-ocr page 1- -ocr page 2- -ocr page 3-

I N D E X

ELEMENTOR.UM GEOMETRIjE.

^EFINITJONES PRMMlTTEED/ii. nbsp;nbsp;nbsp;pag. i

sectio I. DB LINEIS. nbsp;nbsp;nbsp;2

Caput I. De Natura Line arum. nbsp;nbsp;nbsp;2'

Art. I. De JJneis reciis. nbsp;nbsp;nbsp;2

Art. II. De Lima circularL nbsp;nbsp;nbsp;^

Art. III. Notio aliaruin quarumdam airvaruai. nbsp;nbsp;nbsp;12

Cap. II. De Kectarum Profrietatibus. nbsp;nbsp;nbsp;j_5

Aid. De, jitu line£ rzchz ad''aiia.m rdfaui,^ de angulis. 15 t I- E)e diigidis.nbsp;nbsp;nbsp;nbsp;•nbsp;nbsp;nbsp;nbsp;quot;nbsp;nbsp;nbsp;nbsp;ló'

. §. 2. De . Perpevdiculaj'ibqs. nbsp;nbsp;nbsp;ao

' nbsp;nbsp;nbsp;'3. De Paralldis. ' 'nbsp;nbsp;nbsp;nbsp;. . ¦ ¦

.Art. il. .Dp fltq UnciS reUx -qd Circulareni; 5? de nicvfiira •;nbsp;nbsp;nbsp;nbsp;' angulorwn, quorum vertex non ejl in circuCi cen

29

I' D^fitu liiiex rccfx ad Circulareni. nbsp;nbsp;nbsp;iq

p.. D^tnenjara .anguloriun, quorum vertex non cjl in in Circuli Centro.nbsp;nbsp;nbsp;nbsp;35

Ca p. III. _De Recta rum Prqpr.iltatieus , dum spattum claudunt.'” 'nbsp;nbsp;nbsp;nbsp;41

Art. nbsp;nbsp;nbsp;I.nbsp;nbsp;nbsp;nbsp;De T'riangulis.nbsp;nbsp;nbsp;nbsp;43

3' I. Dz variis I'rlaneulorum fpeciebus, atqiie proprie-' nbsp;nbsp;nbsp;42

tra.

tatilrus.

vnpafatione Triangalorum. Art. li. Di cxteris Polygon is.

1. De Polygorus in Geneve.

:§• 2. De Polygon is Symmctricis.

5. 2. De Comparatione l nanzuLorwn. nbsp;nbsp;nbsp;52

.A?

'^.'y.'De Polygditis Jiegularibus. ' • nbsp;nbsp;nbsp;lt;^2

, AruilL De Linds Proportionalibus,^ Figuris funilibus. (gt;^_ , §¦ Ï. Di Lineh pröpdnlondlibtts,atque''AA'‘jimi!ibus. 68nbsp;2. De CiSteris Figuris fimilibits. 'nbsp;nbsp;nbsp;nbsp;B4

sectio II. DE SUPERFJCFEBUS. nbsp;nbsp;nbsp;83

Caput I. De Supekficiebus qua magnitudinis. ¦ nbsp;nbsp;nbsp;83

Art. I. Di methodo generali Metiendi Superficies. 89 Arrr. H. jPe Ratiane Drearuni.nbsp;nbsp;nbsp;nbsp;03

^AP.li. Dp ProprietATiTUS Superficierum planar.um. 96

-ocr page 4-

INDEX.

lol

SECTIO III. DE SOUDIS.

Caput I. De Genesi Solidorum; nbsp;nbsp;nbsp;Angulis solidis,nbsp;nbsp;nbsp;nbsp;at-

QUE PoLTEDRIS. nbsp;nbsp;nbsp;102

Art. I. De Geneji Solidorum. nbsp;nbsp;nbsp;102

§. 1. De Genefi Solidorum per motum reamp;ilinewn. nbsp;nbsp;nbsp;102

S'. 2. De Genefi Solidorum, quee nbsp;nbsp;nbsp;fiunt motu circularl,nbsp;nbsp;nbsp;nbsp;106

Art. If. De Uigulis foUdis, atque Polyëdris. nbsp;nbsp;nbsp;107

1. nbsp;nbsp;nbsp;De Uigulis fblidis.nbsp;nbsp;nbsp;nbsp;107

2. nbsp;nbsp;nbsp;De Polyedrb.nbsp;nbsp;nbsp;nbsp;109

Art. III De Solidis fimilibus. nbsp;nbsp;nbsp;ïit

Cap. II. De Dimensiune Solidorum. nbsp;nbsp;nbsp;117

Art. I. De Dimenfione Superfideruin Corponim, earum-que Comparatione. nbsp;nbsp;nbsp;117

Art. II. De Dimenfione Suliditatis Corporum, amp; Solidi~ tatum Comparatione.nbsp;nbsp;nbsp;nbsp;129

134

SECTIO IV. DE TRIGONOMETRIE PLANA.

Art. I. De ConftruSione Caiionis Sinuum, Tangenmm , atque Secantüim.nbsp;nbsp;nbsp;nbsp;137

Art. II. De Analyfi Triangulorum. nbsp;nbsp;nbsp;144

INDEX GEOMETRIE PRACTICA

SECTIO 1. DE INSTRUMENT IS GEOMETR-ICIS,

EORUMQUE USU.

II. nbsp;nbsp;nbsp;DE LONGJMETRIA.

III. nbsp;nbsp;nbsp;DE PLANIMETRIA.

154

183

ïpo

SECTIO

SECTIO

Art. I. Art. II.


6. f.


De Agrorum Geod^efia.

De divijione amp; redudïone figurarum.

De divifione 5? reduêlione Triangulorum.

n» nbsp;nbsp;nbsp;---- .....- nbsp;nbsp;nbsp;____/-i.. .


190

204

204


De divifione atque reductione QuaBrilaterdm (5fc. 209

IV. SOLIDOMETRIA SINE STEREOME-TRIA. nbsp;nbsp;nbsp;214

Caput I. De Solidorum Constructione atque Dimen-


§. 2.

SECTIO


S- I-S. 2. Gap. II.


SlONE.

De Solidorum ConfiruSione.

De Solidorum Geodtejia.

De STEltEOMETRIA DOUORUM.


214

214

218

t20


-ocr page 5-

ELEMENTA

«EO

ETM^

DEFINITIONES PR^MITTEND.E.

DeF INITIO I.

Ï- nbsp;nbsp;nbsp;Eometria fcientia eft, qusc triplicem cx-

^ ^ tenfionis fpeciem, longitudinem fcilicet , Tl ^ r? latitiidinem atque profunditatem, conft-derat.

Definitio II.

2. PiinSiim a geometris confideratur veluti quanti» ^as, cujus dimcnfiones funt infinitè parvsc, amp; eui nulla extenfio finita tribui poteft, definiturque a Wolfio;nbsp;^uod quaquavcrfum ft ipfum terminat, feu quod no»nbsp;i^bet terminos alios a fe diftindbos.

-ocr page 6-

CAPUT P R I M U M

DE NATUR.A LINEAR.UM.

Hypothesis.

3. Um piinB:iim a termino ad tcrminum moved concipitur, Z/mcfl defcribitur; quai Recta eft, fi.nbsp;in nullam partem dcilectat pundum in decurfu ; Cur-va, 11 continua fit deviatio, amp; Mixta ^ ii partim lineanbsp;delcripta redid atque curva conftec.

4. Quamlibet igitur lineam concipere licet ut fe-' riem continuam infinitorum pundorum; amp; quoniam duo qutccumque punda libi contigua lineam redamnbsp;conftituant oportet; quadibet linea , five reda, fivenbsp;curva, fpedari poteft compolita redis infinitè parvis.

, nbsp;nbsp;nbsp;COROLLARIUM II.

5'. Tinea nullam habet latitudinem , neque profundi-tatem ; ejufque extrema, cum lint punda, extenfa di' ci nequeunt.

6. ScHOLTON. Hac , atque fequenci feftione,-excepto cap. 0., li-

neas omnes in eodem piano cxiltentes lupponimus.

ARTICULUS l De Lineis reSis,

Ex line® red® genefi ( 3 ), axiomatis inftar, aflumera licet propofitLones lequentes :


-ocr page 7-

ElEMENTA GeOMETE-IJE. nbsp;nbsp;nbsp;ij

7- I. Linea reéla brevilEma eft, quK in eer duo punc-ta duci poteft.

CoROLLAILIÜM 1.

8. Lineis ergo reélis diftantia; funt inquirendic.

CoROI, LARIUM II.

9- Rcfla AB CT_4B.I.j?^. i.) brevior eft reélis AC BC; Item brevior eft curva aKB.

10. nbsp;nbsp;nbsp;II. Lineas reélaï unica eft fpecies, curvarum ve*nbsp;ro infinita; polTunc dari.

11. nbsp;nbsp;nbsp;III. A punélo dato ad punélum datum unica recta duci poteft.

12. nbsp;nbsp;nbsp;IV. Bina punéla fuiEciunt, ut linete reétai pofitionbsp;determinetur; at pilunbus, quam duobus, opus eft, utnbsp;curvai fitus innotelcat.

THEOREMA I.

Dute linecc recla feje tantum pojfiint intcrfecare in. iinico pun3:o communi.

ïg. Demonstilatur : Si enim duo unius lineac puncta torent alteri lineac communia; quoniam hsccnbsp;punéla akerius linesc fitum determinarent (12), debe-ret altera in priorem incidere; atqui hoe eft contranbsp;fuppofitum; ergo unicum tantum poffunt habere punctum commune. Q. e. d.

THEOREMA II.

I^atd reSd GI (fig. 2 ), Ji piinSum aliqtiod G dijlct

tequaliter a piinëis A amp; B; 6’ infuper aliud quod-dam rectix Gi punctum v. g. I, cüam cequalitcr dijiet ab A amp; B, quodlibet punctum luicce.

GI diflat ceque ab A uc d B.

Ï4. Demonstr. Ex ftipp)ofito punéla G amp; I non defleélunt ab A plus quam a B, ncque a B plus quaÉt

A a

-ocr page 8-

4 nbsp;nbsp;nbsp;Elementa Geometrije.

ab A ; atqui ut a G ad I reda ducatur , fic moren condpiendum eft pundum G, ut, ubicumque exiftat,nbsp;etiam non defledat ab A nee B (3)? ergo fingulumnbsp;reótic GI pundum sequaliter ab A amp; B diftat. e. d.

COROLLARIUM L

15. nbsp;nbsp;nbsp;Duda AB, quoniam O eft pundum reóte GInbsp;^13) eft AO = OB.

C0K.0LLARIUM II.

16. nbsp;nbsp;nbsp;Si producatur reda GI Cfig-3')i bscc tranfibitnbsp;per omnia punda sequaliter ab A amp; B diffita; ft enimnbsp;foret aliquod pundum v. g. X extra linealn GI, datamnbsp;aut produdam, quod ab A amp; B acqualiter remotumnbsp;foret, atque adeo effet AX=XB; quoniam eft AL=LBnbsp;C 14), eflet AX=XL AL; quod fieri nequit,feu quodnbsp;implicantiam involvit (9).

ARTICULUS 11.

Dc Linea circulari.

Hypothesis.

17. nbsp;nbsp;nbsp;RedaBXC^^. 4) , una fui extremitate fixi innbsp;X, altera B circumducatur, donee rurfus ad B redeat.

Definitio I.

18. nbsp;nbsp;nbsp;Totum fpatium, a linea BX percurfum, Circiilusnbsp;dicitur i amp; pundum X, ejufdeni Centrum audit.

Definitio II.

19. nbsp;nbsp;nbsp;Curva BCLFB, ab extremo pundo B defcripta,nbsp;Circumferentia item Peripheria eirculi appellatur.

COROLLARIUM.

20. nbsp;nbsp;nbsp;Quoniam pundum B, omni inftanti, d quoli-bet pundo pcripheriae, ad vicinum progrediens, cogatur

-ocr page 9-

Elementa Geometrtje. nbsp;nbsp;nbsp;g

^efleclere, tria peripherise punéta in eadeni linea reéla reperiri nequeunt; atque adeo ab eodem pundlo ad ean-dem reélam non poffunt duci tres lineoc recttc acquales.

Definitio III.

2.1. Peripherie pars quelibet, v. g. BZK (^fig.

lt;its vocatur, amp; recta BK, terminata utrimque in peri-phenz, Chorda véiSubtenJa audit; hecque fubtendit, amp;n fujientat , arcum BZK, item arcum BCAGK.

Definitio IV.

22. nbsp;nbsp;nbsp;Pars circuli, V. g. KZBK,coinprehenfa inter chor-damBK amp; arcum ^nhten^um, Segmentum circuli dicitur.

Definitio V.

23. nbsp;nbsp;nbsp;Chorda per centrum tranfiens, fpeciali nominenbsp;Diameter appellatur : talis eft chorda AB, item CG, finbsp;X fit circuli centrum.

Definitio VI.

24. nbsp;nbsp;nbsp;Kefte omnes, a centro ad aliquod peripheri»nbsp;punétum, duCtx., Radii vocantur. Tales lunt BX, XA,nbsp;XG amp; XC, pofito quód in X fit centrum.

I.

ROLLARIUM.

25. nbsp;nbsp;nbsp;Omnes radii ejufdem circuli, vel equalium cir-culorum, funt equales : omnia enim peripherie ejufdem circuli, aut equalium circulorum punfta, a centro diftant radio iftius circuli.

CoROLLARIUM II.

26. nbsp;nbsp;nbsp;Diameter dupla eft radio eiufdem, aut equalisnbsp;circuli.

Definitio VI I.

27. - SeSor circuli eft pars circuli , duobus radiiSnbsp;AX amp; GX (^fig. g), atque arcu GS, comprehenfa.


-ocr page 10-

6 nbsp;nbsp;nbsp;Elementa Geometric.

fi8. ScHOLiON. In charta circulus defcribitur circino; majoribus autem circulis defcribendis, filum , funiculus auc pertica, ad-hibetur ; una enim eorum extremitate, ftylo fixa, altera cir-cumducitur ( filum atque füniculum aptè tendendo}, amp; cufpide,nbsp;aeca amp;c. peripheria delineacur.

THEOREMA I.

PunBiim interfeSionis duarum diametrorum efl centrum.

29. nbsp;nbsp;nbsp;Si chordsc AB amp; GC Cfig-S^ dianietri, punctum X eft centrum.

Demonst. Ut chorda AB, item GC fit diameter, quaclibet per centrum tranleat oportct C 23 ); igiturnbsp;punétum illud, quod centrum dicitur, quodque unicum eft, reperitur in finguia cx didlis chordis; atquinbsp;duac rcdae, fiefe interfecantes, unicum poffunt haberenbsp;pundum commune ( 13 }; ergo punéham X eft centrum. Q^. e. d.

THEOREMA II.'

Diameter peripheriam dividit in diias partes crguales, Et è converfb; fi qua chorda peripheriam dividatnbsp;in duas partes cequaks, illa diameter efl.

30. nbsp;nbsp;nbsp;Dico 1° fi chorda AB Qfig. 6) diameter fit,nbsp;effe arcum AKB = arcui BCA.

Demonst. Fmge peripheriac partem BCA plicari ver-fus alteram BKA; quoniam finguia puncla areüs BCA ïcqualiter ab X, centro circuli, diftant, ac quailibetnbsp;areüs BKA punéta, centrumque immotum confiftat;nbsp;nullum prioris areüs pundum dari poterit, quin coin-cidat alicui pundo arcus BKA; cüm igitur didorumnbsp;arcuum extrema '^xa maneant in A amp; B • arcus illosnbsp;coincidere , ergo ' amp; jcquales effe, oportet. Quod eftnbsp;primum.

-ocr page 11-

Elementa Geometric:. nbsp;nbsp;nbsp;^

Dico S'*®, amp; è converfo : fi. arcus BKA fit = arcui BCa, chordam AB effe diametrum.

Demonst. Si chorda AB (fig- 6) non foret diameter, centrum extra eam dari, neceffe eflet; pone igitur eentrum alibi,v.g. in O; duda BZ erit diameter C23);nbsp;ergo arcus BCZ eflet = arcui BKAZ C30), quod eftnbsp;eontra luppofitum. Ergo AB diameter eft; quod eftnbsp;ifterum.

COROLLARIUM.

31. nbsp;nbsp;nbsp;Dum dus diametri AB amp; CG (fig- 5) fiefe in-terlècant, eft arcus BC = GA, amp; arcus AC = arcuinbsp;GKZB : nam eft arcus GA4-AC=x\C-l-BC (30), ergo arcus GA = BC. Similiter eft arcus AG AC =3nbsp;AG 4- GZB; ergo arcus AC = GZB.

32. nbsp;nbsp;nbsp;ScHOi.iON. Placuit geomettis peripheriam cujuflibet circuitnbsp;in 360 parces ®qnales ( qu» gradus dicuntur ) partiri ; quianbsp;numerus 36a, aecuracè per plures aliss, üc per 2, 3, 4. 5,nbsp;6, 8, 9, 10, 12, ]8 amp;c. divifibilis eft. Quivis gradus in 60nbsp;minores parces sequales, quae minuta prima vocancur; amp; quodlibet minutum primum in 60 minuta Jécunda amp;c. fubdividitur.nbsp;Gradus dcbgnantur per (°), minuta prima per (')? minutanbsp;fecunda per(quot;) amp;c, E. G. 5°, 28', 19quot;, ifquot;', dcnotac 5 gradus, 28 minuta prima, 19 lècunda , amp; 17 tertia.

theorema iil

Diameter eji omnium chordariim maxima,

33. Si chorda AB Cfig- 7) fit diameter, dico eam tfajorem eCTe chorda Ch',aut quiicumque alia non dia-oietro.

Demonst. Ad X centrum, radios CX amp; FX duc-tos imaginare ; eft CF minor CX FX ( 9 ) ; atqui CX-(-FX=AB ( 26); ergo diameter eft omnium chor-lt;^ïitum. maxima. e. d.

-ocr page 12-

I nbsp;nbsp;nbsp;ElEMENTA GeOMETK-Iü?.

THEOREMA IV.

Chorda cequalis diametro ejl diameter.

34. Si CF 7) fit acqualis diametro^ dico cam cffe diametrum.

Demonst. Si non foret diameter, centrum extra earn elTet C^3)jnbsp;nbsp;nbsp;nbsp;v. g. effe in X; due ra

dios CX, item FX; fequeretur CF effe = CX FX C 26); atqui hoc implicantiam involvit ( 9 ); ergo recta CF per centrum tranfit, feu eft diameter. Q^. e. d.

THEOREMA V.

Chordee eequaks Jiiflentant arcus eequaks; amp; è conver-'

. Jo : dum duo arcus Jiint cequales, chorda quóque, a quibus Jufientantur ^ cequales funt.

¦ 35. Dico 1°, fi chorda AB (^fig. 8) fit scqualis chordae FC, arcum AOB effe = arcui FXC.

Demonst. Concipe chordam FC cum arcu FXC tranf-ferri, atque fic difponi,ut punétum F in A,amp; C in B collocetur; nullum puneftum arcfis FXC excedere po-teft arcum AOB (illud ipfum enim non diflaret aequa-liter a centro, ac fingulum pundum areüs AOB); ergo arcus FXC coincidit cum arcu AOB, amp; proinde einbsp;eft acqualis; quod eft primum.

Dico 2^°, fi arcus FXC fit = arcui AOB, effe chordam FC scqualem chordae AB.

Demonst. è pundo H, medio arcus BC, diametrum HI dudam imaginare; deinde arcum HCXFI plicari;nbsp;coincidet hie cum arcu HBOAICso)^ amp; quoniam arcus HC = HB, pundum C cadet in B; ergo cumnbsp;eXF = BOA, hi duo arcus quóque coincident; ergonbsp;pundum F in A cadit, unde amp; chordae AB amp; FCnbsp;funt = (ii); quod eft alterum.

COE-OL-

-ocr page 13-

Elementa Geometrije. nbsp;nbsp;nbsp;^

COROLLAB-IUM.

36. nbsp;nbsp;nbsp;Chorda; majores fubtendunt arcus majores; amp;£nbsp;è converlo.

37. nbsp;nbsp;nbsp;ScHOLroN. Ne tarnen exiftimes, e^ein ratioije chord.as atquenbsp;®fcus fubtenfos crefccre.

THEOREMA VI.

I)um diKZ chorda aquaks JcJe interjècant, aliqui duo arcus oppofiti funt cequak-s; amp; è converjb.

38. Dico 1°, li chorda AB (fig. 9) fit = CF, eftnbsp;arcus AC = FB, vel areas AF = BC.

Demonst. Nam C35) arcus AFB =;= arcui FAC, BCA = CBF; ergo ar^us AC = FB. Vel arcusnbsp;ACB == FAC, aut AFB = FBC; ergo arcus AF=BC;nbsp;quod eft primum.

Dico 2°, fi arcus AC =;= FB, aut arcus AF = BC, eft chorda AB = CF.

Demonst. Erit arcus CA AF='BF FA; vel arcus AF -b FB — CB BF ; ergo femper chordae AB amp; CF fuhenrant arcus tcquales; ergo a;quales funt (35^Jnbsp;quod eft fccundum.

P R O B L E M A I.

^ puncto dato X (fig. 10), ad reSam AB, duas rcüas ducerc^ quarum fingula re3a GHnbsp;aqualis jit.

39- Resolütio I. Circino fumatur intervallum lines) GH.

B. Tum, unö pede circini fixo in X, (leu ex X tam-quam cencro) defcribe arcum OZ, qui redam AJS

B


-ocr page 14-

lo nbsp;nbsp;nbsp;Elementa Geometrie.

fecet in pundis O amp; Z C fupponitur enim GH lat longa); erunt redsc XO amp; XZ scquales (25), amp;,nbsp;ex conftrudione, fingula acquatur recital GH.

PROBLEMA II.

ReSam AB ( fig. 11) bifariam Jecare.

40. Resolutio. Ab extremis pundis A amp; B, ut een» tris, eadem circini apertura, (pro libitu, lèd majo-ri quam eft medietas recïlcc AB3 ducantur arcus, fe-fe interfecantes in G amp; I; ducSa GI, reétam ABnbsp;bifariam fecat.

Demonst. Ducendai AG, EG, AI amp; BI funt radii acqualium dreulorum; ergo amp; iliac reétac xquales funcnbsp;(^25); unde punéta G amp; I acqualiter ab A amp; B remora func C 8) ; ergo du'da reda GI, eft AO = OBnbsp;Ci.5gt; 0,-d-

41. ScHOUON. Eyem methodo reftam duxeris, cuju» fingula punfta aequalicer ab A amp; B diftant.

PROBLEMA III. u4rcim AB (fig. 12) bifariam dividerc.

42. nbsp;nbsp;nbsp;Resolutio. Dudam chordam AB Bifariam lècc.snbsp;per reélam GI C40), hacc quoque arcum datum innbsp;duas partes aiquales 'partitur.

Pemonst. Quoniam pundum L acqualiter ab A at-que B diftat (41), diordrc AL amp; LB ducendac ccqua» les funt; ergo arcus AL = arcui BL (35); ergo arcusnbsp;ALB divifus eft bifariam. Q. c. d.

PROBLEMA IV.

Circuli dati centrum invtnire.

43. nbsp;nbsp;nbsp;Resol. I. .Due, pro libitu, chordam AB 12).


-ocr page 15-

Elementa Geometriji. nbsp;nbsp;nbsp;It

ïf- Chordam AB bifariam feces C40) per reflam GI, quam, ad alterum ufque peripherioc punétum H,nbsp;protrahas.

Ki Chordam LH dein bifariam feces ; eritque punctum ejus medium, v. g. X, circuli centrum.

Demokst. Quoniam ex conftruéfione punóla G amp; I ^qualiter a puncfis A amp; B diftant, etiam punétum Lnbsp;öiitat a;qualiter ab A amp; B, item punétum H ajqualiternbsp;ab A amp; B ('14); eft ergo chorda AL=LB, amp; chorda AH = HB; ergo arcus AL=LB, amp; arcus AH=HBnbsp;C35); itaque arcus HA AL = arcui HB4-BL; ergonbsp;chorda LH dividit peripheriam in duas partes acquales,nbsp;amp; confequenter eft diameter (3o);unde punétum ejusnbsp;tiiedium eft circuii centrum. t. d.

PROBLEMA V.

¦Per tria piinSa ABC (fig. 13), (non in eddem reSi conflituta (20) circuli peripheriam diicere.

44- Resol. I. Reétas AB amp; BC duélas bifariam feces ( 40), per reétas GI amp; FL.

11. Ex punélo X, in quo fefe reétx GI amp;e FL fecant, ad intcrvallum XA, ducito circulum; dico quodnbsp;ejufdem peripheria tranfeat quoque per punéta BC

Demonst. Ex conftruétione punétum X diftat requa-liter ab A ac a B, amp; a B rcqualiter acaCfid); tïrgo diftat acqualiter ab omnibus tribus; atqui finguianbsp;punéta peripherise circuli defcripti ex X ut centro, adnbsp;intcrvallum XA, diftant ab X acqualiter, amp; quidemnbsp;pro reéia XA; ergo peripheria illa per punéta BC tran-e. d.

45- ScHOLioK. Pari procedendi metbodo circulus perficitur, cu-jus folum arcus delineatus exiftit : aflumancur enim in eo tria pundta, pro libitu; aci^ue per htec circumferenda thicatur.

B 2

-ocr page 16-

Elementa Geometrije. COROLLARIUM.

46. Ex diSis evidens eft, quod, dum tres recftenbsp;AO, BO amp; CO (fig. 14) a penpheria ad idem eom-mune pundium 0, intra circulum, concurrentes, acqua-les funt,'illud pundlum fit centrum : cliordas enim ABnbsp;amp; BC, bitariam divifas concipe per redtas EG amp; FH;nbsp;tranfeunt hsc per pundtum 0 (iiT); acqui pundtumnbsp;interfedlionis earum eft centrum (44);; ergo amp;c.

ARTICULUS III.

Notio aliartim quarumdam. curvarum.

Hypothesis I.

47. nbsp;nbsp;nbsp;Sint du3C redsc (fig. 15) AB major, GI minor, tales, ut extrema cujufque ajqualiter ab extremisnbsp;alterius diftent (atque adeo (1,5) fefe mutuo bifariam fe-cent); fic GX, item GZ = AO; eft XO = OZ (15)nbsp;lt;ergo AX=:ZB) eftque XG GZ=:AB. Finge XGZnbsp;ftlum tenuiffimum, fixilque extremis pundlis in X amp;nbsp;Z, ftylum L Cquo conftanter filum XGZ tenditur)nbsp;eircumduci per pundla AIB, donee ad G redux fueric,

Definitio I.

48. nbsp;nbsp;nbsp;Spatium , lineis XGZ percurfum, EUipfis di-citur; curva a ftylo L percurfa, feu delineata, Peri-pheria ElUpfios, amp; fimpliciter, ElUpfis audit.

Definitio II.

49. nbsp;nbsp;nbsp;0 Centrum ellipfeos eft, X item Z funt Foci.

D E r I N I T I o III.

^o. AB eft ^xis major, GI axis minor; ambo au-eem fimul fumpti exes conjugati.

-ocr page 17-

13

ElÉMÏNTA GeoMETK-Ï-*. Defini.tio IV.

51. Linea, qusc eft tertia proportionalis ad majo-rein amp; minorem axin. Parameter majofis axis dicituf;nbsp;^ tertia proportionalis ad minorem amp; majorem axin ¦nbsp;Parameter minoris axis.

Definitio V.

52. Csetersc recla; omnes.; per centrum ellipfcos duc-^nbsp;amp; utrimque in peripheria ellipfis terminatre. Dia-netri ellipfis vocaotur.

COROLLARIUM.

53. Evidens eft fmgula peripheriae ellipfeos puncla,nbsp;g. K amp; L amp;c. a focis X amp; Z, limul fumptis, di-ftare rota longitudine majoris axis AB : ubivis cfiimnbsp;ftylus fuerit, KX KZ = AB.nbsp;nbsp;nbsp;nbsp;¦nbsp;nbsp;nbsp;nbsp;,

Hypothesis II.

.S4. Suppone circulum ACFG ():g. 16) in dircéiio-nem harum litterarum, in reda AB , rotando, movo-fi ufquc in B, dum integram circumvolurionem ab-folverit, ita ut punéium A, atungéns reétam AB in A, rurfus rectam AB attingat in B.

Definitio.

55. Pundum A curvam defcripferit ALB, qutc Cy-cloïs dicitur j eritque AB aiqualis peripheriai circuii ACFG.

Corollarium.

56. Curvam Cycloïdalem , vel limpliciter Cycloiiem, öefcribunt lingula punöa peripheriac rots currüs, innbsp;plano protradi.

Hypothesis

III.

57. Finge redam AB (^fig- 17) ? una fui extremi-tate fixam in A, altera B circumvolvi, donee ad B

-ocr page 18-

34 nbsp;nbsp;nbsp;Ëlimenta Geometric.

redeat; atquè interim punétum aliquod , ab A ver-fus B (reétam AB femper concomitans, atque eidem inflftens) scquabili motu, ica ferri verfus redt® ABnbsp;extremicatem, ut hanc attingat, dum extremitas B pe-riphcriam BGEFB abfolverit.

Definitio I.

58. Curva A369B, ab ifto pundto, mobili in linea AB, defcripta, prima Spiralis, feu Hdice audit.

I I.

59. Seciinda ^iralis exurgeret fccunda rcvolutione,fi reéla AZ foret duplo longior AB, atque punctum mobile, scqualitcr pcrgeret a centro rcccdcre; defcribcretnbsp;enim fecundam fpiralem BRSV’^Z.

60. ScHOLiON I. Ut fpiralem delinecs, femi-perepheriam BCE divide ( pro libitu ) v. g. in 6 partes squales ; ab hil’ce punc-tis, per centrum A, totidem age diametros, peripheriamquenbsp;diviferis in la partes acquales (31) : divide quoque reftam ABnbsp;in Ia panes sequales; ab A , in linea AG, ponc unicam divi-fionis AB partem •, ab A , in linea AI, pone duas tales, amp;nbsp;ica confequencer. Ab A incipiendo , punfta notata in radiisnbsp;AG, AI amp;c., convenicntc curva connefte , amp; primam fpira-lem delincaveris. Si rebtam AB produxeris, ita ut BZ=AB,nbsp;atque , circumvolvendo AZ , defcripferis peripheriam , eujusnbsp;AZ fit radius, producito diametros ul’que ad peripheriam cirtulinbsp;mmoris concencrici; pone unicam partem reéla; AB in lineanbsp;GL, V. g. a G in O; duas ab I in K amp;c. ,cum a B curvam du-,nbsp;cico per illa punéta, donee ad Z pextiseric; cricuue BRSVZnbsp;lecunda fpiralis.nbsp;nbsp;nbsp;nbsp;e b »nbsp;nbsp;nbsp;nbsp;1

6r. ScHOLiON II. Secunda , atque fequentes fpirales, delincarf poffunt abfque radiorum prolongatione ; Icilicec apertus circi-J1US pro AB, uno pedc pofito in A amp; altero in B, fic movea-tut, ut pes untis conllanter primae fpirali infiftat , alter vetonbsp;femper direélè centrum refpiciac : etenim dum unus pes primamnbsp;fpiralem percurrerit, aker fecundam delineaverit; amp; profequen-lt;30, dum prior pes fecundam percurrerit, altg: tertiam nota-verit.



-ocr page 19- -ocr page 20- -ocr page 21-

Elements Geomethije. *5

CAPUT II.

De ReCTAK-UM Proprietatibus.

ARTICULUS L De jitu linece reSce ad aliam rcBam, amp; de angulis.

Definitio I.

62. nbsp;nbsp;nbsp;Cum fims duarum reclarum inter ie fpeélatur,nbsp;turn neceffiirio vei versus fe mutuo inclinant; vel nulla inclinatio feu tendentia unius ad alteram habetur»nbsp;omniaque punfla unius acquali ubique intervallo ab altera diltanc,atque quantutnvi,? produétcc nunquam con-currunt, hocque cafu Parallels, vocantur.

Definitio II.

63. nbsp;nbsp;nbsp;Dum redaï fe mutuo versus tcndunt, feu incli-nantur, mutua earum inclinatio Aiiguliis dicitur, ejulrnbsp;que Fquot;mex ell: in punéto concursüs rcélarunj.

Definitio III.

64. nbsp;nbsp;nbsp;Si reftaï ad aliam redtam inclinatto (produdlamnbsp;fi opus) utrimque lit scqualis, ea Perpendicular is adnbsp;aliam dicitur : ut AB (Tab. II. fig. i ) ad CF perpen-dicularis eft, fi AB non magis inclinet verfus lineamnbsp;BP, quam verfus lineam BC.

Definitio IV.

65. nbsp;nbsp;nbsp;Si vero major fit inclinatio in unam quamnbsp;aliam partem.redlas,versus quam tendit,ut AB Cfig.a)

CF; red» AB amp; CF ad fe mutuo Obliguce au-diunt.

-ocr page 22-

ï6

Elkmenta GeOMETK-I*.

66. ScHOLiON. Contendunt nonnulli, turn folüm de angulis trac» tanduro, ubi de lineis eft aftum, hoe dufti modvo, angulos,nbsp;lineis effe magls compofuos. Admictimus quidem unicam lineam,nbsp;foUtariè fpeftacam, angulo magls ciTe fimplicem ( hic enimnbsp;ncceffariö ex inclinadone duarum reftarum enafcitur) ; at plu-rium reftarum combinado, aut pofido unius ad alteram colla-ta, profeftó nihil minus habet compofid, quam ipliufmet an-guU confiderado; imö, quoniam primus linearura inclinatarumnbsp;efFeftus clt angulus, ifque primum mend illas confidcrand f«-fe offert, ideo ab angulis potiüs ordiendum duximus.

I.

De Angulis.

Definitio I.

67. nbsp;nbsp;nbsp;Lineac, quarum inclinatione, aut concurfu angulus formatur, Latera rel Crura anguli dicuntur.

Definitio’ II,

68. nbsp;nbsp;nbsp;Omnis reda v. g. AB {fig. 2) altferi, non innbsp;extremo punéto occurrens, cum ea elEcit duos angu^nbsp;los X amp; O, qui Vidni appellantur.

Definitio III.

69. nbsp;nbsp;nbsp;Duin duac retïla; AB amp; FC Qfig. 3 ) fefe ititer-fecant, quatuor efSciuntur anguli, quorum quilibecnbsp;duo oppoliti, V. g. O amp; X, item G amp; Z, ad Verticem.nbsp;oppojiti audiunt.

70- Scholion. Angulus, vel unici nota deflgnatur, vel tribus, quarum media anguli verticem denotat; prima cum fecunda,nbsp;unum latus, amp; fecunda cum terda alterum latus; v. g. angulusnbsp;formatus per latera AB amp; CB (Jig. a), poteft vocari angulusnbsp;X, angulus ABC, item angulus CBA.

Hypothesis I.

71. In reóta AG 4) immota, aliam BX fuper-poütam, uno fui extremo in X fixo, circumvolvi ima-ginare, donee punélo B ad G pertingence, rurfus ean-dem redlam conftituaiit : qua proportione reéta BX ab AX removetur, efl proportione crefcic angulus ad X.

C0R.0L-


-ocr page 23-

Elementa Geometei^.

COROLLARIUM 1.

72. nbsp;nbsp;nbsp;Quoniam tot punéla pcrcurrerit reéta, ad CXnbsp;pertingcns, quot funt pun'fla periphcriac in area BC ,nbsp;ideo magnitudo anguli BXC proportionatur numert»nbsp;graduum areüs BC, feu menfuratur area BC.

C o B. o L L A E. I U M 11.

73. nbsp;nbsp;nbsp;Cum ex vertice cajullibet anguli, üt centro, cir-culus, aut arcus defcribi pollic, qui anguli crura feunbsp;latera, fprodudta, ft opus_) interfecec; quilibet angu-lus tot graduum eft, quot graduum eft arcus circuii,nbsp;defcripti ex ejus vertice,inter crura anguli comprehenfus.

74. nbsp;nbsp;nbsp;ScHOLioN. Anguli magnitudo defumi nequic a laterum lon-gitudinc , fed ab eorumdem divergencia : lie idem manec anguli GXL valor, five latera XG amp; XL longiiis producanturjnbsp;eritque angulo GXF minor, licèc latus XF latere XL minusnbsp;fueric.

COEOLLARIUM.

75. nbsp;nbsp;nbsp;Duo igitur anguli aiquales funt, cüm corumnbsp;refpeódivè latera sequaliter a fe mutuo divergunt, feu.nbsp;incUnant.

n ï p o T H E s I s II.

76. nbsp;nbsp;nbsp;Cütn ad punctum E linea mobilis pertingit,nbsp;ubi non inagis in B quant in G inclinat, linea EXnbsp;Perpendicularis eft ad lineam AG. Angulus EXA eftnbsp;jcqualis angulo EXG fuo vicino, amp; quifque ReBus-audit; quoniam vero prior angulus menfuratur arcunbsp;ACE, amp; alter arcu GEE 072.), duo illi arcus ftmtnbsp;a^quales; cum vero arcus AEG üc 180° (30^» ar-cüs ACE, item GFE eil 90°.

C0ROLLAB.1UM I'

77. nbsp;nbsp;nbsp;Eli ergo angulus redtus 90°.

C o E. o L L -A R I u 51 II.

_ 78. Ad idem reétae pundtum , unica perpendiculars dari poteft ; nam omnis altera redta, non incidcus

c

-ocr page 24-

i8 nbsp;nbsp;nbsp;Elemekta Geometrije.

in reélam EX, in unam aut aliam redtaa AG parteia

magis inclinabit quam EX.

CoROLLARIUM III.

29- Anguli omnes CXA, IXA, func recio minores, amp; Acuti audiunt; angaii FXA, LXA funt redo ma-jorcs, amp; Obtufi compellantur.

THEOREMA I.

Duo anguli vicini fimul faciunt iSoquot;.

80. nbsp;nbsp;nbsp;Dico angulos O amp; Z (^fig. 5) = 180°.

Demonst. Ex o, tit centro, due mediam periphe-riam CGF; O menfuratur arcu CG, amp; Z arcu GF C72); acqiü duo illi arcus = 180° (30); ergo anguli Ü amp; Z — 180°. e. d.

Gokollarium I.

81. nbsp;nbsp;nbsp;Quiiibet igitur angulus minor eft 180° : quif-que enim angulus vicinum habet, vel haberet, pro-dudo uno ejus 'latere ; atqui cum illo vicino folumnbsp;= 180°; ergo amp;c.

COROLLARIUM II.

82. nbsp;nbsp;nbsp;Dum Cfig. 3) AO ad CF perpendicularis eft,nbsp;etiam CO, item FÓ ad AB perpendicularis eft ; eftnbsp;enim O redus (76), feu po° (77); ergo etiam Z,nbsp;X, item G eft 90° ( 80).

COROLLARIUM III.

83. nbsp;nbsp;nbsp;Omnes anguli, fuper eadera reéla conftitwti,

quotquot luot, — 180°; fc Qjig. 6) anguli A, B, O amp; G =nbsp;nbsp;nbsp;nbsp;: etenim fi, ex eorum vertice

communi X, media penpheria CKF dcfcribatur, quil-que angulus menfuratur arcu intercepto inter fua latera (73); ergo omnes fimul menfurantur media peri-¦pheria; arqui^hatc = 180° (3o)i ergo amp; illi anguli 'fimul =' 180°.

-ocr page 25-

10

Elementa Geometries. CoROLLARIUM IV.

84. nbsp;nbsp;nbsp;Omnes anguli ad idem punélum, tot quot con-ftitui poffiint (fig. 7 amp; 8), ümul faciunt 360° : duc-ta enim, ex eorum vertice communi, üt centro, ia-tegra pcripherid , omnes illi anguli fnnui fumpti men-fu'rantur tota circuli peripheria (72); alcj^ui illa eftnbsp;360° C32); ergo amp;c.

THEOREMA 11.

.Anguli ad vtrtictm. oppojitl Jiint aquaUs-.

85. nbsp;nbsp;nbsp;Dico angulum O ( fe. 3 ) effe scqualem X; Senbsp;G = Z.

Demonst. 0 G = i8o*; amp; X4-G=:j8o° (80); ergo eft 0=X. Pari ter X4G=i8o'’; amp; X Z=i8o°;nbsp;ergo eft Z = G. Igitur anguli ad verticera oppofitinbsp;funt =. Q. e. d.

PROBLEMA I.

Ad punctum B (fig. 9) tcBlt;z CF, angulum eonjlrucré cequaUm angulo dato A.

86. Resol. I. Ex A, ut centro, intervallo arbitrario,nbsp;circino defcribc arcum ZG;

II. nbsp;nbsp;nbsp;Ex B, üt centro, eadem manente circini apertura,nbsp;defcribc arcum indefinitum RE ;

III. nbsp;nbsp;nbsp;Circino fume intervallum GZ, atque illud transfernbsp;ab R in arcum RL, v, g. ab R ufque in O;

IV. nbsp;nbsp;nbsp;Due reélam BO; dico angulum OBF elfe = angulo A.

Demonst. AG fic imponatur in CF, ut A in B, ^ G in R coincidant; arcus GZ incidet in arcum

C S

-ocr page 26-

ÊO nbsp;nbsp;nbsp;Elementa Geometr.1*.

3^.0; Sc qnoniam, ex conftrudione, funt scqualcs, Z incidet in O; ergo AZ coincidet cum BO; ergo angu-Jus A coincidet cum angulo OBF, amp; confequenter einbsp;fft acqualis.' Q^. e. d.

PROBLEMA

Angulum C hifariam fecare.

87. Resol. I. Ex C (^fig. 10) , ut ceatro, ducito arcum AB;

JI. Eum divide bifariam per rc'fïam LC C 42); dico C efle divifum in duas panes acqualcs.

Demonst. Eft arcus AG = GB, ex conftrudlione C42); atqui angulus ACG menfuratur arcu AG, amp;nbsp;angulus BCG menfuratur arcu BG (72); ergo ill i duonbsp;anguli funt acquales : eft ergo C divifus in duas partes Bcquales. lt;2,- lt;-’• d-

5. II.

De Perpendiciilanbiis. THEOREMA 1.

AB (flgni) cd FC fit perpendlcularis ,Jïngiila puncla

AT. ,./)

reSce AB difant aqiialiter d quibitjvis diiobus punSis recriE FC, v. g. Z amp; H, hinc indenbsp;aquditer d B difltis.

8Ö. Demonst. Ex B, tamquam centro, ad interval-lum BZ, mediam peripberiam ZXH dcicribe; quoniam ex fuppofito, eft BZ = BH (25), peripheria per punctum H tranfeat oportet; erit arcus ZX item XH yo’nbsp;(76); chorda ducenda ZX = chord® ducend® XHnbsp;Co.4) 9 proinde recfta AB eft talis,. ut duo eins punc-ta X amp; B diftent ®qualiter a Z amp; H ; ergo fingulanbsp;punéla rea® AB, diftant tcqualiter a 'z amp; H (14).nbsp;Quaecumque nunc pundla, hinc inde in reóla CF,

-ocr page 27-

Element A Geometei^. nbsp;nbsp;nbsp;'ïÏ

ttqualiter a B remota, affumere libet , codcra inodo dcmonftrabitur, lingula reftac AB punéta ab iis squa-liter effe diffita; ergo quaclibct punda reélac AB dif-tant scqualiter a quibulvis punctis reét» FC, hmc inde tcquaiiter a B diliids. Q^. e. d.

THEOREMA 11.

Si AB (fig. II) fit od CF perpendiciilarisy amp; X difitet tequaliter d Z amp; H, quodlibet punctum rtetez AB •nbsp;difitat ctqudittr d Z 6’ H, tfitque rtaanbsp;HZ dlvifia bifiariam.

89. nbsp;nbsp;nbsp;Demönst. Produc AB ufque in 0, ita ut XB

== BO; quoniatn CB perpend']cuiarilt;; ad AO^ iteralB ad AO C 82gt;, ell ZX = ZÜ, amp; XH = OH (88) ; ergo quodlibet punclum rebla; AO dillat aiquaiiter a Znbsp;amp; H C14); ergo ZB = BH. Q^. e. d.nbsp;nbsp;nbsp;nbsp;¦-

THEOREMA III.

Si rcSla AB ( fig. ii') Jit talis ^ lit duo ejiis piinUxt tequalitcr dijlcnt d dnobus piinclis recite CF,v.g~

Z amp; H, ejl AB ad CF perpendicularis.

90. nbsp;nbsp;nbsp;Demonst. Singulum punélum reéla: AB diftatnbsp;ajqualiter a Z amp; H ( 14); ergo eft ZB = BH; amp; dc-feripta media peripheric ZXH ex B, ut centro, chorda ZX = chorda; XH (14); ergo arcus ZX = arcuinbsp;XH (35); porro hi arcus = 180° C30); ergo erit arcus ZX 90°; jam verb angulus XBZ menfuratur arcunbsp;ZX(7a) ; ergo iilc angulus eft 90°, amp; arqualis fuo vi-cino; ergo AB eft perpendicularis ad CF (76). e. d.

CoEOLLAElUM.

_ 91- Ergo methodo tradita C40) recla A3 perpeq-^iculariter amp; bifariam fecatur.

-ocr page 28-

ElEMENTA GEOMETEIJi.

THEOREMA IV.

yl punBo dato ad reBam datam unica duci potejl pcrpcndkularis.

92. nbsp;nbsp;nbsp;Dico a punélo Anbsp;nbsp;nbsp;nbsp;ad re'élam CF uni-

cam pofle duci perpendicularcm AB.

Demonst. Si enim duci poffet alia , v. g. AX ; fit ZB=BH, erit AZ=AH (88); prscterea'fit ZX=XO,nbsp;deberet quoquc AZ effe = AO (88); atqui hoe im-plicat (20); ergo fola AB poteft efle perpendicularisnbsp;ad reélam CF, per punctum A dudta, amp; castéra; om-nes obliquae funt. «. d.

THEOREMA V.

perpendicularis eji brevijjima, quee è punBo dato ad liiicam. datam. duci potejt.,

93. nbsp;nbsp;nbsp;Si.AB.(j^g. 13) fit perpendicularis ad CF, dito earn eflb breviorem quacumque obliqua, vi g. AO,nbsp;ab A ad CF duéta.

Demonst. Produc AB ufque in aliquod pundum O, ita ut GB = BA; quoniam OB ad AG perpendicularis, eft GO = AO ( 88 ) ; fi ergo AB maior eflet,nbsp;vel Ecqualis AO; amp; BG major, vel jequalis GO; to-ta AG effec major, vel = AO OG , quod impli-cat(9); ergo perpendicularis AB eft brevilïïma, qus»nbsp;ab A ad rectam FC duci poteft. Q^. e. d.

Corollarium I.

94' Ergo per lineam perpendicularcm diftantia puno ti dati a linea reóta data inveftiganda eft. ’


-ocr page 29-

ElEMENTA GEOMTETlLIjE. COROLLARIUM II.

55. Si qua reéla ab A ad CF duda, v. g. AB, fi? ^revüEma, eft ipfa perpeudicularis ad CF.

COROLLARIUM III.

96. nbsp;nbsp;nbsp;Inter obliquas, ab eodem pundlo .ad eandem reonbsp;tam duélas, ese longiores funt, magifque ad reélam,nbsp;lt;iatam inclinata:, qua: a perpendiculari magis recedunt;nbsp;fic AH (ƒ5--12) eft AO major, magifque, quam hxc,nbsp;inclinata ad CF J undc angulus H minor eft angulonbsp;AOBC74).

COROELARIUM IV. ,

97. nbsp;nbsp;nbsp;Dum h punéto A, reda: AZ amp; AH, dudac,nbsp;»quales funt; perpendicularis ab A ducenda ad CF ne-celfario cadit inter Z amp; H.

PROBLEMA I.

punamp;um datum B (fig. 14) re3 CF erigere perpendicularem.

98. Resol. I. Hinc inde in redta CF fumantur duo»nbsp;punóta Z amp; H, sequaliter.a B diffita Cproducendonbsp;redam CF ft opus; quod necelfariö fieri debet, linbsp;pundum B fuerit in, vel circa redac CF extremum;);

Ex Z item H, ut centris, sequali circini aperturd, fiant interfeétiones in I;

Ducito redam IB; dico redam IB effe ad CF peigt; pendicularem.

I^emonst. Ducenda Zr= ducend® Hl (a5);amp;,ex conftrudione, eft ZB = HB; ergo IB eft ad CF per»,nbsp;pcndicularis Cpo}. Q^. c. d.

-ocr page 30-

ElEMENTA GEOMETRiaJ, C0E.0LLAR.IUM.

^9. Eadem itaque praxi ad pun6lum lincsc dat» angulum reétuiU, feu 90°, formabis; quem bifar^mnbsp;dividcndo (87}, angulum 45° habebis.

PROBLEMA II.

punSo dato A (fig. 15), extra lineam datum CF, ad hanc perpendiculanm ducere.

loa Resol. I. Ex A, üt centro, due arcum ZH, qui , reótam CF, (produilam fi opus) fecec in duobusnbsp;punöis Z amp; H.

II. Ex Z amp; H, cadem circitii aperturd, ducito arcus fefc interfecantes iri K. Dico rcélam AK cfle per-pendicularem ad CF.

! Demonst. ZA eft = ah, amp; KZ = KH (25); ergo AK cil perpcndicularis ad CJF (90). e. d.

5. III.

De Parallclis.

Dum redta GH (fig. 16') parallelas AB amp; CF lècat: Definitiones.

f loi. I. Anguli E amp; Z, Lamp;RjIamp;S, Kamp;P dicuntur Correjpondentes;

102. IL Anguli I amp; Z, R amp; K, vocantur uilterni Interni;

' 103. Ill- Anguli P amp; L, S amp; E uilterni Ezterni audiunt;

104. nbsp;nbsp;nbsp;IV. Aogulos I amp; R , K amp; Z jidjacentes Internos ,

105. nbsp;nbsp;nbsp;V. Et Angulos E amp; P» L amp; S uddjacentesnbsp;ternos appellamus.

THEOiCE'

-ocr page 31-

Elementa GeOMETB-IJS.

THEOREMA L ParallelcB cidcm tertice Jiint paralleled inter Jè.

106. nbsp;nbsp;nbsp;Dico 1°, fi AF item BG 17) fit paral-Jela ad Cl, efle AF ad BG quóque parallelam.

DemonST. Si AF amp; BG non forent inter fe paral-Jelse, aiterutram partem versus produélac, in aliquo punóto communi, concurrerent; atqui hoe fieri ne-¦quit ; nam illud punctum concursüs diftaret a tinea Cl sequaliter, ac fingula puncta lincaj AF, itemnbsp;' diftaret a tinea Cl xqualiter, ac fingula punéta tineasnbsp;BG; cüm AF item BG fit parallela ad Cl (62) ; ergo fingula punéta tinea; AF 'diftarent a;quatiter hnbsp;linea Cl, ficut fingula punéta tinea; BG; deberent ergo line® af amp; BG coincidere; quod non fuppo'niturjnbsp;ergo AF amp; BG funt inter fe parallel®. Quod eft pri-mum.

Dico 2°, fi AF item Cl fit parallela ad BG, efl@ AF amp; Cl inter fe etiam parailelas.

Demonst. Neque AF neque IC, quantumvis pro-duét®, concurrent cum BG quantumvis produéta (62)» ergo BG, quantumvis producta, femper feparabit AF amp;nbsp;1C, quantumvis produétas; igitur AF amp; IC, quantumvis produét®, concurrere non poterunt i ergo parallel®nbsp;lunt. Quod eft fecundum.

C o it o L L A E. 1 u M.

107. nbsp;nbsp;nbsp;Dum reéla alterutri ex duabus parallelis eftnbsp;pa’-allela, eft etiam ad alteram parallela ; erunt eaftffinbsp;¦lt;tu® parallel® eidem terti® (loó).

-ocr page 32-

al

Elementa Geometrije. THEOREMA 11.

Dum recta tranfverfa parallelas Jècat, anguli correjpoiidentes Jiint aquaks.

ïo8. Dico, fi AB amp; CF (fig. i6) fint parallela:, angulos correfpondentes, v. g. E amp; Z efle aiquaies.

Demonst. Finge CF, fibi conlianter parallelam, ita transferri versus G, ut pundtum Z delcribat rectamnbsp;ÏCE; dum ad E pervenerit, erit adhuc redta CF pa-rallela ad redtam. ABnbsp;nbsp;nbsp;nbsp;arque adeo nulium fit

ejus pundtum incqualiter ab AB dilEtum nbsp;nbsp;nbsp;quo-

n'iam igitur unum ejus punctum commune habet ia E, cum redla AB, incidet CF in rectam AB; ergonbsp;reéla GH candcm inclinationem' habet ad CF, exifinbsp;tentem in Z, quam haberet ad eandem, conftitucamnbsp;jn E, feu quam habet ad redtam AB; ergo eit E =nbsp;2 ClS^quot;) I = S, quia prioribus ad verticem refpeétivènbsp;opponuntur. Et quoniam E K = Z P (8^)»

K = P, ergo L = R, quia praacedencium funt rcfpec-tivè ad verticem oppofiti ; ergo anguii correfponden~ tes sequales funt. e. d.

COROLLAE-IUM I.

109. Alterni interni, item alterni externi funt =.

COR.OLLAB.IUM II.

iio. Ahjacentes interni, item externi = 180®.

CoR-OI-^arium III.

III. Si OX fit perpendicularis ad AB, eft ipftnbsp;etiam perpendicularis ad CF : nam 0 = X (lopj);nbsp;ergo, cum, ex fuppofito , fit O redtus ( 7Ó ), eftnbsp;etiam X reétus; ergo Stc.


-ocr page 33-

Elementa Geometric:.

II4. ScHOUON I. OX brevior eft omni alil, a punfto O ad reiftam CF, aut a punfto X ad reiftam AB, ducibili (93 ); amp;nbsp;proinde perpendiculati paiallelarum diftancia eft inquirenda.

itq. ScHOLioN 11. Quoniam qualibet parallelarum punfta scqua-iitM ab alia diftant f 6a), onnnes pcrpendiculares inter eafdera parallelas ftint inter Ie sequales.

H E O R E M A III.

Si anguli conefpondcntcs y v. g. E amp; Z (fig. 16), aqiiales Jint, reSce AB amp; CF funt internbsp;Je parallels.

TI4. Demonst. Imaginare rnrsüs recftam CF conftan-ter fibi parallelam moveri, donee punélum Z attin-gat punélum E; quoniam E = Z, redla ZF incidet in redam KB (75); ergo CF in AB cadet; cüm ergo CF fibi rnanlêrit parallela,eft AB parailela CF, exiF-tenti immotas in Z; ergo li. anguli correlpondentesnbsp;scquales fuerint, redtse AB amp; CF lunt inter lè paral-Jelaa. Q^, e. d.

CoROLLARIUM.

115. Idem fequitur 1° Si L = R; K


P; I = S.


iSo^

2° Si Ï R; K Z; L S; E I 3° Si I = Z; R = K.

4° Si L P; E = S.

5° Si L S; È P; L Z; E R = i8oZ

Nam omni cafu fequitur angulum E = Z.

THEOREMA IV,

Dim reamp;a GH (fig- 17)? tre^ (aut phires') parallelas AF, BG amp; Cl, cequaliter d fe miituo dljjitas,nbsp;interfecat, ejl LK = KO.

116. Demonst. Ab O item K dimitte perpendicu-ïares OZ amp; KS; erit OX etiam perpendicularis ad BG,

P a


-ocr page 34-

Elementa Geometric. cum X = Z C ); attenta parallelarum diftanttSnbsp;scquali, eft KS = XO; pr?etcrea, cum S = Z (luntnbsp;enim ambo reéti), linea SK eft parallela Z[ (114};nbsp;eft ergo anguius LKS = I ( 108); fuppone nunc li-neas SK, LK amp; LS (luu quern ad fe mutuo habenc)nbsp;transicrri ita, ut S in X, amp; K in 0 coincidat; quo-'nbsp;niam anguius LK5 = I, amp; S=:X, incidet re6ta,KLnbsp;in OK, amp; SL in reélam XB; ergo redte KL amp; SLnbsp;fefe quoque interfecabunt, feu concurrent in pundto K;nbsp;coincidic ergo praccisè reé'ta KL cum recta OK; proin-de Equales font. Hand difticulcer nunc idem fierinbsp;perfpicies, tot quot lubet datis parallelis ccqualitcr afenbsp;ïiiuiuo diffitis.

