Bibl. Utenhor.
Octavo r?. ÎÎ5.76
-ocr page 3- -ocr page 4- -ocr page 5-In
B O O K J containing The Fundamental Principles of this Art.
Together with
AU the Praólical Rules of
^^ERATIONi'
BOOK
II
containing,
A great Variety of PROBLEMS, ,
In the moft important
Branches of the MATHEMATICS.
Vtit qukquam in univerfa Mathefi ita difficile aut arduum Bccurrere poffie,. que nan inoffenfi pede per hanc methodum penetrare Uceat,
Schoot. Pref, to Des Cartes.
LONDON:
Printed for J. Nourse, in the Strand ; Bookfeller in Ordinary to His MAJESTY.
MDCCLXIV.
THE
ThE fubje£i of the following book is Algebra, « fcience of univerfal ufe in the^ Mathematics. Its buftnefs and ufe is to folve difficult problemSy to find out rules and theorems in any particular branch of fcience -, to difeover the properties of fueb quantities as are concerned in any fub-' jell uoe have a mind to confider. It properly follows thefe two fundamental branches. Arithmetic and Geometry, Z»«/ is vajtly fuperior in nature to both, as it can folve quefiions quite beyond the reach of either of them.
This m an art truly fublime, and of an unlimited extent ; for if the conditions of a problem be never fo complex, and though the quantities concerned are never fo much entangled with one another, yet the Ægebraifi can find means to diffiolve and feparate them •, or if they be ever fo remote, his art can furnifh him with methods to bring them together and compare them. It is true, he is often obliged io traverfe many roundabout ways, to get the relation of the quantities con-cerned ; yet by certain rules he can purfue the computa- ' tion of his problem through all thefe intricate turnings and windings ; and by hisfkill and fagacity can hunt
through all thefe labyrinths, HU he arrives fafely
A 2
at
îv The PREFACE.
at the end of the chacs^ viz. the folution of the problem.
The extent of this curious art is fo great that it has gained the title of Univerfal Mathematics ; and is called by hü ay of eminence^ The Great Art-, and has been efieemed the very apex of human reafon. It is alfo called SpzcAOMi. Arithmetic, Univerfal Arithmetic, The^ Analytic Art, The Art of Refolution and Equation ; with a view to fome or other of its properties or operations.
The nature of this excellent art is fuch, that it may be applied to any fubjett, provided the principles of that fubjvit, it is applied to, be underftood. Its great beauty is, that it deals in generals. For whjlfl other branches go no farther than their own particular fubjeU, and can only find folutions in particular cafes ; this art finds out general folutions, general rules, general theorems, and general methods.
This noble fcience has alfo this peculiar property, that it not only invefligates rules in all the other parts of the Mathematics ; but by the mofl fubtle art and invention, it finds out its awn rules, models them according to any form, and varies them at pleafure, fo as to anfwer any end propofed. It would be in vain io attempt to enumerate all the ufes of this admirable art.
By making ufe of letters inflead of numbers, it has one great advantage above arithmetic, viz. that in the feveral operations of arithmetic, the numbers are lofl or fwallowed up, and changed into others : but here they are preferved dijiinlt, vifible, and unchanged, By which means general rules are dtawn from particular folutions, to anfwer all cafes of like nature.
Br
-ocr page 9-The PREFACE. nbsp;nbsp;nbsp;nbsp;V
Ey help of algebraic charaSlers, geometrical de-monfirations are often rendered more fhort, compendious, and clear. So that by this means voe avoid the tedioujnefs of a long verbal procefs, vohich othervcife •we fhould neceffarily be involved in ; and vohicb never fails to darken and obfcure the fubjebt.
It is highly probable the cmcients made ufe of feme fort of analyfis, whereby they found out their noble theories. For it is hardly pojfible fo many fine theorems in Geometry, fhould be groped out or fumbled on, without feme fuch method. But as it was then only in its infancy, it muß have been far ßort of the perfeblion we have it in at prefent.
As to the Reader's qualifications, it is abfolutely ne-ceffary that he underßand Arithmetic and Geometry, as the keys to all the refl. And it is alfo neceffary that he underfland the principles of every branch of fcience, to which he would apply algebraic calculations ; other-wife it would be in vain to attempt the folution of any problems therein, by the help of Algebra.
Then as to the method I have followed, it is this. 1 have gathered together the mofl valuable rules and precepts, which lie flattered up and down in all the befl books of Algebra ; and what was deficient, 1 have fupplied as well as 1 could. ‘Then I have thrown all thefl precepts and rules of working, into fo many problems ; which 1 have reduced into as fhort a compafs, and exprejfed in as plain terms as poflible, fl as thty may be clear and intelligible. And the method I have taken 1 fuppoje will appear to be very fimple and tafy, and will readily be apprehended by fuch people as have found confufion and difficulty in other methods. I believe I have omitted nothing that is fundamental-, and if any thing of lefs moment is paffied by, it is either becaufe
-ocr page 10-' Ji Thé preface.
t ” fupplied by fame cthef
r^ 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;problems are
in jucb order, that the eaßefl appear firfl, and lead on to the harder, 'which follow in due courfe afterwards : thefe make up the firfl book. And the fécond book contains the application of Algebra to all forts of problems, of-which there is great variety, and many of them perfe£ily new-, others that are not fo, have
generally new folutions to them. So I hope I have delivered both the principles and the praSlice at large, and yet have not clogged the Reader with any fuper* fiuity.
W. Emerfon«
-ocr page 11-THE
CONTENTS.
Page
DEfinitions nbsp;nbsp;nbsp;nbsp;- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;———
BOOK I.
The fundamental Principles.
Seft. I. The Operations in Integers -------—
Seél. II. Fraélions nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----
Seél. IV. Of managing Equations
Seót. V. Subftitution, Extermination, i^c,
Seól. VII. Several fundamental Problems
Prob. LXV. To find two quantities whofc fum and difference is given
Prob. LXVIII. Two quantities given, to find the fquare of the fum
Prob. LXIX. Two quantities given to find the fquare of the difference
Prob. LXX. Given the fum and difference to find the reélangle
prob. LXXI. Given the n‘lgt; power of a binomial, to find the difference between the fquare of the fum of the odd terms, and the fquare of the fum of the even terms nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;203
Prob. LXXII. To find any root of a binomial furd 204
Prob. LXXin. To explain the properties of o, and infinity
Prob. LXXIV. To find the value of a fraélion, when both numerator and denominator are o
Prob. LXXV. To find whole numbers anfwering the equation ax-^z.by c
Prob. LXXVI. To find a number that being divided by given numbers, will leave given remainders 219
Prob
-ocr page 12-vüi nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;The C o N T E N T s.
Prob. LXXVn. To find the limits of an equation containing feveral unknown quantities nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;pag. 225
Prob. LXXVIll. To find the limits in two fuch equations nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;228
Prob. LXXIX. The inveftjgation of the rule of alligation nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;231
Prob. LXXX. Inveftigation of the rule of falfe 234 Prob. LXXXI. Inveftigationof the rule of exchangeißö Prob. LXXXn. To find rational fquares, cubes,b’r.237 Prob. LXXXIII. To find the maxima and minima of quantities nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;241
Prob. LXXXIV. To turn numbers into logarithmic feries nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;244
Prob. LXXXV. To turn logarithms into numerical feries nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;247
Prob. LXXXVI. To demonftrate a propofition fyn-thetically, from the analytical folution 250 Seä, VIII. The refolution of equations, and extraction of their roots in numbers nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;251
Scél. IX, The geometrical conftruöion of equations 297 Sedl. X. To inveftigate a problem algebraically 316
BOOK IL
The Solution of particular Proikmj,
Page
Sed. V. Problems for finding rational fquares, cubes,
Sed. VII. Problems in Plain Trigonometry
Sed. VIII. Problems in Spherical Trigonometry
Sed. XII. Problems concerning feries
Sed. XIII. Problems concerning exponential quantities 497
Sed. XIV, Problems of Maxima and Minima 507
ALGEBRA.
-ocr page 13-DEFINITIONS.
I, A'L G E B R A is a general method of com--/3- puting Problems, by help of the letters of the alphabet, and other charaders. It is of the fame nature as Arithmetic, but more general, and therefore it is called Univerfal Arithmetic^ as likewife the Analytic Art. The peculiar pradice of this method is, to allume the quantity fought as if it was known, and proceeding to work by the rules of this art, till at laft the quantity fought, or fome powers thereof, is found equal to fome given quantity, and confequcntly itfelf becomes known.
2. Like quantities, arc thofe that confid of the fame letters; as a, ^a, —^a. Alfo bb, •^bb, — i\bb-, alfo labc, i^abc, —abc-,
3. Unlike quantities, are thofe çonfiifing of different letters, or of the fame letters, difl'crently repeated. As«, b,zc,—2^. Alfo «, 2««,—ßäaa.
4. Given quantities, are thofe whofe values are known.
5. Unknown quantities, are thofe whofe values are not known.
6. Simple quantities, are thofe confiding of one term only ; as ^b, i^dcc, amp;c.
7. Compound quantities, arc thofe confillint: of fe-veral terms, as a-^fb, 2a—?c, a '’b—^d,
Pc/iiR-e
-ocr page 14-2 nbsp;nbsp;nbsp;nbsp;DEFINITIONS.
8. Pofitize quantities, are thofe to be added.
9. l^egative quantities, are thofe to be fub-tracted.
IO. Like figns, are either all , or all —, (See the Charadcrs.)
II. Unhke ßgns are and —.
12. The Coefficient, is the number prefixed to any letter or letters in any term. As 3 is the coefficient of 3/7t2. If no number be prefixed, then i muft be underftood, -is a a fignifies iaa.
13. y/ Binomial quantity, is one confifting of two terms, as 2 a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A Trinomial of 3 terms, as
a b — L. K ^ladrinomial of four, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A
liefidual is a binomial, where one of the quantities is negative.
) 4. Pozver of a quantity, is its fquare cube, bi-quadrate, Ißc.
An Equation, is the mutual comparing of one thing with another, by the fign of equality put between them.
16. A dependent Equation, is an equation which may be deduced from fome others.
17. An independent Equation, is one that cannot, by any means, be produced from the others.
18. Pure Equation, is an equation containing but one power of the unknown quantity; as a Jimple Equation, a pure Quadratic, a pure Cubic, amp;c.
19. An affielled Equation, is that which contains fevcral powers of the unknown quantity ; and is denominated according to the higheft power in it; as an affepled êffiadratic ; an affebled Cubic ; an affebled fourth Power, amp;c. Thus a fimple equation contains only the fimple quantity itfelf. A quadratic, a quantity of 2 dimegt;.fions ; a cubic, a quantity of 3 dimenfions ; a biquadratic, of 4 dimen-fions, ^c
20. Index or Exponent, is the number fet over a letter fhewrng what power it is : as a' ; here 3 fliews
DEFINITIONS. 3 fhews it is the third power; or that is equivalent to a a a. And thus 0 is the fame as lt;3 a «ß ; the fame as rz a zr lt;3 0, amp;-c, the index always Ihewing hov/ oft the letter is repeated.
2 1' FraSiion, confifts of two quantities placed one above another, v/ith a line between them, a
as the upper {a) is called the numerator^ the lower (A) the denominator.
A Surd, is a quantity that has not a proper root, as fquare root of a a}, cube root of
amp;c. roots of compound quantities that contain other furds are called, Univerjal Surds.
23. A rational quantity, is a quantity that has no radical figru
Char allers ufed in Algebra.
-F more, to be added, being the fign of addition, This is called an affirmative fign. 1 hus a b fignifies b added to a.
— lefs, abating, the fign of fubtraélion. '1'his is alfo called a negative fign. Thus a — b, fignifies Z» fubtraéted from a.
Thefe figns always affeól the quantity following ; and are always lo be interpreted in a contra,ry fignification. If fignifies upward, forward, gain^ increafe, above, before, addition, Szc. then — is to be interpreted downward, backward, lofs, decreafe, below, behind, fubtraAion, Zzc. And if 4- be be underftood of thefe, the/i — is to be interpreted of the contrary.
B 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;co dif-
-ocr page 16-4 nbsp;nbsp;nbsp;nbsp;C H A RACIER S.
co dijference-, a fignifies the tliffer-ence between a and Z».
X r4ultiplied by ; as fl X Z», fignifies a multiplied by b. Likewife fl b^ fignifies fl multiplied by b. All letters joined together fignifies a multiplication. For brevity’s fiike points are often ufed inftead of x, as n --. -----, fig-
23
n—I nbsp;n—2
nifies « X--X----• 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
-4- divided by, as a — b, fignifies fl divided by b, and fignifies the fame.
z=. eq^ual (o, as a -p Z» =z 2d, fignifies a and Z- equal to 21/.
C“ greater than, as fl tr is a greater than Z».
c_ leffer than, as a c_ b, is fl lefs than a root, as s/a, is fquare root of a.
cube root of fl. ^a, fourth root of a, Stc. it is called a Radical Sign.
involved to, as 2, involved to the fquare ; nbsp;nbsp;nbsp;nbsp;3 involved to the cube.
Uc.
Im extraSied. luj 2, fquare root. Im 9, cube _________ root, fÿc.
a b c, a line, or vinculum, drawn over feveral quantities a, b, c, denotes them to be efteemed a compound quantity.
E X P L A N A T I O N.
flfl —Zi^-I- c d, fignifies Z» fubtracled from fl A, and 2, cd added.
a a b b' — cd — dd, fignifies, that c r — dd is fubtraded from' a a — hb.
a a 2 a~b
-ocr page 17-EXPLANATION
—----- ----- 5
aa 2aâ V) rr — s s, fignifies the difference between 2 0 and rr — j j.
abc c fignifies the produft of a and and c c
a-{-bY.aa^ fignifies the fum of a 4- b multiplied by a a. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;'
fignifies the produd of jn^Q is to be added to a.
—■‘t.
a a — 2 ab , fignifies the fquare of rhp mm pound quantity 0 « — 2 z:
y/ b b cc fignifies the fquare root of b b -p c r,
\/ 2 a b — c Cy fignifies the cube root of 20^__cc
'^ZZb'' fignifies 0 a divided by a ■— b.
J tx— a~a of di-vided by ä' — a a.
a^b^ fignifies a a a x b b^ or the cube of « mqi. liplied by the fquare of iJ.
“^ax — x: X \/ß a X, fignifies the fquare root of sax multiplied by 3 æ x— x x ; and fo of others.
Quantities that have no fign prefixed, muff be underftood to have the fign ; leading quantities feldom have the figns put down, when they are affirmative.
If A B and C D be two lines ; then A B x C D in a geometrical fenfe, fignifies the rectangle made by the lines AB and CD.
., - A B nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
C^’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B has to
CD.
NOTATION.
I- In the computation of problems, putthefirft letters of the alphabet, b, c, d, J, ƒ, h, for known quantities, and the laft letters of the alphabet for unknown ones. Yet fome put vowels for
B 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;unknown
-ocr page 18-6 nbsp;nbsp;nbsp;AXIOMS.
unknown quantities, and the reft of the alphabet for known ones.
2. For general forms, put the capitals A, B, C, D, for the general quantities.
3. Or in univerfal forms, let the quantities be denoted by the Greek capitals, r, 7, ©, n, S, Y, lt;î), y, fi, and indices, coefficients, by the fmall letters, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;0, nbsp;nbsp;nbsp;nbsp;/.i. v, -n-, t, e.
4. In cafe of neceffity, make ufe of any other fort of letters, or of any charaóters, that have names, as b , V, lt;î,Q, ?, ïi, ï, SI, t, yi, amp;CC.
AXIOMS.
I. If equal quantities be added to equal quantities, the fums will be equal.
2. If equal quantities be taken from equal quantities, the remainders will be equal.
3. If equal quantities be multiplied by equal quantities, the produóls will be equal.
4. If equal quantities be divided by equal quantics, the quotients will be equal.
5. The equal powers or roots of equal quantities, are equal.
6. If to or from equal quantities, unequal ones be added or fubtraóltd ; the fums or remainders will be unequal.
7. If equal quantities be multiplied or divided by unequal quantities ; the produdls or quotients ■will be unequal.
8. Quantities feverally equal to’ a third, are equal to one another.
9. The whole is equal to all the parts taken together.
10. If a quantity be addedi, and the fame quantity fubtraded, they deftroy one another, and are both reduced to nothing.
BOOK
-ocr page 19-BOOK I.
The fundamental Principles of Algebra.
S E C T. I.
‘The primary Operatiom of /ligebra in Integers.
PROBLEM 1.
add feveral Quantities together.
I RULE.
IF the quantities are like and have like figns -, add all the coefficients together, for the coefficient to that quantity, and prefix the fame fign.
Ex. I. | ||||||
|
Ex, z.
to nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 2O2Xxjy’
add 4- nbsp;x^abb nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;x x
nbsp;nbsp;'^abb nbsp;nbsp;nbsp;nbsp;— nbsp;ly X X
4- abb nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----
--—■ 3?4y
Sum 4- \r,c,abb
2 R U I. E. -
If like quantities with unlike figns •, add all the affirmative coefficients, into one fum ; and all the B 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nega-
-ocr page 20-8 nbsp;nbsp;nbsp;nbsp;nbsp;ADDITION. B. I.
nc2;ative ones into another ; fiibttaél the leHer funi from the greater, and to the difference prefix the fign of the greater, with the proper quantity.
3.
to -j- 6 a nbsp;nbsp;nbsp;nbsp;—
add — 3 rt nbsp;nbsp;nbsp;nbsp;nbsp;-P
Sum -P 3 r/ nbsp;nbsp;nbsp;nbsp;nbsp;—
Ex. 4.
— 125«^
—
-p h
4- 99 a b
— a b
a b
Sum — 67. a b
'^a — jb — 3 a 4- 8
04-/^
4- 34
— 8 x'jy — x'-y 4- 92 xy — xy
4-1 2Ö
— xy
4- 5^ xy
Ex.
— 1. a a •— 9 b c d 4- nbsp;nbsp;nbsp;nbsp;4“ 2e
4- 7 0 i? —20 bed — d d -56 4-3^r^î4- A- d.
Sum 4- 8 ^7 —25 bed nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-{-ye 3 R U L E.
Set down all the unlike quantities with their proper ligns.
E.X. 6.
4- 2 rt
4- 3 b — c
______d_^
Sum 2^24-3^ —
Ex.
Sect. I.
ADDITION.
Ex. 7.
13 a a — 2 a -- 4 Æ 2 «
— Q. dd 4quot; 6 d
Sum 4- I3«a — ^ab b C — 2 d d 6 d.
Ex. 8.
2 f e 4- 3
— ^ee 4- 5 e ƒ 4- 2 ƒƒ — 11
4- 6 ƒ g — ef ff— 2
Sum 4- 5 nbsp;nbsp;nbsp; T ef i-ff 4- 3
The reafon of this rule is evident for like figns ; and in unlike figns, it follows from the nature of affirmative and negative quantities, that the difference ought to be taken, to make up the total. As if a man owes 10/. then 10 I. ought to be deduft-ed from his ftock to find his real worth.
Cor. I. lichen fever al quantities are to be added together, it is the fame thing, in whatever order they are placed.
Thus a 4- — c — a — c b — — c a h — b 4- agt;— c, amp;c. for all thefe are the fame.
Cor. 2. lienee thefum of any number of affirmative quantities, is affirmative ; and the fan of any ntimb.er of negative quantities, is negative.
PROB L E M II.
'To fubtrail quantities from one another.
RULE.
Change the figns of all the quantities to be fub-traóled ; and then add them all together by Prob. I. and their fum will be the remainder fought.
Ex.
-ocr page 22-
10 |
S U B T 4- 8 a 3 |
R A C T I 0 N. nbsp;nbsp;nbsp;nbsp;nbsp;B. I. 1. | |
16^^ ~ f)b |
— 11 c 4- ' 3 | ||
Rem. or |
8 a — 3 a 5 |
\6b 4-5 b or 21 A |
— II f—3 e or — 14 f |
20 6 |
-2O 6
or — J 4
Ex. 2.
from 6 a — 3 x -j- 6j — y
take 8« 4j; 6j-)-5
Kem. '— Ï a — / a’ o — 12
£x. 3.
from a b a b
take a — b nbsp;nbsp;lt;— æ
Rem. Ï b nbsp;nbsp;nbsp;nbsp;1 a
Ex. 4.
from 004-20^-}-^^
take 4-40^
Rem. a a — a b b b
Ex.
, from a a — b b
take c c — dd
Rem. ÔÆ — bb—cc-{-dd
Ex. 6.
from 3 aa — la c d — d d — ff
take — Q.a a — ß a — a,b — 2 dd
Rem. 4* 3 quot;k c d ab -f-dd ~~'Jf
Cor.
-ocr page 23-Sea. 1. MULTIPLICATION. it
Cor. I. Hence, To fubtra^ one quantity from ano-is the Jame thing as to add them together, tvben ^11 the fights of the fubtrahcnd are changed, a b -■ ■ a “I“ b.
For it is the fame thing to fubtraa —, as to add -, and to add —, as to fubtraa d-. For fuppofe a man to owe lo/; becaufe it is a debt it, ntuil be writ —to/, therefore if any body would take away this —lo, it is the fame thing as if he lt;nbsp;added lo to his ftock : but before it is difcharg-ed, this —lo is the fame, as io dtduaed out of his ftock.
PROBLEM III.
T0 multiply one quantity by another.
R U L E.
Multiply every particular term (or fimple quantity) of the multiplier, into every term of the multiplicand, one after another -, fo that the coefftcients be multiplied into the coefiicienis -, and the letters into the letters, by placing them all together, like letters in a word. And prefix -p to produas of like figns, and — to unlike ones. The fum of all is the produft fought.
Ek. I.
a b
ah
— a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c
— b — Ï b ßd
ab nbsp;nbsp;nbsp;—(y ab nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;io, c d
Ex. 2.
lt;3 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zr 3
rt -p nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a — b
a a -p ab nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a a -p a b
-P ab-\-bb — ab — b b
aa z ab-\-fb a a — b b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex,
-ocr page 24-» MULTIPLICATION. B. I.
3.
3 a — 2 b a ‘\-b
\^a a — iC) ab
4 - ab — '?,bb
1500 2 Zgt; — 'i, b b
Ex. 4.
a a a b — b b
a—b
«5 O, b —ab b — a ab — ab b b^
a^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ï a bb nbsp;nbsp;b^
Ex. 5.
ab — c -i~ r s
5^—7^_____ ________
rab — 15rfz/ ^rrs — quot;jabd 21 cdd — rsd.
Ex. 6.
2^ a a — 20^ 5
ö^3 2z2^ — 3
3 lt;3 — ïb a' 4- ß a a
4- 6ba'gt; — A^aabb 4- ^^ab — gaa — Gab — ïg
30 4- i^ba^—^bbaa—i^aa 4- iG ab— 15
£x. 2'
a a bb
c c — d d
c c a a 4- c cbb — d da a — d db b
c c aa — dda a 4* c c b b — dd b b
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 25-Seót. I. MULTIPLICATION. 13
Ex. 8.
That every term in the multiplicand muft be multiplied by every term in the multiplier, is thus made evident. Let a 4- b be multiplied by t 4- ; it is plain, a-\-b muft be taken fo often as there are fuppofed units in c and t/, that is, as often as there are units in c, and alfoas oft as there are units in d. Therefore the produét vdll be a-\~b x f4quot; a-^-by.d. But for the fame reafon a by^c — ac-\-bc, alfo a-^-bxd — ad-^bd. Whence the pro-duél will be ac-\-bc^ad-{-b-d-, that is, the fum of all the products of every term multiplied by every term.
That like figns give 4-, and unlike figns—, in the produft, will appear thus.
Cafe I. Let 4- a be multiplied by 4- b. Then, fince this multiplication fuppofes, that 4- is to be fo often added together as there are units in 4-^1 and the fum of any number of affirmatives is affirmative, therefore the whole fum is affirmative, that is flX4-Zgt;zz4-d^.
Cafe 2. Let 4- a be multiplied by ■—b. Now frnce this implies that 4- a is to be as often fub-tracted as there are units in b ; and the fum of any number of negatives, is negative, therefore that whole fum, is negative, that is, 4- X — b
■— ab.
Cafe 3. Let — ß be multiplied by 4quot; b. It is plain here, that — a is to be fo often raken as there are units in b -, and the fum of any number of negatives being negative, therefore the whole fum is negativej that is, — a x 4- b — ab.
-ocr page 26-14 MULTIPLICATION. B. I.
Otkerwife, Let d — a be multiplied by b -, then f^CaJe i.) the product will be bd together with — a X but b d is too big, as being the produél of d by b, inltead of lt;ƒ — a by Z-{d—a being lefs than therefore b d, being too much, the produól —• a x b muft be fub-traétcd ; thatis, the true product will \yç.db — ab-^ and confequently — ab — — «x ^.
Cafe 4. Let —a be multiplied by—b. Here — a is to be fubtradled as often as there are units in b : but fubtraóling negatives is the fame as adding affirmatives {Cor. 1.. Prob. 2.) ; confequfently the produét is 4- a b.
Or thus. Since « — a — q., therefore ß — a x — b — o, becaufe o multiplied by any thing produces o ; therefore fince -y a — ax — b — o -, and the firft term of the product is —ab {Cafe zf, thcrefo^ the laft term of the produól muft be •4- ab, to make the fum o, or ■— ab-\-ab — Q\ that is, — a x — b z=: ab.
Otherwife. Let —a be multiplied by —b. Then {Cafe z.} the product will be —bd together with —ax — b-, but —bd the quantity to be lubtradled is too big, being the produét of d by —b, inftead of — a by —b, {d — a being lefs than df, therefore the quantity — b d to be fubtraóted being too much, fomething muft be reftored, that is —r- a x — b muft be added ; and the true produét will be — b d -f a b ; and therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— ax — b.
Cor. I. /ƒ federal guar.tities are to be multiplied together ; it is the fame thing in whatever order it be done. Thus ab c — a c bvz. c a b —bca, iicz. for all thefe are equal.
Cor. 2. powers of the fame quantity are multiplied together, by adding their ind:ces. ‘Thus 2-!-^ a^X a' w: a a\
Cor.
-ocr page 27-Scâ. I. MULTIPLIC.ATION. 15
Cor. 3. Any odd number of —, multiplied together produce — i 4«^/ any even number of —, pro-duce •
SCHOLIUM.
In the multiplication of compound quantities, it is the beft way to fet them down in order, according to the dimenfions of fome of the quantities. And in multiplying them, begin at the left hand, and multiply from the left hand towards the right, the way we write, which is contrary to the way we multiply numbers. But this will be moft expeditious, and the feveral produéts will by this means be fo ranged under one another, that like quantities will fall in the fame places, which is the eafieft way for adding them up together.
In many cafes, the multiplication of compound quantities is only to be performed by writing their fums, each under a vinculum, and'putting the fign (x) of multiplication between. As if the fquare of a a — x x was to be multiplied by a g —bh, and that by a c b d, it may be written thus, ax — XX Xag —-bhy;.ac-\-bd.
PROBLEM IV.
To divide one quantity by another.
I RULE.
In fimple quantities, which will divide without a remainder; divide the number by the number, and put the anfw’er in the quotient. Then throw out all the letter's in the dividend which are found in the divifor, and place the remaining letters in the quotient. And like figns produce -f-, and unlike figns —, in the quotient.
Ex.
-ocr page 28- -ocr page 29-Seft. I.
DIVISION.
17
Ex. 7.
— 8 X x) — 16 a;’ ( 2 Af — 16 X’
2 R U L E.
In compound quantities, range the terms of the divifor and dividend, according to the dimenfions of fome letter. Then, by Rule i, divide the fird term of the dividend by the firft term of the divifor, placing the refult- in the quotient. Multiply the whole divifor by the quotient, and fubtraèt it from the dividend, to which bring down the next term of the dividend, call this the Dividual.
Divide the firft term of the dividual by the firft term of the divifor -, then multiply and fubtradl as before, and repeat the fame procefs till all the quantities be brought down. This is in efFeót the very fame rule as is ufed in arithmetic.
Ex. S.
a} ab -p ac— a {b-\-c — 1 the quotient a b
-p a c
-p a c
— a
— a
Q
Ex. 9.
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zb a a — 3 f ß ß (a
zb a a — 3 cßß
C nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 30-18
DIVISION.
B. I.
Ex. 10.
a c A- i c
a d -\- b d a d -\- b d
Ex. II.
— 4)7’—~ 47 12 (j—3
_____— 47
— 377 nbsp;nbsp;nbsp;
y-3yy o
jEgt;f. 12.
aa o,b
— ab — b b
— ab — bb
o
jEjf. 13.
ÿa—b) nbsp;nbsp;—12^îæ—baa'irXQab-^ibb {aa—404-2^
3Æ* nbsp;nbsp;nbsp;nbsp;—baa
—itaa nbsp;nbsp;nbsp; ioß^
—12«« nbsp;nbsp;nbsp;nbsp; ir^b
6ab—ïbb 4- 6«^—ïbb
o
3 RULE.
When the divifor does not exaélly divide the dividend ; place the dividend over the divifor, in form
-ocr page 31- -ocr page 32-20 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;DIVISION. B. I.
This and fuch like examples will be better under-ftood after the next fection.
Ex. 'i8.
19.
—ïb'-} nbsp;nbsp;nbsp;nbsp;nbsp;Ç--~
That like figns give , and unlike figns — in the quotient, will appear thus. The divifor multiplied by the quotient mull produce the dividend. Therefore, r. When both are , the quotient is -h, becaufe then X I. ) ( mull produce -J- in the dividend. 2. —)—(- - 2. When they are both —, the 3. -b)—(— quotient is again, becaufe -f-x— 4. —) (— mull produce — in the dividend.
Again, 3. When the divifor is -f-and the dividend —, the quotient is —, becaufe — X muft produce — in the dividend. 4. Laftly, If the divifor is —, and the dividend -b, the quotient will be —, becaufe — x — produces in the dividend.
Cor. I. One power of a, quantity, is divided by another fewer thereof-, by fubtracting the index of the divifor, from the index of the dividend. ‘thus, 0’ _3—3 nbsp;nbsp;, A nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4^^“^ nbsp;nbsp;4
——0, nbsp;nbsp;-a,-. Aad nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~——--—~n:
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Cor.,
-ocr page 33-Seft. I. INVOLUTION.
Cor. 2. Hence any power of a quantity may be taken out of the denominator and put into the numerator, and the contrary ; by changing the fign of the index, eri nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cib~^ ,
~. And —- z= ba^.
20^- nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ö—3
Cor. ß, IJence — divided by , or divided h '—gt; give the fame quotient, viz. —, Heat is,
a a
~~b- ~~b' ,
PROBLEM V.
‘To involve a quantity to any power.
I R U L E.
Multiply the quantity fo often into itfelf as the index denotes. And where the root is , all the powers are . And where the root is —, all the odd powers are —, apd all the even powers -p. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
Ex. I.
a root
« a fquare
a^ cube
4th power amp;c.
— 2a’ 4^*5 — 8a9 -l-i6a'^ ècc.
a'- root '
0 fquare a® cubé
4th power amp;c.
root fquare cube 4th power.
Ex. 2.
— Z ab b gaab^
—27 a’
Ä b root aa^^ fquare a’5î cube
root fquare cube,
Ex.
-ocr page 34-il INVOLUTION. B. L ! £ä'. 3.
Involve a-\-i to the cube or ■povier,
a I
quot;I“ b
cc ci —d b a b b b
fquare a a 4- 2ab 4- b b
a b
a^-i-zaab-{-abb
4- aab-}-2abb-^bi cube «’4-3'ïö^4-3«5^4-j5’
2 RULE.
Multiply the index of the quantity, by the index of the power, and make the figns as in Rule i.
4.
root 0 or
'i-bb a \ ax 2 b'- a
fquare d’^^or«» cube ora» th nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;»/
m power
nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or 4Î*(î*
--~2
Ex. 5;
•-a root
fquare nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or
cube nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or aZZZZ^®
m power orÔ^^”’
3 rule.
-ocr page 35-Sea. I. INVOLUTION.
23
3 rule.
In a binomial. The power will confift of i term more than the index of the power. The hio helt power of both is the index of the given powerband the index of the leading quantity continually de-creafes by i in every term, andin the following quantity, the indices of the terms are o i 2° 3, 4, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ ’ ’
Then for finding the unciæ or coefficients. The firft is always i -, the fécond, the index of the power. And in general, if the coefficient of any term be multiplied by the index of the leading quantity, and divided by the number of terms to that place -, it gives the coefficient of the next following term.
Laftly, When both terms of the root are all the terms of the power will be ; but if the fe-. cond term be , then all the odd terms will be ^4-, and all the even terms —.
Ex. 6.
Involve a-}-e io the power.
The feveral terms without the coefficients will be ß’, a^e, a'ee, a^e\ ae^, -, and thç coefficients i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^*^^3 10x2 5x1
’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 ’ 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-5-’
that IS, I , 5, ÏO , IO , nbsp;nbsp;2
And therefore the 5th power is' 5 nbsp;nbsp; 10 nbsp;nbsp;nbsp; 10 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ae^ e^.
Esc. y.
Inth, a—x SI, tie ^tb fawtr.
the root is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4X'
that is, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M
^'4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 R U L E.
-ocr page 36-24 INVOLUTION. B. I.
4 R U L E.
In trinominals, quadrinomials, ^c. Let one letter remain, and put another letter for the reft of the quantities ; then involve this binomial by Rule 3 -, then inftead of the powers of the afliim-ed letter, find (by Rule 3.) the powers of the compound quantity it reprefents, which put in its ftead.
Ex. 8.
Involve nbsp;nbsp;nbsp;nbsp;—x to the third power.
Put e for I—X, then the cube of e e is ß’ 3 nbsp;nbsp;nbsp;nbsp;nbsp; 3 nbsp;nbsp;nbsp;nbsp; ^’ (Rule 3), that is,
^ _3ßßX^—x gzî X nbsp;nbsp;nbsp;nbsp;-Çb^x. But (Rule 3.)
2^.v-{-.ïy, and b—x^—b^—^^bx-^-^^x^ h—jf’—zz’ 3ßß5—3ß^?A; ^abb nbsp;nbsp;(gt;abx -{-^(ixx-^rb'^—^bbx-^-'^bxX'—X’.
Cor. 1. The nf^ pozoer of a-^-e, that is., n n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t
ß e -a ;;^ e ^j x — aquot;''quot;'ee-A^nx
2
’f f” , nbsp;nbsp;n—t n—2 n—; »—4
^’ «x-—x—X—- a
• nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^3 nbsp;nbsp;nbsp;4-
This c'-fie is proved by involving as far ^s you \\ 1 , or the feveral powers will always agree with the rule. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;°
or. 2. xillpowers of an affinnative quantity, are affama t.,e. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;powers of a negative quan
ti.}, are negative ; and all even powers affirms.tive. • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;index of the power of any quantity,
ef the power, and index of the quantity. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■'
___ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;faßor, multiplied together, tip' —a X b^“
P R O-
-ocr page 37-Sect. I. evolution.
25
problem VI.
To extra£l tie root of any q^uantily.
Evolution is juft the reverfe to involution ; and is performed as follows.
I R U L E.
For fl m pie quantities-, extract the root of the coefficient for the numerical part, and divide the index of the letter or letters, by the index of the power, gives the index of the root.
Ex. I.
The cube root of a? is or a. ,4 the fquare rcot of is Qr gaa. the /([uare root of 2a'^b^i3 or flS’v/z . 9 the cube root of —izsS’ is* —or ■—55?.
2 R U L E.
For the fquare root, of a compound quantity; range the terms according to the dimenfions of fome letter. Then find the root of the firft term (i Rule), and fet it ia the quotient: fubtraól its fquare, and bring down the next term, which divide by double the quotient, and fet the anfwer in the quotient. Multiply the divifor and quotient by this laft quotient, which fubtraól from the dividual, proceed thus, iuft as in common arithmetic.
Ex.
-ocr page 38-26 EVOLUTION. B. I.
2.
ExtraEî thefquare root cf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—2ax nbsp;
4^x-l-xx.
—lax—(04-2^—x root
*04-2^) 4zzä4quot;4^^
2a-}-4.b-^x)
—-2ax—^x 4-a'j# —2ax—43x4-ä'j^
Ex.
Extras the fquare root of ææ—6»^ 4-2 24 4-9»»— €»24-2Z.
4-22 —6nz K “ 4. X
0« nbsp;nbsp;• 4-22
-3,77=6» r“
2'* 1 nbsp;nbsp;nbsp;nbsp;1 nbsp;nbsp;nbsp;nbsp;. O'---6»Z
nbsp;nbsp; 2^ XX
—6n ^nn
4-22 —6nz
4- zz
Ex^
-ocr page 39-Seft. 1. EVOLUTION.
2?
jEx. 4’
Extras the fquare root of aa-\-xx.
2a 8àî i6as
üa
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-XX4-—
^aa
a Sa’' 4aa — x^ x^ X* 4aa 8a ~^64a^
8lt;jlt;- 64a'’ 3 rule.
In higher powers. Find the root of the firft member, which place in the quotient : fubtraft its power, the remainder is the refidual. Involve this ' root to the next lower power, and multiply it by the index of the given power, for a divifor ; by this divide the firft term of the refidual, the quotient is the next term of the root. Then involve the whole root as before, and fubtraél ; and repeat the operation, till all the terms of the root be had.
£x. 5.
ExtraSî the cube root of nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—^.ox^ gSx—64.
4-6x5—^ox^ g6x—6^ (Ä-X4-2X—4 root.
jf«
3x*) 6x! ( -F 2x
X‘-F6x5 4-i2y44-gy;—
3X*) O nbsp;12X4(—4
4-6x5—4Oxgt;4-q6x—64.~xx 4- 2X—4^. o
Ex.
-ocr page 40-•8 EVOLUTION. B. I.
Ex. 6,
Extratî ilie root cj 160^—
—2i6«Zgt;5 4*8i^ .
J 6a^—^i^6a^b 21 (gt;aabb—11 ótfiJ’ 81 b^^iia—ifb root, 24«’} o —lt;^6a''b —4^
—lt;^6a^b
16« —^(ya^b-gt;^z\iaabb—216ab^-j-S i b^ o
4 R u L E.
The roofs of compound quantities, may fome* times be difcovered thus. Extraél the roots out of all the fimple powers or terms in it ; then conneél thefe roots by the ligns or —, as you judge will beft anfwer. Involve this compound root to the proper power ; then if it be fame. with the gi-ven quantity, you have got thç root. If it only differs in the figns, change fome of them, till its power agrees with the given one throughout. j
Ex. 7.
Eo extract the cube root of lt;3’—6«’^-lquot; i 2«^’»—8^’.
Here the root of is «, and the root of —8^’ is • lb. Then a—2b is the root, for its cube is a’—6«'Z' i2a^’— Sb\ as required.
jEx. 8.
Extract the 4th root of i6a'*^—Q6a’x' 2i6a‘:*’ —2i6ax''4-8ix .
and 81X , are la and 7 hererore if aa-p^x be made the root and in
volved.
7
-ocr page 41-Seót. I. evolution. 29 volved, it is i6a^ g6a^x 2i6aaxx 2 i6ax^ 8i5f4, which differs in the figns, from the quantity given. 1 herefore make 2û—3^ the root, which being involved fucceeds ; the power beino-1 ba^—gba^x 21—216z?x’ 4- 81
5 R u L E.
When the quantity given has not fuch a root as is required, fet it down in form of a furd.
Ex. 9.
Square root of a’, is
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3 _________
\/ vo^aa.
. __________
\/2a^x\
Cube root of 15««,
^tb root of 2a'x\
Ex, IO.
Ehe cube root of a^—ba-b i2abb-irW, is v/ a'—6«=Zgt; i2ûZ’Z'4-8ii)i.
Ex, It.
Wbat is the t^tb root of the root is
even root, of an
affirmative quantity, may be either -{-or __
For the fq^are root of „..y be \r-~a,
-. is X? n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4th power of.
quot; IS 4-a , as well as of
J me jign, as the quantity itfcf
tor „ cubed ,s u:, a„a ,„ted is
Cor.
-ocr page 42-30 evolution; b, I.
Cor. 3. The fquare root, or any even root, of ' negative quantity, is impoftble.
For neither öx «, nor —ayfr-a, can pro, duce —aa.
Cor. 4. 27»^ wh j-oot of a produ^, is equal to the root of each of the faSlors, multiplied togethen
” nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n
SECT,
-ocr page 43-3»
SECT. II.
0/ F R A C T I o N s. •
Th E operations of algebraic fractions are ex^ aélly the fame as thole of vulgar fractions in arithmetic -, therefore he that has made himfelf mafter of vulgar fraélions, will eafily underftand how to manage all forts of algebraic fractions, as in the following problems.
PROBLEM VII.
To reduce a given quantity to a fraHion of a given denominator.
rule.
Multiply that quantity by the given denominator, and under the produél write the fame denominator.
Ex, I.
Let a-\-b bave the denominator x.
------- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, anfwer.
Ex. 2.
Let xse-^yy bave the denominator r.
- ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, anfwer.
Ex. 3.
Let have the denominator b—c.
Cor.
-ocr page 44-31 FRACTIONS. E. I.
Cor. The value of a fraSlion is not altered, by multiplying both numerator and denominator by the rab rabd ab fame quantity. Thus nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
rc red c
PROBLEM VIII.
To reduce a mixed number to a fraction.
R U L E.
Multiply the integral part by the denominator of the fraftion, and to the produél add the numerator, under which write the common denominator.
Ex. I.
T nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7T71 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b ,
Let a — ~ given. 1 hen —— is the fraftion required.
Ea'. 2.
„ nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa — ax
X ax—xx-1-öß—ax nbsp;nbsp;nbsp;aa—xx .
Here ——...... , or -----— is that re»
quired.
PROBLEM IX.
To reduce an improper frabiion to a vohole or mixed number.
R U L E.
Divide the numerator by the denominator, as far as you can, gives the integra' pait -, and place the remainder over the denominator for the trac-tional part.
Ex.
-ocr page 45-Se^- fractions. Ex. I. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
Ghamp;n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;igt;}ai—aa lt;nbsp;nbsp;nbsp;nbsp;a a
b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4^ V nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;anfwer.
■—aa Ex. 2,
a—X
quot;—x'jaa-^xx f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2XX
od—ax V^ '’^ g__J anlwer.
lt;jx w a.v—XX
4-2XX
PROBLEM X.
To find the greateß common dwifor^ for the terms of afraSlion, or for any Koo quantities,
RULE.
■ The quantities being ranged accoidino- to the dimenfiotis of Come letter divide the greater by the leffer, and the laft divifor by the laft re-’ mainder, and fo on continually till nothing remain ; then the laft divifor is that required. But obferve, t firft to throw out of each divifor, all the fimple di-vifors, (or others) that will divide it ; and then proceed. The fimple divifors are had by infpeótion.
Ex. I.
cd-\-dd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. ,
Let ------—be the framon tropoied.
aac-{-aaa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c c j
cd dd} aac-\-aad (
or c-\-d } aac aad (^aa aac-{-aad
o
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;D nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;There-
-ocr page 46-34 fractions. b. I. Therefore c-\-d is the greateft common divifor
aac aaa aa
’ Ex. 2.
y __alb aa^iab^-bb
aa4'2ab-4-bb} a'^—^ibb nbsp;nbsp;nbsp;nbsp;nbsp;{a
-^ogt;-4-'i-aab-\-abb ■—zaab—zabb remainder.
20^^) aa^zab^bb {
or a-4-b ) aa.\-iab^bb {a-4-b
-f- üb
lt;{b-\-bb '
nb-\-bb
Q
Therefore ig the greateft common divifor.
3gt;
a‘'—b^} a^—bbai (^a —b^a
rem.—bba^-4-b^a') nbsp;b^{
or 4lt;J ——b^(^aa-4-ib
—bbaa
-{-bbaa—b^ , ■^bbaa—b^
Q
the common divifor is __bb.
PRO-
-ocr page 47-Sea. II. FRACTIONS. 35
PROBLEM XI.
‘I’o reduce afraSlion to its lowefi terms,
RULE.
Find the greateft common meafure (Prob. X\ by which divide both numerator and denominator of the fraftion ; the quotients will be the numerator and denominator of the fraótion required.
Ex. 1.
cc-}-dd
7a'^aad f^ofo/eà.
the greateft common divifor is r-f d. Therefore d
- — the fraftion required.
Ex. 2.
Here a b is the greateft common divifor : then
—abb ‘^‘’■-^zab-^-bb
aa—ab
~'„ r-c the fraótion fought.
E.i(. z.
Suppofe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7
the greateft Co
f aa-^bb , ^^^'^bba^ - -71— the fraftion required.
PRO-
-ocr page 48-36 FRACTIONS. B. I.
PROBLEM Xn.
To reduce fraSlions of different denominators, to fractions of the fame value, having a common denominator.
I RULE.
Multiply each numerator, into all the other denominators, for a new numerator ; then multiply all the denominators together for a common denominator.
Ex, I.
r . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;be given.
, r , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ab-\-bb
thele become 5-, —z—.
be' be nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. ■ f
Ex. z.
1,1 ~2i fropofed. G
they become
^dg bdg bdg
Ï RULE.
Divide the denominators by their greateft common divifor, then multiply both numerator and denominator of each fraftion, by all the other quotients, which will produce as many new fraélions.
3-
ibb ' zb' b'
'i-bc
^bb ' i^bb' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fractions required.
or --
ibb' zbb' zffb'
En.
-ocr page 49-Seót. II. F K
Actions,
37
Ex. 4.
Given, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^ab—zbb
—-ab' ' ;;;-------•
lac «
^c
2aac—labc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----7—
ïaac—ïabc
__^ab~~^abb ih îaac labc quot;î^aac-^iaVc
that is.
Problem xiii.
îTo add fractional quantities together.
R U I. E.
If the fraâions have not a common denominator, reduce them to one (Prob. XII) ; then add the numerators, and under the fum, write the common denominator.
Ex. I. • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, a c
Add -f io -J ad ^0 ad~\-bc reduced and then —= ium.
£x. 2.
J J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ithen
bdg^ bdg'
Ex. 3.
odg-{-bcg.\.bdf T-r-----=fum.
the fum =:
Ex
38 F R A C T I Ö N S. . B. 1 Ex. 4.
fl a ro a—
a—i add b —
ab—bb — caa
fum 04.^ ------.
problem XIV.
To fublra^ one frabiion from another.
RULE.
Reduce them to a common denominator ; then fubtraél the numerators : and under the difference, write the common denominator.
Ex. I.
fl ^ f., c hrom -J- fubtrabî -j.
a—bc
—— = difference.
Ex. 2.
Frojn funlrabl then
__ ab-\-bb à’ ~bd~
_.aad
ab-\-bb—^aad
---- z: remainder.
3-
take
^^d
reduced ————i2flr .
remainder nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—Èbc4-1
Ex,
-ocr page 51-5elt;a. II. FRACTIONS.
• Ex. 4. _ aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aac
brom a—“ or a--
, nbsp;nbsp;, nbsp;nbsp;nbsp;a—b nbsp;nbsp;nbsp;nbsp;, . ab—bb
take b --, or P 4---j—
c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bc
—ab-\-bb
ditîerence a—b ------j------
PROBLEM XV.
T0 multiply frabîions.
1 \J -L E.
In fraélions, multiply the numerators together for a new numerator ; and multiply the denominators together for a new denominator.
Ex. i:
, nbsp;nbsp;nbsp;nbsp;nbsp;■ a-Xf
= produa.
2.
then -7—, or
Ex.
Multiply ~ by b a-\-b ab-\-bb •
Ex. 3.
1.' 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, aa-\-bb
iy
, nbsp;nbsp;nbsp;aa—bb aa-^bb nbsp;nbsp;nbsp;nbsp;a^—b*
—k--X -T',— = nbsp;nbsp;nbsp;,-T—, produft.
Zgt; f nbsp;nbsp;nbsp;nbsp;nbsp;bbc-\-bcc
D 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 R U L E.
-ocr page 52-40 FRACTIONS.. B. 1.
2 RULE.
When the numerator of one, and denominator of the ocher, can be divided by fome common di-vifor, take the quotients inftead thereof.
Ex. 4.
aabb ^cdd'
Let
reduced
— multiply aa
*
T = 53gt;
Ex. 5.
7 aa-iriab-^-bb dd eJ-M ■ ‘'y
1 J d ad-\-bd reduced ^337 X f = ~^2_d, '» pro^uâ:.
3 rule.
If a fraólion is to be multiplied by an integer, which happens to be the fame with the denominator ; take the numerator for the produót.
Ex. 6.
, , aa—ïbb
Multiply ——— by a—i, quotient 0«—zbb.
4 RULE.
When a fraftion is to be multiplied by an integer j multiply the numerator by the integer.
Ex. ’J.
...r , ■ 1 nbsp;nbsp;nbsp;nbsp;aa.^^bb ,
Multiply — by XX.
aaxx-{- ^bbxx aa-\.Qi,f,
icd quot;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P‘'0^-
Ex.
-ocr page 53-Seft. II.
FRACTIONS.
4,1
1
Ex. 8.
Multiply then
2a--2X ,
—P— by a x ïaa—ixx
----- = produa.
bb—be product
Schol. 5y this rule., a compound fragten may be reduced to a fimple one.
PROBLEM XVL
T’a divide one frail ion by another.
1 RULE.
In fraftions, multiply the denominator of the divifor by the numerator of the dividend, for a new numerator -, alfo multiply the numerator of the divifor into the denominator of the dividend, for a new denominator.
Ex. I.
Divide by c \ a /ad , tJtVï; the quotient.
-ocr page 54-42 FRACTIONS. B. I,
Ex. 2.
divide
O'—O nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;d •
\o-\-bf aa—ib a—b)~T nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quotient
2 rule.
If the fraólions have a common denominator ; take the numerator of the'dividend, for a nume-. rator ; and the numerator of the divifor, for thé denominator.
Ex. 3.
aa—bb nbsp;nbsp;zab—bb
Dmde nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bj '
a a—bb
1“'“'
Ex. 4.
Let ---—-J--- dtwde —~
, nbsp;nbsp;nbsp;nbsp;nbsp;agt;—abb
aa^i.ab-\-bb = quotient.
aa — ab
~a.4-b~ ~ quotient reduced.
3 RULE.
When fraótions are to be divided by integers j multiply the denominators of the fraélions, by fuch integers.
Ex.
, nbsp;nbsp;o—E , •
' Eivtde ---- by d.
c
o—b
quotient is •
Exi
-ocr page 55-Selt;a. II. F R A C T I o N S4 43
Ex. 6.
Let
then
, aa— zib a-Yb divide--;—.
a—b aa—ibb nbsp;nbsp;nbsp;nbsp;aa— zbb
a—by,a-\-b nbsp;nbsp;nbsp;nbsp;aa—bb^ quotient.
• 4 R U L E.
When the two numerators, or the two denominators, can be divided by fome common divifor i throw out fuch divifor, and proceed by Rule i.
Ex. 7.
/T—b nbsp;nbsp;nbsp;_ nbsp;nbsp;aa—bb
Eet divide '—, cd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c-{-d ’
, nbsp;nbsp;nbsp;, I A facd-\-bcd
Ex. 8.
ôÆ-l-ô^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a*'—b^
Let -----■T' divide--
a—b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa—zab-{-bb
, nbsp;nbsp;, A al—a?-b-\-abb—bi f ai—aab-{-abb—bgt;
reduced —)--------7----- I--------
1 ' nbsp;nbsp;nbsp;nbsp;nbsp;a—b nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;aa—ab
the quotient.
, nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bb
ti^t IS, the quotient nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
From hence may be deduced the following corollaries.
Cor. I. value of any fractional quantity is not at all changed., by changing all the ftgns of both nu-
merator and denominator. Thus
—c nbsp;nbsp;nbsp;c—r ’
Cor. 2. T'A« value of any compound fraClional •iuantity, is equal io the fum of all the particular fimple
-ocr page 56-44 fractions. b. I. fifnple fra£îions, that compofe it. ’Thus rx zcx—ixrz _ nbsp;rx ^cx nrx
'ir—2x nbsp;nbsp;nbsp;nbsp;nbsp;3r—2.x jr—2;f nbsp;^r—2x'
.V ^fraaion be multiplied by any given guantity ■ st is the fame thing whether the numerator be multiplied by that quantity, or the denominator di-‘J , « dab dabd dab
■v,d,db,„.
Cor. 4. T’he prcduSî of two frabiions, is equal to Ue frabîton, that has the produbl of the numerators for the numerator ; and the produbt of the denominators for its denominator.
—c nbsp;nbsp;ar—ac
bx-\-xx’
5' V frablion is to be divided by fom^ guantity ; it is the fame thing whether the numerator be divided by it, or the denominator multiplied, r. 2flz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2az nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2ar nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2a
For — -dr r —--. And — — r — ~
X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X'
Cor. 6. If any fort of quantity is to be divided by a frablion -, it is the fame thing, as to multiply the faid guantity, by the frablion inverted. Thus r s nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a b
ab ~ ~—ab-je.-. And ~ -i-— or g c a r ar t ~ ~^~b ~
PROBLEM XVII.
To involve frablional quantities.
It. \I I. F.
Involve the numerator into itfelf, for a new numerator ; and the denominator into itfelf for a new denominator i each as often as the index of the power.
-ocr page 57- -ocr page 58-46
fractions.
B. L
Ex. 4’
Involve to the ^tbpovoer.
it is —4^^^ ~b nbsp;nbsp;nbsp;nbsp;—4ää'’ a'
or thus —r / or -----.
o-b i6b^
problem xvin. U'o extract ii/e root of afraSîiott, RULE.
Extraft the proper root of both numerator and denominator, if it can be done, radical fign ( ^ ) before one as they happen to be furd.
If not fet the
or both of them,
Ex. I.
rz-rt/ is tbe fq^uare root of
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;o,alb
tOQt 2d
Ax. 2, cube root of
•t, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;•
the root IS
3’
GClbb t ffnbb
The fquare root of , is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or
\/âgt;'
Sea.li. fractioj^s.
ÄX. 4.
What is the cube root of
' the root is
Va^—h^'
Lx.
What is the cube root of
the root is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;d^ j ^„bd—d^
zacjj
Lx. 6.
ILhat is the ^th root of ___!x^—y^
8lt;jjf J.—Sx'jyj 4-_y**
the root is \/
8 ax^—-8 x’'yy -{-J’* ’
or Î/ — ~ ------- * 8«âÏ—ÿT^ïZj^
power or root of a fraSiion, is equal ^th nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;of ^^0 numerator^ divided
y power or root of the denominator.
cr.
-ocr page 60-48
SECT. III.
Of SURDS.
p U R D 5 are fuch quantities as have not a pro-per root. Simple Surds are thofe which confift but of one term. Compound Sards are thofe which confift of feveral fimple ones. And tZ«/-•uerfal Surds are thofe confifting of feveral terms under any radical fign.
Surds are faid to be commenfurable, when they are as one number to another -, and incommenfura-bloy when their proportion cannot be expreffed in numbers.
PROBLEM XIX.
To deftgnate or exprefs the roots of q^uantities by frabiienal indices.
1 RULE.
Divide the index of the quantity by the number cxprefiing the root ; the quotient is the index of the root required.
Ex. I.
Let the quantity a be propofed.
then v/æ —=: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;See.
Ex.
Let ^ab’’ be propofed.
’^^3“!'' =
Ex,
-ocr page 61-Sea, III.
SURDS.
49
3‘
Let ei^ ie ^iven.
then s/a^— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-s or 4, ^a^~=.a^^
Ex. 4.
Ze/ aa—xx be frofüfed. _____________ ________________1.
\/aa—XX — aa—xx , nbsp;nbsp;‘
y™ quot;nbsp;» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;“’Jquot; amp;'c
Ex.
Let — be riven.
X *
then J-^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_ _L —
X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
Ex, (t.
then ~^2=L. y-k _ nbsp;nbsp;nbsp;nbsp;nbsp;, ècc,
~ a'rbc-^ abbc^ - n^b^c
Ex. 'J.
b^ ~ bi' bi nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bi^- quot;“Æ’
-ocr page 62-U R D S.
B. I.
Ex. 8.
Let --aa—XX
be
propofed.
aa XX nbsp;nbsp;nbsp;nbsp;—~x^'^
_ rt uTAi
aa—XX
a-^2X aa—XX
a-\-2X^ aa—xx^'^
bEhen any quantity is in
tion -, fet it in the numerator., and change the ßgn of
denominator of afrac-
the index.
'Ex. g.
Ex.
Let — a
aa
then they become refpeétively.
I
lt;ï-'
ar-^f a~i, ar-^^ a—i, amp;cc.
ab
Given pprji'
This becomes abx— -y—3.
12.
Given ------,
aa—XX
aa-,—XX
amp;c.
aa—XX
they become nbsp;—xx~\ aa—xx~^p^aa—xx~^.
amp;c.
Ex.
Seft, III. nbsp;nbsp;nbsp;nbsp;nbsp;SURDS.
13.
ret nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aab .
“’ x’ i iquot; 7^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;•
they are rra^ X(I ä~\ rrd^
now” to explain this ; let there be a rank of /ƒ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aaaaa^ amp;!.c. the
lame „.11 (by Def. ao.) be dinoted .,
' nbsp;nbsp;nbsp;1 tr’, amp;c. Now tliefe quantities, o, a‘, n^,
tionals, therefore’ thcfe win nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ptop“''-
proportionals. * nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«“metrical
1gt; \/a, v/lt;l‘. \/llt;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^a‘, ^/a’,
that IS I, a, aa, a\ ,/a\ «♦, See. and I,
a'^', See.
quot;gt;/aT, aa^ Sec. and fo on.
of analogy, the indices of all thefe, are alfo in arithmetic progreffion.
Take anyone of thefe feries as 1,
a,^ Sec. thefe will be equivalent to i,
5 a J ÓCG.
Suppofe now the feiies i, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;con-
to the denomiantor ; and the indices, which con-tinually decreafu will then btcnmp t- ' i will Hand thus ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quot;quot;sai've, and
Powers
-ocr page 64-'52
s TJ R
D S.
B. 1.
Powers’
a-,
ÎRciices
3’
therefore 0—3, will reprefent
—2, 0—
a~
O.
-- - a-i a'
thefe powers -,
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
- 7 = a-^, -a
I, Z3', that
2.
is.
amp;c.
3’ 4, amp;c. ö , amp;c.
Û’’
8ic.
In like manner, let the feries i, a^.
Si:c. be continued backwards ; thefe
their indices will
be as follows :
Powers, and
4
~~~3 ' then
ar
'S. a ■
2
'3
o.
4
's'
?^c. will
I nbsp;nbsp;nbsp;nbsp;nbsp;—3-
» nbsp;nbsp;, a \
denote the
I _ a And
a h fame
I
aaaa
\^aaa
I
'3
or thus,
powers ;
—Î nbsp;nbsp;I
a, that is,
therefore the ferie;
— ~a agt;
I
\/aa
us-
’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ nbsp;nbsp;nbsp;nbsp;3 nbsp;nbsp;nbsp;nbsp;’ nbsp;nbsp;nbsp;nbsp;* Ç
„■) nbsp;nbsp;nbsp;- ’ nbsp;nbsp;nbsp;nbsp;1 gt;nbsp;I ) a \ a i
ai a‘
or
Seel. III. SURDS.
or thus, a nbsp;nbsp;nbsp;nbsp;a a \ a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a\ a\
amp;c. and the fame is equally true of any of the other ferfes.
Cor. I. The powers of any quantity are a Cet of geometrical proporiionals from i ; and their indices, a fet of arithmetic proportionals from o.
thus, powers nbsp;nbsp;i, n, a^^ ei'^ ar, f increafing.
indices o, i, 2, 3, 4, f. increafing.
alfo, powers i, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;deercaf.
indices o, —i, —2, —3, —4, nbsp;nbsp;nbsp;decreaf,
Cor. 2. Hence the double, triple, quadruple, the index of any quantity, is the index of. the fqiic.re, cube, biquadrate, icc. of that quantity.
Cor. 3. Hence alfo, the index of the produH of any two-powers (whole or frailed) of any quantity, is equal to the fum of the indices of thefe pozvers. And therefore to multiply any two powers together, is to add their indices. Thus aryc.a'—a^ a^yf —0“’, amp;:c.
Cor. 3. index of the quotient of two powers, dividing one another, is equal to the index of the dividend — the index of the divifor •, whatever the indices be. And therefore, to divide by powers, is to Jubtraii their indices. Thus — ' — a^ , and
~ = a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=a\ ^c.
Cor. 4. Any power is taken out of the denominator, and put into the numerator, by changing the fign of the index : and the contrary. Thus *
J
-S'' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a--b'‘ '
-ocr page 66-54 nbsp;nbsp;nbsp;nbsp;nbsp;. S U R D S. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B- B
Cor. 5. In fraliional indices., tie numerator figt;ecsJS the power, and the denominator the root.
Schol. In all the following problems^ it will be the beft way to reduce the furds to fractional indices.
PROBLEM XX.
To reduce a rational quantity to the form of a furd.
rule.
Multiply the index of the quantity, by the index of the furd root given -, to which fet the radical fign, or index of the furd.
Ex. I.
Reduce 6 to the form of
Here or 6^ = 36, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;is that
required.
Ex. 2.
Reduce a to the form of
Here zza\ and
Ex. 3.
Reduce a-\-b to the form of ,yi)c
Anfw. ^a-[-b , or -----,—~ aa-)^2ab-\-bb .
4. a
Vf/c form of ,yd.
Anf /-quot;I • bbe ’’ of the form y/pi^
-ocr page 67-Seel. ni.
SURDS.
55
problem XXI.
Ta reduce quantities of different indexes, to other equal ones, that fhall have a common index given.
R U L E.
Divide the indexes of the quantities by the given index ; the quotients will be the new indexes for thefe quantittes. Over thefe quantities with their new indices, place the index given.
Ex. I.
Reduce 12* and 7^ to the common index
\ then 12^ and 7^ quot;quot;nbsp;are
)4 f- fécond index \ quantities required. 36^3
Ex. 2.
Reduce æ’ and to the common index |. (0 firft index. 7 ,
3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I then a'E, and are-the
’ f 9 r . ] nbsp;nbsp;nbsp;( furds.
— / ~k~ fee. index. \
PROBLEM XXn.
To reduce quantities of different indites, to others equal io them, that (hall have the leaf common index.
RULE.
Reduce the indices of the given quantities, to a common denominator, in the leaft terms. Then involve each quantity to the power of its numerator i and take the root denoted by the common denominator.
E 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 68-5^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;SURDS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. f.
Ex. I. Reduce ar.d to the leaß common index.
J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
— and -gt;■■ are nbsp;nbsp;- nbsp;nbsp;and nbsp;—. nbsp;nbsp;Therefore
4 nbsp;nbsp;nbsp;nbsp;nbsp;t) nbsp;nbsp;nbsp;nbsp;nbsp;,12 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;12
and — c''^.
or b^ and becomeand or bbb'i ‘ ^ and quot;TtJ ' Ex. 2.
Eet bquot;^ and äi)\^ be giuen.
■— and — are reduced to and —•. / y
Therefore b'^ and 7? become and ~dc\ or Ißi and or and
3-_______ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3_______________ Let a-Eb., and \/aa-^xx be propofei.
Thcfe are lt;7 ^^ and aaxx'^. The indices are reduced to and Therefore the furds
become nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and aa—xx nbsp;nbsp;; oz
ß’-j-3Äß^ 3i3Z’^ 7’'^, and 7 —or --__ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;6---- - ■ ,, v/lt;2’ 3Äiz/’4-3aZ’Zgt;4-^’, and ^a*—za'xx-j-x^
PROBLEM XXIIL Lo reduce furds to their moßßmple ternis^
V. \] L E.
Divide by tlie greatcit power contained in it, and fet the root before the furd containing the remaining ■ quantities. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 69-Sea, III.
SURDS.
57
JLx. I.
Reduce y/ jS to aßmpler form. \/48=y/3Xi6 3= 4v/3 the lord required.
£;r. I.
Ret \/häfttübc be propofed.
6400 — 8ö. Then s/bj,aabc — ^a^/bc.
3-
Reduce a^x—
Here y/aa — a., and the furd becomes ay.ax-^xx^'
or «y/öX—XX .
The M i.
! aa—iLa-\-i,bb nbsp;nbsp;nbsp;nbsp;a- zb
•J nbsp;nbsp;nbsp;nbsp;7c =
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a—ïb
becomes x y/^^,
• Therefore the furd a—~gt;b
~7~
ï’ta^b^
üb—8a
Given
'^'lt;b—a
b—a *
reduced, becomes
PRO-
-ocr page 70-58
SURDS.’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. I,
PROBLEM XXIV..
l'a find whether two furds are commenfiurable cr not.
RULE.
Reduce them to the leall common index, and the quantities to a common denominator, if fractions, except when like terms are commenfurable.
Then divide them by the greatell common divifor, (or by fuch a one as will give one quotient rational ;) then if both quotients be rational, the furds are commenfurable ; otherwife not.
I.
* 8 and ^8 be propofied.
Thefe are v/2x9 and 2x4. Divide by 2, and the quotients are ^/q, and ^4. ; that is, 3 and 2 ; therefore they are commenfurable.
Ky. 2.
Let the fiurds be \/^ and \/T2l. ^5'
Thefe are and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Divide by 2,
and the quotients are 5/25 and 5/36, that is 5 and 6 ; and the furds become —v/z and -^y/2 5 and are therefore commenfurable, bcinv^ as 6 to nbsp;—.
5
3-Let v/qS and ^/S be prop of cd.
Divide by 8, the quotients .are ^6 and i therefore they are incontmenfurable.
5/7 or
Ex.
-ocr page 71-Sea. in.
SURDS.
59
Ex, 4.
7-^ are reduced to --|
Here — and f * Î
Di
and thefe to
vide by and the quotients are 1 and c5 that is, Z-è and cc -, therefore the furds arc commenfurable.
______5-
Suppofe \/a^-Jf-aabb and \/aabb-\-b\
Thefe are aay.aa-^-bb,, and nbsp;nbsp;nbsp;bby_aa -f bb.
Therefore dividing by aa^^-bb., the quotients are \/aa,, and \/bb,, or a and Zgt;, and therefore they are commenfurable.
Ex. G, Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.i^^n
I4Zgt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«Z» given.
Divide the de-nominators by 2, then they are reduced to v'yÄ .^^b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;are therefore
incommenfurable.
-ocr page 72-6o
SURDS.
B. I.
PROBLEM XXV.
7'0 add furd quantities together.
RULE.
Reduce quantities with unlike indexes, to thofe of like indexes.
Alfo reduce fractions to a common denominator, or elfe to others that have rational denominators (or numerators).
Then reduce the quantities to the fimplcft terms (Prob. 2 3.) ■ This being done ; if the furd part be the fame in all, annex it to the fum of the rational parrs, with the fign (x) of multiplication.
If the furd part is not the fame in all, the quan. tides can only be added by the figns 4- and __.
Ex. I.’
Add s/G to 2^6.
The fum isT^a x v/6 or
Ex. 2.
Add ^8 to \/
^8=2^2, and v^5O=5v/2, and the fum r=2-l-5Xv/2 = 7v/2
Ex.
--- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3 _______
Add V §00 to nbsp;nbsp;108.
33 nbsp;nbsp;3
\/5Oo = V/4X125 = nbsp;nbsp;nbsp;nbsp;nbsp;And
v/108 y/=^3v/4- Therefore the fum = 5 3 Xx/4 =
Ex. 4..
Add nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;to ^A^aabi.
yhzy ai-e reduce_dj2_4r’^^v/3^ and ab^
And the fum nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x s/3^.
Ex.
-ocr page 73-Seft. Iir. SURDS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;i
£x. 5.
_ Given and y/a^.
4^ — 4« nbsp;~ 4«ï — 16a« * — \/16aa —
2lt;y(ia. A.rïd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a^aa. And their fum
----4__'
— ^ 2X\/aa ~a-\-2 Xs/d-
Ex. 6.
Thefe reduced to a common denominator, be-come
that is, 6v/~ and 5^/ L, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fu^ is
Or thus^ •
ta •ï.'i'
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;jcrf
and
-ocr page 74-and 4vZ—[_ that is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and — v/— •
Or thust
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;108
n 4Z ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/ 64 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ä ’ y T
and V— — nbsp;nbsp;nbsp;nbsp;nbsp;— 4 V ——- —
io8 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4x27 —
£»•. 8.
Add
Thefe are reduced to
Ib . I b bc
Z» bc ‘
bb-\-cc . I b
bb-\-cc b^ybc
g.
Add s^ccddaa—ccddxx^2 to \^d^aa—d^xxlt;^ï-
They are reduced to nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— xxVz, and
ddy/ag—xx^z, and the fum is
lt;■34-33 X nbsp;nbsp;aci—xxlt;AZ.
Ex. IQ.
3
To aa — nbsp;nbsp;nbsp;4.
Add ^aa 4- ly/a
Surn 3\/ûô — v/^’d-t/i 2 4-2v/lt;7—\/l'
PRO-
-ocr page 75-Seel. III. SURDS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;63
problem XXVI.
To fubtra^ furd g^uantitiei.
RULE.
Reduce, as in the laft rule; then fubtraól the rational quantities, and annex the difference to the common furd, with the fign ( x ) of multiplication.
Examples.
__£2_Subtraél y/G from 2^/6, the remainder is 2—I X nbsp;nbsp;= ^6.
2. v/50-VS = 5^^ — z,/! - 0^2. 33
3. v/'5oo-v/.o8 = 5s/4-gt;-3gt;4 zx 2gt;4.
4. = 4öÄv^3^ — ab^
— ^a—ab % s/^b.
5- v/lt;— v/4a_= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_
^4 nbsp;nbsp;nbsp;nbsp;nbsp;'SURDS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. I.
PROBLEM XXVII.
2ö multiply fur ds.
I RULE.
Surds by furds ; if they have not the fame index already, reduce them to the fame -, then multiply the quantities under the common index.
Ex. I.
Multiply y/5 by y/3- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
the produól x/r^
produft
Ex.
-ocr page 77-Seét. III.
Surds.
Ex. 3.
Multiply
Reduced to^ and ; the produél
——\/aabbd^.
Ex. 4.
Multiply by a^, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
Produd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= a''^.
i RULE.
A furd by a rational quantity ; conned them with the fign ( X ) of multiplication ; or elfe reduce the rational quantity to the form of that furd, and multiply by Rule i.
Ex. s-
Multiply \/4a—by ïa.
The produd is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—3x.
Or 2a — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then the produd zx
\/ i6a‘—i2aax.
3 R U L, E.
When rational quantifies are annexed to furds ; multiply the rational by the rational, and the furd by thç furd.
Ex. 6,
Multiply nbsp;nbsp;nbsp;\/a—x by t—d x/e.x.
The produd-- x/~^xxax
—nd___ a^'iX'—axx.
Ex.
F
-ocr page 78-66
SURDS.
B. I.
Ex. J.
. amp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----- ^^ax'^
Multiply ~-^igt;yax by b—xV
Here ~i^\/ax — — y. ax — ■
axi\'s
And nbsp;—x^/ nbsp;nbsp;nbsp;zz b—x x
~~b^^\'
a .—. J . nbsp;nbsp;nbsp;nbsp;,---- , aaxquot; s
X ô’x’V X into Z»—X X zz
■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-1 ■» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;6
ab—ax nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ab-—axy/a'gt;x9 _
b bb - i, Ib ~
6
ab—ax^ f a'^x’' nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, „
—]gt;— ~bb' produit.
8.
Multiply (i-\-^b—d
aa-i-a^/â—ad
prùduft aa—ad—b-\-dy/b
Ex. 2-
Multiply 2a—^a^yd h ^'^—ïc^yd
6ac—gac\/ d
—A.ac\/d-}-bacs/dd
product 6lt;?f—i'^ac\/d-\-6acd
-ocr page 79-Scar. III.
SURDS.
Ex. IO.
Multiply \/a—y/b—^\ h s/a-\-Vb—'y/'i
produdh u nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—V^â-
a\/^—3» or \/4a—^ 4-^/3.
Schol. If impoffible or imaginary roofs be multiplied together, they always produce —, other-wife a real product would be railed from impofli-ble fadhors, which is abfurd. Thus, s/—«Xv/—b — \/—ab., and .ç/—a X —\/—b — '——^b, nbsp;nbsp;nbsp;nbsp;nbsp;Alfo nbsp;—a X \/—a — — a ,
and v/—a x —..y—a — -j- u, ôcc.
PROBLEM XXVin.
’To divide furds.
I R U I, E.
the fame fimpie quantity; fubtradh their indices from each other.
Ex. 1.
Divide by quotient
Ex. 'i.
1 I
T^ivide a'‘ by ’
I r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;w—'1
quotient ß” — a”’'”
2 RULE.
-ocr page 80-68
SURDS.
B. I.
2 RULE.
If they be different quantities ; reduce them to the fame index, if they are not fo already. Then divide the quantities under the common index.
Ex. 3.
Divide by 5} gt;5 the quotient.
Eat. 4.
Dm* nbsp;nbsp;nbsp;nbsp;nbsp;iy
c ' ZC ^ab\'\aaà( .qatf
Ex, 5.
Divide ^aabbd' by t^d. 6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;s ____
V« — \/d\ di}aabbd' {-^aabb —\/ab t quot.
3 RULE.
If rational quantities are annexed ; divide rational quatities by rational quantities, and furds by furds.
Ex. 6.
Divide “tyi6a’—i2aa.x by 2a.
quotient —t laax
i6a^— I zaax ^aa
gt;/ 4«—jjv.
Ex.
-ocr page 81-Sea. HI.
SURDS.
Ex. 7-
, ac—ad -----— 7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;„ ~'y
Divide ---T—\/aax-—axx by rV
1.0
ïb ' zb \ '
Then X = quotient.
£x. 8.
». 1 ,. ßb “quot;Oix Divide -—I— \.b
Then the quotient
ÛX /ß’ ax , a ß /
-- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= -b^ -b
Ex. g.
aa^^ad'-^^bquot;^d^^b {^a^^^^b'~'d aa—a\/b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quotient.
-\-a-yb
-\-a\/b—b
O O —ad
—ad-iç-dy^b
£x.
70' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i
S U R Ù S. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B.j/ ä
a-^b-^abbc {ab—b^bc
a'^b-^-a'-bs/bc
—O' b\/ bc—abbc
—a’-bs/bc—abbc
• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
. O
t .
Ex. 11.
Divide s/aa—b ^^ h
yaa—b-ir^^ f
aa—a\/b—
a^/b—^g—b ^^
\ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b——'^ y/g
O
Ex. 12.
'D^'^'îde \/ ; .^/hbca-k-\/aab—bc—-^abc
\/ : \/oc 4-\/O •
\/^(-\-\/a}^l)l}ra _j_ ^aab—bc—•■\/abc{..yba—.^bc \/bbca-\-^aab ’ nbsp;nbsp;nbsp;’ nbsp;nbsp;■''
O — bc—^abc ^bc—gt;yabc
Q
4 R U L E.
When the quantities will not divide, fet them down in form of a fraftion.
Ex.
-ocr page 83-Sea. III. SURDS.
7'
Ex. 13.
Divide : bed -{-^abb : by gt;yab—\/e^c.
v/ : bcd-\-\/abh ;
The quotient is
\/ab—y/^bc
problem XX1Xgt;
’Eo involve furd quantities to any power.
I RULE.
Multiply the index of the quantity, by the index of the power to be raifed.
Ex. I.
Let ^2 /ȣ cubed.
\/'2’ =*2^’. Then 2’^^ 3 qj. 2* is the cube, that is 2’ or ^8 the cube of ^2.
2.
What is the fquare of -^^bcc.
quot;is/bec = 3 X Its fquare =
9 X bcc^ bbc*' — lt;^c\/bbc.
3-
What is the cube of a\/a—x.
ci\/a — x — a'y.a—-x ■ cubed it is that is, the cube nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-b ^cix''—x\
-ocr page 84-72
SURDS,
B. I.
2 rule.
