0.555

0.432

55

1.295

1.143

1.176

1.108

0.896

0.702

0.741

-ocr page 50-

From this table it follows not only that the relative density decreases
from the centre to the margin, but also that this decrease is greater for plates
with a large than for such with a small average density (D„). Therefore the
plates are divided into three groups; in the first group we have collected those
for which Do lt; 20; in the second those for which 20 lt; Dolt;
35 and in the
third those for which D„ gt; 35. It must be admitted that the values 20 and 35
are quite arbitrary,but as any other partition would be just as arbitrary I have
herein followed
Henie. In table IX we find under n the number of plates
belonging to each group and in the next columns the relative densities for each
group with their probable errors in each of the seven zones.

TABLE IX.

relative densities in the three groups of plates.

CM

i
0

11

\'li

d2

do

de

dr

i

ii

iii

\'—^—

27
17
11

1.279± 0.036
1.359± 0.058
l.549±0.116

1.292^-0.028
1.287±0.031
i.461±0.0g1

1.134± 0.018
l.i51±0.01{5
1.249±0.041

0.956± 0.009
0.984±0.01]
0.985±0.013

0.90,3± 0.009
0.897±0.014
0.843± 0.030

0.861±0.026
0.780^0.021
0.650± 0.030

0.831±0.042
0.724± 0.028

0.599j-0.043

=

For each of the above-mentioned groups the law has thus been derived
according to which the star-density decreases from the centre towards the
margin. In order now to derive the law by which the limiting magnitude
decreases towards the margin, we must, as has already been stated, assume
a formula for the number of stars as a function of the magnitude.
Henie
adopts the formula given by CharlierI) for the number of stars of magnitude
m in a definite area of the sky, namely

{mnio) ■
2 k^ ~

N —
e

(2)

a (m) =

2 IT

where N, k and m« are constants, to be derived from actual countings.

1) C. V. L. Charlier. Studies in Stellar Statistics. Lunds Universitets Arsskrift
N. F. Afd. 2, Bd. 8, Nr.
2, pp. 32 and 33,

-ocr page 51-

Denoting further by A (w) the number of stars in this definite area, brighter
than m,

im—Wo)quot;

N

gt; \'nbsp;/l\' I / ft TT

,-mnbsp;N

dm

CO

or, putting

= kxnbsp;dm = kdx

m—nia

k

dx

J — cc

X\'

N

A (W) =

1/ 27r

Introducing the probability integral P

r» X

e

—X

px

X\'

a;-

enbsp;dx

dx = —^

1/27,

K 2 TT

we have

N ( ■

A(m) = -jl -P
For
m =11 this becomes

MoM

(3)

k

A(ll) = f|l-P

Dividing (4) by (3) we obtain

Mn}n\\
[ k

(4)

mo—11

1 —P

k

rm,,—m

A (11) = A(m)

1 —P

k

or, if we put

Wo--111
[ k

1 — P

:nbsp;............(5)

Wo—M

1 —p

k

A (11) = A (w). R (w)

(6)

-ocr page 52-

Applying (6) to a definite part of one of our plates for which the limiting
magnitude is
m and dividing by the surface of this part, we get

D(ll) = D.R(w)..................

where D is the density of this area and D (11) denotes the density which
it would show if the limiting magnitude were 11?0.

Let moreover ^ be the limiting magnitude which the plate ought to have
everywhere in order to render the star-density at any point of that plate
equal to its average density Do. We then have •

D(11) = Do. R(/^)..................(8)

From (7) and (8) we find

R(m) = ^ x R(/^)................ (9)

where = is the relative density in the portion of the plate under consider-
ation.

Now (9) gives a relation between the relative density at a point

of the plate and the limiting magnitude at that point and we might use

this formula for calculating this latter quantity from the former if we had

a table for R {m) with m as argument and if we knew the value of i»- for everv
plate.nbsp;^

A table for R {m) with m as argument might be computed by means
of (5), provided we knew the values of the parameters
m^ and k. Charlier
gives the value of these two parameters in 9 areas of the zone Ci) enclosed
by the equator and the parallel circle Dec. = 30°, each area extending
30° in R.A. Since especially the parameter m, largely depends on the
star-density, it seemed appropriate to divide the nine areas of
Charlier
into three groups. In the first were placed the areas C«, C, and C, with small
star-density; in the second C,, C„ C3, C5 and C, with average star-density,
1) C. V. L. Charlier, I.e. p. 40.

-ocr page 53-

the third group containing C4 alone, in which the star-density is very great.
For each of these three groups the average values of Wo and
k have been
tabulated in table X.

TABLE X.

average values of fuo and k.

Group

Areas

nio

k

I

Ce^ C7, Cs

17.66

3.044

II

C] J C2J C3, C5, C9

18.32

3.018

III

C,

20.07

3.119

With these values of m^ and k the coefficient R (w) was calculated

for each of the three groups by formula (5) for w = 9.6,9.7, 9.8........12.6.

From these values those for every 0.01 magnitude were interpolated; they
are found for each group separately in tables XI
a, XI h and XI c.

{

-ocr page 54-

TABLE Xr^

table of r(m) por group i.

r(m)

K(m)

liim)

k{w)

K(m)

k(m)

\\i(m)

0.(50

.()2

.()4
.05
.0(5
.(57
.08
.00

;{.40
3.40
;5.4;i
;5.;}o

.\'$,;5;i

3.27
3.24
3.21

9.00
.01
.02
.03
.94
.05
.00
.07
.08
.09

2.(52
2.60
2.58
2.55
2.53
2.51
2.49
2.40
2.44
2.42

10.20
.21
.22
.23
.24
.25
.26
.27
.28
.29

2.00
1.98
1.90
1.94
1.93
l.OJ
1.80
1.87
1.80
1.84

10.50
.51
.52
.53
.54
.55
.50
.57
.58
.50

1.53
1.52
1.50
1.40
1.48
1.47
1.45
1.44
i.4:i
1.42

10.80
.81
.82
.83
.84
.85
.86
.87
.88
.89

1.18
1.1
1.10
1.15
1.14
1.13
1.12
1.11
1.11
1.10

11.10
.11

0.922
0.015
.120.907
.130.000
0.802
0.885
0.878
0.870
0.803
0.855

11.40
.41

0.724
0.719

11.70
.71
.72
,73

0.574
0.570
0.506
0.502

12.00

0.460

12.30
.31
.32
.33
.34
.35
.36
.37
.38
.39

0.371
0.308
0.306
0.363
0.361
0.358
0.356
0.353
0.351
0.348

.010.457
.020.453

•42 0.713
.43 0.708

.03
.04
.05
.06
.07

0.450
0.447
0.443
0.440
0.437

.14
.if
.10
.17
.18
.19

.44
.45
.40
.47
.48

0.702
0.097
0.092
0.080
0.081

.74 0.558

.75
.76
.77
.78
.79

0,553
0.549
0.545
0.541
0.537

•080.4.34
.090.430

.49 0.075

0.70
.71
.72
.73
.74
.75
.70
.77
.78
.79

3.17
3.15
3.12
3.09
3.00
3.03
3.00
2.97
2.95
2.92

10.00
.01
.02
.03
.04
.05
.06
.07
.08
.09

2.39
2.37
2.35
2.33
2.31
2.29
2.28
2.20
2.24
2.22

10.30
.31
.32
.33
.34
.35
.36
.37
.38
.39

1.82
1.81
1.79
1.77
1.76
1.74
1.73
1.71
1.70
1.08

10.60
.01
.02
.03
.04
.05
.00
.07
.68
.09

1.4C
1.39
1.38
1.37
1.36
1.35
1.33
1.32
1.31
1.30

10.90
.91
.92
.93
.94
.95
.96
.97
.08
.09

1.09
1.08
1.07
1.00
1.05
1.04
1.03
1.03
1.02
1,01

11.20 0.848

11.50
.51

,52

0.670
0.665
0.060
.055
0.050
.044
.639
0.634
580.629
59 0.624

11.80 0.5,33
.81 0.529
•820.525
,830.522
.840.518
.850.514
■860.510
■87 0.500,
•880.503
•890.499

12.10
.11
.12
.13
.14

0.427
0.424
0.421
0.418
0.415
150.412
160.410
17 0.407
180.408
190.401

12.400.346

.21
.22
.23
.24
.25
.26
.27

0.841
0.835
0.828
0.822
0.815
0.809
0.802

.41

.42
.43
.44
.45
.46
.47

0.344
0.341
0,329
0,336
0,334
0.332
0.329

.530
.54
.550
.500

.280.790

.480.327
.490.324

.29

0.789

9.80
.81
.82
.83
.84
.85
.80
.87
.88
.89

2.89
2.80
2.84
2.81
2.78
2.76
2.73
2.70
2.68
2.65

10,10 2.19

10.40 1.07

10.70
.71
.72
.73
.74
.75
.70
.77
.78

1.29
1.28
1.27
1.20
1.25
1.23
1.22
1.21
1.20

11.001.00
.010.992
.020.984

11.30

0.783

11,60
,61

0.619
0 614

11.90
91

0.495
0.491

92nbsp;0.488

93nbsp;0.484
0.481
0.477
0.474
0.470
0.467

12.20
.21
.22

0.398
0.395
0.393

12,50
.51

.52

0.322
0,320
0.318

.11
.12
.13
.14
.15
.16
.17
.18
.19

2.17
2.15
2.13
2.11
2.09
2.07
2.05
2.04
2.02

.41
.42
.43
.44
.45
.46
.47
.48
.49

1.05
1.04
1.03
1.61
1,60
1,58
1,57
1,56
1,54

.310.777
.320.771

.62 0.010
.630.605
.64 0.601
.05 0.596
.660.592
.67 0.587

.03
.04
.05
.06
.07

0.977
0.909
0.901
0.953
0.945

.33
.34
.35
.36
.37

0.765
0.759
0.753
0.748
0.742

.23 0.390
.24 0.387

.53 0.316

.54
.55
.56
.57
.58
.59

0,314
0.312
0.310
0.308
0.306
0.304

.25
.26
.27
.28
.29

0.384
0.382
0.379
0.376
0.374

.080.938
.090.930

.38 0.736

.68
.69

0.583
0.578

.79 1.19

.39

0.730

990.403

-ocr page 55-

TABLE XIV

TABLE OF R(m) FOR GROUP IL

R{m)

R(m)

R(m)

K(m)

R(gt;w)

K(,«)

R(m)

K(m)

R(w)

9.60
.61
.62
.63
.64
.65
.66
.67
.68
.69

10.50
.51
.52
.53
.54
.55
.56
.57
.58
.59

1.60
1.58
1.57
1.55
1.54
1.53
1.51
1.50
1.48
1.47

10.80
.81
.82
.83
.84
.85
.86
.87
.88

3.96j
3.92
3.88
3.84
3.81
3.76
3.73
3.69
3.65
3.62

10.20
.21
.22
.23
.24
.25,
.26
.27
.28
.29

1.20
1.19
1.18
1.17
1.16
1.15
1.14
1.13
1.12
1.11

11.10
.11
.12
.13
.14
.15
.16
.17
.18
.19

0.915
0.907
0.899
0.891
0.883
0.874
0.866
0.858
0.850
0.842

9.90
.91
.92
.93
.94
.95
.96
.97
.98
.99

2.14
2.12
2.10
2.08
2.06
2.04
2.02
2.00
1.98
1.96

2.90
2.87
2.85
2.82
2.79
2.76
2.73
2.70
2.67
2.65

11.40
.41
.42
.43
.44
.45

0.699
0.693
0.688
0.682
0.676
0.670
.665
0.659
480.653
490.648

11.70
.71
.72
.73
.74
.75
.76

0.541
0.537
0.532
0.527
0.524
0.519
0.515

12.00
.01
.02
.03
.04

0.422
0.419
0.415
0.412
0.409
.050.405
.060.4021
0.399
0.396
0.392

12.30
.31
.32
.33
.34
.35

0.331
0.329
0.326
0.324
0.321
0.319

.460
.47

.360.317
.37 0.314

.770.511
.780.507
.790.502

.07
.08
.09

.38
.39

0.312
0.309

9.70
.71
.72
.73
.74
.75
.76
.77
.78
.79

10.60
.61
.62
.63
.64
.65
.66
.67
.68
.69

10.90
.91
.92
.93
.94
.95
.96
.97
.98
.99

10.00
.01
.02
.03
.04
.05
.06
.07
.08
.09

1.45
1.44
1.43
1.41
1.40
1.39
1.37
1.36
1.35
1.33

1.09
1.09
1.08
1.07
1.06
1.05
1.04
1.03
1.02
1.01

11.20
.21

.22
.23
.24

3.57
3.54
3.50
3.47
3.43:
3.39
3.36
3.32
3.28
3.25

2.62
2.59
2.57
2.54
2.52
2.49
2.47
2.44
2.42
2.39

10.30
.31
.32
.33
.34
.35
.36
.37
.38
.39

1.94
1.92
1.91
1.89
1.87
1.85
1.84
1.82
1.80
1.78

0.834
0.827
0.820
0.813
0.806

11.50 0.642
.510.637
.520.631
.53 0.626

11.800.498
.810.494
.820.490
.830.486
.84 0.482
.850.478
.860.474
.87 0.470
.88 0.466
\'.890.462

12.10
.11
.12
.13
.14
.15
.16
.17

0.389
0.386
0.383
0.380
0.376
0.374
0.371
0.368
.365
0.362

12.40
.41
.42
.43
.44
.45
.46
.47 0
.48
.49

0.307
0.305
0.303
0.300
0.298
0.296
0.294
.292
0.289
0.287

.54
.55
.56
.57
.58

0.620
0.615
0.610
0.604
0.599

.250.799
.26 0.793

.27
.28
.29

3.786
0.779
0.772

.180
.19

.590.593

9.80
.81
.82
.83
.84
.85
.86
.87
.88
.89

1.32
1.31
1.29
1.28
1.27
1.26
1.25
1.24
1.23
1.22

11.00
.01
.02
.03
.040
.05
.06
.07
.080

3.21
3.18
3.15
3.12
3.09
3.06
3.03
3.00
2.97
2.93

2.37
2.35
2.32
2.30
2.28
2,25
2.23
2.21
2.19
2.16

10.40
.41
.42
.43
.44
.45
.46
.47
.4S
.49

10.70
.71
.72
.73
.74
.75
.76
.77
.78
.79

1.00
0.991
0.983
0.974
.966
0.957
0.949
0.940
.932
.923

11.30
31

10.10
.11
.12
.13
.14
.15
.16
.17
.18
.19

1.76
1.76
1.73
1.71
1.70
1.68
1.66
1.65
1.63
1.61

0.765
0.758
0.752
0.745
0.739
0.732
0.725
0.719
380.712
390.706

11.60
.61
.62
.63
.64
.65
.66
.67
.68
.69

0.588
0.583
0.579
0.574
0.569
0.564
0.560
0.555
0.550
0.546

11.90 0.458
.910.454
.920.451
.930.447
.94 0.444
.950.440
.960.436
.97 0.433
.980.429

12.200.359
.356
.353
.351
.348
.345
.342
.339
.337
.334

12.500.285

.210
.220,
.230
.240
.250
.260
.270
.280
.290

.51

0.283

.520.281

.53
.54
.55
.56
.57
.58
.59

0.278
0.276
0.274
0.272
0.270
0.267
0.265

.090

.99

0.426

-ocr page 56-

TABLE X19

TABLE OF R(m) FOR GROUP in.

R(m)

li(m)

R(W)

R{w)

R{m)

R(w)

K(w)

R{m)

K(m)

R(wj)

10.20
.21
.22
.23
.24
.25
.20
.27
.28
.29

9.90
.91
.92
.93
.94
.95
.90
.97
.98
.99

3.28
3.25
3.21
3.18
3.14
3.10
3.07
3.03
3.00
2.90

2.35
2.32
2.30
2.27
2.25
2.22
2.20
2.17
2.15
2.13

10.50
.51
.52
.53
.54
.55
.50
.57
.58
.59

4.03
4.58
4.53
4.47
4.42
4.37
4.32
4.27
4.22
4.17

1.70
1.08
1.00
1.04
1.63
1.61
1.59
1.57
1.56
1.54

10.80
.81
.82
.83
.84
.85
.80
.87
.88
.89

9.00
.01
.02

.04
.05
.00
.07
.08
.09

1.23
1.22
1.21
1.20
1.18
1.17
1.16
1.15
1.14
1.12

11.10
.11
.12
.13
.14

0.906
0.897
0.888
0.879
0.870

11.40
.41
.42
.43

0.671
0.665
0.658
0.652

11.70
.71
.72
.73
.74
.75
.76
.77
.78

0.501
0.496
0.492
0.487
0.483
0.478
0.473
0.469
0.464

12.00
.01
.02
.03
.04

0.377
0.374
0.370
0.36\'
0.303
050.300
000.357
07 0.353
080.350
090.346

12.30
.31
.32
.33
.34

0.285
0.283
0.280
0.278
0.276
.350.273
.300.271
.37 0.269
.380.267
.390.264

.440.645

.150.861

.45
.46
.47
.48
.49

0.639
0.633
0.626
0.620
0.613

.16
.17
.18
.19

0.853
0.844
0.835
0.826

.790.460

4.12
4.07
4.03
3.98
3.94
3.89
3.84
3.80
3.75
3.71

10.00
.01
.02
.03
.04
.05
.00
.07
.08
.09

2.93
2.90
2.87
2.83
2.80
2.77
2.74
2.71
2.08
2.05

10.30
.31
.32
.33
.34
..35
.36
.37
.38
.39

2.10
2.08
2.06
2.03
2.01
1.99
1.97
1.95
1.93
1.91

9.70
.71
.72
.73
.74
.75
.70
.77
.78
.79

10.60
.01
.62
.63
.64
.65
.00
.07
.08
.09

1.52
1.51
1.49
1.47
1.46
1.45
1.43
1.41
1.4G
1.38

11.20
.21

10.90
.91
.92
.93
.94
.95
.96
.97
.98
.99

1.11
1.10
1.09
1.08
1.07
1.06
1.05
1.04
LOS
1.02

0.817
0.809
.220.801

11.50
.51
.52
.53
.54
.55
.56

0.607
0.001
0.596
0.590
0.584
0.578
0.573

11.800.455
.810.451

12.10
.11
.12
.13
.14
.15
.16

0.343
0.340
0.337
0.334
0.331
0.328
0.325
17 0.322
180.319
190.314

12.40
.41
.42
.43
.44
.45
.46
.47
.48
.49

0.262
0.200
0.257
0.255
0.253
0.250
0.248
0.246
0.244
0.241

.8;
.8;
.84
.85
.86
.87
.88
.89

0.447
0.442
0.438
0.434
0.430
0.426
0.421
0.417

.23

0.793

.24 0.785

.25
.20
.27
.28
.29

0.777
0.770
0.762
0.754
0.746

.57 0.567

.58
.59

0.561
0.556

3.00
3.03
3.59
3.55
3.51
3.47
3.43
3.40
3.36
3.32

9.80
.81
.82
.83
.84
.85
.80
:87
.88
.89

10.10
.11
.12
.13
.14
.15
.16
.17
.18
.19

2.02
2.59
2.56
2.54
2.51
2.48
2.40
2.43
2.40
2.38

10.40
.41

.42
.43
.44
.45
.40
.47
.48
.49

1.88
1.80
1.84
1.83
1.81
1.79
1.77
1.75
1.73
1.71

10.70
.71
.72
.73
.74
.75
.70
.77
.78
.79

11.001.00

11.30

1.37
1.35
1.34
1.33
1.31
1.30
1.29
1.27
1.26
1.25

0.7.38

11.00
.01
.62
.63
.64
.65
.66
.07
.68

0.550
0.545
0.540
0.5.35
0.530
0.525
0.521
0.516
0.511
690.506

11.90
.91
.92
.93
.94
.95
.96

0.413
0.409
0.406
0.402
0.399
0.395
0.391

12.200.313
.210.310

12.500.239
.51
.52 (
.53 (
.54 (
nn.1

.01
.02

.03

0.991
0.981
0.972

.310.731

0.237
0.235
0.233
0.231
0.229
0.227
0.225
580.223
.590.221

.32
.33
.34
.35
.36
.37
.38
.39

0.725
0.718
0.711
0.704
0.698
0.691
0.084
0.678

.22
.23
.24
.25
.26
.27
.28

0.307
0.305
0.302
0.299
0-296
0.293
0.291

.040.962
.050.953
.060.944
.07 0.934
.080.925
.090.915

.tgt;t)
.56
.57

.970.388
.980.384

.99

0.381

.290.288

-ocr page 57-

As a matter of course the value of ^ will not differ much from the
average limiting magnitude of the plates of the Harvard Map,
i.e. from
a Httle over 11?0. Therefore by means of formula (9) the values of
m
were calculated from the densities of table IX for ^ = 10.5, =11.0,
M = 11.5 and ^ = 12.0. In these calculations the values for R (w) for plates
of the first second and third group were taken from table XI
a, XI b and XI c
respectively. The obtained results, which are considered to hold for the
distance of the middle of each zone from the centre, are found in table XH.

TABLE XH.

values for the limiting magnitude m for different values of

Group

Value of m in

Zone

1

2

1

i 3

4

5

6

7

I

10.5

10.79

10.80

1

10.65

10.45

10.38

10.33

10.29

11.0

11.30

11.32

11.15

10.95

10.88

10.82

10.78

11.5

11.82

11.84

11.66

11.44

11.37

11.31

11.26

12.0

12.34

12.36

12.17

11.94

11.86

11.80

11.75

H

10.5

10.83

10.77

10.65

10.48

10.39

10.24

10.17

11.0

11.34

11.28

11.16

10.98

10.88

10.73

10.66

11.5

11.87

11.80

11.66

11.48

11.37

11.22

11.13

12.0

12.38

12.31

12.17

11.98

11.87

11.70

11.61

HI

10.5

10.91

10.86

10.71

10.49

10.34

10.10

10.03

11.0

11.44

11.38

11.22

10.99

10.84

10.59

10.52

11.5

11.96

11.90

11.73

11.49

11.33

11.07

10.99

12.0

12.48

12.42

12.24

11.98

11.82

11.55

11.47

The numbers of the third column of table XH were now successively
subtracted from the numbers of the next six columns. These differences
were averaged for the same group and for the same distance from the centre,
the averaging being justified by the fact that the differences in the value of
n do not play a great part. The results were used for plotting the curves of
fig. 3, which illustrate for each of the three groups of plates the law of decrease

-ocr page 58-

of the hmiting magnitude from the centre to the margin. The abscissae represent

the distance from the centre in milhmetres, the ordinates the difference between

tlie limiting magnitude and that at the centre, expressed in hundredths of
a magnitude.

Fig. 3.

20 W 60 80 /OO W /iO

-10
-20
-30
-iO
-50
-fiO

:::

-

-

-

-

-

-

-

\\

-

-

-

-

-

-

\\

\\

--

-

-

-

-

-

-

-

-

-

-

_

-

-

-

-

-

-

-

, 1

-

\\

\\

-

\\

\\

\\

\\

gt;

-

ii

-

-

\\

\\

\\

\\

\\

\\

\\

\\

\\

\\

1

iii

O
-10
-20
-30
-iO
-50
-60
-70
-80
-SO
-100

Curve I shows a maximum at a distance of 16 mms. from the centre
In order to test its\'reality the limiting magnitude for Group I was also cal-
culated at25 mms. from the centre by means of a different division into zones.
The point so obtained is marked in the figure and is seen to lie very near the
curve.

Most striking is the great difference between the curves I and III
It is a well-known fact that star-counting gives rise to systematic errors
depending on the star-density, as this density, in visual work, affects the
estimates of magnitudes to a considerable amount. In counting on a photo-
graph, however, the density cannot possibly affect the estimation of magnitude.
How then shall we explain the large difference between both curves? Two
causes may have been active. In the first place the supposition on which
the law of decreasing density — and consequently also that of decreasing
hmiting magnitude — is based, may perhaps not hold for the plates of the
third group. Secondly it seems possible that the colour of the stars plays
an important part. I shall briefly explain my view on these two points.

-ocr page 59-

As to the first, it was pointed out on page 32 that in deriving the density
law the star-density was supposed not to show any systematic decrease
towards the margin if the limiting magnitude was the same all over the plate.
Now this assumption will certainly not be correct for plates of the dimensions
of the Harvard Map; on these two fields may be situated at the same
distance from the centre and yet differ as much as 30° in galactic latitude.
On account of the galactic condensation we cannot expect the star-density
to be the same in two such fields and so the galactic condensation may influence
the decrease of the star-density and hence also of the limiting magnitude
towards the margin. On closer consideration it will be clear that this influence,
if present, must be greatest on such plates as have their centre exactly on the
galactic circle. This is very nearly the case with plates 2, 3, 13, 20, 37, 42, 49
and 50. Now the fact that only three of these plates belong to group HI is
in itself sufficient to prove that the influence of galactic condensation cannot
be the cause of the great difference between the curves I and IH.

As to the second point — the influence of the colour of the stars —
the following may be remarked. That on a plate the limiting magnitude near
the margin is smaller than at the centre is caused by the fact that the images
near the margin are of a larger size than those of equally bright stars at the
centre. This larger size depends on the shape of the focal surface and this
again is closely related to the refractive index of the star-light. Now since
it appears from table V that the percentage of blue stars increases as we
approach the Milky Way, and since the plates of group III, except plate 25,
lie on the whole much nearer to the Milky Way than those of group I, it is not
impossible that it is the colour of the stars which causes the great difference
between the curves I and III. I regret that the numerical data at my disposal
do not enable me to investigate this interesting point further. No more can
I explain the maximum in curve I.

As soon as the law, governing the decrease in limiting magnitude
towards the margins has been derived for each group of plates, we may reduce
the star-density in each field to the limiting magnitude ll?0. This reduction
is carried out in the following manner.

-ocr page 60-

Each hmiting magnitude determmed by Henie for a certain distance

from the centre gives, by means of one of the curves of fig. 3 the cent a

hmiting magnitude of the plate under consideration If several 1

found for the limiting magnitude at the centre, their mean is taken

way the limiting magnitudes for the centres of 39 plates have been calclted
and collected in table XIILnbsp;calculated

TABLE XIIL

i

2

3

4

5

6

7

8

9

94

96

98

100

104

110

114

120

126

10

84

86

88

92

96

100.

106

112

120

9

74

76

78

82

86

92

98

106

112

8

64

66

70

74

78

84

92

98

106

7

54

56

60

64

70

78

84

92

100

6

44

48

52

56

64

70

78

86 ,

96

5

36

38

44

50

56

64

. 74

82

92

4

26

28

36

44

52

60

70

78

88

3

16

22

28

38

48

56

66

76

86

2

8

16

26

36

44

54

64

74

84

1

-ocr page 61-

For each group we may now find from one of the tables XI a, XI h
or XI
c the coefficients R (w) by which the star-numbers in the several fields
must be multiplied in order to obtain the numbers down to the eleventh
magnitude. In this way the 39 plates, enumerated in table XIII, were reduced.
The results of this reduction will be given in the next chapter.

It would take too much space and would moreover be of secondary
importance to mention all the details in which my method of reduction
deviates from that used by
Henie. May it suffice to remark that Henie,
although he had found that the density-law and the parameters of Charlier\'s
formula are different for the three groups mentioned, still with respect to
the decrease of the limiting magnitude towards the margin treats all plates
as equivalent. To me this seems inadmissible and I believe that the curves
of
fig. 3 sustain this view.

-ocr page 62-

CHAPTER V.

determination of the limiting magnitude by means of overlapping

fields. the reduced plates.

In table XIII the limiting magnitude at the centre has been quot;
for
30 plates. For the remaining 16 plates this quantity could not be calc^Id
m the usual way since for these plates Henie gives no data. He savs on
this account): quot;The reason why no determination has been made
on Lse
^ pla es
is that no Haoen chart exists for variables more southern than about
-30 and as for the few northern the magnitudes in some cases are not dven
quot;m the Harvard Scalequot;. On page
52 he says further: quot;For these plates I have
quot;made use of those parts of the negatives that are covered by the more north^^
quot;ones with known limiting magnitude and I have adopted those values of the
\'\'hmitmg magnitude, that agree best. My mode of proceeding has been that
quot;I have supposed one value of the magnitude of the plate in question and
quot;calculated the reduced densities on this supposition. The part in common
quot;between the plate in question and the more northern one at once shows if
quot;the supposed value \'quot;s correct. If this had not been the case, the value has
quot;been modified until the best agreement has been obtained.quot;

The present author used a more direct method that will be best
elucidated by the following example. Plate 27 is partially covered by plates
14, 15, 16, 26, 28, 38, 39 and 40. Of plate 40 the limiting magnitude is un
known. With 15, 26 and 39 plate 27 has no counted fields in
common- with
28ji^and with 14,16 and 38 one each. For these coinciding fields the equatorial
1) H. Henie, I.e. p. 46.

-ocr page 63-

co-ordinates, tlie numbers {n) of stars counted on each plate and the distances
(r) from the centre of plate 27 are tabulated in table XIV*.

TABLE XIV*.

number of stars per square degree in overlapping fields.

n

Dec. R.A.

( 13.5 on 27

jjhQTn

11 0
11 0
11 0

—14 11 0

9 0
11 0
9 0

I 6.6

a

28

j 13.2

}f

27

j 9.6

28

10.9

}gt;

27

6.8

if

28

13.1

27

7.3

ti

28

j 15.6

gt;i

27

j 8.4

28

20.0

27

12.0

14

j 15.5

ty

27

j 16.9

ty

16

18.4

yy

27

18.8

yy

38

— 1°

—nbsp;4

—nbsp;7
—11

84 mms.
88
96
106
120
120
126
126

14
16
—16

The limiting magnitude in the various fields of plates 28, 14, 16
and 38 is known. By means of the formula

(10)

which can be derived directly from (6) and in which the index 1 refers to plate
27, Ml can now be calculated in the eight different fields of this plate. Using
the curves of fig. 3 we get eight independent determinations of the limiting
magnitude at the centre. These values are

-ocr page 64-

12?60
11.96
12.17
12.32
12.36
11.69
12. 07
11.59

12?17

weighted mean

The braclceted figures indicate the weights to be assigned to each of

these values on account of the accuracy with which on the overlapping

plates the central limiting magnitude has been determined. This accuracy

depends on the number of fields for which the limiting magnitude has been

determined and on the character of the sequences of the comparison stars

used. In order not to render the matter too complicated, fields for which

Henie gives a probable error 0^1 received a weight 2 and those for which his

probable error amounts to 0?2 or 0?3 a weight 1. To fields for which the limiting

magnitude was determined by overlapping, a weight i was assigned each

further overlapping halving the weight again. In this way we find e.g. for the

weight of plate 40 the value 2f. In two fields of this plate the limiting

magnitude is determined by the overlapping plate 41, in two by plate 39

in one by plate 27 and in one by plate 29. Of these plate 27 had its limiting

magnitude determined by overlapping, 41, 39 and 29 had not. Accordingly

the weight of plate 40 is 2 x i 2 x i- l xi l x i =2f. Table XV contains the
weights of all
55 plates.

Plate
28
28
28
28
28
14
16
38

(4)
(4)
(4)
(4)
(4)
(2)
(2)
(1)

TABLE XV.
weights of the plates.

o
cO

s

-M

^

(13

alt;

xi

\'S

D

11

o
rt
S

4J

.a
quot;53

is

-p
ni

S

-t-i
X!

SP

\'v

-*-gt;
ni

s

^

a
oj

s

ao
1

lt;D

n

E

-M

OJ

1

4

8

3

15

1

22

3i

29

2

36

5

43

3

50

2

8

9

11

16

2

23

2

30

5

37

1

44

2 ■

51

4

3

2

10

6

17

1

24

2

31

4

38

1

45

5

52

8

u

§

4

5

11

3

18

3

25

5

32

4

39

3

46

2i

53

5

2

12

H

19

3

26

3

33

5

40

2i

47

i

54

o

J

G

2

13

6

20

12

27

4

34

8

41

5

48

3

55

I-

7

14

2

21

3

28

4

35

2i

42

3

49

i

-ocr page 65-

Finally table XVI contains the values of the central limiting magnitudes
of all 16 plates that are lacking in table XIII.

TABLE XVI.

Central limiting magnitude on 16 plates determined by
means of overlapping fields.

Plate

Lim.
Mag.

Plate

Lim.

Mag.

Plate

Lim.
Mag.

Plate

Lim.
Mag.

12

12.89

40

i 10.54

48

11.48

52

11.69

22

11.33

43

11.59

49

11.67

53

10.72

27

12.17

46

11.27

50

12.49

54

11.10

35

10.97

47

10.61

51

11.26

55

11.30

These plates can now also be reduced to the eleventh magnitude by
the method discussed at the end of the preceding chapter. The results of
this reduction for the whole set of plates are given in the following pages.

PL.\\TE 1.

-9 -f

3 -7

-6 -5

-4 -3

-2 -1

1

2 3

4 5

6 7

8 9

21.7

14.3

44.1

23.7

10

15.1

17.8

23.3

32.2

32.2

9

15.5

19.6

26.2

41.3

8

10.9

20.7

20.3

36.2

50.6

7

29.8

15.1

25.5

42.5

26.5

6

1

10.0

20.3

22.0

43.5

31.2

5

1 21.2

22.4

26.1

30.3

26.8

4

14.0

15.0

24.0

38.8

23.2

3

13.7

21.4

12.2

19.7

45.6

2

15.9

14.1

14.3

26.0

28.6

1

22.1

10.0

11.4

12.2

17.7

-1

12.0

8.9

8.4

17.5

28.0

-2

10.8

10.9

15.4

15.5

-3

8.3

13.3

11.6

15.3

20.3

-4

27.4

10.3

10.2

15.5

16.4

-5

7.3

9.0

9.8

15.3

14.4

-6

11.9

11.7

13.0

17.9

11.5

-7

12.8

12.8

14.3

13.1

8.8

-8

11.9

13.1

15.1

7.3

-9

13.7

10.2

10.2

8.3

6.4

-10

-ocr page 66-

7 7

O

TH

CD

CO

co

d

CO

a

\'d

d
i-H

T 7 ^ 00

O 03 00 t- tb üj\'

O
O

lO

lO

O
O

00
gt;ffl

lO
ö

p

O

co

q

O

M

ci

00

gt;o
gt;ö

CO

gt;o

O

co

1-;

f—t

co

co

1—(

1—(

(M

p

fO
d

gt;c

O
p

ci

lO

O
00

ÎO
O

O
O

d

gt;0

lO

-t

ld

d

lt;N\'

f-H

rH

M

M

ca

d

iq

lO

Cl

e-1

5!

iq

00
IQ

00

gt;o
d

O
co

(N

co

d

d

F-H

O
r)i

00

co

CO CM ■T-\'

T ^ f

lO

55

03 00 tquot; «3 U3

lO

00

O

iq

05

(N

(N

d

-H

CO

t-

00

CO

00

O

t-

lts

C5

d

d

d

Ttf

co

co

00

lO

C5

p

iq

00

p

d

d

d

cd

t—

lO

C3

quot;O

p

C5

co

00

(jj

ld

lO

lO

TJH

rX

co

O

C5

lt;M

CD

t-;

co

cq

d

TlH

I-H

co

(N

lO

lO

M

O

00

iq

1—1

iq

CO

d

co

ld

co

lt;M

(N

co

O

co

agt;

(N

lO

00

ld

(N

gt;d

co

co

co

iM

Ci

O

O

IM

(N

00

d

co

d

lO

co

tgt;

C5

co

iq

d

(N

la

O

00

CO

p

d

d

irq

lt;N

co

t-

(N

d

-ocr page 67-

PLATE 4.

PLATE 5.

-9 -i

-7 -6

-5 -4

-3 -2

-1

1 2

3 4

5 6

7 8

9

-9

; -7 -6

-5 -4

-3 -2

-1

1 2

3 4

5 6

. 7 8

9

I

11.1

7.7

24.9

24.6

8.8

10

.

10

7.1

16.5

12.6

28.9

25.7

9

6.6

10.8

9.3

8.1

24.2

9 i

6.4

12.0

16.9

11.3

13.5

8

16.8

8.9

13.2

8.4

16.2

8

5.1

10.1

13.9

18.0

23.4

7

15.3

13.7 ,

7.1

8.4

19.5

7

13.0

8.1

15.8

18.0

11.8

6

17.2

6.9

12.0

9.2

8.8

6

2.6

17.2

18.9

14.4

10.5

5

8.0

9.0

6.2

7,6

23.6

5

8.8

17.4

13.3

26.1

19.5

4

6.1

14.7

13.1

6.2

10.9

4\'

1

8.9

15.1

24.4

16.7

18.6

3

6.9

7.0

9.4

5.4

17.4

3

1 9.8

17.0

13.1

35.8

11.0

2

9.5

17.4

14.4

8.2

30.0

2

1

11.5

14.0

10.8

19.7

17.4

1

r

7.1

11.3

9.0

7.9

21.0

1

n.8

16.8

16.1

18.5

21.5

-1

i .

i 10.6

10.0

6.3

12.4

15.1

-1

9.2

15.0

19.5

19.5

15.6

-2

i

7.2

8.2

9.6

5.6

13.5

-2

14.4

19.8

11.3

18.8

20.7

-3

1 10.8

1

5.0

7.7

8.4

9.5

-3

18.2

15.2

19.3

29.6

18.2

-4

!

t

6.6

4.5

9.6

5.7

15.7

-4

2L6

24.6

15.4

19.8

18.0

-5

6.3

7.6

3.3

5.9

8.0

-5

17.4

15.7

18.6

25.1

7.6

-6

8.8

4.3

5.6

7.5

25.4

-6

18.6 .

