-ocr page 1-

DAYLIGHT
MEASUREMENTS
IN UTRECHT

G, W. POSTMA

BIBLIOTHEEK DER
RIJKSUNIVERSITEIT
UTRECHT.

-ocr page 2-

A. qti.
192

-ocr page 3-

■nbsp;y :

; ■ 'VVV. ^

' V

...

S ^

■U

I ■ ■■

v' N -

.■'fis

(

,1 L,

• ' • 4

'' i
f

. \

■ /r'

■ - ■

■Vnbsp;.f-

■ ■nbsp;-nbsp;, I ,r ,

-nbsp;!nbsp;rf

■■nbsp;■■nbsp;, . ■

t ,

■t' ■■

quot;C. . ■ .

A ■■... ' ji

■... H

-•M V

-ocr page 4-

■ ) / ■

■ /.
'( ■■

, X

■ i: ;
.
y

■ ; \ -

■ I

- ■ ■. y

y

s---

J--

-ocr page 5-

DAYLIGHT MEASUREMENTS IN UTRECHT

-ocr page 6-

quot;4%

lt;

m

-ocr page 7-

DAYLIGHT MEASUREMENTS
IN UTRECHT

PROEFSCHRIFT
TER VERKRIIGING VAN DEN GRAAD VAN
DOCTOR IN DE WIS- EN NATUURKUNDE
AAN DE RIJKSUNIVERSITEIT TE UTRECHT, OP
GEZAG VAN DEN RECTOR MAGNIFICUS
D
R, C. W. VOLLGRAEF, HOOGLEERAAR IN DE
FACULTEIT DER LETTEREN EN WIJSBE-
GEERTE, VOLGENS BESLUIT VAN DEN SENAAT
DER UNIVERSITEIT TEGEN DE BEDENKINGEN
VAN DE FACULTEIT DER WIS- EN NATUUR-
KUNDE TE VERDEDIGEN OP MAANDAG
8 JUNI 1936, DES NAMIDDAGS TE 3 UUR

DOOR

GERRIT WILLEM POSTMA

GEBOREN TE ROTTERDAM

BIBLIOTHEEK OER
RIJKSUNJVERSITEIT
UT R ECHT.

AMSTERDAM - 1936
N.V. NOORD-HOLLANDSCHE UITGEVERSMAATSCHAPPIJ

-ocr page 8-

. lt;é

-ocr page 9-

Aan mijn Moeder.

Aan mijn aanstaande Vrouw.

-ocr page 10-

vW.

m

Lik».

-ocr page 11-

Promotor: Dr. L. S. ORNSTEIN.

Aan Prof. Ornstein betuig ik mijn groote erkentelijkheid voor zijn vele
steun en belangstelling.

Aan mej. Dr. J. G. Eymers, Dr. D. Vermeulen en J. H. Heiërman
mijn hartelijke dank voor de samenwerking.

-ocr page 12-

M

W't

i'i»

*

-ocr page 13-

introduction.

A few years ago the town-council of the Hague requested Prof. Ornstein
to give his advice on the lighting-system to be applied in the Municipal
Museum of that town, designed by Dr.
Berlage the architect.

While the plans were in course of preparation, it turned out, that the
data necessary for the plani^ing of any adequate lighting-system, namely
those concerning the intensity and the spectral distribution of daylight,
did not exist for our country. This induced us to enter upon a preliminary
investigation of the constitution of daylight. This investigation showed us
the advisability of attacking the whole subject more systematically than it
had been possible to do in the time available for sending in our plans.

The outcome of this was that intensity-measurements in the visible part
of the spectrum were carried out by us for nearly a year at a stretch. In
Chapter I of the present publication the method of measuring and the
way in which we described the meteorological conditions are explained.
Chapter II contains the raw material and the optical and meteoroligical
details belonging to it. Chapter III outlines the treatment of the material
according to certain leading aspects and gives analytical expressions,
comprising the results. The latter are divided into two principal groups,
namely, those concerning the total illumination (due to the scattered light
from the sky the direct light from the sun) and those concerning the
indirect illumination (due to the scattered light from the sky only).
Chapter IV contains the observed values (arranged according to the
solar altitude arid the degree of covering) expressed in lux-units and
further tables giving for every month of the year and for certain hours of
the day the average value to be expected, of the total as well as of the
indirect illumination.

In Chapter V we considered the influence of the atmosphere from a
more theoretical point of view.

-ocr page 14-

CHAPTER L
Method of measuring.

The illumination of an object by daylight is effected by radiation, which
either reaches the object straight from the sun or has been previously
affected by scattering, reflection, diffraction etc. The illumination is,
therefore, dependent on the position of the sun with respect to the earth,
on the atmospherical condidons and on the surroundings of the illuminated
object. The latter influence is variable in many ways. We shall not include
it in the present considerations and study only the influence of the sun
and the atmosphere; indeed we must first know how the light reaches the
earth before we can form a complete picture of the illumination by daylight,
in which the surroundings also play their part.

In order to ascertain this, our measuring arrangement was mounted on
the roof of the Physical Laboratory — a rather high building in the town
of Utrecht; from this roof a considerable part of the sky is visible. In
measuring the illumination, we must distinguish between the illumination
by direct sunlight
{direct illumination) and that by the scattered hght from
the sky
{indirect illumination). It is the direct sunlight that causes in the
majority of cases a marked shadow. The direct and indirect illumination
together give the
total illumination. In our experiments the daylight
illuminates a nearly horizontal white surface and the brightness of the
latter, which is determined with the aid of a spectral pyrometer, i) serves
as a measure for the illumination. If the illumination is to be readily
obtained from the observed brightness (i.e. the one in the direction of the
pyrometer), the latter must be dependent only on the total amount of
energy incident on the observed
surface-element and not on the direction
of incidence. For, if this condition is complied with, the illumination is
simply proportional to the observed brightness. Now, a magnesium-oxide
surface meets these demands very satisfactorily for all wavelengths within
the range of the visible spectrum, provided the angle between the surface
and the direction of incidence be not too small. Accordingly, our white
surface consisted of a layer of
magnesium-oxide, precipitated on a flat
metal plate. The factor of proportionality between brightness and
illumination is readily determined by illuminating the white surface by a
standardized lamp from the Utrecht Institute, and by then measuring
the brightness corresponding to that known amount. The spectral pyro-

1) L. S. ornstein, Miss J. G. EymeRS, D. Vermeulen. Zeitschr. f. Phys. 75,
575 (1932).

-ocr page 15-

controlling the lamp. The way it works is as follows. The lens L^ forms
an image of the white surface
W on the filament of L, bent in the shape
of a reversed U, which lies in a plane perpendicular to the optical axis of
the system Ly, L2, L^. The lens Lg forms an image of the filament and
therefore also of the white surface very near the prism of the monochro-
mator; finally, the prism
P and the lens L4 form a spectrum on the lid of
the second monochromator tube. In this lid is an aperture D. Through it
the filament and the white surface are seen in the light of the wavelength,
determined by the position of the prism. By turning the latter, any part of
the spectrum can be brought to fall on the diaphragm. The filament is
part of an electrical circuit, which further contains a 4 volt accu, an
adjustable resistance and a milliamperemeter. To a certain current
corresponds a certain brightness in each part of the wavelength-region.
When we look through the diaphragm at the filament and the surface, we
see each with its own brightness, so that, when the filament is brighter we
see it light against a dark background. When the surface is brighter, we
see the filament dark against a light background. If they are equally bright
that part of the filament, for which the brightness is constant cannot be
distinguished from the background. In order to measure the illumination of
the white surface, we must adjust the current in such a way, that the
filament becomes invisible, and we must know the amount of energy per
cm2, per A and per second, incident on the white surface, corresponding
to the current, adjusted in that way. To that end the surface is illuminated
by an absolutely standardized lamp (that is to say, one of which the
amount of energy radiated per unit of solid angle, per A and per second is
known for the various wavelengths) and the current corresponding to that
illumination is then measured. In this way a set of curves is obtained.

meter used for our measuring consists of a monochromator M (see fig. 1)
a lamp
L, a few lenses and the electrical implements for feeding and

-ocr page 16-

representing the connection between the pyrometer current and the
illumination of the white surface.

By the use of this white surface, errors are avoided, which otherwise
might arise from the fact that daylight is partly polarized, whereas the
standardizing is performed with ordinary light. For, by the reflection at the
white surface, the light is completely depolarized so that by this device the
spectral pyrometer receives ordinary light when the daylight is measured,
as well as when the standardizing takes place. The precision of our
determinations depends on the precision with which the radiated energy
of the standardized lamp is known and on the precision of our adjustments
and readings. As regards the former, the error is certainly less than 2 %
of the amount of energy, actually brought into account; as for the latter,
the error in the adjustment on equal brightness of filament and background
is less than 0.2 of a scale division of the mA meter and the error in the
reading of this instrument less than 0.1 of a scale division. Now, an
error of 0.2 of a scale division corresponds in the central parts of the
standardizing curves to a relative energy deviation of less than 2%. We
may, therefore, safely assume the total error to remain, in general,
under 5 %.

The filament of the pyrometerlamp may not be run at a higher current
than corresponds to 130 scale divisions, in order to prevent changes in its
condition invalidating the standardizing i). In the case of short wavelengths
the brightness of the wire is often insufficient for a direct comparison with
that of the white surface. The latter brightness is then diminished by
means of a reducer
V, inserted in front of the lens L^. In order to obtain
the most advantageous conditions, we made use of two reducers of unequal
transmission-powers. We ascertained, by measuring, that they were nearly
grey, i.e. that the reduction factor was nearly the same for all the
wavelengths that concerned us. (The reducers were made by some time
exposing a photographic plate to the light and by then developing and
fixing it.) The reduction factor depended also on the position of the
reducer in front of the lens.

The actual measuring was carried out as follows: We began to measure
without reducer the brightness at the various wavelengths from 1 = 6800 A
downward, until the mA meter read somewhere between 120 and 130
scale divisions. The brightness at the corresponding wavelength was then
again measured with the reducer inserted and the reduction factor obtained
from these two measurements was applied to the determinations (with the
same reducer inserted) of the brightness at the wavelengths further down
to 2 = 4500 A. By this way of proceeding the results are liable to errors

1) It is necessary to re-standardize from time to time in order to ascertain, whether
the standardizing curves must be altered on account of certain alterations in the condition
of the filament connected with the life-time of the lamp and with the strength of the
current which the filament has had to stand.

-ocr page 17-

since the illumination is under certain conditions of the weather not
constant while the set of measurements is being obtained, but may fluctuate
considerably in a short interval.

The white surface was protected from rain by a bellglass. That part of
the glass, which the radiation from the surface actually passed on its way
to the pyrometer was protected against trickling water by a small glass
roof. The reduction factor of the bellglass was found to be 1.2 (whether
wet or dry). The observed brightnesses must therefore be multiplied by
1.2 to allow for the influence of the bellglass. In order to be able to
measure the total, as well as the indirect illumination, the direct light from
the sun could be intercepted by means of a wooden screen placed at some
distance from the surface. This screen intercepted also a certain amount
of scattered light from the sky in the immediate vicinity of the sun, but
this amount can be neglected.

The pyrometer and accessories were mounted in a wooden shed on the
roof of the Physical Laboratory where there are comparatively few
obstacles. When the sun was low in the western sky the pyrometer shed
itself was in front of it, and in midwinter the sun set behind the shed
belonging to the heliostate of the hehophysical department somewhat
further away on the roof. But towards the north, the east and the south
the view was practically unobstructed.

The white surface formed a small angle with the horizontal plane — as
did also the optical axis of the system Lj, Lg and Lg so that the surface
could be conveniently observed through the pyrometer.

Since there appeared to exist a distinct connection between the
illumination on the one hand and the solar altitude and the cloudiness on
the other hand, we tried to determine the data concerning the latter
quantities more closely. Now, as regards the solar altitude, this is
completely determined by the time at the moment of measuring. As regards
the cloudiness, notes were made of the degree of covering, the type of
clouds and their height. The degree of covering was estimated in tenths
of the total hemisphere i), the type of the clouds was assigned to them in
the usual way according to their shape and level.

At all levels we distinguished between cumulus- and stratus-types. We
denoted by quot;cumulusquot; more or less isolate clouds, in the majority of cases
of rounded shapes and vertical sides; by quot;stratusquot;, clouds extending like
a sheet over part or over the whole of the sky, without clearly marked
individual clouds. Between these extreme types there are various inter-
mediate ones. We distinguished three levels.

In the lowest level we distinguished between cumulus, stratocumulus and
stratus. Stratocumulus is intermediate between stratus and cumulus, it
shows clearly separate formations in the layer of clouds, though distinct

1) In estimating the degree of covering we chiefly considered the zenithal part of
the sky.

-ocr page 18-

vertical sides are as yet not present. This level reaches as high as 2000
to 2500 M.

In the middle level we find the altocumulus and altostratus type.
Altocumulus does not show definite vertical parts. The clouds give the
impression of rounded crowded masses, hanging more or less loosely
together. Altostratus often shows very little detail. (Height about 3000 M.)

The highest clouds are the cirri, subdivided into cirrostratus, cirrus and
cirrocumulus. The cirrustype has often a kind of filigree structure. As an
effect of perspective, the threads of clouds seem at times to meet in one
point. Cirrostratus covers the sky like a transparant veil. Cirrocumulus
often occurs together with altocumulus. The cirri produce the halos round
the sun and the moon.

Generally speaking the same type of clouds is lower in winter than in
summer, so that one cannot suffice with simply assigning to each of the
three levels one definite height above the surface of the earth.

For the lower level clouds we have added the estimated height above
the earth of their lowest parts. The clearness of the atmosphere in a
horizontal direction was expressed by the degree of visibility of the horizon
— varying from quot;very clearquot; to quot;invisiblequot;. Particulars, such as rain or
snow etc. were duly registered.

-ocr page 19-

chapter ii.

In this chapter the measurements concerning the illumination are given,
obtained during the interval from Aug. 1932 to July 1933 inclusive.
We shall give a fev^ comments and an explanation of the abbreviations
used in connection with the various terms separately.

Time: Time is recorded in Amsterdam time = G.M.T. cx, 20 min.
Solar Altitude. The altitude is determined with an accuracy of about 2°.
Total or Indirect. By Indirect (I) are denoted those observations during
which the direct radiation of the sun was intercepted at about 2 m from
the white surface by a screen of about 20 X 40 cm.

Cloudiness. The cloudiness for the observations 1—180 is only occasion-
ally, but for the observations 181—706 it is stated regularly by a. the degree
of covering in tenths of the whole hemisphere,
b. the type of clouds and c.
the height (in m) above the earth of the cloud basis — as far as the lower
types (st, cu, stcu, ni) are concerned. The meaning of the abbreviations is :

St = stratusnbsp;ast = altostratus ci = cirrus

stcu = stratocumulus acu = altocumulus cist = cirrostratus
cu = cumulusnbsp;cicu = cirrocumulus

ni = nimbus
(See also Chapter I.)

For the other observations we have introduced the distinctions:
a. heavily clouded sky (h),
b. moderately clouded sky (m), and c.
slightly clouded or cloudless sky (1, no cl). Again
br. sun means, that the
sun was shining brightly and continuously, and occ.
sun that it was shining
at intervals.

Horizon. The indications here given refer to the visibility of the horizon.
The meaning of the abbreviations is:

inv. = invisiblenbsp;v. cl. = very clear

v. hazy = very hazynbsp;m. cl. = moderately clear,

m. „ = moderately hazy
si. „ = slightly hazy

Wavelength. The wavelength of the hght of which the intensity is
determined, is given in A (1 A=10—« cm).

Illumination. Owing to the way our instruments are read, the illumination
is expressed in relative units.

1 relative unit corresponds to 1.39 X IQ-« W/A cm2. The fact that a
reducer is used (B, weak; G, strong) is indicated by the reduced amount
of energy in brackets under the computed actual amount. All values

-ocr page 20-

following such a one are obtained with that same reducer inserted, while
the reducing factor is taken to be constant as regards the wavelength.
A few observations were carried out with the reducer apphed from the
beginning: this is duly mentioned under: quot;remarksquot;. Whenever the bellglass
has been used in case of rain or other atmospherical condensationproducts,
special mention has been made. The reducing factor 1.2 has already been
accounted for in the values given.

From observation No. 222 onward, the result from a new standardizing
of the pyrometer was employed, which differed from the old one by the
constant factor 1.17. The results from the observations 1—222 have been
put in line with those of the others, by multiplying them by this factor, since
we had reason to consider the last standardizing as the most accurate.

Our measurings were always begun at = 6800 A and finished at
I = 4500 A.

Class. The observations are divided into three classes A, B, C, and a
further group of unreliable or incomplete observations indicated by?. (For
more details see Chapter 111.)

-ocr page 21-

Observation No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Date

8 Aug.
1932

8 Aug.

8 Aug.

8 Aug.

8 Aug.

8 Aug.

8 Aug.

8 Aug.

8 Aug.

11 Aug.

11 Aug.

11 Aug.

11 Aug.

11 Aug.

11 Aug.

11 Aug

Time

9.15

9.30

10.05

10.35

12.00

12.20

14.05

14.20

15.55

9.10

9.20

10.00

10.10

12.05

12.10

14.05

Solar altitude

41°

43°

48°

50°

54°

53°

46°

44°

31°

40°

41°

46°

47°

53°

53°

44°

Total or indirect

1

T

1

T

T

1

T

I

1

T

1

T

1

T

I

T

Cloudiness

h.

h.
br.sun

h.

occ. sur

m.
occ.sur

m.
br.sun

m.
occ.sut

m.
br.sun

m.
occ.sur

m.
occ.sut

1.

1.

1.

1.

1.

1.

1.

Horizon

si hazy

m. cl.

si.hazy

sl.hazy

m. cl.

sl.hazy

sl.hazy

sl.hazy

hazy

hazy

hazy

hazy

sl.hazy

sl.hazy

sl.hazy

Remarks

Wavelength (A)

6800

510

990

505

1200

1210

510

975

309

258

925

265

780

270

980

205

750

6600
6400

440
440

970

455
455

1100
850?

1120
1190

525
550

910
940

298
282

246
241

870

(154)

960

275
275

710

680
(151)

665

260
300

990

(175)

885

200
205

700
680

6200

440

505

1180

1230

610

980

296

256

910

295

315

1020

225

730
(121)

6000

415

495

1210

1220

615

960

306

268

890

285

670

320

(55)

1000

235

630

5800

440

1115

540

1290

1340

680

1040

335

314

910

320

640

330

1065

260
(50)

575

5600

450

590

1320

1340

690

ir40

377

344

980

350

685

390

1095

310

660

5400

470

1300

605

1530

1440

715

1200

405

358

1060

355

790

405

1070

315

775

5200
5000
4900

445

505
(180)
520

1260

(200)

1285

570
615

(217)

540

1440

(218)
1500

1450

1440
(218)
1490

1470

665

700

(233)

745

1195

(184)

1285
1300

405
460

(172)

470

344
366

(132)

360

980
940
965

315

(65)

335
350

675
635
650

355
420
445

995
1025
990

270
350
360

775
825
790

4800

_

_

570

1590

1450

780

1240

510

384

1010

360

815

465

1020

355

775

4700

_

1240

575

1570

1440

795

1030

510

363

890

370

750

430

930

380

740

4600

_

620

1560

1390

805

1080

540

363

950

345

800

500

940

400

740

4500

_

1240

640

1550

370'

840

1200

575

380

965

330

795

445

860

355

840

Class

B

A

B

A

A

B

B

A

A

B

B

B

B

A

B

C

20
19Aug.

8.45
35°
T
no cl.

19
11 Aug.

16.00
30°
T
1.

si.hazy

18
11 Aug.

15.55
31°
I
1.

si.hazy

17
11 Aug.

14.10
43°
I
1.

si.hazy

645

650

630

660
(120)
640

695

720

730

730

750

720

780

715

740

760

A

170
150
155
160
175
190
220
230
235

(46)

240
235
290
275
305
310
A

185
180
210
215

220

(43)

245
275
305
315
330
360
355
317
340
370
A

-ocr page 22-

23
19 Aug

10.15
46°
I

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

19 Aug

19Aug

19Aug

19 Aug

19 Aug

19Aug,

22Aug.

22Aug.

22Aug.

22Aug.

22 Aug.

22 Aug.

22Aug.

24 Aug.

24Aug.

24 Aug.

24 Aug.

12.05

12.20

14.05

14.25

16.00

16.20

9.05

9.25

10.00

10.15

13.00

14.10

15.50

9.20

10.15

11.55

14.10

50°

50°

43°

41°

28°

24°

37°

39°

43°

44°

48°

41°

29°

37°

44°

49°

40°

T

I

T.

I

T

I

I

T

' T

I

I

I

I

1

I

T

T

1. ci

l.ci

ci

faint sun

ci

ci

h. ni.

m.

m.

m.

h.

h.

h.

h.

h.

h.

h.

br.sun

occ.sun

occ.sun

occ.sun

occ.sun

occ.sun

occ.sun

occ.sun

occ.sun

inv.

inv.

hazy

hazy

hazy

hazy

hazy

hazy

hazy

hazy

si.hazy

m. cl.

cl.

hazy

hazy

drizzle
bell
glass

cl.

v. cl.

890

375

565

395

610

265

118

985

1080

285

500

395

345

620

355

300

410

880

345

535

340

540

250

113

255

385

340

285

605

335

250

380

910

360

560

380

555

245

120

935

1020

275

410

365

300

615

355

240

400

900

395

610

450

555

255

148

295

450

400

320-

620

395

230

410

825

405

605

395

550

260

161

950

1110

295

440

410

295

580

410

205

425

1050

425

635

420

570

270

208

345

560

510

320

620

480

230

460

1110

445

670

445

630

300

250

1140

1245

405

620

540

370

695

530

230

490

1200

470

655

465

625

305

300

425

620

555

395

725

560

225

510

1130

(170)

445

605

445

570

290

410

1150

(182)

1430
(210)

430

575

570

395

720

600

210

475

1130
1220

500

(175)

520

665
(220)
675

475

(185)

475

555

(99)
610

310

(113)

320

475

(176)

475

1190

1320

500

(174)

485

665

(119)

575

605

(217)
600

410

(164)

395

975

(H7)

970

720
(120)
655

215
215

475
(168)
480

1340

540

725

490

635

360

545

540

595

660

415

1010

665

240

510

1165

525

680

490

620

340

595

1140

1360

525

530

585

455

1010

600

240

460

1165

520

700

485

600

355

670

-

585

525

700

495

1040

590

285

460

1200

515

780

500

590

315

495

1320

1260

595

515

640

500

965

570

305

410

B

A

A

B

B

A

C

A

A

A

B

A

A

A

A

A

A

Observation No.
Date

Time

Solar altitude
Total or indirect
Cloudiness

Horizon
Remarks

21

19 Aug
1932

9.00

37=

I

ci

22
19Aug

10.00
43°
T
ci

inv.

Wavelength
6800
6600
6400
6200
6000
5800
5600
5400
5200
5000
4900
4800
4700
4600
4500
Class

350
335
330
360
360
380
425

425

m

435
460
475
465
465
455
400
A

800
760
805
830
850
890
960
1010
965
1090

(165)
1100

1130

1110

1130

1000

A

360
335
360
370
375
400
435
435
410
465

(165)

485
510
475
500
510
A

-ocr page 23-

Observation No.

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Date

24Aug.
1932

26Aug.

26 Aug.

26 Aug.

26 Aug.

26 Aug.

26Aug.

26Aug.

31 Aug.

31 Aug.

31Aug.

31Aug.

31Aug.

2 Sept.

2 Sept.

2 Sept.

2 Sept.

5 Sept.

5 Sept.

5 Sept.

Time

16.10

9.10

9.30

10.05

10.20

14.10

14.25

16.05

10.10

10.35

11.50

14.10

15.55

9.10

10.00

12.05

16.05

9.20

10.00

12.00

Solar altitude

24°

36°

38°

42°

43°

40°

39°

24°

42°

43°

47°

39°

26°

34°

39°

46°

23°

34°

39°

45°

Total or indirect

T

T

I

T

I

T

I

T

I

T

I

I

I

T

T

T

T

T

I

I

Cloudiness

h.

1.

br.sun

1.

br. sun

1.

br.sun

1.

br.sun

1.

br.sun

1.

br.sun

h.

m.
occ.sun

m.
br.sun

m.
occ.sun

m.
occ.sun

h.

occ.sun

h.

h.

h.

h.

h.

h.tom.
occ.sun

m.
occ.sun

Horizon

V. cl.

hazy

hazy

m.hazy

m.hazy

v.hazy

v.hazy

v.hazy

v.hazy

v.hazy

m.hazy

cl.

m.hazy

inv.

inv.

inv.

inv.

hazy

m.hazy

m.hazy

Remarks

Wavelength

6800

315

795

191

890

164

880

230

300

500

990

370

550

395

67

100

90

134

445

575

445

6600

290

760

167

850

162

825

220

260

480

925

380

510

380

43

84

76

125

430

535

355

6400

300

765

183

905

180

830

245

275

410

920

400

525

400

52

95

92

134

435

5'40

350

6200

295

805

200

905

199

855

260

270

425

910

410

560

410

65

110

98

125

450

555

325

6000

290

790

206

950

206

865

270

265

450

890

415

550

405

60

92

90

86

440

550

305

5800

305

880

236

975

235

920

290

285

520

970

480

580

435

71

111

106

94

465

565

320

5600

320

925

269

1050

268

960

335

305

540

960

535

625

405

84

124

122

97

490

580

335

5400

330

975

291

1110

290

1020

350

305

520

1120

570

655

430

82

126

118

104

510

620

360

5200
5000
4900

295

310
(112)
290

950

1075
(168)
1040

290
335

(67)

320

1180

(171)
1120

1140

285

330
(122)
345

1025

(164)

1030
975

350
395

(145)

420

290

310

310
(112)
330

540

605
(210)
615

1160
(183)
1260

1200

570
615

(217)

590

610
645

(215)

625

380
395

(130)

390

85

86
86

118
121
114

109
112
116

96
107
109

510
605

(215)

900

525

515

(166)
525

345
385

(148)

410

4800

315

1100

345

1080

385

1080

415

690

1260

700

700

375

93

118

129

136

910

535

485

4700

300

1000

360

1100

385

990

425

300

600

1185

640

650

350

91

119

131

137

880

515

480

4600

300

1020

405

1120

430

1065

420

320

660

1180

660

700

355

86

131

135

141

850

550

535

4500

290

1015

340

1100

420

1060

425

295

630

965

675

720

365

80

144

133

130

780

555

470

Class

A

A

A

A

A

A

A

A

B

A

A

A

A

B

B

B

C

C

B

A

-ocr page 24-

Observation No.

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

Date

5 Sept.
1932

5 Sept.

7 Sept

7Sept.

7 Sept.

7 Sept.

7 Sept.

7 Sept.

7 Sept.

9 Sept.

9Sepr.

9 Sept,

9 Sept.

9Sept.

9 Sept.

HSept.

HSept.

HSept.

15Sept.