THEOREMA V.

5/ TcUc2 AF (^fig. 17) BG amp; Cl [mt inter fe parallela^ amp; fit KL —OK, ilia parallel^' aqualiternbsp;d fe mutuo difiant.

ÏI7. Demonst. Duélis perpendicularibus OZ amp; KS, eft anguius LKS = I, amp;'anguius OKG= angulo KLInbsp;(108); imaginare igitur redtas KL, LS amp;.SK Cpi’outnbsp;font inter fe difpofitsc ) ita collocari, ut pundtum Lnbsp;in K, amp; pundturA K in I conliftat; ¦(atque adeonbsp;coincidat redia KL cum redta KO); anguius LKS innbsp;angulum I, amp; anguius KLS in angulum OKX, coin-cidet; (cum refpedlivè aequales fint, attento quod OXnbsp;dit parallela KS; amp; XK parallela SL); cadet ergo LSnbsp;in KX, amp; KS in IX; ergo S in X; eft ergo KS=OX;nbsp;atqui heC linesc diftanciam parallelarum metiunturnbsp;(112); ergo parallelae AF, BG amp; Cl diftant aequaliternbsp;B fe mutuo. c- fi-

p R 0 B L E M A 1.

Per punSum C datum (Tab. III. fig. ^ diicere paralklam ad reclam AB.

118. Resolxjtio I. a pundlo C ad AB due rcdlam. (pro libicu) CO;

-ocr page 35- -ocr page 36- -ocr page 37-

Elementa Geomete-ije. nbsp;nbsp;nbsp;ai)

n. Ad pundum C fac angulum OCK, scqualem an-gulo O C 86);

m. Redam KC, prout opus, produc; erit hjcc paral-lelaAB(ii5).

PROBLEMA 11.

ReSam AB ( fig. 2 ^ Jècare in tres plurejvc pro libitu ') panes cequales.

lig. Resolutio I. Dac redam BL indefinitè, qu® cum reda AB efficiat angulum quemcumque ABL;

II. nbsp;nbsp;nbsp;In linea BL, incipiendo a B, circino fume, arbi-trario intervailo, partes acquales BZ, ZH amp; HS.

III. nbsp;nbsp;nbsp;Due redam AS, amp; ad hanc paral]elas HX amp; ZO;nbsp;dico redam AB efle divifam trifariam.

Demonst. Per pundum B due BK parallelam AS Cii8); eric hscc quóque parallela cuique ex aliisnbsp;parallelis (lo?); quoniam BZ , ZH amp; HS, ex con-ftrudione, funt tequales, omnes ill® parallelac a fe mu-tuó acqualiter diitant Cii?)? ergo etiam partes line®nbsp;AB , intercept® inter iiias parallelas, aquales funcnbsp;(Il6gt;nbsp;nbsp;nbsp;nbsp;Q^-e.d.

A R T I C U L U S I L -

I)e Jim linecz re3.cz ad Circularem; amp; de menfiira angularum, quorum vertex non efi innbsp;circuU Centro.

5. I.

De Jim linece re3ce ad Circularem. Definitio i.

T2o. Tangens circuli eft, v. g. reda, AB (^Jig. 3 ) , qu® ita peripheriam attingit, ut eandem non interie-t

-ocr page 38-

go nbsp;nbsp;nbsp;Elementa GeOMETE-ÜE.

eet; atqüe adeo, quantumvis producla, extra circu*.

ium remaneat.

Definitio II.

121. nbsp;nbsp;nbsp;Secans dicitur redla CGF, qua; in pundlo G,nbsp;Ubi peripherias occurrit (produdta fi opus)j eandcin pe-xipheriara fecat, amp; aream circuli ingrcditur. CG dicii*nbsp;tur Secans Exterior; FG Secans Biterior.

THEOREMA 1.

Radius i vel diameter, ejl perpendici/laris ad tangentem in punBo tangential.

122. nbsp;nbsp;nbsp;Si X Cfig- 4 ) centrum , amp; KL tangens in K,nbsp;dico XK effe perpendicularem ad KL.

Demonst. KL fic atdngit peripheriam, ut earn nul-libi fecet ( 120); ergo XK minima eft, qua; ab X' ad KL dud poteft : (omnes enim alia;, v. g. XZ, pe-ripberia egrediuntur; ergo funt radio XK majores)nbsp;ergo XK eft: perpendicularis ad KL ( 95}. Q^. e. d.

CoROLLARIUM.

123. nbsp;nbsp;nbsp;Ad idem peripheria; pundum , unica tantumnbsp;tangens duci poteft : nam duóto radio ad illud ‘punctum, illc eft ad tangentem perpendicularis;;^^ 122 );nbsp;atqui ad idem recta; punctum unica poteft“bluci pcr-pendicuiaris (92); ergo amp;c.

, theorema II.

5/ X Cfig- 4) Centrum Jït; amp; angulus XKL rechts ^ ejl linea KL tangens.

124. nbsp;nbsp;nbsp;Demonst. XK minor eft omni ali^ ab X ad KLnbsp;ducibili C93); atqui XK eft radius; ergo omnes alia?,nbsp;sb X ad lOL ducendas, circulo egrediuntur, cüm ftnt

-ocr page 39-

ElEMENTA GeOMETE-IJE. nbsp;nbsp;nbsp;31

Jï^ajores XK; ergo nullum punétum reél® KL circuli aream ingreditur : illud enim minus diftaret d centro,nbsp;quam punélum K; ergo redta KL, peripheriac occur-rens in K, quantumvis produéta, aream circuli nonnbsp;ingreditur; ergo eft Tangens (120). Q^. e. d.

THEOREMA III.

Si KL Cfig. 4) Tangens fit, amp; angulus XKL reéus ; KH efi Diameter.

125. Demonst. Si KH non tranfiret per centrum, radius duétus a centro ad pundum K, eflet perpendicularis ad CL ( 122); atqui ad idem rec-lai pundum unica poteft duci perpendicularis ( 78 ) ;nbsp;^rgo KH coincidit in radium dudum, amp; confequenternbsp;etiam per centrum tranfit; live eft diameter (23 )

THEOREMA IV.

Si Diameter fecet Chordam perpendiculariter ; vel Ckor-dam non Diametrum bifariam; vel iiniim Chordce arcum bifariam; pruediSa omnia fequuntur. Et Ji qua Chorda fecet alteram Chordam perpendiculariter amp; bifariam;nbsp;vel perpendiculariter ^ item uniim ejus arcum bifariam;nbsp;vel Chordam item unum ejus arcum bifariam; Chordanbsp;fecans efl Diameter, atque reliqua omnia fiunt.

12Ó. Dico 1°, li KH CfiS- s') diameter fit, amp; O redus; eft AO = OB; arcus AR = KB, amp; confequenter arcus AH = HB.

Demonst. Duéli radii AX amp; XB funt ¦= Ct/^S ) ï öucenda AK = KB; ducenda BH = HA; AO = OBnbsp;C86); arcus AK = BK, amp; arcus AH = BH ( 35).nbsp;Quod eft primurn.

Dico 2°, ft KH Diameter fecet chordam AB non Diametrum bifariam; efle O Redum, amp; arcum AKnbsp;5= KB amp;C.

-ocr page 40-

Elememta Geometric.

Demonst. Ex Centro X due radios AX amp; XB, hi funt scquales (zg); ergo duo punaa reaae KH, fei-licet O amp; X, diftant aiqualiter ab A amp; B; ergo XOnbsp;perpendicularis eft ad AB (po); chorda AK=:KB, amp;nbsp;chorda AH = HB C88); ergo arcus AK = KB, arcus AH = HB (35). Quod eft fecundum.

Cum igitur Diameter Chordam quampiam fecat bi-fariam; vel hacc Chorda eft quoque Diameter, vel pcrpendiculariter fecatur amp;c.

Dico 3°, ft KH fit diameter, amp; arcus AK = KB; eft - O reaus, amp; AO = OB amp;cc.

Demonst. Ducenda AK eft = KB nbsp;nbsp;nbsp;radius

AX = BX (25) : ergo fingula pundta lineac KH difi tant xqualiter abAamp;B(i4);amp; XO pcrpendicula-ris ad ABnbsp;nbsp;nbsp;nbsp;= OB (89) amp;c. Quod eft

tertium.

Dico 4°, fi 0 reaus, amp; AO = OB; eft KH dia- f meter, arcus AK = KB Stc.nbsp;nbsp;nbsp;nbsp;'

Demonst. Ducenda AK = KB, amp; ducenda AH = nbsp;nbsp;nbsp;'

HB (88); ergo arcus AK = KB, amp; AH = HB (35); nbsp;nbsp;nbsp;j

ergo arcus KAH = arcui KBH; ergo chorda KH * di- nbsp;nbsp;nbsp;i

vidit peripheriam bifariam, proinde diameter eft (30). nbsp;nbsp;nbsp;'

Quod eft quartura. nbsp;nbsp;nbsp;!

Dico 5°, fi 0 reaus, amp; arcus AK = KB; eft KH ? diameter, AO = OB amp;c.

Demonst. Ducenda AK=:KB (3,5); ergo AO=OB ^ (89). Quod eft quincum.

Dico 6°, fi AO OB, amp; arcus AK = KB ; eft 0

^ ft AO

reaus, amp; KH diameter amp;c.

Demonst. Ducenda chorda AK = KB C35); ergo punda O amp; K diftanc xqualiter ab A amp; B j ergo Onbsp;reaus C90) amp;c. Quod eft ultimura.

THEOREMA

-ocr page 41-

33

Elementa Geometri*.

THEOREMA V.

^um düa chorda^ una chorda amp; altera tangens, vel duet

tangences, inter fe parallelae funt; intercipiuntur ab Hits arcus cequales,

127. Dico 1°, fi AB amp; CF (_fig. 6‘) fint parallel»; eft arcus AC = BF.

Demonst. Per Centrum O due ad AB pcrpendicula-rem XI; erit hocc diameter (23), amp; etiam perpendi- • cularis ad CF ( 111 ) , eftque arcus AX = XB; amp;nbsp;arcus Cl = FI (126); jam vero arcus XACI = XBFInbsp;(30); ergo arcus AC = BF. Quod eft primum.

Dico 2°, fi AB fit parallela ad tangentem KXL; , eft arcus AX = XB.

Demonst. Ab O Centro, ad X puneftum tangenti», due radium OX, erit hic perpcndicularis ad XL (12a);nbsp;ergo etiam eft perpcndicularis ad AB (111); ergo arcus AX = XB (126); quod eft fecunduna.

Dico 3°, fi KL amp;; GH, tangentes in X amp; I, fint parallel», eft arcus XACI = arcui XBFI.

Demonst. Ab X, per Centrum O, due re(ftam;erit hacc perpcndicularis ad KL (122), amp; produéla uC-que ad redlam GH, erit quoque ad earn perpendicu-laris Cm); non poteft reéla XO produdta cadcre innbsp;aliud puneftum quam in I : nam fi caderet v. g in Z;nbsp;öuétus radius 01 effet etiam perpcndicularis ad GH;nbsp;quod fieri nequic C92,); ergo arcus XACI item XBFInbsp;eft 180°, amp; proinde »quales funt. Quod eft ufti-öium.


-ocr page 42-

128. Duse ergo tangentes parallel» tangunt in punc-tis diametraliïer oppofuis.

Si dim chordaf una chorda amp; altera tangens, aut duet tangentes, intercipiant arcus aquales, illanbsp;funt inter Je parallels.

129. Dico 1°, fi arcus AC Cfig. 6) fit =BF;chor-d» AB amp; CF funt parallel».

Demonst. ^ punélo X , medio areüs AXB, due diametrum XI; efl: S redus (126) ; amp; quoniam eftnbsp;arcus CAX = FBX, eft etiam E redus (126); ergonbsp;E = S; ergo redt» AB amp; CF iunt inter fe parallel»nbsp;(114). Quod eft primum.

Dico 2°, fi arcus AX fit ;= XB; chorda AB, amp; tangens XL funt inter fe paraUel».

Demonst. Duc diametrum XI; eft angulus EXS rectus (122), item S redus eft (126); ergo line» AB amp; XL funt parallel» (115).' Quod eft fecun-dum.


-ocr page 43-

Elementa GeometriA nbsp;nbsp;nbsp;35

THEOREMA VII.

CttjuJIibet chordce. diftantia d.centra eji cequalls mcdietati chordcz fujlentantis arcum , qui ciim arcu dnbsp;priori chorda Jiibtenjo — 180°.

130. Demonst. Sit X 7) centrum; I reiftus; reéta XI diilantiam chordae AB a centro metitur (94nbsp;per centrum X due FG diametrum paralielam ad AB;nbsp;prajterea due chordam BL paralielam ad IX,; eritnbsp;OB = OL, amp; arcus BG = GL ( 126 ) ; arcus AFnbsp;= BG ( 127}; ergo arcus AF = GL; ergo arcusnbsp;AB BGL = 180°. Prseterea eft IX = BO (113);nbsp;ergo.Xlf~BL. Q, e. d.

PROBLEM A.

^d punclum F (fig. 8 ) peripheria datum tangentem ducere.

131. Resolutio I. è centro X due radium XF C43):

II. In pundo F erige perpendicularem FG C98 ) : dice reclam FG efle tangentem quaifitam (124}.

5. I I.

De menfura angulorum, quorum vertex non ejl in Circuit Centro.

Definitio L

132. nbsp;nbsp;nbsp;Angulus yld Centrum eft ille, cujus vertex efi;nbsp;in Centro Circuli.

133. nbsp;nbsp;nbsp;ScHOLiOM : quas £t ejus inanfura, patet cx Nro 73.

Definitio II*

134. Angulus Ad peripheriam eft ille, cujus vertel «ft in peripheria. Si formetur per duas chordas,

E %

-ocr page 44-

SÖ nbsp;nbsp;nbsp;Elementa Geometrije,

angulus A in figuris 9, lo amp; 11; appellatur Infcrip-tus : li vero per fecantem exteriorem amp; chordam, uc angulus ^ fig 12: vel per chordam amp; tangentem, u,cnbsp;angulus A fig. 13, Angulus Segmenti audit.

Dee INITIO III.

135. nbsp;nbsp;nbsp;Angulus Excentricus ille eft, cujus vertex eftnbsp;intra circuii peripheriam, non tamen in centro.

Deeinitio IV.

136. nbsp;nbsp;nbsp;Angulus Extra peripheriam eft ille, cujus vertex extra peripheriam exiftit; ut angulus A in figuris^nbsp;19, 20 amp; 21. Tunc, ft formetur per duas tangentesnbsp;ixt fig. 19, Circumfcriptus tindit; Semi - circumferiptui^nbsp;vero, ut20, ft per tangentem AB, amp; fecantem AEnbsp;tranleuntem per Centrum, elhciatur.

Deeinitio V.

137. nbsp;nbsp;nbsp;In fig. 19 arcus BGC; in fig. 20 arcus BGE;nbsp;amp; in fig- 21 arcus FGE Concavus anguli A vocatur;nbsp;amp; in qualibcc ex hifee tribus figuris, arcus BC Con-vexus anguli A compeilatur.

THEOREMA I.

/Lngulus infcriptits menfliratur msdictate arci'is compre-henfi inter chordas, qiiibus formatiir.

128. Dico angulum A (fis. 9, loamp;ii) menfura-ri I arcfis BFC.

Demonst. i°. Vel una chordarum, puta AB Cj%. 9) per centrum 0 tranfit; per O due diametrum FL pa-rallelam ad AC; erit arcus AL = arcui FC (127),nbsp;item eft = arcui FB ( 31 ) ? 0 = A ( io8) ; atquinbsp;O menfuratur toto arcu FB C72), ftu | areüs CFB;nbsp;ergo A menluratur | arcus CFB. Quod eft primum.

-ocr page 45-

S7

Elementa Geometric:.

Vel centrum O CfiS- nbsp;nbsp;nbsp;chprdas AC amp;

AB confiftit; due diametrum AF; angulus FAC men-furatur | areüs CF, amp; angulus FAB menfuratur | areüs FB; igitur A, qui duobus illis angulis compo-liitur , menfuratur { areüs CFB. Quod eit feeundum.

3°. Vel centrum O li) extra utramque chor-dam exiftit ; ducito AE- diametrum ; totus angulus CAE menfuratur | areüs CBE; atqui una ejufdemnbsp;pars, fcilicet angulus BAE menfuratur | areüs BE;nbsp;ergo altera , feu .angulus CAB , menfuratur areüsnbsp;Bi^C; 'quod eft ultimum.

C -o R o L L A R I U M.

139. nbsp;nbsp;nbsp;Ergo angulus A fegmenti (fig. 12), per chor-dam amp; fccantem exteriorem formatus, menfuratur 4nbsp;arcuum reilduorum , qui non intercipiuntur a chordis,nbsp;quibus vicinus ejus, feu angulus I, efficitur ; namnbsp;A I=: i8o° C80); ergo fimul furapti menfuranturnbsp;ï totius periphcriae;fcd I menfuratur | areüs GC (138);nbsp;ergo A menfuratur 5 areüs CA 5 areüs AG.

THEOREMA II.

Angulus A fegmenti (fig. 13, 14, 15), per ebordam

O tangentem formatus , menfuratur { areüs AOC, fuflentati ab illa chorda^ tangentem versus.

140. nbsp;nbsp;nbsp;Demonst. 1°. Vel arcus AOC Cfig-if) ==nbsp;AHC ( feu AC diameter ) , ell A proinde redtus ,

feu 90° f122) : atqui f areüs AOC etiam eB 90^^;

A menfuratur areüs AOC. Quod eft primurn.

2°. Vel arcus AOC Cfig. 14) minor eft arcu AHC; ^ puncto C ducatur CG parallela ad AB; eft arcusnbsp;AHG = AOC f127); A = C flop); atqui C menfu-^^^ur i areüs AHG (138), feu |areüs AOC; ergo Anbsp;ïïienfuratur ~ areüs AÜC; quod eft feeundum. ’

-ocr page 46-

Elementa Geometrije.

3°. Vel arcus AOC Cfig- 15) major cft arcu AHC; dudaCG parallelfi ad Ali,eft arcus AHC =5arcui AOGnbsp;C 127 angulus LCA = A (109 ); jam verö angu-lus LCA menfuratur | arcüs ACG (139), feu ^ ¦“


ar-


cüs AGC; ergo A menfuratur ell ultimum.


arcüs AGC. Qtrod


THEOREMA III.

jingului exctntrkus O ( fig* i? ^

Jiiratur ^ arcüs AF, ciii injijlit, amp; infuptr 5 arcüs BC, cui injifiit angulus X dnbsp;ad vcrticcm oppofitus.

141. Demonst. i°. Vel arcus AC Cj%-16)eft=:arcui AF; ad punélum A duda tangens AL (131) erit parallela ad CF (129); igitur A = O (109);nbsp;A veró menfuratur \ arcüs ACB (140), feu | AF -f |nbsp;CB; ergo amp; O. Quod efi: primum.

2°. Vel arcus AHC (^fig. 17) eft major arcu AF; öuc AH parallelam ad CF ; arcus HC elt = arcui AFnbsp;( 127) , A = O ( 109 ) ; A au tem menfuratur f arcüs PICB ( 138), feu ^ arcüs AF 5BC; ergo amp; O.nbsp;Quod eft iècundum.

3°. Vel arcus ASF Cfig- major eft arcu AC; ^ucito AS parallelam ad CF; eft arcus AC = arcuinbsp;rS (127); O = angulp fegmenü LAB (109); porronbsp;hic angulus menfuratur ~ arcüs AS i arcüs ACB (139);nbsp;ergo, cüm arcus AC lit = arcui SF; A, feu O menfuratur i arcus AS i SF-p | CB; quod ell tertium.

Corollarium.

142. Quoniam arcus oppofiti inter diametros funt ®quales (31), atque adeo angulus in centro etiamnbsp;menfuratur ^ arcüs, cui infiftit, amp; infuper | arcüs,cuinbsp;infiftit angulus ei ad verticem oppofitus; generatim o1gt;

I

-ocr page 47-

Elementa Geometai*. nbsp;nbsp;nbsp;29

tinet, angitlum intra periphcriam mtnfurari \ arcós , cui injiflit3 amp; injuper ~ areas, cui infifiit angulus ei ad ver-tkem oppojitus.

THEOREMA IV.

jingulus A extra peripheriam (fig. 19, ao, ai) menjiiratur | excefsüs areüs concavinbsp;fupra convexum.

143. Demonst. Vel A eft circumferiptus Cfig.xg'): duéla CG parallela ad AB, arcus BC eft = BG C127 ) ;nbsp;proiade arcus BGC, qui eft concavus anguli A, fu-perat arcum BC, qui eft eonvexus anguli A, ad ar-'nbsp;cum GC; ergo, cüm A fit = I (loS)» I veró men-furetur f areüs GC (140), A etiam menfuratur |nbsp;areüs GC, qui eft exceflus concavi fupra convexum.nbsp;Quod eft primum.

Vel A per tangentem atque fecantem conftitui-tur ao); due CG parallelam ad AB; eft arcus BC = BG (127 ) ; ergo arcus BGE, qui eft concavus A, fuperac arcum BC, convexum anguli A, adnbsp;arcum GE; quoniam igitur A = I (108}, amp; I menfuratur I areüs GE (140); A etiam menfuratur fnbsp;areüs GE, feu f excefsüs concavi fupra convexum»nbsp;Quod eft lecundum.

3°. Vel A formatur bina fccante Qfig. 21); ducito CG parallelam ad AF; eft arcus BC = FG 0^7);nbsp;A = I (108); atqui I menfuratur | areüs.GE Cho);nbsp;ergo A quoque menfuratur | areüs GE, qui eft ex-ceifus concavi FGE fupra convexum BC. Quod eftnbsp;ultimum.

CoROLLARIUM F

Ï44. Angulus extra peripheriam cum | fui con-irexi facit ~ fui concavi;

-ocr page 48-

Elementa Geometrie

COROLLARIUM II.

145. nbsp;nbsp;nbsp;Et cum toto fuo convexo facit } aggregad exnbsp;concavo amp; convexo limuL

COROLLARIUM III.

146. nbsp;nbsp;nbsp;Circumfcriptus cum fuo convexo facit 180°.

CoROLLARIUM IV.

147. nbsp;nbsp;nbsp;Semicircumfcriptus facit cum fuo convexo 90°;nbsp;amp; è converfo; li guis angulus extra peripheriam, pernbsp;tangentem atque Iccantem formatus, faciat cum convexo fuo 90°, ille eft femicircumfcriptus, atque adeonbsp;ejus fecans per centrum tranfit (136).

P R O B L E M A.

^ puncto A (fig- 22), extra circulum dato^ tangentem ducere.

148. nbsp;nbsp;nbsp;Resolutio I. Ad X centrum due reilam AX:

11. Ex ejufdem punélo medio O defcribe peripheriam XCAG ;

m. Dufla AC erit tangens quaifita.

Demonst. Duéla XC, angulus XCA menfuratur f arcfis AGX (138); quoniam AX diameter eft illiusnbsp;circuli (23)» arcus AGX eft 180° (30), erit angulus XCA 90°; eft ergo XC perpendicuiaris ad CA;nbsp;ergo CA eft tangens in punólo C (124). e. d.

CAPUT

-ocr page 49-

CAPUT III.

De Rectae-Um Proprietatibus,

DUM SPATIUM CLAÜDUNT.

Definitio I.

149. nbsp;nbsp;nbsp;Figura KcBilinca eft fpatium lineis redlis, feunbsp;Jateribiis, (juac in extremis pumitis concurruntj termi-'nbsp;natum.

C 0 R 0 L L A R I U M.

150. nbsp;nbsp;nbsp;Quoniam quaclibet duo vicina figurac lateranbsp;angulum conftituant oportet; tot funt anguli, quotnbsp;latera figurae : nequeunt igicur pauciores anguli effenbsp;figur® redtiline®, quam tres; quia tribus ad minusnbsp;lateribus opus eft, ut fpatium condudatur.

J51. ScHOLiON. Figura reflilinea etiam Polygonum audit, quia

piuiibus angulis reftilineis conftat. Omnia latera figurae fimul '

fumpta Perimetrum figurae componunc.

Definitio II.

152. nbsp;nbsp;nbsp;Si tribus lateribus redis figura terminetur,nbsp;Triangulum audit; ft quatuor, Quadrilatcrum, five Tt»nbsp;tragonum; ft quinque, Penmgonum; fi 6, 7,8, 9, ic?nbsp;amp;c. lateribus conftet, Hexagonum^ Heptagonum, 03.0»nbsp;gonum 3 Nonagonum, Decagonim amp;c., compellatur.

Definitio III.

153. nbsp;nbsp;nbsp;Circulus dicitur Circumfcriptiis Figurce, aut Ft*nbsp;gura Circulo Infcripta, dum peripheria per verticeqjnbsp;cujuflibet .ejus anguli tranftt.

Definitio I^-

154. nbsp;nbsp;nbsp;Figura rtBilinta eft Circulo Circumjcripta, ye?nbsp;C^irculiis Figurcz rcSilinccc Injcriptuf 3 dum üngulumnbsp;%ur® latUvS eft drculi tangens^

F


-ocr page 50-

4» nbsp;nbsp;nbsp;Elementa Geometeï®.

Deeinitio V.

15^. jingulus Externus figura reélilineai eft ille, qui vicinus eft alicujus anguli Interni, forinati pernbsp;duo vicina figurae latera. Ac proinue ^ngulus Ex-gt;nbsp;terniis formatur per unutn figurae latus, amp; vicinum la-tus produtfium.

156. ScHOLioN. Hac nota A trmigulum : AA triangula : ? quadrUaterum : ?? quadrUaura denocantur.

A R T I C U L U S' I.

» • *

De Triangulis.

§. 1. '

De variis Triangulorum Jpeckbus, atque proprictatibus.

D.efinitio L

Ratiore laterum, triangulum eft Mquilaterum, fi habeat tria latera tequalia; ft duo fuerint acqualia,nbsp;Ifofccks; amp; ft nulla acqualia fint, Scakmm audit.

Definitio II.

158. In A iibfceli angulus, qui per aiqualia late-. ra formatur, Angulus ad Vtrticem, amp; latus ei oppo-fttum, Bafis vocatur; duo anguli, ad hoe latus con-¦ ftituti, Anguli ad Bafiii appellantur.

Definitio III.

i£9. Ratione angulorum, triangulum dicitur dEqul-anguluni, ft habeat tres angulos acquales; Reclangulum^ vel Orthogomm, fi unus trium angulorum reélus fit;nbsp;ObtiifanguluTn, ft alterutrum angulum 'hühezt-Okiifum;nbsp;Acutangnlum, ft omnes tres acuti exiftant.

Definitio IV.

ifo. In A retftangulo, latus oppofitum angulo ree-' to dicitur Hypotmuja; reliqua duo latera Catheti au-diunt,^


-ocr page 51-

GeOM-.' to/é: 3



7 nbsp;nbsp;nbsp;G

F

p nbsp;nbsp;nbsp;, /

1

1

/ nbsp;nbsp;nbsp;\inbsp;nbsp;nbsp;nbsp;:\nbsp;nbsp;nbsp;nbsp;/

t

......-L—«Üg nbsp;nbsp;nbsp;I

X ; nbsp;nbsp;nbsp;l

* / nbsp;nbsp;nbsp;\

i

1

X

^J2 nbsp;nbsp;nbsp;^

ASc---^ nbsp;nbsp;nbsp;-

A




-ocr page 52- -ocr page 53-

4i

ElEMENTA GEOMETEIAt. Definitio V.

i6i. Altitudo trianguli efi: perpendicularis , dufla ' ab uno ejus angtilo ad lacus oppoficum ( quod etiamnbsp;( Bafis vocari poteft); five iiitra bafin cadac, five ianbsp;eandem produftam.

, nbsp;nbsp;nbsp;THEOREMA 1.

‘ nbsp;nbsp;nbsp;162 In quovis A qusclibet duo latera, fimul fump-

ta, funt tertio majora C 9 )•

T H E O R E M A I 1.

Circulus cuilibet A circumfcribi potcfl, feu omne A efi drculo infcnptibik.

163. nbsp;nbsp;nbsp;Demonstr. Trium angulorum, cujuüibet trianguli vertices, tria funt puncfia, qusc in eadem reétanbsp;non conftituuntur; atqui eis circumlcribi poteft circulus ( 44 ); ergo cuilibet A poteft circumfcribi circulus.nbsp;^e.d.

THEOREMA III.

Tres angiili interni ciijuflibet A fimul fadunt 180®.

164. nbsp;nbsp;nbsp;Dico angulos A, B, C (Tab. IV. üg. fimulnbsp;facere 180°

Demonst. Concipe triangulo ABC circumfcriptum circulum; A menfuratur | arcüs BC; B ' arcüs AC;

C i arcüs AB ( 138); ergo anguli A B C men-lurantur -1 totius periphericc; atqui medietas illa= 180°; ergo amp; anguli A B C fimul faciunt 180°. Q^. e.d,

Corollarium 1*

165. nbsp;nbsp;nbsp;Tres igitur anguli fimul furopti unius trian- \nbsp;Enli, tequivalent tribus angulis fimul fumptis eujuf-Cümque trianguli.

-ocr page 54-

44 nbsp;nbsp;nbsp;ÈlEMENTA (jEOMETB-ï^i

COE-OLLAB-IUM II.

166. nbsp;nbsp;nbsp;In quolibec A unicus dari poteft angulus reonbsp;tus, aut obtufus.

C0K.0LLAE.IUM III.

167. nbsp;nbsp;nbsp;Angulus extcmus A, v. g. F a) acquiva-let duobus angulis A C internis, hbi oppolitis :nbsp;nam F B= 180° (80); amp; B A C=i8o° 064)»nbsp;ergo F=A-fG

ConOLLARIUM rv.

'68. Duo externijV. g. F K, fuperant A, internum utrique oppofitum, ad : nam F = A C; amp; K=A B (167); ergo F K fuperat A ad A Bnbsp; C, qui = 180°; ergo Ka

C0E.0LLAE.IUM V.

1Ö9. Tres extemi, v. g. F O K, = 360° : ete-nini B F; A 0; C K faciunt fimul ter 180° ; atqui A B C= 180° ; ergo rclidui , feu tres ex-terni = bis 180°, feu 360°.

THEOREMA IV.

In quovis triangulo lams majus opponimr angulo majori : (y è converjo; angulus majornbsp;opponimr latcri majori.

170. Dico 1°, fi A (^fig. i) fit major B, effe latus BC majus latere AC.

Demonst. Sit A ABC inferiptuin circulo; cüm A menfuretur f arcüsBC , amp; B f^arcfis ACCi38);ericnbsp;i areüs BC major, quam - areüs AC; ergo arcus BCnbsp;eft major arcu AC; conlequenter chorda BC majornbsp;eft chordd AC (3Ó); quod erat primum.

-ocr page 55-

Elementa Geometeije. nbsp;nbsp;nbsp;4.^

Dico a°, li latus BC fit majus latere AC, efle an-gulum A majorem B.

Demonst. Eft arcus BC major arcu AC (36) ;• ergo | arcüs BC major eft quam | arcüs AC; porronbsp;A menfuratur ^ arcüs BC ; amp; B f arcüs AC; ergonbsp;A eft major B. Quod erat fccundum.

THEOREMA V.

In. IfofceUj anguli ad bajin fiint ccqualcs; 6* è con~ vcrfo : Ji in J\ duo anguli tequales fiat,

A ijiiid IJofcde ejl.

171. Dico 1°, ft A ABC (fig. 1) ftt ifofcele, fic Vit A fit ad verticem, elTe B = C.

Demonst. Eft latus AB = AC (158); pone itaque A ABC infcriptum circulo ; erit arcus AB = arcuinbsp;AC ( 35) ; porro B menfuratur f arcüs AC; amp; Gnbsp;menfuratur | arcüs AB (138)1 ergo B = C; quodnbsp;erat primum.

Dico 2°, ft B = C, efle A ABC ifofcele, fic ut A fit ad verticem, amp; latus AB = AC.

Demonst. Sit rurfus A ABC infcriptum circulo ; erit arcus AC = arcui AB, quia B menfuratur -f arcüs AC, amp; C i arcüs AB (138); ergo chorda AC =nbsp;chordaj AB (35); igitur A ABC eft ifofcele ( 157)»nbsp;^uod erat alterum.

i

Corollahium I.

17 a. A scquilaterum eft scquiangulum ; amp; è con-verfo : eft enim ündcquaque ifolcele, dum habet quac-iibet duo latera aequalia; proinde duo quilibet anguli Poflunt fpedari ad bafin ; igitur quivis duo angulinbsp;®quaics funt ( 171); ergo quilibet eft 60° ( 164).nbsp;Et fi quilibet duo anguli acquales (feu 60°) fuerint,nbsp;etiam duo quslibct latera xqualia fint oportct (171)*


-ocr page 56-

-4^

Elementa Geometrie. COB-OLLARIUM IL

173. In A. ifofceli quifquc angulorum ad bafin efl acutus (166).

THEOREMA VI.

Si B, item C C^g- 3) acutus , perpendicularis ^ tz A ad EC duSa j cadit inter BC; ji autem unus ,nbsp;y. g. B (fig. 4f')ifuirit obtujus^ cadet extra Aj in latus CB produSum ultra B y V. g. in X.

174. Demonst. I» pars. Quoniam B iteraC minor cft B cum ccrta parte A = 90°; amp; C cum altera parte A etiam = 90° ; pone itaque in duas tales partes A dividi per redlam AZ, ut angulus CAZ faciacnbsp;cum angulo C 90°; quoniam Z = C anguio CAZnbsp;Cl67), erit Z redtusj ergo AZ ell perpendicularis adnbsp;BC (76); atqui ab A ad BC unica duci potell perpendicularis (9a); ergo ilia cadit intra bafin BC.nbsp;Quod erat primum.

Demonst. c*** pars. Non poterit perpendicularis versus C cadere in lineam BC : nam vicinus 0 rectus foret; quoniam ergo B obtufuseft, ex fuppofito, B Scnbsp;angulus AOB facerent plus quam 180°; quod implicat,nbsp;cum in A ABO tres anguli folum = 180° (164).nbsp;Neque cadere poteft in B : B enim reélus foret; caditnbsp;ergo in CB produélam, v. g. in X. Quod erat alterum.

theorema VII.

In A JJo/celi ABC (fig. 5 ), A Jit ad vertkem ; Ji habeatur iinum ex fequtntibus ; 1° vel 0 reSus;

vel BO = OC; 3° vel I = X; duo reliqua fequuntur.

175. Demonst. primum. 0 = C-{-X; amp;Z = B4-I C 1Ó7 ) ; porro 0 = Z, cum fmt ambo reéli; erg()

-ocr page 57-

Elementa Geometeijb. nbsp;nbsp;nbsp;47

C X=B I; jam veró, ex luppofito, B=C(i7t); ergo Iz=X; quoniam vero AB = AC (158}, amp; Onbsp;rectus, cft Bü = OC (89). Quod erat primum.

Demonst. nbsp;nbsp;nbsp;Q jten] 2 i-elt;5tus (90); cüm

ergo B=:C (171^, eft I=X. Quod erat fecundum.

Demonst. nbsp;nbsp;nbsp;Quoniam 5 = 0^(171), amp; er

iuppofito I = X, eft B I = C-hX; porro Z=:B4-I, amp; 0=:C Xnbsp;nbsp;nbsp;nbsp;ergo 0=:Z; atqui ü Z=i8o°

(80}; ergo O item Z eft 90° (cu reétus; igkur rurfus BO = OC. Quod erat üitimum.

THEOREMA VIII.

Si in A ABC (fig- 5 ) habeantur duo ex fequentibus :

1° O reaus : 2° i = X : g° BO = OC; A ABC eji IJoJcek ^ Jic ut A Jit ad verticem; amp;jnbsp;reliqua duo Jequuntur.

176. Dico 1°, ft O redus, amp; I=X, effe AC=:CB, B = C, OB = OC amp;c.

Demonst. Z = 0; fedZ = B I, amp;0 —C X C 1Ö7 ); ergo B 1 = C X; cüm igitur I = X, eftnbsp;B=C; ergo A ABC eft ilbftele (157), A ad verticemnbsp;igitur BO = OC (89); quod eft primum amp;nbsp;fecundum.

Dico 2°, fi O redus, amp; BO = OC, efle I = X; AB AC amp;c.

Demonst. Eft AB = AC (88); ergo A ABC ifog. cele (157); igitur B=C (171); quoniam ergo 0=:Z,nbsp;«ft I = X. Quod eft fecundum amp; tertium.

Dico 3°, ft I = X, amp; BO = OC, efle A ABC ifof-«ele amp;c.

Demonst. A ABC fit circulo inferiptum; produca-«iitur AO ufque ad H peripheric punétum; I menfa-'

-ocr page 58-

Elementa Geomitri*.


48


ratur f arcüs BH, amp; X f arcüs CH (138); ergo, cum. 1 = X, eft arcus BH = HC ; igitur chorda HAnbsp;dmdt chordam SC, item arcum BHC bifariam; proin-de O eft reétus (126). Quod eft fecundum amp; ter-tium.

THEOREMA IX.

In A fi linea, du3a ex vertice alicujiis angiili, fit aqudis ciuiibct parti lateris oppofiti; angutus ilk reSus ejt.nbsp;Et fii in A reSangulo 3 ex angulo reamp;o linea ducaturnbsp;ad hypotenufam, ita ut vel ifia linea fit cequalisnbsp;alterutri parti hypotenufie-, vel partes hypotenufix fintnbsp;cequales inter fe; linea ifia efi cequalis fingulce portinbsp;hypotenufix.

177. Dico 1°, 11 Cfig- 6) BX fit == AX, item s= CX, B efle redtum.

Demonst. Quoniam BX = CX, C = angulo XBC; amp; quia AX = XB, A = angulo XBA ( 17O; ergonbsp;B = A C; porro B A C = 180° ( 164); ergo B = 90°, feu redlus eft (76). Quod erat primum.

Dico 2°, fi B redlus fit, amp; vel BX — AX, auf = CX; elTe BX = AX, item == CX.

Demonst. Pone BX —AX, erit A AXB ifofcele Cl57), A = angulo XBA CijO» angulus XBCnbsp;= C Ccüm B = A C}; igitur A CXB ilbfcele, amp;nbsp;CX = XB (171) ; quod erat fecundum.

Dico *3quot;, fi B rcclus, amp; AX —CX, efle BX tcqua-lem AX item GX.

Demonst. A ABC fit circulo infcriptum Qfig. 7 ); quoniam B, ex fuppofito rectus, menluratur | arcüsnbsp;•ALC (138), erit arcus ALC 180°; ergo AC erit diameter (30}; igitur X, punctum ejus medium, eftnbsp;circuli centrum; proinde BX, CX amp; AX fuut scqualcsnbsp;inter fe f 24). Quod erat ultimura.

' nbsp;nbsp;nbsp;THEO-

-ocr page 59-

Elemènta Geomètrijk.

THEOREMA X.

Si ift A j angulorum iinus reSiis fuerit, iiniis 6o®, üc

proinde alter 30°; latus oppofititm angulo reSo, ejZ I 4- latere oppojito angulo 30°.

178. nbsp;nbsp;nbsp;Dico, fi B Cfig- 6) fit reélus, C 60°, amp; Anbsp;30°, efle AC f BC.

Demonst. Ex B ducito BX ad X, punéhim mediuni lateris AC; eric BX == CX, item == XA C ^77) j igi“nbsp;tur A CXB eft ifolcele ( 157); ergo C = angulo CBXnbsp;(171); quoniam ergo C eft 60°, erit quoque angu-lus CXB óo°, five Ecqualis angulo CBX; ergo A CXBnbsp;eft scquiangulum, adeoque amp; aiquilateramp;m ( 17a); eftnbsp;ergo BC = CX; igitur eft AC f BC. Q^. e. d.

THEOREMA XI.

In h f fi fit umim latus ® altero, atque injïiper habeatur iinum ex Jequentibus :

ï°. Vel artgulus^ oppofitiis laten duplo majori, reS:us;

a°. Vel angulus, formatus per lila latera, 60°;

3°. Vel angulus, oppofitus lateri duplo minori, 30°; reliqua fequuntur,

179. nbsp;nbsp;nbsp;Dico fi ifig. 6) fit AC f BC, amp; Bnbsp;ïeétus, effe C 60°, amp; A 30°.

DemonST. AX fit = XC; dudta BX eft =; AX, item == XC (177); ergo A CXB eft gcquilaterum, ac proin-^e ffiquiangulum'C172); ergo C eft lt;5o°; igitur A. 30gt;nbsp;¦Quod eft primum.

Dico 2°, fi AC f BC, amp; C 60% elTc B redui??.

A 30°.

O

-ocr page 60-

Elementa Geometrie.

Demonst. Sit AX = XC; erit CX = CB; ergo A CXB ifofcele ( 157 ) ; angulus GSi == angulo CBXnbsp;(171); quoniam veto C = 60°, duo illi anguli fi-mui faciunt 120®; qaifque igitur eorum = 60°-; igi-tur A CXB eft aequiangulum, ac proinde scquilaterumnbsp;( 172); ergo BX = CX, amp; proinde edam = AX;nbsp;ergo B eft reétus (177) ; igitur A 30®. Quod eftnbsp;jfecuudum.

li AC I BC, amp; A 30° j elfe B redom

Dico 3 amp; C 60'^.

Demonst. Imagineris a pundo C ad redara AB 'duci perpendicularem; hxc fit oportet f — redd ACnbsp;(178); igitur elTet = CB; ergo CB eft perpendicularisnbsp;•ad AB C 95 )» proinde B redus; C 30°. Quod eftnbsp;ultimum.

P R O B L E M A 1.

Suptr reSa AB (fig- 8) confiruere A (equilaterum.

i8o. Resolutio I. Cirdno fume intervallum red» AB , atque eo mediante, ex A amp; B, fiant later-fediones in C :

11. Due AC amp; BC, amp; A ABC dat quaifitum.

rfr. ScHOUÓN. Quoniam A item B eil 60° (17a), per prtece-¦ dens problema modum habes conftruendi angulum 60° ; «juem li bifariam feces (87), angulum 30° obtines-, acque hunc deinde hl duas parces squales dividendo, angulum 15° habebis amp;c.

PROBLEMA II.

Ex tribus rtSis AB, CF, amp; GH (fig. 9) triangultm confiruere.

182. Resolutio I. Aflumarur una, v. g. AB, pro ba-fi, aut ipfi d-ucatur tequalis ;

-ocr page 61-

Elementa Geometrijs. nbsp;nbsp;nbsp;lt;St

®- Ex A, intervallo GF, ducatur arcus indefinitus :

W. Ex B, intervallo GH, ducatur alter arcus, qui priorem interfecct, v. g. in E :

ly* Dudis AE amp; BE, triangulum erit conffcruélum-

183. ScHOLioN. Si quKÜbet diiae ex reftis datis, terdi non fu@--rint majores, problema nequïc refolvi (i6a).

E. R O B L E M A I I L

Triangula ABC (fig. 10) dato 3 drculum infcribere.

184. Resolutio I. Divide B, item C bifariam (87). per redas CX, Sc BX :

II. Ab X, pundo concursüs redarum CX amp; BX, ad lams BC due perpendicularem XO :

IIL Ex X, üt centro, ad intervaUum XO, circulum defideratum defcribes.

Demonst. Ab O ad CX demitte perpendicularem CZ, haneque produc ufquc in G ; quoniam angulusnbsp;Oez = GCZ, amp; Z redüs, A CGO eft ifofcele, amp;nbsp;OZ = ZG ( 176); pari ter due Ol perpendicularem adnbsp;BX, eamque produc ufque in H; quoniam angulusnbsp;OBI = HBI, amp; I redus, A OBH eft ifofcele, amp; 01nbsp;=== IH (176); itaque redm CX amp; BX interfecant per-pendiculariter amp; bifariam chordas OG amp; OH circuli»nbsp;cui punda H, O amp; G forent inferipta; quaclibet ergonbsp;per centrum iftius circuli tranfeat oportet (laó));nbsp;Igitur punélum X interfedionis eft centrum iftius circuli Cap); ergo punda H, O amp; G diftanc scqualiternbsp;sb X; funt igitur XG, XO, amp; XH inter fe ajquales;nbsp;Proinde peripheria ex X, intervallo XO, defcripta, tran-Ilt per punda H, O, G; pra^terea A GXO eft ifof-cele C 157), ergo angulus XGO = XOG ( 171 );,:fednbsp;ftuoniam A COG ifofcele eft, angulus CGO = CÖG,

Ga

-ocr page 62-

gi nbsp;nbsp;nbsp;ËlEMENTA GEOMETRIje,

(J7t); igitur angulus CGX = XOC; jam veró an-^ guius XOC, ex eonftrudione, redtus eft; ergo etiamnbsp;CGX eli: redus; proinde CG eft tangens (124). Sj^nbsp;mili modo demonftrabitur angulum XHB = XOB, feunbsp;redum, amp; confequenter BH elfe etiam tangentem. Igitur triangulo ABC circulus GHQ eft infcriptus (154)*

§, 11.

De Comparaüone Trianguloriim-, DEriNÏTIQ I,

185. nbsp;nbsp;nbsp;Congruere dicuntur figurac, dum, und alterinbsp;fuperpofita, latera iateribus, amp; anguli angulis coinci-dunti five dum fefe mutuo perfedè tegun^.

Definitiq IL

186. nbsp;nbsp;nbsp;Triangula Mquilatera funt, quorum tria latera unius funt refpedivè acquaiia tribus iateribus ai-terius.

Definitio III.

187. nbsp;nbsp;nbsp;Triangula Mquiangula funt , quorum tr^s an»nbsp;guli unius refpedivè funt acquales tribus angulis al-terius.

Definitio IV,

188. nbsp;nbsp;nbsp;Latera Homolloga in AA scquiangulis ea di-puntur, qujc relpeètivè angulis scqualibus opponuntur,

theorema J.

AA cequilatera congruunt.

189. nbsp;nbsp;nbsp;Si (Jig. 11 ) AC == ac; AB = ab; BC = be,nbsp;dico A abc elTe congruum A abc^ atque A = a,B=^,

-ocr page 63-

SS

Elementa Geomete-Ia:.

Demonst. Superponatur latus ab in AB, ita ut a in A, adeoque (attenta duorum illorum lat’erum xqua-Utate) è in B coincidat; tum ex A, intervallo AG,nbsp;ieu cc, delcribe arcum LCO; amp; ex B, intervallo BC,nbsp;feu bc, arcum HCS, felé proindc interfecantes in C;nbsp;Suoniam ac AC, terminabitur illa in arcu LCO;nbsp;pariter, quoniam — BC, illa terminabitur in ali-quo punóto arcüs HCS; porro reóte ab amp; bc termi-nantur in extremitate fua c, ubi concurrunt; ergonbsp;pundum illud arcüs LCO, ubi^ terminatur reéla ab,nbsp;idem fit oportet cum punéto arCüs HCS, ubi terminatur reda bc', five debet effe pundum C, in quodnbsp;proinde cadit pundum c; igitur latera unius A inci-dunt refpedivè in latera alterius, amp; confequenter etiamnbsp;refpedivi illorum AA anguli cojncidunt ergo AAnbsp;congruunt (185). Q. e. d,

THEOREMA IL

H«o AA aquiangula, O habentia uiium. latus homollo’ gum cequale , fiint congrua.

190. Dico, fi (fig. II) A =3 fl; B = ^gt;; Sc proinde C = c; atque prxterea fit v. g. AB = ab; duo ilia AA efle congrua; amp; proinde AC = ac, BC = bc.

Demonst. Pone ab in AB, ita ut a in A, amp; 6 in B cadat; quoniam 0 = A, ac cadet in AC; amp; cümnbsp;^ = B, bc non poteft non incidere in BC (75); ergo ac amp; bc concurrent in idem pundum , in quodnbsp;AC amp; BC fibi occurrunt; feu c cadet in C; ergo Anbsp;ABC congruit A abc ( 185^. Q^. e. d.

-ocr page 64-

Elementa Geometrijï;.

THEOREMA HL

Si in duobus AA duo latera unius fint rejpeamp;ivf cequalia duobus lateribus alterius; amp; anguli ^nbsp;kis lateribus comprehenji, isquales Jint^

AA congrua fuut.

bc, amp;

ipi. Dico, Cfig. n) AC = ac; BC C = c; A ABC congruere cum A abc.

Demonst. Pone AC in cc, ut C in c, amp; A in ff conliftat; quoniam C=:c, cadet latus CB in cb,amp;t cümnbsp;iint=, coincident ; ergo B cadet in b, amp;c conrequen”nbsp;ter latus AB coincidet cum latere ab; igitur A in a,nbsp;amp; B in A coincident; igitur AA congrua lunt. Q^-c.d..

THEOREMA IV.

T)um duo AA habent duo latera reJpeSivè aqualia^ amp; utrimque unum angulum, lateribus cequalibusnbsp;oppofitum., esqualem; ifia AA congruunt jnbsp;vel .anguli oppqfiti reflantibus lateribusnbsp;cequalibus , faciunt fiimul 18o°.

ip2. Dico , fi (^fig. II ) AC = ac; BC = bc, k, A = a, AA congruere; vel B ^ = i8o°.

Demonst. Si AB = ab, AA congruunt (.189); fi infcqualia fint dicta latera ; pone AC in ac, fic utnbsp;coincidant; quoniam A = a, cadet AB in ab; tune,nbsp;fi fit AB majus quam ab (üt in fig- 12), aut ABnbsp;minus, quam ab (üt in fig. 13), confianter A iCBnbsp;erit ifofcele , cüm bc fit = BC; ergo in fig. 12, eritnbsp;B =• vicino A; amp; in fig'- 13, erit A = vicino B ; igitur B i = 180°. £,• c. d.

-ocr page 65-

Elementa Geometslij*. nbsp;nbsp;nbsp;§£

THEOREMA V.

ItitCT duo AA» qucê habent duo latera reJpeSivè cequa-'

lia, illud quod habet majorem angulum, per illa la' ter a conjlitutum, ctiam majorem habet bajin :nbsp;illud, quod habet majorem bajin, habetnbsp;quóque majorem angulum, bajinbsp;ijli oppojitum.

ipg. Dico 1% fiCfig- 14) fit AB~kE; AC=KF; ,amp; .pra:terea fit A major quam K, lams ]3C effe maiusnbsp;latere EF.

Demonst. Fiat angulus EKG aiqualis A; fit AC = KG; ducatur EG; AA ABC amp; KEG congruentnbsp;C 191); ergo BC = EG; KG == KF, ex hypothefi;nbsp;Igitur A KGF ifofcele ( 157 ); ergo G — angulonbsp;KFGnbsp;nbsp;nbsp;nbsp;porro angulus EGF eft minor G; amp; 'an

gulus EJ'G eft major angulo KFG; igitur in A EFG Jingulus EFG major eft angulo EGF; ergo lams EGnbsp;eft majus EF (^70) j fed er at BC = EG; ergo lamsnbsp;BC eft quèque majus latere EF. Quod erat primum.

Dico 2°, fi AB = KE; AC = KF, amp; preterea fit BC majus EF, efle A majorem K.

Demonst. Si A non foret major quain K; tune vel effet = K, atque A ABC congrueret cum A KEFnbsp;(191); igitur effet BC = EF; quod eft contra hy-fothefin : vel A foret minor K; itaque, juxta priroanxnbsp;partem hujus theorematis, EF deberet effe majusnbsp;Sluam BC; quod rurfus eft contra hypothefin; igiturnbsp;A eft major quam K; Quod erat alterum.

-ocr page 66-

ËLEMEMTA ÖÈÖilÈTIlÏJfc

ARTICULUS IL De cateris Polygonis,

Definitio I.

Ï94. Polygona dicuntur Symmetrica ^ dum terminart-tur quibufvis lateribus oppolitis xqualibus atque pa-rallelis.

C o R o L E A H I U M.

195. nbsp;nbsp;nbsp;Numero ergo pari laterum, atque angulorumnbsp;conftant.

DeF INITIO II.

196. nbsp;nbsp;nbsp;Polygona Regularia funt, dum amp; ortiïiia latera func Ecqualia, 'K omnes anguli xquales. Cacteranbsp;polygona Irregtilarla compellantur.

Definitio II I.

197. nbsp;nbsp;nbsp;Punélum jcqualiter ab omnibus angulis polygon! regularis diftans, Centrum polygon! audit. Recta quaclibet ab alterutro angulo ad centrum dudïanbsp;.Radius Obliqmis; amp; a cencro ad unum latus perpea-dicularis, Radius ReSus vocacur.

D E F l N I T I o IV.

198. nbsp;nbsp;nbsp;Qpadrilateruni fpecialia fortitur nomina :

1® j vel nulla latera habet parallela , amp; Trappels appellatur.

s®, vel duo latera tantum parallela funt, amp; Trap-pesyiis vocatur l amp; utroque hoe cafu eft polygonum irregulare.

3°, vel fingula oppofita latera funt parallela, atque ParaUelogrammum audit. Hujus quatuor dantur fpe-«ies : vel enim fingula latera funt xqualia, amp; finguli

anguU

-ocr page 67-

Elementa Geometrije. nbsp;nbsp;nbsp;5'7

ïingüli scquales ( adeoque rcéli), amp;c Quadratum appel-iatur; Hocque cafa elt polygonum regulare ( 19Ó): '''¦cl omnia latera quidem acqualia funt, fed foil angulinbsp;'^ppoliti tcquales, amp; Rhombus audit. Vel fola oppp-lita latera funt xqualia; ii tune quatuor anguli fintnbsp;recti, Reamp;angulum; It foli anguli oppofiti a;quales fue-rint, Rhombwdes vocatur; atque tribus ultimis cafibus,nbsp;Symmztricum elt.

Definitio V.

199. Recta in polygono quocumque, ab uno an-gulo ad alium duéta, Diagonalis vocatur.

aoo. ScHOLiON. Unguium Procafrtnum vocanc, cujus crura er* trorium concurrunc, atque duobus redis minor elt; uc angulinbsp;A, B, F amp; C ifig. 15). ytngmuni Regramp;dknUm appellant,nbsp;qui gibbofus eft, amp; per latera introrfum concurrentia formatur;nbsp;atque duobus redis major ell; talis ell angulus E, facitque cuninbsp;angulo C 360°. Sed de figuris, quibus anguli regrediences in-terveniunt, 1'pecialiter non agimus; cüm ex priucipüs dads,nbsp;dum occurrunt, facili negotio eruancur.

5- I.

De Polygonis in Genere. THEOREMA

ömnes anguli interni Polygoni [mul faciunt toties 18o\ quot funt Polygoni latera , duobus exc^tis.

201. Demonst. Ad punétum aliquod intra polygonum , ad arbicrium, furaendum, è quolibet angulo rectas ducito, atque in tot AA figuram refolveris,nbsp;fluot funt polygoni latera; omnefque anguli, omnium,nbsp;illorum AA, faciunt fimul toties 180°, quot funt fi-guraa latera; jam verè anguli illi omnes, qui confti»nbsp;ruuntur ad idem illud pundtum intra polygonum, fa-‘^'Unt fimul bis 180° (84); reliqui ergo omnes, quinbsp;prscisè comprehenduntur per angulos polygoni, faciunt

-ocr page 68-

5S nbsp;nbsp;nbsp;Elememta Geometii.1 jü.

iimul bis 180° minus, quam funt polygon! latera-

COROLI, AE.IUM 1.

202. nbsp;nbsp;nbsp;Igitur in Qnadrilatero anguli omnes intcrni fa-ciunt limul bis 180”; in Pentagono ter 180°; in Hexa-gono quater i8o° amp;c.

CoROLLARIUM II.

203. nbsp;nbsp;nbsp;Omnes anguli extern! cujuflibet Polygon! fa-ciunt limul 360° : quilibet enim externus cum vicinonbsp;fuo, qui intemus ell, = 180° (80); tot autem vi-cinorum funt paria, quot figura? latera; ergo omnesnbsp;extern! cum internis faciunt toties 180°, quot funtnbsp;figurse latera; atqui interni faciunt limul bis 180° minus (201 }; ergo externi faciunt bis 180®.

. II.

De Polygonis Symmetricis. THEOREMA I.

In Polygono Symmetrica, quivis duo anguli dire3è oypojid funt aquaks.

204. nbsp;nbsp;nbsp;Si quadrilaterum ABCF (^fig. 16), amp; hexago-num ABMCFG (^fig- 17) fymmetrica fuerint C^94)»nbsp;dico effe A = C; B = F amp;c.