1

12.1

• 15.6

25.7

15.3

-7

7.7

4.5

4.6

7.5

3.6

1

12.7

16.7

12.4

37.6

7.2

-8

11.2

1.7

6.6

8.9

24.1

12.4

14.1

7.6

21.3

10.1

-9

12.5

6.3

5.9

10.8

8.4

-9i

i

|l-

19.5

16.4

14.7

30.1

16.3

-10

7.4

6.3

4.9

8.1

10.6

-10

-ocr page 68-

Ö 03 00 b- lt;o m ^ eo m ^

7 ^

COnbsp;iraquot; çô quot;

I I I I

7 2

t-

d

Cl
d

05
d

00
00

05

o

IN

i6

00
t-
to

lO

q
-t

00

rH

CD

fO

c6

o

o6

CO

Tti

O
fO

CO
5D

50
d

lO
d

o
d

q
d

ro
d

t-;

CO
G-i

W
H

PL,

cc
d

Ci
gt;d

«M

I

M

I

I

(M

CO

O

id

gt;d

-iJ

d

•—(

S

Cl
d

lO
d

lO
d

iq

00

q

cd

p-H

gt;d
i-H

id
r-H

r^

cd

t-H

00

CO

o

-JH

d

d

r-H

q

O

gt;o

cd

d

(N

nH

1—(

r-H

O

00

co

d

ci

F-H

r-H

in

I

CO
M

to

I

q

(N

co

Ol

i-H
r-H

cd

oi

gt;d

fo ■
(N

00
fO

00
d

lO
d

00

I

00
d

tH

Ol

I

d

o 03 00 t- to lO

00 c\\j ri i th

cm co

I I

___!_

q

00

gt;o

lO

00
00

lO

00
d

agt;
00
tgt;
cc

lO
^

co
cm

U3

00

t-

rH

CO

to
»0

M

CD
d

to

to

q

q
igt;

CO

lt;35
00

o

ce

o
00

05
00

00
(N

00

CO
»d

d

O

00
T)!

-tu
d

W
H

C

q

CO

q
d

lt;35
00

»9

Cl

q
id

CO
ld

q

q
tgt;

co
d

q

CO

I

lt;N1

lO

05
d


d

00
I

00

CO

CO
gt;d

C5
id

00

I

00
clt;i

lt;N
d

lt;N
00

CO

o
d

(M
d

CO

d

o
00

CO
d

C5

Tji

O
d

IN
00

to
d

00
id

00

I

igt;

d

»0
d

t-nbsp;-H

O
d

00
id

(N

Ci
CO

CO

d

-ocr page 69-

O

cn

00

t-

co

Ui

•f

co

cg

TH

■ri

1

CM

1

co

1

1

in

1

CO

1

1

00
1

agt;

1

O

1

t^

O

-H

00

CO

O

ogt;

00

6
(M

Tli

(M

lt;M
CO


f-H

l-i
lt;M

ld

00

M

IM

(M

^

t-

i-H

O

00

00

S

00

(

O

ï2

f-H

ici

lt;M

O
IM


co

ld
(M

to

O

O

rt(

p

q

lO

lt;M

O
CJ

IM
IM


IM

-t

-H

ld
lO

§

ld

co

lt;!}lt;

00

Cl

00

00

(M

Tf

00

O

CO

00
(M

CO
(N

O
IM

tX

co

-H

CO

8

ei
co

-li
1£5

cd
co

M

O

IM

^

O

C-1

O

co

co

Cl

C3

TH

lO

1—i

(M


(M

lt;M
CO

CO

ld
co

co

ld

??

rH

(m

ttlt;

C-4

00

q

co

q

1

t^

Ci
IM

G3
CO

É

lO

lO

cd
co


CO

l-i
CO

(M

1

cj

(M

00

in

l-

o

lO

co

m

1

1

(M

O

CO

(M

O


^

(M

co

co


oo

lO

im\'

05

O

O


O

1-H

r-H


t

^

(N

lt;N

IM

-ti
CO


co

ci

ld
lO


l-

f-H

00

lO

lt;ß

1

O

O

co

co

cc

»-H

co

co

C-

1

!M

(N

s

ö
f-H


(M

l-

ö
O

ld
in

im
00

CO

1

r—t

i—lt;

co

l-

00

im

lO

q

t-

Ol

1

CO
(M

^

CO

(M


l-


lO

r-i
lO

Tli

la

ld

lt;M

O

1H

03

00

t-

CD

«1lt;

eo

(N

TH

TH

1

CJ

1

eo
1

1

U3

1

cd

1

t-

1

lt;33

1

O

TH

I

(N

i—t

CO

im

TH

q

If

C3

03

iri

lt;m

(m

ci

d

00

t-;

co

lO

TH

t-;

00

co

q

t-

00

o6

ld

oi

cji

co

M

lO

co

(M

M

^

q

O

co

Ifl

cH

r-h

lt;N

f-H

lt;M

f-H

f-H
fH

(M

f-H

ld

fO

(M

i-H

co

q

o

co

CO

-ti

co

f-H

lO

d
^

t-i

d

ld

CM

^

co

t-^

CO

O

O

IM

gt;o

IM


^

CO
^

d

ld

m

la

q

co

O

00

q

t^

■rH

1

o6

O

lo

ai

i-H

gt;d

oi

CKl
1

CO

1

03

CO

CD

lO

IM

00

O

O

œ

r—1

S

(M


IM

li
(M


rH

f-H

IM


f-H

1

ift

1

CO

CO

O

fO

^

q

co

O

q

c^

(—1

f-H

Î0

(N


(N

(M

(N

(M

oi

to

1

f—i

t—(

CR

ogt;

lO

f-H

f-H

IM

IM

t—

oi

quot;o

(M

CO


(M

ld
r-i

IM

f-H

(n

co

1

lt;35

1

m

gt;o

(M

t-

f-H

lt;M

ai
co

gt;o

k5


CO

ld
(N

t-i

(M

lt;N

-ocr page 70-

OO

(M

O

05

(N

co

ö

co

co

C-)

co

00

Ci

CO

•O

rtï

CC

ld

(N

lgt;

(N

(N

gt;o

co

agt;

(N

gt;d

lO

»0

agt;

rH

gt;(5

00

lt;n

o

f-h

1—)

ld

lo

.O

00

co

co

O

ld

ld

oi

cj

ci

(N

CM

(N

00

lO

\'li

ei

ld

lO

eq

CM

CM

CM

co

O

ld

CM

i-H

lt;N
00

^ S

w

H
iJ

rH

O

05

t-;

to

CM

CM

00
lt;N

CO

gt;o

o
ci

to
00

r—1

lO

to

S

ci

co

ld

ld

CO

l-H

1—(

i-H

m

00

OO

O

CO

co

f-H

ö

ö

co

CM

i-H

I-H

t—l

CO

lO
00

ci

to

o6

00

C5

IM

TIH

ld

i-H

CM

CM

o 05 00 t- cd u3

ro\'
CO

C5
CO

to

ld

lo cd

i I

05

03

co

C5

F-H

1gt;

CO

lO

IA

CO

00

00

ld

co

—lt;

co

CO

CO

00

CM

co

f-H

lO

lO

ttl

00

CO

q

oi

i-H

CM

CM

O

Clt;1

Ci

co

r)i

co

co

CM

Ci

q

oi

oi

CM

pH

CM

IN
00

t-;

i-h

00

co

clt;i

rh

i-h

r-h

i-h

CO
CO

(N
00
(N

05
•é

O

1—1

lgt;

CO

C5

o6

(N

co

co

CM

CM

f—(

co

co

CM

rX

ld

00

CO

CO

CM

lt;N

CM

05

lO

CO

00

CM

lt;N

CM

t-

lt;N

CM

CM

t—(

CO
00

w

H
lt;1

t-i
Ph

ift
quot;fl

gt;o

05
lO

co

CO

CO

lO

lO

ld
f-H


f-H


^

ld
i-H

O

i-H

ld

CM

t-;

f-H

i-H

rH

r-H

f-H

CM

lO

O

cd

Th

f-H

f-H

r—(

co

q

cd

co

CM

(N

(N
CO

p t-- 00
S3 ^

to

00

o4

oi

CM

f-H

CM

CO

to

-ocr page 71-

ö

03

00

t-

CO

in

quot;quot;f

00

CM

TH

TH\'

eo

in

co

c-

oo

œ

C3

1

1

1

1

1

1

1

1

TH

1

CO

IM

q

lO

O

q

CS

CO

I-H

q

03

â

.—(

T|i

t-i

d

t-i

-li

CO

co

CO

ei

ei

ei

CO

OO

00

q

(M

CO

CO

00

e)

co

00

c-

(M

CO

cd

T|i

ei

ci

cd

ei

(M

co

^

^

I-H

ei

e)

CO

00

CO

O

00

^

O

l-

q

in

-li

ci

-li

ld

co

ci

a

-H

co

lO

IS

co

^

ei

ej

1-;

co

CO

00

-f

e)

ei

00

ej

00

1

ld

ei

d

M

fO

M

co

co

ej

«O

co

TIH

co

(M

Oi

00

^

^

q

Ci

lO

I-H

00

ei

T-(

S

F-H

CD

ci

I-H

ci

d

d

ld

co

(M

lt;M

co

co

lO

lO

q

O

lO

ej

co

q

co

rH

T-l

1

co

^

ci

(M


ei


^

ci


co

ld
CO

ni

N

1

00

t-;

CO

lO

00

O

co

ei

eo

1

él

-ii
(M

ei

(M

^
(M

ei

ö

co

cd
co

cd
co

*}lt;

1

lO

r-H

f-H

i-H

q

ej

co

q

O

in

1


ï\'-l

(M

(M

f-H

I-H

ei


ei

I-H

CO

co

rtH

-li
Ttlt;

d

co

1

CO

q

^

q

co

CO

t—

g

-|i

ld

ld

ld

I-H

d

1

f-H

I-H

F-H

co

co

00

j

^

q

i-H

e)

-X

t-

CO

to

-li

r-i

ei

ld

CD

1

r-H

t-H

(M

f-H

_____

______

ei

co

-t

O

00

c-

coquot;

tn\'

eo

cg

TH

(M

00

in

CD

t-

00

03

O

TH

1

1

1

1

\'

1

1

1

1

T

q

q

00

co

ei

IC

co

f-H

O

lO

agt;

ö

l-i

-ji

cd

g

tM

lt;M

-H

f-H

I-H

oo

t-;

t-;

O

CO

TH

M

00

00

CO

q

1

c-

f-H

(N

-li

(M

cd

(M

I-H

d
I-H

d
I-H

ei

f-H

1

1

co

t--;

iq

(M

q

ej

O

i

ei

lO

r-H

CO

I-H

CO

HH

ei

d
I-H

«!flt;

TH

t-

TH

TH

»O

t-

I-H

q

ei

co

00

CD

ei

ld

ci

1—H

ei

(N

r-H

(M

^

f-H

Cd

rH

q

t-

lO

TH

O

q

q

IH

S

(M

f-H

f-H

d
I-H

d

ei

I-H

i-H

CO

^

00

lO

-H

lO

co

TH

1


IM

CO
lt;M

i-H
i-H

ld
^

T|i

t-i

-

t^

d
I-H

N

1

eo

1

CO

fO

CO

co

q

CO

00

00

O

ei
co

i-H

lt;M

I-H
I-H

t-^

d

I-H

»f

1

lts

1

C3

00

q

ei

ei

t^

lO

ej

O

O

Ff


lt;N

Tli
f-H

ni

ei

d

d
TH

co

1

00

q

CO

co

lO

co

^

q

1

t-H

Ttlt;

f-H

6
I-H

I-H

ld

ei

C-i

1-H

00

1

?

t-;

■ f-H

I-H

ei

^

O

-li

ö

-

co

lt;M

ei

f—)

----

-ocr page 72-

O 05 00 t- quot; CD lô ^quot;co eg TC

i-H

cq

cq

00

(N

CD

i-H

IM

CJ COnbsp;lb CD

I I I I I

(N

ai

cq

(N

00
Ö

O

lts

lts

d
i-H

d

d
,-H

rtH

00

p-H

rJH

p

d

d

d

f-H

i-H

M

O

co

CD

lts

d

ci

1

IN

(M

ci

(M

cq

CO
(N

(I,

es

lt;N
lt;N

CO

co

(M

IM

co

IM

CD

d

d

lts

d

d


IM

F-H

l-h

(—1

f-h

00
(N

CO

p

iq

iq

P

-ti

ci

rH

.—1

p-H

r-H

«q

CD

Oi

ci

id

00
00

P

p

iq

lO

iq

d

d

ci

ci

F-H

t—(

1—1

i-H

CD

O
-H

o

a

00
CO

CD
Ö

Ci
Iti

Its
»tj

co
ci

co

CO 00 t- CD lO »1lt; CO \' ca Tl

CO

CO

I

I I

lO
TU

co

p

IC

00

lO

00

O

IM

Ci

d

lts

rti

lts

d

d

ci

CO

Tt*

CO

co

Cl

Ci

O

cq

p

cq

i-H

ci

lts

lts

d

lts

CO

Cj

CO

00

i-H

iq

d

t-

lts

lts

d

IM

Cl

Cl

Cl

co

co

lts

p

co

O

L-

co

i-H

d

ci

co

IM

co

co

co

co

TJH

ci

(N

00
CO

Ci

iq

Cl

t—1

00

O

TX

iq

d

lts

d

rX

Cl

Cl

O

co

co

-rX

TX

co

Its
d

«

H

CL,

co
elt;i
co

p

f—I

co

CD

_

co

IM

CO

IC

00

ci

d

d

d

Cl

r-H

IM

IN

IM

O

O

cq

d

d

lts

r-H

co

Cl

co

cq

00

CO

cq

CO

00

cq

co

cq

(

ci

d

TX

1—1

rX

lts

i-H

I—H

i-H

Cl

I-H

cq

cq

Cl

1—1

00

O

iq

TX

P

cq

cq

ci

d

d

d

1—1

I-H

cq

I-H

—\'

—1

IM

O
ci

-ocr page 73-

O

TH

03

00

t-

■ coquot;

lO

CO

TH

1

CM
1

co
1

1

\' us\'

1

-co-

00
1

03

1

O

TH

1

lt;33

O
ö

q
d

q

I-H
I-H

ei

I-H

CO


q
t-i

q
l-i

1-;
ei

00

t~

co
ci

q

^

r-4

co
ld\'

q

co
ld

^

t-

ld

lt;N

ai

lO
d

to

lO

t-

q

d
f-H

00

d
I-H

lO

eq

f-H

r-

co
d

q
t-i

co

r-H

(N
lt;N

I-H

w

\'P
ei

O

d
TH

f-H
rH

co

d
I-H

q
r-

O
d

q

q
i-i

O
d
—H

la
d

lt;M

T-lt;

q

00
d

ei

d
I-H

q

C3
ld

q

ej

f-H
d

I-H j
d

TH

1

co

d
I-H

d

00
(N

f-H

CO
d.

co

Th
d

00
ld

TH

l-
d

lt;gt;i
I-H

(M

CO

1

q
cd

f-H

q

nH
f-H

I-H

d
--H

ei

00
d

q
d

O

00

q

rH

Tf

in

q
lt;N

lt;M

d
nH

f-H

d
-H

I-H

d
I-H

co
ld

O
d

Cl

00

d
f-H

lO
d

t-;
I-H

(O

1

q
ci

(N

d

q
t-i

q
ld

co

00
d

O

f-H

oi

I-H

q
d

00

1

lt;33

1

00
ci

r-

d

I-H

TH

I-H

q
lt;?4

f-H

r-H

f-H

ei

q

r-H

q

C3

ej

f^

cd

r-)

«3

TH

lt;33

00

t-

co

m

co

CM

TH

7

CO

1

1

lO

1

co
1

tgt;

1

00

1

lt;33

1

O

TH

1

lt;33

00

d
f-H

(M

co

ai

O
d

eq

Tt;

d
I-H

co
ai

d
I-H

I-H

ld
r-H

00

t-

03

q
t-i

O
d

00
d

C3
ld

co

eq
d

d


ld

CO

CO

lO

TH
CC

f-H

d

lO

q

co
d

TtH
d

ci

O

eq
d

O
d

^

co

1-

o6

t-;

i-i

co
ld

q

00
d

q
d

q

q

C3
d

OJ

TH

n;

D-

q

ea
ld

00
ld

co

q
tgt;

00
d

q

eq
ld

eq
d

th

1

co
t--

O

q

d

lt;33
ld

co
ld

d

q
tgt;

oó ■

N

1

CO

1

q

^
ld

co
d

ej
t-i

CO

O
d
f-H

co
t-i

t-;

O

«Jlt;

1

m

1

C£gt;

00
ld

d

ei
ld

t-;
d

q

O
ld

q
ld

00
Th

co

1

t-

1

00

1

?

C-;
t-i

00
d

co
d

co

Tii

co
ci

O
d

Cs
t-i

q
ld

ld

lO
ld

igt;

CD
ld

tX
ld

co»
ld

00
Th

q

03

ai

co
d

-ocr page 74-

CO lOnbsp;CO CM

00

Cl

m

00

1—1

00

ci

ci

i—t

1—t

i-H

oi

CO

ci

CJ

00

co

ce

d

ci

id

C4

C)

Cl

00

Cl

cd

Cl

Cl

00
igt;

m

o

lO

cd

d

Cl

lO

ci

lO

ci

00

Cl

cd

d

d

o6

Cl

Cl

Cl

Cl

co

o

CO

co

l-H

cd

ld

ld

cd

co

CO

co

co

co

CO

w

H
lt;

hJ
Ph

O
d

Cl

00 ^

CS

Cl

I—I

Cl

I—I

cd

cd

ci

cc

co

co

fO

co

t—l

q

q

q

ld

ci

d

co

lO

co

00500tgt;C010»J\'CO(MT-l

rtlt;
d
rH

CJ

ci
»0

Ti eg CO

I I I

CO
d


00

o
d

tgt;

00

gt;d

00
d

Cl
T)H

Cl

o6

00
d

CO_
d

d

Cl
d

CO

o6

lO
00

00
d

C3
d

d

ci

tH

CO

ci

CO
d

CO

id

O

Cl

ld

ld

w

H
A

O
d

O
d

o
00

lO

Cl

Iffl

co

O

CO

ci

cj

(

cd

TH

cd

rti

ci

d
f-H

F-H

f—1

r—l

Cl

r-(

CO

O

cd

co

rlH

co
d

co
gt;d

Th
d

co

Cl

t-

lO

O

Cl

d

ci

d

ci

d

ld

r—,

r—t

•-H

Cl

Cl

l-H

S

Cl

O

■rH

iq

rH

co

O

ei

rH

d

d

d

ld

f-H

r-H

Cl

rH

Cl

t-;

iq

iq

Cl

cq

lO

d

r-H

Cl

d

d

d

r-H

Cl

Cl

r-H

-H

iq

Cl

i-H

00

iq

Cl

§

F-H

ld

ld

ci

ld

d

r-H

r—,

Cl

Cl

co
gt;d

-ocr page 75-

O lt;33 00

00 OJ
I I

lO

q

co

gt;o

d

gt;ó

lO

co

co

I-H

lt;N

*tl

Ci

00

gt;6

quot;O

(M

co

q

lO

lO

00

q

lO

lO

tl

lO

O

00

f-;

CD

d

co

-t

CO

O
É

M

t-;

O

M

CD

00
»0

co

q

CM

TH

1

d
O

I-H

rt*

d

lO

co

(M

t-;

I-H

d

d

d

co

co

-n

lO

00

lO

q

d

d
co

lO

O

CD

CM

iO

d

Ir-

CO

lo

lO

CO

lO

O

CO

d

d

d

CM

CM

CO

TjH

q

co

co

iq

d

CM

co

co

IC

O
ci

CO

q
d

O

CM

CO

co

CM

»0

CM

rti

Ttl

CO

rtf

t--

lt;£gt; «Onbsp;M

00 Ol O

I I -M

O

q

O

CM

CM
CO

d
co

CM
CO

§

q

00

q

00

d

r-

CM

d

CO

c^l

CM

co

co

q

00

t-

CC

IN

d

in

co

I-H

CM

CM

co

t-;

CD

CO

q

CO

ci

d

in

CM

(N

CM

I-H

t-;

CM

d

d

CO

CM

IC

00

I-H

co

d

CM

co

q

lO

gt;o

CM

00
\'li

(M

q

q

03

(N

d

I-H

IC

CO

co

CM

CO

q

CO

00

d

d

i—J

d

TH

CO

I-H

I-H

q

lt;N

t

ti

d

d

d

tl

tlt;

co

I-H

C5
CD

CM

C3

r-H

I-H

CO

q

co

I-H

IC

co

IC

tl

O

CO

OO

O

ti

CM

IN

(N

I-H

q

q

IC

d

co

t

co

q

00

t

CM

q

t(

I-H

d

O

tlt;

IC

tlt;

-ocr page 76-

O 03 00 tgt; CO àQnbsp;co

7

I

co
ni

,-H

IM

q

5-1

CO

d

1—H

-H

d

f-H

(M

quot;j» » 00 «

ï S

I

Ci
d

00
»d

eo

O
d

ira
ira

CD
(N

-t*
d

co
d

co
d

ÎD
cd

t-

00
00

d

00
00

m
ei

cc

CO

q

Ir^

t-H

d

ni

f-H

d

00
ira

(M
d

cq

I-

li

ira

w

H

-t:

Ph

(N

iM
d

q

q

d
f-H

(M

f-H

f-H

CD

I—I

IM

lt;M

ni

o
d

05
d

lO
00

CO
d

fO

00

q

q

00

Ci

q

(M

d

(M

ni

cd

d

id

(M

1—\'

f-H

f-H

■-H

-H

f-H

CO
d

CD

n;

C5

O

ni

t-i

d

ni

f-H

r-H

f-H

IM

lO

ni

tgt;
d

fO
d

(M

n;

nlt;

O

O

f-H

cd

lt;M

ni

f—H

f-H

IM

!M

(M

o6

o6

quot;î T \'T \' T ^

ajooc-coio»jlt;colt;M

« ce, CO

f-H

CO

q

Ci

q

r-i

d

id

ni

(M

f-H

(M

lt;M

(M

q

f-H

CO

CD

CO

d

lt;N\'

IM

ni

IM

IM

CO

IM

M

ira
od

Ci
id

CO

(M

n;

O

co

ira

im

d

öó

ld

im

HH

f-H

im

CO
(M

CD
d

(M

(M

q

CD

-H

ira

CO

cd

ni

id

lt;M

id

(M

cd

(M

f-H

f-H

f-H

f-H

f-H

IM

r-H

IM

f-H

f-H

f-H

O

t-

n;

im

ni

cd

d

im\'

-H

f-H

f-H

f-H

05

O

(N

CO

d

f-H

r-H

-H

Ci

ni

W
H
lt;i3
hJ

PL,

(M
d

nlt;
00

-Hnbsp;Ci

CO

ni

CO

Ci

co

q

q

d

d

ni

«

f-h

f-H

f-H

f-H

t-
cd

ni

q

I—

(M

r-H

IM

t-i

ld

ld

d

f-H

f-H

r-H

t-H

t-H

q

CO

CO

00

ld

ld

t-H

t-H

IM

lt;M

O

IM

Oi

q

q

ni

cd

d

t-:

ld.

r-H

t-H

t-H

r-H

IM

co

Ci
d

O

nlt;

O

00

d

d

(M

rH

t-H

f-H

co

Ol

q

q

t-;

cd

f-H

ld

cd

f-H

IM

co

co

-ocr page 77-

1-h cm co

I I I

00 05 O

I I I -H

Cl

d

lt;M

I-H

IN 1

iq

00

d

I-H

M

CO

O

Cl

IM

d

d

IN

d

d

IM

IN

I-H

I-H

t-

O

ld

I-H

iq

cq

p

e-5

-f

iN

(M

05

ÇÔ
(N

00

IM \'

P

1—,

p

I-H

d

d

\'lï

Clt;|

lt;N

lt;M

r-H

I-H

IM

00

lO

lO

lO

T)i

ld

d

d

d

I-H

I-H

(M

lt;N

t-

(N

d

d

d

IN

IN

(N

lt;N

IN

O

cq

p

d

d

d

co

IN

CO

IN

CM

iq

IM

IM

d

d

d

co

IN

co

!M

w

H

fl,

03
ÎO

lO

O

00

t-

t-;

iM

d

d

(N

»II

co

co

co

co

-h

O

(n

im

m

tfl

t-

O

p

d

co

00

Cl

-t*
d

(N

00
§

T ? s

m ^ CO eg

o en 00 t- to

co

(M

00

00
CO

O

ci

gt;o

gt;o
ci

00
co

O
d

CO

00

M

iq

CO

t-;

p

d

I-H

d

I-H

I-H

IM

co
(N

Cl
d

00
O

03

p

I-H

00

CO

Cl

Cl

tr-

IN

IN

ld

ld

IM

r-H

I-H

I-H

1

7—t

I-H

lO

00

co

P

CO

CO

00

I-H
I-H

f-H

I-H

ld
I
-H

d
r-H

co
d

co
d

w

H
a.

O

O

C-;

O

CO

O

00

Tti

ld

d

1—I

I-H

cq
c4

O
d

Cl

Cl

t-

ld

d

d

ld

I-H

I-H

F-H

r-H

I-H

co

co

O

cq
ld

p

(N

IN

r-.

CO

CO

lO

d

d

d

I-H

I-H

r-H

I-H

r-H

IM

I-H

IN

p

p

TH

I-H

(N

r—,

IM

lt;N

IN

CO

Cl
d

I-H

r-H

t-;

(N

ld

d

I-H

I-H

I-H

00
d

00
d

lO

co

-ocr page 78-

co lO co (N « i tH

Cl

ci

01 o
I 11

_ I

C3

co
ci

10
IN

ira
d

IN

00

0

cq

Cl

co

co

ci

ci

I-H
1—(

d

ci

l

Cl

ci

(M
(N

co
d

q

IN

co
00

to
d

co
cd

Cl

co

10

ci

cd

d
r-H

igt;

lt;N

co
06

IM
d

00
d

o
cd

d

to

q

06

C)

d

w

H

iJ
A.

q

q
d

cq

o
d

co
d

iq

00

co

to
d

Cl
d

01
d

o
ci

co
00

Cl

ci

tH
lgt;

q
gt;d

q
00

o

ci

Cl

d

o
d

co
d

Cl

00

» 1

co

00

Cl

co

00

d

d

d
p-H

q

co
00

00
d

o
d

Csj

iq

co
d

to

co
d

quot; IT

01 o
I T-l

I

id

Cl

q

q

gt;0

co

d

cd

-H

d

Cl

Cl

Cl

-IH

co

m

0

co

id

d

id

Cl

co

co

co

d

q

-H

Cl

Cl

Th

q

d

Th

ci

00

od

co

co

co

co

Cl

Cl

cq

co
ci

00

0

Cl

q

d

cd

00

Cl

Cl

co

co

q

lt;N

O

co

1—1

q

-H

q

to

IN

d

d

(-H

ci

cd

1

i-H

Cl

Cl

co

co

Cl

Cl

00

CO

q

q

Th

IN

q

d

d

ci

i-H

r-H

ci

d

Cl

IN

Cl

Cl

(N

i-H

Cl

f-H

W

O
d

q

co

00

Cl

co

Cl

CI

10

d

d

d

d

cd

ci

d

f-H

f-H

Cl

d

•«f

I

Cl

F.H

0

00

d

cd

d

d

r-H

f-H

f-H

cq

co
d

q
d

10

I

co

I

TH

t-;

CO

10

cd ■

d

f-H

f-H

r-H

id
Cl

10
id

to
d

00
00

00
d

t-

I

10

00

I

00
cd

CO

Th

Th
d

co

Cl

d

d

d

-ocr page 79-

q

O

lO

rH

d

in

d

rH

rH

I-H

C5

rH

CO

t-

CO

id

d

-H

rH

rH

rH

rH

la
d

®

lO

CD

C3

CM

rH

rH

d
rH

q

CO

O

d

-li

ld

rH

rH

rH

rH

o
d

CO

C5

CO

q

id

id

-li

rH

rH

rH

rH

lO
CM

t-

d

q

O

CM

rH

lt;N

f-H

d
rH

o
d

00
d

o

d

M

t-

CO

CM

d

rH

rH

la

CO

lO

d

d

id

Tti

rH

rH

CO
CM

CM

d

w

H

hJ
Ck

o

d

CO

Ci

00
CO

CM
d

Ci
d

lt;N
CM

id

I-H

q

q

CM

rH

I-H

I-H

00
d

ic

d

00

q

O

q

rH

d

rH

rH

rH

O

t-;

t-;

CO

IC

q

rH

CM

d

CM

-H

rH

I-H

I-H

00
d

o

lO

to uj *»gt; TO CM

CM CO «f

I I I

Onbsp;00

CO
d

00
d

CO

CO

O
d

CO

CO
d

00

00
d

q
d

00
d

CO
d

CO
d

q

q

o
d

d

q

q

CM

q

d

I-H

rH

rH

rH

CO

O
d

c-i

q

lO
d

q
d

OO
d

CO

gt;o

00

00
d

c:3
d

-IÎ
Ph

CO
C-j

q

o
d

00
d

d

CM
d

O
d

00

o
d

C5
d

lO
M

d

q

CM
gt;d

CM
d

q

tr-^

q
d

O
d

CM
d

o
d

q

CM

-ocr page 80-

o 03 00 t- CD us Tjlt; ■

q

q

q

q

q

cd

ed

d

co

IM

IM

co

!M

q

I—

q

CO

q

q

■ni

d

t-i

id

cd

ni

IM

IM

IM

CO

(M

IM

00 Cg -rH -rH Clt;I CO

I I I

T

T 7 S

IMnbsp;CO

S ^

lt;Nnbsp;CO

rd

t-

q

q

(M

(M

(M

q

id

d

(M

rH

id
CO

(M

(N

CO

lO

TfH
CO

ni

IM

CO

COnbsp;CO

Ol

ci

co

O

nlt;

ld

ei

ei

IfS

co

eq

q
cq

O

p

lO

00

n;

TH

cd

cd

d

i-

ei

ei

nt

co

-Hnbsp;CO

ei cd

(Dnbsp;tH

n*

q

q

co

d

I-H

r-H

i-H

d

nlt;

eq

CO

CO

O

q

q

ira

d

r-i

ni

d

ld

IM

eq

co

O

r-H

ni

r-H

00

w

i4
Ol

p
CD

aq

nlt;
cd
nlt;

r-

t--

Th

ira

eq

d

d

ei

d

d

co

ira

eo

O

O

I-H

ei

lO

eq
d
ira

eq

q

ei
co

ei

rH

d
Cl

O
d
Th

n

id

CO

O

ci

O 05 00 t- CD m

T

Ol O
I TH

I

elt;i


I-!

CO
CD

co

O

O

eq

d
eq

d

ld

co

cd

CO M TH I TH

00

eq

Cl

q

q

q

cd

d

ei

CD

co

eq

eq

I-H

eq

eq

CO

10
(M

C5

O
ld

nlt;

q

00

eq

q

n;

TH

00

p

Cl

d

ni

cd

cd

cd

d

d

O

d

TH

q

eq

eq

p

I-H

n^

I-H

OO

eq

co

ira

r-H

c-

I-H

q

I—H

d

ld

d

ei

d

cd

eq

ej

eq

I-H

TH

I-H

ci

w

t-H

lt;tt

rH

q

co

p

CD

q

q

CO

p

d

rH

d

rH

ld

t-i

d

d

CD

eq

eq

TH

eq

rH

TH

rH

q

eq

CO

O

tr^

ei

d

ld

rH

eq

I-H

rH

lO
cd

lO
ci

oi

O

n;

O

Cl

n; »

p

ei

d

cd

rH

rH

eq

rH

eq

eq

rH

o
ci

(N
d

q
d

O

lO

n;

d

ei

ld

d

eq

eq

(M

ei

00
c4

ei

00

I I

o

00

P

q

t-

igt;

d

ld

ld

cd

ld

rH

rH

eq

CO
d

-ocr page 81-

agt;oob-tD »o*}lt;MM\'n

Onbsp;lO
Ö

Onbsp;IM

C5

cq

cq

ci

T)H

lt;N

CO

NCO«Jlt;incDt^00050

I I I I I I I I \'lt;H

(-H

CO

(M

(N

oó ■

fO

d

CO

CO

IM

cq

O

q

gt;o

iM

ci

d

d

Cl

Cl

Cl

co

Cl

00

q

0

d

ld

ld

IM

Cl

co

co

ca

q

iq

cq

d

co

co

cq

co

tr-

rH

t-;

î

I-H

d

co

co

CO

(M

q

O

O

cq

q

ld

IM

Cl

co

M

co

I-H

I-H

00

00

ld
Cl

d

ci

ld

d

C4

Cl

Cl

co

q

co

CO

d

ci

rH

Cl

cq

Cl

IM

cq

cq

iq

0

00

ci

d

d

ld

Cl

I-H

cq

co

Cl

C3

co

I-H

M

q

IM

ci

T|H

10

10

q

q

d

ci

rH

IM

rH

q

00

10

rH

d

d

1

10

I-H

rH

rH

rH

t- co
ci ö

IM IM

TH

q

co

q

CO

d

ci

-H

rH

cq

Cl

FH

CO

Cl

00

t-;

ld
rH

Cl

I--

ld

q

cq

CO

Cl

0

d
rH

rti

IM

d

t-;

00

cq

cq

Cl

d

ld

rH

rH

Cl

co

M

CO

cq

00

t-;

TX

d

rH

tgt;

I-H

Cl

rH

d

00
(N

IM
fO

q

CO

t-

ci

d

d

CO

10

co

rH

00
d

CO

10

rH

c-

d

ci

ci

rH

rH

rH

rH

q

10

CO

iq

d

ci

I-H

cq

rH

C5
cd

ci

10

ld

■Fji

10

t-;

q

Cl

cq

d

d

rH

rH

CO

00

q

rX

cq

Cl

rH

rH

q

ca

I-H

d

10

co

w

PM

00

q

00

q

ld

rH

d

ld
rH

rH

cq

Cl

rH

00

co

10

0

cq

d

-H

cq

cq

cq

rH

IM

cq

rH

«lt;1

d

IM

m

CO

co

Cl

d

d

d

rH

cq

rH

rH

f-;

00

00

q

cq

00

d

cq

gt;-1

Cl

cq

I-H

cq

C5

-ocr page 82-

d

05

óo\'

t-

CO

U3\'

eo

CNquot;

TH-

TH

1

CM

1

quot;cd-

«iilt;

1

U3

1

CD

1

1

03

1

O

Tl

1

05

-H

Cl

q

Th

00

Cl

^

co

TH
d
Cl

fd
i-H

cd

Ö

IM

P-H

d
r-H

ci

Cl

CO

05

q

TX

q

rH

00

co

O

00
d

t-

^

ld
rH

(N

rH

r-H

oi

ld
rH

li

Cl

co

«5

O

ö
t—t

iq
cd

rH

q

rH

C5
IN

rH

co
ci

00
ci

q

rH

rH

t^

cd

co
ld

-H

rH

CO

q

q

q

Cl

Cl

Cl

q

Cl

CO

1—1

rH

cd

ci

cd

rH

ci

ni

Clt;l

r-H

O

lO

gt;q

M

rH

CO

Cl

q

d
Cl

lO

S

rh

rH

rH

ld

ld

d
r-H

d

Cl

00

r-H

d

rH

ira

rH

lO

Th

1

r-H

elt;i

I—H
rH

M

ld
rH


Cl

§

a

cd

Cl

cd
co

cq

1

eo

rH

co

t

q

q

t^

ira

rH

1

T

1

cd

r-H

ci

eq

ci

Cl

co

ci
Cl

cd

Cl


Cl

Cl

t-

Th

00

CO

(N

q

rH

co

ira

IM


r-H

lt;N

co

Cl

ci

d
Cl

ci

Cl

d
co

CO

1

(M

q

q

-H

r-;

co

00

00

lO

Cl

T


(M

r-H

cd

rH

t-:

in

d

d
rH

d

d
co

00

1

Oi

1

t-;

O

q

t^

Cl

rH

r^

co

M

00
(N

. -

cd

rH

rH

CO

----

ci

Cl

ci

Cl

____

ci
co

d
co

d
Cl

O

TH

oi

\' q

lO

tl

co

CM

TH

T

cg
1

00

1

1

113

1

co

1

tgt;

1

00

1

05
1

O

TH

1

OJ

lO
d

rH

(N

Cl

rH

Cl

Cl
^

00
d
rH

Cl

cd
Cl

O
É

O

cd

Cl

00
ci

Cl

^


Cl

00

t~

cd

Cl

00

rH

ci

rH

q
Cl

t-

rH

q
ci

Cl

q

rH

Cl

Cl
d
rH

Cl
d
Cl

rH

d
CO

co

w

iq

cd

rH

q

Tji
r-H

c-
d
rH

ci

Cl

Cl

Cl

d
Cl

Cl
d
Cl

q

Cl

Cl

co

q

-H
Cl

«slt;

co

rH

rH

r-H
rH

t-

S

rH

ci

r-H

00

d
r-H

00

co
ci

Cl

q

rH

co
d

lo

cg

TH

Cl

d
rH

q
ci

rH

iq
d

rH
r—l

Cl
d

lO

rH

t-

ci

p-H

tH
tH

rH

co
ci
Cl

00
tlh

Cl

TH

1

CO
ci
Cl

Cl

rH

lO

d
rH

o
d
r-H

TH
d

o
d

o

rH

Cl

q

co
d
rH

n

[

00

1

t-
d
Cl

CO

d
rH

lO
ld
rH

r-H
rH
r-H

O
d

Cl

rH

ci

rH

t-

id

q
d

q

tH

rjlt;

1

IT)

1

O

Cl

O
ld
r-H

cd

rH

O

rH

Cl

o
ld
rH

rH

ci

rH

Cl

ci

Cl

CO

1

t-

o
ci

o

d
rH

Cl

t-;

o
d

q

rH

CO
d

o
ld
rH

Cl
d

lO

rH

00

1

oi

1

Cl

lO
T
h

rH

t-

th

d
r—l

CO
d

c-

rH

cd

Cl

TjH

cd

cq

th

r-H

-ocr page 83-

o agt; 00 t- œnbsp;CO (M TH

*)lt; m CO t- 00 O) o

I I I I I I

Tquot; M eo

I I I

C-1

OJ

o

d

d

d

CM

l-H

r-H

CO

ai

in
c-i

p

q

q

CO

l-H

CM

d

d

d

r—lt;

r-H

CM

o
00

o
clt;i

13

q

SI

00

t-;

o

C\'i

id

CM

-H

(M

m

Ci

O

id

CM

00

CM

rH

C5
id

lO

Cl

ci

q
ci

rH

q

C-l

q

d

rH

rH

CI

CM

c-j

q

,—1

CO

ce

lO

d

d

c^i

00

CO

CM

CO

CO

C^)

w

H
PH

ci

P
lt;N

O

(M

q

lO

_

P

rH

-|H

ci

d

CO

CO

CM

CO

TM

CI

d
TtH

P
CO

CO
tH

o
d

q
ci

CO

q

CO

p

q

Ci

q

oi

d

ci

rH

CM

rH

CO

M

1

CO «tquot;

1 1

LO CDquot;

1 1

quot;t^ CO

1 1

Oi o

1 -rH

1

Ci

CM

q

CO

CM

d

t

d

ci

C^

CM

r-H

rH

CO u5nbsp;clt;3 ca

o os OO

o
00

CM
d

q

OO

CM

in

rH

d

P

TH

TH

q

Ir-

id

tH

o6

CM

CD
d

lquot;

CM

CM

lO

CM

d

id

CM

--H

04

CM

rH

q
d

q

q

00

rH

00

CO

q

-IH

CM

rH

CM

q

i-H

CM

Ci
00

ca

Ttl

l-H
C-1

00
r-H

CM
CM

rH

CM

CO

m

CO

r-H

rH

r-

Ci
d

«

H

eu

q

o

q

d
r-H

d

d
-H

r-H

CM

Ci

1-;

CO

d

d

rH

CM

CM

(N

CM

t-;
CM

q

CO

rH
rH

rH

rH

CM

rH

q

r-H

rH

d
rH

d
rH

g

p

q

P

00

d

rH

CO

q

00

q

IC

d

d

r—t

CM

(N

Ci

00

CO

Ci

00

d

rH

rH

rH

P

00

o

CO

lO

TH

d

d

rH

rH

rH

-ocr page 84-

ö on bo cdquot; 16 «llt; côquot; w th\'

7 ^

m CD
I I

I

O
-H

-dH

Th

ci

f-H

co

O

CO

-H

ci

ci

ci

r-H

o
ci

C5

co

Cl

\'9

1—4

CD

i-H

Cl

Cl

o

o

oo

-H

ci

00

00

ira

rH

rH

Cl

(M

as
M

w
H
-t;

Oh

co

ira


(N

co

rH

q

ci

00

d

rH

rH

Cl

CO

co
ci

Cl

co
Cl

q

Cl

M

rH

ci

cd

ci

rH

rH

rH

O

rH

q

q

d

00

ci

f-H

rH

-H

Cl

q

CO

CO

r-i

-h

d

ci

rH

rH

Cl

co

Cl

00

ira

id

. ira

Cl

Cl

Cl

00

Cl

q

TH

cd

ci

T|H

00

rH

rH

Cl

Cl

rH

Cl

Cl

Cj

d

ira

cd

00

Cl

rH

co

Cl

m

q

CI

ci

rH

Cl

rH

00
ci

co

TU

00

rH

Cl

Cl

q

Cl

id

ci

ira

Cl

Cl

co

Cl

CO

00

TJH

d

d

d

cd

rH

rH

q

Cl

q

q

d

d

in

cd

d

ci

Cl

co

Cl

Cl

Cl

Cl

q

m

TH

q

o

d

TJH

rH

Cl

co

co

Cl

CO

co

rH

q

q

cd

cd

r-\'

id

-H

Cl

Cl

Cl

Cl

w

t-H

-rj
Ch

q

q

O

id

d

id

co

Cl

Cl

Cl

ira

q

co

d

00

d

Cl

rH

Cl

Cl

Cl

rH

TiH

Cl

00

ira

d

d

rH

rH

rH

Cl

lO

rH

Cl

00

d

Tjî

d

d

Cl

Cl

rH

rH

rH

d

rH

00

d
Cl

Cl

rH

rH

Cl

o

q

t--

lO

Cl

id

TlH

d

id

-H

rH

Cl

Cl

Cl

-ocr page 85-

weo-tciotDi-ooojo

I I I I I I I I

eo

t-

q

rH

q

ni

d

d

d

ni

rH

rH

rH

im

l-

co

d

d

d

d

rH

rH

rH

lt;M

eo (M

05 00 t- ® »n

(N
(N

C£gt;
d

lO
d

rt;

d

eo

00

q

q

(N

rH

d

d

IH

(M

rH

r-H

(M

lt;N

C3

r-H

o

id

d

O

d

(N

CO

nlt;

eo

C3

q

CO

rH

00

d

gt;d

d

(M

r-H

COnbsp;O

1—Inbsp;e-i

w

H
lt;

eu

L-

d

ira

00

q

q

ni

ed

cd

id

lt;N

CO

co

nlt;

n*

ira

n;

rH

(N

f-i

ni

i-H

ni

CO

nlt;

nlt;

nH

m

(N
d

q

rH

nlt;

cd

d

d

rH

rH

q

IM

rH

d

cd

rH

rH

rH

q

O

q

q

IM

ni

rH

ld

IM

co

n(

ira

m

q

rH

o

ei

ni

d

d

id

rH

eo

CO

CJ

ni
ei

àO
d

C3

q

00

nn

d

d

d

rH

m

CO

CO

c. eo

rH

q

q

•s

d

ni

r-H

d

CO

eq

eq

eq

rH

quot;ÛJnbsp;quot;

O en CO t-

q
ni

lO

ni

lO
d

CO
d

q

r-H

CO

L-

o

CO

d

ei

■-H

rH

q

q

n;

00

00

d

ei

d

cd

n*

nlt;

ei

IM

ei

C5

q

lO

q

ni

cd

d

r-H

ni

co

co

ei

eq

rH

n;

L-i

CO
d

(M
d

CO

OD

t-

1-;

rH

ld

ei ■

ld

co

nlt;

CO

eq

q

q
id

oo
d

eq

co

rH

ei

d

co

rH

q

r-H

CO

q

eq

ira

q

CO

00

ld\'

d

cd

rH

d

d

co

nlt;

nlt;

CO

ei

eq

lO
d

W
H

hJ
Ph

q

CO
(N

nlt;
d

q.

rH

O

ei

ld

r-H

t-;
d

CO

ni

CO
d

q
d

q
id

rH

ni

eq

d ■

l-i

d

co

eq

eq

q

ira

rH

ld

d

ei

ni

rH

rH

(M

rH

q

q

q

O

rH

cd

d

d

rH

rH

00
d

CO
d

(N
00

d

-ocr page 86-

O O» OO O co m «ï« « \'oi rl

ci

q

q

r-H

p-H

cd

(M

■ CO

(M

f-H

Cl

q

CO

00

O

O

05

oo

O

cd

rH

fi-i

Cl

co

CO

(N

lO

O

\'O

c-i

©

00

O
ö

00

rH

00

d

d

co

lO

gt;o

Cl

r-l

ci

rH

(N

lt;M

co
co

co
ci

cö O
lO s

ld

lO

ci

■O

M . ^
Cl ci

-Hnbsp;^

q

iq

l-

cq

00

d

d

rH

ci

d

•t

lO

co

CJ

co

Cl

q

co

ci

co

Cl

rH

Cl

ci

Cl

Cl

00

q

CO

00

ld

d

ci

ld

d

d

co

Cl

rH

rH

Cl

co

rH

O

00

00

iq

cd

d

d

d

Cl

Cl

Cl

Cl

ca

Cl

Cl

Ol

00

CD

lO

^ co

lt;M

TH

1

■lt;M

1

co

1

1

\'lis
. 1

lt;xgt;

1

1

^00

1

bl

1

d quot;

1

Ol

O
d
rH

Cl

ci

Cl

co
ld
Cl

O

Cl

Cl

cq

Cl

co
d
co

CD
ci

TtH

t^
co

1

00

tquot;

l-

c6

Cl

T)H

Cl

Cl

lO
ld
co

q

d
Cl

lO
ci
co

Cl

t-

ld

m

co

TH

CD

Cl

iq

co

co

00

cq

rH

CS

in

t-
f-H

ci
co

Cl

ci
co

§

d

IfS

co

\'S-

lO

t-;

I-H

co

Cl

iq

rH

Cl

co

ci
Cl

d


Cl

d
rH

d
co

d

rH

TX

d
Cl

d
cq

ci
co

!