15Scpt

Time

14.05

1600

9.20

10.00

11.50

12.10

14.00

14.15

16.00

9.20

10.00

10.40

12.00

14.00

15.55

9.30

10.05

12.10

9.25

13.40

Solar altitude

37°

23°

33°

38°

44°

44°

38°

37°

23°

33°

37°

40°

44°

38°

23°

34°

39°

42°

31°

37°

Total or indirect

1

I

1

I

T

1

T

I

1

T

I

T

T

T

T

T

T

1

I

T

Cloudiness

m.
occ.sun

m.
occ.sun

h.

occ.sun

h.

occ.sun

m.
occ.sun

m.
occ.sun

m.
occ.sun

m.
occ.sun

m.
occ.sun

m.

h.

m.
br.sun

h.

h.

h.

h.

h.

h.

occ.sun

h.

m.
br.sun

Horizon

si,hazy

m.haz)

v.hazy

v.hazy

m.hazy

m.hazy

cl.

cl.

cl.

v.hazy

v.hazy

hazy

hazy

hazy

m.hazy

inv.

inv.

v.hazy

m.cl.

hazy

Remarks

drizzle
bell
glass

drizzle
bell
glass

Wavelength

6800

390

355

485

665

1030

295

1030

300

320

640

515

1040

345

182

72

108

197

370

310

915

6600

385

330

440

585

975

290

1000

270

290

550

460

1000

305

171

62

110

144

430

294

835

6400

450

320

450

620

1010

310

1010

280

285

550

505

1000

330

156

64

110

133

615

300

830

6200

460

335

425

620

1050

325

1020

290

290

540

600

900

360

166

76

140

131

715

320

870

6000

455

335

460

605

1080

330

1040

305

290

505

485

985

360

149

71

139

123

425

300

795

5800

475

355

475

635

1140

350

1050

330

295

570

480

1140

395

162

82

148

129

440

325

915

5600

485

400

420

680

1240

340

1150

370

330

635

535

1220

440

178

96

173

140

455

370

950

5400

470

390

395

655

1310

360

1200

390

335

670

550

470

166

101

162

144

510

355

1020

5200
5000
4900

450
465

(165)

460

370
375

(136)

360

375
370

(150)

355

610
715

(235)

695

1440

(217)

1400
1350

440
470

(183)

485

1150
(181)
1150

1190

375
430

(157)

435

335
360

(132)

365

670
715

(230)

670

525
565

(195)
610

470
520

(192)

495

165
182
202

97
87
99

186
200
189

136
145
154

560
650

(173)

455

365
390

(135)

395

1010

1100
(182)
1010

4800

445

390

360

685

1300

545

1200

470

330

720

680

545

239

101

180

158

480

375

1030

4700

435

370

345

615

1320

470

1090

465

325

730

610

550

244

92

171

161

505

370

1030

4600

425

375

380

535

1330

405

1070

500

325

720

675

520

255

88

198

188

620

405

1020

4500

410

330

375

495

1350

410

1070

470

310

690

650

540

249

81

238

172

635

405

930

Class

A

B

B

B

A

A

A

A

A

B

C

A

B

B

B

A

7

A

A

-ocr page 25-

Observation No.

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

Date

16Sept.
1932

16Sept.

16Sept.

16Sept.

16Sept.

16Sept.

16Sept,

16Sept.

16Sept.

16Sept.

19Sept.

19Sept.

19Sept.

21 Sept.

21 Sept.

21 Sept.

21 Sept.

21Sept.

21 Sept.

21 Sept.

Time

9.00

9.15

10.00

10.15

12.25

12.50

14.00

14.15

16.00

16.25

9.25

10.00

12.00

9.05

9.30

10.00

10.15

12.10

14.00

16.00

Solar altitude

28°

30°

35°

37°

40°

40°

35°

33°

20°

17°

30°

33°

38°

29°

30°

33°

34°

38°

33°

18°

Total or indirect

T

1

T

1

T

1

T

I

T

1

1

T

1

T

1

T

1

1

T

T

Cloudiness

no cl.

no cl.

no cl.

no cl

no cl.

no cl.

no cl.

no cl.

no cl.

no cl.

h.

h.

h.

m.

m.

m.
occ.sun

m.
occ.sun

m.

m.

Horizon

hazy

hazy

hazy

hazy

m.hazy

m.hazy

m.hazy

m.hazy

hazy

hazy

m.hazy

m.hazy

cl.

cl.

cl.

cl.

-

Remarks

occ.raln
bell glass

from
;.=500J

rain

Wavelength

6800

770

185

870

197

805

168

780

161

400

115

340

560

185

840

405

1040

221

243

300

239

6600

730

213

835

187

840

164

735

149

420

131

310

585

159

785

435

910

235

250

410

193

6400

730

210

840

193

820

164

745

156

415

136

300

690

171

800

425

287

207

252

560

237

6200

805

196

840

212

870

188

785

180

410

149

294

605

196

815

400

930

223

288

465

201

6000

805

252

835

226

865

184

780

179

405

153

280

510

202

800

400

860

224

297

380

203

5800

815

278

870

251

940

212

840

210

385

164

285

530

218

835

405

940

236

310

695

201

5600

880

300

965

280

980

257

870

229

400

190

298

560

224

900

410

395

280

335

790

224

5400

925

315

965

268

1070

272

920

260

228

196

300

560

200

930

430

280

282

360

810

235

5200
5000
4900

850
980

(154)

980

315
355
415

1010

1050
(166)
1145

300
335

(119)

460

1025

(176)

980
995

281
288
320

855
975

(159)

975

281

295
(108)
284

233
360

(77)

350

185
217
220

294
305

(125)

265

590
400
360

165
154
143

915

1060

(168)
1030

425
455
450

1040

(315)
1120

1040

260

283
(120)
293

340
375
467

340
325
325

240
243
252

4800

990

450

1180

525

1015

320

910

320

325

212

265

325

143

1000

480

1080

310

405

355

252

4700

1030

370

990

485

950

375

800

295

275

212

265

331

157

1050

500
(182)
485

1080

290

380

305

248

4600

850

345

965

430

720

340

810

345

305

226

225

305

175

1000

1130

293

335

245

4500

780

285

1070

350

710

295

630

345

340

235

233

278

222

1030

510

995

270

280

255

Class

B

A

A

B

A

A

B

A

B

A

A

C

C

A

A

C

B

B

7

B

-ocr page 26-

Observation No.

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Date

23Sept
1932

23Sept

23Sept

23Sept

23Sept

26Sept

26Sept

26Sept

26Sept

26Sept

27Sept

. 27Sept,

27Sept

. 27Sept,

27Sept,

27Sept

. 27Sept,

. 27Sept,

27Sept,

28Sept.

Time

9.00

10.05

12.15

14.05

17.00

9.05

10.00

12.35

14.00

16.00

9.15

9.30

10.00

10.15

12.05

12.15

14.00

16.00

16.15

9.00

Solar altitude

25°

33°

38°

32°

26°

31°

37°

31°

17°

26°

28°

31°

32°

37°

37°

31°

17°

14°

24°

Total or indirect

T

T

T

T

T

T

T

T

T

T

T

I

T

I

T

I

I

T

I

T

Cloudiness

h.

h.

10

h.

h.

h.

h.

10

10

10

1

1

1

1

4

4

6

1.

1.

nod.

Type of clouds
Height of clouds

nb
200

cu

800

stcu
600

stcu
600

stcu
1500

stcu
1500

stcu
1500

stcu
1500

cu
2000

cu
2000

cu
1500

Horizon

hazy

hazy

hazy

hazy

m. cl.

m.hazy

m.hazy

v.hazy

v.hazy

v.hazy

v.hazy

m. cl.

m. cl.

m. cl.

m. cl.

m. cl.

m.hazy

Remarks

rain
bellglas

h. rain
bellglas

rain
bellglas

measured
with
reduce

Wavelength

6800

169

390

235

208

21

390

550

540

209

158

640

244

820

278

950

345

284

203

152

690

6600

133

405

161

176

24

370

475

670

202

129

620

235

800

235

865

320

335

193

144

680

6400

101

435

126

185

28

335

400

625

207

115

640

235

735

249

890

320

252

187

139

670

6200

81

475

112

185

31

335

475

505

226

114

555

248

750

276

875

345

232

238

159

665

6000

72

475

96

188

33

330

460

485

214

105

510

271

770

294

890

340

235

235

149

665

5800

83

455

125

196

35

355

460

485

212

115

690

287

820

340

925

370

239

225

154

690

5600

95

490

141

221

32

380

520

435

247

125

740

315

850

405

980

405

248

250

176

740

5400

94

640

151

254

45

380

325

490

250

130

755

330

865

430

1020

430

262

283

182

760

5200

92

515

218

275

39

365
(126)
390

375

315

390

226

127

715

325

875

435

960

420

246

304

180

730

5000
4900

99
90

400
380

191

(84)

147

294
300

42
44

271
370

380
345

240
226

139
136

835
(126)
900

355
350

940

(154)
880

500

(92)

475

1050

(134)
1060

445

(155)

435

269
(101)
254

284

(105)

271

193
186

790
(120)
735

4800

94

400

(89)
226

350

47

385

310

345

252

153

835

370

905

520

1110

480

264

256

188

730

4700

109

315

47

340

315

300

242

136

800

380

830

460

980

445

249

238

183

710

4600

112

220

330

50

295

271

290

244

131

720

375

735

455

970

345

249

228

189

665

4500

125

123

280

46

276

285

300

233

128

700

720

395

840

420

228

228

186

660

Class

A

?

?

A

B

A

C

B

A

A

C

A

A

A

A

A

B

B

A

A

-ocr page 27-

Observation No.

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

Date

28Sept.
1932

28Sept.

28Sept.

28Sept.

28Sept.

28Sept.

28Sept.

28Sept.

28Sept.

29Sept.

29Sept.

29Sept.

29Sept.

29Sept.

29Sept.

29Sept.

29Sept.

29Sept.

29Sept.

30Sept.

Time

9.15

10.00

10.15

12.00

12.20

14.00

14.15

16.00

16.15

9.00

9.15

10.00

10.15

12.10

12.20

14.08

14.28

15.00

15.20

9.30

Solar altitude

26°

31°

32°

37°

36°

30°

29°

16°

14°

24°

26°

30°

31°

36°

36°

30°

28°

22°

21°

27°

Total or indirect

I

T

I

T

1

T

I

T

I

T

1

T

I

T

I

T

1

T

I

T

Cloudiness

nod.

no cl.

no cl.

no cl.

no cl.

1.

1.

no cl.

no cl.

3

3

1

1

4

4

10

Type of clouds
Height of clouds

ci

ci

ci

ci

ci

ci

ast

ast

ast

ast

ast

ast

cunt

Horizon
Remarks

m.hazy

m.hazy

m.hazy

cl.

cl.

cl.

hazy

hazy

hazy

m. cl

m. cl.

cl.

cl.

d.

measured

with
reducer B

d.

hazy

Wavelength

6800

192

800

182

875

170

665

248

485

113

715

240

890

295

810

293

790

169

405

239

167

6600

164

740

166

810

178

775

228

500

109

625

221

855

281

745

287

705

162

420

226

134

6400

160

730

156

800

182'

770

239

490

112

650

255

850

278

740

315

695

180

189

226

146

6200

178

770

178

835

196

810

248

500

137

575

256

775

290

735

'320

720

203

234

227

134

6000

186

780

183

875

199

825

247

465

135

555

288

810

280

705

330

705

210

234

219

134

5800

203

810

220

890

226

875

273

480

143

610

285

885

305

750

355

750

231

278

225

146

5600

227

850

235

960

255

900

315

485

165

655

330

1000

370

810

390

775

260

465

267

163

5400

248

880

252

1010

275

900

380

515

182

725

335

1020

365

810

410

840

277
(108)
275

280

270

440

280

162

5200
5000
4900

251

284
(101)
330

875
965

(HO)

955

255
274
286

960

(151)

940

890

272
295

(124)
280

875
975

(144)

670

320
340

(129)

330

555
565

(135)

670

176
188
181

630
650

(96)
610

335
360

(136)

340

1010
(148)

990
940

345
385

(143)

385

750
830

(113)

760

405
450
445

(148)

495

795

840
(112)
840

380
460
450

282
280
280

175
180
173

4800

355

940

313

1000

305

720

335

660

190

650

375

910

400

770

805

282

430

286

183

4700

325

890

310

865

276

765

335

600

191

600 ■

325

820

375

710

450

725

280

350

286

186

4600

345

840

330

785

250

800

300

600

212

610

340

830

355

700

430

740

278

310

310

186

4500

335

790

320

850

263

800

330

575

183

555

325

780

375

645

420

640

258

390

330

150

Class

A

A

A

A

A

C

B

B

A

C

A

A

A

A

A

A

A

?

B

A

-ocr page 28-

Observation No.

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

Date

30Sept.
1932

30Sept.

30Sept.

SOSept.

30Sept.

BOSept.

3 Oct.

3 Oct.

3 Oct.

3 Oct.

4 Oct.

4 Oct.

4 Oct.

5 Oct.

5 0cr.

5 Oct.

5 Oct.

5 Oct.

6 Oct.

6 Oct.

Time

10.00

12.05

14.05

14.15

15.05

15.20

10.00

11.45

14.00

16.15

14.00

14.15

16.00

10.05

12.15

12.30

14.10

16.00

12.05

12.30

Solar altitude

30°

36°

29°

29°

22°

21°

29°

34°

29°

13°

30°

29°

14°

29°

34°

33°

27°

14°

34°

33°

Total or indirect

T

T

T

1

T

I

T

T

T

T

T

I

T

T

I

T

T

T

T

1

Cloudiness

10

10

3

3

0

0

h.

h.

h.

h.

4

4

h.

h.

fog

fog

6

0

sl.mist

sl.mist

Type of clouds
Height of clouds

cuni

:u stcu
400

St.
2000

St
2000

cuni

ni

ni

:u stcu
600

cu stcu
600

s.appears

stcu
700

Horizon

hazy

hazy

hazy

hazy

m. cl.

m. cl.

hazy

hazy

m. cl.

v.hazy

cl.

cl.

cl.

inv.

foggy

m.hazy

v.hazy

v.hazy

Remarks

bell
glass

h. rain
bell glass

bell glass

showery

rain
bell glass

measured

with
reducer

occ sun

Wavelength

6800

120

198

740

140

605

204

370

385

27,0

107

650

520

375

59

294

500

219

214

665

340

6600

92

193

755

153

560

182

330

365

30,0

75

670

490

270

47

325

480

300

225

620

310

6400

86

188

740

153

540

179

320

345

29,5

68

290

485

105

49

274

400

360

210

480

330

6200

87

210

730

176

545

193

320

340

33,5

68

335

480

127

53

300

480

545

214

520

355

6000

86

206

755

176

510

185

325

335

30,0

60

400

435

135

51

315

520

590

185

645

360

5800

89

208

780

198

520

207

350

355

38,0

69

460

470

104

49

310

520

610

172

670

395

5600

98

235

810

218

570

219

370

380

46,5

76

385

505

135

47

345

571

625

125

680

410

5400

122

240

820

237

565

240

365

365

46,5

74

345

495

(182)
490

485

450

460

410

138

47

355

560

625

132

730

425

5200
5000
4900
4800
4700

131
148
157
178
176

234
244
238
253
250

840
(110)
780

735

760

540

257
290
290

320

(120)
300

530

(84)

560
515
490
445

240
265
244
281
265

335

305
(120)
305

345
335

(124)

300
295
277

44,0

44,0

45,5

51

55

72
60
52

52

53

335
475
750

(229)
1020

990

132
153
145
143
136

44
56

33

34

340
385
390
470
435

(142)

435

570
565
540
560
535

490
455
395
420

(83)

550

136
134
139

137
119

690

755

(126)
725

730

695

420
440

(172)

415
440
440

4600

150

262

460

305

520

305

257

54

54

990

410

129

500

590

135

650

430

4500

108

214

266

263

243

59

47

805

315

165

440

490

560

121

605

390

Class

A

A

A

A

B

A

A

A

B

7

7

B

7

B

B

R

?

B

C

A

-ocr page 29-

Observation No.

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

Date

6 Oct.
1932

6 Oct.

6 Oct.

6 Oct.

7 Oct.

7 Oct,

7 Oct.

7 Oct.

7 Oct.

7 Oct.

lOOct.

lOOct.

lOOct.

lOOct.

11 Oct.

120ct,

120ct.

120ct.

120ct.

]30ct.

Time

14.00

14.15

16.00

16.15

10.00

10.15

14.00

14.20

16.00

16.05

11.30

14.00

16.00

16.10

12.00

12.00

14.15

14.30

16.05

10.15

Solar altitude

28°

27=

14°

12°

28°

29°

28°

27°

13°

12°

31°

27°

12°

10°

32°

32°

26°

24°

11°

28°

Total or indirect

T

I

T

1

T

1

T

I

T

I

T

T

T

1

T

T

T

1

1

T

Cloudiness

2

2

0

0

0

0

1

1

0

0

h

6

3

3

h

5

3

3

2

h

Type of clouds
Height of clouds

acu ast

acu ast

cu
2000

cu
2000

stcu
800

stcu ci

stcu ci

cuni

cu
800

cu
1000

cu
1000

ast

Horizon

hazy

hazy

hazy

hazy

v.hazy

cl.

cl.

sl.hazy

sl.hazy

hazy

hazy

hazy

hazy

hazy

hazy

hazy

hazy

hazy

hazy

Remarks

some rain
bellglass

occ.rain
bellglass

Wavelength

6800

490

192

208

101

780

191

530

150

220

87

405

255

293

74

305

725

435

232

85

191

6600

445

211

165

82

725

208

465

161

162

93

405

280

225

73

276

705

405

206

77

160

6400

425

212

139

84

610.

212

440

185

170

103

505

320

202

71

300

695

370

207

80

145

6200

435

218

145

93

625

233

440

190

175

110

620

310

196

72

315

580

375

232

81

176

6000

455

235

146

88

660

235

455

210

173

103

680

232

164

70

320

540

395

235

79

166

5800

470

244

143

92

695

267

470

227

173

111

525

255

168

73

325

465

385

255

88

168

5600

495

272

157

108

740

300

490

238

175

121

415

350

181

94

340

705

410

290

99

170

5400

490

285

157

109

770

327

505

242

182

129

395

296

187

98

350

460

410

295

102

156

5200

480

285

153

113

780

321

465

250

168

133

365
(160)
350

300

263

176

98

320

540

390

292

102

121

5000
4900

510
580

(193)

555

296
315

161
159

120
120

775

(126)
805

. 345

(135)

360

480

(91)

495

274

275

172
185

144
139

269
269

192
167

108
105

360
335

460

(91)

355

405

(78)

365

310
(121)
310

111
109

93
79

4800

315

161

120

810

345

480

298

190

136

203

266

155

108

360

340

390

320

113

85

4700

500

310

156

121

695

350

465

315

162

132

205

259

147

100

370

(130)

350

305

370

295

102

89

4600

460

335

137

117

635

320

490

325

142

120

300

251

(93)
216

148

102

320

360

300

107

66

4500

420

272

153

115

575

265

465

295

151

127

280

136

98

355

300

305

260

96

68

Class

B

A

B

A

C

A

A

A

B

A

7

C

' B

A

A

7

A

A

A

B

-ocr page 30-

Observation No.

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

Date

130ct.
1932

HOct.

HOct.

HOct.

170ct.

170ct.

170ct.

170ct.

170ct.

180ct.

ISOct.

ISOct.

180ct.

190ct.

190ct

190ct.

190ct.

]90ct.

190ct.

200ct.

Time

16.00

10.10

12.00

14.00

10.00

12.00

12.10

14.00

16.00

10.00

12.00

14.00

16.00

10.15

12.00

12.15

14.10

14.20

16.05

10.00

Solar altitude

12°

27°

31°

26°

24°

29°

29°

24°

10°

24°

29°

24°

10°

24°

29°

28°

22°

21°

23°

Total or indirect

T

T

T

T

T

T

I

I

T

T

T

T

T

I

T

I

T

I

I

T

Cloudiness

10

10

10

10

9

8

8

4

4

10

10

8

7

5

4

7

3

3

2

h

Type of clouds
Height of clouds

stcu
600

St

300

ni
300

St

500

stcu

stcu

stcu

stcu
1000

cuni
800

St

400

St

400

St

700

st ni

700

cu

cu
1000

cu
1500

cu

1500

stcu
2000

Horizon

cl.

v.hazy

v.hazy

hazy

hazy

hazy

hazy

m.cl.

m.cl.

m.cl.

m.cl.

m.cl.

m.cl.

hazy

cl.

cl.

cl.

cl.

m.cl.

m.hazy

Remarks

h rain
bell glass

h. rain
bell glass

1. rain
bell glass'

bell
glass

bell
glass

bell
glass

bell
glass

1. rain
bell glass

1. rain
bell glass

showery
bell glass

sun dis
appears
behind hu

Wavelength

6800

58

56

160

275

295

238

166

59

220

160

252

37

185

810

360

705

207

106

106

6600

56

50

33

154

250

222

239

128

78

172

139

215

34

172

815

370

655

179

92

88

6400

57

44

34

130

252

215

284

128

126

151

109

222

36

171

780

360

720

171

90

77

6200

55

45

33

120

256

218

237

134

77

143

110

179

47

187

760

415

680

182

93

77

6000

53

50

44

110

300

233

241

149

54

136

102

146

61

186

765

375

690

183

90

65

5800

52

59

47

93

320

252

244

168

89

136

102

117

66

206

790

375

715

204

101

95

5600

57

34

57

98

375

259

276

178

73

149

109

108

80

237

840

410

740

227

109

122

5400

55

38

58

118

395

269

310

220

54

164

98

118

87

234

910

415

700

235

111

126

5200

55

38

59

129

420

271

355

237

52

166

93

127

89

266

865

355

705

244

118

141

5000

52

37

59

124

465

320

435

252

55

177

93

134

98

310

950

(134)

960
955

335

715

(112)
300

645

265

124

118

4900
4800

55
55

38
36

62
59

126
102

575

(137)

445

325
350

530
485

(133)

425
440

271
380

59
58

187
214

102
106

119
119

83
102

296
310

310
(111)
320

261
275

124
127

99
95

4700
4600

54
45

33
36

55
59

109
131

375

360

350

(117)

365

375
272

59
65

203
199

94
91

133
128

101
103

310

(60)
320

845
855

297
293

450
258

300
300

124
119

113
97

4500

46

34

55

144

235

370

440

248

72

178

101

118

99

296

755

235

215

295

119

87

Class

A

C

B

B

B

A

C

C

?

A

A

B

A

A

A

B

7

A

B

7

-ocr page 31-

Observation No.

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

Date

200ct.
1932

200ct.

200ct.

21 Oct.

21 Oct.

21 Oct.

21 Oct.

240ct.

240ct.

250ct.

250ct.

250ct.

250ct.

250ct.

260ct.

260ct.

260ct.

260ct.

270ct.

270ct.

Time

12.15

14,00

16.00

10.10

12.00

14.00

16.10

11.45

14.00

10.00

10.15

12.00

14.00

15.55

10.10

12.15

14.00

16.00

12.05

14.00

Solar altitude

28°

23°

24°

27°

23°

27°

21°

21°

22°

27°

21°

22°

26°

20°

26°

20°

Total or indirect

T

T

T

T

T

I

T

T

T

T

1

I

I

1

T

T

T

T

1

T

Cloudiness

10

10

10

10

10

7

8

9

9

10

10

8

8

8

10

10

9

10

6

5

Type of clouds
Height of clouds

st

400

st

300

st
200

st
200

stcu
300

stcu
200

stcu

stcu
800

stcu
800

st

st

stcu
1000

stcu
1000

ci acu

stcu
400

st
800

st
800

stcu
800

cu
1500

cu cist
2000

Horizon

v.hazy

v.hazy

v.hazy

v.hazy

m.cl.

m.cl.

m.hazy

m.hazy

hazy

hazy

hazy

m.hazy

m.hazy

v.hazy

hazy

m.cl

m.hazy

cl.

Remarks

bell
glass

drizzle
bellglass

drizzle
bellglass

bell
glass

occ.sun

rain
bell glass

rain
bell glass

bell
glass

Wavelength

6800

172

132

23,5

160

132

293

126

540

77

605

136

227

292

69

151

74

51

292

380

6600

156

118

20,0

116

116

320

97

555

58

555

145

345

283

61

143

58

53

5,0

245

330

6400

145

111

22,0

114

142

292

84

485

57

540

160

345

280

52

109

55

42

3,4

249

355

6200

244

129

22,5

141

237

345

83

570

66

595

196

345

283

54

109

54

44

3,8

242

335

6000

264

136

22,0

126

286

274

61

645

63

605

226

325

284

53

102

44

44

3,8

241

297

5800

287

145

23,5

141

227

286

70

555

62

620

300

310

292

55

126

39

49

3,8

268

305

5600

355

166

32

158

241

360

94

510

74

640

360

280

305

62

140
(126)

80

58

4,2

277

295

5400

305

166

32

166

204

370

84

510

71

670

395

218

305

64

140

61

5,0

280

355

5200

257

161

29

151

196

335

99

475

69

650

380

202

300

64

128

61

4,8

260

435

5000
4900

252
207

166
155

20,5
21,0

130
136

212
186

370
405

102
103

485

(185)

425

68
67

690
(118)
650

445

(176)

480

235
260

305
286

68
66

:

158
130

68
67

5,1
6,0

269
248

405
300

4800

(152)
166

162

19,5

150

150

390

108

415

62

700

480

242

305

66

143

78

5,9

249

330

4700

162

178

16,0

148

207

386

95

380

74

640

450

245

310

66

161

80

5,0

211

285

4600

178

168

13,5

153

110

435

91

375

66

615

405

220

300

64

218

90

6,9

213

320

4500

169

208

15,5

209

132

88

335

55

640

375

229

63

244

87

5,9

227

256

Class

B

B

C

C

C

B

B

B

B

A

A

7

A

C

C

B

B

B

C

-ocr page 32-

Observation No.

221

222*)

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

Date

270ct.

270ct.

280ct.

280ct.

280ct.

280ct.

15Nov

16Nov.

16Nov.

17Nov.

17Nov.

17Nov.

18Nov.

18Nov.

l8Nov.

18Nov.

.8Nov.

HNov.

21 Nov.

21Nov.

1932

Time

14.05

15.55

10.00

12.15

13.55

16.00

14.00

12.05

15.02

12.10

14.00

15.05

10.05

12.10

14.00

14.10

15.00

12.00

14.00

14.20

Solar altitude

20°

go

20°

26°

19°

17°

21°

10°

21°

16°

17°

21°

17°

16°

10°

21°

16°

14°

Total or indirect

1

T

T

T

T

T

T

T

T

T

T

T

T

T

T

I

1

T

T

1

Cloudiness

5

9

10

10

10

10

8

10

10

10

10

10

10

10

2

2

2

10

10

10

Type of clouds
Height of clouds

cu cist
2000

ast

St
600

St
600

stcu
800

stcu
300

st
1000

St
1000

St
1000

St

500

St

500

St

500

St

300

St

500

St
1000

St
1000

St
1000

St
200'

st stcu
200

stcu
300

Horizon

m.cl.

m hazy

m.hazy

hazy

hazy

v.hazy

m.hazy

m.hazy

v.hazy

v.hazy

v.hazy

v.hazy

v.hazy

v.hazy

v.hazy

v.hazy

inv.

v.hazy

hazy

Remarks

*)viz,p.8

1. rain
bell glass

bell
glass

Wavelength

6800

221

33

276

110

110

28

96

103

45

92

31

52

100

200

131

96

94

6600

210

20,2

265

112

93

23,0

89

91

41

71

30

13,0

53

96

177

159

86

95

27

10

6400

210

17,8

249

109

88

19,8

85

100

38

61

30

13,2

54

100

171

162

86

101

29

12,0

6200

214

17,0

260

108

84

19,2

83

102

39

61

32

12,5

56

95

162

156

80

98

33

19,1

6000

210

16,0

250

110

74

17,1

88

102

36

63

31

14,0

58

100

191

160

84

87

33

22,6

5800

214

16,0

250

110

68

16,3

90

106

40

71

33

14,0

62

105

204

170

90

95

35

36

5600

226

18,0

252

112

68

18,0

93

108

41

75

34

14,9

66

104

180

176

92

95

36

33

5400

244

20,1

245

116

61

19,4

102

116

46

78

36

15,2

70

120

210

189

100

103

35

40

5200

252

20,9

237

111

62

20,0

97

111

45

80

37

16,3

66

116

210

201

106

88

33

45

5000

250

23,0

235

100

66

20,0

105

118

47

82

39

18,0

69

119

210

210

106

83

33

49

4900

231

22,0

219

92

70

19,8

100

121

46

77

43

17,0

71

120

228

210

106

74

31

47

4800

245

20,8

202

82

77

20,8

100

122

50

79

43

18,5

76

121

218

204

106

70

29

51

4700

237

20,9

196

88

79

20,2

102

121

52

75

44

19,0

78

123

220

197

103

77

25

50

4600

242

19,7

190

90

83

19,0

106

140

56

45

18,3

76

127

196

206

100

80

22

51

4500

233

20,2

176

83

80

21.3

102

130

50

44

14,9

74

121

196

185

100

71

46

Class

A

C

A

A

A

B

B

A

A

C

A

A

A

A

B

A

A

C

A

B

-ocr page 33-

Observation No.

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

Date

21 Nov.

22Nov

22Nov.

22Nov,

22Nov.

22Nov.

22Nov.

22Nov.

23Nov.

23Nov.

23Nov.

23Nov.

24Nov.

24Nov.

25Nov.

25Nov.

28Nov.

28Nov.

28Nov.

28Nov.