Demonst. 1» prs. Duéiis diagonalibus AC amp; BF Qfig. 16); quoniam AB parallela ad FC, eft L = E,nbsp;FI = K; amp; quoniam AF parallela ad BC, eft I = R,nbsp;S = Z Qiogy, igitur L I, feu A, eft =E-|-R, feunbsp;C; amp;H-1-Z, feu B,eft = K S,feu F. Quod cratnbsp;primum..

Demonst. 2^^ pars. Duólis diagonalibus AC amp; BF CfiS- 17)5 ctim AB fit parallela ad FC, eft L = E,

-ocr page 69-

Elementa Geometrije. nbsp;nbsp;nbsp;59

H = K; amp; cüm AG üt parallela ad CM ^ efl; I = R. (109); igitur L 1, feu A, = E R, feu C; quo-^iam veró BM parallela ad FG , eft Z = S ( 109);

H Z, feu B, = K S, feu F; ducendo diago-nalem MG, fimili ratiocinio confequitur M —G. Quod erat alcerum.

THEOREMA II.

in. Polys^ono Jymmctrico Diagonales omnes , ab imo ad

dircèc oppojitiim angulum diiScz, JeJe miituö in eodem piinko bifariam Jccant.

205. nbsp;nbsp;nbsp;Si polygona Qfig. 16 amp; 17 ) fymmetrica fuerint,nbsp;dico diagonales AC, BF, MG fefe mutuo bifariamnbsp;fecare in O.

Demonst. Eft L = E; H = K C 109 ) j AB = CF C194); igitur AA ABÜ amp; CFO congrua funt ( 190);nbsp;igitur AO = OC ; BO = OF ( 185) ; prsctereanbsp;17) Z = S, X = P (109); quoniam igitur eftnbsp;MB z= GF, AA MBO amp; FGO Hint quóque congruanbsp;(190); ergo BF dividitur bifariam; itaquc MG tran-fit per O punétum medium reótai BF; amp; ita porronbsp;de diagonalibus in Oclogono, Decagono amp;c. Q^. e. d.

CoROLLARIUM.

206. nbsp;nbsp;nbsp;In polygono fymmetrico, diagonalis qua^libet,nbsp;putè' AC, dividit polygonum in duas partcs tcqualcs :nbsp;dividit enim illud in' aaqualem numerum AA, quorumnbsp;fingula oppofita congrua funt , proinde amp; squalia.

THEOREMA II I-Omne Parallelogrammum efl fymnictrkum.

.207. Si ABCF ifg. 16) fit patallelogrammum 5

illud elfe fymmetricum.

n a


-ocr page 70-

Elementa Geometrije.

Demonst. Duéta diagonali AC, eft L = E, R=rl (109); ergo AA ABC amp; AFC congruunt (190);nbsp;igitur AF = BC, AB = FC. Itaque ? ABCF conftatnbsp;lateribus oppofitis aequalibus atque parallelis; ergo fym-inecricum eft (194). Q^- e. d.

THEOREMA IV.

Qiiadrilaterum habcns Jingulos rejpeamp;ivè oppofuos angu-

los aaqualcs; vel Jingula refpeSivè oppojita latera cequalia, efl Jymmetriciim.

tioS. Dico 1°, ft A = C Cfig- 16), B = F; ? ABCF effe fymmetricum.

Demonst. A B = C F; ergo cüm quatuor diéli anguli fimul = 360° (202); A B = i8o°; itaquenbsp;af amp; BC lünt parallelai (ii5);paricer A F = B4-C;nbsp;igitur A F= 180°; itaque AB amp; FC funt etiainnbsp;parallelac inter fe (iiSquot;); igitur ? ABCF eft paralle-logrammutn (198); adeoque amp; fymmetricum (207).nbsp;Quod erat primum.

Dico 2°, ft AB = FC, amp; AF = BC; ? ABCF cffe fymmetricum.

Demonst. Duéla diagonali AC , A ABC congruit A AFC, B = F, L = E, I = R C 189 ) ; ergo ABnbsp;amp; FC; AF amp; BC funt parallels (i 15); ergo ABCFnbsp;eft parallelogrammum C198), adeoque amp; lymmetri-cum (207}. Quod erat alterum.

THEOREMA V.

Quadrilatcrum habens blna oppojïta latera cequalia amp; paralkla , fymmetricum efi.

209. Dico, ft AB amp; FC (fg. 16) fint scquaiia atque parallcla, ? ABCF effe fymmetricum.

-ocr page 71-

6i

Elementa Geometrije.

Demonst. Ductis diagonalibus AC amp; BF, eft L—E C109); ergo AA BAC amp; ACF congruunt (191); igi-tur BC = AF; B = F; R = I; jam veró, quianbsp;^ = I, BC eft parallela AF (115); ergo ? ABCFnbsp;paral]elogrammum ( ip8 ) , adeoque amp; fymmctri-cum ( 207 }. (2,- c-

THEOREMA VI.

Qjtadrilatcrum hahenS duo latera cppofita ctgiialia, amp; duo reflantia latera parallela, efl Jymmctricum,nbsp;vel anguli oppojiti Jimal faciunt 180°.

aio. Dico, fi AB = FC (^fig. 16); amp; AF paral-Jela BC, efle ABCF fvmmetricmn, vel angulos A C, item B F = i8o°.'

Demonst. Quoniam AF parallela BC , eft S = Z (109); ergo A FAB congruit A FBC, vel A C.nbsp;= 180° (192); ft AA congruarst, eftA = C,H=K;nbsp;^fgo AB amp; FC parallelle ( 115); igitur O ABCF eftnbsp;lymmetricum (194); ft A C = 180°, etiam B Fnbsp;= 180° : nam A C B F= 360° (202 ); igt-tur ABCF eft fymmetricum, vel anguli oppoftti = i8o“.nbsp;d.

theorema vil

Ilexcgonum 3 OSogonum amp;c., quibiifvis angiiUs amp; lateribus direSè oppofitis aquaUbus coii-Jians, fyiumctricum eJL

^ 211. Si Cfig- 18) A=C, B=F, H=G; AB=CF, BH = FG, amp;HC=GA, dico iftud hexagonum elTenbsp;fyniinetricum.

Demonst. Duc BG amp; HF; A ABG congruit A HCF C 191); igitur BG = HF; proinde BGFH eft fvmrae- .nbsp;^ncum C208); ergo GF amp; BH fuut parallck OP4)i



-ocr page 72-

élt;2, nbsp;nbsp;nbsp;Elementa Geometrie.

fimiliter, due AF amp; BC; AA AGF amp; CHB congruent (191); ergo AF=BC; igitur AFCB eft fymmetricumnbsp;(208) ; igitur AB amp; FC lunt parallelac ( 194); dudisnbsp;AH amp; GC fimili ratiocinio reperies AG parallelamnbsp;HC; itaque hexagonum datum terminatur lateribusnbsp;diredtè oppolitis aiqualibus atque parallclis; igitur lym-metricum dl (194). Q^. c. d.

5. III.

Dt Polygonis Rtgularibiis. THEOREMA.

Omnt Polygonum Regitlare, pari laterum numero ter-minatum, ejt quoque fymmetricum.

212. Propofitionis veritas perfpicua fit per numeros 196, amp; 211.

PROBLEMA I.

Polygono Rcgulari (fig- 19 7 amp; 20) dato circulum circumjeribere.

213. Resolutio I. Divide A item F bifariam C87) per redas, qusc concurrent v. g. in X.

II. Ex X, intervallo XA, due circulum; hie dEciet qutditum.

Demonst. Redas FX, EX amp;cc.fig. 19- ducito, fimi-lefque duclas concipe fig. 0.0; quoniam A = F (196), amp; ex conftruétione quilque bifariam divifus eft , eftnbsp;I=:K, ergo A AXF eft ifofcele (171); igitur XA =nbsp;XF;pra:terea I = H; quoniam igitur AF = FE (196),nbsp;A A XAF amp; XFE congruunt (191); ergo R = K;nbsp;XE = XF j quoniam igitur E = F, eft G = HI ita-

-ocr page 73-

i

Elementa Geomete.1*.

A CXE congruum A XFE (ipi), confequenter CX = XE; amp; fic de cacteris. Omnia ergo pundta A ,nbsp;F, E, C amp;c. diftant acqualiter nb X; elt igitur X polygon! centrum (197); atque adeo circulus ex X, in-tervallo XA, delcriptus, per vertices omnium angulo-rum poiygoni tranfit; igitur huic circumfcriptus cil il-le circulus (153). Qa

CoROLLAItlUM.

2,14. Binos polygon! regularis angulos bifariam fe-tando per reitas, punélum concursüs earumdem dat poiygoni centrum.

PROBLEMA II.

Invenire anguliim Poiygoni regularis.

215. Resolutio I. Divide 360 per numerum lateruin polygon! ;

II- Quotientem fubtrahe ex 180; rcmanebit numerus graduum anguli quacfiti.

Demonst. Polygonum datum circulo inlcriptum Goncipe; quodlibet latus C cüm omnia fint a^qualia)nbsp;scqualem peripberiac arcum fubtendit C3.5)j Wti-dem ergo arcus acquales erit divifa peripheria, quocnbsp;funt polygon! latera ; divifo itaque 360° per nunie-rum laterum, quotiens dat valorem cujufque arcüs ,nbsp;I'eu i duorum arcuum, qui fuftentantur a lateribus,nbsp;qutc iftum polygon! angulum conftituunt; jam veronbsp;quifque angulus polygon! regularis menfuratur l omnium arcuum, exceptis duobus; ergo quotiens ille fa-,nbsp;cum quolibet angulo 180°; quotiente ergo fubduc-ex 180, reliduum dat valorem anguli polygon! re-£blarjs. e. d.

-ocr page 74-

Elementa Geometric;. CoROLLARIUM.

a 16. Igitur quotiens ille eft jcqualis angulo formato in centre polygon! per binas reétas, è duobus vicinisnbsp;angulis ductas.

PROBLEMA III.

Circulo dato Polygonum regulate inferibere.

217. Resolutio I. Subftrahe angulum polygon! ex 180°, reiiduum dac angulum Ibrmandum In centronbsp;(216) ;

II. Ejufdem angul! crura interclplent in peripheria ar-cum, cujus chorda, quoties licet, peripheriac appli-cetur; atque conftrudum cr!t polygonum dcfidera-turn.

Sit E. G. conftruendum Hexagonum regulate; quo-niam qulllbet cjuldem angulus eft 120“ (215), hoc fubdudo ex 180°, reflduum óo° dat angulum !n cen-tro X (^fig- 20) formaiidum; eric itaque arcus ABnbsp;60®; chorda AB fexies peripheriac appiicetur, atquenbsp;hexagonum regulate deferiptum erit.

ai8. ScHOLioN I. Chorda fuftentans arcum 60° (feu latus hexa-goni regularis infcripci circulo ) eft ccqualis radio circuli : amp; è converfo, fi chorda fic aequalis radio, fufteiitac ilia arcum 6o° :nbsp;primo enim cafu, cum AX = XB, A XAB eft ifofcele ( 157);nbsp;ergo angulus XAB =: angulo XBA (i7i)v jam ver6, cum Xnbsp;lit 60°, duo illi anguli faciunt 120°; igitur quilibet eorumnbsp;eft etiam 60°; eft ergo A XAB iequiangulum , ergo amp; sequi-laterum (172); igitur AB=: AX, feu radio circuH. Secundonbsp;cafu, dudis radiis AX amp; XB , erit A XAB »quilatcrum, acnbsp;proinde aequiangulum ( 172 )•, quilibet ergo ejufdem angulus eftnbsp;6o°-, fed X menluratur arcu AB (72)-, ergo arcus AB eft óo°.

Q19. Schol. 11. Geometricè conftrui poffunt

1°. Angalus 90°, 45° gt; nbsp;nbsp;nbsp;poceft itaque peripheria geo-

metricè dividi itr 4, 8, 16 amp;c. partes tequales, atque adeo polygonum regulare 4 , 8, ,ió amp;c. latcrum , per Geometriam ele-tnentarem, circulo iiifcribi,

2°. Angu-

-ocr page 75- -ocr page 76- -ocr page 77-

Elementa Geometric- ^5

a®. Angulus 6o°, 30°, 15° amp;c.-, his mediancibus eiEcies polygo-lUim 6, ta, 04, amp;c. laccrura.

3° Augulus 72'^ ( de quo poftea) 36°, 18° amp;c. , quibus con-Irrucre liccc polygonum 5, 10, ao amp;c. laterum. Pro casteris autcm , praxis communis atq'.ic mechanica adhibctur : fcilicctnbsp;leiiLando percircinum , aut I'ranjportorio (de quo poftea), pe-tipheria in partes dcfidcratas dividitur.

PROBLEMA IV.

Super data re3:a AB (Tab. V. fig. i } Polygonum regulate deferibere.

St 20. Resolutio I. In A atque B fac angulos, quorum quifque faciat \ anguli polygoni :

II. nbsp;nbsp;nbsp;Ex X, intervailo XA, circulum ducito :

III. nbsp;nbsp;nbsp;Eidem applices, quoties fieri poteft, latus AB; atque polygonum quatfitum habebis.

am. ScHOLioN. Super data refta AB(/g. a) facile eft Quadra- ‘ turn delineate : erigendo enitn in A'amp; B perpendicularcs AGnbsp;amp; BF, fic uc qu-jeJibet lit a:qualis AB , atque ducendo GF,nbsp;Quadratum ABFG exuigit.

PROBLEMA V.

Polygono rcgiilari dato circulum Uijcrihere.

222. Resolutio I. E centre polygoni (214), ad unuffl, liivLs, iiwz radium rectum :

II- Ex eodem centro, intervallo diéli radii reSi, circulum ducito, eritque ille polygono regular! inlcriptus.

Demonst. Quoniam omnia polygon! regularis latera ^q^ualia funt; dum polygonum eit inferiptum circulo,nbsp;Zinnia latera fant totidem chordae acquales, quae proin-üngulae aequaliier a centro diftanc (13°) 5 ighur per-pendiculares quaeiibet, è centro polygoni ad quodlibetnbsp;iatus dudtse (ibu omnes radii recti') aquales funt .(54);

-ocr page 78-

66 nbsp;nbsp;nbsp;Elementa Geometric.

ergo peripheria, è centro polygon! ad intervallum nnius ex iitis perpendicularibus, feu radiis reétis, de-fcripta, tranfibit per extremum cujuflibet; atque adeonbsp;in fingulis illis punétis tanget quodlibet polygon! la-tus (124); igitur circulus ille erit polygono infcrip-tus(i54). Q^c.d.

PROBLEMA VI.

, Circulo dato Polygonum regulare circiimfcribere.

223. Cüm polygonum regulare circulo circumfcrip-tum eft, quifque ejus anguius, iftius circuli eft Cir-cumfcriptus; tot ergo erunt arcus convex! , quot an-guli circumfcripti; amp; qaoniam omnes hl circumfctipti a^quales funt, erunt quoque convex! linguli tequales.nbsp;Itaque

Resolutio I. Divide peripheriam in tot arcus sequa-Ics quot funt polygon! futura latera, v. g. quinque pro pentagono :

II. Per pundta divifionis a, b, c, e, f (fig- 3) ducito tangentes , eafque produc, ut fingulse dutc vicina:nbsp;angulos conftituant A, B, C, E, F; eritque illudnbsp;polygonum regulare, amp; circulo circumferiptum.

Demonst. In primis quilibet duo anguli funt sequa-les, cüm quilibet duo convex! tcqualcs fint ex con-ftruclione (146); practerea, quselibet duo latera xqua-iia habet : nam AA aAb, bBc, cCe amp;c. funt ifofcelia amp; congrua; quodlibet eft ifofcele : nam anguius Aaltnbsp;eft = angulo Aba : quifque enim menfuratur areüsnbsp;üb (140); ergo A aAb eft ifofceles ( 171) : fimiliternbsp;anguius Bbc eft = angulo BcZgt; : quifque enim menfu-ratur } areüs bc (140)1nbsp;nbsp;nbsp;nbsp;eft quoque Ifof

celes , amp; ita porró; ergo latus Aa = A/gt; j Bè = Bc; Cc = Ce amp;c.; prsterea bafes omnium illorum AAnbsp;, erunt inter fc a:qualgs (35)? fi-cut amp; anguli ad bafes

-ocr page 79-

Elementa GeOMETRI-E. nbsp;nbsp;nbsp;67

lilas confhimti (imó amp; AA illa funt omnia inter fc s^quiangula; congruunt igitur AA qusclibet (190);nbsp;oirmia igicur latera aA, Kb, iB, Bc, cC, Ce amp;c. funtnbsp;inter fe scqualia; quoniam ergo bina talia latera com-ponunt fingulum polygon! latus, fing-ula polygon! deli-neati latera tcqualia' fint oportet. fgitur polygonumnbsp;delineatum regulate eft, amp; circulo circumfcriptum.nbsp;e.

224- ScHOLiON I. Latera ejurdem Circutnfcripd, aut asqualium Circumrctiptorum , a vercice ufquc ad pimfta tangentite, sequa-lia funt.

¦225. ScHOLioN II. Circulus fpeftari potcft ut polygonum regularc, cujus latera infinitè parva funt ; etenim pcripheria componitucnbsp;reftis infinitè parvis (4), atque proinde inter fe «qualibus;nbsp;ha; quèque refta; continuo , amp; aqualiter centrum versus incli-nant i ergo anguli omnes, quos' intercipere concipiuntur adnbsp;peripheriam, funt quóque acquales; ergo üt polygonum regula-re circulus haberi poteft ( 196).

ARTICULÜS II1.

De Linds ProportionaUbus ^ amp; Figuris Jimillbus.

Definitio I.

226. nbsp;nbsp;nbsp;Lineac AF, BG, Cl amp; EK (fig. 4) proporüo-naics funt, dum prima eft ad fecundam., ficut! tertianbsp;eft ad quartam; five dum eft AF:BG = C1;EK.

Definitio II.

227. nbsp;nbsp;nbsp;7'res linccz, v. g. AB, CF, OG (^fig. 5)nbsp;cuntur proponionaks, dum prima eft ad fccuudam,nbsp;ficut! fecunda eft ad tertiam; five ft fuerit AB:Cb =nbsp;CF:OG;' hocque calu eft CF Media propordonalis inter AB amp; OG.

Definitio II

228. nbsp;nbsp;nbsp;Reéla AC Qfig. 6) divifa dicitur media amp; extrema ratione f dum tota AC eft ad partem majorcm

I 2

-ocr page 80-

68 nbsp;nbsp;nbsp;Elem-enta Geometri®.

AB, üt AB eft ad partem minorem BC; live dum eft AC:AB = AB:BC.

Definitio IV.

229. nbsp;nbsp;nbsp;Figures, (jujccumque Similes funt, 11 conftentnbsp;numero lacerum ajquali, latera lingula linguiis homo-logis fint proportionalia, amp; anguli, lateribus homolo-gis coinprchenli 5 aiquales.

§. I.

De Lineis proportionalibus, atque AA fimilihus.

THEOREMA L

C %• 7 ) nbsp;nbsp;nbsp;•gt; S’ Cl fint inter fe parallelce; la

tera OC amp; XI dividiinmr proportionalittr;

five efi XK:OL=Kl:LC.

230. nbsp;nbsp;nbsp;Demonst. Concipe lineam XK, item KI divi-fas in inlinitè parvas partes, inter fe proinde requa-Ics; amp; a fingulis punélis duftas parallelas rcfpeélu KLnbsp;amp; IC : in quot partes atquales divifa fueric XK, innbsp;totidem partes, inter fe a^quales, OL divifa quöquenbsp;crit (116); limiliter, in quot partes, inter fe sequa-Ics, divifa fuerit KI, in totidem partes, inter fe a;qua-les, diviüi erit LC (116); igitur eft XKiOL = KI:LC.

C0R0LLAR.IUM I.

231. nbsp;nbsp;nbsp;Igitur ahernando eft XK:KI = OL:LC.

C o R o L L A R I U’M II.

232. nbsp;nbsp;nbsp;In A ABC (^fig. 8 ) 11 fit OZ parallela ad BC,nbsp;eft AZ:CZ = A0;0B; patec ducendo per A paralle-lam ad BC.

Coroleari.um III.

233. nbsp;nbsp;nbsp;Igitur in A ABC ^ componendo^ eft AC:AZ =nbsp;AB;AO.


-ocr page 81-

^9

ElEMENTA GeoMETE-IJE.

THEOREMA II.

In A ABC Cfig- 8)yi AZ:ZC = AO:OB ji OZ dlvidat latera AC amp; AB propordonali-ter^, ejt OZ parallda BC.

234. Demonst. Condpe AZ, amp; CZ divifas in partes aliquocas, a;quales inter Ie : paritcr imaginare AB divifara in tot partes aliquotas, in quot AC eft divifa:nbsp;tune a Z imaginare duci parallel am réfpeau CB, v.g.nbsp;recStam ZL; amp; crit ACrAZ=-AB;AL C233); quo-niam igitur, ex hypothefi. componendo, eft AC:AZ =nbsp;AB : AO; confequitur cfle AL = AO; itaque parallelanbsp;illa cadit in O : igitur ft ZO dividat latera AC, amp; ABnbsp;proportionaliter, ea eft parallela ad bafm BC. Q^-e.d.

C0EOLLAR.1UM.

23,^. Idem confequitur, ft fit AC:AZ = AB:AO

amp;c.

THEOREMA III.

Si OZ c% 9) fit parallela BC; efi AC:AZ=: BC:OZ

236. nbsp;nbsp;nbsp;Demonst. a punélo Z due ZX parallelam AB;nbsp;eft OZ = BX (198 amp; 207}; prseterca eft AC:AZ =nbsp;BC.BX (233); ergo eft AC:AZ = BC;OZ; Q-e.d.

THEOREMA IV.

Si (fig. p) AC:AZ = BC;OZ, efl OZ parallda BC, ve/ B O = 180°.

237. nbsp;nbsp;nbsp;Demonst. Sit ZX parallela OB; eft AC:AZ =

BC;BX (233); ergo BX = OZ; nbsp;nbsp;nbsp;eft parallela

ex conftruélione; ergo vel ? BOZX eft fymme^

-ocr page 82-

70 nbsp;nbsp;nbsp;Elemf.nta Geometri^c.

tricum, quo cafu B = 0, OZ parallela BC; vel B L = 180° (210); hoe igitur cafu, quoniam L = 0nbsp;lt;^iop), B 0= i3o°. Q. e. d.

THEOREMA V.

AA Mqiiiangiila feint fimilia , feu habent latera homologa proportionalia.

238. nbsp;nbsp;nbsp;Si Cj%- 10) A = a; B = b, amp; proinde C=c;nbsp;cft AB:aA = BC;èc = AC:ac.

Demonst. Triangulo ABC imponatur A abc, ita ut a cadat in A, amp; linea ac in lineam AC; ac proinde , cümnbsp;nbsp;nbsp;nbsp;A, cadet ab in AB; cüm ergo 6 = B,

cft BC parallela ad bc C11.5); habetur igitur AB: ab = BC:ic = AC:ac (233 amp; 236). Q^-e. d.

CoROLLARIUM.

239. nbsp;nbsp;nbsp;Dum duac tranfverfaj, v. g. IK k. EL (fig. ii)nbsp;lèlè inter parallelas AB amp; CF lecant, fegmenta funtnbsp;proportionalia ; five eft 10 ; OK = EO : OL : etenimnbsp;I = K; L = E C109); O = X ( 85 ) ; adcoque AAnbsp;lOE amp; KXL funt acquiangaila; ergo kc.

THEOREMA VI.

Dum tr'ia latera uniiis A funt proportionalia tribus la-tcribus alterius A;duo illa AA funt fimilia.

240. nbsp;nbsp;nbsp;Dico, fi Cfi^’ 12) fit AB:ci = BC:ic = AC:flc;nbsp;efle duo iUa AA fimilia, atque adeo A = d; B = b;nbsp;C = c (229).

) Demonst. Sit AL = ab; due LK parallelam BC; erit AB:AL = BC:LK = AC:AK (238); quoniamnbsp;igitur, ex hypothefi, eft AB:öi = BC:k = At-.ac; k

-ocr page 83-

Elementa Geometkix. nbsp;nbsp;nbsp;71

ex conftrudlione ai/ = AL; erit èc=:LK, ac = AK; igitur A aic eft asquiiaterum A ALK; proinde con-gruunt ( 189) ; ergo A — a; L = i; K = c; fed eftnbsp;L = B, K = CC 108)5 ergo B = óy C = c; ergonbsp;AA ABC amp; aic fimilia funt (22^). e. d.

THEOREMA VIL

Si in diiobus AA uniis angulus primi Jit aqualis unl aiigulo Jecundi, atque anguli illi aquales formenturnbsp;per latera proportionalia; duo illa AAnbsp;Jimilia fint.

12,41. Dico CfiS’ ïo)j A = c; amp; fit AB:fl5=; AC:ac; effe B = b, C~c amp;c.

Demonst. Ponatur a in A, ita ut ac cadat in AC; quoniam angulus a — A; cadet ab in AB (75); igitur eft AB : Ab = AC: Ac ; eft ergo bc parallela BCnbsp;C ^35)5 ne proinde B = b, C = c ( 108); igitur AAnbsp;ABC amp; abc fimilia funt (238^. e. d.

THEOREMA VIII.

Ji duo AA habtant duo latera proportionalia, amp; utrim-qiie unum angulum , lateribus proportionalibus op~ pojitum, cequalem; AA ijla jimilia fint, velnbsp;anguli refiantibus lateribus proportionalibus oppofiti, fimnl füclutit i8o°.

BC:^c; amp; 180°.

242. Dico ft (jjig. 12) fit AC: ac A = a; efle C = c , B = ó; vel B b

Demonst. Sit AK = ac , AL ab; A AKL conduit cum A abc (191); igitur UC — bc; quoniam igitur, ex hypotheft, eft AC-.ac = BC:bc, erit AC: AKnbsp;= BC: LK; proinde vel LK eft parallela BC, velnbsp;JI-i-L=:i8o° (237); primo cafu erit B=L, amp; C=:K

-ocr page 84-

¦72 nbsp;nbsp;nbsp;Elementa Geometrije.

(108); quoniam igicur L = 6', amp; K = c, erit B = ft, C = c; adeoque A ABC erit acquiangulum , ergo fi-mile A abc. Secundo veró cafu, cdin L = A, B 3nbsp;facient 180° e. d.

THEOREMA IX.

In AA Jimilibus, altitudines QreJpeSivè ad bajes homo^ logas) fuut lattribiis proportionaks.

243. Si (^Jig. 12, 13 amp; 14) fit A = fl, B =

C = c, dico pcrpendicularem AE, duótam ex A ad BC (produélam fi opus), fe habere ad perpend:cula-rem cl, duöam ex a ad Ac ( produétam ü opus ), fi-cut AC:ac amp;c.

Demonst. Sint B item C acuti in fig. la; B obtu-fus in 13; amp; C obtufus in 14. Perpendicularcs ex A item. a dudsc cadent ut in figuris (174); quoniamnbsp;C = c;E = I (funt cnim ambo reéli); ent angulusnbsp;CAE=angulo cal ( 165); ergo A ACE eft scquian-gulum, ergo fimilc A cal; eft itaque AC:ac = AE:aInbsp;(238); fed cüm A ABC fimile fupponatur A aAc, eftnbsp;ACtac = AB-.aA = BC:Ac (238), erit igitur etiamnbsp;AB:aA = AE:flI; item BC:Ac=?AE:aL ^ c. d.

244 ScHOLiON. Si V. g. folüm habeamr C=:c, femper habebicur AC:öc = AE:aI; praterea erit BC:iic fieuti perpendicularisnbsp;ex B ad AC duÖ;a,ad perpcndicularera cx b ad ac duttam ; atnbsp;altitudines, feu perpendicularcs üIk , nou funt proportionaksnbsp;leliquis lateiibus AA ABC amp;; abCj quia hsec fimilia non fup-ponuntur.

theorema X.

Dum in A Unea duSa ez vertice alicujiis anguU, hunc bifariam. fecat; ca dividit bajin eadem ratione, ütnbsp;funt inter fe latera., direBè oppofta bafèosnbsp;partibuSf amp; pcr quoe angulus Uknbsp;formatiir.

W Si 15) fuI=Ljdico effe AC:AB=0C:0BL

Hemokst.


-ocr page 85-

75

Elementa Geometeijb.

Demonst. Producatur CA ufque in K, ita ut AK ^ AB; dudla FK, A KAF eli ifofcele (157); F = Knbsp;C171 3 ; led angalus BAC, feu I L, eft = K Fnbsp;C ) ; quoniam, igitur, ex hypochefi, L = I, eftnbsp;F = L; proinde KB eft parallela AO (115); atquenbsp;adeo AC: AK feu AB = CO; OB ( 230). e. d.

THEOREMA XI.

È converjo : dum in A Unea duSa cx vtrtice alicujus

anguli dividit bajin in eadem ratione, ac funt latera, qiiibus angulus ille formatur, amp; qute di-reSè oppojita jiint bajios partibus; angu-ius Uk bifariam ep divijus.

146. Dico fi (ƒgt;. 15) fit AC:AB = CO:OB, efle I = L.

Demonst. Producatur rursüs CA ufque in K, fit-gue AK = AB ; dudta KF; actento lüppofito, eric CA;AK = OC;OB; ergo AO parallela KB (234) ;nbsp;igitur K = I C 108 ) ; led K = F ( 171 ), adeoquenbsp;F = I; fed quoniam KB parallela AO, eft F=L (109)5nbsp;ergo I = L. 0^. e. d.

THEOREMA XIL

( fig* 16) A item. O Jit reSus;

I®. AA ACX, AXB, ACB 'y?/nr fimilia :

2°‘ AX nbsp;nbsp;nbsp;ej?nbsp;nbsp;nbsp;nbsp;medianbsp;nbsp;nbsp;nbsp;proportionalisnbsp;nbsp;nbsp;nbsp;inter BXnbsp;nbsp;nbsp;nbsp;amp;nbsp;nbsp;nbsp;nbsp;CX:

3°. AC nbsp;nbsp;nbsp;eflnbsp;nbsp;nbsp;nbsp;medianbsp;nbsp;nbsp;nbsp;proportionalisnbsp;nbsp;nbsp;nbsp;inter BCnbsp;nbsp;nbsp;nbsp;amp;nbsp;nbsp;nbsp;nbsp;OC :

4°. AB nbsp;nbsp;nbsp;eflnbsp;nbsp;nbsp;nbsp;medianbsp;nbsp;nbsp;nbsp;proportionalisnbsp;nbsp;nbsp;nbsp;inter BCnbsp;nbsp;nbsp;nbsp;«S’nbsp;nbsp;nbsp;nbsp;XB.

247. Demonst. iquot;quot;quot;. B C=90°; ergoXrsB C^ item O = B C; jam vero X = C K ^ 0 = Bq-I,nbsp;Cl67); ergo I = B; C=L; O-X; igitur AA ACX,nbsp;AXB amp; ACB funt acquiangula, ac confequenter fimilia (238). Quod erat primum.

K

-ocr page 86-

74 Elementa GeOMETE-IJE.

Demonst. 2quot;”- Quoniatn A ACX fimile AXB, eft BX: AX = AX: CX. Quod erat lècundum.

Demonstr. gun*. Quia A ACX fimile ACB, eft BC:AC = AC:ÜC. Quod erat tertium.

Demonst. 4quot;™. Cüm A AXB fit fimile ACB, eft BC;BA = BA:XB. Quod erat ultimum.

COROLLARIÜM.

248. nbsp;nbsp;nbsp;Si Cfig. 17) BC fit diameter, amp; O re61us;nbsp;quoniam etiam eft A reftus (mcnfuratur enim | arcus BC), tres medias proportionales affignarc eft :nbsp;nempe AO inter BO amp; OC; AC inter BC amp; OC; amp;nbsp;AB inter BC amp; OB.

THEOREMA XIII.

In A reSangulo quadratum Hypothenufs ejl aquale quadratis Cathetorum.

249. nbsp;nbsp;nbsp;Dico, ft A Qfig. i8_) reólus fit, efle BC'=nbsp;AB^-hAC’.

Demonst. Ab A ad BC demitte perpendicularem AX; cadet hscc intra bafin BC (174); igitur AB® = BCxBX;nbsp;amp; AC^=BCxCX (247); porró BCxBX BCxCXnbsp;= BC=; ergo BC’ = AB’ -f- AC’. Q,. e. d.

theorema XIV.

È converjb : fi in A quadratum unius lateris Jit cequalc quadratis rejlantium laterum, angulus qppojitusnbsp;priori latcri reSlus efi.

250. nbsp;nbsp;nbsp;Dico, fi CBC’ï=s AB’ AC’, Anbsp;effe redlum.

-ocr page 87-

75

Elementa Geometrijk.

Demonst. Quoniam BC, ex hypothefi, eft laws Maximum, A eft major quam B, item major quainnbsp;C C170); igitar B, item C eft acutus; itaque perpen-lt;igt;calaris, duda ab A ad BC, mtra bafin BC cadit C i74)-Quoniam X , item 0 redtus eft, AB® = AX® XB®;nbsp;amp; AC-' = AX® CX® C249O; ergo BC® = 2A'X® XB®nbsp; CX®; jam verb BC®= BX® CX® 2CX x BX; ergonbsp;2CXxBX=2AX®; igicur CXxBX = AX®; adeoquenbsp;eft CX;AX = AX:XB; fed eftO = X; ergo AA COAnbsp;amp; BAO fimilia font C 241 ) j igitur B = I; C = L ;nbsp;proinde C B = I L; ergo I L, feu A = po°.nbsp;e- d.

THEOREMA XV.

Tgt;um bina chorda fife in Circulo ficant^ earumdem fig’-menta fiint reciprocè proportionalia.

251. Dico Cfig- 19) efle OC:OA = OB:OF.

Demonst. Dudis chordis BC Sc AF, eft C = A, B = F, 0 = X; igitur AA BCO amp; AFO funt a:quian-gula; ergo fimilia C 228 ) ; adeoque eft OC: OA —nbsp;OB ; OF = BC : AF. Q^. e. d.

052. ScHOLiON I. Si (fig. 19 ) habeatur unum ex fequentibus: 1° OC = OA; 2° BO = OF; 3° chorda BC = chord» AF,nbsp;vel, quod idem eft, arcus BC=:arcui AF; omnia reliqua fe-quuntur.

:OA,

cafu erit BO = OC, amp; OF: amp; BO = OF.

I OA; fecundo cafu


053. ScHOLiON II. Si chorda AB fit = chord» CF. quoniam tunc vel arcus AC = BFvel arcus BC = AF (i

B54. ScHOLiON III. Si AB fit diameter; amp; nbsp;nbsp;nbsp;P®*quot;

ti, V. g. OA, eft O Centrum : nam eft OF — OL ( 25a ); igitur CF = AB ; ergo CF etiam eft diarneter (34); atquinbsp;punftum interfeitionis duarum diametrorum elt Centrum (29);nbsp;ergo amp;c.

K a

-ocr page 88-

jö nbsp;nbsp;nbsp;Elembnta Giometrije,

theorema XVI.

Tangens AB (fig, 20) eft media proportionaïis inter totam jecantem BC, amp; fecanttmnbsp;exteriorem BO.

255. Demonst. Duélis chordis AO amp; BC, C men-furatur \ arcüs AO (138); item angulus BaO men-furatur f arctjs AO (140); func ergo duo ilii anguii inter Ie a;quales. Angulus BAC meniuratur | arcüsnbsp;AOC (140), item angulus BOA meniuratur ^ arcüsnbsp;AOC C ^39)» ‘^rgo duo anguii lünt quoque internbsp;fe ajquales; B praeterea eft communis; eft ergo A BaCnbsp;scquiangulum A ABO; igitur amp; ei ümile eft (238);nbsp;ergo eft BC: AB = AI3: BO. e. d.

COB-OLLAB-IUM.

356. Si itaque forct AB = OC, quoniam haberetur BC: OC = OC: BO, reéta BC divifa effet medid amp;nbsp;extremd ratione (228).

057. ScHOLiON. Si (y?g. 20) fic AB tangens, amp; arcus AKC 180° i tres mediae ptoportionales habentur-, in primis talis eftnbsp;AB inter BC amp;; BO (255)-, amp; quia, duöis AO amp; AC, angulus BAC, item O reftus eft, eft AO media proportionaïisnbsp;inter BO amp; OC, amp; AC talis eft inter BC amp; OC (247).

THEOREMA XVI L

Jn A ABC (fig. 21 ) fit B reSus : erit reSangulurrt CJeu produSum^ fuper CA-l-AB, amp; fiuper diffk^nbsp;rentia hypotenufie CA amp; catheti BA,nbsp;aqiiale BC“.

258. Demonst. Ex A, ut centro, intervallo AB , due cireulum : produc CA ufque in L; erit CL =nbsp;CA -p AB; amp; CO erit differentia CA ad AB; igiturnbsp;eft CL, feu CA-f AB:BC = BC:CO (255) : ergonbsp;CA-{-ABxCO==BC\ 2st.d.

-ocr page 89-

Elbmenta Gïometrijb. nbsp;nbsp;nbsp;7f

THEOREMA XVII T.

In figura 22 efl AC: AL = AB: AK.

Demonst. Duélis CL amp; BK,AA ALC amp; AKB funt sequiangula : nam C = B : quifque enim men-luratur \ arcüs KL ( 138 ); angulus ALC = angulonbsp;AKB; quia quilibec menfuratur | arcüs BLKC C^S?)»nbsp;quociam itaque A communis eft, duo ilia AA I’untnbsp;aquiangula, ergo amp; fimilia (238); eft igitur AC:ALnbsp;= AB:AK. il-cd.

THEOREMA XIX.

In Ellipji, quadrate Ordonnatarum Qfic audiunt perpendicular es^ a peripheria ad axin quemlibet du3ce, in Omni figure ciirvilinea ) ad majorem axin, pro-portionalia Junt reSangulis Jiiper partibusnbsp;correjpondentibus majoris axis.

260. Tab. VT. fig. i. Sit ACBDA Ellipfis : AB axis major : CD axis minor; adeoque 0 in Centro redus.nbsp;G Item L fint foci : RP item El ordonnatac : dico efquot;nbsp;fe RP*;APxPB = EI*:AIxIB.

Demonst. Due RL : a G per R redam ita produc, ut RZ = RL. Ex R, intervallo RL, mediarp peri-pheriam ZLHQ deferibe; fit GM = MZ; erit MR = ïnbsp;differentiai inter GR amp; RL; GQ eft tota differentia »nbsp;five eft f MR. Quoniara GO=OL (47 ), amp; HP==

C126); eft OP I — GH; eft autem GZ: GL = GH: 99 c 259); amp; capiendo terminorum medietates, eritnbsp;GM: OL = OP: MR; cumque fit GZ = AB, affu-mendo medietatem majoris axis, loco GM; babebisnbsp;OB; OL = OP : MR; invertendo OB: OP = OL: MR;nbsp;componendo OB: OB OP (feu AP) = OE :OL MR;nbsp;sut invertendo OB : OL = AP: OL MR; ulterius com-ponendo OB:OB OL (feu ALj) = AP;AP-fOL MR;

-ocr page 90-

78 nbsp;nbsp;nbsp;Elementa Geometeije.

led AP = GM OP; itaque eft OB : AL = AP: GM OP OL MR ; quoniatn veró GM MR = GR;nbsp;amp; OL OP = GP; tandem habetur OB:AL = AP:nbsp;GR GP; atque in hac proportio'ne pottrerous terminus cll fumma hypotenufsc GR amp; catheti GP A reonbsp;tanguli GRP.

Refumendo fuperioTem proportionem OB:OL = OP: MRi habetur dividendo OB:OB—OL = OP:OP — MR;nbsp;feu invertendo OB: OP = OB — OL : OP — MR ; amp;nbsp;ulteriüs dividendo OB;OB —OP (feu PB) =OB - OLnbsp;(feu LB):OB —OL —OP MR; fed OB = GM;nbsp;amp; —OL —OP = —PG; igitur OB:PB = LB:GMnbsp;-f MR — GP; atque ultimus hic terminus eft differentia hypotenufsc GR, amp; catheti GP A rectangulinbsp;GPR ; haccee differentia vocetur x, amp; habebitur OB:nbsp;PB = LB : X.

Refumatur OB: AL = AP: GR GP , atque ulti-mus hic terminus vocetur r, quia ipfe eft fumma hy-potenufe GR amp; Catheti GP; eritque OB;AP= AL:j; amp; multipUcando terminos hujus proportionis, per ter-minos hujus OB:PB = LB:x; habebitur OB“;APxnbsp;PB = AL X LB : r X x; atqui fumma hypotenufa; amp;nbsp;catheti GP multiplicata per earumdem differentiamnbsp;eft sequalis RP® ( 258 ); ergo OB®: AP x PB = AL xnbsp;LB: RP®; igitur eft’ RP®: AP x PB = AL x LB: OB®.

Si a G per E redtam agas, donee ipfa tequalis fit ducendaa EL, atque ex E, intervallo EL, circulumnbsp;ducas , fimili ratiocinio reperies effe EI®: AI x IB =nbsp;AL X LB : OB®. Ergo eft RP®; APxPB = EI®: AIx IB.nbsp;Et fic de cacteris. Q^. e. d.

CoB-OLLAEIUM I.

261. Quoniam igitur OC Ordonnata eft, atque adeo habcatur OC®: AO x OB j feu OB® = AL x LB; OB®;nbsp;eft OC® = ALxLB.

-ocr page 91-

-ocr page 92- -ocr page 93-

'19

Elementa Geometric. COK.OLLAB.IUM IL

aöa. Dudo ex O femicirculo AKB, amp; produfta PR, erit PS ordonnata circuli, cujus AB, axis major,nbsp;diameter ell; eritque PS° = AP x PB (248); eratnbsp;etiam 00quot;“ = ALxLB (261); igimr, cüm fupra ha-beretur. RP“: AP x PB = AL x LB: OBquot; ; habebicurnbsp;RP“ : PS“ = 00=“: OB*; adeoque RP : PS = OC : OB ;nbsp;Piniliter produdta IE, crit \f ordonnata majoris circuli,nbsp;amp; lp = AI XIB ; fupra verè erat EP : AI x IB =nbsp;AL X LB : 0B=“; itaque eft .EP : !ƒ ® = OC*: OB*; acnbsp;proinde EI: !ƒ= OC : OB; amp; ita de cscteris. Itaque qusc-libet ordonnata ellipfeos ad majorem axin, eft ad cor-refpondentem ordonnatam circuli fuper majori axi, ft-cut I minoris axis ad ~ majoris; feu ficut minor axisnbsp;ad majorem.

THEOREMA XX.

In. Ellipji, quadrata Ordonnatarum ad ninorem axin, Jiint proportionalia reSangiilis fuper partibusnbsp;correjpondentibits minoris axis.

263. Si VN amp; FX fint Ordonnat» Ellipfeos ad mi-norem axin CD, dico effe VN*: CN x ND = FX*: CX xXD.

Demonst. Duda VT ordonnata ad majorem axin AB, eft AOxOB feu AO*:CO*= ATxTB:VT*;nbsp;eft autem AT x TB = AO’ — TO* : (nam, quoniamnbsp;AB dividitur scqualiter in O, amp; insqualitcr in T, eftnbsp;Carith.) AT xTB = AO* — TO*); igitur AO*:CO* =nbsp;AO* — TO*; VT ; amp; permutando, AO*: AO* — TO*nbsp;= CO*;VT=; amp; dividendo AO*: AO* — AO* TO*nbsp;== CO*; CO* — VT* (datur autem fignum quadra-to TO , quia refecando AO*, mmis fuiflet fublatum,nbsp;cum folüm refecandum fit AO* — TO*; ideoque re-

-ocr page 94-

?o nbsp;nbsp;nbsp;Elbmemta Geometui*:.

ftituitur TO’, quod nimis fuiflec fublatum); verüm jyO’ — AO’ reducimrad;^ero;itaque habetur AO’:TO*nbsp;= CO’:CO’ — VT; at TO’ = VN’ (eft cnim Onbsp;VNOT reiftangulare, adeoque fymmetricum); amp; CO’:nbsp;CO’ — VT’ = CO’ — NO’; pra;terea C arith.) CO*nbsp;— NO’ = CN X ND (quia CD dividitur bifariam innbsp;O, amp; inaiqualiter in N ); igitur AO’: VN’ = CO’:nbsp;CN X ND; feu VN’: CN x ND = AO’: CO’.

Simili modo demonftrabitur FX’: CX x XD = AO*: CO’. Igitur eft VN’; CN x ND = FX’; CX x XP.

c. d.

COE-OLLAILIUM.

264. Dudla ex O media peripherid CYD; reéte 5N amp; cX, perpendiculares ad minorem axin CD, ordon-nam funt Circuli, cujus diameter eft minor axis; erit-que Zgt;N® = CNXND; item aX’= CXxXD (248);nbsp;at erat fupra VN’; CN x ND = AO’: CO’; ergo eftnbsp;VN’: AN’ = AO’: CO’; igitur VN: AN = AO : CO.nbsp;Pariter erat FX’: CX x XD = AO’; CO’; ergo eftnbsp;FX’: aX’ = AO’ : CO’ ; itaque eft FX: aX = AO :nbsp;CO. Igitur Ordonnatcz quaclibet Ellipfeos ad minoremnbsp;axin, ie habent ad correfpondentcs Ordonnatas circulinbsp;fuper minori axi, ficut | majoris axis ad | minorisnbsp;axis, five ficut major axis ad minorem.

PROBLEMA I.

DatiS tribus Uneis AB, CE amp; FG ( fig. a ), inve-nire quanam proportionaUm.

3Ö5. Resolutio I. Fiat, pro libitu, angulus X per reaas XH amp; XL indefinitas :

n. Sit XO = AB; os = CE; ^ = GF :

Hl Ducatur 01, amp; ab S reda SK parallela ad 01 : erit IK quaifita;

Etenioï

-ocr page 95-

tl

Elementa Geometria

Etenim quoniara 01 eft parallela ad SK , effc XO;

08 = XI: IK (230). Ergo AB;CE = FG:IK.

PROBLEMA IL

uid reSas AB amp; CE ( fig- 3 ) datas, tertilt;m znpenire proportionalem.

a66. Resolutio L Fiat X ut in pnccedenti :

n. Sit XO = AB; OH = CE = XL :

in. Ducatur OL; deinde • HK parallela ad OL ; eric LK tertia proportiomalis petita : nam eric XO: 0E[nbsp;= XL feu OH: LK ( 232). Ergo AB; CE = CE:liL

’ PROBLEMA III.

ReSzm AB CBg- 4) datam ficare eè prcportione, qud alma CE data divifa ejl.

^lt;57. Resolutxo L Ad extremum A fac angulum quemcumque , per indefinitam AR :

n. In cam transfer partes redt» CE, fitque AK = CLj KG = LH; GF = HE :

III. Due reélam BF; tum k punélis G amp; K reéhis Oö amp; XK parallelas ad BF; eritque AB divifa in ea-dem proportione, qak AF (230), feu qu^ CE.

PROBLEMA IV.

Inter AB amp; CE (fig. 5) Mediam proportith naUm invenire.

*•58. Resolutio I. AB amp; CE in eandem reélam ABS jungito ;


-ocr page 96-

ElïMENTA GeoMETB-IJ^

il. Ex X, punflo medio redtac AE, mediam periphe-riam ducito :

III, nbsp;nbsp;nbsp;In C erige perpendicularcm, quam ufque in punctum O peripheri'32 protrahe; amp; erit CO n^edia pro-portionalis defrderata.

Demonst. Duc chordas EO amp; AO, atque concipe integrann peripUeriam delcriptaro elle; augulus EüA ,nbsp;qui menfuratur f penpheriai (138), elt 90° : ergo,nbsp;cum anguii ad. punclum C fint quóquc recti, eft COnbsp;media proportion alls inter AB amp; EC (^47)- Qa

PROBLEMA V.

Lineam AB ( fig. 6 ) datam dividerc Medid ö* extrema ratione.

169. Resolutio L Erigarar in A perpendicularis AE, quai fit I — AB :

II. Ex E, ut centro, intcrvallo EA, circulus defcri-batur :

ni. a B per E ducatur redta BEF ;

IV. nbsp;nbsp;nbsp;Sit BK = BG; eritque AB divifa MediS amp; extreme ratione.

Demonst. Quoniam AB tangens eft nbsp;nbsp;nbsp;fiabe-

tur BF : AB = AB: BG ( 255 ); igitur BF — BA; EA — BA — BG : BG; eft autem BF — BA = BG = EK;nbsp;amp; BA — BK=AK : igitur his fubftitutis, erit BK:nbsp;Ba = AK: BK, feu alternando BA: BK = BK . AK ;nbsp;ergo AB divifa eft nicdia amp; extrema ratione (2.28).

-ocr page 97-

Elementa Geometric. nbsp;nbsp;nbsp;83

PROBLEMA VI.

Ad punSum A (fig. 7 ) angulum 72° geome-trlcè conpTuere.

270. Resolutio I. Lineam AB divide media amp; extrema rauone ( 269) in K; litque AK pars minor

II. nbsp;nbsp;nbsp;Ex A item K, intcrvallo aequali BK, fiant incer-fectiones in Z :

III. nbsp;nbsp;nbsp;Ducacur ZA; crit A 72°. ^

Demonst. Ducantur ZK item ZB : crit KZ = AZ C25), item KZ = BK, ex conftrudione; ergo BK,nbsp;KZ amp; AZ'lunt inter Ie aiquales. Quoniam igitur, exnbsp;cnnitructione , eft AB • BK = BK: AK, erit etiamnbsp;AB : AZ = AZ: AK; cum itaque angulus A per lateranbsp;ilia proportionaiia confiituatur, A BAZ amp; .ZAK fimilianbsp;funt (241); ergo K = Z; B = I; led cüm BK = KZ,nbsp;eft B=L (171); ergo 13=1; itaque B | — angulo Z;nbsp;igitur B eft etiam | — A (nam A=K=Z); fed an-guii B-j-Z-f-A= 180° (164); ergo A eft 72°. Q^-e.d.

271. ScHOLiOK. Si angiiilutn 72° bifariam Teces; angulum 36° ob-tinebis; atq^ue hunc bifatiam dividens, habcbis angulum 18'’ amp;c.

PROBLEMA VIL

Super data OX (fig. 8 ) confinicrc A fimile A ABC dato, fiimpto OX pro latere homo logo AB.

272. Resolutio. Fiat 0 = A, X=B, amp; nbsp;nbsp;nbsp;11=0

( 105); ergo A XHO eft tcquianguium, adeoque ü-aile A ABC (238;.

-ocr page 98-

84 nbsp;nbsp;nbsp;Elementa Geometrïje.

§. 11.

De ccetcns Figuris [milibus.

THEOREMA I.

Omnia Polygona regularia ejufdem fptciei Qadcoqiie O omnes circuli')^ Jiint Flgurce jimiles.

273. nbsp;nbsp;nbsp;Patet evidenter ex definitione polygoni regu-laris (196), amp; figurarum limilium io.2g'j.

THEOREMA 11.

In Polygonis regularibiis ejufdem fpeciei, latera fint radiis obliquis atque reSis proportionalia.

274. nbsp;nbsp;nbsp;Demonst. Sint v. g. duo Hexagona regularianbsp;A amp; B (fig. 9). E centro cujullibet dudis radiis obliquis, A refolvitur in fex AA congrua inter fe; fimi-liter B in totidem AA inter fe congrua dividitur ;nbsp;critque fingulum A in hexagono A aequiangulum,nbsp;ergo amp; fimile C 238 ) , cuilibet A in hexagono B; igi-tur eft AC: BK = CO; XK. OH item XL fit radiusnbsp;tedlus, erit OH altitudo communis omnium AA polygoni regularis A; amp; XL erit altitudo communis omnium AA polygoni regularis B ; radios autem redtosnbsp;ejufdem polygoni sequales effe inter fe demonftratumnbsp;eft C2.21) atqui ill® altitudines, feu radii red:i,pro-portionales funt lateribus polygoni (243); ergo etiamnbsp;eft AC: BK = OH; XL. Q. e. d.

Cok-oleab-ium L

275. nbsp;nbsp;nbsp;Si A amp; B fuerint polygona regularia ejufdemnbsp;fpéciei, perimeter polygoni A ad perimetrum polygo-ni B, üt radius obliquus vel redus A, ad radiui»nbsp;obliquum, vel rectum B. Et è converfo.

-ocr page 99-

Elementa Geometkij;. Coh-ollar-ium:nbsp;nbsp;nbsp;nbsp;II.

276. nbsp;nbsp;nbsp;Certa fumma laterum polygoni A ad eandemnbsp;fummam laterum polygoni B, üt radius obliquus, velnbsp;redus A, ad radium obliquum, vel, reélum B. Et ènbsp;converfo.

CoROLLARIUM III.

277. nbsp;nbsp;nbsp;Quoniam Circuli funt polygona regularia ejulP-dem l'pedei ( 225), peripheria circuli A Qfig. 10) adnbsp;peripheriam circuli B, üt radius A ad radium B; amp;nbsp;è converfo.

C0H.0LLAUIUM IV.

278. nbsp;nbsp;nbsp;Si arcus AC tot graduum fit, quot graduumnbsp;eft arcus BL, arcus illi proportionales funt circulorumnbsp;radiis. Et è converfo.

Corollab-ium; V.

279. nbsp;nbsp;nbsp;Chordae AC amp; BL, quac arcus illos fimilesnbsp;fubtendunt, quóque proportionales funt radiis illorumnbsp;circulorum : amp; è converlb.

Corollariüm VI.

280. nbsp;nbsp;nbsp;Seélor AXCHA etiam fimilis eft fedori BOLFB:nbsp;tot enim funt latera in arcu AHC, quot funt lateranbsp;in arcu BFL; concipiendo itaque, ex X amp; O, ad illanbsp;latera, dudos radios obliques, quilibet fedor in aequènbsp;multa AA fimilia refolvetur.

COROLLARIUM VIL

281. nbsp;nbsp;nbsp;Et quoniam A AXC fimile eft A BOL, feg-wenium ACHA ümüe eft fegmento BLFB.


-ocr page 100-

-lt;6 nbsp;nbsp;nbsp;Elementa Geometeije.

theorema III.

Polygona guceciimque Jlmilia^ Ji rtfolvantur in pef diagonaks ad angulos homologos duaas 3 eruntnbsp;AA homologa fmilia.

2.82. Si duo Pentagona Cj%- n) fimilia fuerint , ita ut A = a, B = Zi j C = c, E = e, F = ƒ,' amp;nbsp;practerea lit ASf.ab — BC: bc = CE; ce = EF : ef =nbsp;%'A:fa; duCtis diagonalibus AC, ac j AE, ae; üiconbsp;A ABC liiuile A abc; A ACE limile A ace; amp; Anbsp;AEb' limile A aef.

Demonst. Quoniam B = i, hique anguli forman-tur per latera proportiunaiia, AA ABC amp; abc lunt fimilia (^40; pariter , cum anguli F amp; ƒ, inter fenbsp;ïcquaies ex hypotheli,'conltituantur per latera propor-tionalia, A AFE limile eft A afe (241); ell; igiturnbsp;angulus ACB = angulo acb; h angulus AEb = an-gulo aef; quoniam igitur, ex hypotiioll, eft C = cnbsp;amp; E = e, ent angulus ACE = angulo ace, amp;c angulus AEC = angulo aec; adeoque angulus EAC = angulo eac (165) ; igitur A ACE eft tcquianguium,nbsp;adeoque (238) limile A ace. Q^. e. d.

THEOREMA IV.

converfo : Ji duo Polygona quaciimque in cequè multa AA Jimilia rcjolvi qucant, Foly~nbsp;gona fimiiia fine.

' 283. Demonst. Propter angulos aiquales AA limi-lium , ctiam anguli polygonorum aiquaies erunt ; Sc quoniam latera iftorum polygonorum funt quóque latera iftofum AA finrilium, etiam polygonorum latera homologa proportionalia fint oportet; igitur amp; jnfanbsp;polygona fimiiia funt (nbsp;nbsp;nbsp;nbsp;gt; Qi c. d.

-ocr page 101-

Elementa Geometui*. PROBLEMA I.

Super-data reSa HG (fig. 12) confiruere figuram fimi-km. ABCF, fumpto HG pro latere homo-logo lateris AB.

!iS4. Resolutio I. Ducatur diagonalis AC ;

H. Fiat angulus HGI = BAC; item angulu^ IGK CAF, ducencio GI amp; GK hue ulque indefinitas; aucnbsp;pottus lineai litai oceukè, v. g. plumbagine, vel cuB'nbsp;pide, leviter exarenmr.