(M

q

lO

O

O

co

00

CO

q

CS 1

có !

TH

t-
^

rH

d
Cl


co

co

ld
co

d
Cl

Cl

*H

co

O

Cl

q

rH

rH

Cl

1

oa

1

^
cq

d

d

d
Cl

d

co

d
rH

Cl

li
co

co

cq

lO

t^

O

rH

cq

_

co

ifS

Tti

lO

1
1

ld
f-H

d

§

■TtH
Cl

ld

rH

CO

d
co

U5

1

Cl
ld
rH

Cl
d
rH

cq

Cl

ci

Cl

q

d
co

q

lO

■q
d

1-;
rH

CO

TX


co

Cl
d
O

q

00

cq

lO

Cl

Cl

q

00

Mi

f-H

d

Tii

d

O

cq

co

CD

lO

Cl

Cl

cq

TtH

CO

CO

cq
igt;

tH

-ocr page 87-

03 00 C- cô in T CO lt;M

CM

rH

O

CO

d

d

d

ci

CFÎ

-H

f-H

l-H

r-H

CM

CO

P

Cl

CO

Cl

ci

ci

lt;xgt;

l-H

C)

c-q

r-H

p
r-H

(M

1-

ci

P

O

00

CM

o

d
f-H

f-H

00
r—1

C-i

d
rH

-f

CO

O

Cl

-1H

-f

r-H

f-H

-H

CO

00

in

00

-f

c-i

Ir-^

-H

f-H

o
00

p

m

w

H
C
J
eu

P

O

CO

CO

d

P-H

d

l-H

l-H

Cl

o

C-)

C-;

C-I

r-H

d

d

ci

-1H

OO

iq

p

-IH

C-I

r-H

r-H

CM

l-H

OO

00

p

00

p

CO

1

d

d
l-H

f-H
r-H

d

d

CO

CO

co

cj

d
-H

d

o

m

00

d

d

CO

-H

CM

p

o
d

00

co

fO

iq

00

p

l-H

f-H
f-H

d
l-H

d

r-H
rH

00
ci

p
c-i

O

C5

p

co

-ti

CO

OI

lO

00

00

1-;

rH

-f

-1H

c-

:-1

l-H

rH

C-l

rH

lO
-f

CO

CD t- 00 CT) O

I I I I I

1-
clt;i
in

O

uq

CM

Th

d
(N

rH

C-l

c-l

CO

p

r-H


co

d

co

(M

rH

r-

p

Th

O

d

rH

d

d

(M

p

CO

rtH

gt;q

00

CM

d

d

d

ld

r—H

d

d

rH

CM

rH

o
ci

o

CO

f-H

CM

p

C3

lO

d

d

C-l

CM

CM

lO

a
ci

CO

CO
d

d

w

H
lt;;

P.

Cl

rH

OO

00

00

cj

d

rH

cq

CM

CM

00

CO
00

t-;

Cl

O

cj

CM

CM

CM

P

p

O

CM

d

d

CM

CM

CM

CM

(M

CM

p

t-;

O

Th

d

rH

tH

d

d

CM

CM

CM

rH

rH

m

CM

p

co

O

■ s

cq

co

co

»0

fO

lt;N

d

d

c4

CM

co

co

co

co

lO

f-H

O

CM

f-H

O

-ocr page 88-

cq

O

cq

Csj

00

ci

co

co

lt;N

(N

(N

~ 2

_____l_

[ocnoot-coiO\'fcöoj THi

o

Ö

M

I I

m œ

I I

Th

Th

QO

Cl

CO

d

ci

r-H

r—(

00
Ö

O

-h

Cl

cq

ld

r-H

(-H

ld

(M

CO

Cl

Cl

Cl

-h

O

co

ci

ld

ci

r-H

r-H

r—t

CO

CO

rH

iq

ld

CC

co

--H

CI

co

cq

OO

Cl

Ol

ld

d

rH

i-H

Cl

CJ

O

Cl

00

Cl

ci

ci

ci

co

co

CJ

Cl

00
00

W
H

Ah

Th

Ol

CO
cd

iq

O

CO

Th

d

d

d

CJ

co

rH

i-H

i-

O

q

ci

ci

CJ

Cl

rH

Th-
ld

CO

00

CO

rH

O

d

-li

cd

ld

ld

Cl

co

co

co

q

q

q

cc

Cl

Cl

Cl

cc

-h

OO

00

ci

d

■ d

d

Cl

rH

CJ

O

ci

C5
CO

co

CJ

co

q

Th

d

d

-h

rH

CJ

Cl

Cl

q

Cl

co

q

rH

ld

d

d

Cl

—1

CJ

co

co

0 0300t:^CD lO*}lt;COClt;lTH|TH

-il

00

q

co

d

Th

cd

r—(

r—t

rH

rH

Th

t-;

t-;

r—H

Cl

Cl

Cl

Cl
tX

Cl

O

Cl

CC

co

co

cd

d

ci

d

ld

rH

rH

Cl

co

CJ

q

O

q

d

cd

co

co

co

co

co

O

q

q

Th

d

r-l

-li

Cl

CJ

CO

co

co

co

CJ

q

cd

d

ld

Cl

Cl

Cl

Cl

q

Cl

O

co

d

d

Th

d

d

CJ

co

CJ

CJ

Cl

CJ

00

cd-

rH

CO

iq

Cl

CO

d
Cl

CJ

d
Cl

CJ

ci

co

Th

w

H
ÇU

lt;N

q

Cl

TX

Th

co

Th

Tli

ci

d

CJ

rH

Cl

co

Cl

q

t-;

lO

co

r-H

Th

d

d

d

CJ

CJ

co

Cl

co

co

q

Cl

cd

-li

cd

co

co

CJ

co

©

00

O

q

d

Tli

Cl

ci

ld

ci

Cl

Cl

co

00
T)i

CO
(N

q

. CO

co

Th

cd

d

Tji

CJ

rH

Cl

rH

CJ

t-;

rH

q

q

d

ci

t-

Cl

CJ

co

q

O

Cl

ci

ld

d

-rji

Cl

CJ

CJ

rH

CJ

rH

00

O

q

rH

ci

d

d

d

CJ

Cl

Cl

co

Cl

-ocr page 89-

TH (M co *Jlt;

I I I I

lO CO t- 00 (35 O

I I I I I TH

O CF5 00 t- CD m

r-

co

lt;N

gt;ó

ci

00

co

co

IM

f-H

IM

Cl

Cl

uq

00

lO

IM

ci

ö

rH

rH

ld

f-H

co

iM

rH

IM

IM

IM

(Mnbsp;quot;O

có có
l- co

IM

cq

rH

IM

CO

co

IM

q

CO

iq

IM

f-H

d

d

IM

Cl

rH

ca

lO

»

q

q

lO

q

d

ld

IM

co

(N

co

co

Cl

lO

co

lO

cq

d

ld

co

co

co

IM

q

co

Cl

co

f-H

ld

co

lO

O

rH

CO

00

iq

co

d

d

d

lO

lO

a,

Q

Cl
O

TX

00

rH

ca

d

ci

d

Cl

O

O

co

Cl

C3
Cl

co

CO

gt;o

O

O

q

O

d

-H

d

O

co

Cl

cq

O

co
cc
O

O

ei

co

d

ld

lO

TX

00
Ttl

lO

O

rH

ld

d

co

co

TH

TlH

00

Cl

rH

ci

l-

lO

m

O
Ift
rX

1

O
tH

Ol

00

c-

co

la

co

(M

tH

tH

1

cg

1

CO

1

T

ira

1

co

1

1

00

1

01

1

O

TH

1

1

cq

TX

co

lO

tr-

Cl

q

Cl

co

Ol

rH

1

Ol


Cl

ee

rH

rH

^

a


lt;M

d
FH

ld

d

00

1 t-

IM

q

ci
co

00
d
Cl

q

(M

T)H
tr-^
Cl

T)H
Cl

TjH
ld
rH

q

TX
d
rH

m
d

co

TX

rH

CO

co

CO

O

Cl

q

IM

CO

la

ld
Cl

d
co


Cl


Cl

rH

Cl


Cl

d
Cl

TX

rH

co

Ttl


Cl

l-;
rH

Cl

Cl

Cl

q

d
co

1--

co

d
Cl

ld
Cl

q


ro

rH

ld
t-

co
d
Cl

M

tH

O
ld
IM

Cl
ci
co

q

ld
co

q

ld
co

q
co

Cl

co

rH

CO

c-
lo

CO

tH

cq
ld
Cl

tH

1

co
d
(M

q

Cl

00
d
co

co
d
Cl

Cl
ci
co

q


Cl

iq
Cl

co

t-

rx

iq

Cl

N

1

CO

Cl

M

1-;

cc

Cl

t-

lO

TH

Cl

CO

1

ci
co

d
co

ld
co

ld
Cl

ld
Cl

ci
co

^

ld
co

^

ld
rH

1

lO

co

co

IM

00

^

00

Cl

m

1

ci
Cl

Cl

d
Cl

d
Cl


Cl

d
co

ci
Cl

ld
co

d
Cl

co

\'

q

ld
Cl

TX

Cl

c-

q

q

co

co

co

00

t-

1

Cl

Tli

IM

ci
co

r-H

co

rH

§

T)H

IM

IM

d

00

1

Cl

d
IM

co

^

TX

co

q

lO

oa

IM

Cl

Ol

1

d
Cl

Cl

CO

d
co

co

ci

lO

d
co

ld

ld
Cl

-ocr page 90-

PLATE 50.

PLATE 51.

-9 -

8 -7

-6 -5

-4 -3

-2 -1

1

2 3

4 5

6 7

8 9

-9

-8 -7

-8 -5

-4 -3

-2 -1

1

2 3

4 5

6 7

8 9

17.6

16.5

21.1

16.8

14.6

15.4

16.9

25.1

16.6

30.7

10

9

39.0

36.8

48.3

58.1

82.0

89.2

93.3

49.6

54.1

66.2

10
9

23.9

35.7

24.2

41.5

21.5

8

41.5

43.9

66.6

92.6

51.5

8

40.3

82.2

11.8

29.7

34.1

7

26.1

61.0

105.2

91.1

70.8

7

32.2

38.9

40.2

39.4

57.5

6

93.7

45.9

87.9

97.8

87.7

6

38.0

39.5

58.8

34.7

39.8

5

78.0

105.9

95.1

59.9

78.2

5

34.5

41.9

68.1

48.0

49.9

4

75.8

56.3

113.1

78.7

60.4

4

49.2

48.5

59.5

41.6

44.3

3

143.9

70.8

131.4

47.9

80.6

3

44.3

48.7

84.1

44.3

40.6

2

92.4

81.0

110.7

110.8

67.2

2

50.7

53.0

56.4

53.5

39.3

1

72.4

79.5

87.0

68.8

136.7

1

60.5

49.4

92.1

64.8

66.3

-1

69.4

84.1

117.8

149.0

109.2

-1

74.2

66.3

98.2

106.3

90.3

—2

70.4

93.0

116.2

102.9

111.7

-2

83.8

63.7

122.0

99.8

132.9

o

72.9

88.8

74.9

145.2

122.4

-3

99.4

129.2

161.4

165.0

102.4

-4

58.4

77.5

81.4

110.2

199.7

-4

116.8

68.7

187.4

139.0

193.1

-5

1 66.7

60.3

82.9

93.8

122.9

-5

122.2

71.2

159.6

111.2

125.6

-6

i

38.6

62.3

92.1

93.0

85.3

-6

141.2

149.2

120.4

47.7

99.2

-7

74.3

74.5

105.2

73.6

82.2

-7

120.5

120.1

81.2

55.0

37.4

-8

46.5

50.2

99.7

52.6

75.1

-8

91.2.

65.2

96.7

65.1

51.6

-9

1

37.0

40.4

69.4

63.6

66.0

-9|

72.8

58.8

35.1

56.6

38.4

-10

43.1

52.0

69.0

43.6

00.6 -

-loj

-ocr page 91-

m CD t- 00 03 O

I I I I I TH

ÇÔ U3 «J* 00 w

O 03 oo

p

CO

CD

TX

-X

d

d

ei

i-H

CO

TX

(M

(M

(M

P

(M

-X

CD

t-i

03

CO

(M

tH

00
f-H

(M

00
-H
CO

ira

CO

p

-i;

ei

rH

co

(M

ira

3

co

m
ira

(M

CD

00

rH

00

(M

ira

00

TH


IM

O

ira

tX

(M

•ni

1

rH

rH

(M

M

CO

CO

TX

CO

(M

tr-
os

ira

00

o

CO

ira

r-i

(N

id
CO

d
CO

d
CO

co
d

t-

to

p

CD

CD

Igt;

CO

ei

d

d

lt;M

(M

lt;N

rH

(M

lt;M

f-H

lO

d

ira

S

rH

(M

IM

CO

O

P

CD

fn

ni

d

ira

rH

IM

IM

(M

IM

o

ai

os

(M

CD

CO

p

00

O

fH

r-

IM

rH

rH

rH

ira

rH

p

d

(N

(M

IM

05

00
CD

p

m

t-

d

rH

quot;CD lO \'1\' CO CM

TH (M CO

I I I

03 00 C-

p

p

p

eq

d

ni

rH

ira

nH

eq

p

CO

OS

Ci

d ■

ira

ld

CO

co

co

eq

IM

ai

CO

p

CO

co

co

t ^

cd

t-i

d

d

M

eq

eq

eq

eq

CD

ai

o

nn

n*

O

CO

ld

co

eq

eq

rH

eq

co

O

n*

Oi

cd

d

ld

co

eq

eq

eq

eq

la

TX

ira

ira

nlt;

r-i

ai

d

d

eq

■ co

co

eq

eq

p

n;

P

n;

00

d

rH

fH

eq

eq

CO

eq

co

co

ira

00

00

00

O

d

ai

ni

ld

rH

rH

rH

IM

CO
tX
TX


(N

Ph

OO

P

P

P

r-

cd

I-H

d
rH

d

d
rH

rH

t-

eq

lO

ni
eq

ai

I-H

t-i
rH

rH

CO

t-

O

co

ni

d

ni

d

rH

rH

(M

nlt;

P

nlt;

00

ira

ld

t-i

ld

d

rH

rH

eq

PH

co

-ocr page 92-

PLATE 54.

-9

-8 -7

-6 -5

-4 -3

-2 -1

1

2 3

4 5

6 7

8 9

-9 -

-8 -7

-6 -5

-4 -3

-2 -1

1

2 3

4 5

6 7

8 9

25.2

20.2

22.7

26.4

25.2

10

135.1

• 90.1

101.3

135.1

80.8

10

22.7

23.5

16.0

30.9

19.0

23.3

9

105.8

78.8

119.7

186.1

112.8

9

13.2

28.8

21.6

24.6

148.7

94.6

144.7

167.4

108.7

8

14.3

20.6

22.7

25.1

29.0

40.3

7:

144.1

94.0

140.7

116.2

136.7

7

17.7

30.5

23.5

35.5

6

135.3

79.3

133.2

180.6

209.1

6

2L8

26.5

19.6

31.5

25.0

44.8

5:

123.2

74.6

119.8

158.1

142.6

5

28.0

22.0

26.6

26.4

30.1

4,

109.8

80.9

63.4

96.2

101.5

4

18.4

17.9

32.7

34.7

50.2

3:

110.1

77.0

74.0

91.8

60.0

3

25.5

23.9

25.9

31.1

32.5

2\'

100.0

89.6

66.5

60.3

78.7

2

26.6

19.9

34.0

52.5

1!

112.8

64.9

64.7

42.6

50.8

1

24.7

37.9

36.2

27.8

48.0

-1

104.9

88.2

69.5

52.2

52.3

-1

38.4

40.0

41.6

52.9

34.7

66.0

-2

87.9

80.1

66.2

33.1

43.1

-2

40.0

36.2

63.5

56.3

57.6

-3

117.9

76.6

56.6

.38.7

33.6

-3

34.4

66.7

79.7

65.4

45.6

-4

88.9

50.8

43.1

39.8

23.9

-4

37.1

68.9

75.2

89.8

83.0

-sj

83.2

53.0

52.8

40.7

34.9

-5

42.8

73.3

57.5

86.8

101.2

52.6

52.3

35.2

26.7

-6

83.5

70.4

81.5

94.7

-7!

84.8

83.1

93.5

48.0

19.1

-7\'

47.4

71.1

62.8

84.1

-8j

63.2

69.2

46.8

34.9

40.8

-8

70.5

38.6

55.1

-9\'

127.8

98.4

44.0

61.2

21.0

-9|

j

54.0

40.8

53.4

25.6

47.6 -

■lOj

-ocr page 93-

CHAPTER VL

the catalogue of star-density.

The reduced plates furnish the data for a detailed catalogue of star-
density, arranged according to galactic co-ordinates. I took care not to combine
the separate fields to larger areas, since for further investigations it has many
advantages to consult the material in its original form.

The equatorial co-ordinates of the centre of each field were found in
the following manner. The plates may be assumed to be tangent to a sphere
of 33 cms. radius, the equatorial
co-ordinates of the point of contact and the
orientation of the plates being known. In this tangent plane the hour-circles
and
parallel-circles from 10° tot 10° were now centrally projected from the
centre of the sphere. In this way six different nets were drawn, namely for

Dec. = 0°, Dec. = 30°. Dec. = 60°, Dec. = -75°, Dec. = -85° and Dec. = -90°.

On these nets the centres of the 360 fields were marked; the equatorial co-
ordinates of these centres could easily be read off to a degree. Tables
XVII-XIX
give these co-ordinates for Dec. = 0°, Dec. =30° and Dec. = 60° respectively.
Of the two numbers in each field the upper one gives the declination, the lower
one the
difference in right ascension with the centre of the plate; arranged in
this way, table
XVII may serve for all plates having their centre on the
equator; tables
XVIII and XIX for all plates at Dec. = 30° and Dec. = 60°
and with a slight modification also for the plates at Dec. = — 30° and Dec.
= -_60°. For the right half of the plate these differences must be subtracted
from the R.A. of the centre, for the left half they must be added to it.

-ocr page 94-

TABLE XVIII.

TABLE XVIL

TABLE XIX.

Equatorial co-ordinates for plate with
centre at De
C. = 0°.

123456789

Equatorial co-ordinates for plate with
centre at Dec. =
30°.

1 2

3

8 9

Equatorial co-ordinates for plate with
centre at Dec. =
60°.

123456789

16

16

16

16

16

16

16

16

16

10

46

46

46

46

46

46

45

45

45

10

76

76

76 75 75 74 73 72 71

10

1

3

4

6

8

10

11

13

15

1

4

6

8

11

13

15

18

20

3

11

17 23 29 34 38 43 46

14

14

14

14

14

14

14

14

14

Q

45

45

45

44

44

44

44

43

43

9

75

75

74 74 73 73 72 71 70

9

1

3

4

6

8

10

11

13

15

«7

1

4

6

8

11

13

17

19

3

10

16 22 27 32 36 40 43

13

13

13

13

13

13

13

12

12

Q

43

43

43

43

42

42

42

41

41

D

73

73

73 72 72 71 70 70 69

1

3

4

6

8

10

11

13

15

o

1

4

6

8

10

13

15

17

19

o

3

8

14 20 24 29 33 37 41

8

11

11

11

11

11

11

11

11

11

7

41

41

41

41

41

41

40

40

39

7

71

71

71 71 70 70 69 68 67

1

3

4

6

8

10

11

13

15

1

3

6

8

10

12

15

17

19

3

8

13 18 23 27 32 35 38

7

9

9

9

9

9

9

9

9

9

6

40

40

40

39

39

39

39

38

38

70

69

69 69 68 68 67 67 66

1

3

4

6

8

10

11

13

15

1

3

6

8

10

12

14

16

19

0

2

8

12 17 21 25 29 33 37

6

8

8

8

8

8

8

8

7

7

5

38

38

38

38

37

37

37

37

36

r-k

68

68

67 67 67 66 66 65 64

1

3

4

6

8

10

11

13

15

1

3

5

8

10

12

14

16

18

o

2

7

12 16 20 24 27 31 34

5

6

6

6

6

6

6

6

6

6

4

36

36

36

36

36

35

35

35

35

A

66

66

66 65 65 65 64 64 63

1

3

4

6

8

10

11

13

15

1

3

5

8

10

12

14

16

18

■i

2

7

11 15 19 22 26 29 32

4

4

4

4

4

4

4

4

4

4

3

34

34

34

34

34

34

34

33

33

O

64

64

64 64 63 63 63 62 62

3

1

3

4

6

8

10

11

13

15

1

3

5

7

9

12

14

16

18

O

2

6

10 14 18 21 24 28 31

3

3

2

2

2

2

2

2

2

2

33

33

33

32

32

32

32

32

32

o

63

62

62 62 62 61 61 60 60

1

3

4

6

8

10

11

13

15

1

3

5

7

9

11

13

15

17

^

2

6

10 13 17 20 23 26 30

2

1

1

1

1

1

1

1

1

1

1

31

31

31

31

31

30

30

30

30

1

61

61

61 60 60 60 59 59 58

1

1

3

4

6

8

10

11

13

15

1

3

5

7

9

11

13

15

17

1

2

6

9 13 16 19 22 25 28

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

29

29

29

29

29

29

29

28

28

-1

i

i 59

59

59 59 58 58 58 57 57

-1

1

3

4

6

8

10

11

13

15

1

3

5

7

9

11

13

15

17

■ 2

5

8 12 15 18 21 24 27

-3

-3

-2

_2

-2

-2

-2

-2

-2

-2

27

27

27

27

27

27

27

27

27

1

; 57

57

57 57 57 57 56 56 55

1

3

4

6

8

10

11

13

15

1

3

5

7

9

11

13

15

16

1

; 2

5

8 12 14 17 20 23 26

-2

-4

-4

-4

-4

-4

-4

-4

-4

-4

-3

26

26

26

25

25

25

25

25

25

o

: 56

56

56 55 55 55 55 54 54

1

3

4

6

8

10

11

13

15

1

3

5

7

9

11

12

14

16

-3

2

5

8 11 14 17 19 22 24

-3

-6

-6

-6

-6

-6

-6

-6

-6

-6

-4

24

24

24

24

24

24

23

23

23

-4

54

54

54 54 54 53 53 53 52

-4

1

3

4

6

8

10

11

13

15

1

3

5

7

9

10

12

14

16

1

5

7 10 13 16 18 21 23

-8

-8

-8

-8

-8

-8

-8

-7

-7

-5

22

22

22

22

22

22

22

22

21

52

52

52 52 52 52 51 51 51

1

3

4

6

8

10

11

13

15

1

3

5

7

8

10

12

14

16

—O

1

4

7 10 13 15 18 20 23

-5

-9

-9

-9

-9

-9

-9

-9

-9

-9

-fi

21

21

21

20

20

20

20

20

20

r.

51

51

51 50 50 50 50 50 49

-6

1

3

4

6

8

10

11

13

15

1

3

5

6

8

10

12

13

15

-o

1

4

7 10 13 15 17 20 22

-11

-11

-11

-11

-11

-11

-11

-11

-11

19

19

19

19

18

18

18

18

18

49

49

49 49 49 49 48 48 48

1

3

4

6

8

10

11

13

15

#

1

3

5

6

8

10

12

13

15

-7

1

4

7 9 12 14 17 19 21

-7

-13

-13

-13

-13

-13

-13 -

-13

-12 -

-12

17

17

17

17

17

17

16

16

16

o

47

47

47 47 47 47 47 46 46

-8

1

3

4

6

8

10

11

13

15

1

3

5

6

8

10

12

13

15

-8

1

4

6 9 11 14 16 18 20

-14 ■

-14 •

-14 -

-14 -

-14 -

-14 -

-14 -

-14 -

-14

-9

15

15

15

15

15

15

15

14

14

-9

46

46

46 46 45 45 45 45 45

1

3

4

6

8

10

11

13

151

1

3

5

6

8

10

11

13

15

1

4

6 9 11 13 15 18 20

-9

-16 -

-16 -

-16 -

-16 -

-16 -

-16 -

-16 -

-16 -

-16

-10

13

13

13

13

13

13

13

13

13

-10

44

44

44 44 44 44 44 43 43

-10

1

3

4

6

8

10

11

13

15|

1

3

4

6

8

9

11

13

14

1

4

6 8 10 13 15 17 19

8 9

3 4

8 9

■ fs.. oi-

6

\'z a

-ocr page 95-

Tables XX—XXII, holding for Dec. =—75°, Dec. =—85° and
Dec. = 90°
respectively, are somewhat differently arranged. Here no differ-
ences in R.A. are given but the right ascensions themselves. For obvious
reasons the tables had now to be given in full and not for one half only.

TABLE XX.

THE PLATE WITH CENTRE AT R.A. = 210°, DEC.
_2 -1 12 3 4 5 6 7 8 9

, = -75

EQUATORIAL CO-ORDINATES FOR
_9 _8 -7 -6 -5 -4 -3

-57

-57

-57

-58

-58

-59

-59

-59

-59

236

233

230

227

224

221

218

215

212

-58

-58

-59

-59

-60

-60

-60

-60

-61

237

234

231

228

225

222

219

215

212

-60

-60

-61

-61

-61

-62

-62

-62

-62

238

235

232

229

226

223

219

215

212

-61

-62

-62

-63

-63

-63

-64

-64

-64

240

237

234

230

227

224

220

216

212

-62

-63

-63

^64

-65

-65

-65

-65

-66

241

238

235

232

228

224

220

216

212

-64

-64

-65

-66

-66

-67

-67

-67

-67

243

240

237

233

229

225

221

217

212

-65

-66

-67

-67

-68

-68

-69

-69

-69

246

242

238

235

231

227

222

217

212

-66

-67

-68

-69

-69

-70

-70

-71

-71

248

245

241

237

232

228

223

218

213

-68

-69

-69

-70

-71

-72

-72

-72

-72

250

247

243

239

234

229

224

218

213

-69

-70

-71

-72

-73

-73

-74

-74

-74

253

250

246

242

237

232

226

219

213

-70

-71

-72

-73

-74

-75

-75

-76

-76

257

253

248

244

239

233

227

221

213

-72

-73

-74

-75

-76

-76

-77

-77

-77

260

257

253

248

243

237

230 222

214

-73

-74

-75

-76

-77

-78

-78

-79

-79

264

260

257

252

247

240

233 223

214

-74

-75

-76

-77

-78

-79

-80

-81

-81

268

265

262

257

251

245

237 226

216

-75

-76

-77

-78

-80

-81

-82

-82

-83

273

271

267

263

257

250

242

230

217

-75

-77

-78

-79

-81

-82

-83 -84

-84

279

277

273

270

265

258

248 235

219

-76

-77

-79

-80

-82

-83

-84 -85

-86

286

283

281

278

274

268

259 245

223

-76

-78

-79

-81

-82

-84

-85

-87

-88

292

291

289

288

285

281

274 261

233

-76

-78

-79

-81

-83

-84

-86

-88

-89

298

298

298

297

297

296

294 291

280

-76

-78

-79

-81

-82

-84

-86

-87

-88

306

307

307

308

310

313

318

328

359

-59 -59
202 199
-60 -60
201 198
-62 -62
201 197
-64 -63
200 196
-65 -65
200 196
-67 -67
199 195
-69 -68
198 193
-70 -70
197 192
-72 -72
196 191
-74 -73
194 188

-58 -58
196 193
-60 -59
195 192
-61 -61
194 191
-63 -63
193 190
-65 -64
192 188
-66 -66
191 187
-68 -67
189 185
-69 -69
188 183
-71 -70
186 181
-73 -72
183 178

-57
184
-58
183
-60
182
-61
180
-62
179
-64
177
-65
174
-66
172
-68
170
-69
167

-59
205
-60
205
-62
205
-64
204
-65
204
-67
203
-69
203
-71
202
-72
202
-74
201

-59
208
-61
208
-62
208
-64
208
-66
208
-67
208
-69
208
-71
207
-72
207
-74
207

-75 -75
193 187
-77 -76
190 183
-78 -78
187 180
-80 -79
183 175
-82 -81
178 170
-83 -82
172 162
-84 -83
161 152
-85 -84
146 139
-86 -84
126 124
-86 -84
102 107

-74 -73
181 176
-76 -75
177 172
-77 -76
173 168
-78 -77
169 163
-80 -78
163 157
-81 -79
155 150
-82 -80
146 142
-82 -81
135 132
-83 -81
123 123
-82 -81
110 112

-76
199
-77
198
-79
197
-81
194
-82
190
-84
185
-85
175
-87
159
-88
129
-87
92

-76
207
-77
206
-79
206
-81
204
-83
203
-84
201
-86
197
-88
187
-89
140
-88
61

-70
163
-72
160
-73
156
-74
152
-75
147
-75
141
-76
134
-76
128
-76
122
-76
114

-1

-2

-3

-4

-5

-6

-7

-9

10

-57 -57
190 187
-59 -58
189 186
-61 -60
188 185
-62 -62
186 183
-63 -63
185 182
-65 -64
183 180
-67 -66
182 178
-68 -67
179 175
-69 -69
177 173
-71 -70
174 170
-12-11
172 167
-74 -73
167 163
-75 -74
163 160
-76 -75
158 155
-77 -76
153 149
-78 -77
147 143
-79 -77
139 137
-79 -78
131 129
-79 -78
122 122
-79 -78
113 113

-ocr page 96-

TABLE XXL

EQUATORIAL CO-ORDINATES FOR THE PLATE WITH CENTRE
AT R.A. = 0°, DEC. = - 85°.

-9 -8 -7 -6 -5 -4 -3 -2 -I

1

3

5 6

8 9

-69 -69 -08 -68 -67 -67 -66 -671^
358 353 349 344 340 336 332 329 325
-70 -70 -70 -69 -09 -08 -68 -67 -66
357 352 348 343 338 .334 330 326 3^
u -72 -72 -71 -71 -70 -69 -08 -fi7
357 352 347 342 337 332 328 324 3
-74 -74 -73 -73 -72 -71 -71 -70 -eJ
357 351 345 340 335 330 325 321 318
-76 -75 -75 -74 -74 -73 -72 -71 -70
357 350 343 337 332 327 322 318 315
-77 -77 -77 -7G -75 -74 -73 -72 -71
356-348 341 335 328 323 319 315 311
-79 -79 -78 -77 -77 -76 -74 -73 -72
355 347 338 331 325 319 315 310 307
-81 -80 -80 -79 -78 -77 -76 -74 -7i
354 344 335 327 320 314 310 300 302
-82 -82 -81 -80 -79 -78 -77 -75 -74
353 341 330 322 314 309 304 301 297
-84 -84 -83 -82 -80 -79 -78 -76 -75
352 336 323 314 .307 302 298 294 292

-G5
35
-GG
37
-G7
39
-C9
42
-70
46
-71
49
-72
53
-73
58
-74
G3
-75
68

-66 -60 -67
31 28 24
-67 -68 -68
34 30 26
-68 -09 -70
36 32 28
-70 -71 -71
39 35 30
-71 -72 -73
42 38 33
-72 -73 -74
45 41 37
-73 -74 -70
50 45 41
-74 -76 -77
64 50 46
-75 -77 -78
59 56 51
-76 -78 -79
66 62 58

-G7 -68 -08
20 10 11
-69 -69 -70

22nbsp;17 12
-71 -71 -72

23nbsp;18 13
-72 -73 -73

25 20 15
-74 -74 -75
28 23 17
-75 -76 -77
32 25 19
-77 -77 -78
35 29 22
-78 -79 -80
40 33 25
-79 -80 -81
40 38 30
-80 -82 -83
53 46 37

-09 -G9

7nbsp;2
-70 -70

8nbsp;3
-72 -72

8nbsp;3
-74 -74

9nbsp;3
-75 -76

10 3
-77 -77

12nbsp;4
-79 -79

13nbsp;5
-80 -81

16 0
-82 -82
19 7
-84 -84
24 8

10
9

7
6
5
4
3
2
1

-I
-2
-3
-4
-5
-6
-7

-75
74
-75
81
-76
88
-75
95
-75
102
-75
108
-74
114
-73
120
-73
125
-72
129

-77 -78 -80
72 69 00
-77 -79 -80
80 78 7G
-77 -79 -80
87 87 80
-77 _79 _80

96 97 98
-77 -78 -80
103 106 108
-76 -77 -79
111 113 117
-76 -77 -79
117 120 125
-75 -76 -78
123 127 132
-74 -75 -76
128 132 137
-73 -74 -75
132 137 141

-81 -83 -84
62 55 40
-82 -83 -85
74 70 63
-82 -84 -85
85 85 82
-82 -83 -85
100 102 108
-82 -83 -85
112 117 125
-81 -82 -84
122 128 137
-80 -81 -82
130 137 146
-79
-86 -81
137 143 153
-77 -78 -79
142 149 157
-76 -77 -78
147 153 160

-85 -86
32 12
-87 -88
50 20
-87 -89
79 60
-87 -89
116 144
-86 -87
139 164
-85 -85
152 170
-83 -84
158 173
-81 -82
163 174
-80 -80
160 175
-78 -78
168 176

-9
-10

-86 -85 -84 -83 -81 -80 -78 -75
348 328 314 305 298 294 291 288 286
-88 -87 -85 -83 -82 -80 -79
-77 _75
340 310 297 290 286 284 282 280 279
-89 -87 -85 -84 -82 -80 -79
-77 _76
300 281 278 275 275 274 273 273 272
-89 -87 -85 -83 -82 -80 -79
-77 .75
216 244 252 258 260 262 263 264 265
-87 -86 -85 -83 -82 -80 -78 -77
-75
190 221 235 243 248 252 254 257 258
-85 -85 -84 -82 -81 -79 -77 -76
-75
190 208 223 232 238 243 247 249 25\'gt;
-84 -83 -82 -81 -80 -79 -77 -76 -74
187 202 214 223 230 235 240 243 246
-82 -81 -81 -80 -79 -78 -76 -75
-73
180 197 207 217 223 228 233 237 240
-80 -80 -79 -78 -77 -76 -75 -74 -73
185 194 203 211 218 223 228 232 235
-78 -78 -78 -77 -76 -75 -74 -73 -72
184 192 200 207 213 219 223 228 231

-ocr page 97-

TABLE XXIL

-9 -8

67 69
138 142

69nbsp;70
135 139

70nbsp;71
132 135

71nbsp;73
128 131

72nbsp;74
123 127

73nbsp;75
118 121

74nbsp;75
113 115

74nbsp;76
107 109

75nbsp;77
101 102

75nbsp;77

94nbsp;95

75nbsp;77quot;

86nbsp;85

75nbsp;77

79nbsp;78

74nbsp;76

73nbsp;71

74nbsp;75
67nbsp;65
73nbsp;75
62nbsp;58
72nbsp;74
57nbsp;53
71nbsp;73
52nbsp;48
70nbsp;71
48nbsp;45
69nbsp;70
45nbsp;42
67nbsp;69
43nbsp;38

70nbsp;71
146 150

71nbsp;72
143 147

73nbsp;74
139 144

74nbsp;75
135 140

75nbsp;76
131 135

76nbsp;78
125 130

77nbsp;79
119 123

77nbsp;80
112 115

78nbsp;80
104 107

79nbsp;80

95 96

10
9
8
7
6
5
4
3
2
1

-1
-2
-3
-4
-5
-6
-7
-8
-9
-10

79nbsp;80

85nbsp;84

78nbsp;80

76nbsp;73

77nbsp;80
68nbsp;65
77nbsp;79
61nbsp;57
76nbsp;78
55nbsp;50
75nbsp;76
49nbsp;45
74nbsp;75
45nbsp;40
73nbsp;74
41nbsp;36
71nbsp;72
37nbsp;33
70nbsp;71
34nbsp;30

AT DEC.

== -1-90

0

-4

-3

-2

-1

1

2

3

4

5

6

n
$

8

9

72

73

73

73

73

73

73

72

71

71

70

69

67

160

165

171

177

183 189 195 200 205 210 214

218

222

74

74

75

75

75

75

74

74

73

72

71

70

69

158

164

170

177

183

190

196 202 208 213 217

221

225

75

76

77

77

77

77

76

75

75

74

73

71

70

155

162

169

176

184

191

198 205 211

216 221

225

228

77

78

78

79

79

78

78

77

76

75

74

73

71

152

159

167

176

184

193 201

208 214 220 225

229

232

79

80

80

80

80

80

80

79

77

76

75

74

72

148

156

165

175

185 195 204 212 219 225 229

233

237

80

81

82

82

82

82

81

80

79

78

76

75

73

142

152

162

174

186

198 208 218 225 230 235

239

242

81

82

83

84

84

83

82

81

80

79

77

75

74

135

145

157

172

188 203 215 225 232 237 241

245

247

82

84

85

86

86

85

84

82

81

80

77

76

74

126

135

150

169

191 210 225 234 240 245 248

251

253

83

85

86

87

87

86

85

83

82

80

78

77

75

113

121

135

162

198 225 239 247 251

253 256

258

259

84

85

87

89

89

87

85

84

82

80

79

77

75

99

102

110

135

225 250 258 261 263 264 265

265

266

84

85

87

89

89

87

85

84

82

80

79

77

75

81

78

70

45

315

290

282

279

277

276

275

275

274

83

85

86

87

87

86

85

83

82

80

78

77

75

67

59

45

18

342

315

301

293

289

287

284

282

281

82

84

85

86

86

85

84

82

81

80

77

76

74

54

45

30

11

349

330

315

306

300

295

292

289

287

81

82

83

84

84

83

82

81

80

79

77

75

74

45

35

23

8

352

337

325

315

308

303

299

295

293

80

81

82

82

82

82

81

80

79

78

76

75

73

38

28

18

6

354

342

332

322

315

310

305

302

298

79

80

80

80

■80

80

80

79

77

76

75

74

72

32

24

15

5

355

345

336

328

321

315

311

307

303

77

78

78

79

79

78

78

77

76

75

74

73

71

28

21

13

4

356

347

339

332

326

320

315

312

308

75

76

77

77

77

77

76

75

75

74

73

71

70

25

18

11

4

356

349

342

335

329

324

319

315

312

74

74

75

75

75

75

74

74

73

72

71

70

69

22

16

10

3

357

350

344

338

332

327

323

318

315

72

73

73

73

73

73

73

72

71

71

70

69

67

20

15

9

3

357

351

345

340

335

330

326

322

317

-ocr page 98-

For transforn^ing equatorial to galactic co-ordinates wemay use-

1.nbsp;an abacus by SeeligerI), which like

2.nbsp;a table by Kaptevn^) only gives the galactic latitude as a function
of the equatorial co-ordinates;nbsp;luncuon

3.nbsp;an abacus by Stroobani-), which is not very easy for practical use -

4.nbsp;a table by Pickering\') which likenbsp;^ or practical use,

- table by WALKED) gives values for both galactic co-ordinates
The dechnation is given by both from 10° to 1 0° and the R A f

hour. If in the galactic co-ordinates an accuracy of 1 \' is riufred T

jro. these two tables is troublesonieandlaboriLs.

to stop at first differences ;nbsp;uuit^ieiu

6. an abacus made at the Astronomical Laboratory at Groningen
This abacus consists of three parts, namely the galactic region and the cTps
round the galactic poles. It has, however, never been publlhed

So I resolved to make a new abacus. For the pole of the Milkv Wav
I took R.A. = Dec. = The declination of\'this pole isTe elct
mean of the values given by
Gould and by Newcomb; the right ascension
has been slightly rounded in order to simplify computation; the average of
the above values would be 190?85.nbsp;^

Fig. 4.

/ \\ 1 ^
- - -X.-\'S -

. T-^

\\ \' P

V. /

\\ \' /l

\\ \' V 1

—L,

16, m\'lS^ii.®\'quot;quot;\'™\' «\'^-«^quot;-chte der Kcnigl. bayer. Akademie v. Wissenschaften,
TableS\'aiiSa.quot;\'\'quot;quot;™\'nbsp;Astronomical Laboratory at Groningen Nr. 18,

Planche ilnbsp;^^ l\'Observatoire royal de Belgique, Tome XI, Fascicule II,

E. C. Pickering, H.A. 56. 5.
O. R. Walkey, M. N. 74, 201.

-ocr page 99-

The calculations were performed in the following manner. Let in fig. 4
he Kc be the equator and Pn its pole, let moreover GG be the galactic circle
with pole
Pg and let the galactic longitude be reckoned from in the direction
of increasing R. A. If now S is an arbitrary point on the celestial sphere
we have in triangle
Pg S Pn :

_ PGPN =^ =63°,
Z PoPNS =R.A.-191°,
Z PnPOS =P ==90°-/.

Denoting further the angle Pg S Pn by I we have

sin P sin inbsp;.

.....^

and

.......

Assigning in these formulae a definite value to P {i.e. to I), for every
value of
p the value of f {i.e. of the R.A.) can be calculated. So the formulae
(11) and (12) enable us to calculate for a given value of the galactic longitude
the right ascension as a function of the polar distance. We may therefore
use them for calculating points of the secondaries to the galactic circle.
From the same figure we derive the formulae

sin y sin i

I = shrp°-6)........

and

sin i (lt;P-I) cotg i {90°-b—i)
cotgi^=nbsp;shTiTT ljnbsp;.••.....(14)

by means of which we can for a given value of the galactic latitude calculate
the polar distance as a function of the right ascension. These formulae therefore
determine the small circles parallel to the galactic circle.

In this way the abacus of Plate I at the end of this paper was made.

-ocr page 100-

It gives the equatorial as well as the galactic circles from 10° to 10° so that
we may read off to 1°. The distance between the concentric equatorial circles
IS exactly 1 centimetre, so that the degrees of declination may be measured
If necessary. The readings in the neighbourhood of the galactic pole are not
precise, of course. Therefore in the area, bounded by the parallel circles Dec
= 10° and Dec. = 50° and by the hour-circles of 170° and 210° I have
calculated the galactic co-ordinates for each degree in declination ^ and for
every two degrees in right ascension. The results of these calculations are
found in tables XXIII and XXIV. It is obvious that the abacus as well as the
two tables can be used for the southern hemisphere. For southern declination
180°must be added to the R.A. argument and the sign of the found galactic
latitude reversed. To the found galactic longitude 180° must be added

By means of the abacus and these two tables the equatorial co-ordinates
of all fields were transformed to galactic ones. The next step was to collect
all fields with the same galactic latitude to groups, and to arrange these accord-
ing to galactic longitude.