1932

Time

10.00

10.00

10.25

12.00

12.20

14.05

14.15

15.05

10.00

12.10

14.00

14.55

10.00

12.00

14.05

14.50

11.55

12.10

14.00

14.10

Solar altitude

16°

16°

17°

21°

20°

16°

14°

10°

16°

21°

16°

10°

16°

20°

15°

10°

20°

20°

15°

13°

Total or indirect

T

T

1

T

I

T

I

T

T

T

T

T

T

T

T

T

T

1

T

1

Cloudiness

10

1

1

1

1

3

5

7

7

4

5

7

9

3

6

4

8

8

8

8

Type of clouds
Height of clouds

st
200

ci

ci

ci

ci

ast

ast

ast

stcu
300

stcu
700

stcu
700

stcu
700

cu

stcu

1500

stcu
1500

ast

stcu
1000

stcu
1000

stcu
1000

stcu
1000

Horizon

v.hazy

hazy

hazy

m.hazy

m.hazy

m.cl.

m.cl.

m.cl.

m.cL

cl.

cl.

sl.hazy

m.cl.

m.cl.

cl.

sl.hazy

m.cl.

m cl.

m.cl.

m.cl.

Remarks

bell
glass

bell
glass

Wavelength

6800

83

262

90

280

88

215

146

50

203

231

73

63

76

148

99

362

127

196

133

6600

95

281

100

315

149

210

130

55

196

230

69

54

84

119

95

66

355

137

219

115

6400

99

275

108

289

147

192

135

48

194

218

69

51

86

107

96

66

360

130

179

109

6200

99

287

114

293

144

191

128

48

204

252

69

48

86

111

91

60

356

131

170

109

6000

108

300

129

345

161

189

141

45

210

235

76

39

87

121

90

57

351

149

159

109

5800

128

315

145

370

176

209

147

50

223

261

90

43

102

129

98

66

375

151

149

119

5600

123

300

152

355

188

203

147

51

219

224

98

43

111

120

98

64

400

160

153

123

5400

145

343

166

365

203

217

166

56

228

252

117

43

123

128

108

72

419

180

173

140

5200

157

(127)

333

190

325

220

231

177

58

252

253

130

46

138

124

110

77

431

210

178

135

5000

152

343

203

370

232

230

182

58

254

255

148

50

141

123

119

81

428

210

157

153

4900

146

329

208

375

235

235

178

60

252

253

161

53

154

144

120

82

432

214

169

161

4800

155

313

206

350

232

222

175

60

266

250

160

63

138

142

125

86

405

222

176

161

4700

143

324

192

355

232

218

173

62

254

260

165

63

135

157

122

89

396

221

149

165

4600

139

316

198

355

246

216

173

61

282

263

175

62

132

190

128

88

390

230

162

164

4500

120

259

175

350

241

198

164

64

251

246

166

63

121

235

117

92

153

167

Class

A

A

A

B

B

A

A

A

A

A

A

7

A

7

A

A

A

A

B

A

-ocr page 34-

Observation No.

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

Date

28Nov.
1932

29Nov.

29Nov.

29Nov

29Nov.

29Nov

29Nov.

29Nov.

29Nov.

30Nov.

30Nov.

30Nov. :

30Nov.

30Nov.

IDec.

IDec.

IDec.

IDec.

IDec.

IDec.

Time

15.25

10.00

10.30

12.10

12.20

13.50

14.00

15.00

15.05

10.00

12.00

12.10

14.00

14.50

10.00

10.10

12.05

13.55

14.05

15.10

Solar altitude

15°

16°

20°

20°

15°

14°

14°

19°

19°

14°

10°

14°

15°

19°

15°

14°

Total or indirect

I

T

I

T

1

T

I

T

I

T

T

1

T

T

T

I

T

T

I

I

Cloudiness

3

1

1

1

1

1

1

2

3

fog

4

4

8

8

3

3

4

1

1

7

Type of clouds
Height of clouds

stcu
1500

ci

ci

ast

ast

ast

ast

St
1000

St
1000

ast

ast

St
2000

St
2000

cu
1500

cu
1500

stcu
1500

St

St

St
600

Horizon

m.cl.

foggy

foggy

m.cl.

m.cl.

v.hazy

v.hazy

v.hazy

v.hazy

inv.

m.hazy

m.hazy

hazy

hazy

hazy

hazy

cl.

cl.

cl.

m.cl.

Remarks

Wavelength

6800

35

262

111

359

108

200

99

81

66

219

360

197

150

73

370

173

435

206

75

-

6600

25

291

107

333

96

177

80

68

53

242

370

191

122

69

380

207

460

216

74

30

6400

21,6

281

113

343

97

192

91

68

50

259

370

188

118

64

370

207

450

203

83

29

6200

25

310

111

317

99

178

86

64

50

269

410

202

114

56

375

211

455

190

84

31

6000

23,6

312

120

355

114

172

92

64

49

244

420

212

120

59

360

221

465

197

90

30

5800

25

315

136

392

129

194

103

66

52

244

430

228

129

60

375

237

470

203

101

32

5600

27

317

141

392

134

201

114

72

52

247

410

218

124

67

370

249

480

201

108

37

5400

32

342

159

415

155

225

129

78

58

370

445

230

132

69

380

255

480

219

128

43

5200

33

361

187

420

172

229

138

81

65

330

460

250

137

72

400

288

525

237

137

41

5000

35

346

201

414

188

230

150

86

68

300

435

265

141

74

415

298

490

240

143

40

4900

36

328

214

410

193

230

154

88

71

281

430

253

143

80

380

280

455

231

158

40

4800

37

322

212

398

200

221

153

90

71

260

400

253

147

87

350

258

345

228

157

44

4700

35

345

219

400

210

218

156

90

64

241

380

236

140

79

350

272

410

218

161

44

4600

39

330

250

410

221

220

161

87

79

301

365

243

148

80

350

260

340

210

163

44

4500

_

290

246

370

213

200

151

80

65

231

340

243

127

76

340

256

185

162

47

Class

A

A

A

A

A

A

A

A

B

7

A

A

A

A

A

A

B

A

A

B

-ocr page 35-

Observation No.

281

282

283

284

285

286

287

288

289

290

291

292

293

291

295

296

297

298

299

300

Date

2Dec.

2Dec.

2 Dec.

2Dec.

6Dec.

6Dec.

6 Dec.

7Dec.

7Dec.

7Dec.

8Dec.

8 Dec.

8 Dec.

8 Dec.

9 Dec.

9 Dec.

9 Dec.

9 Dec.

3Dec. 1

1 Dec.

1932

Time

12.05

12.20

14.00

15.00

12.00

14.00

15.00

12.10

14.00

15.10

10.00

12.00

14.00

14.05

10.10

10.15

12.15

14.05

15.05

10.00

Solar altitude

19°

18°

14°

18°

13°

18°

13°

12°

18°

13°

11°

12°

13°

17°

12°

12°

Total or indirect

T

I

T

T

T

T

T

T

T

T

T

T

T

I

T

I

1

I

I

T

Cloudiness

2

2

7

9

fog

fog

fog

8

10

8

9

9

2

2

5

5

4

3

1

4

Type of clouds
Height of clouds

ast

ast

ast

ast

cu
600

stcu
800

stcu
500

cu
1500

stcu
1500

cu
1500

cu
1500

cu

800

cu
800

stcu
800

cu

600

st
1000

stcu
1000

Horizon

hazy

hazy

hazy

v.hazy

m.cl.

hazy

hazy

cl.

m.cl.

v.cl.

v.cl.

m.cl.

m.cl.

cl.

cl.

cl.

hazy

Remarks

Wavelength

6800

291

124

129

173

59

355?

36

112

166

207

85

283

81

193

103

254

6600

295

119

139

35

137

65

16,2

172

31

18,3

93

151

194

69

295

85

194

88

49

250

6400

279

119

137

26

131

69

21,6

173

33

20,3

101

160

190

78

302

91

201

82

50

254

6200

276

131

121

24

131-

71

18,1

178

36

19,3

95

158

180

79

290

96

177

79

44

259

6000

288

143

129

24

139

62

19,9

192

36

16,0

100

167

187

88

300

103

183

80

44

250

5800

305

158

133

25

149

64

23,1

240

37

16,8

105

171

176

101

310

116

212

98

49

269

5600

291

160

137

25

160

72

27

251

46

18,3

110

173

201

106

300

135

218

104

50

268

5400

315

180

147

29

174

84

28

302

47

21,7

128

187

222

119

315

145

237

115

60

280

5200

320

197

159

30

192

84

30

330

50

23,3

117

191

232

133

310

165

266

129

65

257

5000

330

210

162

33

191

88

33

330

52

25

143

197

211

140

330

173

278

139

65

235

(83)

4900

330

219

155

32

205

89

33

305

47

25

146

193

219

146

330

174

277

142

67

235

4800

320

217

156

34

202

96

35

290

48

26

145

198

219

146

320

182

256

133

66

196

4700

310

216

152

33

191

91

39

271

42

28

148

201

210

143

300

182

271

142

69

221

4600

320

218

147

35

190

105

45

256

36

27

139

197

214

143

310

183

277

147

72

196

4500

310

206

149

30

160

71

43

232

33

136

183

210

148

280

166

219

133

63

170

Class

A

A

A

A

A

B

B

A

A

B

B

A

A

A

A

B

B

B

B

A

-ocr page 36-

Observation No.

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

Date

11 Dec.

11 Dec.

11 Dec.

11 Dec.

11 Dec.

12Dec.

12Dec.

13Dec.

13Dec.

13Dec.

13 Dec.

14Dec.

14Dec.

14 Dec.

14 Dec.

15 Dec.

15 Dec.

18Dec.

18Dec.

18Dec.

1932

Time

10.15

12.20

12.30

14.05

15.15

9.30

9.45

10.00

12.05

14.20

15.10

10.10

12.10

14.00

15.00

10.00

14.00

12.00

12.20

14.00

Solar altitude

13°

17°

17°

11°

10°

11°

11°

16°

13°

16°

12°

12°

12°

15°

15°

10°

Total or indirect

I

T

1

T

T

T

I

T

T

T

T

T

T

T

T

T

T

T

1

1

Cloudiness

4

4

4

8

8

10

10

9

10

10

10

10

10

10

10

10

10

2

2

7

Type of clouds
Height of clouds

stcu
1000

ast

ast

St

2500

stcu
1500

stcu

stcu

stcu

st
1000

st
100

St

50

St
100

St
100

St
100

St
100

St

50-20

St

50

cist

cist

cist

Horizon

hazy

hazy

hazy

v.hazy

v.hazy

v.hazy

v.hazy

hazy

v.hazy

inv.

inv.

v.hazy

v.hazy

v.hazy

v.hazy

inv.

drizzle

m.hazy

m.hazy

m.hazy

Remarks

bell glass

Wavelength

133

6800

149

280

158

113

_

292

161

59

173

25

81

80

277

110

6600

144

301

151

97

33

287

158

56

156

27

10,3

32

65

29

12,0

59

24,0

282

139

117

6400

151

292

151

104

27

228

157

57

167

27

7,8

43

61

23,5

10,2

50

27

271

136

118

6200

151

305

144

95

28

226

151

56

147

27

6,0

40

63

26

7,7

49

27

272

136

112

6000

155

310

144

104

26

230

157

67

149

20,3

6,3

40

63

27

8,9

49

22,2

278

151

121

5800

168

320

149

110

36

228

166

73

160

19,6

5,9

40

60

26

8,5

50

27

300

161

131

5600

169

320

138

112

28

230

171

72

157

19,0

6,5

46

61

26

11,0

46

26

288

171

133

5400

183

345

142

125

33

248

187

83

171

19,7

6,8

51

60

30

10,6

48

28

300

190

147

5200

196

355

151

124

34

258

192

84

190

20,3

7,4

50

66

30

12,0

38

32

320

209

148

5000

198

345

159

129

38

252

210

91

205

21,2

6,8

52

70

31

13,4

38

35

320

211

156

4900

215

330

161

140

36

250

200

94

215

21,5

7,6

53

70

31

12,7

33

325

222

153

4800

191

325

166

139

36

237

196

101

220

21,0

7,4

51

63

30

14,7

33

300

220

153

4700

204

(109)

315

167

140

38

226

190

109

212

25

8,3

50

60

31

14,7

35

305

218

157

4600

197

330

167

149

49

224

192

117

213

27

60

64

34

320

241

137

4500

203

297

158

138

34

202

181

109

185

26

60

35

310

224

139

Class

A

A

A

A

A

A

A

A

A

7

A

B

B

B

A

7

B

A

A

A

-ocr page 37-

Observation No.
Date

Time

Solar altitude

Total or indirect

Cloudiness

Type of clouds
Height of clouds

Horizon

Remarks

321

18Dec.
1932

15.00

1

3

ast
m.hazy

322
19Dec.

12.05
15°
T
1

cicu
m.hazy

323
19 Dec.

12.15
10°
1
1

cicu
m.hazy

324
19Dec.

14.05

T
2

ast
m.cl.

325
19Dec.

14.15

1

2

ast
m.cl.

326
19Dec.

15.00
14°
T
2

ast
m.cl.

327
20Dec.

11.00

15°

T

10

stcu
1500

m.cl.

328
20Dec.

12.15

10°

1

8

stcu
1500

hazy

329
20Dec.

14.00

1

6

stcu
1500

v.hazy

330
20 Dec.

15.00

1

3

stcu
1500

v.hazy

331

16Jan.
1933

12.00

18°

T

0

hazy

332
16Jan.

12.20
18°
I
3
ci

hazy

333
16 Jan.

14.00

13°

T

9

stcu
1500

v.hazy

334
16Ian.

14.20
12°
I
10
st

hazy

335
18]an.

12.00
19°
1?
10
st

hazy

336
19]an.

14.00
14°

7
10
st

300
v.hazy

337
19Jan.

15.00

7
10
st

300
inv.

338
20]an.

10.20
16°
T
10
st

300
inv.

339

20)an.

12.00
20°
T
10
stcu

300

340

20Jan.

14.00
15°
T
10
st

500

Wavelength

6800

45

277

150

162

94

65

153

122

113

78

320

174

103

62

186

43

20,0

62

76

49

6600

39

290

139

177

72

76

111

99

109

59

330

179

93

47

174

39

15,7

44

74

54

6400

41

269

137

162

80

65

131

94

119

59

325

196

98

47

169

40

13,8

45

68

45

6200

38

279

133

153

78

61

129

98

120

56

310

178

93

78

175

40

15,1

46

72

47

6000

39

306

152

132

89

61

121

95

137

59

315

171

96

52

191

39

15,6

46

87

44

5800

45

307

170

166

99

62

128

110

141

63

325

185

101

61

190

41

16,7

52

84

51

5600

46

302

176

160

95

64

122

110

142

67

330

193

107

64

184

44

18,0

62

83

53

5400

48

321

191

182

113

71

133

120

151

72

365

220

117

70

181

46

20,0

67

93

54

5200

51

348

212

191

121

74

131

130

169

75

395

231

117

80

194

50

22,5

67

94

56

5000

52

360

220

187

129

78

139

139

171

79

380

246

123

60

193

52

22,8

70

101

55

4900

55

352

229

189

134

78

138

141

171

79

370

231

123

64

198

52

23,5

68

105

48

4800

56

326

224

188

133

76

136

139

161

74

365

218

118

66

200

53

23,1

70

105

45

4700

58

330

226

182

132

76

134

148

154

80

200

120

80

210

54

24,1

83

103

46

4600

58

328

239

172

150

76

130

147

153

86

230

131

80

190

57

25

80

103

34

4500

51

310

219

178

138

70

118

141

142

83

228

112

80

162

50

25

81

89

31

Class

A

A

A

A

B

B

B

B

A

B

A

B

A

C

A

A

A

B

B

B

-ocr page 38-

Observation No.

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

Date

20 Jan.
1933

23 Jan.

23 Jan.

23 Jan.

23 Jan.

24 Jan.

24 Jan.

24Jan.

24 Jan.

25 Jan.

25 Jan.

25 Jan.

25 Jan.

26 Jan.

26 Jan.

26 Jan.

26 Jan.

31 Jan.

31 Jan.

2Febr.

Time

15.00

10.00

12.00

14.00

15.10

9.45

12.10

14.00

15.10

10.10

10.20

12.10

12.20

10.15

10.30

12.15

12.30

12.10

12.20

12.15

Solar altitude

15°

20°

15°

14°

20°

16°

15°

16°

20°

20°

16°

18°

20°

20°

21°

21°

21°

Total or indirect

T

7

T

I

7

T

T

T

T

T

I

T

I

T

I

T

1

T

1

I

Cloudiness

10

10

10

10

10

9-10

8

5

7

0

0

0

0

7

7

0

0

3

3

3

Type of clouds
Height of clouds

St

500

St

500

St

500

St

500

st

500

st
800

stcu

1500

stcu
1500

stcu
1500

cu
1500

cu
1500

cist

cist

cu
300

Horizon

m.cl.

cl.

m.cl.

cl.

si.hazy

si.hazy

si.hazy

si.hazy

hazy

hazy

hazy

hazy

m.cl.

m.cl.

cl.

Remarks

snow
bell glass

snow

snow

snow

snow

S3rae
snow on
ground

some
snow on
ground

some
snow on
ground

some
snow on
ground

Wavelength

6800

22,5

106

193

158

59

218

320

181

120

368

112

435

110

122

11.0

410

153

470

280

249

6600

24,0

101

174

123

41

198

325

163

111

407

116

430

105

134

11,2

410

150

445

252

240

6400

20,3

98

177

117

40

170

281

155

110

392

118

445

112

162

17,0

410

162

435

232

219

6200

20,9

98

175

113

39

177

272

151

100

407

123

475

116

152

18,1

410

153

460

252

215

6000

20,2

110

187

123

36

182

275

172

96

425

137

490

142

167

11,7

430

175

450

269

202

5800

20,0

106

195

131

39

195

285

225

100

675

150

510

150

168

12,1

445

180

475

271

222

5600

20,0

118

197

140

48

199

273

227

106

650

166

535

166

172

14,9

440

193

490

268

234

5400

21,3

127

210

145

50

237

290

222

117

615

171

550

190

168

27

465

218

470

310

257

5200

23,0

131

220

150

51

256

330

230

120

715

(138)

532
610

192

580

210

167

25

465

241

460

330

284

5000
4900

21,8
21,7

142
127

230
235

149
146

54
76

255
279

360
355

252
247

131
131

232

233

560
(1011
550

240
248

191

210

30
29

450
390

252
257

460

(79)

480

350
345

215?
300

4800

23,5

126

230

157

77

276

350

222

130

570

210

540

250

191

39

415

(78)

395

260

480

340

285

4700

23,1

134

221

164

83

265

330

222

131

610

239

530

258

226

40

253

480

350

295

4600

23,1

136

177

164

83

287

370

236

140

585

270

555

270

222

41

375

260

470

355

330

4500

128

203

140

90

280

360

227

130

520

275

480

270

203

37

365

250

435

315

Class

A

A

A

A

7

A

A

A

A

C

A

A

A

B

C?

A

A

A

B

A

-ocr page 39-

Observation No.

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

Date

9Fbr.

lOFbr.

lOFbr.

lOFbr.

lOFbr,

14Fbr.

HFbr.

15Fbr.

15Fbr.

16Fbr.

IbFbr.

16Fbr.

16Fbr,

16Fbr.

17Fbr.

17Fbr,

17Fbr.

17Fbr,

17Fbr,

20Fbr.

1933

Time

12.15

10.00

12.05

14.00

15.05

14.00

16.05

14.00

16.00

10.00

14.00

14,20

15,45

15,55

10.00

12.00

12.10

14,05

16,00

14.00

Solar altitude

24°

20°

25°

20°

13°

21°

21°

21°

21°

20°

11°

22°

28°

28°

22°

23°

Total or indirect

T

T

T

T

T

7

1

1

1

T

T

1

T

I

I

T

I

T

T

I

Cloudiness

10

10

10

10

10

5

4

6

2

8

0

0

0

0

3

4

4

4

7

2

Type of clouds
Height of clouds

stcu
600

stcu

300

stcu
300

stcu
600

st
1000

stcu
800

stcu
1500

stcu
800

cu
1500

cu

st
600

stcu
600

stcu
600

stcu
600

cu
600

cu
1500

Horizon

m.cl.

hazy

hazy

cl.

cl.

cl.

m.cl.

v.cl.

cl.

hazy

cl.

cl.

cl.

cl.

v.hazy

cl.

cl.

cl.

cl.

v.cl.

Remarks

some
rain
bellglass

Wavelength

6800

400

85

315

101

34

249

173

272

124

645

560

143

280

110

380

795

360

590

300

266

6600

380

74

325

89

34

260

159

261

105

715

515

134

263

95

370

800

360

630

305

280

6400

350

72

320

101

33

240

143

251

103

740

515

141

246

98

360

800

320

620

290

240

6200

355

80

340

102

37

270

136

271

111

740

560

144

262

106

385

850

310

685

288

269

6000

330

83

340

104

32

270

140

250

115,

735

570

163

256

112

385

935

310

685

277

275

5800

330

86

350

114

40

285

132

280

115

725

620

185

254

119

390

950

310

760

264

305

5600

320

86

340

122

47

305

141

335

135

770

635

196

270

142

420

990

288

800

272

340

5400

330

88

350

123

50

335

147

315

146

775

630

220

281

155

435

935

320

775

280

345

5200

310

84

370

120

55

340

148

330

152

820

665

247

295

169

450

960

(350)

975
910

305

805

320

405

5000
4900

250
212

81
76

370
325

132
132

66
65

355
340

160
150

335
320

171
167

850

(H4)

490

645

(108)
560

272
280

313
293

192
188

450

(152)

510

320
320

805

(300)

690

290
335

390
380

4800

209

72

260

128

69

340

144

320

169

405

585

268

262

184

510

875

340

276

380

4700

192

67

222

122

62

340

142

310

168

370

560

270

260

179

510

870

355

385

380

4600

197

69

191

122

53

(59)

340

140

325

163

410

575

265

252

195

525

880

345

390

370

4500

167

60

134

101

57

304

133

320

151

420

500

280

253

191

445

720

330

224

Class

B

B

7

A

B

A

A

A

A

7

A

A

A

A

A

A

A

A

B

A

-ocr page 40-

Observation No.

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

Date

20Fbr.
1933

21Fbr.

21Fbr.

21Fbr.

21Fbr.

22Fbr.

22Fbr.

22Fbr.

22Fbr.

22Fbr.

24Fbr.

24Fbr.

24Fbr.

24Fbr.

27Fbr.

27Fbr.

27Fbr.

28Fbr.

28Fbr.

28Fbr.

Time

16.00

10.00

12.00

14.00

16.00

10.00

10.15

12.10

14.00

16.00

12.10

14.10

14.20

16.00

10.00

14.00

16.00

12.00

14.15

16.00

Solar altitude

10°

23°

29°

23°

10°

23°

24°

29°

23°

10°

30°

24°

23°

11°

25°

25°

11°

30°

24°

11°

Total or indirect

I

7

I

I

1

T

1

T

1

I

1

T

1

T

T

T

T

T

T

I

Cloudiness

8

10

9

6

6

0

0

8

8

4

8

3

3

2

10

9

9

6

7

9

Type of clouds
Height of clouds

stcu
1000

st
200

St
600

stcu

700

stcu
700

stcu
300

stcu

300

stcu
1500

stcu
1500

stcu
1500

stcu
1500

acu

St
1000

ast
2500

ast

cu
1000

stcu

1500

ast

Horizon

v.cl.

inv.

inv.

m.hazy

m.hazy

cl.

cl.

v.hazy

v.hazy

hazy

m.cl.

cl.

cl.

m.cl.

m.cl.

m.cl.

m.cl.

m.cl.

m.cl.

hazy

Remarks

fresh
snow

snow

snow
on
ground

snow
on
ground

Wavelength

6800

186

400

430

280

211

585

186

470

330

149

230

590

211

103

245

370

56

425

241

211

6600

189

440

430

280

202

585

163

500

340

139

257

615

212

90

290

370

61

430

256

203

6400

169

390

450

305

179

590

179

480

340

121

249

5'60

211

87

325

370

57

430

241

196

6200

170

385

515

340

180

610

205

525

340

128

269

575

222

86

335

390

61

440

257

195

6000

168

360

530

345

182

610

210

500

350

125

281

595

219

88

345

395

56

420

239

194

5800

173

345

610

350

192

605

215

555

370

132

301

615

255

96

370

390

58

440

247

195

5600

177

395

630

370

199

645

224

595

400

140

247

630

274

100

360

420

54

445

260

197

5400

187

440

620

380

210

670

264

580

400

151

339

650

300

117

385

420

60

450

261

208

5200

197

500

660

410

218

690

279

600

440

161

378

700

320

134

410

450

58

495

297

212

5000
4900

198
190

480

500

645

(H3)
600

400

(171)

445

230
210

645

(142)

585

295
281

575

(227)

545

455
420

169
157

328
635

•—■

350
345

143
139

425
415

425
440

59
61

500

(234)

530

300
279

207
196

4800
4700

178
163

460
480

630
625

445
380

218
210

605
605

280
278

530
495

390
390

168
161

242
247

—■

350
350

137
143

380
410

380

(132)

430

62
60

500
500

261
269

194
191

4600

173

610

485

209

595

265

490

375

159

266

370

150

375

60

520

299

196

4500

149

500

465

190

530

263

505

350

149

275

340

141

330

58

410

287

174

Class

A

?

B

B

A

A

A

A

A

A

7

?

A

A

A

A

A

A

A

A

-ocr page 41-

Observation No.

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

Date

IMch
1933

IMch

IMch

IMch

IMch

IMch

2Mch

2Mch

2Mch

3Mch

3Mch

6Mch

6Mch

6Mch

6Mch

7Mch

7Mch

7Mch

7Mch

8Mch

Time

10.00

12.00

12.10

14.00

14.10

16.00

10.10

12.00

14.00

16.15

10.00

12.00

14.00

16.00

12.00

14.00

16.00

16.10

10.10

Solar altitude

25°

31°

31°

25°

25°

11°

27°

31°

26°

10°

28°

32°

28°

13°

33°

28°

13°

10°

29°

Total or indirect

T

T

1

T

I

I

1

I

I

T

T

I

T

T

T

1

T

T

1

T

Cloudiness

10

1

1

1

1

6

7

9

7

8

9

5

8

10

10

6

4

2

2

2

Type of clouds
Height of clouds

stcu
1000

acu

acu

ast

ast

ast

stcu
400

stcu
800

cu
800

stcu
600

stcu
600

stcu
2500

stcu
1500

st
800

stcu
800

cu
1200

cu

800

cu
1500

cu
1500

cu
1000

Horizon

hazy

m.cl.

m.cl.

m.cl.

m.cl.

m.hazy

hazy

m.cl.

m.cl.

m.cl.

m.cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

hazy

Remarks

measured
w.
reducer

Wavelength

6800

370

675

269

580

221

180

430

455

390

370

125

207

400

249

92

545

460

420

153

315

6600

305

685

276

590

243

174

465

455

420

365

111

222

395

252

80

530

455

420

159

375

6400

300

675

281

600

237

162

480

445

390

325

100

220

420

237

72

490

430

390

141

365

6200

292

735

310

620

259

151

445

485

410

335

95

256

425

240

68

520

510

410

153

400

6000

280

695

320

650

271

164

495

500

410

305

90

289

440

300,

63

505

530

385

155

405

5800

280

805

340

650

282

154

560

530

430

335

87

310

470

325

68

550

550

410

168

450

5600

288

790

360

670

305

181

650

525

460

330

96

335

480

315

76

595

530

385

189

460

5400

287

780

380

695

340

187

720

535

465

310

102

365

520

305

78

610

550

440

202

520

5200

310

805

435

670

360

194

605

540

490

335

98

410

(136)

415
435
430
495

530

340

76

620

560

470

227

550

5000
4900
4800
4700

305
(101)
265

283

272

805

(295)

790
720
700

420

(165)

420
410

400

675
645
510

600

380
370
365

380

221
214
209

208

570
520
445

520

505
500

(170)

500

495

460
440
445

430

345
350
335
320

102
88
94
93

515

(201)
450

480

460

340
340
325
325

(103)

340

81

75

76
79

620

(234)

615
590
575

560
550

(177)

510
465

465

(156)

435
415
405

252
247
240
246

465
470
465

(153)

550

4600

325

670

400

600

390

218

500

430

305

92

465

445

80

605

410

415

260

605

4500

260

625

355

540

360

198

455

276

91

435

420

325

64

485

440

370

249

545

Class

B

A

A

A

A

A

7

A

A

A

A

A

A

B

7

A

B

A

A

B

-ocr page 42-

Observation No.