III. Fiat H = B; atque in I, ubi recla Hl oceurrit diagonali GI, fiat angulus GIK = angulo ACF ;nbsp;amp; crit ? GHtK nhiile ? ABCF : conftat enim duo-bus AA tequiangülis, feu limilibus, duobus AAnbsp;quadrilateri ABCF.

PROBLEMA II.

Super reSa ce ( fig. ii ), i/r latere komologo ai CE, Fentagoniim conpruere pmilenbsp;ABCEF dato.

385. Resolutio. Du^'is diagonalibus AC amp; AE, fac A cae fimile A CAE; deinde A eba fimile A CBA;nbsp;amp; tandem A efa fimile A EFA j entque abcef pen-^nbsp;tagonum quaifitum

-ocr page 102-

8S nbsp;nbsp;nbsp;^LEMINTA GeOMETB-I*.

SECTIO SECUNDA

DE SUPERFICIEBUS.

SPeélavimus hüc ufque Polygona üt figuras, agendo de lineis atque angulis, quibus terminantur : nuncnbsp;de iis agendum, i° quamp; Magnitudinibus, 2,° qüd Pla-nis.

CAPUT PRIMUM

DE SUPERFICIEBUS QUA MAGNITUDINIBUS. Definitio I.

s86. Superficies eft extenfio, in qua bina; Dimenfio-nes, Longitude fcilicet atque Latitude confiderantur; generaturque, dum Linea a termino ad terminum mo-vetur.

COB.OLLAR.IUM.

287. Nullam proinde Profunditatem habet; nequ* cjus extrema extenfa dici peflunt in latum.

Definitio II.

288. u4irea feu Superficies Figura eft quantitas, qu» magnitudinem Spatii, lateribus figursc comprehenfi»nbsp;exprimit.

DefinItio II I.

289. Altitudo Parallelogrammi aut Trappezoïdis, eft Perpendicular is, ab uno latere parallelo ad aliudnbsp;demiffa.

Definitio IV.

290. Figurae dicuntur habere tandem Akitiidinem» «üm inter eafdem parallelas conftituta funt, aut con-flitui peflunt.nbsp;nbsp;nbsp;nbsp;Corol-

-ocr page 103-

ElEMENTA GEOMETRIiE. nbsp;nbsp;nbsp;8^

COROLLAR-IUM.

api. Omnia igitur AA vertice comraunicantia, amp; «quorum bates eidem reéte infiftunt (üt AA AOC Scnbsp;AOB fig. i6 Tab. V.) eandem alticudinem habent :nbsp;düéta enim per verticem A parallela ad BC, in eer eai^.nbsp;dem parallelas AA iila confticuca foren:.

ARTICULUS L De methodo generali Metlendi Superficies.

Hypothesis.

292. nbsp;nbsp;nbsp;Si AB Cfig. 13) ad BC perpendicularis, mo-tu libi parallelo ita moveri concipiatur, ut punélumnbsp;fi reélam BC percurrat; in defcripta Saperücie ABCFnbsp;rectangulari, toties eft invenire reélam AB, quo: fuuCnbsp;punéta in reéla BC.

C0K.0ELAR.IUM 1.

293. nbsp;nbsp;nbsp;Igitur Area ? Reélangularis habetur, unumnbsp;iatus in aliud coutiguum ducendo.

COROLLARIUM II.

294. nbsp;nbsp;nbsp;Quoniam vero in Quadrato latera qusKumqucnbsp;ïcqualia funt, ducendo unura Iatus in fe ipium, Areanbsp;Quadrati obtinetur.

295. nbsp;nbsp;nbsp;Schol. Quemadraodüra rnenfurae Lfinearuin funt minores lineas

nots, V.g. VtrgCL (qua: in Brabanda = ao pedibus); Hexape~ da (quae in Gallia =3 6 pedibus )•,nbsp;nbsp;nbsp;nbsp;adiequans 10 pe

des amp;c.; quas menlurae inl'uper lubdividumur in pedes, pes ia poUicesamp;c.; ita menfura: fupcrficierum funt minores Superficiesnbsp;quadracaï cognic®. V. g. fl 4-BCF (fe. 14)nbsp;nbsp;nbsp;nbsp;fit,

atque AB duos pedes xquet, erit Superficies , leu Area ABCF quatuot pedum Quadratorum : eceniin duclis EG atque KB ,nbsp;qua: latera quadraci bifariam fecent, exurgent quatuor miuoranbsp;Quadraia, laceraque finguli pedem acquabunt : amp; quoniam qui-libet pes hie Ibleat dividi in 10 partes Kquales, qu^ Fcdlises,

M

-ocr page 104-

90 nbsp;nbsp;nbsp;Elbmenta Geomettiij;.

audiunt, divifo quolibet latere Quadrat! KBEO in lo polliccs, duftifque tineis, ut vides , patet quemlibei. pedem quadratumnbsp;100 continere pollices quadrates. Quemlibec pollieem iusdivi'nbsp;dimus in to lineas, atque adco quiiibet pnilcx quadratus lOOnbsp;lineas quadratas continet: igitur Pcs quadiatus looo lineas qua-dratas compJedtitur amp;c.

THEOREMA I.

jirea RhomU, ant Rhomboïdls ABEH C ^g- i 5 2 amp; 3 Tab.nbsp;nbsp;nbsp;nbsp;efi it quale ? reSangulari ABCG for-

mato paper bap AB amp; altitudiiie A(j.

296. nbsp;nbsp;nbsp;Demonst. Inter perpcndiculares AG amp; BC una

V. g. AG cadit in F nbsp;nbsp;nbsp;i vel inter H amp; F

(utpg. a); vei ultra F (ut pg. 3 ); ? ABCG , quo-niam anguli quiiibet oppofici xquales lunt (funt enim redti omnes^/eii: rymmctricum (^o8); igitur BC=AGnbsp;(1943 : ergo A BCF congruit cum A AGH (ipo):nbsp;etenim anguius BCF eft aequalis angulo AGH (funtnbsp;enim ambo reéti J; anguius Cl B = H, cum AH fitnbsp;parallela BF (108); itaque anguius CBF = angulonbsp;GAH ( 1659; funt igitur duo ilia A A quóque sequa-lia; addendo igitur iingulo, in pg. i eandem partemnbsp;communem AbB; amp; in pg. 2 partem AGFB, erit (j rec-tangulare ABCG = parailelogrammo ABF1É In figu-ra vero 3, AA BCF, amp; AGH commune habent Anbsp;GXF; ergo ? BCGX = AXFH; addendo ergo utri-que A AXB, ? redlanguiare ABCG eft = paralleio-grammo ABb'H. Q. c. d.

CoitOLLAR-IUM.

297. nbsp;nbsp;nbsp;Igitur ducendo bafm AB in ahitudinem AG,nbsp;prodit area ABbH ( 293).

THEOREMA II.

u4rea A cJZ cequails dimidio facli bapos in ahitudinem.

298. nbsp;nbsp;nbsp;Dico aream A ABC Cpg- 4) effe | — produdlonbsp;¦bafts BC per pcrpcndicuiarem AO.

-ocr page 105- -ocr page 106- -ocr page 107-

91

Elementa Geometrije.

Demonst. Duc af parallelam CB, amp; BF parallelam ad AC, erit ACBF parallelogrammum ( 198) f Anbsp;ABC (206); atqui area ACBF efc = fado baleos ABnbsp;in perpendicularem v. g. Aü (_ 297 ); ergo area Anbsp;ABC = I BC X AO. e.d.-

THEOREMA I I L

uirea Trappe:(OÏdis ejl ~faSo altititdinis in bajes par alle las.

299. nbsp;nbsp;nbsp;Si fuerit ABCG (fig. 5) trappezo'is, fic utnbsp;AG amp; EC lint parallelai, litque GO v. g. cjufdcm al-ticudo : area iilius eric = | BC 1 AG X GO.

Demonst. Dudla diagonal! BG, area A BCG = § BC X GO; amp; area A BAG = ^ AG x GO (298);nbsp;ergo area utriufque A limul, feu ABCG = 4 BC nbsp;i AG X GO. e.d.

THEOREMA IV.

.Area Polygoni regiilaris efi = \ produSi Radii reSi per Perimetnim figures.

300. nbsp;nbsp;nbsp;Demonst. É Centro Polygoni concipe ad an-gulum quemlibet Polygoni duclos radios obliquos; innbsp;totidem AA fueric relblutum polygonum, quoc funcnbsp;ejuldera latera; ericque area cajufque A ^ fadti bafeosnbsp;in altitudinem ; jam vero alcitudo omnium AA eftnbsp;= radio recto (patet ex demonftratione ad numcrumnbsp;2.22¦); igitur omnium AA, feu polygon! area, eftnbsp;= I product! omnium laterum per radium redtum.

e. d.

C0ROLLAR.1UM.

301. nbsp;nbsp;nbsp;Quoniam igitur Circulus polygonum eft regulate C 225}, atque ejufdem radius rpftus ab obliquo

M a

-ocr page 108-

p2 nbsp;nbsp;nbsp;Elementa Geometric:.

baud differt; elt area Circuli = I facli pcripheriai in

radium.

305. ’ScHOLioN I. Circuli omnes inter fe fimiles Tunt (a73')-, func ergo petipherite omnes radiis feu diametris fuis proporcionales;nbsp;hoc eft, quse eft ratio unius circuli ad radium aiit diametrumnbsp;fuam, eadem fit oportet circuli cujul'cumque ad radium aut diametrum fuam. Quaa vero ea fit, exaftè hue ufque non inno-tuit ; props verum ramen, rationem peripheriae ad diametrumnbsp;ftatuic ^rchbmdas lt;22:7. exaftius alii 314: 100; aut in majo-Tibus circulis, ubi de minimis curandum eft, 3141Ó 10000. denbsp;qUibus poftea.

303. ScHOLiON II. Dum dicitur Circuli Ouetdraturam adinvtn-tam kite ufque non ejJe;)\oc unicè vult, determinatam non cf-fe in numeris proportionem inter peripheriam amp; diametrum ; neque lineam reftam affignari poffe , quas lit peripherite Circulinbsp;dati requalis : fi enim ea probari pol’it, quasrendo mediananbsp;proportionalem inter peripheriam amp; ^ radii, amp; fuper ea for-mando Quadratum, erit hoc Circulo dato arquale.

THEOREMA V.

jirta Seaeris ejl = | producti arcus fcQoris per I radii.

304. Demonst. Concipe Secloris arcum divifum in infinitas partes tcquales, amp; è circuli Centro ad hasnbsp;partes radios dudos ; in infinitè parva AA fedoremnbsp;diviferis ; omnium illorum AA balls erit arcus Icdo-ris, communis vero altitudo erit circuli radius; atquinbsp;cujufque A area eft = produdi bafeos per altitu-dinem; ergo omnium area, quae amp; fedoris area eft,nbsp;= I produdi areüs fedoris per radium. Q^. c. d.

P R O B L E M A. ,

Circuli Segmentum ABKA Cfg- ö) inquirere.

----• nbsp;nbsp;nbsp;---j

fedoris, refiduum eft area fegmenti.

305. Resolutio I. Inquire aream fedoris AXBKA ; II. Dein aream A AXB, haneque fubducito ex area

-ocr page 109-

Elementa Geometruï. nbsp;nbsp;nbsp;53

ARTICÜLUS II.

De Ratione Arearum.

THEOREMA I.

Qitariimcumque figuranm nbsp;nbsp;nbsp;Jlint inter fe In

ratione compofita dimenfionum è quariim fado prodeunt.

306. nbsp;nbsp;nbsp;V. G. triangulum A eft ad triangulum B, fi-cuti f produéli bafeos A per akitudinem A, eft adnbsp;I produöi bafeos B per akitudinem B; amp; confequen-ter ficuti fadum bafeos A in akitudinem A, eft adnbsp;fadum bafeos B in akitudinem B.

CoROLLAItlUM I.

307. nbsp;nbsp;nbsp;Igitur AA ejufdem altitudinis funt ficuti bafes.

C0B.0LLARIUM II.

308. nbsp;nbsp;nbsp;AA habentia eandem bafin, vel asquales bafes , funt üt akitüdines.

C0R.0LLAR.IUM III.

309. nbsp;nbsp;nbsp;Parallelogramma scqualis altitudinis amp; bafis,nbsp;scqualia funt.

C0E.0LLAE.IUM IV.

310. nbsp;nbsp;nbsp;Parallelogramma scqualis altitudinis funt ut bafes; amp; fi fuerint acqualis bafeos, funt üt akitüdines.

COR.OLLAR.IUM V.

311. nbsp;nbsp;nbsp;Si binsc dimenfiones, è quarum fado figurscnbsp;area prodit, fint reciprocè propprtionales, aresc jcqualesnbsp;funt. V. G. fi in duobus AA, aut duobus parallelo-grammis, bafis primi fit ad .bafin fecundi, üt akitudo

-ocr page 110-

94 nbsp;nbsp;nbsp;Elementa Geometric.

lecundi ad altitudinem primi; quoniam quatuor illi termini funt proportionales; eft factum primi in ulti-mum = faéto fecundi in tertium; jam veró pnmumnbsp;faétum dat duplum areac primi trianguli, auc femelnbsp;aream primi paraiielogrammi; amp; fecundum iaclum datnbsp;duplum areac fecundi trianguli, aut lemel aream fecundi paraiielogrammi; ergo amp;.c.

PP. OBLEMA II.

AA habmtia unum angiilum cequaltm, funt inter fh in ratione compojita laterum angulos iflosnbsp;aquales conjlituentium.

312. nbsp;nbsp;nbsp;Dico, fi Cfig' 7) X = C; A ABC: A OZXnbsp;= AC X BCiOXx XZ.

Demonst. Sint v. g. AI amp; OK altitudines AA; erin AC: OX = AI: OK ( 244); igitur CB x AC: XZ x OXnbsp;= CB X AI: XZ X OK; jam vero CB x AI = bis areasnbsp;ABC; amp; XZ X OK = bis area; OZX ; ergo bis Anbsp;abc : bis A OZX = CBx ACtXZxOX; igitur Anbsp;abc ; A OZX == CB x AC: XZ x OX. Q. e. d.

C0E.0LLAK.1UM I.

313. nbsp;nbsp;nbsp;Dum igitur duo Parallelogramma habent unumnbsp;angulum scqualem , quoniam ea funt inter fe, ficutnbsp;AA in qua; dividcrcntur duétis' diagonalibus ex re-ftantibus angulis, Parallelogramma illa erunt inter fenbsp;üt reétangula, feu produéta, laterum angulos iftosnbsp;acquales refpcétivè coniticucntium.

C0K.0LLARIÜM II.

314. nbsp;nbsp;nbsp;Si itaque duo AA auc parallelogramma ha-

beant unum angulum acqualem, formatum per latera reciproca, ca = funt. V. G. ü fitnbsp;nbsp;nbsp;nbsp;7) X = C;

amp; AC: OX = XZ: CB, erunt AA aiquaiia ; erit enim ACxCB = OXxXZ C312).

-ocr page 111-

Elementa Geometr-ije. THEOREMA III.

AA Jimilla funt inter je in ratione duplicata Qfeu üt quadrata ) laterum homologorum.

315. Si ifig- 8 ) fit A = a, B = C = c; diconbsp;A ABC; abc = AB* : ab^ = BCquot;: bcquot;- = AC= ; cc*.

Demonst. Quoniam A = a, A ABC : A abc = AB X AC : aZgt; X cc ( 312 ); fed quoniam AB : AC =nbsp;ab: ac ( 238 ) , eft AB x AC : ö3 X ac = AB x AB ;nbsp;ab X ab; igitur A ABC ; A abc = AB*: ab^; fed propter AA fimiiia eft AB* : ab^ — BC* : ^»c*.= AC*: cc*.

homologorum.

Ergo A A fimiiia funt inter fc fit quadrata laterum ¦ ¦

C0R.0LLAE.IUM I.

316. nbsp;nbsp;nbsp;Quaecumquc figuraj fimiles in scqualem nume-rum AA fimilium rcfolvi poffnnt (282), lateraquenbsp;fingula perimetri homologa Cfitisc ornnia inter lb Hintnbsp;in eadera ratione) erunt bales atque latera homologa illorum AA; igitur quaccumquc figura; fimiles funtnbsp;inter fe in ratione duplicata laterum homologorum.

C0R.0LLAE.IUM 11.

317. nbsp;nbsp;nbsp;Et quoniam Circuli omnes fimiles funt, atquenbsp;in iis dimenllones homologac funt Peripheria, Diameternbsp;item Radius; Circuli omnes funt inter fe ut quadratanbsp;peripheriarum, diaractrorum, aut radiorum; imö etiamnbsp;ht quadrata arcuum fimilium, aut chordarum eoliiemnbsp;fubtendentium ; illi enim funt proportionales periphe-tiis , ha: vero circulorum radiis.

-ocr page 112-

^6 Elementa Geometric.

CAPUT I L

De Proprietatibus Superficierum planarum.

318. nbsp;nbsp;nbsp;Lineas omnes, ut in eodem Plano conftitutas,nbsp;hue ufque fuppolitum fuit, uti prxmonuimus (6);nbsp;nunc agendum de ficu quocumque Linex aut Plani,nbsp;ad fuperficiem planam.

Hypothesis I.

319. nbsp;nbsp;nbsp;Concipe redtam BC (/ig. 9) liberè in aëre pen-dulam, ad quam XA perpendicularis fit, circa fe ip-fam, iit axi, ita moveri, ut punéta B amp; C fitum nul-latenus mutent : reéla AX deferibet fuperficiem planamnbsp;AGKLA, ericque reéta BC ad illud Planum Perjpendi-cularis.

CoROLLARIUM L

320. nbsp;nbsp;nbsp;Dum igicur reda, v. g. BX, perpendicularisnbsp;eft ad planum quoddam datum, ea quoque perpen-dicularis eft ad redam quamlibet in piano dudam pernbsp;X. Et è converfo : ft qua reda, v. g. BX fit perpendicularis ad redas omnes, in piano per X dudas, ericnbsp;reda BX ad planum perpendicularis.

CoROLLARIUM II.

221. In eodem plani pundo, unica poteft erigi; amp; k pundo extra planum dato, ad planum unica demitd

perpendicularis.

CoROLLARIUM III.

322. Perpendicularis breviffima eft , quae a pundo dato ad planum datum demitti poteft; atque adeonbsp;pundi a piano diftantia , perpendiculari inveftigandanbsp;cii

COROL-

-ocr page 113-

97

ElEMENTA- GeQMEXE-IJE-C0E.0LLAK.IUM IV.

323. nbsp;nbsp;nbsp;Omnes perpendiculares ad idem planum funtnbsp;inter Te parallelac : concipe enim' per eoruradem extrema in plano redlam trajici; erunt anguli correfpon-«ientes cüm redli fint ) scquales.

C0E.ÖLLAK.1UM V.

324. nbsp;nbsp;nbsp;Reélaj cujufcumque in plano ducftaï, nequitnbsp;pars una elTe in plano, pars altera infra aut fupra :nbsp;li -duo igitur ejufdcm, redtai punéta fuerint in plano,nbsp;tóta reéla in plano ent; quoniam duo illa punda U-gt;nbsp;lius redai fitum determinant (12).

THEOREMA I.

Tria piincla-, v. g. A, H, C ffig- io)gt; noTl conjijiunt in .eadcm reBa, Plani fitumnbsp;determinant.

325. nbsp;nbsp;nbsp;Demonst. Punéla illa redis AB, BC amp; CAnbsp;connedantur; tum finge redara AB per fingula punp-ta redarum BC amp; AC moveri ; cüm ad C pervenc-rit, Aream feu Planum trianguli ABC luftraverit;nbsp;eruntque reda; iliac omnes, adcoque amp; tota fuperfidesnbsp;A ABC, eidem plano, quo continentur punda A,nbsp;B amp; C, in liften tes; immo in quemcumque fenfum rec-tas illas protraxeris, eidem plano conftantcr inflftantnbsp;oportet (324); igitur tria punda non in diredum po-fita, plani' fitum determinant. e. d.

CoB.OLLAE.IUM L

326. nbsp;nbsp;nbsp;Si veró in eadem reda confifterent, plani fitusnbsp;non innotefceret ; tune enim per tria iüa punda pof.nbsp;fet reda trajid, atque fecundüm hanc fupponi aliudnbsp;planum attingere; jam veró pollet alteri plapo fic eflenbsp;contiguum fub inclinatione quacumque; ergo ejufdenanbsp;ficus minimè determinaretur-

N

-ocr page 114-

nbsp;nbsp;nbsp;ËLEMENTA GEOMETRta.

COROLLARIUM II.

327. nbsp;nbsp;nbsp;Tria puncfta, qua; non confiftunt in eadem li-nea reéta, nequeunt efle diverfis planis communia ; finbsp;enim torent diverlis plains communia; quoniam eujuf-que plani litum determinarent (325)1 aeberet cujuf-que plani pofitio eadem efle, atque inddere cum po-Ikione alterius; quod eft contra hypothefm.

C0B.0LLAB.IUM ill.

328. nbsp;nbsp;nbsp;Ergo interfeétio duorum planorum eft lineanbsp;reéta : interfeélio enim punéla erunt diverfis planisnbsp;communia; atqui punéta illa non poflunt non elle innbsp;eadem reéta C327); ergo amp;c.

THEOREMA II.

Dua reBa quaciimqiie, fefe interjccantes, funt in eodem Plano.

329. nbsp;nbsp;nbsp;Dico reétas AC amp; BF (J%. ii ) efle in eodem plano.

Demonst. Per punéta A, B amp; F determinatur fitus plani, per tria illa punéta duéti (325); quoniam ve-ró punéta F amp; B futüra funt in ifto plano, tota recta FB m eo quóque erit (324); ergo amp; punétum Onbsp;erit m eodem plano; igitur AC amp; BF funt in eodemnbsp;plano (325). Q^.e.d.

Hypothesis II.

330. nbsp;nbsp;nbsp;Sit Planum ABRL la), atque huic aliudnbsp;FCflG ita luperimpofitum, ut cum ABCF, in initio,nbsp;coincidat (immö, quoniam profunditate plana defti-tuantur (287 ), unum amp; idem conllituant planumnbsp;ABCF \ Punétis C amp; F manentibus immotis, feu fu-per reéta CF ut axi, planum fuperius volvi finge, donee ad oppofitam partem CRLF pertingat, atque cumnbsp;eo coincidat

-ocr page 115-

99

Elementa Geometili*.

COB-OLLARIUM L

331. nbsp;nbsp;nbsp;Vicini anguli, per planum mobile amp; immobilenbsp;formaci, faciunt iiinul 180°.

C0ROLLAE.IUM II.

332. nbsp;nbsp;nbsp;Angulum reélum, feu 90°, plana conftituent,nbsp;live erit unura ad aliud perpendiculare, dum planumnbsp;mobile ita dilpolicum fuerit, ut non magis in AB,nbsp;quaVn in RL propendeat; léu dum pundum H mediamnbsp;penpheriara dcl'cnpferit.

COROLLARIUM III.

333. nbsp;nbsp;nbsp;Dum bina plana fefe intcrfecant, anguli adnbsp;verucem oppofiti aquales funt.

CoB-OLUARIUM IV.

334. nbsp;nbsp;nbsp;Omnes anguli ad eandem reélam ejufdem plant , tot quot conftitui poflunt per diverfa plana, faciunt ümul 360°.

THEOREMA I I L

Si duo Plana fint inter fi parallda, Perpendicularis ad

unum, efi quöque talis. ad aliud; amp; Ji qua recta ad duo Plana fit Perpendicularis, Plana ilianbsp;inter Je parallela funt.

335. nbsp;nbsp;nbsp;Demonst. 1* pars. Ut duo plana fint inter fenbsp;parallela, ca uhique aiqualiter a fefe mutuo diftent opor-tet, amp;; quantumvis produda concurrere nequeunt; rec-

igitur omnes in üno plano dudaï, nunquam pote» runt concurrere cum ulla reéta, in altero plano duda:nbsp;pone igitur duci reótas, in eandem diredionem , pernbsp;perpendicularis extrema, erunt ill® inter fe parallelaj;nbsp;atque adeo anguli adiacentes interni facient fimul 180“nbsp;quoniam itaque reda xlla angulum 90° coq-N 2

-ocr page 116-

lóo nbsp;nbsp;nbsp;ËLEMElsrfA GeoMÈTRI^.

ftituat cum. quibufvis reéHs in uno plano per ejus ex-? tremum duélis (32.0), conftituet quóque angulum po°,nbsp;feu reiftum, cum quibtifvis reélis, in altero plano duonbsp;tis, per aliud iftius reétae extremum, amp; parallelis re-fpeétu redarum prioris plani ; igitur perpendicularisnbsp;illa erit quèque talis ad aliud planum ( 320(^uodnbsp;eft primum.

Demonst. 2^* pars.: Reéla illa erit perpendicularis ad rectas quailibet, in quo vis plano per ejus extrcinanbsp;trajeöas C320); condpe igitur, hinc inde, duci pernbsp;extrema illa tot lineas, quot opus eft, ut utrumquenbsp;planum tegatur; oppofitsc qua;libet duac, in eandem di-lebtionem duétae, erunt inter fe parallelae (115); ergo amp; illa plana, quantumvis producla, nunquam concurrent i igitur parallela funt. Quod eft fecundum.'

THEOREMA I V.

336. nbsp;nbsp;nbsp;Perpendiciilares qualibct, inter duo Plana pa-ralkla duSce , aquaks funt.

THEOREMA V.

337. nbsp;nbsp;nbsp;Tria vel pliira Plana parallela fecant eandemnbsp;reëam in partes proportionaks difiantice fuce a Jenbsp;mutuo.

COB-OLLARIUM.

338. nbsp;nbsp;nbsp;Dum igitur diverfas reélas interfecant, partesnbsp;. interceptx inter plana parallela proportionales funt inter fc.

theorema VI.

339. nbsp;nbsp;nbsp;Si duo Plana parallela Jicent idem tertium, an-guli correjpondentes aquaks funt. ^djacentes = 180°nbsp;amp;c. cceteraqite fiunt , üt in lineis parallelis., quee con-cipiuntur duci, hike inde , per extrema reSa, ab unonbsp;ad nliiid Planum duüte.

-ocr page 117-

ElemÉNTA GtOMETRIjr. nbsp;nbsp;nbsp;lOl

ElemÉNTA GtOMETRIjr. nbsp;nbsp;nbsp;lOl

SECTIO TER TIA

D E S o L I D I S. Definitio L

^OrpuSj five Solidum, exteufum eö:, tribus^ di-

340-

menüombüS , Lóngltudihe ; Ladtudidc , atqi^ Profunditate prjcditum.

Definitio I

341. \Angiilus folidiis is eft , qui compööiruf pluri-bus quam üuobus angulis planis^ in'eodein plaiio nöh confiltentibus, ad. idem tarnen punólum ,-fetu/r^£rin:eOTnbsp;confiitutis.

34a. ScHOUON. Duo a'ngiili plani Mucroriem, fcii ^pkem, five Unguium j'olidum. ccuüliiuere iiequeunt; at necelTariö fpatiumnbsp;aliquod ciica vertkem relinquent vacuum quod tprtio planonbsp;occludendum eft; tribus adeoque ad minus angulis planis opusnbsp;eft, ad tonftituendum angulum folidum.

Definitio d I I.

343- Duo anguli folidi aequales- fiint, dum inter fff invicem pofiti congruunt.

C o R. o L L A K. 1 U M:

344. nbsp;nbsp;nbsp;Atque adeo angulis planis., amp;¦ multitudine, amp;nbsp;rnagnitudin^ acqualibus, ac eodem ordine dilpofitisnbsp;contineri debenc.

345. nbsp;nbsp;nbsp;ScHOLiON. De angulis folidis, qui ex planorum inclinado-ne oriuntur, eodem modo eft ratiocinandurn , ac de angulis planis , qui ex iinearum concurfu, feu intiinatione ortum dutuiic,

Definitio I V.

346. Solida fuperficiebus planis terminata Poly 'édra eompellantur : atque, pro üt vel 4, 5, 6 Scc. planis

-ocr page 118-

103 nbsp;nbsp;nbsp;Elbmenta GeOMETR-I*.

concluduntur, TetTacdrum, Penta'èdrum, Hexacdrunt amp;.C. indigitantur.

Definitio V,

347. nbsp;nbsp;nbsp;Polytdra Regularia funt folida, quorum omnesnbsp;anguli funt jcquales, atque polygonis regularibus amp;nbsp;congruis terminantur.

Definitio VI,

348. nbsp;nbsp;nbsp;Bajis folidi eft fuperficies, cui folidum infifte-re concipitur.

Definitio VI I.

349. nbsp;nbsp;nbsp;Altitudo Girporis eft Perpendicularis è verticenbsp;Corporis ad baiin (produélam, fi opus) demiffa.

CAPUT PRIMUM.

De Genesi Solidor-UM ; Angulis solidis ,

ATQUE POLYEDRIS.

ARTICULUS I.

De Genefi Solidorum.

S50. Duplici modo gencrari Solida concipimus : i* per inotum reétilineum plani fibi femper paralleli : 2°nbsp;per motum rotationis figurai fuper refta quadam utnbsp;Axi.

§. I.

De Geneji Solidorum per motum reEtilineum. Hypothesis.

351. Si figura quxcumque plana AB (jfg. 13, 14, J5gt;nbsp;nbsp;nbsp;nbsp;17, x8 amp;c.), conftanter fibi manens parallela»

-ocr page 119-

Elementa Geometeije. nbsp;nbsp;nbsp;103;

juxta duduni reétac BC Cquse DireSrix aüdit) movea-tur; Corpus, feu Solidum ,exüTgit, quod Prijma voca-lur, ii Bafis AB rediünea fuem (ut in fig. 13, 14, 15 amp; 16); Cylindrus veró, fi Bafis AB Circulus ficnbsp;(ut in fig. 17 amp; 18).

35a. ScHüLiON Superficies plana KL, qua; ad alteram AB pa-railela elt amp; congrua, etiam JSafis Corporis compellatur.

COROLLARIUM.

353’ folüm oppofitac Bafes in Prilmate atque Cyiindro,. modo progcnitis, congruac funt; fed amp; lèc-tiones quaccumque paralleiai ad balin, congruae bafi-bus fint oportet.

D E F I N I T I o I.

354. nbsp;nbsp;nbsp;Prifma itaque cü Corpus, feu Solidum, bafibusnbsp;reétilineis, congruis amp; parallelis, amp; lateraliter Paral-lelogrammis tcrminatum.

Definitio IL

355. nbsp;nbsp;nbsp;Cylindrus Corpus eft,terminatum bin9 bafi cir-

culari paraiiela amp; congruS , amp; lateraliter convexitate circulari, cujus diametri, ball paraiiela:, ubique dia-inetro bafis acquales funt; fic ut linea, per omniumnbsp;diametrorum Centra tranfiens, quae jdxis vocatur, recta fuerit.nbsp;nbsp;nbsp;nbsp;quot;

356. nbsp;nbsp;nbsp;ScHOLiON. Cylindrum fpeftare licet inftar PrifmatU infini-tanguli : etenim , cüm circulus haberi poffit tamquam polygonum regulate infinitis lateribus reüis conftans; lali modo peri-pheriam cujurque bafis concipiendo divifam, atque a fingulisnbsp;puniflis peripheriae unius ad firgula correfpondentia punfta al-terius, reftas mente ducendo, Corpus cxurget bafibus reftilineisnbsp;congruis amp; parallelis, amp; lateraliter parallclogrammis terrainatum;nbsp;licet ergo illud appellarc prifma infinicangulum ( 354)•

Definitio 'III.

357. Prifma dicitur ReSum, item Cylindrus ReSiis audit, dum linea tliredlrix ad bafin eft Ptrpcndicularisi

-ocr page 120-

104 nbsp;nbsp;nbsp;Elementa Geomïtri^!.

Obliqiia veró vocantur illa Corpora, fi fuerit linea dt‘‘ rectrix ad bafin obliqua.

D E F I N I T I o IV.

358. nbsp;nbsp;nbsp;Prifma, a Bafi, fua, fpecialia fortitur nomina :nbsp;dicitur enim Prifma Triangiilare, fi bafis fuerit A;nbsp;'Quadrangulare fi fuerit ?; Pentagonalt fi fuerit Pen-tagohüm amp;c.

Definitio V.

359. nbsp;nbsp;nbsp;Vocatur Parallelepipedum, fi bafin habuerit Pa-rallelogrammuffl; amp; tune fi fuerit bafis reétangularis,nbsp;atque prifma KeSum fit, Paralklepiptdum Reëlangu-liim audit.

Definitio VI.

360. nbsp;nbsp;nbsp;Si fuerit bafis Quadra turn, amp; Prifma redlum;nbsp;•amp; prseterea linea ^/reSr/x (qua; hic aqualis efi: prififia-tis Altitudini'), fuerit sequalis lateri Balbos; nominenbsp;fpeciali Cubus, vel Hexacdrum. indigitatur.

Hypothesis II.

361. nbsp;nbsp;nbsp;Si figura quxcumque plana AC, feu Reélilinea,nbsp;feu Circularis (_^g-. 19, 20, 21 amp; au), fibi feraper pa-rallela, ita moveatur juxta duótum reda; BX (ad punc-

• turn X, medium figurae, perpendiculariter aut obliquè demiffai), ut punétum illud figura;, conftanter rebbenbsp;BX infiftat; amp; praeterea fingulo progreffuum inftantinbsp;1-atera figura; decrefcant tali progreffione arithmetica ,nbsp;ut, cum figura ad B pervenerit, eadem latera pundinbsp;inftar evanuerint; Solidum figura redilinea progeni-tum Pyramis i amp; ball circular! prodiens, Conus com-pellatur.

C o E. o L L A B. I U M.'

362. nbsp;nbsp;nbsp;Ubivis ergo Pyramidem, vel Conum, fedioncnbsp;parallela ad bafin, fecari fmgas; erunt fediones figure bafi fimiles.

Defi-

-ocr page 121-

JÖ5

ElEMENTA GEOMETRIjk.

Definitio I.

563. Pyramis adeó corpus eft in cufpidem definensgt; cujus bafis eft Figura Recftilinea, Plana yero lateralianbsp;toüdem AA quot lunt bafeos latera Cfig' 19 amp; 2,0).

Definitio II.

364. nbsp;nbsp;nbsp;Conus eft folidum in cufpidem quóque defi-nens, pro baft Circulum habens; lateraliter vero con-Vexitatis circularis Diametris, bafi parallélis, continuonbsp;decrefcentibus proportione arithmetic^; ut amp; practereanbsp;linea , per diametrorum Centra tranfiens, reéla fuericnbsp;Cfig- 21 amp; 2,2 ).

365. nbsp;nbsp;nbsp;Scholton. Conum pro Pyramide, cujus bafis figufa eft reè-tilinea infinicè parvis latetibus conftans, Ipcftari pnteft : eteninvnbsp;a vercice ad finguld peripheriae bafeos punfta redas concipieU'nbsp;io dudtas, Pyramidem infinhangtilam habebis.

Definitio III.

366. nbsp;nbsp;nbsp;Reéta BX {fig. 2,1 amp; 22), a Vertice ad Co.»nbsp;ni centrum duéla,.Coni Axis audit; atque, proüt adnbsp;bafin fuerit perpendicularis; vel obliqua, Conus Rcc-»nbsp;tus, aut Obliquus , dicitur.

Definitio IV.

367. nbsp;nbsp;nbsp;Pyramis, a bafi, qu£c A, ?, vel Pentagcnnbsp;Hum amp;c. fuerit, Triangularis ^ Qiiadrüngularis^ PentO'nbsp;gonalis amp;c. denominatur.

Hypothesis III.

368. nbsp;nbsp;nbsp;Si in Pyramidis, aut Coni, genefi, Plani mo»nbsp;tus fiftatur, priufquam ad verticem pertingat, feu an*»nbsp;tcquam bafeos latera evanefcant, Pyramis triincatanbsp;yocatur Corpus progenitum, fi fueric bafis figura ree-tilinea, vit ACHG Cfg- i Tab. YlU}} Conus veró trim-catiis ^ fi bafis circularis exiftat; üt ACHG (^fig. n) :nbsp;qudd autem Solidum formari concipitur preeter die»

O

-ocr page 122-

Ip5 nbsp;nbsp;nbsp;Elkmenta Geometrije.

tum Corpus truncatum, motu ad verticcm ufque pro-trado, dicitur Pyramis abfcijja, üt BHG (fig. i), vel Conus abfcijfus, ÜC BHG (fig. 2

I I.

De Geneji Solidorum quce fiunt motu Circulari.

Hypothesis I.

369. nbsp;nbsp;nbsp;Quadrilaterum reélangulare ABXO (^fig. 3),nbsp;.fuper XO, üt axi, rotecur : redse XB, OAj amp; quai-.cumque intermedia:, prioribus parallelaj, erunt radiinbsp;Circulorum jcqualium amp; paral]elorutn , formabiturquenbsp;Cylindrus redus, cujus ^xis eft XO CsSSj St 3573-

Hypothesis II.

370. nbsp;nbsp;nbsp;Si A ABC (fig. 4 ) , in quo A redus eft ,nbsp;fuper uno Cathetorum v. g. AC, üt axi, gyretur, exur-get Conus reSus ( 364 amp; 366 ). Hypothenufa BC ,nbsp;(quac eft a:qualis cuilibet reóia:, a vcrtice Coni redinbsp;ad aliquod pcripheria: bafis pundum dudx_), Lotusnbsp;Coni recli vocatur.

Hypothesis III.

371. nbsp;nbsp;nbsp;Si Trappezoïs redangularis ABKX (^fig. 5),nbsp;in qua A item X redlus eft, fuper AX circumvolva-tur, Conus truncatus enafcitur. Et produdis AX amp;nbsp;BK ufque in L, ubi concurrunt (fuppofito quód la-tus XK fit latere AB minus) ; circumvolutione Anbsp;redanguli LXK, formatum concipe Conum abfcijjumnbsp;( 368 ). KB Coni truncati Lotus compeilatur.

Hypothesis IV.

372. nbsp;nbsp;nbsp;Medium Circulum ACB Cfig- 6) fuper Diametro lüa AB, üt axi, circumvolvi finge, gignitur Cor-pUvS, quod Globus vel Sphcera audit.

-ocr page 123- -ocr page 124- -ocr page 125-

107

ElEMENTA GeOMETS-IJS. Definitio I.

373. nbsp;nbsp;nbsp;Sphcera itaque Corpus cft, cujus lingula fuper-ficiei punóta, acqualicer diftant a pundto quodam medio , V. g. X j quod Centrum Sphacrac dicitur.

Definitio IL

374. nbsp;nbsp;nbsp;Reóla AB, fuper qua circumvolutio fadia po-nitur, Axis fphacrai audit.

Definitio II L

375. nbsp;nbsp;nbsp;Redac omnes, utrimque in fphscras fupcrficienbsp;terminatac, amp;'per fphserac Centrum trajedsc, Diametrinbsp;fphairai compellantur.

Corollae-ium L

376. nbsp;nbsp;nbsp;Igitur omnes ejufdem fphsirai, aut xqualiumnbsp;Iphxrarum Diametri, inter fc aaquales fint oportet.

COROLLARIUM II.

377. nbsp;nbsp;nbsp;Quaclibet Diameter fphn:rac haberi poteft pronbsp;Axi ejufdem ; fuper ea enim faélA revolutione mediinbsp;circuli, in cujus plano fuerit illa diameter, eadem fcm-per jphacra prodit.

ARTICULUS II.

De Angulis foUdis atque Poly 'èdris.

5. I.

De Angiilis fblidis.

THEOREMA I.

Maximus angulorum planortim, qiiibus componitur an-gulits Jblidus, minor ejl Jummd rcUquorum.

378. nbsp;nbsp;nbsp;Dico angulum CAB Qfig- 7) cüb minorcm an-gulo CAG angulo BAG.

O a

-ocr page 126-

iqS Elementa Geometuia:.

Demonst. Concipe planum CAG, item BAG plicari ita, ut cadant in planum CAB; fi fbret angulus CABnbsp;ïcqualis duobus aliis fimul fumptis , deberent plananbsp;CAG amp; BAG ita tegere planum CAB, ut per reftamnbsp;AG fefe contingcrcnt ; fi vcro foret angulus CABnbsp;major reliquis duobus, plana CAG amp; BAG ita incide-rent in planum CAB, ut tertius angulus planus me-diaret; utrumque autem implicat : etenim hóe pofi-to, quoniam eicvatione planorum GAG amp; BAG iüpernbsp;AC amp; AB manentibus immotis, ea a fefe fepararinbsp;necelle eft, non poffent per AG ftfe mutuó continge-rc. Ergo angulus CAB minor eft reliqujs, quibufeumnbsp;angulum A Iblidum conftituit. Q^. e. d.

THEOREMA 11.

Summa omnium angiilorum planorum, quibus idem angulus Jolidüs fofmatur, minor eji 360°.

379. Dico angulos planos CAB, CAG amp; BAG (.fis- 7) facere fimui minus quam 360°.

Demonst. Planum CAG fuper AC, amp; planum BAG fuper AB, üt axibus, ita rotetur, ut in eodem planonbsp;expandantur (üt fig. 8); tali caiu feparatione planorum novum angulum GAG fuboriri necefle eft; atquinbsp;ille folüm laait 360° cum tribus angulis planis, quibus folidus componebatur (84); ergo amp;c. Tot quotnbsp;lubet fuppofttis angulis planis, quibus componitur angulus folidus; duobus a fc mutuo, feparatis, reliquignbsp;omnibus adhuc ftbi contiguis, omnia corumdem plananbsp;expanfa finge in plano communi : accedèt femper no-vus quidam angulus , qui cum prsefatis tantum faciatnbsp;360° C84); igitur anguli plani conftituentes angulumnbsp;folidum faciunt minüs quam 360°. e. d.

-ocr page 127-

io^

Elementa Geometric.

§. I I.

De Polyëdris.

THEOREMA I.

Quatuor faltem opus efl Planis, ut Polyë-drum conjlituatur.

380. nbsp;nbsp;nbsp;Demonst. Tribus, ad ininüs, planis opus efl:.nbsp;Ut unicus angulus folidus eftbrmetur C3423; atqui trianbsp;illa plana, cum a fe mutuó divcrganc, .fpauum ca-vum anguli nequeunt obtegere, amp; ita hue ufque nonnbsp;habetur completum folidum, led fuperficies tantum ;nbsp;igicur unum prjcterea fuperaddendum eit planum, utnbsp;fpatium undique claudatur , atque ita Polyëdro pro-funditas accedat, quo Corpus compleatur. Q^. e. d.

COROLLARIUM.

381. nbsp;nbsp;nbsp;Igitur Polyëdrum pauciores nequit habere an-gulos, quam quatuor : tria enini plana unicum angu-lum folidum formantia , fpatium triangulate vacuumnbsp;relinquent, quod ubi plano triangular! clauditur, tre»nbsp;practerea enalcuntur anguli folidi.

THEOREMA IL

Quinque folum darl pojjitnt Poly'édra Regulariq; tria, quorum plana funt AA ctquilatera; unum, cujusnbsp;plana jiint quadrata; amp; unum Penta-gonis mminatum.

382. nbsp;nbsp;nbsp;Demonst. Anguli plani, quibus angulus Po-lyëdri componitur, ornnes inter fe a:quales funt (347),nbsp;faciuntque minus quam 360° (379)’ ^ qwniam tres,nbsp;ht minimum, requiruneur ; perlpicuura fit, quinquenbsp;tantum modis, angulum fohdum efformari polTe Po-ïygonis regularibus ejufdem fpeciei :

-ocr page 128-

no nbsp;nbsp;nbsp;Elementa Geometria:.

1° tribus AA jcquilateris; atque tunc angulus foli-dus erit i8o° (cum quifque angulus planus, quo for-matur fit óo°); addendo itaque quartum A tcquilate-rum, prioribus congruum, quo fpatium, è tribus aliis relidum, concludatur, habebimr Tetraedrum.

2° Quatuor anguli triangulorum acquiangulorum,Ver-tice jundi, efficient angulum folidum 240° : atque odto talia AA conjunéta, efficient folidum oéto piano-rum feu Oédaëdrum.

3° Quinque AA sequilatera, apice jun6la,efficiunt angulum folidum 300°; amp; fuperaddendo quindecim alia, prioribus congrua, ut fpatium reliquum occludacur, Po-lyëdrum enafcitur ao conftans AA aequilateris, quodnbsp;Jcofa'cdrum audit. Non poteft autem fieri angulus fo-lidus ex pluribus quam ex quinque AA acquiangulis :nbsp;fex enim adaequant 360°, amp; plures quam fex nume-rum iftum excedunt; quod fieri nequit (379).

4® Angulus Quadrat! eft 90°; tres tales jundi angulum folidum componunt 270° : atque fuperaddendo tria prioribus congrua fit Hcxacdrum. Quatuor autemnbsp;tales anguli angulum folidum componere nequcunt :nbsp;fumma enim eft 360°; quod implicat C379).

5°. Angulus Pentagon! regularis eft 108°; tres junc-ti efficiunt angulum folidum 324°; amp; tunc è duodedm pentagonis regularibus amp; congruis fieri poteft Dodecac-drum. Quoniam quatuor Pentagon! regularis angulinbsp;= 432° : ex iis angulus folidus fieri nequit (379);nbsp;ergo nec corpus aliquod. Cactera polygona regularianbsp;nequeunt adhiberi : tres enim eorumdem anguli, velnbsp;faciunt fimul 3Óo°, üt in Hexagono regulari; Vel fa-ciunt plus quam 3 60°, ut in fequentibus omnibus.nbsp;Jgitur quinque foltim dari queunt Polyëdra regularia,nbsp;fcilicet Cubits.^ Tetratdrumj OUa'cdrum^ Dodecaëdrum amp;£nbsp;Jcofa'cdrum. c. d.

-ocr page 129-

Elementa Geometrijb. nbsp;nbsp;nbsp;ih

ARTICÜLUS IIL,

Dc Solidis Jimilibus.

Definitio I.

383. nbsp;nbsp;nbsp;Solida Jimllia funt, qusc figuris fimilibus jcquinbsp;multis, codemque modo diipofitis,.terminantur.

COROLLAB-IUM I.

384. nbsp;nbsp;nbsp;Igitur quiÜbet anguli homologi, in Corporibusnbsp;fimilibus, xquales funt.

COROLLARIUM II.

385. nbsp;nbsp;nbsp;Corpora quxcumque Regularia ejufdem Ipecieinbsp;fimilia funt.

T H E O R EM A 1.

Sphcercz omnes inter Jè Jimiles pint.

386. nbsp;nbsp;nbsp;Demonst. Omnis femidrculus eft alteri fimilis;nbsp;fed quxlibet fphaira prodit femidrculo fuper diametro,nbsp;ut axi, gyrato, (372); terminatur itaque quxlibccnbsp;iphacra fuperfide fim.ili amp; eodem modo difpofita; talinbsp;nempc, ut fingula punéla fuperflciei cujufque a Centro fuo diftent radio fphacridtatis fphacrx. Ergo -fph»-rsc omnes inter fe fimiles funt C383).

THEOREMA 11.

Pripna reSum alteri Jimile efi, cüm, prater bafès Jimi-^

ks, altitudines pint proportionales lateribus homo-~ logis bafeos. È converfo : p Pripnata reSanbsp;pmilia pierint; altitudines pint proportichnbsp;nales lateribus komologis bapum.

387- Demonst. i» pars. Attends bafibus fimilibus, amp; cüm Prifmata reéla ponantur; plana lateralia cujuf-

-ocr page 130-

'412 nbsp;nbsp;nbsp;Elïmïiïta Geomitri*.

que prifmatis erunc quadrilatera reftangularia; amp; alti-tudines funt aquales redangulorum iftorum lateribus; itaque quadrilatera illa reélangularia homologa eruntnbsp;fimilia C 2.29 ) ; igitur prifmata fiinilia funt ( 283 ).nbsp;Quod erat primum.

Demonst, 9? pars. Quoniam parallelogramma late-ralia unius debe^nt effe fimilia pardlelogrammis latera-libus homologis akerius (383); latera unius debent effe ad latera akerius, ficut latera homologa bafeosnbsp;unius ad homologa latera balbos akerius (229); jamnbsp;Veró in Prifmate redo, latus fingulum plani lateralisnbsp;eft aequale akitudini; ergo akitüdines funt üt latetÉnbsp;balls homologa. Quod erat fecundum.

COROLLAB-IUM.

288. Quoniam in Cylindris quibufeumque redtis, bales conftanter llmiles • exiftunt ^ atque illos fpedarcnbsp;licet, üt prifmata reda ; Cylindri quilibet redi filni-les erunt, dum Peripherisc, vel Diametri bafium, funtnbsp;üt akitüdines, feu axes Cylindrorum. Et è converfo :nbsp;in Cylindris reétis fimilibus, axes funt ut Peripherie«nbsp;aut piametri bafium.

THEOREMA ï I 1.

Pfiphata obliqua fimilia funt, aim ad bajes fimilei aqualiter inclinantur, amp; pratered latera Parallelö-grammorum lateralium^ yel altitudines ^ funt propor-tionalia lateribus hornologis bafiium. Et è converfo :nbsp;Prifmata fimilia ad bafes fimiles aqualiter inclinantur; latera Parallelogrammorum lateralium, item al-titudines , funt proportionalia lateribus homologis ba-fium.

389. Dico 1° li in Prifmatibus (ifig. 9), acqualiter inclinatis, fint bafes fimiles, amp; prseterea fit AB : ab :nbsp;AH == ah; vel AB:aó = aEit. Hl: altit. hi; Prifmata fimilia effe.nbsp;nbsp;nbsp;nbsp;Demonst.

-ocr page 131-

Elementa’ Geometrije.

Demonst. i^'pars. Quoniam ¦ plana lateralia in fin-‘ gulo prifmate funt parallclogramina (354) acqualiternbsp;indinata (atque adeó anguTus BAH == angulo baknbsp;amp;LC. ), paralleiogramma honaologa erunc aequiangula ;nbsp;quoniam itaque, ex hypothefi, conftant .lateribus pro-portionalibus, erunt amp; limilia (2,2,9); igitur prifmatanbsp;illa fimilia quóque erunc (3^3} : quod eft primuianbsp;primac partis.

Si veró AB : ab = altit. Hl : akit. hi; dudis AI amp; ai, eric angulus I, item i reótus (320) ; angulusnbsp;lAH = iah, propter xqualem prifmatum indinationem;nbsp;igitur A IAH ccquiangulum amp; fimile A iah; ergo eftnbsp;iH : ih — AH : ah ; led, ex hypotheft, eft AB : abnbsp;= IH : ih; igitur eft AB : ab =i/[H :JJt- Quod eft al-terum primx partis.

Dico 2°, ft bina iife Priftnata fimilia fuqrint; aqualiter ea indinari ad bafes fimiles; latera, itemnbsp;altitudincs effe proportionalia iateribus bafimn homo-iogis.

Demonst. Non folum bafes fimiles, fed amp; paralleiogramma lateralia fimilia fint oportet (3 S3 ); eft adeo AB : ab = AH ; ah; anguli quoque folidi A amp; a xqua-ies funt (384); xqualiter itaque prilmata illa ad bafes indinantur ; dudis igitur perpepdicularibus Hl amp;nbsp;hi ad fübjectas bafes, amp; deinde r.ectas AI amp; ai, ericnbsp;angulus IAH = iah fed eft I = / , utpore redinbsp;(320); igitur AA IAH amp; .iah fimilia funt; ergo eftnbsp;AH: ah — IH: ih; fed erat AB : ab ^ AH : ah; itaquenbsp;¦eft eciam AB : ab = lB.:ih. Proinde prifmata fimilianbsp;non folum ad bafes fimiles xqualiter indinantur fednbsp;amp; latera parallelogrammorum lateralium, item altitu-dines prifmatum, funt proportionalia Iateribus homolonbsp;gis bafium. Quod erat lêcundum.

-ocr page 132-

ïi4

Elementa Geometkia.

COROLLARIUM.

390. Bafes in Cylindris inclinatis funt qtióque Cir-culij ac proinde inter ié fimiics (273) , amp; quoniam Cylindri ut Prifmata cenferi poffunt (3 56); Cylindrinbsp;quicumque obliqui fimiles funt, dum eorum axesnbsp;ab bafes scqualicer indinati , funt Diamctris bafiumnbsp;proportionalcs. Et è converib : in Cylindris obliquisnbsp;fimilibus axes, acqualiter-indinati ad bales, funt ba-lium Diametris proportion ales.

THEOREMA IV.

Pyramides Jïmlles funt, fi conflent bof bus fmilibiiS ,

' altitudines fint propartionales Latcribus homologls ba~ fiiutn; atquc infuper cadant in piinSa bafium homo-loga. È converfo : in Pyramidibus fimilibus, alti-tudines fiiint proponionaks latcribus homologis bafiium,nbsp;caduntquc in puncia fimilia earumdem.

391. Dico 1°. Si Cfig. 10 amp;c ii) ACK fit fimilis ack; nltitudo BI ; alt. bi — AC ; ac; atque altitudincs iilaenbsp;ccciderint in bafium punda fimilia (hoe eft, ab an-gulis homologis proportionaliter ad latera homologajnbsp;diftantia ); Pyramides illas eflè fimiles inter fe.

Demonst. dudis AI amp; ai; anguli I amp; i funt redi (320); quoniam punöa I amp;; i funt fimilia bafium;nbsp;ell AC: fl’C = AI: ai; cfim itaque , ex hypothefi , fitnbsp;AC : flc = BI : bi; erit AI : ai ~ BI : bi; jam verbnbsp;I = ƒ : ergo AA AlB amp; «/i funt fimilia; igitur eftnbsp;BI : bi = BA : ba; ergo eft AC : cc = BA ; ba. Duc-tis Cl, ci; KI amp; ki, patebit AA CIB amp; cib; AA KIBnbsp;amp; kib, effe inter fc fimilia ; adeoque fingula lateranbsp;AA lateralium Pyramidis ACKB proportionalia funtnbsp;homologis latcribus AA lateralium Pyramidis ackb;nbsp;funt ergo Pyramides illx inter fe fimiles (383). Quodnbsp;erat primum.

-ocr page 133-

''ir^

ElEMENTA ' GeOMETE-IJE.

Dico 2°. Si Pyramides praidiét® fimilcs fuerint; eft alt. BI : alt. bi — AC : ac Stc.; atque I amp; i faiic punc-ta bauum finülia.

Demonst. Propter Pyramidtim flmilitudinem, eft an-:gulus folidus A =: ü; atque adeo AB amp; ab aiqualitcr inclinantur ad luas rcfpcdlivè bafcs ; ergo angulusnbsp;lAB =: iab; led 1 = / (utpotc rccli) ; ergo AA iABnbsp;amp; iab lunt fnnilia; igitar eft IB :/ó = AB ; ab; fednbsp;etiam eft AC : ac = AB : ab ; ieaque eft AC: ac = BI:nbsp;bi = AI: a/. Duclis Cl, ci; KI, ki; inteilectu eft facile AA CIB amp; cib; AA KIB amp; kib, inter Ie effe fimi-lia; atque adeo punéta I amp; /, proportionaliter ad ho-iTiologa' bafmm latera, diftare ab angulis bafium C, c;nbsp;K, k ; igitur altitudines in Pyramidibus fimilibus fantnbsp;proportionalcs lateribus homologis balium, caduntquenbsp;in bafium punéta limilia. Quod erat alterum'.

C o R o L L ’A R. I U M I.

39a. Coni fpeftantur üt Pyramided; k. quoniam ba-fes eorum, utpote Circuli, femper ftmilcs funt; quan-do Coni limiles funt, altitudines (qui amp; axes funt in Conis reétis), item reétae qutecumque, ad bomologanbsp;puncta pcripberiac bafium duftte, proportionalcs fvintnbsp;bafium Diametris.

COROLLARIUM 11.

393. In Conis obliquis fimilibus Qfig- ts), ailes BX amp; bx funt quóque .proportionalcs Diametris bafium : nam, attenta Conorum aiquali inclinatione; eftnbsp;angulus BXC = bxc; angulus BCX == bcx; ergo AAnbsp;BCX amp; bcx fimilia funt; igitur eft BC: ic = BX:/)ar;nbsp;verum , ex bypothefi , eft BC . bc =¦ AC : cc ; ergonbsp;eft BX : bx = AC '.ac.nbsp;nbsp;nbsp;nbsp;'nbsp;nbsp;nbsp;nbsp;’

P *

-ocr page 134-

116' nbsp;nbsp;nbsp;EtEMESTA GeOMETRI*,

CpK-OLLARIUM. II L

394. nbsp;nbsp;nbsp;In Conis, fi altitudincs, bafium Diametris prö-portionalcs, cadant in puncta bafium fimilia (produc-ta fi opus); aut axes sequaliter ad bales inclinati, fintnbsp;Diametris bafium proportionales, Coni fimiies fintnbsp;oportet.

theorema V.

lil Pyramids truncata, ahfcljja ejl fimilh Pyramiamp; ex abfdjja amp; truncata compojitce.