In this way the Catalogue of star-density originated which as Appendix
I is added to this paper. For each galactic latitude the catalogue gives the star-
density (the number of stars per square degree) to the galactic lon-itudequot;
as argument.nbsp;^

It sometimes happened that two or three fields had the same galactic
co-ordinates. In this case the mean value was taken to express the star-
density. Such densities, being the average density of two or three over-
lapping fields, are marked in the catalogue by one or two asterisks.

-ocr page 101-

TABLE XXIIL

GALACTIC LATITUDES NEAR THE GALACTIC POLE.

196

198

83
83
82
81
81

80
79
78
77
77

76
75
74
73
72

R.A.

S20C

1 202

;204

:20£

i20S

1210

Dec.

; 71

70

69

68

66

65

10°

; 72

71

70

69

67

66

11

: 73

71

71

69

68

67

12

: 74

72

71

70

69

67

13

74

73

i72

71

69

68

14

75

74

73

72

70

69

15

76

75

74

72

71

69

16

77

76

74

73

71

70

17

78

76

75

73

72

70

18

78

77

76

74

72

71

19

79

78

76

75

73

71

1

20

80

78

77

75

73

72

21

80

79

77

75

74

72

22

81-

79

78

76

74

72

23

81

80

78

76

74

73

24

82

80

78

76

75

73

25

82

80

78

77

75

73

26

82

80

78

77

75

73

27

82

80

78

77

75

73

28

82

80

78

77

75

73

29

82

80

78

76

75

73

30

81

80

78

76

75

73

31

81

80

78

76

74

73

32

80

79

77

76

74

72

33

80

78

77

75

74

72

34

79

78

76

75

73

72

35

78

77

76

74

73

72

36

77

76

75

74

72

71

37

77

76

74

73

72

71

38

76

75

74

73

71

70

39

75

74

73

72

71

70

40

74

73

72

71

70

69

41

73

73

72

71

70

68

42

72

72

71

70

69

68

43

71

71

70

69

68

67

44

71

70

69

68

67

66

45

70

69

68

68

67

66

46

69

68

68

67

66

65

47

68

67

67

66

65

64

48

67

66

66

65

64

64

49

66

66

65

64

63

63

50

194

192

190

188

186

184

182

180

178

176

172

170

174

10°

11

12

13

14

68
69

69

70
69 71

72 73

15

16

17

18
19

69 70

20
21
22

23

24

25

26

27

28
29

83 85

75 77

87
86
85
84
83

80
80
80
79
78

30

31

32

33

34

82
81
80
79
78

82
81
80
79
78

82
81
80
79
78

82
81
80
79
78

79
78
77
77
76

78
77
76
76
75

76
76
75
74
74

73
73
72
72
71

35

36

37

38

39

70
70
70
69
69

77
76
75
74
73

77
76
75
74
73

77
76
75
74
73

77
76
75
74
73

76
75
74
73
72

75
74
73
72
71

74
73
73
72
71

73
72
72
71
70

71
70
70
69
68

40

41

42

43

44

68
68
67
67
66

72
71
70
69
68
67

71
71
70
69
68
67

71
70
69
68
67
66

72
71
70
69
68
67

72
71
70
69
68
67

72
71
70
69
68
67

71 71

71
70
69
68
67
66

70
69
68
67
66
66

69
68
68
67
66
65

67
67
66
65
64
63

45

46

47

48

49

50

65
65
64
63
63
62

-ocr page 102-

TABLE XXIV.

GALACTIC LONGITUDES NEAR THE GALACTIC POLE.

208

170

172

174

176

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

210

10°
11
12

13

14

217
215
213
211
209

220
218
216
214
212

224
222
220
218
216

227
226
224
222
220

232 237
230 235

242
240
239
237
235

247
246
245
244
242

254 260

267
266
266
266
266

273

274
274
274
274

280
281
281
282
283

286 293

298 303
300 305

308
310
312
314
316

313

314
316
318
320

316
318
320
322
324

320
322
324
326
328

10°
11
12

13

14

253
252
251
249

259
259
258
257

287

288
289
291

294

295

296
298

228
226
224

233
231
229

301
303
305

307
309
311

15

16

17

18
19

207
205
203
200
198

210
208
206
203
201

214
212
210
207
205

218
215
213
210
207

222
220
217
214
211

227
225
222
219
216

233 240
231 238

248
246
244
242
239

256
255
254
252
250

265
265
265
264
263

275
275

275

276

284

285

286
288

292
294
296
298
301

300
302
304
307

307
309
312
315
310 318

313
SL-:
318
321
324

318
320
323
326
329

322
325
327
330
333

326
328
330
333
335

330
332
3.34
337
339

15

16

17

18
19

228
225
222

236
233
230

277 290

328 332

20
21
22

23

24

196
193
190
187
184

198
195
192
189

201
198
194
191

204
200
197
193
189

208
204
200
196
191

212
208
204
200
194

218
214
210
204
198

226
222
217
211
204

236
232
227
220
213

248
245
241
235
227

262
261
259
257
253

278

279
281
283
287

292
295
299
305
313

304
308
313
320
327

314
318
323
329
336

322
326
330
336
342

336
340
343
347

339
342
346
349

342
345
348
351

20
21
22

23

24

332
336
340
346

336
340
344
349

186 187

351 353 354

25

26

27

28
29

181
178
175
172
169

182
179
176
172
169

185
181
177
172
168

184
180
176
172
168

187
182
177
172
167

192
185
178
171
164

189
183
177
172
166

202 216
191 200

196
188
178
169
160

246
228
180
131
114

294
312
0
49
66

324
340
1
21
■38

338
349
1

14
26

344
352
2
11
20

348
355
2
9
16

351
357
3
8
14

353
358
3
8
13

355
359
3
8
12

356
0
4
8
12

358
1
4
8
11

25

26

27

28
29

179
166
154

179
159
142

30

31

32

33

34

166
163
160
157
154

165
162
159
155
152

165 164
161 159

162
158
153
149
145

160
155
150
145
141

157
151
145
140
136

152
145
139
134
129

145
136
130
125
120

131
123
117
113
109

106
102
100
98
97

74
78
80
82
83 71

20 18
25 22

15
18
21
25
28

30

31

32

33

34

155
152
148

157
154
150

35

36

37

38

39

151
148
145
143
140

149
146
143
141

144
141
138
135
132

147
144
141
138

141
138
134
132
129

137
133
130
127
125

132
128
125
122
120

125
122
119
116

117
114
112
110
114 108

107
105
103
102
101

73
75

77

78
86 79

63 55
66 58

48 43
47
50
53

31
34
37
39
42

35

36

37

38

39

138 136

55 51

40

41

42

43

44

138
136
133
131
129

136
133
131
129
127

133
131
128
126
124

130
128
125
123
122

126
124
122
120
118

122 118

112
110
109
108
107

106
105
104
103
102

100
99
99
98
97

58
60
62
64
69 65

40

41

42

43

44

120
118
116
115

116
114
112
111

58 56

45

46

47

48

49

50

128
126
124
122
121
119

125 123

120
118
117
115
114
113

117
115
114
113
111
110

113
112
111

109
108
107

109
108
107
106
105

105
104
104
103
102

101
100
100
99
99
98

63

65

66
67

69

70nbsp;67

57 55
59 57

45

46

47

48

49

50

123
122
120
119
117

121

119
118
116
115

104 101

-ocr page 103-

Before we proceed to apply the material collected in the catalogue of
star-density to statistical investigation, a few remarks may be made on
Charlier\'s formula, used by Henie for the reduction of his counts. Our main
object is to examine whether
Charlier\'s formula is confirmed by the results
it has led to. As will soon appear, it follows from our reduction of
Henie\'s
counts that the number of stars down to 11?0 amounts to

1075200.

Unfortunately this number cannot be directly calculated from this
formula since the value of N is not known. Formula (6), however, (p. 37)
may suit for the purpose, since
Pickering has carried out counts, based on
a photometric scale, for
m =6.15. His result is

A (6.75) = 11003.

As to the value of R (6.75), it can easily be calculated if the constants
and k are known. The difficulty arises here which of the formerly given
values must be taken. In table X the average values of these constants are
given for each of the three groups of plates. Now it seems reasonable to take
the values of the constants for group II,
i.e. for the group of plates on which
the average star-density is neither particularly great nor particularly small.
Taking

^nbsp;=18.32 and =3.018

we find

15295

R(6.75)=^^

and

A (11) = 1335000.

This number is about 25 % greater than that obtained by counting.
Somewhat better results are found with the constants of group I, namely

m^ =17.56 and k =3.044.

°nbsp;31U5

R(6.76)

and

A (11) = 892200.

-ocr page 104-

This result is about 15 % too low. Hence we must conclude that at any
rate for intervals as large as
4 to 5 magnitudes and with the above given
values of the constants,
Charlier\'s formula does not give exact results

This does not imply that the numbers of the density-catalogue ob
tamed by means of
Charlier\'s formula, should be inexact. Not only the
magnitude intervals used in these reductions were much smaller, but more-
over, the reduction sometimes decreased, sometimes increased ^the original
density, so that the errors due to the formula have largely compensated each

nthpr

-ocr page 105-

PART II.
The Milky Way.

-ocr page 106-

A ^
\' i

- î.
: .
■ M -f.

■ , . W

■ï\' ^

m

quot;■■VI-

■f

J,

■m::\'-

: : \'......^ /

n-f^-.quot;\']

m

.nbsp;y -rï

■ ■ ■. ^ \'

ß\' à-

. i! quot;FHAT: :
• .Yi;V/ vgt;liiM -Î.HT

f

-ft:

\\ 1
\\

■ •

söiii

quot;Ü \' ■ gt; -

\'hM :

■ «r ■■

-ocr page 107-

CHAPTER VII.

THE STAR-DENSITY AND THE GALACTIC LATITUDE.

The material collected in the catalogue of star-density is particularly
suitable for studying the relation between the star-density
d and the galactic
latitude h. To obtain the average density for every degree of latitude it is
only necessary to find for each value of
b the sum ^^^ of the given densities
and to divide by n^) the number of fields counted for that latitude. These
values for ^d and n are given in table XXV, first for every degree of latitude
in the northern and southern galactic hemisphere separately, then for equal
latitudes in both hemispheres combined.

TABLE XXV.

STAR-DENSITY AND GALACTIC LATITUDE.

Northern Galactic Hemisph.

Southern Galactic Hemisph.

Both Hemispheres

0

2; d

n

Ed

n

Ed

n

90°

89

88

13.9

3

45.0

3

58.9

6

87

14.5

2

42.6

3

57.1

5

86

11.7

2

10.4

1

22.1

3

85

25.2

4

66.4

5

91.6

9

84

55.7

6

55.1

5

110.8

11

83

18.6

3

61.9

4

80.5

7

82

33.9

5

79.7

5

113.6

10

81

69.3

10

109.2

9

178.5

19

80

27.8

4

81.5

6

109.3

10

79

79.5

9

167.6

10

247.1

19

78

55.1

8

65.5

5

120.6

13

degrees

I This division has not been carried out so as to allow any desired combination of
of, latitude.

-ocr page 108-

TABLE XXV. CONTINUED.

b

Northern Galactic Hemisph.

Southern Galactic

Hemisph.

1 Both Hemispheres

Zd

n

2d

n

I 2d

n

77°

95.8

11

183.7

9

279.5

20

76

78.6

9

232.5

15

311.1

24

75

95.8

12

83.3

6

179.1

18

74

102.3

12

232.7

14

335.0

26

73

103.5

! 10

213.2

\' 14

316.7

24

72

143.6

17

227.8

14

\' 371.4

i 31

71

104.2

12

170.1

9

274.3

21

70

151.4

16

208.2

12

359.6

28

69

155.5

16

360.4

19

515.9

35

68

109.2

12

364.6

20

473.8

32

67

205.4

21

256.4

13

461.8

34
26

66

122.5

12

328.0

14

450.5

65

237.2

24

j 464.4

25

701.6

49

64

147.6

15

280.6

12

428.2

27

63

200.6

21

415.7

20

616.3

41

62

173.6

18

386.1

22

559.7

40

61

258.6

25

367.7

18

626.3

43

60

139.6

14

424.2

25

563.8

39

59

289.5

! 27

498.1

24

787.6

51

58

220.6

1 21

358.3

18

578.9

39

57

263.2

25

i 465.9

24

729.1

49

56

278.7

21

442.2

21 ■

720.9

42

55

268.6

27

404.9

22

673.5

49

54

1

296.0

23

486.4

25

782.4

48

53

287.2

25

519.3

28

806.5

53

52

887.3

29

525.1

29

912.4

58

51

342.2

26

437.4

23

779.6

49

50

239.6

22

473.4

26

713.0

48

49

438.6

35

573.1

32

1011.7

67

48

319.5

26

612.4

33

931.9

59

47

516.0

34

648.7

33

1164.7

67

46

380.1

31

598.0

34

978.1

65

45

395.9

30

653.8

35

1049.7

65

44

624.0

38

690.2

34

1314.2

72

43

529.6

40

657.3

34

1186.9

74

42

459.0

36 1

749.6

36

1208.6

72

41 j

485.5

33

848.5

37

1334.0

70

40

649.0

44

787.8

37

1436.8

81

39

535.8

37

804.2

37

1340.0

74

-ocr page 109-

TABLE XXV. CONTINUED.

b

Northern Galactic Hemisph.

Southern Galactic Hemisph.

Both Hemispheres

Ed

n

Ed

n

Ed

n

38°

553.5

35

914.8

39

1468.3

74

37

602.3

37

835.4

37

1437.7

74

36

611.4

37

848.1

37

1459.5

74

35

427.4

29

838.4

35

1265.8

64

34

522.4

32

877.7

36

1400.1

68

33

660.5

39

1172.1

41

1832.6

80

32

662.5

35

639.4

30

1301.9

65

31

! 571.5

30

921.2

39

1492.7

69

■ 30

! 807.2

43

1230.6

41

2037.8

84

29

733.9

35

921.2

35

1655.1

70

28

808.3

43

1368.0

46

2176.3

89

27

706.5

32

1137.8

41

1844.3

73

26

997.1

47

1082.0

36

2079.1

83

25

827.8

35

1212.4

42

2040.2

77

24

795.6

39

1192.6

39

1988.2

78

23

1016.4

39

1224.9

40

2241.3

79

22

783.0

34

1210.1

42

1993.1

76

21

1205.0

46

1476.1

46

2681.1

92

20

i 1124.7

44

941.0

33

2065.7

77

19

920.6

39

1411.8

47

2332.4

86

18

1180.4

45

1578.6

48

2759.0

93

17

1207.8

48

1406.2

44

2614.0

92

16

1311.5

43

1325.8

45

2637.3

88

15

1472.0

50

1804.1

52

3276.1

102 .

14

1438.7

48

1217.8

37

2656.5

85

13

1878.9

54

1617.7

50

3496.6

104

12

1281.8

40 ^

1765.2

47

3047.0

87

11

1816.3

49

2000.0

51

3816.3

100

10

1587.3

50 i

1701.8

44

3289.1

94

9

1593.5

42

2045.1

45

3638.6

87

8

1528.4

42

2290.6

47

3819.0

89

7

1400.7

42

2469.6

49

3870.3

91

6

2069.8

49

2489.2

51

4559.0

100

5

1986.4

49

2832.2

45

4818.6

94

4

1840.8

45

2182.2

45

4023.0

90

3

2010.6

44

2731.6

42

4742.2

86

2

1893.8

39

3382.4

55

5276.2

94

1

2387.0

49

1842.5

34

4229.5

83

0

3293.9

57

-ocr page 110-

It is easy to calculate from table XXV the average density in succes-
sive zones of 10° galactic latitude. Each zone will be indicated by its average
galactic latitude placed in ^cle; so (g) means the zone situated between
b = 10° and 6 = 20°, @ being the corresponding zone in the southern
hemisphere. By we understand these two zones combined. It should
be borne in mind that the numbers of the density-catalogue
e.g. under b = 20°,
refer to fields of one square degree, having their centres on the parallel circle
b = 2^these fields therefore belong for one half to (S) and for the other
half tonbsp;^

TABLE XXVI.

MEAN STAR-DENSITY AND NUMBER OF STARS IN GALACTIC ZONES.

Zone

z d

n

d

0

log d

log 0

log N

N

Zone

d

!

n

d

0

log d

log 0

logN

N

1

______

256.7

37

6.9

313.4

0.841

2.496

3.337

2170

e

24763.2

463

53.5

3581.8

1.728

3.554

5.282

191000

©

/—s^

948.0

110

8.6

929.9

0.936

2.968

3.904

8020

©

15448.6

460

33.6

3472.9

1.526

3.541

5.067

117000

(t3)

1755.7

179

9.8

1520.1

0.991

3.182

4.173

14900

©

11910.9

404

29.5

3258.6

1.470

3.513

4.983

96200

^--s

2822.9

242

11.7

2062.6

1.067

3.314

4.381

240C0

©

8860.5

370

23.9

2945.5

1.379

3.469

4.848

70500

^--quot;V

4588.5

336

13.7

2541.9

1.136

3.405

4.541

34800

©

6662.2

339

19.7

2541.9

1.294

3.405

4.699

50000

K3

/---V

5875.4

355

16.6

2945.5

1.219

3.469

4.688

48800

©

4586.4

240

19.1

2062.6

1.281

3.314

4.595

39400

©
-----V

8839.6

393

22.5

3258.6

1.352

3.513

4.865

73300

©

3540.1

181

19.6

1520.1

1.291

3.182

4.473

29700

©

13864.0

461

30.1

3472.9

1.478

3.541

5.019

105000

©

1721.3

105

16.4

929.9

1.215

2.968

4.183

15200

©

19151.6

455

42.1

3581.8

1.624

3.554

5.178

151000

©

511.0

38

13.4

313.4

1.128

2.496

3.624

4210

Table XXVI contains the results of these calculations. The first
column gives the zone, the second and third columns give d and 71
for this zone; the fourth and fifth contain the average density
d and the area
0 in square degrees; in the sixth and seventh column follow log d and log 0-

-ocr page 111-

in the eighth the logarithm of the number of stars N in each zone and in
the last column
N itself. Table XXVII was formed from table XXVI by
combining the corresponding zones of the northern and southern hemispheres.

TABLE XXVIL

MEAN STAR-DENSITY AND NUMBER OF STARS IN GALACTIC ZONES.
(BOTH GALACTIC HEMISPHERES TAKEN TOGETHER).

Zone

Ed

n

d

0

log d

log 0

log N

N

®

767.7

75

10.2

626.8

1.010

2.797

3.807

6410

@

2669.3

215

12.4

1859.8

1.094

3.269

4.363

23100

®

5295.8

360

14.7

3040.2

1.168

3.483

4.651

44800

®

7409.3

482

15.4

4125.2

1.187

3.615

4.802

63400

®

11250.7

675

16.7

5083.8

1.222

3.706

4.928

84700

@

14735.9

725

20.3

5891.0

1.308

3.770

5.078

120000

@

20750.5

797

26.1

6517.2

1.416

3.814

5.230

170000

©

29312.6

921

31.8

6945.8

1.503

3.842

5.345

221000

®

43914.8

918

47.8

7163.6

1.679

3.855

5.534

342000

The values of d in the fourth column of table XXVII were plotted
as ordinates to the values of
b as abscissae and a smooth curve was
drawn, the latitudes 75° and 85° obtaining less weight, since here, the observ-
ations\'were
comparatively scanty, ff we wish to represent this curve by a
formula it should
be remembered that it must yield a minimum at 6 =90°
and a maximum at h = 0°. I therefore tried

\' = A B cosf h.

The shape of the curve shows that the exponent p cannot be very low;
by trial and error its value was fixed at 10. By the method of least squares we
then find for A 14.6 and for B 31.0, so that

(15).

d = 14.6 31.0 cosquot; b

Table XXVIII gives a comparison between the observed and the calcul-
ated values of
d. Taking into account that for 6 gt; 65° the values of d are

-ocr page 112-

somewhat uncertain through the comparatively small number of fields on
which they are based and that in the Milky Way the star-density varies very
considerably with the galactic longitude^), the agreement between observation
and formula is quite satisfactory.

TABLE XXVIIL

DISCUSSION OF FORMULA 15.

b

\'^comp.

^(^s.-^comp.

85°

10.2

14.6

—4.4

75

12.4

14.6

—2.2

65

14.7

14.6

0.1

55

15.4

14.7

0.7

45

16.7

15.6

1.1

35

20.3

18.8

1.5

25

26.1

26.2

—0.1

15

31.8

36.5

—4.7

5

47.8

44.4

3.4

Since for some integrals, frequently encountered in stellar statistics
it is preferred to introduce
log d instead of d itself, I have also, in a similar
way, derived a formula for
log d, viz.:

log d = 1.096 0.522 cos^ b ........(le)

Table XXIX compares the results yielded by observation and by
this formula. The agreement is satisfactory.

TABLE XXIX.

DISCUSSION OF FORMULA 16.

b

log d—log d
obs. eomp.

85°

1.010

1.096

—0.086

75

1.094

1.098

—0.004

65

1.168

1.113

0.055

55

1.187

1.152

0.035

45

1.222

1.227

—0.005

35

1.308

1.331

—0.023

25

1.416

1.448

—0.032

15

1.503

1.551

—0.048

5

1.679

1.610

0.069

See Chapter IX.

-ocr page 113-

We shall now compare our results with those of Kapteyn. In table 1
of the Groningen Pubhcations No.
18 Kapteyn gives the logarithms of the
numbers of stars per square degree from the brightest to magnitude
m. As his
magnitudes and mine are based on the same scale, his numbers\'for m = 11.0
are directly comparable with mine. In table XXX they are placed in juxta-
position. In order that the number of fields on which my numbers are based
might not be too small, the fields of three consecutive values of
h were combined
for finding
log d. Thus e.g. b = 15° means the combination of all fields
having their centres at
b = ±14°, b = ±15° and b = ±16°.

TABLE XXX.

comparison between the numbers of kapteyn and nort.

b

lot

Kapteyn

r d

Nort

Diff.
K.—N.

1.778

1.762

0.016

5

1.753

1.710

0.043

,10

1.673

1.587

0.086

15

1.572

1.507

0.065

20

1.487

1.443

0.044

30

1.347

1.367

—0.020

40

1.257

1.262

—0.005

50

1.209

1.184

0.025

60

1.169

1.172

—0.003

70

1.138

1.136

0.002

80

1.118

1.047

0.071

The agreement between Kapteyn\'s numbers and mine is very good,
especially if we consider that they were obtained in an entirely different
manner.

Also the values of the galactic condensation, which may be calculated
from
Kapteyn\'s numbers and from mine for stars from the brightest to 11.0,
agree very well Defining with Kapteyn the galactic condensation as

-nbsp;r

............... (17)

790
^40

c =

i.e. as the average density in the zone between 6=0° and b =20°, divided

-ocr page 114-

by the average density in the zone between h = 40° and h = 90° we find

Kapteyn c =3.0
Nort c = 2.6

A comparison between my results and those of Chapman and Melotte
is less simple, as their magnitudes are based on the photographic scale, given
in Harvard Circular 170, while mine are visual Harvard magnitudes However
by means of two tables given by
Van Rhyn in Gron. Publ. No. 27 it is possible
to find the point on the photographic scale of Harvard Circular 170 that
corresponds to visual magnitude
11?0. In the first of these two tables (I.e.
page
17) Van Rhyn gives the differences between the scales of Harvard
Circular
170 and Harvard Annals 71, Part 3; in the second (I.e. page 42)
the average Harvard visual magnitude of a star with given photographic
magnitude on the scale of Harvard Annals 71. From the latter table I find by
graphic interpolation:

Visual Harv. mag. 11?00 = 11?47 Photogr. mag. H.A. 71.
Since it also follows from Van Rhyn\'s table 11 that between 10*^81 and

21?00

H.A. 71—H. C. 170 = 0?14
we finally havenbsp;^

Visual Harv. mag. 11?00 = 11?33 Photogr. mag. H. C. 170.
My values for log d in the different galactic zones must therefore be
compared with the values which
Chapman and Melotte would obtain for
11?33 by means of their formula

log = a b {m—ll) — c {m—llf ..........(is)

where is the number of stars per square degree brighter than magnitude m.
In table IX of their paper Chapman and Melotte give the values of the
coefficients
a, h and c for the galactic zones (J),

, , and the last symbol representing the zones between 6 = ± 70°
and
b = ±90°. For m = 11?33 I find from (18) the values of log d, given in
table XXXI, which are lower than my own. This might have been expected

-ocr page 115-

since my results, contrary to the Greenwich counts, agree well with Kapteyn\'s.
In the repeatedly quoted paper by Van Rhyn it is shown how through
an error in the reduction
Chapman and Melotte must necessarily obtain too

low values.

TABLE XXXI.

comparison between the numbers of chapman and melotte and nort.

Zone

log

Chapman

and
Melotte

d

Nort

Diff.
Ch.—
n.

©

1.537

1.679

—0.142

®

1.478

1.503

—0.025

®

1.434

1.416

0.018

®

1.308

1.308

0.000

®

1.156

1.222

—0.066

®

1.138

1.187

—0.049

©

1.068

1.168

—0.100

®

1.025

1.074

—0.049

As to the galactic condensation, defining it, according to EddingtonI), as
density in zone @

.(19)

c =

density in zone
table XXXI gives:

Chapman and Melotte c =3.3
nortnbsp;^^ =4.0

It is a curious and rather startling fact that the values of c derived
either from (17) or from (19) diverge so much (2.6 against 4.0). Evidently
we should endeavour to establish uniformity in the definition of \'\'galactic

1) Eddington, Stellar Movements and the Structure of the Universe, p. 191.

-ocr page 116-

condensationquot;. Van RhynI) in Gron. Publ. No. 27 defends the use of
formula (17) as follows: quot;The ratio (1) formula (17)] has been adopted
quot;for the galactic condensation throughout this paper. I do not think it would
quot;be wise to compare with each other the numbers of stars in regions near the
quot;Milky Way and the galactic poles smaller than there.
The numbers at the
-galactie latitudes and
90° exactly are practically always derived by means
\'\'of extrapolation,
are, therefore, pretty uncertain; but also comparing
quot;rather limited regions near the Milky Way and around the poles of the galaxy

quot;we do not get a true insight into the condensation, as the numbers of stars
quot;are then usually insufficient.quot;

The words I put in italics apply as a matter of fact only to galactic
latitude 90°. Table XXV shows at a glance that the star-density at 0° is by
no means always quot;practically derived by extrapolationquot;; no less than 57
fields were counted for which h = 0°. This number increases to 140 if, in accord-
ance with the computation of table XXVII, the adjacent zones —l ° and 1 °
are also taken into account.

It seems desirable to base the value of the mean density in the polar
caps on about the same number of fields. It appears from table
XXV that the
polar zones between 90° and 77° contain 132 counted fields and evidently
there is no need of extending them as far as
Van Rhyn does. The galactic

condensation derived in this way amounts to
1

c =4.8.

Since it may be regarded as free from the drawbacks mentioned by
Van Rhyn it will represent the accumulation of the stars towards the Milky
Way better than
Van Rhyn\'s or Eddington\'s formula.

Finally my results may be compared with Van Rhyn\'s, who used
the photographic magnitude-scale of H. A. 71. Since

Visual Harv. mag. 11?00 = 11?47 Photogr. mag. H.A. 7i^

I may, without making too large an error, compare my numbers with
those given by
Van Rhyn for 11?50. (See table XXXII).

Van Rhijn, I.e. page 2.

-ocr page 117-

TABLE XXXIL

comparison between the numbers of van rhyn and nort.

log d

Diff.

b

V.R.—N.

Van Rhyn

Nort

1.63

1.76

—0.13

5

1.62

1.71

—0.09

10

1.59

1.59

0.00

15

1.55

1.51

0.04

20

1.48

1.44

0.04

30

1.35

1.37

—0.02

40

1.24

1.26

—0.02

50

1.14

1.18

—0.04

60

1.08

1.17

—0.09

70

1.02

1.14

—0.12

80

0.99

1.05

—0.06

—______

Although our numbers agree on the whole, still there is a pretty
large difference for
h = 0° and h =5°, which, however, need not surprise
us too much. If we remember that in some parts of the Milky Way the
star-density is 4 to 5 times as great as in other parts^), it is clear that we
are only then justified to speak of an
average density at 6 = 0° and 6=5°,
if for these values of the galactic latitude a large number of fields has been
counted, distributed as evenly as possible over the galaxy. The material
used by me satisfies this condition; I am unable to judge whether this is also

the case with Van Rhyn\'s.

See Chapter IX.nbsp;/

-ocr page 118-

CHAPTER Vni.

the position of the galactic plane.

Ill the opinion of most astronomers there is no appreciable difference
between the average star-density in the northern and in the southern
hemisphere. With reference to the stars down to
6?5 Gouldi) says e.g • quot;The
quot;number of fixed stars on the two sides of the galactic circle appears to be very
quot;nearly the samequot;.
Innes^) remarks that Stratonoff gives the average number
of B. D. stars to 9^0 incl. from 90° to -20° as 4.895 per square degree and
that the C.P.D. between -19° and -90° gives 5.85 or nearly a unit more,
but seems inclined to consider this difference as unreal. He says- quot;It would
quot;be very interesting if we knew that this richness of the Southern Heavens
quot;was real, but it is very doubtful —it is much more hkely due to a change of
quot;light-scalequot;.
Kapteyn^\') gives a rather detailed investigation of the mean
star-density at equal northern and southern galactic latitudes which leads
to the following summary

Stars down to 5?5 S. Hemisphere richer than N. by 15 percent

quot; quot; jj ^^ ,, ,, 11
quot; quot; 12?0 ,, ,, ,, ,, ,, — 5
„ „ „ 13?9 „nbsp;„nbsp;,, ,, ^^ ^^

His result is: quot;For the faint stars there thus seems to be no real difference.
quot;For the brighter ones the difference in richness is probably real. Still it is
quot;so small that it will be ignored in what followsquot;.

_T^e results of the counts reduced by me are entirely at variance with

B. A. Gould, Uranometria Argentina. Chapter VIll.

2)nbsp;R. T. A. Innes, Annals of the Cape Observ. Vol. XI p. 179.

3)nbsp;J. C. Kapteyn, Gron. Publ. N°. 18, pp. 25—28.

-ocr page 119-

this generally accepted view. In fig. 5« the densities from table XXVI are
plotted as ordinates to the galactic latitudes as abscissae; the continuous
line holds for the northern galactic hemisphere, the dotted hne for the southern.
Now this latter lies considerably below the former.

Adding for each of the two galactic hemispheres the numbers of stars

given in the last column of table XXVI, we find

Nn = number of stars in the northern gal. hem. = 461990
Ns = number
of stars in the southern gal. hem. =613210

and hencenbsp;^^

Ns—Nn

= 0.25.

N.

This percentage is so large that it is almost impossible that the

-ocr page 120-

phenomenon should not be real. Still, I thought it safe to examine whether
the Arequipa plates, which form the majority for the southern galactic hemi-
sphere, might perhaps for the same limiting magnitude give a systematically
greater star-density than the Cambridge plates. In 30 cases, in which a
Cambridge and an Arequipa plate partially overlapped, the star-density on
each of the plates was determined. Reducing t.them both to 11. o I found:

for the overlapping fields of the Cambridge plates: mean density = 19.1
gt;gt; gt;) ,ynbsp;,, ,, ,, Arequipa ,, ^^ ^^ _ j^.fj

If there is any difference this would be to the advantage of the Cambridge
plates and therefore would never explain the asymmetry between north and
south.nbsp;!

I then tried to find an explanation by assuming the galactic circle
not to be a great circle. On the position of the galactic plane we owe
investigations to
Houzeau, Gould, Ristenpart and Newcomb, to which
I shall return presently; none of these authors however studied this ques-
tion with regard to the asymmetry between\'the northern and southern
hemispheres. If we assume a displacement of the galactic circle parallel
to itself to the south, amounting to 2°, 2° 30\' and 3° respectively, the
densities in the zones are modified as is seen from
fig. 56 sc and 5 d- for

. Ns—Nn

the ratio -we find m these three cases 0.12, 0.08 and 0.004 respectively.

In the figure the differences in the numbers of northern and southern stars
do not seem to change very much by this displacement; it should be
remembered, however, that the northern hemisphere is enlarged by it at the
expense of the southern, so that with an equal average density the latter
would contain less stars than the former.

Now, on account of what precedes, we should certainly not be justified
assuming the galactic circle to lie 3 ° south of the galactic equator, for there
is no
a priori reason why the galactic plane should be a plane of symmetry
with respect to the mean star-density. The generally accepted definition
is that the galactic plane is that plane, toward which the stars tend to crowd
and it is on this definition that its position has generally been determined.

-ocr page 121-

Houzeau^) in his Uranométrie Générale determined 33 points \'\'d\'éclat
maximumquot;
in the Milky Way by their right ascensions and decHnations. Starting
from
Struve\'s position for the galactic pole, viz.

R. A. = 12quot; 40quot;, (190°,0), Dec. = 31°.3

he determined its correction on the condition that the galactic circle should
represent his 33 points as accurately as possible. The points being weighted
proportionally to their
éclat, a least squares solution afforded for the corrected
position of the galactic pole

R. A. = 12\'^ 49?1, (192° 22\'), Dec. = 27° 30\' (1880.0)

while he found at the same time that the galactic circle would lie 20\'south

of the galactic equator.

The same way as chosen by Houzeau was followed by Gould^). After

having pointed out how very difficult it is to determine the medial line of the

Milky Way with sufficient accuracy on account of its capricious shape, he

says: quot;Yetthe determination of this medial line or of the galactic circle properly

quot;speaking, is of such high importance in its cosmological relations as to call

quot;for special effort; since it affords the basis for what is manifestly the most

quot;appropriate system of co-ordinates for the study of the stellar universe. The

quot;most practical, if not indeed the only effective mode of attaining such determin-
quot;ation is by estimating the position of the middle points in many parts of its
quot;course, and thence deducing the situation of that curve which best represents
quot;the whole series of estimates. For the regions south of the declination 10°
quot;our charts enable us to do this, andHEis\'s atlas affords a means of obtaining
quot;similar measurements for the remainder of its course.quot;
Gould then proceeds
to describe how he determined 48 points with the utmost care, fixing for each
half-hour of R.A. the dechnation of the middle of the stream and then continues:
quot;The result justifies the distinct statement that, excepting fromnbsp;to

quot;19^^ of R. A., where the branches are separated, the medial fine of the Galaxy

i)quot;7 C. Houzeau, Annales de l\'Observatoire Royal de Bruxelles, Nouvelle Série, Tome
1, page^lB^^ ^ Gould, Uranometria Argentina, Chapter VllI.

-ocr page 122-

quot;is not distinguishable from a great circle. Of the 40 positions determined by
quot;observation, outside of these hmits, there are but two in which the discordance
quot;from the great circle, deduced from the whole series, amounts to more than
quot;35\'; the average discordance, disregarding signs, being but 16^\' and the mean
quot;variation only
1\' .4. The largest differences are in regions where the irregularity
quot;or great breadth of the stream, or the inequahty of its brightness at the two
quot;margins, preclude any certainty of judgment. The alternation of the algebraic
quot;signs of the residuals is all that could reasonably be desired.quot; For the pole
of this galactic circle
Gould finds

R.A. =190°20\' (12ni?3); Dec. = 27°21\'.

for the mean equinox of 1875.0.

The method, followed by RistenpartI) for determining the position
of the galactic plane, deviates in two important points from that of the
two preceding authors. Firstly he does not base the position of this plane
on the light of the Milky Way but on star-densities. In the second place he
assumes
a priori that the galactic circle is a small one, having with regard
to the galactic equator a certain dip, which, if we assume that the distance
of the stars on the whole increases as they are fainter, must be smaller for
faint stars than for the brighter ones. The star-numbers required for determin-
ing the points of greatest density were taken from the two well-known papers
by
SeeliCxEr2), discussing the counts for different magnitudes as derived from
the northern and southern Bonner Durchmusterung. As
Seeliger combines
in his first class the stars from the brightest down to 6?5 incl. and
Ristenpart
wants to start at 6?1, he subtracts from Seeliger\'s numbers those given
by
schiaparelli=\') for the stars from the brightest to 6?0 inclusive. In this

way he obtains for a great number of fields between Decl. 90° and Decl _^23°

star-numbers for the magnitudes 6?1—6?5; 6?6—7?0; etc.; the last class
being 9?1—9?5. As to the method of determining the points of maximal
density Ristenpart says:quot;): quot;Aus den Zahlen der einzelnen Dechnations-

1)nbsp;F. Ristenpart, Inauguraldissertation, Karlsruhe, 1892.

2)nbsp;H. Seeliger, Sitzungsber. der Konigl. bayer. Akad. der Wissensch. Nov. 1884, Juli 1886

3)nbsp;G. V. Schiaparelli, Pubbl. del reale osserv. di Brora in Milano. N. XXXIV.

Ristenpart, I.e. page 51.

-ocr page 123-

quot;und Rectascensionscolonnen waren die Orte grösster Dichtigkeit graphisch
quot;zu ermitteln. Da die Sternzahlen nur bis -23° bekannt sind, so werden die
\'\'Stundenkreise nur ein, die Dedinationskreise aber nahe dem Aequator
quot;zwei Maxima aufweisen, näher dem Pole nur je eines. Von diesen letzteren
quot;darf aber nur das des jeweils südlichsten Declinationskreises mitgenommen
quot;werden da die
nördlicheren quot;Dedinationskreise ja auch je dn Maximum

quot;aufweisen aber nur an der Stelle, wo sie der Milchstrasse am nächsten
quot;kommen.quot; From the
equatorial coordinates of these points of maximal
density the right
ascension A and the dechnation D of the galactic pole and
the spherical radius « of the galactic circle are now calculated for every
magnitude.
Ristenpart thus finds for A and D values which diverge very
much for the different magnitudes and for a values which to some extent
show the expected
dependence on the magnitude, but in a very irregular

manner. On the whole Ristenpart\'s results seem to be rather uncertain and

his final conclusion that there should be two intersecting planes of maximal

star-density instead of one is far from convincing.

NewcombI) gives a very interesting mathematical treatment of the
problem. As this investigation is seldom referred to it seems to be little known;

therefore its main contents will be given here.

Newcomb starts with the following definition of the plane of condens-
ation- quot;Let us suppose a plane taken at pleasure passing through our position
quot;in the universe which point we take as the origin of co-ordinates. This plane
quot;will
cut the celestial sphere in a great circle. The perpendicular distance of a
quot;star from the plane will then be represented by the sine of its distance from the
\'\'great circle I et us form the sum of the squares of these sines for the whole
quot;system of stars which we consider. The value of this sum will vary with the
quot;position which we assign to the plane. The principal plane of condensation,
quot;as I define it is that for which the sum in question
is a minimumquot;. In order
to find this plane, we take for axes the lines passing through the celestial pole,
the equinox and the point on
the equator in 90° of R.A. Then, the cosines
b, c of the angular distances of a star of given R. A. and dedination « and 5
from the three points just mentioned are:
quot;-iTi. Newcomb. Publ. of the Carnegie Institution. No. 10.

-ocr page 124-

a = cos 8 cos « b = cos sin « c = sin
Let us also put:

z the cosines of the angular distances of the pole of the required great
circle from the same three points;nbsp;®

p the sine of the distance of the starnbsp;from this great circle. Then

P = ax by cz.
If we square the p\'s for all the stars we shall have
2Pnbsp;= [aa]x^ 2 [ab] xy [bb] y^ 2 [ac] xz 2 [be] yz [cc] (19)

The condition that P shall be a minimum, or dP = 0 gives
^ P = ([«a] ^ H- y [.c] ^^ ([«^J ^ ^ ^^ _

[be] y [ce] z) dz = 0...................... ^^o)

a;, y and ^ being subject to the condition

................(21.)

and therefore their differentials to the condition

xdx -I- ydy z dz = 0............(21^)

We now treat the equations (20) and (21,) by the Lagrangian process
of multiplying (21,) by
an indeterminate coefficient ;i, subtracting the product
from (20) and equating the respective coefficients of
dx, dy and dz to zero
We thus have the three equations

{[aa]—}.) x, [ab] y [ac] z = Q

[ab]nbsp;X {[bb]-X) y [bz] z = Q .... (22)

[ac]nbsp;X [be] y {[cc]~l) z 0

These three equations and (21J suffice to completely determine the
four unknowns y, To find the latter we remark that the elimination
of y and ^ from (22) gives a determinant equated to zero, namely
[aa]~x [ab] [ac]

/

(23)

[ab]nbsp;[bb]~X [be]

[ac]nbsp;[be] [cc]~X

This is a cubic in A, the roots of which are all known to be positive
and real, giving three sets of values of
a;, y and For one of these sets P will
be a minimum, for one a maximum, and for the third neither.

= 0

-ocr page 125-

Newcomb now shows first that the three planes resulting from the
three values of
I are at right angles to each other; he calls them the principal
planes
of the system of stars by which they are determined. Secondly he shows
that the roots of the cubic (23) which determine the principal planes of a
system of stars depend only on the arrangement of the stars on the celestial
sphere, and are independent of the axes to which the positions of the stars
are referred. Finally he discusses the meaning of each of the three roots and
arrives at the conclusion
that the plane of condensation is that given by the

smallest of the three roots X.

Proceeding now to a determination of the position of the galactic plane,

Newcomb adopts a series of points throughout the length of the galaxy,

conforming as closely as practical to the following conditions:

1 The points to be located either on the central line of the galaxy,

as fixed by eye-estimate, or in the centres of the agglomerations;

2.nbsp;The distance apart of consecutive points to be about 10° or less;

3.nbsp;The positions of the points to be completely independent of each
other; that is, no bias to be allowed which would tend to bring any one point

into Hne with the others.