If quantities are to be involved to a power denoted by the index of the furd root j take away the radical fign.
Ex. s. .âfüb
7c h’^^red.
Its fquare is
cc
Ex. 6.
mat 13 the cube of V^a^-b^ ^^b^abT. af'—bf-{-'ib\/ahb.
3 rule.
Compound furds are involved as integers, obferv-ing the rule of multiplication of furds.
Ex. 7.
3 \/5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'^^^4
9 3\/5^
3gt;X 5~l~5
the fquare 144-6^/5 Ex-
-ocr page 85-SeÄ. III.
SURDS.
73
Ex. 8.
Let a—be cubed.
ca—as/b
—a^yb-\-b
aa—za^yb-xb a—^b
a'—iaas/b-\-ab
— aa ^b-\-ïab—b.yb
the cube —'3,aa\/bj^ab—b^b,
PROBLEM XXX.
quot;To extrait any root of a furd.
R U L E.
Divide the index of the quantity or quantifies, by the index of the root to be extrafted.
Ex. I.
Extrabi the fquare root of a'.
J 1__
The root
Ex. 1.
Extrabi the cube root of ab'’. The root is a^b^^ _
Ex.
mat i, the
The root it
»
Ex.
-ocr page 86-74 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;S U R D S. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. L
*
Ex. 4.
T’Ebat !s tbe cube vcot of \/aa—xx.
The root is aa—— aa—xx^zz^aa^—xx.
2 R U L E.
When the index of the root to be extraded, is the fame as the index of the power of that quantity ; take away that index, and the quantity itfelf is the root.
5.
TEbat is the fquare root of 3‘Æ*.
Anfw. ^a, the root.
Ex. 6.
TEbat is tbe cube root of ßax—
Anfw. nbsp;nbsp;nbsp;—^xx, the root,
3 rule.
Compound furds are extrafted as integers, due regard being had to the operations of fimpie furds. AVhen no fuch root can be found, prefix the radical iign.
Ex. 7.
For the f^uare root of aa—
aa—4«y/^- -4^ {a—iy/b aa
la—ts/b} o —4ö’^^-i-4iJ
—4a^Z'-|-4^
Ex.
-ocr page 87-Sea. III.
SURDS,
75
Ex. 8. nbsp;nbsp;nbsp;nbsp;nbsp;______
What is the cube root of aa—Vax—xx.
-
Anfw. v/ax—^^ax—xx, the root.
PROBLEM XXXI.
7ö change a binomial furd quantity into another, R U L E.
This reduaion is performed by an equal involution, and evolution. Involve the binomial to the power denoted by the furd or furds, then fet the radical fign of the fame root before it.
Ex. I.
’To transform 2 4-^/3 to another.
Its fquare. 44-34.4^3-74.4^3
the fquare root, v/74-4\/3'
Ex. Ï.
Reduce nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a univerfal furd.
Its fquare 2 4-3 2^/6 nbsp;nbsp;nbsp;5 4-2v/6
the root s//;4-2lt;/6.
Ex. 3.
\/a X be given to reduce.
The fquare a ^x~^.^ax the root
Let a
The cube the root
Ex. 4.
3
be given.
»/abb^b
^-Vis/aab-y 3
Cor.
SUR D S.
Cor. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5 and in ge
neral a~ b~ ~ VTX ^vIquot;.
problem xxxil
^0 extrait the fyuare root of a binomial (or rtfiàual) Jurdt A B, or A B j oy (rtnomialj Sxc.
I rule, /or binomials. lÉLThen v/Â B = -ir'_____ and^Â=5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- v/4z:2
1? -r /:^ï±p zA—D nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
For if V nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— be involved by
Prob. 29. it will produce A 4- s/ A A — D IX that Is A B, as it ought. And \/-
.A—D s/---- will allo produce A
I.
To extrabl the root of ^-{-.^20
Here Ar:;, Brzy/zo, and 5/' \/2^ = D.
Then the fquare root of
Ex.
-ocr page 89-Sea. III. SURDS., nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;77
Ex. 2.
What is the fquare root of 3—2v^2.
and
Here A D
2
AA — nbsp;nbsp;nbsp;nbsp;nbsp;= I =D,
A—D
And
=; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the root.
3-
To extraSi the root of
y/ A A — B B = s/ïÇf r: D=.5. And the
^9 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'gt;9
root = -r y/— that is, 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
: 27 v/704 =
Ex. /if.
What is the fquare root of 6—2^/5.
Here v^A — B B =: v/36—20 = D ±: 4. ft J yA-bß nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-A—D
And v/~~~ — and v/=: i.
And the root = nbsp;nbsp;—i.
Ex. 5.
ExtraSt the root of ।
\/ KX — B ’B = v/iTz: D = 4. And \/2i 4 nbsp;nbsp;A—D _ s/i\—4
2
And the root
/2 r— 4
2
-ocr page 90-7» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;SURDS.
B. I,
Extrait the root of aa-^-ix^aa—xx.
Here A = aa^ B ~ 2x nbsp;nbsp;nbsp;—xx. Then
AA—BB — \/aa—4(3*;if’4-4x “ aa—2xx ~D.
1 hen ' nbsp;nbsp;nbsp;nbsp;nbsp;— aa—xx^ and nbsp;---- =: xx^ and
the root —x-^-^ax—xx.
Ex, J.
U^at is the root of 64.^8—.,
Then
\/AA—BB=D =
•44 12^8—36—2v/ 12x24 , nbsp;nbsp;nbsp;nbsp;A—D
=^8.
= 3-But
2
And the root zz v : 3 \/^ — I \/2. (fee Ex. 2.) ; therefore the root — i ./2—
2 RULE, y^r trinomials^ Zee.
For trinomial, quadrinomial furds, (sfc. divide half the prcduól ot any two radicals by a third, gives the fquare of one radical part of the root. This repeated with different quantities, will give the fqiiarcs of all the parts of the root, to be con-nefted by and —. But if any quantity occur oftener than once ; it inuft be taken but once.
For. if A' jj-i-z be any trinomial furd, its fquare will be A’ y 2'- 2 ■-^2xz-{-7yx-, then if half the produ61 of any .«o reólangles as 2xyx2xz (or 2xy^') be divided by fome third 2yz, the quotient quot;i-x'-yz
~2ÿz “ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fquare of one of
the parts ; and the like for the reft.
Ex.
-ocr page 91-Seft. III.
SURDS.
79
Ex. 8.
To extraEl the jquare root of 6 4-^8-—^12—VZ24.
Here
2^/24
and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
And the root is
2v/8 nbsp;nbsp;nbsp;-
Ex. g. «, To find the fquare root of J2 \/ —\/ 484-^80—^244-^40—^60. „ nbsp;nbsp;nbsp;\/32X4-8 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
2^/80’ “ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;produces no-
V A • nbsp;nbsp;\/22y48
thing. Again, —2.--- nbsp;=4/16=4. nbsp;And
2v/^4
\/4OX6o _ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^^2 4/4.0
quot;2^/ 7 -^^5 = 5 i and quot;nbsp;=v/4=2 i
J \/48X24 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;v^'J2Xî^o
See. therefore the parts of the root are ^^4, v^5, \/3» v^4ï amp;c. and the root 24-4/z—*/2
v^5 gt;nbsp;fo*quot; being fquared it quantity given.
produces the furd
Cor. 1. /k biywmials, if Y) be a rational quantity, the root will confili of two furds , and the farts of each under the radical ftgn will conßfi of a rational quantity (D), and a furd {ex').
Cor. 2. If both A D rational, the root will confiji either of the two fnrds, or elfe of a rational fart and afurd-, which is the only cafe that is ufeful in this exttaflion.
P R O-
-ocr page 92-So
SURDS.
B. I.
PROBLEM XXXIII.
*ïo extras any root (f) of a binomial Jurd A B, or A—B.
RULE.
Let A A—EBrzD, take Q^fuch, that QD—bS the leaft integer power. Let quot;'^A B x v^Q—r, the neareft integer number.
Reduce Av^Q to the fimpleft form p^/s. n
Let nbsp;— t, the neareft integer.
2v/j
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ts/s \/Its—n
Then the root =: ---------------, jf
v/Q, extrafted.
Note, 4- is for the binomial A B, and __ for the refidual A—B.
£x. I.
What is the cube root of ^9684-25.
Here D = 343 = 7x7x7- nbsp;nbsp;QX7’=«’, and
0 = 1, «=7. Then v^A Exx/Q^ ^^5^ = r = 4. Ay/Q, = nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
7,.
—/I- -t-2. And 2v/2
Z^/=2v/2, Vtii—nzz.y/'i—7 = 1. \/Qj=i.
And the root —------ = Z\/2 4-1 i which
I
fucceeds.
Ex.
-ocr page 93-Sea. III.
SURDS.
81
Ex.
2.
®-v'4374;
- «Î nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5’X2’=4D
-~p\/s., and ^s — r.
71
2
-6
root
\/ IÖ--lo
Û
2^S
And the
for its cube is 68—2^y/().
Ex. 3.
Extraa the ^th root of
Here D = 3, n—'^^ QjzS t, r=^,
ac nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 o nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;V V
v/Q ——\/9' And the root to be tried
Scuoj^ivM.
If the quantity be a fraction or has a common divifor, extraft the root of the dcncminator or of that common divifor, I’cparately. They that would fee the demonftration of this rule, mav confult Gravefande’s or Mac Laurin's .Algebra. For as it feldom happens that -fuch quantities have a proper root; it is not worth while fpending any more time about them.
G nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PRO-
-ocr page 94-SURDS.
B. I.
PROBLEM XXXTV.
A compound furd being given, conßfling of iiao, three, \ or more terms, which are furd fquare roots : to find fuch a multipber or multipliers, by which multipl fing the given furd ; theprodubl will be rational.
R U' L E.
Change the fign of one of the terms in a binomial, or trinomial, or the figns of two terms in a quadrinomial j and by this multiply the given furd.
Ex. I.
£(?ƒ a ^3 le given^ Multiply by a—
produól aa—3.
• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex. 2'.
Given y/ —y/x.
Multiply by \/5 \/x produfl: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—x nbsp;nbsp;rational.
3.
V'5^K/i-v'2 Ic
Multiply by nbsp;5 ^3 ^/2
5 v/i2—\/io v/i5-l-3--v/6
---- --2
product 64-2^/15
multiply by —6 2v^i5 produd nbsp;nbsp;nbsp;nbsp;nbsp;60—36=: 2^---
-ocr page 95-Sea. ni;
SURDS.
S3 £x. 4.
There, is given nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; v/lt;i
Multiply by •v/^ v/^ v/f— produa 0
Qr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ƒ nbsp;nbsp;0^ 2 de.
multiply by nbsp;nbsp;nbsp;nbsp;f-\-2^ab—2^dc
produa nbsp;nbsp;nbsp;nbsp;nbsp;ff-{■ y/-\-i^ab—^dc
S 4f\/ab multiply by j-
produa g — 1 (iffab
In this procefs f is put for the rational part «4-^—and for ƒƒ 4.4öZgt;—44c.
Cor. A binomial becomes rational after one operation, a trinomial after two, and a quadrinomial after three, iic.^
PROBLEM XXXV.
A binomial beifig given, conjifing of one or two furds, whofe index or root is any power of 2 ; to find a multiplier or multipliers that fhall make it rational.
R U L E.
Multiply It by its correfponding refidual (that is when one fign is changed) ; and repeat the fame operation, as long as there are furds.
Ex. I.
' Let nbsp;nbsp;a—be given.
Multiply by
produa nbsp;nbsp;nbsp;0—b nbsp;nbsp;nbsp;nbsp;nbsp;rational.
£ä'.'
G 2
-ocr page 96-SURDS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. 1
Ex. 2. 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-
■L«/ v/5 \/3 propofed, * *
Multiply by v/5 —
I produéh
multiply by 5/5 v^3
2 produéh — 3=2, rational.
3’
there be given y/b.
-Multiply by \/a—y/b
1 produól nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;\/a —\/b
multiply by \/a\/b
2 produit nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— .yb
mult. by nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;\/a \/b
3 pfoduél nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a — b rational.
Zx. 4. I 4 Zi?/ nbsp;nbsp;nbsp;nbsp;nbsp;Ö \/b be given.
Multiplier nbsp;nbsp;nbsp;nbsp;a — ./b
I prod. nbsp;nbsp;nbsp;nbsp;0« —\/b
mult. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; y/b
2 prod. — b
Cor. quot;The nnmber of operaiionSy is eqtiaî to the pDV}Cf of 2 in the index.
P R O B'
-ocr page 97-Sea. III.
SURDS.'
85
PROBLEM XXXVI.
Any binomial furd being given, to find a multiplier •vohich ßoall produce a raiion..l produbi.
RULE.
If the furds have not the fame index, reduce them to the fame, (Prob. 21.)
Take the two quantities (throwing away the radical fign or index) -, change the fign of one of them. That done, involve thefe to the next inferior power denoted by the index of the root (Prob. 5. Rule 3), but leave out the uncise or coefficients : then place the common radical fign before each quantity, but after its fign. And this will be your multiplier.
Shorter thus,
« »
Binomial v/B.
« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n
Multiplier nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; v/A”--B -p yAquot;-3B‘
»
^/Aquot;-4B’ -P amp;c. nbsp;nbsp;nbsp;nbsp;,
The upper figns muft be taken with the upper, and the lower with the lower ; and the feries continued to n terms.
Ex. I.
be given.
— Vl'X.l'if.S, — v/7X3X3
____ V/7X3X3 3
7 3 = .0, rational.-------
-ocr page 98-Multiplier lt;?a4-^v/2 produél nbsp;nbsp;nbsp;nbsp;a'^—2.
TjÉt \/a b bc propofed.
Ex, 4.
reduced nbsp;nbsp;nbsp;nbsp;nbsp;4- ^^9, given.
^4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■11
Multiplier v/5’— v/5^X9 s/sX9^'^\/^ produâ. 5~-9 — —■4;
Or thus^
* Surd 5/9 v/5.
produél 9 nbsp;nbsp;nbsp;——4.
Ex. Z'. 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4
Let nbsp;nbsp;nbsp;nbsp;nbsp;'— ^yb' ie given.
Multiplier ^^5 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- \/a^b^ 4- ^b’).
Or
-ocr page 99-Sea. III.
SURDS.’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;8^
Surd mult.
\/ai
----4quot; aab^ 4“ b^a^lb-]-ib^b produéT;;^;;:^—---
Ex. 6.
\/a — y/b be propofed.
put jf—a’, y — bb.
Surd 5/x _
_____ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;\/4“ \/y^,
problem XXXVII.
y? fraSlion being given vühoje denominator is a compound furd i to reduce it to another whofe denominator is rational.
RULE.
Find fuch a multiplier (by Prob. 34, 35,01 36), as will make the denominator rational. By this multiply both numerator and denominator.
Ex. I.
0
1«
3Xv/54-5Ä nbsp;nbsp;nbsp;_
v^5-V2Xvquot;5W2 ■quot;
^,/5
G 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I-v.
I'
SURDS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. I.
Ex. 2.
Let there be s^men -y/1 nbsp;nbsp;nbsp;nbsp;3 '
Makiply both terms by v/z-v/t. the fraffion becomes
7—3=4 ’
3-
Sufpofe 3—z
Multiply by 3 v/2, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;is the
fraélion required. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
Ex,
' T nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—^‘\/bc
ö v/Z-c propofed.
Multiply by a—then is the fradion fought.
5-
Let
5-.y^ nbsp;nbsp;nbsp;be,given.
Multiply .by 5 ^3 .
1 Gy/b 4- 3 y/gfl 2 v/3Zlt; ‘2-5~3—ï'2-
Ex. 6. '
. r ’o
Multiply by v/7‘ v/7X5 \/5\ and the frac-^
tion becomes I£Z4942ogt;35 tov/2c _
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
-ocr page 101-Sea. in.
SURDS.
89
Lit
Multiply by 5/5’—s/5*.3 gt;5.3‘—5/3S And the fraction is
Or thus^
Multiply the terms of the fradion -7 nbsp;—5^—
\/5 ^^3
by v/5—\/3gt; and it becomes
again multiply the terms of the laft fraction by y^5 v/3» and it becomes
5’^—5’3’ 3'5*—3^ . .
■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lt;nbsp;/0.0.
Ex. 8. g 'Lit —,---—— be the fraßion.
Multiply by \/3 v/2—i, and the fraaion will ' 8v/3d-8\/2—8 nbsp;nbsp;nbsp;4\/:î 4v/2—4
be nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= riV6 •
multiply by —2 ^/6, and it becomes
— 8v/ 3—8\/ 2-1-8 4'\/ ’84-4^/ J2—4\/6
— 4 2^/184-2^/12——4v/3—4v/2 rx 4 6^2 4v/3 ““2^6—ät\/3
SECT.
-ocr page 102-90
SECT. IV.
Several Methods of managing Equations.
An Equation is the mutual comparing of two equal quantities, by the help of this character the part on the lefthand is called the firft fide of the equation -, that on the right, the fécond fide. And the fingle quantities are called terms of the equation.
An equation is either two ranks of quantifies equal to one another, and feparated by this mark ( —); or one rank equal to nothing. And they are to be confidered either, as the laft conclufion to which we come in the folution of a problem ; or as the means whereby we come to it. In the firlt cafe, the equation is compofed of only ons unknown quantity mixed with known ones, and may be called the final equation. But thofe of the laft fort involve feveral unknown quantities} and therefore they are to be fo managed and reduced, that out of all the reft there may emerge a new equation, with only one unknown quantity, which is that we feek. And diis is to be made as fimple as it can, in order to find the value of the unknown quantity.
An equation is named according to the dimerr-fion of the higheft power of the unknown quantity in it. A ftm-ple equation is that which contains only the quantity itfelf ; as a~b—c. A quadratic equation, is when the higheft power is a fquare, as aa—ba—d. A cubic equation, when the higheft power is a cube, as a^^ba'’—ca—d. A fourth power when the higheft power is Inch, as
—^a'-\-azz.d, amp;c.
PRO-
-ocr page 103-Seót. IV. Managing EQUATIONS. 91
PROBLEM XXXVin.
To turn proportional quantities into equations ; and equations into proportions.
In the folution of problems, it often happens, that we have feveral quantities in geometrical proportion, which are to be reduced into an equation ; which will be done thus ;
RULE.
Multiply the extremes together for one fide of the equation, and the two means for the other fide ; or the fquare of the mean, when there arc but 3 terms.
On the contrary in a given equation, divide each fide into two faélors ; and make the two factors of one fide the two means -, and the two factors of the other fide, the extreams.
Ex. 1.
Jf a-.b ; : c 4-ƒ :d. Then adzzbc-^lf.
Ex. 2.
Let a-i^b K—b ; : ^^âa^xx : A = —^\lt;aa—xxl
Ex. 3.
V lt;td zz ic-Ybf. Then a : b : : c f : d.
Ex.
-ocr page 104-Manuging E QJJ A TIO N S. B, I.
4. ar-\-br nbsp;nbsp;nbsp;nbsp;ca—cb nbsp;_____
— = —2 Vaa—xx.
Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: r
•gt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;u
r c ___ or a b : a-\-b : : — : nbsp;nbsp;nbsp;nbsp;aa—xx.
Ex. 5.
Eet bc-\-bä — da—eg.
Then i : nbsp;nbsp;nbsp;: c i/ : da—eg.
or b : \/da—eg ; : \/da—: c-j-d.
PROBLEM XXXIX. reduce an equation.
Wlien a queftion is brought to an equation, the • unknown quantities are generally mixed and entangled with the known ones ; and therefore the equation mud be fo ordered that the unknown quantity may Hand clear, on the firft fide of the equation ; and the known ones on the fécond fide. Which is done thus :
I RULE.
When any quantity is on both fide the equation, throw it out of both.
Ex. J.
]f o^x-Eiib — 4c—d -f- ^b.
Throw out 6b. Then 2X—4C—d-E^b.
2 RULE.
hen the known and unknown quantities are both on one fide ; tranfpofe any of them to the contrary fide, and change its fign. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;£x.
-ocr page 105-Sect. IV. ' Managing EQUATIONS. 93
Ex. 2.
If 5 jf 3^ = rx M.
Then 5 X =: rx 4- bd —
And 5 X — rx — bd — '^b.
For to tranfpofe a quantity with a contrary fign, ÎS the fame thing as to add it, or elfe to fubtraft it from both fides ; therefore the quantities on each fide, remain ftill equal, by Axiom i. and 2.
3 RULE.
If there be fraftions in the equation,* multiply both fides by the denominators.
3 - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ur .. .
aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;; 1
Suppofe -J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
hd'if
Multiply by a a cb — f multiply by æ, a’ q- bca — bfa — bdx.
This procefs is plain from Axiom 3.
4 RULE.
When any quantity is multiplied into both fides of the equation, or into the higheft term of the unknown quantity j divide the whole equation thereby.
Ex. 4.
If jba^ bcaa — bcda..
Divide by ba, jaa -{■ ca — cd.
The truth of this appears by Axiom 4.
5 RULE.
-ocr page 106-Managing EQU ATIO NS. B.
5 R U L E.
If the unknown quantity is^affeéled with a furd t tranfpofe the reft of the terms ; then involve each fide according to the index of the furd.
5.
If v/aa—ba -Oc c zz. d. Then y/aa—ba — d—c. fquared aa — ba =; dd—2dc-{-cc.
This procefs is plain from Axiom 5.'
6 RULE.
When the fide containing the unknown quantity is a pure power ; or if being adfefted, it has a ra* tional root : then extract fuch root on both fidcs of the equation.
Ex. 6.
If 0’ zzbi bbc.
Cube roof. 0 =:
Ex. •].
If ** 6x 9 —tab.
Square root nbsp;nbsp;* 3 =
and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X =: ±\/2ob—3.
Schol. All thefe rules are to be ufed promifcu* oufiy, as one has occafion for them i till the equation be duly cleared.
PROBLEM XL.
To explain the nature and origin of adfebled equations,
I. Any adfeded equation may be confidered a» made up of as many fimple equations, as the di-menfiefl
-ocr page 107-Scft. IV. o/ EQUATIONS. 95 menfion of higheft power is. Suppofe
amp;c:c. then a—azzo, a—b—o^ xgt; c—o. AncMf all thcfe be multiplied together, then X a x a—b x x—c =.0 -, that is,
—abc—Of a cubic equation,
■—b -\-ac
whole roots are a, b, c.
In like manner, x—a y, x—b y, x—c x x—d—Ot produces a biquadratic equation,
*♦—a nbsp;4-a^ X'- — abc x abcd~o.,
—b nbsp; af nbsp;—abd
c nbsp;nbsp;-^-bc nbsp;—acd
“•~d nbsp;nbsp;-{-da nbsp;—bed
-{■db
-{-de
whofe roots are a, b^ d.
Thefe two equations may be written or denoted thus, X’ — px* nbsp;nbsp;— r zz Q and
x jx* — rx -f- s zz o. And any fuch • e-quation being found in the folution of a problem j the bufinefs is then to refolve it into its original compounding fimple equations, and fo to find the roots a, b., c, ècc. For each of thefe fimple equations gives one value of x, or one root. And if any one of thefe values of x be fubftituted in the equation inftead of x, all the terms of the equa^ tion will vanifh__and be zzo. For fince
X—a X X'—b y. X—C2_^S' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;It is plain, when
one of the faftors x—a is zzo, the whole pro-duft will be zzO. And of confequence there arc three roots in the cubic equation', and four in the biquadratic ; and in general there are as many roots, as is the dimenfion of the higheft pov/cr in it, and no more.
2. If
-ocr page 108-$6 Nature of EQUATIONS. B. 1.
2. If it happen that the roots a, b, c, ècc, be equal to one another, then x—a will be =0, or X—a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;C. and ä'—a is had by evolu
tion, fince the given equation is generated by involution.
3. That there are no more roots than thefe is plain i for if you put any quantity, as ƒ for x, which is equal to none of the roots b, amp;c. Then fince neither ƒ—f—b^ nor ƒ—c, amp;cc, is o, their produft cannot vanifh or be rzo, but muft be fome real produél j and therefore f is no root of the equation.
4. Since the fquare root of a negative quantity is impoflible ; therefore if we have fuch an equation as this, XX q- aa—o, or xx — — aa, then which are two impoflible roots of that equation. So that a quadratic equation has either two impoflible roots or none. And therefore in any equation, there is always an even number of impoflible roots ; fince each quadratic that goes to the compounding it, muft have either two or none. Therefore no equation can have an odd number of impoflible roots. Hence therefore -the number of real roots in a cubic equation, will cither be one or three -, in a biquadratic, four, two, or none. In a fifth power, 5, 3 or i ; iàc.
Ç,. From the foregoing equations it is plain, that the coefficient of the firft term (or that ol the high-eft power) is i. The coefficient of the fécond term (or next higheft power}, is the fum of all the roots, a, b^ c, amp;c. with their figns changed. The coefficient of the third term, the fum of the produds of every two of the roots. ï'he coefficient of the fourth term, the fum of the produds of every three of them, with contrary figns, iâc. The odd terms having always the fame fign, and the even terms a contrary one. And the
abfoluie
-ocr page 109-Sea. IV. Nature c/ E Q U A TIO N S. abfolute number is always the produA of all the roots together.
6. Hence it follows, that when the fum of all the negative roots is equal to the fum of all the affirmative, the fécond term vanifhes, and the contrary. And if all the negative reélangles be equal to all the affirmative ones, the third term vaniffies. And if all the negative folids be equal to all the affirmative ones, the fourth term vanifhes, out of the equation -, and fo forward.
7. But the roots of equations may bè either -p' or —, yet fcill the fame rules hold good. For let the fign of any of them as c be changed into — c that is, let jf rrzo ; then in the cubic equation the fécond term will be ■—a—b-^c ; that is, the fum of the roots with a contrary fign ; the third term will be ab — ac — be , that is, the fum of the produfts of all the roots j and fo of the reft.
8. Hence alfo in every equation cleared of fractions and furds, each of the roots, each of the rectangles of any two of the roots, each of the folids under any three of them, each of the produfts of any four of the faid roots, ^c. are all of them juft divifors of the laft term or abfolute number. Therefore when no fuch divifor can be found, it is evident there is no root, no reftangle of roots, no foiid of roots, ^äc, but v. hat is furd. For in the cubic equation, a^ b, c, and ab, ac, be are all of them divifors of the laft term abc : and fo of higher powers.
9. In any equation, change the figns of all the fitft ; then let the coefficients of the firft, fécond, third, i^c. terms be i, p, q, r, s t, v, Sic, refpedively. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
H
Then
-ocr page 110-9^ Nature of E QJJ A TIO N S. B. I.
Then obferving the figns, we (hall have
f rz furn of the roots, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Sic.
^A 2ÿ — fum of rhe fquares of the roots ècc.
;gt;B jA 3r = the fum of their cubes —a^ b^ amp;I.C.
/C^ÿB4-rA 4f zz the fum of the biquadrates»
Where A, B, C, t?f. are the firft, fécond, third» èfr. terms.
For ^zzö ^4-c amp;c. =:A.
Alfo /A or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;z: a^ b^ c^ zab
2«f 2f4/=:B—2^. Therefore Bzz/gt;A 2j, amp;c.
To go through the calculations of the reft would be tedious, and of little ufe.
10. In equations of the third and fourth power, we find, when the roots are all affirmative, the figns are and — alternately ; fo that there are as many changes of the figns as is the index of the power, or as the number of roots. But if the roots are all negative, the figns are all throughout, there being no changes of the figns. Whence in thefe cafes, there are as many affirmative roots, as changes of the figns in all the terms, from to —, and from — to . And the fame rule holds in general, that is, there are as many affirmative roots in any equation as there are changes of the figns. But the equation is fuppofed to be compleat, that is to want no terms, and to have ‘ numeral coefficients. And likewife the number of negative roots is known thus -, as often as two of the figns , or two of the figns — ftand next one another, fo often there is a negative root. It would be needlefs to trouble the leader with the proof of thelc things ; fince it can only be done tn particular cafes, and not in a general way-
And
-ocr page 111-Sea. IV. Naiure of E QU AT ION S. nbsp;nbsp;99
And befides when impoffible roots happen to lie hid in the equation, they caufe the rule to fail.
II. When the roots are all affirmative, the terms of the equation are alternately and — through the equation ; but when the roots are all negative, the figns are all ; and therefore, as by changing the figns of the roots, the figns of the alternate terms are changed ; fo on the contrary, changing the figns of the alternate terms, changes the figns of all the roots. And this holds in general, as will be evident by producing two equations from the fame roots, with contrary figns.
12. Since any adfeéted equation, as —px*-\-qx—r=.o, is made up of fimple equations, fuch as X—a—Oy X—^=0, amp;c. Therefore if one root as a be known, the whole equation may be exaft-ly divided by x—a ; and fo reduced to a lower dimenfion. Alfo when all the roots a, c are found out,' then will the continual produft of X—a, X—i, X—c, exadly produce the fame equation. It is no wonder that an equation has fevcral roots ; becaufe in fuch cafes, there are more folu-tions to a problem than one. So that in one cafe of it, X is =.a, in another cafe in a third
See. and they are all comprehended in the general equation. And hence though there be lèverai roots in an equation, yet only one of them will anfwer one cafe, or the particular queftion propofed. '
12. That any root fubftituted for x in the given equation, will make the whole equation to vaniffi, by deftroying all the terms, is proved thus. Let the equation be,
*’ — ax’’ -E abx — aie ~o.
— h -E ac — c be
H 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
i-
-ocr page 112-loo Nature of EQUATIONS. B. 1. And let the roots be a, b, c, as before. Then fiibditute any one, as lt;7, inftead of x, and the equation will become
0’— baa — abc—o, —baa caa —caa abc
Where the terms manifeilly deftroy one another. And the fame will happen, by fubflituting b or c, for X.
13. If the laft term of an equation vanifhes fas a b c^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;12), then one root will be o-, for then
the whole equation may be divided by the un-knt'wn quantity x or x—o. If the two lall terms vanifli {abx acx-\-bcx, and —abc)^ then two roots aie —o; if the three lalt terms vanilh, then three roots will be o ; ^c.
And (vn the contrary, if one, two, or three roots, Uc. be —o, the hit term, the two lall, or the three lail terms, àfc. ill vanifli out of the equation, and the remaining part of the equation will contain the reft of the roots. Thus in the equation, 7\rt. 12. if the re 's b, c be —o ; there remains only x'— «q-iÿ-i- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or ä—a—Q,
an equation containing tlr remaining root 0.
14. Änd in any power )f a binomial, if each term be multiplied by rhe index of the unknown quantity therein -, it will tlureby be reduced to the next inferior power. I'o prove this, we mull ob-ferve, that the coefficients of a binomial, are the very fame, whether you reckon forward from the beginning, or backward from the end ; that is, the hril and lall are the fame -, the lecond and laft but one -, the third and lall but two, yt. her the coefficients of any power of x-\-b^ are the fame as of Z’q-x. In the quad.atic xx-{-ïbx-\-bb, the
Sed. IV. Nature of EQUATIONS, loi the coefficients kire i, 2, i. In the cubic nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;they are t, 3, i. In the
fourth power they are i, 4, 6, 4, i. In the fifth power, i, 5, jo, 10, 5, I ; and fo on.
Therefore, let any power of x-\-b be denoted thus, x’-}-/;*-’'— -------4-
»■«—i.n—2 nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;n.n—i
-*---- x'b'lt;-ï —-— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;
nxb«-^ 4- nbsp;nbsp;; n being the index of the power,
and let m be that of the next inferior power, or m~n—1. Now let each term be multiplied by the index of x in each term ; that is, by «, «—2, amp;Ç. and we ffiall have
-- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 . H— 'J
—1 . x”“'/’ 4--' x'^—'^bb
n . n—I . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_
------ x'b’‘—i 4- n . n—I . x^'b”-^
gt;1x1”—^ 4- o. And dividing all by «x, it becomes
. «—2 . n—■? ' nbsp;nbsp;nbsp;—-----x^-^b\ nbsp;nbsp;
--
—I . n—2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----
~--x'-b^'-i 4- n—1 .xb’^—'- 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, that
IS, reftoring w, x^ m .’'‘—^b 4- nbsp;nbsp;nbsp;nbsp;nbsp;—^-x”—^bb 4-
---- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
1 . ƒ---X x'':-îb\ Ac.....4---------
which is nianiithly the /«'* power of x4-^.
IT 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;15- Aho
-ocr page 114-102 Nature of EQ^UATIONS. B. I.
15. Alfo if the equation refulting from the Jaft operation be taken,' and its feveral terms again multiplied by the index of x in each term ; it will be reduced to the next power below that, and fo on for more operations. And therefore after each operation one root will be deftroyedj or fo many roots will be deftroyed as there are operations, and the reft will remain.
16. And further: If there be feveral equal roots of one fort, and alfo feveral equal ones of another fort, in any equation. And if the terms of that equation be multiplied by the feveral indexes of the unknown quantity in each term ; an equation will arife wherein one of the equal roots of each fort will be deftroyed. And in general, whatever roots there be in any equation, if the terms be refpec-tively multiplied by the indexes of the unknown quantity therein, an equation will come out where' in one root of every fort will be deftroyed, whether there be equal roots, or al! different. But thefe things being of little confequence, I thall not de* tain the reader any longer about them.
17. As impoffible roots are fuch as .ire produced from the fquare roots of negative quantities ; fo impoffible equations are thofe produced from impoffible roots j as this equation —^a^^aa-^- loa -1-22—0, which is produced from thefe two, aa-i-2a-l-2=o, and aa—6a-l-11 —o -, the former produced from a-f-i-l-v/—i, and 0-I-1——i; and the latter from a — 3 4- nbsp;nbsp;— 2 , and
fl—3—y/—2. I'helefort of equations have roots that are barely impoffible.
Likewife, there are equations that are doubly impoffible, or impoffible equations of the fécond degree. And thefe are produced from equations involving two degrees of impoffibility, as this fl*-I-4«’ Saa-1-80-1-5=0, which is produced from the
-ocr page 115-Scét. IV. î^ature of EQUATIONS. 103 the equations, aa 4- 2a 2 — i =0, and «0 204-2—y/—i~o. Such as thefe cannot be reduced into rational quadratics, as the other may.
PROBLEM XLI.
^0 increase or dimini/h the rooti of an e^uation^ by any given quantity.
RULE.
For the unknown letter fubftitute a new letter, — the given increment, or 4- the given decrement. And fubftitute the powers thereof, in the equation, inftcad of the powers of the unknown letter.
Ex. I.
Let nbsp;—px'^-}-qx-i—r~Q, be given and let the
robots be lefenedby the quantity e.
Suppofe yzzx—e^ or jf=:74-^. Then
= J’4-30'quot;
—px'- — —py^ nbsp;nbsp;'^p^—pe'’
xxo, which
4-î* = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; nbsp;nbsp; je
—r =.
is the equation required.
£y. 2.
Intreafe the roots by 4, «ƒ this equation a’4-a’—xolt;»-f-8:z:o.
Suppofe «4-4=^» or az=.e—4,
Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—i2e*4-48f—64
4-«* = ee r— 8^4-16 ioazz .—10^-1-40
4- 8 :z: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4. 8
— life - -30? * :zö, the equation required; reduced, «»—,1^4.20=0, a quadratic.
H 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Cor.
-ocr page 116-104 Nature of EQUATIONS. B I.
Cor. I. The lafl term of the transformed equation, is the very fame as the equation given, having e in the place of r (in Ex. i.)
Cor. 2. hî^hen the laß term vanifhes, the number effumed —4, Ex. 2.) /j one of the roots in the equation propofed.
Sihol By this rule, all the roots of an equation may be made affirmative -, by increafing them by a proper quantity. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
PROBLEM XLII.
‘To multiply or divide the roots of an equation, by a given number or quantity. •
RULE.
Affiime a nfew letter; and divide or multiply it by the given number; and fubftitute its powers in the equation, inllead of the unknown quantity;
Multiply by 3, /Z’z'j equation y'--^_y— o.
3 ~
Suppofe y—— z, then fubAituting
for J-
Z' 4- . 1'46 we have------ y——7- —i -
.0, or reduced
2’—I2J—146—0.
Ex. Z.^ - -, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: J
Divide by \/2, the equation'
Let X—j’^3, which put for x, we have or 3y—27 1=0.
Cor. Ry this ru’e, fractions or funds may be taken out of an equation ; by dividing the new letter by the common denominator ; or by multiplying the new letter by the fund quantity. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P R O-
-ocr page 117-Sea. IV. feature of EQUATIONS. 105
PROBLEM XLIII,
• To change the roots of an equation into their reciprocals.
RULE.
In the given equation, inftead of the root, fub-Ritute a unit divided by fomc other letter.
Example.
‘ Let 3^’—2y-l-i—o, be given.
Put 7 = -r, then — I =0.
reduced 3—2z* z’ — o. or nbsp;nbsp;nbsp;nbsp;z5—2z‘ 3 = o.
^chol. this rule the greateft root is changed into the leaft, and the leaft into the greateft, ^c,
PROBLEM XLIV.
To compleat a deficient equation.
Kn equation is compleat, when it has all its terms, or thofe containing all the powers of the unknown quantity -, and deficient, when any power is wanting.
RULE.
Increafe or diminifh the roots of the equation, by fome given quantity (by Prob. 41).
Example.
Suppofe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—5—o, deficient.
Let e iz=.a, then
~ e’-hsef seq-i
4-23 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2e4-2
—5 =_______
5^—2=0, compleat.
Schol.
-ocr page 118-ioö
^ranfmtttatioH of
RL
Schel. An equation may be rendered com pleat, by multiplying by the fame letter with fome quantity added, as «4-1 ; but then it raifes the equation a degree higher.
PROBLEM XLV.
ie'prefs an equation to a lower dimenfion one of its roots being given.
Ï RULE.
Put the equation ~o, and divide it by the unknown quantity — the root given.
Example.
Given atq-Æ’—rorf-j-8r:o, one root a——4. ö 4=^o) ö’ ö*——3Æ-I-2—o the a’ -b4a* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;equation req.
—-3a’—toa
——12«
-|-2a-|-8
-p 2a 4“ 8
o
2 R U L E.
Put a new letter added to chat root, equal to the unknown quanrity ; and fuhliitute that and its powers in the equation.
Example.
Let nbsp;nbsp;nbsp;nbsp;nbsp;—io«4-8=o, be given., and a—’—iti
Put nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then
«’ nbsp;nbsp;nbsp;f’--i2f‘4-48/?—64
nbsp;— 4- ee ^8^4-16
’~-io«z:: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;__io?4-40
■ o reduced
=___8
z; e'^—iif*4quot;3^^quot;b° e^—iie 4- 30 =0.
PRO-
Sea. IV.' EQUATIONS. fö/
problem XLVI.
To find how many roots are affirmative^ and how many negative^ in a given equation.
RULE.
Range the terms of the equation according to the dimenfions of the unknown quantity. And if the equation is not compleat, make it fo by Prob, 44,
Then obferve how often follows —, or — follows , that is, how many changes of the figns there are j and there are fo many affirmative roots in the equation.
Alfo, as often as two like figns ftand together, fo often there is a negative root.
. Given a*—X’—19XX 49X—30=0:
Here the figns are 4- — — —» and there are three changes ; from the firft to the fécond, from the third to the fourth, and from the fourth to the fifth term : therefore there are three affirmative roots. Alfo, in the fécond and third terms, two negatives ftand together, and in none elfe, confequently there is one negative root.
2.
' Sttpfo/e x 5X’—7Jf*—29x4-30=0.
The figns are 4- 4- —- — roots nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;neg. af. neg. af.
So there are two affirmative, and two negative roots.
Ex.'
-ocr page 120-xos ƒgt; nbsp;nbsp;nbsp;‘■l'ranfmutation of
B. I.
. ' £ nbsp;nbsp;nbsp;nbsp;nbsp;£x, g., nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, ,
Let^ the^ equation be^ a'^—ya ózzo. This equation being defedlive is to be complcated.
* gt;---7ö- .6—o.
mult, by a i' hz ‘o. r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-------—---
*—?«' ..
V = Ui 'A
«♦ a’ — 7a’ — « -I- 6—0.
‘ So there are two affirmative, and two negative roots in this laft equation,' and one of the negative roots being —1, (by the multiplication of a i zzo,) therefore, the given equation contains two affirmative roots, and one negative. ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘
The reafon of this rule appears from Art. 10* Prob. 40.
.0'
5 ,___ Scholium.
• This rule does not'hold good, if there be- im- ' poffiblc roots in the equation -, except fo far as thefe! impoffible roots may be taken for ambiguous ones, that is, for either affirmative or negative roots. As in- the-equation x’—óx' igv—rowhich ’ by this rule gives three affirmative rootsj'but,in ’ reality it has but one root, which is 2, the reft are imaginary.
There are alfo fome rules whereby to judge how many impoffible roots' are in an equation,, but they are fo very tedious, and of fo little ufc, that I ftifill not trouble the reader .with them. See Vniver/al Arithmetic^
-ocr page 121-ScÄ. IV. E Q^U A T I O N S. '109 PROBLEM XLVII.
To change the affirmative roots into negatives^ and the negatives into affirmatives.
RULE.
Place cyphers for the deficient terms, if there be any ; then change the figns of all the even terms, that is, of the fécond, fourth, fixth, amp;c. terms of the equation.
Ex. I.
Given .x'4-8^ 24—o.
That is, »’ 04-8x4-24—o. transformed x’—o 8x—243:0.
In the given equation xzz—2, in the transformed equation »zz 2.
Ex. z.
Suppofe »*—4%’—i9X‘ io6x—i2Oz:o. transformed X 4X’—19»*—iu6x—120—0. In the former equation the roots are 2, 3, 4 and —5 -, and in the latter 5, ——3, and —4.
The reafon of this procefs is plain from Art 11. Prob. 40. and may be demonftrated thus. In the given equation, we have x for the root. Now fuppofe —X to be a root. Let this be fubfiituted in the given equation, and it produces —x'—8» 24—o, that is, x’ Sx'—24—0, as in Exam. i. And » 4X’—19»‘—io6x—iz.o—o, as in Exam. 2. For it is plain, all the odd powers of x will now be negative, which before were affirmative, the rert remaining as before. Whence the figns of all the odd powers will be changed, according to the rule.
S E C T.
-ocr page 122-.ÏIÓ
s E C T. V.^
Ranging the term j quot;working by general for mi j Jùbflitution and reflitution j taking aquot;way any term of an equation j extermination of w known quantities -, the defignation of quantities by letters ; regiflering theßeps.
PROBLEM XLVIII.
2c the terms of an equation, or difpofe of them in the beß manner for any operation.
RULE.
Th IS is done by placing thefe terms foremoft that contain the higheft power of the unknown quantity j and in the following places, thofe of lefs dimenfions ; fo that the powers in the fcveral terms may continually decreafe from the higheft, according to the fériés of the natural numbers. But in many cafes, the contrary method is to be followed, and the loweft power taken firft.
Ex. r:
Let az^ 2*——bquot;' o^ab^ —q.
Place it thus, 2 nbsp;nbsp;nbsp;nbsp;* * 4- nbsp;nbsp;nbsp;—q,
-^b nbsp;nbsp;nbsp;nbsp;^b\
Ex.
Suppofe Jf -4-ajf’ .\‘bx’’^^bx^ •{’CX—dx-’-^b^ ranged x 4-«A;’-t-Zgt;x* f3f-|-ö^’=o.
PRO-
-ocr page 123-Sea.V. .GENERAL FORMS.
PROBLEM XLIX.
To by a general form.
RULE.
Write down each letter or quantity in the general form, and after it (with the fign xx), each letter it reprefents in that particular cafe i which will give feveral equations.
Then caft your eye over the general form, and obferve the general quantities therein, and look for them on the firft; fide of the equations ; and what you find them equal to, on the right hand, write down, inftead of them, each one by one, till you have gone through the general form i and you will have the folution.
When the quantities are many, it will be the beft way to write down the general form firft, and the particular one under it, each quantity under its correfpondent j then it will appear by infpetlion what letters to fubftitute.
Ex. I.
l'a involve aa—xx to the ^th power.
This is to be done by the general torm in Cor. x.
Prob. 5. therefore we have
I* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a “ aa
e~—XX n — s i
Whence ö-1-e — aa—xx —aa -p ^y.aa X
— ’ nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;5—I
X aa X«
3 X “-x® 5 X ««XX« 5 X X
5—
3
: ^x
X
5—3 4
5—4 5
X—x’o — a^Q — 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—
the power required. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex,
GENERAL FORMS. ßj.
Ex. 2.
ExtraSl thefquare root of 28—300.
This is to be done by the form in i Rule, Prob. 32. Here A=28, ^—^^00, D=\/784—^^^^22, »A D _ ^28 22 _ nbsp;nbsp;nbsp;yA—D
2 nbsp;nbsp;~ nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;=
.28--22 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,__
V—Therefore s/A—B = 5—^/3 the root required. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
Ex. 3.
^0 find a quantityi by 'which if y/2—^6 bemul-tipliedy the produbl will be rational.
This is to be done by Prob. 36.
Here »=15, A=2, Bzz6. 5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
And the multiplier \/16 1^8x6 ^4x36 4-5
V^2X2i6 v^I296.
mult.v/i6 v^8x6 v/4X36 v/2X2i64-^i296 by v/ 2 —^6
v/32 v^96 v/8x36 v/4X2io y/2592 555
—^96—\/8x36—x/4X2i6—
2—6 = —4. produót.
PROBLEME.
Jhorten the work by fubflitution and reflitution.
In any operation, when the quantities grow very numerous, or very much compounded, it wiH make the work very tedious ; and therefore it cught to be made fliorter as follows.
RULE.
-ocr page 125-amp;a.V. SUBSTITUTION, ù?c. 113
RULE.
Aflbme a new letter to reprefent or ftand for any humbef of given quantities 5 and likewife fome different letter to ftand for the coefficient of any power of the unknown quantity ; do fo for as many of the coefficients as are compounded. Likewife, put letters for the numbers concerned ; then work with thefe inftead of the original quantities, which will make the work eafier. And this is called Suifii-tuiion.
When the operation is over, each number or compound quantity mull be reftored again inftead of its letter j and this is called Reftitution.
Ex. I.’
Eet aa-\-ba—ca-^da—de.
Put s—b—c-\-d.. Then the equation becomes aa :a—de.
Ex. z.
Put c—d—p. Then
pxx-{-cx
multiply by pxx.^cx. Then
ß/gt;Ä'X—zpX'^ acx—2£xxx \/aii—xx = bx.
Put ap—ze—q. Then qxx—zpxgt; -{-acx nbsp;nbsp;nbsp;nbsp;aa—xx ~ bx.
acx qxx—2px Vaa—xx — bx.
Iquared nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;âa—xx—bbxx, Zzz.
where the values of p, be reftored.
I
PRO-
-ocr page 126-n4 SUBSTITUTION, ^c, -BJ.
PROBLEM LI.
take away the fécond term of an equation.
RULE.
Divide the coefficient of the fécond term by th® index of the higheft power ; annex the quotient, with its fign changed, to fome new letter, which fubftitute for the root, in the given equation.
Ex. I.
Suppofe a^-^aa—ioj4-^=o.
Put f--- a. Then 3
al -3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. !
Z I
lO
—icfl= nbsp;nbsp;nbsp;nbsp;nbsp;--IO « 4--
3
8 — nbsp;nbsp;nbsp; 8
I II
the cquae
o ? — IO—II—»
3 tion required.
Ex. 2.
£f/3^j3 4-(j —o, be given'. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
Let y=:x4— —x4-2lt;i« •^4
then = x 8aA:’ 24a*x* 3'ï^’* ’oa*
' —807’= —8axi—48a* X*—^6a^x—640
a^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;___~P
o c:z* * — 24a‘x‘—64^’^—47quot;*=O’
Schol, Hence by this and the 43d problem, an equation may be found, which wants the laft te^m
-ocr page 127-Sea. V. EXTERMINATION. 115 but one. For if the fécond term be taken away by this problem, and the equation transformed by Prob. 43, you will have the equation required.
PROBLEM LIT.
7c take away any term out of an equation.
RULE.
Take a new letter for the root, to which add an unknown quantity ; and fubftitute this fum and the powers thereof, into the given equation. Then any term put equal to nothing, will determine the va-; lue of that aflumed unknown quantity.
Ex. I.
Suppofe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-J-^x^—gx — 2 =0.'
Put y-^-e — X.
Then iv* —
3*’ zz “-3^1’ —oyye ^eyye'^—^e’ f 3*^ ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 3^7 nbsp;nbsp;nbsp;nbsp;nbsp;4quot;3^’*z—O'
—By —5« \
Then, if the fécond term is to be taken away* make jy’iszo or 4f=3 ; therefore czz—.
4
Ex. z.
7he fame fuppofed \ to take away the third term.
Here we fhall have nbsp;nbsp;nbsp;nbsp;nbsp;—9/lt;^ 3gt;:y~o; re-
* —°’ refolving of which qua-o-ivpe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gives the value of e. Then
vanilh. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lo that the third term may
I '2
Ex.
EXTERMINATION. B. I.
£x. 3,
7 he fame thing fill fuppofed-, to take away the fourth or fifth term.
For the fourth term, 4e’—9f* 6f—S'zzo, a cubic equation whole root is e-, and makes the fourth term vanifli.
For the fifth term, e^——5lt;? 2~o, a fourth power whofe root is e. Then y e—x, which fubftituted in the equation, makes the laft term vanifii.
Cor. T. Hence the third, fourth, fifth, amp;e. term, VIay he taken out of the equation ; by refolving a quadratic, cubic, fourth power, ice. equation.
Cor. 2. Hence if the laft term of an equation {ai e^—3i?'q-3f«—5^4-2) be —o, then one root {x} is —Q ; for then x—o, or x will divide the equation. If two of the laft terms be ~o, two values of the root will be =0, and fo on. But if the laft term does not vanifh, there is no root —o.
Schol. After the fame rule any term may be made equal to any given quantity j by putting the faid term equal to that quantity.
PROBLEM LIII.
T'ö exterminate a fmgle letter, or a quantity ef one dh menfion, out of fever al equations.
I RULE.
Seek the value of the quantity to be expelled, in two equations -, and put thefe values equal to one another.
Ex.
-ocr page 129-Sea. V. EXTERMINATION.
117
I .
Ltt daquot;^by
. and 2x y f lt;ixler:m;iate y. ■
By tranfpofing b, a-\-x—b—-\ and by tranfpo* fing 2x, j’:z3Zi—2x. Therefore «4-a— b~ ^b__ And by reduftion ‘^x—^b—and à'—l.'rZ--
3
Ex. 2, Let ax—iby—abl and xy - bb, î nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y.
Here æx—ab — zby.^ andj=:--- zb '
air _ r c ax~algt; bb Allo J' = Y ; therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and re-
ducing XX—bx — ~.
2 RULE.
Find, by reduction, the value of one unknown quantity, in one equation ; and fubftitute that value for it, in all the other equations. Proceed thus with another unknown quantity,
£x. 3.
Zz/ æ4-a:=:2^—y~t and ^ax-yx=.d nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gt;
By the firfl; equation yzzzb—a—x, put this value in the fécond equation ; then
3flx nbsp;nbsp;XX zb—a—X = d., that is, 30X—-
■j-xx—dy or 4Z7X—zbx-\-xx=.d.
Ex,
-ocr page 130-'118 EXTERMINATION. B. T.’
Ex. 4.
Suppoje gt;x-\-y-^z-=za
3j zz .v 22gt; to expunge z andy^ az — xy. j
By the firft equation, zzz^—x—y.
By the fécond equation, 35—*4-2«—2X—2j',
By the third, a^a—x—y—xy^ or
ÆX'—ayzzxy.
The former reduced gyzz2a—x. and fince nbsp;nbsp;nbsp;nbsp;nbsp;aa—ax—ay—xy.
From thefe to expunge y.
By the former y — -----and by the latter 5
, nbsp;nbsp;nbsp;aa—ax
aa—öv xy, and 7=-----. Therefore
2a—X . aa—ax nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;....
— zz , in which equation there is only one unknown quantity x.
Cor. I. By each given equation, one unknown quantity may be taken aivay. confequently when there areas many equations as unknown quantities, they may be all taken away but one.
Cor. 2. ]f there be more unknown quantities than equations, there will remain in the lafl equation more unknown quantities by i, than that excejs amounts to.
PROBLEM IJV.
^0 exterminate an unknown qu^intity of federal di-i menfions.
I RULE.
Find the value of its greateft power in two equations 5 then if they are not the fame, multiply the lelfer
-ocr page 131-Sed. V. EXTERMINATION 119 lefîèr power, fo' that it may become equal to the greater. Then put thefe values equal to each other, and there will come out a new equation, with a lefs power of the unknown quantity. And by repeating this operation, the quantity will at laft be taken away.
Ex. I.’
ZeZ «?e-P^^-Pf=0 ? toexme e. and fee-{-ge-{-h~o^
TJ nbsp;nbsp;nbsp;nbsp;nbsp;r r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J J- -J- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; J
By tranipoling and dividing — ee r: nbsp;nbsp;nbsp;nbsp;nbsp;gt;nbsp;and
r^-pZ» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. be-\-c g^-Vb
'—ee — nbsp;nbsp;nbsp;nbsp;nbsp;. Therefore---zz —c~‘
J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a f
And multiplying, bef-^cf—age -\-ah, and by tranfpofing bfe — age — ah — cf^ and dividing,
And multiplying by —r.
‘^f—ag
~~ahe-\-cfe — ee~ -r2----•
bf—ag And multiplying ~acfe—aahe.
be-\-c nbsp;nbsp;nbsp;—ahe-ircfe
, Whence --- = nbsp;nbsp;—-—
; alternately bbfe-\-bcf—abgeage And tranfpofing* and dividing,
e =: rr;----r-----7“;----Therefore
Ziipy — abg — aij -p aah ah—cf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ag—bef nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
bf—ag ~ bbf^—abg—^cf-\-aah ' ing and reducing.
hbaa -p egg a -p bbfh =0. — icfh — bgfc — bgh -P ceff
2 RULE.
Flt;?r two quadratic equatiom.,
a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ax'' -p bx -p c —Q.
and /x* -p -p Z zzo.
t» exterminate x. Here c, by Cy figy hy arc either
I 4
-ocr page 132-120 EXTERMINATION. B. I, given quantities, or compofed of given quantities, and fome other unknown quantity y. Thus
make bf— ag—A, bh—cg—^, and cf—ah—V, then AB DDzzo.
‘To prove this rule, we have —— a
-y-, which reduced is bj—a^xx cf—ab—o-, that is, Ax-rDro. Whence Ax^q-Dxrroi
therefore — xx: — nbsp;nbsp;nbsp;nbsp;— a * which reduced
• I” manner—xx =
—p— , which reduced is x =: tzt---—. Whence
cA nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;hA. ,
lt;7D—reduced is
lt;ƒ—æZ)xD ^^—X A—O, that is AB DDr:o. The Newtonian Ä«/e is,
(ih')lt;,ab—b^— 2 cf bfxbh— cxagg-^-cff — o.
3 R U L E.
For a cubic and a quadratic equation, ax^-{-bx'‘-}-cx-\-d—Q.
and nbsp;nbsp;nbsp;nbsp;/x‘ ^x-T-Zi—o*
Make fc—ub ' = D, fb—ag - A. Then ƒ D—g A X b O—Jdg -\-dff—h A^ —o.
For multiplying the firft equation by f, and the fccond by »x, and fubtrafting one from the other, ' we have
-i- fc —ah y. X fd ~ O', and fince thefe two equations come under the
-ocr page 133-Sea.V. EXTERMINATION. ,21 the laft rule.j^ng a~bf—ag, b=:fc^ah, c-fd.
B =Zgt;XA-öZ.-./4’
.—hxbf'—ag. Whence by that rule, fxfc~ah — g X bf^g h xfMh —fdg igt;Xigt;J =0, that is,acc6rding to the prefent
É^fignation of the letters A, B, C i^D—rA y
The Newtonian PzzZf is^ ti^hxah—bg—ïcf bf bxbk—eg—idf ? __ ch~dg'Kagg-YcJf dfX3agb^bgg dff
4 rule.
För a quadratic and a fourth fowtr.
ax^-{-bx'^ nbsp;nbsp;nbsp;nbsp; i/x4-e=o.
and fx'--\-gx-\-h—o.
Make h.—bf—ag. Yi—cf—ah. Then
D gg—f hx^ X dhff—egff—hhA. h\f * =:;o.
Eor multiply the firft equation by f, and the lat-ter by axx ; their difference will be bf—a^XA.'’-b cf—ahxx^-\rdfx ef—o. Or Ax’4-D3c*4-zi/x (f~o. And fince /x‘ ^x4-Z)—o. Therefore thefe two equations come under the laft rule -, in which writing A for a, D for b, df for f, ef {or f, and laftly /D—gX inftead of A, zndffd—LA. for D, you will get the rule, as above.
eff X q- 2,bgh ~ dfg eff \ r^Jgbxbg-^Zdb
5 R U L E.
-ocr page 134-gt;23 extermination. b. l
5 rule.
For two cubic equations,
ax'' •\-bx*'-^cx -{-d—O, and /x’ ^x' jJgt;x ^=o. nbsp;•
Make A.zzbf—ag, C—df—ak. T)—cJ—ab.
Snd P A*—AC—^AD «DD.
Q=fAC—zîCC—^AD.
R =:lt;yAA—^AC rfCD.
Then PQj-RR=o.
For multiply the fir ft equation by ƒ, and the latter by a, and their difference 'will be found tf—ag X ** Jc—ah 'X. x -}- Jd-^ ak —o ; that is, A^’H-Dä' Czzo. And fince nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;o ;
thefe two equations come under the third rule ; in which writing A, D, C for /, h^ refpeaively ; and likewife cA—aC for A, and ^A—aD for D i the rule will be evident.
The Newtonian R«Z(? is^
nbsp;nbsp;—bg—2cf X aabb—acfok.
bdfh X ak 4- bh—eg—zdf
4- aakk X bk—ak-{-2gc-^'^df
' bbfk Xbk—idg
nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2X agg^eff
Æ 3agb bgg dff~.2afk x ddf
^4- befk X cg dfZ::^^^iZZ^
- T- agk X bbk ^adh ^f —q.
6 R U L E.
For a cubic and a fourth power. ax^ bx'-^-cx^^dx ezzQ. and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-^hx-^-k—o.
Make A=/^—Q-fd^ak, YS-cf^ah.
Then
-ocr page 135-Sed.V. extermination. ,«2
Then put
_ X^ro-2^A x/lt;û—b\ A X ƒ C—Z-A *.. D—gA. xJ/e—kA—A x
fif vz /*tS /i T-^ nbsp;nbsp;nbsp;-—- ■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J A»
- / X/D—g A —D X/D-^M xffe~kK
Th nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XfC==^.
Then PQ RR-o.
Or thusy
Put E—^—ffe—kA, G:=LfC.^A.
P = CE—AF X E aG—DE x G. Qgt;= CE—AF X 'P^fe EG. R = /lt;?E—DE x E AFG.
Then PQ^4- RR—o, as before.
For multiplying the firft equation by ƒ, and the laft by a, the difference is Ax’ D*’‘ C«'q-f/—o. And finee ƒv’ ^J^»-^-Z?;^-J-Zzzo ; it will come under Rule 5, in which write A, D, C, ef^ for by c, d refpedtively ; and likewife /D— fi—kA, and fG-—hA, for A, C, D, refpeiffivc» ly i and the rule will appear.
Ex. 2.
Zf/ xx ßx—3yy = o, and ^xx—27x-j-4 te exterminate x.
By Rule 2, ö=:i, ^ = 5gt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f~3y
g——and A=i5 2J, B=2o—6^^^ D=—______
Then AB-pDD =z 15-1-2^ X 2o-l-6jJ ’~9yy—4-^ = 300 4^—9°y*—i2j* 8i_y ■ gt;. 72^* 4-16—0.
Ex,
-ocr page 136-EXTERMINATION. B. T.
3.
Suppofe y^-—xyy—^x~o.
and y^-{-xy—xâ’ j—o.
to expunge y.
by Rule 3, æ:z:i, nbsp;nbsp;nbsp;—x^ c—O^ dzz—^x.
and f~i, g—Xt h——xx j.
A=:—X—X——2x, Dzxjfx—3.
-g-‘^—XX--^ 2XX = ^XX--
~9 3^‘ ——* * 9*'*—9-=—3x~2x^-\-6x:=.'^x~2 x^ .
Then 3jfj^——x*-l-^x^—-|- ^jp—2x1^ ’ —O.
' 3*® 27* ——27X'4-27 9X*— i2â' 4-4x*=:o.
And reduced x® i8x*—45x^4-27=0.
Ex. 4.
Z#/ nbsp;nbsp;nbsp;nbsp;3xtv-}-3=zo,
/0 expunge y.
and 2y'-^xy'—45^3 z;o,
By Rule 6, fl = i, nbsp;nbsp;nbsp;nbsp;nbsp;f-o, d-—^x\ e=.
JS—Xi h—Q^ k——4;^’.
Then A=—x, C=—2x3, Dz:o. Whence E = P = 12—4-v^ G -—4X3. And P —2XS 12X—4XÎ X â'x 4x4 X — 4XÎ = T2y3—Cx'--1 6x^ — I 2X’.__22XT.
— ' 2X3 12X--4^3 X 12--4X4- _J_ 24XÎ
=2 12X--bXS X 12--4^* 24XS = I44X--96x54-24x9.
R nbsp;nbsp;6x'3 4-4x x 12—4x zc ^^x^—i6x’.
hence
-ocr page 137-Sea. V. designation, ï25
Whence
PQ RE. r: 12x1—22x'^ X 144^—^6x^‘i-24x9 nbsp;nbsp;nbsp;—i6x^^ —i^ï 8x —43 20Ä'’
24oov'^—52 8x‘'^ 29i6x’—i728x“ 256^'®^o, reduced, óSx'’’—i68*’ 35iAf*—432=:o.
Scholium.
In the folution of determined problems, you will often have three or more couations, involving as many unknown quaiititie.«. Then thefe muft be exterminated one after another, by degrees, by repeating the foregoing rules-, till at 1 aft there remains only one unknown quantity contained in one final equation. Rut a perlon ufed to thefe forts of computations, will often find fliorter methods than by thefe particular rules, but the finding thofe, is only to be attained by confiant practice.
- — '•u -t
PROBLEM LV.
3 L
To aefignate or denote any affétions of literal quanti-tieSj as, fams, products, amp;cc, __ ' j
R U I, E.
The original quantities being written down ; any affedions of them, as fums, differences, produóls; quotients, fsfr. are got by the rules of algebraic addition, fubtraftion, multiplication, divifion, fÿr. before laid down.
-ocr page 138-326
DESIGNATION.
ß. I.
Ex. I.
are two quantities, a the greater, and e tit Ifjjer, to find the fum, difference, firodu£i, ^z, follows.
The fum —— nbsp;nbsp;lt;—
difference — nbsp;nbsp;nbsp;—....... a—e
produd — nbsp;nbsp;nbsp;--- ae
greater divided by the lefs y leffer divided by the greater ~ fum of their fquares difference of their fquares aa__ee fum of their fum and diff, diff, of their fum and diff. 2^ prod, of the fum and diff, fquare of the fum fquare of the difference fum of the fquares of the quot;nbsp;fum and difference difference of the fquares of the fum and diff, fquare of the prodiiél . cube of the greater cube of the leffer cube of the fum cube of the difference
4
—e-) or aa-^-zae-^ee aa—zae-i-ee
aaee i ßj r • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
e’
ö’ 3ö‘« 3lt;75* ^’
—^a^e ^ae^^-s^^
Sscl.V. DESIGNATION.
2.
nere are fwe quantities, lahofe fum is b, and the greater is a ; wbat is the lejfer, the dtfference, èic.
fum of their fquares ---- difference- of riieir fquares fsm of the fum and difference difference of the fuiu and dif
ference
produft of the fum and difference
fquare of the difference
difference of the fquares of the? , ’ fum and difference
-ocr page 140-désignation. 1'
Ex.
'There are two quantities, the greater is a, ttf^ the greater is to the lejjer as r to s, what it lejfer, ixc.
s a
The leffer ( r : s : : a ; ) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■■ —
s a
the fum — nbsp;nbsp;—— nbsp;nbsp;nbsp;nbsp;ß _j-
difference ' ....... ' — nbsp;nbsp;■—■ a —
r
, r. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;eaa
fum of the fquares nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ a a 4- ^7
difference of the fquareS' aa —
greater divided by the leffer 37
ssaa
product of the fum and differ, a a
fum of the fquares of the fum 1
and difference nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I 2 a a -f-
difference of the fquares of the fum 1
the fum divided by the greater i quot;7
' the difference divided by the leffer
-ocr page 141-Sed. V.' designation.
129
Ex. 4.
^he produSl of two quantities is p, and the leffer is e, what is the greater, ?icc.
| ||||||||||||||||||
^0 keep a Jhort account of the fieps in any operation. |
In long and tedious operations, it is necefiary to ftiew, how one ftep is produced from another, or
K nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;one
-ocr page 142-ISO TRACIÎ^G THE STEPS. B.L one equation derived from other foregoing ones i which to explain in words would take up a great deal of room. Therefore the method of tracing the fevcral fteps, will be beft done by rcgittering them in the margin.
RULE.
Againft every ftep write the numbers i, 2, (^c. in order, and fet down, in the margin on the left hand, the ftep or fteps in figures, that each ftep is produced from j with the figns —■ X » âfr. according to the feveral operations, ufed; by which means one may fee at one view how any equation comes, or is produced ; and when an ab-folute number is regiftered, it muft be put in a pa-renthefis ( ) } and if any quantity is added, fubquot; traded, it muft be put down.
Example.
a e—b. n—e—c.
1 2 1 — 2 1X2
I -r- 2
I Iw 2jp 4^2^ 3 7 4X5 3 (4)
4-(4)
9—v/ 3 = 13
3 2a=b c
4 2e—b—c
5
6
8
5 IO
««—eezzbe a-{-e _ b a—e ~ quot;“c Va-\-e~^b \ee—bb— 2a v/a e— laae—le'^ —bbc—bee
11
12
13 ‘4 amp;c.
Sed. V. tracing THE STEPS, isi
Explanation.
14-2 fignifies that the third ftep is found by adding the firft and fécond fteps together, i—2 fignifies, the fourth ftep is got by fubtrafting the fécond from the firft. Likewife, the fifth ftep (1X2) is had by multiplying the firft and fécond : the fixth ftep, by dividing the firft by the fécond : the feventh, by extraéting the fquare root of the firft: the eighth (4^2/) is had by fquaring the fourth: the ninth (3 7), by adding the third and feventh fteps : the tenth (4X5)» by multiplying the fourth and fifth fteps : the eleventh (3 (4) ), is had by adding the number 4 to the third ftep : the twelfth (44- (4) ), fhews that it is gained by dividing the fourth ftep by the number 4: and the thirteenth (9—is had by fubtrafting 5/a-\re from the ninth : the fourteenth (3 = 13) is got by making the third anj thirteenth equations equal ; and fq for others»
K 2
SECT.
-ocr page 144-Infinite Series.
An infinite feries is formed, either by actually dividing any fraftional quantity having a compound denominator ; or by extrafting the root of a furd, and fuch feries being continued will run on ad infinitum, in the manner of a decimal fraction. And in many cafes the law of the progref-fion of the terms will be evident, by obtaining a , few of the foremoft -, and confequently may be continued without aftually performing the wholî operation.
PROBLEM LVII.
^0 find the value of a fraliion or furd, to he deftgnalii by an infinite feries.
I R U L E.
Proceed in the fame manner as is taught in Prob. iv. Rule 2. for divifion ; or in Prob. vi. Rule 2 and 3, continuing on, the operation at pleafure.
-ocr page 145- -ocr page 146-INFINITE SERIES. B. I-
Ex. 1, 4
Est tbe fraSîion 7—— be propofed.
aax nbsp;nbsp;aaxx aax^ nbsp;nbsp;aax^
--rr -r-—-V— -T—
bb ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b‘' b^
hxS.'fizx,
Zö«
aax aa -^
aaxx
-^^bb^ aaxic a^x^
’^'bb~ ~bE
’—a^'x'^
IT k
Or thus,
, f aa aab a'-b^ nbsp;nbsp;nbsp;nbsp;nbsp;a'-b'^
_ - _ _ ^ s,c.
X
•—baa
X
'•—-aab nbsp;nbsp;nbsp;nbsp;aabb
X nbsp;nbsp;nbsp;XX
-ocr page 147- -ocr page 148-136
INFINITE SERIES.
B.b
Ex.
Extra£î the fquare root ef aa-[-xx.
f nbsp;nbsp;nbsp;XX nbsp;nbsp;nbsp;nbsp;X*- nbsp;nbsp;nbsp;nbsp;nbsp;X^ i^X*
0’4quot;quot;' quot;quot;nbsp;û 7 quot;lquot; ê quot;y quot;E
V nbsp;nbsp;nbsp;2« nbsp;nbsp;nbsp;8«’ nbsp;nbsp;nbsp;loßS
ècc. ~\/aa ^^
2a' nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;.
4-Â';v4- — ^aa
XX x‘gt; \ — X^
Ö nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/^aa
XX nbsp;■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;V
a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^‘J nbsp;nbsp;8a‘^
5f*
amp;CC.
Here fuch terms are neglefted whofe dimenfions exceed thofe of the laft term —rr-, to which the root is to be continued. By the fame way it may be ex-,. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;?— nbsp;nbsp;- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-aa
traded in this form Vxx-\-aa =; x 4. — —
o nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;•
î6ï'.-*^f- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
Ex.
-ocr page 149-amp;a.VI. INFINITE SERIES.
Ex. 6_
From I—
3)—x^
take nbsp;nbsp;I—x^ — —■ nbsp;nbsp;
'i 2:1 - yr
Zó nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-----
take nbsp;nbsp;nbsp;Ï—?f’ * Sj-c. _ i_
\—ex')
3 J 2' ^2 2 R U L E.
Aflume a feries with unknown coefficients, to re-prefent it. Which feries being multiplied, or involved, ^c. according as the queftion requires; the quantities of the fame dimenfion muft be put equal to each other ; from which equations, the coefficients will be determined.
Ex. 7.
Suppofe —y — A-1-B«' Cx'‘4-Djf’4-E» Sec. the feries required. Multiply by a—x.
Then
-ocr page 150-13S
INFINITE SERIES. B. I.
Then
I —amp;c.
— Ax —Bä'* -— Cx^ — Dä'*, èic.
Whence equating the coefficients of the fame powers of X, we haveüAzzi, öB—A—o, aC—B=o,
—Czzo, öE—Dr:o, iâc. Therefore A=—,
, C- —=— D=—=—
(I aa .O' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;0
~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;by reduétion. Therefore the
7,4-2^-;^
Suppofe it =A Bj Çy* Dys amp;ic. Multiply by rf 2fj'—jj.
Then cc ~ffA ftBy-|-ccCy*-|-cfPy’, amp;c.
-h zcAy 2 cBj* -J- 2 cCy $ '—Ay* — Bj’
And equating the homologous terms, z:f=z:cM, lt;'fB 2cA = o, ffC 2rB —A=o, B — o, öf. and by rcduftion,
A = .. B=_î^=_i. Cz:±=2l2 _ c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cc
^ 4 p__ B—2cC -2 IO 12
« cc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c^ —
ècc. Whence ----—___
« 2ry—-yj nbsp;nbsp;* c cc
c^
Ex.
-ocr page 151-Sedt. VI. infinite SERIES. 139
Ex, 9, What is \/~aa—xx .
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Szc. which
being iquared, aa—xx—k^ 2ABgt;;‘ B'ä; 2ADa?«, amp;c.
2ACiv 4-2ßCÄ'®
Here Aquot;=a^r, 2AB=—i. BB 2AC-0, iAD * 2 BC = o, ^c. Whence Az:«,
2k 2« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2A ~ nbsp;nbsp;8«» ’
D = — nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;J nbsp;nbsp;nbsp;0’f. Therefore v^ört—.YA-
XX nbsp;nbsp;nbsp;X^ nbsp;nbsp;nbsp;nbsp;x^
Ta nbsp;nbsp;8«! nbsp;nbsp;nbsp;lóaquot;^
PROBLEM LVni.
ÏÖ reduce any binomial furd to an infinite feries., or to extrabi any root of a binomial.
, nbsp;nbsp;nbsp;nbsp;nbsp;RULE.
This is done by fubftituting the particular letters or quantities, inftead of thefe in the following general form, duly obferving the figns.
ABC _____»gt; JI m nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m—n = P « ~ A
D nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;E
w—2n „ m—on BQ —CQ. -~ D Q amp;c.
Where P is the firft term, Q the fécond term divided by the firft, — the index of the power or root, A, B, C, D, ö’r. the foregoing terms with their figns. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 152-140 INFINITE SERIES. B. 1.
Ex. i.
ExtraSl the f/^uare root of rr—xx.
—XX nbsp;m nbsp;nbsp;I
rr ~n ~ 2
, nbsp;nbsp;nbsp;---XX. nbsp;nbsp;nbsp;I
Here P=rr.
There-.'
—XX
fore
■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'quot;‘^XX nbsp;nbsp;nbsp;ß .g-- ~~“XX
— r — —A ïrr
O rr
. XX QXX Cix
B C -F — D 4- that is, reftor-brr 8rr '
ing the values of A, B, C, (fc. gt;/rr—xx = • x^ nbsp;nbsp;nbsp;nbsp;nbsp;x^ ^x'^
2r 8??
hVhat is the •value of , r4-Ar
—rry.r-px ., and Pr:r, Q=7gt; ' T’Ä'
fr ~ or m — — I, « —’ I. Therefore
r-t-x __ r —IA X — — iB X — — r
T-xDxAamp;c. =±_.-^A -
r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r r
X
r quot;pc amp;c. And rr X r Arzzrr X : ---
- nbsp;nbsp;nbsp;nbsp;. u-rr - nbsp;,
that IS, zz r—7
r^ fr amp;c.
Ex.
-ocr page 153-Sea. VL .INFINITE SERIES. 'Hi 'Ex. 3.
^6 find the ^alue of-
\/ 2rx—XX
----
-. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—2rx—XX'
V 2rx—XX
and P zz 2 r * J
2 r'
I *—• — 2rx—XX nbsp;-
--î 2rx
» = 2. Then
--X
2r
•lt;/2rx •
I
V^2rjf
E-4= —amp;c --^ ^r^2rx 32rr^2rx ~ .y/irx nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3.5.yx^
amp;c.
p- 32rquot; nbsp;nbsp;4.8.i2ri ■^4^.i2.i6rT
Ex. 4.
What is the cube root of i—x\
Whence
X'i ____
amp;c.
x^ z: I — — 3
^c. that
, ^B ^C
,3 nbsp;nbsp;nbsp;9 nbsp;^3
is, nbsp;nbsp;nbsp;nbsp;—xgt; — I —
x^
lOJf’*
243
22X'^ O --------
1^9
’5
ex')
à I
TTx-.
-ocr page 154-142 infinite series. B.
8147 77^ quot;quot;nbsp;nbsp;nbsp;= therefore
What is Ex. 5. 3 / J i^ infinite fieries. aa-\-KX | ||||||||||||||||||||||||||
| ||||||||||||||||||||||||||
40Ä;« nbsp;nbsp;nbsp;11 ox5 4« jfX’ |
-_ L. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;SX^ 40X®
3 X • I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■' -J—w—»■ — ' ' nbsp;nbsp;nbsp;nbsp;-1,1-, /Vp
s/aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;
Ex, 6.