395. nbsp;nbsp;nbsp;Demonst. Sit ACK Cfig- 13) bafis major,nbsp;F-FI 'bafis minor Pyramidis truncattc : produétis late-ribus, üt vides, prodic Pyramis integra ACKB, com-pofita ex truncata amp; abfciffa EFIB; bafis abfcilTsc fimi-lis eft majori ball truncatai C 353 ); amp; quoniam late^nbsp;ra balls minoris, feu FE, IE amp; IF funt parallela la-teribus hofflologis AC, AK amp; KC; AA lateralia ab-fciflic, mempè BFE, BIE amp; BIF, fimilia funt AAnbsp;BCA, BKA amp; BKC Pyramidis integrtc. Igitür ab-fdlfa fimilis eft Pyramidi conftanti abfcifsa amp; truncate tol (383). 0^. e. d.

1.

K.OLLARIUM

396. nbsp;nbsp;nbsp;Conus abfciffus eft fimilis Cono ex abfciffo S?nbsp;truncaïo fimul.

Coe-Ollarium IL

397. nbsp;nbsp;nbsp;Pyramidis abfciflkï, aut Coni abfcilïï, altitudo,nbsp;eft ad altitudincm abfciffi amp; truncati fimul, ficuti di-menliones homologtc bafium amp;c.

-ocr page 135-

ElEMENTA GEOMETEiat. II7

CAPUT II.

De Dimensione Solidorum. ARTICULÜS I.

Dc Dirtienjione Supcrfiderum Corporum, earum-que Comparatlone.

problema i.

Siiperficiem Polyedri regiilaris inquirere.

398. Resolutio. Unica ejus fuperficies inquiratur, at-que hacc codes fumatur, quot funt Polyëdri facies;nbsp;amp; furama dabic qu^plitum.

CoROLLARIUM.

399. Ergo in Cubo capiatur fexics quadfatum uniusnbsp;lateris. Inquirendo arcam unici A lateralis in Tetraë'»nbsp;dro, eamque quadruplicando, habetui* fuperficies iftiusnbsp;Polyëdri regularis amp;c.

PROBLEMA II.

Siiperjiciem Pripnatis rccti invcnirc.

400. Resolutio L Area balls inquiratur, atque fiscnbsp;duplicetur :

II. Perimeter bafeos ducatur in latus alicujqs Par-alle-logrammi lateralis, non fpeélans ad balin, feu ia altitudinem; amp; prodit fuperficies omnium Parallelo-grammorum lateralium ; huic igitur fummsc adden-do duplum unius balls , fumma finalis dabit tota-]em Prifmatis reéli fuperficiem. Etenim ex geneltnbsp;Priftnatis ( 351) manifeftum evadk , toties balls

-ocr page 136-

trS nbsp;nbsp;nbsp;Elementa Geometatje.

Perimetrum reperiri in Parailelograinmis kteralibus, qnot funt punc^ta in Linea dircBricc ; hic autemnbsp;acqualis eft fingulo lateri Parailelograminoram rec-tangulorum latcralium , Prilmaüs aititudinemnbsp;coolütuenti.

PROBLEMA III.

Cylindri reSl fiiperfickm inquirers.

401. Resolutio. Peripheria bails ducatur in axin amp;nbsp;radium bails; fadum dabic quaciitum.

Demonst. Ex Cylindri genefi C S.'^O P^cet, in fu-perficie convexa totics reperiri Peripherram balcos , quot funt punéta in Linea direSrice, quai bic aequa-tur axi Cylindri; itaque ducendo Penpheriam ballsnbsp;in axin , prodit fuperficies convexa; Periplicriara veronbsp;ducendo in Radium, prodit area utriufque bails; ergonbsp;ducendo Peripheriam bails in axin amp; radium, fadumnbsp;sequatur fuperficiei totali Cylindri. Q^. e. d.

CoROLLAR-IUM.

402. Erit igitur convexa ad utramque planam fimulnbsp;fumptam, ilcut altitudo, feu axis Cylindri, ad radiumnbsp;bails.

PROBLEMA IV.

Pyramidis invenire fuperficiem.

403. Resolutio. Inquirantur ilgillatiin area:, bails amp;nbsp;AA latcralium; addantur in unam fummam ; at-que hxc cric intógra Pyramidis fuperficies.

PROBLEMA V.

?

Mctiri Jitperfickm Coni reSi.

4Q4. Resolutio. Peripheria bafeos ducatur in latus amp; radium bails Coni; dimidium fedi integram Coninbsp;redi dabit fuperficiem.

-ocr page 137-

Elementa Geometric:. 11^

Demonst. Sit Conus redlus ABC 14); mente ducantur iniimtoc reélai a vertice ad lingula periphe-riac bafis puncla; atque convexam fuperficiem divilêrisnbsp;in innnita AA, quorum omnium bales ajquantur peri-pherisc bafis; k. altitudo = lateri BA Coni; atquenbsp;adeo, duceiido pcripheriara in lams BA Coni, dimi-dium fadti scquatur fuperficici omnium AA, feu fu-perficiei Coni convexa;; atqui peripheriam ducendo ianbsp;radium bafis , dimidium facii eft acquale aresc bafisnbsp;(301); ergo peripheriam ducendo in lams, amp; radiumnbsp;balls Coni reéti, dimidium facti incegram dat ejufdemnbsp;fuperficiem. Q^. e. d.

Corolla RiUM.

• 405. Igitur in Cono recto, convexa fufgt;erficies eft ad planam; ut latus Coni ad radium balls.

PROBLEMA VI.

Pyramidis truncates, inquirere fiipcrfickm.

406. nbsp;nbsp;nbsp;Resolutio I. ütriufque bafis (qusc fimiles funtnbsp;C39.5)lt;, fefeque habent ut quadrata laterum homo-logorum) quaïre fuperficies ;

II. Dein cujufque fuperficici lateralis Cfiua; Trappezoï-des funt) aream determines; omnes in unam col-ligantur fummam; eritque hxc totalis fuperficies quxfita.

PROBLEMA VII.

Coni truncati invejligare fuperficiem.

407. nbsp;nbsp;nbsp;Resolutio. Adde peripheriam minoris atquenbsp;majoris bafis in unam fummam; hanc ducito in latus Coni. Peripheriam bafis minoris multiplicesnbsp;per radium minoris bafis j amp; peripheriam majori«

-ocr page 138-

120 nbsp;nbsp;nbsp;Elementa Geometrije.

bafis per radium majoris bafis; tria illa fadta iii unam fummam colligantur, amp; ejus dimidium da-bic quod quairitur.

Demonst. A fingulo punélo peripheriac minoris bails GH (j(%. 2) ad correlpondens pundum majoris AC , redas duci concipe; atque convexam Coni trun-cati fuperficiem diviferis in infinitas parvas Trappezoï-des, inter eafdem parallelas (quarum nempc altitudönbsp;eft = AG), eonfiftentes; quoniam ergo omnium illa-rum Trappezoïdum latera parallela, peripherias minorinbsp;amp; majori aiquentur; fuperficies Coni truncati convexanbsp;acquatur dimidio faéli utriulque peripheriaj in latusnbsp;AG Coni truncati. Bafis vcro minoris area aequaturnbsp;dimidio fadi peripheriac fuac in radium fuum; amp; majoris bafeos area = dimidio fadi peripheriac majorisnbsp;in radium fuum; ergo i trium fadorura dabic fuperficiem integram Coni truncati. Q. e. d.

THEOREMA 1.

Si Conus obliqiius Q fig. 15) fecetur Plano ptrpendicu-iari ad Planum trianguU ABC, cujiis latera funti, AB minimum, BC maximum Coni latus, 6* Diameter AC bafeos; atque ab eodem triangulo auferaturnbsp;cliud A BFE fmile priori, fed ftu cantrario Cfitinbsp;feétione fubcontraria), ita ut angulus Bf E = an-gjilo BAC; angulus BEF = BCA; erit fiSio EK.FLEnbsp;Circulus.

408. Demonst. Per pundum G, arbitrariè defump-tura in communi feétione EF plani fecantis EKF amp; trianguli ABC , ducatur ad diametrum AC parallelanbsp;Hl, atque per hanc finge duci fedionem balt paral-lelam, erit h8cc,v. g. FIKI, Circulus (362); communisnbsp;fedio planorum EKF amp; HKI eft recta KG (328 ),nbsp;qu» amp; perpendicularis eft ,ad A ABC, cüm communis fit duobus planis ad ABC perpendicularibus, ex

hypo-

-ocr page 139-

ElEMIKTI. GeOMETRIJC. nbsp;nbsp;nbsp;I2ï

hypothefi; eft ergo KG perpendicularis ad HI item EF ( 320); amp; quoniam quodlibet ex AA BEF amp; BHI,nbsp;fimile eft A ABC; erunt ea inter fe ftmilia; angTilusnbsp;BEF = BIH amp;c.; igitur A A EHG amp; IFGfunt arquian-gula : eft ergo GH : GE = GF : GI; igitur GE x GF =;?nbsp;GH X GI, feu =: GK^. Ergo fedio EKF talibus conftatnbsp;ofdonnatis, quae fingulac funt mediae proportionales internbsp;partes diametri; jam verb hacc eft Circuli proprietasnbsp;(248); ergo EKFLE Circulus fit oportet. Q^.

THEOREMA II.

Si Conus qinfcumque (fig. 16)Jtcctur piano perpmdica* lari ad planum trianguli ABC, formati per minimumnbsp;latus AB amp; maximum BC in Cono obliquOynbsp;6* per axin tranfeuntis; atque a triaagulonbsp;ABC refecetur aliud ei difjmik BEF;

£rit Seaio ENFM Ellipjls.

409. Demonst. Conum ABCD fecari fingas piano ^ quod , tranftens inter extrema E, F redse EF ( qu»nbsp;Diameter SeSionis audit) parallelum fit ad bafin ADC,nbsp;ut ita habeatur fbétio eircularis GLHM, cujus dia-meter GH, quae communis eft fedao plani refeeantisnbsp;amp; A ABC , parallela erit ad bafin ADC. Praitereknbsp;Conum ABCD alio piano perpendiculari ad A ABC,nbsp;cujus diameter fit IK, fecari concipe. Prior fedio rec-tam eliicit LM, amp; altera NO, atque fingula perpen-diculariter amp; bifariara dividitur ab EF ; funt igiturnbsp;EM amp; NO ordonnatce ad EIlt;’ axin eurvac ENFME.nbsp;His pramfilfis : in AA GPE amp; IRE funilibus, ericnbsp;GP : IR r= EP : ER; amp; in A A funilibus HPF amp; KRE,nbsp;habebitur HP : KR = FP : FR; igitur termmos_ prio-ris analogiac multiplicando per terminus pofterioris ho-mologos;erit GPxHPdRxKR = EP x FP:ERxFR;nbsp;in 'qua, in locum duorum primorum GP x HP amp;nbsp;IR X KR, fuibfiuuendo PE® amp;-RN% qusc iis jequaa*

-ocr page 140-

124 nbsp;nbsp;nbsp;Elementa Geometrije.

tur C248), fcquitur PL*: RN* = EP x FP : ERX FRj

uade ENFH Eilipfis eil (260). e. d.

T H E O R E INI A III.

Si Cylindrus re3us fccetiir plano ad bajin incUnato; erit Jè3io Ellipjis, cujus minor axis Diametro ba-Jis Cylindri aquetur.

410. Si Cylindrus reélus ABCD (Tab.p i ) (cujus balls eft circulus AEBL, amp;; axis recta TN, ad candein balla perpcndicularis) , fccetur plano GICK ,nbsp;inclinaco ad bafin; uico lèélionem GICK elie Ellipliu ,nbsp;eujus minor axis ccqualis ik Diametro AB baleos.

Demonst. Imaginare plano reftangulari ABCD, tran-feunte per C punétum lupremum, amp; G inümum lec-tionis, atque per axin TN, Cylindruin fecari; ejufdem plani inierfcdio, communis cum fedione GICK, cftnbsp;reda GC, quai curvsc GICK iongicudinem reprxfen-,tat; atque produda, cum diametro BA produda con-currit in S, qui erit angulus inclinationis plani fecan-tis GICK ad balln Cylindri. Ducantur, ad arbitrium,nbsp;in plano GICK, reda; IK, HQ perpendiculares ad CG;nbsp;amp; in fuperficie convexa Cylindri, redac HE amp; IF adnbsp;¦bafin AEBL perpendiculares demittantur; denique innbsp;plano Circuli AEBL, pep punda E amp; F, agantur rec-t» ER amp; FL perpendiculares ad diametrum AB, quatnbsp;eas bifariam fecabit in pundis P amp; N. His prscmiliis :nbsp;red» IK amp; FL , quoniam perpendiculares funt adnbsp;idem planum SBC, parallelai funt inter fe (323);nbsp;funt quoque inter fe atquales ; quia IKLF eft Paral-lelogrammum. Paritcr aiquales amp; parallel» funt HQnbsp;amp; ER, cum HQRE fit ctiam Parallelogrammum :nbsp;nam terminatur lateribus oppofitis parallelis. Red»nbsp;IM amp; FN inter fc funt aequales , utpote pcrpendicu-lares inter parallelas T'N amp; IF; igitur KM amp; LN funtnbsp;. quoque ccquales; k. quia FN = NL ^ funt enim ra-

-ocr page 141- -ocr page 142- -ocr page 143-

Elementa Geometric:. nbsp;nbsp;nbsp;rsj

4ïï bafeos), eft IM = KM. Similiter oftenditur, ei-ic inter fe tcqualcs EP, PR, HQ, OQ; itaque reóia CG eft axis refpeftu Ordonnataram IK amp; HQ, internbsp;fe parallelarum : erit itaque CG axis major, amp; IKnbsp;axis minor , fuppofito punéto M medio majoris axis,nbsp;proüt in figura eft ; igitur minor Axis aequatur Diametro bafis. Quoniam bina plana HQR.E amp; IKLFnbsp;inter fe parallela funt, item communes interfeólionesnbsp;OP amp; MN ; reétae AB amp; CG dividuntur propor-tionaliter ab iftis planis ; crit ergo GO x OC : GM xnbsp;MC = AP X PB; AN x NB : fed ( AP x PB =nbsp;P£^ = OH=; amp; AN xNB = NF* = MP; igkm fub-jïituendo eft GO x OC : GM X MC = OH® : MP; amp;nbsp;ftc de ca:teris Ordonnatis qu?e duccrentur in ièélionenbsp;GICK ; ergo lècftio illa Ellipfis eft (260). Q^. e. d.

THEOREMA IV.

Ellipfis eji ceqitalis Qrculo , cujus Diamctn efl media, proportïonalis inter axes Ellipjis.

411. Demonst. Concipe è Centfo Ellipfeos duos Cir-culos defcribi concentricos; unum, cujus idem fit radius cum radio majoris axis, amp; alterum, cujus idem fit radius cum minoris axis radio : demonftratumnbsp;fuit C262) omnes Ordonnatas majoris Circuli eflc adnbsp;correfpondentes Ordonnatas Ellipfeos , ficuti majornbsp;axis ad minorem; igitur Circulus fuper majori axinbsp;fe habet ad Ellipfin, ficut major axis ad minorem.nbsp;Similiter demonftratum tuit (264) omnes Ordonnatasnbsp;Ellipfeos fe habere ad correfpondentes Ordonnatas Cir-?nbsp;culi fup(?r minori axi, etiam ficut Uiajor axis ad minorem ; itaque Ellipfis fe habet ad Circulura fupernbsp;minori axi, etiam ficut major axis acf minorem; amp;nbsp;confequenter Ellipfis eft media proportionalis inter duosnbsp;illos Circulos; atque adeo eft sequalis Circulo, cujusnbsp;Diameter eft media proportionalis inter niajorem amp;nbsp;minorem axin. O. e.d.

Q a

-ocr page 144-

EuBMENTA GlOMITRIJf^ COROLLARIUM I.

4ia. Ut igitur Ellipfeos area determinetur; quacratvir ïefta, media proportionalis inter axes Ellipfeos; Cir-culi, cujus illa diameter foret, inveftigetur area; atquenbsp;htcc dabit quaefitum.

COROLLARIUM II.

413. nbsp;nbsp;nbsp;ËllipfiS fe habet ad Circulum quemcumque ,nbsp;ficuti redangulum fub axibus fuis ad quadratum Dia-metri Circuit dati.

CoR-Or-LARIUM II L

414. nbsp;nbsp;nbsp;Ellipfes fefe habcnt inter fe, üt redtangula fubnbsp;fuis rcfpeétivè axibus.

PROBLEM A.

Metiri Jiiperfcum Cylindri reSl AGCL (fig. 2)' tnmcatl per planum ad bafiii incUnatiim.

415. Rf.soi.utiq I. Bafis AL Ellipfis (410}, eft adnbsp;planam GC, üt axis AL ad GC diametrum; qua:-rantur eorum arose , atque addantur in primam,nbsp;fumrnam.

II. Peripheriam bafeos GC due in AG LC; amp; | fadi dabit convexam; quü primae fummai additanbsp;prodibit totalis Cylindri fupcrficics.

Etenim fit LO parallela GC ; peripheria bafeo.? in ÜG 4- LC dudd , habetur bis fuperficies convexanbsp;Cvlindri GOLC; amp; ducendo eandem peripheriam innbsp;A*0, habetur bis fuperficies convexa partis AOL; ergo amp;C.

-ocr page 145-

Elimimtx Geomstm».

THEOREMA V.

Spkara fuptrficies (sqiiatur reSangulo fiiper Diametm amp; Peripherid Circidi Jplicera maximi.

416. Demonst. Sint F, B Cjfe- 3) Circnmfcripti Jcquales : LT, TF amp; BE fint acqualcs inter fe ; critnbsp;Te parallela FB f 129}. Sit LC paralleia FB feu TE;nbsp;erit BE = EC C230); igitur, cüm FT = BE (224),nbsp;reétae LT, TF, CE amp; EB acquales funt inter fe; amp;nbsp;quoniam angulus L = angulo fTE, amp; C = angulönbsp;BET (108), atque angulus FTE = BET, eft L = C:nbsp;igitur FBCL eft Trappezoïs ifofcelis. Sit X Centrum;nbsp;dudïi AX, erunt I amp; O reóti. Si media Trappezoïsnbsp;ABCO circumvolvatur fuper AO, üt axi (feu fi Trappezoïs LFBC fuper axi AO mcdiam revolutionem ab-folvat) , fuperficies convexa Coni truncati, qui generator , aequatur reélangulo fuper AO amp; peripheria,nbsp;ATRSEA : nam eft AI = 10 ( 117 ); duéta FH per-pendiculari ad LO, erit FH = AO; duéla ES, A LHFnbsp;ïimile eft A TES ; eft enim angulus HEF = fTEnbsp;C 108), qui eft = S (quifque enim menfuratur | ar-,nbsp;cüs EAT i); H = angulo TES ( funt enim ambo recti } j igitur LF FH feu AO == TS : TE : fed Periplie-riaï funt inter fe, üt Diaraetri; ergo LF: AO — Cir-culus fuper TS : Circulum fuper TE; adeoquc fee-tangulum fuper LF amp; Peripheria Circuli fuper TE =nbsp;redlangulo fuper AO amp; Peripherie^ Circuli fuper I’S,nbsp;feu Peripherid ATRSEA : atqui primum re«5languiumnbsp;aequatur fuperficici convex® Coni truncati, progenitinbsp;revolutione ABCO : nam fupcrflcies illa = i'cdlangulonbsp;fuper AO amp; f aggregati ex Peripherüs Circuloruta ,nbsp;quorum FB amp; LC funt refpedtivè Diametri (407 ) ;nbsp;jam autem, cüm TE fit media arithmeticè proportio-nalis inter FB amp; LC (nam in quantum TE fuperatnbsp;ï3gt; in tantum LC fuperat TE}; Peripheria Circuüè

-ocr page 146-

laö nbsp;nbsp;nbsp;Elementa Geometei*.

luper TE eft squalis f Peripheriarum Circulorum , quorum Diametri func FB amp; LC. Ergo faélum AOnbsp;in Peripheriam ATRSEA jcquatur fuperticiei convexcOnbsp;Coni truncati, prrcfata revoiucione prodcuntis.

Condpe (^fig. 4) Trappczoïdes continuari , ita ut LP, PG, CM, MH, tangentes in P amp; M, acqualesnbsp;fint omnes inter fe : dudtis PS diametro, PM amp; MS,nbsp;item LK perpcndiculari ad GH amp;c. Simili modo, quonbsp;ante , demonftrabis , per revolutionem Trappezoïdisnbsp;OCHV, formari Conum truncatum, cujus convcxa lu-perficies, cum tcquetur reélangulo fupcr GL amp; Peri-pheria Circuli fuper PM), eadcm quoque scquabiturnbsp;reéiangulo fuper perpcndiculari OV, amp;; Peripherienbsp;APRSMA Circuli maximi ejul'dcm. Quoniam ergo innbsp;media Sphtcrtc luperficie infinitas tales licet concipcrenbsp;Trappczoïdes, quarum omnium fuperficies convexte fi-mul conftituunt Sphtcra; mediam fuperficiem ; atquenbsp;earumdem fuperficies ccquatur faóto Peripherise maximalnbsp;per perpendiculares (feu Sagittas') interceptas, live pernbsp;Radium Sphaerae : media Sphaerx fupcrficics liabcturnbsp;ducendo Radium in Peripheriam Circuli maximi; ergonbsp;tota Sphairai fuperficies prodit ex faéio Diametri iqnbsp;Peripheriam Circuli maximi. Q^. e. d.

COEOLEAEIUM.

417. Ergo Sphacrae fuperficies eft ^ ared Circuli fuper Diametro , quae aiqualis foret Diametro Sphsc^^nbsp;rac (301 gt;

theorema VI.

Si Sphara plano quomodocnmquc fecetur , feSia communis Circulus exifiit.

418. Dico, ft Sphxra Qfig- 5) fecetur Plano per AFBI tranfmiflb, fedtionem AFBI effe Circulum,

-ocr page 147-

127

Elementa Geometrije.

Demonst. Si Planum fccans^per Centrum Sphacr© tranfeac, manifeftum eft fedionem fore Circulum ;nbsp;omnes enim recta; a Centro Spha;ra; ad Pcripheriamnbsp;fedionis duda;, erunt radii Spha;ra;, exiltentes in eo-dem plano, amp; inter fc a;qualcs; ergo Peripheria eritnbsp;curva in omni fui pundo sequaliter diitans a pundonbsp;quodam medio ; igitur Circulus erit fedio. Si nonnbsp;tranfeat per Centrum fedio, proüc in figura : ad planum fecans , è Centro, ducatur perpendicularis XO;nbsp;amp; ab ü ad fuigula Peripheria; 'fedion is punda quot-cumque redic v. g. FO, 01, OA amp;:c., quibus occur-rant radii XF, XI, XA amp;c.; anguli XOF, XOI, XOAnbsp;amp;c. omnes redi funt (320) ; ergo FX“ = XO'“-i-OF“,nbsp;XP = XO* 10*. AX* =: XO* OA* amp;c. : fednbsp;XF* = XP = AX* amp;c. Ergo XO* OF* = XO*nbsp;-flO* = XO* -t- OA* amp;c.; igitur OF* = 10* = OA*nbsp;amp;c. Ergo OF = 10 = O A ; amp; ita de ca;teris redis ,nbsp;dudis a Peripheria J3FAI ad pundum O : ergo Peri-pberia illa lalis eft, ut omnia ejus punda xqualiternbsp;diftent k pundto quodam medio O; igitur Circulusnbsp;€ft fedio. Q^. e. d.

Hypothesis I.

419. Si fit CO Qfig. 6 ) perpendicularis ad AB Dia-metrum, fada revolution e AOC fuper AO, exurgic Sphaira; Segmentum; eritque AO ejufdem altitudo, feanbsp;flt;igkta; amp; LC Diameter bafeos, qua; Circulus eft.

P R O B L E M A I.

Metiri fuperfickm Segmenti Spham.

•420. Resolutio I. Multiplicetur fagitta AO (^flg, 6) , per Pcripheriam Circuli maximi, Sc fadum ericnbsp;fuperficies convexa (üt evidenter patet ex primanbsp;liarte demonftrationis ad nuraerum 416^.

-ocr page 148-

laS Elementa Geometm*.

11. Deinde quaere aream Circuli, cujus LC chorda feg-menti Diameter ell ; hac lummd priori adjeé^ft, ha'-bebitur totalis fegmenti luperficies.

Hypothesis II.

421. Si fint CO item FX perpendiculares ad AB Diametrum, faéiri circumvolutione COXFC,pars Sphas-rai progenita Zona audit.

PROBLEMA II.

Zoncz fuperficiem inquirere.

422. Resolutio I. Convexam dabit fadtum jagittet OX in Peripheriam Circuli maximi (üt manifeituninbsp;fit ex fecunda parte demonftrationis ad numerumnbsp;41Ó).

II. Inquire pneterea areas Circulorum, quorum OC amp; XF radii exifrunt; priori adjedtac fimul dabunt to-taiem Zonac fuperficiem.

CoK-OLLARIUM.

423. nbsp;nbsp;nbsp;Itaque tam fuperficies convexac Segmentorum,nbsp;quam fuperficies convexx 2k)narum, fe habent ad inte-gram Sphacra; fuperficiem, üt fagitta ad Diametrum.

424. nbsp;nbsp;nbsp;ScHOuoN. Nonnunquam Segmencum Splia:rae Zanam com-pellanc : apud Gcographos enim globi cerraquei Tuperficies, Cii-culi* polaribus comprehenfa, Z^na frigida. audit.

T H E O R E M A VII.

QitorumcumqüC Corporum Jimilium fuptrficies , Jive intt-grtt , Jive parus homologee, fitnt inter Jè, üt quadrata dimtnfwnum homologarum.

425. Demonst. Integra: enim fuperficies, five par-tiales homologsc, funt aggregaium es xquè multis, fi-

guris

-ocr page 149-

Elementa Geometeij*. nbsp;nbsp;nbsp;129

guris fimilibus, quas fingulac funt üt quadrata late-rum homologorum; fed in Solidis fimilibus (üt ex demonftratis conltat ) tres folidi dimcnfiones propor-tionales fant; ergo aggregata ex omnibus , vel ex par-tibus homoiogis, cüm aequè multis figuris fimilibusnbsp;conibent, funt quóque üt quadrata dimenfionum ho-rnologarum, ncmpè longitudinum, altitadinum, aut la-titudinumv Q^. e. d.

A R T'I C U L U S , II.

Dt Dimenfione Solidituds Corporumy amp; Soli’-ditatum Comparatione.

THEOREMA I.

Pripnatis item 'Cylindri SoUditas cequatur fdcio 'bafcas in altitudinem.

426. nbsp;nbsp;nbsp;DéisïoVstr.' Prifmatis atque Cylindri genefinbsp;(351) manifelïum . eft, toties balm fibi fuperpofitamnbsp;reperiri in fpatio percurfo a bafi, quot funt puncflanbsp;in aititudine; ergo diélorum Corporum prodic folidi-tas ducendo bafin in altitudinem. Q^. e. d.

CoROLLARIUM I.

427. nbsp;nbsp;nbsp;Cubi adeó foliditas acquatur' Cubo unius U-teris.

Cob-ollarium II.

428. nbsp;nbsp;nbsp;Prifmata vel Cylindri aequalis bafis amp; altitudi-Tiis, scquantur inter fe.

PROBLEMA I.

Cylindri reSi AGCL ( fig. 2), truncati per planum ad bafin inclinatum, invefiigare Jbliditatem.

42'9- Resolutio. Bafin GC due in maximam AG amp; nüninura LC Cylindri altitudinem, amp; medietas iac-£l dat Cylindri fóliditatein-

R

-ocr page 150-

130 nbsp;nbsp;nbsp;Elementa Geometrijs.

Demonst. DuöS OL parallela GC, amp; concipiendo Cylindrum AOUB reéium abfolvi : bafi GC duéta innbsp;OG 4- LC, faélum acquatur bis foliditati Cylindrinbsp;GOLC; amp; bafin GC ducendo in AO, faétum dat Cylindrum AOLB, feu bis medium Cylindrum AOL;nbsp;ergo bafi. GC duöa in AG LC, facilum dat bis fo-liditatem Cylindri truncati per pianum ad bafin in-clinatum. Q^. e. d.

PROBLEMA II.

Cylindri reSi (fig. 7), truncati-per planum FEKL, axi OX, parallelum, inquirers foliditatem.

430. Resolutio. Bafeos fegmenri LCK inventa area

(-305) ducatur in altitudinem Cylindri; quod pro-

dit eft foliditas Cyliiidri truncati BCKLFE.

COROLLARIUM.

431. Igitur ambo Cylindri truncati, in quos dividi-tur Cylindrus AGCB feólione praefata, funt inter fe üt bafium fegmenta KLC amp; KLG.

THEOREMA 11.

Pyramides habentes bajes cequalcs, amp; eandem altitudinem funt cequahs.

432,. Demonst. Cüm fint scquè altae, poflunt divi-di in ajquè multa plana bafi parallela; amp; cüm bafes-a;quales lint, Piana bafi parallela, fibi correfpondentia ^ in utraque Pyramide , eadem proportione decrefcunt;nbsp;adeoque quaccumque Plana in utraque, fibi correlpon-dentia, erunt aqualia; ergo fumma omnium Planorum,nbsp;primam Pyramidem conftituentium, acqualis erit fum-mae omnium Planorum, quibus fecunda Pyramis com-ponitur ; ergo Pyramides illae aequales funt. e. d.

-ocr page 151-

I3I

Elementa Geometric:. CoROLEARIUM.

433- Quoniam ergo Coni quicumque üt Pyramides infinitangula: fpeélanturnbsp;nbsp;nbsp;nbsp;funt ii quoque aequa-

les, cüm scquali bafi, Sc'altitudine conftant.

theorema iil

Prifma triangulare in tres Pyramides aquales dividi potefi.

434. Detur triangulare Prifma Qfig. 8) : fecetur plano ab AB duéto per- diagonales AF amp;BF, eritque, ABCF Pyramis prima. Reliqua deinde pars dividaturnbsp;plano ab A per diagonales AF amp; AE trajedlo; atquenbsp;enafcuntur bina: aliaj Pyramides KFEA amp; ABEIF. Di-co tres illas Pyramides effe a:quales.

Demonst. In primis priores duas, fcilicet ABCF amp; KFEA, inter fe sequantur : bails enim primas ABCnbsp;eft acqualis ball fecundrc KFE; amp; altitude primae CFnbsp;acqualis eft akitudini fecundae AK : Pyramides ergonbsp;iliac acquales funt C432). Secunda Pyramis KFEAnbsp;acqualis eft terciac ABEF ; fit enim bafis fecundac AKE,nbsp;amp; bafis tertiac ABE; erunt bafes iliac acquales C206);nbsp;utriufque Pyramidis vertex erit in F, atque communis earum altitude erit perpendicularis ab F ad bafinnbsp;AKEB demiffa; hahebunt adco Pyramides praedidaenbsp;bafes acquales, amp; eandem altitudinem; funt ergo iilacnbsp;dure etiam inter fe tcquales (432)^ adeoque omnesnbsp;tres acquales funt. Qj e. d.

Corollarium; L

435'. Pyramis triangularis eft tertia pars Prifinatis, fuper eadem bafi amp; aititudine.

R a

-ocr page 152-

102 nbsp;nbsp;nbsp;Eleminta Geometrije.

CoROLLARIUM 11.

436. nbsp;nbsp;nbsp;Et quoniam Prifma quodvis in triangularia re-folvi potefi;; quaelibet Pyramis eft pars tertia Prifma-tis, ejufdem bafis atque altitudinis.

COROLLARIUM III.

437. nbsp;nbsp;nbsp;ConiTS pro Pyramide infinitangula, amp; Cylin-drus pro Prifmate iniinitangulo habentur; eft adeónbsp;Conus paps tertia Cylindri, xqualis fecum bafis amp; aEnbsp;titudinis.

P R O B L E M A III

Pyramidis truncate, vel Coni tmneati Jolidi-tatan inquirere.

438. Resolutio. Determinata ratione altitudinis Cor^nbsp;poris abfciüi ad truncati C 397 ); qutcre primo foli-ditatem Pyramidis, aut Coni totalis , conftantis ab-fciflb amp; truncato fimul : deinde Ibliditatcra foliusnbsp;abfcifli : hanc lubtrahendo a priori; quod fupereft,nbsp;dabit foliditatenl truncati.

THEOREMA IV.

Sphara foliditas aquatiir faBo fiiperfidei Spheer^e in tertiam Radii partem-

439. Demonst. C.oncipiatur ^phterte fuperficies refo-luta in infinite parvas fupcrficies planas, v. g. triangulares, quadrangularcs, aut mixtim ; amp; è Ceutro, ad latera cundla planulorum, duci redlas: evidens eft Sphte-ram conftare cx innumcris Pyramidibus , in CentrO;nbsp;coeuntibus, quaruin altitudo eft Radius Sphgcra;; atque''adeo omnes iilsc Pyramides eandem altitudinemnbsp;habentcujufquc autein Pyramidis foliditas xquatur

-ocr page 153-

Elementa Geometei;®:. nbsp;nbsp;nbsp;135

fadlo bafeos io tertiam altitudinis, feu Radii, partenx (436); omnium ergo, five ipfiufinet Sphairac, folidi-scquacur fado omnium bafium, feu fuperficiei

tas

Sphacra;, in tertiam Radii partem. Q^. c. d.

CoROLLARIUM.

440. nbsp;nbsp;nbsp;Quoniam igitur Sphaerrc fuperficics eft * arcinbsp;Circuli maximi; prodit etiam Sphscrs: foliditas duccn-do areapn Circuli maximi in | Diametri.

PROBLEMA IV.

SeSoris Spharce Joliditatcm metiri.

441. nbsp;nbsp;nbsp;Dum Sedor Circuli AXB ([fig. 9), fuper unonbsp;Radiorum, v. g. AX, üt axi, gyratur, Spha3ra3 Seélornbsp;prodit; fic ut ejus bafis fit SphEcrie fuperficics convexanbsp;fegmenti, cujus AO (düda BO perpendiculari ad AX)nbsp;Sagitta exiftit.

Resolutio. Multiplicata AO per Circulum Sphscras maximum, producfum cequatur fuperficiei .convex®nbsp;iftius fegmenti (420) ; hanc dein ducito in ter-’nbsp;tiam Radii Sph®rac partem, amp; prodibit foliditas. Exnbsp;diélis (439) demonltratio pater.

COB-OLLARIUM,

442. nbsp;nbsp;nbsp;Eft ergo Sphscr® .Sedor ad Sphacram integram,nbsp;fit Sagitta Segmenti bafeos Sedoris, ad Sphscr® Diame-trum.

PROBLEMA V.

Segmenti Sphcerce foliditatem inqidrere,

44^. Resolütio I. Qu®re foliditatem Scdor;s, cujus fuperficics convexa fegmenti forec bafis : ponamuf-que BL (^fig. 9) Diametrum fore ejufdem fegmenti;nbsp;X Centrum fit amp; O redus.

-ocr page 154-

134

Elementa Geometri*.

11. Inquire deinde foliditatem Coni redi, cujus BL effet Diameter bafis, amp; OX akitudo : hancque fub-trahendo ex foliditate Seéloris, quod reiiquum eit,nbsp;fegfnenti dat foliditatem.

THEOREMA V.

444. nbsp;nbsp;nbsp;SoUda qucecumque ft habent inter Je in rations

compofta fiiperjicid amp; altitudinis, quorum fado pro~ deunt.nbsp;nbsp;nbsp;nbsp;gt;

COROLLAR-IUM.

445. nbsp;nbsp;nbsp;Quoniam itaque in Corporibus quibulcumquenbsp;fimilibus, dimenfiones fingulcc homologie func pro-portionales, atque adeó fuperlicies illae iunt ut qua-drata, v. g. altitudinum ; ducendo fuperficics illas innbsp;akitudines refpeétivas , aut earumdem panes ; fadanbsp;Cquae aequantur didorum Corporam foliduatibus) eruntnbsp;inter fe, üt quadrata altitudinum, in akitudines duda;nbsp;hoe eft, in rations triplicata, feu üt Cubi altitudinum ,nbsp;aut laterum homologorum.

SECTIO QUARTA

DE TRIGONOMETRIA PLANA.

Definitio I.

446. nbsp;nbsp;nbsp;Trigonometria Plana fut a Sphasrica, quaï denbsp;AA, per trium Circulorum arcus formatis, diiferit,nbsp;diftinguatur) eft fcientia ex tribus trianguli redilineinbsp;partibus inveniendi reliquas.

Definitio II.

447. nbsp;nbsp;nbsp;Sinus reclus arcüs, vel anguli, qui eo arcunbsp;pienlüratur, eft reda, duda ab extremitate arcüs, amp;

-ocr page 155- -ocr page 156- -ocr page 157-

Elementa Geometr-IJE. nbsp;nbsp;nbsp;135^

perpendicularis ad Diametrum, feu radium. Vocatur etiam fimplicicer Sinus. E. G. Cfig- i Tab. X.) lint B,nbsp;O, F amp; X reéti (adeóque I in Centro) : OG eft Sinus arcüs BG, item anguli I; GX eft Sinus arcüs GF,nbsp;item anguli L.

CoB.OLLAR.IUM I.

448. nbsp;nbsp;nbsp;Eft adeó Sinus redus arcüs vel anguli, dimi-dia pars chordsc, fuftentantis arcum duplum arcüs, vd.nbsp;anguli, cujus Sinus redus dicitur.

COR.OLLAR.IUM 11.

449. nbsp;nbsp;nbsp;Idem eft Sinus arcüs, ejufque complement! adnbsp;ï8o°. Item idem eft Sinus anguli, ejufque Vicini ; amp;nbsp;ita, poflto Centro in K; perpendicularis GO eft aequènbsp;bené Sinus arcüs GFË, quam arcus BG; item scquènbsp;eft Sinus anguli GKE, quam anguli I : nam GO eftnbsp;reda perpendicularis ad Diametrum, duda £cquè benénbsp;ab extremitate arcüs EFG, quo menfuratur Vicinusnbsp;anguli I, quam ab extremitate arcüs BG, quo men-furaiur 1.

Definitio III.

450. nbsp;nbsp;nbsp;Reda BO, quac pars eft radii, intercepti internbsp;Sinum redum amp; Peripheriam, dicitur Sinus Verfusnbsp;ejufdem arcüs BG, item anguli I.

Definitio IV.

451. nbsp;nbsp;nbsp;Cojiniis arcüs BG, vel anguli I, eft reda GX,nbsp;quac eft Sinus arcüs GF, vel anguli L, qui prioris arcüs , vel anguli, Complementum eft ad 90°. Eftquenbsp;Cojïnus ille acqualis redae 01, feu parti radii, intercep-te inter OG Sinum redum, amp; Centrum. Vocaturnbsp;ctiam Sinus Complemcnti.

Corollar-IUM.

4.5^- Arcüs vel anguli daci Sinus Vzrfus eft lèmpcr ®xceflus radii fupra Cofinum. Et è converfo ; Cofinusnbsp;fempeï eft exceffus radii fupra Sinum Ferfum.

-ocr page 158-

136

Elementa Geometri*. Definitio V.

453. nbsp;nbsp;nbsp;Sinus totus efi: Radius BI, feu Sinus quadran-tis BGE, ac proinde anguli reófi, feu pö°.

Definitio VI.

454. nbsp;nbsp;nbsp;Tangens areüs BG, vel anguli I, efi: redta, oc-^nbsp;currens perpendiculariter radio IB, terminata ab unanbsp;parte in B, amp; ab altera parte in punclo, ubi occurritnbsp;redtac, è Centro per aliud areüs extremum duélaj; adeo-que in figura eft AB. AL dicitur Secans areüs BG,nbsp;vel anguli 1. CF Cotangens areüs BG, item angulinbsp;I; CL vero eorumdem Cojecans audit.

C0B.0LLAK.IUM 1.

455. nbsp;nbsp;nbsp;Arcus, aut angulus 90° nullam habet Tangen-tem, neque Secantem : pofito enim arcu FELE, aut an-gulo K 90° : nulla redla, ad radium KE in punélonbsp;E perpendicularis, concurrere poterit cum KF aut KR,nbsp;in quameumque partem producantur.

C0K.0LLAE.1UM IL

456. nbsp;nbsp;nbsp;Pro eseteris autem arcubus, aut angulis, eadeninbsp;eft Tangens, eademque Secans areüs, ejufque comple-menti ad 180°; aut anguli, ejufque Vieini : nam recta, v. g. AB , occurrens perpendiculariter radio BI, amp;nbsp;concurrens cum redia, è Centro per G aut S du(fta,nbsp;ïcquè bené ducitur d B, extremitate areüs SRB, quamnbsp;a B, extremitate areüs GB. Deinde Tangens per Bnbsp;trajeéla, cum diametro SG altetutrara partem versusnbsp;produefta , tantum concurrere poteft versus unicamnbsp;determkiationem; igitur AB eft Tangens areüs BG itemnbsp;areüs BRS, ejus Complcmenti ad .180°; item eft Tangens anguli I, ejufque Vieini, feu anguli BIS. Idemnbsp;eft de Secante AI.

ARTI-

-ocr page 159-

ïsr

Elimenta Geometric. AP-TICULUS 1.

De ConJiruSione Canonis Sinmm, Tangentium, atque Secantium.

THEOREMA I.

Sinus arcuiim Jimilium ad Radios fuos tandzm. rationem habent.

Demonst. Chordaï arcuum fimilium ad Radios candem rationem habent (279); fed Sinus funt chor-darum dimidia (448); ergo Sinus illi ad Radios ean-dem rationem habent. e. d.

458. ScHOLioN. In Tabulis Sinuum amp; Tangtritium ordinariis, Radius, feu Sinus totus, concipitur in 10,000,000 parces sequa-les divifus ; amp; ultra has fraétiones, in dcccrminando Sinuum Scnbsp;Tangentium quantitate, non defcenditur. Secantibus m n uti-mur, cum omnia Trigonometrie Probleinata abfque, illaruinnbsp;ope refolvi poffinc.

C0K.OLLARIUM.

459. Chorda fuftentans arcum 60° eft =; Radio C2iS),feu Sinui toti: Sinus ergo anguli 30°=5,000,000.

PROBLEMA 1.

Dato Sinu GO (fig. i); invenire Cojlnum GX,

amp; Sinum verfum BO.

460. Resolütio I. Ex quadrato GL Radii, feu Sinüs totius, fubtrahatur quadratum Sinus GO :

II. È rcfiduo extrahatur radix quadrata , quae dabit Cofinum GX :

ni. Cofinus GX fubtrahatur ex Sinu toto, amp; rcüduuia cric Sinus verfus BO.

S

-ocr page 160-

138 nbsp;nbsp;nbsp;Elements Geomettiij^

Etenim, cum ? GOLX fit redfangulare , eft GX = OL; fed GL* = GO'* OL’ feu GX^; ergo amp;cnbsp;E. G. lit GI = 10,000,000; GO = 5,000,000; in-venietur GX = 8660254, Sinus 60°.

PROBLEM A II.

Dato Sinu GO arcus BG; invenirc Sinum arcüs dimidii = \ BG.

461. nbsp;nbsp;nbsp;Resolutio I. Quasratur per praccedens problemsnbsp;Sinus verfus BO :

II. Ex GOquot; OB®, = chordae GB®, radix quadrata tra-hatur : erit hacc aïqualis ducendac BG; adeoque ejus dimidium dabit quaefitum.

P R 0 B L E M A III.

Dato Sinu KG arcüs KF (fig. 2} invenire Sinum KE arcüs dupli KB.

462. nbsp;nbsp;nbsp;Resolutio I. Quaere Sinum GX Complementinbsp;(460) :

II. Deinde ad BX, GX amp; BK quaere quartum pro-portionaleni (arith.); atque bic inventus dabit KE.

Nam AA BGX amp; BKE funt acquiangula, ergo fimi-lia; eft adeó EX : GX = BK : KE; ergo amp;c.

PROBLEMA IV.

Datis Sinibus FG Cfipi- 3) ^ DE, arcintm FA amp; DA, quorum differentia DF 45' mawr non ejt; invenirenbsp;Sinum quemcumqiie intermedium IL.

463. nbsp;nbsp;nbsp;Resotutio I. Ad DF, IF amp; -differentiam internbsp;^p^DE amp; IL, quxratur quartus numerus proportionalis

(aritb.) ;


-ocr page 161-

139

Elementa Geometïlije.

ÏI. Hic inventus addatur Sinui minori FG eritque fumma Sinus IL.

Demonst. Cum arcus DF amp; FI paucorum folüm fint minutorum, pro rcdtis, citra errorem fenfibilem.nbsp;haberi pocerunt. Por^ro FG, IL amp; DE parailelaj lunt;nbsp;li igitur ex F ad DE demitcacur perpendicularis F'H;nbsp;erit HE = PG = KL : aucoque DH cft differentianbsp;datorum Sinuum PG amp; DE ; ob parallelas autem, eftnbsp;DF : IF = DH : IK ; jam vcro IK FG = iL;'ergonbsp;quartum proportionalcm addendo minori Sinui dato,nbsp;prodit Sinus IL defiderams. Q^. e. d.

PROBLEMA V.

Datis Sinibus BD amp; FE ( fg. 4) duorum arciiiim qito-rumcumque AB amp; AP j invenire Sinum areas femidijferentiai corumdem.

464. Resolütio I. Sinus minor BD fubtrahatur ex majore FE, relinquetur differentia = P'K :

II. nbsp;nbsp;nbsp;Ex datis Sinibus BD amp; FE, inveniantur Cofinusnbsp;BI amp; FH C460) = DC amp; EC :

III. nbsp;nbsp;nbsp;Cofinus minor FH fubtrahatur è majore BI; ericnbsp;BK differentia ;

IV. nbsp;nbsp;nbsp;Ex BK® 4- FK® extrafta radix dat chordam BF,nbsp;eujus dimidium dat Sinum qutclitum.

PROBLEMA V 1.

Invenire Sinum. 45°.

4*^5. Resolutio. Ex dimidio quadrati Sinüs totius ex-tradla radix dat petitum.

Sit enim angulus L f/Fg. O 45° j ctiam angulus IGX = 45^ Ergo GX = ^XL; fed GL® = GX® LX®,

S %

-ocr page 162-

Ï40 nbsp;nbsp;nbsp;ElIMENTA GEOMETR-IJf.

feu aGX®; ergo Scc. Faéta operatione reperitur finus

45° = 7071068.

P R O B L E M A VIL

Invenire Simim anguli 18°.

466. Resolutio. Sinum totum divide media amp; extrema ratione, amp; dimidium numeri majoris dabit quae-litum.

Demonst. Sic I Cfig- .5) in Centro g6°; fiat BO = chordae BA : quoniam 1 = angulo ÖBI, eft 01 =nbsp;OB = AB. AA ABÜ amp; AIB funt acquiangula, ergonbsp;fimilia; erit adeó AI : AB = AB : AO ; igitur cumnbsp;AB == OI; eft Al : 01 = 01 ; AO; itaque AI divifanbsp;cft medid amp; extrema ratione ( 2.28), amp; 01 = ABnbsp;eft ejufdem pars major ( narh in A AÓB, cum angu-lus AOB fit major angulo ABO, eft AB (170) major quam AO); ergo chorda AB fuftentans arcumnbsp;36°, cujus dimidium = finui 18°, eft sequalis ma-jori parti Sinüs totalis, divili media amp; extrema ratio-ne. e. d.

COR-OLLAB-IUM.

467. nbsp;nbsp;nbsp;Invento Sinu 18°, reperitur Sinus 36° per pro-blema tertium C462).

468. nbsp;nbsp;nbsp;ScHOLiON. Ut datum uumerum dividas media amp; extremanbsp;ratione : lumito quinies quadratum ejus dimidii : ex iilo qua-drau) extrahe radicem quadratam : ex hac radiee inventa fubtra-lie numerum datum; refiduum amp; radix illa erunt partes quaslitte.nbsp;Manifefta fit methodus per Problema V. (269) ; etenim cumnbsp;ibidem AE - — BA; BE* = 5AE*; igitur radix BEquot; dabitnbsp;BE; AE fubtrafta ex BE, rciiquura BG = BK dividet ABnbsp;media amp; extrema ratione..

-ocr page 163-

14»

Elimenta Geometb.1^.

PROBLEMA VIII.

Dato Sinu FG ( fig. 3) unius minuti, fm 60quot;; invenirc Sinum unius, vel aliquot Jecundoriim MN.

469. Resolutio. Ad AF, FG amp; AM quaere quartum proporcionalem, ille dabit quod quaïritur.

Demonst. Arcus AM amp; AF perexigui funt, atque adeó AMF pro redta haberi poteft citra errorem innbsp;fraótionibus radii decimalibus, quibus Sinus exprimi-mus, affignabilcm; quare cüm fit MN ipfi FG paral-lela ; erit AF ; FG = AM: MN. e. d.

470. ScHOLiON. Eadem latione, fi fueiic opus, inveniri poteft Sinus aliquot fcrupuloium terciorum.

PROBLEMA IX.

Ddtfs Sinibus 30° (459); 15° C4Ö1); 4.5° C4Ö.5)’ Ö* 36° (467); Cetnonem omnium Sinuum conflruere,nbsp;nonniji iinico miniito ^ aiit denis feciindis,nbsp;immö unico fccundo inter Je differentibus.

471- Resolutjo I._ Ex Sinu 36°, amp; 18°, inveniantur Sinus 9®; 4° 30'; a° 15' (461). Sinus 54°; 73°;nbsp;81°; 85° 30' ; 87° 45' (460). ‘Sinus 27°; 13°nbsp;30'; 6° 45'; 40° 30'; 20° 15'; 42° 45' (^461);nbsp;inde Sinus 63°; 76° 30'; 83° 15'; 49quot;’ 30'; 69°nbsp;45'; 47° 15' (460) : ulterius Sinus 31° 30'; i.5®nbsp;45'; 38° 15'; 24° 45’ (4^0 : hinc Sinus 58® 30';nbsp;74° 15'; 51° 45'; 05° t4' (460) : denique Sinusnbsp;29° 15' (461), amp; ejus Cofinus 60° 4.5' (4*^0).

II. Ex Sinu 45° inveniantur Sinus 22° 30'; n° 15' C461); 67° 30'; 78° 45' (4609; 3 3° 45' (461);nbsp;56° 15' ( 460).

ÏII. ExSinu 30°, amp; Sinu 54®,mvcniamr Sinus I2°C4^4gt;

-ocr page 164-

*4^ nbsp;nbsp;nbsp;Elementa Geometrije.

IV. nbsp;nbsp;nbsp;Ex Sinu 12°, inveniantur Sinus 6°; 3°;nbsp;nbsp;nbsp;nbsp;30';

45' C46O; Sinus 78°; 84°; 87°; 88° 30'; 89° 14' ('460) : porro Sinus 30°; 19° 30'; 9° 44';nbsp;4^°; 21°; 10° 30'; 5° 1.4'; 43° 30; 21° 4.lt;;nbsp;44° 15' (4Ö1) : ulterius Sinus 51°; 70° 30'; 80°nbsp;i.lt;; 48°; 69°; 79-° 30'; 84° 45'; 46° 30'; 68°

45° 45' C460) : inde Sinus 25° 30'; 12° 4.4'; 35° 1.5'; 24°; 34° 30'; 17° 1.5'; ?9° 4.5'; 23° 'is'nbsp;C461); binc Sinus 64° 30'; 77° 15'; .44° 45'; 66°;nbsp;55° 30'; 72° 45'; .50° 15'; 66° 45' C460) : hincnbsp;porro Sinus 32° 1^'; 33°; ió° 30'; 8° 1.4; 27° 44'nbsp;(461) : inde ulterius Sinus 57° 45' ; 57°; 73° 30';nbsp;81° 45'; 62° 15' ( 460) : porro Sinus 38° 30';nbsp;14° 15'; 36° 45' (461); amp; horum Coilnus 61° 30';nbsp;74” 44'; 43° 44' (460) : dengue Sinus 30° 45'nbsp;(461), amp; ejus Cofinus 59° 14' (4609.

V. nbsp;nbsp;nbsp;Ex Sinu 14° inveniantur 7° 30; amp; 3'' 45' (461) :nbsp;hinc Sinus 75°^ 82° 30'; 86*quot; 15' (4609 : inde 37°nbsp;30 j 18° 45'; 41° 15' (461), amp; horum Cofinusnbsp;42° 30'; 71° 14'; 48° 44' C 4609 : denique Sinusnbsp;26° 14' (4619, amp; ejus Cofinus 63° 44' (4609.

VI. nbsp;nbsp;nbsp;Quod fi Sinus hac ratione inventi in ordinem re-digantur , numero 120; amp; difièrentiam inter duosnbsp;immediatè flbi mutuó fuccedentes 44' deprehendes:nbsp;inveniantur ergo Sinus intermedii per Problema IV.

(463 )•

VD- Tandem Sinus fcrupulorum fecundorum, ab i uf-que ad 60, inveniantur per Problema prtcccdcns (4699: ita Canon Sinuum erit conftruétus.

PROBLEMA X

Dato Sinu GO (fig- i) arcüs BG; invenire Tangentem AB, amp; Sccantem AI ejufdem arcüs.

472. Resolutio. Quoniam eft AB parallela ad GO, dicatur : üt Cofinus GX = 01 ad Sinum GO; ita

-ocr page 165-

Elementa Geometric. nbsp;nbsp;nbsp;145

BI, feu Sinus totus, ad Tangentem AB. Item ut Cofinus GX = 01 ad BI, feu ad Sinum totum; ianbsp;GL, lëu Sinus totus, ad Secantem AI.

473. nbsp;nbsp;nbsp;ScHOLiON I. Conftrufto igitur Canone Sinuum, baud difR-cilis eft conftruftio Canonis Tangentium, atque Secaniium.

474. nbsp;nbsp;nbsp;ScHOLiON II- In ufu ordinario Canonis Sinuum atque Tan-gennium, lülenc otnitti dua; dexdms Cyphrae, quae nota ab aliisnbsp;feparanturi iil’dera camen ucendum elt, cura calculus exaftiornbsp;defideratur.

475. nbsp;nbsp;nbsp;ScHOLiON III. Quoniam Sinus lt;amp; Tangentes funt numerinbsp;prolixi, qui multiplicaiionem , amp; divifioncm in Trigonomettianbsp;permoleftas redduni •, ideo Geomecrae certos numeros excogica-runc, qui loco vulgarium , non fine infigni calculi compendio,nbsp;poffunc adhi'jcri; quia mukiplicadonem in additioncm ; amp; di-vifionem in fubcractionera convertunc. Dicuncur Logarithmicnbsp;amp; non folüm pro omsibus Sinibus amp; Tangentibus', Verdm etiamnbsp;pro numeris naturalibus ab i ufque ad looo, nonnunquam, ultra,nbsp;in Tabulis Sinuum amp; Tangencium vulgaribus extant.

P R O B L E M A XL

Inveniri Sinus ciijufcumqiic dati Logarithmutn-

47*5. Resolutio. Ut Logarithm! eo accuratiores inve-niantur,aflumendi funt Sinus ad radium 10000000000 conftruéti. Mulélantur neinpe Sinus in Canone Pi-Tisci majore 4 ultimis notis. Cum adeo Sinus fintnbsp;numeri 10 üt plurimüm notis conftantes, in Ca-none autem Logarithmorum, qui proftat maxirno,nbsp;numeri naturales ultra 5 notas non afcendunt; Logarithm! eorum inveniuntur per Problema Arithme-tices. Utendum vero, eft Canone Logarithmorumnbsp;niajore.