In applying the first of these conditions a difficulty is encountered

in the great bifurcation between Cygnus and Aquila. Here two streams may
be followed, of which the preceding one terminates south of the equator
after a wide divergence from what seems to be the main stream. It is a question
whether this divergent branch should be included in the determination.
Newcomb solves this question by making two separate determinations, one
in which the branch is
excluded, one in which it is included. He has 42 points
in the main stream of the galaxy, 5 in the branch. In laying down these points
Newcomb used Heis\' Atlas Coelestis for the northern hemisphere, and
Gould\'s Uranometria Argentina for the southern; he supplemented the first
by naked-eye observations made from time to time through several seasons.
The positions of the galactic pole hence derived are
Branch
excluded: R.A. = 192°.8; Dec. = 27°.2 j ^^^
Branch included: R.A. =191°.l; Dec. = 26°.8 I
As to the deviation between the galactic circle and the galactic equator

-ocr page 126-

Newcomb finds a southerly dip of 1°.74 if we omit the branch and of 0°.98
if it is included.

Summarising :

1.nbsp;Houzeau determined the pole of the Milky Way by using its 33
brightest points. The result of this determination must have been unfavourably
influenced by the circumstance that the points are very irregularly spread
over the Milky Way, 23 of them lying between and 22^
i.e. on i of the
circumference, so that for the remaining | only lo points are left. ^

2.nbsp;Gould determined the pole of the Milky Way from «48 points
lying as nearly as possible on the medial line. It is questionable, however,\'
whether these points are also points of maximal density and therefore whether
they he in the galactic plane.

3.nbsp;Ristenpart tried to determine the pole and the spherical radius
of the galactic circle for stars of different magnitudes. This attempt yielded
no definite results.

4.nbsp;Newcomb used for his determinations 42, or if we include both
branches of the
M. W., 47 points. These were partly points of maximum bright-
ness, but partly also points of the medial line, for which therefore the drawback
mentioned under 2 remains.

Considering this state of affairs it seemed worth while to determine the
position of the galactic circle afresh from my material. As to its pole it will
be sufficient to investigate whether or not its assumed position (p. 84) is in
accordance with my material. Proceeding along a secondary to the galactic
equator from one galactic pole to the other, a point will be passed where
the star-density is a maximum. This point hes in the galactic plane. With
the data of table XXXIII, which was derived from the density-catalogue
and requires no explanation, 36 curves were constructed, each of them being
determined by 9 points. So
e.g. the upper row of this table gives the star-
densities for 9 points on the secondary / = 5°, namely the points for which
b
is equal to 80°, 60°, 40°, 20°, 0°, -20°, -40°, -60° and -80°, respectively.

-ocr page 127-

TABLE XXXIIL

star-DENSITY AS FUNCTION OF GALACTIC CO-ORDINATES.

80°

60°

40°

20°

—20°

—40°

—60°

—80°

0-10°

6.8

8.7

20.7

35.1

47.5

20.6

27.1

18.1

14.2

10—20

4.9

7.9

19.5

40.2

39.5

28.1

26.2

19.6

15.8

20—30

: 7.1

9.9

17.2

32.7

34.6

29.0

23.9

24.9

11.8

30—40

8.3

9.4

15.9

36.9

53.2

40.5

23.6

26.7

12.3

40—50

8.8

12.6

11.3

24.1

52.1

49.4

31.9

19.3

16.5

50-60

10.6

12.5

11.3

27.0

55.6

43.6

35.8

17.1

17.7

60—70

8.1

9.3

13.2

21.0

62.2

43.5

25.2

12.0

16.0

70—80

• 7.5

6.3

18.4

24.9

.56.1

38.8

15.7

13.7

25.2

80—90

9.4

7.7

18.5

24.7

36.7

31.0

15.9

17.9

22.7

90—100

7.7

8.4

14.0

17.7

31.0

29.7

19.3

18.5

9.1

100—110

6.4

7.9

11.0

15.0

19.4

21.9

15.4

12.2

18.7

110—120

6.9

7.9

9.3

14.3

18.1

22.0

12.1

10.8

13.0

120—130

7.9

8.1

7.7

16.5

19.4

11.9

13.1

10.7

11.9

130—140

6.4

12.3

5.7

18.9

29.4

8.5

14.1

12.5

12.4

140—150

6.0

13.5

15.4

28.9

28.8

12.0

15.3

13.1

13.8

150—160

6.3

14.0

19.7

31.0

37.6

17.0

13.6

12.8

10.5

160—170

6.2

11.7

20.1

36.1

35.8

23.9

14.4

14.6

9.8

170—180

9.0

16.1

21.5

25.9

37.3

23.6

16.4

16.6

14.0

180—190

7.8

16.5

16.3

21.9

46.4

23.3

16.4

22.0

12.6

190—200

7.0

11.3

10.9

18.0

28.5

25.2

16.4

20.2

17.7

200—210

9.4

9.6

9.1

16.2

27.0

28.8

17.8

21.4

16.1

210—220

8.8

9.5

8.7

17.2

25.5

22.6

21.6

22.3

15.3

220—230

8.0

10.1

13.1

24.7

32.9

28.3

26.2

22.8

17.7

230—240

10.0

9.8

10.4

21.8

41.7

31.3

24.6

23.0

11.8

240—250

7.0

10.0

14.5

26.0

55.1

32.3

28.6

24.3

15.2

250—260

11.6

9.9

15.9

28.5

83.5

43.5

23.3

22.1

16.4

260—270

9.6

8.1

16.7

29.7

92.3

51.3

23.0

23.4

16.8

270—280 !

7.7

13.5

12.4

28.2

93.7

68.3

24.7

28.9

17.5

280—290

10.6

13.2

18.5

49.1

94.6

57.8

27.8

28.9

17.4

290—300

8.9

11.9

18.0

41.7

75.1

34.8

26.8

24.9

17.6

300—310 i

9.7

10.6

14.1

31.9

41.2

28.6

21.0

26.7

17.7

310—320

11.1

10.5

19.6

27.9

48.0

29.5

24.0

18.6

15.3

320—330

8.7

11.2

16.3

20.3

45.9

24.8

20.7

18.9

19.7

330—340

7.9

14.9

14.7

21.1

38.5

21.9

22.9

16.0

15.4

340—350

7.3

13.8

19.2

26.1

31.1

30.1

24.1

14.0

14.6

350—360

7.4

10.5

19.8

32.0

45.8

21.5

30.0

16.9

13.4

-ocr page 128-

The galactic latitudes of the maxima of these curves may be read from
• the figure with sufficient accuracy. They are given in table XXXIV

TABLE XXXIV.

galactic latitudes of maxima of star-density for different values

of galactic longitude.

Galactic longitude.

5

25

35

45

55

65

75

85

95

105

115

125

135

145

155

165

hlax

2°W

11°30\'

8°30\'

4°3G\'

-8°15\'

-6°0\'

-0°15\'

-5°0\'

-8°0\'

-15°0\'

-15°0\'

1°50\'

-3°15\'

10°15\'

7°45\'

-10°15\'

175

TABLE XXXIV. continued.

Galactic longitude.

---

185

195

205

215

225

235

245

255

265

275

285

295

305

315

325

335

345

355

^Max

-1°0\'

-8°0\'

-iro\'

-6°45\'

-4°30\'\'

0°30\'

-4°0\'

-4°0\'

-8°0\'

1°30\'

3°30\'

5°45\'

0°30\'

-3°30\'

-7°30\'

In fig. 6 the 36 points of maximum star-density are given. This figure
shows at a glance that the position assumed above for the pole of the galactic
equator needs no correction. For in the opposite case, the points plotted in this
figure would approximately lie on a sinusoid, intersecting the assumed galactic
equator in two points about 180° apart.

Now this is not the case; although at first sight there seems to be some
regularity in the distribution of the points of maximal density, on closer
inspection the alternation of the algebraic signs of the latitudes is such that

-ocr page 129-

we may safely conclude that the galactic circle is parallel to the previously
assumed galactic equator. Its dip is of course the arithmetical mean of the
latitudes of table XXXIV,
i.e.

_l^gg/ ^ 45\' ! (probable error)

This result is in pretty good harmony with Newcomb\'s. From the
discussion on page 106 it follows that with this position of the galactic circle
the number of stars in the southern galactic hemisphere will be considerably
greater than that in the northern; the difference will be about 15 percent.

I tried to verify these results, although roughly, in two ways. Firstly
I examined how the star-density varies in the immediate vicinity of the
galactic equator. By means of the data afforded by the density-catalogue
the mean density was calculated
in 9 zones between b = 18° and h =-18°,
each having a width of 4°. The results of these calculations are graphically
represented in
ûg. 7, where the star-densities (numbers of stars per square
degree) are plotted to the galactic latitudes as abscissae. The curve shows
a maximum between 0° and -4° and confirms the result obtained above.

Secondly I examined this question for the stars to photometric mag-
nitude 6?75,
for which H.A. 48 furnishes the data. In table IX of his paper
Pickering gives the numbers of stars down to 6^75 for 480 areas distributed
evenly over the whole sky. I computed the galactic co-ordinates of the centres
of these areas and then the mean
star-density in 18 galactic zones, each 10° in
width. The results of these computations are graphically represented in fig. 8.

-ocr page 130-

TABLE XXXV.

STAR-DENSITY AS FUNCTION OF GALACTIC LONGITUDE IN THREE

GALACTIC ZONES.

b from
20° to—20\'

b from

90° to 20

20° to—20°

—20° to—90°

90° to 20\'

—20° to—90°


15
25
35
45
55
65
75
85
95
105
115
125
135
145
155
165
175

20.0

16.4

17.0

16.5

12.6
13.8
12.6

14.7

13.8
12.0

11.1
9.8

10.2
11.6
17.2
21.4
21.0
19.8

.37.0
.39.3
32.3
46.6
44.8

48.8
48.6
44.3
34.0

39.5
18.3

19.6

17.9
22.2
25.6

29.3
33.5

31.4

23.0
22.6
26.4
27.9
28.7
29.3
24.3
19.3
20.0
26.0

17.1
12.7
11.6
12.6

13.2
12.6
15.9
18.1

185°

195

205

215

225

235

245

255

265

275

285

295

305

315

325

3.35

345

355

15.4
11.2
10.9
10.8

13.5
11.8
16.2
18.4
17.3

14.7

19.8

18.6
15.7
18.3
14.3

13.9

16.3

18.4

35.6

27.3

26.4
22.0

30.2

36.0

41.7
59.6
67.9

76.5
75.5

60.1

37.8
41.0
35.8
30.0

31.3
36.2

17.3
17.8
18.6
21.8

25.4
22.6
26.3

24.1
30.0
36.0
35.0
25.0

23.2
21.7

20.3
19.0
21.2
22,6

By means.of the numbers of this table the star-density has now been

represented in fig. 9 as a function of the galactic longitude for the three zones

bounded by the galactic parallels 20° and —20°. The three parts a, h and c

of this figure correspond to each of the three galactic zones in the order mentioned
in the table.

The curve b, which we might call the galactic curve, shows by far the
greatest deviations from the average star-density. The greatest density
namely 76.5 stars per square degree, is found at I = 275°, the smallest 17 9
stars per square degree, at
I = 125°. This chief maximum hes in Centaums
near the centre of the well-known Scorpius Centaums group of Helium stars i)
SCHIAPARELLI\'S^) planisphere for the stars down to 6?0 locates the maximum

J. C. Kapteyn, Contrib. from the Mount Wilson Solar Observ. No. 82.

2) G. V. Schiaparelli, Pubbl. del reale osserv. di Brera in Milano. N. XXXIV, Planisfero I

-ocr page 131-

maximorum in Argo (R. A. = 8^ Dec. about -40°); Stratonoff\'s^) charts
for the B.D. stars to
9^0 also in Argo (R.A. = ll^ Dec. about -60°).

this zone is found at / = 55°, i.e. in Cygnus.

Here the density is 48.8 stars per square degree. The third and least important

^ • • xu-nbsp;^Q flt / = 185°, i. lu thc region of Canis minor,

maximum m this curve is atnbsp;^nbsp;«nbsp;j

Monoceros and Orion. The minimum minimorum lies, as was already remarked,

at I = 125° i e in Perseus and Auriga. Schiaparelli^) located this minimum

at about the same place {in Auriga), while on the other hand Stratonoff^) finds

a maximum in Auriga, but a minimum in the adjacent constellation Perseus.

—---F Publ de robs de Tachkent. No. 2. Carte 9; No. 3, Carte 8.

\' G^V SchupTrelli, Pubbl. del reale osserv. di Brera in Milano. N. XXXIV. Planisfero 1.

A second maximum m

-ocr page 132-

As to the curves a and c of fig. 9, the latter shows the chief maximum
at 275° and the chief minimum at 125° very clearly, whereas the curve a has
no promment features with the exception of a maximum at 175 ° and a minimum
at 125°.

For a more detailed investigation of the star-density as a function of
the galactic longitude the data of table XXXIII may be useful Each
column of this table gives the star-density in 36 points in a galactic zone
of 20° width. By means of these data the 9 curves of Plate II at the end of
this paper have been constructed. The curves I and II, representing thezones be-
tween
h = 90° and b = 70° and between b = 70° and b = 50° respectively,
show httle that is remarkable. Curve III gives the chief minimum at / = 135°^
i.e. in Lynx, nearly at the same place where Schiaparelli finds the chief
minimum for the stars to the 6th magnitude. The chief maximum for this zone
lies at
I = 175° in Cancer. This is a minimum region for Schiaparelli\'snaked-
eye stars, while also in
Stratonoff\'s countings the density here remains
below the average.

In curve IV the chief minimum is found at / = 115°, i.e. near the point
where
Lynx, Camelopardalis and Auriga meet. Neither Schiaparelli nor
Stratonoff find anything remarkable here; with both observers the density
is a little under the average for the northern hemisphere. The chief maximum
is found at
I = 285°, i.e. approximately between v and C Centauri, where
Schiaparelli\'s density is far above the average and Stratonoff\'s nearly
equal to it.

Curve V holds for a zone, extending 10° on either side of the galactic
equator. All the pecuharities of curve
b in fig. 9 are enhanced here. The
greatest density (94.6)
e.g. is over five times greater than the smallest
(18.1), while this ratio is about 41 for curve
b of figure 9. Curve VI shows
nearly the same character as curve V, which indicates that the shape of
the galactic curve depends mainly on that part of the Milky Way which
lies in the southern hemisphere. So the place of the chief galactic maximum
must be sought rather in
Triangulum australe and Apus than in Centaur us
It is also this region which is of paramount importance for the character of
curve
c of fig. 9, as will be seen at once by comparing this curve with VI VII

-ocr page 133-

VIII and IX of Plate II. The last three curves give no rise to special remarks.

The large variation of star-density in the galactic zone is, I think,
to a certain extent responsible for the great discrepancy between the values of
the galactic condensation as given by
Kapteyn and by Chapman and Melotte.
It is a well-known fact that the Greenwich authors derived their data for a
great part from 30 plates of the
Franklin-Adams chart of the sky. Only 6 of
these plates contribute to the galactic zone; their numbers and the galactic
co-ordinates of their
centres are found in table. XXXVI.

TABLE XXXVI.

..^.T^e r^v TTTF pfntres of six franklin-adams charts.
galactic co-ordinates of the ot^ii^i^^

No.

I

i b

135

16°

145

142

—6

180

57

4

182

85

—2

183

97

—2

190

74

2

From curve V of Plate II it is seen at once that all these plates, excepting
No 180 He in a region of the Milky Way, where the star-density is equal
to or smaller than the average.
This means that Chapman and Melotte
must inevitably find too small a value, for the average star-density in the
galactic zone
and consequently also for the galactic condensation.

-ocr page 134-

As to the curves a and c of fig. 9, the latter shows the chief maximum

at 275° and the chief minimum at 125° very clearly, whereas the curve « has

no promment features with the exception of a maximum at 175 ° and a minimum
at 125°.

For a more detailed investigation of the star-density as a function of
the galactic longitude the data of table XXXIII may be useful Each
column of this table gives the star-density in 36 points in a galactic zone
of 20° width. By means of these data the 9 curves of Plate II at the end of
this paper have been constructed. The curves I and II, representing the zones be-
tween
b = 90° and h = 70° and between b = 70° and b = 50° respectively,
show httle that is remarkable. Curve III gives the chief minimum at / = 135°\'
i.e. in Lynx, nearly at the same place where Schiaparelli finds the chief
minimum for the stars to the 6th magnitude. The chief maximum for this zone
lies at 175° in
Cancer. This is a minimum region for Schiaparelli\'s naked-
eye stars, while also in
Stratonoff\'s countings the density here remains
below the average.

In curve IV the chief minimum is found at / = 115°, i.e. near the point
where
Lynx, Camelopardalis and Auriga meet. Neither Schiaparelli nor
Stratonoff find anything remarkable here; with both observers the density
is a little under the average for the northern hemisphere. The chief maximum
is found at
I = 285°, i.e. approximately between v and C Centauri, where
Schiaparelli\'s density is far above the average and Stratonoff\'s nearly
equal to it.

Curve V holds for a zone, extending 10° on either side of the galactic
equator. All the peculiarities of curve
b in fig. 9 are enhanced here. The
greatest density (94.6)
e.g. is over five times greater than the smallest
(18.1), while this ratio is about 41 for curve
b of figure 9. Curve VI shows
nearly the same character as curve V, which indicates that the shape of
the galactic curve depends mainly on that part of the Milky Way which
lies in the southern hemisphere. So the place of the chief galactic maximum
must be sought rather in
Triangulum australe and Apus than in Centaurus.
It is also this region which is of paramount importance for the character of
curve
c of fig. 9, as will be seen at once by comparing this curve with VI, VII

-ocr page 135-

viii and ix of Plate ii. The last three curves give no rise to special remarks.

The large variation of star-density in the galactic zone is, i think,
to a certain extent responsible for the great discrepancy between the values of
the galactic
condensation as given by Kapteyn and by Chapman and Melotte.
It is a well-known fact that the Greenwich authors derived their data for a
great part from 30 plates of the Franklin-Adams chart of the sky. Only 6 of
these plates contribute to the galactic zone; their numbers and the galactic
co-ordinates of their centres are found in table.
xxxvi.

table xxxvi.

galactic co-ordinates of the centres of six franklin-adams. charts.

No.

I

h

135

16°

145

142

—6

180

57

—4

182

85

—2

183

97

—2

190

74

2

— -—^—

From curve V of Plate II it is seen at once that all these plates, excepting
No. 180 He in a region of the Milky Way, where the star-density is equal
to or smaller than the average.
This means that Chapman and Melotte
must inevitably find too small a value, for the average star-density in the
galactic zone
and consequently also for the galactic condensation.

-ocr page 136-

CHAPTER X.

the light of the milky way.

The question is important which are the stars that contribute chiefly
to the phenomenon of the Milky Way. From the conclusions arrived at by
schiaparelli and Stratonoff we may infer that the main features of the
Milky Way begin to manifest themselves already in the B. D. stars, at least in
the fainter classes. Unfortunately their charts are not suitable for a comparison
in detail. The most elaborate investigation on this subject is that of
Easton, i)
of which the chief points may be summarised here.

Easton first made an isophotic chart of the Milky Way as it appears
to the unaided eye,
i.e. a map on which areas of the same light-intensity
are bounded by curves. He assumed six grades of light-intensity, viz.
i, id,
id^, id^, id^
and id^, calhng i the feeblest intensity of galactic light and d the
ratio of the successive intensities; the exact value of
i is of httle consequence,
but that of
d is very important. On a photographic plate of the vicinity of
Cygni two areas were selected, having equal surfaces and nearly the same
distance from the centre, but differing very much in brightness, the light-
intensities of both areas being estimated in the sky at
id^ and id respectively.
In both areas the stars of every half-magnitude were counted as far as the
faintest visible. By comparing the total Hght of the stars in each of the two
areas the value of
d was found to be 1.37. Hence the six grades of Hght-intensity
may be represented by

1nbsp;1.37nbsp;1.88nbsp;2.58nbsp;3.53nbsp;4.85.

The whole northern Milky Way between amp; = 18° and h = —18°

C. Easton, Verh. der Kon. Akad. v. Wetensch. te Amsterdam. Deel VIII, No. 3, 1903.

-ocr page 137-

was now divided into 108 rectangles, measuring 15° in the direction of galactic
longitude and at right angles to it. The way in which the total amount in
a rectangle was determined may best be illustrated by an example. Suppose
we have found that in a certain rectangle (surface 60 square degrees) 21
square degrees have no appreciable galactic shine, while 16, 7, 5, 4, 6 and
3 square degrees have
an intensity of 1,1.37,1.88,2.68, 3,63 and 4.86, respec-
tively then the total light in this rectangle is 76.61. Table XXXVII contains
the relative brightness of the 108 rectangles, the average brightness being

taken as unit.

table xxxvil

180°
165°
150°
135°
120°
105°
90°
75°
60quot;
45°
30°
15°

light-intensity in the northern milky way.
.18°-14°-10\' -6° -2° 2° 6° 10° 14° 18°

180°

0.13

0.35

0.58

1.22

1.44

1.34

1.14

0.80

0.60

165°

0.36

0.56

1.14

1.13

1.35

1.42

1.26

1.17

0.79

150°

0.18

0.34

0.35

0.12

1.00

1.84

1.21

0.62

0.28

135°

0.21

0.56

0.56

0.69

1.10

1.02

0.55

0.07

0.06

120°

0.04

0.64

1.05

0.90

0.49

0.78

0.76

0.21

0.12

105°

0.34

0.89

1.00

1.38

1.42

0.85

0.49

0.20

0.03

90°

0.25

0.89

1.12

1.44

1.47

0.90

0.53

0.62

0.19

75°

0.07

0.84

1.21

1.72

2.22

0.90

1.16

0.82

0.27

60°

0.15

0.91

1.49

1.58

1.58

1.23

1.40

1.29

0.70

45°

0.01

0.93

1.41

0.79

1.27

2.78

1.74

0.92

0.26

30°

0.23

1.05

1.52

1.91

0.61

0.99

1.20

0.89

0.77

15°

0.07

0.84

1.57

1.43

0.63

1.53

1.19

0.83

0.61

-18°-14° -10° -6° -2° 2° 6°-H0°-H4° 18°

-ocr page 138-

The next step was to calculate for each rectangle also the relative

star-densities of the B. D. stars, grouped into the magnitude-classes 0_6?5

6?6-8?0, 8?l-9-0 and 9?l-9?5. Then, by comparing the galactic hght
with these star-densities,
Easton arrived at the result that quot;pour les divisions
quot;de la zone et les groupes stellaires adoptés ici, une corrélation dans les traits
quot;généraux se manifeste dès le IP. groupe. (6.6—8.0 Arg.)quot;i).

TABLE XXXVIIIa.

Star-density in the northern Milky-Way.

-18° -14° -10° -6° -2° 2° 6° 10° 14° 18°

180°
165°
150°
135°
120°
105°
90°
75°
60°
45°
30°
15°

360°
.345°
.330°
315°
300°
285°
270°
255°
240°
225°
210°
195°
180°

TABLE XXXVIIIZ;.

Star-density in tue Southern Milky-Way
-18°-14° -10° -6° -2° 2° 6° 10° 14° 18°

0.57

0.59

0.79

1.06

1.01

0.82

0.81

0.78

0.75

180° 360°
165° 345quot;
150° 330°
135° 315°
120° .300°
105° 285°
90° 270°
75° 255°
60° 240°
45° 225°
30° 210°
15° 195°
0° 180°

0.63

0.80

0.83

0.87
0.62

1.32

0.82

0.71

0.76

0.61

0.56

0.48

0.64

0.99

0.91

0.98

0.85

0.72

0.69

0.75

0.95
0.56

0.78
0.78

0.68

0.71

0.56

0.50

0.47

0.22

0.37

0.42

0.45

0.96

0.90

0.65

0.55

0.67

0.40

0.6C

0.77

0.76

0.71

0.55

0.54

0.22

0.35

0.39

0.46

0.56

0.64

0.63

0.50

0.40

0.74

0.78

1.03

1.06

1.05
1.90

0.85
1.10

0.78
0.98

0.63
0.66

0.62
0.63

0.60

0.64

0.56

0.59

0.41

0.42

0.40

0.37

0.45

0.84

1.19

1.83

2.55

0.86

0.60

0.61

0.83

0.89

0.66

0.49

0.58

0.32

0.94

1.33

1.91

2.57

2.61

1.50
2.20
1.90
0.84

1.30
1.36
1.70
0.78

0.92
1.45
1.50
0.81

0.51
1.03
1.09
0.92

0.90

0.91

1.19

1.31

1.11

0.97

0.85

1.00

0.47

1.57

1.53

2.04

2.52

2.85

1.11

1.15

1.40

1.84

1.03

1.25

1.10

0.92
0.90

0.69

1.28

1.39

1.71

2.19

2.37

1.15

1.31

1.52

1.54

1.39

1.06

1.05

0.75

0.69

0.78

1.05

1.19
1.58

1.25
1.18

1.10

1.17

1.00

1.27

1.61

1.28

1.05

1.06

0.83

0.71

0.90

1.08

0.89
0.62

0.92

0.84

0.55

0.59

0.74

0.90

0.89

0.76

0.87

0.99

1.08

1.00

0.57

0.76

0.54
0.77

1.06
1.08

1.18
1.56

0.66

0.66

0.70

0.43

0.78

0.71

1.05

1.06

1.53

0.91

0.90

1.03

0.56

0.70

0.66

0.66

0.92

0.85

-18° -14° -10° -6° -2° 2° 6° 10° 14° 18°

-18°-14° -10° -6°\' -2° 2° 6° ]0° 14° 18°

1) C. Easton, l.c. page 24.

-ocr page 139-

For fainter stars a similar investigation was only carried out for a
few small parts of the Milky Way. the available material being, moreover,
rather heterogeneous\'). It seemed therefore promising to extend
Easton\'s
investigation to stars down to l l^ and at the same time to include the southern
Milky Way By means of the data furnished by the density-catalogue, I
calculated the star-density in each of Easton\'s 108 rectangles for the northern
and in as many
corresponding rectangles for the southern Milky Way and
divided these densities by the mean star-density of the whole Milky Way.
In this way I obtained the numbers given in tables XXXVIII. and J.

The numbers in table XXXVIIIlt;» hold for the northern Milky Way
and are therefore comparable with
Easton\'s numbers of table XXXVII.

For the southern hemisphere no estimates of the intensity of the galactic
light had been published as yet.
I am greatly indebted to Dr. Easton for
putting at my disposal the data for
^provhional southern isophotic chart and
allowing me to use his results for my work. While
Easton\'s isophotics for the
northern Milky Way are entirely based on his own observations, this is only the
case for one fourth of the southern galaxy. For the remaining three fourths he
availed himself of Gould\'s Vranomdria Argentina, Houzeau\'s UmmmHne
générale
and Backhouse\'s\') description of the Milky Way, using his own
photographic chart of the Milky Way=) for demarcating sharp details. To the
original six grades of intensity he was obliged to add a seventh for the southern
Milky Way with the value 6.64. Dr.
Easton writes to me that according to
Backhouse at least one still stronger factor ought to be used, but that the
spots having this intensity, occurring e.g. in Scutum ^rtà near . Sagitlarii, are
so small that their
incorporation in areas of 4° to 15° would hardly have any
influence For this
reason Easton restricted himself to seven grades of intensity.

From these isophotics for the southern Milky Way the relative light-intens-
ities were now again
calculated for 108 rectangles in the same way as explained
above for the northern hemisphere. The results of these calculations are given
in table XXXIX. They are comparable with my numbers m table XXXVIII6.

—----. ^ , Tniirn 1 216; Pannekoek, Versl. Kon. Akad. v. Wetensch.

1) C. Easton, Astroph. Journ. i, ,

te Amsterd^am.^™^^^nbsp;Hendon House Obs.. No. II.

») C. Easton, Astroph. Journal 37, lOo.

-ocr page 140-

TABLE XXXIX.

light-intensity in the southern milky way.
-18° -14° -10° -6° -2° 2° 6° 10° 14° I8°

0.51

0.91

. 1.5C

12.38

1 1.54

:0.82

: i.0£

i 1.21

. 0.6

0.53

1 1.74

:2.52

12.17

1.12

;i.ii

0.83

0.3C

t 0

0.12

1.20

2.54

1.50

0.59

1.21

1.48

0.30

0

0.12

1.34

2.11

1.25

1.28

0.73

0.90

0.88

0.46

0.16

1.15

1.70

1.54

1.70

1.60

0.53

0.37

0

0.18

0.35

1.21

2.03

1.91

1.61

0.58

0.21

0

0

0.21

0.38

1.77

2.31

1.68

0.85

0

0

0

0.37

1.50

1.90

1.99

1.73

0.65

0

0

0.74

1.03

1.47

1.04

1.23

1.89

1.47

0.07

0

0.74

0.69

1.79

1.94

1.96

1.45

0.7

0.35

0

0

0.99

1.71

1.91

2.00

2.03

1.16

0

0

0

0.02I

0.71

1.79

2.17:

2.34

1.39

0

0

-18° -14° -10° -6° -2° 2° 6° 10° 14° 18°

360\'
345^
330^
315°
300°
285°
270°
255°
240°
225°
210°
195°
180°

360°
345°
330°
315°
300°
285°
270°
255°
240°
225°
210°
195°
180°

The comparison of galactic light and star-density is made easier by
Plate III at the end of this paper, where the results of
Easton and myself
are graphically represented. This plate was constructed in the following
manner. The numbers from the tables XXXVII, XXXVIII and XXXIX
were multiphed by 10 and rounded to integers which determined the numbers
of hnes drawn at equal distances in each of
Easton\'s rectangles. A and D
give
Easton\'s relative light-intensities, for the northern and the southern Milky
Way respectively; B and C give the relative densities in these hemispheres
for the stars down to 11?0.

If we now compare A and B we notice a fairly good agreement in the

-ocr page 141-

zone between I = 180° and I - 135°, in Canis minor, Monoceros, Gemim

and Auriga, with the difference, however, that Easton\'s maximum, near

^ Aurigaeis not nearly so conspicuous in B. Between / = 135° and / = 90°

there is hardly any agreement, except that Easton\'s minimum mnbsp;is also

a region of small star-density in B. All contrasts inB are much less promment

than in A see ... Easton\'s very strong maximum near . Cygm. Between

/ = 30° and / = 0° there is no agreement at all; while Easton\'s map shows the

bifurcation in Cy.m.s and SagUta quite clearly it is not visible at all in B.

When comparing C and D we see at once that m the southern hemisphere

X -U or. cal^irtic light and star-density is still less. Of the
the agreement between galactic ngui.nbsp;, ^

. , 1 -xnbsp;Hpaflv shown by Easton s map D) between

continuation of the bifurcation, clearly sno j ,nbsp;/ J • ,

I = 360° and I = 315°,nbsp;Ophiuchus, Scutum, Aqmla, Sagittarius and

Between I = 300° and I = 240°, in Norma,
Scorpius,
nothing is noticed m C. lietweennbsp;\' . \'

,nbsp;\' ^.nbsp;Musca Vela and Carina the areas of maximum

Ara, Lupus, Cireinus, Crux, Musca,nbsp;„ , / o.no

\'nbsp;■ _nbsp;I\'ntensitv agree fairly well, but between/=240

star-density and maximum light-mtensuynbsp;.x

and / =180° every correspondence is absent.

The idea naturally suggested itself whether this lack of correspondence
in the distribution of the galactic light and the dendty of the stars down to
11-0 might be caused by the circumstance that the mixture of the stars

. . ^ .nbsp;Milky Way is so httle homogeneous that

of different magnitudes m the ivniKy ynbsp;. , n

^nbsp;. .nbsp;anri mv star-densities cannot be compared at all.

Easton\'snbsp;light-intensitiesnbsp;andnbsp;mynbsp;swinbsp;r

If for each of Easton\'s rectangles the number of stars of every half-magmtude
were known the star-numbers could easily be reduced to light-intensities.
By means of the Bonner Durchmusterung this might be done in the northern

nnbsp;while Schonfeld\'s Durchmusterung,

hemisphere for the stars down to 9. o j, wnbsp;. ,

^nbsp;Photographic Durchmusterung might furnish these

combined with the Uape liiunbsp;fnbsp;r ^^nbsp;,nbsp;. .nbsp;^m^nbsp;j

data for the southern hemisphere. But smee for the stars between 9.0 and
11»0 no detailed counts exist, the question cannot be solved m this way.

What can be done, however, at least for the northern Milky Way,

xunbsp;O»o—llquot;0 from the brighter ones, so that the galactic

IS to separate the stars j . ^ •

hght may be compared with the distribution of the stars 9quot;0-llquot;0. From

-- •nbsp;was made for the northern galactic hemisphere by Plassmann.

1)nbsp;Such an mvestigation ^vnbsp;.nbsp;o in9

See Mitt, der Ver. von Freunden der Astr. 3, 102.

-ocr page 142-

TABLE XL.

^lelative densities in the northern milky way for the stars down to
ll^\'.O and for the stars between 9quot;. 0 and ll\'^.O.

180°

-18° -14° -10° -6° -2° 2° 6° 10° 14° 18
180°

0.69
0.67

0.68
0.70

0.71
0.68

0.58
0.59

0.95
0.95

1.28
1.33

1.22
1.24

0.99
0.93

0.97
0.96

0.94
0.92

0.90
0.88

165°

165^^

0.77
0.73

1.19
1.23

1.10
1.11

1.18
1.21

1.02
1.02

0.87
0.86

0.83
0.83

150°

150°

0.26 0.45

0.51
0.46

0.54
0.39

1.16
1.18

1.08
1.04

0.78
0.71

0.66
0.55

0.81
0.82

0.25

0.41

135°

135°

0.27
0.15

0.42
0.34

0.47
0.40

0.55
0.47

0.68
0.60

0.77
0.76

0.76
0.78

0.60
0.55

0.44
0.39

0.48
0.43

120\'

120°

f. :

0.72
0.67

0.77
0.71

0.67
0.61

0.71
0.68

0.49
0.40

0.51
0.42

0.48
0.45

0.54
0.51

105°

105°

1.04
1.00

0.72
0.62

0.73
0.64

1.00
0.88

1.07
1.06

0.80

0.59

0.70
0.70

0.38
0.30

0.57
0.56

0.81 0.57

90°

90°

1.08
1.01

1.10
1.02

1.43

1.44

1.58 1.34
1.67 1.38

1.17
1.21

1.03
1.09

1.20
1.33

75°

75°

1.34 1.39

1.69
1.78

2.22
2.40

1.24
1.22

1.50
1.59

1.32
1.36

1.11
1.16

0.83
0.84

1.40

1.40

60°

60°

1.39
1.48

1.83
1.92

1.58
1.72

1.67
1.72

1.28 1.27

1.08
1.05

1.85
1.95

0.90
0.81

1.24

1.23

45°

45°

1.41 1.20

1.32
1.45

1.53
1.57

1.94
1.93

1.27
1.21

1.19
1.26

1.28
1.25

1.00
0.95

1.50

0.89
0.86

1.18

30°

30°

0.92
0.83

1.54
1.56

1.05
1.01

1.08
1.07

1.07
1.04

0.71
0.65

0.52
0.46

1.30

1.20

1.32 1.28

15°

15°

0.94
0.98

0.86
0.81

1.84
2.06

1.10 1.08 1.24

1.12

1.12 1.32

1.26 1.28
1.37 1.39

-18° -14° -10° -6° -2° 2° 6° 10° 14° 18°

-ocr page 143-

SEKUGEH V)\'star-counts in the B. D., I calculated the density of the stars
down to
9-0 for each of Easton\'s 108 rectangles of the northern M.lky Way.

, ^nbsp;frnm those found for the stars down to 11.0.

These densities were subtracted from tnosenbsp;lounbsp;.

^nbsp;A r.^ri tVik average divided into the difference for

The differences were averaged and this average aiv

1,0 inwpr numbers of table XL were obtained,
each rectangle. In this way the lower numoersnbsp;,

,nbsp;relative densities of the stars between 9.0

which consequently represent the relative unbsp;^ .

J . ,, ^nbsp;density of these stars m the northern Milky

and 11?0, expressed m the average aenbitynbsp;.nbsp;.nbsp;^nbsp;xt.nbsp;.

Way. The npper numbers indicate the relative densities for the stars down

quot;\'prom this table it appears firstly that in the northern Milky Way there

•nbsp;j-xrnbsp;-hptween the distribution of the stars down to 11.0,

is hardly any difference between tne unbsp;. •nbsp;. -u

X Q^n and 11?0. which means that m the distrib-
and that of the stars between 9.0 ana 11. u,

Jnbsp;iT^O those brighter than 9?0 have scarcely any

ution of the stars down to 11.0 tnobe amp;

\'\'\'^\'\'\'\'\'secondlv it follows at once that also the phenomenon of the Milky

Way is ot refLted in the distribution of the stars between 9^0 and 11^0^

This mi ht a ain be caused by the mixture of stars of different apparent
is mig againnbsp;narrow limits so Httle homogeneous that the

magnitudes\'beingnbsp;within thesenbsp;nail unbsp;.nbsp;^nbsp;...

^nbsp;^uu with the hght-mtensities. This supposition

densities are not comparable witn me 5nbsp;rr

, • ^^^i^chlp and it seems to me that the results
obviously is extremely improbable ana \'

^^ . /nbsp;, , ^ pvnlained by assuming the galactic light to be chiefly

obtained can only be expiameu uynbsp;. . . ,nbsp;,nbsp;i-

. • X o 11 This conclusion is m harmony with the results

caused by stars fainter man 1 A.quot;.nbsp;.nbsp;rnbsp;•nbsp;r 1nbsp;nT-n

of PannLek^), arrived at in an investigation of some regions of the Milky

Way namely quot;that there is no organic connection between the great mass of
way, namely tnanbsp;perhaps the 11th magnitude and the star

quot;stars of the 9th magnitude to pemap

quot;clouds that form the Milky Way.quot;

------. h r der Kon bayer. Akad. der Wiss. 1884.

1)nbsp;H. Seeliger. SitzunpD .nbsp;^^^ ^^^^^ ^ Wetensch. te Amsterdam, June

2)nbsp;A. Pannekoek. Verslagen van

25, 1910.

-ocr page 144-

CHAPTER XI.

the system of the stars down to 11?0.

In § 13 of his paper \'\'On the position of the galactic and other principal
„planes toward which the stars tend to crowdquot;
Newcomb makes the following
remark on the structure of the universe: ,,Considering only the distribution
quot;of the stars in galactic latitude we might infer that they are equally thick
quot;throughout all space, and that their greater apparent thickness in the galactic
quot;region is due wholly or mainly to the fact that we here see through a greater
quot;depth of the stratum. But a study of the structure of the M. W. shows that
quot;this is not the whole truth. The many rifts and clusters of stars in this region
quot;show that, besides a possibly uniformly distributed universe of stars we
quot;have, surrounding us like a girdle, a great number of irregular agglomerations
quot;of stars, of very varied thickness and extent, having in some cases a fairly
quot;well-marked boundaryquot;.

This view of Newcomb that our stellar universe consists of a central
system,, in which the stars are distributed fairly equally throughout space
surrounded by a girdle of irregular clouds of stars, forming the Milky Way
proper, is the basis of the following considerations. If we also accept the con-
clusion of the preceding chapter, viz. that the stars down to 11®0 play scarcely
any part in the distribution of the galactic light, we may conclude that the
system of the stars down to ll?0.hes entirely within the central part mentioned
and that therefore their greater apparent thickness in the galactic region
is wholly due to the fact that we here see through a greater depth of the stratum.
We may therefore expect to get a fair representation of the shape of the
system of these stars by taking the cube roots of their apparent densities in
every part of the sky.

-ocr page 145-

Table XLI computed for the galactic latitudes 0°, ±2*0°, ±40°, ±60°
and ±80° in each of the 36 spherical biangles (p. 117), needs no explanation.

TABLE XLL

cube roots of STAR-densities.

45°

55°

65°

75°

85°

95°

105°

115°

125°

135°

145°

155°

165°

175°

2.1

2.2

2.0

2.0

2.1

2.0

1.9

1.9

2.0

1.9

1.8

1.8

1.8

2.1

2.3

2.3

2.1

1.8

2.0

2.0

2.0

2.0

2.0

2.3

2.4

2.4

2.3

2.5

2.2

2.2

2.4

2.6

2.6

2.4

2.2

2.1

2.0

1.8

2.5

2.7

2.7

2.8

2.9

3.0

2.8

2.9

2.9

2.6

2.5

2.4

2.5

2.7

3.1

3.1

3.3

2.9

3.7

3.8

4.0

3.8

3.3

3.1

2.7

2.6

2.7

3.1

3.1

3.3

3.3

3.3

3.7

3.5

3.5

3.4

3.1

3.1

2.8

2.8

2.3

2.0

2.3

2.6

2.9

2.9

3.2

3.3

2.9

2.5

2.5

2.7

2.5

2.3

2.4\'

^2.4

2.5

2.4

2.4

2.5

2.7

2.6

2.3

2.4

2.6

2.6

2.3

2.2

2.2

2.3

2.4

2.3

2.4

2.6

2.5

2.6

2.5

2.9

2.8

2.1

2.7

2.4

2.3

2.3

2.4

2.2

2.1

2.4

TABLE XLL continued.