What is the value of s/aa—xxquot; ----- ----- 1
V aa—XX XX aa—xi^ • nbsp;nbsp;nbsp;Here P zx 4 4 »
Q = nbsp;nbsp;nbsp;nbsp;nbsp;}}i—i, n~5. Therefore aa-^x
U14'
•— aa^ ■— A. X ----— — B X
5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lt;7«
XX nbsp;nbsp;nbsp;2X ÓX® nbsp;nbsp;nbsp;nbsp;2IX’ »
--XX
aa
XX a
XX
X :
I ““ —--- _---—.--- Srr
^aa nbsp;nbsp;2ßa^ 12§a^ 625«®
Sea.VI. INFINITE SERIES,
Ex. 7.
To reduce u-^-x % nbsp;nbsp;a—x iq Jgrig^,
Where P =30, Q — a t f»=i, »=4. Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-TZÏ.
4 a
-■f-Bx—--‘^-C%-^Zcc.
0 a 12 nbsp;nbsp;nbsp;nbsp;nbsp;0 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;\
|^B —Camp;c. = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3^'
32«quot; •--See.
X28« *
Multiply by a x
Then
= 0 4
32«i
;ri xo
amp;c.
I28Ä igxgt; i'Zbtfai
■amp;c.
|
amp;C.' amp;c. |
Sx.
-ocr page 156-144 INFINITE SERIES. B. I-
Ex. 8.
’Tß deßgnate
aa-\-xx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
------- by a jenes, aa—XX nbsp;nbsp;nbsp;nbsp;•'
\/aa-}-xx z: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Where P — Æ gt;
f}i — i n — 2^ and aa-^rxxquot;^ z: zz ^aa
2 aa 4 aa ç» ■ aa,
--- 77“: -c“c la nbsp;nbsp;8«* nbsp;'
Again, .■ '^r- - ;■„ —aa—xx nbsp;nbsp;nbsp;nbsp;nbsp;Here Pzzö^i
L---- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
Q — ——, m~—I, n—2. And 0«—xx aa
I I . —XX nbsp;nbsp;nbsp;3 _ nbsp;nbsp;--XX —------B X — a 1. aa 4 aa | ||||||||||||||||||||||||||
|
Ext-
-ocr page 157-Seéî:. VI,
INFINITE SERIES.
ï45
Ex. g. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 '
IS
the value of —:----;— ,
3^^'s niay
ax
aa-^ax xx be treated as a binomial. Put Then aa—ajc-j-xv— aa~-y. nbsp;nbsp;nbsp;EniS.
_____— I
— ax ylt;.\ aa—y . Here P—
Tÿ' •
aa^ — n-t.
—---—I
And
—y
aa
I B X aa
—■— I A X
r=--^4- —A —B 0^2 aa aa aa
I y aa ~ a‘’~ a'' ~ a^
Uc. a a
a«
-t
010
a'^
ax—-XX
a'^
^c. rz fby refcitution) ~
ax—XX
amp;c. which in-
a'°
into order will be
'^Oived 1
^nd reduced
I X XX ■— -J — —
Ga a'
XX 2»’ nbsp;nbsp;nbsp;X“*-
——■— 4- — a'quot;
X'
0 5 quot;“ 0 û ’
amp;c.
—.4.— * nbsp;nbsp;nbsp;nbsp;— — Sic.
a a nbsp;nbsp;nbsp;nbsp;c’gt; ■ a^
■ ~~''a^'~a^
L nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;The
-ocr page 158-146 INFINITE SERIES. KI.
The truth of this rule will appear by induftion. For if any of thefe feries be involved according to thè index of the root, it will produce the original quantity. Thus if r— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. be fquar-
2r
cd, it produces rr—xx^ as in Examp. i.
* ß ~ amp;c^ be cubed it produces i—K’, Ex.4-be involved to
the 5th power, it gives aa^xx, Ex. s- and the like of others.
m
m—2»
3»
= P-«
}n
L’ 4- ~ n
m—.2n
«J
2n
4« , fix
Cor. 2. ß-j-x —
2
D 4-»4-x ^c. the foregdif^l
»4-2
~3~
r^xihere n is any index ; A, B terms with their Jigns,
Por p„, y =
* •’^ = 73-. Therefore aXv” nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
. IIere'P=,,
»=! Jfee Prob, xlix) ; then by this problem, '=.-4Ax..-,._t ±Bx-;
^' 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;»4-3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;®
1 4- ny^
-ocr page 159-Sea.VL INFINITE SERIES. 147
. n 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;» ^ T',
I «jA B gt;nbsp; — C j — D y z ■' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4
- —g
amp;c. 'and öquot; X I—A ^ö’x'-i wjA -b
^^4“ I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7z 4quot; 2
— — B jy ---- C y fcc. = (rcftoring the value
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
Cf ,) c' X : I - .j.-A — X B
«4-2 X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;»4-3 nbsp;nbsp;nbsp;nbsp;nbsp;» nbsp;nbsp;nbsp;nbsp;nbsp;fj
'T 7 ; 4 gt;lt;
PROBLEM LIX.
Ti involve the feries zx:a èx-{-cx’'-}-dx^ ez^ amp;C2 to any power whole or frahlional,
RULE.
Subhltute the particular letters or numbers in the given feries, inftead. of thefe in the following general form.
z X:*^-j-4’X-l-lt;'x‘-l-/2X‘4-fx*amp;c,'
«2 X into : a
mhh.
a
zmcK-^m—I. JB
—1 . cB w—z . IQ.
.4. r
— 1 . JR-|-2Hr--2 . rC w—2 Z'D
-)- -------------------------;--------------------------------------------------2---------
4«
I 5»gt;f\ '—I .fB 3’*—2 .lt;ZC zm—. rD ---- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5«
gt;»—4. Z-E
—x’
4- 6w^A
-ocr page 160-148 INFINITE SERIES. , B. I.
6;«^ A 4- ßm— 1 ■ ƒ B -\-^m—t. . nbsp;nbsp; —3- Q
6a
-\x2m—4.CE4-CT—
'jmbK-{-6m—i . ^B4-5»gt;——3 •
__ _
-}- ’^m—4. dE, 2m—. fF w—6 •
Where A, B, C, D, (^c. are the coefficients of the terms immediately preceeding thofe wherein they firft appear. And the law of progreffion is evident.
Ex, I.
amp;c.
Here 2 — 1, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bz=.r.,, c—i,, d—i, amp;C'
1 -u a 4A4-B ôA aB o L
, nbsp;8A 5B 2C—D
nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 nbsp;nbsp;
A B C J) E
= I 2;? 3x^ 4;^!
Ex. 2.
What is the fquare root of iJ^x-^xx^x^ amp;c.
Here 2 = 1, a~i,
and = y- Whence T^ ;v^ A;’ ^f amp;quot;?'
-ocr page 161-Sea. VI. INFINITE SERIES. 149
£x. 3.
Find the cube of i -Hat* amp;c.
Here 2 = 1, azri, ,Zi = i, f=:i, dzz i, f—i amp;c. tn-^. Then 14-^:4. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c? — j .
3 Ax nbsp;nbsp;6A 2B nbsp;nbsp;nbsp;nbsp;9A 5B C
. I nbsp;nbsp;nbsp;- nbsp;nbsp;nbsp;nbsp;nbsp; ---------
12A 8B 4C
x^amp;cc. — I 3x 6xquot;^-IOx’ I5»* ^c. i
Ex. 4.. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
What is the -value of
__________________ I
I y* rr — ,yy 4’'‘
Here
x-.yy\ a~rr^ h
I * . c— — 4’T*
Then
A
zrr
d =;
■— I.
I
rr~L . . 21
2quot;^^ 4r‘ nbsp;nbsp;8r^
A -5
XX 4- £L'*' 4rr^J'
X ox^ 4- o x?
I
— X» amp;c.
I
-1-
rr quot;Iquot;
2r^
To fquare the feries ,
This is equal to v'• , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^c.
Herez=j,. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; gt;
L 5 nbsp;nbsp;nbsp;nbsp;’’ ‘■ = 1, r/:
4
-ocr page 162-'150 INFINITE SERIES. B. I.
^c- and m~2. Then i—■ƒ’ ;)’ amp;c.
- nbsp;nbsp;, 4A.—B nbsp;nbsp;nbsp;nbsp;nbsp;'—6A ^B
I—2 Ax 4- •——-x*' *—amp;c.
I—amp;c. and —yi^ys amp;cc, *
•y’' X 1—zjfd-ßx* amp;c. ~yy—2y D’'’— fee.
' Ex. 6.
To [quare the feries
^2.2.y ’^4.2.|.5r* nbsp;nbsp;8.2.4.6.7gt;''
The feries is X '• i — 4—7—I
i2r i6or*
T——- amp;c. nbsp;Here z=:v/2r'u, ßzzi
ôÿJôr’
Then
2r'v X • *
----T nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;V '.iV^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
2rv X : I H---4- ——r ôcc. =
i2r i6or*
— B i2r
2
4orr
^6r nbsp;nbsp;nbsp;-
3
X nbsp;nbsp;nbsp;nbsp;nbsp;zx'-
I. ..■ ■ ,. ,. ér nbsp;nbsp;4^rr
B i^orr , . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
--------èic, = 2 r V X ■
---- amp;ec 448or’
Ex. y. Find the m ■pcjeer of ax-\- b x'^^'-F c x'^'quot;’' 4- dx’quot;'^^quot;
This reduced is / x : a'^'b x’'4- cx dx^’' amp;c. Here z~x\ x=:x\ nizzt,
-ocr page 163-Sea. VI. INFINITE SERIES.
J5t
tn X : a
__ nbsp;nbsp;nbsp;nbsp;1 nt
Then ; a-^-bx^ cx^“ ècc.
»h „ 2JHCA. -I-»J—i.Z-8
4-— Aa; 4-,-------!--
a __ la
. fB4-«^—2 . bC 3quot;
4a
amp;c.
2 RULE.
Subftitute each letter in the given ferles, inftead of the correfpondent one, in tlit following general form.
Xa4-^A;4-«x‘-}-^/x‘4-^x amp;C.'” X
'Vmba x-{-m,---- a bb
2
«—I 4- ma c ,
4-
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
4-OT.----- . 2c!^ be
2
wi—I J 4-wa «
4-«.2z2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^»—3 m^^b^
■ 2 nbsp;nbsp;nbsp;nbsp;■ ' 2 nbsp;nbsp;nbsp;nbsp;■
i2bd\
4- VI. —.a nbsp;nbsp;nbsp;Xj 4quot;^ I
L 4
-ocr page 164-- P-
'152 INFINITE SERIES.
' w.
—- . ■—— .---- . ( obbcc
i 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;(43'^
m—^2 »Z—2 nbsp;nbsp;nbsp;nbsp;nbsp;Ç
4-^^. ~ • ~7quot; . ^()bcd Q m~~\ Ç ibf
(dd amp;c.
For let jgt;-zz^a;4-«»4-^/x5 fijc.
»;—2 nbsp;nbsp;nbsp;nbsp;nbsp;«7—9
’■= ’^ '
”* amp;:c. —
m—I Jgt; =----w, 2
'W—4
r, ^c. Then
m—T , , nbsp;nbsp;m—î
4- ƒ « J -h
« ?
.3” ra^'
■ m nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m-—I.,
—3 4- /»« y
•4 amp;c. But
Sed.VI. INFINITE SERIES. *53
—bbxx •^T.bcx^ '^ibd nbsp;nbsp;nbsp;nbsp;-L2^^
y'—b'x^-}-'^bbcx^-\-2bbd jc’ 4- amp;c.
3Z'ff y^ ~ b^x^ ^b^cx^ amp;c.
= b'X^ SiC.
I
Then the power 0” ma^~^ y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y y
qaquot; y^ ècc. becomes
?» a
»ja X : nbsp;nbsp;nbsp; f5f’ dx'^ 4-fx* ■}- fx^
pa X: nbsp;nbsp;nbsp;nbsp;bbx^-}-zbcx'^ -^-ibdx^ ïhex^
cc -\-2cd , -,
, nbsp;nbsp;m—4, V •
nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
1 w—Ç
?XQ.
Thefe being aftually multiplied, and the coefficients of each power of x collefted ; will give the feveral terms as in the form above.
And the firft Rule is in efièél the fame as this.
For let a-{-bx-{-cxx-{-dx^ amp;c.^^ —
4-D amp;c. Then by Rule 1, A=o’”, as in Rule , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_ mbÊS.
2d. Alfo B— - — mba , as m Rule 2d.
TiVpwife P __mcA. »J—I
t-iiKewiie u —----J-----. B 3:: OTCi« -r a za
Tïi — »
.mbbcT as in Rule 2d. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
Again
-ocr page 166-INFINITE SERIES. b. I,
im—I . fB
3«
. . mdA.
Again D = —
= m da”' * nbsp;nbsp;nbsp;nbsp;~ X tncba”' 4-
______________ 3
Kca”'-^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- mda”^^ u.
2W—r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m—I w—2
—F'—7“ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; *”'“?quot; • ~~r~
^ — •
4-»J.-----. -----b^a , as in Rule 2d, and
fo for the reft. In ufing this lad rulé, it will be the eafieft way to divide all by the firft term, that a may be i.
Ex, 8.
Wbat is the fourth power of 1amp;c.
Here zzzi, a—i, b — i, c—i^ d^ziy
wzz^.. nbsp;nbsp;Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;öcc.'^
x; I 4^x4-quot;t* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; b^x*' ^c.
4r nbsp;nbsp;4-i2i^c 4-i2^^r
nbsp;nbsp;nbsp;nbsp; Óff
l2^i/ 4^ =:i-{-4* ioa;‘ nbsp;nbsp;nbsp;nbsp;nbsp; 35a-* amp;c.
Ex. g.
What is thef^uare »f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-V quot;
In this Example, z=~^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a~ii
X X
czzit.d::zi^ amp;c. mzz2.
Then
-ocr page 167-Seét.VL INFINITE SERIES.
Then 4. — _u -I g^cT — a xx^ ' ~ XX =
I 2ix -i M X;;; X
2f
--I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;!?
X nbsp;nbsp;xx'^H^ '^'ï^ nbsp;nbsp;nbsp;nbsp;= ■“■ quot;
Ex. 10.
7o fg^uare the feries
Here zz:;-. azii, b—O, c——i, d=.o, e—i^ ^z:—I amp;c. and ?«=2. Whence
I OÄ'—2flX‘—OX^ (CX*
4. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2^
Tex'’—^2cex^ èic, zz_j»* x • i“--2j* 2_)i ~4y®
—2^
22^)”—^2j‘* 3j'®—4j’
Or thus,
^^y, x—yy,a — i-, bz=.^it c—i, d——
and »?~2. Then y—■j’ j’’ Sic. zz yyx i
ij^2bx bbx'- '2-bi:x^-^'^bdx^ èic.
2C 24/ ff
2C
I—2y 3?’*—4y^ 5y^ SiC. zzy^—ry^ Sic.
Ex.
-ocr page 168-156
INFINITE SERIES.
B. I.
Ex. II.
JEhat is the fquare root of rr—22 —
2 Z*
45'’*
Here 2—1, ä’z:zz, a—rr, b——i, czz~
= ïF.gt; ’ = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘•quot;d nbsp;nbsp;= V
—I __ J_ ï _ I 3
~ 4 nbsp;3 ~ ~ nbsp;~ Y
amp;c. Then rr—224- ~ amp;c. j = r 4-, -Ly TZj 3fr ‘ nbsp;nbsp;nbsp;nbsp;’2^7“'^
Rather thus^
The quantity reduced is rr x ; i__ 22^
êcc. Here z~rr, a-i, b
^3r^ '1
rr'
Whence
^r^ ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-5r^
— amp;C-' = r X : i— — ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3f' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;irr
, 3r^ rquot;~~'ï6F^ nbsp;nbsp;nbsp;nbsp;nbsp;amp;:c. =: r x : i
JC
ïrr
__ I
7^
6r
i2r^
x'^ 4quot; êiC,
A-5r^
22 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2-^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2'’
ÏY7 YTYÎY—7.2.2.^.5763:; s^c.
Ex.
-ocr page 169-•Sea. VI. INFINITE SERIES.
^57
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex. 12. '
Whal ts the fquare root of
ZZ Z‘gt;- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ ■ 2®
2 4rr 6r^
— y ‘---- rr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;22
I — -- — — -7-—- amp;:c
Where 2 = x~zzt_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;---
irr
f = A ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;:c. and —
tn—I nbsp;nbsp;nbsp;nbsp;3 nbsp;m—2 nbsp;ß
2 nbsp;nbsp;nbsp;nbsp;nbsp;4’ nbsp;nbsp;3 “ T’ 4
rr— — d--èic. 2 nbsp;nbsp;nbsp;^rr
X _ ix'^
32r®
I
—-12r®
I X x^ r tä’’
r 4rgt; 32rs nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' amp;c.
Scholium.
From this problem the powers of a compound quantity are deduced as follows, which will be icrviceable upon particular occafions.
If
-ocr page 170-158 INFINITE SERIES. B. I, , Ifjy=A B C D ^c. Then
^=:A B C D E F G H
ji’=A* 2AB 2AC 2AD 2AP 2AF 2AG 2AH,
BB 2BD-f-2BE-f- 2BF -j-^BG
CC 2CD 2CE-I-2CF
DD 4-2DE
j’:iA^ 3A’B 3A’C 3A*D 3A»E 3A’F 5AAG, i^c. 3ABB 6ABC 6ABD 6ABE 6ABF
4- B’ 3ACC 6ACD 6ACE
3BBC 3BBD 6BCD
3BeC 3ADD
3BBE
C‘
~ ' nbsp;nbsp;nbsp;nbsp;nbsp;I ■ nbsp;■■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■■ I». —I .1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ —— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
y=A* 4A’B 6A^B» 4AB’ 6A’C» 4B’C äff-4-4A’C 4-i2A’^BC i2AB’C i2ABe
4A’D i2A*BD I2AB*D
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 4A’E izA‘CD
B* i2A^BE
4A’F
»’=;A’ sA*B4-ioA’B’ ioA*B’ 5AB* B’ i^c. sA*C 2oA3BC 3oAquot;B»C 2oAB’C 5A*D 2oA’BD 3oA^BC‘ ioA’CC 3oA^B'D 5A*E 2oA’CD
’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2oA’BE
sA*F
ƒrzA®^-6A’B I;A*B* 2oA’B’ i5A*B* 6A’C 3oA*BC 6oA’B’C 6A’D 3oA*BD ■i-iSA‘gt;CC 6A’E
y=A’ 7A®B 2iA’B’ 3$A*B’ 33A’B‘‘ 7A^C 42A’BC iosA*B*C 7A«D 42A5ßD 2iA’CC ■] A®E
/=A’ 8A’B 28A«B* 56A’B’ 7oA*B*
8A’C 56A‘BC i68A’B*C
8A’D 56A®BD 28A«CC
8A’E
-ocr page 171-Sed.VI. INFINITE SERIES. 155
/=A« 9A''B 36A’B* 84A»B’ iióA’B* i^c.
9A8C 72A’BC 252A®B^C çA’D 72A''BD
8A«E
t'®=:A‘® ioA®B 4;A’B* i2oA’B’ 2ioA®B* Çÿr.
ioA'gt;C 9oA«BC 36oA’B^C ioA’D goA’BD
45A'CC loA^E
In making ufe of any of thefe forms, the terms of the given ferics muft be ranged in order (Prob, xlviii.), and the whole terms thereof fubftituted one by one, in the room of the quantities A, B, C, D, (Prob. xlix).
•E*. I.
Le/ a-\-lgt;x nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Sicc. be cubed.
' A-J- B -J- C 4- D Tp E ^c.
~ a -{•bx-\'Cx^ -\-dx^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c.
that is Azxlt;j, ècc. Then
(j’) A’ 3A’B-{-3A»C amp;CC, = 4“3AB‘
Z^flbx-p '^aacx'- -p '^aadx'^ -^•^aaex^ amp;c, 2^bbx^ babcx' 6abdx^
nbsp;nbsp;‘X’-p3^2f«*
‘^bbcx‘^
ILx. 1.
What is the fourth fovoer of z p nbsp;nbsp;nbsp;nbsp;nbsp;2cd
9Ç — -■
Jf nbsp;nbsp;nbsp;nbsp;' Ä’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x^ '
A -p B -P C -P D
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/gt; 2cd
ZZ. X — —“ -p “ — ~7' x‘ x^
Then
-ocr page 172-infinite series. B.I.'
4- Cxx X ~ —^»'X nbsp;nbsp;amp;c.=:
?
. 4^’ X — — A
, nbsp;nbsp;nbsp;'2.cd
’^8«. ,4 ^y _ 31±ï4L!±^ 5^
XX
Ex. 3.
Involve ixT^ 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4. nbsp;nbsp;nbsp;— 6x ^c. to
^th povaer.
A 4- B 4- C 4- D 4- E nbsp;^c.-y.
— 3** — 4*^ ßxquot;quot; — óxquot;quot; amp;c. — ƒ.
32X’- 4- 80XÏ X 35^^ 80» X px*
4- Sojf’- X 4X* r 1
•— loox X I2x^ —I 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;9.
, gox'^ X 5X^ Sic.
Sox“^ X 6x^ amp;:c. zzjax’^'4-24O^f^ 4--^2ojf
.s nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—320«’*'
1920^'quot;^ — 48oa;^ èic. that is
JÎ ::z 32x^ 240Xquot;—320A; * 4-720X —i92ox’' ' 3
4- 400X — 480Ä' '' amp;c.
Or j-ï = 32* 240^quot; — 320X 4- ii2ox'^' — 2400X ’ amp;^c- Here I omit all thefe terms, where I fee the index of exceeds —.
Or
-ocr page 173-Sea. VI. INFINITE SErjes. .6.
Or thus,
A B C_ D E P =2«- o 3X’ - 4»- 5»* _ .5.
o 4- 8ojf'*
-8o.«‘ X 4»’* 8o«4 X , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;
X 5^quot;^ 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;IX
-l6ox-X12«’_amp;C. =325e-^4,2^^^î — 32OXquot;‘ “ X 6x
Ex. 4.
^jyr:i 3f^—2X, what is ƒ
A B C4-D4-£_|.p
= I — 2X X’ o o amp;c.
ƒ = I—16x 2 8 X4»—5 6x83^4 70X16x amp;c^ S*’ —56x2x 4-168X4«’
28
—i6x i I2X*—448XÎ 4- 1120X amp;c.
4- 8x’ —112x 4- (:,qzx^ nbsp;nbsp;28x‘
7«r:i--i6.x4-ii2x’ 8x’—ii2x amp;c. that is, —448x’4-i I2OX*
ƒ = i-'16x ii2x‘—44OX’—ioo8x amp;c. This is fuppofing X to be very fmall ; but when x is very great, then x’ muft begin the feries -,
^hus^
E Jr \\ nbsp;nbsp;nbsp;0 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; Y. E ^c.
x:x’4-o — 2x4-1 4-0 amp;c. Then 7’—X- 4-0—8x’''X2x4-8x‘’xi-i-28x” X or /=x’ —i6x»4.8**’4-ii«x*’ amp;c.
M nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PRO-
-ocr page 174-102 INFINITE 'series. B.f.
PROBLEM LX.
ST? abridge an infinite feries^ or denote it in a (hert männer for working.
When a feries confifts of terms very much compounded, or having a great many fadlors ; it is very laborious to reduce them into numbers. And when feveral faftors in any termare contained in the fucceeding terms ; the work may be Ihortened, by making ufe of the preceding term or fome part of it, inftead of fuch faólors as are equivalent to it, in the following terms ; as follows.
I RULE.
Put A, B, C, D, ^c. for the firft, fécond, third, fourth, terms of the given feries. Then to get the coefficients thereof, divide every term by the preceding one, gives the coefficient of that term. Whence you will have a new feries equal to the former, and ffiorter defignated.
Ex. I.
A B C D E
2-4« 2.4.6«^ 2.4.6.8a’
coefficient of B-^.
3^’ lt;nbsp;32:» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;p
) 2.4T4‘;J. = coefficient of C=
^3^1. \ nbsp;nbsp;nbsp;nbsp;5'^'’ f 5z'^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n
2.4a^J 7:^6 ( nbsp;nbsp;nbsp;= coefficient of D=
Hence the feries becomes
ix.
-ocr page 175-M.VI. infinite SERIFS-
£3C. 2.
■v’
Swppoje 1
gt;1)^
1gt;-V9
amp;c. sxjy.
V
3 F
E
c
B
S'y
•v
èic.
2. c
Then the feries is.
5t«
Ï3
•0
7
F,
V
i
See, =j.
Kx. 3'
J2- B 33-4
i,2.3gt;4'5‘quot;
JîTï.a 3'3 4’ amp;c.
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;(Sc.
5-5'«
- Or thuSi
^îi-3-4
U-4'
A * 7^^ - ƒ .i^ Sec, ^7^ I 2.3.4-5'^^
And
i6 INFINITE SERIES. B. I.
And the Series
lx
=,_^A -B ^, CÖ..
Where A, B, C, £s?f. are the foregoing terms with theit figns.
Ex. 4.
bz^
Suppofe
5.2.40 nbsp;nbsp;nbsp;nbsp;7.2.4,60
amp;c. d.
9.2.4 ^8«^
Then ^z)
—iz'i . —^zz
2.3^/« 2.3««
— coefficient of B.
---bz^ X ---bz'^ f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' CC • ----- )-------(------— coefficient of C.
y 5.2.4^2* K 4-5^^
------- 1------( z----= coef. of D, üf.-
5.2.40 77.2.4.60 ^6.76« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
And the feries is
2.30« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-5^^
D eff.
•]%%
8.9 aa
2 RULE.
If there be fome fingle factor or factors, which are not in all the terms ; fet them afide at prefent. Then put A, B, C, D, C^r. for the remaining terms ; and proceed as before. And at laft re-ftore thefe fingle factors into their proper terms.
Ex.
-ocr page 177-Sea.VI. infinite series. 165
Ex. 5.
Ifx^ _ 1.2
‘ 2’-3-4^5?6?778
Here the faftors ah the terms, and y* x^ x--~ —
1.2 nbsp;nbsp;nbsp;nbsp;1.2.3
yx^ gt;•2-3^4 “ 1.2.3,^.5.6 ~~
= y-
3, 5, Tt ißc. are not in being left out, the feries is
T4 ~~ 1.2.3.4.5.6 abridged to y—— A — B —^.Q “g D and the faftors reftored, the feries becomes ’~£ax3 ^BX5 ^6 ’J .
X
D X 9 ö’f. = y. Where A, B, C, Cff. are the feveral terms with their proper figrgt;s i without the numbers, 3, 5, 7, ^c.
Ex. 6.
bzquot;^
bzi
7.2.4.64''
If bz — nbsp;nbsp;nbsp;nbsp;
2.2aa ‘ bz'gt;
^■2.^ 0. üa
Then the faftors 3, 5, 7, 9 ^c. not being common to all the terms, are left out, and the feries is
, bz^ bz^ bz^ bz-- --- — --~
2aa 2.44“*- nbsp;nbsp;nbsp;nbsp;nbsp;2.4.64^
2aa 444 èaa . nbsp;nbsp;nbsp;nbsp;844
«
-ocr page 178-i66 infinite se R ie Si B. I.
And reftoring the numbers, the fériés will then be
. 2Z zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zz
bz
— y- Where A, B, C, tâc. are the foregoing numerators, with their proper figns.
Ex. y, There is given ax'^ bx'^ cx^
3-2 nbsp;nbsp;nbsp;5.2 4 nbsp;nbsp;7.2.4.6 nbsp;nbsp;nbsp;9.2.4.6.8
curtailed, x—--1--— —~ -i--See
2 ~ 2.4 nbsp;nbsp;2.4.6 nbsp;nbsp;2.4.0.8
n, .. J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. XX XX XX
orlhortened, x---A--B— vC — — DCff. 2468
1 * nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*■* . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XX b
compleat, x —A x — Bx — — 234 5
XX c XX d
Where A, B, C, öf, are the foregoing terms, exclufive of the following quantities.
Cor. I. If the firfl term of any transformed feriis be mulffplied by any member or quantity the whole feries is multiplied thereby. A or the firfl term is virtually contained in all the following terms. This it wade plain by Ex. 4.
Cor. 2. ƒ» like manner A, B, C may be madt. to ftand only for the coeflicientSf or otherwife, as any one pleafes.
PRO-
-ocr page 179-Sea. VI. INFINITE SERIES. 167
PROBLEM LXI.
To find the finite value of an infinite feries^ or vebat furd it is involved from.
RULE.
Divide all the terms by the firft ; then the firft term will be i. Then compare three terms of this feries with three terms of the feries Rule 2, Prob, lix. each with each, fuppofing a to be 1, and f, amp;c. o ; which two equations will find the index, and the fécond term, if it is a binomial. If this does not fucceed, compare four terms with four, for a ttinomiai -, or five terms with five, for a quadri num lal ; making d—o^ orf—o, amp;c.
Ex. I.
y y'' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y*'
Suppofe this feries i---h-- “7 a aa
Compare this with ... i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— blx'-.
Then mbx —--, and »». - — bbxx — — t
Xf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lt;2
and dividing the laft by the firft, —“
, nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;- nbsp;nbsp;nbsp;m—I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
zsmbx •, therefore —— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and 2« r: m‘
y_ whence m——■!. Therefore jm/’xzx—bx——i
Qt bx — —. Whence the index is —i, and the fécond term of the binomial fif it is one) is __ I y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lt;1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;---
—. And the binomial 1 q--, or . , 3^ ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;“■ nbsp;nbsp;nbsp;nbsp;' T
that is —r- the root required -, which fucceeds. ti -ry
Är.
i68 INFINITE SERIES. B. I.
Ex. 2.
XX x^ x^ Sufpo/e a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 75J; Sic.
Reduced «X:i — —amp;c.
Rule I tox w.-y-
Here œZ-xz:——, and m.—];],xx =
Q.aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
and by divifion, ---- bx ~ —, lt;—.
4«^
X =— 40Ä X —lx\ whence
—m—m—I, and awm, er m—the index.
And = -7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;°'' nbsp;nbsp;nbsp;= — the fe-
aa
cond term. And the furd is a X r^iTS' Of ------ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa aa-\-xx’^»
Ex. 3.
75^^ 4
5i2x^ v/ 8 --
Eet X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/ c
8x given.
Reduced x^o 5^^
Rule ting ix—y.
Here my— 2Z222
8«.v ’
and m.—--^ yy —
^iZX''*
and
-ocr page 181-Sea.VI. INFINITE SERIES.
15«« 64jfx
and by dividing
; then —
^aa I i\aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
Ç— =■----.iisssT, and ———--—=■
ûxxm nbsp;nbsp;2'^xx.f/t—I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ni nbsp;4X»gt;—i
or
the
—4»2 4=3»», and 7»?=:4, whence
index. Alfo J =7^ = ■
32»
1 binomial furd is
•' QtitXX
the fécond term. And the
V nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;32x;)f
Ex. 4.’
Let the feries
di — ' r -J- nbsp;nbsp;nbsp;nbsp;5 -}quot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4“ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7 ^c. be
384«^ nbsp;nbsp;18432«^
fropefed.
This example refolved like the foregoing, gives 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ƒ
m —--, and -7- for the fécond term of the
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;00
K- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i 71“^-
binomial. But nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;produce
the given feries. quot;Whence we may conclude it has not a binomial root.
For a trinomial root ; for brevity’s fake put I, 2, V for 0, bx^ cxx in the Rule, Prob. lix. which rule then becomes i z t? zz
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
«212 nbsp;nbsp;nbsp;nbsp;nbsp; m.
and
-ocr page 182-I/o INFINITE SERIES. B-1.
and X : I —— nbsp;nbsp;nbsp;nbsp; 4^ îamp; th«
4a 960« nbsp;nbsp;nbsp;nbsp;304«’’
given ferles reduced. Then we have thefe three
equations, mz zz
, nbsp;nbsp;m—I nbsp;»»—2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«I—I
and »2.---- . ---- z’ m.-——.zzv = ■■.■
23'2 nbsp;nbsp;3b42îgt;
Divide the third by the flrft, and there comes out
«I—I »2—2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----- —i^yy , , ,.
---- .----22 »2—I .V— i add this to
the fécond, and v/e have m.——- 2 2 2^2
»2—2 nbsp;nbsp;nbsp;nbsp;nbsp;------ m—I
—— 2 2 2»2-1 . tz = o, or —— X-----
z z -i- 2m—I . v—Q. And fquaring the firft, y^' A yy
mmzz — and — = 10 m m z 2. Alfo 10222} nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa
c^yy nbsp;nbsp;nbsp;nbsp;nbsp;m—1
^=^=-96'I«»»»-
vt.---zz. And-uzz-^rnzz——7-22-2
2W 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r ffl--1 4»»
*-— 2 2. Therefore ---- . —•—- z z
----- nbsp;nbsp;nbsp;nbsp;m—I ~--- ---_ zm—1 • V rz —. 2m—i , 22 2m—i , 22» 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2222—.2 2222 3--
—22=0; or —-----Lix 2m—I =0,
, nbsp;nbsp;nbsp;. nbsp;nbsp;4222 r -------- , -------
that IS —r— X zm—■! zz o, and 42» ! X 2m—i — o. Which equation has two roots,
»2 =--7» and m zz —. If nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, then
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4
—ƒ nbsp;nbsp;nbsp;nbsp;—V nbsp;nbsp;nbsp;nbsp;y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2222 3
2: — -- — — zz: — , and v zz —7—quot;ZZ
—a a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;6
-ocr page 183-Sea.VI. INFINITE SERIES. 17t = 6 \a-T^a' And the furd root is a' x : I 4.-2L _L-^\ *, which involved produces four terms of the feries, but not the laft.
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-—y
And if m = Thenz =— —~ zz —~ , 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4«»» nbsp;nbsp;nbsp;nbsp;nbsp;aa
2»j ^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 nbsp;nbsp;nbsp;yy nbsp;nbsp;nbsp;yy K X
and ‘y =---- zz = -r X -----= -7—• And
o nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;6 nbsp;nbsp;nbsp;4fla nbsp;nbsp;nbsp;6üa
~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y yy ।« •
then the furd is x : 1— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t which
involved, produces all the terms of the given feries; and therefore is the root required.
'PROBLEM LXII.
^0 mert an infinite feries -, or to find the root of fueb a feries.
I R U L E.
If the feries confifts of all the powers of z, as Az-pBz*-f-Cz* -pDz*-pEz* amp;c. —y ; then fubfti-tute the values of the coefficients, À, B, C, D, into the following form, tor the root.
I B 2BB—AC
SABC—A’D—5B’ -------^—y^
I 4B^—21 A B‘C 6 A’BD 4- 3 A’ C «—A’E
--; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ji
, —4zB5 4- 84AB’C — 28 A‘B*D—. z8A*BC ----
7A’BE4--7Agt;DC—A^F
For
-ocr page 184-,72 INFINITE SERIES. B-1-For put z:=aji-i- by'- ^’ dy^ amp;C. Thea Z2 =: nbsp;nbsp;nbsp;aay'- -}-2aby^ -\-bby^ amp;cc.
-{•2ac 0’^54-ècc.
2 z: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a^y-'^ èic.
amp;:c. Whence
Az zz A/ï^4-A^7^ Afy’ AdTi Src.'s
Bz“ zz ^a'y'-2^aby'^-^-^bby^ amp;i:c. f
2Böf Z“-^’
Cz’ — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. (
Dz zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Dû'ÿ* amp;:c. J
èiC.
Then making the homologous powers equal, Aæj'z:^, J
and a — And A^q-Ba’zzo, or b zz
2 B B ‘AC Likewlfc Ar zB^^ Ca’zzo, and fzz ---—■ ■
In like manner A(/ B^^4-2B(7f 3CÄ“^4-Dz?*x0j , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cABC—A“D—5B’
whence Dzz'----------i and fo on.
Ex. 1.
Suppofe X—XX A-x^—SiC. —y, to find thi value of X in tei'ins of y.
Herezzzx, Azzi, Bzz—i, Czzi,Dzz—,, Whence x = y y quot;=5 1 5 y‘' nbsp;nbsp;nbsp;nbsp;nbsp;—jy j^ jJ j^^ ji £-iC.
Ex. 2.
r,, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XX X'^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X^
Let z=x y — — — amp;c. ƒ, X in a feries of z.
Î^Iere z=x, y-z, B=-j- C zz
D zz
-ocr page 185-^-27 2;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;z4 amp;,c.
= =^'-7=- T nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 5Î5’”“-
= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;__îL _3!_ amp;c.
1.2 nbsp;nbsp;nbsp;nbsp;nbsp;2.3 nbsp;nbsp;nbsp;nbsp;2.3,4 nbsp;nbsp;nbsp;nbsp;2.3.4.5
is, X zzz— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B — — c —f-D ^c.
,1 nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;34
'^«ere A, B, C, ^c. are ihe foregoing termSj their figns.
r
i^upfofi r- - — — nbsp;nbsp;nbsp;nbsp; 4O32or^
amp;c. — to find a.
^üt r—f--y. Then — — —, _
40^^^ amp;CC. = “V. Here z = 0« , y —quot;V ■gt; r-— D -
ïr^ “247-3’ nbsp;nbsp;-72or5’ nbsp;nbsp;nbsp;nbsp;■quot; 40320''quot;
Whence
i44orLi;3 amp;'C.
= 2rv nbsp;nbsp;2-1- .j, 4- Stc. And
3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;45quot;^
_____
^^fraaing the root, a^v/zraX: I ' 27
-ocr page 186-»74 INFINITE SERIES. B.L
2 rule.
A nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;confifts of the odd powers of z, as
. ’’ ^’ Cz’ Dz’ See. zzy. Subftitute the values ot the coefficients A, B, C, £î?f. into the following form ; which will give the root.
- I B
- A “ Ä4
gBB—AC
* As
8ABC — A*D—t2B« ' ------------- -7^
55 ^^—55^^^^ -1-1 oA^BD /; A’C»—A’E See.
For put z ~ ay -f- iy'i nbsp;nbsp;nbsp;nbsp; dy’’
Then 2’ =t:
•Y'^aib
zeS — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a^y^
zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fy'yi
See.
And Az “ Alt;j^ hby^ - - Kcy^ -F Kdyr Zcc.'y “i-Bx’zz 4-Bia’jgt;’’,-i-3ß^^^* 3B‘a‘lt;y^ (
-hsBöM /XJ
Cz’~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- Cay^ -\-ßCa^by^ \
4-D27— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-1-D«'j7 J
Then equating the coefficients of like terms j Ka-=.ï, A^ -t- Bö’=o, Ac -t- 3ß«*lt;^ -t- Ca^=o, Alt;/-l-3Ba*f-{-^Bö^^4-5Cö‘'^4-D^’:z:o, Ôcc. whence
_ ' , B^î’ B a — b ~ zz: — Likewife
3BB—AC . nbsp;nbsp;8ABC—A*D--i2B’ _
‘ = --A^ 'I = ------
Ex.
-ocr page 187-Sed. VI. INFINITE 'SERIES.
*75
4‘
«’
2.3.4.57 2.3-4--5-óÏ77s ^c. ~y i quot;to find a.
Here z—a^ y~yt Azzi^ B =
I
2.34^ amp;c.
Whence 0 =gt; -|--v’ 4- —
2.^dd y
X;quot; 4-----. _L--u_L____ ,
2'3 3 5^’ nbsp;nbsp;nbsp;2.3.4.^.6,j?4i'5
3
2.4.50
nbsp;nbsp;nbsp;Jquot;
amp;c.
Ex,
5gt;
3?
Suppofe y 4— zza,, tofind^y^. '
‘ y=a, ■ 5.5
Then .J z= a —
I 2'2.244 «7
I
-i. ___1
'^'5
-1——
^■3-4--sd^
*’'3-4'5 6.7lt;/s nbsp;nbsp;nbsp;nbsp;nbsp;4. Sjç,
Ex,
-ocr page 188-‘76 INFINITE series. . b. I.
Ex. 6.
Given nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;izt
te findquot;
-n. Then y-n^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B =
J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
~ nbsp;nbsp;nbsp;nbsp;40Z1 ' nbsp;nbsp;nbsp;nbsp;~ nbsp;nbsp;nbsp;336«® '
«’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*quot;^1
’^-” 6^. n7gt; X ”‘
b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ï 12 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.«7/
12üö ”’ 840
3 R U L E; , When the fériés confifts of any powers of z denoted by m and », as Az” 4. Bz”’quot;’’”-!- Cz”'*’” ”ƒ ^’i ?”?’ =y- ■quot;'''quot; “•'■ tute the values of the coefficients, A, B, C, C?f, into this form, for the root or value of 2. ’
Put V rz Then
-L B
2 = quot;U « nbsp;nbsp;—TV «îA
14-2» « V
m 1 2«.BB—2wAC
awwAA
2min
-ocr page 189-Sea.VI. INFINITE SERIES.
177
imm-\-gmn gnn '^m 6n 1
6w’A’
D
}»A
amp;G.
B’
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;) 4“» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 -V
For. put % —1)”' /»-y »» fu
} 3«
4- lt;/■!? « nbsp;nbsp;nbsp; amp;C.
Then dividing the given ferles by A, we have ^z” quot; amp;c. =j;=’'^-
Whence by involution
/« 2»
gt; nbsp;nbsp;nbsp;nbsp;amp;C.
x: îj 4- mbv
4- »«fU H!—
S'*“ '
XI nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XI.
= amp;c. A
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/V- . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7
Then equating the coefficients, W4'4—^~o,and
—D nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m—I nbsp;nbsp;nbsp;— I'D V.
-ocr page 190-t7« INFINITE series; B.I-
Note, In all thefe rules, I have only purfued thefe ferles to a few terms ; to have gone farther would have taken up too much room : but the method is vifible.
Ex. 7.
^uppofe ixx '^x^ ^x^ ix^ amp;c. =ƒ.
Here z—x, A.—i, B=|, C=i, D:=], ^c, and «=2, » = 1. Whency,
, I , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—4AC 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
---nj-i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—v‘- Szc. ~v^
X Xr
Ex. 8. ,
Let X-- 7-7 — 777; See. —yzzi^' 24^5
Here z~x, tn—i, »— 2, A — i, B——-z
2
C D ——‘^—ècc. and xzzy^ 4- ~ 6 ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;24
, --2BB--2t\C, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~
Ex. 9. '
Lu U ’- nbsp;nbsp;- T’* nbsp;nbsp;nbsp;nbsp;nbsp;- risquot;’
^C' ~ Z, find X.
In this Ex. 2=??, D—Ä, ---^, n—i.,
B = —y, C=:—Y» ^^quot;“16’ E=--J28
amp;c.
Whenc«
-ocr page 191-Seót. VI. INFINITE SERIES. 179
Whence x = nbsp;nbsp;nbsp;— 2—4
• ^4B’ 14BC 2b : xz~^ amp;i.c. that is
~zz
Cor. If you would find any fower ofi y find y in a feries of and then involve that ferres to the power required^ or elfe put s—y'^-., then find t fy'') from fuch a feries as this^
m-i-2n
Aj r Bj r 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. — y^
ij the lafl rule.
2. The reverted feries is of the fame form as the given feries ; for .otherzvife they are not eonvertihle into one another.
P R O B L 'E M LXIII.
To.extract the root of a feries containing all the powers of two letters.
I R U L E.
If the feries confifts of all the fingle powers of 2 and J, asöz4-^2^ f25-i-z/24 Scc.—gy 4-Zy'*4yjy5 4-hy See. fubftitute the values of the coefficients in the following form, for the root, 2 — M nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;z ., ,ƒ—2Z-AB—f As
, nbsp;nbsp;Z'B’—2MC—^^fA’B—^A*
H---------—-------
a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J
i--2b^C—2bK\y—2cK^^~-^ch.-C—^dh.^^ a '-ek^ ----- yr
I zZ-BD—2^AE—fBs—6rABC— a
-------1—ƒ 6 Sec.
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Where
1
-ocr page 192-i8o_ 'INFINITE SERIES. B-Where A, B, C, âfr, are the coefficients of th® firft, fécond, third, iàc. terms.
Let z=Aj B^‘ C7’ D)'* amp;c. Then
az nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; «Cy’ 4- aDjy* amp;c.
Z-A‘y4-2MB;»3 ^BBjy*
2^ AC
' fz’= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; cK'y'i 3fA*B7
amp;c.
= gy jy^ k)^
And equating the coefficients, öA=:f, and Ax—•
'Alfo öB ^A’xÄ, and B - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Alfo
â
4C 2^AB fA’xy, and C~ nbsp;nbsp;nbsp;nbsp;nbsp;——,
a
Again «D ^B’ 2-^AC 3fA*B4-^fA = L and
■--zyc.
Ex. I.
gt;? , , .
X — — ~ nbsp;nbsp;- gjc. = Y
~y' nbsp;nbsp;nbsp;nbsp;nbsp; --y^amp;c. to fini X.
-'Here z=x, y-y^ a-\^ b-—~^ c -
5
Then
-ocr page 193-Seft. VI. Then
INFINITE
SERIES.
4 nbsp;nbsp;4-i^ 48
~J j’amp;c.or
quot; ,1 *381
Ex. 2.
Suppofe z-j--j-4-gjc ~m-i-j 3'iy^ snyy „
^^d^ i \ 21^
Comparing this with the rule, and we have b-o, c dzzo, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f~Q, 8£c.
k-o, 1=^,, m-o, Scç. Whence
^-y.y o^ ^.—ëTd^^y^ lt;gt;y*
^3^ AaU jAs^
that IS z-ny fi_____ ^^d^'~'\2d^ nbsp;nbsp;nbsp;nbsp;XJK’ amp;c. -ny -^y^
9«—io«^-t-»lt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n nbsp;nbsp;nbsp;J —nn
fy nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. ’ —nn
9—,
A, B, Cÿf, are the loregoing terms.
-ocr page 194-iS2 INFINITE SERIES. B. I.
2 rule.
In two ferles confifting of the powers and produis of z and j; as
4-fz’ lt;^2“*^ amp;:c. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Sic,
ècc. /)7î4-£yî2 amp;c. 4-jy amp;c. rzo.
Then fubftitute the values of the coefficients, into the following form ;
__f .. l g^ bA^ _
z _ — — y —--v*
a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
2 AB f A ’ ƒgt; ç'B 4-7« A /gt; A *
-----------------------:--yZ a
2i^AC4-^BB4-3cA*B4-lt;/A'^4-r4-^C4-»gB lt;3^
a
-F2MB «A’ /A’ ---amp;:c.
Where A, B, C, ö’c. are the coefficients of th® firft, fécond, third, Gfc. terms.
For put z—Aj Bj‘ 4- Cj*’ Djy See.
1'hen
'^4- ^2’ nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bA’^y’' 4-2^ABj’ I
4-fz’ nbsp;nbsp;= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cA'y^ I
4“ nbsp;nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;4quot;
= ' nbsp;- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;
,4- ÄTZ nbsp;= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- W
4- hyz^ nbsp;— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- bgt;A’-y
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nr
Then equating the coefficients, aA-]-f—Ogt; ^A^4-Z4-^A=;o, ^c. whence Azz—A B = ^A»4-Z ^A nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2MB4-cA^4-/’ /B±^
a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
■^bA^
-------- , Sec. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Eti,
-ocr page 195-Seft.VI. INFINITE SERIES. 183 £x. 3.
Suppofe 2j’4- — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— —XX x}’--
x‘jf^=zo ; to find y.
Here %—y, y—x, a = 2, c— —, fizz ?=:i, h——--« = i ; d, -p^
s —0, Therefore
„ __ nbsp;» nbsp;nbsp;nbsp;—i A nbsp;nbsp;nbsp;7.A’ B_jAA
J --------;-----X’---------XI___
-----:---X4 tÿf. zz— —X — Ä'‘—
IZ3 43 o
768 nbsp;nbsp; 384^*
problem lxiv.
îff txtraSi the root of an adfe^ed equation, by a fieries.
I RULE.
If the equation confifts of terms which contain the powers of x and jy ; and you want the value ofy, in a feries of x. Make the equation zzo, and allume an indetermined feries for the root, asjzxAx” 4-Bx”^'^ Cx”'^^ Dx”'*’^ amp;c. wherein the indices n r, n s, ècc. continually increafe if X be very fmall •, but they decreafe if x be great ; the firft is an afiending feries, and the latter a defcending one. By this means the feries will converge ; every following term growing (till lefs, till they vanilh or become of no moment.
For y and its powers in the given equation, fub-ftitute the firft term Kxquot; and its powers. Then to determine », put the two kaft indices equal ro
N 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;each
-ocr page 196-184 INFINITE SERIES. B.I, each other, for an afeending feries ; or the two greateft, tor a defeending one. And if it appears not at firft fight, which is the two leaft, or two greateft; it will be known, by comparing every two of the indexes.
Then to determine r, s, t, amp;c. fubftitute its value-for M, in all thefe indices, and having taken the leaft for an afeending feries, or the greateft for a defeending one ; fubtraót it from each of the reft. Then take thefe remainders, and add them to themfelves and to one another, all poftible ways; and thefe remainders, and the fums refulting, taken in order, will be the values of r, j, z, amp;c. which will be affirmative, in an afeending feries j but negative in a defeending one. Then put thefe values in the feries, Ax” nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-j- èce-
Then to find rhe coefficients A, B, C, D, C?r. fubftitute the laft feries for the powers of _y, in the equation ; and put the coefficient of each power of X, fucceffively no ; and A, B, C, will be gradually found from thefe equations.
Ex. I.
Le^ a^x^—a^xy-^-x^—ay’, to find y.
' By reduéhion a‘'X^—a‘’xy-\-x'‘—ay^z=.o. nbsp;nbsp;nbsp;Put
=z^x” -i-Bx” ’' -b CZ ' -b DZ ' S^c. fubftitute Ax” for y, in the equation, and we have fl*x'“—a^Ax”'^^ nbsp;nbsp;nbsp;nbsp;—aA'^x'^” —o. Then equa
ting the indices, « ft-1—2, for the leaft, or for the greateft indices.
For an afeending feries.
Here »4-1—2, and »—i. Then the indices
■?gt; ?2-bi, 6, become 2, 2, 6, Subtrafl: 2
from
-ocr page 197-Sea. VL INFINITE SERIES. ,85 from the reft, and you have 3, 4; out of which is compofed this feries 3, 4, 6, 'll 8, 9, 10, äfc. for the values of r, amp;c. whence the form of the feries will be jy=Ax B«'‘^ Cx’-|-D5f7- -Ex‘ amp;c. This feries fubftituted for y in the given equation, will be as follows :
— a^x'^ | ||||
| ||||
Then equating the homologous terms |
andAzzi. Alfo —a B—aA.^~o and B=;----
—---- Again, —öC i::=o, and C=:—.
Likewife — nbsp;nbsp;nbsp;— 5dA B~o, Whence
D = —5, amp;c. Then the feries or root re-Qt
qui red is
x^
0
X*
For a defeending feries.
Here 5«—6, the 'greateft indices, and and fubftituting this value of «, the indices 2, » ƒ, fj. 5» become 2, 24, 6, 6, and the remainders nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;; and r, s, S, ^c. will be
— 3-5. nbsp;nbsp;4, ——74, —s, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;feries
becomes y~ Axquot;^
which fubftituted in the given equation, will
-ocr page 198-18.6 infinite series. B. I.
4- nbsp;= x®
~-r ay^ ■=. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—5aA*Bjr’^—
Then equating the coefficients of üke terms, I—/2A’=o, and Az: -i. Eikewife —zj A-*
and B = — alfo «♦—^zrA-’CzzO’ and C z: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Alfo —zr^B—5zrA4D__iozjA’B*
—o, and D z: — nbsp;nbsp;z?^^ SiC. Whence the
root IS
Z'f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;6^
5gt;^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2^x
If you put « iz:6, the indices will be, 2,6, 6, 25 -, but 6 is neither the greateft nor the Icaft? therefore this fucceeds not.
It you put §n — 2, the indices will be 2, i|, 6, 2 ; but here alfo 2 is neither the greateft nor the leaft. Therefore this will not fucceed.
If we put » i=:5«, the indices will be 2, U, 6, li ; and being the leaft, this will do for an afeending feries -, and the form of it will be y =. Ax^ B.x’ H-Cä '’ ècc.
Ex, 2.
Let a'x-^ax'—a'y—o, ie propofed.
Putting Aa;” for jy, the equation become» a'x-i-ax’—a'^A,x” — nbsp;nbsp;x^”—o. Then put »z:i
for
-ocr page 199-Sea.VI. INFINITE SERIES. Ï87 for the leaft indexes, then the indexes become
3) Il 4; and the differences 2, 3; and r, s, t, amp;c. 2, 3» 4, s, 6, and the feries Ax B»’ Cx4 4-Dx’ amp;c. —y. Whence
a^x — a'x
ax^ —
— ay — —a^Ax—a'^Qx^—«’Djc’—æ’Ex® amp;c.
»-74' x: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-—a^x^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—
amp;c.
Then equating the coefficients, «’A—«’, and I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
A=i. In like manner £ =—, C =z — aa
D—0, E = — ~ amp;CC. and the root is
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I 4 lt;nbsp;Q
y — X 4- — x^--x^--,x^ amp;c. «a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ö’
Otherwife for a defcending feries.
Put 3=4«, then and the indices are 3’ lt;1 3 ; and the differences —2, —12, and r, s, èic, ~ —2, —2^, —4, —4|, ^c, and 7 = Ax^ nbsp;nbsp;nbsp;nbsp;nbsp; C»~’’ Dä'“^* amp;c.
Whence
a’jf |
a’x | |||
-h ~ |
ax^ |
* | ||
ay zz |
* |
* |
—a^A xl |
* |
— nbsp;nbsp;^~~A^x^— 4A’B;^ —4A’Ca:i—4A’Dx ’
—6Aquot;B*
Then by equating the coefficients, A*zxa, and
A = alfo B = — , C =, -
And
-ocr page 200-»88 infinite' series.
B.L
And
£x. 3.
Suppofe y^ aay-}-axy—x^—2a^—o, to find y.
Put Aä for ƒ , and the equation becomes A’JC^ àa?^.x -^-aKx”^^—x^—2a^x°—0.
For an a/cending feries.
Put the leaft indices »=0, and the indices become 0,0, nbsp;nbsp;nbsp;3 o ; and rhe differences i, 3;
and r, s, t, =: i, 2, 3, 4, 5, and the feries 7—A Bx4-Cx'quot; D;v’ amp;c. Then
J’ = A’ -E 3A*Bx 3AB‘;tf‘ -E3A‘Dx’ amp;c.
“1-6ABC
a'-y —a.'^K aa?,x aaCx^
0^7 = nbsp;nbsp;nbsp; «Ax -i- aQx^
—2a^ = — 2«’
Then equating the coefficients, A’ aaA—2(?’=ogt; andextrafting the root, A=a ; alfo 3A’B4-tföB-i-
aA—o, and Bzz--. In like manner Cz= 7—, 4
and D =----, amp;cc. Whence y = a — —1-
Z— ■—Vquot;
04a nbsp;nbsp;, I2tfa
-ocr page 201-Sea. VI. INFINITE SERIES. 189
Ex. 4.
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—x’=zo, to find y in a defcending
feries.
Putting Ax’ for j, the equation becomes A’x^” nbsp;nbsp;nbsp;nbsp; Ky'' — nbsp;nbsp;=0. Put
for the greateft indices. Then k“I, and all the indexes arc 3, 2, i, 3 ; and the differences — i, —2 ; and the feries —i, —2, —3, —4, ^c. and j=Ax B Cx~* Dx~^ amp;c. Then
J’ 1 — A’x’ 3 A*Rx* 3A'Cx-4-3A’^D2 4-3ABB 6ABCy amp;cc.
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; B3 Ù
y‘| nbsp;nbsp;nbsp;nbsp; A’xquot; 2ABX BB I
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2 AC )
•fj I ............quot;h .. “h R amp;c.
— X’ I — x^
Then equating the coefficients, A’ = i, and A_i. Likewife B = —C =—D = ^^Ciand
I 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;* 7
therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 8?^-
2 RULE.
Affame j=A/ B/ ' 4-Cx’ ’'- amp;c. and having found », and put its value iWo the indices, as in Rule i •, fet them down in order, and fubtraft each of them from the next greater -, and you will have a feries of differences. Then find the greateft number, which wid mea-fure all thefe differences -, and this is the value of r, which muft be affirmative in an afcending feries, or when x is fmall -, and negative, in a defccnding one.
-ocr page 202-J^o INFINITE SERIES. B.J. one, when x is great. Then the values of » and r muft be fubftituted in the aflumed feries.
The procefs muft then go on as in Rule i ; and if there he any fuperfluous terms, which will be known by fome of the coefficients A, B, C coming out zzo ; thefe terms muft be thrown out of the feries, and the operation begun anew.
-Let y*—'zwy-l-*’=o, be given.
Put -h for_y, and the equation becomes A’x^”—öAxquot;'^* rzo. Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
«ZZ2 ; and the indices are 6, 3, 3 ; that is, 3, 6. Then 6—3—3, then r—3 ; and the lead indices being compared, the feries will be an afeending one, which is this jzzAjf' Bx’-HCx’ Dx” amp;c. which fubftituted in the given equation will be as follows ;
^axy nbsp;—a^x'^—— aCx^ —aDx'’- -F ix^
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5
Then aK—i^ and A = —, B = —, C= —, a' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a‘^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aT
x^ 3^8 a^
Sic. Whence y ~ — a
a'°
iixquot;^ „ - —- ècc.
a'°
Ex. 6.
Let y^—by'-’\-^lx^—x^zzo.
Subftitute Ax” for jv , and the equation is A^x^”—bA^x^quot; ^bx^—x^'—Q. put in—I ; whence
-ocr page 203-Sea. VI. INFINITE SERIES. 191 whence «îri, and the indices are 5, 2, 2, 3 -, and the differences i, 2. Whence rzzi. Therefore j=Ax Bx‘4-Cx’4-Dif* amp;c. Then
-i-—2b^T)xi
—2^BC
9^jf’ j 9^x*
Here bA^—gb', apd Arz3 : alfo B :± —-
“ IXëTb' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~ 3888Z» ; ^^ence
X» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;81
J —3^—^ *quot; zitbb nbsp;nbsp;ïb
iüZ.
' 3 R U L E.
If the equation determining A, be ah adfeded equation, -which has lèverai equal roots or values of A, then you muft divide the leaft remainder, found by Rule i, by the number of equal roots, one of which you take for A -, and take this quotient for another remainder. Or elfe divide r found by Rule 2, by that number, and make ufc of the quotient, inftead of r.
Ex.
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—x' rzo, ƒ« find y ;
Put Ax’ for y , and the equation becomes Aw—— X'* zzo. Let 3n-i-i — ïn 2-, whence wz::i, then the indices are 9, 4, 4, 4, 14. But the fum of the coefficients for the leaft index 4, is —A’-f-aA* '—Azxo, or A*—lA-f-irzo, which equation has two
-ocr page 204-192 INFINITE SERIES. B. I. two equal roots A = i, and A=:r. Now the difference of the indexes will be 5, 10 i therefore divide 5 by 2, gives , and we have 5, 10 for the differences. Therefore r, s, tfècc, will be nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;IO, âff. Or (Rule 2) r—j}
^2. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
c
therefore — — to be taken for r J whence 22 the feries will be
y = Ax nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-I-Dx^’ amp;c. Then
y^
•— xyi
■—x'^y
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- - x9
—K'x^—^E^'Qx^'' •—3A‘Cx’
-3AB»
2A‘x -h4AB/quot; -I-4ACX’
-I-2BB
— Ex*^ — B — CxJ See.
Hence
4B--4B=o, and B may be taken at pleafure. SuppofeB^;—I, then 1—3C—3 4C 2—Cxo, or 4C ZX4C, and C may be taken at pleafure. Let
—E^ -h^A* •— E~o y and A“i ;
C —li then y—x—x^quot;^ — ècc.
Or thus-. In the fécond equation, 4R—4B; which concludes nothing ; alfo i—gC'—iBB-f 4C4-2BB—C=o i that is, I—BBzxo, and Bn or —I, Cff.
Ex. 8.
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;o.
Put Ex” for ƒ, and the indices become 2», ’^ igt; 2, 2K-Î-4. Let 2BZZ2, or u — i, and the indices
-ocr page 205-Sea.VI. INFINITE SERIES. 193 indices are 2, 2, 2, 6 ; and the difference 4. The equation is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—2ö Ax”'^’4-04^*—
or zï A’x’—2ß4Ax*-t-ö4x*—A’j'®r:o, where th® coefficient of the firft term is A^—zA izzo, which has two equal roots Azzi. Therefore divide the difference 4 by 2, and the quotient 2 is r or the common difference ; whence the feries is jzzAjr-J-Bx’-l-Cx’-l-Djf’ amp;c.z: o. Then
-f- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- 2a‘‘AC;f® 4- 2a*APx’
-f- a BB 4-2a4BC SiC.
—2a^A.x^—2a4BA;4—2a‘*Cx^—20“*
—A’x® — aABjr®
Hence A‘—2A4'iz:o, and A~i ; again, fiziB, and B may be taken at pleafure. Sup-pofe B——. Again, oC-f-^'^B* — 1—0, or
I—o, and C may be taken at pleafure.
LctCzz — . Then oDzzaAB—aa BCzzo, and a4
D may be taken at pleafure. Let D—— amp;c.
Then
Or rather thus, when A is determined to be t, the firft and third lines vanifh; whence a^BBzz
and ß zz ~ J alfo aa BCzzzAB, and
C z:—- amp;c.
a
4 rule.
If the quantity forming the feries (x} be nearly equal to fome given quantity, put a new letter -f-that quantity for it, and fubfticqte it in the cqua-O nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tion 5
-ocr page 206-19 INFINITE SERIES. B. I? tion ; then find the root in an afcending fcricsof the new letter. Or if the quantity (x) be very great, and the feries for y is to afcend by x’es, Take fonie quantity nearly equal to x, and fub-ftitute the fum of that and a new letter for x.
Ex. 9.
2
Let y^-{-aay—•where x——a., nearly.
ry nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rr-, nbsp;nbsp;nbsp;nbsp;nbsp;84
Fut —a—v—x. Then x‘i~—a^—~aav
, I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;84.
3.av'—“u’, then_y’ lt;ïöj— —«’ —öd-t;—lav'* d-v’ 3
=0. Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then the indices are 3», gt;1^
3' Let n—Q., then the indices become o, o, o, I, 2, 3 i and jzzA-hBu Oy’ DK’ amp;c. Then
A’ 3A*B'u 3A»Ct)’ amp;c.
3 ABB 4-ödCt;‘
oay 8
'^1
4
4---d'5 3
—lav*
aaA-{-aaBv 8
--
— za'u''
amp;c.
Then A’4-2 a«A~^d’=o, let A—r. Alfo ® ““quot;f ’ nbsp;nbsp;3A«C4-3ABB ddC=2». Whence
-ocr page 207-Sea. vr. INFINITE SERIES. 195
Ex. 10.
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—2j' i=:o, where xz=.t
very near.
Let ä=:2 4-z, which fubftituted for x, there arifes nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—2)’ 1:2:0.
Let y 2: Kz , then the equation is A z'^’*
——lEz 1=0. Let «=0, and the indices are o, 2, 1,0,0 •, and the differences i, 2, 3, 4, Cÿc. whence y—A
Sec. Then
| ||||||||||||||||
Here A*—2A i=o, and Am; alfo |
4^—2B—3, and B22~ -, and 4C 6BB—i—gt;
6B—2C220, and C22--^c. and y—x -V
4
*— 2 nbsp;nbsp;—, 2 z amp;c.
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4
Cor. I. I« all thefe cafes of extraSling roots, the Jeries muß be made to converge, or elfe they are of no ufe. For in a converging feries, the terms grow continually lefs and lefs, and fo approach nearer and nearer to the true root, till the difference is as fmall as you will. But a diverging feries always runs farther from the root, and therefore gives a falfe value thereof.
■ Cor. 2. hf y he denoted by a feries of x afeend-ing -, the leffer x jj, tfce faßer the feries converges.
O 2 nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
-ocr page 208-196 nbsp;nbsp;, INFINITE SERIES. B. I.
And tn a feries of x defending •, the greater x iSt the fader likewife it converges, therefore tue are f to contrive the feries, that tue may have the leaf quantity in the numerators^ or the greatefl in the denominators.
Cor. 9. If the equation for finding the firfi term A» an adfelted equation ; as many roots or difierent values of as that equation has., fo many different feries tuill arife. For the firfi term A being different in each, the coefficients B, C, D, depending thereon, will alfo be different. Like-wife, if ti^o roots are equal, the fécond term wilt vanijh, and the coefficient B will be found in the third, which luiU be a quadratic equation. And if there be three equal values of A, the fécond and third equations vartifi, and the fourth contains a cubic equation of B, hfic.
Cor. 4. equation will alfo admit of feveral different feries for the roots, according to the different values effumed for n. Alfo there are other equation that arc impoffible, and will admit of no roots.
Cor. 5. When the firfi equation, or that for determining A, has fever al equal roots -, then the values of r, s, t, amp;c. mufi be divided by that number. Or, which is the fame thing, the indices of x (r, s, t} found by Rule i, mufi have others interpofed between them, according to the number of equal roots. As for two equal roots, the feries Kx”
amp;c. mufi be reduced to this, Ax^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;
Cx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ea?”quot;^^ amp;c. If this be not
done, the fécond term B will be infinite, and all tbt following ones.
Cor. 6. If the ieties A-f-B CX z B) E F X 2‘ 4- G ri l Kx 2’ amp;CC. x=o, 2 an indetermined quantity •, then whatever value is fut upon z, it will be Arzo, B C=o, D E F^^o, G-j-H-j-l4-K—o, ^c. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;For
-ocr page 209-Seâ.VI. INFINITE SERIES. 197
For this being a general equation, where z may be of any value ; therefore put 2~o, and then will Azro, and Bq-C x 2 D E-H- x 2 èic. zro, divide by 2, then Bq-C q- Dq-Eq-t x^^amp;c.zzo. Again, put 2—0, and then Bq-C—o ; whence Dq-Eq-b X 2 q- Gq-Hq-Iq-K x 2^ ^c. zzq. Divide again by 2, and Dq-Eq-Fq- Gq-Hq-Iq-K X z—Q. Again, put 2—0, then Dq-Eq-F=o, and Gq-Hq-lq-K X2zzo, and Gq-Hq-Iq-K =0, ^c.
Reverfion of feries, and the extrading the roots of all infinite feries, depends upon this. For the coefficients of the feveral powers of the indeter-mined quantity, muft be put —Q, or elfe the whole equation cannot vanifh, as it ought to do. And this being done, the feveral affumed coefficients A, BjC are determined as in the problems above.
Scholium.
To find y in the feries ay^
kz. — fxquot;amp;CC. Affume . « « n-l-r »4-/
y — Ax -f-Bx -q-Œ amp;C. Then by fubfti-tution we get, aA'^x^”
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Whence making the leaft
indices equal, uk—tt-, then n~—, and the diT
ferences will be f ; amp;c. Then find q the greateft common divifor of — and p; and the form of the feries will be
-r: . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ir . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-n- ,
~~ nbsp;nbsp;nbsp;nbsp;--ri --f-27 nbsp;nbsp;nbsp;nbsp;nbsp;--h3î
ƒ = Ax q-Bx q-Cx q-Dx
amp;c. in which the coefficients will be determined as betöre.
O 3 nbsp;nbsp;nbsp;nbsp;nbsp;SECT
-ocr page 210-I
SECT. VIL.
Seme g r.eraî and fiindamental Pr Meme y ujefuï aM nccej[ary in algebraical calculations.
PROBLEM LXV.
^he ftifn ard difference ef iwo quantities bein^ gineit •, to ßmd the quantities,
Let s z: the fum
z: the difference
iz — greater quantity e z: the leffer.
then a e — j, by the problem, and a^^-e zz
then 2Ä z: s-\ d by addition and 2e zz j—d ïsy fubtracling.
quot;Whence zz ^nd e zz —-
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
or Æ zz j J Î J, and e zz -i- s — id.
Cor. I. 77« ƒ the fum added to half the difference if two quantities, is equal to the greater.
Cor. 2. Half the difference of two quantities, talen from half the fum, gives the leffer 'quantity.
PROBLEM LXVI.
To find out the le aft common dividend, or the leafi quantity, that can be divided by feveral given quantities.
RULE.
Refolve each of the quantities into all the fim-ple divifors contained therein, by firft dividing by the
-ocr page 211-Sed.VII. Fundamental Problems. 199 the leaft, and then by the next, and fo on, till they are all exhaufted -, and colleót thefe divifors together for each quantity. Then if there be any divifors in the fécond quantity which is not in the firft, muîtiply the firft by fuch divifors. Likewife, if there be any divifors in the third quantity which is not in this lalt, multiply it thereby, or putthem into that quantity. Likewife fuch divifors as are in the fourth quantity and are not in this laft, mull be put into it, and fo on. And laltly, all thefe divifors, in this laft quantity muft be multiplied together for the leaft common dividend.
Or Avorter thus^
Divide the produét of any two of the quantities by their greateft common divifor, (found by Prob, X. Seel. JI.) take this quotient and a third quantity, and divide their product, by their greateft common divifor. Take this quotient and another quantity, and proceed as before •, and fo on to the laft quantity. And the laft quotient will be the leaft common dividend.
£x. I.
WloaX ii the greatefi common dividend of a^bc^ and •iab^d.
The divifors of a'-bc are a, b, c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
of zabbd are 2, b^ b, d^
Here 2, d are in the laft but not in the firft ; therefore a x a X b X cy.2bd, or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;is the lead
common dividend.
Or tbni.,
The greateft common meafure is flZgt;, then the pmduft IS 2u’Zi’£(i, ab^za^b^cd^zaabbed the leaft dividend.
O 4
-ocr page 212-200 fundamental b. I.
Ex. 2.
ûb-^câ üud ac^bd b s pvopojcd ^TjTefe h_ave_no divifors but i. Therefore ‘^‘^^^-^‘^bbd-^-accdJfbcdd, is the dividend required.
Ex.
Let a’ a’^, and aa—bb., be
The greateft common divifor of and a’ lt;î‘^ is aa. Then
Z^^^i-^Za'bb^^ayb-if^aabb.
Then the greateft common divifor of -^a^b4- ^aabb Z^'b^-^albbx divided by a-\-b is
a ^) -i‘^^b-\-'^agt;gt;bb—'^a'b'—i^a^b^ {^a^b—^a^b^ the leaft common dividend.
Ex. 4,
Let the given quantities be a'^—b^ aaA-ab. a^-\-a’‘b’‘i and a-\-b.
Thefe quantities refolved into their divifors are aa-Ybb'X.a-^rb'x.a—by axa ^, ay.a'xfla .4-bb, and a ^. Now becaufe there is one factor a in the fécond which is not in the firft, put it in the firft, ■which becomes aa-4-bb x a4.b x a^b x a the leaft dividend for the fii ft two quantities.
Likewife, there is a, one faftor in the third, which is not in this laft ; let it be inferred, and it becomes aa-4bb Xa-4-b X a—bx aa^ the leaft dividend for three quantities.
Laftly, Since a-4-b the laft given quantity is in the laft dividend ; it will be the dividend for all four J that is, aa bb Xa—b x or a*'’»«.
-ocr page 213-Seâ.vn. PROBLEMS. 201 ö'’—is the leaft common dividend for the four given quantities.
Scholium.’
All the fimplc divifors of a quantity, are found the fame way, as in Prob. 6, 7. Chap. iv. B. II. Arithmetic.
PROBLEM LXVIL
7bc fum and difference of tivo quantities being given i to find the difference of their fquares.
Let jzzfum, z/z=difFerence, A— greater quantity, E —the lefler. Then Az:;^^, andE— (Prob. Ixv). Whence
. . nbsp;nbsp;nbsp;nbsp;nbsp;ss quot;^^sd -^“dd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
AA. rz ---------
4 , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ïsd-\-dd
and EE = ---;----
4
and A A—EEzz nbsp;nbsp;nbsp;—sd.
4
Cor. ne produbl of the fum and difference of two quantities, is equal to the difference of their fquares.
PROBLEM LXVni.
îwo quantities being given to find the fquare of the fum.
Let a be the greater quantity, e the lefler ; then the fum is Æ-J-f i and a\-e being fquared is
Cor. I. Hence the fquare of the fum of tiao quantities is equal to the lum of the fquares of the quantities, increajed by double their fro duct.
Cot,
-ocr page 214-to2 FUNDAMENTAL B. I.
Cor. 2. The fquare of the fum of any number nf quantities, a-\-b -{-c ècc, is equal to the fum of all the fquares, together with twice the fum of all the fro-dubis of every two.
For by this prob T-\-o-Ÿc'' — aSfb'''^a-\-b that is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-2iJr4-ff, and
lo for more quantities.
Schol, lèy the fame way, theorems may be found for the cube of the fum of two or more quantities.
PROBLEM LXIX.
Two quantities being given to find the fquare of their difference.
Let a be the greater, e the lefler; then the difference is a—e, which being fquared, produces aa—2öf fe.
Cor. Hence the fquare of the difference of ifoe quantities, is equal to the fum of their fquares abating twice their produit.
Schol. By the fame method a rule may be found for the cube of the difference of two quantities.
PROBLEM LXX.
The fum and difference of two quantities being given j to find their rectangle.
Let jrrfum, d—difference, A the greater, E the leffer. Then A Ezzj, and A—E~ü; and adding thefe equations 2A=j-P(f • and fubtraóf-ing, 2E—ƒ—d. Then 2 Ax2E or 4AE=: J-t
X J—d w:ss—dd, and AE=; -----.
Cor. The fquare of the fum, lefs the fquare of tiff difference of two quantities, is equal to four times their reit angle. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. . ■
, PRO-
-ocr page 215-Sea. VII. problems.
203
PROBLEM LXXI.
Given the -power of the binomial a-{-lgt;. to find ibe difference between the f^uare of the furn of the odd terms^ and the fquare of the fum of the even terms.
The power of «4-^, that is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_p
na”~'b nc^''-a”-^bb nquot;— .
amp;c. Pur A, B, C, O, E, h^c. Jor the firft, fécond, third, fourth, êft. terms. Then A C E ^c. ~ fum of the odd terms ; and B-I-D4-F häc.
fum olt;^ the even terms. But A-f-C 4-E Sï-*
‘~h--r-lJ4-F ~ A B-|-C-f-D4-E nbsp;nbsp;nbsp;nbsp;nbsp;quot;X.
—8-i-C—D j-E Csfc. —
na^^b -P c^~'^bb -E 8ic. X
— na*‘~^b n. ~ a^~'^bb ècc,
2
= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—bquot; zz aä—bff* i
Cör. I, Hence aa—bb” nbsp;nbsp;—
amp;c.
Cor. 2. öÄ—ób ,— aa-^bb — 2ab . , .3 nbsp;nbsp;nbsp;nbsp;------- ------------r-quot;^
Cor. 2’ üti~tgt;b (i^~{“^abb •^^aab-^b^ •
Cof.
*04 fundamental B. I.
— A _______________ ____4
Cor. 4. aa—bi) = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 4a’Zi-|-4ö^’.
— 5
Cor. c. aa—bigt; -------------------------------------.1
= agt;-^ioa^bb-{-^ab^ —5«'*^ Src.
PROBLEM LXXII.
7ofind t'hevf’' root of the binomialfurd A4;B, ivbere-either h. or là is a furd fquare rooty the other rational.
n__
Suppofe ~ y/A B, then by involution
A B=;f »«” 'v 4- n.--x “Diy 4-».’
amp;c. Suppofe “y a furd fquare root, and put the odd terms of the feries =A, and the even ones =:B ; that is x' 4- x” ^vv amp;c.
—A, and nx v 4- n.----.----x 3 «y?
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
___ t
—B. Then x’ 4- ri.--x‘~‘^'vv amp;c.