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Date

8Mch
1933

8Mch

8Mch

8Mch

8Mch

9Mch

9Mch

9Mch

9Mch

lOMch

lOMch

lOMch

lOMch

lOMch

lOMch

lOMch

lOMch

13Mch

13Mch

13Mch

Time

Solar altitude

Total or indirect

Cloudiness

Type of clouds
Height of clouds

12.00
33°
I
3

cu
1500

14.00
29°
T
1

cu
2000

14.10
27°
I
1

cu
2000

16,10
12°
T
1

cu
2000

16.25
10°
I
1

cu
2000

10,00

30°

I

9

st
600

12,00

35°

I

9

stcu
800

14,00

29°

I

9

stcu
1000

16,05

12°

I

9

stcu
2000

10.00
30°
I
3

ast

10.15
31°
T
3

ast

11,50
34°
I
1

ast

12,10
34°
T
1

ast

14,00
30°
I
1

ast

14,20
28°
T
1

ast

16.05
14°
I
1

ast

16,15
12°
T
1

ast

10,00
30°
T
0

10,20
31°
1
0

12.15

36°
1
0

Horizon
Remarks

hazy

m.cl.

m.cl.

m.cl.

m,cl.

hazy

hazy

hazy

hazy

v.hazy

v.hazy

m,hazy

m.hazy

m.cl.

m,cl.

m.hazy

m,hazy

hazy

hazy

hazy

Wavelength

6800

435

675

248

310

113

250

370

390

249

276

735

209

775

179

650

185

254

790

182

204

6600

425

705

237

305

114

257

385

400

227

300

760

222

810

163

675

159

249

875

236

243

6400

420

655

235

275

116

239

390

415

237

285

750

218

850

187

680

164

235

825

212

254

6200

455

775

242

285

122

250

410

450

216

310

800

232

920

196

735

170

271

870

265

265

6000

460

760

241

281

126

241

430

420

204

330

805

239

910

204

715

169

212

895

260

281

5800

485

830

265

280

138

271

470

460

211

340

865

271

975

263

750

182

238

965

267

305

5600

525

770

247

298

123

289

530

440

199

370

845

296

1000

242

790

190

234

980

291

320

5400

560

800

299

305

163

315

600

440

208

370

820

291

980

272

785

209

240

890

335

350

5200

610

780

345

310

172

325

570

450
(151)
470

450

209

390

840

330

950

296

775

211

241

975

360

380

5000
4900

580

(196)

555

745

(282)
730

350
355

315
275

190
177

355
375

560

(202)
555

221
(68)
225

405
385

850

(151)

735

380
365

950

(169)

930

330

(117)

320

770

(HI)

700

230
214

243
224

(171)

990
930

370
360

405
380

4800
4700

535
530

725
700

345

(128)
345

282
257

178
188

410

(157)

390

500
510

455
470

218
215

385
390

790
780

350
390

(131)

410

905
910

345
360

670
710

210
197

220
219

930
940

(132)

405
390

380

(138)

390

4600

480

620

395

262

181

415

485

480

202

400

840

900

355

710

219

210

930

400

375

4500

415

505

385

242

158

365

460

480

166

795

410

790

365

595

200

166

950

415

310

Class

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

B

A

A

A

-ocr page 43-

Observation No.

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

Date

13Mch
1933

13Mch

13Mch

13Mch

13Mch

14Mch

HMch

HMch

HMch

15Mch

15Mch

15Mch

15Mch

16Mch

16Mch

16Mch

17Mch

17Mch

17Mch

20Mch

Time

12.30

14.00

14.10

16.00

16.20

12.00

12.10

14.00

16.00

10.00

12.00

14.00

16.00

10.00

12.00

13.55

10.00

14.00

16.00

12.10

Solar altitude

35°

30°

29°

15°

11°

36°

35°

30°

15°

30°

36°

30°

16°

31°

37°

31°

31°

31°

17°

39°

Total or indirect

T

T

I

T

I

T

I

I

T

T

T

T

I

T

T

T

T

T

T

T

Cloudiness

0

0

0

0

0

1

1

5

9

10

9

10

8

10

10

10

10

10

10

9

Type of clouds
Height of clouds

st
1500

st

1500

st
800

st

1500

stcu
600

stcu
600

stcu
400

stcu
600

stcu
500

stcu
1000

stcu
1000

stcu
1000

stcu
1000

stcu
800

stcu
1000

Horizon

hazy

cl.

cl.

cl.

cl.

hazy

hazy

hazy

hazy

hazy

hazy

v.hazy

v.hazy

v.hazy

m.cl.

cl.

cl.

m.cl.

m.cl.

m.cl.

Remarks

1. rain
be'l glass

rain
bell glass

Wavelength

6800

830

645

156

420

161

590

355

360

161

129

430

495

219

390

310

139

160

155

34

610

6600

865

760

163

410

151

635

390

370

163

133

440

480

212

380

390

109

174

145

31

590

6400

865

780

173

395

157

620

385

370

»

155

156

420

480

207

370

440

103

246

156

25

560

6200

920

790

188

400

153 ■

645

405

390

167

177

535

500

220

405

440

129

290

156

31

620

6000

930

810

200

385

162

645

380

390

162.

187

595

480

210

380

390

131

216

148

26

620

5800

965

840

220

410

172

665

410

420

170

176

705

500

200

450

425

142

211

177

22,9

660

5600

1020

910

237

405

182

680

430

435

181

197

740

485

195

490

340

149

193

204

28

930

5400

945

865

273

400

204

680

445

455

187

234

820

485

188

530

400

172

210

226

35

860

5200

985
(182)
930

870

825

865

300

415

210

690

455

455

207

204

810

520

194

520

390

210

250

241

33

1010

5000
4900
4800

900

(159)
860

765

315

(125)

305
315

410
390
375

231
229
235

670
(122)
620

595

455

(169)

435
425

460

(157)

425
460

216

(74)

219
236

231
(100)
185

185

740

(252)

700
705

500
480

(151)

510

207
197
194

380

(176)

258
310

320
296

(117)

241

213
220
243

350
310
291

280
275
278

31
29
34

4700

745

780

340

360

229

575

425

445

233

197

720

515

191

330

216

248

330

265

35

4600

730

715

330

370

248

615

405

435

257

216

810

520

185

310

182

243

264

41

4500

730

715

276

219

465

375

365

300

212

675

415

167

232

177

196

165

246

34

Class

A

A

A

A

A

A

A

A

A

B

B

A

B

7

B

B

7

A

C

7

-ocr page 44-

Observation No.

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

Date

20Mch
1933

23Mch

23Mch

23Mch

23Mch

23Mch

23Mch

23Mch

24Mch

24Mch

28Mch

28Mch

28Mch

29Mch

29Mch

29Mch

29Mch

29Mch

29Mch

29Mch

Time

14.00

10.05

10.30

11.55

12.10

14.05

16.00

16.20

10.00

10.40

10.00

10.25

12.00

10.00

10.20

12.05

14.00

14.20

16.00

16.30

Solar altitude

33°

34°

36°

40°

40°

34°

20°

15°

34°

36°

35°

38°

41°

36°

37°

42°

36°

33°

20°

15°

Total or indirect

T

I

T

I

T

T

I

T

T

I

I

T

T

I

T

I

T

I

T

I

Cloudiness

9

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

Type of clouds
Height of clouds

stcu
1000

ci

ci

ci

ci

ci

ci

ci

cist

cist

St

2500

St

2500

St

2500

Horizon

m.cl.

v.cl.

v.cl.

v.cl.

v.cl.

v.cl.

v.cl.

v.cl.

v.cl.

v.cl.

cl.

cl.

cl.

m.cl.

m.cl.

cl.

cl.

cl.

cl.

cl.

Remarks

Wavelength

6800

495

167

900

Ill

940

830

96

600

900

161

157

905

935

146

905

123

725

118

500

110

6600

495

161

930

137

960

850

116

585

930

179

167

945

965

161

965

128

675

132

475

137

6400

500

181

940

141

980

840

117

600

910

155

179

940

990

179

930

132

705

147

455

132

6200

505

182

1020

149

1110

885

112

635

920

166

199

1020

1020

175

1080

149

770

151

485

151

6000

555

191

1040

167

1100

865

122

660

1040

191

211

1060

1090

197

975

168

785

168

505

155

5800

550

215

1090

200

1140

940

151

790

1100

206

221

1140

1030

220

1130

180

860

186

475

173

5600

460

233

1120

199

1195

980

158

780

1005

210

243

1160

320

1130

201

830

206

495

184

5400

460

250

1100

202

900

910

182

730

1070

248

264

1100

355

1100

230

820

218

505

201

5200
5000
4900

510
495

(163)

490

277
300
296

1180
(194)

1205
1095

250
288
298

820
540

(192)

540

980
920

(169)

845

192
234
220

775
590

1020
(187)
1100

1110

269
299
299

296

310

320
(122)
335

330

1140

(194)
1120

1135

282
325

(117)

325

1160

(210)
1100

1010

223

226
(72)

205

880
(147)

845
775

218
226
231

520
505
475

212
237
217

4800
4700

300
305

1110
1170

240
309

525
535

870
830

222
220

1035
1000

325
315

1110
1110

:

325
370

930
910

226
242

770
770

242
241

450

(143)

460

226
238

4600

320

1160

330

430

820

244

900

330

385

1115

390

840

248

735

248

472

252

4500

1020

243

350

660

230

835

290

385

900

370

840

216

645

232

242

Class

B

A

A

C

7

A

A

B

A

A

A

A

A

A

B

A

A

A

A

-ocr page 45-

Observation No.

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Date

30Mch
1933

30Mch

30Mch

30Mch

3 IMch

3 IMch

3 IMch

3 IMch

3Apr.

3Apr.

3Apr.

3Apr.

4Apr.

4Apr.

4Apr.

4Apr.

5Apr.

5Apr.

5Apr.

5Apr.

Time

10.00

12.00

14.00

16.00

10.00

12.00

14.00

16.00

10.00

12.00

14.00

16.05

10.00

12.00

14.00

16.00

10.00

12.00

14.00

16.00

Solar altitude

36°

42°

36°

21°

36°

42°

36°

21°

38°

43°

38°

21°

38°

44°

38°

23°

38°

44°

38°

23°

Total or indirect

T

1

T

T

1

1

1

I

T

T

T

T

T

T

T

T

T

T

I

T

Cloudiness

10

10

10

10

7

6

8

4

10

10

10

10-7

10

10

10

10

10

10

7

10

Type of clouds
Height of clouds

st
100

stcu
600

stcu
600

stcu
800

cu
500

cu
1000

cu
1000

cu

1500

stcu
500

stcu
500

stcu
800

stcu
1500

stcu
300

st

300

st
600

st
600

st

300

st

500

stcu
600

st

400

Horizon

hazy

v.hazy

v.hazy

v.hazy

hazy

m cl.

cl.

cl.

v.hazy

v.hazy

cl.

cl.

v.hazy

v.hazy

hazy

hazy

v.hazy

v.hazy

hazy

hazy

Remarks

measured
w.
reducer

bell
glass

bell
glass

Wavelength

6800

212

193

110

158

520

430

330

197

234

390

269

280

143

186

470

208

200

196

475

182

6600

239

189

lie

161

425

400

325

236

191

360

271

237

171

172

445

218

194

185

450

169

6400

193

182

113

158

400

415

281

242

197

400

281

249

167

170

450

232

190

181

420

167

6200

163

200

110

168

350

420

320

266

200

460

320

251

162

180

465

235

185

174

435

165

6000

160

194

109

169

345

455

325

256

160

495

325

250

167

177

455

225

175

167

'440

166

5800

185

217

109

180

495

505

340

246

170

505

360

271

170

197

450

244

178

189

455

174

5600

199

220

102

197

515

525

340

260

181

575

370

265

160

206

515

224

195

196

460

181

5400

228

272

106

213

505

560

355

256

217

615

380

268

163

207

530

212

210

207

490

188

5200

210

252

106

217

540

570

350

270

231

615

385

250

181

216

530

210

217

525

192

5000
4900
4800

210
193
163

262
241
220

100
90
94

230
230
213

490
480
525

590

(215)

560
595

340
410
410

283
283
280

261
250

(77)

250

635
(220)
605

575

385
355
360

284
283
325

207
163
130

240
230
237

560

(196)

570
570

230
178
181

210
194

(69)

189

231
233
242

520

(189)

485
520

210
194
188

4700

179

212

94

216

550

570

445

(172)

415

283

250

550

375

380

167

242

590

173

236

241

505

181

4600

188

199

96

206

720

585

287

298

550

400

375

174

257

560

202

270

263

485

173

4500

200

187

84

190

820

495

390

290

311

525

227

232

550

202

214

242

475

164

Class

?

A

A

A

7

A

B

A

B

A

A

B

C

A

A

B

B

A

A

A

-ocr page 46-

Observation No.

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Date

6 Apr.
1933

6Apr.

6Apr.

6Apr.

lOApr.

OApr.

OApr.

lApr.

lApr.

11 Apr.

11 Apr.

11 Apr.

12Apr,

12Apr.

12 Apr.

13Apr.

13Apr.

24Apr.

26Apr. ;

26Apr.

Time

10.00

10.20

12.00

12.20

10.00

12.00

14.00

10.00

10.20

12.00

13.30

16.05

10.10

12.00

16.20

10.00

10.25

10.00

10.00

12.00

Solar altitude

39°

40°

44°

44°

40°

46°

40°

40°

42°

47°

43°

23°

42°

47°

21°

40°

41°

44°

44°

52°

Total or indirect

I

T

I

T

T

T

T

I

T

1

1

I

I

I

T

I

T

T

T

T

Cloudiness

4

4

4

3

10

10

10

4

4

6

9

4

7

7

10

4

4

3

10

9

Type of clouds
Height of clouds

stcu
1000

stcu
1000

cu
1000

cu
1000

st

300

st

300

stcu
600

cist

cist

cist

ast

ast

acu

acu

ast

cu
800

cu

800

ast

st

300

stcu
800

Horizon

hazy

hazy

cl.

cl.

hazy

v.hazy

v.hazy

hazy

hazy

hazy

hazy

v.hazy

v.hazy

v.hazy

hazy

v.cl.

v.cl.

m.hazy

v.hazy

hazy

Remarks

bell
glass

Wavelength

6800

420

905

297

905

219

330

500

310

740

480

500

266

565

445

237

259

955

985

250

405

6600

420

780

300

880

198

310

590

310

805

445

505

271

560

420

200

237

1050

950

252

360

6400

400

955

305

955

179

350

600

335

850

490

545

274

565

435

221

218

1040

945

254

425

6200

435

1010

355

1000

200

430

620

365

915

535

600

292

600

515

212

227

1130

1010

265

555

6000

425

1060

355

1040

219

530

535

360

805

525

580

281

580

480

204

238

1130

1030

275

520

5800

485

1110

410

1120

249

630

560

400

730

630

615

291

645

550

220

300

1200

1130

300

545

5600

490

1160

430

1180

298

680

485

415

740

700

605

282

635

585

220

330

1210

1130

325

565

5400

505

1100

490

1110

315

620

465

450

785

700

575

320

605

590

220

340

1210

1120

315

575

5200
5000
4900
4800

550
575

(203)

530
530

1160
(212)
1150

1100

1020

490
510
485

(176)

470

1180
(210)
1180

1115

1080

330
385
355

(114)

360

625

590
(200)
590

590

375
330
360
420

(159)

450

520
555

(197)

510

530

785

740

780
(160)
895

735
735

(274)

695
650

575
525
525

(174)

550

320
315
315
300

595
570

(191)

570
515

630

620
(220)
585

555

214
229
210

215

350
370
370

(136)

375

1260
(215)

1275
1220
1215

1130
(210)
1190

1080

1080

280
252
229
201

565
672

(193)

805

4700

500

1050

480

1080

350

590

545

895

635

545

320

510

555

212

405

1215

1100

236

905

4600

520

1080

495

1120

330

660

465

570

910

645

525

320

525

560

207

415

1240

1080

276

910

4500

560

865

475

1010

330

540

440

540

910

635

510

320

515

480

200

380

1045

1080

280

905

Class

A

A

A

A

A

B

7

A

7

A

A

A

A

A

A

B

A

A

7

7

-ocr page 47-

Observation No.

521

522

523

524

525

526

527

528

529

1

530

531

532

533

534

535

536

537

538

539

540

Date

26Apr.
1933

26Apr.

26Apr.

27Apr.

27Apr.

27Apr.

27Apr.

27Apr.

28 Apr.

28 Apr.

28Apr.

28Apr.

IMay

IMay

2May

2May

2May

2May

2May

3May

Time

14.00

16.00

16.15

10.00

10.15

12.00

14.00

16.00

10.00

1200

14.00

16.00

10.00

12.00

10.00

12.00

14.00

14.07

16.00

10.00

Souar altitude

46°

28°

26°

46°

47°

52°

46°

29°

45°

51°

45°

29°

46°

53°

47°

54°

47°

46°

30°

47°

Total or indirect

T

I

T

T

I

I

I

T

I

I

I

1

I

I

1

I

T

1

1

T

Cloudiness

5

3

3

1

1

6

6

9

9

9

9

10

10

5

8

1

2

2

7

3

Type of clouds
Height of clouds

cu
2000

cu
2000

cu
2000

cu

2000

cu

2003

stcu
1500

stcu
2000

st

2500

stcu
800

stcu
800

stcu
1500

st
2000

200

cu
800

cu
600

cu

1000

cist

cist

cist

ast

Horizon

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

m.hazy

m.hazy

cl.'

m.cl.

v.hazy

hazy

hazy

m.cl.

cl.

cl.

m.cl.

m.cl.

Remarks

Wavelength

6800

242

410

660

975

238

320

315

231

435

365

530

280

580

410

640

315

720

310

310

890

6600

300

360

650

1010

220

390

360

218

470

370

535

288

540

440

650

340

680

315

290

780

6400

435

370

660

1090

232

415

310

228

370

335

580

275

680

445

620

320

680

310

300

700

6200

420

680

1150

246 -

460

340

227

365

365

600

270

680

510

670

380

710

340

325

770

6000

280

400

680

1110

192

445

350

221

385

360

600

270

650

540

560

380

870

370

320

890

5800

310

425

740

1200

280

470

390

230

460

390

620

280

730

550

570

405

970

425

355

1410

5600

320

445

770

1180

300

445

405

227

515

410

660

288

770

630

605

455

1050

450

375

1540

5400

355

480

760

1170

335

480

425

230

520

440

680

300

740

630

620

465

1210

500

400

1430

(550)

5200

355

505

755

1280

350

500

440

236

540

475

700

310

620

660

640

530

1090

(189)

500

405

1480

5000
4900
4800

385
370
360

490

500
(182)
475

780

(284)

750
690

(212)
1340

1130

1350

380

268
(129)

392

590
(222)
585

600

450
460
450

248
236
239

540
565

(243)

595

505
510

(177)

550

725

(2601
680

670

310
320
300

700

(243)

685
600

660

(249)

640

655
630

(230)

605

545
545

(172)

550

1100
1040
1060

500

485
(168)
530

420
415
440

1280
860
870

4700

370

460

655

1340

440

585

(212)
490

244

580

510

640

300

615

560

550

605

920

505

470

(150)

900

4600

370

445

660

1450

445

615

515

212

285

500

670

315

685

635

655

560

940

565

475

820

4500

_

415

610

1140

470

560

208

625

570

640

310

540

580

580

575

825

495

470

690

Class

C

A

A

B

B

B

A

A

B

A

A

A

B

A

B

A

A

A

A

7

-ocr page 48-

Observation No.

541

542

543

544

545

546

547

548

549

550

551

552

553

Date

3May
1933

3May

3May

3May

3May

4May

4 May

4May

5May

5May

5 May

5May

5May

Time

12.00

12.10

14.00

14.10

16.00

10.00

14.00

16.00

10.00

10.15

12.00

14.00

16.00

Solar altitude

54°

54°

47°

45°

30°

47°

47°

30°

48°

49°

55°

48°

30°

Total or indirect

I

T

T

I

I

I

I

I

I

T

I

I

I

Cloudiness

5

5

6

6

9

10

8

4

5

5

6

8

7

Type of clouds
Height of clouds

ast

ast

acu

acu

ast

stcu
800

stcu
800

cu

1500

cist

cist

cu
1500

stcu
1500

ast

Horizon
Remarks

m.cl.

m.cl.

cl.

cl.

cl.

hazy

hazy

m.cl.

hazy

hazy

cl.

cl.

cl.

Wavelength

6800

330

975

925

365

380

360

465

234

500

890

530

350

390

6600

310

965

930

340

335

355

450

250

465

820

495

320

400

6400

330

990

975

365

315

345

480

242

495

895

520

370

415

6200

370

1110

1030

420

330

350

500

290

520

975

560

340

465

6000

360

1060

1020

430

315

350

475

335

515

1000

575

315

455

5800

400

1180

1120

480

340

400

560

380

615

1020

625

335

515

5600

425

1190

1080

475

335

430

550

425

595

970

645

360

525

5400

445

1070

1010

500

330

460

560

470

665

1000

660

360

545

5200
5000
4900

460
480
670

(238)

1180
(198)

1150
1120

1170

(190)
1180

1110

530
530
515

325
320
350

485
455

(153)

385

575
565
615

490

510

480
(160)
460

430

650
605
635

1120

1100

(210)
1025

690

695

(262)
640

370
375
365

535
540
520

4800
4700

500

1150
1110

1130
1120

505

(184)

480

285
281

385
350

580
(220)
600

600
(238)

605

1090
1095

655
635

355
(155)
405

505

(190)

500

4600

530

1130

1090

530

268

340

590

480

600

1050

690

410

515

4500

515

1060

940

505

248

243

560

450

545

1000

630

390

530

Class

A

A

A

A

B

A

A

A

A

A

A

B

A

554
8 May

10.00

48°

I

10

St
200

v.hazy

rain
bell glass

555
8May

12.00

56°

T

10

stcu
300

hazy

bell
glass

556
8May

14.00

48°

T

10

stcu
400

m.cl.

557
8May

16.00

31°

T

10

stcu
400

m.cl.

558
9May

10.00

48°

T

10

stcu
400

v.hazy

rain
bell glass

559
9May

12.00

56°

T

10

stcu
500

hazy

rain
bell glass

560
9May

14.00

48°

T

10

stcu
800

cl.

212
M3
112

92
79
88

93
93
90
84
75

175
154
172
187
181
199
203
228
272
248
230
220
170
162
210
B

209
180
172
183
187
235
330
385
440
490
415
335
320
350
320

7

173
118
123
116
108
118
118

137
127

138
150
170
183
214
196
B

98
138
124
98

94

95
94
98

185
246
257
245
355

(142)

460
415

7

85
72
88

86
84
94

103
113
118
124
132
142
166
182
158
A

237
200
187
178
173
192
224
270
248
217
200
201
143
176
110
B

-ocr page 49-

Observation No.
Date

Time

Solar altitude

Total or indirect

Cloudiness

Type of clouds
Height of clouds

Horizon

561

9May
1933

16.00

31°

T

6

cu
1500

cl.

562
lOMay

10.00

49°

I

10

cu
900

m.cl.

1 rain
bellglass

563
lOMay

12.00

56°

T

10

cu
500

m.cl.

1. rain
bell glass

564
lOMay

14.00
49°
T
10

cu

500

cl.

1. rain
bellglass

565
lOMay

16.00

31°

T

10

cu
300

cl.

1. rain
bellglass

566
11 May

10.00

49°

I

9

stcu
600

m.cl.

I. rain
bellglass

567
11 May

12.00
56°
1
7

cu
1500

cl.

bell
glass

Remarks

241
246
254
262
300
310
320
340
355
380
370
365
360
380

275
230
207
216
230
260
297
400
535
620
650
595

(H8)

580
510
395
A

425
335
320
273
255
249
220
189
192

249

250
360
485

(138)

485
420

7

215

187

206

244

281

340

325

380

410

465

485
(118)
520

525

590

620

A

153
112
101
101
121
151
165
194
223
232
201
199
211
219
184
B

405
455
470
505
520
580
620
700
700
520
690

(183)

720
710
740
710
A

185
209
190
166
200
206
225
230
252
245
264
280
232
202
B

Wavelength
6800
6600
6400
6200
6000
5800
5600
5400
5200
5000
4900
4800
4700
4600
4500
Class

568

569

570

571

572

573

574

575

576

577

578

579

580

11 May

12May

12May

15May

15May

15May

15May

16May

16May

16May

16May

16May

17May

14.00

lO.OC

14.00

9.00

11.00

13.00

15.00

9.00

11.00

13.00

13.10

15.00

10.00

49°

49°

49°

41°

56°

56°

41°

41°

56°

56°

54°

41°

49°

I

1

I

T

I

I

I

T

I

I

T

1

I

8

7

9

10

10

9

6

9

7

6

6

7

10

cu
800

stcu
1500

stcu
1200

stcu
800

stcu
800

stcu
800

cu
800

stcu
1200

stcu
1000

stcu
1500

stcu
1000

stcu
1500

stcu
2000

cl.

cl.

m.cl.

bell
glass

m.cl.

rain
bellglass

m.cl.

rain
bellglass

cl.

cl.

m.cl.

cl.

cl.

cl.

cl.

m.cl.

bell
glass

340

600

450

560

550

625

400

410

415

505

1160

455

715

315

535

500

520

540

635

435

410

430

520

1130

445

630

305

560

695

500

535

620

460

425

450

530

1080

460

620

320

620

670

560

570

580

460

560

480

565

1130

485

670

325

705

680

605

555

565

490

560

490

580

1120

505

655

340

755

710

670

570

610

510

660

560

630

1210

510

730

345

740

725

460

585

640

515

705

600

640

1170

540

775

365
325

820
820

740
720

485
485

590
535

665
620

540
565

750
765

610
655

645
655

1220

(230)

1140

545
565

780
830

335
330

710

(253)

785

720

(232)
680

520
490

730

(246)

770

600
(228)
685

600
(198)

540

785

(314)

580

630

(224)

595

645

(273)

575

1130
940

525
515

845

(258)
880

320

(98)

340

700
685

440
345

575
(122)
505

730
600

590
520

375
310

465

610
625

570
540

970
1050

(188)
510

540

850
825

290

330

555

570

585

280

620

570

990

565

870

240

297

380

510

475

300

535

465

865

475

850

A

A

?

B

B

B

7

7

A

A

B

A

A

-ocr page 50-

Observation No.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

Date

17 May
1933

17May

17May

18May

19May

19May

19May

19May

19May

19May

22May

22May

221Vlay

22May

22Uay

22May

22!Vlay

22Mav

23May

23May

Time

12.00

14.00

15.30

8.30

8.45

10.00

10.20

12.00

12.20

14.10

8.45

9.00

10.10

10.30

12.15

12.30

14.20

14.35

8.40

8.50

Solar altitude

58°

50°

37°

35°

36°

49°

51°

57°

56°

48°

40°

42°

51°

52°

57°

57°

47°

46°

39°

40°

Total or indirect

I

I

I

I

1

I

T

I

T

T

I

T

I

T

I

T

I

T

T

I

Cloudiness

10

10

9

4

1

3

4

5

5

4

0

0

0

0

1

1

2

2

1

1

Type of clouds
Height of clouds

st
1500

stcu
1500

st

cu
800

cu
1000

cu
1000

cu

1000

cu

1500

cu
1500

cu
2000

acu

acu

stcu

stcu

cist

cist

Horizon

m.cl.

cl.

cl.

cl.

m.cl.

m.cl.

m.cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

d.

d.

d.