2.0
2.1
2.5

3.3

3.8

3.4

2.9
3.0
2.3

1.9
2.1

2.6

3.2

3.3
3.1
2.9
2.9
2.3

1.7

2.0
2.7
3.4

3.4
3.0
3.0
2.7

2.5

1.9
2.1
2.7

3.3

3.6

2.7
3.0
2.6

2.4

345

305°

315°

325

335°

355\'

295

285°

275°

265

255°

245\'

235\'

225\'

215\'

205°

195°

185=

2.0
2.5

2.5
2.8

3.6
2.9
2.5
2.8
2.3

2.2
2.2
2.7

3.0

3.6

3.1
2.9

2.7
2.5

2.1
2.2

2.5
2.7

3.6
2.9

2.7
2.7
2.7

2,0
2,5
2.5
2.8

3.4
2.8
2.8

2.5
2.5

2.1
2.2

2.4
3,2

3.5
3.1
2.8
3.0

2.6

1.9

2.4
2.7

3.0

3.1
3.1
2.9
2.4
2.4

2.2
2,4
2.6
3.7
4,6
3,9

3.0

3.1
2.6

2.1
2.3
2.6

3.5

4.2

3.3
3.0
2.9

2.6

1.9
2.2

2.7
3.2
3.6

2.8
3.1
2.6
2.4

2.0

2.4
2.3
3.1

4.5
4.1
2.9
3.1

2.6

2.1

2.0
2.6
3.1

4.5

3.7

2.8
2.9

2.6

2.3
2.1
2.5
3.1

4.4

3.5
2.9
2.8
2.5

1.9
2.2

2.4

3.0

3.8
3.2

3.1

2.9

2.5

2.2
2.1
2.2
2.8
3.5

3.2
2.9
2.9

2.3

2.0
2.2
2.4
2.9
3.2
3.0
3.0
2.8
2.6

2.1
2.1
2.1
2.6
2.9
2.8
2.8
2.8
2.5

2.1
2.1
2.1

2.5

3.0

3.1

2.6
2.8
2.5

1.9
2.2
2.2
2.6
3.1
2.9

2.5
2.7

2.6

80 =
60 =
40 =
20 =
0 =
—20 =
—40°
—60°
—80°

With the values of table xli as mdii vectores the 18 diagrams of Plate
iv were now constructed. They represent the intersections of the system of
stars down to 11^0 with planes through the two galactic poles. These planes
are 10° apart in galactic longitude. Although the several figures difïer from

-ocr page 146-

each other in details, still they all have approximately an elliptic shape. The
average distance of the sun from the galactic north pole being 2.0, from the
galactic south pole 2.5, the sun lies 0.25 above the galactic plane.

With the values of table XLI, holding for h = 0°, fig. lOhas been constructed.
This is the intersection of the system of the stars dov^n to 11?0 with the galactic
equator. Disregarding a hump between I =115° and I =205° this section
may very well be represented by an ellipse, with axes 8.6 and 5.6 It may or
may not be accidental that the middle of this hump lies exactly m the direction
of the true vertex. This fact suggests a relation with the two star-streams,
the nature of which I have for the present been unable to discover.

From the preceding pages it follows that the system of the stars down to
11?0 has the shape of an ellipsoid with unequal axes. The axis at right angles
to the galactic plane is 4.5; the two axes in this plane are 5.6 and 8.6, the shorter
being directed towards the point I = 337°. The place of the sun in this ellipsoid

-ocr page 147-

isdete™inedbytheco-ordinates. = -0.7,y = -015z = 0.25,thetl.^^^

0ftheellipsoid,viz.5.M.6and4.5,bemgrespect.velytakenasX Y „a^

The centre of the system of stars here considered gt;s found to he m
the direction / = 326quot;, J = -20quot;. The galactic latitude of this direction agrees

•nbsp;J u t^aptfynI) for the centre of greatest condensation
with that determined by
Kapteyn ; loi

X 1nbsp;which centre very nearly coincides with the

of stars of the 2nd spectral type, wmcn oennbsp;^ .r

. . f thP Milkv Way according to the mvestigations by Herschel

apparent centre of the iVLiiKy vvciy«nbsp;onbsp;.nbsp;.nbsp;,,,nbsp;xnbsp;jxnbsp;-nbsp;a

and ST.UVE. On the other hand the galactic longitude the centre determ,„ed
by
Kapteyn is 82° and so difiers considerably from the value found above.
The above-given numbers yield an independent determination of the

•nbsp;• .nbsp;i\'il\' which value does not differ very much
dip of the galactic circle, viz. 4 4i , wmc

from the one previously found.

In Gron Publ. No. 24, page la, Kaptbvn and VVeeksma give a table

11nbsp;cfars from 3?0 to 11?0 for the galactic latitudes

of the average para lax ƒnbsp;to ±90». From this table Db Jono«)

—20° to 20°, ±20° to ±40 ana ±

in a recent publication has derived the formula

= (1 csin2 6)

• XT,nbsp;for galactic latitude b, c being a constant which

m which .. IS the parato gnbsp;^^^ ^^^ ^^^nbsp;^ ^^^^ ^^

according to De Jong must He oeiwe

havenbsp;n {I 0.65 sin^ b)

or

_-nbsp;(24)

= 1 0.65 sin^ b.......

Although in this formula the dependence of the star-density on the

1- /ii-crPfTprded still it seemed worth while to use
galactic longitude has been disregaraea,

^nbsp;^nbsp;fnr the dimensions of our stellar-system,

it for checking my values for me unbsp;^nbsp;u •

, -ui VT T the average of all the numbers m the row
Taking from table Xl.1 tne d amp;

6 =0°, we find Ro= 3.50. In the same way

= 3.01,nbsp;2.60, Reo =2.42 and R. =2.24.

----------------------------------, j^Pjj Akad. V. Wetenschappen te Amsterdam, 28 Jan. 1893.

1) J-c. Kapteyn. Verslagen y - ^^^^^^^ ^^ praecessieconstante en de stelselmatige

C. de Jong,nbsp;Leiden 1917.

eigenbewegingen der sterren. Proetscnrii ,

-ocr page 148-

From (24) we have, assuming for Ro the value 3.50:

R20 =3.27 R40 =2.80 Reo =2.32 R^o =2.09.

Although there are systematic differences between these two sets of values,
they are not conspicuously large, especially if we consider that the two series
were obtained in a totally different manner.

Using my material for determining the coefficient c in De Jong\'s
formula, I find

c = 0.85

which value is considerably larger than that assumed by De Jong.

SUMMARY.

In the preceding pages from the star-counts carried out by Henie on the
Harvard Map of the Sky a catalogue of star-densities is derived, which gives the
density of the stars down to 11 ?0 in more than 5000 points, regularly distributed
over the sky. These points are given by their galactic co-ordinates. The material
furnished by this catalogue has been used for some investigations in stellar
statistics.

In chapter I the conclusion is arrived at that the plates of the Harvard
Map of the Sky are only in their central parts suitable for star-counts. In chapter
II
Henie\'s counts are compared with some counts by the present author. The
cause of the large differences stated could not be cleared up.

In chapter III the manner is discussed in which Henie determined the
limiting magnitudes of the plates and it is shown that is not desirable
to determine this limiting magnitude by means of visual magnitudes.

In chapter IV and V the method by which Henie reduced his counts
to ll?Ois discussed and the method used by the present author developed.

In chapter VI a density-catalogue is derived from the reduced star-
counts *and the arrangement of this catalogue is dealt with. At the end of this
chapter a few remarks are made on
Charlier\'s formula, used in the reduction
of the counts.

In chapter VII the mean star-density is calculated for zones parallel
to the galactic equator and a value for the galactic condensation is derived.

-ocr page 149-

^nbsp;Jnbsp;of Kapteyn, Chapman and Melotte

The results are compared with those oi ivAi-iii, ,

and Van Rhyn.nbsp;^ ^ v looo/nbsp;t

In chapter VIII the galactic circle is found to he 1 38 south of the

galactic equator; the southern galactic hemisphere appears to be much ncher

in stars than the northern.nbsp;t .u *nbsp;j iu

In chapter IX the relation between the distribution of the stars and the

V J ^ iQ found that especially in the Milky Way
galactic longitude is studied and it is louna in p j J\'

this distribution is very irregular.nbsp;, . ,

In chapter X the galactic light, as following from Easton s isophotics,
in cnapit;nbsp;^nbsp;^^ ^^^^ conclusion

is compared with the distribution ol the starsnbsp;, , • ,

, ,.nbsp;at anv rate the greater part of it, is due

is arrived at that the galactic light, at any

to stars fainter than 11quot;0.nbsp;i nm^

Finally in chapter XI the shape of the system of , stars down to 11.0

is dealt with This appears to be an ellipsoid with three unequal axes whose

. ,nbsp;7) = —20 and whose axes are m the ratio

centre lies in the direction 1 =

45:56:86.

At the end of my paper I wish to express my cordial thanks to Prof.

nf the Utrecht Observatory, for the great interest
A. A.nbsp;Director ^f t J Unbsp;^^ ^^^ ^^^^ ^^^ ^^ ^^^^ ^^

always taken m my work. My smcernbsp;^^^nbsp;^^^^^^ ^^^ ^^^

Middel at Gouda, who has assisted me aur gnbsp;,

and who has devoted a large part of her time to it.

rtToti;—

but, moreover, has taken great part in the reading of the proofs.

-ocr page 150-

-nbsp;■■ ■nbsp;: .;• ;\':)gt;!. v\'/-.7 ban

r\'; Us ij-in\'.\'^nbsp;\'uf f/i I\'Tif!.»!- gt;t \'gt;[;; ;■:nbsp;\'.fir ;]; / ; j/qjiwi\'Mii.

•j-\'ti\';:quot;. ;i:.;iiffT -j-J (..ó «-js:.-;,;-»;}! vv jU\'i-.i^ri-«;!-nbsp;-rivsi ;!}•■\'!•: ••.!\'- rtojrwp\'\'*

.-u... .nbsp;-fn-df-^a Ml) (fiwit

fnlJ-bi\' . ; ^\'illnbsp;\' .-^v/fpKl inoi.tfÙM-T -.»i r /\'[ •! W\':5f.(ip nl,

\'jnbsp;■ ioiil igt;nfi;-. D^ibn;;- . i -»bnij^ino! aitrüJ/;quot;:.^

■■ ■ . quot;nbsp;■ ■ -\'T - r- j ^iriî

•rï^Nüir\'i!\' • \'\'\'Tnbsp;t/\'i.h .-r\',»-; N;nbsp;n M . -i;nbsp;î);i\'FiUirfKr-.\' J-\'î

■\'.gt;1,\' ■ ...t. . V.-;nbsp;\'ï -Jî-.i -\'\'M ■■■ \'nbsp;î ît.ilt } a-{yr/irt\';

•gt;\'■\' î■•ir.iir quot;Inbsp;y^ifit^. nf

•r,\'.?-r oinbsp;!lt;!,.■ i«h.;!-: -lii î \' i / \' ■ ;\'\'Ks-.T\'I \'

. - ■ ••

\' I.

h:\'

■ r;nbsp;^ A / .t iloi : rt\'ni VMi :?Tîfî-/»

î

: - gt;gt; y;;it i-î;-\'\'.Ml •nbsp;\'tf/\'^\':»\'] \' ■nbsp;1\'

\' li^ .hh\'riH !tv;V\'\'gt; • A, ■•iCXflii.» -MiT-iv-P^s-lo\'^V;\'-!nbsp;) j »1 .îUlt;JUli4

■ :nbsp;dwnbsp;Viiî U»

lt;i ^nbsp;.ilîiî/i Û\'-^\'-\'k-ctî-\'inbsp;\'ivS -,lt;{gt;\'

■■nbsp;J\'nbsp;-\'H\'\'. , . gt;/v\'.-juin , j\'/fJ

\' . ■ quot; ■ ■ gt;!■

m:-

quot;IVv:;-

iiU.\' :

-ocr page 151-

appendix i.

Catalogue of Star-density.

-ocr page 152-

In each column the left-hand
numbers give the galactic longitudes, the
right-hand numbers the star-densities.

-ocr page 153-

CATALOGUE OF STAR-DENSITY.

b

= 88°

66°

5.3

8.4

79

8.1

12

5.5

87

11.5

125

7.2

b

= 87°

164

5.6

130

6.7

183

8.1

223

7.8

241

5.3

292

4.8

b

= 86°

344

6.3

66

6.1*

282

5.6

b

= 80°

39

.6.2

b

= 85°

57

9.6

15

5.7

143

5.9

26

5.3

206

6.1

303

7.5

337

6.7

b

= 79°

43

7.5

b

= 84°

78

4.6

84

12.1

177

7.5

110

5.2

191

6.8

177

10.0

238

8.7

205

17.3

253

17.6

240

5.0

273

7.5

346

6.1

288

10.1*

306

9.2

b

= 83°

48

6.7*

b

= 78°

140

6.6

92

9.0

276

5.3

95

6.4

114

9.6

b

= 82°

131

6.4

73

6.6

156

4.3

225

8.1

218

7.0

298

8.1

255

4.8

307

5.4

327

7.6

323

5.7

b--

= 77°

h :

= 81°

13

6.9

3

7.1

57

10.8

63°

8.4

93°

10.0

b =

71°

75

11.7

122

8.0

62°

10.0

143

5.8

143

5.6

71

7.7

205

7.3

242

7.0

104

8.0

268

10.5

268

7.8

134

7.4

285

10.7**

282

11.5

153

7.5

304

8.8

298

13.9

197

6.0

341

7.6

353

7.5

214

6.9

359

7.3

b

= 73°

260
303

10.4

12.5

76°

317

11.3

b —

30

11.4

31

7.3

55

11.4

332

9.1

79

7.7

83

6.9**

349

7.4

168

6.8

204

8.0

180

6.0

226

10.7

■ b =

70°

226

6.9

233

11.3

34

10.3

256

12.5

307

12.2

49

9.8

276

10.3

309

12.7

58

12.0

302

9.5

324

12.7

73

7.3

317

11.6

344

6.2

81

6.6

91

8.6

b =

75°

117

7.4

42

10.6

b

= 72°

119

6.1

70

6.6

1

5.8

146

8.5

95

5.8

12

6.4

205

6.2

107

5.4

24

8.6

221

16.0

131

5.2

\'42

10.2

231

9.1

153

7.0

74

6.7

269

11.3

194

8.3

93

7.3

280

10.0

218

5.2

104

5.9

290

12.5

229

8.4

116

6.0

340

9.7

240

11.7

124

8.6

283

11.6

162

6.3

b =

69°

330

10.0

175

9.4

6

6.9

184

9.4

16

6.8

b =

74°

214

16.0

44

12.8

5

5.9

228

6.2

65

12.5

20

7.5

244

6.2

101

5.6

67

10.6

280

14.1

113

10.2*

81

7.0

319

10.5

128

8.7

-ocr page 154-

144°

11.3

297°

11.1

332°

15.4

b

= 62°

291°

13.5 !

153

13.4

308

12.9

354

10.8

T

7.3 i

300

9.7 1

169

7.6

319

8.2

14

7.1* j

309

12.3

180

9.2

326

9.4

1

b

= 64°

27

8.6

353

8.0

239

10.9

1
i

28

10.1

40

10.2

248

8.2

b

= 66°

48

9.5 1

62

6.6

b

= 60° 1

279

12.9

55

10.6

74

3.. 9

87

10.2

0

5.7

323

9.1

108

6.3

76

5.4

96

8.6

34

8.2

325

9.4

119

6.4

109

6.1

106

7.1 i

56

14.9

121

8.7

139

7.5

133

7.9*

74

4.6

b

= 68°

131

18.4*

194

9.6

147

8.2

81

7.7

25

8.2

173

11.4

233

15.6

188

14.5

102

7.0

65

4.9

205

8.3

262

6.4

202

11.1*

122

8.9

161

7.5*

217

10.1

277

16.5

253

10.0

139

10.8

172

14.8

229

13.4

293

9.4

277

10.1

141

14.1

188

6.1

242

10.8

314

14.1

315

12.4

177

12.2

212

10.0

269

6.2

319

8.6

322

12.2

196

20.0

214

9.0

340

11.9

330

14.4

339

11.7

248

9.6

260

10.9

345

10.5

359

9.8

269

5.2

330

12.4

b

= 65°

284

10.7

333

8.6

2

6.9

b

= 63°

b

= 61°

349

8.8

11

6.0

20

11.3

8

7.6

h

= 59°

357

8.0

19

5.3

34

7.5*

22

7.6

1

13.5

41

11.5

49

13.3

28

6.7

12

7.7

b

= 67°

63

8.0

55

7.0

42

10.1

24

9.8

36

10.1

72

8.8

69

3.3

44

12.5

32

5.1

51

9.7

88

11.3

81

8.2

49

14.0

37

7.5

56

4.3

97

10.1

106

7.3

75

8.2

42

26.5

57

11.0

132

8.\'4

117

11.5

81

9.9

66

6.6

74

■6.4

143

14.0

125

4.8

114

5.3

85

11.6

82

5.1

144

9.0

135

15.6

147

8.8

87

10.0

89

4.6

149

9.9

153

9.3

i ■ 153

1

13.6

94

7.8

114

4.5

156

10.4

182

12.5

162

13.0

129

11.7

137

13.7*

160

9.0

198

9.6*

168

14.5

134

13.2

154

6.8

166

9.3*

205

15.1

ï 206

9.8

182

17.5

179

15.9

172

12.5

223

11.1

207

11.5

211

9.0

189

15.5

183

10.4

239

9.8

217

9.8

221

11.0

197

5.5

190

9.3

244

8.8

236

8.5

228

10.7

203

10.9

209

6.6

268

7.9

237

11.5

255

9.1

235

9.8

251

10.8

286

10.9

242

8.0

276

9.0

279

15.4

278

13.1

327

11.6

i 263

8.3

290

15.3

289

14.6

304

10.4

341

4.2

277

1

15.9

298

7.5

-ocr page 155-

1

311°

12.1

125°

9.1

317

9.9

150

15.4

328

11.1

158

12.8

339

9.5

171

14.3

340

8.7

177

19.1

345

12.1

189

17.9

354

6.0

204

7.0

215

7.8

b

= 58°

232

7.4

10

12.1

246

7.9

18

6.5*

250

13.5

24

12.9

276

16.1

41

9.3

283

14.9

43

11.0

324

10.8

A

47

10.9

348

9.1*

60

12.7

74

5.8

b

= 56°

105

7.7

27

8.6

134

5.4

34

9.2

145

16.2

38

9.8

164

13.5

39

. 10.7

198

5.6

44

13.7

200

13.8

54

20.5

213

14.6

130

9.8

240

13.5

138

22.3

263

9.2

182

22.5

305

7.8

192

12.5

335

7.4

194

20.1

351

12.9

226

9.0

357

11.8

256

12.3

269

8.9

h

= 57°

276

8:7

0

6.8

296

9.8

5

8.2

306

10.4

29

13.4

313

10.7

34

10.7

330

8.1

70

4.1

344

30.7

78

6.4

353

10.4

80

6.0

99

7.6

h

= 55°

110

9.5

9

10.8

117

7.4

16

7.9

22°

8.5

229°

5.7

75°

7.1

49

11.9

264

10.0

85

4.0

65

11.4

275

14.6

100

9.0

74

9.9

282

13.6

106

12.8

4e

75

4.6

310

9.2

112

8.6

81

3.8

319

9.7

132

8.8

85
88

7.3

337

13.5

142

7.4

10.9

350

19.2

147

21.3

92

8.4

152

25.7

102

8.9

b

= 53°

159

13.3

107

8.8

32

9.6

164

10.4

127

6.3

44

16.1

170

16.7

133

7.7

62

16.4

184

29.0

138

12.5

69

10.3

192

7.7

197

8.4

78

3.0

194

19.9

208

8.3

81

4.9

222

6.7*

217

8.3

90

9.1

232

8.6

234

7.4

91

10.5

250

7.5

242

10.3

97

5.3

275

16.2

248

11.7

117

10.6

286

15.3

288

13.9

137

11.2

294

16.0

302

7.9

139

23.5

333

14.0

340

36.8

144

22.0

345

27.7

341

11.1

178

23.6

358

12.7

344

4.9

204

8.6

*

213

8.6

b

= 51°

b

= 54°

221

10.1

9

12.3

4

10.1

252

8.3

50

13.0

39

9.6

257

8.0

58

15.1

54

15.8

269

4.9

73

9.1

58

16.5

299

12.2

85

8.2

114

7.3

304

10.5

117

7.3

120

5.6

325

13.0

124

8.8

123

10.8

334

20.3

127

6.6

126

7.5

349

6.6

141

23.1

149

19.6

142

8.4

155

19.2

b

= 52°

175

20.9

160

15.2

14

12.0

180

25.2

167

16.6

22

8.0

188

11.1

172

16.2

25

15.3

197

7.8

189

23.3

36

14.4

207

7.7

220

7.2

41

11.2

217

8.1

-ocr page 156-

1

1

1 \'

---------

238°

9.6

82°

4.9

126°

5.0

269°

5.3

b =

: 45°

244

11.2

85

6.2

144

22.6

275

10.3*

20.4

264

7.8

110

7.6

149

16.4

284

27.9

56

8.3

275

13.7

114

6.1

170

19.4

290

17.5*

70

14.6

281

15.0

130

7.6

189

12.6

298

15.6

76

9.5

306

13.8

135

4.5

197

6.6

323

22.4

79

23.7

321

14.5

155

13.8

235

6.6

324

11.7

97

7.9

330

28.9

160

10.7

246

11.5

341

17.6

102

15.3

339

28.9

166

13.1

251

7.7

355 .

16.4

107

7.6

353

6.1

185

29.3

254

24.2

111

14.7

192

7.9

265

6.9

h =

46°

117

7.8

b =

50°

201

9.1

281

9.9

10

15.6

133

4.3

2

15.0

212

10.8

285

14.2

40

14.1

143

12.1

40

17.3

220

12.6

304

14.9

41

12.3

148

15.4

54

16.3

240

7.1

352

17.4

46

13.2

153

14.7

62

13.5

258

7.2

52

21.3

167

19.7

67

17.4

264

11.5

b =

47°

62

14.8

186

26.1

80

6.3

269

11.5

3

17.3

79

11.8

189

11.4

87

3.4

275

14.7*

7

22.5

89

11.8

• 197

7.3

90

9.9

281

20.0

14

20.8

102

8.0

210

7.5

93

7.1

291

16.2

20

19.6

112

2.4

219

10.8

96

5.9

313

12.4

25

l\'4.6

116

17.4

242

7.6

108

6.1

318

11.8

31

13.0

\' 139

1.7

248

7.7

117

7.1

327

17.8

35

17.3

143

6.3

255

23.8

122

7.2

328

9.8

49

19.0

158

15.0

265

9.6

141

6.3

336

25.3

67

14.9

162

10.4

274

10.5

189

22.9

345

25.4

80

12.4

180

28.9

297

14.5

226

8.1*

347

9.9

85

4.1

185

10.4

321

12.7

254

9.1

358

15.9

90

3.1

201

8.7

328

20.0

273

9.7

95

10.0*

224

9.2

336

14.2

297

13.7

h =

48°

98

16.8

238

5.8

357

16.0

301

13.7

12

14.9

107

8.0

253

6.5

316

9.9

37

15.9

122

10.0

260

6.9

b =

44°

349

13.7

58

10.4

140

18.8

269

8.7

0

16.4

70

15.9

176

21.0 ,

279

16.4

18

22.7

h =

49°

75

11.7

190

23.8

284

11.5

23

19.9

17

13.5

76

9.0

206

9.6

295

10.3

28

17.4

22

14.1

98

7.3

216

10.9

297

22.4

38

10.2

28

13.7

102

17.2

229

6.3*

310

13.1

49

11.6

32

11.7

104

8.9

252

22.1

314

11.5

59

11.2

38

12.1

111

6.9

254

8.5

331

18.9

63

8.3

45

12.8

121

5.5

260

26.9

350

14.8

65

20.6

-ocr page 157-

74°

23.0*

89°

7.5

84

12.8

96

14.3

88

9.1

99

6.6

89

44.1

108

6.9

94

5.4

111

4.7

119

11.3

141

5.9

125

8.2

151

11.7

129

4.5

156

16.5

143

16.1

160

16.0*

148

18.8

182

28.5

152

22.0

194

12.2

171

19.4

201

8.0

178

25.5

213

8.2

193

7.0

226

10.0

204

7.3

239

5.8

232

7.2*

244

7.5

239

15.6

248

19.8

243

23.7

254

15.7

270

10.8

261

21.4

283

26.1

266

12.9

288

17.8

274

6.8

294

30.0,

294

9.1

301

13.3

319

10.3

307

11.3

325

18.4

312

11.2

.333

18.4

319

26.3

342

13.2

345

23.8

349

20.2

352

12.6

356

19.0

353

21.5

357

29.1

h =

43°

h =

42°

13

20.7

9

17.5

32

12.7

42

7.4

42

7.1

46

9.1

48

10.3

50

12.0

54

12.4

53

9.5

68

7.1

61

12.5

75

12.9

68

14.3

77

12.6

73

5.2

80

8.0

76

9.7

83

9.0,

93

23.3

84 .

32.2

100

8.0

103°

8.9

128°

7.7

153°

17.3

105

4.6

140

6.6

157

20.6

112

9.0

144

4.9

169

18.9

116

5.8*

173

19.6

178

22.6

133

3.3

189

14.0

181

11.2

137

4.6

205

4.9

202

10.2

143

14.4

232

10.6

212

6.6

144

12.8

234

9.1**

217

10.9

147

12.4

240

10.2

225

12.2

149

18.6

245

16.7

230

10.6

156

10.8

256

24.7

236

8.1

164

14.3

270

4.6

255

15.1

165

19.7

292

21.9

262

16.4

170

15.0

299

7.3

275

10.8

185

8.6

305

8.3

282

20.8

187

25.4

309

9.0

286

21.6

198

8.6

330

15.0

306

13.0

209

7.1

346

25.0

315

13.5

223

8.8

321

23.6

273

10.6

h =

40°

337

13.6

278

20.8

0

25.9

349

19.3

295

15.7

17

20.4

356

23.3

301

11.3

26

19.4

317

37.5

30

14.6

b =

39°

353

21.9

35

17.8

7

17.7

39

12.1

12

16.6

h

= 41°

49

12.7

30

11.4

5

18.0

52

9.8

44

4.7

21

17.5

56

9.7

48

8.6

34

14.2

61

15.4

53

9.8

38

10.9

64

17.0

72

15.2

46

13.2

65

7.5

74

8.7

57

5.6

70

8.3

95

19.6

74

50.6

77

14.4

99

8.5

79

41.3

80

8.1

104

6.6

84

9.2

83

36.2

115

13.1

88

26.2^

107

13.7

127

9.6

93

5.7

109

7.8

141

22.1

95

7.2

113

8.4

145

9.2

99

17.8

119

14.4

150

12.1

105

21.7

131

9.6

154

17.4*

124

6.3

135

5.6

157

14.3

-ocr page 158-

162°

15,0*

232°

!

8,2

197°

13.3;

292°

24.0

11°

17.8

166

21.8

237

10.5

212

8.4

297

22.5

26

15,1

174

21.2

257

13.9

227

17,4

301

19.4

30

15,2

183

23.3

270

10.7

242

17,7*

306

18.6

33

11,5

185

12.81

273

12.2

247

13.0

311

25.2

37

30,5

192

10,6

291

19.6

280

18.3

317

23,7

64

13.1

209

7.0

298

16.2

285

16.2

334

10.6

67

13,8

231

11.8

307

7.9

323

19.0

357

22.4

86

30.3

250

15.9

313

29.2**

331

10.1

102

15.1

267

15.1

318

16.6

349

22.4

b

= 35°

117

6.2

278

21.6

326

20.3

359

16.0

7

19.5

121

8.2

293

18.6

338\'

7.8

16

17.8

140

8.9

303

16,1

345

21.0

b =

36°

25

12.6

150

27.9

307

10.5

352

17.3

30\'.

17.7

38

6.3

166

30.4

312

13.9

46

7.9

43

5,0

178

25.1

314

27.7

b =

37°

50

8.1

60

10,7

185

7.9

334

20.4

0

17,0

56

9.1

71

13,0

187

4.6

341

13.4

18

26.3

64

7.4

78

26,8

203

12,2

355

13.9

19

17.0*

72

11.2

91

22.0

212

10,8

24

17,7

82

43,5

106

10,9

220

18,5

h =

38°

28

12,5

107

13,2

110

7.1

241

17.9

2

25.0

31

11.5

110

11,1

113

6.4

247

20.1

22

12.5

34

19.7

113

6,2

117

13.0

271

10.3

26

18.9

36

16,7

125

12,4

143

8.4

284

19.2

40

11.9

38

24.4

129

8.4

147

21.5

289

15.1

61

9.8

54

12.2

142

26.9

162

27.8

313

17.4

68

16.4

59

11.2

159

23.5

184

13.8

320

15.0

78

26,5

63

12.6

170

24.6

193

11.3

327

13.8

92

20.3

67

12.5

174

18.2

215

8.1

331

12.5

103

15.5

74

31.2

179

13.1*

219

8.1

341

19.3

104

10.8

75

15.7

182

14.3*

223

12.0

352

19.0

108

15.1

87

42.5

184

20.0

230

11.7

122

9.0

94

25.5

200

11.2

238

14.5

h

= 33°

146

19,6

98

20.7

208

10.4

243

19.3

2

15.6

150

26.2

107

9.2

234

16.2

258

21.1

13

29.2

166

21.2

111

9.7*

238

12.4

272

12.6

18

13.5

171

17.3

118

9.4

251

17.9

316

30,6

22

16,2*

175

22.7

133

5.9

256

9.5

338

17.3

33

27,5

205

9.6

137

7.5

262

26.8

344

18.2

37

20,1

216

6.8

141

10.8

267

18.0

53

10.0

220

9.9

177

19.1

275

5.7

h

= 34°

.57

15.8

227

17,1

189

12,0

276

20.1

4

19.7

61

17.7

-ocr page 159-

69°

14.2

; 110°

29.8

73

16.4*

114

5.1

82

38.8

124

9.5*

97

20.3

141

26.2

106

9.3

144

25.6

110

7.1

159

36.8

113

9.2

170

26.0

121

8.8

180

9.6

128

5.6

181

23.9

131

5.7

190

12.4

136

7.5

200

12.3

155

35.1

207

9.6

189

9.9

215

8.0

197

10.9

218

6.2

221

7.5

229

19.7

225

16.6

267

33.6

232

10.7

295

22.0

237

12.4

300

17.9

252

25.9

306

25.6

257

13.0

317

31.2

263

35.6

318

17.4

275

13.3*

324

10.0

280

19.3

328

6.7

291

25.8

338

15.0

304

16.2

356

22.5

308

13.1

335

10.8

b =

31°
39.5*

349

23.9

3

358

22.1

1 14

19.0

359

29.9

25
36

26.6
22.8

b =

32°

40

26.2

8

23.7

41

5.6

17

25.5

67

9.8

29

24.0

90

24.0

46

10.4

100

22.4

48

7.9

107

7.7

63

14.4

i 109

8.4

70

12.3

117

2.6

77

45.6

120

5.4

93

26.1

148

29.4

105

10.0

163

43.0

35.0
8.8
9.6
19.0

17.6
14.0
17.4

20.4
15.9*
19.8

21.7

22.5

10.6
21.4
25.4

276°

289

293

298

304

308

318

325

329

342

349

358

359

b
0
14
29

39

40
44
53
57
61
65
69
73
78
89
99

104
109
115
118
122
125
131
134
140
143
154
163

11.5

24.5
20.1
24.9
28.0

27.4

16.7

13.8
16.0
11.0

26.7

27.9

32.6

28°

23.5
22.9

25.6

23.8
5.2

10.0
15.0
18.6
19.0
15.5
16.4
18.3

17.7

14.3

21.4
14.0

8.1
8.1

17.4

30.0

11.5

14.1

21.6
24.1
10.6
31.0
46.4

9.8
9.4
10.8
14.3
12.9
21.7
10.3

17.3
13.7
21.0
25.7

23.4

21.7

13.1

17.3

32.2
16.9

9.7

29°

17.8
20.1

14.0
12.6

7.7
26.0
12.2
21.2
8.4
■8.9

15.1

23.5

33.6

33.5
9.4

15.4

18.6

35.6

22.5

46.2
30.8

19.7

186°

195

196
203
210
217
221
235
239
243
249
279
283
302
307
316
322

174°
183
192
220
223
240
244
259
271
288
310
323
331
345
353

b = 30°

1

38.6

334

22

23.3

30

27.5

b

33

17.6

6

55

16.7

17

59

18.7

47

63

11.3

51

67

12.4

67

71

15.4

81

73

28.6

92

86

19.7

108

96

15.0

112

110

12.0

120

116

7.6

126

127

11.8

150

130

9.5

160

134

8.0

170

138

3.6

180

142

30.7

198

146

33.6

231

152

35.2

254

155

32.3

258

167

44.4

263

176

11.3

267

177

21.2

274

-ocr page 160-

174°

28.2

288°

33.8

1

i 264°

43.5

216°

10.5

; 281°

36.9

190

15.4

301

29.9

269

36.1

. 225

18.6

298

19.9*

198

10.7

313

27.5

274

16.2

243

28.4*

; 303

21.8*

207

14.0

322

14.9

275

13.6

270

19.0

j 313

19.6

223

18.7

326

9.7

277

25.7

285

43.4

326

16.0

227

13.7

327

24.3

291

37.5

310

32.3

333

6.6

241

26.0

346

18.7

î 296

28.5

320

14.5

339

15.0

246

32.7

354

23.6

300

16.7

324

19.0

348

29.6

260

31.0

i 304

1

26.4

349

18.0

358

27.8

270

19.7

b =

26°

i 305

35.5

351

33.3

272

15.5

2

20.7

315

28.1

b =

23°

286

25.2

1

36.8

328

9.5

b =

24°

3

36.1

323

17.0

21

22.9

335

10.2

14

32.4

4

25.7

332

13.5

32

26.7

343

16.8

24

37.4

10

41.7

339

9.9

40

23.5

353

12.8

48

21.8

20

28.6

356

12.7

41

9.7

53

18.2

30

34.7

64

8.4

b =

25°

59

23.6

• 41

18.0

b =

27°

70

20.3

7

41.9

72

21.7

45

13.0

4

44.5

73

28.0

18

26.7

76

15.5

65

16.2

5

24.8

81

17.5

28

28.2

85

15.4

73

20.3

25

19.4

91

11.4

34

39.4

88

8.4

90

10.9

35

29.4

107

13.7

37

26.6

94

8.9

l(:8

16.9

46

17.6

111

10.1

56

24.5

98

10.0

115

19.5

49

16.8

116

8.8

61

8.0

105

24.9 1

118

17.5*

84

12.2

121

17.0

63

21.4

125

16.8

129

19.8

96

14.1

129

13.5

67

20.3

134

17.4

141

52.9

108

16.5

137

18.6

68

18.4

140

12.4

144

35.0

119

10.9 1

143

29.6

71

16.9

141

18.1

158

41.5

128

9.2 i

1

146

27.8

102

15.9

168

32.3

172

35.2

132

15.7 ;

151

25.1

112

16.2

173

16.0

176

20.8

136

25.4 1

162

39.0

115

17.2

174

31.0 \'

183

10.8

140

28.2

167

31.8

121

17.4

191

13.1 î

200

17.7

157

33.3

177

6.9

125

21.0

205

14.0

207

14.3

184

9.3

187

9.6

131

18.2

212

12.6

208

9.5

200

25.4

194

9.6

154

45.4

218

14.4

245

23.2

214

13.6

202

12.5

165

43.7

222

16.9

249

24.5

219

21.7

2C9

9.3

170

25.2

231

22.4

251

33.5

237

14.0 :

215

19.0

j

178

31.0

235

20.9

256

.38.7

241

19.2 i

229

37.9 1

180

19.3

239

19.9

273

26.6

250

34.9

233

18.1

196

13.4

247

42.8 !

276

10.5

255

42.8

248

25.8

203

15.5

261

24.1

277

30.2

282

25.2 i

1

258

30.4

211

19.1

272

19.1

287

38.7

-ocr page 161-

----

290°

47.4

337°

15.3

294

34.0

343

10.1

317

20.0

327

15.2

b

= 21°

331

15.9

6

50.8

345

41.1

7

55.3

346

19.0

17

35.6

355

35.3

22

35.7

i

33

35.6

b =

22°

36

33.0

1 1

29.3

52

24.3

26

30.5

55

22.9

; 40

31.4

58

28.1

\' 60

8.7

62

24.3 î

66

13.0

63

15.2 i

1

69

20.1*

73

28.9 ;

72

12.6

74

28.8

81

15.3

76

16.4

1 105

16.8*

88

11.6

j 110

4.4

97

10.8 1

l\'I

25.3*

101

12.0 1

\' 121

14.0

109

13.9

132

24.6

115

13.3

137

12.7

139

40.3

144

17.9

140

19.9*

\' 148

44.3

147

24.4

151

45.0

154

47.3

161

36.4

165

.32.6

194

10.2

175

19.6

213

12.6

176

31.9

224

27.5

180

20.7

228

25.8

187

17.7

241

23.5

197

18.1

244

24.9

2(^3

10.3

259

32.2

208

15.0

ik

265

31.0

209

20.0*

269

27.4

221

24.1

270

29.1

248

27.4

307

40.4

251

22.5

311

36.7

252

26.5

320

16.9

262

27.9

330

17.1

273

22.1

40.1

277°

28.2

260°

18.6

43.4

286

43.5

266

26.6

36.6

294

46.5*

269

23.5*

32.5

298

16.4

270

26.2

17.7

305

48.3

272

27.7

13.5

314

38.0

275

16.6*

23.6

318

29.4

290

44.7

32.8

328

19.2

308

46.2

333

13.7

322

13.7

10°

341

17.6

339

26.3

32.0

342

43.4

354

47.2

45.3

348

24.9

27.3

b =

18°

35.6

b =

19°

1

22.7

13.9

10

40.0

7

73.9

19.0

15

39.2

12

46.3

20.4

39

30.9

26

33.1

22.0

43

19.6

36

29.4

15.5

60

16.1

40

34.7

13.3

63

15.9

54

24.5*

24.6

73

14.4

57

34.5

8.3

76

15.0

61

1

25.9

18.9

79

15.3

: 67

11.1

13.1

89

10.2

1 ™

20.4

15.0

108

4.5

71

9.1

12.1

111

4.6

87

9.8

44.6

128

15.2

96

10.3

45.5

137

28.5

100

8.3

17.1

138

14.1

106

11.3

40.1

144

17.1

117

24.4

40.5

149

44.8

122

16.1

31.0

161

43.1

131

15.7

16.1

174

24.6

140

35.4

22.6

181

21.6

; 152

21.8*

10.2

186

21.8

166

38.1

12.4*

200

19.0

1 172

j

29.3

12.0

206

14.5

192

13.3

26.7

213

17.3

1 208

18.1

23.4

1 223

30.7

214

24.7

24.9

244

25.1

219

19.3

26.5

247

19.4

236

23.5

25.7

249

20.8

240

25.3

280°

284

297

300

302

324

351

358

h
5
14
19
29
44
48
56
06
84
93

103

104
113
118
126
134
142
145
150
158
168
171
178
183
190
211
216
227
230
234
238
256

-ocr page 162-

245°

28.5

169°

27.4

134°

16.7

79°

22.2

43°

22.8

253

21.7

178

30.0

143

48.0

î 80

13.1

45

24.1

262

14.6

184

27.1

.147

41.7

86

14.3

48

27.7

272

15.4*

190

21.9

150

17.6

99

7.3

52

25.2

283

43.3

203

16.4

160

40.0

103

21A

55

28.0*

299

43.2
i.

209

9.8

181

30.4

107

18.0

84

37.8

300

49.9

211

15.7

187

31.8

123

19.5

71

25.1

312

37.6

218

26.5

196

22.2

127

19.3

84

58.9

316

19.4

229

32.5

205

26.9

128

15.4

94

14.0

325

21.3

233

23.7

215

14.6

136

27.8

96

11.7

331

25.7

250

25.1

226

28.4

137

16.4

97

11.6

332

27.2

253

41.2

246

34.3

143

21.1

104

15.5

334

26.4

257

16.9

247

21.0

150

45.2

110

14.4

337

16.3

262

18.2

257

17.1

159

22.4

115

13.6

345

28.2

279

39.9

261

12.2*

163

28.2

117

35.8

352

51.4

280

66.2

266

24.7*

172

20.8

120

18.5

284

54.1

270

35.7

173

36.3

131

15.6

h =

17°

288

41.1

275

32.0

193

18.4

140

24.1

6

37.1

292

51.5

276

23.9

199

19.2

146

18.1

22

32.2

293

37.7

284

45.6

202

20.5

153

22.7

33

31.1

295

26.1

296

55.7

206 ,

21.8

157

36.6

36

29.7

302

16.8

306

41.5

235

23.9

175

23.0

43

23.8*

336

33.3

318

9.4

243

26.1

185

34.9

46

23.2

358

30.6

329

17.3

25a

21.0*

191

32.6

50

15.1

335

34.3*

253

25.1

208

18.5

58

25.7

b =

16°

342

41.8

263

24.2

214

16.4

63

28.4

4

28.0

349

35.2

274

40.3

218

14.0

73

21.2

9

44.8

282

32.8

221

19.5*

76

11.5

10

62.1

h =

15°

286

49.6

228

28.8

78

17.1

19

42.5

2

23.5

299

39.8

232

26.7

84

17.9

29

41.7

7

43.3

300

54.3

238

26.1

92

9.0

42

33.9

16

59.7

309

48.8

251

35.9

106

11.7

62

39.5

26

32.0

313

37.9

254

14.9

109

5.8

67

46.8

33

59.2 1

322

22. J i

257

41.5

110

18.0

72

8.8

38

31.9

333

24.1*

278

70.8

113

8.8

75

29.2

40

28.8

339

29.9

282

51.5

120

10.8

76

46.7

51

32.7

354

21.6 !

287

54.2

125

11.3

89

13.0

59

55.5

289

93.3

141

21.1

99

11.2

61

44.0

b =

14\'\'

291

45.2

147

14.4

102

8.3

66

23.1

22

40.3

295

35.6

155

36.8

104

28.9

69

18.1

30

53.0

316

20.0

156

16.4

113

26.1

73

44.1**

1

35

43.1 j

326 •

24.6

-ocr page 163-

331°

27.4

261°

11.8

\' 337

11.0

267

82.2

345

34.1

271

.38.9

277

.32.2

h =

13°

294

43.8

3

28.2

295

82.0

9

46.4 i

304

26.1

12

53.6

307

.35.7

13

58.9

310

48.1

18

38.6

320

39.9

28

52.3*

328

27.1

32

42.9

329

.38.4

37

36.1

334

27.0

41

44.0

337

22.8

43

35.1

343

24.2

49

18.8

352

26.9

58

44.7

358

41.8

71

6.4

76

49.6*

b =

12°

80

72.5 .