2
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;quot;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. ■■■ -I — I X
—nx” ’-y 4- n!'-—amp;!.c. — A*—
3
B’=:D by fubftitution. That is (by Cor. i. Prob.
1
Ixxi.), XX—vvquot; z:D, and xx—try zzD ’ .There-« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
fore vv— XX—D“. Whence this equation,
« , nbsp;”~i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n—i n—2
X 4-»•—XArx—D« 4-»--7- • nbsp;nbsp;nbsp;nbsp;•
X XX—D“ 4- Sic. =A. Which ad-fefted equation, by a few trials, will give X, and then
-ocr page 217-M. VIL PROBLEMS. 205
^Sen ly be bad by the equation, J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_______
and «i-v =v^A .B, as re-
^mred.
» ______
Cor. Hence if x^\/y —yZA .B.
and A'^—B*
K—I
; then x” i
—'^ -
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XX
XX—D ” p n—2 __ - 4 ™ ,
«
;;_4 »—5 XX —o'quot;quot;
—— , —X---— K
_2___ XX
n
/n. Where P,
=cA; ßnd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;xx—
R, are the foregoing terms.
, Ot thus.
K'
Since jf” ^^-
A.
2
K-—I «•'V
amp;c. =B'
3
Sy adding, xquot; 4.
SiC. =A B-■ 2
Sy fubtraóling, a” ^nx^-^v n.
Therefore by extraftion,
»•--------------
and
and
2V
whence
-ocr page 218-ao6 fundamental B. L
« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;g ________
whence * =
v =:
y/A B y/À—B.
a
» _______ »_____quot;
— y/A—B 2
Therefore Ä-i-v will be had, at leaft in decimals.
Cor. nbsp;nbsp;nbsp;nbsp;y/A B = nbsp;nbsp; B v^A^
# nbsp;nbsp;nbsp;nbsp;«
v^A B —y/A—B
Ex. J.
Extract the fquare roat of ii4-6y/2.
Here A = ii, B;z6y/2, AA—BBz=49=U» and y/D —7. Therefore •-----x^zz. H»
• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XX
or nbsp;nbsp;nbsp;—7'= 11, and xä'—9, or x—^' Likewift
— v^9—7 zx y/2, and •x' vÖ’^S v^^ the root.
Or thus, ■^ B = ii 6y/2=;i9.484, and A—B“2.5i^'
Whence « - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_
2
4'4I4 i.586 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;4-414—1-586
----=3, and'-yzz----—=-- =
i-4i4=y/2, and sf t; —ß-by/a, the root.
Ex. 2.
Suppofe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;be given^ io extras
fquare root.
Here A =337, Bxtaoy/j, AA—BBx: 169=0. and y/D:=:_|.i2. Therefore ixx—12=22, and ‘’^*—25, or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
Allo
-ocr page 219-Sèa. VII. problems. aoy
Alfo y ~ nbsp;nbsp;nbsp;nbsp;2^__13 ~~ — nbsp;12, and
^ v0’~5—^12. Or the root may be v/i2—ß,'
Putting nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;12.-
Or ihust . _V^7i.64 v/2.36 _ io lt;-n_ 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
•u = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;s/7i-^4 _ _
■“■ 3-46 the root.
2
--2^/3, and x ‘V=5—2^/3
3-
Let ‘J—is givento find the cube root.
Here A=7, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—i=:D, and
Then«xr 3 X—±--*’i=7, or 4*’ 3*=7» »nd '
the root of this equation is x=:ii
Alfo vö'=—XX 1 =—\/^-t nbsp;and ' ' ‘
* vlt;)'=i~v/2.
y/A-1-ß — ^14.07 x: 2.414, and \/A—B z: —.oj ——.412 i
. Then je =; ~ 4i4 2.4j4
And
for here B is negative; therefore x 'i’ —i—
£x. 4.
What is the cube root of 25 ^^968.
Here A=25, B = v/568, AA—BB =—
343 ~H, and ^D=—7.
Then nbsp; nbsp;nbsp;—25, and x~i. '■
And vlt;7:zv/8, and the root, 1 ^/8.
Ex.
-ocr page 220-ïoa fundamental b. i.
Ex.
Extrait tie cube root of —•lo ^-—243.
Here A*—B» z: 100 2 43=;343=:D , and
7* Therefore x xx—•] =—10, or 4x5—2ix=—10, and the root is x—i^ whence
or \/j=v^4—7=%/—3t and x \/j=2 y/—3i as required.
In like manner the cube root of —10—V/--243 is 2—3.
Ex. 6.
Extrabi the c^th root of 843—589^/2.
Here A A—BBzz: 16807, and D'Tzzy.
And i6x''—i4ojf’4-245xz:843, and the root is
lt;gt;f=:3 i and v0'=—2., and ^ vÓ'—3—s/'i- the root required.
Ex. J.
What is the quot;jth root of 568 328^/3.
Here Aquot;—B‘=—i28=D, and \/D=—2.
Then A B—1136.112, —ß——.112, and
1136.112——,112 __ 1.^32—.7:2
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~ nbsp;nbsp;nbsp;nbsp;nbsp;2
2
2.732 .732
----2----~'i^.‘]32-gt;y3^ and jr 2gt; = i v/3 z: the root.
Scholium.
In the former method, if ^/D is not rational, neither member of the root will be rational, and in
-ocr page 221-Seft. VII. PROBLEMS. . nbsp;209
in the fécond, if neither the fum nor différence » , - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n ______________
of nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and y/A—B, is rational ; neither
member of the root will be fo : and in thefe cafes the rules are of no ule. Logarithms‘will be ufe-ful here in finding thefe roots, being exaól enough in finding whether any of the quantities be rational or not. When none of thefe quantities are rational, multiply the given equation by fome « nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n _________
number, till v^D, orv/A B . v^A—B, comes out rational-, then extradl: the root as before. But remember to divide the values of x, v., at laft, by the root of that number. Thus 22 V/4S6 bas not fuch a cube root ; but multiply by 2, anrt ,I 44 v/t94-4 nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
^nu then ------------ , will have a cube root,
2
for the numerator.
PROBLEM LXXIII.
explain the federal properties of {o') nothing, and, infinity.
It is plain, nothing added to, or fubtrafted from, any quantity, makes it neither bigger nor lefs.
Likewife, if any quantity is multiplied by o, that is, taken no times at all ; the product will be nothing.
Let — —q . that is, let the quotient, of b divided by a, be q. Then if b remains the fame, it i.s plain the lefs a is, the greater the quotient q will be. Let a be indefinitely fmall beyond all bounds, then q will be indefinitely great beyond all bounds. Therefore when a is nothing, the quotient J will be infinite. Whence
P
Alfo
-ocr page 222-210 FUNDAMENTAL B. I.
Alfo fin cc — — infinity, therefore nothing X infinity.
Let there be feveral geometrical proportionals, *■, x^y Äquot;lt;, ècc. If this feries be continued backwards, it will be x, i, —, — ; that is, x\
X XX
x^t X X the indices continually decreafing by I. Then its plane x° is equal to i, whatever X be ; for it may ftand univerlally for any thing.' Therefore o° is :=i.
Let X be an indefinitely fmall quantity, beyond all conception ; then in the feries x, x^, x\ amp;c. each term will be indefinitely greater than the following one. And when x is o, then in the fe-
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I . . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
nos O’, o', o’’, âfe. ~ is infinite, and o is nothing, by what goes before. Therefore the mean o’ is a finite quantity. Suppofe —i, whence ~XO that is ib z=: nbsp;nbsp;nbsp;nbsp;=:i, and ^=igt;
whence it is plain again, that {b} o° — ï.
Let —-— or its equal —be an infinite
•quantity, then by actually dividing,
Therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 7ZZ7 '—
—a ii.z. that is, an infinite quantity is neither increafed nor decreafed by finite quantities.
Cor. I. If o multiply any finite q^uantity^ tbe pro-du£i will be nothing.
Cor.
-ocr page 223-Sea. vir. PROBLEMS. an
Cor. 2. If o multiply an infinite quantity, the product is a finite quantity. Or a finite quantity is a mean proportional between nothing and infinity.
For ox infinity — b.
Cor. 3. If a finite quantity is divided by o, the quotient is infinite (— zz inf.).
Cor. 4-, If o be divided by o, the quotient is a finite quantity of fome fort.
For (Cor. i.) ZiXO—o, and therefore ”=^1 a finite quantity, or nothing.
Cor. 5. Hence alfo o’ —i, cr the infinitely fmall power, of an infinitely fmall quantity, is infinitely near i.
Cor. 6. Adding or fubirabting any finite quantities to or from an infinite quantity, makes no alteration.
Cor. 7. I'herefore in any equation, where are fome quantities infinitely lefs than others ; they may be thrown out of the equation.
Cor. 8. An infinite quantity may be confidered either as affirmative or negative.
For infinity = — or
Scholium.
There is fomething extremely fubtle, and hard to conceive, in the dourine of infinites and nothings. Yet although the objefts themfelv's are beyond our comprehenfion -, yet we cannot refift the force of demonftration, concerning their powers, properties, and effeCls -, which properties, under fuch and fuch conditions, 1 think, Ihave truly explained in this propofiiion. Any metaphyfical notions, that go beyond thefe mathematical operations, are
not
-ocr page 224-212 FUNDAMENTAL ß. L not the bufinefs of a mathematician. But thus Jnuch may be obferved, that o, in a mathematical fenfe, never fignifies abfolute nothing ; but always nothing in relation to the objeél under con-fideration. For iUuftration thereof, fuppofe we are confidering the area contained between the bafe of a parallelogram and a line drawn parallel to the bafe. As this line draws nearer the bafe, the area xhminifhes •, till at laft, when the line coincides with the bafe, the area becomes nothing. So the area here degenerates into a line ; which is nothing, or no part of the area. But it is a line fbll, and may be compared with other lines.
PROBLEM LXXIV.
'To find the value ofi a frahlion, when the numerolof and denominator, is each ofi them nothing.
I R U L E.
Confider, from the natu.ie of the queftion pW-pofed, what quantities are infinitely greater than others, when they are all taken infinitely fmail. Then throw out of the equation, all thofe terms that are infinitely lefs than others •, retaining only thofe that are infinitely greater than the reft; by which expunge one of the unknown quantities, and the value of the fradion will be known.
Ex. I.
Eet x’ yî—«xy, and y infinitely greater than x, when they vanifih ; to find the value of when X and y are ~o.
Here x'gt; is infinitely lefs than axy ory\ whence y^^axy, or yy-ax. Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the
value of the fradfion propofcd.
-ocr page 225-Sect. VII.
Problems.
ai 3
Ex. 2.
If '2.axxtCXlyy n and y ~o, and y
Ä'
uuhat is the value of —when y y
infinitely greater than X.
Here rejeét xx being infinitely lefs than the reft -, then;7zz2rt;e, and — - — y y 2a
Ex. 3-
What is the Value cf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;is:Ja en ïay-\-yyxsrx \
!1C
J) X being —q. Here j;), is infinitely lefs than 2ay. Whence | ||||||
|
Obferve what the unknown quantity is equal to, when the numerator, ö’c. vanilTies -, pur the un-known quantity = that value fj, where lt;? is fuppofed infinitely fraall. Which being fubftitu-ted for that unknown quantity, and rhe roots of all furds, extrafted to a fufficient number of places of ; at laft you will have feme terms in both the numerator and denominator, which will determine the value of the fradlion.
Ex. 4.
tr bat IS the value of ------y---, vshen x~s^ Ü--yy ÜX
1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^-x:—XX-
■tut nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then expunging x; ---------
a—^/ax
-ocr page 226-fundamental b. I.
- _ I ___T.
_ a'Aaa-^rae^ —
a—ÆÆ-J-zîf*
a y, : Z7 nbsp;nbsp;amp;i:c. —aa—ïaeècc.
a—(2—if amp;c. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
_ —lae nbsp;nbsp;nbsp;oae
- —îe — e
‘■*“3«, the value of the fraólion.
Ex. 5.
^’’bat is the quot;value of — 'ïL a—
Let the fraflion =y, and put Ä-=^r—then
------- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--------* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5 - -■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_
\/a 6 — ü^—£
But
a—^ax~a^e^
—e—a-^—e — ^/ aa*—ïa^e—a -j-4iïif — quot;* 2ß‘f^—amp;VC. Alfo aj^aï aae zz
X a—if — aa-—^ae, amp;c. And \/axa__f -: amp;c. Whence
_ ga flg amp;.C.—z2a 4geamp;c. __ ^aè i6a.
a”'quot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ófc• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' Q
Ex. 6.
quot;i ---------------------------
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—aa
what is its valui
\/ ïaa-\~ïax—x—a quot;^'ben x—a.
Let g—e—x. And expunging x^ a^^/ag ' axg—e quot;—a a 4- a e—aa
But
V 2gg-|-2Xg—e —'X—a
-ocr page 227-Sed. VII. Problems. 215
3 -------------=1:=:^ 3------------------ 1
ß^4«’ 4X«—e nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—^'2aae iïaee\ ~iaa^
ö^ i^gamp;c. And \/2^2ö 2ä'X nbsp;nbsp;4««—4«^ 2f?^
CC nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
= la—e 4- — See. Whence
4«
nbsp;nbsp;nbsp;nbsp;nbsp;—2«(ï z7f 1^1?
-
la—— amp;-C. —2ä4-5 h—
40 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4a
laee
IT =
Here, if I had gone no farther than the firft power of e, it is evident by infpeftion, that all the terms would have vanifhed ; by which nothing could have been concluded.
Scholium.
If e remains at laft in the numerator, the value of the fraótion is o, and if e remains in the denominator, the fraction is infinite. But if all the terms vanifli out of both numerator and denominator, the feries muft then be carried to more places, to have a folution.
- PROBLEM LXXV.
'Ï0 find two whole numbers x, y ; in the equation ax~by-}-c, being in its leafi, terms: b, Cy be~ ing given numbers,
RUI. E.
Let fiand for the words a whole ntanber.
Reduce the equation, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~wb. By
an abridged fraftion, I mean the fraftion refult-ing by throwing all whole numbers out of it, till ' the terms in the numerator be lefs than the deno-
P 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;minator*
-ocr page 228-2i6 fundamental B. L’ minator. Thus let the fraction be a-bridged to -----. Then to find y.
The method confifts in leffening the coefficient of y continually, till at laft it becomes i. And this is done By fubtracflng or fome multiple of it, from y, or any multiple of it, which 1 nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;öy 2öy ?öy
comes very near it ; that is, rrom —-, ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a a a'
Zi.c. or this from it. And the refulting fraftion abridged, or its neareft multiple, is in like manner to be fubtradled from the neareft foretroins fraction ; or from any wh. which is nearer ; or
this from that. And thefe wh. msv be —, —, a'i-Va ay-Vïa 2ay a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
Ac. or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, a ' ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;°'' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y°“
can find, which has the neareft coefficient to y. By this means the coefficient of y is continually yd“.?
leflened, till at laft we have —-—wh — i)-, then will y—ap—where p may be any whole number taken at pleafure. And y being known, X will be found from the given equation.
You muft obferve in this whole procefs, to keep the fame denominator a, throughout.
For whole numbers fubtraéled from one another, will always leave whole numbers. And whole numbers multiplied by whole numbers, will always produce whole numbers. And upon thefe principles the rule is founded.
Ex.
-ocr page 229-Scd.VII. PROBLEMS.
Ex. I.
Let i9X = r4J'—IL to find x, y in whole iers.
— ——• — wh. Eno. multiplying by 4 ,
20T 44 nbsp;nbsp;nbsp;2oy 6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- 2OV4-6
---, = ---p z—wh. And —----
'9 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;19
W-nih. Subtraól -- -, and ---- = wh. — ■{).
Whence jy—19/)—6. Let pm, for the lead; affirmative value of jy, andjy:zLi3. Whence xzzg.
Or thus.
195^4-11 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5x-l-ti -
y = --—— = X -1--- wh. Then
14 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' H nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
5^' ^^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;. J 1 • 1 • nbsp;nbsp;nbsp;nbsp;1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
j—— we.wh. Eno. multiplying by 3,--
~wh. But nbsp;nbsp;nbsp;nbsp;Th,3.^ — And fubtraétina,
14 5
~^~~'^h. — fgt;. And x — i^p—ß. Letpm, to have x the lead: ; and x:=9, and j’zmg. £x. 2.
Suppofe 2x~^y—16, query x, j»,
Uprp , nbsp;nbsp;nbsp;8y—16 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—'I
■Here ----- — 2y—c-j— ---- ~ wb.
3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
3 * ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;multiplying by 2 ,
4)j-A_ , oy
■, nbsp;nbsp;— quot;^b. But — rz wh. Enà. their dif-
■^3
fereqce
-ocr page 230-218 fundamental b. I.
ference —— —•uoh. —p. taking /»rzo, yzzz. Whence o.
Ex. 3.
Here x = ^02^
—wh. multiply by iigt; and
. nbsp;nbsp;nbsp;nbsp;24
1457 176 -------- — wh.
1447 168 ------- —wh.
24
From which fubtraól the for-
y—0 mer, and -zzwh.—p. And then j)' = 24/’ o» and putting p=:o, j:z;8, and a; = 5. y
4.
i4X=:4y 7.
Then a; = —— wh. And multiplying by
-------- or ------ 2 zz: wjp. And
' U nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;14
——wh. But = wh. Therefore their 14 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;14
difference — —wh. which is abfurd ; for an even 14
number cannot divide an odd number, nor a greater number a lefîèr. See Cor. 2. Prop. VIII. B. II. Arithmetic.
Ex. Z' Let zyx—1600—i^. 1600—167 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 -J
Here a^zz--------- —wh. abridged, zy nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘■I
ft
•^-wh, or nbsp;nbsp;—-—wh. Subtrafl: it from —,
and
-ocr page 231-Sea. vii.
and
PROBLEMS.
—wh. multiply by 2, and
219 227 14.
and
“^1
I
fub-
—Tsih. Subtraft it from —------;
'^1
—■'nih. multiply by 2, and
traa it from nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and -’uob.-p^ and
f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J
J=?X27 i9, and if /gt;zzo, 7 = 19, and «'=48.
Cor. I. All the values, of y are hadby continual-b tidding the coefficient of x ; as j', j a, 7 2^7, 7 30, amp;c. And all the values of x are had, by continually adding the coefficient of y-, as x, x-{-b, gt;c-\-ib, See -, or by fubtrabling them, for negative numbers, and both are in arithmetical progreffiion.
Cor. 2. When the procefs brings out an odd number divided by an even number, or a leffier number di-’oided by a greater, which fhould be a whole number ; ^he t^uefiion is impoffible.
Cor. 3. 7/’ it be retiuired to find y a whole num-i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. by-}-c
bor, fo that the frablion —— may alfo be a whole number. Tou mujl proceed the very fame way, by y -{- O’
abridging the frablion to ----- , and then find
7—where P « any whole number, taken at fleafure.
problem lxxvi.
fofind fuch a whole number x, that being divided by the given numbers a, b, c, amp;cc. fhall leave the given remainders f, g, h, amp;c.
RULE.
Since the fraftions nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. are
whole
-ocr page 232-?»
220 fundamental b. i;
whole numbers ; put the firR zz P z= “wh.
Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Put this value of a? in the fécond fradion ; then -- =: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then
(Cor. 2. laft Prob.) find P^Z-Q-p;;/ , \vhere Q^wh. then will x—ab^X^am-\-f. Put tliis value of in the third fraftion ; then
c
—'wh. Then, as before, find Qr=cR4-K; and put this inftead of Q in the laft value of ä: ; then this value of muft be put into the fourth fraction ; and proceed the fame way through all the fraftions. This is the method of proceeding-, but numbers muft be ufed all along inftead of the fmall letters. And the leaft wZgt;. number R may be taken at plçafure.
Ex. r.
T5 find a number which divided by nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and l
•will lea’ve the remainders 2^ 4, 6, o, refpèaively-
Let the number be x^ then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 -—-
X—o and —
3’5’ 1 are whole numbers. Let — P,
and ;tfz;3P-p2 ; then —
5
=wh. fubtraift it from
—wh. Subtraél this from
5
—wh.—Çy^ and P=5Qj'4gt; and
3 3P4-2—4 _
5
J 2P 2 and--'
5
, nbsp;nbsp;P-4
i then ■—
Again
^?=i5Q 14-
— quot;^h. and--
—wL=:Rj and QczyR—i, and
7 ä'=io5R—I-
Laftlygt;
Seft. VIL problems. «21
UMy nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
:=S, and RrzzS i. Whence iv = 2ioS iO4, the number foughc ; and putting S=o, the teait value of X is 104.
£x. 2.
T'ö find a uühole number, which being divided by 16, 17, 18, 19, 20 J will leave 6, Tt S, 10, remainders.
X—X—8 , 18 ’
X—6 „ - i6-=P’
Let Ä’xznumber. Then - nbsp;nbsp;,
«—lt;) x—JO
whole numbers.
then x=i6P 6.
X—_ 16P—T
Then
And thence
P l T - wh.-
Air„ ï:r^ ?2iQ-.8 18
~wh. and —5- —wh, 18
: X—2448R—IO.
—R, and Q—^R, whence
Again nbsp;nbsp;nbsp;nbsp;nbsp;-
‘~~3R nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;gR
———wh. or
^^=465128—lo.
2448R—19 --- — wh. and
_ , J 18R nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;,
— wna. and--— wh. whence 19
and RzzipS. Then
Laftly _
12S --r: wh. -r
20 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X .
;f=23255oT-_j. leaft value of
46512S—20
= wh. and
Ï and S = 5T. ■ And if T=i 232550.
Whence then the
Ex.
-ocr page 234-ä22
FUNDAMENTAL E. 1.
Ex. 3.
70 find a number {x}, which being divided by
14, 20; there fihall remain i, 3, T-, H-
-T nbsp;nbsp;nbsp;nbsp;—I nbsp;Ä'—3 X—'1 X—’4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, ,
Here ----, --------, —---- are whole
3 ’ nbsp;nbsp;nbsp;7 ’ nbsp;nbsp;14 ’ nbsp;nbsp;nbsp;20
AT“—I
numbers. Let —^=zP, and jf=::3P r.
X—2 nbsp;nbsp;3P—2 nbsp;nbsp;. J 6P—4
Then---------—wh. and--~wh.
11 nbsp;nbsp;nbsp;1
| ||||
14Q—8 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;8 nbsp;nbsp;nbsp;nbsp;nbsp;, ■zzwh. and ------■zz.wh. Whence — “ wb. ‘4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;14 which is abfurd. |
Hence the queftion is impoffible for the three firft fuppofitions ; but will hold good for two of them: in which cafe xzz21Q3— ii, where the leaft value of x is 10,
2 RULE.
When two divifors and their remainders are given ; then find two fixed multipliers M, N : fuch, that dividing them,
— leaves o, and -y leaves i remaining.
N nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;N
and — leaves i, and -j leaves o remaining.
M^ Nf
Then divide —, and the remaifider is
Kf the number fought.
Likewife
-ocr page 235-Sea. VII. PROBLEMS. 223
Likewife for three divifors and remainders ; find three fixed multipliers M, N, P i fuch, that by dividing them,
— leaves i, and leaves o, remaining.
N , N
•J leaves i, — leaves o, remaining.
~ leaves i, leaves o, remaining.-
Then dividino- -------, the remainder
° • abc
is Jf, required ; and the like for more quantities.
To prove the truth of this. Since (Cafe i) M
— as alfo -T leave o,. by divifion ; therefore a
~r, and —r leave o.
b
M N
And fince -r, as alfo — leave i. nbsp;nbsp;Therefore
M—I N—I , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r M?-—
'~Y~ and —leave o. Therefore -
Nf_ƒ
and —- — leave o -, that is, y- leaves and
Nf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Mf-hNZ
~ leaves ƒ. Therefore ------leaves o /,
Mv-i-N/ and ---— leaves ^q-o.
But fince M^ N/ may exceed «J, and therefore is not the leaft number ; therefore divide by and the remainder is the leaft number required. And the fame way, Cafe 2, or any other, is proved. '
-ocr page 236-224 • fundamental b. I.
Ex. 4.
Having the cycle of the dominical letter f, and cycle of the moon g -, to find the year of the Dio-nyfian period.
Let x be the year fought, , nbsp;nbsp;nbsp;1
— are whole numbers.
—3-—and M —28P.
2o nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
Then and
Here ÆzzaS, and
M—r Alfo----— ::z wb.
19 5^F—2
19 P 2 nbsp;nbsp;,
----—wh.
_ 28P—I
~ nbsp;nbsp;*9 ’
—wh. Alfo
and multiplying by a, 57P
—— —'wh. Therefore
—Q, and P — 19Q—2. Whence M —28X19Q—2 =53'-^Qï“565 and if Qzzr ; then M—476.
ZT... nbsp;nbsp;nbsp;N nbsp;nbsp;N
Then j = — =wh. = P, and NzzipP. Alfo
N—I _ 19P—I
' 28 nbsp;nbsp;~ nbsp;nbsp;28 ’ —Hiultiply by 3 ; then
57P—3 J , 56P nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;p_2
28 nbsp;nbsp;—~2^ — therefore —
—wh.—Q_, and Pz:28Q4-3. Whence NzzaSx
Therefore x zz remainder of 53'^ ferves in general, for any numbers, ƒ g.
i then X—430.
Ex, ß.
Having the cycle of the Sunday letter f the golden number g ; and indibtion h\ to find the year of the Julian period.
Here ß—28, ^=219, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;0^ — 532, ßf~42o,
,^r:=:285, and «^fzzypSo.
Then
-ocr page 237-ScÄ* vîi. ■ problems;
Tiien ^^=:wZgt;.=P, and MirzS^P.
M—i _ Ä85P—i
28'~ —Is— ~
P=i7 the lead ; and then M^aSac.
A . N .
420 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and N=42oP.
420P—r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2P—r
--~-wh. add
will give Px; 10, and N=4200.
22g Alfo
gives
Alfo
whieh
p
Laftly, =.wigt;. zzQf and P±:532Q^
_ 582Q—I nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;, 7Q7-1 , nbsp;nbsp;nbsp;,
,'=•----—■—’üüb, and —=: iiüh. at
lA nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;15
“ft 0=13, and P±:69i6. Whence the re-
Alfo
ni.i.d»of 4845A 42°°/ 6o,6;.
1 r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;79«°
1-et/±:o of 28, ij iamp;z:2 *, then ä:::2O72J
Col-. When the operation brings out, a leffer num-b(r dwideä by a greater, inßead of a whole number i the problem is impoffble.
PROBLEM L^tXVlL
elation being given, containing feveral tinknetwA quantities -, to find their limits.
When an equation contains fevcral Unknown quantities^ the values of all of them, except One, may be taken at pleafure ; and when their values are aliigned, and nurnbets put for them in the equation, that fingle quantity may alfo be fourtd, by reducing the equation. And fuch equations will admit of an infinite nuttibet of foltitions, if we admit of fradtional and negative numbers. But fince thefe folutions are moft ufeful where affirmative quantities are concerned -, and more ufeful Hill, when only affirmative whole numbers are
Q nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;admitted j
-ocr page 238-ä26 FUNDAMENTAL B.T. admitted i therefore I propofe to confider only thelè^'twö cafes, and particularly the laft : becatife in that cafe fuch an equation will have a deter* mined number of folutions. And therefore it iSquot; neceflary to know the limits of the unknown quantities ; left we go about to feek their values beyond thefe limits. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
R U L- E.
Tranfpofe the negative quantities to the contrary fide ; that all the terms may be affirmative. Then to find the limits of any one, put all the reft ~o, or fuppofe them to vaniffi ; and from hence find the value of that quantity, which will be one limit thereof. And to know which limit it is, conceive the other quantities to increafe and have fome certain value -, then if by this, the value (of the unknown quantity under confidera-tion) increafes ; it is the leaft limit you found; if it decreafes, it is the greateft limit. And in cafe you find no leaft limit, then o is its leaft limit. This procefs relates to fraótional quantities.
But if you only defire whole numbers ; put i for each of the other quantities, which is the leaft value they can have ; then from the refulcing equation, find your unknown quantity and its limit, as before di re died.
Proceed the lame way with all the unknown quantities.
I.’
Let 3« ^e—z 8, to find the limits of a, e.
28 I
Let ^zzo, then 30^228, and ß—— =9-^. Now let e be fome real quantity ; it is plain the greater e is, the lefs a muft be ; therefore 97 the greater limit. Whence ßquot;391.
For
-ocr page 239-Söft. VIL T problem Sv nbsp;nbsp;nbsp;nbsp;'22 7
For let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then 5^=28-,-^and f=~
— 54-' iP 'increafes, e decreafes-; therefofc «4 is the greater limit, ^and and the lefîèr limit of b,oth « and e, is o. Alt,this including fractions. ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quot;
' ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;For ’uohole numlers,'
Let I, then 30 — 28—5—23, and
the lelTer limit, .and «“□/I.
’Again,'let «=1, then 5^ = 25, and ezz— zzß, the greater limit, and e— or “□ 5.
Fx. 2.
Let 2)^—sezzzSf to find the limits of «, e in iiuhole numbers.
Then 3« —284-5^; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then 3«—33^”
and ötz—— iij but whence increafes a in-creafes, therefore ii is the lelTer limit, and a~ or EZ II.
284-5^—3, and e will be negative, which We exclude. Hut whHft increafes in-creafes ; therefore o is the leaft limit of e, or t E_o; and it has no greateft limit, i
• nbsp;nbsp;nbsp;nbsp;nbsp;'1 . nbsp;nbsp;nbsp;nbsp;r.. ■■
Ex. 3. nbsp;nbsp;nbsp;nbsp;nbsp;’! ■'■
Ut nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;to find the limits in
Suppofe —2. Then 3x2210003—13, and _ 999O_
* “ nbsp;nbsp;nbsp;nbsp;—333°* ■'And fince x decreafes; whilft
J and 2 increafe ; therefore 3,330 is the greater limit, and x= or -33330.
Q 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Again,’
lt;gt;gt; f
-ocr page 240-428 fundamental' bi.
Again, let x—zzzi j then ^^9992, ancf 9992
•J» = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;19985} and _y decreafes whilft x, X
increafe : whence y 19985. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
Laftly, for Z} let x=:y~i, then 82;=ioooj —8=9995, and z=^^^=i249l. But z decreafes, whilft X, y increafe -, therefore zr3i249^
4. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. ’ .
Let 13;^—5y-j-8z=io, to find the limits of y.
Here 13X 8z = io 5y } let ä=i=z} then 574-10=2 1, and 57=11, and ^ = 25} and whilft A' and z increafe, jy increafes; therefore 2j is the leaft limit, and y c_ 2^.
Note, the limits of x and z cannot be found tilLthe value of y be affigned.
PROBLEM LXXVni.
^^'0 equations being given, containing three or mort unknown quaniilies to determine their limits.
RULE.
Having |«tchlt;-d upon the quantity you would .limit} expunge one of the other quantities, and you will have one limiting equation. Then expunge another of them, and this gives another limiting equation. By thefe two equations find the limits of the quantity pitched on feparately, by the laft problem.
But note. In any limiting equation, all the other unknown quantities therein, (being put on the fame fide of the equation, with the abfolute number,) muft have the fame fign j otherwife, (if they have difterent figns) they cannot limit the quantity jiropofed, till the value of fome of the reft be - ^iTówn.
If
-ocr page 241-Sect, VII. PROBLEMS.^
If there be more equations, the procefs is the fame with any of them.„ .
V, Ex, I. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=, nbsp;nbsp;•-
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gt;nbsp;‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. -Ci k,..
and 32a4-2Of-|-i6j = i232 ; to limit a.
Multiply the firft equation by ;2O/ produces 2oa4-29e-i-io^—1120. Subtraft this from the fécond, and you have 124—^yzzj 12: whence (Prob. Ixxvii.) aerçj. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: ,
Multiply the firft equation by 16, gives t6a-i-i6o i6j — 896. Subtraft it from the fécond, and 160 40—^36 ; whence lt;zquot;^20’.
In like manner, to limit _y, multiply the firft equation by 32, and 32^-1-32^ 327 = 1792. Sub-traél the fécond from it, and 12^ 167 — 560. This gives 7-334!. And the equation 1'20—47—112, gives 7cquot; o.
To limit e; the equation 160 45=336, gives lt;i“38o. And the equation 125 167=560, gives ^~^45r* But here is no lefler limit for 5 ; therefore 5i::'0, and “□45.
Ex, 2, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;'
Let '^x—y -T ÏU = 207 ' j 0»^/ 12X 6y ßu =150)* nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;, -
ift X 5 is, i^x— 57 10« = 100 2d X 2 is, 24.^ 127 10« = 300 difference px ij^ = 2OO This'equation gives x-32O-i, andj'^ii-A, ift x6 is, i8x—67 12«= 120 ; add this tq the leçond then 30x1 17«=2 70, whence ^f=i8-rJ, and «quot;□14-^.
ift X4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—474-^=80. Subtradlfrom the
fécond, ' nbsp;„ 107—3n—yo, '
And 7C~ and «c_o. , There is no leaft limit for x ; therefore vc:_o» and -□8H.
^3
-ocr page 242-FÜND’AMEN'T AL B.I.
- nbsp;nbsp;nbsp;nbsp;nbsp;\ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'1 vi. -•’.'itb'cupa a-;.' , nbsp;nbsp;nbsp;' ï’.a.h ■!.
Ex. 3'.'quot;' ■'
quot;Let a -f- e ƒ -p u — loo.
eind i6(7 iotf4-8j’ 6«z::i2Olt;?; -pu Vi5
I
2
3
4
5
^6
«
9
lO
■ gt;
'I 2—3 4 -^-
5 ■
*1 X (lO) 2—7 -8,tr.
9 -(6)
‘^ lt;4-j « = ’oo r y' gt;iV •i6a4-'iœ4-'8jyA-6az:i 2oo_ nbsp;nbsp;nbsp;_u .- -
,6«4-6f-pAj 6«^6oo r iozz' 4^ 2jF =6oo /y' j r' 6oo—4-t—3-- 5Q4
—59.- atmoft
^“3597'^. I,
I oa-1-1 oe 4-1 oj 10« z: 1000 ' 6 a——4« —200 6a — 2oo4-2j4-4a
, rt =347 at leaft, and.öc_34^}
1 X (8)
3 X (.16 ) —II
12--2
14, .4»
II 12
13
H
15 'i'6
fo a is between 347 and 59I. Then for the orher'quantities.
Sa 8^ 87 8«zz 800.
16a 4-16f4-i6y4-i6arzi6oo.
8(34quot; nbsp;nbsp;nbsp;nbsp;' — 2u:z: 400. This
equation will limit a but not egt;
' Here aero.'
6e ■ -8gt;'4-1 oa zz 400.
400—(4 386 nbsp;nbsp;nbsp;, nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;,
600—4e--^joa 586 -J'
- nbsp;nbsp;nbsp;nbsp;2---7~ = nbsp;nbsp;nbsp;nbsp;?93, or
?quot;3293 ; but, fince the limits of a, are known ; y may be determined more exaftly; thus ,
596—10X35 24$ H .
gt;- nbsp;nbsp;^-t-=~=i23, or
r4
-ocr page 243-Sea. VIL
PROBLEM S.
. nbsp;nbsp;nbsp;400—16 384
17
14
18
Again^z^—---^^-48, or
jy— or “□ 48. But thefe are all greater limits of^-, and there wants the lefler limit -, therefore yco, and
4(?o—iS 382 .......
631. But the leaft limit of e can-y not be found j therefore take fCo.
Scholium.
When three numbers are fought by two equations J all the values of each of them, in whole numbers, make three fcries of arithmetical pro-greffion, taken within thq limits of tliefe numbers. And if four or more numbers are fought* the value of each is to be found in feveral arithmetical progreflions. But yet the values of any three wr'1 be in arithmetic progreflion, when the values of alf the reft are afligned, as before for three numbers.*’^
For in the cafe of three numbers, and. two equations. ; any one of the three may be expunged ; and then you will have but one equation, and two un-‘ known quantities; which brings it under Prob. Ixxv. But by Cor. i. of that problem, thefe two remaining quantities are contained in two feries of arithme* tical progreffion. And as any of the three may be expunged -, therefore any two of them will confti-tute two feries of aiithmetical progreffion.
PROBLEM LXXIX.
prices of feveral ingredients heing given, to _fnd\ the quantities thereof -, fo that the mixture may be fold at a given price. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1.
C nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- I'»
; Suppofe four fimples A, B,. C, D, are to be, , mixed ; and their prices to be äs follows :
« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;0^4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Mean
-ocr page 244-FUNDAMENTAL - ß. É
Mean price = m Price of A r= »z ^ of B ;= m b oi C — m—c of D zr m—-d,
And let the quantities to be taken of A, B C, D, be X, y, z, v, refpeftively. Place them in order, thus ;
prices quantities ‘ | ||||||||||||||||||||
|
Then by the nature of the quçftlon 5 if each quantity be multiplied by its price, the fum of the produéls will be equal to the fum of all the quantities multiplied by the mean price ; that Is,
m a X X 4- m—d x v ? ----
X 2 J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X«-
Let w-h« X A? m—d gt;lt;.1} — x-l-i' Xfft.
And Xy 4-'w^c x z = j z x.m,
That is, tnx ax mv—dv zsi tnx mu tiiy-\-by nbsp;nbsp;nbsp;nbsp;—cz zz /»j-Potz.
tjy the former, quot;ax-^dv—o, or ax—dvi the latter, by-r^cz-^o, or ^J’=fz.
Now fince X and jy may be taken at pleafure.’ Therefore put t^z^d, and ƒ rzr. Then will and z—b. Whence the quantities will be ranged thus ?
-ocr page 245-5eft. VIE -P R
f »3-b3
J »34-Ä m lt;
j nt’—c
—d
o B L E M S. 233 c . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘ ä
.i!1 L -, a which gives thif ci
L U L E.
Couple every greater rate with one lefler than, the mean price and tn—d-, alfo m b and J??—c} -, then take the difFerence between each rate and the mean rate, and place it alternately^ that is, againft the quantity it is coupled with -, do the fame with all the rates, (thus place a againft w—J, b againft «3—c, c againft m-\-b^ d againft wq-ö) j then if none of the quantities of A, B, C, D, be given. Then d^ c, b, a will be the quantities of each to be taken for the mixture. But if any one quantity be given ; then all the quantities d, c, I, a muft be“increafed or de-çreafed in proportion. Or if the fum of the quantities be given, then other quantities muft be taken in proportion, fo that d c-\-b-{-a may be to the fum given, as any of the differences J, amp;c. to the refpeiftive quantity required. And this is the common rule.of Alligation Alternate.
Since ax—dv, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Take x—md., and
y“MC •, then •vrxmfl, and s;zz«amp;. Then putting md, nc, nb, ma^ iox x, y, z, v refpeftively -, and the cafe will ftand thus ;
K U E E.
Having coupled the rates as before directed, îind taken the differences. Then inftead of any couple
-ocr page 246-^34 F U N D A'M E N T A L B. C couple of the differencesy you may take any equimultiples thereof ; ■» and place them alternately. And thefe (or other quantities proportional to them), will be the quantities required. And this is the Rule of ÂlUgation improved.
, .PROBLEM LXXX.
tToe nu'/nbers K and B be produced from a and b, ' any ''ßmilar operation ; io find the number from Huhich N is produced^, by the like operation. Sup' differences of the numbers A, B, N, Ztf be as the differences of a, b, and the unknown number.
Let 2 be the number fought, a b % and put the differences N—A~r, A.B..N nbsp;N—Then by the queftion,
r (N—A) : s (N—B) : : 2—a r 2—b. Then r2—rbzz-sz—sa. And by tranfpo-r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, rb—sa
Iition, rz—sz—rb—sa, and 2—-----; or if j
r—J
be negative (or B greater thaji N), then 2 = rbßsa
--7-”, the number fought.
N, or both greatef -, then z—---. But tf only one as B be greater than N, s is negative, rb sa
That is, if each fuppofed number be multiplied by the error of the other, and the difference of the pro-dubis be divided by the difference of the errors, when the errors are like ; or the fum- of the produdls divided by the fum of the errors, when the errors are unlike} the q^uotient gives the number fought.
Cor.
-ocr page 247-Seót. VII. PROBLEMS.
Cor. 2. Hence alfo is derived another method vf i!)orking the Rule of Âpprciàmdtion, or Rhtle'c/Falfe •which is this. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘J. nbsp;nbsp;nbsp;nbsp;nbsp;’
Multiply thè-differetice of Mfuppofed^siumherj^ by the leaf error, and divide the pr'cduSl^ vy' rbe 'difl^ ference of the errors, if like ; or by the futn if unlike, The quotient it the txrredlion of the numlyerfelongin^ io the leaf error. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
Then this correction is to ie‘added or'quot;fubtraCted, according as that number voastoo little or too’^reqt.
For let J be the lead error, being the error of b, and the correélion ; then if A, B be lefs
than N, b^q — 'Z-, and 5—2—b — -y— —b rz rb—sa—rh-irtb nbsp;nbsp;nbsp;nbsp;b—a
But'if B is greater than N, then b—q-=:z, and rb-rsa nbsp;nbsp;nbsp;nbsp;rb sb—rb—sa ‘
O—b—zzzb—--;—■ nbsp;nbsp;nbsp;-------
«--U c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r J- f
Scholium.
Since it has been Ihewn, that the number fought will come out exadtly, by this rule, when the errors are exadlly proportional to the differences of the fuppofed numbers from the true one. Therefore it follows, that when the errors are nearly pro-’ portional to thefè differences, that the anfwer will come out nearly true. And thefe proportions will be the nearer to an equality, the nearer thefe fuppohd numbers are- taken to the true number. And therefore in all queftions where this- rule is applied, every operation will bring us , nearer the true anfwer, if we always take the neareft numbers, (where the errors are leaft) fornewfup-pofitions. And thus repeating* the operation, one may
-ocr page 248-1^6 FUNDAMENTAL B. F may continually approximate to the true number, within any degree of exaftnefs required ; let the particular queftion be of what nature it will.
Upon this rule alfo is founded the rule of finding proportional parts.
PROBLEM LXXXL
Suppofe A, B, C, D, to. be feveral /oris of goods ; and m, n, p, q. See. g^'en numbers and the values of tbefe goods are
mPs. — 7zR nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' quot;nbsp;nbsp;nbsp;•
— qC rC sly /D =
[f0 find what quantity of the laß fort is equal to a given quantity of the firfl : and the reverfie.
Let 2 times the laft be_ ;=7 times the firft, that
■is, let xE — yPs.
Multiply all thefe equations together; the firft fide by the firft, and the fécond by the fécond. Then we have wAx/)BxrCx/Dx2E=«BxîCxjDxÆx7A. Then wprtzzznqsvy. Then if the quantity of the laft
fort be reqfiired, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;But if the of the firft fort be fought; yzz this
quantity
quot;Whence
mprtz nqsv’
RULE.
Place the terms in two columns, fo that there may not be two terms of a fort in cither column. Then multiply the numbers in the lefler column for a divifor; and the numbers in the greater co-Junin (with the odd terna) for a dividend. The quotient
-ocr page 249-'Sea. vn.‘ PROBLEMS.
quotient is the quantity of that fort which ftands , fingle in the two columns. And this is the Rule
ef Exchange in arithmetic.
I
PROBLEM LXXXn.
'^0 Inveßigate numbers for rationalfquareSy cubes. Zee.
Problems of this fort are often capable of an infinite number of anfwers ; and yet none of the quantities can be aflumed at pleafure, but muft be inveftigated as follows.
R U L E.
Put one or more letters to denote the root of the fquare, cube, Which letters muft be fo alTuined, that when the equation is involved, either the given number, or the higheft power of the unknown quantity, may be on both fides of the equation, and confequently vanifhes our of it. And then if the unknown quantity be but of one dimenfion, the problem is folved, by reducing the equation. But if the unknown quantity is ftill a fquare or higher power ; you muft faither afiiime other new letters, to denote the root, and proceed as before ; till you get the unknown quantity of one dimenfion ; and from this unknown quantity all the reft are to be determined. For the whole art is, fo to denote the root of the given power, that the unknown quantity may be reduced to one dimenfion.
But no general rule of proceeding can be given to fuit all cafes ; and therefore the folution will often be left to the fagacity of the analyft, in contriving fuch a deflgnation of letters as Is proper for tl^ purpofe.
Ex.
-ocr page 250-.238 F U,N D A M E N T A L B. î.
‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'£x. I. e;'; - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gt;
- ^ofind t-ivo fuch humbers, fo iha't ibe fut» of their fquares is a fquare.
Let X, y, Z be the^ roots of the fquares, fo that Afturne z—y-{-r, then jvx jjyrzzz =.nH7.2O' ^''. andarx = 2ry rr, and -rr, where y the unknown quantity is of one dimen* fion, which reduced gives y — ——. and ■
2r *
XX—rr nbsp;nbsp;nbsp;nbsp;XX ^rr
y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-l-^= ——=zz. Therefore the
, nbsp;XX—rr nbsp;nbsp;nbsp;, xx rr
numbers are *•, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and — ■ - , where X
ir
and r denote any numbers taken at pleafure.
But if the anfwer is required in whole number!, then irx^ xx—rr, xx-^-rr will denote the roots of the fquares, where the fum of the two firft is equal to the laft fquare. .
Cor. ^he three fides of a right-angled triangle quot;Jeld only be commenjurable, when xx-\-rr denotes the hypo-thenufe, and xx—rr, and ïrx the two fides ; x, r being any numbers taken at pleafure, fo as X it greater than r.
Ex. 2.
fo find two numbers, the fum of whofe fquares it equal to the fum of two given fquares.
Let X, y be the roots ; aa, bb the given fquares.
AlTume x—a—v, y—vz—b. Then
-\-bb — aa—lav ‘ut^-J-wzz— zbr.z-{-bb ; and 'ü'uq-wzzzzzö'u zZ'Z’Z, and 'u 'uzz —
- and -y =:-----7— . vVhere z is any number ta-
ken at pleafure. Then xz::---, ana
_ iax^bzz-b
. ZZ-f l
-ocr page 251-Sea. VII. . ^I\R O B-L EMS. 339
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' Or thus,
Let—'V, then aa—and
—zav w—bb. Put j’—i/z—; then wzz—
2bzv-^bb—2av-\-i}V—bb, and wzz 'V'üzzzZ'Z'ü-I-
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;2/gt;Z4-2lt;S
zav, or igt;zz4-‘u=z2i?z 2æ, and v=------- ,
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ù nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;22 1
as berore.
3’
^0 find iivo numbers, fuch that ivhen either of them is added to thé fi^uare 0/ the other, the Jum ivill be a fyuare nimiber.
Let the numbers be, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;0,
and j7 x=: nbsp;nbsp;nbsp;nbsp;Let xx-\-y =; nbsp;nbsp;nbsp;nbsp;= rr— 2rx
Jfx; then ƒ=rr—2rA;, and 2rx —rr~-y, whence
Again, aflume jjy v or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 7 ^»’ —
’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘ ‘ Ar- rr—
D’ 2j’t; w. Then zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
and 4^^}! j—rr—^rw ;
whence y = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
4r‘z; I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;»
where r, v may be taken at pleafure, provided r be greater than zvv,
* * *■
Other-ooife,
Since nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;__ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J7 # or
•i-r 0» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^. ^r,=ƒ)•- -_— T!arr z:
-----, \ * ■
4r ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I^ i''atid'r*:::::|j - which is
* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J 1 ••■ - nbsp;nbsp;. ^ , i , y
a cube
-ocr page 252-240 FUND AMENT-AL • ß/L a cube number. And therefore will anfwer the queftion j and we have r=:i j whence and y be any thing lefs ihaft
Ex. 4.
^’0 find two numiers in a given ratio, fo that either cfi them added to the fquare of the fum, may make (t fquare.
Let the ratio of the two numbers be as i to Ct and put Zgt;4-c=lt;/, and let the numbers be bx and (X. Then the fquare of the fum is bx cx v=. ddxx. Therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and ddxx ex-=zUt -
Put ddxx-k-bxzz.dx—v —ddxx—then *
Ix—vv—idxv, or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and x—r~,—ï~'
b-^^idv* jj- , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—----‘ 'ddvv-]rbc-{-zcdv
Inen ddxx-{-ex or ddx c xx— ----'b^Ÿidvquot;—'
VV nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quot;VV
= ° » therefor«
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b-k-2dv nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
ddvv-}-bc-{-2cdv “□ (See Cor. 27. II. Acithm.^ aflume ddvv bc-i-2cdv x: dv—z —ddvv—zdvz zz i then 2cdv zdzv — zz •— be \ and ^2^____
~ ïcd-Ç'ïdz' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;greater than
. nbsp;nbsp;• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zz—be
bct and expunging “V, o 0 J ^dzxb-k-zgt;t.e-i-z
Scholium.
' It appears from thefc operations, that whejl a quantity, which is to be a fquare by the problem» is not an algebraic fquare 5 we muft make it fo, by afluming fome new quantities to complcat it. Then thefe fquares being compared, an equation is had for determining the unknown quantity. And
-ocr page 253-Stea?, vit. PROBLEMS. 24t in working, one may multiply or divide by any” quantity which is a. fquare, and what is left will be a fquare, in a more Ample form. The like for other powers.
PROBLEM LXXXin.
7o determine the maximum or minimum of a quantity propofed.
When a quantity is required to be the grearclt or leaft poffible, it is called a maximum or minimum. And at the time it becomes fuch, it is at aftand, and attirât moment neither incrcafes nor (fccreafes. Therefore to cornpute it.
R U ïu E.
Calculate the value of the maximum or m.ini-mum two difterent ways^ which is done by in-creafing the unknown quantity therein, by an exceeding fmall part ; then thefe values arc to bä put equal to one another. The fame muft be done, if there be feveral variable quantities. But go no farther than the Hift power of the frtiall added part. Or,
if the maximum or minimum confifts of two parts; compute the exceeding fmall increment of one, and the decrement of the other ; and put them equal to one another»
Ex. 1. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X
What fraction is that whofe fquare exceeds its cube the greatefi poffble.
Let X be the fraction, then x*—x'^—max. Take e an exceeding fmall part to be added to x, then you will alfo have x e — x-\-e zzmax. that is, x‘x4-2x^— x^-^fx^ec:zmax. Whence xquot;—x’zzxx rf-axf X ^x’-e., and 2xe—2x‘e—Of or 2x*^ tzeixef anti jx —2, or x —1.
B nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Or
-ocr page 254-242 FUNDAMENTAL B. I;
Or thus,
Since X nbsp;nbsp;nbsp;nbsp;nbsp;quot;zzinax, let f be the fmall increalc
of X, then nbsp;nbsp;nbsp;nbsp;nbsp;is the increment of xx, and •^x’-e
is the decrerpentof x^ ; therefore ixe—^x^e, and * ~ Î as before.
2,
To divide a given quantity into two parts, that one of the parts multiplied by the cube of the other part i the produit may be a maximum.
Let a be the quantity, and x one part, and a—X the other part, and « a fmall additional part to Then x^ xa—x or —x^ zz »jax. z:
nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then 3i3x*s=:4x'e, and
«zz’ä, for one part, and a—x=.^a, the other part.
£x. 3.
*ro find 0’—a minimum, x being unknown.
Put for X. Then a'^—min. ~ «i'—a^x—ß*e xgt;4-3X^^, and —Æ*r 3Jf*fzzo, and ^xx—aa ; whence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then a^—
—ö’\/3 ïlt;’v/t=^’ X A—îv/îj the minimum.
Æx'. 4.
baax-^ aaxx—bx'^—, Let -----a «■ be a maximum.
baa x^
This reduced to a common denominator is ibbaax-^-aaxx—bx'^—ba'’—ax^ ------- —:-------------— max. Put x-\-e
for X,
Then
-ocr page 255-Sea. VIL PROBLEMS.
Q^aax-^-aaxx—bx^—ba'—ax' baa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;“
^bx'e—ba'—.
a^xx ïaaxe —bx'— baa-i~x‘-i-^xxe ax'—(lax^e
Then multiplying alternately, 2Zgt;ÄflX4-.3axx—hx'—ba'—ax' X baa-^-x'-^-^^xe ~ : ïbaax■\-^baae-\■aaxx 2öäxe—bx'—^bx'e—ba'— ax' 3lt;zx’e : X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And throv/ing out
what is common on both fides, 2baax-\-aaxx—bx'—ba'—ax' ,x ^xxe — i^aa-^-x' X ibaaelaaxe—■^bxxe—‘^axxe. That is (dividing by ;), ()baax' 4- gaax* — '^bx'—'^ba'xx— lbba^-\‘'lba‘’X—^bbaaxx— ^ba'xx-^-ibaax' 4- laax^ —^hx'—Reduced, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—
iba'x—'^bbaaxx -, or dividing by a, and tranfpofing, x^-{-^bx'-}-^bbxx—zbaax—2bl)aa—Q.
5-
Suppofi y'—2yyx4- ^yxx^nyx—nxx. and X—'iy—max.
Suppofe the maximum zzw. Then x—?»4-;j. This fubftituted in the firft equation, and reduced, gives jjy’ 4- nbsp;nbsp;nbsp;~ luyy—mmn. And y' 4-12z»»y—
o. Where ?» is a fixt quantity. Put for y ; then jy’4-i2?»()'—nyy-\-äfm'n—o — nbsp;nbsp;nbsp; i2?»()'4-i2?»’’f—ny'‘—mye 4- 4?»'»—o, ,
and 3J^^4-I2?»'e—2nye— o, whence j)^’4-i2?»’— 2ny—cgt;y or zny — ^y]' =■ i2mnt. From this equation, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—Kjyjy-4-4?«*»—o, the quan
tities y and »; will eafily be determined.
Ex. 6.
‘through a given point P within the angle B AC, Fig* to draw a right line E PC, making the area of the i, triangle BAC, the leaf poffible.
Draw AP, and bPe extremely near BPC then the area ABP4-ACP ~ minimum. In the very
R 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fmail
-ocr page 256-244 FUNDAMENTAL B. I. F’.g. Tmall triangles and CPr, the vertical angles !• at P are equal, and BP — bV, as alfa CP~fP, extteatn near. 'I'herefore the areas BP/», and CPf, are to one another as BP“ to CP’ fGeom. 19. II). But CPf is the increment of the area APC ; and BP^ is the decrement of the area APB. Therefore 'Ri^b — CPe, or BP*=:CP* ; therefore BP —CP. Whence if PD be drawn parallel fo CA, then DB —DA.
Ex.
2. To find the greatefi triangle inferibed in a circle ACBD.
Draw the diameter AB, and CD perpendicular thereto; alfo draw AC, 7\D. Let AB— d, ECrrjy; then triangle ACD=xy—wax. or xxyy — max. but yy—dx—xx ; nbsp;nbsp;therefore
(ix'—x'' — max. — dx' '^dx'e—x^—4.v’e (putting x-Pf for x'), and ^dx'c—^x'e^ oc ^x — ^d, whence
Scholium.
When any quantity is a maximum or minimum, its root, or its fquare, or its cube, will like-wife be a maximum or minimum. Alfo when any quantity is a maximum or minimum, any given quantity may be added to it, or fubtraded from it, and it will ftill be a maximum, or minimum. Likewife it may be multiplied or divided by any given quantity, and ftill remain a maximum or minimum.
PROBLEM LXXXIV.
yî number or quantity being given ; to find its loga-rithms by a Jenes, or to turn numbers into logarithms.
X
Let — be the quantity given; Mrzi, for
fihcficr'i logarithms, or M—,454294482, for the
common
-ocr page 257-Seel, VII. P R O B L E M S. 245 common logarithms. And let x_x vzriz-Then the logarithm of , will be denoted theie feveral ways following, quot;deduced from the nature of logarithms.
I. Log; |
X y |
=MX:-? |
‘0^ 2?quot;’^33’’ |
a’’ |
0^-, | ||||
2. Log: |
X y |
V =:Mx:- |
-y» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,^,1. 4--j_— — ^x^ ßx’ 4«'’ Or, |
“t'r |
3- Log; |
X y |
— zM x |
-Vi '~z VZ* 77 '*’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5-2’ |
a” 77 amp;C. i •lt;» |
Cor. \. If v be far lefs than i. Then
Leg: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;
This is plain by putting yzxi. and—ezii 'y.
Cor. 2. Log; y '^’= ^og : ;’, M x __fL
3J‘ ~ 4r
lt;^r log:y^-v-log:y, Mx:~ “
nbsp;nbsp;nbsp;nbsp;— —, -21 , 'Î-'-
^ 3^ nbsp;nbsp;52:' :;^.
t
For log; X or^ v =log7X--=:bg;j.pjy^
J •
Cor»
-ocr page 258-245 FUND A-M E N T A L B. I.
Cor. 3. If I—logarithm of n, and l-\-s—logarithm of n-^v. 7hen the addi' tional •part of the logarithm^ that is.
V'' | ||||||||||||
| ||||||||||||
3-3« ‘y 5.2B U |
V
cr Jr: M X : —r-
cr jz:2M x :--;—
2»4-i;
tore Z4-J—I— log: n-^-v — log: »r: log: —~ ,
lor nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;for nbsp;nbsp;und nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;for 2) ; j or log:—
v/iil come out as above.
Cor. 4. J/quot; X he far lefs than a, then
Log: a-\-bx-\-cx^-\-dx'^ ixz. r: log : ß M X î .________
bx-i-cxx dx^ ècc. hx 4-ccxx amp;cc.
I nbsp;nbsp;nbsp;nbsp;nbsp;a—bx—cxx—dxi ixc. — * a .
___— — bx-gt;fCxx-\-dx' amp;€. bx txx iXc^
2ua bx ixc. TTi— S'ï’
and
-ocr page 259-Seà. VII. PROBLEMS.
Ig . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;8cc.
a—bx—cxx—dx^ Hnc. bx-}-cxx-^-dx^ amp;CC.
a quot;I
= 2M X :
amp;CC.
3«’
247
—— ècc'.
The firft cafe appears from Cafe i, Cor. 2. writing nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ôcc. for x, a for ƒ, and
Âv-f-wx Src. for “u.
The fécond appears from Cafe 2. of this prop, writing a for x, a—bx—cxx amp;c. for j and bx cxx amp;CC. for V,
The third appears from Cafe 3. of the prop, writing a-\-bx cxx Zic. for x., a—-bx—cxx iamp;c. for Jquot;, 2bx-{-2Cxx amp;c. for “u, and 2a for 2.
Scholium.
iMu
The log = log :7 ; —— nbsp;nbsp;nbsp;nbsp;near,
jquot;
when t; is very fmall j which is only the firft term of the feries, Cafe 3. Cor. 2.
problem lxxxv.
A logarithm being given-, to find the quantity belonging to it, or its number, by a feries. Or to turn logarithms into numbers.
Let Z j be the logarithm given, n-\-v its number, and let I be the logarithm of the number n. Put ct=:2.3O2585O93zz for the common logarithms, or m — i, for ZVe/xff’s logarithms. Then by Cor. 3. laft Prob. j=Mx =
R 4
and
-ocr page 260-Î4S FUNDAMENTAL B. L
s nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;13 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1}' and or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then by re- | |||||||||
|
— amp;c. ' 2.3
3- -„-= ■ »' ^
That is.
Number of Zd-J s: number of Zx : i »w --» nbsp;nbsp;nbsp;—3 ms ms ms
2 nbsp;nbsp;nbsp;nbsp;nbsp;2.3
Cor. I. If n— 1, and 1~q-, then i 'U/ or number of j— 1 4- m s -4gt; ! —r;’
~~~' quot;b L quot;b amp;C. 12 nbsp;nbsp;nbsp;■ 2.3
Cor. 2. If I—login, and l-\-s—lcg: n-\-i3 \ then the additional part of ths number, that is, -----1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_____1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_____4-ms ms ms 13—n Y. : ms —— — --- amp;c.
Cor. 3. If L. be the log; of the number N, then ----- nbsp;nbsp;nbsp;nbsp;-3. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----------------3--
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2.3
For
-ocr page 261-Sea. VIL PROBLEMS.
24?
For, by Cor. i. i v (numb, of s log.) — ms Jf^s
l wj nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;czz. Where 1 1; may
reprefent any number, and s its logarithm. Therefore let i 'UzzN, and j=:L-, then
---1 nbsp;nbsp;nbsp;nbsp;nbsp;----3
-KT z 1 r T , nbsp;nbsp;nbsp;\ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. T . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;»2L
N (numb, of L log.) — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----- ----
^’3
See. therefore by the nature of logarithms.
----
mxL „ ---*- amp;CC.
2-3
Cor. 4. Jf y—n-^-v, x—r-\-e, l:=zlog:
n.
mel
2
fe.x:. -Y-XY r4-e rJ-f—i r ^—2
V —ïquot; ~r~
3”-^^».
----» ml
I 't’B
' Sin
T-, nbsp;nbsp;nbsp;-----r f r-f-f
For n v^ zzn X i-4-- nbsp;nbsp;= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X
quot;ü
Î d-- n
mei
4
-, but by Cor. 3. »'
'ml nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-------
amp;c. and I 2L
r^e-^i vv
^2
Cor. 5. If l—log; n-, then
For here ï’zzq. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ƒ
Cor.
^50 F U N D A M E N T A L, B. t
Cor. 6. If Vy e be exceeding fmally then
-----r * nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rv , T .
«4-1» nbsp;nbsp;nbsp;— »X: 14- nbsp;nbsp;nbsp; “ 5 nearly^ being on
ly the fir fl power of e and v.
Cor. 7. If n—dumber of the logarithm at then the number- of the logarithm a-\-bx-^cxx-\-dx^ amp;tQ.
--— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m '■ zznxinto i-i-mye. bx-{-cx'‘ dxi ccc. — X
-----------m^ --------------3 nbsp;nbsp;nbsp;nbsp;nbsp;/« bx-}-exx ccc. 4- — X bx-\-exx ócc. 4----------- X
__________2-3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2.3.4
4- amp;c. * 4- amp;c.
This follows from this problena, putting /—nt and J—See.
PROB1.EM LXXXVI.
zf ^problem being refolded analytically t to dcmonflratC • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;it fynthetically.
RULE.
When a problem has been folved algebraically, the demonftration of it is to be deduced from the fteps of the algebraic procefs ; by going backward from the end of it to the beginning; obferving how each ftep is formed from the foregoing, and forming your procefs accordingly.
SECT.
I
-ocr page 263-SECT.' vm.
7he Ktjclutwn of Equations ; and the extra^ion of their roots in numbers.
PROBLEM LXXXVIL
7*0 find the limits of the roots of an equation.
W'HEN an equation is propofed to have its root extrafted, it is proper to find the limits of the roots ; left we lofe our time in feeking the roots beyond thefe limits.
RULE.
Reduce the equation, that the higheft term may have I for its coefficient ; then fquare the coefficient of the fécond term, from which fubtraól twice the coefficient of the third term, then the fquare root thereof is greater than the greateft root of the equation. But the equation fhould be clear, of impoffible roots.
For that quantity is the fum of the fquares of the roots, by Prob. xl. Art. 9. and that fum, la greater than the fquare of any one root.
Or thus,
Subftitute feveral numbers fucceffively for the unknown quantity -, till at laft you find two numbers which give, one a pofitive, and the other a negative refult. Then the root is between thefe numbers.
'1 here are other rules among the writers of Algebra, which come nearer ; but then they are more laborious.
RESOLUTION of B. L t
Ex, I.
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ßx—2o:z:o.
Then 3x3 — 2 X—5 = 9 10=’9;
and \/i9—4 3,(5?f. Therefore 4.3 is greater than any of the roots.
£x, 2.
Suppofe XX—X—5—0,
If X—2, then the refult is 2—5——3.
If Ä' = 3, the refult is 6—5 = 4-1. Therefore the root is between 2 and —3.
PROBLEM LXXXVIll.,
L’o refolve a q^uadratic equation^ hnd extradi its root in numbers,
I comprehend all equations under the name of quadratics, in which are two terms involving the unknown quantity ; and where the index of one is double to that of the other. As in thefe,
nn -p bn = d nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
-f-ba^ — d
of’ -{-ba^ — d, èic, where b^ d, may reprefent any numbers, affirmative or negative.
Every quadratic equation has two roots, though perhaps only one of them will anfwer the queftion propofed. And to find thefe roots the equation propofed mull: be firft reduced, by dividing all, by the coefficient of the higheft term ; and then tranfpofing the known quantity to the contrary fide. Which done,'the equation will appear thus, oa-\-ba—d. Now add to both fides ibb the fquare of half the coefficient of a, and we have «a-}-ba-\-\bb—ïbb-f-d , where the firft fide is a compleal
-ocr page 265-Sea.Vin. • E CtUATIONS.
compleat fquare -, therefore extraét the fquare root, and ‘tbb-if-d , tranfpofe ib , then
—\b^\/\bb -\-d. So a becomes known, being either equal to —\b -f- \/'ïbb d , or to —\b—\/^bb ^d. Whence this
I R U L E.
The equation being cleared, compleat the fquare by adding to both fides the fquare of half the coefficient of the fécond term. Then extraél the root of both fides, which may be either -f- or — ; then tranfpofe the known quantity.
Note, If the abfolute number is negative, and greater than • the fquare of the coefficient j the equation is impoffible.
If ÜÜ A^bd z^d,
Then ß =: nbsp;nbsp;nbsp;nbsp;nbsp;-{-d — \b.
And the root extraéled in numbers gives a ; but if is leffier than d, and negative -, it is impoffible.
Ex. I.
If aa-\- — dhen nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—2.5-,
74-25(8.6168 èiC.
64
166 \ 1025 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i ‘
— 2.5
. .. J , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1 - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- - - -
i72i\29oo nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-6.1168=«
41/1721 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-;----
1454400 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 266-254: nbsp;nbsp;RESOLUTION of B-
Ex. 2.
Eet aa—()a~2’].
Then nbsp;nbsp;34^5/9 27 =
that is, Ær:;3 6r:9.
or nbsp;nbsp;a — 3—6——3.
Ex. 3.
Suppofe aa—2364=—1155.
Then ßzziiS , nbsp;nbsp;nbsp;nbsp;nbsp;—1^55;
that is, a —113 113 — 231
or 0 = 118 — I 5.
2 R U L lt;E.
When you have large numbers to deal with ; it is better to proceed thus. Clear the equation. And if aa ta~d,
, r then 0 rz -j—,—, the form.
V quot;4”^
To find the firft quotient figure, take -j, when è is far greater than ; or take v/^ when æ is d
far greater than ; or take when æ and are nearly equal ; thus it will eafily be found by a few trials. Or in general, take the firft figure fuch, that when it is multiplied by the fum of it-felf and it will produce the firft figure or figures of d, or the next lefs : this is all the difficulty. Then multiply and fubtradl as ufual, the remainder is the refolvend.
Then to continue the divifion ; you muft find anew diviforfor each quotient figure, thus. Add the laft quotient figure to the laft divifor (duly obferving their places^ for a new divifor ; fee how
-ocr page 267-Scft. VHI. EQUATIONS. iss' how oft this is contained in the refol vend, fet the anfwer in the quotient, and alfo add it to the di-vifor ; then multiply the whole divifor by that quotient figure ; and fubtraft the product, for a new refolvcnd. But when any of the figns are negative, the proper quantities are to be fubtraóled, in-ftead of being added. This work is always to be repeated for each quotient figure.
When any quotient figure is fo great that the produét exceeds the refolveixl, place a lefs figure in the quotient.
When you have got more than half your intended number of figures in the quotient, you may continue the divifion without adding the new quotient figures to the divifor.
Obferve, each quotient figure is to.be added twice to the divifor; once before multiplication, and once after ; juft as in extrafting the fquare root, and for the fame reafon. For this method extraits the fquare root, when b—o.
When one root is had, the other is found, by adding this to the coefficient b ; for the fum, changing its fign, is the other root.
This rule is the foundation of the method for extrading the roots of adfcéted equations.
Ex. 4.
Let öa4-32ß — 4644. then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4644
a ~---
Suppofe
4600
•^2— — nbsp;nbsp;nbsp;nbsp;too great for a.
■v/4644z:6o, which is alfo too great for a. Take 4600
—z:;, too great. Take « — 50.
32
-ocr page 268-R E s o L U T I o N c/ ' B-1
32
5®
82) 4^44 C50
54 410 •
136 nbsp;nbsp;544 ( 4
544 ---- ----1 54=«.-
Ex. ß.
Let aa ^^a ~ 28^4g^g4.' 28549994 0 —---------
35 «
Here 02=^/2 8 amp;c.. —5000 nearly.
35
,■ ßOOO
5O35\ 28349994 (5307 5300J 25175-“
1O335\ 31749
5077 31005
10642) nbsp;nbsp;nbsp;nbsp;74494
74494
Ex. 6.
Suppofe na—3307a “ -—184520.
, nbsp;nbsp;nbsp;nbsp;nbsp;—184420 nbsp;nbsp;nbsp;nbsp;184420
then azz----—- = --
—5307 « nbsp;nbsp;53^7^^^
Here a = zr 5 nearly.
-ocr page 269-Sea. VUL E A11Ö K §•. 53°7'gt; ÏS4520 (35=«-' ^30 15831 ’
M7
:. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5.277) 26210
' ■—26210
5242)
■quot; ‘ Ex.
Let zz r
~ a zz lt;
£ X gt;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;463 4-Æ*
lt;S3l 26S98 (51.855342 i
50 2ß6,;- nbsp;nbsp;nbsp;nbsp;ÛÛ34^ -
5^3} 104«
564) nbsp;nbsp;404,00000
4-1.8 45264
, - .565^8) /3i'.3bo0
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;28332.5.
.566-65) ■
4- 5__28335 .
566.70 nbsp;nbsp;nbsp;1940
i ;• • • Î 1700 '
■' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/ (' 240
■■ '1 nbsp;nbsp;nbsp;■ nbsp;nbsp;nbsp;nbsp;226
Geholt urn. '^'Vba-d-,
If a:^ 4-Put azi.xx, then and find; 4? as above. Then
S nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;by
-ocr page 270-25« RESOLUTION of B. I by extraóting the root. And the fame for higher equations.
To prove the truth of this rule. Let x j z amp;c. be the true value of a ; x the firft figure, y the fécond, and z the third, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then fince
aa-\-ha—d, the value of d will be
i Xx y z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t whence x y z Sic, or
_ Ziq-Æ _ ix èy 1/z x .y z ‘ * d
*Ibe operation, b \bx-\-by bz xx 2xy{x y z amp;c^ x)
-- -f-ZZ-l-iy'Z
I divifor b x} bx-}-xx
H-Jf jy
2 divif. Z'4-2^f4-7) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;refolvend
ZZ 2XZ
•--------- 2jyz
0' 2y;' jy
3 divif. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bz zz 2xz refolvend
27Z
Zst 2XZ zyz zz o
Here amp;c. being divided by gives * in the quotient, and x added to b, gives for the divifor, and bx xx for the produft, which fubtraéled j leaves the' refolvend by bz ^xy - -_)7 Szc.
Then in order to get the fécond figure y, the refolvend by 2xy yy icc. is to be divided by 2x4-j. Therefore x is to be added to the laft divifor b Xy to get the new divifor ^4-2x j'. This divifor multiplied by y, gives ^jy 2^9' 7Jgt; which
-ocr page 271-Sed.VlII. E (QUATIONS. ’ nbsp;nbsp;nbsp;259
which fubtracied, leaves ^z-i-2Xz 2jz-l-zz for the refolvend.
Then to get the third figure 2, it is plain, the refolvend èz-i-2xz-l‘2yz zz muft be divided by the divifor /gt; 2x4-2;)' 2, but this new divifor is Z' 2x 3' x 2, that is, it is the old divifor with x 2 added. Then this divifor multiplied by z, and fubtrafted, o remains. Therefore the root is rightly extrafted, and the rule true.
As I am upon this fubjeft, I Ihall alfo fliew^ the truth of the rule for extrafting the fquare root in Arithmetic, which is the cafe here, when ^=0,
Let x j 2 be the fquare, that is,
1 div. x)xx 2xj-j-jy-l-2xz 2jz zz(x }’ 2 x)xx
2X ) nbsp;nbsp;2Xj)' )'7 2X2 2jy2 2Z
ƒ gyy jy.y__________________
2 div. 2x ^) nbsp;nbsp;nbsp;nbsp;nbsp; 2x2 272 22
7 2 nbsp;nbsp; 2x2 272 22
3 div. 2X 27 2) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;o
Here x being the root of the firfi; term, Ît3 fquare fubtrafted, leaves the refolved 2x7 77 amp;Ci Then to find 7, the refolvend muft be divided by 2X 7. That is, to the old divifor x, add x-i~y for a new divifor 2x 7-, this multiplied by 7, and fubtrafted, leaves the refolvend 2x2 272 22. Again to find 2, the refolvend is to be divided by 2X 27 2 that o,remain; that is, to the old divifor 2X 7 add 7 2, the fum is the new divifor 2X 27 2, which multiplied by 2, is e-qual to the refolvend, fo that o remains ; and the root is x 7 2.
» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t
Sa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PRO-
-ocr page 272-ièo RESOLUTION- s/ B.1.
PROBLEM LXXXIX.
T’a ex trail the root of a cubic eq^uation.
I RULE.
Tàke away the fécond term of the equation, (by Prob, li.) which then will be in this form, a^-{-ba—d.
Then fubftitute numbers in either of the following forms, and extract the roots, by which means a will be found.
’ ' ' ^{d y/ydd db'. '
_ \--- 3------——■
id -\dd~^ i'^b^ quot;b i,d“-'^^^^‘^dd-\~'i’ib^»
Note, When b is negative, and greater than lidd, the equation is impoffible.
Ex. I.
Let —6x——9.
Here nbsp;nbsp;nbsp;—ß, d~—9, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tz.
3 - . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- ------_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3
and nbsp;— ï 3t = v^-— 1=:—i. Therefore
—2 0=:—I----—I—2——2.
—I
3 --------------- 3
lt;w \/—4I—3I = \/—8=—2, whence , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/rz:—1—2——3, as before.
-ocr page 273-Sea. VIH.
EQUATIONS,
'261
£x. 2.
ß’ 6a=2o.
Here d~2Ot and \/lud, V'^^ v^io8 z= i v/3 (Prob. Ixxii.) and \/*o ^Qg _ J—Whence
'*=1 ^/3 1—\/3 = 2.
Ex. 3.
Let o'—15«—4.
Here nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;d-^, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
\/-121 = 11^__
3 nbsp;nbsp;nbsp;nbsp;nbsp;____2_
And ^24-11^—1 — 2 4- nbsp;—I. And
\/T-—i*v/—I ±: 2——I.
Whence azz2-{-^_14-2——1=4»
Æx. 4.
Suppofe 0’4-24023587914.
Here b~2à^., d—s'^7'^9^’ \/{dd -7ib^ = 293957000878.
And ^40'4.29 amp;c. = 83. 7731. And
8
8^7^ = -0958 ; therefore
83.7731—.0958 = 83.6773.
Scholium.,
It fometîmes happens that the root may be found, though the negative quantity ^rb^ be greater than {dd ; and that is when the furd cubic toot can be extraóled. For then the irrational parts» in different parts of the equation, will deftroy one another, and vanifli ; as in Ex. 3.
S3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;To
-ocr page 274-RESOLUTION of B. I.
To prove the truth_o£_ this rule. nbsp;nbsp;Put
s- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. Then zz j —
—, and «î~f?__4- ~, , nbsp;nbsp;? bb
1 therefore —
27J’ -^d-i-r—
_ nbsp;nbsp;nbsp;4- nbsp;nbsp; rr — ^VZn
lïJf;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= ( reftoring rr )
—J--1 ; nbsp;nbsp;nbsp;nbsp;'dd-{-dr
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Tid-{-r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;» that
thefirft part of the And theƒe■Condpartis proved, by fhe win g that ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;It is plain {«/-pr x
t=.idd—rrz=.—therefore id—.r— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—
zz ~ Which was to be proved.