Remarks

bell
glass

1. rain
bellglass

Wavelength

6800

295

345

370

330

310

475

1220

480

1130

350

212

1075

186

985

241

1010

300

865

1080

167

6600

290

380

390

320

330

440

1270

470

1180

290

217

1050

198

1110

207

975

290

800

1120

182

6400

325

360

435

290

320

455

1320

520

1180

310

226

1080

209

1130

in

995

310

850

1105

179

6200

350

420

470

310

350

520

1400

525

1280

310

258

1120

230

1240

259

1095

340

950

1200

182

6000

330

460

555

320

370

520

1400

560

1270

340

278

1120

244

1190

271

1120

350

965

1230

213

5800

380

435

555

345

410

590

1500

630

1290

355

306

1230

266

1295

300

1190

390

1060

1310

230

5600

400

485

540

395

410

640

1470

620

590

370

307

1280

288

1310

315

1210

410

1070

1310

247

5400
5200
5000
4900
4800
4700

445
435
460
435
440

(141)

460

515
495

505

500
(182)
530

505

630

680

735
(208)
750

710

685

465
500
535
535

(227)

535
530

455

490

520

520
(206)
510

540

660
710
695

(119)
680

640

680

1440

(264)

1430
1550
1460
1410
1340

660
670
680
615

(237)

605
565

580
1350

(203)

1520
1420
1420
1290

385
410
440
415
420

(153)

445

370

395

420

415

430
(166)
415

1240

(232)

1175
1220
1215
1185
1175

335
350
380
375
380

(H3)

410

1270
1270

(209)

1500?
1235
1260
1285

355
370
415
400
410

(163)

400

1130

1180
(202)
1190

1130

1120

1090

445
465
460
460

(84)

490
515

1070
1090

(190)

1105
1090
1060
1105

1280
(244)
1260

1340

1230

1240

1280

281
292
330
310
330
340

4600

460

480

720

560

580

820

1380

605

1440

485

475

1235

445

1385

420

1180

590

930

1370

(143)

335

4500

445

505

690

515

535

805

535

1330

490

475

1085

445

1340

380

1130

570

860

1300

310

Class

A

A

A

A

A

B

A

A

A

A

A

A

A

A

A

A

A

A

A

A

-ocr page 51-

Observation No.

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

Date

23IVIay
1933

23May

23May

23May

23May

23May

24May

24May

24May

24May

24May

26May

261VIay

26May

29May

29May

29May

29May

29May

29May

Time

10.10

10.30

12.15

12.30

14.10

14.20

8.45

10.00

12.20

14.00

15.35

8.35

10.10

12.10

8.45

10.10

10.30

12.20

12.40

14.10

Solar altitude

52°

53°

59°

58°

49°

49°

41°

51°

59°

50°

39°

39°

51°

59°

40°

52°

54°

59°

58°

49°

Total or indirect

I

T

I

T

I

T

1

T

T

I

I

1

T

1

1

1

T

1

T

I

Cloudiness

0

0

0

0

1

1

10

10

9

7

4

5

8

8

3

1

1

2

2

3

Type of clouds
Height of clouds

cist

cist

cist

st
1000

stcu

ast

acu

cu
800

cu
1000

cu

1000

stcu
1000

stcu
1000

stcu
1000

cu
2000

cu
2000

cist

Horizon

cl.

cl.

cl.

cl.

cl.

cl.

m.cl.

m.cl.

m.cl.

cl.

cl.

cl.

m.cl.

m.cl.

m.cl.

cl.

cl.

cl.

cl.

cl.

Remarks

rain
bell glass

Wavelength

6800

167

1080

143

1000

129

815

410

265

530

555

292

580

360

665

540

365

1160

325

920

325

6600

141

1060

122

1000

123

875

350

254

500

550

310

550

350

650

565

380

1060

330

895

330

6400

164

1090

143

1040

135

930

350

254

500

600

320

555

390

665

580

400

1090

340

945

335

6200

176

1180

149

1110

134'

935

380

253

520

625

340

590

420

725

630

475

1200

380

1040

380

6000

187

1205

162

1130

149

960

350

247

515

635

345

570

390

715

615

510

1205

405

1070

410

5800

209

1305

188

1250

176

1030

380

256

580

690

390

645

420

840

665

590

1295

445

1160

440

5600

222

1315

201

1250

189

1070

370

264

610

760

405

660

400

865

665

585

1290

470

1170

470

5400
5200

257
281

1250

(237)

1230

212
236

1205
1270

(217)

1380
1355
1235
1275
1300

218
229

1000
1080

380
380

265
248

625
680

745
755

440
465

675
695

385
370

705
620

665
715

600
615

1260

(2351

1240

515
535

1295
1160

520
530

5000
4900
4800
4700
4600

310

310

320

330
(116)
400

1270
1200
1235
1180
1230

274
286
288
325

(113)

450

274
273
280
295
300

1160
(206)
1060

1080

1080

1120

380
365
340
335
335

(136)

325

251
242
217
221
233

635
650

(233)

630
615
620

745

(290)

690
710
675
670

485

480

470
(161)
525

510

685

(250)

665
645
610
580

390
590

(233)

635
725

620
(213)

615
660
610
655

740

(305)

700
655
680
680

610
605

(229)
610

575

600

1235
1105
1185
1105
1105

565
575

(209)

565
570
595

1200
(186)
1160

1170

1180

1100

565

(213)

560
560
570
580

4500

390

1150

420

1195

310

1200

194

645

610

500

510

640

610

600

1050

540

1080

520

Class

A

A

A

A

A

A

A

A

A

A

A

A

7

7

A

A

A

A

A

A

-ocr page 52-

Observation No.

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

Date

29May
1933

29Magt;

30May

30May

30May

30May

31 May

31 May

31 May

31 May

31 May

ljune

1 June

lJune

lJune

lJune

IJune

2June

2June

2 June

Time

14.30

15.35

8.30

10.00

14.00

15.30

8.40

8.45

10.05

12.00

14.00

9.35

10.00

12.05

12.25

14.05

15.30

8.30

8.40

10.00

Solar altitude

48°

39°

37°

51°

51°

39°

39°

41°

52°

60°

52°

40°

51°

61°

60°

51°

40°

40°

41°

51°

Total or indirect

T

I

I

I

T

T

T

1

I

I

I

T

T

I

T

1

1

T

I

I

Cloudiness

3

3

5

7

7

8

7

7

6

7

5

7

9

9

5

7

5

0

0

1

Type of clouds
Height of clouds

cist

cist

cu
800

cu

cu

cu

900

cu

cu

cu
1000

cu

cu
1500

cu
1000

stcu
1500

stcu
1500

stcu
2000

stcu
2000

cu
800

cist

Horizon
Remarks

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

measured

w.
reducer

m.hazy

m.hazy

Wavelength

6800

830

300

380

325

280

405

480

490

400

590

350

410

450

560

1070

515

230

1320

245

240

6600

860

330

385

340

290

410

435

480

415

600

360

410

410

590

1210

460

236

1380

240

251

6400

860

330

415

355

320

425

445

480

455

600

360

405

410

640

1310

465

249

1360

258

268

6200

915

380

460

425

360

470

420

485

520

670

390

430

445

700

1410

515

300

1355

281

297

6000

915

380

465

450

380

465

465

500

525

685

400

430

460

740

1370

595

315

1420

293

315

5800

975

415

510

520

410

510

510

555

615

735

430

465

515

790

1490

540

365

1500

340

330

5600

1020

460

495

540

415

540

545

580

695

800

445

465

515

825

1400

525

380

1430

365

360

5400

1170

480

535

530

420

570

570

580
(110)
545

705

780

470

480

575

785

1410

530

425

1470

291

410

5200

1020
(171)

500

565

530

410

610

620

745

825

465

(95)

470

585

760

(171)
1260

520

460

1470

425

430

5000
4900

1090
1060

515
525

(196)

580

(209)

580

560
625

(233)

420
420

_

:

645
645

790

(283)

740

830
(280)
805

455
445

470
485

605
(218)
610

775

(255)

730

1410
1540

510
485

485
500

1480

(258)

1450

450
440

460
465

4800

1060

520

610

570

430
(160)
455

670

670

780

390

(131)

395

520

590

730

1720

(161)
535

(96)

495

1420

440

435

4700

970

485

625

550

-

740

650

735

525

565

690

1560

520

495

1415

(97)

485

(169)

445

4600

900

515

670

545

520

645

665

775

415

510

590

715

1570

540

485

1540

445

460

4500

800

520

625

570

480

625

585

750

435

470

560

720

1160

485

485

1320

445

415

Class

A

A

A

A

A

7

7

A

A

A

A

A

A

A

?

B

A

A

A

A

-ocr page 53-

Observation No.

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

Date

2June
1933

2June

2 June

7 June

7June

7 June

7June

7June

8 June

8June

8June

8June

8]une

8June

8June

9June

9June

9June

9June

Time

10.20

14.15

14.30

8.35

10.15

10.35

14.00

14.15

8.35

8.55

10.15

10.30

14.05

14.20

15.35

8.35

10.07

12.15

14.07

Solar altitude

53°

50°

48°

41°

54°

56°

53°

51°

41°

43°

54°

56°

52°

50°

40°

41°

52°

62°

52°

Total or indirect

T

I

T

I

I

T

I

T

I

T

I

T

I

T

T

T

1

I

T

Cloudiness

1

1

1

0

0

0

4

4

0

0

I

2

1

1

1

9

7

9

2

Type of clouds

cist

acu

acu

cu
1000

cu
1000

cist

cist

st

1500

Height of clouds

cu
1500

cu
1500

cu
500

ast

ast

cu

1500

Horizon

m.hazy

m.cl.

m.cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl.

cl

cl.

cl.

Remarks

Wavelength

6800

1170

211

855

280

276

1030

310

935

215

1110

181

1170

161

865

745

420

560

570

845

6600

1110

216

865

281

267

1030

320

950

216

1110

141

1140

130

865

760

385

505

585

890

6400

1130

247

920

281

285

1110

325

980

215

1120

170

1190

137

930

770

385

565

580

920

6200

1210

256

1000

325

325

1190

370

1060

235

1210

198

1290

162

1010

810

425

690

635

1020

6000

1210

271

955

330

320

1200

370

1045

235

1220

197

1220

160

980

820

390

695

610

1020

5800

1300

300

1070

350

370

1300

415

1120

267

1330

224

1400

190

1100

895

430

775

725

1090

5600

1320

330

1070

410

405

1330

450

1140

289

1380

251

1370

237

1130

930

420

775

770

1100

5400

1300

(251)

365

1000

440

440

1330

500

1110

320

1400

279

1230

240

1170

910

440

725

770

1120

5200
5000

1300
1320

385
410

1170

(189)

1170

480
490

480
505

1380

(253)

1420

510
520

1190
(210)
1210

340
380

(254)

1415
1500

305
330

(230)

1230
1225

250
298

1210
(190)
1280

940

(167)

970

435
430

760
725

735
725

1120

(390)
1180

4900

1220

405

1140

520

(190)

490

(192)

1340

535

1110

380

1420

330

1170

281

1150

955

415

(288)
685

(290)
680

1090

4800

1250

405

(H4)

430

1120

530

505

1340

530

1090

370

(H8)

395

1360

350

1190

295

1150

890

410

670

700

1065

4700

1240

1180

530

490

1330

510

1085

1260

(137)

365

1220

295

1200

850

(140)

450

735

730

()8J)

1055

4600

1220

480

1130

520

475

1320

520

1170

425

1270

435

1110

310

1250

880

450

725

680

1100

4500

1090

450

1120

510

465

1160

550

850

380

1170

370

1100

340

1080

790

420

665

700

1055

Class

A

A

A

A

A

A

A

B

A

A

A

A

A

A

A

A

A

A

A

660
9June

14.30
50°
I
4

ast
cl.

249

263

289

330

330

385

405

440

460

480

500
(181)
525

540

550

-ocr page 54-

Observation No.

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

Date

9June
1933

12June

12June

12June

13June

13June

13June

13June

njune

Hjune

HJune

HJune

15June

15June

15June

15June

15June

15June

16June

16June

Time

1530

10.00

12.25

14.00

8.45

10.07

12.15

14.10

15.30

10.10

14.07

14.20

8.35

10.05

10.30

14.05

14.20

15.30

10.00

10.10

Solar altitude

40°

53°

60°

53°

42°

55°

60°

52°

41°

53°

52°

50°

40°

54°

56°

53°

50°

41°

54°

55°

Total or indirect

I

T

T

T

1

I

1

1

I

1

I

T

1

I

T

T

I

1

T

I

Cloudiness

4

10

10

10

10

6

5

2

1

5

4

4

4

4

4

1

1

1

2

2

Type of clouds
Height of clouds

cu
2500

cu

200

cu
200

cu
300

acu

cu
1500

cu
1500

cu
1500

cu
2000

acu

acu

acu

cu
2000

cu

1500

cu
1500

cu
2000

cu
2000

cu
2000

cu
2000

cu
2000

Horizon

cl.

v.hazy

v.hazy

hazy

m.cl.

hazy

cl.

m.cl.

cl.

m.cl.

cl.

cl.

m.cl.

m.cl.

m.cl.

cl.

cl.

cl.

cl.

cl.

Remarks

rain

rain

rain

rapidly
changing

bdUlass

bell glass

bell glass

Wavelength

6800

350

183

183

280

525

440

370

310

212

525

290

1090

380

345

985/

925

HI

173

1110

290

6600

360

134

140

310

525

490

350

310

182

500

280

1030

350

335

1290 i

920

150

153

1140

290

6400

360

156

168

420

450

515

350

310

193

500

300

1120

350

330

1360*
470

990

148

148

1170

320

6200

390

157

179

515

495

525

410

310

230

510

330

1190

400

370

580/

1080

153

172

1270

345

6000

400

147

145

485

525

590

430

325

234

480

330

1140

415

380

1600 i
1460

1040

169

184

1210

340

5800

430

151

155

445

570

645

510

350

273

535

380

1260

505

450

1580

1200

193

210

1300

385

5600

445

168

169

360

490

630

510

370

280

550

400

1290

560

485

1580

1170

208

231

1370

405

5400

470

209

180

335

500

665

505

395

315

565

420

1290

555

520

1580

1140

241

260

1250

430

5200

465

207

180

305

620

680

510

430

340

585

445

(241)

1230

625

525

(280)
1370

1180

260

281

440

5000
4900

450
450

230
230

166
164

315
310

620
(210)
735

670

(250)

650

510
520

(192)

540

450
440

(156)

460

375
355

600
(227)

565

470
480

1270
1140

(125)
680

700

560

(106)
550

635
875

(201)
1180

1130

290
295

305
305

445
470

4800

390

(131)

219

173

335

650

620

370

(146)

340

585

(184)

490

1090

660

580

7301

1150

296

310

_

(90)

415

4700

395

210

154

360

830

655

540

470

585

460

1050

665

610

1250!(
870;

1120

305

315

520

4600

415

245

166

385

780

595

575

485

405

640

515

1010

690

675

1240S
1060

1070

(123)

300

(113)

375

560

4500

435

223

142

370

570

420

335

530

495

940

600

655

925

980

300

340

_

525

Class

B

B

B

?

B?

\

?

A

B

A

A

A

A

A

7

A

A

B

B

-ocr page 55-

Observation No.

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

Date

16]une
1933

16]une

16]une

19]une

19June

20June

20June

21 June

21 June

21 June

23June

23June

23June

26June

26June

26June

27June

27June

27Iune

28June

Time

12.00

13.50

14.10

10.07

15.07

10.00

12.10

10.00

14.00

14.15

10.00

12.00

14.10

10.00

12.00

14.00

10.00

12.15

14.00

10.00

Solar altitude

62°

55°

53°

54°

44°

54°

62°

55°

54°

53°

55°

62°

54°

54°

62°

54°

53°

61°

53°

53°

Total or indirect

I

T

1

T

T

1

T

1

I

T

T

T

T

T

T

T

T

T

1

T

Cloudiness

8

4

4

9

10

10-6

9

7

5

5

10

10

10

10

10

10

7

10

9

10

Type of clouds
Height of clouds

cu
2000

cu
2000

cu
2000

cu

200

cu
500

cu
300

cu
600

cu

800

cu
1000

cu
1000

st

500

st

1500

st

1500

stcu
1000

stcu
1000

stcu
600

cu

800

cu
1000

cu
800

stcu
600

Horizon

cl.

cl.

cl.

cl.

hazy

hazy

hazy

cl.

cl.

cl.

hazy

m.cl.

cl.

hazy

hazy

hazy

hazy

m.cl.

m.cl.

hazy

Remarks

occ.rain
bellglass

l.rain
bellglass

occ.rain
bellglass

occ.rain
bell glass

measured

w.
reducer

occ.rain
bellglass

rain
bellglass

Wavelength

6800

520

1020

262

430

385

173

258

660

410

360

445

665

435

500

460

470

580

725

635

286

6600

470

985

260

345

395

108

252

575

385

395

465

675

405

530

440

420

455

845

600

310

6400

485

1010

278

262

435

85

252

580

375

460

465

670

425

520

370

450

465

820

585

320

6200

520

1150

298

360

480

113

278

600

410

520

530

720

420

570

310

475

510

860

660

350

6000

525

1120

310

395

470

175

267

515

410

530

495

680

430

565

241

465

505

835

630

350

5800

595

1230

350

430

520

236

305

445

450

560

560

750

455

600

251

485

565

940

700

410

5600

600

1210

370

285

545

300

325

410

475

580

590

720

450

585

221

480

580

860

710

410

5400

635

1220

410

207

570

355

370

385

510

545

565

745

440

525

233

500

530

830

690

410

5200

645

1260

(220)
1295

1190

1205

1135

1080

445

202

550

370

380

340

555

505

575

765

440

485

260

495

560

820

680

390

5000
4900
4800
'1700
4600

690
(126)
710

805

685

725

480

465
(86)
475

485

540

200
176
155
154
166

585
550

(158)

505
500
490

410
420
400

(H7)

390
410

410
405
460
445

(192)

445

405
385
420

(143)

445

440

580
535

(290)

550
540
570

465

450
(161)
510

500

535

560
515

(177)

490
500
505

790
(280)
760

740

740

770

460

(127)

395
420
410
430

425
405
395

(131)

390
420

350
440
500

(187)

530
565

470
430
330
340

(129)

355

540

485
(181)
540

510

600

840

(310)

765
675
620
610

600
(213)

560
600
635
705

385
360
360

(96)

365
370

4500

665

1060

485

225

440

385

470

460

510

525

475

705

390

385

510

340

485

650

680

350

Class

B

A

A

7

A

A

A

7

A

7

A

A

A

A

7

B

B

B

C

A

-ocr page 56-

Observation No.

701

702

703

704

705

706

Date

ljuly
1933

3Iuly

3Iuly

4July

6JuIy

6July

Time

10.00

10.30

12.00

10.00

8.20

8.40

Solar altitude

53°

53°

60°

52°

39°

40°

Total or indirect

T

I

I

T

I

T

Cloudiness

1

1-2

7

10

4

4

Type of clouds
Height of clouds

cist

cist

cist

stcu
1000

cu
1500

cu
1500

Horizon

cl.

cl.

cl.

cl.

hazy

hazy

Remarks

Wavelength

6800

1080

137

410

465

510

1010

6600

1190

132

410

495

490

6400

1200

136

400

520

480

1190

6200

1210

149

450

520

510

6000

1250

161

430

480

530

1310

5800

1310

185

475

465

540

5600

1400

195

525

440

650

1390

5400
5200

1310

(240)

1400

225
232

545
545

425
405

610
655

1370

5000

1220

275

560

380

620
(228)
575

610

565

565

(227)

4900
4800
4700
4600

1160
1110
1190
1200

290
284
300

(114)

340

550
(201)
545

530

530

350
380

(137)

390
440

1440
1260

4500

980

320

495

490

540

1150

Class

A

A

A

B

A

A

-ocr page 57-

CHAPTER III.

Systematic treatment of the measurements.

§ 1. The illumination Ml at a certain moment is a function of the
wavelength and our measuring has supplied a number of values for this
function.

If during the interval necessary for each set of measurements, given in
Chapter II, the intensity had remained constant, the curve drawn through
the 15 points obtained in a /, A diagram would indeed represent the
instantaneous illumination as a function of the wavelength. We had to
investigate to what extent a definite condition of the atmosphere and a
definite position of the sun correspond to a characteristic curve. In order
to ascertain this, the various curves obtained were divided into groups, and
we tried to find analytical functions of which the graphs would represent,
to a sufficient approximation, the measured curves.

The coefficients entering into those expressions will then serve as
parameters, so that it should be possible to describe each curve by a
number of parameters. This way of proceeding is justified when the
number of parameters required in this connection is small and the
number of curves to be compared sufficiently great. For the groups of
observations referring to quot;cloudless
skyquot; to quot;s/^g covered skyquot; we succeeded
indeed in finding for each altitude of the sun, a set of parameters,
determining a curve. The mutual differences between the other observations
are, however, so great that the required number of parameters would
become too large with respect to the number of observations carried out,
for the results obtained in this way to be reliable. On this account we
considered for the second group of observations the values of the
illumination for each wavelength separately. This means that we have to
deal with 15 groups of measured quantities. The quantities of each group
were arranged statistically independently of each of the other groups.

§ 2. In the above it was assumed that the results of Chapter II
represent true values of the illumination at a definite moment. This is,
however, not the case. One of the causes of the deviations from these true
values are the unavoidable errors of measuring, already discussed in
Chapter I. The chief cause, however, is the time it takes to obtain one
complete set of measurements; this interval varies between 5 and 15 minutes
and in the meantime the illumination is by no means constant. Fluctuations
may be due to changes in the sun's altitude, to atmospheric conditions, or
to alterations in the measuring apparatus.

-ocr page 58-

The solar altitude can indeed change appreciably in the course of 10
minutes, especially when the sun is low, in which position the influence of
any change in its altitude is at the same time the strongest.

Atmospheric conditions can change very considerably within a short
interval in the case of a clear as well as of a clouded sky. We mention
here, for example, the changes arising from the gradual clouding, from the
increasing thickness of the cloud layer, from the passing of a cloud over
the sun or near it, etc.

Changes in the measuring apparatus are, for example, any damaging or
spoiling of the white surface (by raindrops or by touching it) the moistening
or drying of the bellglass during the measuring, the blurring of the glass
parts of the instruments, further, changes in the effect of the reducers,
either by touching them, or by accidental displacements etc. As for the
pyrometerlamp, this may be considered as constant during a short interval
of time. Indeed, when a new standardizing shows a satisfactory agreement
with the previous one, we may take it for granted, that no changes of any
importance have occurred.

When the observed values of the illumination were plotted against the
wavelength they turned out, in general, not to lie on a smooth curve and
moreover, the deviations from a curve, drawn so as to fit the points as
well as possible, proved greater than one had a right to expect, considering
the precision of the apparatus used.

In order to progress under these conditions, the material was divided
into 4 classes, according to the amount of the differences between the
ordinates representing actually observed values and the corresponding ones
of the averaging curve. Those observations where all (or nearly all) of the
differences were less than 10% were classified under
A — those with
deviations from 10% to 20% under
B and those with deviations from
20 % to 30 % under C. The remaining observations, which were not
reliable were judged unsuitable for a graphical representation.

Now we assume the averaging curve to represent the actual instantane-
ous illumination as a function of the wavelength. Whether this assumption
be true or not, depends on the speed of the changes mentioned above.
These changes can be described chiefly as slow, moderately rapid, and
rapid changes.

Slow changes are, for example, the gradual clouding over of the sky,
the increasing thickness of the cloud layer, the dissolving of a haze, or
the change in the solar altitude. Their characteristic feature is, that during
the measuring, a gradual change makes itself felt, continuing in one
direction only for at least half the time of a measurement. The description
of the conditions is, therefore, often only right for part of the observations.
The graphs referring to them belong mostly to class
A, a few of them to
class
B.

Rapid changes are often more or less periodical in character; their period
is only a small fraction of the time of a measurement. Among these are.

-ocr page 59-

for example, changes with fragmentary clouding and strong wind, with
a bright sky, etc. These changes are at times very considerable and it
may happen even that the illumination shifts rapidly from one extreme
value to the other and back again, without any really intermediate state.
When a cloud passes right over the sun, for example, the illumination will
be at one moment chiefly indirect and the next moment chiefly direct.
Strictly speaking, two curves should be drawn in such cases, each referring
to its own momentary condition. Observations under these circumstances
show sudden and strong fluctuations, of which observ. Nquot;. 675 is a typical
example. Generally speaking, it was hardly possible to obtain definite
results from such cases. The curves found for them belong either to class C
or are of no use at all. Other changes exist in fluctuations about an
intermediate stage. The curves obtained represent then approximately the
illumination belonging to that phase. The fluctuations themselves are in
these cases usually sHghter. This type of curve is to be found in all classes.

Moderately rapid changes; these are mostly periodical, but the period
am9unts now to more than half the measuring interval. These changes
take place, for example, in the case of slowly drifting clouds. The curves
found from observation under these conditions deviate so strongly from
the more usual types, that one can ascribe only a small reliabihty to them.

For those groups, however, which allow of a parametric representation
of their curves, one may assume that the fluctuations will cancel out, so
that the final result represents indeed the instantaneous illumination.
Figs. 2 and 3 show the number of observations belonging to the classes
A, B and C as a function of the degree of covering. Fig. 2 refers to the
total — fig. 3 to the indirect illumination. From the high percentage of curves
in class
A for the lower degrees of cloudiness, we gather that the measured
curves are a satisfactory representation of the momentary state of affairs;
considerable changes are evidently few in number. With an increasing
degree of covering, however, the percentages of the curves belonging to
the classes
B or C increase also, while, at the same time, the curves of
class
A become less rehable as representations of instantaneous lighting.

§ 3. Classification o[ the observations. The following analysis refers
to the Nos. 181 to 706. For these observations the details of the atmospheric
condition were ascertained and put down in a uniform way, which was
not the case for the numbers 1 to 180. The available material is divided
into two principal groups : I.
total illumination, II. indirect illumination.
Each of these groups is subdivided, according to the degree o[ covering

into n subgroups, 0, 1........9, 10. In each of these subgroups the type

of clouds is distinguished and within these groups the solar altitude is taken
to be the only variable. After the determination for each group of a set of
characteristic values, we tried to represent the differences between the
actual and these characteristic values as systematic deviations, due to the
influence of such factors as the height of the clouds, the degree of visibility

-ocr page 60-

-X / \

100
80
80
70
60
50
40
30
20
10

y \

X

/\ /
/ \ /

V

^■^■ONB.

/

\ / bedekkingsgraad.

v'

/

0 i 23^56789 10

Fig. 2. Relative frequency of observations of classes A, B and C as a
function of the degree of covering (Total illumination), (onb. = ?)

100
90

80

70

60

50

40

30

20

/

/

------

\

..'onb,

bedekkinc^:raad

01 23456789 10

Fig. 3. Relative frequency of observations of classes A, B and C as a
function of the degree of covering (Indirect Illumination), (onb. = ?)

-ocr page 61-

of the horizon, the time of the day (forenoon or afternoon), the season
of the year (spring-autumn) etc. In most cases without success, however, the
dispersion of the points proving much more considerable than any assumed
systematic deviations from the characteristic quantities. For the numbers
194 and 533, the type of clouds was not filled in, we put down
cu and
stcu respectively, judging from the type in the observations before and
after these on the same day. We shall show in the following how our
results were obtained for the various separate groups.

Principal Group 1. Total illumination.

Degree of covering 0. Numbers of observations available 21, from
which 20 belong to class
A and the remaining one to class C. The curve
of the latter (No. 350) showed a shape differing from the normal one;
since we were unable to trace this deviation, the observation was rejected.
In NO. 331 the values for / from A = 4900 to 2 = 4500 are missing. The
20 curves are represented analytically by the following equation of the
third degree containing 4 parameters

(1)

Here x is written for A/j^qo: the differences between the values from this
formula and those on the averaging curve originally drawn, amount in the
majority of cases to less than 5 %.

Equation (1) is chosen in such a way that the coefficients can be readily
determined from the curve.
I possesses namely a maximum for x„, = /S—S;
then ƒ„=« 1 783; further for x„.„=/3 S / possesses a minimum,

=a_f 733 and at Xb I has finally a point of flexion where h =

After the determination of the coefficients from these relations the
approximation was checked for x = 45, and if necessary for
x = 68.

We must now find out how the sets of values for a, 7, and 8, found
in this way from the various curves, are related to each other by their
dependence on the solar altitude
q?. If one considers a, 7 and 8 each
separately as a function of
cp, considerable deviations from the best inter-
polated curve are apt to appear. In order, therefore, to ensure the connection
between the various curves, we proceeded as follows.