0

34.5

83

15.1

7

21.6

86

61.1

14

43.8

88

79.0

33

40.6

92

12.8

41

45.5

95

75.5

47

50.5

100

17.0

52

36.0

101

8.8

68

32.9

108

8.3

70

60.9

111

8.8

77

23.2

129

18.6

80

24.9

134

22.5*

81

21.7

156

15.9

82

51.1

162

35.7

88

13.1

166

32.9

98

12.8

169

17.8

102

11.9

170

29.0

104

13.5

178

38.9

114

16.7

196

22.2

122

18.8

205

13.6

150

21.9

217

24.2

160

37.1

247

16.6

163

31.5

1 248

27.6

1 172

30.3

91

38.1

94°

51.3

46.3

97

29.4

37.0

99

17.5

.38.2

101

24.0*

23.4

106

10.5

9.6

111

19.5

17.4

120

19.5

23.1

135

37.9

15.1

1,36

14.7

49.4

1.39

24.0

23.1

146

21.3

29.7

153

28.2

40.2

162

35.3

38.0

167

31.3*

78.2

170

39.3

39.5

175

30.5

87.7

184

30.1

91.1

202

14.4

89.2

214

29.3

26.9

221

19.4

24.1

226

21.1

57.9

230

29.6

33.2

240

28.4

36.1

245

45.0

31.9

246

34.4

54.9

248

34.1

258

39.4

= 10°

262

58.8

47.1

277

34.5

40.4

293

66.6

42.0

304

26.3

56.1*

307

19.1

43.5

327.

29.7

44.8.

337

36.2

1 25.8

345

20.5

; 37.2

351

35.2

i 44.2

l 48.8

h

= 9°

l 24.0

1

31.7

5 28.9*

10

27.0

l 10.2

18

42.0

î 8.0

22

32.3

159°
165
181
190
196
201
205
208
220
227
234
254
263
274

276

277
281
284
292
301
313
317
324
331
339
358

32.1

28.2
19.9

24.1
19.1*

25.0

25.4

29.3

30.7

21.5

92.6

31.2
,37.4

68.1

33.8

29.2

39.4

11°

31.8

29.7

37.7

77.9
48.9

27.3

55.6

34.2

72.8
42.7*
10.2

74.4
11.0*
30.8
11.8

6.1
6.5

19.7

11.3

19.8

12.4
41.7
22.7

187°
194
199
211
224
238
240
245
248
251
288
293
296
298
323
349
355

h =

4
13
25
34
38
47
56
62
72
79
86
91
95
100
107
110
113
116
117
126
133
137
143

12
21
26
31
37
44
50
65
68
74

-ocr page 164-

41°

41.7

28°

41.4*

b

= 7°

358°

16.6

295°

61.0

53

50.5

34

45.6

12°

43.4

299

43.9

59

53.4

44

15.9

15

43.8

h

= 6°

302

36.8

75

48.9

47

63.4

24

45.9

4

109.5

309

31.1

77

27.0

62

35.0

47

16.8

9

36.7

1 313

31.7 [

85

48.9

71

62.7*

48

41.2

11

36.2

315

19.6

98

13.7

81

27.0

56

62.8

13

52.4

331

28.3

105

23.4

95

32.0

65

57.8

19

36.4

337

26.1

114

11.0

97

11.0

78

47.0

20

52.9

1

348

22.2 1

123

29.6

100

24.0

82

42.9

25

30.8

1 355

27.7

129

25.7

101

13.0

84

31.1

31

39.8

; b

= 5°

157

31.4

111

15.1

; 85

23.1

38

67.1

0

145.5

169

.38.4*

115

14.5

! 87

24.0*

44

46.9

18

48.2

178

30.5

117

21.5

90

14.0

51

45.7

22

27.9 ;

194

27.2

119

14.1

93

18.1

i 69

43.7

46

38.9

200

24.3

132

26.4*

97

27.5

75

36.9*

54

54.1

211

27.6

}38

31.8

104

10.3

78

20.6

1 61

37.3 ;

217

28.3

143

29.5

1 108

11.0*

119

20.7

63

57.6 il

223

17.4*

! 149

1

27.5

111

18.6

126

25.1

72

64.5

229

60.0

i 166

1

41.4

141

26.1

135

35.3

73

68.2

236

33.0

i 171

30.8

! 153

40.8

146

28.2

81

45.3

242

48.8

i 172

27.6

173

31.7

158

43.3

82

43.6 i

243

33.8

187

40.4

182

24.7

167

32.4

i 85

39.2 \'

\' 252

57.5

! 196

28.4

198

15.1

175

23.7

93

46.9

271

41.9

202

19.1

202

17.9

i 176

26.9

95

18.9

279

60.4

232

26.9

208

35.6

184

35.1

99

17.0 :

282

59.9

248

38.5

214

27.8

190

30.6

100

i

34.0 lî

295

33.9

255

34.7

226

41.1

199

21.8

103

13.3

297

58.1

259

48.0

229

22.3

205

27.3

109

12.4

300

48.3

264

68.1

231

42.4 I

220

28.5

114

17.4

311

45.2

274

49.2

238

32:3

225

20.1

117

13.5

314

49.9

276

80.6 1

242

37.3

234

29.0

120

!

18.1

321

61.3

286

97.8

244

48.5

239

35.1

129

.37.6

322

47.6

,290

105.2

268

48.5

249

39.8

1.32

30.1

328

28.1

298

62.7

278

44.3

250

45.0

137

28.3

336

30.8

305

24.1

281

47.9

253

49.9

144

29.1

349

22.7

324

33.3

291

87.9

262

59.5

149

46.6

354

43.4

325

14.7

302

21.6

269

80.8

156

43.0

335

31.6

319

42.4*

271

48.7

162

44.0

b =

343

9.9

340

21.9

273

136.7

168

40.3

351

29.7

341

19.9

277

67.2

178

41.9

6

34.3

346

26.8

289

95.1

193

30.8

-ocr page 165-

210°

29.8

1 170°

27.3

216

25.7

180

40.6

230

21.1

187

36.0

234

35.7

201

22.9

241

37.1

208

36.2

247

54.2

223

40.4

249

44.3

226

23.4

256

41.6

229

48.1

265

92.7*

244

45.6

275

50.7

259

44.3

285

78.7

268

53.0

301

43.9

275

135.1

302

34.9

279

60.5

305

39.0

280

68.8

316

50.2

289

113.1

322

38.7*

306

36.6

328

12.8

313

37.8

342

21.8

318

56.6

1 334

24.4

b =

340

35.1

7

50.7

341

31.3

14

35.4*

345

16.0

16

32.9

351

31.9

28

32.3

35

49.0

h

= 3°

41

80.1

12

50.2

43

47.1

19

22.8

49

38.4

25

19.3

66

86.0

32

58.7

76

10.6

50

31.9

88

10.0

52

33.0

90

45.3

58

44.3

91

5.1

59

33.3

96

46.9

74

66.5

105

13.5

77

47.5

113

16.2

86

43.1

117

15.6

120

18.2

123

18.0

126

15.3

132

44.8

134

39.6

141

38.8

147

41.9

158

33.6

152

49.6

164

25.5

165

40.0

____

172°

39.5

j 130°

24.8

89°

36.4*

181

30.5

143

36.4

93

17.4

191

35.3

150

44.9

96

53.3

196

26.8

162

33.7

97

26.4

213

25.0

167

24.2

99

69.4

220

37.1

182

64.5*

101

20.6

225

44.2

198

24.2

107

12.2

232

27.1

199

19.7

111

9.4

234

50.1

205

25.2

123

7.6

238

46.5

211

25.1

126

14.9

253

46.9*

229

13.9

138

54.1

263

56.4

233

28.3

155

38.6

272

93.2**

240

42.1

170

33.1

276

109.2

250

46.7

176

42.4

280

101.3

255

76.4

185

86.4

283

110.8

256

53.5

193

27.5

293

105.9

264

136.7

201

16.9

298

45.9

265

92.1

216

27.8

301

26.1

268

108.7

222

53.0

310

63.4

287

131.4

228

46.4

320

55.1

304

53.1*

234

26.1

325

53.0

310

73.0

269

66.3

331

27.2

313

94.2

274

167.4

342

25.0

316

43.1

275

74.2

343

25.5

337

30.2

278

119.7

349

17.8

355

67.0

286

90.1

357

30.6

288

110.7

h =

308

39.8

h

= 2°

0

98.5

313

20.5

3

32.4

10

48.2

318

36.2

11

32.7

17

30.4

322

46.6

13

50.1

18

39.3

328

50.8

38

67.5

29

29.6

335

61.6

64

72.4

35

78.8

340

34.4

69

49.3

40

80.1

345

51.4

79

42.7

46

46.9

93

53.0

53

35.0

b

= 0°

104

23.7

55

45.2

7

32.8

115

9.7

57

63.4

8

21.6

118

18.9

73

23.8

15

21.8

121
129

10.2

80

33.8

23

24.8

18.1*

84

44.4

38

83.1

-ocr page 166-

44°

67.3

291°

70.8

331°

53.2

254°

144.8

206°

23.2

49

44.9

295

56.3

336

48.4

257

106.3

213

19.3

74

84.9

299

78.0

344

46.9

258

174.8

220

22.1

76

70.2

.307

34.5

348

58.5

264

142.6

233

80.2

77

47.8

308

60.2

273

180.6

245

107.7

86

25.5

312

29.9

b =

-2°

276

99.4

261

93.7*

123

19.6

319

27.9

2

29.4

277

140.7

264

161.4

126

7.2

342

50.3

3

72.7

285

94.6

268

85.3

132

43.0

.351

52.0

12

31.2

286

117.8

269

137.9*

137

36.7

358

79.7

34

70 n

289

1

105.8

272

122.9

140

55.9

41

57.8

292

135.1

276

110.2

147

26.2

b

= -1°

47

38.6

301

52.6

280

96.2*

153

39.5

5

40.4

53

37.9

309

40.8

290

79.5

158

35.4

20

28.7

65

78.9

310

40.1*

294

81.0

164

28.6

26

24.3

74

73.2

316

51.8

298

61.0

179

55.5

32

58.2

80

64.1

322

53.8

300

75.8

187

50.4

50

47.1

83

24.6

334

52.6

307

35.6

188

93.0

53

33.9

89

38.9

347

33.9

314

40.5

195

13.8

54

124.2

95

41.1

354

106.2

329

107.9

196

12.3

55

67.9

99

54.9*

340

49.5

204

23.5

62

101.5

103

31.2

b =

-3°

346

44.3

207

37.8

67

55.5

106

14.1

1

96.1

219

32.5

71

73.7

109

8.9

9

25.3

b ==

-4°

226

31.7

91

20.6

112

14.4

16

35.8

0

19.2

231

40.4

93

43.0

125

32.3

17

37.9

15

54.4

234

55.9

116

25.0

129

28.8

23

27.0

32

47.3

236

41.1

120

24.2

138

24.1

29

32.9

38

45.1

242

62.6

129

26.1*

143

38.8

47

83.1

45

45.0

246

49.4

133

41.9

149

52.2

52

57.4

55

79.2

250

39.3

134

23.2

161

26.8

58

108.4

63

81.5

253

66.3

156

39.1

162

44.4

68

71.1

72

56.4

260

64.8

165

46.2

167

35.3

73

94.5

95

42.5

264

98.2

173

59.5

181

52.6

76

91.8

90

39.0

267

209.1

190

45.4

191

77.0

85

31.6

104

26.8

270

144.0*

204

35.4

207

14.9

I

124

7.7 i

108

9.7

273

63.7

249

108.3

210

27.2

137

33.3

114

27.5

274

122.4

252

75.3

217

26.8

159

50.8

118

26.3

277

102.9

266

122.0

222

36.4

163

31.9

121

13.0

279

102.1*

303

93.7

228

38.4

169

56.7

122

23.1

281

149.0

304

44.0

231

83.9

176

49.4

131

14.0

283

78.8

316

67.1

237

40.9

1

185

47.1

132

31.2

285

87.0

325

40.1

239

45.3

192

26.6

135

13.4

-ocr page 167-

: 141°

37.3*

100°

39.5

146

13.7

128

21.1

153

38.8

i 135

31.0

179

43.0

155

46.7

^ 193

20.7

162

44.7*

194

44.2*

167

.39.0

196

19.1*

173

43.5

201

22.5

182

46.8

224

24.8

188

42.0

! 230

26.5

198

14.4

239

44.9

210

18.7

i| 251

103.3

216

16.8

266

101.5

229

54.9

273

68.7

241

104.9

278

133.2

247

103.8

282

94.0

253

121.9

283

116.2

254

132.9

295

33.0

257

140.1*

297

143.9

262

60.0

304

31.4

263

51.4 !

i 311

74.5

267

187.4

325

49.3

270

119.8

331

73.7

277

122.2

337

51.1

285

74.9

343

22.9

291

148.7

351

55.4

310

42.9 1

316

64.1

1

î b =.

-5°

319

47.0

5

29.3

327

56.7 [

20

16.3

348

52.4

21

51.2

358

40.0

27

.36.9

46

99.5

b =

-6°

1

50

39.6

12

42.6

56

45.2*

29

40.3

i 59

76.9

35

43.1

1 66

90.6

41

30.7

i 79

63.9

47

41.0

1 83

51.7

50

60.6

\' 92

43.2

53

41.5

! 93

19.6

70

57.5

98

38.1

76

52.0

298°
304

313

314
325
.331
345
353

h
0
15
21
26
32
45
50
62
63
67
69
82
91
94
97
112
116
120
129
140
147
156
167
172
178
194
196
200
206
232
238
256

37.9

49.6
44.8
47.2

59.5
29.2

43.1

18.7

-8°

14.0

39.2

39.8

31.7

44.9
43.4

56.2

67.1
100.1

54.0

70.0

54.3

40.2

19.3

30.8

16.6

27.3
25.7

7.3
22.6*
12.2

28.7
37.6

20.4

46.5

30.8
37.3
16.3
58.3
60.3
50.5

65.1

-7°
26.1
30.4

45.6
28.9
28.9
80.6

71.0

77.2

51.1

55.4

70.1

24.7
27.0

37.3

14.8

17.5

28.4

34.5
20.0

38.2
21.2
42.4

35.4
36.7
24.7

39.9

18.6

20.5

16.7
33.0

42.8

53.2
93.4

193.1
121.6**

63.4

141.2

74.6

79.3

44.9

135.3

b =--

39.1

44.2
16.6
20.1
18.1

23.3
6.2

10.3
14.8
10.2

9.1
23.8
33.6

30.6

30.4
24.4
25.0
31.0
50.8

58.3
102.4

30.0
139.0

75.1
91.8
73.1*

96.2
93.0
93.8

81.4
127.1*

61.0*
72.4

92.4
37.2
48.0
68.0

32.7

18.7

17.8

86.5
21.8

84°
88
110
121

123

124
134
137

143

144
149
158
164
191
199
203
223
228
235
244
252
260
261
268

269

270
272
275
278
282
289
292
295
299
302
307
323
334
340
346

355

356

18
23
38
43
54
57
60
64
72
95
98
102
106
109
118
137
153
159
161
170
176
185
193
202
207
212
220
226
227
241
250
255
265
277
280
281
284
289
291

-ocr page 168-

259°

111.2

244°

49.8

182°

39.7

118°

22.2

78°

38.8

261

50.8

247

67.6

191

33.2

126

12.4

87

22.8

262

44.9

261

91.2

212

42.0

129

15.4

109

25.2

266

55.6

269

66.0

216

12.8

132

11.3

111

39.1

267

120.4

271

65.3

226

76.2

1 149

18.6

113

21.7

274

149.2

273

52.6

234

32.2

1 159

23.9

121

22.1

: 283

82.9

275

74.0

240

40.3

1 167

19.1

138

4.7

288

123.2

276

73.6

252

125.6

i

! 173

20.1

■ 146

27.9

295

33.6

284

80.9

! 253

i

60.8

; 179

29.3

\' 153

23.3

i 311

44.3

286

47.4*

259

51.6

185

27.4

155

15.7

319

60.2

287

120.5

262

47.7

194

34.0

161

26.7

338

17.1

291

48.0*

264

52.3

203

49.4

206

32.3

350

28.6

294

70.4

268

42.6

i 212

17.9

207

50.9

351

7.1

298

69.4

271

120.1

1 215

29.9

i 215

ir.2

352

93.0

301

27.0

277

66.5

219

7.4

! 219

19.9

\' 1

317

45.2

280

82.4*

226

8.1

221

6.8

h =

-9°

321

19.2

283

28.2

231

46.7

236

34.6

6

19.7

327

37.8

299

23.3

247

46.5

255

63.1

! 20

31.4

344

35.9

307

32.9

249

51.8

i 259

55.0

23

55.7

349

25.6*

318

49.4

256

99.2

j 261

46.4*

30

30.2

335

22.2

265

26.0

\' 268

96.7

47

68.2

b =

-10°

340

26.1

266

81.2

271

49.3*

51

j

64.0

3

26.9

347

18.1*

274

65.1*

275

63.6

i 55

61.2

12

36.4

356

12.5

280

25.3

278

76.1*

i 61

1

32.3

18

50.2

285

62.3

281

105.2

i 74

65.7

23

19.8

b =

-11°

287

110.1

285

23.9

79

53.5

35

24.8

15

51.1

289

35.5

288

60.3

87

35.5

41

36.8*

21

44.4

290

109.8

291

26.3

94

29.8

48

40.4

32

24.8

295

27.3

292

58.4

119

16.7

61

44.3

45

72.3

314

37.7

295

72.9

124

14.6

65

25.7

58

67.3

325

36.0

305

31.6

i 126

11.4

66

63.0

68

51.7

331

28.4

311

33.6

146

16.1

84

34.0

69

49.0

342

52.7

314

38.4

165

26.0

96

8.4

71

45.6

345

53.6 j

315

23.1

188

32.7 }

107

15.5

81

48.3

354

17.3

316

34.4

190

26.4

111

27.9

91

32.8

328

35.6

200

32.8

136

6.2

97

41.0 1

b =

-12°

338

12.7

204

24.7

143

13.1*

99

10.7 !

8

30.1

343

20.5

209

36.2*

149

19.4

103

16.0

23

35.2

348

53.3

222

13.4

158

14.9

114

10.6

26

9.7

351

11.5

228

28.4

171

22.4

116

31.7

39

52.5

352

55.1

229

51.1

176

33.0

117

43.8

49

50.1

359

16.9

-ocr page 169-

b =

-13quot;

282°

25.9

19.3

283

89.6

12

34.6

301

28.3

1

i 17

44.5

313

1

37.8

22

19.4

321

47.2

29

13.0

334

15.6

43

57.1

335

34.8

53

48.7

339

35.3

56

35.9

357

9.4

60

41.6

74

36.7

b

-14°

83

31.4

15

24.7

i 93

26.6

20

.38.3

i 97

5.5

27

32.6

101

10.5

1 63

50.8

105

8.6

! 68

53.2

113

20.7

71

46.0*

114

36.5

90

38.7

117

25.9

97

34.2

118

31.5

115

24.7

135

8.3

129

16.7

145 •

7.6

131

13.8

149

29.3

1 141

3.5

156

22.8

151

14.9

163

26.8

157

14.0

171

14.9

174

14.2

177

26.4

180

28.4

182

33.1

185

29.9

189

31.2

191

29.2

191

26.4

194

32.5

196

43.8

204

40.2

201

34.6

213

30.1

210

36.2*

222

27.6*

229

66.5

225

29.6

233

19.9

228

27.4

243

31.6

232

37.4

249

35.7

235

36.6

252

53.9

239

27.1

253

37.4

257

51.6

263

35.7*

259

32.7

271

58.8

266

34.5*

279

04.9

273

66.2

69.5

!

i 255°

45.6

176°

15.8

48.7*

: 259

23.9

188

26.1

33.4

■ 260

56.6

208

34.9

28.1

269

.38.7

222

4.1

20.8

277

69.0

233

54.3

36.0

279

69.4

242

52.5

283

50.2

2.54

38.4

-15°

286

112.8

261

26.9

12.5

287

74.5

262

34.9

19.9

291

38.6

266

39.8

35.2

295

35.2*

282

88.2

13.7

304

25.7

285

20.5

38.9

309

28.0

292

28.4

50.8

318

33.0

302

24.2

42.9

325

27.7

307

27.1

52.5

331 .

28.9*

315

31.1*

45.0

342

27.1

322

26.4

40.4

1 353

16.8

324

29.1

35.6*

1

1

328

43.6

34.9

1 i =

-16°

337

24.8

54.7

12

17.4

350

14.2

43.1

25

31.8

351

40.1

20.9

54

45.8

359

18.1

8.4

57

41.7

3.6

61

35.4

b =

-17°

12.4

73

37.5

5

11.7

37.1

74

42.5*

14

16.2

24.1

83

34.4*

40

48.2

29.7\'

93

38.0

44

57.6

22.5

98

44.8

65

40.0

38.6

99

5.8

66

61.9

11.9

102

25.0

70

46.3

23.5

103

7.8

80

37.0

7.3

107

11.6

86

18.9

26.7

111

19.7

96

49.4

5.4

116

21.8

117

23.0

42.5

119

23.2

127

5.5

30.9

121

16.2

131

8.5

34.0

134

4.5

140

7.3

30.5*

155

15.0*

144

12.2

45.2

156

44 0

151

7.4

27.1*

161

18.4

164

31.6

275°

289

298

308

341

344

b -
3
9
18
26
36
47
51
66
70
77
81
86
104
108
112
125
138
147
153
167
182
187
197
212

217

218
220
225
230
236
239
246
249
253

-ocr page 170-

170°

22.6

95°

37.8

52°

55.3

b =

-20°

75°

34.7

186

26.2

96

39.7

69

50.8*

15.8

80

36.1

190

26.1

105

29.7

72

63.0

18

23.3

86

22.5

201

30.8

109

26.9

73

44.0

25

20.6

89

28.6

211

32.5

124

12.9

82

35.6

31

34.2*

93

41.6

214

29.1

151

13.4

90

23.9

46

60.7

96

23.5

215

5.8

157

18.3*

92

25.3

58

29.7

97

32.2

223

22.4*

173

30.3

99

48.7

63

35.4

106

23.8

226

21.4

180

19.5

101

5.0

1 90

40.0

109

22.9

230

24.9

188

19.4

113

16.4

104

25.8

114

15.5 \'

242

41.8

189

28.4

114

17.6

120

16.3

116

23.8

248

36.6

194

24.9

117

13.8

130

8.7

118

10.6

258

29.9*

204

25.6

1 121

14.4

134

8.1

126

4.2 i

264

38.6

218

4.0

i 136

7.1

153

15.4*

139

6.4

274

56.6

234

32.7

142

7.8

16i

25.1*

149

10.9

278

80.1

237

31.0

147

9.6

176

24.5

179

21.3

281

52.0

239

21.5

167

25.6

185

27.9*

195

21.6

282

23.0

241

18.6

! 183

20.5

192

17.7

200

23.1

285

40.4

247

24.3

! 197

21.0

211

26.1

215

32.8

289

104.9

251

27.6

208

36.6

221

18.6*

232

29.3

304

28.8

254

21.8*

! 218

34.0

224

27.5

233

16.4

313

36.2

267

55.1

i 221

28.1

228

26.8

235

23.2

319

18.1*

272

43.1

i 236

32.7

242

17.7

1

236

21.3

322

21.5

276

84.1

j 243

20.3

247

23.3

238

30.8

329

26.8 î

280

94.7

244

29.7

257

33.8*

242

22.4

337

17.4

288

18.0

251

35.5

261

19.1

254

22.6

348

29.0

289

46.5

j

259

70.5

264

53.2*

256

47.4

293

74.3

268

40.7

273

81.5

268

70.4

b =

-18°

298

33.7

.269

62.8

277

50.8

271

52.3

3

16.6

310

27.7

281

76.6

297

39.4

273

52.8

8

18.4

319

28.9

285

44.1*

307

28.4

277

86.8

21

34.5

325

25.3

295

29.3 j

322

23.0

281

83.0 1

27

18.4

330

21.0

300

27.5 j

329

17.3

284

88.9 1

34

60.6 i

335

20.2*

316

31.8 !

336

25.3

287

53.7** !

38

23.4

356

17.7

324

12.2

291

26.2* i

48

46.9 1

327

19.4 1

293

30.5

55

49.2

b =

-19°

332

27.7

h =

-21°

304

26.2

76

43.6

0

16.9

340

19.6

1

24.3

314

22.8

80

50.1

5

14.1

344

30.0

29

42.9

319

18.7* i

86

28.2

11

19.0

350

25.6

35

35.9

320

15.0 i

90

37.1

j

26

22.1

353

12.7

65

53.9

356

17.2

92

53.0 j

1

42

55.5

354

31.4

66

25.1

-ocr page 171-

b =

-25°

358°

16.6

16.6

16

22.3

b =

-26°

23

34.3

22

18.7

31

33.6

45

40.2

37

48.8

58

40.3

41

31.7

67

42.4*

54

45.9

80

28.2

71

37.9

92

23.6

75

34.1

120

13.5*

97

23.6

130

8.1

102

22.3

145

10.6

107

25.5

148

9.5*

111

14.7

155

8.4

115

15.6

163

19.7

124

9.9*

173

30.1 •

135

11.9

183

16.2

169

35.8

193

15.9

171

31.5

199

13.7

180

16.9

219

22.6

188

13.5

221

27.0

196

23.3

243

19.7

210

21.3

250

25.2

215

25.8

253

34.4

218

26.6

261

47.3*

236

25.8

265

66.7

243

34.7

270

79.7

247

34.2*

275

69.2

251

30.4

279

83.1

253

16.2

282

9.8

255

15.2

287

66.0

266

61.2

300

19.8

270

46.8

307

55.8

282

57.6

3c9

16.0

283

101.2

316

19.7

290

19.4

325

17.6

293

23.9*

329

9.9

303

21.1*

343

25.5

314

17.9

348

27.9

319

24.1

333

15.5

b =

-27°

352

27.2

5

24.5

36.3

-24°
21.8
19.9
24.1
39.3

34.8
57.3
27.5
59.3

28.7

28.3

25.4
29.3
21.0

8.1
10.0
8.0

11.9

15.1

28.8
22.0

9.9

14.2

19.5
16.1
28.2
35.2
25.7

32.2

73.3
75.2

93.5

65.4
44.8*
31.4

40.6
10.1
15.2
26.9
14.6

356°

b
2
18
25
47
50
63
65
69
79
84
89
94
96
128
138
146
153
159
168
177

185

186
192
206
212
228
233
239
265
269
272
278
286
296
300
319
323
327
336

13.8

-23°
22.8
27.3

27.0

75.1
43.8
48.1
47.5

43.8
36.3
41.3
20.5
19.3
17.3

7.5
26.6*
29.1

17.9
15.8

21.3
29.0*
.36.9

25.4

17.5

47.6
37.1
21.0

89.8
52.6
26.5
22.0
26.4
29.0
22.0

16.9
28.1*
11.8
22.3
24.9
12.9

358°

b =
12

27

28
29

33

34
39
43
60
66
93

105
118
142
166
170
183
202
208
221
225
241
251

255

256
259
274
276
290
293
296
300
306
316
322
326
340
350
355

-22°
21.9

25.5

16.6

61.5
54.8

38.8
32.5*

28.3

25.9
10.9*

9.1

10.4
9.8

10.9
12.1
26.5*

19.6

22.4

18.7

19.5

32.8
26.2

36.3
21.8
35.8

21.7

42.8
83.5

34.9

48.0
57.5

53.5
25.9

45.6

21.4

21.4
28.9
15.\'5

25.5

11.1
30.5

b =

15
22
49
52
57
71
81
100
122
132
136
146
150
156
163
173
188
199
204
218
229
238

245

246

252

253
261
263
267
270
280

284

285
290
310
326
329
343

353

354

-ocr page 172-

13°

16.8

18°

20.6

332°

17.1

b =

-30°

b =

-31°

20

38.3

35

21.5

1 335

13.9

27.0

12°

34.5

28

38.2

37

70.8

342

28.3

15

24.7

21

22.2

34

41.1*

52

37.6

1

16

37.5

29

26.2

47

49.5

70

27.3

-29°

37

31.6

39

25.1

02

32.0*

74

28.2

^ _

45

39.9

53

29.0

88

23.6

78

22.6

0

,34.0

50

40.2

73

12.7

90

30.1

84

22.8

8

24.8

61

43.8

77

17.9

90

20.7

94

24.6

18

24.5

65

48.2

s3

17.2

106

22.6

99

31.9

25

29.2

90

33.5

87

18.6 \'

117

10.5

103

17.5

32

37.5

140

8.3

95

21.8*

122

17.5

108

21.4

41

46.7

142

5.3

99

20.2

127

10.8

112

18.4

56

28.5

154

8.3

110

16.4

142

9.4*

121

8.1

60

26.4

164

17.2

114

12.8

146

9.6

126

6.7

65

31.9

171

21.0

119

7.6

174

34.3

137

12.2

80

26.4

180

7.0

125

14.3

203

14.4

152

8.0

92

16.0

181

21.8*

128

13.3

214

23.2

159

10.6

107

19.9

189

12.5

136

10.4

217

21.9

1

167

14.2

129

8.8

199

13.1

151

8.0 ;

226

36.8 1

176

26.9

134

8.0

203

20.8

i 174

21.0 i

229

29.3

184

15.7

145

12.4*

214

22.9

183

18.8*

246

28.4

195

14.3

149

7.7

235

31.0

185

t

17.0 1

271

44.0 1

206

14.7

162

10.2

239

33.9

192

12.6 \'

276

56.3

220

23.2*

j 178

32.4

243

37.1

218

23.4

279

34.7

224

32.2

179

18.4

247

53.3*

219

18.0 1

286

52.6*

233

32.2

211

15.5

251

43.3

221

21.7

287

23.9 j

237

28.0

227

35.6

255

25.3

251

27.6 i

289

32.4

241

27.5

231

35.3

265

41.6

258

40.0

297

17.4

245

37.1

249

24.6

276

27.8

270

36.2

306

16.7

249

43.7

254

38.4

286

127.8

281

34.0 |i

310

58.5

253

23.5

261

36.2

289

25.0

282

54.0

313

17.2

258

40.0

271

52.9

295

34.5

284

32.5

314

38.0

268

53.4

274

40.8

298

30.3

288

26.2

317

41.1

269

63.5

292

14.8

299

10.7

289

50.2

321

15.3

278

98.4

303

14.3

310

18.5

302

21.8

340

27.0

282

63.2

305

36.0

312

47.2

306

15.7

345

28.3

283

48.0

308

50.2 ■

319

37.6

316

35.5

355

15.1

287

52.5

328

22.8

321

21.8

323

32.1

356

35.8

290

34.8

337

19.5

324

20.8

330

30.8 i|

1

296

13.8

352

28.2

334

22.0

344

23.9

b =

-28° !

300

27.9

359

12.4

349

23.7

1

2

22.0

321

47.2

355

32.8

il

-ocr page 173-

b =

-32°

91°

18.4*

r

13.2

109

16.3

10

24.7

128

14.1

38

59.9

132

12.6

43

13.8

155

11.0

58

31.9

178

22.7

62

33.4

189

12.5

68

19.9

196

14.1

1

104

17.5

200

14.6* 1

123

11.0

i 211

1

15.8

137

10.4

215

13.7 i

144

8.8

233

37.7 ;

148

15.6

237

29.7 !

158

13.3

241

25.4

167

18.1

248

36.4

188

13.0

j 249

75.1

191

13.8

253

26.6

196

18.0

254

24.7

207

12.2

262

37.9

226

28.9

267

26.6

228

36.0

277

31.1

244

30.5

! 285

39.5

273

19.9

288

41.6 1

286

14.7

292

30.9 !

291

36.3

295

30.0

302

17.9

310

21.0

306

21.4

314

32.3

322

18.7

333

27.4

326

20.3

338

23.0

341

22.0

357

22.8

352

24.3

359

51.2

b =

-33°

9

30.6

b =

-34°

18

22.3

3

44.2

25

32.1

5

28.7

33

33.7

7

30.9

37

20.4

15

26.2

42

56.7

40

20.0

47

58.5 I

44

29.8

59

35.1 !

50

39.6

64

29.8

67

19.4

79

15.6

1

72

14.1

135°

7.5

î 197°

13.3

136

8.8

226

39.4

158

10.6

230

28.6

174

19.6

239

15.9

189

20.1

249

17.8

193

19.3

252

18.2

204

12.5

254

18.4

208

16.3

256

14.6

218

31.4

257

15.4

219

21.1

262

23.9

223

25.6

273

32.7

245

24.5

290

17.9

259

25.5

291

37.1*

271

25.9

307

29.9

285

24.8

321

1

26.4

286

30.1

I 336

21.7

295

19.8

i 340

25.9

303

26.7

351

28.6

324

16.0

359

44.9

328

22.6

j

345

28.5

b =

-37°

356

51.5

26

29.7

37

21.6

h =

-36°

41

19.2

2

18.9

48

43.4

10

27.9

97

13.5

19

26.9

117

9.6

34

22.1

143

16.5

49

48.4

151

21.0

58

43.8

163

13.0

63

21.3

181

11.3

78

13.3

198

13.4

92

16.2

202

14.6*

93

20.3

205

14.8

110

15.0

211

19.1

131

13.7*

214

19.9

154

18.8

216

27.5*

160

14.8

218

14.8

167

15.9

234

28.0

177

11.4

239

21.2

178

14.5

243

28.0

192

14.3

247

26.4

16.2

34.4
14.3

15.3
11.9

6.7*

18.5

16.6
17.9
22.6

15.6

31.4

15.1
14.8
15.0
13.3

19.5
29.3
33.0

36.5

34.7

30.3

44.8
27.1*

25.8
33.0

31.2

-35°

36.4

27.0

31.1

57.4

39.6

43.4

15.5

15.0

22.6

25.1

14.2
8.5

13.9

87°

95
111
]1(5
125
140
147
151
162
171
180
181
184
204
207
211
216
241
244
252
281
288
290
299
317
322
348

b ■■

4
22
33
43
56
60
76
83

96
100
105
120
129

-ocr page 174-

254°

23.0

234°

21.6

263°

22.0

290°

19.6

311°

24.8

259

28.0

242

39.4

275

31.5

301

33.8

321

16.7

267

17.9

258

16.3

285

29.7

313

19.6

331

35.5

278

26.4

272

26.6

298

35.2

317

13.4

352

28.2

282

22.3

283

25.6

304

22.7

336

36.4

283

25.0

287

22.2

308

25.5

351

49.0

b =

-42°

288

30.5

291

20.3*

323

19.4

356

27.4

i 4

21.0

289

32.5

293

44.4

327

19.0

7

34.0

296

35.8

299

27.5

331

19.1

b =

-41°

22

22.2

311

17.1

323

23.3

335

19.4

20

25.9

35

17.0

315

20.8

327

19.0

340

19.4*

31

12.4

1 48

16.8

320

24.0

332

24.1

; ^^

16.5

1 51

29.7 1

323

15.9

343

39.0

b =

-40°

54

31.6*

54

41.8

348

38.6

344

17.0

11

37.8

! 69

17.6

1 61

26.9

354

27.6

349

32.3

27

29.8

74

15.9

1 64

18.2

357

23.5

b =

-39°

50

51.5

82

12.4

95

24.4

1

26.2

56

37.5

86

16.0

\' 102

12.5 I

i b =

-38°

4

40.4

77

18.3

119

11.1

107

11.9

7

33.5

23

28.9

90

23.2

125

22.3

! 137

8.4

15

25.7

34

18.9

93

20.7

129

11.7*

159

12.6

30

25.8

39

22.3

98

12.8

150

21.7

167

14.3

47

43.5

50

54.6

114

12.1

171

16.0

173

16.9

53

41.3

61

21.0

119

8.6

î 182

15.4

174

11.2

57

50.7

66

22.0

124

12.1

i 203

18.8

186

15.9

70

17.8

1 106

12.5

135

13.4

212

28.1

222

23.5

75

13.5

111

12.7

141

18.6

216

21.2

226

13.7 1

82

16.1

134

9.5

156

12.8

218

34.3

230

13.9

87

14.5

154

17.1

164

14.0

227

28.6

253

15.9

95

19.8

160

9.6

179

15.5

235

19.8

256

19.1

101

20.9

168

12.3

199

17.6

241

27.9

263

14.5 ,

113

18.2

175

16.7

207

16.3

251

12.9

264

17.7

122

9.7

178

12.7

212

9.5

255

33.9

269

19.1

127

11.9

185

13.6

216

25.5 !

259

26.5*

273

28.9

128

8.6

191

12.1

232

27.4 !

260

24.2

275

25.1

133

13.7*

194

13.1

236

27.4

268

41.3

315

28.6

134

20.5

208

10.7

238

9.9

273

30.5

323

38.2 !

138

14.1

224

26.8

241

• 15.4

279

28.8

324

18.9

146

18.3

228

36.0

245

18.0

281

25.0

327

32.3 ^

170

16.4

231

24.0

250

16.4

284

27.4*

329

17.3 \'

205

15.2

246

28.8

268

19.6 i

289

24.5*

333

22.9

210

13.6 î

254

20.0*

275

23.4 !

293

23.0**

337

21.9

220

32.9

261

18.8

279

23.5

307

20.1 j

346

22.4 ;|

1

____________

- - -.......

____________

........—

-------------•

.........

i

- \'1

-ocr page 175-

b =

-43°

1

52°

16.6

148°

21.0

170°

15.4

258°

15.3

25.5

59

22.1

168

15.5

172

15.9

270

16.0

31.6

63

26.4

174

9.9

180

17.3

275

22.7

27

21.6

69

23.2

176

16.8

192

17.7

277

27.0*

41

22.0

85

17.]

183

18.5

.223

17.8

282

26.4

50

20.6

98

15.2

187

13.3

252

22.3

285

18.8

^ 60

22.]

116

10.9

215

14.6

255

28.4*

289

29.7

! 76

18.5

121

16.0*

235

35.0

265

18.0

290

7.6

il 90

18.1

126

16.4

243

23.7

274

26.1

299

25.4*

94

12.9

1.32

17.4

259

20.6

276

11.0

303

9.0

113

11.4

1.39

16.8

260

19.0

277

30.9

358

18.8

114

9.8

164

13.9

261

18.1

293

30.0

139

22.0

172

15.0

265

13.2

294

21.2

b =

-48°

145

23.0

201

18.4

266

21.1

316

9.7

8

13.5

154

9.9

205

23.9

271

10.8

320

13.1

24

22.6

178

13.3

211

29.7

274

28.8

330

17.3

34

14.1

192

16.0

219

26.7

281

13.0

340

18.4

48

31.2

196

21.8

226

16.4

286

25.2

345

17.4

56

32.3

215

23.6

231

20.8

306

18.1

71

17.0

219

26.4

239

20.4*

312

20.1

b =

-47°

74

14.1

224

16.2

[ 243

23.4

326

13.6

10

30.0

79

16.3

234

17.0

253

18.9

335

14.2

19

22.6

89

14.0

248

16.9*

269

27.9*

350

18.0

42

16.5

101

8.6

255

14.3

286

19.0

355

19.7

49

25.6

105

10.0*

256

25.6*

289

24.3

61

18.0

124

14.2

264

17.9

291

31.7

b =

-46°

72

17.1

153

9.5

276

25.9

296

21.7

3

13.0

74

15.5

162

9.9

277

12.5

302

25.5

15

27.5

85

17.4

190

18.4

280

21.6

320

14.9

28

20.4

95

9.0*

218

22.4

281

26.6

37

17.9

101

17.0

220

24.2

285

20.0

b =

-45°

50

25.8

110

6.1

226

33.6

298

22.9

8

33.0

67

14.2

118

11.0

240

19.6

320

17.1

9

15.0

75

12.4

143

14.8

245

19.7

324

13.4

23

26.6

85

17.9

144

20.0

249

19.1

342

19.3

62

19.6

91

13.2

184

21.2

260

25.3*

67

14.9

104

10.7

197

23.5

263

26.1

amp; =

-44quot;

73

18.1

108

7.5

202

24.6

269

18.6

0

30.4

81

11.7

115

13.1*

208

29.1

270

23.9

12

21.3

94

19.5*

130

12.8

212

22.8

274

10.3

19

19.4

104

15.6

134

16.9

218

17.7

276

27.5

32

13.8

117

14.0

150

14.2

232

35.1

284

20.1

46

14.7

141

24.0

159

12.6

248

17.4

307

12.9

-ocr page 176-

17.4
17.8
16.0
12.2

= -49°
25.8
9.7
21.7

13.1
14.0
15.7

19.2

16.3
11.5
14.3

24.0

12.7

12.1

15.8

18.9

23.4
21.7

23.5
24.4

25.7

24.8
18.0

25.2
21.7*
23.1

11.3

321°
327
349
353

b
6
12
15
39
78
84
89
95
110
133
138

147

148
167
175
194
200
205
211
215
223
236
255
265
281
294
302
318
323
332
338
343

20°
30
46
54
59
65
71
96
117
121
158

171

172
181

254

255
266
279

285

286
291
296
299
313

b
6
35
44
78
89
95
101
126
150
186
190
218
231
240
245
260

14.6

15.8

24.9
28.6
18.6
15.5
12.1
15.1

7.5

10.7

13.8

18.5

11.9

21.6
21.3
29.0
12.9

24.2
24.0

26.5

23.3
31.0

8.7
8.6

-51°

14.6
16.0

22.4
19.9
13.2
14.8*
10.4

9.0
8.2
22.1
27.2
16.6
30.7
22.9
18.9
20.2

13.6
11.0
16.3
17.5
12.8
14.3

b = -50°
2 13.4
11 21.3

270°

34.6

272

20.2

289

34.4

304

18.1

319

14.1

324

12.2

358

16.7

= -52°

31.6

21.7
21.0
13.0

9.4
5.8
13.6

14.5
13.3
10.0

14.8

17.6
21.8
18.6

24.9
22.0
26.1

17.8
22.6
29.6

41°
50
56
63
69
84
119
124
138
154
167
181
213
223
237
241
255
258
263
265
280
286
295
299
320
355

b
12
21
30
40
77
89
95
102
130
148
157
186
233
261

10.7
24.6

15.5

12.6
11.2
15.2

7.7
10.2

16.8
8.5

12.4

24.5

30.7
14.5

22.8
20.9
22.8
17.4
16.8

26.7

27.1
29.9

20.8
25.6

17.6
11.3

-54°

15.8

17.7

14.2

18.5

14.6

16.9
12.2*
10.0

9.9
9.7
15.4
26.8
31.9
28.7

h

14
25
42
73
106
114
136
142
153
162
165
175
197
202
208
220
227
251
260
277
304
310
315
321
329
335
340
347
352

17.9
14.9
16.8
23.9
19.2
17.2
16.9
14.0
14.6

b = -53°
0 15.9
9 28.6

29.5

33.6
34.0
20.5

19.7

17.4

22.5

14.8
17.4
14.4

20.3

= -55°
16.8

15.4
15.3
25.8

29.3
21.2
10.7
10.6

6.1

11.4
8.2

10.6

23.4

26.7

25.5

13.2

26.8

12.3
31.1

15.4

18.6

30.5

-56°
11.9

23.6
11.1
19.1

9.2

269°
271
294
300
306
308
327
332
339
344
350

b =

6
15
17
37
47
54
71
108
122
160
161
170
193
198
216
223
235
246
278
311
317
322

b =
0
27
66
83
116

-ocr page 177-

-58°
12.7

300°

31.6

224°

18.9*

163°

16.4

316

10.4

231

19.2

210

26.1

13.9

318

28.1

261

23.1

212

14.8

38.2

295

23.6

231

27.1

17.0

b =

-60°

303

29.3

247

27.5

12.4

38

20.7

323

22.8

255

19.3

13.0

58

13.1

331

14.0

268

25.6

17.6

74

11.8

344

10.0

288

25.0

23.8

83

18.2

307

24.0

17.2

104

17.7

b = •

-62°

315

21.9*

22.1

119

17.8

22

26.1*

336

34.0

32.1

128

14.2

55

12.5

358

15.8

8.7

132

10.5

60

8.4

36.2

139

8.5

66.