Ex. Gr. fit inveniendus Logarithmus Sinüs 23°, qui apud Pitiscum eft 39073112.84. Refeétis, versusnbsp;finiftram, quinque notis 39073, iphs refpondens Logarithmus eft 4.5918768; confequenter Logarithmusnbsp;numeri 3907300000 eft 9.5918768. Differentia tabu-laris eft ui. Quare infertur : ut 100000 ad lU,

-ocr page 166-

ï44 nbsp;nbsp;nbsp;Elemsnta Geometrijc.

ita notac reiidusc Sinüs dati 11284, numeram quaf* tum proporcionaiem 12 : qui fi addatur Logarithmonbsp;P.59187Ó8, prodit Logarithmus quxiitus 9.5918780 ;nbsp;qüalis in Canone triangulorum artificial! reperitur.

P R O B L E M A XII.

Dato Logarithmo Sinüs amp; Cofinüs; mvtmrt Logarithmum Tangentis.

477. Resolutio I. Logarithmus Sinüs addatur Logarithmo Sinüs totius :

II. A fumma fubtrahatur Logarithmus Cofinüs; amp; re-fiduum eft Logarithmus Tangentis.

Ex. Gr. inveniri debet Logarithmus Tangentis 23*.

Addantur Log. Sin. 23“ = 9.5918780 Log. Sin. tot = 10.0000000

a fumma = 19.5918780 fubtrahatur Log. Cof. =nbsp;nbsp;nbsp;nbsp;9.9640261

relinquitur Log. Tang. = nbsp;nbsp;nbsp;9.6278519

ARTICULUS II.

De ^nalyji Triangulorum. THEOREMA I.

¦In A reBanguIo unus Cathetorum eji ad alium, ficut Sinus totus ad Tangentem anguli, huic alterinbsp;Cathetorum oppojiti.

478. Si fit A recfius C fig- 8) eft AC ; AB = Sin. tot. : tang. C. Item eft AB ; AC = Sin. tot. : tang. B-

Demonst. Ex C, intervallo CB, due Circulum vel arcum ; produc CA ulque m L; ad punétura L fiat

tangens

-ocr page 167-

Elemünta Geometric. nbsp;nbsp;nbsp;145

tangens LK; producamr CB, donee concurrat cum tangente LK; cüm KL fit parallela AB ^ erit AC; ABnbsp;= LC ; LK; jam vero LC cft radius Circuli, lèu films totus; amp; LK eft Tangens : ergo AC : AB == fin.nbsp;tot. ; tang. C. Si ex B, intervallo BC, arcum ducas;nbsp;produdia BA, donee concurrat cum tangente ad punctum C ereifia; evidens fiet effe AB t AC = BC lèunbsp;fin. tot : tang. B. Q^. e. d.

THEOREMA II.

Jn omni A, v. g. ABC (fig. 9), latera fitnt üt Sinus oppojitoru/n angulorum.

479. nbsp;nbsp;nbsp;Demonst. Cüm enim omne triangulum Cir-culo infcripcibile fit; erunt latera AC, CB amp; ABnbsp;chordae arcuum cognominum; conlèquenter latera di-midia finus arcuum dimidiorum 044°) • lèd arcus di-midii funt menfurac angulorum oppofitorum B, A amp;nbsp;C (138); ergo üt lams AC ad finum anguli fibi op-pofiti B; ita latus BC ad finum anguli fibi oppofitinbsp;A; ita etiam AB ad finum anguli fibi oppofiti C.

THEOREMA III.

Jn A ( fig. 10) Ji A formetur lateribiis AC amp; AB intequalibus; atque perpendicularis ab A ad BC duc-ta, V. g. AO, intrd bajin BC cadat : efi BC adnbsp;AC -i- AB, [icut differentia inter AC 6* AB ad dif-ferentiam inter fegmenta CO 6* OB.

480. nbsp;nbsp;nbsp;Demonst. Ponamus AC majorem quam AB;nbsp;crit etiam CO major quam OB : nam AC^ = AO*nbsp; CO*; amp; AB* = AO* OB*; quoniam itaque AC*nbsp;fft majus AB*; erit AO* CO* majus AO* OB* ;nbsp;igitur CO* eft majus OB*; ergo CO eft major quamnbsp;OB. His praeniillis : ex A, üt Centroj intervallo late-

T

-ocr page 168-

14lt;5 nbsp;nbsp;nbsp;, Elementa Geometries.

ris AB minoris, defcribe Circulum; amp; produc FA uF que in peripheriai punótum E; eft CE = CA AB;nbsp;BÜ = OL C 126); ergo CL elt ditferentia CO ad OB;nbsp;amp; Cb clt differentia CA ad AB : jam vero eft BC: CE,nbsp;feu AC AB = FC : CL (259J. e. d.

THEOREMA IV.

Jn A C 11 ) fi A formetiir lateribiis AC amp; AB inaqualibus; atque perpendicularis ex A ad BC demif'nbsp;fa , intrd bafin BC cadat : ej} AC AB ad FC difnbsp;ferentiam , feut 1'angcns medietatis angulonim B Cnbsp;Qproidiais lateribiis oppofitorumf, ejt ö(f Tangenten!nbsp;medietatis differentice angulorum B amp; C.

481. Demonst. Ponamus latus AB brevius effe AC. Ex punéto A, üt Centro, intervallo AB Circulum defcribe : produc FA ufque in E : ducatur EB; amp; FKnbsp;paralleia ad EB : infuper due FB : tune ex F, xxtnbsp;Centro, intervallo FB, due areum BG; amp; ex B, ütnbsp;Centro, etiam ad intervallum BF, ducito areum FI.nbsp;CE eft = AC -I- AB. FC eft differentia inter AC Scnbsp;AB. Chorda BE eft Tangens medietatis angulorumnbsp;B C : nam, cüm F fit Centrum areüs BG, amp; an-gulus FBE redlus (menfuratur enim | areüs FRE);nbsp;erit EB Tangens Circuli, eujus BF eft radius (124);nbsp;item eft 7Fngens anguli EFB; jam vero hie angulusnbsp;Ecquatur dimidio angulorum B -i- C : etenim, quianbsp;AF = AB, eft angulus AFB = angulo ABF; itemnbsp;angulus AFB eft x'qualis angulis C, amp; FBC fimulnbsp;fumptis C 167 )• FK eft Tangens medietatis differentia: inter B amp; C : nam FK eft Tangens anguli FBK;nbsp;B enim eft Centrum areüs F'I; amp; quondam, ex con-ftruCtione FK paralleia ad EB, atque adeó angulusnbsp;KFB = angulo EBF ( T09 )^, qui redus eft; eritnbsp;etiam KFB reiftus; ergo KF eft Tangens areüs Flnbsp;(124), item anguli FBC; jam vero B lüperat C ad

-ocr page 169-

Elementa Geometric. nbsp;nbsp;nbsp;147

bis angulum FBC : nam angulus ABF = angulo AFB = angulis C amp; FBC. Igitur cüra FK parallela adnbsp;EB , cit CE feu AC nbsp;nbsp;nbsp;nbsp;: FC = EB : FK. Q. e. d.

PROBLEM A I.

In A reSangiilo, ambobus Cathetis AB amp; AC (fig. 12) nous '; invenire Jrjyputhenujam, S’ angulosnbsp;acutos B amp; C.

482. REsoLUTio I. Ex AB® AC® radix extrada dat hypothenuiam BC.

II. Inferatur C478) ut iatus AB,

ad Iatus AC : ita finus totus,

ad tangcntem anguli B.

Ex. gr. fit AB 79 pedum , AC 54 pedum; per Sinus atque Tangen ces lie operate :

AB = 79,

AC = 54 :

Sin. tot. = 100000,

dudo fecundo, feu AC = 54; in tertium = 100000; fadum 5400000 dividatur per primum, feu per 79;nbsp;amp; quotus 68354 dat tangcntem anguli B; cui in Ca-none tangentium refponder quam proximè 34° 21' :nbsp;Eoc fubtrado ex 90®, refiduum 55° 39'dat proximènbsp;angulum C.

Per Logarithmos vero finuum amp; tangentium faci-lius operaberis modo fequenti. Logarithmum fecundi, Ecu numcri 54, amp; Logarithm, finds totalis adde innbsp;nnam fummam; ex qua fuberahe Logarith. primi 79 gt;

-ocr page 170-

14? nbsp;nbsp;nbsp;Elementa Geometkije,

amp; refiduum dabic Logarith. tangentis B : üt patet ia fchemate adjeóto :

Log. AB-----1.8976271

Log. AC----1.7323038

Log. fin. tot. - - lo.ooooGOO

I/3g. AC Log. fin. tot. 11.7323938

Log. tang. B - - 9.8347667, cui in Canonc reli^oGdent etiam quam proximè 34° 21'.

483. ScHOLiON. Dicitur gudm proximè : quia numeri 68354 Canoiie cangendura', amp; 9.8347667 in Canone Logarichmorumnbsp;tangencium non exaflè repenunttir; atquc adeó ultra 34° m'nbsp;miniua aliquoc infcriora, feu fcrupula lecunda amp;c. aderunt. Sinbsp;itaque prtéter fcrupula prima, ukeriüs fecunda delideres; fequen-li invcnientur methodo.

484. nbsp;nbsp;nbsp;1° Operanda per Canonem finuum amp; tangen-tiuin : a tangente v. g. 68354 fubtrahe tabulae proximè minorem 68343, amp; notetur differentia ii. Similiter proximè minorem 68343, fubtrahe ex proximènbsp;majore 68386, amp; notetur differentia 43; atque dici-to : 43 dant 60quot;, quot dabunt 11? amp; mvenies 15quot;;nbsp;crit ergo B 34° 21' 15quot;; amp; quoniam adhuc datur,nbsp;operatione finita, refiduum; adeffe fcrupula tertia collines at negligi poffunt in communi praxi; ü tarnennbsp;ea exoptes ; iacile ex diclis reperies tertia, üt inveniftinbsp;fecunda amp;c.

485. nbsp;nbsp;nbsp;2° Si refülutionem trianguli inftituas per Lo-garith finuum aut tangcntium; eodem modo, üt mox,nbsp;procédés; v. g. in cafu dato; a Logarithmo tangentisnbsp;B 9.8347667 , fubtrahe tabulrc proximè minoremnbsp;9.8346961, amp; notetur differentia 706. Similiter Lo-oarithmum proximè minorem 9.8346961 fubtrahe exnbsp;proximè majore 9.8349673 ,amp; notetur differentia 271a;nbsp;ütque dicito : 2712 daut óoquot;, quot dabunt 706? 8cnbsp;etiam invenies 15''amp;c.

-ocr page 171-

149

Elimenta Geometric:.

PROBLEMA II.

quot;Datis duobus anguUs A amp; C (fig. 13), und cum /lt;z~ ftTc AB; invenire latus BC.

486. Resolutio. Inferatur C479) ut linus anguli C,

ad Jaius fibi oppolitum AB ; ita finus anguli A,

ad latus fibi oppofitum BC.

Ex. gr. fit C = 48quot; 35'; A = 57° 29'; AB = 74 pedibus. Per Logarithmos ita opcramur :

Log. Sin. C----9.8750142*

Log. AB---1.869^7

Log. Sin. A----9.9259487

cui in Tabulis

fumma — 11.7951804 Log. BC — “ 1.92016Ó2,nbsp;proximè refpondent 83'.

487. ScHOLiON. Quod fi 83 pedibus non contentus, etinm digitos, feu pollices, defidcrcsquot;, evolve eundem Logarithmum BC , fub Characleriftica a poft 830 : amp; Logarit. 83a quam proximènbsp;ad eum accedere deprehendes ; adeoque, pr;ecer 83 pedes, ad-liuc a digitos effe. Si porró Lineas defideres; quEere eundemnbsp;Logarit. denuó i'ub Charafteriftica 3 poll 8320; amp; ipli quamnbsp;proximè Logarit. 8321 refpondentem reperiesproinde fore latus BC 8°, 3', 2'7i Hoe paèlo femper ratio inftituendanbsp;eft, quando Logarithmus, fub fua Charafterillica, non accu-ratus repcritur.

PROBLEMA III.

Datis latcribus AB amp; BC (]fig. 13

angulo C, iini eoriim oppojito; invenire. angulos reliquos.

488. Resolutio. Inferatur C479^ ¦ fit latus unum AB,

ad finum anguli dati fibi oppofiti C :


-ocr page 172-

i$o nbsp;nbsp;nbsp;Elementa Geomete-ije.

ica latus akerum BC,

ad finum anguli qua^fiti, fibi oppofiti, A.

Ex. gr. fit AB = 82'; BC = 95'; C = 64° 33'. Calculum ica inltitues :

Logar. Sin. C. Logar. BC---

- nbsp;nbsp;nbsp;9.9.5560«8

- nbsp;nbsp;nbsp;1.977723Ó


Logar. AB—^---1.9138138

fumma — 11.8333924

Logar. Sin. A - - 9.7195780, cui in Tabulis proximè relpondent 31° 37'

«

489. nbsp;nbsp;nbsp;ScHOLiON I.' Nota tamen , per piKcedens Problema dcteimi-nari folüm A, auc ejiis Vicinum : ponamus cnim in Anbsp;determinates efle angulos, atque latera; li forec C = f; ËC = 6c-,nbsp;amp; AB == a6; tantum inferri poteft A = a, vel A = Vici-iio a (_ 19U ).

490. nbsp;nbsp;nbsp;ScHOLioN II. Nonnunquam veró A ex adjunftis determina-ri : puta fi fueric C reftus, auc obeufus (ió6); vei li fucric Cnbsp;acutus, amp; latus AB majus latere BC ; nam A non pocerit cf-le rectus, auc obtulus, ctim C deberet efle iplo major (170).

491. nbsp;nbsp;nbsp;ScHOLiON III. Ut invenias B : fubtraétis A C ex 180°,nbsp;reliduura dabic quslitum; üc patec ex adjuncto l'chematej in quonbsp;ponitur A 55° 40' 39quot; j C 64° 33'.

A nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;55°nbsp;nbsp;nbsp;nbsp;40'nbsp;nbsp;nbsp;nbsp;39quot;

C nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;- 64°nbsp;nbsp;nbsp;nbsp;33'__q_

A -h C nbsp;nbsp;nbsp;=nbsp;nbsp;nbsp;nbsp;120°nbsp;nbsp;nbsp;nbsp;13'nbsp;nbsp;nbsp;nbsp;39quot;

A -g C 4--B nbsp;nbsp;nbsp;==nbsp;nbsp;nbsp;nbsp;179°nbsp;nbsp;nbsp;nbsp;59'nbsp;nbsp;nbsp;nbsp;60quot;

4Ó'


21 '


PROBLEMA IV.

Datis duokis Trianguli lateribus inaqualibus AC o’ BC (fig. 13)5 angulo intercepto C;^nbsp;invenire angulos reliquos.

Ponuntar AC amp; BC inaequalia : alias, cüm foret A = B, faciilimè innotefcerent abfque Trigonometna.

492. Resolutio I. inferatur (481)

-ocr page 173-

Elementa Geometric:. üt AC CB ,

ad diirerentiam eorumdem ; ita T(ingcns femiluinm:c angi:dorum A amp; B,nbsp;ad 'I'angentem femiditFcreiJdsc eorumdem.

II. Addatur femidiffcrcntia ad femifummam ; aggrega~ turn erit angulus B, datorum laterum majori ACnbsp;oppofitus. Eadem a femifumma fubtrahatur, rema-nebit angulus A.

Ex. gr. fit AC = 75'; BC = 58'; C = 108° 24'.

Calculus ita inftituetur :

AC =75'

AC BC= 13 3' AC—BC = 17'


A-j-B-fiC — 179°

C = 108° 24'


A-|-B = 3 A B =


71 3Ó'

35° 4S'


Log. AC BC-----2.1238516

Log. AC — BC---1.2304489

Log. Tang. IA B---9.8580694

fumma - - 11.0885183

in Ta-

cui

Log. Tang. f A—B - - 8.9646667, bulis proximè relpondent 5° 17'

B — 41° 5' nbsp;nbsp;nbsp;' A = 30° 3^

P R O B L E M A V.

Datis tribus Triangiili latcribus; invenire angiilos.

493. Resolutio I. Ponamus BC CfiS- ^4) tion efle minimum tnanguli iatus; adeoque A non erit minor quam B, neque minor quara C (170); itaquenbsp;B item C erit acutus; amp; pcrpendicularis AO, exnbsp;A ad BC demiffa, cadet intra baiin BC (i743-

-ocr page 174-

Elementa Geometetje. fuerit AC = AB; crit CO = OB; B = C amp;c. Re*nbsp;Iblvatur igitur A AOB per Problema ill. (488 ).

n. Si AC amp; AB inscqualia fine, fiaeritque AC majus quam AB; crit CO majus quam OB. Sit CF dit-ferentia inter AC amp; AB : amp; CL fit differentia inter CO amp; OB.

Inferatur (480) ut BC,

ad fummam AB AC : ita CF differentia AB, amp; AC,

ad CL, differentiam inter BO amp; CO.

Ex, gr. fit AB = 3Ó'; AC == 45'; BC = 40'.

Calculus ita fubducitur :

AB = 36' nbsp;nbsp;nbsp;AC = 45'

AC = 45' nbsp;nbsp;nbsp;AB = 3Ó'

AB AC=8i' nbsp;nbsp;nbsp;FC='lt;?'

Log. BC------1.6020600

Log. ABq-AC — 1.9084850

Log. FC------0.9542425

fumma---2.8627275

Log. LC

- 1.2Ó0ÜÓ75, cui in Tabulis proximè refpondent 18'. Quod fi ulterids qusefiverisnbsp;(487), invenies tandem LC = 1822quot;' :

BC = 4000quot;' nbsp;nbsp;nbsp;OL = 1089quot;'

LC = 1822quot;' nbsp;nbsp;nbsp;LC = 1822'quot;

BL = 2178quot;


OC = 2911quot;


BO = 1089'quot;

- 3-.6.563025 10.0000000nbsp;“ 3-0370279

- 9.4807254, ad quern in Tabulis

Log. AB-----

Log. Sin. tot. —

Log. OB — ----

Log. Sin. BAO -

-ocr page 175-

ElEMENTA GeOMETE-IJE,

Tabulis quam proximè accedic Logarith. 17° 36'; adeo-q«e angulus B = 72° 24'.

Log. AC------3.6532125

Log. Sin. tot. — ia.0000000 Log. OC -----3.4640422

Log. Sin. CAO - - 9.8108297, cui in Tabulis quam proximè refpondec Logarith. 40“ 19'; adeoquenbsp;angulus C = 49° 41'.

Ergo in Triangulo ABC, A = 57° 55'; B = 72’ 2.4'^ C = 49° 41'.

V.

-ocr page 176-

154

CS^EOMETmï^

P R A C T 1C JE

SECTIO PRIMA

DE INSTRUMENTIS GEOMETRICIS, EORUMQUE USU.

PROBLEM A I.

yf punSo dato ad punSum datum linecm rcSam ducerc.

404* nbsp;nbsp;nbsp;Esolutio I. in charta :

rp ca exarari folct Calamo, Plumbagine, ^ aut Stylo fcrreo vei xneo, juxta Re-gulam, ad punéla data, applicatam.

II. In ligtto vel faxo :

Recta delineacur etiam fine Regula; fi filum, cretJl vel cerufsfl libutum, punétis datis appriraatur, amp;nbsp;mediis digitis prehenfum furfum traliatur, moxquenbsp;iterum dcntittatur.

UI. In Campo :

Pracftó fint baculi plurcs, quatuor aut quinque pe-dibus ulti; quorum fummitati muccinium , aut folium chartac albac fit alligatum, ut è longinquo vi-

-ocr page 177- -ocr page 178- -ocr page 179-

Geomïtkia Practica. nbsp;nbsp;nbsp;155

deri queant. In quolibct ducendic rcólai cxtremo perpen^icularirer baculus unus defigatur; tum, ocu'nbsp;lo applicato ad eorum altcruirum, vifus in akerumnbsp;dirigatur; dum interim minilter alios, pront necelTenbsp;fuerit, intennedios, m diredtionem lineai vifualis,nbsp;iu figat Ceidem manu lignum dando, num a finif-tra, aat dextra divergant) ut oculo in unum di-reko, eseteri non appareant.

495^ ScHOUON I. Regui® ex Orichalco, aut argento parata:, facile chartam nigranc ; i'is ergo praefcrancur , qua: ex ligno du-liori, puca Ebenino, elaboraiae 1'unc.

ScHOLioN II. Num Regula exafta Cc examinatur; C juxea earn Refta ducatur, amp; deinde invertaiur Regula, duft«que li-ne;e rarlus applicctur, atque umc altera linca datta priori accurate coincidat.

497. ScHOLioN III. Ducendis in charta Lineis, pennse optimte iunt, qua: ex corvorum alis crelluatur. Atramentuin Sinicumnbsp;comrauni eft quóque prtefcrendu-m.

P R O B L E M A II.

Scalam gtometrieam conjlruere.

498. Resolutio Prima.

1. nbsp;nbsp;nbsp;Ducatur redla AF CfiS- ^nbsp;nbsp;nbsp;nbsp;^

transferantur partes 10 scquales Bi, 12, 23, 34, amp;c.: intervallum vero 10 partiuni = AB ex B in E,nbsp;CS E in F amp;c. quoties libuerit.

2. nbsp;nbsp;nbsp;In A excitetur pcrpendicularis AC, arbitrarisc lon-gitudinis, in partes 10 aiquales divilii.

3. nbsp;nbsp;nbsp;Per punda divikonum, 1, 2, 3, 4, 5 agati-tur parallelae ad Af’.

4. nbsp;nbsp;nbsp;In ultimam CD transferantur partes 10, partibus,nbsp;ipfius AB acquales.

5- Tandem puncta loamp;pIP ^ 8; Samp;j amp;c., li-'HCis traniVerlls Cp, 98 amp;.c. conneclantur.

V a

-ocr page 180-

7^6

Geom3etk.ia Practica-

Dico, fi AB fuerit decempeda, fore Bi , I2, 23, 34 amp;c. pedes; 99 digituin unum; 88 digitos duos;nbsp;77 tres; 66 quatuor amp;c. Et ft fuerit AB virga;nbsp;331 , 12 amp;c. fore fcrtipula prima; 99; Sic. fcrupulanbsp;fectinda Sic.

Demonstr. Bi = 12 = 23 amp;c. = AB, per conftruéiionem ; fed pes eft decempedsc pars decima;nbsp;citni ergo AB fit decempecia, per hypothefin; eruntnbsp;Bi, 12, 23 amp;c. pedes. Quod erat unum.

Porro quia 99 eft parallela ipfi Ap, per conftruc-tionem ; C9 : CA = 99 ; Ap; fed C9 = ^ CA, per conltrudionem ; ergo 99 =nbsp;nbsp;nbsp;nbsp;-A-P-nbsp;nbsp;nbsp;nbsp;Quare,nbsp;nbsp;nbsp;nbsp;cum Ag

li.t pes; erit 99 digitus. Eodeni modo oftenditur clTe 88 duos, 77 tres amp;c. digitos. Quod erat fecundum.

Ex ditftis perfpeclu facile eft; pofito AB quacumque quantitate integrd, v. g. virga amp;c,; effe Bi, 12 amp;c.nbsp;icrupula prima; 99; 88 amp;c. fcrupula fccuuda. Quodnbsp;erat tertium.

COROLLARIUM.

499. Si ergo Circini crus unum collocatur in I, amp; alterum in K; erit intervailum IK = 1° 4' 5quot;; amp; itanbsp;porto.

^00. Rbsolutio Secunda.

j. Due AL (fig. 2) : eamque in 10 partes aiqua-les partirc ;

2. nbsp;nbsp;nbsp;AF scquivaleat ^ AL : ducqiic LF :

3. nbsp;nbsp;nbsp;Dein a puneftis, 9, 8, 7 amp;c. ducico 9X, cacteraftnbsp;qtie, fic ut fingula fit parallela ‘ad AF :

4. nbsp;nbsp;nbsp;Producatur pro libitu AL, in qua, tot quot opusnbsp;erit, notentur partes LC, CB amp;c. aiquales AL.nbsp;Erunt adeó BC, CL, LA partes integrsc; Li, 12,nbsp;23 amp;c. fcrupula prima; pX, amp; catterai parallelsenbsp;erunt fcrupula fecunda.

-ocr page 181-

*5?

Geomete-IA Practica.

CoROLLARIUM.

501. Si igitur oporteat habere 1° 6' 9quot;; Circini crus Unum ponacur in B amp;: alcerntn in 6 ; hocque inter-vallum transleratur in reétam, in charta duóiam; cuinbsp;deinde adjungas Circini intervallum a 9 in X.

PROBLEMA II L

Catenam parare , Lineis in Campo metiendis aptam.

502. Resolütio I. Quoniam in Brabantia folet adhi-beri menfura 20 pedura^ qua; Virga audit; ideo 20 fiia terrea connedtantur annulis (üt videre eft innbsp;figura 3), fic ut a medio cujufvis annuli ad Centrum vicini pes unus detur. Extremitatibqs Cate-nx, utrimque, manubrium AB aptatur, atque abnbsp;hoe , ad centrum ufque vicini annuli pes quoquenbsp;habetur. Ut autem dccimalium praxi inferviat : annuli C, F, G amp;c. lerrei lint, amp; minores intermediisnbsp;annulis cupreis 1,2, 3 amp;c.; atque ita Bi, 12, 23nbsp;amp;c., live intervallum duorum quorumlibet annulo-rum cupreorum viclnorum, ~~ virgse, live Icrupu-lum primum dabit. Intervallum duorum pedumnbsp;extremorum dividatur in 10 partes aequales ; adnbsp;Icrupula Bccunda erit quoque parata Catena.

503. nbsp;nbsp;nbsp;ScHOUON I. Manubrium _AB, qualc edara habecur ad alte-rum catenae extremum, iemi - cirtulo , caius Diameter sequaüsnbsp;fit Diametro Baculorum pedaliuni (de quibus problemate fe-quenci) eft inficxum in fut medio ; notabilis enim'furrepcrccnbsp;error, fi baculorum craffitiei negligeretur ratio.

504. nbsp;nbsp;nbsp;ScHOUON II. Cypbrar, a dexdmisnbsp;nbsp;nbsp;nbsp;fegregat* , deno-

tanc Virgas, fi iis menfura inftiuiatur : dextimae vent, poft riotam pofica?, fcruptila fuo ordine defignant. Ex. gr. 8.564 de-fignantur 8 virga:, 5 fcrupula prima (feu polliccs 10), 6 ftru-pula fecunda (live lineas -12), amp; 4 tertia amp;c.

505. nbsp;nbsp;nbsp;ScHOLioxr III. Menfurs; longitudo, ejufdemque partitio,nbsp;fiüa eadem eft ubivis gentium : varias menfurarum (pecks ic-

-ocr page 182-

15^ nbsp;nbsp;nbsp;Geometiiia Practica.

prjefentat Tabella fcqucns in particulis iftiulinodi, qaalium pes Rhenanus, amp; Romanus andquus, cft looo.

-506. Pcs Rhenanus Romanus aniiq.nbsp;Dordracenasnbsp;Parilinusnbsp;Londinenfisnbsp;Middelburgenfisnbsp;Danus Communis

1000

1000

1050

1036

9Ó8

960

934

Nam ure. amp; Moht. nbsp;nbsp;nbsp;930

Leodii Sci Lamb. nbsp;nbsp;nbsp;927

Lüvan. Antverp. Brab. 909 Amitelodaraeniisnbsp;nbsp;nbsp;nbsp;904

Mechiinienlis nbsp;nbsp;nbsp;890

Bruxellenfis nbsp;nbsp;nbsp;878

Gandcniis nbsp;nbsp;nbsp;877

COROLLARIUM.

507. nbsp;nbsp;nbsp;Paciunt ergo 878 pedes Lovanienfes , 909nbsp;Bruxellenfes; feu a 8 pedes Lovanienles quam proxi-mè faciunc 29 Bruxcllcnfes amp;e.

508. nbsp;nbsp;nbsp;ScHOUON. Leuca Brabancica compleftitur 2cx)Oo pedes Bra-baniicos , five looo Virgas. Milliare Belgicum, feu l.euca ici-ncris , communicer 1500 pedum Rhcnolandicorum arftimatur.nbsp;Paffus Geometricus fade 5 pedes; Fades verp Cominunis 2 '¦nbsp;pedes Kqunt.

P R O B L E M A IV.

Lineam rtBam datam mttui.

509. Resolutio I. in charta : ope Circini, cujus crura ad lineai datac intervallumnbsp;aperiantur , amp;: dein fcalce geometrica: applicentur.

£io. Resolutio II. in Campo :

Ad manum fint deni aliquot bacuH pcdales (uti fi-gura 4 exhibet) , ferrea eufpide muniü, quos nii-nilter deierat onmes ; prarccuat hic , una manu Catendm trahens, infequente, cuni altero Catenaenbsp;extremo , ipfo Geometra , qui fcrupulosc caveat nenbsp;aut mtorqueantur fila aut annuii catena;, vel anbsp;recto traraite declinetur. Applieato uno Catena; ex--tremo ad initium linesc menfurandae; intra femigt;nbsp;Circulum manubrii oppofiti figat miniiter unum c


-ocr page 183-

Geometria Practica. nbsp;nbsp;nbsp;igg

baculis pedaiibus ; quem , ultra progredicns , ibidem relinquat; huic appiicet Geometra lèmi Circu-lum manubrii, dum mierira lecundum b-iculum minifter terra; infigit. Eaculi hi omncs a Geome-tra recoiligcndi, eorumque numero patebit virgarumnbsp;numerus; quem, cum Icrupulis, 11 qua; fuennt, fi-rata operauonc, in charta nocabit.

PROBLEMA V.

Awot objeBum qmdpiam, E. G baculus, murus amp;c. ^ perpendiculariter ereSum fit, explorare.

511. Resolutio I. Detur Gubus ligneus A (fig. 5), cujus iatus iingulum, pollicem unum acquat ;

II. nbsp;nbsp;nbsp;Funiculo, mobili per foramen congruum, in medio cubi factum, pendcat Cylindrus ameus B, a

vel 3 pollicibus longus, amp; polhce iatus.

III. nbsp;nbsp;nbsp;Cubi Iatus applicetur ad baculum , vel parietem ,nbsp;Ibramine ejufdem deorfum Ipectante : quoniam per-pcndiculum iftud conftantcr ad horizontem perpcn-dicuiariter delcendit, ejufdem funiculus debebit ubi-que ad objcdum explorandum efie parallelus; atquenbsp;adcó fic uilponi Cylindrus, ut ncquc ab co divcr-gat, neque mnitatur eidem.

PROBLEMA VL

Planum, quodcumque examinare, nam hori^onti paralklum ft.

51 a. Resolutio I. Si fucrit mediqcris extenllonis. Ex. Gr. tabula;, muri, norologia Iblaria amp;;c.; lolentnbsp;uti inftruraentis cxhibitis fig- ó amp; 7, in quibusnbsp;pendiculum (feu globulus, five Cylindrus, plcjffnbsp;heus aut aineus, è tenui filo pendet), juxia lineam

-ocr page 184-

i6o nbsp;nbsp;nbsp;Geometria Practica.

perpendicularem ad BC. bafin, liberè pendet. Ba-fis BC in varies fenlus plano eipiorando applicetur : non enim crit hoe horizonti parallelum, nili con-ftanter perpendiculi lilum exaraca: linese, ad bafinnbsp;BC pcrpendiciilari, refpondeat.

513. SciiOLioN. Perudle quoque eft parallclepipeJum ligneum Cfig: Ö) pede longum; cui Cylindms Vitreus, fpiricu vini, ex-cepta majori aëris bulla, rcplcms j fupernè amp; paiallelè affigicur :nbsp;bulla enim mediurn lubi non occupabit, nifi dum amp; tubus amp;nbsp;parallelepipedum in plano requieverint horizonti parallelo.

514. Resolütio IL Si vero Campi plaga fit libcllanda : utuntur Geometraï inftrumento, exhibito fig. 9. Lagena: Cyiindnaca: AF amp;. BC, diainctri faltem uniusnbsp;poüicis, è vitro limpidiflimo conilata:, per fiphonemnbsp;AB ex Cupro, aut feiTi lamiijis ilannatis, compofi-tum , 7 aut 8 pedibus longum, atque tripedali lufi-tcntaculo innixum, communicant. Infunditur aquanbsp;limpida, donee ea ad mediam lagenularum altitudi-nem affurgac. Quoniam in brachiis fiphonis liquornbsp;fefe ad libellam conftanter componit; perfpicuura fit,nbsp;radium vifualem OX horizonti fore parallelum : atque adeo facile innotefcit dilFerentia, fi qua detur,nbsp;inter plagam datam, amp; horiiontaie planum.

515. nbsp;nbsp;nbsp;ScHOLroN I. Si fuerit montis ptoclivitas, aut longior quae-dam horizoncis plaga , examinanda : diverfis vicibus operationbsp;peragicur : ad boe praefló fine pettiese nonnullae, ro aut 20nbsp;pedibus alcas. Collocaco inftrumento iibellacorio in montis ca-cumine A (^fig. lo), pertiea BC jubeacur ita defigi perpendi-culariter in montis declivi , ut radius vifualis, per lagenas tra-

. jeftus , incurrat in perticiB extrcmilm ( aut notetur punctum ejufdem in quod dirigitur). Dein crar.sferatur inftnimencum adnbsp;fecundam -lladoriem, ad eum feilicet locum , ubi prima petdeanbsp;BC fuerat erefta; atque collimecur-in pertieam GFj amp; ita por-ro. Probè tarnen feiendum, aldtudinis inftrumenti rationcinnbsp;negligendam non effe.

nities mond contiguas.

516. nbsp;nbsp;nbsp;ScHoi.iON U. Si opetadonem fimilem ad oppofitam montisnbsp;dcclivitatem inftir.uas , innotelect qux diftërenua lit inter pla-

PROBLEMA

-ocr page 185-

r




-ocr page 186-



- â– 


ê


n'


S


-ocr page 187-

Geometrïa Practica. PROBLEMA VIL

ïnjlrumtntum Goniometncum, feu Graphome-trum conjhuere.

giy. ResolutiO I. Ex orichalco, magnitudinis arbitra-risc.parari folenc ; quac tarnen majoris diamétri funt, prscfttnt. Exhibetur fig. i Tab. XII.

il. X Centrum eft, per quod trajiciatur refla FH J peripheria lemi-Circuli disdditur exaélilümc in 180°.

III. Regula KL, in Centro X mobilis eft; in ejus medio reéta KL delineatur, quac per Centrum X tran,'^ feat.

iV. In F, H, K amp; L, perpendiculariter eriguntur

tree, feu Pinnules , in quibus rima , ad inftrumen-tum quóque perpendicularis, exadlè refpondeat dia-metris AB amp; KL.

V. nbsp;nbsp;nbsp;Intra inftrumenti aream collocari poteft Pizis nau~nbsp;tka , Iic UE ejufdem linea mcridiana coincidat cum.nbsp;radio defignante 90°. In Rofa notanda eft lineanbsp;declinationis; hxc autein hodieduin in Brabantianbsp;eft circiter 18°, occidentem versus.

VI. nbsp;nbsp;nbsp;Figitur Graphometrura cneo giobulo intra exca-vata fegmenta PG, ut cochleii Q, pro libitu, plusnbsp;minufve prefsa, Graphometro fitus quifcumque de-tur, atque firmetur : utque tantó confiftat firmius,nbsp;fuftentaculo tripedali totum innititur.

VII. nbsp;nbsp;nbsp;Ut graduum quoque minuta, cx. gr. a 5' ad 5',nbsp;dignofcerc valeas : fic precedes.

Sit (fg. 2) X Centrum Graphometri (cujus pars

Iblüm exarata eft); OX linea media Regula; mobilis:

BR peripheria; pars. In regula mobili , juxta peri-

pherram Graphometri (initio fumpto ab O, per quod

X

-ocr page 188-

Géomïtkta Practica.

tranfit OX radius, qui amp; trajidiur per rcguloc pinnii^ las), fit arcus OE item OG 13°; queinlibec aucem ar-eum divide in 12'^ tanium , ut vides; ut fic quilbuenbsp;gradus regula; faciac 1° 5'. Pone igitur lincam OX,nbsp;cui refpondcc linea villonis, per dioptras trajeé'ta, nonnbsp;coincidere cum aliquo gradu periphcriic Graphoroctri,nbsp;ïed ultra eum, ex. gr. 20° vagari. Attentè inquire,nbsp;bui gradui penpheriae refpondeat gradus quidam Secto-ris OE; ponamufque reperiri fecioris gradum,nbsp;j2mo peripheriaj coincidcntem; erit adeó angulus BXOnbsp;¦12° periphericC, amp; prxterea 8 graduum feétoris : quo-niam ergo gradus quilibet ledtoris faciat unum gradum, amp; quinquc minuca peripheriaj Graphometri; oc-to illi fedloris gradus facient 8° 40' peripheriaj Graphometri ; erit adeo angulus BXO ao° 40'. Itaque dignofcesnbsp;graduum quanticatem, numerando in peripheria Graphometri, quot gradus integri comprehendantur, atquenbsp;in figura ao°; turn numeres in feélorc, quotus ejusnbsp;gradus refpondeat alicui peripheriaj gradui, amp; totiesnbsp;adde 5'.

518. SciiOLioN 1. Si libueric graduum minuta fingula prima de-terminare majoris diametri fic oportec Graphometrum : fu-manturque tune in feftore Regul® mobilis 61 gradus periphe-tia;, arcumque illura Regulae mobilis divide in 60°.

.519. ScHOLioN 11. Haud difScile eft , ex diftis, intelligere, quo pafto pars qu«libec divifionis eujufeumque (ex. gr. Icalx , Ba-rometri.s, aut Thermometris affixaï). pro arbitrio dividi qucatnbsp;in minores particulas ; etenim juxta gradus inftrumenti fixos,nbsp;adjungatur Regula mobilis, in quam v. g. ti gradus cransferas;nbsp;eorumque intcrvallum in 10 parces aequales pattiaris; liocquenbsp;pafto cujufque gradus dignofccre poteris amp;c. Regula hscnbsp;mobilis, inftrumenco cuicumque affixa, Nonius compellatur.

PROBLEMA VIII.

Tranlportorium conjlruere.

^20. Resolutio I. Detur lamina ex orichalco AXBCA • Cfg- 3) pro Centro fit Cufpis X. Diameter AB :

-ocr page 189-

Geometria Practica. nbsp;nbsp;nbsp;wSg

circiter 3 pollicum fu. Periphcria accuratè in 180'’ gradus dividatur. Aren inftrumenti excavanda eft,nbsp;ut confpici queac debica linearum, amp; verticis angulinbsp;ad Centrum, applicatio.

^11. ScHOLiON. Conficitur quoque CK cornu lamina pellucida ; amp; quoniam per illud facile cranl'parenc exaracse lineae , non eftnbsp;opus excavauone : immo amp; hoe Tranfporcoiiura orichalceo ianbsp;eo prieftac, quod chartam minimè maculec.

P IC O B L E M A IX.

udngulum datum metiri.

£11. Resolütio I. in charta :

Traniportorii Centrum, lèu eufpis X, ad anguli vertieem applicetur; radiufquc inftrumenti coincidatnbsp;altcrutri cruri anguli dati; tum videatur, per queninbsp;peripheriai gradum crus aliud Cpirodudum ft opus)nbsp;tranfeat, v. g. in figura LX; atque perifgt;hcricc arcus,nbsp;inter B, amp; redam LX comprehenfus, delignabit valorem anguli dati.

11. alio modo ;

Sit arcus AL (fig. 4) pars fexta peripheriae Circuli, atque adcó graduum 60. In partes fox primo dividatur; fexta autem pars prima AB, in 10 gradusnbsp;fubdividatur; notenturque partes; ut exhibetur innbsp;figura.

524. nbsp;nbsp;nbsp;üt anguli dati Xnbsp;nbsp;nbsp;nbsp;valor inquiratur per

hunc arcum : Circino capiatur areüs intcrvallum AL (eft hoe R'qualc radio Circuli, cujus arcus AL parsnbsp;cxiftit (218); unoquc. pede-in X fixo, altero defcri-hatur arcus indennitus (produclis antea cruribusnbsp;XK amp;'XC, ft opus) : fumatur Circino intervalluninbsp;ZO, atque illud transferatur ad arcum AL, qui valorem dabit areüs OZ, adeoque amp; anguli centralis X.

525. nbsp;nbsp;nbsp;SciioLiON. Si facrit arens ZO major 60 gradibus; primónbsp;applicetur arcui ZR, areüs AL totum intcrvallum ^ ex. gr. o

X a

-ocr page 190-

j6^ nbsp;nbsp;nbsp;Geometria Practica.

Z in L', amp; deinde inquiratur, quot gradus compleftatiir pars iclidua LO ; hac addita cum óo° in unam fummara, quanticasnbsp;anguli X obdnecur.

526. ni.'in Campo :

Graphometrum figatur, feu difppnatur ita, ut ejus Centrum anguli menfurandi Vertici refpondeat. Signa ponantur in extremis rcöarum, angulum datumnbsp;conllicuentium. Difponatur lie Graphometrum, utnbsp;per dioptras Diametri HF i) linea vifualis oc-currat fignorum uni : dein Regulam KO mobilemnbsp;(toto caeteroquin inftrumento lixo) lie dirige, utnbsp;per dioptras KO radium vifualem trajiciens, aliudnbsp;lignum pofitum detegas ; in peripheria, anguli datinbsp;valorem repenes.

527. nbsp;nbsp;nbsp;ScHOLiON I. Si in Campo angulum datum metiri non H-cea: ; Vcrdcalis , auc ejufdem 'Vicinus inveitigetur.

528. nbsp;nbsp;nbsp;Schol, II. Certus evades te omnes angulos exaftè dimen-fum efle, li, finita oper.acione , TiciiKiS quoque medaris •, hif-que prioribus additis, fumma quorumlibet Vicinojum 180 ad»-quet.

529. nbsp;nbsp;nbsp;Schol. III. Inquirendis angulis regtedientibus , aut procur-rentibus mororura amp;c. infervie inftrumentum exhibitum fig. d:nbsp;confiac reguhs AB amp; BC circa axin, feu centrum B, pro libi-tu aperibiiibus.

530. nbsp;nbsp;nbsp;Schol. ly. Anguli A ( fig. 7) valor quoque inquiritur openbsp;Trigonometrie ; fciiicec ab A in X fume panes squales, pronbsp;libitu , v.'g. 100 ; ab A in Z v. g. 80 talcs; deinde inquirenbsp;quot tales inveniantur a Z in X; acque refolve A per Prbble-ma V. (493).

PROBLEMA X.

Data quantitate anguli; ipfum defcribere.

,531. Resolutio I. in charta.

Ducatm- reéla XE s)- In X (punfto ubi for-mari petitur angulus) ponatur Centrum Tranfporto-rii, ita ut radius ejus cum redta XE coincidat : pumcrentur gradus a B versits C; amp; ad gradum

-ocr page 191-

Geometma Practica. nbsp;nbsp;nbsp;i6^

wkimum ex. gr. 45°, notetur cufpide pundum in charta. Reéla, ab X per illud pundum duéta, v. g.nbsp;XL, angulum defidcratum formabit.

532. nbsp;nbsp;nbsp;II. alio modo :

Ducatur redta XZ (fis;. 5); deinde ex X, üt cen-tro, intervallo arcüs AL (fig. 4 ), fiat arcug inde-finitus ZR; turn in aren AL totidem fumantur gradus, quot compledetur formandus angulus; at-que illi ab Z v. g. in O, transferantur; ab X pernbsp;ü reéla ducatur, eiiicietque quod quacritur.

533. nbsp;nbsp;nbsp;TIL in Campo :

Collocetur Graphometrum ita, ut radius ejus, feu Diameter, latcri dato formandi anguli refpondeat :nbsp;Regula raobilis ad gradum datum promoveatur : bacillus ita erigi jubeatur, ut per dioptras coliineantinbsp;occurrat; hajcquc defidcratum efficict angulum.

534. ScHOLlON I. Angulum reétum in charta , aut quovis ali* rainori plano dato, ducimus NorinA : componitur hxc biiiisnbsp;Regulis ex ligno, orichalco amp;c. ad angulum redlum 8)nbsp;juuftis.

535- Schol. II. Num Norma accurata fit probatur , fi eo mc-diante formetur angulus A (jïg. 7 ) : dein fumantur in latere AH partes tequales 4, ab A in X; amp; ab A in Z tales tres;nbsp;nifi a Z in X, 5 talium partium diflantia inveniatur, reftusnbsp;hand erit angulus A, adeoque nee Nornnz crura ad angulumnbsp;ledtum junfta fuerint.

COROLLARIUM.

Ét funicuiis in agro.

536. Facile igitur, five in charta, five in Campo, angulum rectum conftruxeris; fi ex tribus reélis, qua-ruin una 3, altera 4, amp; tertia 5 partes sequales facit,nbsp;triangulum conftruxeris. Circino illud eflicies in char

ta



-ocr page 192-

Geometria Practica.

PROBLEMA XI.

jd punBo Z (fig. I Tab. XIII.), extra reel am AB dato^ ad illam dacerc rectam , qua cum ca angulum ünbsp;determinati valoris effieiat.

537. Resolütio I. Due redam pro libim ZL; atque anguli L quantitas inveiligetur :

n. Anguluin L com formando , adde in on am fiim-' mam : h:cc fubtrahatur ex 180; reiiduum dat valorem anguli in Z furmandi, Eric ergo angulus Onbsp;defidcratas,

538. ScnoLiON. Ut in Cati^po GcomctrEc a nunfto dato C (fig. 1') ad reftam AB perpendicularcm ducanc ; Regulam Gr.iphonietrinbsp;mobilem diTponunt ad angulum reftum ; atque protedemes curanbsp;inftrumento in linca AB , fie ut Diameter ejus linea; AB coin-cidat (qnod expériuntur fepius per dioptras collineando), tamnbsp;diu progrediuneur, tinm per dioptras Regtilae mobilis, vifus oc-currac figno in C coiiftituco.

PROBLEMA XII.

Per puiiMum C (lig. 3 ), ad datam rcciam AB, paralklam ditcere.

539. Resolütio I. Ducatur recla CO, pro libitu efE-ciens cum AB angulum O.

ÏI. Fiat angulus OCZ = O : amp; rcóla CZ, prout ne-celTe iuerit, utrimque protrahatur : critque ZL pa-rallela ad AB ( 115).

£40. ScHOLioN. In charta nonnunquam utuntnr ParalleUfmo (^fig. 4) ; efi: autem inflrumcntum ex duabus regulis IL amp; CDnbsp;paratum ; recinaculis EF amp; GH tequalibiis, fic ut EG fit «qua-lis FII, in punflis E, F, H, G mobilibus ,coniunguntur. Quo-niarri in ? GEFH latera qutelibec oppolita conftantcr Kquab’anbsp;funt , quocumque inodo regulte ad fefc mutuè admoventur ,nbsp;? GEFH fempet parallelogrammum erit (aoS)-, atque adeanbsp;GE amp; HF conftantcr paralielce fint opoitet (igS ); ergo §; iq'*

-ocr page 193- -ocr page 194- -ocr page 195-

Cteomet-ria Practica.' nbsp;nbsp;nbsp;167

- l-ulanira IL amp; CD latera inter fe quóque parallela erunt Cto6). Ut igittir hujus Paralklifmi ope, per pundittn G datum, patal-lelam agas ad datam AB ; Regul» latus unum applices ad rec-tam AB, alterius veró Regultc latus ad pundtum C adducas;nbsp;amp; juxta hujus dudtum, per C redtam agas ^ eritque hsc priorinbsp;AB parallela.

PROBLEMA XII L

Circinum propordonakm conjlruere.

£41. Resolutio I. Bins Rcgulac 5 amp; 6) ex ori-chaico, AF Sc VD, medio circitcr pollice lat®, pc-de vero medio long®, in Centro X ita conjungun-tur, ut inftar Circini (non tarnen nimid facilitate aut moleftia) moveri Q[ueant : immó amp; in eadem re(tanbsp;dilpofit®, R^ul® pedalis vices habeant. Fig. 5 ex-hibet fuperficiem Circini proporiionalis ab una parte,nbsp;fig. 6. veró oppofitam.

II. X Centrum motüs quam poteft accuratiffimè dc-terminetur ; nill enim ad hoe redt® omnes (duabus ultimis exceptis) tendanc, totus inftrumenti ufusnbsp;claudicat, k. hallucinatur.

54a. III. Ducantur primo rcél® du® LX; atque fmgu-la in 200 V. g. partes ®quales dividatur : inlcrvienC autem redlarum divifioni , aut earumdem determFnbsp;nand® rationi; vocantur Linete partium aqualium.

543. IV. Secundó, redlas ducito PX, qu® propordo-nibus quadratis reélarum determinandis propri® fint; has autem modo partieris fequenti. Sit XI f — PX:nbsp;erit adeo PX® ~ XP : fiat EK Cfig- 1nbsp;EH f — EK, fit perpendicularis ad ÈK; fit EI ==:nbsp;EH; erit adeo HF = 2EF ; fiat E2 = Hl; H2 fitnbsp;= E3 ; H3 = E4 amp;c. ka fiet, ut reéla EK divi-datur taliter, ut EP fit |—Ea®; f — Es'; | — E4®nbsp;amp;c. ^ — EK®. Transterendo autem hafce partesnbsp;ad redas EPnbsp;nbsp;nbsp;nbsp;, Planorum Lima erit con'

ftruda.

-ocr page 196-

x68

Geometria Practica.

quteritur, v. g. 5 pro piano quintuplo minimi; certius autem

544. ScHOLiON. Mechanici divilioném hanc perficere folent ope tabella: fcquentis, pofico PX aequare partes 1000. Porró inve-niri hse poflunt Analogia, cujus primus terminus fit maximumnbsp;latus , ex. gr. 64; lecundus verö homölogum illud latus, quod

terminus fit quadratum numeri partium lateris maximi j quod hic =s 1000000; Radix quadrata quarti termini 78155, quamnbsp;proximè dabit 179 partes pro latere homologo plani quintupli.

r-

I

125

17

515

33

718

49

875!

2

177

18

530

34

729

50

884'

3

21Ó

19

.545

35

739

51

892I

4

250

20

5.59

7.50

52

901'

S

279

21

.573

37

760

53

9101

6

306

22

586

3^^

770

54

9i8j

7

330

23

.599

39

780

55

927I

8

3.53

24

612

40

790

935:

s

375

25

625

41

800

57

944 i

10

395

637

42

810

58

952:

11

414

27

650

43

819

59

9lt;5o,

12

433

28

661

44

829

60

968;

13

4.50

29

673

45

^39

61

9761

H

467

30

684

46

848

62

984!

1.5

484

31

696

47

8.57

63

9921

16

500

32

707

48

866

64

lOOol

ponorum Linea RX, Polygonis regularibus,-a Qua

£45- V- nbsp;nbsp;nbsp;Planorum Lineam reperiri folet Poly-

drate ad Dodecagonum incïufivè , conftruendis adin-venta. Affumatur RX pro latere Quadrati inferipti Circulo : atque in 1000 partes divifum ponatur ;nbsp;Tabella adjeéld innotefcunt partes aflumendaj X5 pronbsp;Pentagono ; X6 pro Hexagono amp;c.; eas autem fa-QÜi negotie eruere liceat è Sinuum Tabula.

Quadratum

v.


-ocr page 197-

Geometbia Practica.

1 Quadratum

1000

; Pcntagonum

831

llexagonum

707

Heptagonum

613

Oótogonum

540 1

Enneagonum

484 nbsp;nbsp;nbsp;1

Decagonum

437

Endccagonum

39Ïi

Dodecagonum

\____ - ¦ ------ ¦

3ÓÓ

546. nbsp;nbsp;nbsp;VI. Ex adverfo, ad oppofitam. Circini oram, innbsp;fuperficie delineantur Chordarum, Soüdorum, atquenbsp;Mttallorum. Linesc. Primo pro Chordis : diacanturnbsp;reéte CX : deinde dacatur in charta, vel potiüs innbsp;tabula aenea, recta illi scqualis, quEC aOumatur pronbsp;Diametro femi-Circuli, cujus Peripheria dividaturnbsp;exaétè in 180°. Circino capiatur intervallum abnbsp;extremitate Diametri, ad fingulum ex gradibus, adnbsp;ufque 180; quodlibet autem in Circino proportio-rali transferatur ablt;X, in redtam XC; notenturquenbsp;partes per quinos, aut denos fingulos gradus : ha-bebunmr adeó rrétataï i Sg” Chordai, quarum primanbsp;fubtcndit unum gradum, ultima vcró 180° Circuli ,nbsp;cuius Diameter asq^uatur re‘5:ai'^datac, qute ailumptanbsp;fuèrit pro Diametro lemi-Girculi diyifi in 180°.

547. nbsp;nbsp;nbsp;VII. Chordarum Liners, proxima efle folet Solido-rum Linea SX; talis autem hxc eft, ut SXquot;* lifenbsp;^ Xi^. Porro ut facili methodo medias divi-Itonum particulas determines, Tabella fequens detur.nbsp;Ponitur XS partium 1000; erit adeo Xi = 250.

¦ Qüod fi quoïiiveris, quoc panes ftmiles compleótatur

-ocr page 198-

rjö nbsp;nbsp;nbsp;Geometria Practica.

X5, pro lacere homologo Solidi ex. gr. quiniuplo ir-ajoris quam eft minimum Xi : hanc inftiiues Ang-logiam, in qua primus terminus fit maximum 1'oli-dum C atqne adeo hic 64); fecundus fit Iblidum fi-milc, cujus qua;ritur latus homologum 5; tertiusnbsp;veró fit Cubus numeri partium lateris maximi, leunbsp;bic 1000000000; quartus autem invenietur 78125000;nbsp;cujus 427, quam proximè dabit latus liomo-logum Solidi quintupli. Et ita de cacteris.

I

250

17

643

33

802

49

914

2

3E5

18

655

34

810

50

921

3

360

19

667

35

818

51

927

1 4

397

20

678

825

52

933

1 .5

427

21

689

37

833

53

9391

! 6

4.54

22

700

38

840

54

945

1 7

478

23

711

39

848

55

951

! ^

500

24

721

40

8.55

56

95Ö

9

520

25

731

41

862

57

962

10

538

26

740

42

869

58

967

II

550

27

7.50

43

876

59

973;

‘ 12

.572

28

7.59

44

882

60

9781

13

588

29

768

45

8^

61

984,1

iM

602

30

777

46

896

62

989!

|i.5

616

31

785

47

902

63

9951

1

u----

Ó30

32

794

48

908

64

lOOOj

548. Sequitur Lirica Metallorum MX. Sex Metalla numerantur, chymicifque charaéferibus indigitantur :nbsp;nempe Aurum O : Plumbum b : Argentum d : Cuprumnbsp;S : Ferrum $ : Stannum %.

Quoniam duorum Solidorum pondera funt in rations compofita gravitatis fpecificai amp; Voluminis : co»-

-ocr page 199-

Geometria Practica. nbsp;nbsp;nbsp;171

fequens eft primo; fi tuerint ejufdem Voluminis, pon' dera effe in eadem ratione, qua funt gravitates fpeci-ficx : fecundo, li fuerint ejufdem gravitatis fpecificac,nbsp;fore pondera üt Volumina : tertio , fi fint ponderanbsp;aiqualia, fore gravitates fpecificas in ratione inverfanbsp;Voluminum. Quod fi ergo cognita fit ratio inter gravitates fpecificas amp; pondera, amp; prxterea datum lit Volumen unius; facilè innotclcit alterius Volumen; cumnbsp;proportionis quartus fit terminus. Ex. gr. quseritur Volumen folidi ex Ferro, ejufdem pondcris cum Solidonbsp;ex Stanno, cujus notum eflè ponitur Volumen, velnbsp;Diameter, quae fit 1000 partium : demus fpecificasnbsp;eorum gravitates effe ut 558 librae ad 516 libras cumnbsp;2 uneiis. Fiat hacc analogia ; ut 558 libr. ad 516nbsp;libr. 4- 2 uncias, ita cubus 1000, ad cubum Diametrinbsp;Solidi ferrei; quac, radice cubica extracta , invenieturnbsp;974 quam proximè.

549. Tabclla lequens finiftima indicat gravitates Ipe-cificas; immo quot libras amp; uncias pes cubicus cujuf-que Metalli adaequet in menfura amp; ponderc gallica-nis : dextima verb indicat rationem latcrum homolo-gorum, feu Diametrorum in Sphxris; pofita Diametro Metalli leviffimi, feu Stanni, 1000 partium; dum So-lida, ex iis compofita, xqualis funt ponderis.

libr.

unc.

Aurum

13 26.

4

Aurum

730

Plumbum

802.

2

Plumbum

863

Argentum

720.

12

Argentum

89.0

Cuprum

627.