Let some given specimen of (1) be represented by the set oq, /Jq- and Sq.
We now put the question which values the other parameters must have
to give the best representation of this curve when we give one of them, e.g.
y the value 70
dy. We consider that the best representation which we

Xl

obtain when we assume that J^ (dl)^dx must be a minimum. Here x^

-ocr page 62-

and X2 denote the extreme values of x of the region considered, i.e. in our
case Xx — 68 and :*:2 = 45. We obtain from (1):

For a given value of dy we find in this way the best values of da, d^
and dS. If we imagine y to undergo a finite change, then a, and S must
suffer at the same time changes, which can be found by treating the
equations obtained from the minimum condition (in which
dy is the
independent variable and
da, lt;J/3 and d8 the dependent variables) as
differential equations in
a, y and 8. This way of proceeding leads for
ji:x = 68 and :c2 = 45 to the equations

a— J, (I ^3-^^2-58626) = Co......(2a)

= ........(2b)

y{56^l,-ft) = C2..........(2c)

The values Uq, yo and Sq must also satisfy these equations. The
constants C
q, c^ and C2 are determined by the condition that on substitution
of
a — Uq, ^ = ^Q, y = yo and 8 = Sq the equations (2) shall become
identities. If now a given curve is described by the coefficients
Gq, /Sq, yo
and Sq one can find the best values for three among them, with the aid of
the equations (2), if to the remaining one a certain value is given, differing
from its original value.

To begin with, we plot the value obtained for a, (}, y and 8 respectively
against
(p. Let us suppose, now, that we can draw in one of these graphs a
curve in which several of the points fit fairly well, but that there are a
few points among them, which do not fit in the curve. We can then shift
these points until they come to lie on the curve. The points of the other
graphs, corresponding to these points, will then suffer displacements
satisfying (2). If now, after all these displacements have been effected,
the dispersion has become less, the new points give an indication where to
draw the curve, which owing to the original spreading could not be drawn
with certainty. The curves, found in this way are mutually dependent; the
displacements must, however, be found by trial.

In our case ^ and 8 show the least dispersion. If we represent
as a function of
cp, we obtain a number of points through which an average
curve can be drawn. Since now (i — 8 = this furnishes a check as to
whether we are on the right track with certain displacements. In fig. 4a,
4b,
4c and 4lt;i, a, (i and jc^, y and d are plotted against (p. In fig. 5 i) / is plotted
against
X for 93 = 20°, 40° and 50°, where I is computed with the aid of
the parameters obtained from fig. 4a, 4c and
4d.

1) Page 61.

-ocr page 63-

Much the same result is obtained in a partially different way, which requires less
computing, but does not so easily admit of a clear insight to what is taking place. In the

a

1000

70

go

5c

500

10 20 30 ao 50 60

Fig. 4a.

10 20 30 ao 50 60

Fig. 4b.

0,6-
0,5-
OA-
0,3-
0,2-
0,1 ■

I

lA
12
10
8

10—20—^quot;40 50 wnbsp;10 20 30 ao 50 go

Fig. 4c.

Fig. 4. a, r, rf, x^ as functions of the solar altitude (degree of covering 0).

region considered, all curves for / show a maximum each at its own wavelength
X Now a curve is completely determined when we know i = f • 100 for each value of

m *nbsp;im

}., and the value of . We plot i against q;and choose from the curves so obtained those.

-ocr page 64-

that have their maximum at the same wavelength We determine next the values
which
i as a function of , takes for /. = 6600, 6000, 5000 and 4500 A and compute
further the average value of
i for each value of (f., at the wavelengths just mentioned.
From the data, thus obtained, we construct an average curve i, We do the same for all
groups for which has one and the same value. In this way we shall find for each
separate group one average curve if
i turns out to be independent of lt;ƒ, but more than
one if this is not the case. These curves can be analytically represented in the same
way as above, so that the parameters can be determined as functions of tp, from which
the final curve
i,X is then obtained. Besides, we determine as a function of (p.
The method, just described, is simpler if there is a sufficient number of curves available
having their maximum at the same wavelength because then the dispersion in the
graphs of the parameters as functions of fp is not considerable.

In our present case (cloudless sky) the curves could be divided according to the value
of
lt;p in three groups, namely lt;p lt; 30; 30 =S tp =S 40; lt;pgt; 40. For the first group

= 5200 A (one curve with = 5300 was included); for the second group = 5400
and 5600 A. These were taken together. Finally for the third group = 5200 A again
(one curve with =5000 was included). The position of the centre of gravity in the

lt;p diagram was for the three groups such, that we get:

. ggt;-=30: fp=18; ;.„ = 5200: i(6600) = 87: i(6000) = 90; i(5000)= 97:

i (4500) = 83; 8 points.

30nbsp;40: lt;P = 36; Xm = 5400; i (6600) = 83; i (6000) = 93; i (5000) = 96;

I (4500) = 96: 5 points.

,gt;=-40; g, = 51i =5200; i (6600) = 80; i (6000) = 90; i (5000) = 100:

I (4500) = 92; 7 points.

From these data and those already mentioned above, we obtained the dotted curves of
fig. 5. The agreement between the results of this method and those of the complete
parcunetric treatment is satisfactory; the greatest deviation amounts to 4 %, namely at the
extreme wavelength }. = 6800 A.

Degree of covering 1. All types of clouds are taken together, on the
understanding, that,, if the type proves to have any influence on the
illumination, it will be determined from the systematic deviations. Number
of available observations 31; of these 26 belong to class
A, 4 to class B and
1 was rejected. Fig. 5 shows the curves for a few solar altitudes; they were
computed with the aid of the same parameters a, ^.y and §. Any systematic
influence of the type of clouds could not be detected.

Degree of covering 2. Number of available observations 16; of these
12 belong to class
A, 3 to class B and 1 was rejected. Two observations
were considered to belong to the indirect illumination observations, where
they fit in quite well. Fig. 5 shows the result of the computation.

Degree of covering 3. Number of available observations 12; of these
8 belong to class
A, the remaining 4 were rejected. In this case the
observations are too few in number to admit of a positive statement.

For degrees of covering higher than 2, the treatment explained above
applies no longer, owing to the large differences occurring in the results

-ocr page 65-

of the measuring. An efficient statistical treatment would require an
enormous number of observations which, however, is not available. In the
following we confined ourselves to the comparison between the illuminations
per unit of wavelength (denoted by
I) at each of the 15 measured
wavelengths 1). We take it that / is a function of the degree of covering,
the solar altitude and occasionally the type of clouds. For a definite degree
of covering the data are arranged in groups according to the solar altitude,

namely groups for which 93 = 0 — 5; 5—10;.........; 50 — 55; 55 — 63,

respectively. For each of these groups we compute the logarithmical mean

log/=: — (log/i log/2 ...... log-^n ) for each of the 15 wavelengths

for which the measurements were obtained. Each group furnishes therefore
15 values for log/. The logarithmical mean was chosen because for that
quantity the number of positive and of negative deviations turn out to be
nearly equal, while the average absolute value of the deviations is
practically independent of the solar altitude. The quantity log
I is now
considered to be a function of that for a sufficient number of observations
can be represented by a smooth curve, made to fit as well as possible the
15 points of the observed values. These points are not independent of each
other, since the 15 values, obtained one after the other, belong to
atmospherical conditions and positions of the sun, that are either the same
or closely connected. The curve obtained in this way does not give a
representation of the instantaneous illumination occurring on an average
but only gives the value of the illumination, occurring on an average at
each wavelength separately, without taking into due account the values
occurring at the same time at the other wavelengths.

We shall denote log / for a certain wavelength by adding the wavelength
in brackets. In the following we give the set of values of log / (5600) found
for (p= 10°; 20°; 30°; 40°; 50° and 60° and we give further the amounts
by which log
I (4500), log / (5000), log / (6000) and log / (6800) are
found to surpass, for 9^ = 50°, 30° and 15°, the corresponding values of
log/(5600). The percentages added in brackets refer to the value of
I
in regards /(5600).

We proceed now to give the results obtained in this way for the various
degrees of covering.

Degree of covering 3. The curves representing log /as a function of X
are more or less irregular, log 1 has been determined as a function of cp
for 2 = 4500, 5000, 6000 and 6800 A. Through the point thus found curves
have been drawn, from which mean curves log / (5600) have been
constructed for a number of values of
cp.

We find for log / (5600) resp. 2.36; 2.69; 2.87; 2.95; 2.99; 3.01.

1) The division into the classes A. B, C etc. has no influence on this procedure.

-ocr page 66-

Deviations :

,, = 50°nbsp;(p = 30°nbsp;,7^=15°

;i = 4500 —0,11 (—22%); —0,08 (—17%);nbsp;—0,16(—31%)

2=5000 0,00 ( 0%);nbsp;0,00 ( 0%);nbsp;0,00 ( 0%)

6000 —0,02 (— 5 %);nbsp;—0,02 (— 5 %);nbsp;—0,04 (— 9 %)

2 = 6800 —0,06 (—13 %); —0,04 (— 9 %);nbsp;—0,04 (— 9 %)

The average value of | log / — log I\ computed for all groups of cp together
amounts to 0.10 at 2 = 4500 A and, nearly linearly increases to 0.13 at
2 = 6800 A.

Degrees of covering 4 and 5. In order to obtain a greater number of
observations in one group, these two degrees of covering are considered
together. Any definite systematic deviation cannot be stated. Number of
available observations 21 for degree 4 and 10 for degree 5. The graph
log
I (5600) = I (lt;p) was computed in the same way as for degree of
covering 3.

We found log 7(5600) =2.03; 2.56; 2.84; 2.97; 3.03; 3.06.
Deviations:

^ = 50°nbsp;(p = 30°nbsp;cp = l5°

1nbsp;= 4500 —0,06 (—13%); —0,07 (—15%); —0,02 (—5%)

2nbsp;= 5000 0,02 ( 5%); 0,00 ( 0%); 0,04 ( 10%)

6000 —0,01 (— 2 %); —0,02 (— 5 %); —0,03 (— 7 %)
2^6800 —0,11 (—22 %); —0.17(—33%); —0,05(—11%)

The average value of | log I—log I\ is 0.10 at 2 = 4500 A increases
to 0.16 from
2 = 4500 to 2 = 5500 A and decreases again to 0.15 from
2 = 5500 to 2 = 6800 A. No systematic deviation could be stated in
connection with the type of clouds.

Degrees of covering 6 and 7. Number of available observations 18, of
which 5 belonged to degree 6 and 13 to degree 7. The small number of
observations is due to the rapid changes in the lighting conditions which
make it difficult to measure the total illumination. These changes are of
frequent occurrence when, as is here the case, the sky is partly covered.
We found log/(5600)=1.86; 2.39; 2.68; 2.80; 2.88; 2.90.

Deviations :

^ = 50°nbsp;9^ = 30°nbsp;cp=\5°

2 = 4500 0,00 ( 0%);nbsp;0,00 ( 0%);nbsp; 0.04 ( 10%)

2 = 5000 0,02 ( 5%);nbsp; 0,01 ( 2%);nbsp; 0,04 ( 10%)

2 = 6000 —0,03 (—7 %);nbsp;—0,02 (— 5 %);nbsp;—0,03 (— 7 %)

2 = 6800 —0,04 (—9%);nbsp;—0,07 (—15%);nbsp;—0,12 (—24%)

The average value of | log/ — log /] is 0.13 at 2 = 4500 A and increases
to 0.16 at
2 = 6800 A.

-ocr page 67-

Degree of covering 8. Number of available observations 19. The
maximum of log / = / (2) shifts towards the shorter wavelengths with
decreasing altitude of the sun.

We found: log / (5600) = 1.80; 2.35; 2.64; 2.70; 2.70; 2.69.

Deviations:

^ = 50° cp = 30°nbsp;9^ = 15°

2 = 4500 _0,02(— 5%);nbsp;—0,06(—13%);nbsp; 0,04 ( 10%)

;.= 5000 0,02 ( 5%);nbsp; 0,01 ( 2%);nbsp; 0,04 ( 10%)

2 = 6000 —0,03 (— 7 %);nbsp;—0,02 (— 5 %);nbsp;—0,03 (—7%)

X^emo —0,08(—17%); —0,06(—13%);nbsp;—0,02(— 5%)

The average value of j log ƒ — log/| is 0.14 at 2 = 4500 A, it increases
to 0.19 from 2 = 4500 A to 2 = 5600 A, whereupon it decreases gradually
to 0.13 from 2 = 5600 A to 2 = 6800 A.

Degree of covering 9. Number of available observations 27. The curves
for log/= ƒ (2) show a slightly different shape for the various solar
altitudes.

We found: log ƒ (5600) =1.65; 2.24; 2.59; 2.69; 2.72; 2-73.

Deviations:

9^ = 50°nbsp;lt;p = 30°nbsp;lt;p = 15°

0,10 ( 27%)
0,09 ( 25 %)
—0,04 (—9%)
—0,01 (—2%)

2 = 4500nbsp; 0,06 ( ~15%);nbsp;—0,09 (—19%)

2 = 5000nbsp; 0,03 ( 7%);nbsp;—0,01 (—2%)

2 = 6000nbsp;—0,03 (— 7%);nbsp;—0,01 (—2%)

2=6800nbsp;—0,08 (—17%);nbsp; 0,01 ( 2%)

The average value of |log/ — log/| is 0.10 at 2 = 4500 A, it increases
to 0.13 from 2 = 4500 A to 2 = 5000 A and decreases again to 0.11 from
2 = 5000 A to 2 = 6800 A.

Among the observations 5 belong to the stratus type of clouds, 14 to
stratocumulus and 4 to cumulus. In order to form an opinion about any
possible influence of the type of clouds on the illumination the average
values of | log
I — log ƒ | were also computed for each type separately, / still
denoting the logarithmic mean over all the curves. The deviations found for
stratus at 2 = 4500, 5000, 5600, 6800 A were 0.10; 0.00; —0.10; —0.)5
respectively. For stratocumulus at the same wavelengths: 0.01; 0.06;
0.08; 0.06; and for cumulus 0.04; 0.06; 0.13; 0.11.

Though we cannot ascribe a high precision to these numbers (the values
of log I were determined from groups, in which the types of clouds occurred
in different proportions) we can, for stratus clouds, gather from them that
there is a tendency to contain more than the average amount of blue, and
for cumulus clouds, that, generally speaking, they transmit more than the
average amount of energy.

-ocr page 68-

Degree of covering 10. Number of available observations 102, of these
55 belong to the
stratus type, 37 to stcu. 9 to cu and 1 to ast.
We found: log ƒ (5600) = 1.45; 2.00; 2.27; 2.37; 2.46; 2.53.
Deviations:

9' = 50°nbsp;9^ = 30°nbsp;^=15°

A = 4500 0,02 ( 5%); 0,06 ( 15%); 0,12 ( 32%)
Jl = 5000 0,02 ( 5%); 0,01 ( 3%); 0,08 ( 20%)
2 = 6000 —0,02 (—5 %); —0,02 (— 5 %); —0,03 (— 7 %)
A = 6800 —0,04 (—9%); —0,03 (—7%); 0,14 ( 38%)

The average value of |log/—log/| is 0.15 at 2 = 4500 A, increases
to 0.175 from 2 = 4500 A to 2=5800 A, remains constant from 2=5800 A
to 2 = 6600 A, and decreases to 0.165 from 2 =6600 A to 2 = 6800 A.

As the number of observations is fairly large, we are able to determine
the frequency of the different values of log ƒ—log /. In connection with the
remarks on page 62 we take together the values considered here with those
measured as indirect. We form groups of values of log/ — log/, which
lie between —0.7 and —0.5, —0.5 and —0.3, etc. We state that the
distribution of the deviations is practically not dependent on the solar
altitude. In this way we find for 3 values of 2 the following table
(frequency in %):
Deviations between:

— 0,7 and —0,5 ;nbsp;—0,5 and - 0,3 ;nbsp;-0,3 and —0,1 : —0,1 and 0,1 ;

0,20 and 0,32;nbsp;0,32 and 0,50;nbsp;0,50 and 0,79; 0,79 and 1,26;

^ = 4500 3nbsp;7nbsp;21 41

X = 5600 2nbsp;9nbsp;25 30

I = 6800 1nbsp;5nbsp;26 34

0,1 and 0,3 ; 0,3 and 0,5 ; 0,5 and 0,7
1,26 and 2,00; 2,00 and 3,16; 3,16 and 5,00 I)
X = 4500nbsp;20nbsp;5nbsp;3

X = 5600nbsp;24nbsp;8nbsp;2

I = 6800nbsp;24nbsp;9nbsp;1

The frequency curve is markedly broader at 2 = 5600 and 6800 than
at 2 = 4500.

The data can further be divided into groups according to the wavelength
2„, at which / is a maximum. We formed the following three groups:
I. ^4800 A; II. 4800 Anbsp;5800A; III. 5800 A lt;2„. For each of these

groups log / was computed in the same way as it was computed for
all observations together. Group III contains only observations for which
9? has values between 20° and 40°. They agree more or less with the
observations of group II for 2 = 6800 A and 2 = 6000 A, while at 2 =

1) These numbers are the factors by which the mean value has to be multiplied
corresponding to the logarithmical deviations.

-ocr page 69-

5000 A and 1 = 4500 A their values are somewhat less. The mean value
of log ƒ at 4500 A appears to be nearly the same for the three groups. The
other mean values are higher for the groups II and III. We give here the
values of log / (5600) (for the usual values of 99) for all observations
together, for group I and for group II and III together:

1.45; 2.00; 2.27; 2.37; 2.46; 2.53.
1.40; 1.94; 2.18; 2.30; 2.33; 2.34.
1.50; 2.15; 2.39; 2.51; 2.58; 2.61.

We gather from these values that the curve for all observations together
lies, for the lower values of
lt;p, close to the curve of group I, whereas for
the higher values, it shifts towards the curve of groups II and III. According
as the layer of clouds transmits more light, moves towards the centre
of the wavelength region considered. On dark days 1 „ lies in the neigh-
bourhood of 2 = 4500 A or shorter wavelengths. Generally speaking, the
thickness of the layer of clouds diminishes with increasing solar altitude.

There remains to be investigated whether the division of the observations
according to the value of runs parallel to the division according to the
type of clouds,
st, stcu and cu. The 88 curves which were available for
this purpose (the curves belonging to the classes
A, B and C) were
distributed as follows :

group III.
5
5
1

We note a certain preference for group I in the case of stratus clouds
and for group II in the case of
stcu and cu. If now we inquire for all types
of clouds, belonging to the degree of covering 10, into the deviations from
the mean, it appears that this deviation has for
st a very small negative
value, for
stcu a somewhat higher positive value and for cu a still greater
negative value. For all types, however, the individual deviations are much
greater, while positive as well as negative deviations are everywhere of
frequent occurrence. From the above we draw the conclusion that the
division according to the type of clouds has no marked features in common
with the division according to .

Principal Group II. Indirect illumination.

Degree of covering 0. Number of available observations 22; of these
21 belong to class
A, 1 to class B. From 2 = 6800 A down to 2 = 5000 A
a satisfactory approximation of the curves is furnished by / = 2. From
2 = 5000 A down to A = 4500 A the representation is less satisfactory for
those observations, for which gt; 4500 A. Let us first consider those
curves for which the highest value of
I coincides with the extreme

All observations
Group I

Group II and III

total number

group I.

group II.

st 49

25

19

stcu 31

11

15

cu 8

2

5

-ocr page 70-

wavelength I = 4500 A. We can then construct from the values of a
computed for each observation, a graph a,
cp. We find from this curve
for 99=10°, 20°, 30°, 40°, 50°, 60° for a the values 4i 6^, 8i 9,
8 X 109 respectively. (For
I in Watt/Acm2 we get: 65; 90; 120; 130; 125;
110.) The number of observations with ;.„ = 4500 A was 12, for 2 ;.„,=4600A,
for 5 ;.„=4700A, for 1 ;.„, = 4900A and for 2 5000 A. For these
observations a value for a could also be computed, but the value of / for
A = 4500 A was then less satisfactorily represented. For at 5000, 4800,
4600 A the deviations from the values following from / = aA~2 amount to
about —30%; —20% and —10%. The values found for a were, but
for a few exceptions, higher than the corresponding ones at /„=4500A.

On inspecting the values of log / at A = 4500, 5000, 6000 and 6800 A
we find that as functions of
cp they show an increasing dispersion with
increasing A„ and
cp. The curves log/ = / (A) found in this way (containing
9? as a parameter) enable one to compute a term log a, connected with
I by
the relation log / = loga—2 log A. The quantities, thus found, agree with
those, determined according to the previous method, which we shall,
therefore, consider to be the average curves.

Degree of covering 1. Number of available observations 36. We
consider log / as a function of
cp for A = 4500, 5000, 6000 and 6600 A. The
observations are here devided into two groups; one for which A„ = 4500 A
and 4600 A and the other for which it has higher values. In this second
group A„ varies between 4700 A and 5200 A.

From the four curves log / = ƒ,. {cp) for A = 4500, 5000, 6000 and 6600 A
(group I) we construct the graph log/ = / (A) containing ^ as a parameter.
We can determine the quantities
n and a in such a way that for each
separate solar altitude the expression log / n log A = log a remains
approximately constant. (For each
99, log a possesses a different value).
We find, here again, n = 2, while a becomes for 9^=10°, 20°, 30°, 40°,
50° equal to 21, 5, 7i 8, 7^
X 109. (For I in Watt/A cm2 we get 35; 70;
105; 110; 105.) Thus showing a behaviour similar to that sub degree 0.
Only, the corresponding values of a are here somewhat lower.

The four curves log/= f.((p) of group II yield for log / at A = 4500,
5000, 6000 and 6600 A values which differ from the corresponding values
of the first group, by the constant amounts 0.06; 0.14; 0.20; 0.25
respectively. The values of
I of the second group are, therefore, obtained
from those of the first by multiplying with the factors 1.15; 1.4; 1.6; 1.8
respectively. Of the observations, 27 belonged to group I, and 9 to group II.
The mean curve would therefore be represented by multiplying / = aA—2
of group I with 1.03; 1.08; 1.13; 1.22 for A = 4500, 5000, 6000, 6600 A.

Degree of covering 2. Number of available observations 15. Henceforth
we shall treat the observations in the same way as from degree 3 onward

-ocr page 71-

in the case of total illumination. (The values for log ƒ (5600) refer again to
10°; 20°; 30°; 40°; 50°; 60°.)
We found: log/(5600) = 2.06; 2.34; 2.54; 2.60; 2.64; 2.64.
Deviations:

= 4500
= 5000
= 6000
1 = 6800

The average value of |log/ — log/| is 0.06 at 2 = 4500 A; it increases
to 0.09 from 2 = 4500 A to 2 = 6000 A and remains thenceforth constant
to 2 = 6800 A.

Degree of covering 4 and 5. Number of available observations 44; of
which 26 belong to degree 4 and 18 to degree 5.

We found log/(5600) =2.08; 2.33; 2.55; 2.67; 2.69; 2.70.

Deviations:

lt;p = 50'
0,09
0,07
—0,05
—0,12;
log/ —log/I

(p = 30
0,07
0,07
—0,07
—0,15

9^=15°
0,10
0,10
—0,07
—0,14

2 = 4500
2=5000
2 = 6000
2 = 6800
The average value of

Degree o[ covering 3. Number of available observations 19.
We found log/(5600) 1.86; 2.40; 2.63; 2.72; 2.75; —.
Deviations :

lt;75 = 50°
0,05;
0,06;
—0,06;

is 0.06 for all wavelengths.

(p = 30°
0,01
0,05
—0,05

cp=\5°
0,07
0,07
—0,05
—0,02

-0,15

-0,11

95 = 50°
0,04
0,05
—0,08
—0,13

I log ƒ — log/ j
2 = 4500 A

observations is here sufficiently high to allow of a division. We collect in
this case the curves with 2„, ^4800 A in group I and the remaining ones
with 2„ gt; 4800 A in group II. At 2 = 4500 A the values of log /of group II
appear to be slightly lower than those of group I for equal values of
93.
At 2 = 5000, 6000 and 6800 A the values of both groups are nearly equal
for values of
95 up to 30°. For higher values of 99, log / of group II becomes
greater than that of group I, namely for 9^ = 50° to the amounts 0.08;
0.12; 0.10 respectively. Here again, we note that 2„, shifts towards the
longer wavelengths according as the total energy radiated by the sky
increases. The same phenomenon could be observed only still more
pronounced sub degree of covering 1.

9? = 30°
0,04;
0,06;
—0,08;
—0,09;

q?=l5°
0,04
0,07
—0,04
—0.02

= 4500
= 5000
= 6000
1 = 6800
The average value of
gradually to 0.08 from

is 0.05 at 2 = 4500 A and increases
to 2 = 6800 A. The number of

-ocr page 72-

Degree of covering 6 and 7. Number of available observations 42. One
of them (No. 355) showed such a tremendous deviation that it was rejected.
We found log7(5600) =2.02; 2.46; 2.65; 2.73; 2.75; 2.75.
Deviations;

2 = 4500
2=5000
2 = 6000
2 = 6800
The average value of
lengths, namely 0.07.

lt;p = 50°
—0,05
0,02
—0,04
—0,09

^=15°
0,07
0,04
—0,04
—0,09

(p = 30
—0,01
0,02
—0,04
—0,09

log/ — log/I is nearly the same at all wave-

Degree of covering 8.

Number of available observations 17.
We found log 7(5600) =2.00; 2.36; 2.51; 2.60; 2.63; 2.70.
Deviations :

(p=5Q°
0,01;
0,02;
—0,02;

p=15°
0,01
0,06
—0,04

9^ = 30'
0,01
0,05
—0,02

2 = 4500
2=5000
2 = 6000
2 = 6800

-0,07

0,00

-0,08

The average value of ]log/ — log/| is 0.07 at 2 = 4500 A, increases to
0.10 from 2 = 4500 A to 2 =5000 A and remains constant from 2 =5000 A
to 2 = 6800 A.

Degree of covering 9.
We found log 7(5600)
Deviations :

Number of available observations 19.
=-; 2.5; 2.68; 2.75; 2.78; 2.78.

2 = 4500
2 = 5000
2 = 6000
2 = 6800 —0,10;
The average value of |log/ — log7| is 0.08 at l-
0.05 from 2 = 4500 A to 2 = 5000 A and remains constant, from there up
to 2 = 6800 A.

95 = 50°
0,00
0,00
—0,03

9^=15°
—0,08

lt;p = 30quot;
—0,06

0,00
-0,04
-0,09

0,00
-0,04
0,00

4500 A decreases to

Degree of covering 10. Number of available observations 20.
We found log 7 (5600) = 1.65; 2.35; 2.53; 2.58; 2.60; 2.60.
Deviations :

9^ = 50°
0,02;

0,05;nbsp; 0,04

9^=15°
0,04
0,06
—0,06

9^ = 30'
—0,03

2 = 4500
2 = 5000
2 = 6000
2 = 6800
The average value of
the spectrum.

—0,04;nbsp;—0,05

0,04

-0,02

-0,05

log/ — log/j is 0.2 over the whole region of

-ocr page 73-

Survey of the observations 181—706. The variables, that essentially
determine the illumination are the solar altitude and the degree of covering.
We did not succeed in discovering any characteristic influences of the
other data (type of clouds etc.).

Considering the total and the indirect illuminations at 1=5600 and at
different degrees of cloudiness we see that for degrees 9 and 10 the indirect
illumination is greater than the total. At degree 8 this is the case for
93 lt; 25. At 9? gt; 25 the mean total illumination is the higher. It appears that
the total illuminations in that region, is as high as the indirect on an
average. At degrees 6 and 7 we have the same thing. In this case the
majority of observations are indirect. There are a few high total values
now. At degrees 4 and 5 the total illumination as a rule is higher than the
indirect, a number of total values, however, being of the same magnitude
as the indirect. At degree 3 this is an exception and for degrees 0 to 2 it
practically never happens. For the degrees 0—5 the mean total illumination
is considerably higher than the mean indirect illumination.

At the observations of the group indirect the hght that came out of the
direction of the sun has been screened. This could only be done when the

bed.graad 0
1.
2.

200

150

100

50

irfÄ

40

70

50

go

Fig. 5. Total illumination as a function of the wavelength for different
solar altitudes at the degrees of covering 0, 1 and 2.

-ocr page 74-

100
80
go

ao

80
go

ao

20

20

10
8

0 2 4 6 8 10

Fig, 7^. Sky-illumination as a function of the
degree of covering at = 4500 A at different solar
altitudes.

8 10

0

Fig. 7B. Sky-illumination as a function of the
degree of covering at /. = 6800 A at different solar
altitudes.