Some of the cafes of cubic equations may alfo be refolved trigonometrically by the table of fines. As luppofe the equation x’—px~to be given. By Prop. ^4, 25. Trigonometry, if r~ra-dius, j'x:fine of an arch j then 37__— s.^a the arch. And by Prop. 26. if x = cofine of an arch, then — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;of 3^^ that arch.
Thefe equations reduced give --~rrv —__
r c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘i
X fine of ■^ce the arch. And nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x
cofine of thrice the arch. Or putVmg y for either the fine or cofine of the arch, C for the fine or cofine qf thrice the arch j ’ then
-ocr page 275-Sefl. VIII. E Q^U A T I O N S. 263 being for cofincs, and — for fines.
Then, ƒ the given equation nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;jg
be relolved ; it muft be compared with the foregoing, and all the parts made fimilar in both. Therefore let the equation x’—'pxzz q, be denoted thus, —lRRx~ ^-îRRS, S being the fine or cofine of thrice the arch. Therefore ’RR—», and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Alfo j —|RRS — nbsp;nbsp;nbsp;, and
3?
Whence by proportion R
: : r : C 22 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the cofine or fine of an arch.
Of which, y is the cofine or fine of the third part.
Then y being found, it will be r :y : ; R
; X Z2 —p—, as required. Hence this
2 RULE.'
Take away the fécond term (by Prob, li.) if it have any ; and the equation will be reduced to this form, x? — px :r: nbsp;nbsp;?•
Then take ƒ- ::: the cofine of an arch (if it be q'), or the fine (if —j)- Find cofine or fine of i that arch ; then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— x re-
i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Y
quired.
And this laft arch may be either that we found» or, that 4-120’, or the fame 4-240°. By which means you will have three roots or values of j.
2 rq
But note, when —r— is greater than 1 , the: queftion is impoflible by this rule.
S 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;There-
-ocr page 276-2^4 RESOLUTION of B. f.
Therefore this rule fupplies the defeét of the firft rule, which only folves equations that have but one root real, and two impoffible ones ; whilft this rule folves fuch as have three roots real.
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex. 5.
X-e/ Æ’-.—lt;^ia——
Here nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and 1,015,
and if nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—*9^7^55—fine of 81° very
near; and the third part is .27, or 147, or 267”; whofe fines are, y — .453^9, or .54467, or ’—-99863 ; thefe multiplied by 11.045 produce 5.0004, and 5.9991, and —10.9998; thereforp the three roots are 5, 6, and —i-n,
Ex.
Suppofe X’—19x3=30.
Here /» = i9
3°» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5-033231
94112 - cofine of igo .
the third part is 6° 35', or 126’ 35', or 246° 35', whofe cofine is 7=.99340, or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or
—-39741« which multiplied by 503323, produce 4-99998« and -—2.99974, and —2.00024,. So the three roots are thele, 5, —3, and __2.
PROBLEM XC.
^0 refolve d biquadratic equation, by d’ffolving it into two quadratics.
Take away the fécond term (by Prob, li ), and Irt the refylting equation be x^-j-jx^q-rx-f-jz^o, Suppofe it to be generated by the two quadratics, XX-j-ex4-/—o, and ^x—Thefe being
-ocr page 277-Seâ. VIII. equations. 265 multiplied together produce nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-^=0.
—
Comparing the terms of this with the firft equation, we haveJ, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and/^z=n
whence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and confe-
quently nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, and/=---------. And
* ïï ^ï^^ ^*---
(fS—} nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And by reduftion,
4- qqee—rr—Q. nbsp;nbsp;Put y—ee, and then
— 4J
• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A cubic equation i whence
—4-f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*.
the following
rule.
To refolve the biquadratic equation x^~^-qx'^ -l-rx 4-jz;o. Talce the cubic equation y^ 2g)’y qqy—rr
—4J nbsp;nbsp;r
=0 ; out of which take away the fécond term (by Prob, li.) ; and find the root by the laft problem, or otherwife; and from thence find y. Then
r j4-re—— take e=:^y, and/-—---L and 2
Laftly, find the roots of thefe two quadratic c-quanons xx4-«4-/=0, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
the e wi be the tour roots, of the biquadratic ^44-jx‘4-rx4-J=o.
Example.
-ocr page 278-»^6 ‘resolution cf B.I.
Example.
Let
cubic equation y’-
5 y -i'7 nbsp;nbsp;nbsp;nbsp;nbsp;36qq__q, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fécond term, by writing ^4. Ç y. Anà we have ,,5 nbsp;nbsp;£93 nbsp;nbsp;_ 1150
3 nbsp;nbsp;nbsp;~ nbsp;nbsp;nbsp;nbsp;• And by Rule 2. Prob.
laft, ^=8:3333 amp;c. -sA whence y = 8 -
— ^5 i and f r: 5 ; therefore f — 60
^25 25-y nbsp;nbsp;nbsp;nbsp;nbsp;_ nbsp;-25 25 -
—6, and ƒ=---- nbsp;L -
6. Whence xx 5^_6=o, and 5^ 6 —o ; and the roots ot the former equation are i and —6; and of the latter, 3 and 2. Therefore the four roots of the biquadratic, —255^^4-60^^ —3^—0, are i, 2, 3, and —6.
Schol. But this and fuch like rules are of little value ; for there is far more labour here in getting the roots than by the method of converging feries, which is to follow.
PROBLEM XCI.
^0 extract the root of any pure power in numlers.
Let G be the number given to be extraded} w the root required, r the neareft root, and t the
-ocr page 279-Sea. vin. E CtU a T l O N S. 267
the remaining part of it ; then r-ps” — G, that
is (Cor. I. Prob, v.) r”' e 4- m.—— 1
m—z nbsp;nbsp;nbsp;nbsp;m—I m—1 m—Î nbsp;„
r «e m.---- . ----r amp;c. =G, and ^3
rejefting e’ and the higher powers, as very fmall 1
1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;CT—I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rn—I CT—2
have wr 4- »». ——r nbsp;nbsp;nbsp;ee zz. — r
and--------e 4- ee = —Hence »gt;—1 ra—2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m 1 m—t
m.----r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m.
this
I R U L E.
Let G =: abfolute number.
r — the neareft root yod can find. r e zz. the true root.
m — the index of the root.
2r
V ~ nbsp;nbsp;nbsp;nbsp;.
m—1
G—r___
m— I «—2 *
Then ^e4-«£ —D, or e —
Which equation is to be refolved by Prob. Ixxxviii. When e is had, then r4-e is to be taken for anew value of r, and the operation repeated, perhapsof-tener than once. This rule generally triples the number of figures.
But if the third power of e be taken in, then
CT—I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m—I CT—2 nbsp;nbsp;, fn—I »Î—2
wr e 4- m.-----4- tm.---- . -----
2 nbsp;nbsp;nbsp;nbsp;^3
^«—3«’ _Q—therefore
-ocr page 280-268
RESOLUTION ef
B. I.
fore ce^D—be, and ^'zzD^—bee, and
’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
m—z^—3 nbsp;nbsp;nbsp;nbsp;m—I ƒ«—2 w—Î
-------.-------r
xDlt;;—bee
3
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m—I
whence »ir
m—1 CT—2 nbsp;nbsp;, nbsp;nbsp;nbsp;—r
----r ee m.-- z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
—Df—bee ~G — r”‘, and rrlt;? —--5 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
GW —r
mr •’
«z—2
m—I DeH“-----ree-z
m—I »3—z, —---bee~
by fubftitution,(puttingFz=
■); expunge b and
n.^2 mr
_ m
G—r
X ---------
m—^ I —2
;a.-- 2
D, then rre nbsp;nbsp;nbsp;—- .
z
zr
m—I
■r--ree — z
eezzrY -, that is,
2
»3---2
tri'—I
m—2 ree — ----ree — rF, 3
m-i-i
that is.
this
whence
Let
• 2 R U L E, G zx abfolute number.
neareft root you can find, true root.
index of the root.
m
F =-
m—z'
Then
mr
zm—4
—-^.F
, . 6F
----—, nearly.'
“ I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m-f-i ’■
Which ,
Scâ.vin. eq^uatïöns. 26^
Which is to be folved as Prob. Ixxxviii, and repeated with new r, if there be occafion. This rule commonly quintuples the number of figures in the root, true ; at each operation.
The root of any number may alfo be extradied by Prob. Iviii, after this manner. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
3 R U L E.
Let P-|-P^,''be the number given to be extradied.
P, the greateft power contained in it.
Pj, the remainder ; and
the quotient, ^arifing by dividing the remainder by the greateft power.
», the index of the root. Then • ' ■
quot; —I . nbsp;nbsp;nbsp;nbsp;n—I
v/rq-fî = P’ -p —Xq--—
3»—I
Where A, B, C,
are the preceding terms. In this rule, when two or three figures are got, put them” equal to P ’, and begin the operation anew ; and the feries will then converge exceeding fall j and fo much Lfter as q is lefs. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
Cor. Hence it follsws, that,
for the fquare root.
3 -- ■ I ■ I » nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3 ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;T
✓I’ fj =✓? - A, By - Cj -
V/PW= v/P Aj-| By - Cy _ 11
Stc. for the biquadrate root.
-ocr page 282-27® RESOLU T I O N of j;
✓P Fj nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A,
•— Dj amp;c. for the fifth root. 20
.C^i' = PJ ^Aî—_ Ó nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y
Dÿ — èic. for the cube root of the fquare ; and fo on.
Ex. I,
IVhat is the £itigt;e root of 2.
Here G —2, r=:i, gt;«=3, by Rule i, —i.
n~-i- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;D
=-3333 i and
I- V 3333
H-2 / 24
1.2 ) . 0933 and r ^ = 1.26
Again, for a fécond operation ;
.Let new rzzi.26 ; then G—r’
m—i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.ooo;76
and m.----rxtarzz^.yS, and Dzz -
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J
.000099471, and becaufe e is negative here ,
1.2Ó—e
1.2600000
-ocr page 283-Sçft, VIII. EQUATIONS. • nbsp;nbsp;nbsp;5
£
i.26ooooo).ooóo9947io(—.000073950106
—1 ' . nbsp;nbsp;nbsp;88'951 ,
^'•2599300 |
1 1275900 10078816 |
1-2598520 -89 |
11970840 , 11338587 |
1.259843 |
. 63225^ 62g^ 2 I |
2332 1259 | |
r z: I .. z:—. |
73 26000 000078950106 |
v/ 2 = I . |
25992'1049894 |
Ex. Z.
ExtraSî the ßth root of 2327834559873.’
Firft point every fifth figure thus
23^7834559873. J.
Then for brevity’s fake, take only the firft period, as an integer, that is 232. Then proceeding by Rule 2, we fhall find 2iïHe root the greateft power contained therein i and thence, r=2, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----— — nbsp;nbsp;—
c-
232 G • ' ‘ m 3'^ ~ r 100 z: G—r
and
Whence
m—Ï
Therefore
R É S O L Ü T î O N' c/ • B. V g
Therefore 4!^ ?lt;?=:5, or e= ——-4 4-5) 5-00 (-92 =^- - 9 4 86 ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
5.4 ) 1400 nbsp;nbsp;nbsp;nbsp;whence ^=2.92 j
4-92 1264
6.32)-136 nbsp;nbsp;nbsp;nbsp;-
Suppofe again new rzztgo.
Then r’zz24^89ooo.
G - 2327834559873
zz 2051114900000
G—rs = 2y6yi^6ßC)Sy3
F = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
297.825e efzz2 269.2r7 ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2260 217
or f :z: ——Tquot;'’ ’ ' 297.825 5
■297-^25) 2269.217 f7.43375 .
7 nbsp;nbsp;nbsp;nbsp;2133 775
3°4-S25) 1354420
7.4 nbsp;nbsp;nbsp;1248900
. -312.225) nbsp;105520
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;9380
156
Whence r e = 297.4337, which may be tâ-ken for new r, and the operation repeated, » there be occafion.
-ocr page 285-Seót. VIII. E Q^U A T I O N S. 273
What is the y tb root of iqqqoo.
The neärefl root of 100000 is 5» whence by Rule 3d,
P P? = I0Ö000
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P = 78125
P? = 21875.
whence 5 = nbsp;.28amp;C.
And -ppj _j_ nbsp;nbsp;nbsp;nbsp;—— B7 —
21
.000
—IBy =. —024
zzl -p.004
amp;c. nbsp;nbsp;nbsp;»---------
5.204—.025=5.179
But becaufe this converges flow, take 5.179 the root, and involve it to the 7th power, and we have
P P7 = 100000.
P nbsp;nbsp;nbsp;= nbsp;99935-^^5^^73094
P? nbsp;nbsp;nbsp;= nbsp;nbsp;nbsp;nbsp;64.1347126906
Î nbsp;nbsp;nbsp;= .0006417587
5.179474S098 —130^
• 5-«794746792 =:v/iooooo. quot;I' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Schol.
-ocr page 286-274 R E S O L U T I O N of B. I.
Schol. I. If the root is required for only a few places of figures ; the eafieft way by far, is to ex-traft it by the help of logarithms.
Schol. 1. From the foregoing procefs, the rule for extrading the cube root in arithmetic, may be demon ftrated.
Let a-\-e be the root, a the firft figure, e the Iccond. Then the cube is ö’ ja’e jae' e’» then Ö’ the greateft cube contained in it, being fubtraded -, there remains 3a*lt;? 3öe*, fetting afide lt;?’ as being very fmall. Divide this remainder by 3, and we have a^e-\-aee., from which to find this remainder or refolvend muft be divided by aa-\-ae. That is, the refolvend muft be divided by the fquare of the root, and then to the divifor, there muft be added ae^ the produd of the root by the quotient figure ; and the whole will be the true divifor for finding e. But as was left out of the account; the root got this way will deviate from the true root ; and therefore you muft, after a few figures are had, begin the operation again, with the new root which you have already got.
PROBLEM XCII.
'To extras the root of any adfeSled equation^ in numbers.
Preparation.
Suppofe Ax Bx^ Cx’ Dx q-Ext amp;c. =:N. Put r-^e— X, r being the firft figure of the root; and to find r, put 1, 10, too fucceffively for X; .and the neareft value of thefe being found, try the intermediate numbers 5, nbsp;nbsp;nbsp;nbsp;nbsp;(^c. then expung
ing X, we have
Ar A.e
-ocr page 287-. Sea. VIII. E Q,U A T I O N S, 275
Ar -l'Ai? nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~ Ax \
ziz BxÄ* /
Cr’ 3Cr'^ 3Cr^f C^’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— Cx’ )=:N.
Dr 4Dr’^^-6Dr*e*4-4Dr^’4-De —Dx k
Sic. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Szc. nbsp;nbsp;nbsp;'
Sum P ae 4- bee ce'^ 4- Sec. zzN.
And ae ^ee ce' ^e^ amp;c. —N—P=:/.
Then fince e— nearly, we fliall have ƒ
ae-{-be y. —f. Or ae 4--t~f. From whence we fhall have this
I RULE.
— ---Lnearly.
a 4-a
Or, if more exaanefs be required, we may
bring in ee ; then ae-\-bee7z.fy whence this
2 RULE,
, f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;igt; re'-^de^ amp;c.
-r^4-« =-7-, or e nbsp;---—-----—•
0 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a-{-Ci nearly, to be wrought by Ixxxviii. Rule 2.
Or if be taken in for more exaanefs ; pro-ceed thus, besänd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
ae-{-bee-}-ce^zzae-{-bee 4-'je--whence
3 RULE.
-ocr page 288-276 RESOLUTION ef B-1-3 RULE.
b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f
to be wrought
ca ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;near;
‘’~b. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘’-'l
as Prob. Ixxxviii, Rule 2.
In any of thefe rules the o'peration muft be repeated after a few figures are had, by taking a new value of r, and proceeding as before.
£x. I.
Le/ I20x’ 3657x*—38o59xz:8oo7ii5.
By a few trials, you will find x to be greater than 30, and lefs than 40. Therefore fuppofe and 30 e—X the root fought, which being involved, and taking the leaft powers firft, as in the rule, we have
—1141770— 38059? nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A
3291300 219420? 3657?? nbsp;nbsp;nbsp;nbsp;nbsp;^=8007115.
324oooo 324ooo? io8oo?? i2o?’ J
Which being added,
538953o 5O536i^ i4457^^ i2Of’=8oo7ii5 and 5O536ie4-i4457e(’4-i2oe’=:26i7585. or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ae bee-\-ce^ —f.
Then to Ihorten the work, divide by 1000, and then 505^4-14// amp;c. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and by Rule i,
2617 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2617
e =---^ — 5.18 ; or rather e—--;-------x
5^5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;505 14x5.18
2617
——=4.53. Whence r e or xr;34.5 for a new operation. Which being involved, beginning at the higheft power firft, we have
4927635 42849? 4- 12420?? 43527441 252333« 3'^57«« — 13130354— 38059«
=8007115.
That
sea.vni. Equations. . That is,
79^7343î4quot;257i23e-|-i6o77ee — 80071’5^
whencr quot;‘57123^ 16077« =
i5,9932f_^£^ _
and by rule 2d, e — ^•473799 ‘5-9932 «’
I5-9932) 2-473799 (•*532=lt;f
4--I I 60932 •
16.0932) quot;8677^^ nbsp;nbsp;•
^5 nbsp;nbsp;nbsp;nbsp;812160 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;e — nbsp;nbsp;.1532^^,,
16.2432) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r ^=34.653®^*'
•53 nbsp;nbsp;nbsp;nbsp;4888B .
Rx. 1.
Let nbsp;nbsp;nbsp;nbsp;^z^—752:=:10000.
Here by a few trials z will be found very near
10. Therefore let r—10, and r e4-z.. Then
— 10000 4000e 4- 600« amp;c. 2
—32;‘=—300— 6oe— ^ee S=iocoo.
752= 750 nbsp;75^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J
Being added,
10450 4015^ 4. 597« ~ lOOOO.
or nbsp;nbsp;nbsp;nbsp;nbsp;4015e _j_ c^i^qee — —i{.5O
or nbsp;nbsp;nbsp;nbsp;6.725# .4. ee — — o
therefore e is negative, and by Rule 2.
e -
6,725 ^‘
T 3
6725)
-ocr page 290-RÉSOLUTION fl/ ^•7^5} —0-7537^9 (—0.114=^ ---- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--6625 ■ ■ /
6 625} ■—11
6.515) — ’4
— 9126
— 6515
— 26119
— 26004
— 114;
rr: 10.000 e——. 114
6.501
Again, put r —9.886, and r-gt;re~z ; then
9551-738507135 3864.753593824e
■—293.198988 nbsp;nbsp;— nbsp;59.316^
• 74J-45O nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;75^ nbsp;nbsp;nbsp;- nbsp;.
586.397976^tf nbsp;nbsp;=: 10000-, that 13 by addi-
—3
tion, 9999-9895f9‘35 388o.437593824« 583. i and tranfpofing,
388o.437593824? 583.397976^f=.oiO48o865.
, nbsp;nbsp;nbsp;nbsp;nbsp;.010480865
‘ = nbsp;- 3888';37=-°°°°°27oo95, nearly.
Then ^ ^—9.88600270095^:2.
£a;. 3.
Su-ppofe nbsp;nbsp;nbsp;-\-2iC)oy^—8000,)’* 11:3850000000.
By a few trials y will be found between 50 and ■ 60 i therefore put r~5o, and r ^zzj ; then expunge jr. Or rather thus : Since the numbers are large, transform the equation (by Prob, xlii.), by putting 5f— — V, or jgt;—lox, which done we have 7Ooooojf’4-2 looooojf’—8ooooox‘ —3850000000, or 7*’'-4-2ix’—8ä'quot; = 385oo. Then to extrad the root of this, put and r-\-e or 54-e=:x-, and being expunged, we have
Î1875
-ocr page 291-Seól. VIII. E Q^U A T T O N S.
21875 2’875? 4- §;5Ofe 1750?’2 2625 1575? 4- 315e? 4- nbsp;2J?4 =38500.
gt;— 200— nbsp;nbsp;80?— nbsp;nbsp;8e?
That is,
2 3004-23 37o?4-9O57??4- 1729?’= 38 500.
2337o?4-9O57??4-i729?’ = 142oo.
Then by Rule 3, -^—2711, -y=4461, whence 5.67 5? 4-?? = 3.0900.
S-^15'} 3-0900 (.5004=?
5
Again, put r=5.5, and repeating the operation.
35229.906254-32027.187^4-11646.25« y
3 93-875 - 1905-75 « 3 6-5 «e gt;nbsp;= 18500, — 242. nbsp;nbsp;nbsp;— nbsp;88. t
That is when added,
38481.78125 4- 338 -937^ - ”984-75
38500. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
33844.937?- -11934-75^^ — ’S-21H75
Then
Ii2252i=ooo5383 = i=lt; nearly, 33«45
Then Z- X —=6451, and ÇRule 1.) d
gt; ’,^-2’875------_ .000538198=?, more
33844-937 6 45’
exactly. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;d hen
f4-e = 5-50053^’9^ ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
55-00538198.
-ocr page 292-28o resolution of B. I.
The root may alfo be extrafted as follows. Having got ae-{-be'--\-ce^-\-de^~f as before dïreóled ; let v be the firft figure of the value of j the fécond. Then putting -y-j-j for a x‘^ 7 ■ ■
amp;iC. ~f that is, av-\-as-{-bv'--\-ïbvs iicz. cv^ nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. — f. And
amp;c. ~f—■ av — bv'quot; — cV^ Whence
f—av—bv’’—cV' ^z.
Whence this
Â-l-2Z'î;-l-3f'v‘ amp;c.
4 R U L E.
Having any equation given, proceed as in the other rules, till you get ae-\-bee-\-ce^-\-de‘gt;'i!C.z. —f. Then find by repeated trials, the firft figure «y, of the value of e, fo that v x a ^y-fr'y^ ^'y' amp;c. may be nearly =:/•, and take that produól from ƒ, to find the remainder.
Then to find the next figure or figures ; divide this remainder, by a zbv ^cvv 4dv^ amp;c. the quotient is the faid figure, which mull be added to Vf for a new value of y. Then repeat the operation with new y, viz. take y xlt;^ i^y fy''-l-z/y’ amp;c. from ƒ, and divide the remainder by a a/’V and add the quotient to laft y ; and fo on.
And note, after the divifor once takes place, each new quotient may be continued to near as many figures, as all the preceeding ones. Alfo in the divifor, you need not continue the parts of the divifor zbv, ^bv’- Src. any farther in decimals, than to anfwer the number of figures, you would have true in the root.
Genera^.
-ocr page 293-Sea. VUL EQUATIONS.' 281
General form.
D =: — or v — nearer -, or 1; =: a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a-\-bv
J,----, nearer ftiU-, then, next figure
_ /—av—bv^—cv'^
nbsp;nbsp;nbsp;amp;c.
4.
£#ƒ «^—172* 542=3 50.
Here 2 is. greater than 10, and lefs than 10, Let r=io, r e—Z’^ then
1000 4- 300e -I- 3oc‘ f’ 7 '
—1700 — 340e — i7ef z = 350.
that is «4^ *3^^ nbsp;nbsp;nbsp;= 5‘ö'
To find e^ try i, 2, 3, ör. and you will find
e very near 5, hut fomething lefs. Therefore take 'ü:=5, and i; X ö4-^‘u4-c'i''' =5X144^654-25 = 520, and 510—520=—10, then a-|-2Zgt;'u4-*3r'V*=2i9, and
-IO
7:9=-°'’5
'ü=5.ooo — -045
^=4-955
Let new 'i;=4 95 ; then a4-^'y-l-r'u''X ti — 509.119875, and 510—509119875=0.880125. Alfo a 4- ibv 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Whence
0.880125 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
and ^=4,95407 -,
' nbsp;nbsp;nbsp;- nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
-ocr page 294-282 RESOLUTION of B. I. whence 2'^14.95407. Or, if you pleafe, put î'=4.95407 for a new operation.
5-
Let 2**—i6jf’ 4OJf’—30.»——J.
By a few trials, it appears that x is between r and 2. Therefore put r=i, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then
expunging x,
2 8e nbsp;nbsp;nbsp;nbsp; 8lt;ft 2en
The fum is
—4 loe 4ee — 8e’ 4- 2e zz—r or loe 4ee — 8e» 4- 2e'» =3
Here we have e zz — zz.3, or more exadtif
io4-4e II.2
Then for the next figures of the root ,
X a-^-bv-^-cv^ dv' =2.73893, and 3— ^.26106. Alfo ö4-2Z’'y4-3r'y‘ 4^'y’ = io.598, and
a I 06 ---0 = .0246 10-598 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
v~ .26 then e= .2846
Take new vzz.2846, then 'yX4 4-^-ü4-c'v*4-z/‘y’ ZZ2.99869539, and 3—2.99869535 — .00130461. Alfo lt;1 2^'’^ 3^'^*-4-4^'1’’ = 10.51728. Then z
.00130461
-ocr page 295-Scél. Vin. E Ctu A T I o N S.
.00130461
—■ nbsp;--- — .00012404
.2846 = V
.28472404=^, nbsp;nbsp;nbsp;nbsp;■ nbsp;nbsp;nbsp;nbsp;.
whence r e or 1.28472404.
The roots of equations may alfo be extraded by help of the Rule of Falfe Pofition in Arithmetic, as follows.
5 R U L E.
In fuch equations as contain furds, exponential quantities, make two fuppofitions in numbers, for the root, as near as you can get them. Then each of thefe being put in the equation inftead of the root, you muft mark the errors (that is, the cxcefs or defed) arifing from each of them.
Then multiply the difference of the fuppofed numbers by the leaft error, and divide the pro-dud, by the difference of the errors, if they are like, (that is, both exceffes or both defeds) ; or by the fum, if unlike. Then
The quotient is the corredion of the number belonging to the leaft error ; and is to be added if that number was too little ; or fubtraded, if too great. This gives the root nearer than before.
In like manner try this root, and the neareft of the former, or elfe rake a new fuppofed number ; then find their errors, and proceed as before, and you will get a root rtill nearer. And thus by repeating the operation, you may continually ap, proximate, as near as you will, to the true root.
Ex,
-ocr page 296-284
RESOLUTION of
B. I.
Ex. 6.
Suppofe X = 100, to find x.
By the nature of logarithms x x log: * = log: 100 = 2.
Here », by a few trials, will be found greater than 3, and lefs than 4. Suppofe x=3l j then /.•x=.5440680, and x/;x = 1.9042380, which Ihould be equal to nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
—.0957620 =iEr. too
Kttle. .
Again, fuppofe *=3.6, then /.■«■=.5563025, and xZ.’x=2.0026890
2
.0026890 = 2Er. too great.' Hence we have
I num. 3.5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I er. —.095762
2 num. 3.6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 er. .002689
diff, o.i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fum .098451
0.1x002689
A nen ---------= .002 7 9 z: cor.
i'-0^845 nbsp;nbsp;nbsp;• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' ,
2 num. 3.60000 correct. —.00273
3-59727=*-
Again, fuppofe * = 3.597, then /.•*=.5559404, and */.xzzi.9997i76, which fubtrafted from 2, gives —.0002824 the error, too little. Whence
2 num. 3 6qo, 3 num.
diff. .003,
2 er. = .0026890
3 er. x: — .0002824
fum .0029714
Then
-ocr page 297-'Sca.VllI. E Q^U A T I O N S.
285
„ nbsp;nbsp;.003X.0002824
the cor.
3 num. 3.597 cor. .000285
* = Z'59T^^5 required. £*.
If s ie the fine of an arch z, rad. = i , and 4^2=5, /o find s and z.
By divifion 520=1.25. The length of i degree is =.01745329 ^c. nbsp;nbsp;nbsp;nbsp;nbsp;a few trials, we may
find z between 70 and 80 degrees. Suppofe ' z=70 de^. then .01745x70 = 1.2215-, alfo S.70 =.939=5, and 52=1.1469, and 1.25—1.1469 , =.1031 the firft error, too little.
Again, fuppofe z=75 deg. then .01745x75 = 1.3087, and 5=.966, and 52 = 1.2642 -, and 1.2642—-1.25=.0142 the fécond error, too much. Hence
I |
num. 70 |
I er. —.1031 |
2 |
num. 75 |
2 er. .0142 |
5- |
fum .1173 | |
Then |
5X-oi4^ •1*73 |
•“7’° z V = ----—.00 the cor. .117 |
2 |
num. 75.0 | |
■ cor, .6 |
z _ 74.4.
Again, let 2=74.4 — 740 . 24”, 5 = . 9631626; then .01745329 X 74.4 = 1.298524 , and 1.2985245=1.2506895, from which fubtraft 1.25» then .0006895=30 error, too much.
2 num.
-ocr page 298-2S6
RESOLUTION of B. I.
num. 75
num. 74.4
2 er.
3 er.
•0143937
4-,0006895
diff. .6
.6x.0006895
Then ---------
•01331
diff.
rz.0310.
•0133^05
3 num. 74.400
— cor. .031
and z = 74'369 = 74’ : zz : 8quot; and s
Scholium.
There are alfo other ways of extrafting the roots of equations, though not much different from fome of the foregoing ones, particularly a method of Sir I. Newion'Sy which is like the procefs ufed in the fécond method foregoing; the principal difference being, that he every where takes a new letter, where we find a new value of e.
Alfo furd or tranfcendental equations, may be refolved by reducing fome of the quantities to infinite feries ; proceeding by the rules of Seét. VL
In equations, where the terms involve a great many faétors, which makes it tedious to multiply them together ; it will be a fhorter way to add the logarithms of the feveral faftors together ; and then find the number belonging, which will be the numeral coefficient of that term. And thus all the coefficients of the particular terms may be found.
We may note, that though the third rule converges fafter than the reft ; yet, as there is fo much trouble in finding the coefficients, and di-vifors, it will be found not fo expeditious as the fécond, or even the firft.
In
-ocr page 299-Scél. Vni. EQUATIONS. 287
In making ofe of the fécond role, after half the number of places are found for the value of e\ it will be needlefs to form new divifors ; for the reft of the figures will be as truly found by plain di-vifion. For what is added to the divifor, in places fo far back, does not at all affedt the quotient.
The root may alfo be extrafted as in the following problem, and the coefficients by Cy amp;i:c. found as there direâed ; which is a compendious method, when the equation confifts of many terms.
PROBLEM XCIII.
To extrabî .the root of the infinite feries Az-f-Bz’-}-Cz’-FDz -FEz’ amp;c. rN, in numbers ; fuppO' fing this /tries to eonverge faß enough.
Preparation.
Take r as near the root z, as you can find it j and let r e::zz, and z being expunged, we have
Ar -1-Af
Br*-F2Br5
-FCr’-FgCr'r -F ^Cre* -F Ce’
-FOr -F4Dr’^-F 6Dr*e‘-F 4Dre’-F De* -
-FEr’4-5Er'’^ loEr’e^-F ioEr‘e’-F5Ere*-FEfi’ amp;c.
' the fum
P -F «lt;? -r /»e* 4- ce^ -F nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— N
and ae -F bs^' -F ce^ de^ -F^lt;?’3zN—'P—fi Whence this
R U L E.
Take r very near z, and let r-Ff~z, then fub-ftituce the powers of rq-e for thole of z, till you get P-F«eq-^^‘-Fre’ amp;c. ’ =:N, and ae-{-bee :=N—which equation is to be refolved by Prob. Ixxxviii i or elfe the equation lt;2e-F^«’-Fre‘
Jfde^
-ocr page 300-488 RE'S O LU T ION of B. I.
-i-de^ Zit. —f, is to be refolved by fome of the rules in the laft problem, and the operation re-, peated if there be occafion.
And here the coefficients 0, nbsp;nbsp;nbsp;c., d., amp;c. are
moft eafily had from the terms, which compofe the value of P; for we have P=Ar Br*-l-Cr’ Dr* amp;c. Whence
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Zit.,
r
Br‘ 3Cr’ 6Dr* ioEr’
“ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rr
Cr’ 4Dr‘* ioEr’ Zic. c = ----------, and fo on j where
the numbers in fl, are i, 2, 3, 4, in i, 3, 2x3, 2X5, 3x5, 3X7^ 4x7, 4x9, ^c. in rm, 4, jq, jj, It Zic. where p, q, r, s, t^ Zic. are the foregoing terms. And in finding a, bi Ci Zic. yoM muft go through all the terms, till they grow very fnaall, and at laft vanifh. But you need not find above two or three of thefe coefficients fl, bi Ci amp;c. and each fucceeding one may confift of fewer places of figures.
Example.
, ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
M nbsp;nbsp;nbsp;nbsp; ^5^
amp;c. =
Here by feveral trials z is found nearly ) therefore put and r e=2. Then P=A-1-Br‘4-Cr’ amp;c. that is,
rz:
-ocr page 301-Sea. VIll. E QJJ A T 1 o N S.
289
»■=•333833
T4örs= . nbsp;34
—‘r»=:—055555
—xV*=— nbsp;5‘4
, „6— nbsp;nbsp;nbsp;'i-
•339539
—.056071
P— .283468.
•333333-*-*î”æ . nbsp;nbsp;nbsp;“ nbsp; 18516— nbsp;^056
then a— 4, ijq — 12
J
•716523. Alfo
■-'•055555 -018516 ■ nbsp;— 3084 nbsp;nbsp;340
^ =- nbsp;nbsp;30 nbsp;nbsp;__
) d
—*358 3' Hence
.352019
—.11317^
—.058669 .018856
I_____
I
•283468 .71652^—.3583«e_..
and nbsp;nbsp;.71652e—.3583ee=:.oo2 246
and i,9998e—ee zz.00627
.QO6^'J
1.999) «006270 (.00314=^
— 3 nbsp;nbsp;5988
1.996 nbsp;nbsp;nbsp;nbsp;282
199
83
79
Then
4
-ocr page 302-RESOLUTION af B. 1.
Then r = -33333 e zx .00314
Z =. .33647
or put rzx.33647 for another operation.
Scholium.
If the fériés breaks off, then it is no matter whether it converges or not. And in that cafe it coincides with the laft problem, and may be folved by any of the rules therein.
And if e be very fmall, the equation ae-{-iee-\-ce'' amp;c. may be expeditioufly folved by Prob. Ixii. Rule i, in which you need only ufe the three firft terms ; which will be fliorter than taking new r. But that rule cannot fo conveniently be applied to the given feries, becaufc it does not converge fo fall as this.
problem xciv.
To extrafl the root in numbers of the infinite feries ■A-Z-J-Bz’-I-Cz’ Dz’ amp;c. zxN j nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;it
to converge faß.
I
Preparation.
Take r as near the root as it can be found by trials, and put r-j-e—z, and expunging z, we fliall have,
Ar 4- Ae
■kB»'‘4-3Br-^-t- ßBrre q-Be’
Cgt;'’4-5Cr*ff4- loCr’f^q- loCr^e' -j-^Cr^^amp;c. ') 4-Or7-(-7Dr^(?4-2iDrîe^q-35Dr ^5 4. 35Dr!f S —ÎS. ■4-Er9 9ErSe-P36Er7rf-i-84Er-tfgt; 4-i26Er'£A
the fum
d’-'te -4- nbsp;nbsp;nbsp;nbsp;nbsp;4- ce' -\-àe^ SiC, =:N.
and
-ocr page 303-Seft. VilL E (QUATIONS. 29t and ae-\-bee-\-ce'^de^ amp;c. —N__P—ƒ.
Whence this
rule.
Aflume r by trials very near z, and r f —z then fubftitute the powers of r-{_f for jr, (}, ’ given ferles, till you get P fle4-Z’f' f/amp;c.
And nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. =N—P=/.
VVhere P^AripBr’-j-iCr’-j-Dr’-pEr® SiC-
— Ar4-3Br^ 5Cr?4-7Dr7 ^c.
(I «.lt;■• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' ** nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*■ nbsp;nbsp;nbsp;■ I .1—1 I »—
r
, _ sB^' ioCrs iiDr 0i:c. o — .........—---
rr
B^’ ioCr’ ggPr amp;-C.
amp;c.
Where the numbers cf æ, are i, 3, nbsp;nbsp;nbsp;7 ^c. of
3» 2x5, 3x75 4x9, 5x11, 6x1’3, eff. And each feries is to be continued till rhe terms become very fmall and vanifh -, which will happen in a little time, becaufe the given feries converges. The terms of a, b, c, are eafily had from the terms of P, as above, without much labour -, then having got ae bee-{‘ce'^ amp;c. zz/, in numbers ; find the root e, by Prob. Ixxxviii. or by fome of the rules in Prob. xcii.
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;9 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Q JS
jj’’ yffSJquot; =.698.32.
The feries abridged will be y 4- —
U2 nbsp;nbsp;nbsp;’ nbsp;nbsp;\
-ocr page 304-resolution of nbsp;nbsp;B. I.
amp;c. =698132; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;s, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the
numerators. By a few trials, y jj nearly =.6, put rzr.6 ; then
r zz |
600000 |
r =. |
600000 |
= Ar |
Oj—: |
.108000 |
3)0 = |
36000 |
= Br’ |
R = |
29160 |
5)R = |
5S32 |
= Cr-gt; |
S = |
8748 |
7}S = |
t249 |
= Dr^ |
T = |
2756 |
9)T= |
306 |
ôec. |
V = |
893 |
1 i)V = |
81 | |
w= |
^9 5 |
i3)W = |
23 | |
x= |
9^ |
i51X= |
6 | |
Y — |
3i |
t7)Y= |
2 | |
ïzz |
11 |
t9)Z = |
I |
•643500=?.
Then a = i.25OO, the fum of the firft column divided by r. ^=.585 ; whence
.643500 1.250e .585?^ =.698132 and 1.250^ nbsp;nbsp;nbsp;nbsp;nbsp;=.054632
and e = ----- = .043 nearly.
*25
— •°64632
and .=:2546^- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;---------
1.2500 .585x043 nbsp;nbsp;nbsp;I.25OO4-.O25I
~ ~~\2']5 —.04284 more exactly.
add r — ,6eooo
.64284 = y.
or take new r=.6428 for another operation.
PRO-
-ocr page 305-Seót. Vin, EQUATIONS.
293
PROBLEM XCV.
To extraa the roots of two given equations, containing two unknown quantities x, y ; though never Jo compounded.
RULE.
By feveral trials find two near values of x and y, viz. r and s, and put r e—x, and And inftead of the powers of x and j», put in thofe of r-i-e, and Jd-t;. Then involve all furds by the binomial theorem (Prob. Iviii,), alfo reduce logarithmic quantities to feries ( Prob. Ixxxiy, Ixxxv.), and the like for all compound quantities ; fo that at laft the equations may con-fift only of fimple terms. And in doing this, re-jeft all powers of e and v above the firft, and alfo their produis.
Then you will have two fimple equations of e and V, which being refolved, will give their values -, and from hence x and y will be known. Then put new r and s for thefe values of x and y, and repeat the operation, which may be done as often as you pleafe, till you get the roots as near as you have a mind. And the fame form may ftand and ferve for all thefe operations.
Ex. I.
Suppofe ^yy—xx d--—lo—b
V jjy-l-2X
----r- = 0.096334:.
Let a — i. And by fome trials we find x near 4, and J near 13; then put r— 4, Jz=i3, anti by involution, and putting r-j-s for x, and j-py for V, \vc have
ss—•
-ocr page 306-294 RESOLUTION of ß. I.
JJ rr-t-zj.^.—2re^ 2rj~ ~2rÜ4-2jÿ X
2J'i'4-ßr-|-ßf zzb and
j4-îgt;
but JJ—rr^2sv—iré^ — \/is—rt .u Jy~^-\/ JJ—rf
and JJ ar ”2jii 4-7e““« — nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;__ 2J'v-l-ag .
y/ss-irar 2X JJ ^r »
alfo rr4-jj4-2rf4-2J%)^' = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
ÿ' n-j-ss'
put dd~s's—rr, ff~ss-{-ar, gg~ss -\-rr Then we
I T , —re nbsp;nbsp;nbsp;--------- 1 ïsv ae
have rfd — 2rj 2rv 2j(?x T--—
__ƒ_____llf___
T_ , nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;, . r ars s 2r zrss
7—-7;gt;'' 7 t~ fgt;
re j-ü
;y'' ^ ^ -y-‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Jd-î?
re-}-5'0 S
z= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Put t—r-\-g, Izzlog-.t.
m. =.4342945, then ( Prob. Ixxxiv. ) l-V _ jjd-fy, which reduced, is (2)'
_
;«re msv — tg Y. es—l • nbsp;nbsp;Then numbers being
— . , fubftituted in thefe two equations, give
(i) 1.588^ 1.075'v =—0.190
(2) 7.643^— 17.33261; = 0-59536 i
And
-ocr page 307-Sea. vin. EQUATIONS. 255
And thefe equations being refolved , give —-0743, and v——.0671 ; whence r e or *’ = 3 926; and jq-t; or 7 = 12.933.
Or for another operation, pur r = 3.926 and
J~12.933, finding new values for and Z, you will have two equations, which will give e and v more exaaiy.
ÊX. 1. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■.
Let }(-\-log:y~b = 8.7679114.
0«^/ y-\-log-,x — c = 3.4760046.
By a few trials, we find x nearly =8, and y~2i. Put rzz8,' andrq-e=x -, alfo s — nbsp;nbsp;nbsp;and
Alfo M=.4342945 -, then we have
^^^rq-Ê-pZ.jq-—(Pr* 84-?
and j-i-'ü-p/.-rq-e —czzjq-tiq-Z.-rq-—.
Thefe equations reduced become
M'u s
Me — —c—J
—hr.
Knà. put into numbers are
eq-. 17371; - .3700. and i;q-.0543e ~ .0730.
Which equations being refolved give e='3^°^’ and ^■=.O535-, whence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
r — 8.0000 q- e = .3608 x = 813608 |
J = ^.S V — .0535 y ~ 2.5535 nbsp;nbsp;. Again |
290 R E s o L U T I o N,’ àfc. B. I-Again, put rzz8.36o8, and J —2-5535» for a-M nother operation i whence will be found — —
M
.170078, — = ,051944; and b—r—h s .0000245t c—s—l:r~.ooo2^6it 2nd from thence will arife thefe two equations,
.1700781; ~ .— .0000245, and -y .051944« = nbsp;nbsp;nbsp;.0002568.
Which being relolved, give «=-.0000688, and 'y=.ooo26o4 i thereiore
r— 8.3608000 «=—.0000688
•’ = 2.5535000
.0002604
}(= 8.3607312
•gt;' =2-55376o4-
SECT.
-ocr page 309-SECT. IX.
The geometrical ConfîruSîion of Equations^
ThE confiruSiion of equations, is the drawing right lines or curves, after fuch a manner, as by their interfeélions, to give the roots of the equation propofed. This method is ufed for a-voiding the tedioufnefs of computation ; and is exaft enough for finding two or three of the firft figures of the root, but not more. For where great exaéfnefs is required, we are not to truft to a conftrudtion by lines ; but make a computation in numbers, to find the root.
In geometrical conftrudlions, the fimpleft is always to be made ufe of, or that by which we can come the (hortell way, to the roots of the equation propofed.
But fince the extraftion of roots by converging feries, is now brought to fo great perfedtion -, geometrical conftrudlions are almoft laid afide. Therefore 1 intend to trouble the reader only with the fliorteft methods of conftrudling equations as far as the fourth power. When we come to higher powers, there is fo much trouble and difficulty in drawing the lines proper for them, that their interfec-tions cannot be depended on ; and one may fooner extradl the root in numbers.
PROBLEM XCVL
To confiru^ afmple equation.
R U I, E.
I. When there are feveral fimple quantities, con-nedled by the figns -f- and —. From a certain point.
-ocr page 310-298 CONSTRUCTION of B. I. point, draw a right line, from which point fct all affirmative quantities one way, one adjoining to another ; from the laft point, fet all the negative quantities the contrary way, adjoining to each other as before. Where the laft ends, the diftance from thence, to the firft point, gives the fum (or difference) of all; which is affirmative or negative, according as it lies on the affirmative or negative fide of the firft point affumed.
2. When you have the fquare root of two quantities, find a mean proportional between them, by Prob. 16. B. VIII. Geometry.
ÿ. To reduce two compound quantities to the fame defignation. By Prob. 15. B. VIII. Geometry, find one or more proportionals thus ; fay, as the firft letter of the firft quantity, to the firft in the fécond, fo the fécond in the fécond to that fourth proportional. A-gain, as the fécond letter in the firft quantity to the third letter in the fécond ; fo the fourth proportional laft found, to another fourth proportional. Proceed thus till all the letters in one quantity be exhaufted.
Note, when any term is of too low a di-menfion, make i to be one of the faflors, as oft as it is wanted. And when you have fe* veral fimple quantities, add them into one, by Art. I.
41 For many compound quantities, reduce them all to the fame defignation by Art. 3.
Ex. I.
Suppofi a-\-b—c—X.
Fig. Draw the line DAB, and from the fixt point 3 A, fet off ABzz/2, and make BCz:^, both forward; laftly, make CE— c, backv-'ard. Then -f-AE—X. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ex.
-ocr page 311-Sea. IX. Ç Q^U A T Q IS S. 2^^
Si6, Q.. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Fig.-
if/ ax~igt;c, to f,iid x.
Make AB (a) : AC (^) ; ; AD (lt;•) ; AE 4. =:x, lt;by Prob. 15. Geom.)
£x. 3«
Suppofe labcx — ßdef^.
Make as 2a ; ßd : : e : m (Pr. 15. Geom.) and ; f ■. '.mzn and f : nbsp;nbsp;nbsp;nbsp;; ; » ;
then 2abc ‘.Çfdpg : ; e : p and 2aigt;cp~ßdefg — 2abcx
or
Ex, 2^,
Let abx—f\/bc y.x — dd\/ac—bd.
Prob. 15. Geom. make a : b : : d ; m i then W zz.am \ and $/ac—bd — \/ac—am^ make f—?«—», then ac—bd — \/an. Find p a mean proportional between a and », and a mean between Zgt; and f, (Prob. 16. Geom.; then the given equation becomes abx—fqx—ddp.
Reduce thefe three terms to the fame defig-pation, thus axf-.z q: r, whence fq—ar^ in in like manner dd~as -, then the equation is abx—arx—asp, or —rx—sp. Put —r^tt then ixz:zsp, and t ; s : : p ; x required.
5.
Let 2abcdd—ecfgh4- '^kllmn—^qrstz—ßnoplz, to find z.
Reduce all the quantities to the fame de* fjgnation, then
-ocr page 312-300 Pig.
CONSTRUCTION of B-1»
4.qrsx — s^opl 4qrsiv — 2abcdd ^qrstw ~ eofgh ^qrsty — -^kllmn. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;• .
then the equation becomes
4 jr j/7;«—i^qrstw ^rsty—^.qrst z—4^^ J xz. that is, /-ü—tw-\-ty — tz—xz Put 1?—w jyz:A, t—x—B, then A/rzBz, or B : A : : / ; z.
PROB. xevn.
1b conßrudi a quadratic equation.
1 RULE.
If it is a pure quadratic ; reduce the quantities concerned therein to the fame defigna-tion (Prob. xcvi. Art, 3.) by which means furds will be denoted by fimple quantities, and at laft you will get all the known quantities equal to a known fquare, whofe fide is the root.
Ex. r.
Suppofe yy-ai—y d s/m—Fc.
Make b : c ; : d : w, (Prob. i 5. Geom.) then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and -y = ^-^-md.. Alfo
make a : b : ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;be—an -, whence
Jiy—ab—md-{-d'^ aa—an.
ƒ be a mean between a and a—n, ^6. Geom^) then \/aa—a«—».whence yy—ab—md-\-dp,
Let d : a : : b -. q, then ab—da.
then nbsp;nbsp;—dq—dm-{-dp.
Ηand find j a mean ctween^/ and rj then yy=zdr=:ss, andjv=:j.
Ï R U L E.
-ocr page 313-' Sea. IX. EQUATIONS. 301
2 RULE.
In adfeéled quadratics, reduced to this form 5, aa±ba—nn. Draw a right line AD, then take any point C ; and make nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;towards the
right hand if or towards the left, if —b. Ereft the perpendicular BF~». From the center C through F, defcribe the circle AFD,' to cut AD. Then (BD, BA) the diftances of B, from the interfeftions A, D, are the two roots, the affirmative to the right hand, the negative to the left of B.
Ex. 2.
. Igt;et 004-3«= IO.
Draw the line AD;' make CB = ii on the right -, find a mean proportional between i and 10, fet it in the line BF, perpendicular to AB, with the radiusCF defcribe the circle AFD; then «=BD=:4-2, andö=BA=—5, the two roots required.
Ex. 3.--
Suppofe aa—3« = 10.
Draw the line AD, make CB (on the left g, of C) =14, find a mean proportional between 1 arid IO; at Bereft the perpendicular BF, and make BF= the mean ; with the radius CF defcribe the circle AFD j to cut AD in A and D ; then a=BD = 4-5, and «=BAz:—2, the roots required.
3 RULE.
In fuch quadratic equations as may be re- 7. duced to this form, aa^bazz.—nn. From any point C as a center, in the right line BD, with radius {b^ defcribe the circle BFD, ereft a perpendicular at D o.n the right, if it be -^b^ or
on
-ocr page 314-* CONST.RUCTION of B. I. jpig. on the left at B, if it is —b ; whofe length is 7. BA=:». Through A draw AFG parallel to BD, to interfeél the circle in F and G ; then AF and ÄG are the two roots of the equation ; which are affirmative, if they lie towards the right hand from A ; or negative, if on the left.
Note, if the parallel docs not cut the circle, or touch it, the equation is impoffible.
Èx. 4.
Suppofe aa ya——to.
g. With the radius 34, and center C, dele ri be the circle BFD. At the end of the diameter D, on the right, raife the perpendicular DA, a mean between i and 10. Through A draw AFG parallel to the diameter BD, to cut the circle in F and G ; and AF, AG, being on the left from A, are two negative roots : fl=AF=—2, and a—AG——5.
Ex. ß.
Let aa—quot;]a——10.
With the radius CBzxg?, and center C, 7' dcfcribe the circle BFD ; at the end B, of the diameter BD on the left, raife the perpendicular BA, equal to the mean between i and IO. Through A, draw AFG parallel to the diameter BD, to cut the circle in F and G j then AF, AG, lying on the right hand from A, are the two affirmative roots; and ö=:AF — 2, and ö = AG=:5.
4 RULE.
When the unknown quantity is higher than the fquare, and the index in one term double to that in the other; it may be brought to fome of the foregoing forms, whofe higheft term is a fquare.
-ocr page 315-Sea. IX. E Q^U A T I O N S. 303 a fquare. Aflume an unknown quantity, whofe Fig. radangle with fome given quantity, is equal to the fquare of the unknown quantity propofed 1 for this fubftitute that redanglc ; and you will lt;nbsp;have an equation as required.
Ex. 6.
Let nbsp;—izzz^u.
Affume dx—zz, then by fubftitution, ddxi
—bdx—n, and --jX —-r-.. Let u : nbsp;nbsp;:
« ad
i '.p-, then b—dp -, alfo make J : « : : i : and ; I : : J : r, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;; 1 ; r, and
ddrzzn. And the leaft equation becomes
—~d ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;XX—px~r, which«
to be conftruded by fome of the former rules.
To demonftratc thefe rules. Let aa-\-ba ~nn. Here we have CB —IZquot;, BFr:», and if BDzea, then CD or CFzza4-^^, and CF‘=:CB‘ BF\ that is, «-f-îZ» =.ibb n». But if BA——then CA or CF =—a—'b^ and —a——-^bb-\-nn. In both cafes aaq-ba—rm.
Again, if aa—ba—nn, we have as before 6. CB — [bf BFz;«, and if BDzea, then CD or CFcx«—\b, and a—zz-^bb-\-n.
But if AB=z—a, then AC or FC=—»
and —«4-jZgt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quot;m both cafes
aa—ba~nn.
Again, if aa~ba—~nn-, he/e — and AG —BD—/YF, therefore if AF-Æ, then AGr;;^—a , and AG X AFrcAB*, that is, Z—ay.a~nn.
But
-ocr page 316-30 CONSTRUCTION of B. I-Fig. Bur if NG—a, then AFzzBD—NG—b—
and AFxAGzr AB‘, or —axa—nn. In both cafes aa—ba——nn.
8. i. Laftly, when nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—nn^ then BC=:i^gt;
BAx:/?, as before; then if AFz:—ß, then AG—BD—AFzz^4-«, and AFxAG=ADS or —a X ^-i-ß — nn.
But if AG=—ß, thenAFz^D—AG=^ lt;?, and AF x AGzzAD', or b-{-a X — a — nn. In quot;both cafes aa-}-ba——m.
PROB. XCVIII.
7ß confru5l cubic and biquadratic equations.
9. To conftrud a cubic equation, that has all its roots real, by a circle. Let the radius OB—R, fine EF —j, GH the fine of the arch GB or 3BE. Then by trigonometry,
i S-f—RR—Draw CD parallel to AB, and put SF=f, ES^.v, GH=^, then r x =J, whence jx^ x —Xf x =b, this reduced gives^Ar’ ^cx^ jeex c^ nbsp;nbsp;=0.
— IRR i^RR
— IfRR
Suppofe this cubic equation be given, o. Comparing this with the former, and equating the coefficients, we have /gt;=3f, andf=l^. Alfo y=3fc--iRR = ;/gt;/gt; —iRR, whence R — ^^v^pp—^q^ and r=fî 1
iMlt;R—irRR ; whence
pp~2q Hence arifes the following
X RULE.
-ocr page 317-Sea. IX. . E Q^U A T I o N s.
305 Eig-
lO.
I RULE.
Having the equation x^ px^-\-tix-\-r—o. given -,
I. With the radius ^s/pp—^q defcribe the circle BGAK.
2. Draw the diameter AB, and CD parallel to it, at the diftance of -’/gt; ; above it, if it be ƒ, but below it, if —p.
3. Draw alfo ZG parallel to AB, at the di-*
pp quot;quot;above it, if it is affirmative ; or below it, if negative. Let it cut the circle in G.
4. Take the arch BPrziBG ; and make PQzzQK—KP.
5. From the points P, Q, K, let fall perpendiculars, upon the line CD, which will be the roots of the equation -, the affirmative above the line, and the negative below it.
Scholium.
If 37 be greater than pp, the equation is impoffible ; for in this cafe the equation has two impoffible roots.
Alfo if fzz.Q, then the radius of the circle
—37 i and CD coincides with AB j and the diftance of ZG from AB is — —. And if q is affirmative, the equation is im-poflible. Thefe conftrutlions are cxtreamlv eafy.
Ex. t.
Let x^ ^x^—s?»—120ZZ0.
Here the radius nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
I-1-60 = 8.0820, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the diftance
of CD, above AB.
X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
-ocr page 318-3o6 construction of B. I, Fig« A J 9’'—?? nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'—’o8o 4-198 nbsp;nbsp;nbsp;nbsp;nbsp;,
II. ——6 6—0, the diftance of GZ from AB ; therefore ZG coincides with AB -, and the arch BG and alfo its third part is o, and P falls on B ; and making PQ^~QKnKP, and letting fall perpendiculars on CD,we fhall have PSzz—3, QT = 4, and KT=—10, the three roots required.
Ex. 2.
Suppofe nbsp;nbsp;—i7;r^ 82^^—120 ~o.
X2. The radius OB“3\/2 89—246^34. 37. 'P ~—5-66, the diftance of CD below AB, and
PP—3i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;289—24Ö nbsp;nbsp;nbsp;nbsp;3
7.302—11.333——4031 gt;nbsp;tl’e diftance of GZ below AB. Take BP the third part of BG, and making PQ—QKnKP -, and mea-furing the perpendiculars upon CD, we have PS = 4, QT — 10, and KV=z 3, the roots of the equation.
£x. 3.
Let y'^—137 12—o.
In this example p—o^ therefore CD coincides with AB ; and radius OBzziv^—3J = ■3V39=4-’^’ ; and —=2-77'*^^ diftance of ZG above AB. Take arch BP—4 arch BG, and make PQz:QKz:KPi and let fall perpendiculars on AB, then PS = i, QT- 3, andKVzz—4, the three roots required.
Cubic equations may ajfo be conftrued by a cubic parabola and a right line. LetF-VAC be a cubic parabola, whofe latus reófum is i.
Draw
-ocr page 319- -ocr page 320- -ocr page 321-f
5ea. IX. E (X.Ü A T I O N S. 3^7 Draw VE the tangent at the vertex, perpcn-Fig^ dicular to the axis VS, and Bl parallel to it, and SBC perpendiculàr to AB.
Then put VH=7’, VD=c, VI or SB=»i BC—J, VS—X, then SCzz» a, and by the property of the parabola VSzrSC’i, or X =« « . By fimilar triânglés, VH : ex—-cb
V D (f) ; : SH (x—Z-) : SC nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
p nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;CX—bt nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. r ,
BL or =;——Hy and ba—ex—cb—nb, whence ex-—ba—eb-\-nb, or x— — a —b-\-c .
that IS (expunging x) «’.4-3»*0 3»«*
I nb . . , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
d’--a—b 4- — which reduced là f
• - ’ ■ , - '■
Lets’ 4quot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4*^ jà 4- r zz o , be
any cubic equation. By comparing them, and equating the like terms; we have 3«—p, and n—^f. Alfo b b
bn
Again, ;jî—Qp — b —
X. ipp—q ~r, whence /»zzlpj——r.
And fince — — nbsp;nbsp;—lt;), ( — -r-——
c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;V nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;pp—jq
pq—~p^__
—7~~---“• Whence we havé the fol-
, . PP~iq
lowing conftrudion, by this
X 2 nbsp;nbsp;nbsp;nbsp;2 RULE.V
-ocr page 322-CONSTRUCTION of., B. I.
2 RUL E.
Given the equation
I. With the parameter i, and the axis VS, defcribe the cubic parabola FVAC, draw . the diameter RAB, diftant from the . axis VS, to the right hand, if affirmative -, and draw the tangent at the vertex
‘ IVD.
2. In the axis VS take VHzz^/’j’——r, downwards, if affirmative.
VU
2. In the tangent IVD, take VDzz;-- Tpp—i
— —77—’eft, if affirma-■lt;- PP—ii
five.
4. Through the points D, H, draw the right line FDHC, to cut the parabola. From all the points of interfeftion, let fall perpendiculars on the diameter AB, which will be the roots of the equation ; thofe on the right hand of AB affirmative -, thefe on the left, negative.
5. When any of the aforefaid quantities are negative, they muft be laid the contrary I way to what is direfted above' (Art. i, '' 2, 3).
Scholium.
If the fécond term be wanting, p—o, and AB coincides with VS j and then VH=—G and VD= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
-If the numbers given in the equafion, be too great for your parabola -, the equation is cAfily changed into another with lefs numbers, by Prob, xlii, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. . ' v .
-ocr page 323-Seól. IX. E QU A T, IONS.
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;p'io''.
ÄX. 4.
_ Let the equation be a'
1,05=0.
— taken downwards from the vertexV.
VH
And VD^t——~ — nbsp;nbsp;nbsp;nbsp;on the left from
Through D, H draw the right line FDHC, cutting the parabola in F, G, C ; from which points letting fall perpendiculars on AB, wc have FR=-—1.75, GL=—.8, and CBz£ .75, the three roots of the equation.
5.
Let nbsp;—lx 1=0.
Here /gt;=o, and therefore AB coincides 15* with VS; then make VII-—rzt—'tT' “Pquot;
r .
ward ; and VD=y=—4» to the right hand. Then through H, D draw the line FDC, to cut the parabola, in F, G, C ; from which letting fall perpendiculars on VS, we have FR=;— G, GL = I, and CB = i, the three roots required.
Cubic and biquadratic equations may alfo 16. be conftrufted by the common parabola. Let FVAC be a parabola, VS its axis, AB a diameter parallel to it. EA, and SBC two ordinates perpendicular to VS. Draw alfo HD perpendicular, and HQ_ parallel to y S', draw HC.
X 3
Put
-ocr page 324-jïo CONSTRUCTION lt;ƒ. B l-Fig. Put EA or SB=f, ADzr^,
HC“/, and BCzz«. Then QCzx^ ö, latus redum of the figure =:i.
Then by the property of the figure AB r: FBxBCzzzffl-Pöö, and DB or HQz:2fö-b aa—d, and HC*z=HQ‘ QC‘, that is, 4.ccaa-\-dd —^.cad—2daa-^^^ 2^a • nbsp;nbsp;nbsp;nbsp;-f-Ä« ; which reduced is, ' ‘
ö -i-4flt;ï’ 4rfö» 4- 2^a r=o.
2d ^dc -p dd I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ff
luCt nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-p -p nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;“o, be any
biquadratic equation } compare this term by term with the other ; to find the values of the quantities r, d, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then we have
4c=ygt;, and
Again, 4«—id-j^izzq, and 2d2Z4ce-j-i-^ and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
Again, 2^_4f^-r, and — 2
Laftly, gg-i-dd^ff—s, and ff~gg-4.dd—sgt; From hence arifes the following conftrudtion.
3 RULE.
Having the equation, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
ö* 4-pß ’-p nbsp;nbsp;-p rö-p J :x o.
or ö’-p/gt;«?-pJ«rpt'=^O,
I. Defcribe a parabola FVAC, whofe parameter is ,, and axis VS. Draw the diameter AB at the diftance of ’ƒ» from the axis, on the right hand, if p is affirmative. Then for the central rule.
2. From
-ocr page 325- -ocr page 326- -ocr page 327-Seft. IX. EQUATIONS. nbsp;nbsp;nbsp;nbsp;nbsp;311
2. From A, the top of the diameter, take Fig. ïp/’ i—? J . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1Û.
AU —----------f downwards, if affirmative.
3. . From p in the perpendicular DFÏ, take
DFI “•---------- towards the left, if affir-
2
mative,
4. But when any of thefe quantities are negative, fet them the contrary way.
5. From the center H with the radius v/AU‘4-UFi*—v/HA*—J , defcribe a circle^ wWch will cut the parabola in feveral points as C. “
6. From the points of interfeftion, let fall perpendiculars upon the diameter AB, and thefe will be the roots of the equation -, thefe (BC) on the right fide of AB, are affirmative foots and on the left fide, negative. And there are always as many real roots, as there are points of interfedion -, and the reft are itupoffible.
Scholium.
If the fécond term be wanting-, then/)—o,-and the diameter AB coincides with VS. Then
alfo AL)- an DH±21r.
In cubics'J is wanting, and’then’the radius HC becomes =:HA.
3If the numbers or coefficients be too large for your parabola, you' rauft transform' the equation, into another to fuit your parabola, by Prob. xlii. and then conftruét it -, and laft-ly, reftorc the true roots.
Ex.
mof-i
-ocr page 328-312 CONSTRUCTION of • B. I. Fig.
Ex. 6.
Suppofe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--ßOQy--6000 — 0.
The numbers being too large, put xzz/oy, or y — iox-, then the equation becomes looox’ 2ooox‘—5000X—6000—0, that is, »’ 2»'-—5X—6—0, where the numbers are fmall. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;• \
The parabola FVC being defcribed, make EA = l/»=:4, on the right, and draw AB parallel to the axis VS.
Make AD= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;î±5 _ nbsp;,
downwards. Draw DH perpendicular to AD. and make DH=^-— 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
=1, to the left. From the center H, with radius HA, defcribe a circle, cutting the parabola in R, A, C, F i from which letting fall perpendiculars on AB ; we have RA =—i, BC = -1-2, FB——the roots of the equation X5 2Xquot;—ßx—6:::o, and multiplying by IO, we have —10, -|-2o, arid —30, for the roots of the given equation j’-F2Ojy‘—^Qoy —6oozz:o. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.i
£*. c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: r
Let x^ — J-75*’ — 4-625** -F 4.875* -j-
,8. Defcribe the parabola FVC, and draw the axis VS, and make EA — \p'zz—.44, to the left, and draw AB parallel to the axis, make AD=----^-—^2x3.19 downwards. Draw DH perpendicular to AB, and make DH
_ ^xAD-pr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;...
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= — .36, to the right.
From
-ocr page 329-Sea. IX/ equations.' 3^3
From the center H , with the radius \/AD^ DHÖ 75^=2, delcribe a circle •*-* cutting the parabola in F, R, G, C -, from which drawing perpendiculars to AB,.*quot; we have RO=—I, FBz:—il, ,GI = 2, CP=: 2.25, the roots required.
Ex. 8. ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1,1
lt; Given the et^uation nbsp;nbsp;nbsp;—i.5X’ 5.'v'—9X—
6=0.
Defcribethe parabola RVC to the axis VS, ’9’ and make EA=z|jOzz—.375, to the left, and draw AB parallel to VS. Take AD =;
—q
----——1-72 upwards. nbsp;Then (per
pendicular to AD) take nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
~3,2i, to the right. With the center IT, and radius 4.39 (— v^AD^—DH*-|-6}, de^ fcribe a circle,. to interfedl the parabola ; from the points of intCrfeftion, letting fall perpr-n- ., î d'.cülars on AB, gives the roots, RO~— and CBzr4-2. The other two roots are im-poffible, which is known from this, that the circle interfefts. the parabola Tn no mord points than thefe quot;two.
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' Ex. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
Let nbsp;nbsp;—5.67x’- .806x4-3.8643=0.
= Here /’ne, therefore defcribe the parabola FAC, whofe axis is AS; and make AD3= I —Î nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;V-;-•
3‘335gt; downwards; and DH==Ir=
•4'03’ perpendicular to AD, to the, left. With radius v/AD‘4-ljH‘—3.8643:2 72, defcribe a circle cutting the pafabola, in R, G, C,
CONSTRUCTION of ' B. I. fig. and the perpendiculars from thefe points up-20. on AS, give RE——.8, GIsx i, CBzr-k 2.1, and Fjzr—2.3, the roots of the equation.
' Scholium.
Geometrical equations may be conftrufted by lines as well as by numbers. For proper lines may be found for the coefficients, by proceeding according to Prob, xcvi -, and fo the whole may be done geometrically.
Quadratic equations, whofe general form is tn a y alfo be conftruded by the laft rule J and then r and j will be —0 ; but the method of conftruéling by the circle, is eafier.
-• lt;nbsp;nbsp;nbsp;nbsp;nbsp;4 R U L E.
Any cubic or biquadratic, equation 4-yx»4-rx4-J=:o, may be conûrufted mechanically thus:
I. Upon a plain fmooth wall, draw'a horizontal line AB, and CD perpendicular to it, and take CP=|/gt;, to the left hand if p is affirmative. Hang a thread and plummet EPF to any, point E, in the perpendicular EP ; make a knot in the thread at », and tie the other end fo to the fixt point E, that P» may be ~1. Then with a pin or the point of a compafs, move the thread EF fideway's toward CD, till the knot » falls in the point G ; mark the point D in the line CD, where the pin is, when that happens.
2. From D take.
downwards, if affirmative. And in the perpendicular GH, take GH—to the left, if
-ocr page 331- -ocr page 332- -ocr page 333-Seft. ÎX. E CtU A T I O N S. 31$ jf it is affirmative. But if any of thefe quan- 1'ig. tides be negative, they muft be taken the con- 2 trary way, to what is direéled above.
Then with the radius or diftance v/HO’—s, and one foot of the compafiies in H, move the other foot along with the thread, round in a circle, and the weight F will afcend. and. defcend,. aa. the. thread EF moves laterally. Obferve always, when the knot n falls- in the line AB, and mairk all thefe points, Q, N, O, R. Then the di-ftances of thefe points from C, are the roots of the equation -, the affirmative on the right, the negative on the left hand of C ; thus RC is an affirmative root, and QC,quot; NC, OÇ, negative ones. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
It is plain, this'rule is founded on the laffi. For the moving point of the compafs is always in the curve of a parabola, when the point B is in the line AB. To prove which, fuppofe the parabola ADB, to be defcribed, whofe focus is E. Then by the property of the figure, EL-pLR—EP-f-i parameter — EP-pP« or Eb;zED-pDC. ThereforCj the circle cuts the parabola in L-, and thç diftance, of L from DC, that is RC is one root of the equation -, and the like for the reft.
i.' ’ Ih: ■ ' nbsp;nbsp;nbsp;nbsp;,'î . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;( -■•gt; jd . 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■■
• V; [fl é : ' ......, ’..ffi vr.!? n. /■/ . '
' S E, Ç T.:
-ocr page 334-3ï6
sect. X. ■■
Kulcs itrni DireSlirms for tjoe invefiigation (ijuî Johition oj Problems.
problem XCIX.
find if a quefiion be truly limited.
AQueftion is faid to be truly limited, when it admits but of one folution -, or at mod, of as many as is the index of the highefh power of the unknown quantity in the final equation. And whether a queltion be limited or not, may be known from the equations, by this nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
rule.
When the number of unknown quantities, is juil as many as the number of given equations, not depending on one another ; then the queftion is truly limited.
But when the number of unknown quantities exceeds the number of equations given ; then the queftion is unlimited, and capable of innumerable anfwers.
And when the number of unknown quantities is lefs than the number of given equations ; then the queftion is abfurd and impoffible, except thefe equations be dependent upon one another ; in which cafe the dependent ones may be ftruck out.
Equations are faid to be dependent on one another, when they may be formed or derived from one another, by any operations, with the help of the known axioms.
For
Sect, X. Rules far fo!vhg Problems.’ 317
For by Cor. 1, 2. Prob, liii, one unknown quantity may be taken away by each equation ; fo that at lalt there will remain but one equation, and one unknown quantity in it ; and therefore it is truly limited.
But if there were more unknown quantities than equations, there will remain more unknown quantities than one, in the laft equation. And then the queftion is not limited -, for all of them, but one, may be taken at pleafure : and this is the reafon of queftions being unlimited.
Laftly, if there be more equations than unknown quantities, then at laft there will remain one unknown quantity for feveral equations ; and then the queftion is more than limited •, and will therefore be impodible. For the unknown quantity being exterminated, there will be an equation confiding of all known quantities -, which muft be contradictory to one another, except they were feme way or other depending on one another, fo as to make an equality.
Scholium.
As a problem is truly limited, when the number of independent equations, is equal to the number of unknown quantities ; fo likewife a problem is truly limited, though there be never fo many equations, provided all, above that number, are depending upon thefe, and derived from them. This is plain from any algebraic procefs-, for in the operation, all the fucceeding equations, are derived from thefe, firft given •, and all equations fo derived, make no alterations in the limitation of the problem.
A problem may be impoffible and more than limited, though the number of equations be lefs than the number of unknown quantitie.s -, and that is when the equations are contradictory.
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;As
-ocr page 336-jîS R U L E s foY faivin^ B. L As îf Ö e 2jy:::r^,
Afid 2Â4-2e-|-4j’~f ; Gf y being unknown quantities, and b, known ones. Now if it happen that c~2b^ the pfoblem is unlimited-, but if c is not then the problem is impoffible.
And therefore in general, problems are abfurd, when the equations given are derived from abfurd equations, or may be reduced to fiich : even though the number of equations be equal to or lefs than the number of unknown quantities.
The equations given in a problem, ought to be independent, otherwife they will either be confe-quential, or contradidory to one another. In the firft cafe, you will at laft find fome quantity equal to itfelf. And in the fécond cafe you will arrive at fome abfurdity, where a greater quantity is equal to a lefs. And it often happens, that at the end of an operation, the equations given, are found to be either dependent or inconfiftent with one another ; which at firft, could not fo eafily bedifeovered.
PROBLEM C.
ïZö inveßigate an algebraic problem.
RULES.
I. When a queftion is propofed to be refolved algebraically ; the firft thing to be done, is to con-fider the nature änd circumftances thereof, to find out what is given therein, and what required. And the nature and tenor thereof being clearly under-ftood ; rejeól every condition orcircumftance, which has no necefiary connection or relation with the thing enquired after. Then give names to all the quantities concerned in the calculation, whether given or fought ; that is, for the feveral numbers or quantities, or at leaft for the principal of them, put fo many different letters, as dirdCted in the
notation,
-ocr page 337-Scél. X. PROBLEMS. 319 notation ; taking care to make the fame letter ftand invariably for the fame thing, throughout the whole operation.
And in general problems, it will be convenient to make choice of luch letters or fymbols, as may fome way reprefent to the mind, the things de-figned by them -, as r for radius, s for fine, / for latus reftum, v for velocity, t for time, iàc.
And if there be never fo many quantities of different forts, we may reprefent them by any numbers we like 1 or even all of them by i, which is the moft fimple notation. Thus we may call any degree of motion 1, any degree of velocity i, and we may put i for any quantity of fpace, time, matter, But then we muft take care to reprefent other quantities of the fame fort, by proportional numbers.
We can alfo meafure any kind of quantity by any other kind of quantity, by taking parts or degrees of one fort, proportional to the parts or degrees of the other. Thus, quantities of force may be meafured by right lines proportional to them j bodies or quantities of matter by their weights ; velocities by the fpaces defcribed in equal times ; and all forts of quantities or things by numbers.
2. But as that folution of aquettion is reckoned the more artificial, the fewer unknown quantities are aflumed at firft. Therefore when the principal quantities are denoted by letters -, fome of the quantities, that may be eafily derived from the reft, are left without a name. As when the whole is given and a part, the other part is eafily had from thence ; or the parts being given, you may find the whole. Alfo when tw'o fides of a right-angled triangle are denoted in algebraic terms, the third fide is had from thefe, by addition or fub-traclion of fquares. Likewife three terms of a proportion being given, the fourth term is eafily derived
-ocr page 338-J 2-0
R U LES for f(living nbsp;nbsp;nbsp;nbsp;B. I.
derived from thefe three ; and in all fuch like cafes, where the values of fome are eafily derived ' from the reft. And by this means, there will be fewer terms to exterminate.
3, After the defignation of the quantities, by letters, as aforefaid -, wc muft next abftraft it from words, and tranflate it out of the Englifli into the Algebraic language : that is, we muft denote all the conditions of it, by fo many algebraic equations : and this is called fiating the quefiion. In order to this, we muft fuppofc the thing done which was required -, and then, without making any difference between the known and unknown quantities ; aflume any of them, known or unknown, to begin your computation from ; taking fuch as you think will bring out the fimpleft equation, Or give the eafieft folution. And it is bell to affume that quantity to begin with firft, which is eafieft found or brought to an equation. And therefore it is often more convenient, not to begin with that which is direélly required, but with fome other, from which the quantity required may be eafily had.
From thefe firft affumed quantities, you muft proceed in a fynthetic method to find other quantities wanted, and fioin thefe to find others, ^c. according as the nature of the quellion direcls, till you get what equations you want. To this pur-pofe, you muft attend ftriélly to the nature, de-fign, and meaning of the queftion, and fearch into all the circumftances of it, and examine into the particular relations of the quantities to one another; fo that from thence you may get a proper number of equations. But fometimes thefe equations cannot be had from the words of the queftion ; but depend upon the hidden properties of the quantities concerned therein ; and then the equations are to be deduced from them, by a proper chain of reafoning, ‘
-ocr page 339-Scft.X; PROBLEMS, 321 reafoning, according to the nature of the fubjeét under confideration. Thus, in numerical que-ftions, we mufl proceed by the properties of numbers : in geometrical problems, by the elements of geometry : in mechanical problems, by the principles of mechanics ; in trigonometrical problems, by the rules of trigonometry : in phllofo-phical problems, by the laws of motion -, and fo of other fubjefts. And here great care mutt be taken that your equations do not depend upon one another -, and that there be as many as there are unknown quantities, otherwife the quettion will not be limited.
4. Having got a proper number of equations, our bufinefs is now, to exterminate them one by one, as faft as we can, till there only remains one unknown quantity. In one final equation ; then the problem Is faid to be brought io a felution.. And by thefe equations, you mutt exterminate thefe quantities firft, that are mott eafily exterminated -, that is, the fimplett firft, and fo on -, till the quantity that remains at laft, may give the fimpleft equation pofllble -, or more fimple than if any other of the unknown quantities remained in the final equation. And in all your procefs, great care muft be taken, to keep to a juft equality ; which will certainly be, if you obferve all along, to work according to thefe juft rules or axioms, at the beginning of this book.