/

9.9

b =

-64°

18.6

152

10.3

105

9.3

14

21.4

26.1

162

28.2

112

13.6

32

52.3

22.8

164

14.3

143

11.0

64

14.3

10.0

169

11.9

158

11.3

88

22.9

15.9

177

18.0

177

13.0

97

34.2

214

18.9

183

17.1

150

11.6

■59°

244

31.9

190

12.0

225

28.1

16.0

254

24.4

192

11.7

231

15.0

18.3

267

32.5

198

21.7*

277

30.0

43.8

274

29.5

205

20.2

286

24.4

9.7

310

19.9 î

218

18.6*

319

16.6

9.3

317

13.8

225

16.2

325

9.8

7.6

323

9.0

240

24.4

11.9

337

8.4

251

22.1

b =

-65°

8.2

352

10.3

259

28.2

7

21.2

17.6

359

10.4

284

32.4

10

34.9

37.7

313

23.4

29

23.7

18.8*

b =

-61°

329

23.0

57

10.9

15.4

12

11.3

98

10.8

24.4 !

26

38.6

b = -

-63°

107

15.5

18.5

27

21.3

4

15.5

135

14.4

15.4 I

46

12.3

18

26.7*

142

11.6

1

21.6 i

89

25.9

42

19.6

156

20.4

17.1

97

28.9*

72

14.7

169

12.3

29.8

156

25.7

82

15.8

179

16.6

29.3

184

15.2

122

16.3

186

21.2

29.6

204

16.8

132

17.2

196

16.6

28.0

212

10.8

137

12.4

203

12.1

b

20
33
50
69
75
89
171
188
200
205
221
223
225
261
305
327
347

b ■■
15
17
31
64
110
118-
147
159
174
188
194
202
208
217
239
248
255
263
281
286
292

126°
142
164
176
205
211
218
226
252
254
260
289
297
302
311
316

b =
11
35
43
61
96
103
128
134
151
162
168
181
211
221
230
242
266
267
274
283
321
334
340
353

9.2
15.9
15.9*

15.3
17.2
28.2
26.2

32.6

15.7

24.1

24.2

36.1

37.5

30.6

14.8

23.8

-57°

13.6

20.2

15.9

15.4
21.9*

14.8
12.1
12.1

10.3

23.7
11.2*

16.8
30.6

38.2

15.3
31.0

30.3

14.4
36.3

27.9

19.5
7.4

11.2
15.8

-ocr page 178-

240°

20.7

b =

-68°

1

b =

-70°

53°

22.3

140°

13.5

i 255

27.6

13°

12.7

22°

14.0

115

10.4

158

7.3

261

20.1

34

20.2

1 41

18.1

127

8.8

215

13.9

î 300

19.7

44

18.1

68

8.7

167

8.5

243

13.7

i 310

1

24.6

54

13.0

80

25.6

248

15.3

245

13.4

i 323

20.2

60

9.2

100

21.8

253

20.4*

259

21.4

334

12.6

89

18.6

147

14.1

263

19.8

272

22.3

i 341

1 1

14.4*

118

8.8

149

12.7

1 272

14.2

275

12.2

\'i 349

11.6

172

19.6

219

20.5

275

22.9*

288

15.7

1 350

1

19.8

211

22.7

223

19.2

285

19.8

306

18.2

359

30.9

227

23.4

294

16.3

300

11.5

316

12.7

1

233

20.9

312

16.3

306

14.4

356

10.8

b -

-66°

261

15.1

327

20.9

318

14.0

; 22

18.8

291

14.9

b =

-77°

1 27

64.5

296

27.2*

b =

-71°

b =

-74°

44

18.2

quot; 50

13.3

306

22.4

1 39

15.1

18

20.7

57

22.8

81

13.3

321

21.3

56

14.9

41

18.3

62

29.7

!: 115

18.7

322

24.7

89

27.9

51

14.7

75

29.0

! 126

14.3

330

14.8

137

16.7

62

11.9

105

24.8*

i ,

9.3

353

18.3

139

14.4

78

27.8

121

15.0

219

23.5

354

18.7

166

11.1

101

35.6

170

17.0

235

33.0

208

20.1

118

11.9

203

12.2

238

20.5

b =

-69°

295

27.3

132

10.9

261

15.0

^ 250

34.0

6

21.5

309

22.6

144

7.8

254

23.3

27

25.8

b =

-72°

181

14.5

b =

-78°

291

24.4

29

13.5

1

22.4

192

15.2

21

9.5

313

17.1

99

14.3

11

16.7

206

15.1

88

12.0

110

12.6

30

11.1

228

12.1

184

13.7

b =

1

-67°

133

9.7

48

18.2

261

16.2

234

11.8

1 4

27.0

143

11.0

100

7.2

324

18.5

! 69

[1

13.7 i

155

12.8

157

8.0

b =

-75°

! 99

13.9

183

21.4

175

12.2

7

12.1

b = -

-79°

;l 146

18.2

191

22.0

185

15.1

103

5.8

2

11.1

148

13.7 î

202

31.3

198

28.5

119

11.8

30

10.5

165

13.1

243

37.3

216

19.6

134

12.5

88

31.1

234

20.8

245

21.6

228

14.2

332

22.3

108

16.9*

! 268

22.8

254

17.6

263

16.2*

340

18.8

155

14.9

278

24.7

256

14.4

339

20.2

240

23.1

304

18.5

271

24.0

349

18.2

b =

-76°

250

14.0

314

31.2

282

18.1*

33

12.5

271

21.1

329

16.9

338

13.8

b =

-73°

76

28.0

318

18.0

336

21.9

346

17.7* i

j

1

43

10.9

88

16.9

346

6.9

-ocr page 179-

b = -80°

53°
72
214
276
291
333

19.6
15.9
12.8
12.1
12.1
9.0

b = -81°
14 10.0
95 10.0
112 13.9

12.4
12.9

9.3
24.7

9.6

134°
170
197
228
255
357

6.4

b = -82°
40 15.5
118 14.5
242 15.6
266 16.9
17.2

301°

67
114
150
285

b = -83°

13.7
20.7
11.6
15.9

b = -84°
8 11-1
139 7.7
205 16.8

215°

9.6

b =

-87°

330

9.9

55°

11.6

.141

21.0

b =

-85°

241

10.0

99

8.2

183

9.1

b =

-88°

254

16.8

114

7.7

294

14.7

225

18.4

354

17.6

354

18.9

b =

-86°

184

10.4

-ocr page 180-

.V

i4m ;

. M ïf

• 4 ;

■ nj*

8Ri

W-

. m- -\'

gt;

; m-.

1-

m

•\'Att ^ \'tl \' 1

1

•51 •

■ ï\'L-

■quot;■iS.:? , .

■ fi-«

quot;vf.

; na. :

lïlt

i- .

■ ■

1

\\44

____^

i\'M

m.

quot;W;-

I . m
-f. -

m

k

%

É

ß.-

ir

. ..1

yi

- -iS.r

iàiy-i^J-

l.-r

.ni-\'m

;;

■ • iÏ.A,

quot;/■i^t

1 gt;

i ä \'

■■ , ßm\' ■

■ m-é

4

ilgt;.Ï

: -^f -i

; quot;i

îâ^

-t -

t

■ni.\'

■ »ï

m

î gt;» ■ 2

-, *

\' - V - •

r\' ■.\'I\' \'Î* *

i f

^ . J

:

■ ■ m.t ■.

■w\'.

- - ft

-ocr page 181-

appendix il

Bibliography.

-ocr page 182-

abbreviations.

Abh. bayer. Akad.

Amer. J. of Se.

A.nbsp;N.

Ann. de Br.
Aph. J.
Astr. J.
Bonner Beob.

B.nbsp;S. A. F.
Bull. Astr.

Contr. Mt. Wils. Obs.
Gron. Publ.
H. A.
H. C.

J. B. A. A.
M. N.

M. R. A. S.

Obs.

P. A. S. P.

Phil. Trans.
Pop. Astr.
Proc. Nat. Acad.

Proc. R. S.

Sitzungsber. bayer. Akad.

Verh.

Amst.

Versl.

Amst.

Wien.

Ber.

: Abhandlungen der mathematisch-physikalischen Klasse der kö-

nigl. bayerischen Akademie der Wissenschaften in München.
= The American Journal of Sciencs and Arts.
: Astronomische Nachrichten.

: Annales de l\'Observatoire Royal de Bruxelles, Nouvelle Serie.
: The Astrophysical Journal.
: The Astronomical Journal.

: Astronomische Beobachtungen auf der Sternwarte zu Bonn.
: Bulletin de la Société astronomique de France.
: Bulletin Astronomique.

: Contributions from the Mount Wilson Solar Observatory.
Pubhcations of the Astronomical Laboratory at Groningen.
Harvard Annals.
: Harvard Circular.

: The Journal of the British Astronomical Association.
: Monthly Notices of the Royal Astronomical Society.
: Memoirs of the Royal Astronomical Society.
The Observatory.

Publications of the Astronomical Society of the Pacific.
Philosophical Transactions of the Royal Society of London.
Popular Astronomy.

Proceedings of the National Academy of Sciences of the United
States of America.

Proceedings of the Royal Society of London.
Sitzungsberichte der mathematisch-physikalischen Klasse der
königl. bayerischen Akademie der Wissenschaften in München.
Verhandelingen van de Koninklijke Akademie van Wetenschap-
pen te Amsterdam.

Verslagen en Mededeelingen van de Koninklijke Akademie van
Wetenschappen te Amsterdam. Wis- en Natuurk. Afdeeling.
Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften
zu Wien.

-ocr page 183-

bibliography.

A. STAR-COUNTS. DISTRIBUTION OF STARS.

Argelander (F. W. A.) Einleitung zum dritten Bande der Bonner
Durchmusterung. Dritter Abschnitt.
Bonner Beob. 5, VII, 1862.

Bellamy (F. A.) On the Distribution of Stars photographed at the Uni-
versity Observatory, Oxford, for the Astrographic Catalogue for Zones

25° to 29°. M. N. 60, 12, 1899.

Bellamy (F. A.) An Analysis of the Distribution of Stars on the 1180
Plates in Zones -h 25° to 31 ° allotted to the University Observatory, Oxford,
in Connection with the International Astrographic Survey.
M. N. 64, 649,1904.
Bltsns(G j.) Apparent Thinning-out of the Stars./.nbsp;350, 1901.

Burns(G J) Apparent Thinning-outoftheStars. 7.5.^.^.12,130,1902.
Burns (G j.) The Distribution of Stars. /. B. A. A. 12, 176, 1902.
Burns (G J.) The Number of the Stars. Pop. Astr. 12, 267, 1904.
Burns (G j.) The Number of the Stars. Obs. 32, 323, 1909.
Burns (G. j.) Le nombre des étoiles. B. S. A. F. 26, 545, 1912.
Celoria (G.) Sopra alcuni scandagh del cielo eseguiti ail\' osservatorio
reale di Milano e sulla distribuzione generale delle stelle nello spazio.
Piibbl.

ciel Reale Osserv. di Brera in Milano. XIII, 1878.

Ceraski (W.) Über die Anzahl der Sterne in den Plejaden. N. 108,245,

1884.

Chapman (S.) and Melotte (P. j.) The Number of Stars of each Photo-
graphie Magnitude down to 17T0, in different Galactic Latitudes.
M. R. A. S.

60, 145, 1914.

Chapman (S.) On the Total Light of the Stars. M. N. 74, 446, 1914.

-ocr page 184-

Charlier (C. V. L.) Studies in Stellar Statistics. I. Constitution of the

o

Milky Way. Lunds Universitets Arsskrift. N. F. Afd. 2, Bd. S, N°. 2, 1911.

Christie (W. H. M.) Comparison of the Number of Stars in the Green-
wich Astrographic Catalogue, in the Bonn Durchmusterung and in the Astro-
nomische Gesellschaft .Catalogues. Declination 64° to 70°.
Obs. 22, 268,
1899.

Christie (W. H. M.) Statistics of Stars in a Zone of 5° from -1-65° to
70° Deck, counted on Photographs for the Astrographic Chart and Cata-
logue at the Royal Observatory, Greenwich. M. N. 63, 120, 1903.

Clerke (Agnes M.) Stellar Numbers and Distances by means of Photo-
graphic Gauges.
Nature, 40, 344, 1889:

comstock (G. C.) The Significance of the Star-ratio. Pop. Astr. 15, 131,
1907.

Downing (A. M. W.) The Distribution of the Stars of the Cape Photo-
graphic Durchmusterung.
M. N. 62, 541, 1902.

Dyson (F. W.) On the Improbability of a Random Distribution of the
Stars in Space.
Proc. R. S. Ser. A. 84, 369, 1910.

Dyson (F. W.) The Distribution in Space of the Stars in Carrington\'s
Circumpolar Catalogue.
M. N. 73, 334, 402, 1913.

Easton (C.) Sur la distribution apparente des étoiles dans une partie
de la Voie lactée.
A. N. 137, 81, 1894.

Easton (C.) On the Distribution of the Stars and the Distance of the
Milky-Way in Aquila and Cygnus.
Aph. ƒ. 1, 216, 1895.

Easton (C.) Distant Worlds. A Review of some Recent Studies in Stellar
Distribution.
Knowledge. 25, 154, 176, 1902.

Easton (C.) La distribution de la lumière galactique comparée à la dis-
tribution des étoiles cataloguées dans la Voie lactée boréale.
Verh. Amst. S,
N°. 3, 1903.

Easton (C.) La distribution des nébuleuses et leurs relations avec le
système galactique.
A. N. 166, 129, 1904.

Easton (C.) A Photographie Chart of the Milky-Way and the Spiral
Theory of the Galactic System.
Aph. J. 37, 105, 1913.

Eddington (A. S.) Stellar Distribution and Movements. 06s. 34,355, 1911.

-ocr page 185-

Eddington (A. S.) The Distribution in Space of the Bright Stars. M. N:

73,346,1913.nbsp;, ,

Gibson (Miss W.) Some Considerations regardmg the Number of the

Stars M N. 66, 445, 1906.

Gore (T F ) The hundred Brightest Stars. Knowkdge, 23, 202, 1900.

Goke (i: EO Apparent Thinning-out of the Stars, ƒ. B. .4. .4. 12,129,

quot;gore (J E) The Brightness of Starlight. Knowledge, 24, 177, 1901.
Gore (T E.) Stellar Distribution. Ois. 27, 1904.
Gore T E The Stellar Universe. Knowledge, 3 N. S. 449, 1906.
Gore t\' E ) The Number of the Visible Stars. 06s. 29, 410, 1906.
Gould (B A ) On the Number and Distribution of the Bright Fi.xed

itZ^\'Ler. j\'of Sc. Third series. 8, 325, 1874.

Gould (B A ) Distribution of the Stars. IJranometna Argentina. Chapter

Vin. 1879.nbsp;. , , • . ^ . onbsp;J D

Halm (T ) On the Question of Extinction of Light in Space and the Re-
lations between
Stellarquot; Magnitudes, Distances and Proper ifotions. M. N.

77 1917

Heath (T E ) Our Stellar Universe. Knowledge, 2 iV. 5. 141, 1905.

Hfnte H ) The Distribution of the Stars to the eleventh Magnitude.
menie [n.)nbsp;^^nbsp;^ ^^^^

Lunds Universitets Arssknft. h. ^ ■

H schel (J c w ) An Examination of the Relative Star-density m Dif-
ferenTpartTof the Plates forming the Harvard Photographic Sky-Map. M. N.

64, 118, 1903.nbsp;^ ^^ . . . ^ . , ^^

17 UM On the Statistical Distribution of Stars.
Herschel (Sir John r. w.; , , ^nbsp;^ ^ • .r

Section I of Chapter IV of „Results of Astr. Observ. made during the years

ISM,sat the Cape of Good Hope.quot;nbsp;,nbsp;, .

Herschel (William). Account of some Observations tending to mves-
tigate the
Construction of the Heavens. Phü. Tran. 74, 437, 1784

Herschel (William). On the Construction of the Heavens. Phil. Trans,

75, 213, 1785.

Hertzsprung (E.) Über die räumhche Verteilung der Sterne. A. N.
185, 89, 1910.

-ocr page 186-

Hertzsprung (E.) Über die Verteilung galaktischer Objekte. A. N.
192, 261,
1912.

Holden (E. S.) The Star-gauges of Sir Wilham Herschel reduced to
1860.0. First and second Series.
Publ. of the Washburn Obs. 2, 113, 1884.

Holden (E. S.) Counts of Stars from the Celestial Charts of Dr. C. H.
F. Peters, Prof. J. C. Watson, The Paris Charts of Chacornac (completed by
Dr. Peters) and the Ecliptic-Charts of Herr. J. Pahsa.
Pttbl. of the Washburn
Obs.
2, 174, 1884.

Houzeau (J. C.) Uranométrie générale. Ann. de Br. 1, 1, 1878.

Innes (R. F. a.) Statistical Counts of Stars to ninth Magnitude in the
Cape Photographic Durchmusterung.
Ann. of the Cape Obs. 9, 179 B. 1903.

Kapteyn (J. C.) Over de verdeeling van de sterren in de ruimte. Eerste
mededeeling.
Versl. Amst. 3e reeks, 9, 418,- 1892.

Kapteyn (J. C.) Over de verdeeling van de sterren in de ruimte. Tweede
mededeeling.
Versl. Amst. 1, 125, 1893.

Kapteyn (J. C.) On the Luminosity of the Fixed Stars. Gron. Publ. iY° 11.
1901.

Kapteyn (J. C.) Remarks on the Determination of the Number and mean
Parallax of Stars of different Magnitude and the Absorption of Light in Space.
Astr. J. 24, 115, 1904.

Kapteyn (J. C.) On the Number of Stars of determined Magnitude and
determined Galactic Latitude.
Gron. Publ. N°. 18. 1908.

Kapteyn (J. C.) Recent Researches in the Structure of the Universe.
Discourse delivered at the Royal Institution on Friday, May 22, 1908.

Kapteyn (J. C.) Over de gemiddelde stersdichtheid op verschillenden
afstand van het Zonnestelsel.
Versl. Amst. 16, 600, 1908.

Kapteyn (J. C.) De Melkweg en de Sterstroomen. Versl. Amst. 20,
490, 1911.

Kapteyn (J. C.) Sterrenstelsels en de Melkweg. Fers/, ^ws^. 20, 905,1912.

Littrow (Karl v.) Zählung der nördlichen Sterne im Bonner Verzeich-
nisse nach Grössen.
Wien. Ber. 59, Abf. II, 569, 1869.

May (F.) Über die Ausstreuung der Sterne am Himmel oder das Milch-
strasssystem als Ganzes.
Berner Mittheilungen 153, 1853.

-ocr page 187-

Monck (W. H. S.) Stellar Distribution. Obs. 21, 202, 1904.
Newcomb (Simon). On the Cordoba Durchmusterung and some Conclu-
sions derived from it.
Astr. J. 22, 21. 1901.

Newcomb (Simon). A Rude Attempt to determine the Total Light of all

the Stars. Aph. J. 14, 297, 1901.

Newcomb (Simon) On the Position of the Galactic and other Prmcipal

Planes toward which the Stars tend to crowd. Puhl, of the Cam. Inst, of Wash.
N°.
10, 1904.

Pannekoek (A.) Onderzoekingen over den bouw van den Melkweg.

Versl. Amst. 19, 243, 1910.
Pearson (Karl). On the Improbability of a Random Distribution of the

Stars in Space. Proe. R. S. Ser. A. 84, 47, 1910.

Pickering (Edw. C.) Distribution of Stars.nbsp;48, 149, 1903.

Pickering (Edw. C.) A Photographic Map of the Entire Sky. H. C.

^Pickering (Edw. C.) Distribution of the Stars. H. C. 147 1909.
Pickering (Edw. C.) Discussion of the Revised Harvard Photometry

H. A. 64, 91, 1912.

Plassmann. Milchstrassenzeichnungen und Sternzählungen. Mttt. der

Ver. von Freunden der Astr. 3, 102, 1893.
Plummer (J. J.) On the Collective Light and Distribution of the Fixed

Stars. M. N. 37, 136, 1877.

Pocock (R j ) The Number of Stars of Different Magnitudes in the

PerthTstrographic Catalogue Vol. IL M. iV. 75, 148, 1915.

Pocock (R J ) The Distribution in Space of the Stars m Zone 25° of

the Oxford Astrographic Catalogue. M. N. 76, 421, 1916.

Proctor (R. A.) Note on the Distribution of the Fixed Stars. M. N.

37, 424, 1877.

Rhijn (P j van) On the Number of Stars of each Photographic Mag-
nitude in Different Galactic Latitudes. G.on.
Publ. 27, 1917.

Ristenpart (Fr.) Untersuchungen über die Constitution des Fixstern-
systems Teil C. aus:
Untersuchungen über die Constante der Präeession und die
Bewegung der Sonne im Fixsternsysteme. Inauguraldissertation, Karlsruhe,
1892.

-ocr page 188-

Seares (F. H.) Preliminary Note on the Distribution of Stars with
Respect to the Galactic Plane.
Proc. Nat. Acad. 3, 217, 1917.

Schiaparelli (G. V.) Sulla distribuzione apparente delle stelle visibih
ad occhio nudd.
Pubbl. del reale osserv. di Br er a in Milano. XXXIV, 1889.

Schönfeld (E.) Bonner Sternverzeichniss. Vierte Section. Introduc-
tion.
Bonner Beob. 8, 1886.

Schwarzschild (K.) Aktinometrie der Sterne der B. D. bis zur Grösse
7.5 in der Zone 0° bis -f- 20° Deklination. Teil B. II Abschnitt. Statistische
Untersuchungen.
Abh. der Königl. Ges. dernbsp;zu Göttingen. N. F. 8,1912.

See (T. J. J.) Determination of the Depth of the Milky-Way. Obs. 35,
291, 321, 1912.

Seeliger (H.) Die Vertheilung der Sterne auf der nördlichen Halbkugel
nach der Bonner Durchmusterung.
Sitzungsber. bayer. Akad. 14, 521, 1884.

Seeliger (H.) Über die Vertheilung der Sterne auf der südlichen Halb-
kugel nach Schönfeld\'s Durchmusterung.
Sitzungsber. bayer. Akad. 16, 220,
1886.

Seeliger (H.) Betrachtungen über die räumliche Vertheilung der Fix-
sterne.
Abh. bayer. Akad. II cl. 19, 1898.

Seeliger (H.) Zur Vertheilung der Fixsterne am Himmel Sitzungsber.
bayer. Akad.
29, 363, 1899.

Seeliger (H.) Betrachtungen über die räumliche Vertheilung der Fix-
sterne. 2 Abhandlung.
Abh. bayer. Akad. 25, 1909.

Seeliger (H.) Über die räumhche Vertheilung der Sterne im sche-
matischen Sternsystem.
Sitzungsher. bayer. Akad. 413, 1911.

Seeliger (H.) Über die räumliche und scheinbare Vertheilung der Ster-
ne. Sitzungsber. bayer. Akad.
451, 1912.

Seeliger (H.) Über die Abhängigkeit der Vertheilung der Sterne von
verschiedenen Spektraltypen und der mittleren Parallaxen der Sterne von
der galaktischen Breite.
A. N. 193, 1912.

Seeliger (H.) Bemerkungen über das „schematischequot; Sternsystem.
A. N. 201, 1915.

Selga (M.) El mapa celeste de Harvard. Revista de la sociedad astronómica
de Espana y América, Ano V, Num.
43.

-ocr page 189-

Stone (E. J.) On Apparent Brightness as an Indication of Distance in

Stellar Masses. M. N. 37, 232, 1877.

Stratonoff (W.) Note sur les Pléiades. iV. 144, 137, 1897.
Stratonoff (W.) Etudes sur la structure de l\'Univers. Puhl, de I\'Obs.

de Tachkent. N°. 2 el 3. 1900 el 1901.

Stroobant (P.) La distribution des étoiles par rapport à la Voie lactée

\' d\'après la carte et le catalogue photographiques du ciel (zones de Paris,
Bordeaux, Toulouse, Alger et
s.-Fernando).nbsp;Br., 11, 97, 1908.

Struve (F G W.) Recherches sur la distribution des étoiles dans l\'es-
pace et sur la Voie lactée. Etudes d\'astronomie stellaire. St.-Petersbourg. 1847.
Thome (J.) Introduction to Part I of the Cordoba Durchmusterung.

Result, del Obs. Nac. Argent. 16, 1892.

Thome (J.) Introduction to Part II of the Cordoba Durchmusterung.

Result, del Obs. Nac. Argent. 17, 1894.

Thome (J.) Introduction to Part III of the Cordoba Durchmusterung.

Result, del Obs. Nac. Argent. 18, 1900.
Tucker (R. H.) The Number of Stars in the Universe. P. A. S. P. 25,

199 1913.

Turner (H H ) A Proposal for the Comparison of the Stellar Magnitude
Scal^of^L Different
Observatories taking Part in the Astrogr. Cat. M. N.

69, 392, 1909.nbsp;. . , ^ „nbsp;.

Turner (H H ) A Proposal for the Comparison of the Stellar Magnitude

Scal^^rthe Different Observatories taking Part in the Astrogr. Cat. Second

Note. The Bordeaux Magnitudes. M. N. 72, 464, 1912.

Turner (H H ) A Proposal for the Comparison of the Stellar Magnitude

Scal^irthe Different Observatories taking Part in the Astrogr. Cat. Third

Note. The Algiers Magnitudes. M. N. 72, 700, 1912.

Turner (H H ) A Proposal for the Comparison of the Stellar Mag-

nituZTcales of the Different Observatories taking Part in the Astrogr. Cat.
Fourth Note. The Cape
Magnitudes. M. N. 75, 57, 1914.

Turner (H H ) A Proposal for the Comparison of the Stellar Magnitude
Scal^irthe Different Observatories taking Part in the Astrogr. Cat. Fifth
Note. The Perth (W. A.) Magnitudes.
M. N. 75, 143, 1915.

-ocr page 190-

Turner (H. H.) A Proposal for the Comparison of the Magnitude Scales
of the Astrogr. Cat. Sixth Note. The Oxford Magnitudes. With a Preliminary
Discussion of the Existence of Obscured Patches in the Sky.
M. N. 75, 465,
1915.

Turner (H. H.) A Proposal for the Comparison of the Magnitude Scales
of the Astrogr. Cat. Seventh Note. The Vatican Magnitudes. With a Photo-,
graphic Determination of the Relative Galactic Condensation per Stellar
Magnitude.
M. A^ 75, 601, 1915.

Turner (H. H.) A Proposal for the Comparison of the Magnitude Scales
of the Astrogr. Cat. Eighth Note. The Cape Magnitudes for
-42°. M. N. 76,
2, 1915.

Turner (H. H.) The Astrogr. Magnitude Scales. Ninth Note. The
Toulouse Magnitudes. The Cape Magnitudes, and further Remarks on the
Obscured Patch as a Spiral.
M. N. 76, 149, 1915.

Walkey (O. R.) The Sun\'s Place within the Star-sphere. M. N. 74, 649,
1914.

Walkey (O. R.) The Sidereal Centre. Knowledge 11, N. S. 287, 1914.

Wilson (H. C.) Distribution of the Stars in Space. Pop. Astr. 19,42,1911.

-ocr page 191-

B. STELLAR MAGNITUDES.

anbsp;ir pt W de W ) On a Failure of the Law in Photography that

abney (capt. ^nbsp;^^^nbsp;^^^ ^^^

when the Products ^etoten y ^^^^^nbsp;^^ ^^^^^^^^ ^^^^

posure are equal, equal Amounts o.

Les recherches de M. Schwarzschild concernant la
dae—ion ies grandeurs photographiques des étoiles. BuU. As,. 22.

\' qHAPMAr\'s.) Photographie Magnitudes. Council-note of the R. A. S.

M. N. 73, 291, 1913^nbsp;^^ Application of Parallel

CHAPMAN (S.)nbsp;,nbsp;photometry. M. N. 74, 50, 1913.

r mCquot; (p\' j ) P-«- Magnitudes of 202

Stars within 25\' ofnbsp;^^^^^^^nbsp;Wotographie .u

Charlier (C. ■ •nbsp;^^^ ^^^^^^ GeseUsch. 19, 1889.

quot;quot;SlSf (Ttr übt dil Bedeutung der Sterngrössen im Atlas Stel-

\'ToETirGrOn th!MeÏ\'in?;frStar-mag„itudes of Father Hagen\'s

Atlas of Variable Stars. Aph. J. 6.nbsp;, , ^ ,,

Halm (J ) A System of Photographic Magnitudes for Southern Stars.

^H^lm^J r Onquot;tht Determination of Fundamental Photographic Magni-
tudes.
M. N. 75, 150, 1915.

Kapteyn (J C ) Différence systématique entre les grandeurs photo-
graphiques et visuelles dans les différentes régions du ciel.
Bull, iu ComM
intern, perm, ie la Carie iu Ciel
2, 131, 1895.

-ocr page 192-

Kapteyn (J. C.) Bemerkungen zu der Abhandlung des Herrn J. Scheiner
„Über die Abhängigkeit der Grössenangaben der Bonner Durchmusterung
von der Sternfüllequot; in A. N. N°. SSOS.
A. N. 147, 305, 1898.

Kapteyn (J. C.) Bemerkungen über die Beziehung der photographi-
schen und visuellen Grössen der Sterne. Erwiderung.
A. N. 150, 103,
1899.nbsp;I

Kapteyn (J. C.) On the Change of Spectrum and Color Index with Dis-
tance and Absolute Brightness. Present State of the Question.
Contr. Mt.
Wils. Obs. N°.
83.

Newcomb (S.) Note on the Relation of the Photographic and Visual
Magnitudes of the Stars.
A. N. 148, 285, 1898. .

Nijland (A. A.) Over het vermögen van den Utrechtschen kijker en de
fotometrische schalen van Harvard en J.
A. Parkhurst. Hemel en Damp-
kring, afl.
5 Sept. 1916.

Parkhurst (J. A.) Yerkes Actinometry. Aph. J. 36, 169, 1912.

Pickering (Edw. C.) Distribution of Stellar Spectra. H. A. 56, 1.

Pickering (Edw. C.) Standard Photographic Magnitudes of Bright Stars.
H. A. 71, 1.

Pickering (Edw. C.) Scale of the Bonn Durchmusterung. H. A. 72, 191,
1913.

Pickering (Edw. C.) Scale of the Cordoba Durchmusterung. H. A.
72, 233, 1913.

Pickering (Edw. C.) Magnitudes of the Cape Photographic Durchmus-
terung.
H. A. 76, 1915.

Scheiner (J.) Vergleichung der Grössenangaben der südlichen Durch-
musterung mit denen anderer Cataloge.
A. N. 116, 81, 1886.

Scheiner (J.) Über die Abhängigkeit der Grössenangaben der Bonner
Durchmusterung von der Sternfülle
A. N. 147, 1, 1898.

Scheiner (J.) Nachtrag zu dem Aufsatze über die Abhängigkeit der
Grössenangaben der Bonner Durchmusterung von der Sternfülle.
A. N. 149,
165, 1899.

Schwarzschild (K.) Über die Bestimmung absoluter photographischer
Helligkeiten.
A. N. 183, 297, 1909.

-ocr page 193-

Seares (F. H.) The Color of the Faint Stars. Contr. Mt. Wih. Obs. N\'. 81,
1914

Seares (F. H.) The Photographic Magnitude Scale of the North Polar

Sequence. Contr. Mt. Wils. Obs. 70, 1913.nbsp;• , ^ , ,

Seares (F H ) Photographic Photometry with the 60-mch Reflector

of the Mount Wilson Solar Observatory.nbsp;Mt. Wüs. Obs. SO 1914.

Seares (F H ) Photographic and Photo-visual Magnitudes of Stars

near the North-pole Co./. M/. Pf./s 06s. 97. 1915.

Seares ^F H ) A Comparison of the Harvard and Mount Wilson Scales

of Photo^^^^^^^^^^^ Magnitude. Co... M/. .... .6s. 9S^ 1915.

Seares (F. H.) Absolute Scales of Photographic and Photo-visual Mag-
nitude.
Proc. Nat. Acad. 1, 309, 1915.nbsp;• c i . ^ a
Seares (F. H.) Photographic Magnitudes of Stars m the Selected Areas

ofnbsp;Kapteyn.nbsp;Proc.nbsp;AT^/.nbsp;188,nbsp;1917-nbsp;•nbsp;..

Seft irpr m ) Über die Grössenklassen der telescopischen Sterne der

Bonner Durchmusterung. 5«6.. baye. Mad. 28 147 1898.

Sitter (W de). On the Systematic Difference, dependmg on Galactic

il, ühntnoranhic and Visual Magnitude of the Stars.
Latitude, between the Photograpnic

Gmn. Publ. Nquot;. 2, 1900.

Sitter (W m). Investigation of the Systematic Difference between

the Photographic and Visual Magnitude of the Stars depending on the Galac

tic Latitude etc. Gron. Publ- Nquot;. 12. 1904.
Stroobant (P ) Sur la cause de la différence systématique entre les

nombres d\'étoiles fournis par l\'observation visuelle et par la photographie

dans les diverses parties du ciel. B.U. Astr. 25 1 6, 1908.

Tucker (R. H.) Correspondence of the Photographic Durchmusterung

with the Visual.nbsp;ĥnbsp;320, 1898.

Türner (H H ) On the Formula connecting Diameters of Photographic

Images with Stellar Magnitude. M. N. 65, 756, 1905.

wirtz (C W ) Photographisch-photometrische Untersuchungen. I. Uber
eine Methode zur
absoluten photographischen Helhgkeitsbestimmung.

A. N. 164, 317, 1900.

-ocr page 194-

«nbsp;• N

limoM urîUo

bîi/j lgt;iigt;yi/,H -ah \'w-. noih.M-jixio\') J. ;.){ .\'!)

■Jsii^HftOH^l-ihff; -ykiqiijßpßiil i ■nbsp;ïjj .H) -HMAîTfî ■ \'

. ■■ - •nbsp;.sbutifl

■■-•a./\'nbsp;-ntjcnbsp;.-rJunbsp;\'nbsp;rD \'nbsp;\'

■.Tihi .8nbsp;gt;.h-/i, ,nbsp;Jo

• !■•;. fnbsp;i-.\'XHtquot;.» ■ u.» \'.-î-jtK) . quot;t \'H y }:;•{;)} r-n^

\'.iij; :nbsp;•■J/;l;v;fV- brt«nbsp;.-j/ft rj\'iv.vf »■.-f.

; Vv^d \'.»:««.i-Tr»iiilt;i \'\'•.i^.iriî\'.ïî-iV-î\' \'ijii îo noiTf/-.ÙT-quot;-)-;ni i

quot;nbsp;• •• • • • f J f\'i J -i .

■nbsp;w ; • \'.-rvi\'/nbsp;\' ... f gt;iaH;ui ryiurtirh sruhiion

\' N •■.»\\frfe.. \'A -, . ; iti
î-, v.-oftfl\' vM.\'rnbsp;)ir? 7\' - ri ./ ■ ) M\';:- ? ;\'(\'

■ ^ ■nbsp;■nbsp;gt; iivnbsp;nffj:

•••■■■ •• éfmprjmiiij. ■jfiit-ynuio:- ;u:v; .i7.:.:; fi.i (.H jj) ij\'iX

- ^nbsp;^ ,nbsp;. .nbsp;.---ii . -v..\'A .K

I\' 1

-ocr page 195-

equatorial and galactic co-ordinates.

(equatorial north-pole in centre of plate).

for southern declinations add i8o° to r.a. argument. reverse sign of galactic
latitude and add
l8o° to galactic longitude.

plate l

-ocr page 196-

the star-density
and the galactic
longitude.

plate ii.

-ocr page 197-

light-intensity (a and d) and star-density (b and c)

in the milky way.

northern hemisphere.

southern hemisphere. .

ISO\' :=:=-_

560quot;

-isquot;nbsp;^18\' -isquot; -loquot; -2°-2° wquot;

iso

165quot; ^^

mquot;-

345quot;

150quot; ^^__

150

=-530quot;

315quot;

llf

I2/f 500°

I2(f-

■300quot;

105quot;

-270quot;

255

/PSquot; 255quot;---

90quot; 270°^

75° 255\'-

240quot;

60

225quot;\'-

i5nbsp;—:

15quot;

30quot; 2J0quot;^_

15quot; 1s6

^^ ISOquot;-

-joquot; -2quot;voquot; -js\' -joquot; -2°-joquot;

d

b

c

plate iii.

-ocr page 198-

shape of the SYSTEM of THE stars down to 11»0.

; IV.

-ocr page 199-

STELLINGEN

-ocr page 200-

gt; gt; •

M

•■Î-*

-■\'\'tf
\'J
■■ S

■ - • ■

•■ft:-quot;/ : •
■■yi-: - r
t \'.

: : ri\'quot;-

\'S;-:-\'; ■■

• ■

-ocr page 201-

stellingen

ne scMinbare verdeeHng der sLn . a«U van de ga.aetische

lengte.

u-ii.nrle autoren voor de galactische conden-
Dat de waarden, die verschilde a^^^^^ ^^^
satie geven, zoo zeer -teen » moet ^^^ ^^ ^^^^^^^ ^^
geschreven aan de ongehjkmatig

IV

.. • ^t in hoofdzaak zijn oorsprong in sterren, zwak-
Het
Melkweglicht vindt m

ker dan 11 quot;O.nbsp;^^

Vpn welken invloed het aardlicht gehad
Het is
voorloopig niet ^jt tenbsp;de intensiteit van \'t Melkweghcht.

kan hebben op Easton\'s schattingen

heeft de gedaante van eene dne-

Hetnbsp;stelselnbsp;vannbsp;denbsp;sterrennbsp;totnbsp;11.

assige elhpsoïde.nbsp;^^^

. H el van kometen-spectra kan niet uitsluitend worden

Het continue dee van ƒ .^nnelicht.

toegeschreven aan gereflecteera

VIII

l^ometen-staarten, die naar de zon gericht zijn.
Het voorkomen vannbsp;\' de theorie van
Bredichin.

behoeft nog geen bewijs te zijn tege

-ocr page 202-

De toepassing van de methode der kleinste kwadraten verdoezelt
dikwijls uitkomsten, die bij graphische behandeling gemakkelijk gevonden
worden.

X

Frequentiekrommen (Kapteyn, Edge worth, Pearson) kunnen ons
meer van een frequentieverdeeling leeren dan frequentiefuncties. (
Bruns,
Charlier, Van der Stok).

XI

Het ware wenschelijk de behandeling van onbepaalde vergelijkingen
en van samengestelde interest van \'t leerplan der gymnasia af te voeren en
daarvoor de beginselen van de differentiaal- en de integraalrekening in de
plaats te stellen.

XII

Het gebruik van den stoomcalorimeter van Joly is niet aan te bevelen.

XIII

Bij het Natuurkun de-onder wijs aan de H.B.S. dient de opzettelijke
behandeling van de Mechanica tot een minimum beperkt te worden; dit mini-
mum worde dan nog zooveel mogelijk experimenteel behandeld.

XIV

In § 1 van zijn Leerboek der Algemeene Scheikunde geeft Dr. J. Kra-
mers
, S. J. de volgende definitie van „verschijnselquot;:

,,Elk verschijnsel van de stoffelijke wereld, die ons omringt, is eene
verandering in den bestaanden toestand, van welke verandering door ons met
behulp van onze zintuigen kennis kan worden genomen.quot;

Deze definitie is onjuist.

XV

De stelling, die Ostwald in ,,Die Schule der Chemiequot; den ,,Lehrerquot;
laat verkondigen, dat er
niets overblijft, wanneer men van eene stof alle eigen-
schappen wegneemt, is onhoudbaar.

XVI

Ook nadat de wet aan hen, die het einddiploma der H.B.S. met vijf-
jarigen cursus bezitten, het
jus promovendi in de faculteiten der Geneeskunde
en der Wis- en Natuurkunde heeft toegekend, blijft voor a.s. docenten in de
exacte wetenschappen de gymnasiale opleiding te verkiezen boven die aan
eene H.B.S.

-ocr page 203-
-ocr page 204-

\'w \'

v-Vv

!

-ocr page 205-
-ocr page 206-