-ocr page 75-

position of the sun was visible. So at the degrees 9 and 10 those
observations where the cover of clouds was thinnest and in consequence
the illumination largest have been put in the group indirect. In all cases,
total as well as indirect, the illumination is practically caused by scattered
light only. When the sun appears for small intervals every now and then
as a consequence of the rapid and important changes of the light it is not
well possible to measure the total illumination at degrees 6 to 8. Most
measurements at these degrees are indirect, small solar altitudes excepted
(95 lt;25) where the disturbances are less extensive. Some of the few total
observations for higher solar altitudes are markedly higher than the mean
value of the corresponding indirect illumination others are of the same
order of magnitude. Here too the illumination by scattered light is most
important. For the degrees 6—10 we shall not distinguish between total
and indirect illumination but bring both in one group : sky-illumination.
In constructing a graph of the sky-illumination we exclude the two large
values of degree 6 at 93 c^ 50°. For solar altitudes below 25° it has no
sense to distinguish between total and indirect here. For degrees of covering
S 5 the solar altitude below which total and indirect illumination are
practically the same decreases. At degrees 2—5 we may take as a limit
99 = 10. At degrees 0 and 1 it is necessary to distinguish between them
down to 99 = 5.

In this way we have constructed the graphs 6 and 7. Fig. 6 gives the

Sky-illumination.

Degree of covering;

0

1

3

5

7

9

10

= 4500

0,19

0,14

0,07

0,04

0,04

0,04

0.05

= 5000

15°

X = 6000

0,10
-0,05

0,09
-0,05

0,07
- 0,05

0,06
-0,05

0,06
-0,05

0,06
-0,05

0,06
-0,05

X = 6800

-0,18

-0,13

-0,05

- 0,02

0,00

0,02

0,04

= 4500

0,19

0,14

0,06

0,02

0,00

0,00

0,00

X = 5000

,, = 30°

J. = 6000

0,10
-0,05

0,09
-0,06

0,06
-0,07

0,04
-0,06

0,03
- 0,06

0,03
— 0,04

0,03
-0,04

X = 6800

-0,17

-0,16

-0,12

-0,09

- 0,06

— 0,03

-0,02

X = 4500

0.19

0,14

0,06

0,00

-0,03

-0,01

0,02

X = 5000
X = 6000

0,10
-0,05

0,09
-0,06

0,06
-0,07

0,03
-0,07

0,01
-0,05

0,01

-0,03

0,01
-0,02

X = 6800

-0,17

-0,16

- 0,15

-0,11

-0,08

-0,06

-0,05

-ocr page 76-

Total illumination (in W/Acm^).

Degree of covering

0')

1')

3

5

/ = 4500 A

30 X 10-''

30 X 10-7

24 X 10-7

15 X 10-7

5000

36

33

34

16

Solar altitude

5600

35

30

33

15

10°

6000

33

28

32

14

6800

41

33

29

13

;i = 4500Ä

58

56

54

46

5000

71

65

69

54

5600

71

63

68

50

6000

68

59

64

48

6800

67

52

60

42

I. = 4500 A

105

105

85

81

5000

115

120

102

93

^ = 30°

5600

115

120

102

93

6000

110

115

98

89

6800

95

100

89

76

;i = 4500A

140

140

110

110

5000

155

160

130

130

g; = 40°

5600

155

160

130

130

6000

150

150

125

125

6800

130

130

110

110

/ = 4500A

160

150

120

125

5000

180

170

145

150

lt;p = 50°

5600

180

170

145

145

6000

165

155

140

140

6800

140

130

130

125

X = 4500 A

155

155

125

130

5000

165

165

150

160

lt;p = 60°

5600

155

165

150

150

6000

150

155

145

145

6800

130

130

135

130

Obtained by parameter-method.

-ocr page 77-

o

Sky-illumination (in W/Acm')

Degree of covering

0')

1')

3

5

7

9

10

X = 4500

20X10-7

18X10-7

16X10-7

15X10-7

16X10-7

11X10-7

4.9X10-7

Solar altitude

5000

16

16

17

16

15.5

11

4.6

5600

13

13

14

14

14

9.5

4 1

6000

12

11

12

12

12.5

8.5

3.8

6800

8.9

9.6

13

15

14

11

5.6

;.=4500

42

37

41

38

39

36

20

5000

34

33

42

40

38

34

19

^ = 20°

5600

27

27

35

35

36

32

18

6000

24

24

30

31

32

29

16

6800

18

20

29

31

32

32

18

;.=4500

58

51

63

58

59

55

30

5000

47

46

63

60

65

59

33

lt;p = 30°

5600

37

37

55

55

59

55

30

6000

33

32

47

48

52

49

27

6800

25

26

41

43

52

52

29

1 = 4500

66

59

78

71

71

70

38

5000

54

53

78

74

75

71

38

,f. = 40°

5600

43

43

68

68

73

70

37

6000

38

37

58

59

65

65

35

6800

29

30

50

53

62

62

35

;. = 4500

65

58

83

76

76

75

45

5000

53

51

83

80

84

80

44

q, = 50°

5600

42

42

72

73

82

78

43

6000

37

36

62

63

73

73

40

6800

28

29

54

56

68

68

38

X=4500

562)

502)

85

78

78

86

54

5000

46

45

85

81

88

88

49

9gt; = 60°

5600

36

36

74

74

88

84

47

6000

32

32

63

65

78

78

46

6800

24

26

55

58

73

73

42

') Obtained by parameter-method.

There is good reason for suspecting these values to be too low.

-ocr page 78-

total illumination for degrees 3—5, fig. 7 gives the sky-illumination as a
function of g? for different degrees of cloudiness at 2=5600.

The intensities of other wavelengths generally have different values.
For some wavelengths the deviations from the values at 2=5600 have
been collected in the tables on page 63 and in the following :

Total illumination:
Solar altitudenbsp;15°nbsp;30°nbsp;50°

Degree of

covering 3

5

3

5

3

5

2 = 4500

0,12

0,02

0,08

0,06

0,08

0,06

2 = 5000

0,01

0,04

0,00

0,00

0,00

0,02

2 = 6000

0,02

0,02

0,02

0,02

0,02

0,02

2 = 6800

0,05

0,07

0,06

0,09

0,05

0,07

The logarithmicalnbsp;differences correspond to the following percentages
of the mean value:

-0,20 =-370/0nbsp;-0,10 =-21%nbsp;0,02= 5%nbsp;0,12 = 330/o

-0,18 =-340/0nbsp;-0,08 = -170/0nbsp;0,04=100/onbsp;0,14 = 380/o

-0,16 = -3lP/onbsp;_0,06 = -130/onbsp;0,06 = 150/0nbsp;0,16 = 450/0

_0,14 = _280/onbsp;-0,04 = - 90/0nbsp;0,08 = 200/onbsp;0,18 = 520/o

-0,12 = -240/0nbsp;-0,02 = - 50/0nbsp;0,10 = 270/0nbsp;0,20=590/0

From these tables and from the graphs of fig. 5, 6 and 7 we find the
tables on pages 64 and 65.

The value of |log/ — log 7] of the sky-illumination is about 0.06 and
0.08 at 2 = 4500 and 2=6800 respectively, at degree 3. At degree 8 its
value becomes larger and at degree 10 it is about 0.15 and 0.17 at the
wavelengths mentioned.

Finally we wish to know the intensity of the light that reaches us from
the direction of the sun. The difference between total and indirect
illumination at a certain instant is the direct illumination which may be
considered equal to the illumination by the non-scattered and non-absorbed
part of the light of the sun, if there is no cloud between the white
measuring surface and the sun. For the computation of the direct
illumination we can use those pairs of observations of which we may
assume that they indicate the values of the illumination at the same
moment. This condition is satisfied the more easily as the degrees of
covering are smaller and the solar altitude greater. We take as solar
altitude of the direct illumination found in this way that of the total
illumination as it changes more than the indirect. The results are better
surveyable if we consider the energy that falls per second on a unit surface
perpendicular to the sunrays. We have to multiply the differences found
by cosec
(p. This procedure leads to the following tables :

-ocr page 79-

Degree of covering 0

Solar altitude

10°

20°

30°

40°

50°

60° 1)

2 = 4500

38

73

106

128

139

139 X

A = 5000

78

115

145

164

178

167

2=5600

98

139

167

178

182

180

2 = 6000

118

146

163

171

171

167

2 = 6800

115

139

164

156

150

139

Degree of

covering 1

2 = 4500

14

49

79

111

125

125

2 = 5000

28

53

132

188

167

139

2 = 5600

42

98

153

208

167

153

2 = 6000

42

105

167

195

188

153

2 = 6800

42

84

153

174

146

125

Degree of covering 2—6

2 = 4500

28

49

63

72

79

84

2 = 5000

42

77

105

118

128

125

2 = 5600

56

98

125

139

146

139

2 = 6000

56

84

111

125

125

125

2 = 6800

56

84

111

111

111

111

The solar intensity generally decreases with an increasing degree of
cloudiness. Between 99 = 30 and 99 = 50 the intensities at degree 1
practically all reach very high values. The same phenomenon takes place
for degree o and the other degrees considered, only less markedly.

A cause of these facts may be:

a.nbsp;that all measurements under consideration have been made in a
certain interval of time where exceptional atmospheric conditions occurred.
7 of the 9 observations were made in March, 1 in April and 1 in May
(highest value obtained). At the solar altitudes between 99 = 30 and
^ = 50 only one other measurement was made. This one gave an extremely
small value (99 = 36);

b.nbsp;that all measurements have been made in a certain interval of time
where the standardizing of the pyrometer was not correct. In this case also
other observations in the same time-interval should be extremely high. This
is, however, not the case.

The above computations are based on data from the observations
NO. 181—706. We shall now pass on to the treatment of the nos. 1—180,
which can be done in a similar way. Since, however, the degrees of
covering are not always given, we divide the observations in three groups
— those obtained with heavily clouded, half clouded sky and with bright
sun, the last group including those with faint sunshine. (In the following
the values of log 7(5600) refer to
cp=\0°, 20°, 30°, 40° and 50°.)

1) The values at 60° are uncertain.

-ocr page 80-

Total illumination.

Heavy clouds. Number of available observations 42. If we determine
log/(5600) as a function of considerable fluctuations appear to exist.
The approximate values on the average curve are log /(5600) =1.75; 2.15;
2.32; 2.42; 2.45.

9^=15°
—0,06
—0,03
—0,03

9gt; = 30'
0,02
0,00
—0,04
—0,01

93 = 50
0,02
0,01
—0,05
—0,04

Deviations:

2 = 4500
2=5000
2 = 6000
2 = 6800

0,08

For the higher values of cp, this agrees approximately with the
observations sub degrees of covering 9 and 10. For (p=l5° the agreement
is less satisfactory. The curve log / (5600) =f (99) nearly coincides with
the one sub degree of covering 10 in fig. 6.

Semi-clouded sky. Number of available observations 18. The curves
for
cp gt; 35° are smooth, the others show considerable fluctuations.

We found log / (5600) = —; 2.34; 2.68; 3,00; 3.10.

93=15°
0,06
0,03
—0,05
—0,05

^ = 30°
—0,03

93 = 50°
—0,09;
0,02;
—0,06;
—0,06;

Deviations ;

2 = 4500
2 = 5000
2 = 6000
2 = 6800

0,02
—0,05
—0,05

These values correspond approximately to those found sub degrees of
covering 4 to 8; for the smaller
93's the agreement is closer for the higher
degrees of covering and vice versa.

The same is true for the values of log /; for 9^ = 50°, it is higher than
the corresponding previous measurements (lower, however, than the value
found there for bright sun), while for 9^ = 30° the curve shows a closer
resemblance to those sub degree of covering 6 to 8.

Bright sunshine. Number of available observations 41, two extra
observations for faint sunshine.

The curve log / (5600) =f (9^) is easily drawn, as the positions of the
various points are particularly favourable.

We found / (5600) =2.00; 2.64; 2.86; 2.95; 2.97.

9^ = 15°
—0,03
0,04
—0,03
0,07

93 = 30'
—0,05
0,03
—0,04
—0,03

9^ = 50
0,01
0,00
—0,05
—0,05

Deviations:

2 = 4500
2=5000
2 = 6000
2 = 6800

-ocr page 81-

These values do not agree with a definite degree of covering though to^
a certain extent the general behaviour can still be traced in them. Log /
behaves more or less as sub degrees of covering 3, 4 and 5.

Owing to the less detailed grouping the dispersion in the observations
Nos. 1 to 180 is greater than in the Nos. 181—706, discussed above.

Indirect illumination.

Heavy clouds. Number of available observations 17. The values of cp
belonging to these observations varied between 25° and 50°.

We find for lt;p = 30°. 40°, 50° log / (5600) = 2.59; 2.68; 2.73.

And the deviations at the other wavelengths for q) = 50° and 30° are:

(p = 50°

9^ = 30°

2 = 4500

0,03;

0,03

2 = 5000

0,06;

0,01

2 = 6000

0,10;

0,04

2=6800

0,10;

0,04

As regards log ƒ as a function of q) this agrees very satisfactorily with
that of the group under the degrees of covering 3—9. The deviations from
the other wavelengths are also of the same order of magnitude.

Semi-clouded sky. Number of available observations 20. We find for
cp = 2Q°, 30°, 40° and 50°, log / (5600) =2.43; 2.58; 2.62; 2.64.

All these values lie in the same region. There is no convincing agreement
with any of the curves of fig. 7. At the other wavelengths for 99 = 50°
and 30° the deviations are:

9, = 50° 9:. = 30°

0,01
0,01
—0,05

2 = 4500nbsp; 0,10

2 = 5000nbsp; 0,05

2 = 6000nbsp;—0,05

2 = 6800nbsp;—0,07

—0,03

These observations show some agreement with those of degrees of
covering 2—5.

Bright sunshine. Number of available observations 39, and 2 for faint
sunshine. We find for 9.= 10°; 20°; 30°; 40° and 50° log / (5600) = (2.00);
2.33; 2.47; 2.52; 2.54. The deviations at the other wavelengths appear to be
practically independent of 99. We find for them: 0.05; 0.05; —0.09;
—0.14 respectively.

These observations evidently correspond to degree of covering 0 to 2
of the observations Nquot;. 181—706. The agreement is very convincing.

-ocr page 82-

CHAPTER IV.

Statistics of the Lux numbers.

One can compute from the observations the amount of energy producing
the horizontal illumination. We shall express this amount in
Lux units.
According to the definition of this unit the Lux number is found by first
multiplying the power expressed in Watt per m^ and per A of the hght
of a certain wavelength incident on a horizontal surface, by the relative
luminosity factor of the eye for that wavelength, by then integrating this
product with respect to the wavelength and by finally dividing the integral
by the mechanical equivalent of hght (=0.00164 W/IPC). The integral
itself represents the number of hght-Watt's. The lux number refers
therefore to 1 m^, whereas we measured the energy, incident on 1 cm2
while it was, moreover, expressed in relative units, one unit equalling
1.39 X 10—8 W/A.cm2. We computed an approximate value for the
integral by dividing the wavelength region from 2 = 6900 A to 2 = 4500 A
into strips of 200 A, and by treating the luminosity factor of the eye over
the full width of a strip as a constant equal to the value at its centre. By
this procedure the integral changes into a sum and we find for the
Lux number

0 0

Here r; denotes the number of relative units and oy the relative luminosity
factor of the eye belonging to the strip in question.

We can make up the statistics of the Lux numbers as a function of the
degree of covering and the solar altitude. The result is given in the
tables on page 71. The values of
L (in thousands of lux) are obtained by
determining the logarithmical mean value of
L for regions of solar altitudes
covering 5°. The values refer to the illumination of the observations
181—706. The number of observations from which the mean was obtained,
are added in brackets.

From the these tables it appears that for the indirect illumination L is
equal to or larger than the total illumination at higher degrees of covering.
We introduce the sky-illumination in the same way as has been done on
page 63. For the values ofLat degrees of covering ^7 we don't distinguish
between total and indirect. We find the curves of fig. 8 for the total and
of fig. 9 for the sky-illumination. The dotted curves in fig. 8 represent
the total illumination for the observations 1—180. This material was
divided into three groups: bright sunshine, semi-clouded sky and

-ocr page 83-

total Illumination

Degree of
Cloudiness

rp between 0—5

5-10

10-15

15-20

20—25

25-30

30-35

35-40

40-45

45-50

50-55

55-63

0

_

,

25 (1)

34 (2)

49(5)

-

81(2)

85(3)

120(3)

115(2)

115(2)

I

_

22 (3)

31 (5)

29(2)

66(3)

76(5)

100(3)

81(1)

98(3)

110(5)

105(1)

2

6,3(2)

18 (4)

23 (3)

43(1)

93(2)

100(1)

110(2)

3

26 (2)

11 (1)

52(2)

66(1)

74(1)

-

100(2)

100(2)

4

6,2(1)

12 (2)

36 (3)

39(2)

68(3)

98(4)

34(1)

110(3)

110(1)

5

27 (1)

13 (2)

31(1)

30(1)

-

91(1)

71(2)

110(2)

6

9,3(1)

35(3)

98(1)

105(1)

7

7,9(4)

9,3(2)

18 (2)

38(1)

42(1)

43(1)

8

3,4(3)

10 (4)

14 (2)

30(4)

33(3)

44(1)

38(1)

9

2,0(2)

9,3(3)

14 (3)

10(3)

33(2)

43(1)

65(1)

40(3)

49(2)

41(2)

10

0,24(1)

1,5(8)

4,9(9)

5,8(11)

15(19)

18(11)

20(9)

28(7)

33(8)

43(4)

30(10)

36(6)

indirect Illumination

Degree of
Cloudiness

(p between 0—5

5-10

10-15

15-20

20-25

25-30

30—35

35-40

40-45

45-50

50-55

55—63

0

20 (1)

16 (1)

16(2)

17(4)

22(1)

22(2)

27(2)

28(5)

24(2)

26(2)

1

4,9(1)

13 (4)

15(3)

H(3)

25(3)

25(3)

29(4)

22(4)

22(2)

28(8)

30(1)

2

10 (3)

11 (3)

16(3)

30(1)

-

41(2)

34(1)

50(2)

3

4,3(4)

9,6(1)

20(2)

25(5)

41(1)

39(2)

49(2)

49(2)

4

6,0(1)

13 (1)

15 (2)

17(3)

22(3)

28(1)

37(1)

39(5)

40(4)

38(5)

5

-

12 (1)

14(1)

49(3)

31(1)

39(1)

53(2)

35(1)

54(1)

45(5)

50(2)

6

-

16 (3)

30(2)

24(1)

53(1)

45(2)

45(2)

50(2)

56(3)

7

3,3(1)

12 (1)

18(1)

30(1)

43(3)

40(2)

43(2)

51(3)

59(2)

54(5)

41(4)

8

5,5(1)

12 (3)

18(1)

25(3)

25(2)

28(1)

31(1)

41(4)

26(1)

60(2)

9

19 (2)

54(1)

35(4)

49(2)

52(1)

55(4)

48(2)

63(3)

10

1,7(1)

6,8(5)

17(1)

28(1)

26(1)

38(4)

31(5)

44(2)

ö
gt;

■lt;

r

0

1

H
g

w
gt;

C
»

ro
g

m
z

C/5

c

H
33
m
o

H

-ocr page 84-

heavy clouds. For 93 gt; 35° the curve quot;semi-clouded skyquot; proves to furnish
higher L-values than the curve quot;bright sunquot;. For the rest they agree with

the curves for degree of covering 0—3 and 4—6. The curve quot;heavy cloudsquot;
lies between the curves for degree of covering 7—9 and 10.

The dotted curves of fig. 9 represent the indirect illumination for the
observations 1—180. The curve quot;heavy cloudsquot; coincides more or less with
the one of degree of covering 5—9, the curve quot;slight cloudsquot; follows the
curve of degree of covering 2—4, while quot;bright sunshinequot; lies between the
curves of the degrees of covering 0—1 and 2—41).

Finally, we have computed the probability of a certain value of L to
occur at a certain moment. Since our measurements cover only about a
year's time, our material alone was insufficient to construct statistics of
the Lux number at a definite hour of a definite day. We have, therefore,
determined these statistics with the aid of data furnished by the Royal

In figs. 8 and 9 A — heavily clouded; B — semi-clouded; C = bright sun.

-ocr page 85-

Dutch Met. Inst, at De Bilt, concerning the cloudiness at 8, 10, 12, 14 and
18.30 o'clock (Amst. T. = Gr. M. T. c^ 20 min.). These were, among
other things, registered daily for nearly 5 years at De Bilt (October 1930—
July 1935). The frequency of the degrees of cloudiness 0, 1, 2—3, 4—6,
7—8, 9, 10 and of a group where the clouds were invisible (by fog,
darkness or otherwise) at the hours mentioned in the various months is
given in the table on page 74.

The mean value of the Lux number as a function of the solar altitude
can be read out of the graphs of fig. 8 and 9 for different degrees of
cloudiness. It proved suitable to take together the degrees of cloudiness in
four groups for the total illumination: 0—3, 4—6, 7—9, 10 and in four
groups for the sky-illumination : 0—1, 2—6, 7—9, 10. In order to compute
the frequency of the deviations from the mean value we take together
the observations at the solar altitudes (p = 0-^5; 5 -» 10; etc. and consider
the value of the lux number
L (in fig. 8 and 9) in the middle of an altitude
region as the mean value of the whole region. We put the deviations
themselves into groups. Those values of
L where | log Z, — log L | ^ 0.10
belong to one group. Other groups are formed to those values of
L for
which 0.10 lt; log L — log 0.30 etc. As most curves are much steeper
for 99 lt;25° as for 99 gt;25° we may expect that the deviations are greater
in the former case. This happens to be the case, for we find :

Total illumination

Deviations;

0,5

0,3

0,1

- 0,1

-0,3

-0,5

to 0,3

to 0,1

to-0,1

to - 0,3

to - 0,5

to-0,7

Degree of covering

0_3{fpgt;25°)

2

96

2

25

50

25

4—6((p all values)

7

2Q

46

20

7

Sky-illumination

0—l(,pall values)

20

60

20

2-6(,pgt;25°)

10

80

10

2-6(.plt;25°)

28

60

10

2

7-9(fpgt;25°)

20

60

20

7_9(rplt;25°)

5

20

44

20

8

3

10 {fp all values)

9

26

30

26

6

3

When the frequency of degree of cloudiness is (6.) and the
frequency of the illumination Vj at the degree is (2 (6,-,fy),the frequency

of the illumination Vj is ^ /quot;i ( fc,). [2 {bi, Vj).

i

In our table the frequency of Vj is the percentage of the total number of
lux numbers considered that is expected to occur between the given limits.
In computing the mean value of L in a certain month at a certain hour
we took the solar altitude at that hour at the middle of the month.

-ocr page 86-

Frequency of degree of covering.

8 h.

10 h.

Degree of
covering

0

1

2-3

4-6

7-8

9

10

inv.

0

1

2-3

4-6

7.8

9

10

inv.

January

3

11

4

8

7

11

48

8

9

7

1

8

5

15

41

14

February

2

11

10

7

7

17

39

7

4

12

8

13

9

14

36

4

March

13

16

12

15

6

15

19

4

16

17

10

15

9

17

14

2

April

4

6

7

8

15

24

35

1

3

7

5

17

17

23

28

0

May

6

8

7

16

20

15

26

2

4

10

6

17

20

18

24

1

June

7

9

8

12

13

23

28

0

1

14

9

13

18

20

25

0

July

3

12

7

12

22

22

22

0

3

14

10

19

8

27

19

0

August

6

12

9

14

21

19

18

1

4

14

7

22

10

23

20

0

September

11

9

16

11

13

17

19

4

8

12

12

21

12

15

18

2

October

3

8

10

10

14

26

27

2

3

8

8

17

17

21

25

1

November

2

5

13

7

6

20

43

4

3

7

8

12

10

16

39

5

December

2

11

6

14

2

6

51

8

6

9

4

10

6

18

39

8

12

h.

14

h.

January

7

12

3

7

10

15

40

6

8

5

7

8

8

16

41

7

February

2

10

10

11

12

23

29

3

2

11

10

16

8

19

33

1

March

12

18

8

12

19

19

12

0

15

15

7

12

15

20

16

0

April

2

3

7

23

17

23

25

0

3

4

5

17

24

23

24

0

May

2

10

9

19

13

20

27

0

1

11

11

15

20

19

23

0

June

1

11

10

17

20

20

21

0

1

11

11

19

18

24

16

0

July

4

5

11

17

19

20

24

0

3

7

4

23

20

20

23

0

August

2

8

6

27

23

20

14

0

2

11

11

20

22

20

14

0

September

4

12

5

31

13

15

20

0

4

14

6

32

10

20

14

0

October

1

9

8

11

18

21

31

1

1

7

11

20

16

20

24

1

November

2

2

8

15

8

24

37

4

1

4

7

13

12

25

35

3

December

5

11

6

6

7

23

36

6

5

7

8

7

12

12

43

6

I8V2 h.

I8V2 h.

Degree of q
covering

1 :

2-3

4-6

7-8

9

10 i

inv.

Degree of q
covering

1

2-3

4-6

7-8

9

10

inv.

Jan. 20

4

10

3

5

6

44

8

July

3

11

12

20

13

20

21

0

Febr. 6

14

15

5

4

12

41

3

August 4

19

11

22

19

17

8

0

March 10

22

16

9

12

8

23

0

Sept.

3

21

17

12

12

17

17

1

April 3

9

13

16

11

21

27

0

Oct.

3

13

20

13

10

11

29

1

May 5

12

15

22

11

18

17

0

Nov.

14

7

9

11

6

9

41

3

June 7

14

14

18

16

16

15

0

Dec.

20

4

6

5

4

5

47

9

The following tables give the results of this computation for the total- and
the sky-illumination resp.

-ocr page 87-

Month

Time

Probability (in quot;/o) of the occurrence of
by sky -)- sun between:

an

illumination

Logarith-
mical mean

X
m

1

m
00

X
_3

in

CN

1

vn
fo

X

0
m

1

in
lt;N

X

0
f

in

1

0

CO

X

0
in
00

1

0
f
in

H

0
in
CO

1

0
in
00

X
_3

0

in

lt;N

1

0
in
m

X
§

tn

1

0

in

(N

X
_3

0
0

in

1

8
m

X

0
0

in
00

1

0

0
^

in

X

0
0
in
m

1

0
0

m

00

X

0
0
in

lt;N

1

0
0
in

CO

X

_a

0
0
0

en

1

0
0
in

(N

X
_3

0
0
0

in
1

0
0
0
■)-
CO

X

0

8
m
00

1

0
0

0
^

in

X

3

8
0
in
ro

7

0
0
0
in
00

January

8

2

3

14

16

15

5

7

13

10

10

5

1150 lux

10

1

3

13

16

19

19

17

10

2

7900 ..

12

1

5

13

19

27

20

12

3

16000 ,.

14

1

3

13

16

18

19

17

10

3

8100 „

February

8

1

4

10

14

13

9

17

17

12

3

4400 „

10

1

2

12

14

17

24

22

8

21000 „

12

1

2

8

14

27

30

15

3

31000

14

1

2

11

13

17

27

21

8

21000 „

March

8

1

1

7

9

14

22

39

6

1

16000 ,.

10

1

4

5

11

22

55

2

48000 „

12

1

3

12

28

15

41

60000 ,.

14

1

1

4

5

13

26

47

3

45000 „

April

8

1

2

9

19

36

21

10

2

27000 ,.

10

1

2

7

17

34

18

21

46000 ,.

12

1

2

6

16

32

16

27

49000 „

14

1

2

6

17

37

17

20

46000 ,.

I8V2

1

2

7

11

10

9

17

20

16

7

2300 „

May

8

1

4

7

15

31

37

5

43000 .,

10

i

1

4

15

32

17

31

55000 „

12

1

4

14

29

18

34

56000 ,.

14

1

4

14

31

17

33

56000 ,.

I8V2

1

7

7

11

18

24

22

10

8500 „

June

8

1

2

7

17

33

25

15

46000

10

1

4

14

31

17

33

56000

12

1

3

14

31

17

34

56000 ..

14

1

3

13

31

17

35

58000 „

I8V2

1

6

7

11

20

31

20

3

1

12500

July

8

1

1

6

16

36

25

15

47000 ,.

10

1

3

12

28

17

39

60000 „

12

1

4

15

32

17

31

55000 ,.

14

1

4

15

32

18

30

54000 „

I8V2

1

1

7

9

11

15

25

20

10

1

8100 „

August

8

1

1

5

14

30

15

31

3

35000 „

10

1

1

6

13

27

15

37

55000 „

12

1

2

13

32

18

34

58000

14

1

4

13

31

15

36

58000 „

I8V2

1

2

5

5

9

20

25

23

10

5500 .,

September

8

1

2

8

11

17

25

26

10

23000

10

1

1

5

13

26

47

7

49000 „

12

1

1

5

13

26

18

36

55000 ..