5. As to the chufing fit terms or quantities to begin the calculation with -, it fometimes happens that there is fuch a relation of two terms of the quettion, when compared with the reft, that in making ufe of either of them, they will bring out equations exaftly alike -, or that both, if they are made ufe of together, fhall bring out the fame final equation, as to form. Then it will be the beft way i to make ufe of neither of tllefc terms-, but inftead I » nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;thereof,
322 rules for folvmg ß-L thereof, to chufe fome third, which has a like relation to both. As fuppofe the half futn or half difference, or perhaps a mean proportional ; or any other quantity related to bodt indifferently, and without a like.
6. The proper defignation of the terms will often much abridge the operation. As if two numbers are fought, whofe fum or difference («) is given, it will be convenient to take and \r.—a, for rhe numbers.
Alfo when feveral numbers are fought in arithmetical progreffion, where the common difference (d ) is given ; we may properly put a—d, nbsp;nbsp;nbsp;a-^-d^
for the numbers, when there are three : ora— a—idy a {dy a i^d, for the numbers, when four are required j and fo on.
Again, if feveral numbers arc fought in geometrical progreffion ; put aa, ae, ee, for three numbers ; and d’, a**, for four numbers : and
ae\ for five numbers-, and fo on. Or denote them by Rich other feries, as will give them all, with the feweft letters.
7. Sometimes problems will run up into very high equations, where the unknown quantities cannot be expunged without great difficulty. Therefore, in fuch X cafe, if you can fubftitute new letters for the firms, or produfts, or powers, (^c. of fome of the old quantities ; and then expunge all thefe old ones, and get a proper number of equations -, you may often find the value of thefe new quantities, by fcafy and low equations; from whence the old quantities may be more eafily determined. And you muft find thefe new quantities by trials, fuch, that when they are fubfiituted, they may render the equations eafier. See Prob, xxiv, xxv. B. 11.
Likewife in any operation, when you have a multitude of unknown quantities, for the coefficient of any power of -the unknown quantity-, put a fingfe letter
-ocr page 341-Seft. X. PROBLEMS. 323 lener for them all, which will much abridge the operation.
a. In geometrical problems, there is often more labour and fkill required, than in numerical ones, la chete you muft firft draw a figure, according to what the queftion requires to be done. And then it is often requiûte to produce right lines ; or to draw lines parallel or perpendicular to other lines ; and to certain points, or through certain points ; or to make fimilar triangles, and fuch like ; all preparatory for the folution of the problem : always endeavouring to rdblve the Ichemc into fimilar triangles, or right-angled ones, or given ones. Then aflame fuch a line, fefr. for your unknown quantity, as you judge will bring out the fimpleft equation. For you may begin your computation with any quantity, known or unknown : which done, you mull; proceed fynthetical-ly to find the reft. In general, let theie quantities be denoted by letters, that lie neareft the given parts of the figure, and by means of which other parts adjoining may be eafily had, without furds. In triangles, draw a perpendicular from the end of a given fide, and oppofitc to a given angle. Such preparations as thefe being made, juft as you find necclfary for the method of folution you intend to try ; pur-fuc your compUtarion according to the nature and property of lines, and the conditions given in the queftion, proceeding from the quantities aflumed, to other quantities, as the relation of the lines di-reft ; till you get two values for one and the fame quantity, or find one quantity deno;ed two different ways, by which you will get an equation. The general principles for carrying on the computation are fuch as thefe -, the addition or fubtraftion of lines, tj find the fum or difference. The proportionality of lines (arifing from fimilar triangles), where three terms being given to find a fourth. The addition or fubtraftion of Iquares in right-angled triangles,where
Y 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;two
-ocr page 342-324 R U L E s for folding B. I. two fides being given, the third may be found. Likewife the doftrine of proportion will be of frequent ufe. Befides we muft make ufe of fuch pro-pofitions in geometry as are fuitable to the purpofe j fuch as B. I. prop. 1, 2, 4, 8, 10, 11. B. II. 2,3,10, 13, 14, 15, 18, 21, 24, 25, 26. B. III. I, 6, 7, 17, 20. B. IV. ÿ, 12, 13, 14, 16, 17, 20, 27, 31 ; and fome in the following books, as occafion requires. By help of thefc principles, and a chain of right reafoning, we Ihall obtain as many equations as unknown quantities, which being had, we muft change our method, and exterminate the fuperfluous quantities, and find the root of the final equation.
9. If the method you go upon at firft, for the folution of the problem, proceeds but badly, as Tunning into high equations and furds. You muft draw frelh fchemes, and begin your computation anew, till you have hit on a method as elegant as poflible. For the principal art, of refol ving problems, is to frame the pofitions with fuch judgment, that the folution may end in as fimple an e-quation as poflible. For fome methods will produce more intricate equations and folutions, than others. But the Ikill of finding out the moft fimple and eafy ways of refolution is not to be pre-fcribed by any rules, but is only attained by con-ftant practice and experience.
IO. If you have any doubt what quantity to take for the quantity fought, fo as to bring out the fim-pleft equation. Suppofe you have got a final equation with Xi take fome other quantity y, which you fufpedt may be as fimple, feek an equation between X and yi then if y be of as high a power as Xi the final equation, if jy were ufed, would be as high as is the final equation with x.
, Having got an equation between x and y, fubftitute for x its value in terms of y, in the faid final equation with x ; and you will find what power
-ocr page 343-Sea, X. PROBLEMS. 325 er y will arifc to, without forming the procefs anew for y. But if the equation between x and y be not a flmpie equation 1 it will often be as well to begin the procefs anew for y.
Or, If there be feveral quantities, and you do not know which will bring out the fimpleft equation. Put letters for them all, and get as many equations. Then by expunging fuch as are moft eafily expunged i you will, for the moft part, get the moft Ample equation.
II. Laftly, when the final equation is obtained, extraft its root by Seft. VIII, and you have the anfwer in numbers.
Note, The numbers given in a queftion, cannot always be taken at pleafure, but muft often be fub-jelt;ft to one or more determinations or reftriftions, which for the moft part arc difcoverable by the theorem refulting from the refolution of the queftion.
12. When you have an equation containing the quantity fought ; and the equation is alfo effefted with a fécond unknown quantity, which you want to get rid of ; the extermination of which runs you to a very high power. Now if it happens that this fécond unknown quantity, is but in a few of the terms, which are but fmall in refpeft of the reft. Then if you can nearly guefs at its value, you may retain it in the equation, putting that value for it, which will make little difference in the equation, a-mong fo many quantities, if you mifs its value a little. Then the root of the equation being extraft-ed will give the other unknown quantity very near. And this being had, the fécond unknown quantity will then be found more exaftly, and may be fubfti-tuted for it again, and the operation repeated,
And one may often guefs nearly at the value of this fécond quantity, from the conditions of the problem -, efpecially if it be a geometrical one, from the conftvuftion of the figure.
Y J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Thefe
-ocr page 344-326 RULES for folding t amp;c. B. I.
1 hefe forts of equations may alfo be refolved by tlie Rule of Falfe Pofition, as directed in Pr. xcii. Rule 5 i as alfo by Prob. xcv.
13, When you want to compute a problem for fomc praftical ufe in common life, but by purfu-îng it^ in its mathematical rigour, you fall upon fome irrefolvablc equations or intricate furds or fériés. Then you may often rcfolve it on very fim-ple principles, by neglecting fuch quantities or fuch. conditions, as ferve only to tmbarrafs the problem, but make little or no difference for the purpofe you want it. In fuch cafe, negiedt fuch quantities or fuch conditions, as are of little moment ; and in-Ihead of luch quantities as make the calculation difficult, take others nearly equal to them, which will make the operations more limple, or as fimple as poffible. Or fome of the leaft moment may be entirely left out. And thus one may come at an eafy lolution of the problem.
Thefc are the general rules of working ; all which will be made clear, by the examples in the following Book II.
BOOK
-ocr page 345-quot;The Solution of Problems.
A Problem is a queftion propofed to be re-folved ; and the ^olutton of a problem, is the finding fuch numbers, lines, ^c. as will fulfil the conditions of the queftion.
Of problerfis thefe are determined^ that have a \ determinate number of anfwers-, and indtterminedi which have innumerable'anfwers.
Problems are of feveral kinds, as numerical, geometrical, trigonometrical, philofophical, mechanical, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
A problem of one, two, three, Cff. dimcnfions, is that which has one, two, three, ^c. (olutions or anfwers.
We have hitherto been laying down fuch rules, as are neceffary for the inveftigation and folution of problems. 1'he reader muft take particular car«, to make himfelf well acquainted with thefe rules, and keep them in mind, fo that he may have them ready for ufc, upon all occafions for with- . out them no problem can be folved. But as precepts are but of little ufe without examples, and generally reach no farther than mere fpeculation j 1 fiiall therefore, in the next place, apply them to praftice, and that in the folution of a great vartcty of problems, in the moft material branches of the mathematics j which I (hall now begin with directly.
Y 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;SECT.
gt;
-ocr page 346-32S nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. II.
»
s E C T. I.
Nutzer i cal P r able ms.
P R O, B. I.
Tbere are two numbers whofe fum is 2^^ and the fre~ ■portion of one to the other is as 2 to vibat are the numbers ?
Suppofe 1 |
I 2 |
a = greater, e — lefler. |
per queft, |
3 |
e ; a : : 2 : 3 |
3X |
4 |
■i-azz^e |
4-J- (2) |
5 |
a~ie |
pfr queft. |
6 |
a4-e—e4-ie—2^ |
6x(2) |
1 |
2e 3^=5eiz5o |
lt;lt;5) |
8 |
ezz'f—io, the lefler. |
3. |
ö=:!^~i5, the greater. ' Otherwife thus^ | |
Suppofe |
1 |
zj—greater, j—fum, =25} then J—Æx: lefler. |
queft. |
2 |
2 : 3 : : J—a z a |
a X |
3 |
2az=.^s-r-^a |
3 tranf. |
4 | |
4-i- (5) |
5 |
a-=.^^— V = 15, the greater number. |
6 |
J—azzio, the lefler. |
PROB.
-ocr page 347-SeéLI. Numerical Problems. 32^
prob. II. .
A man having a certain number of fente^ gives to
\ of tbem^ to B i, to C i, and to D A, and then bad 3 remaining- How many bad be at firß?
Let queft.
2, 3 tranf.
4 X
I 2
3 4
5
ßzxnumberof pence he had. 4« nbsp;nbsp; Tlt;* 7ï^—3
il a z=:a—3.
PROB. III.
■d man hired a labourer., on condition, that for every day be wrought, he (hould have 12 d. and for every day he idled, he fhould forfeit B d. After days, neither of them was in debt, to find , the number of work days and play days.
Let |
I |
a :;z the working days, ^=390 j then b—a— the play days. |
queft. |
2 |
12^=390—0x8 =3120—8lt;J, |
2 tranfp. |
3 |
20lt;l=:3I20, |
3 (20) |
4 |
3 1 20 «=-^^ = 156, the workdays. |
5 |
* ba~2‘^s^, the playing days. |
P R O-B.
1
-ocr page 348-33®
NUMERICAL
K. U,
PROB. IV.
S»me youKg mtn and maids had a rtckenini fisillings ; and tvery man was to ptry ■g JhillngSy and tvery maid 2 ; now if tkert l^d bttn as nmny men as maids, and maids as men, the rsekaning would have come to 4 Jhillings lefs. H'bat is the Slumber of eack ?
Suppofe |
I |
özzmen, ezzmaids, |
/)frqueft |
2 3 |
2a-4-2e—b 2a4r3e—b-^ |
2 X (3) |
4 |
qa-4-be—'ÿs |
3 X (2) |
5 |
4fl4-6e —2^—2f |
4—5 |
6 |
50 nbsp;nbsp;=^4-24 |
6- (5) |
—a rhe nvn | |
I |
' ^Q, inc men* 5 | |
2~3a |
8 |
zesszb—^a |
84-(2) |
b—^a _ __ nbsp;nbsp;nbsp;, | |
9 |
i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tnc |
PROB. V.
man being afked what a clock it was ? anfwered, that it was between 8 and ; and that the hour ■ and minute bands were both together.
Let
jfzztime required, ^=8, e=;J2» d—i.
fince the two hands divide the hour, and the whole circumference in the fame proportion, therefore c : x : : d : x—~-b,
ex—cb~dx
ex—dx~cb
cb qG f“‘
'3
4
2 X
2 tranf.
PROB.
-ocr page 349-Scft. I. PROBLEMS. .* jj»
PROB. vr.
A man nbsp;nbsp;nbsp;nbsp;nbsp;the firfi htggar he meets mithf eif the
pence he had and 4 d. more: ta the fécond s the remaining pence and 8 d. ' to the third the remaining pence and 12 d. more^ and fo on., in* creaftng 46. time, till at lafl he bad nothing left ; and then all the beggars had ‘ equal (barest ^ery, the number of pence and beggars.
Suppofe |
I |
az^ pence he had at firft. |
2 |
7* 4= pence given to the firft | |
qucft. |
beggar. | |
I—2 |
3 |
~a—4= remainder. |
34- (6) |
4 |
5 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 nbsp;nbsp;nbsp;nbsp;nbsp;I , -y = ^theremainde |
4 (8) |
5 |
5 nbsp;nbsp;nbsp;nbsp;nbsp;4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. r- —6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fo fe- |
cond beggar. | ||
2=5 |
6 |
quot; , _ 5 nbsp;nbsp;nbsp;nbsp;4 6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--6 8,^frqu«ft. |
6x(36) |
7 |
6a 144=5«—24 288 |
7 tranf. |
8 |
fl = I2O. |
2gt; |
9 |
20 4=24= Ihare of each. |
8, 9 |
IO |
Ï2O nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gt; —=5=numbcr of beggars.* |
PROB.
-ocr page 350-332 NUMERICAL
B. IL
PROB. VIL
^here are three numbers, the firfl with ; the ether two makes 14, the fécond with I the other tv» makes 8 ; the third with i the other two makes 8. Jî^hat are the numbers ?
Let ^^rqueft |
I 2 3 |
Oy ty y be the numbers»^ a-t^y 4 |
1 |
4 |
a-|-e gt;• -— = 8 |
2X (3) |
5 |
3« ^ ;’=42 |
3X(4) |
b |
4‘?4-« ^=:32 |
5~^ |
7 |
za—3^=10 |
5X(5) |
8 |
iS^ S^ Sy^: 210 |
4 X(5) |
9 |
« ^ 57=40 |
8—9 |
IO |
i4‘^ 4f — 170 |
7X(4) |
11 |
Sa—12^—40 |
IO X (b) |
12 |
42lt;î4- I 2^ — 510 |
114-12 |
13 |
500 = 550 |
13 (5) |
’4 |
0 = 11 |
tranf. |
'5 |
3ec:2c—10 |
15-^ (3) |
16 |
_ la—.10 , nbsp;-4 |
tranfp. |
17 |
•7—42—^a—ezzß. |
Prob. VIII.
Having given the /„„ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;g
difference of thezr f^uares, ^6; to find the num-
t I *-_lcfler number, a — 8, ^=16.
2 I greater number.
-ocr page 351-Seél. 1.
I amp;nbsp;2
2 nbsp;nbsp;nbsp;2
4“3
5 tranf.
64- 24
2.
P R’O B L E M S.
3
4
5
6
XJf=feiuare of the leffer.
333
'•.quot;J
.aa—24x4-xx~fquareof the greater 44—2flxzxZ» queft.
24X=4lt;J—b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
aa—b xiz.------
a^xz:zs^
—3» the
the lefler.
greater.
PRO |
B. -IX. |
7'bere are three numbers, the fum of the firfi. and fécond is g,. 0/ the firß and third\ 10, /ƒ the fécond and third 13. What are the numbers?
Let |
I |
X, y, z, be the numbers, 4—9* b=iQ, 4=13., |
2 |
-I | |
perqueft^ |
3 | |
4 |
;’ 2:=c | |
2--X |
5 |
' |
3—* |
6 |
z-b—X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;« r. |
4 4» 5’ |
7 |
a—x-^-b—^xwcc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ nbsp;nbsp;nbsp;nbsp;J |
tranf. 8 ^(2) |
8 |
^X—a-\^b—c a-}-b—c^ nbsp;nbsp;, |
9 |
X — ----- — 3 | |
5gt; |
IO |
y—a—x — (s 1 |
6, • |
11 | |
P R 0 B. X. nbsp;nbsp;nbsp;nbsp;nbsp;quot;nbsp;nbsp;nbsp;' |
‘T-aio travellers \ and B, 360 jwi/e; dißance. Jet out at the fame time. K travels 10 miles an hour', B 8. How far does each travel before they meet ?
Suppofe
by propor, 2 X
Î A travels x miles, then B travels 360—X.
'i. X ; 360—X : : to : 8 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
3 8x=:36oo—lox
3 tranf.
-ocr page 352-N U M E R IC A L B. E.
SS4-tranf.
I,
^_3^_2oo. A’s journey.
2 Éo—K = 16o xzB’s journey.
PROB. Xî.
If three agents A. B, C, produce the effets a, h, f, in the times e, f g, refpeElively. In what time will they all jointly produce the effedi d?
t *
I 2
■^ypro-) o portion I
I
2» 3f 4gt; 5
5 reduced 6
azz time fought. ax e X : a •. — A’s cffed in the
time AT. hx
f z X z i h y cz.Wi effed in time*.
g ’.x c —z:(7s effeft in time ».
ax bx ex
- 4- 7 —-d.
- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■ nbsp;nbsp;nbsp;nbsp;nbsp;-J
X — --------= time required.
prob. xn.
woman can buy apples at \q a penny, and pears '^5 for 2 pence ; if lay gut pence for SQQ apples and pears together. How many of each muß fie have?
Let
3-Ppies, then loo—pears.
by proportion
lo : I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;price of the
apples.
25 • nbsp;nbsp;nbsp;nbsp;nbsp;; 100 — a :
price of the pears.
200—-2»
^5 ’
Sea. I.
queft.
4 X (50) 5 tranfp.
4
5
6
7
PROBLEMS.
' nbsp;nbsp;nbsp;2lt;X)—la nbsp;nbsp;'
IO quot;nbsp;25
—4a=:475 a=75, the apples; 100—the pears.
SÎ5
PROB. XUI.
quot;vintner quot;would mix wine at 10 d. the i^uart^ -joitb another fort at 6d', to make a too guaris to ie fold 4it d. How ttttich if each mufi he take ?
Let
a=qtiarts of 10 penny, e=quarts of 6 penny, ^—10, f=6, m — 100, f=zj.
I z h a I ia^ value of a quarts.
I ; c : e : ce, value of e quarts.
ha-\-{et=.mf.
a^e-zzm
ba -Jf-cter-^ea -zzmf
ba—ca —fm—cm
fm—•ent nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ nbsp;nbsp;nbsp;*
i—~ p—c
bm—fm
b—c ‘ ‘
^ypro- 5 portion t /’rr’qu. 4
4, h 1 tr-
- 8 4-
1
3
4
6:
1 8
,9
IO
PROB. XIV,
el factor exchanged 6 French rmüÄJ and 2 dollan f^^ 45 fhillings', and 9 French rrewwx and dollars for 76 fhillings. fi^at is ./he value of a French rrow» and a dollar?
Suppofe
x-eez French crowns, jrrx dollars, «=6, b=z2, Äl=9,fX5,f=:45,
-ocr page 354-336
ftr qu.
2 3X^ 4—5 6 4-
2,
8 tr.
NUMERICAL . B. II.
2
3 4
5 6
7
8
9
10
ax-\-by—c dx-\-ey:z.f eax-{-cby~ec bdx-ii^ebyzzbf
aex—bdx zz. ec—bf
^--^bd-^^^'
_ nbsp;nbsp;ec—bf nbsp;bfa—bde ae—bd “ at—bd
af—cd
ae—bd~^‘'' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
P R O B. XV. *
divide a number b^ into four parts ; fo that tht ßrß being increafed voith d, the fécond ditmmfif^ by d^ the third multiplied by dy and the fourth di^ vided by di may be all e^ual.
Let
qu. '
3 ^
4-^d SX-d
2» 6, 7gt; 8j
9 reduced
• I
2
3
4
5
6
8
9
IO
lit y, be the four parts. « f a j=^, a-}-d—e—d a dz:efy
, a a d=~y.
a
ezza 2d
a-{-d y = -d-u=.ad dd
1 nbsp;nbsp;nbsp;quot;h d nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
a4-ö4*2«4quot;~^~ -^-ad-^ddtzb _bd~d''—2dd—d
dd-i-2d-i-i
6
-ocr page 355-
Seft. I. |
PROBLEMS. |
6 |
” nbsp;nbsp;~ dd zd-^i |
1 |
_ b dd-[-zd-^ I |
8 |
bdd gt;^3' ^-dd id t. |
337
PROB. XVI.
A merchant bought {a) bujhels of 'whsat, {b} bußoeli of barley^ and {c} bußoels of oats for {ni) -pounds.
Afterwards he bought {d} bujhels of wheat., {e} bujhels of barley, and (f) bußsels of oats, for («) pounds.
And after that, (g) bujhels oj wheat, {h} bufiels of barley, and bujhels of oats for (p) pounds, each fort at one price. IVhat was each per bujbel ?
Let 111 X, y, z, be the prices of the wheat, I 1 barley, and oats.
Q| 21 ax.^byezzz-m
^erqu. Pl 3I t/x4-e7 /zzz«
( I 41
I 51 ‘^fbx^bfky-\-cfkz~fkm
iXek 1 61
1 7 cfgx cfhy-\-cfkz=cfp
5—6 I 8 nbsp;nbsp;nbsp;nbsp;—ckdx-\-bfky—ckeyzzfkm—ckn.
f 1 91 nbsp;nbsp;nbsp;—cfgx-\-ckey—cfhyzzckn—cfp.
fubftit.8,bol Ax BjziC
1 nbsp;nbsp;nbsp;9’1“! F« Qy—H.
10 reduc. Ii21 j——r?—
IT reduc.
12 = 3
Ï4X
\ C—Ax nbsp;nbsp;H—Fv
B~ - “TT“*-15' GC~GAx-BH—BFx
15 tr.
-ocr page 356-^3»
J 5 tr.
NUMERICAL B. II.
by refti-tution lt;
io, 11. C
i6 i?
i8
i9
BFx—GA^/=:BH—GC
BH—GC
* -BF--GA-
hcfkkn ccfkep -Y-cffkhm — c^pk—cfkkem—^cfkhn
X— —■ nbsp;.....——----
bcfkU 4- ccfkge 4- acffkh — bcff^—iicfkke—ccfkhd _bkn—bfp-\-cep—kem-^fhtn—chn ~ bkil-^fg -{^ceg —ack afh~-c^
* being had, ƒ may be found by ftep 12th ; and then z, by reducing the equation in dep 2d.
PROB. XVIL
If the number of oxen 0, eat up the fafiure I, in tie. time c •, and the oxen d eat up as good apaflure e, in the time f-, and the grafs grows uniformly. Io find how many oxen will eat the like paß are gt in the time h.
State it thus : |
|
Let
by proportion
I
2
3
4
5
6
7
y— number of oxen fought.
x=: grafs upon an acre at firft.
2= »’■^fs growing upon an acre, in a week afterwards.
I = grafs which an ox eats in a week.
ox, gx zz grafs on the paftures b, e, g.
ebz, fez, hg% ~ grafs grown af-wards on the paftures b, e, g, in the times r, b.
df, hy :x grafs eaten by ths oxen, d, y, in the times r, ƒgt; 1'
per
Sea. 1. |
problems. nbsp;nbsp;g | |
8 | ||
'per qu. |
9 10 |
4f'^x-^fez y^^gx-^-hgz |
^gt;^ef |
II |
lt;ie ef—efbx efcbz |
12 |
'^bif~ cbex 4- ebeflè | |
11 —12 |
gt;3 |
eieef—cbdf— efbx—cbex. |
IJ-ï- |
t4 |
efb—ecb ' |
9Xf |
^5 |
S4f~gex-4-gfez |
lOX^ |
16 |
^b~egx-{-ehgz |
ï6--15 ’7-Îquot; |
18 |
~ehgz—gftz ebg—efg AC |
‘9 |
•j~Xr4-cz | |
iQi 14» «8 |
20 |
-- Acef-^cbdf nbsp;nbsp;nbsp;ctyh—cg^f b nbsp;nbsp;nbsp;eß—ecb * ehg—^^ |
Put |
il |
r=b—f, r p—h^c. |
20, 21, |
22 |
acef—cbdf ceyh—cgdf ÛC k—■ nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Jj ~ reg |
22Xpreg |
23 |
acpregz-dcefrg—cbdfrg pceyhb-Dcdfp'b |
23 quot;• |
24 |
pejhb ~ apreg aefrg bdfrg pdfgb. |
24» |
25 |
pebt^zzareg '}( p—f 4. bd/gyr-^^p. |
21. 25 |
26 |
pebhy~~aregc4-bdfg'}(.r4-p. |
«6, 2Ï, |
'gt;‘1' |
pebhyzz àcegyf^ 4- bdfg y. h—C |
2?-^ |
28 |
y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- bdfgy, beh xf—c |
Z 2
P R O
-ocr page 358-340 NUMERICAL B. II.
PROB. XVII.
Ti? divide ten thoufand into two fuch farts, that when each of them is divided by the other, the fum of the t^uotients, may be
Let
fer qu. gt;
z—
4 nbsp;nbsp;nbsp;2
3 X
4? 5’
7 ±
• 8 4-
fl, e be the parts, ^=10000,^3:5.
1 2
3
4
5
6
1
8
‘9
IO 11
e—b—a.
ee—bb—2^fl flfl
^fl^=flfl ^^
cab—caa —zaa—iba-s^bb aq-f.flfl—zb-Sfbc.a——bb.
aa—ba— —;— nbsp;nbsp;' - nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;‘
24-fl
! bb bb b ‘
‘’ = lt;7-^2 7=8273,268
9 reduc.
4,
PROB. XVIII. .. -
ƒ/general would range his army in a fquare battle, but finds he has 284 foldiers to fpàre-, but if he in-creafes the fide of the fquare with one man, he wants 25 to fill up the fquare. How many fol-diers had he ?
Let
per qu. ?
2 = 3
4 tran.
5^2
I
2
3
4
5
6
1
a— fide of the fquare.
öflq-284=number of men
a 1 —2 5zznumber of men flfl 2 84=öfl-j-2fl4-1—25 2fl=3o8
« = 154
flfl 2 84 = 24000, the number of men.
PROB.
-ocr page 359-Sea. I. problems. 341
prob. XIX. /
Several perfons dining at an inn, the reckoning came b fl)iliingtbut two of them finking away, the refl had iQ fiillings a-piece more to pay. '^»ery, the number of perfons ?
| ||||||||||||||||||||||||||||
PROB. XX. |
There is a number, confifting of three digits, whofc produit is 315, the fum of the firft and laß is double the fécond', and that number with 396 added makes a number conffiing of the fame digits but inverted.
Suppofe
per qu.
4±
5-^ (99)
2—a
3
4
5
6
8
e, y the digits.
° yea
a-k-y—2e
aey—^i5
I oolt;71 Of 4-3961:10074'10^
4-«,
99^ 39^=99^
ö4-4=Jgt;'
2f—a—y
aß-df — Q-e—a
3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;S,
NUMERICAL p. U-
8, |
9 |
«xztf—2 |
6, |
IO |
^rz^4-z? |
3gt; 9’ |
11 |
aey-ztxe-^2 X^ 2:=/’— |
11 refolv. |
12 |
^=7 |
9, IO |
^3 |
^-5^ y=9- |
PROB. XXL
find the valus cf a, when | |||||||||||||||||||||||||||||
|
PROB. XXII.
I 2
3
4
5
Given
= 234000^:^, ae ae’' ae^ zz 1860—f, to find a e.
c
a~ • nbsp;nbsp;nbsp;quot;nbsp;'quot;•■^
b
problems.
Sea. 1.
5Xf’
6 X reduced
■—
e^e-i-e^ ^4-e flt;?
zzcce Y, I 4-« ee r'-
lfÿ(gt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;hbe'’
1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—c*e? —t*a*
PROB. xxin.
î7jere is a caßz of rum^ out of •vohich was taken 41 gallons., and filled up with laatery and the fame repeated three times more. At laß there was found by the proof, to remain nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gallons of rum in
it. Wh^t was the lontent of the cafii ?
1 I'J=:4i, f=25-’^935gt; ^=cafk’s con-( tent, then a—remainder.
21 And fince the quantity of liquor is as the fpace it poffeffes j therefore a : a—b (i rem.) : : «—b ;
a—b
(2 rem.) : :
^3 rem.) :
------s a—b
aa.
aa
---- e—‘b ,
queft.
3^
4 tr.
5 refol.
^~-b
31 lt;iî —
41 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-{■^bba'-—4^’a4./, —
51 «*—4^zz»4-6Zgt;iia*—^.bazz. bgt;..
I nbsp;nbsp;nbsp;'—
I ^1 a-z: 124.84 gallons.
Z 4
PR OK
-ocr page 362-344 NUMERICAL B-
PROB. XXIV.
Given
L
2, Put ■ 3. 5» 6
4) 8
I
2
3
4
5
6
8
9
da
10 X
10
II
II ~ nbsp;12
.'13
Î3 X 14
—dxy.
x^ x^yquot; nbsp;nbsp;nbsp;nbsp;nbsp; JF'’ —bbxxyy.
X y 7 —dxy
X -}-y'^—bbxxyy
xy—a x-}-y—e ee—2« X e—da—x^-yy’- x x ƒ da
ee—2a — ~—xx-}-yy
ddaa
€6
ddaa da
~-.2aa-X.— == ^quot; 7* X
x'’ 7‘—bbxxyy —bhaa.
dd—ïee X da—bbe^ bbe^
d'-—zdee
2bbe^ db^e'^
d'—2dee ~ d'—idee
d'e'—ide'—2bbe^~dbbe'
d'-—idee—2bbamp;—dbb bb dd~^bb
ee -2e= nbsp;nbsp;— , a quadrati''
which gives and then ftep 12, and x and ƒ
found from ftep 5 and
PROB-
Sea. I.
» R o B L E M S.
Given J
that is, f
^2
Put
3. 5, 5
5, 6
7X8
9 luj
7 4-10,
I
2
3
4
5
6
8
9
10
r I
8 4- lo
5—
6, -{-
t3, 14
t5 red.
12
13
*4
^5
16
prob. XXV.
—bda'^ 2ba''ee -{■bbae'^ —idbba'^e —b^de^ —d^
a^ee — 2bda'e-{-bbdda^ 4- nbsp;nbsp;nbsp;nbsp;nbsp;—
2dbbae -{-bbd-^-b^d^e ~b^d^,
(i^-{-be X ae—bd —d^.
ag'—bd X aa-\-be—b^d‘-^ M-\-be—x ae—bd—y x^y—d^ y^x—b^dd.
—h^(i^, xy—bddl/Tdd
V!—---- = —Vbhd
bdd^bdd
__ b^dd bb ,__
(ia~x—be y-\-bd azz.-------- e
aa ^yy±i^y-\-iidd ee ■quot;
xee—be'—yy-\-Q.bdy-\-bbdd, a cubic equation which gives whence a is known by ftep 14.
prob. XXVI.
’■» ßKd four uuu,boo, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;havius ,b, frodua
cj every three ^iven.
Suppofe
I
2
3
4
j^yz— yzv ~c zvx~d quot;VX)'—/
IX2X3X4
34^
ÏX2X3X4
5 (tu 2 6-2
64-3
4
6 -i* 1
5
6
7
8
9
10
NUMERICAL
B.JÎ-
’z’-ü’ 3 ______ xyzv = ^bcdj X—\/bcdf
c ^bcdf y-'-T^
\/bcdf '^-~~b~
PROB. XXVII.
lquot;o find 3 numbers, x,'y, z, having the produit of each and the fum of the other two, given.
5—1
5—2
5—3
g Im 2
10-^ 6
y
10 -r- 8
1
2
3
4
5
6
1
8
9
IO
11
12
«3
X xj gz:^
y xx z:=c
2 X^ jyz:^
2 xy 2XZ 2yz zz b c d b c-Vd xy xz yz z: — =j, by fubft.
vz—J—b
xyz=:s—d___ ___ xxyyzz=s—b y.s—siiiiid xyz~\/J——c nbsp;JZZ^
\/s—eye. s—d ------------------1.------------ J—b
PROB.
Sed. L
PROBLEMS.
PROB, xxvni.
347
Fig.
find any polygonal or figurate number.
A figurate or poligonal number is the fum 21. of a feries of numbers in arithmetical pro-grcffion from i. And thefc are fo called, becaufe they denote the number of points, which fill a regular poli gon, placed at equal diftanccs, on lines drawn parallel and equidi-ftant, to the fides of the figure. The following table fhews the arithmetic proportionals, and the poligonal numbers formed from them. The numbers of the arithmetical feries Ihew what number of points arc placed on the feveral parallel lines of the poligon ; and the poligonal numbers, fhew the whole number of the points contained in the figure.
Rank. |
Arithrn, proportionals. |
Poligonal numbers. |
Names. |
I |
t, I, I, I, I, I |
3, 4, 5» |
laterals. |
2 |
I. 2 3 4 S 6 |
3, 6,10,15,11 |
triangul. |
3 |
3. S, I-» |
I» 4, 9,‘t6»25»3^ |
quadrang. |
4- |
», 4, 7,10,13,16 |
I, 5,12,22,35,51 |
pentang. |
5 |
b 5, 9,13,17,21 |
I, 6,15,28,45,66 |
hexang. |
6 |
I, 6,11,16,21,26 |
I. 7'»8,34,S5,8i |
heptang. |
7 |
b 7,i3,»9,^S,3» |
1 I, 8,21,40,65,96 |
odang. |
r_ any rank, x— poligonal number fought,
n — place of x -, then r~ i — com-rnon^diff. of the arithm. feries
\Xr—I—the»’* term in the arithmetic progreflion.
2 «—1 Xr—1
Xn—n’’' term in
the poligonal numbers.
-ocr page 366-34*
B. II.
sect. n.
QA Inters a and Annuities.
prob. XXIX.
Theprincipal, time, and rate of intereß being given-, to find the amount, or money due at the end of that time-, atfimple intereß.
Let
I
2
3
4
5
/gt;:= principal, /zztime, r=: rate of intereft of i /. for a certain time, as a year, ^ßc. s = fum of all the arrears.
1 : r : : ; rp, the intereft of /gt; for a year.
* rp zt prt, the intereft for the time t.
I prt :z whole arrear at the end of the time t.
P-Vprt—s, the arrear fought.
by proportion
I. 4
Cor. I. Hence p given. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rt i*
t^'hen s, r, t, are
Cor. 2. /—
p). ) when s, p, r, ciregi’oen.
2- r::z
pl ) when s, p, t, are given.
PROB.
-ocr page 367-Seil' n* Interest and Annuities.
349
•iP ROB. XXX. »
,,*ïhe annuity^ time^ and rate of intereß being given \ to find the arrear, at the end of that time^ at fimple inierefl.
~ 1 ‘
rut -1a*I lt;î= annuity or yearly rent-, t — I 1 nbsp;nbsp;nbsp;time of forbearance -, rvz inte-
i nbsp;nbsp;1 nbsp;nbsp;nbsp;reft of I/, for a pear, läc.
1 I whole arrear.
lt;1 21 o=;lntereft due at i year’s end.
by P’’°' portion •
31 ’'«=iniereft at 2 year’s end.
41 itfl^intereft at 3 year’s end, 5^ 32^5quot;intereft for 4 years.
2,3gt;4gt;5Ai 1
arith.prop.
Prop. 7.
gt; nbsp;nbsp;nbsp;8, 9gt;
71
10
Cor.
I.
t—1 . ratxintereft for ƒ years. /a=:rentsdue at the end of t years. 0 1 2 3 ... to /—I X into
/XI—I , ——ra-gt;rta—s,
2J
f/t—I
2
■ta -zzs.
a~^ nbsp;---—
t—i.r 2 quot;/t
Cor. 2.
ar
Cor. 3
zs—ta r~
t—ï '/.ta
PROB.
-ocr page 368-INTEREST nbsp;nbsp;nbsp;nbsp;nbsp;B. it
PROB. XXXI.
To find the prefent noorth of an annuity^ to continue à given time^ at a given rate of Jimple interefi.
Let
Prob. 29.
Prob. 30,
2=J
4 -7-
p=prefent worth, «-annuity, /s: time, r—intcreft of 11.
t — i.r4-2
— nbsp;nbsp;nbsp;nbsp;nbsp;quot;nbsp;tatzs
2. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;________
t—i.r - - 2
p-i-prt -------------ta
Cor. 2. // “;:----—vtihence t may it
fm«d.
Cor. 3. r zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
2/»—t—i,a^t
PROB, xxxir.
7he principal, time, and rate of interefi being given’, to find the amount at the end of that time, et compound interejl.
Let
I /^principal, /rxtime, r— inte-reft of iZ. R z: 14-r the amount of iZ. and its intereft. jztfum of money due at the end of that time. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;p‘f
-ocr page 369-Sea. n.
ftr queft.
ANNUITIES. 351
by proportion
I, 6
2 I gt;• or Rzzmoney due at i year’s end.
3 I : R : ; R ; RR =: money due at 2 years end.
4 I : R : : RR : R’ =: money due at
3 years end.
5 R‘ =:money due at t yezr'3 end.
6 ' I : R‘ : : ƒgt; :/gt;R‘ = the amount of p for the time /.
71
Cor. I. « =;
R’
-n» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lo?:s—log:p
1. R = or
Cor. 3, R _ y/~, orlog;R=i----------
PROB. XXXIII.
'ïbe annuity^ and ratt of inttreß, ^eing given y to find the arrears due at the end of that t^^ ot tompomd interefl.
Let
1 a ■=:. annuity, or yearly rent, ‘t— time of forbearance, rrrintereft of 1 Z. for a year, ùfr. R —14-r, jz:fum of ail the arrears.
lt;j—money due at 1 year’s end.
2a-{-ra—a-^9.a~3.tTZit at 2 years end.
a-l-lt;îR4-lt;jRR~arrear in 3 years. ö-l-flR-PöR‘- -dR’= arrear for 4
years.
a 4. ûR 4- «Ri 4- ûR* .... to ßR * =:the arrear for ? years.
3
4
5
6
by Prob.
3^-
geom.
-ocr page 370-352
t p geom. piopor. lt;nbsp;prop. 2 6
interest nbsp;nbsp;nbsp;nbsp;nbsp;b. n.
I, 8,
R R» ‘Rj ; .i. to R'-'
_BxR'“—I ; 1 Rgt;—.i
~ R—I nbsp;nbsp;“ ( r *
R'—,
—-— a — money due at the end ' of / years. '* ;
R'—f • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘ ‘ ‘ ;
Z— a— s- ' nbsp;nbsp;nbsp;nbsp;nbsp;!
Cor. I.
Cor. 3. - R—R'= a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
utihence R may
foundj and then r.
PROB. XXXIV.
7o find the prefient worth of an annuity, to continue a given time, at a given rate of compound intereft-
Let
A
Prob. 32, Prob. 33.
2=3
4-^R'
^zzprefent worth, öxxthe annuity» /—the time, r=intereft of R=i r.
I
2
3
4
5
COT'
-ocr page 371-scft- n.
annuities.
353
Cor. I. a ~ 1 I.-- R‘ Cor. R'=:-£_ a—pr Cor. 3. R‘ 4. and r quot;txim be found. — R' |
or t — log: a—log:a—-pr ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/o^.-R ' • a tübence R |
Prob. XXXV.
lt;j‘o find the Value of an annuity to continue for ever, at a given rate of compound intereji.
Let
;gt; — prefent worth, a ~ annuity,
I rzzintereft of 11. R = i-p^, 1 nbsp;nbsp;nbsp;R'—I
21 p—-----a.
Prob.73. cor. 7.
31 but fince t is infinite, R' is infi-l nitely greater than i, whence 1 nbsp;nbsp;R'—i=Rf.
4 p = l—a~ i J r'
Cor. I. a—/gt;r,
Cor. 2. r . P
PROB. XXXVI.
^t ivhat rate of interefl will 100 I. amount to 2001. in yean, at compound intereji.
, Let 1 I , ’'=rateof ,
Prob. 32, I 2 I looR'* ^oo, ïgt;fr queft.
24-
-ocr page 372-I
3
4
5 6
1
354
2
2 nbsp;nbsp;4
4 (ugt; 39
5quot;’
6% loo
N T E R E S T and g jj 3 9 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ nbsp;nbsp;nbsp;nbsp;*
Rquot;=:2
R’9 = i6' -
3 9
R = \/i 6=1.0737 by logarithms
R—I —
rate of intereft -per cent.
R o B. XXXVIL
^ntereß, for X years, at x per cent. /0 ßnd tbg iti which it ijoill gatn X.
Prob. 32. /»fr queft.
I, 2
3 4-
nature of logs.
^i-ob. 8.
oor. 1/
l’y reverf.
I
2
3
4
5
6
1
;R'=p
f-“’ ’'-7^'^=' — ,
S—2X.
^xi 7HÓ — -3010300 XX
X ’• J 00 nbsp;nbsp;20000
3O00000
.30103 amp;C : — ~M~'
—— Sic. 3QO0O00
100
-,693’47
PROS-
-ocr page 373-Seft. II. annuities.
355
prob. XXXVIII.
Given the rate per cent, fora year (si.), to find iiohat the amount of any fum (lool.), will be at the year’s end, at compound intereft -, fufpofing it to arife from the prinàpal and intereJi due eveiy day,amp;cc.
Let 5 I 2
3
3. nbsp;nbsp;nbsp;nbsp;nbsp;4
Prob. 32. 5
r—intereft of i Z. for a year.
» = 365 the parts of ayear. r
intereft for i day.
r
Id-— =;money due at i day’s end.
571 —at the year’s end.
by logs.
6, 6X100
or 5
6
8
9
10
« X Itg: t — log: amount
forayear ~.o215694.
1.0509 rzamount for a year.
105.09 —amount of 100 Z.
7^ =’ ^
■n. n— I ■ 2«»
rr 4-
K. n—I . n—7.
^c. the amount for a year.
If the intereft is fuppofed to gain intereft every moment, by becoming part of the principal -, then n is infinite, and
7^*^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r* 7*^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7^^
I -j- — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;“Vquot; nbsp;nbsp;nbsp;nbsp;“V* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;**
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;* 2 nbsp;nbsp;nbsp;2.3 2.3.4-
Src. the amount at the year’s end. But this feries is the num
ber belonging to the hypetbolic logarithm r, whence ,
A di I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' 'Ibe
35^
IO,
INTEREST ond B. H.
I 1 The number belonging to the logarithm .43429448 r— amount of I/. for a year —1.0513; and for 100 = 105.13, to gain intercft continually.
Schol. If the intereft for a day be required, fo that it may amount to i 4-r at the year’s end, at compound intereft ; then the amount at 1 day’s end, will be ^/i -pr i which is fomething Icfs than
P R O B. XXXIX.
A man -puts out a jum of money at 6 per cent, te continue 40 years •, and then both principal and inter efl is toßnk. ll/hat is that per cent, to continue for ever ?
The quertion amounts to this ; jf 100 I. be paid for an annuity of 6 /. a year for 40 years, what is that per cent ?
Put
Prob. 34. cor. 2.
2 X
Suppefe
Suppofe
03=6, p — ioo, 40, rzzrate of 1 /. R -1 4-r.
_lfg:a—log:a—pr Zf^.-R ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;______
Log: R = nbsp;nbsp;quot;
— h6—1:0— I oor
R — ^-05’, then r=.O5, and L:R =.019454 ; whence 1.046 which is too little.
R = i.O53, iben rzz.053, and E;R=.023324, andR = i.055’ too biw.
Then
-ocr page 375-Scfi, II. annuities 5^-?
Tl^n by rule 5, Prob. xcii. B. I. you will find — *'O52j and the rate —^.2 per cent, which may be repeated for more exaélnefs.
PROB. XL.
If 200 1, be due 3 years hence -, and 80 1. 5 years hence -, in what time muß both be paid together, at S per cent.
Let Prob. 32. cor. 1.
ib.
2 3 Prob. 32, cor; I.
/ — the time. 200
-s — 172.76, the prefent worth i'O5
of 200 Z.
— 02.08, the prefent worth
of Sol.
235.44, the whole prefent worth.
I
2
3
4
5
years.
PROB. XL,I.
irhat muß I pay-for an annuity of 70 1 /0 begin G years hence, and then to continue for 21 years at S per cent ? nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;j - »
Let
Prob. 34.
Prob. 32. cor. I.
Æ — yo, t~2i, R —1.05, xr:6.
I
1--
K r , r ,
•--~a—prelent worth of the an-
r
nuity 7 years hence — r.
f
I— —• R
— — -----a — prefent worth
R'
of J, years hence, r:669.704 Z-the prefent worth of the annuity in reverfion^
A a 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;SECT.
B. IL
SECT. III.
Arithmetical and geometrical Progrejfion,
PROB. XLIL
A traveller feti out end goes miles a day, 3 days after, another follows him, who travels thefirß day 4 miles, the fécond g, the third 6, and fo on. In what time will he overtake the frß ?
1
2
3
4
5
1 8
fer queft. arith. pro-greffion,
jper qu.
3=5
6 reduced
7 extr.
xj^ays the laft travelled.
.X—J-{-4—his laft day’s travel.
X— * ”l~ 4
—---XX 3= his whole journey. x 3 = days the fir ft travelled.
* 3 X 9 =;firft man’s journey.
—-—=9x4-27
XX—15x13:54.
x = i8.
PROB. XLIII.
There are three numbers in arithmetic progreffion, the fquare of the firfl together with the froduhi of the other two is 16 -, and the fquare of the mean together with the product of the eutrearns is ij. What are the numbers ?
Put
qu.
«-he for the numbers, b~i6, c-i-j.
2 2aa—ae-\-ee~b
3 zaa nbsp;nbsp;—ee—c
-ocr page 377-
Sed. ni. |
Arithmetical Progression. |
2 3 |
4 403—ae—^ c— s by fubft. |
4 tran. |
5 ae ~ ^aa —s |
3 tran. |
6 ee—2aa—c |
6 X an |
7 aaeevzia*'—caa |
5 |
8 aaee — i6a^—8ri2‘4-Ji |
7 = ^ |
1613 —B.çÆ’4-jr = 2i3 —caa |
9 reduc. |
10 14-Ä —bj—c.aa -pw—0 |
10 ext. |
II UÖ—9, ö“3. |
.. |
413.3—J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, |
5 — a |
12 £__ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;__I. a |
* I, |
113 and the numbers are 2,3,4 |
PROB. XLIV.
'There are four numbers in arithmetical progreffion, •whofe commmon difference is 2, andproduii 34Ó5.
Let |
I |
ïb — i, or b—i., p—'^e,lt;Ô5\a—ff, a—b, a-{-b, a-{-ff, the numbers fought. |
queft. |
2 |
aa—ffb y, aa—bb —p- |
2 X |
3 |
a*—\obba^-S(-ff^—p. |
3 extr. |
4 |
120 — 64, a —8. |
I, |
5 |
the numbers are 5, 7, 9, 11,. |
prob. xlv.
T'a find five numbers in arithmetic progreffim^ whofe-ftim, end prodiidi are given.
Put 1
—e, a, a-\-ey a-i^ie for the numbers, b ~ fum — 2§, /’:r:prodLi£l —2ß2Q.
5i’-—3e 3e~5a=b. b
a'z:.—-z::ni by fubft.
_5 nbsp;nbsp;nbsp;nbsp;nbsp;___
a aa—4^e x öö —tit: p,
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3,.
-ocr page 378-GEOMETRICAL B. II.
3’ 4. |
5 |
m X mm—^ee X turn—ee —p. |
5 X |
6 |
m x, m^—^mmee ^e^ —p |
6 -ir m |
7 |
P 4^ —ynm£e-\-m2^— |
“y extr. |
8 |
ee—}y e~\.. |
I |
9 |
and the numbers are 3, 4, 5, 6, y |
PROBLEM XLVI.
«
find three numbers in geometrical progrejfion^ uobere tbefum is 2O, the fum of theirfquares 140.
Let
ƒ|^r qu. lt;
3—y
5 Ï
^—yy
3. 8
9
2x4
6—11
12 £tu 2
5 13
2
3
4
5
6
8
9
IO
11
12
13
14
X, y, z be the numbers, ^=20, f = 140.
A.quot; 4-7 2X3^
*■* 77 22
* 2=^—y
xx-\-ïxz-\-zz — bb—iby -Sf-yy xx-\-zz-tf-zyy—bb— z by -\-yy XX 22 4-jj z: bh—2 by bb—zby~c.
bb—c
4xz=4;:y
XX—zxz-\-zz—bb—zby— X—z—\f bb—zby—c^yy
_b—;y4-v^ —2 by—337
~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~
T^I v/1.3;
2
15
2
^31—a/i3* z
PROB
-ocr page 379-Seóh. ni. progression. 361
PROB. XLVII. ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i
| |||||||||||||||||||||||||
iS |
362
l8 -r-
9» ^9
20 reduc.
21 extr.
19
1
24 X 2 reduc. 26 extr.
10,24
GEOMETRICAL
19
20
21
22
23
24
25
26
27
28
a’ ^4*2«
4'’’
f r-;— 2ab—2aa—b» o-\-2a
bb—c,
baa-\- ca——— b
a~6^ e-'i.
e nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;e
y— —, ar:x4- —
ax—xx-^e XX—ax 4-^—0. x — z.
7^:4, v—1, Z=8.
B. IL
P R o’ B. XLVIII.
T'a find four numbers in geometrical frogrefiion, fiich that the difference of the means is 100, and the difference of the ext reams 620.
Let
■per queft. But
3. 2
4
I
2
3
4
a^ e, u, y be the numbers, b —100, f — 620.
y—d—u — e—b.
au—ee^ ay—eu., by the nature of progreffion.
ae—ab—ee, aa—ac—ee—eb.
ee
a —--
e—b
4» 5
6 X y tran.
8 red.
aa—ac —
e — b
e'—ce nbsp;e—he
cee .
—7 nbsp;—ea.
t—o
g extr.
2, 5
—c.ee-4-cb— ^bb.e——b^.
7 h' ee—be —----,
e—ib
ezzitze, y — 3, uz^25. PROB.
Sea. III. PROGRESSION. 363
PROB. XLIX.
^be fum of four quantities in geometrical progreffen being given, and the fum of the fquares of the means, to find the quantities.
Let
«’gt; a^e, ae'-, be the quantities, Lim of all, f::zfum of the fquares of the means.
4-fî —X ä e=.
Put
5 nbsp;nbsp;nbsp;nbsp;2
6,
3’ 4, 5
8 red.
5 6
8
9
;)7=ß4e‘q-2ß’e’ a*e
2 ’
’37—
hy--2cy~bc
5^
so a
j I, 12
-Vd—o, whence ß,^, and
2.11 1
“ t.ie numbers are known.
PROB.
36'4 geometrical B. II.
prob. L.
^hcre is given the fum of the fquares of the extrearns °f quantities in geometrical progrejfwn ; and the fum of the means {^c') j to find the quantities-
I.et |
1 |
2 | |
qu. | |
2 3 |
4 |
5 | |
5 y.a‘'e‘' |
6 |
Put | |
4—7 |
8 |
3, 6, 7, 8 |
9 |
3,7 |
IO |
io luj z |
11 |
3^ 4, 7, |
12 |
12 luj Z |
13 |
114-13 |
14 |
a\ a'-e, ae\ e^ be the quantities i
4-1?« — 14. c=d.
a^-^e'- X rt‘4-f‘ =
^“4-ö-‘e‘ x«‘^ 4-^‘' —
ƒ fS— y y. d—y—cc.,
-}-2a^ee -^-aae^zzy -{-c a' aee—\/y-}-c —p a‘'ee-{-2a'-e‘'-\-e^—c-\-d~y u 4quot;^^ c~^d—y zaq z2’4-^î'^ (îf‘4-f’=;)4-ÿ. Whence the numbers will be found as in the laft problem.
Or thuSy | |||||||||||||||||||||
|
6
-ocr page 383-Seel. III.
6
reduced
n 4.
7
8
R O G R E S S I o N. 365
—6fîx i5f4xx—20f’jf’
—6cx^ 4* A'® :z: bcex''—ibcx^ •}-bx^
2X^--1 nbsp;nbsp;nbsp;nbsp;nbsp;--2Of ’ X ’
' nbsp;nbsp;nbsp;nbsp;---4.2^c
i5f*A;x—ôf’x 4-f6—o.
quot;—bee
Prob. LI.
Given the fum of the extreatns {b} of five quantities tn ^eome rtca frogrefiion^ and the jum of the three ' means (f), to find the quantities.
Let
Ï a^, a^e, a'-e'-^ ae^^ e^ be the quan* titles.
qu.
2 zj e -Z-.
Put
,2’ 4, 5
« reduced 2±5
8 kv 2 4
3 ö’f ö*e* öei —f;
4 Xö* 2a*e‘_j.g4— =«’e öe’.
5 y—aaee.
=;
7 37 ^j 2çyzzcc.
9 j ^ö ^i?=v/Zgt;-i-2ji
lOi aa—ee~^b—zy. Whence a, e, and all the quantities are eafily 1 found.
PROB.
-ocr page 384-366 G E O M E R I C A L
B. lî.
P R O B. LU.
0/ fme quantities tn geometrical progrefTion there is ^!he}oulr^s\f^ti!'' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and the fum of
^‘'1 gt;nbsp;“f'-i ‘t‘
Let
/gt;(fr qu.
Put 3’ 4, 5 6 gt;:}' ^gt;5
8 Lu 2 J
2
3
4
5 6
7
8
9
10
aie, a^ei-, ae^, e^, be the quantities.
ß - -e z=Z-.
ö®i?'—f.
a^ei X a^4-e*=a^ee aie^
y~aaee
y X b—c—a^e^ —c—yy.
yy-gt;rby=.c.
a^^2a^ee-4-e^~b4^2y
4- f nbsp;nbsp;nbsp;nbsp;nbsp;b 4- 2^.
00—ee—\/ b——2j».
whence all the reft are found.
PROB. LIII.
7here are four quantities in difcreet, ivhofe fum is b, and fum of their cubes d -,
geometrical proportion fum of the fquares c, to find the numbers.
hor qu.
5lt;^2 amp;c.
2, 5y 6,
1
2
3
4
5
6
7
8
y, ex, y, ey, be the numbers. x-{-ex-^y4-ey—b
x^ 4-^quot;jf- 4-J»
*■’ 4-^’a;’ 4-jy’ 4-^’7’ —d
x y—v, x’'4-y^—z.
i4-^3=j, i4-(?£z:/, i4-^’=«
quot;av—z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;oz—ve}
= ~~T~i -v’ft-;”-—\
sv — b
3’
-ocr page 385-Seft. ni. 3gt; 5» 6 4, 6, 7
n
reduced
progression. 367
9 tzz=.c
10
II
12
»3
14
32—vv
—;;--vu—d.
Zici^u—b^tu — 2sUd.
and reftoring the values of Jquot;, /, « ï then_3^X quot;V T’ X i ^ —
X i e‘ X I ee = 2z/X i
A nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5th power.
And e being known all the reft are eafily found.
S E C T.
36S
B. II.
S E ,C T. IV.
ZJnHmited Problems,
PROB. LIV.
How many cld guineas at 21s. 6 d. fi/toles at _ Ji7s. w/ZZ pay lool; hozo many ways can it be^done ?
| ||||||||||||||||||||||||||||||||||||||||||
P R 0 8. |
Seâ. IV. Unlimited Problems.
369
PROB. LV.
What number is that., ’which being divided by 2, 3, 4’ 5gt; 6, nbsp;nbsp;nbsp;8, 9, IO, II, 12, there will remain
I j to divided 13, then o will remain.
| ||||||||||||||||||||||||||||||||||||
PROB. LVI. |
yiman bought 20 Zi/to for 10fence -, geefe at 4 d quails at half pennies, and larks at farthings, Ueÿ, many did he get of each ?
Let
qu-
2 tr.
3gt;4..
5 '■e'î-
I ö=z geefe, fzz quails, y— larks.
2 fl-l-e v = 2o.
3 4^7 4-‘^ iT~?o.
41 y~ZQ—a—e .1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«-ke •
5i 4'^*r’'’ k5— ----- r-20
ci nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ÛJ.
B b
-ocr page 388-
37® 6. |
UNLIMITED |
B. II. | |
7 |
a _□ 4. | ||
2 tran. |
8 |
e—2o~^a—y | |
3gt;8 |
9 |
4a4-io4-I;»——20 | |
red. |
IO |
• ya—iy—zo^ | |
IO |
11 |
/JC_2' | |
7. quot; |
12 |
0=3 | |
2, 12 |
ij |
^ 7 = »7 | |
3. 12 |
14 | ||
Ï4 X {2} |
^5 | ||
»3—15 |
16 |
4y=h y=2. | |
^3. |
‘7 |
e—i5.- |
PROB. Lvn.
A, B, C, and iheir laives P, Q^, R, xvtfit tó tlt market to buy hogs. Each man and woman bought as many hogs as they gave ßoillings for each hog, A bought 23 hogs more than Q j and B bou^t 11 more than P. Alfo each man laid out 3 guineas more than his wife, JVhicb 2 'perfons were man and wife.
Let
J
4 tr.
5 -ê-
6—y But
I
2
3 4
5
6
8
X = hogs fome man bought, X—-J :z:wife’s hogs.
the money for the man’s —XX, XX—wife’s money.
XX—XX—2 xy nbsp;nbsp; 63.
2x^13363 63 jyy ,
X Z3----- —wb, ly
J
X—y zz —--z: .
In this cafe 31 muft be an odd number, =1, 3, 5, 7, Cff. but it cannot be 5.
8,
-ocr page 389-Sea. IV.
8, fer queft.
problems. 37Î
9
IO
11
So find e, y “184.
2 4-
2 -r
4,
5’
Put
8,
5, 9
»1- (ƒ)
If j=:i, w—7=3^»
7^:3, X—9’ y—jy x—y— nbsp;nbsp;nbsp;nbsp;nbsp;8
A has 32 hogs, and Q 9, Alfo B has 12, and P i.
Whence B and
C and P
A and R
PROB; LVIII.
are man and
wife.
in whole numb er Sy fo that yy—^f 22«
To deprefs the equation,put7xrx ^‘ yy—ee-\-ï2e—xx 2xe i2e—i^4r.
184—XX nbsp;02—\xx
f — —---- —---— —
22 2J? I 1 4-x therefore x muft be an even number. Therefore
9
10
11
12
13
, nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;184—XX
rather make le—----;---~wh.
11 x
reduce the equation as low as it can, then ae zz — x 11 4---— zzîcZj.
11 *
^3
I I -i-x
—wh.
ii xzz/gt;
^3
— zzwh. Therefore take /»~any divifor of 63, that is P~iy 9 9, nbsp;nbsp;nbsp;nbsp;nbsp;63.
thcnxzz—IO,—8,—4,—2,10, 52'
^3 z-
— = nbsp;63, 21, nbsp;9gt; nbsp;7» 3, I
2e nbsp;zz 84., 40, 24, 20,^4, —4Q.
f nbsp;nbsp;= nbsp;42, 20, 12, 10, 2, —-20.
y — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;12, 8, 8, 12, 32
ß b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And
372 nbsp;nbsp;nbsp;nbsp;nbsp;UNLIMITED B. It
And any pair ofthefe will folve the problem, which are all the poflible anfwers in whole numbers.
PROB. LIX.
■Â vintner has wine at 24 d. aid. and i8d. prr gallon ; of which he would mix 30 gallons^ to bt-fold at 20 d. How much muß he take of each ?
Let |
1 |
a^ e, y be the quantities of each. |
fer qu. i |
« ^ 7 = 30. | |
3 |
24^ 22e i8jz:6oo. | |
2- X (24) |
4 |
240 24^4-247=720. |
2 X (22) |
5 |
22a 22f 22j, =660 |
,4—3 |
6 |
2^ 6j= 120. |
6 4- (2) |
1 |
^ 37=60 . f=6o—37. |
7, |
8 |
7 _□ 20. |
5—3 |
9 |
—2^ 47=60 . a—zy—30. |
9 2a |
10 |
47=6o-h2fl. |
IO» |
11 |
y c_ 15. |
8, IO, |
12 |
7 = 16, 17, 18, ig. |
9. |
13 |
0 cr 2, 4, 6, 8. |
14 |
= 12, 9, 6^ 3. |
PROB. LX.
^ofnd the value of e, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;z in whole numbers^
in the two given equations following.
I
2
3
4
5
6
Civen J
ïX(4) tX(9)
2—3 4—2
Suppofe i—e
• ^ 7 « x zzz;6o.
3^ 4j 5« 7^ 9Z=44O.
4^ 47 4« 4*' 42= 2 40
9^ 97 9« 9* 92=54O
—e nbsp;nbsp; « 3;)f4-5zzz2oo. f[L.o.
6f 5'’ 4K 2x nbsp;nbsp;=100. f 3J43.
7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;e—ïo.
Ö ;' « *4-2=6o—e=s5Q
-ocr page 391-
| ||||||||||||||||||||||||||||||||||||||||||
An^l nne anfwer is got, viz. ez=zio, y—^, «=4 2=40. for 10 4 4 2 40 = 60. 3X10 4x4 5X4 7x2 9x40=440. |
PROB. LXI.
^ofind aperfeSÏ number., or one which is equal io the fum of all its aliquot parts. | ||||||||||||
| ||||||||||||
® nbsp;nbsp;3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Cor; |
U N L I M I T E D, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. Hr
Cor. 3.
Pr. 26. propor.
3» 4gt; 5
6 X tr.
9 tr.
lO -T-11 tr.
I, Ï2
8gt; 13
4
5
6
1
8
9
But that X may be a whole nuni' ber,
10
11
12
13
14
15
------ n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n ,
y—.l.y ~~y i — i. ----- n nbsp;nbsp;nbsp;nbsp;n
y—'I.y —y
y—I z: [
2 y — a perfect number. •
ï‘ X i”quot;*”*—1 =: perfedl number, -where 2 nbsp;nbsp;—i muftbe aprime,
as appears by ftep 2.
If » is an odd number greater than
I, then 2”’*’’—I will be acorn-pofite number.
375
SECT.
Rational Squares, Cubcs^ amp;c.
PROB. LXIL
Tc find iwo fiquare numbers, whofie difference is given.
Put 2
Let JTJf and be the numbers, a—difterence.
'^•\-v nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2:—lt;v
2:z.4-2Z‘u-|-'U'U
2 ©gt; 2
3—4
5
4
5
6
1
If « — 27.
If a — ici.
ZZ--IZ-Ud- Z'V -----~yy
ZV—XX—y y
ZV—a
Take v at pleafure, then z — ~^ whence x and y are known.
If « is a whole number, and x and y are deûred in whole numbers ; take any twofaólors that produce a, fo they be both evgn or both odd numbers, if poffible. And therefore a muft be either an odd number greater than i, or a number divifible by 4, to have X and y in whole numbers.
Take v — i, 2 = 27, or 1^223, z~9’
V — 2, 2r:io.
PROB.
/
37^ nbsp;nbsp;nbsp;nbsp;nbsp;RATIONAL B. II.
PROB. Lxm.
'To divide a given fquare into two other fquarts. | |||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||
PROB. LXIV. |
To find a fquare number {aa}, vohich multiplied by a given number {n\ and a given fquare [bb) added to it -, the firn may be a Jquare.
| |||||||||||||||||||||
PROB. |
Scà.V. S Q^U A R E S,
377
prob. LXV.
ee\ that their igt;r^ du£î added to agwen number {d}, be a/^uare.
L,et afTume
2 nbsp;nbsp;nbsp;nbsp;2
1 = 3
4 tr.
aaee-\-d~yy
3' 4
5
6
ae—u ~y
aaee—aaf'u 'P'u—
aaee d Z3 aaee—2aev -p w ïaev~-inj~^d.
__vv—d
«'here « and t, ^ay be taken at pleafure.
PROB. LXVI.
find three fuch numbers x, y, x. yyzzxz-and x y, and z-^y, may be fjoo j\uares, ’
Aflume -J
1—7
2—7
3X4
5 X 6tr.
3. 8 I
4gt; 8
1
2
3
4
h
6
7
8
9
IO
2 7—
x~aa—y
'i—ee-^-y
xz-'^^y èë^y^yy per queft.
77 nbsp;nbsp;nbsp;—aay—eey 77.
a’-e’-—aa-[-eey
aaee
y-aa^e' '’here e, may be taken at pleafure. lt;7cee x—aa——;— ---
aa 4-ee e^ z~ee—'—;— ----
ßö ee
Prob.
-ocr page 396-378
RATIONAL . B. II.
PROB. LXVIL
find a number, from which two given numbers {a, b} being fver ally fubtraSîed -, the remainders fiall be two fquares.
Let |
I |
the number fought. |
/’fr qu. |
2 3 |
X—a —yy X—^b — zrs. |
2 4-a |
d |
x—ay-yy |
3^ 4 |
5 |
—b—zz |
aflume |
6 |
V—■ƒ —2 |
6 (gy 2 |
7 |
— 2 vy jjy ~ 22 |
5 = 7 |
8 |
a—b 4-371:: vv-^ 2 vy -\-yy |
8 tr. |
9 |
2vy—vvy-b—a |
9 -7-2X? t |
10 s |
vv-\-b—a |
2V | ||
vv-y-b—d | ||
- IO. |
11 |
A «4- -------— |
PROB. LXVIII.
7o find three numbers (y, ƒ, 2\ t£?Z,(5y£fun^ fj^n fquare, and alfo the jum of any two to be afquare.
1
2
3
4
5
6
1
8
'9
Suppofclt;
4 X(2) 1 2 3* 5=6 Put
7.
9 tr.
A'4-2— JJ
;’4-2z:z/
x-|-ji4-22=t;u
2^1/~ 2x4-27 22
2^ 2j’4-22=:rr4-jj4-//
2^gt;■^;—rr4-zj zz
s—p—V, t—q—V
2.vv—rr St-pp—2pv-\- w
-\~qq—'2.qv-\-vv
7pV-}- 2qv—rr pp-}-qq
-ocr page 397-
Seft.V. |
S CtU ARES, nbsp;nbsp;nbsp;nbsp;nbsp;' 379 |
’'’' jöp f? nbsp;nbsp;, “ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;where r, p, q are | |
* |
taken at pleafure; whence J and ƒ |
are known (ftep 8). | |
ig , jyzxw—tt | |
4—2 |
13 y~vv—ss |
4—1 |
z—vv—rr |
. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.I n d' | |
prob. LXIX. 1 |
7o find i/jree fquares in arithmeiic proportion,
o | ||||||||||||||||||||||||||||||
|
prob. lxx.
/»J two numbers {x, y} fa that xy^x^ and niay be fauares. | ||||||||
|
3--t
-ocr page 398-RATIONAL B- H.
380
3—1
I
2, 4
6 red. Let 7gt; 8
9 red.
4. 6» 10
4
5
6
y 8
9
IO
11
------x ----------
—— X *4-1 =: □
to effeft this, Jet x4-1 be the fide,
— X then nbsp;—-—=*4
«ü-uzz** -4-2*=J*quare. r—xzzfide, rr—2 rx 4- xx zzxx 4* 2*
rr
2r 2
where r may be taimen at pleafure.
PROB. LXXI.
'befind two numbers, wbofe Jum and differenlt;^^gt; be two ffuares.
Let ter qu. |
I 2 3 |
a, e, be the numbers. a-\-e—yy a—e— a fquare. |
2—e |
4 |
« |
3.4 ' |
5 |
yy—zezz a fquare. |
Put |
6 |
r—yzzroot of it. |
5’6 |
rr—iry4-yy — ]y—2i | |
1 tr. |
8 |
2rjz=rr4-2e |
8 4- 2r |
9 |
rr4-2e , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, y :=. —where r, e may tae la- kent at pleafure ; then |
4gt; |
IO |
a—'^y—s. |
Sea. V. s Ctu ARES, ^c. nbsp;nbsp;nbsp;nbsp;38X
PROB. LXXlï.
Ta find three numbers (a^ e, that the fum of their ' ft^uares may be a fquare.
fer queft. I 11 aa ee-{-yy~vv
affume 1 21 ‘V=:lt;f y
2 nbsp;nbsp;nbsp;nbsp;2 1 31 1;* —dd-\-ldy-\-yy
1 = 3 1 4I
1 I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—dd nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, ,
1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and4
I I are taken at pleafure.
PROB. LXXllI.
To divide a number into two parts^ fo that the fum of the fquares may be a fi^uare.
Let 1 per qu.
2 nbsp;nbsp;nbsp;nbsp;2
4 — 1—a
3, 6, 5 affume 7. 8
ÿ reduc.
6, »o
111= the number s a, e, the parts,
21 s—a-}-e
31 Ælt;î4-fe—“vu.
41 ^‘^4-206 4-^^=11.
51 eia-}ree~ 11—2ae
61 6=1—a
71 lt;^ei-\-ee~SS 2414- O-an —•n^t
81 ra—s —V.
91 11—zas zaazzrraa—2ria-4-ii
1 nbsp;nbsp;nbsp;1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’’—
10 a=---- X 21
I nbsp;nbsp;nbsp;rr—2
1 1
1 I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tt
PROB, z
-ocr page 400-382 RATIONAL . B, IL
PROB. LXXIV.
To ßnd two numbers in the ratio of b to c, fo that either of them added to the f^uare of the' other, fjall make two fqûâres.
| ||||||||||||||
9 IO 11 |
8 -4- □ Put
JO
ÏI reduc.
12
^lt;7, ca, be the numbers. bbaa-\-ca— a fquare. ccaa-\-ba~ a fquare.
^^0^7 — bet—“V sz.bbaa— zbvtl
2bva-}-ca—'vv. * w
ccaa-\-ba~ --blt;7 x--;—
ccaa-\-ba — ecvv-\-2bbv X
- a fquare.
ccw-\-ibbv■\-bc — a fquare — zz, zzzev—r.
ccw -{-2hbv-\-bc~cc'i3'v—2cvr-i-rr rr—be
vzz—,------
zbb-tcztr ‘
PROB. LXXV.
To find a number, to which adding a given cube num-’ ber, the fùm fljall be a cube ; and fubtraSling ane^ iber cube number, the remainder Jhall be a cube. '
Let
I X be the number ; b^, the two cubes.
2 Ä'4-Z”~acube
3 X—C' — a cube
afliime
-ocr page 401-Sea. V.
aflurne
4, afiiime
5==7
8 4-
9 reduced
S Q.U ARES, afr. 383
b -Y—^a nbsp;nbsp;nbsp;nbsp;nbsp; 3c‘ä
S^“*' fS
-V ah
sc*
4- Y, Æ».
—----- 3
a—c zz nbsp;nbsp;— 3Æ‘r 4.
9
10
o B. LXXVl.
*Z*rt J* «
fwn of tzzio nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;other
cubes.
I
2
3
4
5
6
) ƒ be the cubes fought ; b'i €• ’^he given cubes,
y — C~~-— lt;;;
cc
—b^-\-'^bbv-\-fbv^ ■\-'jj'^
'i'’=:3’4-f5, quert.
6 tr.
-ocr page 402-
| ||||||||||||
PROB. LXXVII. |
To find three fuch cube numbers^ •cohofie fum may be both ^fiiuare and a cube number,
Let I
fer queft. 2—^’
a flu me
4^3 5 nbsp;nbsp;nbsp;3
7’
2
3
4
5
6
7
8
9
lo
n
e, y be their roots ; the fum of their cubes.
^’ 4'7’ —
^’ 7’=»®—
—v~y nbsp;nbsp;nbsp;nbsp;. ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
‘ï’ —a. cube
, *'* nbsp;nbsp;nbsp;nbsp;nbsp;3X*
*«—3Jf*-i; 3x’‘ü’—7?»
3x’
--Z7 w 4- 2X^1}'-—-y’ zzo.
Suppofe
or fuppofe
—x-^ai X 3aK „ nbsp;nbsp;nbsp;nbsp;—a’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa^xx ,
X and ö may be taken at pleafure ; then V being known, f and are known by ftep 4, and 5.
* —I, lt;3 = 1, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
and the numbers are
*^2, a—I, then a =0-?» and e — 'zi, y— » and the numbers
. L5L5299J_g
s E C T.
385
SECT. VI.
Geometrical Problems,
Having hitherto, in all the foregoing fee- Fig. tions, kept an account of the whole procefs by regiftering the feveralfteps at length in the margin; fo that the reader may fee at once how each ftep is derived from the reft ; and by this means become acquainted with the manner of proceeding, -in any operation. It may be prefumed, that by this time, he will be able to fee the connexion of the feveral parts of the procefs in any folution, without Rich a formal explanation. Therefore, for brevity’s fake, in what follows, I fliall not tie myfelf to this method, but generally write down the procefs after a fhorter way, without .notifying all thefe particulars ; and content myfelf with mentioning only fuch deductions as are lefs obvious.
PROB. LXXVIIL
In the triangle CAD ; there are given AC, AD -, 23. and the lines CE, DB, drawn to the given points p, B ; to find the point of interfehiion F.
Put AB=r, CB=»î, AE=p, AD=/f, CEz:/,, DB:zf ; and the line fought CFzzö. Draw EÏ 11 to DB.
By the fimilar triangles CBF, CIE fGeom. II.
T,T
I a,) a : j—a ; ; wj : --------—BI, and a : nbsp;nbsp;nbsp;; r :
a
Then Al 4- BI — AB, that is, —r
C c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4-
-ocr page 404-3^6 geometrical b. II.
Tig* , tnf—ma
2^. nbsp;nbsp; nbsp;nbsp;nbsp;~and multiplying by fra
—dmazzdar, and Jrö4-J/«ö—pra—dmf^ whence . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dmf
a— -----■— —
'—pl'
PROB. LXXIX.
24. To divide a triangle ABC in a given ratio, by a line ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;drawn through a given point P,
Through P draw ED parallel to BA, and put AB=^, AC=^, ^Q-f, ^E.=g, and the ratio as m to «, and ;» «—j.
By fimilar triangles, ? *■ : p ; : x — BI•
then (Geom. IL 19.) BIxBF ; BAxBC : : m : « «, that is,
■ h/ \ ins-, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
bmfx-{-bmfg-. by which equation x is found.
PROB. LXXX.
25. To divide a triangle into two equal parts, by a line of a given length.
Let ED be perpendicular to AC, KH the given line, and HL parallel to BD. Put ACzz«, BC-=^, HK“fi CD~i^, CK“;v ; then (Geom. II. iqJ ACxBC = aKCxHC , or 4Z'zz2ä'xCH , and ab
lt; CH = and by fimilar triangles (Geom. II. 13)
, ab abd
b-. d nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, and KI.=KC—CL=;»
2X 2bX
abd zbxx—abd „ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
~~ib'x - ----fjfx----• But (Geom, II. 21. cor. 5-)
HK‘-
-ocr page 405-Se€t. VI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;387
HK* — KL® rr CH* — CL* , or , Fig. ^b^ccxx—A^bx^—-[-^ab’'dx^ nbsp;nbsp;a^b^—a'-b'-d*' ï^, A^bbxx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Afbbx
or 4^Zix* —Afbbccx'^
—‘A,adbb — •—whence x will be found.
PROB. LXXXÎ.
“To find the inaccefifiible diflance AB, help of the triangle AGD -, CAB being one right line.
Through B draw BEF, and draw EG parallel to CD. Put AC=a, AD=^,CD=r, AE-J, CF=A and AB=:x. Then, by fimilar triangles, AD {b} :
Cu
CD (f) : ; AE : EG=y -, and AD f,} CA (0) : ; AE {d} : AG = j.