12

Cuprum

937

Ferrum

5.58-

0

Ferrum

974

Stannum

51Ó.

2

Stannum

1000

Sit itaque linca MX =

1000.

lt;?X=974. ?X =

= 937'

CX = 895.

bX = 863.

gX

= 730 : erit rité

con-

-ocr page 200-

172.,

Geohetria Phactica.

£50. IX. Ad Oram Regular extimam GD amp; GA rec-’ ta ducitur , in qua partes notantur, quibus inno-tefcunt pondera Globorum 1'ormentorum beilicorum: quoniam enim experientia habet glóbum ferreumnbsp;Diametri 3 pollicum Parifinorum ponderare librasnbsp;¦ 4 Galiicas; intervallum 3 talium pollicum ponaturnbsp;a 4 in 4 in Linea Solidorum XS; atque manentibusnbsp;ita apertis Circini cruribus, reliqua interval’a ab inbsp;in i; a a in 2; a 3 in 3 amp;c. a 64 in 64, transfe-rantnr a G in reétam GD-^ Intervalla autem, qusenbsp;reóta GD majora fuerint, notentur omnia in reétanbsp;quadam, duéia in charta; turn apertis omnino Circini cruribus, ita ut regulac ambai unicam redamnbsp;GDAG conftituant, perge a G eadem notare. Sinbsp;dein Circini crura ita coardes , ut intervallum glo-bi unius librai a 2(i in 2A conftituatur in Linea Solidorum ; intervallum ab i in i, dat globüm ^; a 2nbsp;in 1 globum famp; a 3 in 3 globum libr.; intervalla bacc quèque notentur in linea GD : amp; Lineanbsp;Globorum conftruda erit.

_g5i. X. .Ad oppofitam Regul® Oram TADT rcda ducitur, in quam transferuntur Tormentorum beilicorum Diametri cavitatis. Reda: hujus partitionbsp;facilè abfolvitur ope Linece Glahorum : ut enim Globus in cavitate Tormenti Cylindrica movendi facili-tatem habeat (fic tarnen ut plus aequó baud vacil?nbsp;let); folent Diamctrum cavitatis Cydindricic ita af-fumere, ut ea Globorum Diametrum excedat, unanbsp;fcilicet linea, pro Globo 6 libr.; duas lineas pronbsp;12 libr.; tres aut quatuor pro 24 libr. amp;c.: transfe-rantur igitur in lineam TADT ( eodem modo , quonbsp;in prsccedenti) partes Linece Globorum, fic ut quac-libet pars, proportione jam dida, major elSciatur.

Nunc aliqua proponemus Problemata de ufu Circini proportionalis.

-ocr page 201- -ocr page 202- -ocr page 203-

Geometria Practica. nbsp;nbsp;nbsp;175

PROBLEMA XIV.

ReBam AB (fig- i Tab. XIV.) dat am, in qaotcumqiit parus (zqualcs dividere.

55a. Resolutio. Circino, cujus crura acuminara funt, accipiatur reCts AB intervallum; turn Circini pro-portionalis cruribus apertis, prioris Circini crura ap-plicentur, hinc inde, in Linta partium aqiialhim XL,nbsp;in tali numero (potius majori quani minori), quinbsp;dividi poffit exaétè per nunierura partium , in quasnbsp;reéta AB eft dividcnda. Ex. gr. fi dividi petatur innbsp;7 partes tcquales ? Ponatur intervallum AB a 70 innbsp;70 : tuiii mancntibus ita fixis Circini pröportionalisnbsp;cruribus, Circino acuminato fumatur intervallum anbsp;10 in lo; atque hoe fepties continebitur in rectanbsp;AB.

553. ScnoLiON. Quöd fi tefta AB data longior fuerit, ut vel earn non caperet Circini intercarpedo, vel lakem angulus cru-rum Circini nimium obtufus efficeretur ; operaberis per i, -jnbsp;auc i rectae datae, quam partem proportionate divides ad partes,^nbsp;quas deberet continere; hafque dein transferes ad integtam rec-tam AB.

PROBLEMA XV,

ReB-d AB daté, alteram invenire, qucc fit ad earn in ratione data.

Ex. gr. fit invenienda linea quac 1 , vel | minor fit quam recla AB.

£54. Resolutio. Primo cafu applicetur intervallum reétac AB a 140 in 140; amp; Circino acuminato in-^nbsp;venies quaifitnm intervallum a 160 in 160. Secun-do cafu verö intervallum AB ponatur a lao in 120,nbsp;amp; a loo in 100 reperies. quod quxritur.

-ocr page 204-

J74 nbsp;nbsp;nbsp;Geomitria Ptlactica.

PROBLEMA XV 1.

/ld datas reSas AB, CD, EF (fig. a}, quart am quarerc proportionakm.

^55. Resolutio. AB item CD utrimque applicentur ab X, in Linea XL parthim aqualium (quo inno-tefcec earumdem ratio) : fitque XK item XOi=AB;nbsp;XG item XH = CD : turn ita aperiantur Circininbsp;proportionalis crura , ut intervallum KO fit fcqualenbsp;EF; eritque GH quxfita. Si foret prima reéfarumnbsp;major fccundA, v. g. fi darentur ab, cd, ef: fiatnbsp;XK item XO = cd : XG item Xtl = ab : fed tuncnbsp;fieri debet GH = ef: dabitque quarcam KO.

PROBLEMA XVII.

rcBas AB amp; CD ( fig. 3 ) datas, tertiam

qucerere proportionaiem.

^^6. Resolutio. Adjiciatur tertia linea EF, qux fit jcqualis CD : atque ad reóias AB , CD, EF, quaerenbsp;quartani proportionaiem; amp; hxc quxfitam dabit.

PROBLEMA XVIII.

iiomologum in data ratione.

^d datum latiis AB invenire laws aliquod

Ex. gr. quxrendum cft latus homologura, cujus qua-dratum fit ad quadratuin lateris AB ut ti ad 13, vel ut 19 ad 15 amp;c.

'N

£57. Resolutio. Primo cafu applicetur intervallum AB in Linea Planorum XP a 13 in 13 : Circinonbsp;acuminato capiatur diitantia ab 11 in 11, atque haecnbsp;dabit primum quxfitum. Secundo cafu ponatur AB

-ocr page 205-

Geometria Practica. nbsp;nbsp;nbsp;175

a 19 in ip : amp; diftantia 15 a 15 eit fecundum pc-ticum.

PROBLEMA XIX.

Inquirera Planoriim jimilium datorum rationem.

Ex. gr. inquirenda eft ratio AA ABC amp; abc (fig. 4)

fimilium.

558. nbsp;nbsp;nbsp;Resolutio. Circino acuminato fumatur interval-lum 6c, hocque applicetur Linea Planorum XP innbsp;partibus aiqualibus, Ex. gr. a 12, ad 12; tenta deinnbsp;quibus partibus, scqualiter ab X diffitis, queat ap-plicari intervallum BC; ponamufque reperiri ab 18nbsp;ad 18 ; erit adeo A ABC ad A c6c üt 18 ad 12 :nbsp;etenim BX^: bX^ — BC*: 6c*; fed BX*: 6X* = 18:13nbsp;Cattenta Awece Planorum conftrudlione); ergo BC*;nbsp;6c* = 18 : 12 amp;c.

PROBLEMA XX.

Circini proportionalis crura ita aperte, ut Lineac Planorum efficiant angulum reSum in X.

559. nbsp;nbsp;nbsp;Rïsolutio. Circino acuminato fume in Lineanbsp;Planorum Qfig. 5), ab X, partes aliquot pro libitu,nbsp;ex. gr. = 40 ; dein lie aperiantur ejufdem crura, ucnbsp;intervallum illud = 40, poPfit poni a ao in 20, v. g.nbsp;a K in L; five fit KX item XL = 20, KL veronbsp;40 ex illis partibus : quoniam enim KL* = KX® nbsp;LX®, erit angulus KXL rectus.

PROBLEMA XXI.

Duobus Planis Jimdikts datis, tertium confiriiere prio-^ ribus fimilc, 6* iifdtm Jimul fumptis ceqiiale.

Laws homologum primi plani (v. g. trianguli) fit efiS' • fscundi vero fit CF.

-ocr page 206-

jyö nbsp;nbsp;nbsp;Geometria Practica.

g6o. Resolutio. Circini proportionalis iJnecz Plano-rum ad angulum reélum difponantur. Ponatur AB ab X in K; amp; CF ab X in L; ent intervallum KLnbsp;scquale lateri, fuper quo facSum planum (v. g.nbsp;triangulum) fimile uni ex duobus datis, acquale hoenbsp;erit iifdem fimul fumptis : nam KL’= KX® XLquot;*,nbsp;feu = AB’ CF®; quoniam igitur plana ümilianbsp;funt üt quadrata laterum homologorum, planumnbsp;fimile fuper latere homologo KL aequabitur duobusnbsp;planis fimilibus fimul fumptis fuper KX amp; XL.

PROBLEMA XXII.

Circulo dato Polygonum regulare injeribere.

£01. Resolutio. Circuli dati Radius applicetur Lima Polygonum XR a 6 in 6 : atque tali manente . Circini proportionalis apertura : capiatur intervallumnbsp;a 5 in 5 pro Pentagono; a 7 in 7 pro Heptagono ;nbsp;ab 8 in 8 pro Oélpgono amp;c. Illudque, quoties po-terit, peripheriac applicetur; totidemque chordae duc-tae efficient quod quairitur.

Ex. gr. ponamus Circulo dato Cfig-7^ inlcriben-dum elTe Nonagonum. Lima Polygononim XR , radius OL circuli dati applicetur a 6 in 6; dico intervallum d 9 in 9 fore lams Nonagoni forniandi.

Demonst. Eft X6: X9 = 66:99; quoniam ergo X9 efi: aequale lateri Nonagoni rcgularis, cujus radius ob-liquus foret aequalis X6 (ex conttruclione Linea Poly gonorum); confequens ell reélam a 9 in 9 fore etiamnbsp;a:qualem lateri Nonagoni regularis inferipti circulo ,nbsp;cujus radius acquatur reöae a 6 in 6. Q^. e. d.

PROBLEMA XXIII.

Super data AB (fig. 8 ) Polygonum regulare defcribere.

£62. Resolutio. Intervallum AB Polygononim Linds applicetur, ad numcrum utrimque a;qualem nu-

merQ

-ocr page 207-

Geometria Practica. mero laterum, quibus Polygonum conftruendum con-ftave oportet. Capiatur Circino acuminato interval^nbsp;lum a 6 in ó, acque co, ex A amp; B, fiant inter-fectiones in O; eritque O centrum Circuli delcri-bendi, cujus peripheriaD, quoties fieri poteft, appli-cetuf chorda AB.

Ex. gr. defcribendum efi: Nonagonum, In prscce-denti figura fit 99 = AB ; dico intervallum a 6 .in 6 fore Circuli delcribendi Radium.

Demonst. Erit X9: X6 = 99:66; quoniam igitur X9 eft xquale lateri Nonagoni regularis infcripti Circulo,nbsp;cujus radius eft aequalis Xö (ex conftruófione Linccenbsp;Polygonorum); erit reéta a 9 in 9 rcqualis lateri Nonagoni regularis, infcripti Circulo, cujus radius a;qua-tur reétac a 6 in 6. e. d

PROBLEM A XXIV.

Iti peripherla Circuit dati^ pro Vihita graduum quantltatm ajfumere.

Sit ex. gr. in Circulo dato (fig. 9) arcus 50° de-terminandus.

£63. Resolijtio. of Circuli radius transferatur ad Lineam Chordarum a 60 in 60 v. g. KR Turnnbsp;Circino acuminato capiatur intervallum a 50 in 50nbsp;V. g. LE, qux, applicata periphcrias, arcum’50° fub-tendet. Nam eft XL : XK = LE : KR ; amp; quoniamnbsp;XL = chorda: arcus 50° in Circulo, cujus radiusnbsp;= XK ; erit LE = chordae arcüs 50° in Circulo-^nbsp;cujus radius = KR.

Corollarium.

.5Ö4. Facilè hinc methodus habetur anguli dati valorem inquirendi; aut valoris dati angulum formandi. Ex- gr. inquirendus eft valor anguli B Qfig. 10') ;

-ocr page 208-

-178 Geometria Practica.

ex B delcribatur arcus KL. BK ponatur in Lines Chordarum a 6o in óo; quaere dein, cui numero, hincnbsp;indé acquali, congruac intervalium KL; acque iiie an-guli B quaniitatcm delignabit. Si veró ad pundium Anbsp;L fiS' ^ ^ ) conftruendua fit angulus v. g. 70° : cx Anbsp;fiat arcus indefinitus OZ- AZ ponatur a 60 in 60 :nbsp;Circino acuminato capiatur intervalium a 70 in 70;nbsp;ponatur hoe a Z in arcum ZO, v. g. a Z in F; amp; recta AF efficiet angulum 70°.

P R O B L E M A XXV.

Solido dato, ex. gr. Pyramuk, cunts alt kudo aut homo-' logum aliquod latus fit = recicc AB; invenire al-titudinem, aut latus homologum, Pyramidis fi-milis, quee ad datam Pyramidem fit in ra-tione data. Ex. gr. ~ vel | minor.

565. nbsp;nbsp;nbsp;Resolutio. Primo eafu intervalium AB ponaturnbsp;in Linea Solidorum XS, v. g. a co in 20 : amp; inter-vallum a 60 in 60 dabit altitudinem, lêu latus homologum quaefitum. Secundo veró cafii intervaliumnbsp;AB ponatur v. g. a 50 in 50 Linea Solidorum; amp;

' diftantia 40 a 40 erit = later! horaologo defiderato.

PROBLEMA XXVI.

Solidorum fimilium rationem inguirere.

Ex. gr. AB amp; CD (fig. 12) fupponantur latera ho-mologa datorum Solidorum fimilium.

566. nbsp;nbsp;nbsp;Resolutio. Intervalium minoris AB ponatur innbsp;Linea Solidorum, hinc indé in acquaii diftantia anbsp;Centro X; atque Circini proportionalis crura fic fixanbsp;retineantur ; turn Circino acuminato capiatur CD,nbsp;atque exploretur, quibus partibus Linea Solidorum,nbsp;hinc indé a Centro X aiqualiter diffius, intercipiatur;nbsp;prior numerus amp; pofterior rationem indicabunt.


-ocr page 209-

Geometri* Practica.

Ex. gr. fl fuerit AB appiicata a 26 in 26; CD veró repenatur a 38 in 38; eric priraum Solidum adnbsp;fecundum ut 26:38.

PROBLEIVIA XXVII.

Invenire Diamttrum Sphcera, ex. gr. ex .xiuro, cequalis ponderis turn. Sphara v. g. ex Argeato, cujusnbsp;Diameter data fu.

^6'j. Resolutio. Sumatur intervallum Diainetri dat®; acque ponatur in Linea Metallorum ab Cl in d : di-ftantia ab O in Q erit Diameter quxfita Sphxr® au-re®.

Demonst. Ex conftruftione Linece Metallorum^ di-ftanti® ab X Centro ad ufque Charaéteres chymicos cujufque Metalli, ®quantur Diametris Solidorum limi-lium pondere acqualium, compofitorum ex illis Me-tallis; amp; quoniam intervalla, qu® Metallis illis refpoii-dent, funt in eadem ratione ac Diaractri prsfat® :nbsp;confequens omnino eft, eadem intervalla effe quóquenbsp;®qualia Diametris Solidorum fimilium, pondere ®qua-lium, è Metallis illis compofitorum. Eft ixaque in-tervallum ab O in Q Diameter quxfita in cafu pofito.

PROBLEMA XXVIII.

Invenire Jpcdficce gravkatis rationem Metallorum, ex. gr. Auri amp; Argenti.

568. Resolutio. In Linea Metallorum capiatur Diameter Argenti ab X ulque d ; atque h®c transfera-tur ad Lineam Solidorum , v. g. a 50 in 50 : dein invariata Circini proportion alls aperturd, Circino acuminate capta Diameter Auri in Linea Metallorumnbsp;ab X in G, applicetur hinc indé sequali numero par-

Z 2



-ocr page 210-

i8o nbsp;nbsp;nbsp;Geometria Practica.

tium Linece Solidorum : quod in cafu fiet fere a 27 ad 27; igitur gravitas fpecifica Argenti eft ad gravin-tatem fpecificam Auri, fere üt 27 ad 50.

Demonst. Per conftrudtioneni Linece Metalloriim perfpicuum eft, fpecificas Metallorum gravitates elfenbsp;in ratione rcdproca Cuborum Diametrorum fuarum,nbsp;qure in Linca Metallorum notatx fuerinc : amp; quoniaffl'nbsp;Diametri iftae in cafu applicatae funt Linece Solidorumnbsp;apcrturaï; ncmpe Argenti a 50 ad 50, feu ab A in Bnbsp;13), atque hinc reperiretur Auri Diameter a 27nbsp;in 27 quam proximè, feu ab F in L; cvidens omninanbsp;eft, ob AA funilia ABX amp; LFX, elfe AB^: LF^ =nbsp;BX*: FX^; porro cubi mtervallorum AB amp; LF, quainbsp;Diametri funt Argenti atque Auri, in ratione inverfanbsp;indicant proportionem gravitatum Ipecificarum : igiturnbsp;amp; 27quot;’“™ folidum denotant quoque, in rationenbsp;inverfa, gravitates eorumdem fpecificas; amp; confequen-tcr Argenti ad Auri = 27 : 50.

369. ScHOLiON. Quoniam Metallorum Diametri, in Linea Metal-loruin notatae, ita longte funt, ut multüm Circini crura aperiri opnrteat, ad earumdem intervalla ponenda in Lineam Solido-rum : opcrari licoat per earumdem mediam, aut tertiam partcra.nbsp;Immö amp; facilius , fi pro libitu, data Circini cruribus apertura,nbsp;capia'.ur, ex. gr. in cafu dato, intervallum ab (J in (J i hocquenbsp;in charta notetur : dein intervallum ab © in © transferatur innbsp;Lineam Solidorum a 27 in 27 ( etenim qute ratio datur Dia-metrorum iftorum Solidorum in Linea Metallorum, talis fitnbsp;oportet inter intervalla ([ in (J) amp; O in ©) : turn, invariatanbsp;Circini aperture , inquiratur , cui numero refpondeat interval-lum ab (J in ; atque reperies proximè a 50 in 50 amp;c.

PPvOBLEMA XXIX.

Solidi, ex. gr. ex Stanno, pondere dato = 36 libr.; invenirc pondus Solidi ex Mrgento, ejufdemnbsp;cum priori Voluminis.

570. Resolutio. Circini proportionalis cruribus, pro libitu, apertis, capiatur primo intervallum a 2A in

il.


-ocr page 211-

Geometria Practica. nbsp;nbsp;nbsp;i8i

if, hocque nocecuf. Dein incervallum ab d in d ponatur in Linea Solidorum è 36 in 3Ó ; atquenbsp;ita fixis Circini cruribus, videatur, cui numero Li~nbsp;necE Solidorum congruat intervallum ab d in d, priusnbsp;noratum; inv'enies autein a 50 in 50.. Igitur fi litnbsp;Stannum 3Ó libr. ejufdem Voluminis cum Argcn-to, ponderabit hoe 50 libr.

PROBLEMA XXX.

X^otis Diametris , feu laterihus homologis Solidorum fi-milium, cx. gr. Globorum Stanni amp; jirgenti; iii-venire raüonem eorumdem ponderum.

571. nbsp;nbsp;nbsp;Resolutio. Diameter Globi ftannei applicetur iinbsp;2A in 2^; moxque capiatur intervallum., ab d in .d;nbsp;quod fi hoe luerit majus vel minus Diametro Globi , feu Spha;rac ex Argento; erit quèquc Globusnbsp;argenteus raajoris, vel minoris ponderis quam Globus ftanneus ; etenim ex conftrudione Linea Me-tallontm, Globi iili pondere aiquales forent, fi argen-tei Diameter eongrueret intervailo ab d in d; ft igitur inquiratur, quibus partibus refpondeat intervallum iltud ab d in d in Linea Solidorum; rationesnbsp;ponderum innotelcunt.

PROBLEMA XXXI.

Sphara, ex. gr. Cuprea, Diametro atque Pondere 10 libr. datis; invenire Diametrum Spharanbsp;Aiirea 15 libr.

572. nbsp;nbsp;nbsp;Resolutio. Quecratur Diameter Sphairaï aureac,nbsp;aequalis cuprex, per Problcma XXVll. (567); Diameter ifthacc applicetur a 10 in 10 in Linea Solidorum : intercarpedine a 15 in-15, qusefita prodi-bir Diameter.

-ocr page 212-

Geometria : Pr'acticA'.

373. ScHOLiON. Porro ut Diametri cavkatum quarumcumque, aut convexicatum live foliditatum j menluientur ; fiat Circinus {fig.nbsp;14 ) ; cujus X fu Centrum motus ; bina crura AX amp; BX cur-va, oppofua fint amp; in aaquali a centro diftancia, cruribus CPnbsp;amp; FX; ica ut in primis AXB amp; BXC reélam conHituant;nbsp;prxtcrea fint AX, BX, CX amp; FX inter fe- aquales : quo-niam enim AA AXB amp; CXF congrua funt; fi cruribus curvisnbsp;capiatur Diameter convexitatis = AB; crit FC eidem aequalis;'nbsp;vel fi brachiis reftis capiatur Diameter caViJatis = FC; intct-vallum AB eidem «quatur.

PROBLEMA XXX l‘l.

Menfulam Gcomctricam C amp; Inftrumentum uni-verfale dicitur ) conjlruere.

574. Rksolutio I. Fiat Tabula redangularis ABCD. (fig. I Tab. XV.) 16 pollices longa, la'veró lata.nbsp;Partis media; redlangularis EF’GH luperficies, medionbsp;pollice circiter, circumjacente altior eit, ut ei .apta-ri queac reótangulum, leu Qnadrum amovibile, con-tentum lateribus AB, EF; BC, FG; CD4.GH; DAnbsp;amp; HE; paraturque hoe è ligno buccino, atque icanbsp;applicatur, ut idem efficiat planum cum fuperfidcnbsp;media. Quadrum porro ittud ideo eit '^amovibile,nbsp;ut, düm. charta tegitur reélangulum EFGH , in-flexis ejufdem limbis infra quadrum, ca e.xpanfa re-tineatur.

II. nbsp;nbsp;nbsp;Latus AD item BC dividitur in 200 v. g. partesnbsp;.acquales ; AB item CD in 150, prioribus acqua-les. Divifio hscc Scalam quóque fubminiitrabit.

III. nbsp;nbsp;nbsp;Ex punt3:o X, medio FG, ducatur media Circulinbsp;Peripheria FLG; quam cxaóbè in 180° partiaris :nbsp;holque gradus transler in latera FE, EH, amp; HG;nbsp;fcilicct Rcgula, conftantcr appiieata ad X centrum,nbsp;per quemlibet gradum peripheria; ducatur, h juxtanbsp;cara lineola; feu gradus, eorumquc numen notenturnbsp;in limbo FEHG. Operatione finita delcantur cha-

-ocr page 213- -ocr page 214- -ocr page 215-

Geometria Practica. nbsp;nbsp;nbsp;1S5

radteres duöi intra arcara reftanguli EFGH. Divi-fio limbi FEHG quóque facillimè abfolvitur, fic difpofito Tranfportorio , ut ejulilem Centrum re-fpondeat punélo X; Diameter verè incidat in rec-tam FG per X duélam. Regula dein, ab X pernbsp;fingulos gradus trajecta, indicabit in limbo FEHGnbsp;transferendos gradus.

IV. nbsp;nbsp;nbsp;Fiat Regula ex orichalco Cfig.^'), qu® fit dia-

, gonali BD Menfulx longior; in ejufdem extremis ad

perpendiculum affixsc funt Pinnulae viforiac KR, qua-rum Rima exaflè refpondeat reótac OZ, duétac jux-ta latus unum Regulas. In hac Regula, Scala, atque menluras varia? exarari folent.

V. nbsp;nbsp;nbsp;Foramen acu fiat in O, quod punétum, reda?, pernbsp;rimas pinnularum trajeélac, exaétè refpondeat ; ut ,nbsp;pofui in B aut X Acu, qua? per O trajiciatur,nbsp;circa eam moveatur Dioptra KR.

VI. nbsp;nbsp;nbsp;Menfula tripedali fuflentaculo, üt Graphometrumnbsp;fg. 1 Tab. XII., innititur, ficui cuicumque propria.

575. ScHOLioN. Manifeftum in primis eft Mcnjulam ptaefatatn Graphometri vices habere , fi Regula, feu Dioptra KR, peinbsp;foramen O tranfmittendo acum , figatur in X. Mukiplicernnbsp;feu univerJ’aUm ejufdem ufum ex fequendbus colligere liceat.

SECTIO SECUNDA

de longimetria.

PROBLEMA l.

Mctiri dijlantiam duoriim objeSorum BC, ex A qiifdem jed non è fèjè mutuo^ accejjbrum.

576. Resolutio I. Commodam elige fiationem A: a B item C per A reótas age, ita ut fit BA = AL

-ocr page 216-

¦184 nbsp;nbsp;nbsp;Geomethia Practica.

amp; CA. = AZ; eric ZL = BC ; 1'unt enim AA ABC amp; ALZ congrua ( 191).

cn-i. TI. alio modo. Fiat CF acqualis amp; parallela BG:

; erit FG = BC.

^78. Illi Vel fkélo A ABC ; due OX parallelam ad BC : erit AO : AC = OX : BC ; quoniam ergo me-tiri licet AO, AC amp; OX, facilè innotefcit BC.

579. nbsp;nbsp;nbsp;IV. Vel redtae AC amp; AB duélaj, item angulusnbsp;A, menfurentur : ope Trigonometriae primo inveniesnbsp;angulos ACB amp; ABC, amp; deinde reétam BC.

580. nbsp;nbsp;nbsp;V. Duétis AB amp; AC, iifque'menfuratis, inqui-ratur valor anguli A : Tranfportorio fiat in chartanbsp;angulus a = A ; fit cA in partibus Icalae = AB :nbsp;ac in talibus partibus — AC : Circino captum in-tervallum öc, atque fcalae applicatum , dabit name-rum menfurse = BC. Etenim AA ABC amp; abc fi-milia funt.

’581: VI. MenfulS Geometrica (fig. 4) commodè diF pofita, ducantur juxta Dioptram, collineando in Bnbsp;amp; C, reétsc AF amp; AG indefinitae : AC item ABnbsp;menfurentur : fiat Ab, in partibus Scala:, a:qualisnbsp;AB ; amp; Ac = AC : erit bc duéla, in partibus Sca-lae, tcqualis BC.

P R O B L E M A I r.

Invenire dijlantiam ditorum objeSontm AC C fig- 5)gt; quorum itnim tantum cjl accejjibik.

582. Resolutio I. Statione in B eleclS ; inveftigetur quantitas anguli B, mediante Graphometro; deinnbsp;inquiratur quóque valor anguli BAC; quoniam laws AB notum eft, determinabis AC per Trigono-jnetria: Problema II. C486}.

5153- II-

-ocr page 217-

Geometria Practica. nbsp;nbsp;nbsp;iS^

583. nbsp;nbsp;nbsp;II. Vel in charta dacatur ab = AB in partibusnbsp;icala;; fiat a = A; b = B : erit ac = AC in partibus fcalac.

584. nbsp;nbsp;nbsp;III. Vel collocetur primo Menfula Geometrica innbsp;O i^fig. 6), eamque fic difpone, ut reda, fecundumnbsp;unum cjus latus partium scqualium duda, in A tendat : menfuretur AO, fitque aO ei aequalis in fcal»nbsp;partibus; per Dioptrara collineans ab O in C, ducitonbsp;indefinitam OZ; tune tranflata Menfula fic confti-tuatur in A, ut idem latus Ao incidat in AO,;nbsp;turn ab A Dioptra diredl in C, ducatur Ac: erit-que hxc, in partibus Scalas, aiqualis AC ; efl: enimnbsp;A ACO fimile A Ac o.

585. ScHOLiON. Si opoTteat fluminis (^fig. 7) latitudinem deter-minare; ducatur primo in ripa BC, parallela ad iittus; ad quarrjnbsp;fiat perpendicularis OK (538) : tune inveftigetur anguli B valor; amp; relblve A OBK vel per Trigonometriam, vel in charta formando A obK fimile A OBK, fic ut ob in partibus icala*nbsp;sequetur OB : vel fiat Z = B, producaturque KO, donee con-currat cum ZL : nam hoe cafu AA KOB amp; LOZ funt coa-grua; atque adeo efl; KO = OL.

PROBLEMA III.

invenire diflantiam duorum objeciorum AB (fig. I Tab. XVI.) inacceffbrum.

586. Resolutio I. Ducatur CF Bafis notabilis, re-fpeélivè ad objedorum diftantiam tum a fefe mu-tuo , tum ab obfervatore ; ponamufque FC = 150nbsp;virg. Inveftigcntur primo in C, mediante Grapho-metro quantitates angulorum FCB amp; FCA, hiqu®nbsp;notentur : in F inquirantur anguli AFC amp; CFB.nbsp;In A FCB per Trigon. invenies BC; amp; in A CFAnbsp;determinabis AC : nofces adeó in A ACB lateranbsp;AC amp; BC cum angulo intercepto ACB : innotcf*nbsp;eet ergo AB per Problem a IV. C 49^ ),

A a

-ocr page 218-

ï8Ö

Geomet]iia Practica.

587. nbsp;nbsp;nbsp;II. Dudtïi FC üt in prsccedenti, iifdemque men-i’uraiis angulis : in charta ducatur cf = 150 par-tibus fcalou ; fiant c = C; ƒ = F; angulus /ca =nbsp;FCA ; angulus cfb — CFB : A afc erit limiie Anbsp;AFC ; A bef iimiie A BCF; eit aaeè VC:fc =nbsp;AC ; ac; item elt FC : fc = BC : bc : adeóque ellnbsp;AC ; ac = BC : bc; verum angulus BCa = bca :nbsp;ergo AA ABC amp; abc ftmilia llint ; itaque ab innbsp;partibus Icalte elt = AB.

588. nbsp;nbsp;nbsp;III. Duda FC (fg. 2) 150 V. g. virgarum; Men-lüla Geometrica primo collocetur in F, ita ut unumnbsp;ejus latas coincidat reélx FC : deinde collineandonbsp;a'b F in A amp; B, ducantur FZ amp; FX. Translera-tur inde Menfula in C, atque ita difponatur, utnbsp;lams C/'incidat in reélam FC, punélumque C im-mineat punfto c limbi, diftanti ab ƒ 150 partibusnbsp;fcalaa; five fit fc — 150 partibus fcala;. Tum a Cnbsp;collineando in A amp; B ducantur reéte, quac occur-rant reftis fZ amp;/X in a eritque A FAC limiie A fac : A FBC fimile A fbc : adeoque duétanbsp;cb; A ABC eft fimile A abc, ut in prtecedentinbsp;demonftratum fuit : igitur eft ab, in partibus Scala: , scqualis AB.

COROLLARIUM.

589. Quoniom igitur eft angulus CAB = cab, eftnbsp;ab duda parailela ad AB; atque adeo ft ad ab ap-plicetur Dioptra, atque in ejus direólionem reda pro-trahatur, erit hate parailela ad AB. Igitur hic babesnbsp;modum ad AB inacceflam ducendi parallelam. Si ve-ro ea per pundtum datum, v. g. C, ducenda fit : innbsp;Menfula due primo per c parallelam ad ab; dein ap-plicetur Dioptra ad iftam parallelam, redtamque pro-trahes in ejus diredlionem.

-ocr page 219- -ocr page 220- -ocr page 221-

Geometria Practica. nbsp;nbsp;nbsp;187

P R O B L E M A IV.

Mttlri altitudineni acceJJJbilem AL C fig- 3)

590. nbsp;nbsp;nbsp;Resolutio I. Difpofito fpeculo plano horizon-taliter in i (aut ibidem folFala unius akeriulVe pedis quadrad lactd, quac amp; aqu?i repleator), ira re-irocecle, aum turris extremum per radium reflexumnbsp;IE incurrac in oculum : quoniam eft anguius AlLnbsp;= ElF ( opdc.3; L rero = F; AA AU amp; EFInbsp;luniiia 1’unt; ell adeo FI; EF = IL: x\L.

591. nbsp;nbsp;nbsp;II Baculus DZ perpendiculariter fit ereclus; hu-mi dccumbentis fic moveatur oculus, doncc per Znbsp;vifu trajedto extremitas A profpiciacur : erit enimnbsp;DH:DZ = LH: LA.

592. nbsp;nbsp;nbsp;III. Lucente fole erigatur ad perp^endiculum bacu-ius RS; SG fit umbra baculi, LM veró umbranbsp;turris : erit GS : SR = ML: LA.

594. nbsp;nbsp;nbsp;V. Graphomctro (fig. 4 ) in C ita difpofito, utnbsp;diameter ejus horizond paralleJa fit; planum veronbsp;ad eundem perpendiculare. Per Dioptram collinee-tur in A; notetur angulus AXK, menfurcturquenbsp;LC = KX. Quoniam K reótus; per Trigon. inve-nics AK, cui adde XC = KL.

595. nbsp;nbsp;nbsp;VI. Vel inveftigato angulo KXA, menfiirataquenbsp;bafi KX = LC : ducito in charta kx, in partibusnbsp;fcalaj, ajqualem LC; fiat a: = angulo AXK; k rectus fit; erit ak , in partibus fcala:, aiqualis AK;nbsp;huic adde XC amp;c.

A a 2

593. nbsp;nbsp;nbsp;IV. Menfala Gcometrica fic difponatur, ut unumnbsp;ejus latus BC ad horizon tem fit perpendiculare ;nbsp;eledhi commoda ftadone, per Dioptram, in B acunbsp;fixam , collineecur in A , notetur CO ; erit OC; BCnbsp;= ÜK: KA; huic addatur OP — KL.

-ocr page 222-

jSS

Geometria Practica. PROBLEMA V.

Muiri altitudinm AL (fig 4) inacceffkm ; dato int-pedimento inter LC aut LT.

5p6. Resolütio L Eligantur ftariones eommod» C amp; H, tanto a fefe incervailo diffitE, ut, debitè dif-pofito Graphometro, anguli AXK amp; ABK notabi-liter difterant. Primo reiblve A BXA (486), utnbsp;ita habeas AX ; dein A reékngulum AKX (482),nbsp;quo prodit AK : huic addatur XC = KL.

597. 11. Ut in prsccedenti, ex C amp; PI inquiratur valor angulorum AXK amp; ABK, menfureturque CH. Innbsp;charta ducatur bx, in partibus fcalac, = BX = CH.nbsp;Fiant b = angulo ABX; amp; angulus bza = angulonbsp;BXA producatur bx, amp; ab a ad earn demittaturnbsp;perpendiculans aR : erit hsec, in fcalac particulis,nbsp;ajqualis AK amp;c.

^98. III. Menfula Geometric^ primo debitè collocatd in F, ducatur FE; dein tranflatfl in T, fumaturnbsp;punélum G, fic ut fG in fcalac partibus fit = FG:nbsp;a G collineando in A, ducatur GO; ab O demittaturnbsp;01 perpendicularis ad fG, feu ad latus inferius men-fulac; eritque 01, in partibus fcalsc, sequalis AK amp;c.

599. ScHOLiON I. Si oportuerit monds inquirere akitudinem; quoniam ad perpendicularem, è vernce ad bafin monds duftam,nbsp;accedi nequit; è duplici ftadone operatio peragacur.

ÉOO ScHOUON 11. Si altitudo quKpiam fupra alteram conftituta fit ini^uirenda; primo quEeratut altitudo utriufque fimul •, deinnbsp;folius mferioris; fubtrafta hac ex utiaque, lelinquetur qusfita.

PROBLEMA VI.

Ex iina altitiidint XK (fig. i Tab. XVII. ), alteram AL inquirere.

éoï. Resolütio. Perpendiculura XK demiffum dabit al-titudinem primam : Graphometro, cujus diameter

-ocr page 223-

Geometrïa Practica. nbsp;nbsp;nbsp;189

deorfum perpendiculariter fpeclec, inquiratur quan-litas anguli KXL, item anguli LXA. Primo refol-vatur A redangulum XLK (482); quo notum erit latus LX; in A ALX erunt quóque noti tresnbsp;anguli (etenim eft angulus ALK reólus; fubtraótonbsp;igitur angulo XLK ex 90°, refiduum erit angulusnbsp;ALX); refolvatur adeo A ALX (486).

PROBLEM A VIL JVubis L Cfig- R) altitudinem metiri.

601. Resolutio I. Quoniam nubes notabiliter a ter^ ra diftant promifcuè, iitumque continuo mutant :nbsp;bina Graphometra in F atque E, ftationibus debitènbsp;dillitis, lint ita difpoEta, ut eorum diametri hori-zonti parallel®, atque inltrumenti planum deorfnmnbsp;perpendiculariter convertantur ; prsftó fint obferva~nbsp;tores duo, in F unus, atque alter in E : dato fibinbsp;figno, eodem inftanti quifque colluieet in mediumnbsp;nubis pundum ; atque exadè notet angulum ; primo refolvatur A ABL (486); ut nota habeas latera AL amp;: BL : dein perpendicularem LX inveniesnbsp;per Problema V. ( 493) : huic addatur XZ=AE.

603. IL Vel affumpta ball FE, omnibufque üt ante pcradis , ducatur in charta ab, in partibus fcal® ,nbsp;= AB : fiat a = angulo LAB ; k b = angulonbsp;LBA; duóia perpendicularis lx, in partibus fcalaj,nbsp;cft Kqualis perpendicular! LX amp;c.

-ocr page 224-

ipo nbsp;nbsp;nbsp;Geometr-ia Practica.

SECTIO T E R T1A

DE PLANIMETRIA.

ARTICULUS I.

De yigrorum Geodcefia.

lt;504. Bonnariiim asquatur quadrato, cujus lacus fm-gulum 20 eft Virgariim, atque adco 400 virgas qua-dratas conipleéticur. Jiigcntm eft quana pars Bonna-Tii, ac proinde = 100 virgas quadratas.

60fy. Modura dimctiendi agros triangulares atque quadrangulares, ex diélis (Articulo 1, qui incipit adnbsp;Isj'rum ^ haud difficuitcr coliiges.

PROBLEMA I.

^gri pentagonalis ABCEF (fig 3) aream inquirere.

606. Resolutio I. Agri menfuraudi, ante omnia , obambules perimetrum, rudique calamo ejul'dem innbsp;charta figuram delinees.

II. nbsp;nbsp;nbsp;Confiderentur praecipuè anguli A amp; E iraxiinènbsp;difliti, ad quos recta AE ducenda per medium agrinbsp;trajiciatur; reéta hacc Fundamentalis audit.

III. nbsp;nbsp;nbsp;Turn Graphometro procedens in fundamentali li-nea, ab hac ad quemlibet è reftantibus angnlisnbsp;perpendicularcs ducito; quas redlas oranes in figu-ra , rudi calamo delineata, annotes , fimul cumnbsp;mcafura; quantitate, ut in figura videre eft : erit-que agcr divilus in quatuor AA reéiangula, amp; tra-pezoïdem reélangularera ; itaque cujufquc feorfumnbsp;inquiratur area; addanturque omnes in unam fum-

-ocr page 225-

191

patec

Geometb-ia Practica. mam : eric iiaic agri valor : üc ex adjedonbsp;Icheraate.

A AOB == 6.4 A AXF = 25.08nbsp;A FXE = ^55nbsp;A EiC = 3.8nbsp;trap. BülC = 25.74

lumma = 69.57

continet adeó ager 69 virgas; 5 prima, amp; 7 fecunda.

PROBLEM A IL

Mznjlirati agri fguram Jimllem in charta delineare.

607. Resocutio. Dacatur ae, in fcalsc partibus, acqua-lis fundamentali lineai AE; five hxc faciat è Icala 11.8; ex quibus ao = 3.2; ox = 5.6; x/ = 1 ;nbsp;ie — 2. erigantur perpendiculares, ob ~nbsp;nbsp;nbsp;nbsp;xf =.

5.7; ic = 3.8 : demum connedantur redis extrema perpendicularium ; eritque abcefa menfurati agri fi-gura fimilis. Solct autem juxia earn delineari fca-la, qua: dcfcriptioni inferviit; ut ejufdem benefi.-cio, amp; latcrum valor, atque totius figurce menfuranbsp;queat dignolci.

6o3. SenouoN'. In medio linese fundamentalis Pyxide nantica difpofica , inqni’i .acque nocari folet,quam plagam latus fingU'nbsp;lum refpiciat inquiiac quoque Icrupulosè Geometra, idque au-.nbsp;Rücet, qui fint ad menfuratum agrum domini vidni.

PROBLEM A III.

-Agrum menfiirarc (fig. 4) cunns atque irregularibus lateribus terminatum.

609. Resolutto. Per curva latera , ab A in B col-lineahdo, nonnulli redam trajiciunt , quac ad cen-furarn Geometrac, ab agro demat moraliter in una, quod eidem ab altera parte addit. Per O ducatur

-ocr page 226-

f92 nbsp;nbsp;nbsp;Geometria Practica.

LR parallela ad AB. Juxca curva latera AL amp; BR ducantur IX amp; BZ perpendiculares ad AB ;nbsp;ad redlas IX, LR amp; BZ (ut videre eft in figura )nbsp;tot ab agri Perimetro ducantur perpendiculares, utnbsp;ejufdem partes interceptae a redis lineis parüm dif-ferant; refoivcrifque figuram in redangulnni BIXZ,nbsp;plurimas trappezoïdes redangulares, nonnullaquenbsp;AA redangula; quorum omnium area, in unamnbsp;fummam colleéta, agri valorem dabit.

610. nbsp;nbsp;nbsp;ScHOLioN L Cavebk fibi Georaetra,ne nimiiimconEdat een-furs, atque ica facilè a vero curpiter aberree; qua propter tu-tiüs operabitur ducendo juxta lacus irregulare reftam v. g. RL,nbsp;ad quam perpendiculares plurimas demittat; quam fi ducat rec-tam AB per irregularia latera; ea enim vix unquam, nequi-dem moralicer, aquam efficiet divifionem.

611. nbsp;nbsp;nbsp;ScHOLlON II. Si lylva , lacus vel ager inundatus live ar-boribus confitus , menfurandus fit : conftitues circa agrum rec-tangulum , au: trapezoïdem reftaugularem; atque ex ejus lateri-bus, ad omnes amp; fingulos agri menfurandi angulos, perpendiculares egrediantur, qu« exceflum , quo circumlcriptum qua-drangulum majus eft quam campi area, in triangula amp; trapezo'tde*nbsp;redtangulares fecabunt: quorum fingulorum are», fi in unam fummam redigantur , amp; fumma collefta ab eodem reétangulo autnbsp;trapezoïde reftangulari auferatur; refiduum sequatur ares campinbsp;menfurandi. Ex. gr. detur ftagnum ABCEFG (fig. 5); inclu-datur hoe intra redlangulum HIKL; hujufque aream determines ; ducito dein a quolibet ftagni angulo perpendiculares adnbsp;latus reftanguli adjacens, üt vides; cujuflibet crapezoïdis rec-tangularis inquire aream; in unam fummam redigantur; fubtra-hatur haec ex area redtanguli HIKL : reliquum erit area ftagni.

612. ScHOLiON III. Ut ftagni figura fimilis in chartam projiciatur:nbsp;fiat figura fimilis redlangulo HIKL; debitifque in pundlis eri-gantur perpendiculares, fimiles iis qus in ftagni menfura fuerintnbsp;duftse; extrema perpendicularium reiftis conneilantur; eritqu#nbsp;ftagni figura fimilis delineaca.

613. ScHOLiON IV. Si agri aut campi iindique inacceffi, cujusnbsp;anguli tarnen finguli eminus conipicui funt, fuerit inquirendanbsp;area, aut delineauda figura ; operaberis modo tradito 587 amp;nbsp;588 : quemadmodum enim ibidem primo ex F,amp; dein ex ü innbsp;A atqué B coilineatum fuerit, fic in hoe calu collineetur primonbsp;ex F amp; dein ex C, bafeos affumpta; extremis, in quemlibetnbsp;agri aut campi angulum : defcriptaque figura in partibus fcala*nbsp;inquiratur, exurget agri aut campi quaefui area.

PROBLEMA

-ocr page 227- -ocr page 228- -ocr page 229-

Geometria !Practica. nbsp;nbsp;nbsp;ip3

PROBLEMA IV.

^«riim C fig- nbsp;nbsp;nbsp;ex notls bafi AC, amp; perpèn-'

diculari in AC, non produclam, demijja : qua ,

Ji fuerit d B ducta , extra bajin in O V. g., cadet.

Ó14. Resolutio I. Per B agatur reóta BL parallda ad AC : ab aliquo pundo, v. g. A, redai AC ,nbsp;ducatur AZ perpendicularis ad AC; erit hacc’ scqua-lis BO ; igitur ducatur AC in AZ , medietas fadinbsp;dabit aream A ABC.

615. nbsp;nbsp;nbsp;II. Si veró nullus detur extra agrum egreffus :nbsp;in pundo quodam, v. g. A, redae aC, erigaturnbsp;ad hanc perpendicularis AX : quoniam hacc cft pa~nbsp;railela ad BÜ , erit XC : BC = AX : BO amp;c.

PROBLEMA V.

Ex data Circuli Diametro, Peripheriam prope veram invenire : vel ex data Peripheria, Diametrum;nbsp;atquc inde ejufdem Circuli areamnbsp;conciudere.

616. nbsp;nbsp;nbsp;Resoeutio I. Utamnr proportionc tertio loconbsp;conltgnata (302); atquc pro prima parte dicatur :nbsp;ut 10000 ad 31416; ik Diameter data ad quartumnbsp;numerum; qd erit Peripheria qutcfita.

Pro fecunda vcro parte dicendum : üt 31416 ad loooo; ik Peripheria data ad quartum numerum;nbsp;eritquc hk inventus Diameter pctita.

II


. Diametro atque Peripheria cognitis , una in quar-tam partem alterius ducatur; faótum aiquatur Cir-cuii arccC quseiitx.

B b



-ocr page 230-

ip4 nbsp;nbsp;nbsp;Geometria Practica.

PROBLEMA VI.

Ex area Circiili data , ejufdem Diametrum atque Periphtriam rtperire.

617. nbsp;nbsp;nbsp;Resolutio. Eft area Circuli ad quadratum Dia-mecri ia proportione Archimedis = ii : 14. Pofitanbsp;latione Diametri ad Peripheriam = 100:314 ; eritnbsp;area Circuli ad quadratum Diametri = 785: 1000,nbsp;In majori veró proportione allegata (302); ericnbsp;area Circuli ad quadratum Diametri = 7854:10000;nbsp;igitur affumendo ex praedidtis alterutram v. g. fe-cundam , dicito : uti 785 ad 1000; Iic area datanbsp;ad quartum ; qui erit quadratum Diametri quscfua:.nbsp;Inventa Diametro, Peripheriam determinabis per prac-cedens problema.

PROBLEMA VIL

Datum Circuli SeSorem dimttiri.

618. nbsp;nbsp;nbsp;Resolutio. Radium Circuli due in femiffemnbsp;areüs Sedloris; faétum dat quaditum C304).

problema V I I i.

Tabulam conjlruere 500 Segmentorum Semi-Circitli ^ rejpondentium totidem Sagittis ab i adnbsp;500 accrej'centibus.

6ig. Resolutio I. X (fe. 7) in Centro reélus, fit acqualis O : quoniam KX (ex hypotheit ) = 500,nbsp;atque adeo KF diameter = looo ; erit area lemi-circuli LKZ = 392700. Primo invenietur AO :nbsp;nempe ex AX' = 250000 fubtrabendo OXquot;; extrac-ta ^ ex refiduo dat AO = | x\B. Porro angu-los A amp; OXA inrenies per Trigon. C482}.

-ocr page 231-

Ge oMETRiA Practica. 195

II. nbsp;nbsp;nbsp;Nunc notus erit arcus AK Seéloris KXA; atquenbsp;adeo ejufdeiii ratio ad circuli quadrantetn KXZAK,nbsp;qui ia cafu == 196350, innotelcit.

III. nbsp;nbsp;nbsp;AB bafis , amp; perpendicularis OX, quóque notaïnbsp;funt ; innotcfcit adeó area A AXB; fubtrahaturnbsp;ha’c ex area Seéloris AKBX; remanebit area Seg-mcnti, cujus KO Sagitta datur.

Ex. gr. fit KO = I; erit OX = 499 : hujus qua-dratum = 249001 : fubtrahatur hoe cx AX^ =z 250000; ex refiduo = 999 ^ proximè dabit 3.16 pro AO :nbsp;quoniam igitur OX =: 499, erit area A ABX =nbsp;15768. Angulus AXK, in Canone majori, invenie-tur quam proximè facere 3°? 37''» 25quot; : five 13045quot;;nbsp;arcus porro quadrantis KAZ = 324000quot; : itaque dica-tur : ut 324000quot; ad 13045quot;; fic 19Ó350 ad quartum,nbsp;feu Seétorem KXA; qui reperietur = 7904.5 erit igitur totus Sedlor AKBXA = 15809 : ex hoe fubtrac-ta area A ABX = 15768, reiiduum =: 41 dabit Seg-m.cntuni AKB. Et ita de caeteris.

3Sb 2

-ocr page 232-

ipö

Geometria. Practica.

T A

B

u

L A

620.

^00 Segmenionim Semi CirciiU.

Sag.

Scgin.

Sag.

Segm.

Sag.

Segm. [

1

41

3'

7212

61

19721 :

2

I ró

32

7566

Ó2

20195

3

221

33

'79^5

ö3’

2067 6

4

. 3|o

34

^.273

64

21181

472

35

8Ó40

¦65'

21654

ó

020

8990

00

22151

7

782

37

9358:

67

22650

8

9.54

9723

68' .

23158

9

1137

39

10124

69

23609

10

1^28

40

10533

70

24171

1

11

1.537

41

10937

71

24673

12

17.53

42

^1332

72

25201

1

13

19; 3

43

11730

73

25715

!

14

. 2x98

44

12144

74

26235

t

2440

45

12562

75

26758

1

xo

200O

40

12971

70

27288

1

17

294.5

47

13388

77

27818

i'

18

3201

48

13823

78

28358

19

3174

49

142.53

79

28899

20

3?-t8

.40

14078

80

29446

21

4'^34

5‘

B5099

81

29981

22

432Ó

52

15568

82

30.53Ö

0

“0

4Ó24

53

1Ü009

83

31074

24

4927

5'f

^ ^4.5.5

84

31^38

25

.523quot;’

55

16919

85

3218Ó

26

55.5'J

5^

17370

86

32741

27

5^7?

57

17842

87

33319

28

Ü197

5^^

¦ 18290

88

33880

29

652!-)

59

18770

89

34448

30'

ó'oOó

Op

19236

90

35016 |.

-ocr page 233- -ocr page 234-

Sag.

Segm.

Sag.

Segm.

Sag.

Segm.

19Ó

108624

231

137412

2 66

1Ó75Ó1

197

109436

232

138138

267

168458

198

110209

233

138977

268

169300

199

Ï11056

234

139867

269

170203

200

111835

235

140708

270

171107

201

I12ÓJ‘-

23Ó

141.553

271

17 2007

202

1134'O

237

142397

272

172855

203

”4^.55

238

143234

273

- 173771

204

^15035

239

144092

274

174670

205

1158 '1)

240

144944

275

175.523

206

11ÓÓ50

241

145795

27Ó

176433

207

117492

242

14ÓÓ50

277

177335

208

118269

243

147.505

27 8

178202

209

¦ I loiog

244

148365

279

17911Ó

210

119895

245

149224

280

180033

211

120Ó9Ó

. 246

150086

281

180895

-1 2

121539

247

150948

282

18181Ó

213

122341

248

151813

283

182738

214

I2qig8

249

152681

284

183ÓO2

21.5

123991

250

153548

285

184527

216

124796

251

1.54419

286

185453

217

125764

252

155290

287

18Ó321

218

126460

253

156166

288

1872Ó0

219

127270

2.54

157039

289

188123

220

12813-3

255

1.57915

290

189055

221

128948

256

158738

291

190087

222

129764

257

1^:^9622

292

190863

223

130584

258

160508

293

191798

224

131453

2.59

161391

294

.192676

224

13227Ó

260

162226

295

193615

220

133100

261

1Ó3102

296

194497

22y

133928

262

163992

297

19.5438

228

14480Ó

263

1Ó4871

298

196337

229

135Ö58

264

1Ö5774

299

19726Ó

230

13Ó469

2Ó5

166Ó67

300

198162

-ocr page 235-

Sag.

Segm.

Sag.

Segm.

1

Sag.

301

199099

336

231Ó80

371

302

199978

337

232608

372

303

200939

338

233Ó01

373

304

201829

339

234630

374

305

202664

340

23.5461

375

30Ó

203Ó74

341

236421

376

307

204630

342

237389

377

^08

205524

343

238322

378

309

206482

344

23925Ó

379

310

207379

345

240184

380

3“

208257

346

241194

381

312

209241

347

242129

382

313

210141

348

243067

383

314

21110Ó

349

244007

384

315

212009

3.50

245021

385

31Ó

212915

351

24.5953

386

317

213874

3.52

246895

387

318

214790

353

247828

388

319

215761

354

248781

389

320

216670

3.55

249724

390

321

217579

3.56

2.50737

391

Q 22t

218555

3.57

251684

392

323

2,19500

358

252631

393

324

220381

359

253.578

394

325

221367

360

254526

395

32Ó

222273

361

2.5.5544

39Ö

327

223187

362

25Ö493

397

328

224172

363

2.57444

398

329

225091

364

258397

399

330

226010

365

2,593.50

400

331

22Ó97Ó

366

260304

401

332

227917

367

261264

402

333

228840

368

262282I

403

334

229831

3Ó9

2632381,,

404

335

230755

370

2641941

405

265152 260111nbsp;267071nbsp;2Ö8037nbsp;268991

269953

270984

271929

272912

27387Ó

274911

275808

276775

277692

278711

279Ó79

280Ó49

281619

282590

283562

284535

285574

286552

287526

288500

28947Ó

290453

291430

292408

293385

294366

295340

296325

297303

298287

-ocr page 236-

Sag.

Scgm.

Sag.

Segm.

Sag.

40Ó

299209

441

333822

476

4071 300251

442

334807

477

408

301234

443

3356Ó2

478

409

302217

444

336.523

479

410

303202

445

.337.564

480

411

30418Ó

44Ó

33800Ó

481

412

305171

447

339800

482

413

306157

448

34080Ó

483

414

307143

449

34x796

484

415

308130

450

342786

485

41Ó

309117

45i

3-: 3777

48Ó

417

310105

452

344769

487

418

311094

453

345764

419

312082

454

34lt;gt;7.59

489

420

313072

455

347755

490

421

314063

456 348751

491

42.2

31.5053

457

349749

4921

423

31.5973

458

3.50747

493 i

424

3169Ó4

4.59

351745

494'

425

. 3^7956

4Ó0

3.52744

495

42Ó

318947

4Ó1

3.53738

49Ó

427

319941

462

3.54733

497

428

320933

463

3.5.5728

498

429

321927

464

3.56723

499

430

322921

465

3.57718

500

431

3^3915

46Ó

358718

432

324910

467

359718

433

325905

468

3Ó0709

434

32690,1

469

3Ó1710

435

327896

470

362721

436

328893

471

363718

¦437

329890

472

364715

43^

330887

473

36.5712

439

331884

474

366710

440

332850

475

367708

Segm.

SObjoi

369694

370687

371680

372673

373081

374689

375697

376705

377713

370707

379701

QoOÓOC

381689 332084

383Ó07

387700

388700

389700

390700

391700

392700

FROBLlJiMA

-ocr page 237-

lOI

Geometria Practica.

P R O B L E M A IX.

naturales

Ope pracedentis Tabula aliam conjlruere^ pojlto Integra Circitlo = looo ; eoque divifo in Seginenta loo,nbsp;totidemque Sagittas^ qua. crejcant üt numeri

621. Resolutio I. Quoniam iftius Circuli, cujus area ponitur facere 1000, radius efit diviiüs in 50 partes ajqiiales; evidens eft, Sagittas i, 2, 3 amp;c.’refpon-dcre Sagittis 10, 20, 30 amp;c. Tabulae praecedeiitis.