14

1

4

13

30

40

12

51000

October

8

1

2

9

12

13

16

23

17

7

6800 „

10

1

5

9

16

28

32

9

26000 „

12

1

2

8

10

18

31

30

35000 ,.

14

1

4

9

16

27

33

10

27500 „

November

8

1

3

5

17

15

11

23

18

7

2700 „

10

1

2

13

15

18

23

20

8

12500 „

12

1

2

13

15

18

23

23

5

20000 „

14

1

2

12

14

19

26

20

6

12500 „

December

10

1

2

8

14

17

17

19

16

6

6300 „

12

1

4

13

16

22

21

16

7

11500

14

1

2

8

15

17

17

18

16

6

6300 ,

-ocr page 88-

Month

Time

Probability (in °/q) of the occurrence
between:

of a sky-illumination

Logarith-
mical mean

X

a
in

CO

1

u-i
00

X

3

m
cs

1

u-l
fl

X

0
cn

1

in
fM

X

0
»n

1

0
^

cn

X
^

0

m
00

1

X
_3

0

u-i
ro

1

0
in

00

X
_3

0
in

fN

1

0
in
tn

I

X
i

1

0
m

r^

X
_3

0
0

in
1

0
0

m

X

s

00

1

0
0

in

X
g

m
ro

1

in
00

X

i
in

1

8
m

CO

X

CO

1

0
0
in

tN

X

in

X
_3

0

0
0
in
00

i

0
m

X
_3

0
0

0
in
cn

2

in

00

January

8

2

3

14

15

15

5

7

16

10

10

3

1150 lux

10

1

3

13

15

22

32

14

6900 „

12

1

5

13

23

41

15

2

135C0

14

1

3

13

15

21

32

14

1

7100 „

February

8

3

11

15

13

10

26

18

4

3800 ..

10

1

2

11

17

27

29

12

1

17500

12

1

2

10

21

34

27

5

25000 ..

14

1

2

11

15

24

33

13

1

18000 „

March

8

1

1

7

11

24

39

16

16

1

13000 „

10

1

7

18

25

41

8

30000

12

1

9

32

48

10

35000 „

14

1

1

7

17

25

40

9

30000 ,.

April

8

1

2

11

26

47

12

1

22000 „

10

1

2

9

25

50

13

36000

12

1

2

8

21

55

13

36000

14

1

1

8

23

53

14

37000 ,.

I8V2

1

2

7

11

10

11

32

17

7

2

1950 „

May

8

1

6

13

22

47

11

33000 „

10

1

7

25

52

14

1

38000 ,.

12

1

7

24

52

14

2

38000

14

1

6

24

54

14

1

38000 „

I8V2

1

1

7

8

14

38

26

5

6000 „

June

8

1

2

10

27

48

12

35000

10

1

7

26

51

14

1

38000 ,.

12

1

6

24

54

14

1

38000 „

14

1

5

23

56

14

1

39000 „

I8V2

1

6

8

17

47

20

1

9100 „

July

8

1

1

9

26

50

13

35000 ..

10

1

6

26

53

13

1

38000 „

12

1

6

24

54

14

1

38000

14

1

6

|23

54

15

1

39000 ,.

I8V2

1

1

7

9

12

25

33

11

! 1

6800 ,.

August

8

1

1

7

23

54

14

23500 „

10

1

1

9

26

52

11

35500 „

12

1

4

22

58

15

39000

14

1

6

24

56

13

38000 „

I8I/2

1

2

5

6

11

37

25

11

2

4300 ,.

September

8

1

2

8

16

37

27

8

1

17500 „

10

1

1

9

26

52

11

35000 „

12

1

1

8

25

54

11

36000 „

14

1

1

7

25

55

11

36000 „

October

8

1

2

10

13

15

18

30

10

1

5900 „

10

1

5

12

24

40

16

2

22000 „

12

1

2

9

13

22

42

11

30000 „

14

1

4

11

23

42

17

2

22000

November

8

1

3

5

17

15

11

29

16

3

2600 ,.

10

1

2

13

16

22

31

14

1

11000 ,.

12

1

2

13

16

22

31

14

1

18000 „

14

1

2

12

14

20

32

17

2

12000 „

December

10

1

2

8

14

16

23

26

9

1

5800 ,.

12

1

4

13

17

31

25

8

1

10500 „

14

1

2

8

15

17

23

24

9

1

5600 „

-ocr page 89-

The means for the various months obtained from our own material have
been compared in the following table with the values derived from the two
probability-tables of pages 75 and 76, which are added in brackets. All
values have been given in thousands of Lux. The results calculated in this
way are in good accordance with those from our probabihty method.

Time

91)

1

10

12

14

15*)

16*)

Total illumination

in Aug. 1932

89(45)

91 (55)

110(58)

68 (58)

40 (35)

Sept.

32(35)

42 (49)

39(55)

50(51)

40 (40)

18(25)

Oct.

16 (26)

24(35)

19 (275)

6,3(7)

Nov.

16 (125)

17(20)

9,8(125)

4,2(8)

Dec.

-

115(6,3)

18(115)

6,8(6,3)

2,0(-)

Jan. 1933

16 (7,9)

27(16)

9,6(8,1)

4,3(4)

Febr.

32 (21)

44(31)

34 (21)

4,1(15)

13(5)

March

49 (48)

62(60)

41 (45)

19(15)

April

44 (46)

42(49)

37 (46)

25 (27)

May

78(50)

65 (55)

51(56)

52 (56)

17(45)

June

56(50)

54 (56)

44(56)

69 (58)

62 (45)

Sky-illumination

in Aug. 1932

34(30)

38 (35,5)

43(39)

36 (38)

28 (25)

Sept.

29(25)

34 (35)

29(36)

26 (36)

21 (25)

20 (20)

Oct.

25 (22)

32(30)

23 (22)

7,1 (6)

Nov.

16(11)

16(18)

9,8(12)

4,8(7)

Dec.

16 (5,8)

16(105)

7,6(5,6)

4,1(-)

Jan. 1933

-

5,1(6,9)

19(135)

6,6(7,1)

1,7(4)

Febr.

31 (175)

31(25)

28(18)

15(4)

March

29 (30)

32(35)

29 (30)

17(13)

April

-

38 (36)

46(36)

48 (37)

31 (22

May

40(36)

43 (38)

41(38)

42 (38)

47 (36)

39(33)

June

38(37)

36 (38)

55(38)

35 (39)

30 (35)

1nbsp; The data in brackets at 9, 15 and 16 o'clock are obtained by intra- or extra-
polation.

-ocr page 90-

The result of this investigation can be summarised as follows. The
illumination is variable with respect to the intensities themselves at the
various wavelengths separately, as well as with respect to the ratios
between these intensities. In their general features these changes are
determined by the solar altitude and the degree of covering. For given
values of these two factors the intensities deviate on both sides of a certain
mean value. These deviations increase with increasing cloudiness. Expressed
in percentages of the mean value they are nearly equal for each degree
of covering over the whole region of the solar altitudes, that concerns us.

Total illumination. When there is no, or only a shght cloudiness, the
illumination is with rather high precision determined by the solar altitude.
In this case the absolute values as well as the mutual ratios of the
intensities at various wavelengths show only small deviations from their
mean values. The maximum intensity occurs in the region from 2=5000 A

2 = 5600 A. With increasing cloudiness the fluctuations in the intensities
become more and more pronounced as is also the case with the fluctuations
in their mutual ratios, to such an extent even that we can no longer speak
very well of a definite characteristic illumination belonging to definite
values of the solar altitude and the degree of covering. We assign,
therefore, the mean value of the intensity of a certain number of
wavelengths without paying attention to any correlation between these
intensities.

In general, the fluctuations are somewhat smaller for the shorter than
for the longer wavelengths, while, as regards the division of the
observations in groups according to the wavelength of the maximum value
of ƒ, those observations that possess the smaller intensities relatively to
the mean intensity show a certain preference for that group, for which
is small (2,„=4500 to 4800 a).

For greater solar altitudes and complete covering, shifts towards
values somewhere between
5000 A and 5800 A; for smaller altitudes, more
towards 4500 a to 4800 A; in the latter case the intensities of the red
wavelengths are relatively strong.

Indirect illumination. Here the behaviour of the fluctuations with respect
to the mean value is chiefly the same as in the case of total illumination;
they increase also with increasing cloudiness. They are, however, smaller
(except for total covering) than the corresponding fluctuations of total
illumination.

When there is a cloudless- or very slightly clouded sky, the fluctuations
round a certain mean value are relatively small as are also the fluctuations
of their mutual ratios. These ratios are fairly constant and practically
independent of the solar altitude. For higher values
(gt;40°) of the latter
the intensity of all wavelengths shows a tendency to decrease. When the
degree of covering exceeds 2/10 we must confine ourselves again to the

-ocr page 91-

determination of a mean value for each wavelength separately. With
increasing cloudiness, the indirect illumination increases until the sky is
almost completely covered; with a completely clouded sky the illumination
is again smaller. For high degrees of covering, the indirect illumination
approaches the total illumination, and for complete covering it becomes
in many cases identical with the latter. With low positions of the sun, and
a clouded sky, the intensities in the red part of the spectrum become
relatively stronger. The maximum of the intensities moves towards the
shorter wavelengths as the intensities over the whole range of the spectrum
decrease. The fluctuations of the intensities in the red part of the spectrum
are somewhat greater than those in the blue-violet part, particularly when
the sky is half-covered.

The observations, discussed above, cover only a short period. Yet, in
our opininon, the conclusion is justified that the above summary (pages
64, 65, 67, 75, 76 and figs. 5—9) of the final results can be used to
advantage as information for our country, concerning daylight-illumination,
for architectural computations. It would be very profitable to carry out
similar observations for longer periods at a stretch; apart from their bearing
on technical and architectural problems, they would certainly be of value
for meteorology itself as well.

-ocr page 92-

CHAPTER V.

Application of the obtained results to the scattering of light in the

atmosphere.

The atmosphere influences the illumination chiefly by the processes of
scattering and absorption. Both phenomena depend on the nature and the
number of the particles that build up the atmosphere. From our material
we shall derive a few data concerning some quantities that are of interest
in this connection.

Scattering and absorption with a clear sky. In the preceding chapters
we distinguished between total- and indirect illumination. Subtraction of
the latter from the former gives the direct illumination. With a clear sky
this difference consists chiefly of the non-scattered and non-absorbed part
of the energy entering the atmosphere in the direction of the observed
surface. It contains, besides, a small amount of light, which after having
been scattered a few times, strikes the surface in the direction from the
sun. We determined the direct illumination from pairs of observations,
one immediately after the other, and referring to the total- and indirect
illumination respectively. As the screen, which served to intercept the direct
radiation of the sun, cuts off also the radiation from the immediate vicinity
of the sun, [the brightness of that side of the screen which is turned to
the white surface is only a small fraction of that of the screened part of
the sky] the values found by the contrivance are somewhat higher than
the true values of the non-disturbed energy. The error so introduced, can,
however, never assume an appreciable value since the brightness of the sun
is a great many times the brightness of the sky. According to KlNQi), for

tot.energy skynbsp;, , , ,

example, the fraction---is 125 X 10quot;« for equal solid angles

^nbsp;tot.energy sun

and for zenith position of the sun. Though for small solar altitudes this

amount will be much higher, we may safely neglect the error in question.

It will be convenient to introduce in our computations the energy, flowing

per second across the unit of area, at right angles to the light path. This

energy is found by multiplying the difference between the total- and the

indirect illumination by cosec cp (cp solar altitude).

Let I (A) dX be the part of the flow of energy between X and X dX and
Iq (X) dX the corresponding energy entering the atmosphere.

It) L. V. Kino, Phil. Transact. Roy. Soc. London, A. 212, 415, 1913.

-ocr page 93-

- / (s z)d(

Here s and denote the coefficients of scattering and absorption

respectively. Generally speaking x) dl will be a function of I On

the assumption, that the dimensions of the particles scattering the hght
in the medium are small, compared with the wavelength of the light
travelling through it,
Rayleigh derived the following expression for s:

_32 ifi-l)^
^ quot;quot; 3 n

u denotes the refractive index of the medium, I the wavelength in cm and n
the number of particles per cmS; s refers then to a length of the lightpath

equal to 1 cm. is a function of 1. For air of normal composition

has a constant value for each wavelength, q representing the density of

the air. For the wavelength 2 = 6800 Ä, the value of -—^is 0.2246 and for

2 = 4500 Ä it is 0.2281. We shall take it to have the value 0.226 throughout
our range of wavelengths. We have, further, for air of 0° C and
760 mm Hg. pressure
e = 0.001293 g/cm3. According to Rutherford and
Geiger, the number of molecules per cm» in air under these conditions
is n = 2.72.10i9. If
l is expressed in A, Rayleigh's formula gives with

00

these values s = 8.03 X 10io^(cm—i). The integral J^sc// is proportional
to j Qdl where 1 = 0 and /= oo refer to the observed surface and the sun

u

respectively. This integral is a function of the solar altitude. For q) gt; 30°,

it is approximately proportional to . For lt;30° the curvature of the

sin 99

(1)

We have then:

earth's surface makes itself felt. Bemporad gives for the ratio between this
integral and the corresponding one along the vertical the following values.
The values of cosec 93 are added for comparison.

TABLE I. 1)

Solar altitude tp

90°

70°

50°

30°

20°

15°

10°

Cosec If

1,000

1,064

1,305

2,000

2,924

3,864

5,76

11,47

28,7

f (tf,) (Bemporad)

1,000

1,995

2,904

5,60

10,39

19,8

Let us assume that q along the vertical can be represented by p = go e

These data are taken from N. ShAW. Manual of Meteorology Vol. Ill (1930).

-ocr page 94-

where 6 = 0.118 X 10—5 cm—i (which answers approximately the
behaviour of
q in the lower layers of the air), we shall have then

so

J

0

stituting for go the value 0.001293 g/cm^, we find finally j scf/=nbsp;f(lt;p).

0

As for X its value is fairly low with a cloudless sky. x will also be
dependent on the wavelength. Water and water-vapour, for example,
present in the atmosphere will absorb a certain amount of energy. Ozon
has a region of absorption between 2 = 5300 A and 5900 A i).

Apart from the actual gas molecules other particles are to be found in
the atmosphere. In a cloud, for example, particles occur having diameters
of about
10 /x. Particles of dust occur with dimensions 0.3 jx to 1.7
(measured with the dustcounter of Owen). Further, there are clusters of
molecules measuring up to
0.2 p.. Perntner estimates the particles of
volcanic dust at 1.85 fj,. A few years after serious volcanic eruptions there
are still fairly large quantities of these particles pervading the atmosphere.
Particles larger than \0 fi behave hke reflecting bodies. The scattering is
then no longer selective. The limit between selective and non-selective
scattering of the visible light lies somewhere between 10^ and
0.5/a. For
very small particles the scattering is proportional to /—4, for larger ones
to /lquot;. Moderately small particles will therefore presumably give rise to
scattering, proportional to a power of I between 0 and —4 2).

In order to be able to determine the weakening of the sunlight on its
way through the atmosphere, we must know /
q (2). mulders^) gives the
energy radiated by 1 cm2 of the sun's surface per second and per unit of
solid angle, expressed in erg's for dX=\ cm. The mean distance of the
earth from the sun is
A = \5 X 10''' km. and the radius of the sun
/? = 6.955 X 105 km 4). For mean distance of the sun /,) (2) expressed in

W/cm2A becomes /q {X)=7inbsp;10-i5 = 6.77 X IO-20 the number of

Mulders units. Expressed in our relative units (see Chapter II) Iq (/) is
4.87 X 10—12
Mulders units. We obtain then in relative units the
following values:

TABLE II.

Qo

qo is the density at sealevel. On sub-

-5

0,118 X 10

K :

4500

4600

4700

4800

4900

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

k :

1950

1940

1900

1960

1780

1840

1705

1720

1690

1655

1570

1495

1460

1360

1300

1)nbsp;Handbuch der Astrophysik, Bd. IV, p. 31 (1929).

2)nbsp;See also shaw, Man. of Meteor. According to some authors the exponent of may
vary from 1 to —4.

s) mulders, Diss. Utrecht, p. 67 (1934).
') Handbuch der Astrophysik IV, p. 60.

-ocr page 95-

For our computations we assume further, that we can write

where /q (2) is given in table II t denotes the time, elapsed since the earth
passed the perihelium (2 Jan.),
T is the interval of one year. The numbers
135 and 4.5 are the mean value of the solar constant (in kW/(10 m)^ )
and the maximum deviation from that value respectively. From our material
we derived in 18 cases the direct illumination and plotted log
Iq (2) —

6800~

log ƒ (2) against

, If only RAYLElGH-scattering occurred, the points

so obtained would lie on straight lines through the origin, and the slope of
these lines would be a measure for s. In 12 cases (group 1) it proved
indeed feasible to construct such a straight line. In 5 other cases (group II)
the points in the region from 2 = 4500 A to 2 = 5000 A fitted fairly well

TABLE III.

Group I

Group 11

Potsdam
100 m

Washington
10 m

Mt. Wilson
1780 m

Mt. Whitney
4420 m

7000

0,176

0,060

0,045

6800

0,078

0,176

0,127

-

6600

0,093

0,201

0,138

-

6400

0,134

0,225

0,150

-

6200

0,116

0,213

0,162

6000

0,147

0,235

0,174

0,274

0,117

0,068

5800

0,146

0,240

0,186

5600

0,154

0,257

0,200

5500

0,302

0,132

0,087

5400

0,210

0,282

0,213

5200

0,205

0,266

0,229

5000

0,234

0,338

0,247

0,350

0,153

0,105

4900

0,272

0,393

4800

0,372

0,441

0,269

4700

0,372

0,435

0,399

0,190

0,128

4600

0,405

0,461

0,301

-

4500

0,438

0,542

-

0,446

0,223

0,161

in a straight line through the origin — for longer wavelengths, however,
log /o (2) — log / (2) proved greater than the ordinates of the corres-
ponding points on the straight line. In one case, finally, the deviations were

-ocr page 96-

such, that we rejected it. KiNG i) finds from values obtained in the
observatories of Washington and Potsdam, that the lines show a sudden
deflection at
1 = 6100. No trace of this appeared in our results. Besides,
he found from the material of Washington, Potsdam, Mt. Wilson and
M't. Whitney each time a small constant factor. Our method is not
accurate enough, either to conform or to contradict its existence. According
to
King this factor must be due to absorption, but cannot cause a
considerably deviation. There appeared, though, to occur a systematic
deviation in the region
1=5200 to 1=5000. In that part of the spectrum
the scattering was evidently less than in the neighbouring parts. It may
be, that the radiation of the sun is stronger there than we assumed it to be,
or it is perhaps due to an error of measuring, or, again, it may be connected
with the ozon-absorption in the region next to it. For a comparison between

the values of {s 'gt;i)dl, found from our material and those obtained

from observations at Potsdam, Washington, Mt. Wilson and Mt. Witney
all values are reduced to zenith position of the sun by dividing them by
the corresponding values of
f {cp). We give here the average values of
groups I and II separately and uncorrected. (Table III.)

The values of group II agree more or less with those of Washington. For
1 gt; 5000 A the values of group I are somewhat lower than those of
Potsdam. Group II appears to yield for all wavelengths higher values than
group I. The scattering particles of the former group are evidently larger
than of the latter; to group II belongs, therefore, the greater coefficient
of scattering, especially towards the longer wavelengths. Presumably
the absorption increases also towards the red. The results of group I

fbmx

can be approximately represented by s = 0.084 X
18 X 1013

■ I (cp). This amounts to more than twice the theoretical value.

On examining the ratio between the measured and the theoretical value it
appears generally speaking, to have higher values in summer than in

TABLE IV.

fp

11

15

20

20

20

21

23

30

30

36

35

37

42

43

52

53

58

58

month

11

III

III

I

I

II

II

III

III

III

III

III

V

VI

V

V

V

VI

ratio

1,6

1,9

2,0

1,7*)

3,0*)

1,7

2,0*)

2,0

1,6

2,5*)

3,1

1,6**)

1,9

1,2

2,2

2,4

2,9

3,3*)

*) group II, inclination determined for 7. lt; 5200,
**) deviating shape.

winter. Those values that are higher in winter belong mostly to group II.
The results of the computation are given in table IV.

1) Kino, I.e. p. 425.

-ocr page 97-

The brightness of the sky is a consequence of scattering. According to
Rayleigh's theory, the light, incident on a scattering particle, is not
distributed equally over all directions, not even when the particle is a
sphere. In reality the particles are not spherical. Owing to their chance
orientation, however, an element of volume of a scattering medium will
behave in the same way for any angle of incidence. KlNGi), to whom we
owe a detailed discussion of the problem of the scattering in the
atmosphere, does not introduce this complication but assumes that each
particle scatters the incident energy evenly over all directions. He derives
an integral equation and gives an approximate solution of it. In order to
solve the equation, the coefficient of scattering in each point of the space
considered, further the intensity and direction of the incident radiation and
the optical properties of the boundary surfaces must be known. For
simplicity, KiNG substitutes for the atmosphere a place layer of air between
the (flat) earth and universal space, out of which parallel radiation enters
the layer. The earth is assumed to be perfectly absorbing. He proves then,
that the condition at the surface of the earth does not depend on the
density distribution of the atmosphere, provided the latter is a function of
the height only. If we wish to take into account the curvature of the earth,
this holds no longer. The solution of the integral-equation becomes the
least complicated if one assumes the atmosphere to be a flat layer of
constant density. Without entering into the details of this solution we can
account more or less for a few of the phenomena we have met with. We
imagine a space in which scattering takes place and fix our attention on
dv one of its elements of volume. Let the coefficient of scattering be s.
In a direction at an angle
6 with that of the incident radiation of intensity E
the energy scattered by dv within an elementary solid angle dm is given

by E.dv.s.fi(O) .dm; ju (9) is a function of 6 only. Jfj, [9) dlt;X) over all

directions from dv is equal to 1. The state in dv will lie between the
following extremes; the energy reaching
dv arrives a) from one direction
and b) evenly from all directions. In case a) the amount of scattered
energy leaving the element in the direction
9 relatively to the direction of
incidence, is
E. s. /Li(e). dm dv- If 1(1) denotes the intensity at the
wavelength 2, then the amount of energy between 2 and 2
d?. will
be
I (I) . s . u (9) . dm . dv . dX which is proportional to s. In case
b) if the energy entering'
dv from the solid angle dm is I, (2) dX dm
(the total amount entering dv is consequently 4^1/, dX), the energy leaving
dv within the solid angle dm' will be dm' and the total amount leaving
the element will be again 4^1
dX. This means that the energy radiated in
some given direction is independent of s, or, in other words that s has
no influence on the distribution of the light.

1) King, I.e.; Spijkerboer, diss. Utrecht (1917).

-ocr page 98-

Let US suppose that, according as the element dv lies further in the
interior of the scattering space, the state in the element will resemble more
closely state b). In the deeper layers, therefore, the coefficient of scattering
is supposed to have less influence on the distribution of the light. What is
to be understood by quot;deepquot; in this connection, depends on s and the
actual localisation of the element considered. For example, for Hght of a
wavelength for which s is large, there may exist at one and the same
spot a state, that is very much like state b) whereas for light of a
wavelength X2 for which s is small, a state may prevail much more like
state a). If we consider a second spot, further away from the boundary, its
state as far as wavelength is concerned will be practically the same,
but, as regards wavelength /Ig, it will differ widely from the state in the
first spot in that it is now much more like state b). Let us fix the boundaries
at the planes
x = o and x = t, it then appears from the integral equation
that for an element in a layer at the distribution of the light will be a
function of
st and sx. If, therefore, t is chosen sufficiently large and if
our supposition concerning the gradual approach to state b) in the interior

is true, the distribution of the light of wavelength in the layer at —

will be the same as of the light of wavelength X2 in the layer at

—. If in the neighbourhood of x = t/2 the state b) prevails for all

S2

wavelengths, the spectral energy distribution in that neighbourhood will
be the same as in the incident light. We have already seen that with
a clear sky the energy distribution over the range from 2 = 6800 A to
2 =5000 A was approximately proportional to 2—2. For shorter wave-
lengths, the intensities fall frequently below the values corresponding to
this distribution. The variations from deep-blue to pale-blue are certainly,
for the greater part, connected with variations of the coefficient of
scattering. Though in the deeper layers where state b) prevails the
coefficient of scattering does not influence the distribution of the light,
it does, nevertheless influence the total absorption. For, that light for
which s is largest, will travel over the longest distance in the medium, so
that the product of absorption coefficient and lightpath can have widely
different values for different values of s and thus for different wavelengths.

Scattering and absorption in clouds. In clouds scattering takes place
also. The scattering particles are in this case larger than those, to which
Rayleigh's formula applies, and the scattering is in the majority of cases
only slightly — or not at all selective. The sun, seen through a thin cloud
is white, whereas seen through a sooty fog it is red. Besides, the scattering
is much more pronounced than in a cloudless atmosphere. The fact that
inside a cloud the Ught is white, is not necessarily an indication of non-
selective scattering. Next to scattering absorption takes place also. The
coefficient of absorption of water increases with increasing wavelength.

-ocr page 99-

This may be the explanation of the fact, that with a heavily clouded sky
the maximum of radiation lies at 2 = 4500Â (see Chapter III). Here again
we meet with the mutual influence of scattering- and absorption-phenomena,
which may give rise to great fluctuations in the spectral distribution of
the daylight, as well as to large differences in its intensity.

Influence of the earth's surface. The reflection of light at the surface
of the earth is also of some moment for the lighting. This is very strikingly
illustrated by snow and ice, by which a great part of the incident radiation
suffers diffuse reflection. Owing to the capricious character, however, of
these phenomena, it is hardly possible to include them in a numerical
treatment. Besides, our material is unsufficient to deduce from it the data
necessary for their adequate discussion.

-ocr page 100- -ocr page 101-

STELLINGEN

I.

De beschouwingen van Shaw over het donkere uiterHjk van sommige
wolken geven geen geheel juiste voorstelling van de invloeden, die hierbij
van belang zijn.

Sir Napier Shaw, Manual of Meteorology, Vol. III (1930),
page 93.

II.

De wijze van behandeling van de foutenwet van Gauss volgens
coolidge verdient geen aanbevehng.

J. L. COGUDOE, An introduction to mathematical probability
(1925).

III.

Er bestaan zoowel Barkhausen-Kurz trillingen, waarbij de veldvervorming
door de ruimtelading essentieel is, als andere waarbij dat niet het geval is.

IV.

De meeste auteurs betrekken ten onrechte het axiale electrische veld in
de onmiddellijke nabijheid van de gloeidraad bij aanwezigheid van een
cylindrische anode, die de gloeidraad omsluit, niet in hun beschouwingen
over electronenemissie.

V.

De breedte van de lichtvlek in photographisch registreerende apparaten
is voor de opstelling van
kaiser kleiner dan deze aangeeft.

H. Kaiser, Theorie der photographischen Registrierung, Z. f.

Techn. Phys. 16, 303, 1935.

VI.

Er zijn aanwijzingen, dat de vloedgolf, die dubbelstercomponenten op
elkaar veroorzaken, niet gericht is volgens de verbindingslijn der middel-
punten.

-ocr page 102- -ocr page 103-

De door MoUTON geconstateerde afname van de gezichtsscherpte met
de afstand van de test, wordt niet verklaard, doordat de gezichtsscherpte
ongelijk is voor verschillende deelen van het netvlies.

Mouton, Recherches sur les propriétés physiques et les
effets physiologiques d'une lumière colorée, pag. 57 (1935).

VIII.

Het is twijfelachtig of het ideaal van een wegdek van volkomen gelijk-
matige helderheid bij wegverlichting dient te worden nagestreefd.

-ocr page 104-

f i

-ocr page 105-

j ' ,

/

■ /

f )

; :: r: '

i' ■ -

.■: 'r

■ ' ),

- ■ ;C'. . .

•■-•ïv.'ï ■

/ :

- ï - - ; ■■■ -, -

f,

■ - .

-ocr page 106-

, .f J-, ' . ï • - ■■ ■nbsp;* k .. ;

è

•c

I quot;

quot;A

y

quot; ■ —- .
.rt','
f .

■/ V

■ v-ï^

f..

\ , 'r : ;

! , -,

■ f

-ocr page 107-

. • \ : ,

%

/

; .1

^ - •

quot;y

\

-ocr page 108-