Then GB zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ys^^d by the fimilar tri
angles BGE, BCF -, CF (f) : CB (^ x) : : EG \ .. GB nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;:z:
b } nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b
cda-{-cdx b
ifx—cdx — cda~fda, and xzz
da.
bf—cd
prob. Lxxxn.
Jf the line EFB /»e drawn from the angle E, pendicular to the diagonal AD of a right-angled parallelogram, and BF, FD are given. To find the Jides of the parallelogram.
27.
Let AF ~x, EF zzy, BF—b, DF zzc. The triangles AFB, AFE, and DFE are fimilar. There-
C c 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fore
-ocr page 406-gSS geometrical b. il
andZ- : X : :jy or y :
Vv hence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and x^=lgt;h, and x = ^bbc.
Then AE=:^xx4-j;y, and '^V^—^cc-if-yy.
PROB. LXXXIII.
28. defcribe a f^uare in the gi’ven triangle A-TIE..
• Draw TC perpendicular to AE, and let BFGD be the fquaré. Put AE=Z-, AC=c, CE=^/, TC=/), BF orBDzrx, ABzzj-.. Then
The triangles ABF, ACT are fimilar, and ƒ : jr : ; f : /), whence cx—py. Alfo the triangles EDG, ECT are fimilar, and ED—b—x_y, whence
—gt;:—y '-it nbsp;à \ and dx—pb—px—py—pb^
px—ex. Whence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zr -r—.
^4-r ? igt; p
PROB. I,XXXIV.
2g. Âx eriual circles of 2 inches diameter are inferibed in an equilateral triangle, touching one another and the ftdes of the triangle. To find the fide of the triangle.
Draw A F perpendicular to BC, and from the centers O, S, draw OD, SE perpendicular to AB, aodletDO=;r, ABzzx.
Tlie triangles ABF, ADO, ESB are fimilar, and (Gcom. II. 39. cor.) AFzrzlBv/^. Then BF
*
{{x} : AF {X^l^ : ; DO (/-) ; AD--~=2ry/l xzEB, and DEz:4r, whence AB or x:=:4r 4'‘ ^1= ~^X2r^4 2y/s.
PROB.
-ocr page 407-Sed. VI. PROBLEMS.
i' ioquot; PROB. LXXXV. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;**
There are two ch det BDA and BFC touching in B, and if DE nbsp;nbsp;perpendicular to BA at the center E ;
then there is given Kid and DE; to find the diameters.
Let radius BEzzß, DFzz^, CA—i/; then PT
—a—b, ECr=lt;?—d., then FE’zzBExEC (Geom.
^7)’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—iab-Fbb~aa—ad, and 2/'«——
da—bb, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence BC:^:2a—d.
PROB. LXXXVI.
In the triangle ABC, there are given the three per- oj. pendiculars, from the angles upon the oppojite ftdes ; to find the fides.
LetAOzzt?, CPr:/’, BRzzc, and AB=:r.
Then twice the area —byrzACXcrzCB xa, whence AC ~ and CB~ And (Geom.
~cc--’’ (Geom. II. 23. cor.)
2 AB nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;27
, I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, bby i Z’Z’yy
2aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2CC 2
!
~if^ —bb. That is, aabby 4- aaccy-—bbccy —
2aac i^i^yy—. puj nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—bbcc—d, then
dy~2aac\dbbyy—bbcc •, and by reduólion , y _ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aabcc
\/a'^bbcc—.,dd *
PROB.
-ocr page 408-390 GEOMETRICAL B. IL
Eig. I
PROB. LXXXVIL
32. In the triangle ABC, there is given the reliangle of the fides ; the retiangle of the fegments of the bafe, made by a perpendicular -, and the area : to find the refi.
Let the area —b,
and BDrzz, i^zzzdiflference of thefegments AD,DC, '^h nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b
Then — zrAC, and — 4-j-r=DC, — — j = 2»
T)A. Whence — —yy=c, and lt;nbsp;z’-j. — ^x
z
’ and fquaring all the quantities»
] t b b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^bb
and putting ~ —c iaxyy^ and v for 22 4---c, _____ nbsp;nbsp;_____ ÎZ
, , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;iby iby
and then ‘1’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- vv —
, n . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘^b^
(rcltoring the values of v and ƒ) 2« “
, nbsp;nbsp;nbsp;1 z.1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^bb ifb^ ^bbc
ff4-4^^—2f22----, or z*-*
22 nbsp;nbsp;nbsp;2 ’ 22
2czz-\-^bb-\-ci~dd. Whence 2 is known, and i b b ,
y — -J ~—Cj and then AD, DC, and AB, EC
2gt;Z
will be found.
PROB. LXXXVIII.
33. In the right-angled triangle ABD, there is given the perpendicular, on the hypothenufe ; and the radius of the infcribed circle : to find the fides.
Put the perpendicular B(^rz/gt;, radius CR~r, AD —a, Aß— e, BD—j. nbsp;1'htn (Geom. 11. 21 )
42« 2;
-ocr page 409- -ocr page 410- -ocr page 411-Sca.VI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;391
aa—ee-Yy'i. And (II. 20. cor. 2.) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Rut Fig-
AD or AF FD —AR DI, and AD 2CR= 33.
ABd-BD, that is, a-Fime j’ -, whence ölt;j 2/gt;a
~«« 2ej4-j;y=e-|-jy — ad-ar — fl«d-4’'« dquot;
Alfo
therefore ipa—4ra —4rr, and a — - nbsp;—.
aa—ipa~ec—2«yd-^_)gt; — e—y , and g—y
,-----r- ,,r, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ßd-2rd- \/aa—2pa
•lt;/aa—2pa. Whence gn^— -----------,
prob, lxxxix.
Inhere is an ifoceles triangle^ in 'which fwo circles are infcribed, touching one another and the fides of the triangle-, their diameters are 8 and 12; Zo find the fides of the triangle.
From the centers D, F, draw DG, FH to BC, and FO (1 to CB . . draw CFDA.
Put DG—r, FH:=:i, DO —r—s—c, FD^^r-F i—Z». Then FO=\/Z’è—cc—d, andCBzza.
The triangles DFE and BÇAare fimilar, whence b -, d a ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and c ; b ; : r ; — — CD ,
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rb nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;da nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bbr
then r -p -——AC — whence ß n —j c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cd
Ir o^6q
d ~ 5/96*
PROB.
-ocr page 412-392 Fig.
GEOMETRICAL
B. It
P R O B. XC.
25. ‘There t! given AD, and CD the raJius of the femT circle CEG , to find the radius of a circle infcribed between the tangent AE, and the circle CE.
Draw from the center O, the line OI perpendicular to AC -, through O, draw AOF bifefting the angle DAE, and, put radius DEzr, AD=:lt;^, Olzza, then AE=:\/dd—rr—b.
Then (Geom. II. 25.) AD : AE : : DF : EF, and AD AE : AE : : DE : EF j that is, d^b
b-.-.r'. nbsp;nbsp;nbsp;nbsp;= EF, DO - ö4-r, and DI =
DO‘—OP—v/rr 2ra,and Alzzd—s/rr-{-ira, and by the fimilar triangles AEF and AOI,
à-: a : : b : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then
b’’' /---------- n
'—Put r, and reducing, fföö— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zz. r‘'
•~-2dr( nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—• ddrr.
PROB. XCI.
36. Through a given point B, to draw the right lineVDC, fo that the part DC comprehended between the two lines AC, AH, equidifiant from B, tnay be of a given lengths
Produce CA to E, and compleat the rhombus EABH-, make the angle CDF—CAF, and let CD =lt;7, AE or AHz:^, ^\~d, AC-x, AF=y.
The triangles CAD, CEB are fimilar, therefore
CA (x) : CD {a} ■. : AE : DB = —. nbsp;nbsp;Since
T. FDC — FAC, therefore their fupplements
FDB=
-ocr page 413-Scà.VI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;393
FDBrzCAB, and fo the triangles BAC and BDF Fig-are fimilar, whence BA (d) ; AC (x) : : DB 3^* (-) : DF = -4.
X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;d
But the triangles FAD and FDB are fimilar;
for 4BDF=FAD, (for BAD=BAE=FAC, add DAC, then CAB^FAD, that is, FDB = FAD;) and 4F is common ; therefore A F (y) :
(”5) ■ * nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;redu
ced is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;; whence'J' will be had.
Again, the triangles DAF and BAC are alfo fi-
milar, and CBrca-b—, then DF : AF
. z X 1 oix aby
; CB ; CA (x) ; whence —7- = — lt;Jy» re-d X
duced abxx—adyx—abdy, whence x is had. Then
Av
CE (è-1-x) : EB {b} : : AC (x) : AD
PROB. XCII.
7‘hrough a gi'utn point B, to draw the right line BDC, 3^lt;. fo that the part DC, included between the lines AC, AH, »îfljy be given.
Through B, draw BFI, BE parallel to EAC and AH, and put CDzzfl, AE~/gt;, AH~f, ABzczZ, Ph—/, bp being perpendicular to AH, and AC—X.
The triangles CAD and CEB are fimilar, and
CE {x^b} EB (f) : : CA (x) : AD=
£X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;uC
and DFî—f— jri = rrquot;- -^od (Geom. II. o-Px nbsp;nbsp;nbsp;nbsp;b-\-x
\ DT-, i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ccbb _ ibcf
a..] BD--------— nbsp;nbsp;nbsp;nbsp;-— and
~ bb-\-zbx-\-xx — b.\-x
h :
-ocr page 414-394 GEOMETRICAL ß. If.
■ V bb-\-ïbx-{-xx b-\-x‘ • • whence lbaa~ibxxrr-^—^— _f-bb-\~2bx-\-xx b-rX' which reduced is 2Àv’ -\-bbx^—rbaax—bbaa—Q. ïjf 2cf
b —aa
PROB. XCIII.
3^. T’be difference of the height of two hills being given^ and their dijtance ; to find their heights.
Let BA, ED be the hills, put radius r—CRz: 698000, DE—BAz3lt;^zci 19, AB —fl, BE—fr:6lt;. Then CBzzr-f-fl, CE;czr-|-^4-fl. Then (Geom.
) B R = \/ 2ra 4- aa , RE = \/bb-\-2br-\-2ra-\- 2bn-\-aa, whence BE — \/2rA4-Afl V/-Z’ 24r 2rA4-2Zgt;,7-prta—f, and 5/lt;5gt;Z’ 2br 2ra 2,ba-faa—c—^K/ ffra-}-aa, and by fquarine;, bb-\- i.br-\-ira-\- ba.\-aa~ cc .^-ira ^aa— 2c\/2ra-\-aa., and 2rv/2rA flA —cc—bb—2rb — 2ba—dd—2ba (by fubftitution' -, and when fquared 8cfrA-f-4frAA——^ddba-{-4bbiia and when reduced, AA 2rfl nbsp;nbsp;nbsp;cc—bb—\rb nbsp;nbsp;nbsp;nbsp;rrbb
!' = ---Ï--- a-H' fl—164,69.
PROB. XCIV.
38. Unes drawn front the three angles of a triangle to the middle of the oppofite fides, being given ; to find the fides.
Put ADrz^ = i8, E=:f=:24, BF=^/r:30, CB —X, ABcz^, A.C — Z.
Then (Geom. 11. 28.) yy-^zz — zbb ^xx, ^y-\-xx — 2dd-^\zz, zz-hx.vzzzztY-f-h^'J and adding ihefe
-ocr page 415-thefe three equations,
q-aJi/q-——22, and xx-\-yy-\-zz—— bb 1. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;22
4 from this fubtraH the firfl; equa-«J
1 nbsp;nbsp;nbsp;nbsp;4- nbsp;nbsp;2.4
tions, then xx~—dd nbsp;nbsp;nbsp;bb — cc--xx, or oxä
—8 f f q- 8 —^1,1,^ 9J3gt; — 8 ZiZ» q- 8 dd—qf f, ^zz—^bb-^r icc—^dd, whence x —34,176 ; ji —28,844 ; 2~2O.
PROB. XCV.
ABC I'j an equilateral triangle^ O a -point in it equi- 39’ dijlant from A., B, C. If the ftdes, and the line BO be all produced till they cut the line PD in D, E, R, P ; /ifcf» there is given DE, ER, RP-, /0 find the fide of the triangle ABC, and the area.
Draw EF, EG parallel to BP, BR -, and put DE—a—304-, ERra/»—121.6-, RP—1:32159,6. andDR—li, DP—r, CL or AL—x, CG or EGzz;y* Then (Geo. II. 39. cor.) BL—x^3, EGrrjv/^.
The triangles DEF and DPA arcfimilar, whence
a zy 5 J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and PB = 2X q- —.
a
Since APBRrr 2-E.BR, therefore (Geo. II. 25) atoq--^ 3z 21x4.
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ha
'^cyt whence fx—bx———cy and jzz
~t by fubftitution.
Again DE (a) : EG (ys/s} ; : DR (J) ;
;= RL nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and RB-Xv/sq-^ \/?gt;, and
'2sf^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Q.f^X
— and BE —2xq-2j—2xq-—.
But
-ocr page 416-39^ Fig-39-
GEOMETRICAL b.ÎI.
But (Geotn. n. 26.) BR*4-PRxRE=PBxEB» that is, 2XX x 1 ^'^ ^t:=4xxxi 4-~xi4-
And by redüétion, i — 4-
— 3ddff
—---X into A-x zzbc. Whence x=78.4,
J—40» and the area ABC 10646.16.
PROB. XCVI.
40. In the triangle ABC, there is given the hafe^ and difference of theftdes and the area : to find the triangle.
'■gt; ‘difference of the fides ,vA, LB—b — IO i bafe AB—d—50; perpendicular CD = y=:;gt;:z:3i.84, and AD=a. Then
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and CB=5/^? ^; there,
fore by the queftion \/Tâ~ rjp 4- = \/dd—2da^a-{-pp, which fquared is ^^4-^^ /)^ ■^iby/aa-\-pp—dd 2da-\-aa-4-pp, and 2b\/aa4-pp ~dd—bb 2da, and fquaring both fides ^bbaa-}-4bbpp—d^-}rb^-2ddbb—4d^a -t-4^^^a 4^/^aa. Which J J • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. ^fpp nbsp;nbsp;nbsp;nbsp;nbsp;dd—bb '
reduced is aa da nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
0=16.739; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;BC=46, BD=33.26i.
prob. XCVII.
4t. There is given the fide of a rhombus, and thé fide of its inferibed fquare -, to find the area.
Let AB=BD=J=4J, COr;CE=j=3,BC=x. Then DC=(/—x., and ACzzd^x.
The
-ocr page 417-Scft.VI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;397
The triangles ACE and CDO are fimilar, and Fig* dH-jf : s : : d—x : nbsp;nbsp;nbsp;nbsp;J = DO. And (Geom. II:
~
21.) « w X •—rr- = d—X i that IS 2ss x dd-^xX — dd—XX i reduced, sc* — ddxx
— 2SS —'^■ssdd ■ ■ - -- “
Whence V ss dd i \/ss 4äd * kCzzs, AE=4, DO=2|, DQ=5l, area =731, QA=7.
prob, xcvin.
Civen the four fides of a trapezium inferihed in a dr- 42.' » de i to find the diagonals, and diameter of the circle»
'Ltt KQ-a, BC=Z', CD=f, AD=^i. BEzzx, the triangles ABE, and CED are fimilar •, for ^ABE—ECD (Geom. IV. 12. cor. 2.) •, and the angles at E are vertical -, therefore AB (a) : BE
(ä) i. : DC (c) ; CE —— -, alfo the triangles AED
and BEC are fimilar, and BC (^) ; CE ; ;
drx
AD fj; ; de =^. And BC {h) : BE (*) : ;
AD (d) : AE z: nbsp;nbsp;nbsp;nbsp;Then BD = x
b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ab
dx cx
and ACzz — 4- —. Then (Geom. IV. 32.) AC
TiT^ ._ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*__ dxx ddcxx exx
xBDzzABxCD ADxBC, or nbsp;nbsp; -rr- 4- ~
D aoo • deexx
quot;*—whence x is had, and then AC and BD are known.
Then
-ocr page 418-GEOMETRICAL B. n.
39^
fig. Then fuppofe a perpendicular from A upon BD, j2. then (Geom. II. cor. 23.) the diftance of the per-
pendicular from D is z: —------------—ƒ.
And nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zz the perpendicular z: f ; and
(Geom. IV. 28.J f : AD ; : AB : diameter of the
P .,. nbsp;nbsp;nbsp;. , ADxAB
circumfcribing circle z: -■ — .
prob. XCIX.
43. 9:be three femicircks HFG, HEJ, and GOJ touch one another in H, G, and I ; to draw a fourth circle FOE /o touch all the reft.
From the centers A, B, C draw the lines ADË, BD, and CD ; and DP perpendicular to AC, and letAGzzzt, BE or RIz;^, CG=c, and DEzzX. Then ADzz« x, BD=^—CDz:c x, AC = « c, BCzz^—c.
In the triangle ADC (Geom. II. 22. cor.)
PC — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ä x nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2f 2«'------’ ^he triangle
BDC, PC =
quot;i-b—ic
Whence
cc-]-2ca-\-aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;H—iic-\-cc
4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- cc-{-2cx-\-xx
— aa—2ax—xx nbsp;nbsp;— hb^^l^x—xx
( 4quot;^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b—c
That is, 2rc4~2clt;t—2CX—2 ax nbsp;2cc—2^f4'2rx4‘2^x
c4''* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;h—c
And
-ocr page 419-Scft. VI. problems.
399 Fig.
43’
And multiplying alternately,
—2C’—2acf—zccx-\-ïcax nbsp;nbsp;nbsp;nbsp; 2cca—zbca-^ïcax
•\-zbax
And
4öZ’X4-4cfx = 4Z'Cf ^bca—4f !—4^ c
Xi hence jr —----r-------c.
ab-\-cc
3 PRO B. C.
ƒ» the triangle there is given the /ides AC, 4. CB ; and the length and breadth of the infcribed rebtangular parallelogram DEHF ; to find the reft.
Draw CP perpendicular to AB, and let CA—b^ CB—f, DE or GP—ƒgt;, DFzza, CPrzz, AB—j-, and let ƒ—^4-f, q—b—ix
The triangles CDF and CAB are fimilar, and . 2 ; ƒ ; : 2—p : a ; whence za—zj—py^ and zj— za— py, therefore z— y—a
Again, (Geom. II. 24.) y : p : ; q : y zz dilF.
fegmentsof the bafe. Therefore APzz-y 7 — . ~
But (Geom, 11. 21. ) bbzzzz ~y
Tpyy I
—pg *■—• Which equation redu-j—a nbsp;nbsp;nbsp;4 nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4};)'
ced is y—-Zay^ aay*' ■^?,alby'' ■VPP^^''—lap'-q'^y ■i-A-pp—zapq ^aapq
—^aabb
_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—^bb
PROB.
•^aapplt;i^~o.
-ocr page 420-400 GEOMETRICAL B. II.
Fig.
PROB. CI.
45quot; TÎght-angled triangle KD is drawn parallel to the bafe^ and there is given the bafe AP, and the fegments VD, AK 5 to find the refl.
^^tPiY..—b—2QOf AP=:f—400, VD—J—260, andDPzzÆ; then (Geom. 11. 12.) a ; b : : d : id nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bdb
— and VA=^ - = -xa-i-d. But ** nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Ge d
or nbsp;nbsp;nbsp;s i' - '^d zz clt;,
or Z'Z'—aa x a-\-d-=.aacc^ that is,
a^-i-2da' ccaa — 2bbdda = Ibdd.
4- dd 1
— bb
And æ=:i4i,727, and ö i/ or VP:z:40i.727.
PROB. CII.
46. In the figure CAFD ; CA, BP, DF ari? perpendicular to AF ; and the fides of the triangle being produced, there is given HA, AC, CB, and BD, , DF, FT ; to find the fides of the triangle HBT.
Let HA=», AC-p, CBz:/, BD^^, DF=^ FTzz^, and THzz^z, TP=2, PH=î;, BP=x, BTzzj^, fzzHB.
The triangles TBP and TGA are fimilar, and y : « : : f-{-y : p, and py—fx-\-yx, or —xywfx, whence y — f—triangles FIBP and HDF are fimilar, and e : x : : e-^d ; c, os ce—ex xd, dx
and cC’-’-xe—dx, whence fz:— • Likewifc z : x: :
-ocr page 421-Seft. VI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;401
ö k; and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and zzz^—x.
?
Likewife quot;V '. x ; ; a.|-^ ; and £'Ux:ö4*^X^i and « è
V ZZ —— X.
Piit «1 1 ___ nbsp;nbsp;nbsp;nbsp;nbsp;0-|-w Û-^‘h
But ‘ü z^azx —— X 4--Xy whence «fa — f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c
cax-\-cnx-^pax-\--pl)Xy and pea—exa—pxazz.cnx-\~ pbx -, therefore a—
pe—ex—px'
TC-/4- a. -
and (Geom. II. cnx-\-pbx __ pc—ex—px
p—X p—x*
' lt;nbsp;nbsp;—X—PP — n-\-a—n-\-
pX
Pc^ ncx fipx •}-)jcx phy ■pen -^rpx
— pc-cx^:p^r~^ =
and iz:f4-;) ) . and by fquaring, PPff P^-^-lp'x—ppxx ppcenn-\-2ppcnrx-\-rrppxx
PP—2pX-^XX nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ppCC 2/)fJX4-JJXgt;f ’
which reduced is
| |||||||
PROB. cin. |
Given tbe fides and area of a trapeziam \ Xe find the 47. diagonal.
Draw the perpendiculars BE, DE upon the diagonal AC •, and put AB—a—4, BC—Zgt;=:6j CD =£=7, DA=(s/=5, and ƒ— the area.
D d nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then
-ocr page 422-à i: J .
402 nbsp;nbsp;nbsp;nbsp;nbsp;GEOMETRICAL B, II.
TL nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘ rr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;yy-Vbi—aà
Then (Geom. II..23. cor.) CE -,
and BE = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_
ïy I
/ tSfbbyy—bb—aa —~bb—aa
~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4yy
f—y'^ gt;ƒ 'X^^bb-gt;f^aa—~bb—aa '— . In like man-
ner^ t)F = —y^ yy X~Tcc-^2dd
gt;^yy —bi^àpyy—q^~v. and 2 « 2^/^/ X J7 ^cc~dd = ryy ~~ss—z. — 'T^en — 7xBE DF=/, and 27 x BE -j-Ûf , ~4f, that is,
ing t;4-2-.274 ij,6/ and
—2,y^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--and by fquar-
ing, î'z A gt;’ = 64Aî//xM^ ^ i6f—v—z xj4 y. And ^z-64f^^^ffy, —r— t'-f-z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;____
■* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X v z .
ÏVZ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;___
4-i'*quot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or i6/ÿ4—8/x't' z
I 2quot;'--2PZ4-ZZ »
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, that is, 64^*—
~tquot; ^5^ and reftor-’^o the values of 2; and z, we Ihall have
-ocr page 423-Sèa/VL PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;403
_Fïg.
7^1 —it ff / r i-' 32/Xx/ ïï gt;-O‘ 256/* j
and ^=7.68.
PROB. CIV.
In tbé right-angïed, triangle DCF, is given DC. CF, and liK parallel to the bafe^ and UA ; to find the refl.
.Let DC CF==J, BA—Zgt;, X^X—d, CV~a \ tHeh CD—5—a, DE=xv/DÇ'—CF* =zv/«—2ja.
The triangles CAB and CFD are fimilar, whence
/-------- I
V ss—isa : a ; ; b ; ■
s/DA*—DF*’ — nbsp;nbsp;nbsp;nbsp;nbsp;Ji 4- = 'ÂF J whence
~7- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- nbsp;nbsp;gt;/dd—ii4-2Jö = a., and multi*
plying by \/ss—2sa , and tranfpofing, ddss—2ddsd—3“ 4-4i‘û—4ssâà—\/ ssaa— 2Jlt;i’—• ba -, and fquaring ,
.—4Jiûfl 4- 4i’ö 4- ddss
'' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 2ddsa — J*
~ —2sa^ 4* nbsp;nbsp;nbsp;nbsp;— v/^bbssa^—ibbsas \ and
4- bbaa
tranfpofing again,
v/^bbssa^—Zbbsa^ = — 2sa''-y ^ssaa—4^« *1* 3*
■^■bb ■\-2dds '—ddss — — ca^ ]'aa ga h, bp fubftitution, and by fquaring,
jifibssa^—‘■'iibbsa'-=zcca^— ;i-2gha hh.
icfa^ ffa^—2chd' 4-^^«’
—-^211 •Xr'i-fh
PROB.
-ocr page 424-40 nbsp;nbsp;nbsp;nbsp;GEOMETRICAL B. II
Fig. PROB. CV.
49. There are given the three ßdes of the triangle ABC, and the angles A, and B, are hiffeSled by the lines AD, BE \ to find the length of one as AD, and alfo thedijlance KF to the point of interfehlion F.
Put ABr=«, BC=^,AC—f, and AD~x, AFxj’. Then (Geom. II. 25.) AB : AC : : BD: DC, and AB AC : AB : : BD-f-DC : BD j that is, a-Fc.
• ZiS—» likewife : r : :
=CD. But (Geom. II. 26.) AD* BDC=BAC’
• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^-bhc
that IS, XX ____~aCy and xx—ac
‘ nbsp;nbsp;nbsp;nbsp;_______ zhT/ '
^ c
whence X .■ c ^ x.. c-^
——AD.
Again, AB ^jjVD : ; AB : AF. that is, .gt;/ffy.a-Fc-\-b'^a-SfC-~b
0 “■ nbsp;nbsp;nbsp;nbsp;nbsp;2 -— nbsp;nbsp;nbsp;nbsp;■ ■ « — nbsp;
ö f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ß-j-f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: ; Æ :
lt;?v/ac X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X a-Sf-c—b
a-ifc X a ~T-________ ^-j-e
\/ae ■xa c-t-iy g^ç—f, ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, that is.
PROB
-ocr page 425-Sea. VI.
PROBLEMS,
405
PROB. CVI.
^he diameters of three circles being gityen^ which a'^e £G. defcribed from the angular points of a triangle, as centers, wbofe three fides are given -, to find the radius of a fourth circle to touch all the three.
Let ABC be the given triangle, D the center of the circle required -, on AB let fall the perpendiculars DE, CK, and draw DF perpendicular to AC. And put AB=Z-, ACnc, CB=r/, and AO=r, BR=j, CT=/-, and AK=^, KCz:/. and AE=:x, AF—j, OD—a. In the'triangle ADB, (Geom. II. 23.) üa-piöj-pjj—aa-j-aar rr fi-bb—zbx. Whence ibx—rr-i-bb—ss—aaj aar, rr bb—ss—24^ 2 ar nbsp;nbsp;nbsp;nbsp;nbsp;, . ,
and X— —---------------■. And in the tri
angle ADC, flö 2rt/-pz/—aa-|-2ar-|-rr-Fcf—29’, and 2cy—rr-^cc—tt—2/a-p2rö, and
rr-pfc—tt—aZfl-f-ara
The triangles ACK, AFG are fimilar, and f J '• nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;* '—ƒ
triangles DGE (AGF,) and ACK are fimilar -,
rr—XX = DE.
Whence h\/aa-\-2ar-}-rr—xx nbsp;nbsp;nbsp;nbsp;—cy.
Put /=:rr-pZi^—ss, f—is—ir, m=:rr tc—tt, n—tt—2r, p—Ig—bm, q~bn—fg. nbsp;Then x zx
I?—f?a
20'
m—na—p.\.
. Which fquaredis hhaa-Y'^^^^^
2 ià~2b
-^rrhb
-ocr page 428-4?6 geometrical , b. JL
AAx—_ fpA-'ipqa qqaa ^bb - nbsp;nbsp;nbsp;nbsp;nbsp;'^b
and reduced ’
^bbhhaa 4- Zhbhhra 4- ^^bbhbrr zzo.
— qq 2dfhh — hhll ffhb —
PROB. CVIL
51« To find the point D, from which three îinesT^A., DB, DC drawn to the three given points A, B, C} jhall have a given ratio.
Draw AC, and DFG, BE perpendicular to it. Draw BG || to EF ; and put AE=:t7, AC=^, EB=f; and AFz^ä-, FD=:j-. Then CF=:^—x, FE=x—a., and let DA, DB, DC, be as i, r and J.
Then (Geom, II. 21.) hVt'-~xx-\-yy \ BD’=
x—Æ =ce 2cy jj xx—; and CD ‘ zx —2 XX 4-jj,
But by the queftion t : rr : : DA* : DB*=f'’ X DA*, and i ; nbsp;nbsp;: DA* : DC‘—jjxDA’ ; that is,
cc 29’ ƒ?’ *'* — 2Xa aa— rrxx-\-rryy., and
—a^x xx jyj’zzrjjxx j.fj^f, and putting w— rr—I, /gt;=flt;-4-ÄÄ, f—ss~i^ Ihall have thefe (^) nbsp;nbsp;nbsp;(^) nbsp;nbsp;nbsp;nbsp;(c}
two equations, »tyy — 2cy 4- mxx :=o.
4- 2«x
—?
(f) nbsp;nbsp;(g) nbsp;nbsp;{h)
f yy nbsp;nbsp;nbsp;* -h/** =0quot;
4-2^X
—
Then
-ocr page 429-Then to expunge y Prob. liv. rule 2') we Fig. have
A=:—zef, B——zcfxx—^hcx-\-2cib.
D zz mfxx z äfx — -pf — mjxx — zntbx — mbb.
quot;Whence AB DDzzo, that is, ^ccffxx -\-ibccfx —\bbccf 4aaff —à,apff nbsp;-^ppff
—j^ambf —^avtbb -\-zmbbpf nbsp;nbsp;?
PROB. CVIII.
J/z a triangle^ there is giuen a perpetidieular., the dif-ference of the fides^ and the difference of the feg. ments of the bafe to find the fides.
Let the perpendicular CD ~a, CB—CX—c., and BD—DA—b., Xi^ — x. Then CA — \/aa-{-xx^ and CB—v/fld-fxx c, and AB —Then (Geom. 11. 24.), b 2x •. zy/ng-t-yy ; ; c ; b . whence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 2cs/gg-^-xx Fer , and aZ'.v-F
bb—cf —2\/öa xx, and fquared is 4Wxx-F4i,v x bb—cc d- bbcc zz 4aßd-4xx X cc -,
reduced
ifibxx 4^’x zz 4flflfc.
.—^cc nbsp;— 4-bcc — b^
4- zbbcc — c^
tgt; d 4
PROB.
408 GEOMETRICAL B. H. Fig.
PROB. CIX.
54. h given tbe perpendicular in a triangle, anà tie two differences between the haß ffde, and the other two ; to find the fides.
Let the perpendicular AD=æ, BC—BA=^, AC —AB~f, AB=:x; then BC=^4-x, AC = f .x, and BD nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lt;ïöj and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;:^x~aa j
and (Geom. II. 24.) BC {b-\-x) AC4.AB(f 2xJ ! : AC—AB (c) : DC Dß (^4-x—2^xx—aa } ; whence b-trx — zi»-|-zx X \ffxx—aa —cc 4-2« j and 2b-\-2x y.s/xx—aa zz ib-^-zbx 4*
— —lex
Put bb—cezzd, 2b—2c~f ; then 4^i^4-8^x4-4gt;x X XX—ad — xx^fxhÇd', which multiplied and reduced is
^x^ 4- 8^5^’ 4- ^bbx'- — Zbaax — ^fibaa zzQ. — nbsp;nbsp;— 4lt;?« — idf ^dd
-ff
— zd
PROB. ex.
55. Having all the ftdes of a right-angled triangle ACB ; to find either fegment of the bafe AD, perpendicular CD, area, and the radius of the inferibed circle,
I. Let AC=u, CB=zg AB=^, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;}
then (Geom. II. 20. cor. i.) aa = ^xAD, and 4! a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_______
AD But aa~bb—ccz=.b-{-cye.b—fjthere-
a ATgt; nbsp;nbsp;^4-^X^—c nbsp;nbsp;nbsp;nbsp;.
fore AD zz ----, that is.
the
-ocr page 431-Seà. VI.
problems:
the ftgment AD
__ nbsp;nbsp;nbsp;nbsp;__ b-\-c X ~ b - ' b
409 Fig-55*
2. For the ■perpendicular CD.
/-'n», nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;AT» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aay.bb—aa nbsp;nbsp;nbsp;nbsp;.
rr~-----rr----, and
/gt;/» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bb
a __________ a /'• ■ nbsp;nbsp;nbsp;-----
CD = bb—aacz.—^/ b^ay^ b—a -, or
CD -J v'^^' — quot;y- Therefore the perpendicu-ßc a --a _- ___ lar CD ” nbsp;nbsp;nbsp;nbsp;— b^b-\-‘^'X.b—a.
3. For the area.
----------r: area -, that is, the area ~ —
Rlt;^b-\-a Y. b—a
2
And finceßß cfzzZ'Z', add 2cr,
then ßß-p2ßc4-clt;^ ot a^-c -zzlb-^zac., and zac—
•--------------- — Z X2—b. And unce «d-c
S'» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;______
' nbsp;nbsp;nbsp;—2flfl4-2cc —iWjtherefore a -pr —bb-zzlb
---■^ . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;hb—a—c
'~~a—c . nbsp;nbsp;Therefore the area ~ nbsp;------- —
b-^a—c x b—a c --- ---
----------- x: 2—a x z—c. Hence the 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;__
_ac _a^b-\-a')C.'b^a a-^-c-^-by.a c—b iirc^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;---- gt;■ — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—■■ '—^
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4
-ocr page 432-410 geometrical b. II. Fig.
55. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4- For the radius of the infcribed circle.
_ ’* 'T'k
The area _ nbsp;nbsp;nbsp;nbsp;— - radius of the infcribed
4i '
circle (Geom. IV, 30. cor.) =~^'^-\r. putting r for the radius j then r z=
X I) ; or the radius ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;that is, the radius of the infcribed circle is “— ~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~ x
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2Z nbsp;nbsp;nbsp;nbsp;nbsp;2
2—^.
5' F'or the circumferibing circle, j nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;The radius of the circumferibing circle —— b
(Geom. IV. 14.)
y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;6. For the tangents.
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;The tangent, or the diftance from A to the point
of contaót of the infcribed circle =: nbsp;nbsp;nbsp;nbsp;— =
2 z—Cy (Geom. IV. 30).
L nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And the diltance from the right angle C is
2=r the radius.
7. For the diflance of the center, -------,------r -r\ _ The diftance from A= «/ rr-i- —-—
I a-}-C—0-1-^—, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J ri _
lt; ------- -1--, (by Art. 4. and 6) _
. nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;nbsp;nbsp;' *• ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
a—amp;^= /^_±i --1---lt; nbsp;nbsp;4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4
(putting
-ocr page 433-SeÄ. VI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;411
♦ ’ » ____=——
/2aa 2dd nbsp;nbsp;/aa-ifb—
(putting 0 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—■ zzV —55-
7i2i24-iZgt;—2bc-{-cc nbsp;nbsp;nbsp;nbsp;nbsp;lïbb—ïbc ---
----- =lt; - bxb—c -, that is, the diftance of A from the center of dtc in-fcribed circle is zz nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c.
PROB. GXL
Having ihefides of an oblique triangle ABC \ to^find the perpendicular CD, the fegments of the bafe^ and the area.
Let AC=a, AB=/,, CB=f, = %, fld-czzj, a—c—d,
I. For the fegments.
; AC CB : ; AC—CB ; dif. fegments
(Geom. 11. 240 » nbsp;nbsp;nbsp;nbsp;nbsp;'sgt; '• J : : d-. — —
1 , ds bb ds AD—DB. Then Y 2^ °’' ~~zb~ ~ bb—ds
CT fegment AD, and ■—z: BD the leffer feg* ment.
2. For the perpendicular.
[ifbbaa—b^—2bbds—ddss
CD^.J .a--------- but2az:j4-Jj and i ^^j and \bbaa—bs-\-bd, therefore
CDz:
-ocr page 434-Geometrical b.ii.
GD 4~ nbsp;nbsp;nbsp;-|-bbdd—b— ïbbds—ddis
\/--—bby^bb—dd nbsp;nbsp;nbsp;nbsp;nbsp;bb—dd y. ss—bb
/j~~^ lt;bb nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^bb
--1— --- But ƒ -?=«
J lt;nbsp;•f—i^zzrt4-f—b^ and b-\-d—a-\-b—c, tgt;—‘^~-b^c~-a, _therefore__
CD =: —fl4-c—X a b—c y. b-\-c—O‘ ib
Buts — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b c—a
~~~ nbsp;nbsp;nbsp;Z J 2 a— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, 2 —— f _
ô f—
2 nbsp;nbsp;’ 2—b zz. ---— . Therefore
cn= X 2.2--a Y, 2.2--c y. 2.2—b _____2 b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~ nbsp;nbsp;nbsp;nbsp;“
2v/2 X Z——c
------------i that IS, the perpendicular çp_^ä b-^c X ia-î-b—c y, a—b-Çc x h-\-c-~â _______2^
_ \/b-\-d y, b—d y. s-^b x s—b ___
2y/z X 2--d X 2—b yf. 2--C b 3. Eôr the area.
Since the area is = — AB x CD (Geom. 11.
IO. cor. 2.), and CD was found by the laft ar* __ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- nbsp;nbsp;nbsp;. _ nbsp;nbsp;nbsp;aa-\-bb—cc
tide, let CD=z/ i fince AD = —,
therefore
-ocr page 435-Sea. VI. problems.
4’3
F'g-= ßG.
therefore
therefore CD = Vaa—
_____2-b I
2aabb -f- zaacc -j- ïbbcc-^a‘—b^'—c^ ^bb nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■’
■we have the area of the triangle ACBrz —;)Z» =
I ------------------
—V laabb -\-iaacc-\- ïbbcc——c’'
—X a-\-b—c X b-gt;fc—a X «4-7—’^ 4
~y/b^ X b'^ X j JVT^d nbsp;nbsp;=
y/z X z-^a X 24-^ X 24-f*
prob. cxn.
Having the fides of an oblique trian?_le ; to find the radius of the infcribed circle, ëic.
1. In the triangle ABC, bifleft the two angles A, E, by the lines AF, BE to interfeft in O the center of the infcribed circle. From Ü, C, let fall the perpendiculars OD, CP, upon the bafe AB. And put ABzzZ», ACza, CB—c, A.P~d, PBzxf, CPzcp, and DOzrx, DPzz;'-, then AD=J—
—/4-J-
Then (Geom. II. 15. ) CA : AP : : CS : SP, and CA4-AP : AP : : CP ; SP, that is, a-^d ;
d ; : p ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= SP. Likewife f 4-/ ; ƒ ; ; p ■.
—LP. The triangle APS, ADO are fimilar, and
'■ a^d • ■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— DOzcx. Alfo the
triangles B P L and B D O are fimilar, and f. Pf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Pf py pd~pv
-^y •• -f-^y : -fjfî - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■. then multi
tiplying
-ocr page 436-414 nbsp;nbsp;nbsp;nbsp;GEOMETRICAL B. IL
I’jg. plying, ^apf dpf-}-apy-\rdpy—cpd-{-fpd—cpy—fpy, 57. and, tranfpofing, apy, dpy fpy-{-cpy—cpd—apf-, that is, becaufe d-\-p~by apy-}-bpy cp^—cpd—apft
“quot;lt;* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Whence » =
__ ped—pat nbsp;nbsp;_ pda -\-pdb -^pd(—pde paf
«4-^4-f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a-\-d Xa Z’4-f
pbd-\-pbd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;pb
TÀ ' .'■ À . nbsp;nbsp;= ~.~• And fince p vavj
ö4-dXö -^’ f nbsp;nbsp;nbsp;«d-Z' f . nbsp;nbsp;nbsp;nbsp;nbsp;. . V.
be had various ways, from the laft problem'; therefore we Ihall have th.e radius of the inferibed circle . bp I ya—c-\-b X nbsp;nbsp;nbsp;—b y.
zz— nbsp;nbsp;nbsp;nbsp;X ^-^X s—b_ j'^a^^b'AZ-c
f , . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tangent PX). -.i -r ' '■'
- a^b^C
ei-VbdJrcd—cd-gt;raf ad^bd-^-a'xb—d ba-\-bd a-}-b~{-c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«quot;“■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a-gt;rb-\-c
But (Geom. II. 23.) bd~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;therefore
AD — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~^b—cc __
- ’ nbsp;nbsp;. 2xa4-i^4-c nbsp;nbsp;nbsp;““ 2Xa-h^4-f
a b-\-c ÿè. a b~e nbsp;nbsp;nbsp;04-^—c
2Xa b c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2 nbsp;nbsp;’
the tangent AD =z —n a-j-Z'd-f 2
3.
-ocr page 437-Sea. VI.
problems.
3. For the
central dißance.
Fig-
57-
AO*=AD‘ DO‘= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;W=
aa 2ad-{-dd-\-aa—dd nbsp;nbsp;nbsp;2aa-]-2ad nbsp;nbsp;nbsp;nbsp;nbsp;lahh
----- -------1‘--hh—..... - ~-bb~ ~ :--------r
ö ^ c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«4'^4-f
X But d — ‘— • therefore AO* — 2b '
- •*- , fl Zgt;—cc
ü'^b ”h
2ab-}^an-2f-bb—tc 2b
2abb a-{-b-\-c
lt;^ ^ c X ti b—c
a-\-b—c
ab.
That is, the diftance of the center from the angle
A ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/ci-\-b-~-c nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;1 z c
A IS = nbsp;nbsp;“,-2-r' y.ab—.J -—y^ab.
“\~C
PROB. cxin. -
Having the fides of a triangle to find the radius of the 5^’ circumferibing circle.
Let ABC be the triangle, draw the diaiTïetcr. ÇF of the circumferibing circle, and let CP be perpendicular to AB. Put AC —a, AB —b^ CB zzr, CP~p, 2——, jr^ö f, d—a—Cy CH or hf=r.
Then (Geom. IV. 28), p : a ; : c ; 2R, and
Rzz —. Now fince we have the value of p va-
. 2p
lious ways by problem cxi. we fhall have the value of R fo many ways. Hence R the radius of ac the circumferibing circle =
-ocr page 438-4i6 geometrical B. II.
Lig. _ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;abc
X a-^b—f xlt;’—^4-«^ X^ f—a
_____________abc________
b-\-d X b—d yc^ j4-^ x J—b
acb
Z.-Z—a.Z—b.Z—c acb
4 X area ’
Cor. Hence r the radius of the infcribed circle : to R the radius of the circumfcribed circle ; :
As %—a X z~b ye. 2—c ;
to \abc.
PROB. CXIV.
Given the bafe of a triangle, and the diameters of tie infcribed and circumfcribed circles ; to find the fides»
Let QRW be the triangle, QPWB the circum-fcribing circle, DB (perpendicular to QW) its diameter. Draw BR , which will biflèól the angle R. Let QS biflèót the angle Q, then S is the center of the infcribed circle. Through S draw ASV parallel to QW. Then AP is the radius of the infcribed circle. Draw BV, BW.
Let BDzzö, QW=^, APzzf, BP=% BR=*,
Hi J æ v/zz«—bb T ► then —vv — -.^bb, and t/zx nbsp;---—• -Let
z
BW^—d~sA'i v-]-ibb ~ \Aav’ BA zx “y -Jr f BVxx/gt;=:\/BA X BD.
The triangles BRD, BPT and BAS are fimi-
av
lar, whence x : a : ; v : — =: BT ; and
X as
j:—xxBS. But (Geom, IV. 17. cor.) as—pp, and
-ocr page 439-Sea. VL PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;417
dd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Fig.
and av—dd\ therefore BT — —, and BS rn x' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X 59*
ThenRS=x—and TS =
(Geom. 11. 25.) TS : SR : : TQ ; QR • and the triangles TQR andBWR are finnilar (Geom. IV. 12. cor. 2.), and TQ *. QR ; ’. BW : BR -, whence
TS : SR : : BW : BR, that is, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;:
d : X, whence ppx—ddx—dxx—dpp, and r/xx-}-ddx—dpp ppXy or d x xdx — d x x pp and dx-pp, whence xxx Then BR (x) : DR
(v/7«—XX)' ; : BP ('n) ; PT= X whence QT, TW are known. Then BW (d} : BR (x) ; •- QT -. QR ; ; and TW : WR, the two fides of the triangle.
PROB. CXV.
Ihere is gi'ven the bafe of a triangle, the line that bij- 60. /eöj the vertical angle, and the diameter of the dr-cumfcribing circle •, to find the fides.
Let AB=Zgt;, EO or OF=:r, CD—J, HDnx, FD=7.
Then AD =: — b-\-x, DB —b—x, FH 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
—yy—
And (Geom IV. 20. ccr. 2.) ADBnCDF, or
■—bb—xx—dy. The triangles FDH, FEC ate fi-
4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;___
milar, and y •. \/vv—xx nbsp;nbsp;nbsp;quot;i-r r x-^-d, and '’314-dy —
—xx—2rgt;i/y\ 4- dy—\bo. Which fquared is.
-ocr page 440-^iS G E o M E T R I C A L, êff, B. IL Fig- J''* 2z^’ d^y — t:^rryy ^rrdy — rrbb, and re-6o« duced y^-{-2dy^-ydd}y — äyrrdy-^-rrbb— o. Then
—4rr x=: nbsp;nbsp;\bb—dy.
AJfo BI- zz \/\y—xx ~bT, and the triangle ADF, CDB are fimilar, and AD : AF or B F ( s/yv— nbsp;nbsp;) : : CD (d) : CB zz
d^/yy—xx-\-\bb
Alfo the triangles APC, BDF are fimilar, and BD {Ib—a;) : BF (v07 — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: '■ CD •
_ ds/yy—-xx-\-\bb
“ nbsp;nbsp;nbsp;ib—X nbsp;nbsp;’
SEC T.
-ocr page 441-419
Fig.
SECT. vn.
Problems in Plain 'Trigonometry.
PROB. CXVI.
the triangle ABC, there is given the angle B, the 6T. fide •, and the fum of theßdes BC, AC ; to find the fides.
Let AB=if, BC AC=^, fine Z-B=J, cof. AC—X, then CBzzZ»—x.
By plain Trigonometry rad. Çi) : AB (4/9 : : S.PaB or cof. B (c) ; V^~cd.
Then (Geo. II. 22.) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—ibx xx icdx
h—X, reduced nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;» and
__lgt;b-{-dd-^2bcd 2b-i-zed
PROB. CXVII.
/b the triangle ACB, there is given tbe two fegments AD, DB, snadeby the ■perpendicularand the angle ACB i to find the reft.
Make DE~DB, and draw CE, then put BD-^, ADr:^i, CB or CEcz;», S.ACB^j, S.ACE—5C •, then AlE.—d—b, K^—d-^b.
By Trigonometry, (in the triangle ACB) AB (,b^d) ■. S.ACB (j) ; ; CB M - S.CAB. Alfo (in the triangle ACE), CE (y) ; S. CAE
'• • AE, ft—b} S.ACE (x), and x—^-^^s.
E- e 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then
-ocr page 442-420 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PLAIN TRIG. ß. It.
Thpn ace acb _ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Acn—ace
1 hen ----7---- — ALD, and --------
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
= BCD. Then S.ACD : AD : : rad : AC And S.BCD ; BD : : rad : CB.
PROB. CXVIII.
63. In the triangle ABC there is given and the angle B, 0»^/ the ratio of AC to BC, to fnd the fides.
Let fall AD on BC ( produced ) ; and put AB— hy hC—a^ the ratio of AC to CB as i to r, then CB=ra, and cof. ACB^zr. Then rad. (1) : AC (0) : : S.DAC (r) : fzz=DC. Then ( Geom. II. 22. ) hh—aa rraa icraa, whence aa — —; ;—-, and a——
rr i 2rr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;v/rr4-1-parr'
PROB. CXIX.
64. In the triangle CAB, there is given two fides and the included angle •, to find the area.
Let CA, AB and the angle A be given ; draw CF perpendicular to AB, and let AB=:^, AC=«/, S. L.I*szz.s. Then in the triangle ACF, rad. (i) : AC (d) : : S.A {s} : j^=CF. Then
sdb
—area, or — =:area ; that is, half the reftangle of the fides multiplied by the fine of the included gives the area.
PROB. CXX.
^5- Given all the fides of a trapezium, and two cppcfte angles ; to find the area.
Let the angles B, D be given, and through the other two angles A, C, draw the diagonal AC.
Let
-ocr page 443-Ti.yi./gt;i2.42e
Sea. VIL PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;421
Let AB—Z-, BC—c, CD=J, DA—/, S.AB—/gt;, Fig.
S.D—3. Then by the laft problem, the area of 65.
the triangle CBA and the triangle CD A
#9 , nbsp;nbsp;, nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;• bcp dfg
— nbsp;nbsp;nbsp;; therefore the trapezium — --------.
PROB. CXXI.
In the triangle WNE, is given the fegment SE, the angle WNE, and the ratio of NE to NW -, to fin'd the fides.
Let WP be perpendicular to EN, and fuppofe NE to WN as i to p, S. N—5, cof. N^c, SEztZ», NEzzjc, then WN—px. In the triangle WNP, rad. (I) : WN (px) : : S.PWN (c) : PN=;)fx, and by the fimilar triangles ENS, EWP ; ES ; EN : ; EP ; EW, or b : x ; :
x pcx •. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— EW. But (Geom. IL 22.)
-\-2pCX^-\~ppCCX^
--XX ppxx 2pcxx , or
s 2pc ppcc % XX — bb X i-^pp^2pCy and
Or thus^ EWN-uF l.et /=tang. of nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then WNq-NE
/ÛJf---tx
(px-s^x) ■. WN—NE (/»x—x} 5 ; t nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
f—Ï
73—/ zz: tang, i diff, of the angles W andE.
Whence the angles W, E are known. Then as cof, E ; Z» : : rad ; x, required. '
PRO B.
-ocr page 446-PLAIN TRIG.
B. II.
422
Fig.'
PROB. CXXII. I
67. In the right-angled triangle ABC, there is given, the fum of AB özzi/ BC, the angle CDB ; likewife Z.ACDz=2_DCE are given-, to find CB, ö’f..
Let S.ACBz:j,^S.CABzzg CB=r, AB BC ~h, and BA=:^—x. nbsp;Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—xx,
ch
and sx—cb—ex, whence x =: ——. nbsp;nbsp;Then CB,
j f
BA are known. Let nt, n be the tangents of BCE, BCD i then 1 x -.-.m-, BE : : n : BD.
PROB. CXXIII.
68. /» the triangle KDC, there is given AB, BC ; and the angles ADB, BDC ; to find AD, DC. ’
LetS.ADB~j, S.BDCzz/, S,ADC~^, cotang. ADC=y, AB=:^, BCr:c, AQ~d, AD-x.
By plainTrigonometry, b s-.-. x ^zrS.ABD or p
CBD. And / : f : : Ç - CD. Then AD tb
CD nbsp;nbsp;nbsp;: AD—CD {x: : tan.
A C nbsp;nbsp;nbsp;nbsp;tbq—esq nbsp;nbsp;nbsp;nbsp;nbsp;A—C nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
-2.
and C are known -, then p : nbsp;nbsp;nbsp;nbsp;: S.C : AD : :
S.A : CD.
PROB. eXXIV.
69. In the triangle ABC, there is given ItlQ, the angle C, and CD, vabich is drawn to the middle of AB ; to find the fides.
Draw AF perpendicular to CB, and put AD or DB:=^,CDr:lt;/, S.Z.C=;j, cof.Cz:f,AC=:x,BC-3'.
Then
-ocr page 447-Sed. VII. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;423
Then (Geom. II. 28.) xx-{-yy — 2bb-}-idd. By Fig. Trigonometry i x : ssx — AF, and i : x ; : 69. c : fjf=:CF. Then BF=y—ex, and — leyx-^-ccxx—id^b, fubtraft this from the firft equation, then XX—ssxx-\-zc)X—ccxx=idd—2bb, that is ( becaufe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;) icyx— 2dd—ibb^ and
2lt;yóï—2bb
zyx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;----J therefore
5/2^4- 2lt;/t/ 4- ---------—m ; in like manner
X - y 2^^ 4. 2^ _
PROB. eXXV.
Given the angles of altitude BCA, BDA, hori- quot;^Ot zental angle BCD, and the line of dation CD ; to find the height AB.
Let b — cotang. BCA=47 ; 30 ; BDA=4O : 12 j z/=S.BCD = 87’2 283.274 feet ; AB=r*.
f r= cotang.
1 CDzz#;^
, Then in the triangle ABC, i : x : ; • ^v=BC and in the triangle ABD, 1 : x : : c ; fx=BD ; and in the triangle BCD, ex ; d : : bx : nbsp;nbsp;nbsp;— g BDC
c
39; whence DBC=: 42 16; lct»zzS.DBC-n \ fz d z BD =: fx, and ncx~fd, and «7= 355:458.
PROB.
-ocr page 448-4^4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PLAIN TRIG, nbsp;nbsp;nbsp;nbsp;nbsp;B. II.
Pjg-
PROB. CXXVI.
Civen the film of the fides of a triangle, and all the angles fever ally j to find the Jides.
'LttS.X^s, S.Bzz», S.C=t, AB BC CA—
AC=x. Then by Trigonometry , n : x : : s ;
tx
~~ =CB, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— = AB- And «
n
sx tx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nb
PROB. CXXVII.
In the right-angled triangle VAB, there is given the ■perpendicular AB, the figment NC, the angle NAC-, to find CB.
Let AB—Z», VC=r, tang. VACz:/, BC=:^, Then by plain trigonometry, : i ; ; æ : -y = r zi tang. BAG, and (trig, viii.) i--it it-\-a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ht-\-a
• bZTta — ^ang. BAV. Whence i : b : : . bbt-{-ba , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, . , . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, I
: a-{-c ■=. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and multiplying, ba-^bc—■
taa—tca-:=sbbt-^ba, reduced aa-^ca-=.-—bb.
PROB. CXXVIII.
73* In the right-angled triangle ABC, BE—EC, and AABD—CBD ; and there is given BD and d-CAE. ; tB find the fidcs.
Draw DF parallel to CB -, then in the triangle DFB, the angles at B, D are 45quot;, and BD being given,
-ocr page 449-Sea. VII. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4z5
given, DF and I B its equal, are given ; and fince Fgt;g’ CE=EG, thereforeDG=:GF. l,et DG or GF=^, T3' S.DAG—J, AF—X ; then AGz=:v/^/,4-xiv, AD =r\/4Zgt;^4-5f5f. And by plain Trig. AG^/(^'ƒ^-5fj^)
: rad. (i) : : AF (x) ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= S.G. Alfo
' Vbb-}-XX
•.AD(v/;W ^) :: S.DAG
(j) : DG ; whence -ta^bb-^-xx^
, nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Vbb^XX
reduced nbsp;nbsp; ç^ihxx nbsp;nbsp;nbsp;=q.
bbxx is
Prob, cxxix.
Frc»j tie faint B, to draw the lines BC, BD, BA, 74» /o that CD, DA, and the angles CBD, DBA, may be given.
Draw CF perpendicular to AB, and put CD^Z», DA=f, CA—i, and S.CBD=/, S.DBA=J , S.CBA--W, cof. CBA—K, and CB—x.
Then by piainTrigonometry i : x ; ; h : «xrxBF, and b f : x tïzS.D, and : f :
' b
BA. But in the triangle CBA, (Gcom. II. 23.'^ ccffxx
ss z=. XX nbsp;nbsp;nbsp;nbsp;nbsp;— 2nx % Yd^ which reduced
y bbdd-\-ccÿ—iddjnc
PROB.
-ocr page 450-'426 ' PLAIN TRIG.
B. ir.
Fig.
PROB. CXXX.
In'an olflique triangle there is given, the bafe, and perpendicular, and angle oppoftie to the bah ; to find the fides.
Draw AD perpendicuUr to CB j and put ABzx^, S.ACBzzj, cof. ACB~f. perp. CF:^^, AC=jf, CB=?y.
In the triangle ACD, i : * : : j : jx =: AD, and 1 : X : : c : f;f=CD. The triangles ABD and CBF are fimilar, and : p : jxzrAD, whence . pb—sxy. In the triangle ABC (Geom. 11. 23.), ' lb-=.xx-gt;ryy—2cxyi but xjr = ^ , and v= - 1
* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;SX
therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;which reduced is
_ bbxx bbpp ïbcp nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—°’
J
Otberwife,
Let AC-f-CB^j^, AC—CB~j’, the reft as be* fore ; then AD =rX* j»,CD=fXJf^ ~=xv•4^ Then in the triangle ABC, Ib—x
2C XX—; that is, 2ä'x4-2J3'—2cxx-\-2cyyzzbi) J ■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r
and putting xx- for yy, yfcç, have 2ä'x4-2ä'x-^
iS
2Cpb
-—2cxx-\-2cxx—^—f— — bb, or 4**—
•* J
77 nbsp;nbsp;nbsp;1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i4-f
-J- = bb, whence x~ J \bb -— 'X.bp — tn, and jy= J y,b — bp -n. Then AC = ^
2 •* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;It
BC =
Or
Sea. vu. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;4^7
Or thusy ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^*8’
Let f— cofine of the fum of the angles A, B •, ■t)—cof. of their difference •, the reft as before. Then (Trig. 11.10.) v—f'. s jgt; ; nbsp;nbsp;nbsp;andt;—fzz
and 'ü—-^ f. Then the angles A and B will be known, and confequenily their oppofite fides.
PROB. CXXXI.
Owen all the fides of a triangle, to find the center of the circumfcribed circle.
the middle of AB, AC, ereO: the perpendiculars DO, FO, the point of interfcclion O, is the center of the circumfcribing circle. From O draw OI, OG, parallel to AC, AB -, and put AB— b^ hC—d, 3.L.K~s, cof. A—c, h\—x, lO—jy. The Z. CGO—CAB—OID •, and in the right-angled triangles OID, OGF, it will be i : y ; : c : cy — ID , and i : y ; ; j : sy — OD. Al-fo 1 ; x : : c \ ex — GF, and i : x ; : j ; Jx zx FO. Then x=:ib—cy , and ——ex , and cyzz.\h—Jf — {cd—ccx , nbsp;nbsp;and x—ccx—{b—{cd^
b—cd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b—cd
or s;x — -T~» whence xzx—,andy-
Therefore D0x= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;FO _ nbsp;nbsp;nbsp;nbsp;. Like-
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;\/bb-\-dd—ibcd
AO = nbsp;nbsp;nbsp;nbsp;nbsp;
prob. CXXXII.
In the given triangle ABC, the angles KOO, COB, 77» BOA, about the point Q, are given -, to find the dijlances AO, BO, CO.
Produce CO to D, and BO to E. And let AB=^, KO-d, 0^-f, S.K-,s , cof. Azxr, .
S.B=j, *
-ocr page 452-428 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PLAIN TRIG. ß. II.
Fig. S.B=7, cof. Bzz», S.AOEz:^, cof. AOEzz?»,
S.AODzzZ’, S.DOBzzp, AO-X,
Then by Trigonometry, AB (^) : S.O (g) : :
AO (;f) : nbsp;nbsp;= S.ABO, and J
bb
ABO=gt; ; and (Trig. I. 6. cor.) w;j-::zcof.
OA^-, and (I. 6.) nbsp;nbsp;--rz S.OAB. Alfo
(Tng. I. 6.^ -j~ J^snty—cgy 4—ƒ- - g.CAO ;
X
and (I. 6.) qy zzS.CBO. And by Trigono-metry, ?:ƒ::{)'and
Z. : d : •. S.CAO : CO bb b b dcmgx fqy gnfx
bp^ and multiplying, bpdsmy—bpdcgy pdcmgx-bhfqy—gnfhx -, andtran-Ijpoßng, bhfqy —bpdsmy zz iggdx -{-pdcmgx n J ^S^‘^ pdcmg-}-gnfh rx
Snfl,., and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-7-'gt;1'
niturion, th« ia, 7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
= and Ibtt—ggttxx—bbxx, reduced bt
X— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
Or thusj
•qS. Make the angle BAF — fupplement of BOC, and Z.ABF rz fup. AOC-, through A, B, F de-fcribe the circle AOBF, to intcrfeót CF in O, the poi.nt required.
Ccdculation,
-ocr page 453-Sea. VIL PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;lt;4^
Calculation. In the triangle ABF, all the angles Fig. are given, and the fide AB, to find AF. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7^.
In the triangle CAF ; CA, AF, and ACAF' are given-, to find Z_ACF.
In the triangle ACO, there is given AC, and all the angles ; to find AO, CO.
PROB. CXXXIII.
In the right-angled triangle ABC, there is given BA, 79* and angle CBD ; alfo ATzrTD, and Z-ABTzr CBT -, to find AC.
Let BA—^—25.23, tang. DBC—/=T. 15’, AT or DT—fl, then AD:=2fl. By trigonometry,
quot; ■ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;TBA, and b za i —
tang. DBA. Then (Trig. I, 2. Schol.) the tang.
2TBA or tang, ABC — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. AlfofTrig.L 8.)
ita nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;la bt^ïa
t- -y.s,-.t= tang.
ABD DBC = tang. ABC. Whencez: bb— aa
“F 1 nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
-,-----, reduced 2fl’ — ■^btaa—b'’ty and
PROB. CXXXIV.
Upon a horizontal plane, there ftands a tall pine-tree leaning towards the fomh. Â man ftanding on the north fide of it 50 yards from the foot, finds the tree to fubtend an angle of 39 ylfterwards going direbily wejl 3 yards, it fubtends an angle of 46”. PVhat is the tree^s length ?
I.et AC be the tree ; E, F, the two ftations. Draw AB perpendicular to the horizon, and AD perpen-
-ocr page 454-430 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PLAIN TRIG. B- H.
Fig. perpendicular to FC produced ; draw BD, AC.The 8o. triangles ABD, ABC, ADC, BDC, CEF, DAF, BAE, are all right-angled. Put EF=^, CE=x/, CFzrf, CDz:^, tang. AEBzz/, tang. AFC—/.
, By Trigonometry, i : / : : nbsp;nbsp;nbsp;nbsp;nbsp;: f jy x
whence AC nbsp;nbsp;nbsp;nbsp;yy tt xr j. ' The triangles
FCE, BCD are fimilar, and nbsp;nbsp;nbsp;f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;BC,
•'a
dy\ b — BD. Then AB = d
Jyy-\- tt nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= J'tt yCT y'^•
And in the triangle ABE, -F ~ : i : : i^ y — nbsp;nbsp;: J, whence —-- =
t — ^hy , ttxc4-y—and fquared d^ss^icddssy -p ccssyy—dd x tt(c-\-ittcy-\-ttyy—bbyy, and reduced icddssy = ddttcc.
—ddlt — 2cddtt — d^ss
-p bb
PROB. CXXXV.
8l. Given two altitudes and two azimuths of a cloudin motion ; to find the point of the wind.
Let A be the firft, B the fécond place of the cloud, O the place of obfervation, ABC the plane of the cloud’s motion ; AB its line of direébon. i Let AD, BE, CO be perpendicular to the horizon, then DEO is equal and parallel to ABC, and MDE is the path of the cloud on the earth. Let OM be the meridian.
Put p = tang. AOD, tang. BOE,/=co tang. IDOE, OD~jf. In the triangle AOD, j : x : : P : px — AD=BE ; and in the triangle BOE,
-ocr page 455- -ocr page 456- -ocr page 457-Sea. VII. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;431
2 ; fx ; 1 : — =OE. In the triangle DOE, (Trig,
3
■px px nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P—q
ODE—OED nbsp;nbsp;nbsp;J , r . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c
------------, and the fum and difference of
ODE, OED being had ; ODE, and OED will be known.
In the triangle ODM, there is given ODM and DOM, therefore OMD is known, which is the way of the cloud or of the wind.
P R O B. CXXXVI.
O« Ö clear day, the windßanding N. N. E. 1 oi-Zerved a /mail cloud by S. who/e altitude was 41°, whilß theßsadow of the cloud moved over 12^0yards upon a horizontal plane, the cloud itfelf moved through an angle of 9° : as 1 obferved it with an irßrument. What was the cloud's height ?
L.et E be the place of obfervation, CA the traft of the cloud, FG its projeftion upon the horizon -, AF, CG, BE being perp, to the horizon. LetBD be perp, to ACD, and AK to ECK.
Let AC or GF—1230, S.DCBr=-c=5 points, cof. DCB=«, S.GEC=^—41°, cof.GEC—J, tang. AEC—z=9° : 3/-, CG=x. By Trigonometry, in
AT
the triangle CGE, b ; x ; : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—CE, and b ; x
*• s : -y—CB, and in the triangle BCD, i : : c
CSX nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;(Y
: -r —DB, and i ; ~ ; : n ■. ^=CD. Tlren DE __b b
__ f CCSSXX X ------- X , nbsp;nbsp;nbsp;nbsp;nbsp;,
— -J XX nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t,b-\rCCis — -^p, by fub-
llitution.
The
-ocr page 458-lt;32 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PLAIN TRIG. B. IL
The triangles CED and CAK are fimilar, and Sa, K
y (CE) e-j (DE) : : (AC) d : fd -MH ; and
: -y(CD) : ; d {AC) ; snd—Q^. And in the triangle AKE, jW j(EK) : i (rad.) : '.pd{MC) tic
I t (tang. AEK), whence r».// nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and tx~
bpd—sndtby and x=. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—sndb.
PROB. CXXXVIÎ.
Sj. In tbe triangle there is given AC, CB, the fegment AD, and the angle DCB ; to find the refl.
Draw AF perpendicular to CB ; and put AC=~ö, DB=^,- CBzz4/,S.ACD=j,cof.ACD=f, and S.CDBzzÄ’.
In the triangle CDB, d'.x-.-.b‘. ~~S.TtC'amp;, and a
in the triangle CAD, x-. a : : s nbsp;nbsp;nbsp;= AD,then AB
X
, as bx-\-as
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;But (Trig. I. 5. cor. 1.)
ybbxx shx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;sbx
Ï--quot;fl'- ACB nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;(putting
7bbxx
^’~'flj~j » and in the triangle ACF, i : a
bsx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;absx
; : cz—: eza —. —CF. But (Geom. II.
. bx as , J, . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;absx .
--— — aa aa—2dx caz—fl~i and
multiplying
-ocr page 459-Sca.VII. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;43^
multiplying by bbxx zabsx-^-aass—aaxx-^r Fig. —zdcaxxz-V'i-absx^i and tranfpofing nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;83.
sJföÄ'xz—2ß^w—a«ji, and reftoring ~\-dd
2, and fubftituting for the known quantities^
7Zi^xx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;---
■{■qx'^—rx—tt and
fquaring, ^ddaaccx* — ^abbic^ =
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2Î ■■ — 2irj: 'rr '
-a 'f lt;nbsp;T
‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'•'•■ ••quot;'‘ .GA
• .rn,' '■ -rhi h, gt;
• 'ƒ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.rs'......1-----
Snr SECT. Vin.
Problems infpherical trigonometry^ iesnb-ffp nv.’cnj!
h.'is nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5—'v.çH- ‘
.PROB. CXXXVIII.
Given the latitude of the place and the fun’s longitude to find the afcenfional difference.
S4' T ET = greatefl: declination, f~S. fun’s I y longitude AD, »— S. declination BD, /x tang, latitude PCH.
Then in the r‘ L fpherical triangle ADB, rad. (I) : S.AD (f) : : S.A {b} •. be - S.BD, and (Trig.
I. I. fchol.) tang. BD— --i and in the tri-angle CBD, rad. (i) : cotang. C (/) : : tang. BD z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;\ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bet
• S-CB (Jt), and xz:
P Ä O B. GXXXIX.
S4. Given the fun’s declination^ and the fum of the latitude and amplitude ; to find each of them.
Let zjzzfine of half the fum of CD and PH, ƒ— cofine, d~^. declination, rrxS. fum of CD and
PH, x~S. half their difference, jzzS. whole difference. Suppofe PH greater than CD. Then (Trig. I. 6. fchol.) b\/1—xx—Æxzrcof.PH ; and quot;v/i—XX —^^S.CD. But in the triangle CBD, cof. C (Vi—xx~ö.v)-; SLBD (d) : rad. (i) :
S.CD
-ocr page 461-Seft. Vlli. Spherical Trio. Problems. 435 S.CD (ayZ 1—XX—ix. Whence aby.i—xx —* Fig« àax\/1—XX —iix\/ i~^x-\-abxx—d ; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;84« '
or «J -^x\/1—XX —d (becaufc aa-\-bb'=.i'}.,
But (Trig. L 2. fchol.) ixv/1 —icx—y, and 2ö4 Sf, Whence s~~^—tdy and nbsp;nbsp;nbsp;—2d.
PROB. CXL.
Giue« the ahittide at fix, and alfe when Wefl •, to g c. find the latitude.
R ft the fun‘s place when weft, and O at fix a clock. Let /=S.RC the altitude weft, jzzS.OI the'altitude at fix, x=S. latitude.
In the triangle CIO, S.C (x); S.OI (i) : : rad.
(C i ~ ~ S.CO the declination. In the triangle PCR, S.C : S.DR (^) : j rad. (i) ; S.CR (C* and or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and «= x/^.
PROB. CXLl.
ARC, BCD are two triangles right-angled at E and gg. D, and fianding on the great circle ECD •, alfo AC~.CB, and EC, CD, and the angle ACB are given J /c find the angles and fides.
Let a—tang. DC, ^=tang. CE, j=S. half the fum of the angles, BCD, ACE -, c—cofine, «■ = fine, cofine of half the difference. Then sx-{-cy zxcof. leffer ACE, and 9»—wzrcof. greater BCD. And in the triangle ACE, cy-\-sx ; i . b
’ fÿ ïÂ? = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;triangle BCD,
Ql—
-ocr page 462-436 -SPHERICAL TRIG. B. II.
Fig. 86.
87.
c,—jx ; I : ; 0 : ------ — tang, CB. Whence
—bsx^ and ä«
fisx—bey—acy, and y — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~ t^ng. half the
difference of the angles BCD, ACE ; whence the angles thcmfclvcs are had. lt;
PROB. CXLII.
Given the fun's a-mplitudet and altitude at fix ; to find the latitude, and declination.
Let P be the pole, Z the zenithj CB the amplitude, AP the altitude at fix.
Let S.CB=i^, preS.AP, x=S. lat. PO, j=S. twice the latitude. In the triangle CBD, rad. (i) : S.C (5/1—XX) : : S.CB (b) : b^^ffZfxzz S. BD or AC. And in the triangle CAP, rad. (1) : S.AC (^s/i—xx) : : S.C (x) : S.AP (p)-, therefore bxy/1—XX zz-p, and 2x v/1—xx = nbsp;nbsp;,
b
but y — ix^fGGf^. whence yr: v ; then x will ____
be known, and b^y 1—xx, the declination. .
PROB. CXLIII.
88. Given tzvo altitudes and two azimuths of the fun ; to fitid the latitude.
Let Z be the zenith, P the pole ; S, O two places of the fun. Let s, /“fine and cofine of li^S,; ƒ, q— fine and cofine of ZO -, m— cof. PZS, «rzcol. PZO ; j'=fjne and cofine of PH. Then ('Frig. II. 38.) cof. ^V-sym fx, and cof.
OP—
-ocr page 463-Scét.VIII. gt;nbsp;'P R O B L E M S.
jx—qx—pyn—sym \ therefore — =;
Jquot; J~i tang. PH the latitude.
PROB. CXLIV.
Given the latitude of the place ; and the fun's altitude is equal to bis azimuth from the foutb^ and equal to the hour from noon -, to find any of them.
Z is the zenith, P the pole, ZP is given, and 89. LZPO=AZOz=DO. Let r=S.ZP, czzcofZP, J-S.ZTO=S.AZO. Then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- S.ZO,
jy : v/i—yy '• -.y-.^^ 1—and j-zzcof. OP. But ÇTrig. III. äs ') nbsp;nbsp;nbsp;nbsp;1.—jj X \/1—3^;, gt;
cy—y^ or s—syy cy=.y\ and — j, or —cy
t—f
J'J' - - y = i.
PROB. CXLV.
There are two places, whofe latitudes are the complements of each other to 90®, and the fun's declination being given, he rifes an hourfooner in one place than the other -, to find the latitudes.
Let rzctang. declination, b—tang, aftenfional ^7*
difference, 5f~tang, one latitude, then— — tang, the other latitude. In the triangle CDB, rad. (i) ; cotang. DCB ; ; T.DB {t} ; ; Zx=S.DC the afcenfional difference in the firft latitude, and 1 ;
— t •. — — the afcenffonal difference in the X
other latitude. But (Trig. I. 9 ) i tt ; 1 ; :
-ocr page 464-43^ spherical trig. b. II.
Fig. t nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f
^3. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zzi btt^ txx’^tx;:b.x^
bttx, .^nd y* — bix — i, b
' ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;T
? R O B. CXLVI.
7igt;e ßile of an horizontal dial being turned down^ fell upon the hour line of 8 ; queryihe latit»de it usai made for ?
Let /.._tang. of 4 hours or 60’, anfwçripg » 8 a clock, Jf=S. latitude i then ——---—tang. Utitude = hour angle of 8, by the queftion. Whence by the known proportion of dialli^'g*
Ä*
1 : * : ; / : ■sr----- , and tx — — JL----, çr,
V^i—xx
XX and V^'l^xx zz — — cof. lat. t nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
prob, cxlvii.
To find in what latitude, an ere£l fouth declining dial-may be made, fo that the declination of the flani^ the diflance of thefubjiile from the meridian, and tbt fiile'f height, are all equal.
go. , Let ABC be the right-angled fpherical triangle» in which are found all the requifites ; viz. AB^ co-lat. L Kzz co-declination, Z-B= plane’s dif longitude, CBzzftile’s height, AC=;fubftiie’s di-ftance from the meridian.
Let S.AB, jrzzS BG. Then (by the prO' perties of right triangles) i : tang. BC : : cotang. A : S.AC, or S.AC= tang. ÇC x cotang. A. B“®
-ocr page 465-Sea.vin; problems. 435 by the queftion, BC —ACzzcomp. A. ._ Therefore Fig. tan2. BC or cotang. A = nbsp;nbsp;-quot;■■■ —r-,- 'Whence*
y (S.AC) rz ----- X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;(tang. BC X
s/\—yy V I—yy
cotang. A) = whence j =
yy
and 1—or
\/5—^
'h
Again, in the Came triangle, i ; cof, AC ; : cof. BC : cof. AB, whence cof. AB — cof. AC*x cof. BC -, that is, s/1—xx — lt;lt;/1—yy X \/i— — ^—yy, therefore v/i—xx~y. nbsp;nbsp;And fince AC
:r:BC, therefore Z_B—Z_A. Hence ail thefe five are equal -, i. Plain’s declination. 2. Diftance of the fubftile from the meridian. 3. Stile’s height. 4. Latitude of the place. 5 Comp, of the plane’s diff, longitude ; and each of them ~ twice the fine of 18°—.618034 ; whence the latitude and declination z: 38® ; 10'i. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«
•/ 1
4’
PROB. CXLVIU.
Given ibe fun’s meridian altitude^ and alfo lis aUitucH at two i /0 find the latitude.