II. nbsp;nbsp;nbsp;Area Circuli praecedentis Tabulae Integra poniturnbsp;effe 785400; dices itaque : üc 785400 ad 1000 (five üt 7854 ad 10); ita Segmenta praecedentis Tabulae, correfpondentia nunieris 10, 20, 30 amp;c. fefenbsp;habent ad Segmcnca Tabulae conferuendae, i, 2,gnbsp;amp;c. Inftituto calculo, exurgit pro Segmentó SagitUc i,nbsp;proximè 1.Ö9. Solent aucem fcrupula fecunda ne-giigi in praxi ordinaria; nifi 5 fecunda exccdanc,nbsp;¦ut in cafu, atque tune augcri folet unitate cyphrinbsp;proximè finiftima, quse loco 6 erit 7. Scribendumnbsp;itaque pro primo Segmento 1.7. Simili modo in'nbsp;verlies, Segmencum 3748, Sagittse 20 preecedentis Tabula; , dare pro Sagitta 2 fequentis Tabulse, 4.77 ;nbsp;pro quo itaque fcribes 4.8 : amp; ita de carteris.

III. nbsp;nbsp;nbsp;Inventis 50 prioribus Segnrentis, ceetera fubtraclio-ne innotcfcent : ex. gr. lübtrailo Segmento Sagittscnbsp;49, quod facit 487.2, ex area totius Circuli, feu exnbsp;1000, reiiquura 512.8 dat Segmentum Sagittte 51.nbsp;Subtradlo 474.5'Segmento Sagittae 48, ex 1000 ;nbsp;relrquum 525.5 dat Segmentum Sagittae 52. amp;;c.

-ocr page 238- -ocr page 239-

Geometria Practica. nbsp;nbsp;nbsp;aO^

PROBLEMA X.

Diametro atque Sagictd noth ; Circuli. inquirere Segmentum.

Virg. 34.6. Sagitta veró Scg-

Ex. gr. Diameter =

menti = Virg. 23.Ó

623- Resolutio I. Circuli area determinetur; eritque proximè Virg 940.

ÏI. Dicatur : Diameter = 34.6 dat Sagittam 23.6 ; quid dabit Diameter Tabulae = 100 pro Sagitta fi-mili? Proximè reperietur 68.2; cui proxima eft Sagitta 68; eique refpondet Segmentum 724.1.

III. Dein dicatur : Circulus Tabulx = 1000 pro Seg-mento dat 724.1 ; quid dabit Circulus continens Virg. 940 pro Segmento fimili ? invenietur pro qux-fito Segmento 680.654.

624. ScHOLiON. Quod fl proximior ad verum acceffus defidere-tur , ideo quod Sagitta data, = 68.2, fuperet Sagittam Tabula ,= 68 , ad 2 fcrupula prima, five ad yU ; fubtrahatur Segmentum = 7241, è proximè fequenti =; 736.0 ; refidui = 11.9, capiantur j\- , quas proximè = 2.4 : hocque addatur priorinbsp;Segmento = 724.1; eritque fumma Segmenti propè verum 726.5.nbsp;Turn denuö dicatur : Circulus Tabulae = 1000, pro Segmentonbsp;dat 726.5 : quid dabit Circulus continens Virg. 940, pro Seg-mento fimili ? Exurget 682.91 pro Segmento qutefito. Atquenbsp;ita differentia ad inventum,per prohlema,Segmentum,eft 2.256,nbsp;quam in praxi non folenc magni facere.

Cc?


-ocr page 240-

i04 nbsp;nbsp;nbsp;Geomïtria Practica.

ARTICULUS IL De divijione amp; reduclione figtirarum.

I I.

de divijione amp; reduSione Triangiilorum..

PROBLEM A 1.

Dividere A ABC (fig. 8) in partes qiiajcumque, ex. gr, in duas, qiiarum una = | alteriiis.

62^. Resolutio. BC bafis dividatur in 5 partes acqua-ies; è quibus OB = 3; atque adeo OC = 2 ; üuc-td AO, crit A AOC = | A AOB (307).

PROBLEM A II.

agro ABC (fig. 9) refccare qiiantitatem Virganm datam : cx. gr. = 45, per reBam ab A ductam;nbsp;etiamji totius agri valor hand notiis jit.

626. Resolutio. Ab A ad BC agatur perpendicula-ris AO : menfuretur fiaec; ponamufquc cam in Vir-gis = 3.0. Duplum quantitatis reiecanda; = 90, dividatur per AO = 3.6 : quotus = Virg. 25, datnbsp;bafin BZ fumendam : dudta adco AZ, habetur Anbsp;AZB = Virg. 45.

P R 0 B L £ M A III.

Dividere A ABC (fig. lo) bifariam, per reEatn ex F ditSam.

$27. Rf.solutio T. Si force CF = AF, evidens eft, dudlam BF quxfitam dare partitionem.

-ocr page 241-

10$

Geometria PB-ACTICA.

II. Si veró fuerit CF, v. g. minor quara AF : fuma-tur AI = Cl : ducatur FB : dein ab I ducatur IG parallela ad FB; ducla FG divider A ABC bifariam.

Demonst. AA BGF amp; BFI eandem habcnt bafin BF, eandemque akitudinem (cüm conliftant internbsp;eafdem parallelas) : funt ergo ea inter fe sequalia ; at-qui A CBF A BFI erat x'quale ^ A ABC : érgo etiamnbsp;A CBF A BFG , lëu ? CBGF facit ^ A ABC,nbsp;five jcquatur A AFG. Q^. e. d-

PR.OBLEMA IV.

Ab agro ABC (fig. 11 ) quantitatem Virgariim, v. g.

6o, abfcindere per reSam ab O duaam.

628. nbsp;nbsp;nbsp;Resolutio I. Ab O ad AB ducito perpendicu-larem, atque per earn divide quantitatem Virg. rc~nbsp;fecandam : quotas dabit | bafeos fumendac ab A innbsp;reéla AB.

II. Quod ft fuerit reéia AB minor quam duplum quo-ti : duéta OB, inquire aream A AÜB : hanc fubtra-he ex quantitate refecanda : refiduum divide per perpendicularem ab O ad BC demilfam : quotus dabit f bafeos a B in latere BC fumendcc; ad quodnbsp;punctum recta ab O duCta efficiet deüderatam agrinbsp;diviftonem.

PROBLEMA V.

Dipidere A ABC (fig. 12) in tres v. g- partes aqua-les, per reSas, bajl BC parallelas.

629. nbsp;nbsp;nbsp;Resolutio I. Inter AC amp; | ejufdem quscraturnbsp;media proportionalis = AF : ducatur FG parallelanbsp;ad CB : quoniam eft AC® = 3 AF®; A ABC = 3nbsp;A AIlt;quot;G.

-ocr page 242-

2.0 6

Geometria Practica.

ÏI. Dein inter AC amp; | ejufdem quacratur media pro^ portionalis = AH : ducatur HL parallela ad CB :nbsp;quoniam eft ACquot; z= | AH'; erit A ABC = | Anbsp;AHL : igitur A AFG = ? GFHL = ? LHCB.

PROBLEM A VI.

Dividere A ABC ( fig. i Tab. XVni.) in tres partes (equaks,per reSas ab 0 du3as.

630. Resolutio. Trifariam dividatur BC in pundis Z amp; X : ducatur AO, amp; a Z item X agantur XL amp;nbsp;ZK parallelsc ad AO : dudac OK Sc OL delideratamnbsp;efficient divifionem.

Demonst. Duda AZ, A AZB, five A BZK -f- A AKZ = I A ABC : porro A AKZ = A ZKO ( ha-bent enim eandem bafin KZ eandemquc altitudinem);nbsp;ergo A BZK A OZK, feu A BKO, = | A ABC.nbsp;Similiter, dudS AX, demonftratur, A CLO facere | Anbsp;ABC. Igitur ? AKOL facit quoque | A ABC ; at-que adeo tres illaï partes inter fe tcquantur. Q^. e. d.

631. ScHOLiON. Si fueric in agro operandum : poteris primo to-tum nbsp;nbsp;nbsp;menfurare ; acque prolequeris uc diftum ell proble-

PROBLEMA VII.

jii piincto F (fig. 2 ) intrd arcam A ABC dato , illud dividere in tres v. g. partes cequales.

632. Resolutio I. Faciat CO bis BO : ducatur FO, fitque AZ parallela ad FO ; duéüs AF K ï’Z eritnbsp;? AFZB = I A ABC.

Demonst. Si duceretur AO, A AOB erit = | A ABC : porro propter parallelas FO amp; AZ, A AFZnbsp;efi: = A AOZ : igitur ? AFZB etiam eft = i Anbsp;ABC. Q,e.d.

-ocr page 243- -ocr page 244- -ocr page 245-

Geomete-ia Practica. 207

II. Dein dividatur AZ bifariam in X : ducatur CF : amp; ab X agatur XL parallela ad FC : duéta LF,nbsp;erit quoque A LFA = y A ABC.

Demonst. Duélè CX, A CXA = A CXZ ; five A LXA A CLX = A CXA = | A ACZ : verüm,nbsp;attentis paral. CF amp; LX, AA CLX amp; LFX aiqualia funt;nbsp;ergo ? ALFX = | A ACZ : at, duéiè FX, A FXAnbsp;= I A AFZ : ergo A AFL=: i ? ACZF ; atque adconbsp;A AFL = ? CLFZ. Qua.'libet igitur pars aequaturnbsp;quóque tertiae parti totius Trianguli. e. d.

PROBLEMA VUL

ex. gr., in X, concurrentes.

Dividere A ABC (fig. 3 ) in. tres partes aqiiaks per reSas è quolibet angiilo diiSas, amp; intrd ar earn,

tinr- rcv TM nbsp;nbsp;nbsp;/'/ÏM/«ri fr/ïfT #•lt;» {»

633

Resolutio. Sit CZ = ^ BZ : fiat ZL parallela ad AC ; fit X pundtum medium reéfec ZL ; dicanbsp;reélas AX, BX amp; CX efficere divifionem petitam.

Demonst. A ACZ = i A ABC : fed, attentis pa-rallelis AX amp; ZL, A ACX eft = A ACZ; ergo A ACX aequatur parti tertiae A ABC. Qiioniam ZX =nbsp;XL, reétacque AC amp; ZL parallelaj funt; A CXZ = Anbsp;AXL ; amp; A BZX = A BXL : igitur A CXZ Anbsp;BZX, feu A CXB, eft = A ALX A BXL, five Anbsp;A.XB : ergo redlsc AX , BX atque CX dividunt Anbsp;ABC in tres partes aequales. Q^. c. d.

PROBLEMA IX.

Pojito, B item C aai tos ejje ; dividere A ABC (fig. bifariam, per reamp;am, qud perpendictilaris fitnbsp;ad bafin BC.

634. Resolutio. Ducatur AL perpendicularis ad BC ; turn inter | BC amp; partem majorem linetc BC, v. g.

-ocr page 246-

ao8 nbsp;nbsp;nbsp;Geometria Practica.

BL, quscratar media proportionalis = BO ; in punc-to O erigatur perpendicularis OF; haccque divider A ABC bifariam.

Demonst. AA BLA amp; BOF fimilia funt : igitur eft BL : LA = BO: OF: fi itaque duobus primis terminis detur communis akitudo BG; amp; duobus pofte-rioribus detur communis akitudo BO; habebitur BCnbsp;X BL: BC X AL = BO’ : BO x OF ; in qua analogianbsp;patet, quèd, cüm BC x BL = -zBÓ’; debeat quóquenbsp;BC X AL = 2BO x OF : igitur i BC x AL, = A ABC,nbsp;aiquatur bis medietati BO x OF = A BOF. e. d.

PROBLEMA X.

Reducere Triangulum ad Qiiadratum.

635. Resolutio. Capiantur l’rianguli dati bafis amp; akitudo : inter unam amp; medietatem alterius quicra-tur media proportionalis : Quadratum fuper hac for-matum erit scquale ifti A dato.'

PROBLEMA XI.

grammum fub angulo

V. g. 6o°j dato.

Triangulum datum ABC ( fig. 5) reducere ad Paralklo-

636. Resolutio. Per A due indefinitam, quae lit pa-rallela ad BC ; in B fiat angulus CBG = angulo dato , adeoque in cafu t= 60° ; a punéto O, m.edio bafis BC, ducatur OF parallela ad BG : eritquenbsp;BOFG parallelogrammum fub angulo 60°; amp; aiqua-le A ABC. Nam A ABC amp;; Parall. BOFG ha-bent eandem altitudinem ; porro area A ABC eftnbsp;scqualis faófo akicudinis in | BC = OB; amp; areanbsp;BOFG eft xqualis fado akitudinis in BO : ergo amp;c.

s. il

-ocr page 247-

angulo A ducitur.


638. Resot.utio.

Geometk-Ije Practica.

§. II.

Dc div/Jione atque rcductiom QnadrilatcraTn amp;c-

PROBLEM A I.

Dividere Parallelogrammum ABCF (fig. 6)//i tres panes cequales.

637. Resolutio. Bina latera parallela , cx. gr. BC Sc AF, dividantur in tres partes tequales in punftisnbsp;O, Z, X, G : ducra; OX amp; ZG divident Parallelo-granimum datum in tria Paralielogramma minora amp;nbsp;A’Qualia.

A

P R O B L E M A II.

Dividere Parallelogrammum (fig. 7 ) ia tres partes cequales, per reaas, quarttm. unica ab

Sic CZ = I ZB ; ducatur AZ ZO parallela ad CF; eritque divifio peraéla.

P R O B L E M A III.

Dividere Parallelogrammum ( fig. 8 ) trijariam , per rec~ tas, quarutn i/na d punSo G proficijcltur.

639. Rssolutio I. Fiat BO item AX = BC : O.X duCta efficiet Paraliclogrammum XOCF | ABCF.

II. Sit FL = OG : GL duéla dividet parallelogram-mum XOCF bii'ariam; adeoque in tres partes tcqua-Ics divifum eric Parallelogrammum x4BCF.

P R 0 B L E M A IV.

Dividere Parallelogrammum (fig. 9) trifariam, per rec-tas ab lino angulo, ex. gr. F, ducias.

Ö40. Resolutio. Sit CO = 2BO; AT = 2BI : dudlse FO amp; FT parcitionem dcfideratam eincienc.

D d

-ocr page 248-

2K5

Geomï:t]i,ia Practica.'

Demonst. Duéia BF, A ABF = A BCF, feu quodlibet eorum =: f ParaJleiogranxmi ABCF : porró A AIF = 2 A BIF : ergo A A!F = | Parallelogramiriinbsp;ABCF. Similiter A COF — 2 A FOB; . ergo A COFnbsp;quoque = Parallclogrammi ABCF ; igitur recta FOnbsp;amp; F1 figuram datum trifariam partiuntur. e. d.

P R O B L E M A V.

Dividere Paralldogrcmmum ( fig. lo) trifariam, per reaas a punpio Q diiclas.

641. nbsp;nbsp;nbsp;Resolutio I. Capiatur BO = | BC ; fiat OXnbsp;parallcla AB : fit LX = OG : ducla GL habebiturnbsp;trapezo'is GBAL = f Parallelogrammi dati ; namnbsp;AA GÜI amp; LXI congrua lunt, atque adeo lequalianbsp;inter fe ; at OBAX dat ~ Parallelogrammi ABCF ;nbsp;ergo amp; GBAL = f ABCIC

II. Dein capiatur HL = d FL { CG : critque GLH ;= trapezoïdi CGHF.

P R O B L E M A V I. l'rapeiGïdem ABCF (fig. ii) trifariam partiri.

642. nbsp;nbsp;nbsp;Resolutio. Latera parallcla, AF amp; BC triiariamnbsp;divide ; redtte ad oppofita divilionum pundta duétasnbsp;eflicient quod qua:ritur.

PROBLEMA VII.

Quadrilaterum quodc'imque ABCF (fig. 12) reductre ad Triangulum, retentis lateribus AP’ atque CP’.

64:^. Resolutio. Ducatur AC : per B ad AC duca-tur parallela donee concurrat cum FC produdta, in G : duéta AG, erit A AGF = Quadrilatero dato.

-ocr page 249-

Geometk-ia Practica. nbsp;nbsp;nbsp;sïi

DemonST. A ACB amp; A ACG inter eafdem parallc-3as eonnftunt, habentque eandem bafin AC; funt' ea ergo ajqualia : porro ? ABCF conltac A AFC Anbsp;ABC : lea A ABC = A AGC; ergo A AFC A AGC,nbsp;fea A AGF cil = ? ABCF. (^. e. d.

PROBLEIMA VIII.

:r rzclam

Dlviiire. Trape-jm Q fig. 12 ) hifariam, pi cx duBam.

lt;544. Rksolutio I. Per prrccedcns Problcma reduc Trapezim datam ad A Ab'G.

ÏI. Deinde FG bifariam divide v. g. in 0 : AO dada rdbivet Problem a.

645 ScnoLioN. Qaod fi punftum 0, medium reft® GF, extra latus CF repertum fucric , uc in fig. 13-, dneatur AO : ad tee-ta^ Al, lO amp; Cl quite quartam proportionalcm =iL; duCtanbsp;AL divirmuem efficiec propofitam ; nam A AOF = vO ABCF:nbsp;at A OCI = A AIL (314) : ergo ? AFCL — A AFO = Inbsp;,? ABCF.

P Pv O B L E M A I X.

Dividere Trapezim (fig. 14) bifariam, per reHam ab 0, piinS.0 medio reBes. Cb', datlam.

lt;546. Resolutio. Ab A dneatur AL parallda ad FC (quod fi. higt;c area figurcC egrederecur, ea dTct a Bnbsp;ducenda) : fit AX = LX: ducatur OB, ad quaninbsp;ab X ducatur paraliela XK : duda OR figuram fc-cabit bifariam.

Demonst. Dudis OX atquc BX : trarezois LXOC = trapezoidi XAbO : A BLX = A LXA : ergo ?nbsp;LXOC A BLX, leu A BCO A BXO, eft = {- ?nbsp;ABCF : fed, attentis paralleiis KX amp; BO, eadcmqua

D d 2

-ocr page 250-

212 nbsp;nbsp;nbsp;Geomètria Practica.

baü BO, A BXO = A BKO : ergo A BCO A BKO, feu ? BKOC = I ? ABCF ; igicur KÜ duéla trape-zini datam bifariam parütur. Q^. c. d.

P R O B L E M A X.

Dividerc Tiapc:;^im (fig. 15) bifariam^ per rcBam ab X diiciam.

647. Resolutio. Refolvatur Trapezis data in A AGF; hujus capiatur dinvidium per A AOF : ducatur XA :nbsp;dein OL parallela ad XA : ultimo XL ; hsequenbsp;dividet ? ABCF in duas partes a;quales.

Demonst. A AOF, feu A FAX A_OXA, eft = i ? ABCF : attentis vevo ÜL atque AX paraliclis,nbsp;cademque baü AX, A OXA =; A LAX ; igitur A FAXnbsp;4- A LAX, jeu ? LAFX, = ' ? ABCF; five eft =nbsp;p LBCX. 0^. c.d.

P R 0 B L E M A XI.

Figuree cuicumque data fimllcm in quavis data rations, confiruere.

Ex. gr. quffi fit altcrd quintupla; vel qua; facial f

alterius.

mata figura fimilis, faciet fii

dattc.


Ö48. Resoltjtio. Allijmatur figur® data: latus quod-piam pro homolcgo : tunc primo cafu, inter latus illud amp; quinquies idem latus, queratur media pro-portionalis : fuper hac, fit homologo latere, fiat fi-gura f milis; eritquc htec quintupla figura; datse.nbsp;Secundo cafu vero, inter latus affumtum amp; ejuf-dein , quscratur media proportionalis; fuper èa for-

-ocr page 251-

Geometk-ia Practica. nbsp;nbsp;nbsp;213

P R O B L E M A XII. u4§rum (fig. ló) hifariam dividere.

Ö49. Resolutio I. In primis totius agri mcnfura per-ficiatur, per reclam fundamentaleiTi HZ, ad quam è quolibet angulo, üt in figura videre eft, pevpen-dicuiares demitrantur; ponamuique .totaiem agri valorem = Virg. 5248; atque adco Bonnaria 13, amp;nbsp;40 Virgas quadratas.

ïl. Circa agri medietatem, reélam conftitue CG, qu?i propoiitum agrum fccundum latitudinem ejus, innbsp;duas dividit partes quaicfcumque A amp; B, ad aefti-mationem invicem sequales; quaram fmgularam, exnbsp;pra?.fcripta meniurandi mechodo, area inquiratur :nbsp;pars A contincat Virgas quadratas 2592: pars veronbsp;B habeac Virgas quadratas 2656, quarum, differentia = 64, iccundum quam pars ll excedit partem

A, nbsp;nbsp;nbsp;cujus dimidiura = 32, addendum erit ipli A,nbsp;amp; idem a parte B auferendum, amp; fic acquaeles crunt;nbsp;¦quod id ipfum in fequentem modum pcrficictur :

ni. Longitudinem lineac CG, agri nimirum latitudinem complcétentem, menfura, qua;, cx. gr. longa litnbsp;Virg. 46.8; coRftat itaque, fi a CG linca conftitiia-tur parallela versus B, diftans und Virga , fiec Pii-rallclograrmrmra Virg. 46.8 (pro tantilla enim a!ti-tudine, feu diftantia parallclarum, obliquitas FG adnbsp;CO contemni poteft in praxi) ; at deiideratur Pa-rallelograinmum = 32 Virg. : porro in hunc modum,nbsp;per regulam proportionis, invenics dicendo ; Vbrg.nbsp;4Ó.8 acquiruntur , quando ad diftandam i Virg®nbsp;lincam removeo : quot Virgis auc pedibus amp;c. eademnbsp;erit removenda, ut acquiram Virgas 32? Producun-tur cx rcgula proportionis 0.68. Quare fi linca OFnbsp;eonftituatur parallela ad CG, diftans ab hac, versus

B, nbsp;nbsp;nbsp;o.ó8; divider ea agrum propofttum in duas partes acquales.

-ocr page 252-

214 nbsp;nbsp;nbsp;Geoiietk-ia Practica.

SECTIO QUARTA

SOLIDOMETRIA SIVE STEREOMETRIA CAPUT I.

De Solidorum ConstructioR'E

ATQUE DiMEN SIONE.

S- I-

Dc SoUdorum Conflntaione.

650. Modus rcprxfcntandi, feu delineandi, in plano Corpora Geoineirica, cx iis quaa in Ferfpccliva tra-duntur, facile cruitur : verum non foler Ine in ngo-ïc attendi ad PitnBum principalt feu visus : qua denbsp;caufa in Cubi vel Farallelcpipcdi delineatione 'ijip,. 1nbsp;Tab. XIX.); fiat prinió ABCF quadratum vel reCIrm-gulum ; dein GHiK Quadratum vel rectangulum priorinbsp;cengruum ; anguli , ut vides , redtis connedtantur,nbsp;eritque Cubi vel Parallelepipcdi dciincatio peradlanbsp;amp;c. '

P R O B L E M A I.

^ Rete dcfcribcrc, ex quo Cubiis conjlnd pojjit-

6^1. Resolutio. In rectam AB ifig- 2,) latus Cubi quacer transferatur; atque lu}'cr ca quatuor quadra-la clliciantur ; unum hinc inde quadratum eucquenbsp;fiat fuper IL A MK : turn debitè plicencur quadratanbsp;contigua qtiadrato IKML, tegaturque pars luperiornbsp;quadrato ÖDBN ; fuperficies fingula; glutine ncc-tantur; eritque Cubus conftru'flus.

-ocr page 253- -ocr page 254-

h



, ..i. •. - •


vâ€Tr'3





â– 

’gt; ^

-. -..ï






i

:•

?quot;â– 

rquot;


1\


'i;,-


%â– '



â–  .i

i


â–  \ -r ,\

-••■•# nbsp;nbsp;nbsp;........j


i


'V • • ' ' v\:


•Xï ■'


( :.


\


-ocr page 255-

Geometkia Practica. nbsp;nbsp;nbsp;215

PROBLEM A II.

Rete dejiriiere , ex quo Paralldepipediim conjlrui potefl.

652. nbsp;nbsp;nbsp;Resolutio. Fiat HEFi rciSanguJura congruumnbsp;bafi Parallclepipedi conftruendi : lint EA,

1Ü, IK, FG, FM, EL aiqnales alt-itudini Paraiiele-pipcdi; dtiélifque AB, NO, KG amp;; LM complean-tur redlangula : lint GO, amp; KD aiquales HI : quo fict reékngulum CGKD congruuni ball HEFI; dc-nique plicentur redangula contigua. ballparfquenbsp;fuperior occludatur reCiangulo CGKD; glutine fir-mcntur, eritque conftructum Parallelcpipedum.

P R 0 B L E M A III.

Rete pro Pripnate depri here.

653. nbsp;nbsp;nbsp;Resolutio. Conftruatur bafis Prifinatis, ex. gr.,nbsp;pro triangular! A KBD (p^'- 4) : continuetur BDnbsp;in A amp; E donee Fat AB = BK, amp;: DE = DK :nbsp;Super AB, BD amp; DE conftruantur paralldogramiTianbsp;AG, BH, DF, quorum akitudo AG akitudini priLnbsp;niacis tequetur : tandem fiat I'upcr GLi A GIH ipftnbsp;BKD congruum : hilce partibus debicè jundis, glU'nbsp;tineque fixis, conftrudtum erit Prilma triangulare.nbsp;Ncc abfimili modo mulcanguiare quodcumque coii'nbsp;itructur.

PROBLEM A IV.

Rete pro Cylindro depriberc.

654. nbsp;nbsp;nbsp;Resolutio. Eadein diametro dclcribantnr circulinbsp;AB amp; CD Cpg- 5). BG fit = akitudini Cylindri;nbsp;fuper qua confiruatur rcdangulum BCFE,quot; ita utnbsp;CD fit peripherix Circuli CD, xqualis amp;c.


-ocr page 256-

2i6 nbsp;nbsp;nbsp;GeOMETR-IA. PK-ACTICA.

P R o B L E M A V.

Rete pro Pyramide defcribere.

Sic cx. gr. conftruenda Pyramis triangularis, cujus bafis fit A DCF (fig. 6 ).

655. nbsp;nbsp;nbsp;Resolutio. Radio AB defcribatur arcus BE, amp;nbsp;ei applicentur tres chorda; BC; ED = DF;CB = CF;nbsp;ducanturque reéte AB, AC, AD amp; AE : tum pli-catis, dcbitèque junais hilce triangulis, conftruc-ta eric Pyramis.

P R O B L E M A VI.

Rere pro Cono rcBo defcribere.

656. nbsp;nbsp;nbsp;Resolutio. Pro bafi, ex Cenrro X fifig. 7) defcribatur CirculüS, amp; diameter producatur in C, doneenbsp;AC latcri Coni squalis fiat. Quxratur ad AC amp;nbsp;AX,. in numeris, atque 360°, numerus quartus pro-porcionalis. Radio CA, ex centro C, delcribatur arcus DE, amp; ope Tranfporcorii fiat angulus DCE, con-fcquenter arcus DE, numero graduum invento sequa-lis. Eric Seifior CDE, cum circulo AB, rete pro Cono reéto.

Demonst. Eric AC ad AX, ficut 360 ad quar-tum immerum = angulo C; feu ficut peripheria Cir-culi, cujus AC eft radius, ad arcum DAE : fed elb AC ad AX , ficut peripheria Circuli, cujus AC efl:nbsp;radius, ad peripheriam Circuli, cujus AX eit radius;nbsp;feu ad peripheriam bafeos AB. Ergo arcus DAE =nbsp;peripheria; baiëos AB. Igitur fic plicando DCE, utnbsp;DAE coincidat in peripheriam bafis AB, amp; Etus CDnbsp;laceri CE conciguum fit ; glutineque nexis iifdem,nbsp;conftrudlus eric Conus redtus. O. e. d.

CoROL-

-ocr page 257-

ai7

Geometria Practica. ,C o R o L L A R I u ai.

657. Quod fi ex A in F transferatur latus Coni trun-cati, amp; radio CF arcus GH defcribatur, tandemque ad 360°, numerura graduum arcüs GH, atque FG,nbsp;numerus quarcus proportionalis quaeratur, amp; inde Diameter Circuli IF decerminetur; habebitur rete pro Co-*nbsp;no truncato. Fit enim CDBAF rete pro Cono inte-gro; CGFIH pro Cono ablcilfo : ergo DBEHIG pr©nbsp;truncato.

P R O B L E M A VIL

Rete pro Tetraedro defcribere.

^.58. Resolutio. Conftruatur A acqmlaterum DEF ifië- O • fuper fingulo cjus latere conitruanturnbsp;adiiuc alia itidem cquilatera DAE, EBF ik F'CD.nbsp;Ex hoe reti Tetraëdrum conftrui poteft.

CoROLLARIUM.

659. Quod fi BC Cfig. 9) condnuetur in H , donee fiat CH = F'C, amp; fit in refolutione Problematis, conftruantur AA sequilatera CHi, CGH, HLI, DCI :nbsp;ex reti OCtaëdrum conftrui poterit.

P R O B L E M A VIII.

R.ete pro Icofaédro defcribere.

660. Resolutio. Conftruatur A squilaterum ABC Qfiff. 10 ) : in baft AB continuata fiat AB = BEnbsp;== p'Q =:GH = HD. Per C agatur ipfi AB paral-lela CE, amp; fiat AB = Cl = IK = KL = LM = ME.nbsp;Ducantur reétae CS per C amp; B, NT per I amp; F,OVnbsp;per K amp; G amp;c. Similiter ducantur aliae redsc TOnbsp;per B ik I, SP per F’’ amp; K, TQ per G amp; L amp;c.nbsp;Ex hoe reti conftrui poceft Icofaëdrum.

E e

-ocr page 258-

Geometp^ia Practica.

P R O B L E M A IX.

Rete pro Dodecaedro dejcribcre.

661. Resolutio. Defcribatur Pentagonum regulars ABODE C fg. I Tab. XX.) ; iuper quovis ejus latere fiant quóque Peiuagona congrua ipfi ABODE.nbsp;Ad K aliud fiat S etiam ca:tens congruum; aiquenbsp;huic fimilicer congruum jungatur R : amp; fuper quovis hujus refiduo latere delineentur fimiliter priori-bus congrua; Ut videre eft in figura.

66a. ScHoooN. Delineentur retia in charta ex pluribus folii* eompabta. Delineate exfcini^anïur, refefta charta luperhua jux-ta eorura perimetros. Exfciffa agglutir.encur chartac co'orata: ;nbsp;hujus fuperfluum ica refecetur, ut partibus perimetri altcrnisnbsp;margines quidam rclinquainur, queraadmodum videre cft in fi-eura 8. Singula retium intra perimetruin lineamenta , ex ar.nbsp;EF, FD amp; DE (fig. ,8) in rete Tetracdri, fcalpello piofun-diüs imprimantur, ut commode complicari queant latera perimetri foiidi. Denique retia complicata marginum ope congluti-nentur.

§. I I.

Dc Solidorum Geodajia.

Prater ea, quae babentur Articulo II. ad 426, hic quaedam addeinus.

P R O B L E M A I.

Metlri Soliditatem quinque Corporum regularium.

663. Resolutio. Sumendo Cubum unius lateris pro-dit Cubi Ibliditas (427 ) : Tetraëdrum Pyramis eft: üciaëdrum Pyramis genfinata ; Icofaëdrum vero csnbsp;20 Pyramidibus triangularihus ; Dodecaédrum exnbsp;12 quinquangularibus conftat, quarum bales in fu-perficie Icofaëdri amp; Dodecaëdri lunt, vertices innbsp;Centro coëunt : horum ergo foliditas habetur ducen-do bafes in tertiam aldtudinis partem.

-ocr page 259- -ocr page 260- -ocr page 261-

219

GeOMETBIA pRACTiCA-

P R O B L E M A II.

Corporis irregularis ciijufcumque foliditatm invcnire.

66s,. Resoi.utio. Immittatur corpus Parallelepipedo ca-vo, eique aqua, aut arena (ne madefiat} fuper-fundacur; amp; altitudo aqua:, feu arena: notetur. Cor-porc cxtraclo obiervetur denuó aquae, aut arena: complanatac altitudo; inquiratur foliditas Parallele-pipedi, primo ufquc ad primam nocam : deinde partis refiduse, feu Corpore extracto : hac fubtraöa exnbsp;priori; refiduum sequatur foliditati Corporis immerfi.

66^. SenoLTON. Quod (i Corpus in Parallelepipedo iftiurmodi coRimodè deponi nequcat, ex. gr., fi ftatiiam certo loco affixainnbsp;diineciri jubeamur : Prifma quadtangularc, aut Parallelepipedum,nbsp;circa ipfum conftrui debet ex afieribus. Rcliqua peragenda luncnbsp;ut ante.

P R O B L E M A III.

Invcnire joliditatem Corporis cavi.

666. Resolutio. Si Corpus cavum in numero gco-metricorum non contineatur, refolutio eadem eft qusc Problematis pra:cedentis. ,Si Corpus cavum fue-rit Parallelepipedum, Pril'ma, Cylindrus, Sphaera,nbsp;Pj^^ramis, vel Conus; foliditas primüm totius Corporis, cavitate inclusa ; deindo cavitatis, quae ean-dem cura Corpore figuram habere fupponitur, pernbsp;methodos fupra traditas, inveniatur : hac enim exnbsp;ifta fubtrafii, rclinquitur foliditas Corporis cavi.

P R O B L E M A IV.

Invcnire Cubiim dato Corpori, cujiis foliditas inveniri po-tcfl, aqualcm i vel qiii fit ad hoe 'in data qvacumque ratione, ex. gr. iit ^ ad i, vel üt 1 ad 4.

66'j. Resolutio. inveftigetur foliditas Corporis per Problemaca tradica. Ex ea vel cjus mukiplo, aut

E c 2

-ocr page 262-

22,0 nbsp;nbsp;nbsp;GeOMETRIA PRACtrCA.

fubmultiplo deiiderato, ex. gr., triplo, aut fubquaf-druplo, extrahatur radix cubica, qua; erit latus Cu-bi defideraci.

CAPUT II.

De Sterêometria Doliorum.

668. In Stereometria Doliorum famofa eft menlura apud Belgas nota vulgari idiomate em aeme, ime aime,nbsp;continctque pocula 96; hujus pars quarta, vulgo eennbsp;vircndeel, line quartelctte, 24 pocula scquat. Punctumnbsp;vulgó een Jchreve, un point, quatuor comprehcnuicnbsp;pocula. Ut verè inveniatur, quot pollices cubicos pocu-lum datum capiat : detur Epiftomium in fuperiori parte aheni; impleatur hoe aqua, donee cBluere incipiatnbsp;per Epiftomium. Parallelepipedum ligneum, longuranbsp;3, latura 2 pollicibus, altum veró pro arbitrio , amp;nbsp;ttt neceffe fuerit , colore oleofo aut vernicc pidturanbsp;(ut aquae in poros irapediatur ingreffus), lento motu,nbsp;pcrpcndiculariter in aquam demittatur, donee effluens,nbsp;per Epiftomium, aqua, poculum exaélum, quo recipi-tur, adimpleat. Altitudo, ad quara demerlum fueritnbsp;Parallelepipedum, ducatur in baftn Parailelepipedi, quaenbsp;in cafu = 6 poll. quadr.; faélumquc dabit pollices cubicos , quos tenet Poculum. Ouoniam veró Lovaniinbsp;ad to poll. deprehenditur mergi, Lovanienfe Poculumnbsp;conftat óo pollicibus ctibicis.

PROBLEM A I.

Vir^ulam pithometricam Cvlindricam conflrum.

669. Resolutio I. Sit vas cylindricura ABDPCfig- 2), cui infundamr menfura una,qua ad fluida menfuran-da udmur ; fitque EG liquoris libella, OX altitudonbsp;= GE. Ducatur HL = ED diametro Vafis ; H7nbsp;indefinita, fit perpendicularis ad HL : fumatur Hi

-ocr page 263-

Geometkïa Practica.

*= HL : Ha fiat = Li : La meter vafis, duas menfuras capientis, fed ejufdeni aLnbsp;titudinis cum vafe, quo4 nonnifi unam capit. H3?nbsp;diameter Vafis, capientis tres menfuras amp;c. In unum

antur divifiones invence in alterum veró latus KRnbsp;xqualis.

®2I

H3 amp;;c erit Ha dia-

Virgulffi latus ZP

transfc

H4 amp;c.

ex. gr.

Hi,Ha,H3, . contiguum , altitudo uni menfaracnbsp;KI = OX, quoties fieri poteft.

670. II. Eafdem racnfuras. expedite per. Tabcllam ra-dicum quadratarum inferibes, vit fcquitur : fit Diameter menfurae AB = Pi = loco : erit eius quadra turn joocooo. Ex hujus duplo extraéta radix qua-drata erit Pa. Si ex triplo , quadruplo, quintuple . amp;c. radix quairata extrahatur, prodibuntnbsp;amp;c. quem in ufum confirudta eft Tabula fcquens.

671.

s

0

Ö

Diam.

2

0

Diam.

t?

0

D

Diani. j

j

I

I.OOO

17

i

4.123

33

.5-744 ;

I.4I4

18

4.242

34

.5-831 i

3

1.73a

19

4-3.59

35

.5-916;

4

a.000

20

4.472

36

6.000

S

a.a^ó

ai

4.582

37

6.082.

6

2.449

22

4.690

38

6.1641

7

2.645

4-796

39

6.244',

8

a.8a8

24

4.898

40

6.324

9

3.000

25

5.000

41

6.403

10

3.16a

26

5.099

42

6.480

11

3-316

27

5-196

43

6-.5.57

la

3-464

28

5291

44

6-633

1.3

3-605

29

.5-385

45

6.708

14

3-741

30

5-477

46

0.782

15'

3-^73

31

S-5^7

47

6-855

16

4.C00

3^

.5-657

48

6.928

-ocr page 264-

aaa nbsp;nbsp;nbsp;Geometria Practica.

Demonst. Cylindri eandcm akitudincm habeiitcs funt inter fc ut quadrata Diametrorum C 444 3 : ergonbsp;quadratum Diametri vafis duas, tres, quacuor amp;c.nbsp;inenfuras capieniis , efii duplum , triplum , quadruplumnbsp;amp;c. quadrati diametri vaiis, menluram nonniii unamnbsp;capientis. Quare, 11 inde radices extrahantur, habebun-tur in refolutione fecunda Diametri iplsc. Quuniamnbsp;veró in prima refolutionis parte AB Diameter vafis ai-fumitur atqualis HL = Hi; erit ipfius Li quadratumnbsp;duplum, quadratum ipfius L2 triplum. quadratum ipfius Lq quadruplum amp;c. quadrati ipfius Hi. Undenbsp;patet eife rectas Ha, H3, H4 amp;c. diaractros vaforumnbsp;quaefitas. Quod 11 itaque has divifiones ad diametrumnbsp;vafis Cylindrici applices; iliieo conftabit, quot rr.cnfu-las capiat vas Cylindricum, eandem cura ifto bafin,nbsp;fed altitudinem illius habens, quod unam menluramnbsp;capit. Quare ft porro, opc altcrius divilionis in Vir-gula fadx, inveltigcs quoties aititudo unius menfurxnbsp;in altitudinc vafis dati contincatur, amp; per hunc nu-merum diametrum modo inventam multipliccs'; prodi-bit numerus menfurarum cavitatem vafis dati adimnlen-tium. lt;2,. c. d.

672. ScHOLioN. Ut autem partes decimales menfiira; integrae de-terminentur; matiente cadem vads akitudine ; posacut Diameter unius menluraï = i , leu tooo partiiim decimalium •, erit ejusnbsp;quadratum. 1000000; CU jus pars dccima =: looooo : indé exuac-la radix quadrata = 316 continet panes decimales diametrinbsp;unius menfura;, qure conveniunt diametro Cylindri deciir.amnbsp;menfiirte partem cominentis, ejufdem tarnen cum Cylindro, in-tegram menfumm capientc, alticndinis. Si ex duplo hujus deci-mte , nempe aocooo, radix extrahatur , prodic diameter bafis,nbsp;duas dccimas unius menfura: capientis 447; amp; ita porro. Quodnbsp;li quadrato diametri unius menfura: ibooooo, adjicias partemnbsp;decimam lococo, amp; cx fnmma extrahas radiceni quadratamnbsp;1.049; erit ca diameter vafis, qute capit i-t- menfurie.

Ratio perfpicua fit per demonllrationcm Problcmatis prxfcntis. Atque fic patet, quomodo Virgula pithomctrica accuratiüs con-llrui poffit, ut iiucrvalla inter menfuras integ’as lubdividanturnbsp;in partes decimales.

-ocr page 265-

Geometria Practica.

TABULA

Diainetrorum pro menjïtris integris amp; carum panibus dedmalibus.

3-0

1.732

6.0

, 2.449

9.0

2.000

I

31Ó

I

1.761quot;

1

' 2.469

I

'3.016

o

44.7

2

1.78S

2

,2.489

2

3-033

3

54^^

3

1.816

3

' 2.509

3

3-049

4

Ö32

4

1.844

4

2.529

4

3.0ÓÓ

5

707

5

1.871

5

2-549

5

3.082

6

775

6

1.897

6

2.599

6

3-098

7

^37

7

1.923

7

2.5S8

7

3-IÏ4

8’

894

8

1.949

8

2.Ó07

8

3-130

9

949

9

1-975

9

2.Ó2Ó

9

3.146

o

I.ooo

4-0

2.000

7.0

2.645

lO.O

3.162

r

1.049

I

2.025

I

2.Ó64

I

3.178

o

1.095

0

2.049

0

2.083

2

3-194

3

I.I40

'3

2.073

3

2.702

3

3.210

4

1.183

4

2.097

4

2.720

4

3.226

5

1.225

5

2.121

5

2.738

5

3.241

6

1.2651

ó

2.145

6

2.756

6

3-25^

7-

1-3041

7

2.1Ó8

7

2.774

7

3.271

8

1-34-

8

2.191

8

2.792

8

3.286

9

i-,378:

9

2.214

9

2.810

9

.8-.8or

o

1.414

5.0

2.23Ö

8.0

2.828

II.O

3-31Ö

I

1.449

I

2.258

I

2.84Ö

I

3-331

2

1-4^3!

0

2.280

2

2.864

2

3-34Ö

3

1-517

3

2.302

3

2.881

3

3-3ÖI

4

I-.549I

4

2.324

4

2.898:

4

3-37Ö

S

I-.58I

5

2-345

5

2.9151

5

3-391

6

I.5l2j

6

2.3661

6

2.932

6

3.406

7

I-Ö43

n

i

2387.

7

2.949

7

3.421

8

1.673

8

2.408;

8

2.96Ó

8

3-43Ö

9

1.703'

9

2 429

9

2.983

9

3-451

-ocr page 266-

r'

Geomitria Practica.

674. ScHOLiON. Affamere folenc Virgam 4 pedibus longam; unum-que ejus lacus in partes 4,, feu pedes, dividicur : pes quilibet in 10 pollices ; amp; quifque pollex in JO lineas fubdividicut ; ac*nbsp;que ita djvil'um crit hocce latus in 400 pattes iequalcs.

PROBLEM A IL

Invtnirt capadtatcm Dolii cylindrici (fig. 3).

Ö75. Resolutio I. Inprimis explorare eam licet pe-dali meï)lura : ninijmm menfuretnr diairister inre' riór Cylindri, atque indé concludatur area bafeos ;nbsp;hfcc inventa ducatur in Cylindri longitudinera : factum dividatur per 60; quocus dabit qüantitatcm po-culorum.

At expedicior communiorque efi: modus fequens. :

II. Latere PZ (fg. 2) Virgx Pithometricx cylindricx, capiatur diameter interior 01 Dolii : dein latere KRnbsp;Virgx, inquiratur Dolii longitudo interior : una innbsp;alteram ducia, faéium dabit numerum menfura-rum, quas capit Dolium.

lt;76. SCHOLION I. Tabulse, ex quibus Doiia conftnii folenc, ultra fundum prominent : menftirctur utrimque hiec prominentia, atque notetur creta in'ipfa fuperficic Dolii in A amp; B Cfig-i): diltan-tia base AB prasterea minucnda eft ad cralTitieni bafium circu-lariurn ; porro crafficies illa haheri folet aqualis tabularam craf-litiei, prout ea ad orifidum O capi poteft.

677. ScHOLioN II. Quod fi bafiS alterutra non fuerit cxaftè cir-cularis, capiatur major atque minor ejufdem diameter : medietas utriufque fimul collectie pro vera alfumatur.

PROBLEMA III.

Inquirert foliditatem Dolii (fig. 4).

678. Resolutio. Latere PZ Virgx cylindricx capian-tur primo Diametri interiores bafium EC amp; AF : medietas utriufque habeatur pro vera diametro ba-

i 3-4

... ji

fcos

-ocr page 267-

Geometr-ia Practica. nbsp;nbsp;nbsp;225

feos circularis lateralis. Dein eadem Virga capiatur major diameter interior OP, per orificium ventris :nbsp;addatur hacc in unam funamam cum diametro mi-nori vera : medietas dabic cequatam Diamitrttm FKnbsp;= OX, Cylindri KLCF; cui aliimilari poicft Do-lium;licèt hoe in rigore non ita fit. Dein latere IvR»nbsp;partiuin xqualium Virgte, inquire Dolii longitu-dinem internam, ntodo quo fupra diólum eft (676):nbsp;longitude hscc ducatur in Diametrum sequatam,nbsp;faélumque dabit numerum menfurarum , quas con-tinet Dolium.

lt;gt;79. ScHOLioN. Vulgaris ilia vaforum vinariorum ilereomerria, inquin Alecias , qu® per hanc Cylindraceam perticam, ex Colanbsp;mukiplicatione aquatae Diametri in aldcudinem perficitur ,nbsp;fraudulenta eft , amp; in defcftu femper peccat, prsfertim quan-do iiimis ventricofum exiftit vas, amp; Diametri valde funt ina;-quales. Quare, qui eujufvis generis Dolia, quancascunque Dia-mecrorum ina;qualitacis, per perticam, feu Virgam Cylindra-ceam, verè amp; accuracè metiri velic, correftionem neceffariönbsp;adhibere debet lit fequicur. Proponatur Dolium menfuranduiT),nbsp;cujus bafeos Diameter deculïatim accepta jucidat in partes inte-quales, ad pundtum f {fig. 5). Altera bafeos diameter cadat in K:nbsp;unde punctum mediam L erit a;quaca extremarum bafium Diameter, quod incidat in 8.a. Vafis Diameter, ad orificium amp;nbsp;medietaiem accepta, incidat in M , partem = 13.3. Inter no-tul.is L amp; M compreheuduntur partes latitudiiium inaequalesnbsp;= 5.1 •, quorum dimidium = n.55, fi addatur miuori diametronbsp;= 8,a', fiec ffiquatio tiumerorura = 10.75-, vel utramque diametrum fimul adde, fiunt ai.5 , quarum dimidium dabit ean-dem numerorum squaciotiem = 10.75. Porro pet cireinum^ ae-cipe inter L amp; M ijotulas, pundhim medium O, delignans innbsp;percica diametrum vafis tequatam = 10 6 , qu» femper minornbsp;erit cequatiqne numerorum , amp;. deficit in hoe éxempio o.ts; cujus pars tcTtia = 0.05 adjiciatur -^qua^a; diametro'• fiet vera amp;nbsp;conicè correüa vafis diameter = 10.65.nbsp;nbsp;nbsp;nbsp;tandem in lon-

gitudiiiem vafis, per partes iongitudinis percicaj a;quaies accep-tam , mulciplicato, qua: quidem longitudo (dempta lignearum b.aflum amp; marginum abundancia, üt /upra docuimus) fit 15.4;nbsp;fict Dolii capacitas qu^fita == 164.,?-.

Quod fi abfque fcrtipulofa hac correbtione , ex vafis longitudi-ne = 15.4, amp; xquata va-fis diametro = 10.6, fteteometriam abfolvas ; invenies per eorundem numerorum mukiplicationeinnbsp;pro vafis ejufdem capacitate 163.24, qua: a vera deficit unanbsp;lè menfura, lüper qua fuetic Virga conftrubta.

F f

-ocr page 268-

£2Ó

Geometk-ia Practica,

P R 0 B L E M A IV.

Conjh'uere Virgam pithometricam Cubicani, jiu Diagonaieai.

defcribitur circuius orbium iignearum Icu balium.

¦680. Resolutiö I. Cum vafa, pro quibus Virga hxc paratur , debeanc, moralucr laitcm , effe iiraiiia :nbsp;qaod obcinet, dum inter Diametrum acquatam at-que lon'gitudinem eadem moraiiter rcperitar ratio.nbsp;In Doliis auftriacis lervatur haco maxime commen-aanda : tertia nimirum parte longitudinis tabularum

II. Quoniam, experientia tefte, fabricata hacce Virgil fuper Cyiindro, cuius longitudo ad aeqnacam dia-metrum fefe hal5et uc 6 ad 5 : ea adhibetur, abfquenbsp;crrore notabiii in quibufcumque Doliis, nili in iisnbsp;longitudo non faciat niajoris scquatac Diametri;nbsp;vel fi longitudo ” niajoris sequatae Diametri com-pleélatur; aut ii Diameter ventris | faciat Diame-tri bafium. Quod fi reperiatur hoe ita elie : Doliinbsp;capadtas iaveiiigetur Virga pithometrica quadratè.

lil. Sit Cylindrus olcx (fig- 6_)taiis, ut 0/ altitudo fit ad cl diametrum balbos, üt 3 ad 5 : contincat-que vas iliud Cylindricum menluram unam , ex,nbsp;gr., anum Punctum. Virga Gc tranfverfim in Cylindronbsp;üilponatur, notecurque in punCto O numerus i. Quoniam Cylindri fimiles funt quóquc üt cubi diagona-lium : ut invenias notam a pro diagonali ca, de-lerminaiite piincla 2 : pone oc = 1000 : fume ejusnbsp;cubuin ; ex eodem duplicato excradfa dabit i!259inbsp;pro C'2. Ut habeatur Diagonalis Cylindri 3 punSo-rum : tnplicetur cubus 1000; extrada p' dabitnbsp;pro cg; amp;c.

-ocr page 269-

227

Geomethi.^ Pkacttca.-


P R. o B L E x\I x\ V.

Inquircre quantitattm fluidi in JjoUo non plena.

b .;. P^ESOLUTio I. Dolinm, Jibellic beneficio, it.2 con-iïitüatur, ut axis ejus fit hori'/.ond iiarallelus; ne Icilicct fluidum in una Dolii pane altius lit quamnbsp;in altera. Ejufque capacitas inquiratur.

II. Turn Virga pedali inquiratur Dolii asquara Dianac-meter. Noteturque altitudo liquoris relidui fub Diametro ventris ; cx hac altitudine llibtrahatur i dit-ierenti® majorem inter amp; minorem Doiii Diamc-

F f 2

-ocr page 270-

^28 nbsp;nbsp;nbsp;Geometuia PB-ACTICA.

irum : reliquuin clabic veram Sagittam Segment! Doüi, Cylindricè confuierati. Inquiracur area iltiusnbsp;Scgraenti; hscc inventa ducacuf in Dolii lorgitudi-nem : faétum dabk quanütatcm lluidi reiidui.

Ex. gr. Dolii capacicas fit 190 poculorurn : Diameter ventris = 330 ; aititudo liquoris reiidui, feu pars virgaj madida, = 117 : cujufque bafis Diameternbsp;== 310 : ita operate :

.®quata Diameter Dolii = 320 : vera Sagitta ma-dida =: 112 : primo ieaque dicito : 320 dat 112; quid dabit Diameter loq tabulae C622)? invenicturnbsp;tabulae Sag. 35 cujus Segm. 312.00.

dicendo : Circnlus tabula: = 1000 dat


Dein perge

Segmentum 312.00; ^uid dabunt 190 pocula ? Repé-rientur nbsp;nbsp;nbsp;pro reiiduo.

683. ScHOLiON. Porro ut fiidiiori atqiie prompdori raetbodo (licet non scqiiè tuta , nili fuerinc Delia fimilia ei, quod con-Urutlioni VirgK iiilcrviic) quandtas liquoris in Dolio non ple-110 inveftigetur , duo lequenda ex W'olfio , pro Coronide, fint Problemata. ¦nbsp;nbsp;nbsp;nbsp;'nbsp;nbsp;nbsp;nbsp;¦

PROBLEMA VI.

Virgam pithometricam conjlriiere ad dtterminandam qmaütateni fluidi in Dolio non plena.

684. Resolutio I. Affamatur Dolium aqua plenum, cujus capacitas jam cognita efi : numerus menfura-rum cx. gr. per 20, aut numerum alium minoremnbsp;vel majorem dividatur, prout Dolii capacitatem innbsp;j-’artes majores vel minores dividi comniodum vifumnbsp;luerit.

II, Dolio oollocato, üt in prtecedenti ; Virga per ori-• ficium ventris intrudatur, donee fundum Dolii attin-gat.

-ocr page 271-

GeometR-Ia Practica.

UI. Ei quantitate fluidi ex Dolio emifsi, quai numero mcnfurarum rer divifionem, paulo ante N'® i in-vcnto, refpondet; in Virgula notetur decrementum altitudinis in fluido, quod exprimic totios capacica-tis parcein vigefimam.

IV. nbsp;nbsp;nbsp;Eodem modo notabis decrementum altitudinis,nbsp;reliquis particulis vigeiimis quanticatis fluidi, in Dolio content!, refponden».

V. nbsp;nbsp;nbsp;Horum dccrementorum intervallis in una Virgulacnbsp;facie notatis; altera dividitur in panes quotcunquenbsp;minutas inter fe aequaics, ultra vigefimarum inter-valla inacqualia continuandas; ex. gr. in aoo aucnbsp;plures.

Ita Virga pro Dolio non pleno metiendo conftruc-ta eft.

PROBLEMA VIL

Opt pmcedentis Virga ^ determinarc quantkatm fluidi in Dolio non pleno.

685. Resolutio I. Inveftigetur capacitas totius Dolii.

n. Eo, üt ante, debitè difpofito, Virga, per Problema praecedens parata, per oriflcium Dolii O (/g'. 4 ) in-trudacur, donee fundum in P attingat.

III. nbsp;nbsp;nbsp;Ea rurfus extraóta , notetur quot partes in facienbsp;partium scqualium vino madidae fint.

IV. nbsp;nbsp;nbsp;Hinc inferatur : üt numerus partium ajqualium innbsp;altera Virgula: facie,' profunditati totius Dolii OPnbsp;refpondentium , ad numerum fimilium partium ,nbsp;altitudini fluidi PG convenientium ; ita numerusnbsp;earundem partium, qua: intervallo fcrupulorum vi-gefimorura congruunt, ad numerum quartum pro-portionalem inveniendum.

-ocr page 272-

ago

Gêometïiia Pilactica.

V. Capiatur circino intervallum tot partium cqualium in Virga, quot numerus inventus exprimit, amp; trans-feratur in Scalam fcrupulorum vigeiimorum, note-turquc eorum numerus, quae ipli congruunt. Pernbsp;hunc dividatur numerus menlurarum, quas Doliumnbsp;integrum capit : quotus erit numerus menfurarum,nbsp;quas fiuidum in Dolio contcntum replere poteft.

Ex. gr. fit OP = i6o; PG = 58, numerus partium tequalium, quse intcgio fcrupulorum vigefimo-rum intervallo congruunt, = i2,o;capacitas deniqueDo-lii 128 menfurarum. Circino captum interval!um tot partium icqualium in Virga, quot numerus inventusnbsp;exprimit, tfanflatus in Scalam fcrupulorum vigeumo-rum, indicet feu j. Quod li itaque. 128 per 5nbsp;dividas, quotus == 25I indicabic numerum menfurarum fluidi in Dolio rciidui.

Vid. F. Jacobi A. R. L. C

-ocr page 273-

£/ e - nbsp;nbsp;nbsp;♦»

fSx-.^^

f tfi-jf f: -r^‘'‘ -i ■ '■' ■■■. ■ quot;

quot; ^ nbsp;nbsp;nbsp;,nbsp;nbsp;nbsp;nbsp;â–  â–  r

fi... nbsp;nbsp;nbsp;^nbsp;nbsp;nbsp;nbsp;'• ■‘'■‘■f^-

^:r

â–  . nbsp;nbsp;nbsp;^ J quot; ; quot; .,, if ^

-sst f, nbsp;nbsp;nbsp;^l^-^ji-\.ik/''

-ocr page 274- -ocr page 275- -ocr page 276- -ocr page 277-

-ocr page 278-

rvf-.-

-ocr page 279-

sar

r’

-ocr page 280-