Let Z be the zenith, P the pole*, B, O two 91. places of the fun. Let /»—fine and cofine of BZ (PO—PZ) *, X, jyrafine and cofine of POq-PZ, c^cof. P, dvzcof. ZO. Then (Trig. 1. 6. fchol.) a;y-p/ixzLS.PO, by—axzrcof. PO, «j?—bx —S.PZ, /»JI4-(îx—cof. PZ. And in the triangle OPZ (Trig. Ill. 38,) ay-^bxxay—bx-X.c^=ihy^^^^ X lgt;y-\-ax~d-, that is, nbsp;nbsp;nbsp;nbsp;—cbbxx-\-bbyy—aaxx—dy
but 57 —1—xxi therefore raz?—caaxx—cbbxx-\-bl —bbxx—aaxx~d, but «04-/1/»—i, whence caa—' exx bb—XX ~d, and x.v—cxx—caa bb—d, and
F f 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;xt
-ocr page 466-440 SPHERICAL TRIG. B.. Ii. Figf^ r^a^b^d ,
^^5 = y ——. Whence PO (or PB), and
PZ are had.
» PROB. CXLIX.
92. ƒ» ihe fpherical triangle there is given the per-pendieular the angle A, 4»^/ the ba/e ; to find the fegments.
b-S.K-Q, ‘'t=:tamp;x\^. VAC, fzztang. VC, 5f =tang. BC. In the triangle BAC, b : 1 : : x : •j^xztang. BAC, and (Trig. 1. 9.) 14-fx : i : :
gt;Vi;; c—X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tv
*«. X nbsp;nbsp;tb—X
tb—x c^—x
ängle VAB, 1 •. b* ? «;• Whence r—X nbsp;nbsp;tb—X
7 7^ = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Af’d multiplying,
- ic-—rbx-\’tcx—txx—tb^—bx-\-bbctx—cbxx^ and re* duced, t—bc.xx-\-bbct—tc. x ~ be—tbb.
.19 O'/.! O . ' PROB. CL.
lo
^rüvelling in an unknown part of the world, I found by chance an old horizontal dta!, whofe hour lines 't were fo decayed by length of time, that 1 could only difeover thofe of and ; whofe diflance I found 21 degrees ; to find the latitude of the place.
.V
Let ^=tang. 60 the hour arch of 4, d—tang. the hour arch of 5. /=:tang. of their difièrence 21. x=S. latitude.
, Then
-ocr page 467-Sea. vin. problems. 44«
Then by the known proportion of dialling, rad: Fig' S. lat. : : tang, hour arch : tang, hour angle, that is.
1 b ; bx—tang, hour i- oi 4.
I : X : : d : dxzzta.^^. hour L of 5.
But (Trig. I. 8.) 1—btx ; i : : t-\-bx dx, whence
—bdtxx, and bdtxX-\- b—d.x-\~t~o.
In numbers 2.4.8133X*—ïx = —-383864.
and X zz.49084 — S.29 24 the lat.
or X ZZ.31518 — S.18 22 the lat.
PROB. CLl.
‘There are given the latitudei of three -placet lying in the arch of a great circle -, and the diff, longitude are equa^ between the middle one and each of the ex-tream places ; to find their dijiances.
Let P be the pole, AE the equinoaial -, G, V, M, the three places. Put Zgt;r:tang. MD, c—tang. VB, ii~tang. CG, x~S.AB, 3':z;S.CB or BD. Then (Trig. 1. 5.) nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; S.AD;
and (Trig. 1.6.) x\/—y\/1—xxrzS.AC.
Then (Trig. III. 27. cor. 1.) x : r : : xV ^~yy 1—XX : b \ and x ; r : ; xv/i—‘ hx ______ _____
d. Whence y nbsp;nbsp;nbsp;nbsp;nbsp;1—yy y^ 1—xx , and
dx _____ ____
-- =A,V I—yy — yv 1—xx. Then adding and
fubtraaing thefe lall equations ; nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;=
» --- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ly_
2XV i~yy, and ,—-—■ =: 2y\/1—xx i by the
former v/ 1—ÿy =: nbsp;nbsp;nbsp;nbsp;— cof. C3 or BD. Plence
-ic
y is known. Therefore in the triangles GBV, VPM, two
-ocr page 468-'^4« nbsp;nbsp;‘ SPHERICAL TRIG. B. H.
Fig. two fides and the included angle arc given, to find 93. GV, VM, the diftanccs required.
Or thus,
(By Tiig. HI. 44. cor.) As rad : 4 tang. PV : : tang. GC 4- tang. MP : cof. GPV or MPV.
PROB. CLII.
$4; In the fpberical ABC, we have given the angles ADC, CDB, BDA, about the point O'i and the triangle RlàO itjelf-, to find the diflances BO, CO.
Let J, c be the fine and cofine of A ; /gt;, j=fine and cof. B,æ=:S.CDB, /-S.CB, A^S.CPA, d= S.AC, ^=cof, AB, »rrcof. APB, te^ v^fine and cof. DAB ; jr=fine and cof. PBA.
Then (Trig. I. 6.) fxzzS.CAD, and pz— tfy=S.CBD, and in the triangles CAP, BAD, dsv— dex
d : : sv-^cx t '—---= S.CD ; and ?/: :
qy ! nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;3.OT) ; therefore adsv-^dexz:
hfpz—bfqy.
In the triangle APB (Cafe 10.Trig.) bxy—vz'^rt. But nbsp;nbsp;nbsp;v/1—XX, z—\/1—yy, therefore
ö/Zfv/^—gt;tx—adex ~ hjp\/1—-yy—bfqy, and nbsp;nbsp;— \/1—x'iê ye, nbsp;nbsp;nbsp;—y y zz n.
From thefe two equations, the roots may be eafieft found by problem xcv ; otherwife it will afeend to a high equation : or if you pleafe you may proceed by rule 5, prob. xcii.
PROB.
-ocr page 469- -ocr page 470- -ocr page 471-S«ft. VIII. PROBLEMS;
44J
Fig.
PROB. CLin.
Give» (he difference of (be azimuths of (bree kno^n flars t (0 find tbeir altitudes.
Let Z be the zenith •, A, B, C, the Bars. Since their places are given, the triangle ABC will be given. Put Sf c~fine and cof. 4ABC» ö^S.AB, ^=:S.BC, »=cof. AC, 5=cof.
c r'TXi r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f CBZ—ABZ
pzzS.CZB; X, ymUne and cof.--. Then
2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
5ji fx:=S.CBZr:'ü, and jj—cxz^S.ABZ—z. And
in the triangles ABZ, CBZ, 4 : « ; : z ; -r d
*üß
S.AZ, and î e : s “u ;-^zxS.CZ i and in the tri-
angle AZC (Trig. HI. 38.)
X \/1—vv —n \ and tranfpofing, nbsp;y/i—zz X
— n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i and fquaring, i—zz—
-, and
tranïpofing, i-^nn zz-p-Pü — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; .
bd ~ qqaaee—hbdd
' bbdd nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;z‘-t-'P‘=:2Jjy-l-2cfxx, anti
»zzzjjyj—ccxx. Therefore I—nn — 2ssyy-\-ïccxx
_ '^^fjiiess 2nqaeec nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;qqaaee— bbdd bd yy bd fbM X
— ÏS-C-XY Let I — nn = mm y
2____ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2nqae qqaaee
bd -bd'~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— nbsp;nbsp;nbsp;nbsp;'
yy~'i-~xx-, therefore expunging y, and redu-/jj—2pis y.xx—ram~~fss—
PROB,
-ocr page 472-444 SPHERICAL TxR IG. ' B. II. Fig. ..
PROB. CLIV.
Given the fun's deelinaticn, the difference of tvio altitudes^ the difference ■ of azimuths^ and the difference of times-, to find the altitudes, and the latitude. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;O nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;• T
r.
^6. Let P be the pole, Z the zenith ; A, B, the places of the fun. Pur. d—S. fun’s declination, JzzS. lAPB, f—cof. 4AZB ; p, o~fine and cofine FZ—AZ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;BZ AZ
7; j *■, y=fine and cof. ----------; then
* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
(Trig. I. 6. fchol. 2.) jx pJ'^S.ZB, gx—py— S.Z,A, qy—-p^erzcof. ZB, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cof. ZA. Then
in the triangle API, i : d : : s : ds —S. half AD, and (Trig. I. 2. fchol.) i—2ddss:zcof. AB ; and
in the. triangle AZB (Trig. III. 38.) nbsp;nbsp;nbsp;—ppyy'^'-
—ppxx — I—iddss-, but pp-\-qq — i, and i therefore cqqxx—cppcppxx-\-qq-^ qqxx ppxx — i—2ddss, or cqqxxf-cppxx—qqxx— fpxx — i—zddss-^cpp—qq-, that is, cxx — xxzz I—2ddss-\-cpp—I pp—cpp-\-pp—zddss , whence c4-i pp-^ zddss
=-----y . Then the fides ZA, ZB (—.J
are known. In the triangle PAI, find the A A ; and in the triangle ZAB, find the angle A, and their difference ZAP •, then in the triangle ZAP, there’s given two fides and the included angle A j to find ZP, the co-latitude.
PROB. CLV. ■
Given two altitudes of the fun or a fiar, and the times of obfervation ; to find the declination, and latitude.
Let Z be the zenith, P the pole ; B, A, the places of the fun or ftar. Let c— cof. BZ,
-ocr page 473-Scft. VIII. p R o B I? E M S. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;445
/z=cof. nbsp;nbsp;nbsp;nbsp;b—ZQ{. ZPB, J=rcof. ZPA, »=:cof Fig’
ihen (Trig. 111. 42. cor, i.) x—; 2 : : x__c : ^~b, and : 2 : : x—ƒ •: 1—d -, therefore
I—i—f'.i—d’, therefore x—dx—c -]rcdzzx—f—bx-\-bf\ and —dx—c—f-\-bf—cd^ .whence x nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Alfo 7^^ x
~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.Of ' —y~x bx—iCt and 'j- :t
1C ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;14-/gt; _
1—b nbsp;1—b^ nbsp;nbsp;nbsp;nbsp;' b—d
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ciltitudes of the fun^ the difference of timeif
and difference of azimuths-^ to find the latitude and declination.- — ■ ', gt;nbsp;lt;nbsp;n?. --- •■ — s'»
•gt; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'ï’a
••.T- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;w
-' Suppoff: P the pole, Z^hezenith-, B, A, the 98; placés of the fiin. Put f—cof. BZA, j—cof.BPA, »J=S.BP or PA-, Zi, t/^fine-ànd cof. ZB i fifi =:
fine and cof. ZA. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
Then (Trig. UI. gg.) in the triangle BZA, BA'-, and in the triangle BPA, ify y.Ÿ~^—yy cof. BA i'- therefore cyy 1 —J?——i-jÿ = lgt;cf-}-dp—I, «nd 5=' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= S.BP the .dechnatio'Ä.
Thea in the iri^gle-BPA, find the angle B,~atid triangle'quot;ZBA find the angle B, and-then .th«i .difference ~ZBP. Then in the triungle, ZBP there are given tvyo.fides ZB, BP, and the included pangle^B-, to find'll the co-lafitudç.
PROB.
-ocr page 474-440 SPHERICAL TRIG. ß.Il Fig«
PROB. CLVIt.
Given the fun's declinationtwo altitudes, and the time between them j to find the latitude.
^S. Let », ^=:fine and cof. PA j d, fs=X-[nc and cof. PBi w=cof. ZB, wzzcof. J, f —fine and eo» 7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r Jr ^PA ZPB
fine IBPAi J, azxfine and cof. -----gt;
Vi x=fine and cof. ZP.
Then (Trig. I, 6. fchol.) fs;-—jj’zxcof. ZPA and fz4-j^r:cof. ZPB, and (Trig. III. 38.) • f^asyv-^-bxzzm, and z/f2‘ü4-z/xgt;’-y4-/x=:«} and »»—bx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n—fx nbsp;nbsp;nbsp;, , ,
cz ^sy=. ----, and cz sy— —and by
n-^^fx bx adding and fubtrading, 2« 2:
an—afx-}-dm—dbx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n—fx
=----’gt;«’ ^‘y= Si— sr
an-^afx—dm^dbx == ------Whence z zz
an dm—afx—dbx zcadv an-\-dm
-rsd ~tlt;
and _y= an—dm
zsad
an-^dm ■^dbx--afx,
2sadv db^af 2cad
db—af 2iad
z=it.
Then z= —, and y= —!
But 2=\/1—yy, and v~\/1—xx ; thenv/1—-yj ------ a
yyzzt-.
I--XX--1—tx vv
Alfo —
Seft. VIII. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;447
Whence i—gt;,'x—pp-\-2prX’^rrxx~ii(i-\- 98.
2qtx-\-Uxx \ and reduced
r/xx ‘i-tqx Î? —04
4- rr — 2'pr pp
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— 1
Or /lgt;ust
In the triangle BP A, 2 fides and the included angle are given, to find AB, and BA. In the triangle BZ A, all the fides are given, to find the angle B, and from thence ZBP. Then in the triangle ZPB, two fides and the included AB, arc given i to find ZP the comp, of the latitude.
PROB. CLVIII.
Given three altitudes of the fun in one day, and the times . between them -, to find the latitude. See.
Let J, czzfine and cof. APB; t, fine and 99^’ cof. ABC, J—cof. AZ, f—co(. BZ, f—cof. CZ, x=iS.ZPA, S.AP, BP or CP-, 2=S.ZP..
Then (Trig. I. 5. cor, i.) fv/i—xx—sx=: cof. ZPB, and nbsp;nbsp;nbsp;i^xx—Zx r^cof. ZPC. And (Trig.
111. 38.) Zyy/1—XX \/1—22 X y/t—yy ~ czys/ï—-xx~^szyK 4- \/1—22 X nbsp;nbsp;1—yy—ft and
byz\/1—XX 4- ryzx 4- \/7—y/t—Ey tranfpofition, y/i—22 x\/1—yy —d— zy^/ \^x. Then czj\/1—xx — 5zyx-\-d—1—xx~f, and
—XX—tzyx-^-d—zy'yZ I—XX—g. From the ormer of thefe two laft equations we get zy — d~f
■’ and from the latter zy rx
i nbsp;nbsp;nbsp;nbsp;I—XX4-JX
—^5'
, , '• and making thefe laft equa^
1 xx ix nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;°
tiofiS
-ocr page 476-448 SPHERICAL TRIG. B. IL
Fig*
on equal, and reducing, we have —7==»— _____ ______ VI-XX
—f quot;X. 1 —b '— d—X I —c
ZPA. Then
AT will bejcnown, and alfo
But v/i—zzxs/i^^ =d—zy^7^^. Put ■^y—r, then 1 yy 224- zzyy—dd—2dzy\/1—xx 4-22jy—^„4 traufpofing, nbsp;4.22= I —
•}-ïdr\/i~xx-\.rrxx—p by fubftitution ; then Jjy ^jyz ^^—ƒ 2^lt; and nbsp;—zyz-\-zz—p—2r,
and y z = \/p~2r, and y—2 — v/p—2r, whence, =
y/p-Vzr — ^p—2r z
PROB. CLIX.
Having at one inflant the altitudes of tveo knovtinflarSt to find the latitude.
100. Let Z be the zenith, P the pole ; F, A, the liars. In the triangle A PF, there is given the fides AP, FP the co-declinations, and angle P, the difF. right afcenfions, to find AF, and AF. Then in the triangle ZFA, all the fides are given, to find the angle F j then /_ZFP will be known. Let f=cof ZFP ; a, b zz fine and cof. ZF ; d,f— fine and cof. FP 5 xzzcof. ZP.Then (Trig. III. 3S.) lt;jlt;/f—S,latitude.
PROB. CLX.
If there be two known flars in one azimuth, and having the altitude of either given ; to find the latitude of the place.
10r. Let Z be the zenith, P the pole; F, A, the two ftars in the azimuth circle ZFA, and ZF is given.
-ocr page 477-Seft. VIII. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;449
given. In the triangle A PF, two fides and the in» Fig. eluded angle P, are given ; to find the angle F. 101. Put f—col. Z_ZFP; fl, /»zzfine and cofine ot ZF ;
d, /=fine and cofine of FP ; x=cof. ZP. Then in the triangle ZFP (Trig. III. 38.) adc-\-hf—X the fine of the latitude.
If ZA is given, you muft find the angle FAP, and put fl, b—S. and cof. ZA-, f~S. and cof. AP,
Otherwife thus^
Let the altitude of A be given ; j, f=fine and cof. APF -, d, and cof. AP -, w=fine and cof. FP; a, Zi=:fine and cof. ZA, x— cof. ZP. Then (Trig, cafe 7. fpherical triangles) co-. nbsp;nbsp;nbsp;dn—mfc nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ms
tang. A =-----, and tang. A= -3----
ms nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;° nbsp;nbsp;nbsp;nbsp;dn—mfc
by fubfiitution-, and (Trig. I. 1. fchol.) cof. Arx I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ad
the S. latitude.
This is a ufeful problem.
SECT.
-ocr page 478-450
ß.IL
Fgi.
SECT. IX.
Ceomeiricdl Led, and Problems relating thereto.
102. T F the right line AP be drawn from a given I point A, and any number of right lines PM, PM, ÜC. be drawn thereon, parallel to one another, or making any given angle with AP. And if the relation ot the indetermined quantities AP, PM be denoted in general by fome equation ; and if the lengths of PM be every where, fuch as that equation gives ; then the curve pafling through all the points M, is called the Lecus of the points M, or the locus of that equation. And that equation declares the nature of the curve MM.
rhe degrees of rhe Loci are denominated from the degrees of the equations, by which they are denoted. Thus a locus, of the firft degree is that where the indetermined quantities rife to one di-menfion ; of the fécond degree, when they arife to two dimenfions; of the third degree, when they rife to three dimenfions, amp;c.
Right lines are faid to be given in pofition, when they make given angles with one another.
PROB. CLXI.
103. If the foie AC or BC revolves about the center C, the weight D, and firing BD hangs at the end of it •, to find the natute of the curve GD, defcribed bj the weight D.
Take AG, and CF, —BD. Then fince CF, BD are equal and parallel, therefore (Geom. I. 5.
cor.
-ocr page 479-Seft. IX. Problems of the Loci. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;451
cor. 3.) CB, FD, are equal, or FD—CB—CA. Fig' And finceFC—Ga, addCG, and then FGr=CA-, 103* whence FD — VG. Therefore GD is a circle whole center is F, the fame with AB, but in a lower po-fition.
PROB. CLXIL
Suppofe ACD, acd, ?:ic. to he right-angled triangles, 104. one 0/ ivhofe angles falls upon the fixed point h, the other in the line AE -, and if the fegtnents BD, W, he given-, to find the nature of, the curve pajfing through all the right angles C, c, amp;c.
Let AB—X, BCz=v, BD—42; then in the right-angled triangle ACD -, AB (x) ; BC (y) : -. BC fjy) : BD (_«)•, whence ax—yy, for the nature of the curve. Therefore the curve Cf is a parabola, whofe latus reélum is BD or hd, and A the vertex.
PROB. CLXIII.
A is a fixed point, a given line, ABD a given 105. angle-, then fuppo/e the curve AMB fo be generated after Juch a manner that dravoing any line AC, it may he, as BC /o BP : ; as r -. to s •. to find the nature of the curve, or the locus of all the points M.
Draw MP, mp parallel to DB, and let AP—x, PM=j, AB—zi. Then by fimilar triangles AP
• (x) : PM fjy; : : AB (0) : BC = And by the problem, r : 5 ; ; BC P) : BP ( 0—x ). /-pi nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f
Therefore-——ra—rx, and y — — 'sca^,—xx, for * nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;sa
the nature of the curve -, and it paffes through A -, becaufe when x is zro, y is =0.
G g 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PROB.
-ocr page 480-452 nbsp;nbsp;nbsp;nbsp;nbsp;PROBLEMS û/ B. H.
Fig.
PROB. CLXIV.
106. Given the triangle KBC^ and drawing PD parallel to BC ; fuppofe it be always PM‘—PD*—BC‘ ; to find the nature of the curve BM.
I
Put AB=Ä, BC=:^, AP—X, PMzzy, then by fimilar triangles, a : b : : x ; — =PD, and by bbxx
the queftion, nbsp;nbsp;nbsp;nbsp;—bb—yy^ or aayy—bbxx—bbaa,
b _______
and y — — gt;/xx—aa , nbsp;And the curve paffes
through B.
PROB. CLXV.
107. triangle ABC is given being right-angled at B, drawing FM parallel to CB , it be every where PF* PM‘x;BC*j to find the nature of the curve BM.
Let AB=«, BC=^, APzzx, PM=t. Then
by fimilar triangles, « : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: — ~PF, And
hbxx
by the queftion, yy—bby whence yyzzbb-^ /■-------- r n
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, and — v aa—xxt the equation for all
, the points M. And in A, where x is o, yz=.b^ ' or AD=CB.
PROB
-ocr page 481-Scd. IX. î^e LOC I. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;453
Fig-PROB. CL,XVL
Jf CF, AC be right lines given in -pofttion \ 108.
PD, pd be always parallel to AC -, and if PM be every where equal to CD j to find the locus of the point M.
Since AC, PD are parallel ; AP will be to CD in a given ratio (Geom. II. 12. cor. 2.) ; put AP=x, PM—J, and let a : b : : AP (x) : hx
—'^CD -, therefore y . Therefore AMw is a right line, pafling through A.
prob, clxvii.
If the three lines CA, CB, AB Z-æ given in pcfition \ 109; öwt/ PM always drawn parallel to AB ; and it be every where APxPD=PM‘ -, to find the nature of the curve Mw,
Let CA=a, AB—b^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PMzzj-, then by
fimilar triangles, a : b : : rt-f-x : —y-Zgt; —PD, then by the queftion, bx zz yy and gt;nbsp;re /_ _
yj ~'X ax xx and the curve paffes through A, fince both x and y o, at once.
But if CB be parallel to CA, then PD=AB, and bx=yy^or y—\/bx. if C lie on the o-ther fide of then PD = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y —
•J — X ax—XX’ nbsp;In which cafe, when x—a,
d
then 7=0 , and the curve paffes there through the axis CA.
G g g nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;When
-ocr page 482-454 nbsp;nbsp;nbsp;nbsp;PROBLEMS«/ B. IL
Fig. When x is greater than a, y is the fqiiare root lOÿ. of a negative quantity, which is impoffible; and therefore the curve goes no further than A.
PROB. CLXVIII.
110. is given the right angled triangle ABD; and drawing PM, always parallel to BD ; and making PM every where equal to BF ; to find the nature ofi the curve DMw.
Put ABr=«, ,BDrz5, BPzzx, PMc=^. Then by fimilar triangles , « : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;h
= PF , and B F’ = xx = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
üâ
aaxx-k-ibaa-k~ïbbax 4-bbxx — ; therefore
V — / It, w. '^:bbx~~'ddjfihb J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--
of the curve.
prob. CLXlX.
draw PM perpendiculrto'amp;\?; an^ e AM be always a mean proportional between nature of the curve hum.
AP=x, PM=y ; then AM = and per qucfi. a z nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^gt;cx^ ^y
and ax—xx-\.yy^ whence y=\x^ax—xx.
PROB.
-ocr page 483- -ocr page 484- -ocr page 485-Sea. IX. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the L O C I. * nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;455
Fig, PROB. CLXX.
7Ägt;if /(■«« CF 'point \ being given-, from any 112. point D in that line, through K, draw DAM, make X AM alwe^s e^ual to a given
f^uare -, to find the locus of M.
Draw BAP perpendicular to CF, and PM perpendicular to AP, and pjK_ AB=ff, APr^^f, PMrz;-, then AM = y/xx^yy, bb — the given fquare. By fimhaV triangles x : \/xx yy : : 0 : e^s/xx -P37 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a -------
—AD. Then per queft. — X^x-k-yy^
T.L J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;!bbx
^bb, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence y— iJ ~
ti nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
PROB. CLXXL
Ad ÎJ a circle, Ç, its center-, draw h^'perpendicu- ^^3* lar to CAP. ^hen draw any line CB, and BM parallel to AP •, and make always BM~DB -, to find the nature of the curve otM.
Draw MP perpendicular to CP, and let CAzzr, AP^zÄ, PMrr^i then CB =: \/rr-k-yy , and' BD zr s/7f fygt;—r. But AP or BMzzBD, that 'S, X ~ nbsp;nbsp;rr-pjjy —r, and v/rr-\-yy zz:/-l-x, and
Squaring, rr-\-yy zz rr-|-2rx-l-xx, whence zz irx-\-xx.
PROB.
-ocr page 486-456 Fig.
Problems of
B. IL
PROB. CLXXII.
J14, CAD is a given angle, CD a given line, M point in it. Let this line fo move in the angle CAD, that the ends D, C may always touch the . fides AD, AC ; to find the curve defcrihed ly the point M.
Draw MP, MB parallel to AC, AD, and put DM=«, CM=:^ , cof. LA.—C, AVzix, PMzz^. By fimilar triangles, CM \b} z BM (x) : : DM (a) : DP — nbsp;nbsp;nbsp;nbsp;. But in the triangle
MPD (Trig.* cafe 5.) ^7
lacxy aaxx ,
Of yy—.aa nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, for the equation of
the curve.
PROB. CLXxnr.
n s, The line QK is perpendicular to AP, ABM is aTauare io find the^urve defcribed by the potnt M, the L ß and end C, along VK, AC. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
Draw MP perpendicular to AP, CB-^ RU-â AP-x, PM=7} the tjiangles CAB, 3,g fimilar, and b : y : : a : nbsp;nbsp;nbsp;nbsp;nbsp;AB. And BP =
therefore 4- ^bb=^y
\/bb--yy ~ x—and fquaring ih—~yyzzxx-^ aayy nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa^bb
b W nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^bT'yyzzbb
--r — xx.
PR OB,
-ocr page 487-Scft. IX. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the LOC I. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;457
Fig. PROB. CLXXIV.
ne Unes PNy AB, AE «rf given in •pofition^ the ■point N is given ; if the line VE be ahvays drawn through V, and the part intercepted CE be divided in a given ratio at M to find the locus of the .points M, rn.
Draw MP parallel to AB, and DM, BE parallel to AP, and put AP~x, PM—7, ilV—£Z-r to J as CM to ME, S.Z.BAE=;gt;, S.Z-EAP or BEA—
The triangles VAC, VPM, DCM, BCE are fimilar, and a-^x ‘.y.-.a\ =AC, and ö-Px
: J : : (DM) » : “ =DC. Alfo rz st: CM
** T“
; ME : : CD : DB = And CM ö-px' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ra-prx
• r^'T' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;”1”^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;•
• CE ;;?■•. r-pr ; : x : —^x=:BE, and in the triangle BAE, p : i : : BE x ) : BA = ' ’■-pr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- ixji nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;______ _______
fr — y r')(.'^x' r sylt;. qxx a^x ^pffY. a-^rX-Vptxy, which reduced is (putting ^•{■s~d) dq^xx-\-dqax~pray.^dpxy., and j zx dt]Xx-}-d(jax nbsp;nbsp;nbsp;nbsp;dq nbsp;nbsp;nbsp;nbsp;ax-\-xx
~^a-\.dpx nbsp;nbsp;nbsp;nbsp;~p nbsp;nbsp;nbsp;nbsp;ar-{-dx'
PROB. CLXXV.
BCD a given angle^ D a fixed point, nbsp;nbsp;nbsp;nbsp;parallel
#0 CP -, and BM to MD «re always in a given ratio -, to find the locus of M.
Draw MP parallel to BC ; and put 'CAxxa, ■AD—by cof. APz=e, APxrx, PMxrjy -, then
PD —
-ocr page 488-45^ nbsp;nbsp;nbsp;nbsp;nbsp;PROBLEMS of B. II.
MD = nbsp;nbsp;nbsp;nbsp; b—x—ïcy y^b~x.
is, a : nbsp;nbsp;nbsp;: æ4-a’ : yy -f- /,—x —2ej’
which fquared and multiplied, ^^aayy-{-aabb—2f!abx•\-lt;iO-xx—~2caaby-\-2canyx, and reduced aayy-\-2caayx—zcaaby ~ bbxx aaxx ibbax-^-ïaabx.
PROB. CLXXVI.
lt;118. C, D are two fixed points in the line and fquare is eiwy where /lt;? MD fquare, in the given ratio of r to s, “To find the locus of M.
Draw MP perpendicular to CD, and let CA=lt;?, AD=J, AP=x, I’Mcrj/; then CP-—^ a-, PD=^—X. nbsp;nbsp;nbsp;Therefore it is r : j : ; aa ; bb : :
(CM‘) yy 04-X : (MD*) j'v -p b—x -, therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; ïbbax bbxx zz aayy-Vaabb—
•2aabx~gt;raaxx. Whence aayy~ Ibyy—bbxx—aoxx -^2bbax-{-2aabxand yy — —~~rquot; X 2abx aa—bb
2ab
XX -----; x—xx.
a—b
PROB. CLXXVII.
119. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-^O are given by pofilion\ the points
P, B, and angles CPD, CBD are given. Now if the angles CPD, CBD move about the centers P, R, whilfl the interfeStion D {of the fides PD, BD) runs along the line ÄD -, to find the curve which the in-terfebtion nbsp;nbsp;nbsp;of the other fides, defcribes.
Draw CS, DF perpendicular to AB ; and put APrx«, Vb—b, tang. A PAD— t, tang. CPDerp, tang.
-ocr page 489-St-a. IX. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the LOC I. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;459
tang. CBD—q, PF— PSz:x, SC—and Fig. BFzzZ’—V, BSr:/’—x. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;119.
Then by Trigonometry, 1 ; a v : t : ta tv zzTiV.
A. 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M Z-ü
And u : I ; ; ta-{-lv ; —~—^tang. DPF.
Alfo X ; I ; : y : ~ zz tang. CPS.
And Z;—quot;j ; i ; ; ta-^-tv ; zztang. DBF. c—V nbsp;nbsp;nbsp;°
And Z'—X ; i ; : y z zz tang. CBS.
But (Trig. 1.8.)
y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ta tv nbsp;nbsp;y
h—X • nbsp;nbsp;• jy—4-^—
îa-iriv
Ano. I—-,---- b—V
and multiplying the extreams and means, fvx—pt ay—ptvy—tax tvx zy.
And 5 X i—v Y.b—x —taqy—tqvy — ta-\-lv X b—* ■\-by—vy -, that is, gZgt; x b~x —qv y. b^x—laqy —lqvy~tab—tax-{-iv x b—x by—vy •, and tran-fpofing, tv qv yb^^ tqvy—vy — qb yb^x —taqy-{-tax—tab—by. nbsp;nbsp;nbsp;nbsp;nbsp;this and the former
equation, qb—-qx-\-tqy^tb—tx—y tax-\-ptay
‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fubftituting for the known
compound quantities,
tax-}-tapy , nbsp;nbsp;nbsp;,
—TTXTZO ---' •gt; reduced
taphyy — tagxx — tapgxy talx 4- Zap/y =0.
4-Jlt;3( — cn 4- tab — fn 4- V
4- ic
— dn
PROB.
-ocr page 490-4^0 problems ef B. IL Fig.
prob, clxxviii.
120. l’a find the figure for the fe£lion of a groin, the iofes being AFL 0 Jemicircle, and ABC, IÎ fight-angled ifoceles triangle.
Groining in joinery is fitting two prifmatic fo-lids, to join at right angles, lo that the furfaces of both may coincide, no part of one being higher than the other, and the ends of both of them muft be cut away to a certain figure, or elfe they can never join truly.
Let the perpendicular fedions AFL, ABC of the folids be perpendicular to the plane LACD, on which the figure is to be drawn. And fuppofe AMD to be the figure ; draw Ml, MP parallel to AC, AL -, at 1, P, draw the ordinates IF, PO, perpendicular to AL, AC. Now the nature of the groin requires that the lines FI, and PO, which are to coincide, muft be equal. 1 herefore compute FI, OP in both figures, and put them equal to one another.
Let AL or AC=:a, APzzx, PM=jr. Then IF ~ \/a1 X 1C = u—y Xj’ ; and fince ABC is a right angle and AB=BC, OP will =APi therefore OP—x, whence nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—yy. Whence
AM is an arch of a circle equal to AF. And for the fame reafon, the part at D of AMD is a like arch, and the whole curve AMD confifts of two quadrants of the circle AFL, meeting in the middle, and turning contrary ways. Therefore if the ends of the two fi)Iids, be cut into the figures LLDMAF, and BCDMAB ; they will exaftly fit one another.
F R 0 B.
-ocr page 491-Scét. IX.
the LOC I.
461
Fig.
PROB. CLXXIX.
o find the figure of a groin^ when the bafes or ends 121. of the bodies are AFL lt;J femiarcle, and the fegment of a circle.
Let AMD be the curve-, âraw MP, MÎ pa-rellel to AL, AC -, and IF, PO perpendicular to AL, AC.
Put ALzxa, AC—b., AP~x, PM—j. Then becaufe the figures APL and ABC muft always be of equal height, therefore {a= the height of ABC. Then to find the diameter of ABC, we Ihall have {bb-}-'^aa divided by la, for the diameter-, put D=:diameter, then D—a— the diftancc of the cord AC from the center, put D— and PO or IF^-u. Then by the nature of the circle (in the figure ABC), ar-y-p-v-D = bx—xx-, and ay—yyzzOT, in the figure AFL. Therefore aev-pay—^y—bx—xx, and 2cv~yy-\-bx—-xx—«y, alfo 'u rz \/ay—yy., and icv“2c\/ay—yy — yy— ay-\-bx—XX-, which fquared and reduced gives an equation of the fourth power for the locus of M.
PROB. CLXXX.
To find a genera] equation to the elîipfts, referred to any line as an axis -, which ellipfis will therefore be the locus of that equation.
Let BFDG be the ellipfis, C the center : Let m the point A be given, and any line AL, given in pofition, for the axis. Take the angle KAL at pleafure, and through C, draw the diameter BD, parallel to AK, and FCG the conjugate to it, and AN, PM, LK parallel to FG. Put BC or
CDzzt,
-ocr page 492-402 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P R O B L E M S of B. IL
Fig. CD~Z, p— parameter belonging to BD, j22.LK=^, AKzzf, CN=/, AN=», AP=rx, PMzrj,.
By the fimilar triangles ALK, API ; a : b : : x ex
: =:PI ; and æ : r : : x : —=:AI. Then PR « nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
= n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;CR=ÎÏ_/, BR
rt •'a nbsp;nbsp;nbsp;nbsp;a
ex
—t—f-}- —, RDrz/ ƒ——, And by the property of the ellipfis it p \ \ BRD : RM’ : : tt-— rf 2cfx ccxx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bbxx
J J ^ - 77 ■ nbsp;nbsp;nbsp;nbsp; quot;” Ta—
2bxy zbnx y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
4- nbsp;nbsp;nbsp;nbsp;nbsp;; and multiplying extreams and
means, and reducing,
laatyy—ä,ablxy itbbxx—^aatny ^abtnx iaatnn-^i -\~pcc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—lapcf—paatt
An equation to the ellipfis FD referred to the axis AL. Where note, yy and xx have the fame fign. And if xy is in the equation, the fquare of half its coefficient is lefs than the coefficient of xx multiplied by the cofficient of yy. And if xy be wanting, XX and yy have the fame fign,
PROB. CLXXXL
'To find a general equation to the hyperbola, referred to any line as an axis ; end which hyperbola will confequently be the locus of that equation.
122. Let DM be a hyperbola, C the center, AL any line drawn from the given point A. Make LAK any given angle -, and through C draw the diameter BD, parallel to AK, and FCG its con-
’ jugate,-
-ocr page 493-Sea. IX. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the LOCI. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;463
jugate, and -draw AN, PM, LK parallel to FG, Fig’ Put BC or CD“/, p— parameter of BD, AL=fl, 123* LK=^, AK=c, CN=/, AN=», AP=;r, PM =7.
From the fimilar triangles ALK, API, we fnall get (as in the laft problem,) PI = —, AI zz —, whence PRzz» 4- —, RM=v—n——y and CR a ■' a
= -—f, and DR= - —and BR = — ß nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
And by the nature of the hyperbola, «:f::CBRxDR)'-^-ïl’ ff-„ : (MR-) »-2^ .,- 5»?^ a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;aa
the means and extreams multiplied, and then reduced,
—ifbtaxy-^-ztbbxx—i^tnaay-}- t^tnhax-}- ztaann—o.
— ygt;cc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—paaff
-Ypaatt
Note, v/hen xy is not in the equation, yy and XX have different figns. And if xy be there, the fquare of half its coefficient is greater than the coefficient of XX multiplied by the coefficient of yy.
-ocr page 494-4^’4 Fig.
B. II.
SECT. X.
Mechanical Problems,
PROB. CLXXXII.
gt; 124. If tbe iveigbt P break the beam DE, •coben fupported loofe at A-t B ; to find wbat lueigbt loill break it, when tbe ends D, E, are fixed^ that they cannot rife.
Suppose da=ac, and be=bc. sup-pofc the beam cut through at C, and let iP be laid upon D, whilft iP remains at C j then the preflure at A will be —P, therefore the beam will alfo break at A, having the fame ftrefs there as it , had at C. For the fame reafon, if 4P be applied to E, CE will break at B. Confequently, if 2P be applied to C, the beam being whole ; and the ends D, E fixed ; the beam will break at A, C, and B ; and therefore it bears twice the weight or 2P, at C, before it breaks.
PROB, CLXXXIII.
ii^.Tbeftrengtb of abeam AB, being given-, to find its fir eng th when a hole (ac) is cut out of the middle, and alfo an equal one [rn] in the fide.
^By the principles of mechanics, the ftrength of the beams whofe thicknelTes are db, da, de, will be as db’-, da’-, and de’-. Now as the ftrength of all the particles between b and d, is denoted by db^, and the ftrength of all the particles between a and
-ocr page 495- -ocr page 496- -ocr page 497-Seft. X. Mechanical Problems. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;465
and dt by ad*' ; therefore the ftrength of all the Fig-particles between b and a, (the point D beino- 125-fixed) will be db*—da*^ add the ftrength between c and d, which is cd* -, and the ftrength of and flt;i, that is, the ftrength of the hollow beam is db*-—da’-'^cd*. But at the fedion r the ftrength is ƒ«’.
Whence if nr—ac, the ftrength at Zgt; to the ftrength at r is as «fZ»*—da^ cd*' to 'db^a^, that is, as —2dc X ca—ca* to db*—2db 'X.ca-^-ca*-, Therefore if db* be the ftrength of the whole beam, 2dc ca x ca will be the defect of ftrength of the hollow beam, when it breaks at b j and x ca, the defeft of ftrength when it breaks at n or ƒ, which is greater than the former. And for the fame reafon the defect of ftrength to break at d, will be 2^a4-acxra.
PROB. CLXXXIV.
To fupport a long prifmatic body horizontally by two i zó. props B i it fiall as foon break in 1\. or B ÖJ in
Let DÀ=AF=GBz:BÊ=j » CF=CG=x, DCzzCErzK, then n—2y-\-x.
The parts ÀF , and BG lay no ftrefs upon C, being balanced by the contrary weights DA, BE, equal to them. Therefore the ftrefs at C, arifes from the weight FG ; and muft be equal to the ftrefs at A, arifing from the weights AD, AF.
The ftrefs at A by the weight DF is iDFxDF or 2_gt;;y, (Meehan. 70. and cor.) and the ftrefs (by FG fufpended) atC is ÀBxFG, or zy-^-zxye.zx. But (ib. cor. 5.) 2AC {zy-Yzx'} ; AF AC f ayq-x) : ; ftrefs at C, by F G fùfpended at C (^2jy4-2.xX2x)-. to the ftrefs at C, in the pofition FG =: 23' xX2x.
H h nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Therefore
-ocr page 498-466 mechanical b
Uö' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X 2X. Or yyz=: lyx-^xx
if if
‘ nx—n X n—^y^ and yy-\-iny—nn. Whence y/2—1. nbsp;And x—nx^—2^/2.
PROB. CLXXXV. i
^^7-1/ t'wo-tseights P, T one another in equilibrio, on the two wheels whofe radii are A.^, CB ; the fir ait tooth AB of the one, adling on the crooked . tooth BD the other j to find the proportion of the weights T.
Draw EBF perpendicular to OD, EH perpendicular to AB, and FG perpendicular to BC. The point B of the end AB, is afted upon by three forces: I. in direftion AB ; 2. in diredion BE} 3. in direftion EH by the weight P j and thefe forces are as BH, BE, EH.
Again, the point B of the tooth BD is aâed on by thefe three forces: i. in direftion BC-, 2. in direction FB ; in direftion FG by the weight T, and thefe forces are as BG, BF and FG. But the aftion and reaftion at the point B, being equal ; we have BE~BF, and in the right-angled triangle BHE, rad. ( i ) : EB : : S. ABE : HE =EBxS. ABE. And in the triangle BGF, rad. (i) : BF or EB:: S.FBG : GE=EB x S.FBG. Whence P : T : : HE : GF : : EB X S.ABE : EB x S.FBG; that is, P : T : : cof. ABD : cof. CBD, when the weights are in equilibrio.
Whence if ABC is a right line, P—F; and if Z.CBD=o, then P : T : : cof. ABO : radius.
PROB.
-ocr page 499-Seft, X;' PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;467
Fig.
PROB. CLXXXVI.
îo fini proper numbers for the wheels and ptmons of a clocks to go eight days •, and to fl)ew hours by the great wheels minutes by the fécond wheels féconds by the balance wheel., and to beat féconds.
For the moving part.
Suppofe four wheels in the moving part A, B, 128. C, D, and let the numbers for the wheels and pinions be denoted as in the figure, and let /=I2, height the weight de fee nds, fxxtime of going dpwn in hours.
• A
It IS plain number of revolution» B haamp;
B
for one of A, and — = number of revolutions C
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r T« 1
has for one or B; whence — zznumber ofrevo-
ABC lutions C has for one of A. And like wife----= /»jr nunriber of revolutions D has for one of A.
Since the arbor of D carries an index, to fhew, féconds, therefore becaufe for every top^ there are two beats, and 2D=6o.
Becaufe the arbor of B carries an index to fhew minutes, and of A to fhew hours -, confequently A goes about in 12 hours, and Bin 1, whence—— ? ’ 12. And becaufe D goes 60 times round for B’s . nbsp;nbsp;, BC ,
once, therefore — =60.
S’”
Therefore the two equations — = 12 , and
BC , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
~ _oo, will rcfolve the queftion -, which being
H h 2
un-
-ocr page 500-468 nbsp;nbsp;nbsp;nbsp;nbsp;MECHANICAL B. II.
Fig. unlimited, many of them may be taken at pleafure, 128. provided they be all whole numbers.
Suppofe r—6, q—S ; then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and
BCzx6 X 8 X 60, and if B=6o, then C=:48 ; or B=72, and C—40. It will be better if B and C, and r be prime to one another.
To find the diameter of the wheel for the rope, it will be / : b ; : ƒ : — — circumference , and
—-—= diameter.
Fer the ßriking fart.
Let L be the fly, K the warning-wheel, I the detent wheel, H the pin-wheel, G the great wheel, F the count-wheel, their teeth and pinions as in the figure-, »zrnumber of Rriking pins, and there are 78 ftrokes in 12 hours: F goes round in 12 hours, I goes round for every ftroke of the clock.
78
Now — ~ number of revolutions of H in 12
/ nbsp;nbsp;nbsp;nbsp;nbsp;, FG ‘ ■
hours, and — number of revolutions of H to one of F, that is, in 12 hours i therefore FG ' 78^ ab n'
I goes round n times for H’s once, and H
therefore -^zzw.Therefore from thefe two equations FG 78
and H—6??, all the requifites may be found ; but being unlimited moft of the numbers may be taken at pleafure, fo as they be all convenient whole numbers.
Becaufe the pin in the warning-wheel mud always come to the fame plate when the clock has ftruck
-ocr page 501-Seft.X. problems. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;469
1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Big.
ftruck out, therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;number. L
and e may be numbers, bccaufe there is no phenomenon to be fhewn by them.
The train, or beats in an hour is — —— x ~
. Suppofe KZZ12, a—6, b—8, c—6;
— —A- X therc-
12 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
FG
then Hz^ya, and BGzz
fore F maybe =13 and Gzz24. But note m'i'j be put into one wheel or more as one pleafes.
If the ftring go about the axis of F, its diameter is found as in the other. But if it go round the axis of G, it muft be made lefs in proportion as a to F. If one weight carry both parts, their diameters muft be but half the former quantities.
PROB. CLXXXVn.
Suppofing with B0RÎ.LL1 (part. 1. prop. 22. de motu ' animaliumquot;), that a flrong man can hut bear 261b. ßX ami’s endy and that the weight of his whole arm is equivalent to 4 lb. at arm’s end -, from the length of his arm given -, to find the dimenfions of that man’s arm, that can bear no more than its own weight.
Suppofe 4 lb. at arm’s end equivalent to 8, the weight of the arm. And fuppofe the two arms, fi-milar folids, and the arm — half the length of the body. Put a—length of a common man’s arm, lz=.Sflb. w—zhlb, length of the great man’s arm.
The weight of like bodies are as the cubes of th« fides, «î ; xf : ; zb \ —— weight of the
Hh 3
-ocr page 502-470 mechanical b. il
Fig.
128. man’s arm, and — — the weight at arm’s end, producing the fame ftrefs.
And the ftrefs being as the length and weight, we have x a— ftrefs of the cornmon man’s /quot;AT’
arm J and —-a— ftrefs of the great man’s arm. But (by mechanics) the ftrefs in this cafe, is as the ftrength, that is, as the cubes of the like fides. Therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, nbsp;nbsp;nbsp;nbsp;, wlience
= X ax\ or xr: nbsp;nbsp;nbsp;nbsp;a = nbsp;nbsp;nbsp;nbsp;— 7’a.
Now if ƒ = i yardi then if there be a man whofe height is above 15 yards; he will not be able to ftretch out his arm.
PROB. CLXXXVIir.
129. Given the length andfofttion of the beam Mi, leaning agatnfithe wall DE ; to find the pofition of the filane BE, on which it may fland without moving.
Let G be the center of gravity of the beam together with any weight it carries. Through G, draw the horizontal line BH. And fuppofe DA put into the pofition da, infinitely near rhe former. Now fince the beam is to have no inclination of moving from the pofition DA, or da', the center of gravity G, g muft be in the horizontal lineBH, by the principles of mechanics. Draw Gw, dm, Ar perpendicular to ad or AD. And letDG=:b, AG—f, h=S.DHG, p, y—line and cof. ADH ; s,f=rine and cofine DGH, x= tang. DAE, v=DF.
Since DG—a^z:mn, and AG~/7^—rw, therefore Dm=ng:::ar. In the triangle Ddm, S.mdD
-ocr page 503-Sed. X. problems.
{q} ; S.mDti (p) : : «D : wz/ zz X ®D or -ê. ^’g-c r-
Xgn. Anà in the triangle G^«, S.^G» nbsp;nbsp;nbsp;nbsp;.
S.G^« (j) ; ; gn Gn = y X By the fimilar triangles Ydm FG» » nbsp;nbsp;nbsp;nbsp;nbsp;(“V ) ; PQ
( b—V } nbsp;nbsp;nbsp;nbsp;nbsp;tnd y.gn^ ■ ” G
f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gt;. nbsp;nbsp;nbsp;nbsp;nbsp;, SV nbsp;nbsp;nbsp;nbsp;pb—J
gt; whence y zz —~t and fbf—pfv, and -^7—• But (Trigon. 1. 53
Therefore 1; —^n the triangle Aar, I : ar or ng : : x ; rA.—x X ng. And in the fimilar triangles FDw, FAr, F^/ (1;) : md (~X^» ) •• •• fa (i c—-u) ■ rA. (xxng } p _____
therefore w=— X b-\-c—v , and viix-=.pb-\-pc pv., and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and fubftitutine the
1 r ------ fbf
value of Vf qx p X —^—pb-\-pc., and bfqx 4.
If , r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bh-\-{h.^bfp b.s^c
bfp-bh-^ch, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X = ---
—~. Whence 2
1. If DH be perpendicular to the horizon, b~ i, f-f. zrAK = -i^--.
a. If DH nearly coincides with DA, /»ZZJ, , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b-}-c s b-{-c
q — ii then xzz—j- x-r» ot quot;J“ X tang.
DGH. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■'
PROB.
-ocr page 504-472 Fig.
MECHANICAL
B. II.
PROB. CLXXXIX.
Having given, the fpecific gravity of two things, and likewife the fpecific gravity of a mixture of them ; to find the proportion of the things mixed.
Let A, B be the two things, and M the mixture, a, h, c the fpecific gravity of A, Bgt; M ; A, B, M their magnitudes. Then fince the abfolute weight is as the magnitude and fpecific gravity ; therefore a A, ^B, wiM will be the weight of A, B, M. And aA-b^B—«jM— m x A-rB, and tranr ^c^ng aA—mA—m^—^B. Whence m—b : a—m : : A : B,
PROB. CXC.
Having given the weights and velocities of two fpbe-rical bodies perfeblly elafiic, meeting one another in a ‘right line -, to determine their velocities, after reflexion.
Let A, B, be the weights of the bodies, a, b, their velocities towards different parts, x and y their velocities the contrary way, after reflexion. Then Aa, 'amp;lr are the quantities of motion in their re-, fpedive diredions, before reflexion ; and Ax, By 4fter. As the bodies are elaftic, they will recede from one another, with the fame relative velocity they met, whence a-irbw:y-\-x. And (by mechanics) the difference of the motions, moving the fame way, will remain the fame after as before the ftroke, therefore Aa—EZ-=:ßi—Ax, but y—a b —X, therefore Aa—BZgt;~ Ba B^—Bx—Ax i and tranfpofing, A.v- -Bx=:aB-|-Z'R-^4 4-Z,B, and xrr B—A X a-t-iBZ» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;A—Bx^4-2Aa
■quot; A B---• nbsp;nbsp;nbsp;nbsp;nbsp;----Ä B---•
PROB,
-ocr page 505-5ea.X. PROBLEMS.
Pi» PROB. CXCL
ACDB « a thread fixed at A B, at the peints C, D o/ this thread are fixed the two threads CE, DF, with the weight EF ; having given the weight F, and the pofition of the points C, D j /s
* find the weight E.
' Let the weight Fzxw, weight E=*, S.ACÜB ^30 =j, S.FDB=^ S.DCAz:/». S.ECA=j.
The point D is kept in equilibrio by 3 forces in direftions DB, DC, DF, which are to one another, as the fines of the angles they pafs through (Meehan. 8. cor. a.) : therefore S.CDB (j) : force at F (w) ; ; S.FDB (/) : force in DC =
’y — force in CD, becaufe action and reaétion arc equal and contrary.
Again, the point C is drawn by three forces, in , -direftions CD, CA, CE; therefore, S.ECA (j) : force CD Vy) • • S.ACD (p) : force at E (x), therefore gx
PROB, CXCU.
Three points of the deling^ A, B, C are given, fo which are fixed the threads AF, BF, CF whofe lengths are given ; to thefe is fixed the thread FD, with the given weight D ; to find the tenfion of all the threads. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■
Becaufe the triangle ABC is given, and the lengths of the threads -, the point O will be given, where DF produced cuts the cieling. Produce AO to E, and draw EF, which will be =;\/FO* OE‘.
All
-ocr page 506-174 nbsp;nbsp;‘ mechanic al, B. IL
F’g' All the fides of the triangles CFE, EFB, are gi-131. ven, and confequenrly the angles. Now inllead of the threads FC, FB, fuppofe the thread FE to fuftain the weight. And then the whole is fuftain-ed by the two threads AF, FE aéting in the perpendicular plane AOEF. Draw OL parallel to AF, in the plain AEF, and LG parallel to CF in the plane CFB.
Put AEzrc, AF=^, EO=f, AO=:^, EF—ƒ» OF=Zgt;. S.Z-CFB=/., S.CFEzzy, S.EFB-j.
Then (Meehan. 8,) the tenfion of the threads DF, AF, EF, will be denoted by OF, OL, LF ; and taking away the thread FE, the tenfion of the threads CF, BF, will be LG, GF. Then to find each. By fimilar triangles, EA (a) : AF : ;
■r, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;èC
EO (f) : OL = —. And EA (a) : AO (d) : : EF (f) : LF = And in the triangle FLG. S.LGF (p) : LF : : S.LFG (,) : LG=
and : : S.FLG (q) : FG = fa
Therefore the tenfions of DF, AF, CF, BF, are refpcdlvely as
ap' af
SECT.
-ocr page 507-475
Fig-
SECT. XI.
Phîîcfofhical or phyßcal Problems»
PROB, cxcni.
Peq^uired the height of the tower, from the top of which a ßone falling to the bottom, the found will reach the ear at the top, in the time of the fall.
PUT b — iCli feet, the height a body falls in a fécond.
c — 1142 feet, the fpace found moves through in a fécond.
a — time of the body’s falling.
Then i : cw ö:czï=:fpace found moves in the time 4. And 1 : aa : ; b ; : jiaa —height the ball defcends.
Therefore qu. —ra, and a zz-j::z 71 féconds,
CC
Knie baa—ca—-^ =81088, the height.
PROB. CXCIV.
There is a round tower, whofe circumference is 100 yards, a fpiral tube runs about, from bottom to top, at an elevation of 61° : 5'. A ball put in at tlye top of this tui^ will run down to the bottom in 8 féconds -, to find the height.
Let Z-ABD be 61°; 5', AC perpendicular to 132. BD, and BC perpendicular to AB. Then whilft a body falls through AC, another would defeend through
-ocr page 508-476 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PHYSICAL B. IL
Fig. through AB in the fame time (Meehan. 34. cor. i.) 132. Put nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;feet, d-'iquot;, j^S.ABD. Then by
the laws of falling bodies, i ; b : : dd : bdd — height fallen in S'zzAC. And rad. (i) : AC {bdd) z z S.C (j) : bdds-K^. And rad. (i) : AB : : S.ABD (j) : bddsi-i\Ygt;, the height required =789.
PROB. CXCV.
Given the dtßance of the earth and the moon, and their quantities of matter ; to find the place where a body will b( uttrabled to neither of them.
Let d—diftance of their centers, /—matter in the moon, t— matter in the earth, xr^dilfance from the earth where the body is, then d—«’zzits diftance from the moon.
Then fince the force of attraftion is as the matter directly, and the fquare of the diftance inverfe-
Jy 5 therefore we have — — earth’s attraflion, and
I
____1. — moon s attraction } but queft. thele d—X
are equal, therefore — = —-----, ^hich
___ XX nbsp;nbsp;nbsp;dd—2dx-T-xx
reduced is /—l.i^x—idtx-f-ddt—Q,
PROB. CXCV I.
A clock that keeps true, time on the furfaie of the earth ; being carried to the tep of a certain mountain^ lofl 2 miputes in a day. What was the mountain's height?
Let r—earth’s radius = 6982000 yards, 1440 minutes, f=:2 minutes, lt;j—height of the mountain.
But
-ocr page 509-XI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;477
But (Meehan. 40. cor. 6.) the length of a pen- Fig. dulum is as the force of gravity, and the fquare 132. of the time of vibration ; and the length being given, the force of. gravity is reciprocally as the iquare of the time of vibration.
But the force of gravity is alfo as the fquare of the diftance from rhe earth’s center; therefore the time of vibration of the fame pendulum, is as the diltance from the earth’s center : and the number of vibrations in a given time, reciprocally as that diftance. Therefore t : nbsp;nbsp;nbsp;nbsp;: : r-\-a : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, and
_ r
__ƒ and r-\-a l/—c Whence cr
PROB. CXCVIÎ.
A iaïlproje£ied frem the tap of a to'ioer, at an ele- *33' quot;uation of 31 above the horizon, did in 95 féconds Jail 2000 /tvZ from its bafe ; to find the height.
Let Xz:VB the tower’s height, BA=:lt;/ the di-ftance, Zgt;=;tang. DVC—31° , the time^ ; then
In the time t, the ball without gravity would arrive at D, and in the fam.e time it would defeend through DA. Whence 1 : f : : tt ; ttf—ViK by the laws of falling bodies. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'
And in the triangle DVC, i ; b : : d : dbzzDC, and DC-bCA—DA, or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and x—ttf
—db — i/[C).
PROB.
-ocr page 510-478
Pig-
PHYSICAL
B. II.
PROB, cxcvin.
a iaU le dropped from the top of a tower a mile bight on the fide facing the eaflt in latitude §ii i where will it fall?
154. Pæt the body fall at D, whilfl; the tower by the rotation of the earth is carried to IC Now by the laws of centripetal force, the area AIE, which the body^ moving in the circle AIF deicribes ; is equal to the area AGDE, v-hich the body moving in the curve AGD defcribes in the fame time, that is, in the time of falling through AB. Hence the area AGI—area EGD ; and AGDFzzEIF, But by reafon of the fmall diftance BD, the curve
AGD (which otherwife would be an ellipfis) is nearly a parabola-, and the area of AFD— 7AF X ABzziFI X AE, the area of the feélor EIF. Firft, let A be a place in the equinoótial.
Put BE—r = 21000000 feet, ABzzwzz^aSo, f—i6.\y / —24 hours 2:186400quot;, f —3.1416, — DC, /)z2:cof. 51^. Then by the laws
of falling of falling
« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;! ÎÏI
bodies, ^f ; I : : vó» : -r ~ time
through AB. And t : 7.rc : :
BC
ire j m
~-J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;andBDzzß J; alfo by fimilar
, W r ----J
fectors, r : r w : : a d : nbsp;nbsp;nbsp;nbsp;nbsp;y(.a d zz AF.
. 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r-\-m
And r : Ä : ; r-}-w : ——' a — FI. Therefore
r-\-m nbsp;——
—7- X a-yd ye.
y
--- m
afi-d ye. — — 3
X r-|-OT J therefore
a, and 20»; 2lt;/»j=:3ra
op/nüt and reduced a~------ =4.64-, and pazz
2.88 for the lat. 511. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PROB.
-ocr page 511-Sea. XL
PROBLEMS.
479
PROB. CXCIX.
»35-
TZvr« are two ißands at C is a caftle. A fiip from A to C keeps pace with the waves of the fea, iQO in number^ from K to B. yft B fhe fires a gun, which ecchoes back from the caftle to B, in 3 féconds -, and the time of failing from B to C was 2 minutes ; to find the diftance hC.
Let b = loo, f=3quot;, d—2\ In. the length of a fécond pendulum, ÂZZIÎ42 feet, the velocity of found in a fécond, ACrrv, and *=breadth oi a wave.
Then by the motion of pendulums, : i ; ;
/
• y/ “7 =time of vibration of the pendulum*.
And sZ ■ƒ■ : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;fpace. But (by
the principles of philofophy) while the pendulum * vibrates onqc, the fhip or a wave runs through the breadth * j or in i fecond runs through the fpace v7*.
And I'' : y/fx zdquot; d\/fx =CB.
Alfo by the motion of found 1quot; : a : : ~ c : 2 rgt;
— nCB, for the eccho, returns with the fame velowent. Therefore d^fx~ and
city the found ddfx = —, bccaa
= '^1'
and * =: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;therefore AB =
J ca bccaa and y — — _i_ ----
2 nbsp;nbsp;nbsp;nbsp;4x4//•
PROB.
-ocr page 512-480 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PHYSICAL B. H.
Fig.
PROB. CC*
gt;3^' Supfo/tng a planet a)td its fatellite to move in circulai orbits , it is required to ßnd, whether the path of a fatellite is concave or convex to the fun, when it it in a line between the fun and its primary.
At the time of the conjunftion, if the planet and fatellite, both defcribe very fmall arches in the fame time, whofe verfed fines are equal, the fatcl-lite will then move in a right line* Let ABC be the orbit of the planet, EF that of the fatellite ; whilft the planet moves through AB, the orbit of the fatellite EF is moved into the pofition ef, and the fatellite has moved from e to o. Draw BD, on perpendicular to AE, Be*, and CG perpendicular to AG. Now put ADzz«e, then fince the center (of the orbit EF,) A is advanced to Bj nearer to the line CG, by the diftance AD; and the point o is receded from the fame line CG, by the diftance en equal to AD ; it is plain, E and o are equidiftant from GC, and Eo is a right line or the fatellite E, o, at that time moves in a rieht line.
Let a—eo, AB, r, j—the radii of eg, AB.
Hence AD= - , and en--, and - - f?
2r’ 2J ~ 2r’ Put prrperiodic time of the fatellite, q~that of the primary; c = 3.i4i6 x 2. Then cr • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bo r ' ' '
— z=s time of defcribing ö ; and = time of de-fcribîng b, then nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and = VÿL
vide this by the former equation, and
Therefore as pp is greater, equal, or
lefîèr
-ocr page 513-SeA. XL PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;48*
lefler than then the fatellite’s orbit is con-cave, ftreight, or convex towards the fun, in its conjundion.
PROB. CCL
To find the divifions of a monochord^ to found all the half notes, according to equal intervals of found ; and alfo to find the variations between tbefe and the firiSt harmonic divijions.
It is well known an oftave is divided into 6 I37‘ whole tones, or 12 femitOnes. Let BA be the monochord or vibrating ftring, C the middle point; then BC will be an odave above BA. Let ^d, Be, B/, Bf, amp;c. be the feveral lengths of the firings founding the half notes, gradually afcend-ing, above AB, by equal degrees of found. Then will AJ, de, ef, amp;c. be all unequal in length ; and whatever part làd is of B/X., the fame part will Btf be of Bd, and Bf of Be, and B^ of B/, amp;c. to make the feveral founds afcend equally. Therefore BA, Bd, Be, Bf, amp;cc. are a fet of geometrical proportionals deCreafing, continued to 13 terms, the laft of which is BC. Alfo Ad, de, ef, amp;c. are a fet of geometrical proportionals in the fame ratio. Alfo^ Ad, Ae, A/, A^, amp;c. are alfo a fet of geometrical proportionals increafing.
Put BA = i, BC = l, B^rzje. Then BA {1} :
(x) : : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: Be — xx •, likewife Bf~x'^,
^g-x^, amp;c. and = L And 4^-^= •9439-
Or, put X-log : X. Then X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;_
12
1-9749*42, confequently 2X, 3X, 4.X ffic zz logarithms of x‘, x’, amp;cc. Therefore \
‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;•9439gt;
-ocr page 514-4b nbsp;nbsp;nbsp;nbsp;nbsp;PHYSICAL B. n.
Fig. 94^9» «‘=-9809- for a mean tone, tfr. and the 137. reft are as in the following table.
The harmonic divifions of the monochord, to found the pure concords will be, as follows ; the lefler third —7, greater third t, fourth ’, fifth it lefler fixth I, greater fixth 4, eight î i which fee in the following table, in decimals.
Names of the chords. |
Pure concords. |
Equal divifions. |
Errors. |
whole firing fécond fécond |
1.0000 |
1.0000 •9439 .8909 |
0. • • • • • • |
lefler third greater third fourth |
•8333 .8000. .7500 |
.8409 •7937 |
b T7 |
fourth fifth lefler fixth |
' ’.6666 .6250 |
‘7^7^ .6674 .6300 |
Tïrô |
greater fixth feventh # feventh Eight |
.6000
.gooo |
•5946 • 5612 •5297 .5CQ0 |
# TI • • • t O. |
Then to find the errors or variation of the cor-refpondent cords. Let B/rzeord by column 2d, Brz^cord by column rp—3. whole tone, « — number of mean proportionals between Br and B^, then will be the error, for it Ihews what part ri
is of the whole note rp.
Here then ———- — B/gt; Br”“' xBr X .8909, For .8909 being a whole note for ths
-ocr page 515-Sea. XI. problems. nbsp;nbsp;nbsp;nbsp;nbsp;483
the ftring i, Brx.8909 will be* a note for the Fig«
138.
b71* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
ftring Br. Therefore z=.89O9. And »xiog:
B/
— log : .8909 zz —‘Ï.94983 i and n =
As in a fifth,
—logier ~ log:^t—logier nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’i
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-lt;^5017
±: 000500, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=
100 i whence the error
But as this variation bears but a fmall proportion to the length of the ftring, there will be no need to make ufe of logarithms. For fince I—.8909 ~.1091 is the length of a note when the ftring is i j therefore .1091 X B/:z:a note for the
rt nbsp;nbsp;nbsp;nbsp;nbsp;rt
ftring
which As in
B/. Whence — or — the error, or rp nbsp;nbsp;nbsp;nbsp;tp
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Br—B/ nbsp;nbsp;nbsp;nbsp;,
IS the fame thing —‘——57 := the error.
® .109 id/
the fifth, Br—B/zz.6674—'.66661=:.0007,
and. 1091 xB/=:.O727, and too, nearly.
----±: the error. 100
Or Ihorter thus.
Since Br—B/=twice the difference of two adjoining numbers in col. 3. or izquot; difference of two numbers 2 degrees diftant, tak- * ing one greater and the other lefs than the proper
Br—B/ nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Î
note } therefore .....t:- =the error.
Br—B/)
_2___i_
' nbsp;nbsp;nbsp;nbsp;nbsp;~ 97
.8000—.7937 ,8409—.7492
A • nbsp;1. ret 6674—6666
As in the fifth, —------ :
7071—6300
the error. And in a greater third, .0063 I
= .^577 = 7^ the error.
I i 2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' The
-ocr page 516-^34- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PHYSICAL B. IL
£ig. The errors for each concord being thus compu-ijS.ted, are fet down in the fourth column, which
Ihews the error of the third column, as it differs from the fécond ; thofe below denoted by (^), thefe above, by (# ).
In tuning a harpfichord, fince the fifth muft be 12 times repeated to make 7 oftaves, therefore the variation, by tuning by true fifths, will be
12 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
—— or about ~ of a note, which is an error that I OU nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;o
a good ear can difcover ; and being too fharp, the fifths therefore ought to be tuned as flat as the ear will bear.
Hence the equal divifion of the notes in an oélave is the beft fyftem, for the greateft error is in the lefTer third and greater fixth, which only amounts
to — of a note. ^3
PROB. cell.
^0 find the number of beats made in any imperfect concord^ in mufie.
I call that an imperfebt concord that varies a little from the perfeél one, which is made by a harmonical divifion of the monochord. Thus when the lengths of the firings are 4 and 5, you have the perfeét cord (a greater third), but vary one length as 4, making it 3.99, and you will have an im-perfeól cord attended with beats.
■ A beat is a jarring found made by the irregular vibrations of two firings, founding together, when the due period, or coincidence of their vibrations is interrupted. Its noife is fuch as this waw, aWt aw, aw, or yd, yd, yd, yd, yd. Our bufinefs is to find in how many vibrations this perturbation happens, or how manyj'öwj in a fécond of time.
Lee
-ocr page 517- -ocr page 518- -ocr page 519-Scft. XI. PROBLEMS. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;485
Let the line AZ reprefent one fécond of time ; Fig. and fuppofe it divided on the under fide, into the 13p. number of vibrations of the lower note or, bafe, at A, B, C, D, (^c. and the upper fide into the number of vibrations of the upper note, at a, c, d, amp;c. Now if any number of divifions on the under fide coincide with any number of divifions on the upper, conllantly and regularly, as at C and dy E and amp;c. then the concord is pure, and there is no beat. But when the points c, d, amp;c. are any of them difiocated, and gets to the other fide of its correfponding one -, then the fuc-ceflion of the Ihort harmonic periods of coincidence is difturbed ; and this caufes the noile called a beat, fuch as happens at X and Y. For c, f, i, amp;c. are continually approaching to B, D, F, till they fall in at X, Y, and change fides : where Be or B^, is fuppolhd the lead diftance, in the firft harmonical period AC, fuppofing ad was to co* incide with AC. Therefore at rhe points X, Y, the fuccefiion of the harmonical periods are con-fufed, (and that periodically,) which fpoils the harmony.
Now to find the length of this period. Let AC be one harmonical period, that is, when d coincides with C, as in the pure concord. In this falie cord we muft find the time dC, which is gained or loft in the time AC. And from thence compute in what time. Be (the neareftdiftance), would be gairied or loft j in and that will be the time required.
l.et « — number of parts AB, BC, or its number of vibrations.
Zzenumber of vibrations of thç upper firing in the perfed cord.
fczlength of its firing on {he monochord, renumber of parts /if, cd, Sec. or its number of vibrations,
i « 3 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;• h-
-ocr page 520-486 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PHYSICAL B. IL
Fig. ^xlength of its firing on the monochord. 139. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
yxnumber exprefling the concord, — ~
for the fourth, or — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;the fifth,Cfc
Then ABx-I’, and AC= — ; alfo «^=4-n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r
and X Then AC-^ad~ — JC. • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nr
Then if 4C (■——gained in
the time AC : ; AB will be loft in the
time —— X AB X xABx f nbsp;nbsp;nbsp;q nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;pr—qn nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-pr—
n nbsp;nbsp;nbsp;nbsp;r
X AB X -—- X AB , and Bf will be loft fooner, in proportion of AB to Bf, that is, in the time
r
^32;^xBf, which is the time of the period. But
by the laws of vibration, r : t : ; -4- : ~ : :-, c : K b c
and r—t : r : : c—I : c i whence --- x Bf x
r—t
c
X Be X the periodic time of the beats. And if AZ be divided by the periodic time, you will , f—AZ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
nave —x x number of beats in a fécond.
But Be X —, A.'L—nx^^i therefore x-
Kqxh^_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c—h c—i
~ Ab~ Whence Xvq z=: — X ft number of beats in a fécond.
Hence,
-ocr page 521-Seft. XL P R O B L E-M S. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;487
Hence, from the length of the firing or divifion Fig« of the monochord, as given in the table of the laft 139« problem, and having alfo the number of vibrations ; the beats will be found, as in this table. quot;Where the ground or loweft note is F the cliff-note of the bafe.
Cords. |
Vibrations. |
c |
/. ?. |
Beats. | |
Eight g, Cxth 1. fix th fifth fourth g. third |
600 500 480 450 400 37S |
5000 5946 6300 6674 7492 7937 |
500Û 60 0 6230 6b66 7500 8000 |
1 . 2 3 • S S • 8 2 • 3 3 • 4 4 • S |
t 0 gt;3 # 18 1 Ä '4* -L* Î. |
I. third Bafe F |
360 300 |
840g J 0000 |
8333 lOOOQ |
5 • I . 1 |
0 |
This table fhews the beats for all the concords, reckoning upwards from F ; when the inftrument is tuned according to an equal afcent of notes ; where the fiats and fharps (^, nbsp;nbsp;nbsp;) Ihew whether
the upper note is lower or higher, than the true concord in the laft column. In the oótave above, the beats will be twice as many ; and in the oótave below, but half as many -, being always proportional to the number of vibrations of the bafe note. The fifth is molt ferviceable in tuning, and the number of beats in one fécond, for the
cr, . W fifth IS--.
300
If it be fuppofed that the beat is not made at the points X, Y, but at fome intermediate place, where they fall thicker and more confufed j and that at the points X, Y, there is rhe leaft imperfeftion. Yet the periodic time will ftill be the fame, whatever part of the cycle XY it falls in. When the
1 i 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cycle
-ocr page 522-488 P H y S I C A L, ylt;r. B. II. Fig. cycle XY is very fhorr, the fingle beats are im-^39’ perceptible, and we hear nothing but a difagreea-ble noife. All the concords beat, but being exceeding quick, they are not perceived fingly -, and being regular throughout, they exhibit an agreeable harmony.
When the pitch of the two notes are not altered, the beats fucceed one another in equal times, but altering either of them nearer to a perfect harmony, the beats fucceed in longer times, and the nearer the longer, till at laft they vanilh, when the concord is perfeft. All the beats are heard in organs; but only half of them are heard in ftringed indruments.
SECT.
-ocr page 523-: nbsp;nbsp;nbsp;nbsp;nbsp;... ■ T 489
F’ß*
SECT. XII. ‘
problems relating to Series.
PROB. CCIII.
Given the diameter of a circle ; to find thefide of any regular poligon, infcribed in it.
Let d = diameter, « number of fides, 140. X fide of the figure, EB. By Trigono-3.14150^/ trietry, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;— arch DE=æ, by fubftitution.
And (Trig. I. 12.) half the fide, or EA — a —lt; 4«« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4lt;zlt;2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;400
2^dd “ ^d
EB or x=2«-~ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B —
r ^^dd
baa ibda
^aa ^2dd
Or thus,
By i table of natural fines, find thç fine of 1 oO
=J; then xzzi/j,
ƒ PRO B. CCIV. f
^uppofe ..
Divide by the leaft power of x, that is, by , eft root, a^ * T*quot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Take r the near- .
put r4-e=:;f.
Then
s
-ocr page 524-R ® B L E M S cf B. II.
Fig. Then
4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; 2L.__
bx^ - br^ ÊÎL
That is, /) j? set—o, by fubflkution.
Whence
__P __ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ƒ — -------J which may be repeated for
more exaétnefs.
Or ibus.
Seek the leaft common dividend of the denominators of the indices of x, and reduce the equation, which will become —c nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;__deex'^
—Q. Pur X—f’ ; then the equation becomes r’”——dcce^—o^ or «’°—dcce^ -irbe^-\-es and the root extrafted gives e, and confe-quently x is had.
PROB. CCV.
^4*« Given fbe ftdes KG^ CB, c/ the triangle ACB ; and the ratio of AB to the arch CE n given t to find AB.
Let AC—rz:i4, CBztJ =: 22, ABzzx, and AB : CEL : : 10 : 4» whence arch CE=:r« x. I.et J'=:cof. CAB. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Theo
-ocr page 525-Sea.xn. SERIES. 49«
Then (Trig, cafe 5.) rr xjf—zrsy—ss^ whence Fig*
JI -CQf. 7^ to the radius i, and’ rj = ’***
-----= cof. A to the radius r. But (Trig.
1- 12. cor. I.) cof. A=r--4-- ---
.— nbsp;s
2oor 24.loooor’ 720. loöoöoöï^^^*
~ quot;IT tranfpofing,
2.S 2oor 24oooorî~72ooooooorgt;
“ = nbsp;nbsp;nbsp;'TTquot;’ °''
by fubftitution, then ( Prob. Ixii. I. ) xx ‘ =:
b B nbsp;nbsp;nbsp;2BB—AC, „
A A’^quot;quot;^ A’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=^^3^9S* and
a; = 28.93.
PROB. CCVI.
Civen the arch of the circle BHE, and theßne BD ; 142« ' to find the radius BC.
Let BHE~^/~8, BDzxj^^. Take an angle p nearly equal to ACB, a— fine, /,= its cofine, rad. — I.n—.oi74533, ^=31415926, then npzz arch belonging to the angle p. Let A ^=true angle ACB ; then np4-nx or np^z— correfpon-dent arch, (putting z—nx}-. hvïà. (Trig. I. 13.), the fine of np^z-a^bz — nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4. ~ 4,
2 nbsp;nbsp;nbsp;6 nbsp;nbsp;nbsp;24
d nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;per queft. that ts.
.r
-ocr page 526-4^2 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P R o B L E M s o/ B, IL
s nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a b a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;s
- i- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; -2;lt; icc. : -
■^np—î, or Ax Bzz Cz’ PzS amp;ic. =R. Aflume nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;then a and will be known,
and Rzz:—,0010292, and (Prob. Ixii. I.) Z or R B 2BB—AC„
-^r—R' = -.001084, and X =:—.0^)21 degrees, which is, 3'43'5 i therefore p x=:§4.° nbsp;nbsp;nbsp;i6quot;; = Z-ACB.
Hence BCZZ3.66513.
PROB. CCVII.
f43’ ordinate and curve BC are given i and tbt r 1 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. y , nbsp;nbsp;24-\/zlt;fl 2Z
equation 0} the curve ts — —hyp.log:----------
and a4-xz=.\/«04-22 ; vibere nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ßC=2 »
Co find AB.
Let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x. — (y—gy a—r-\-e^ taking r the
neareft value of a. Then h. log : ^4- \/rr-\r^re4-ee4-gg Sic. _ h
-bo nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;gt;' e“y rrquot;^
hc6
■— SiC. And (putting ƒ—by evolu-
h he hte , — — —4- —, and f rr r'
tion, log:------—
-----YJfii—---= number of the hyp. log : b nbsp;nbsp;nbsp;he nbsp;nbsp;nbsp;he'- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nhe nbsp;nbsp;nbee
— — --h —- vz n---1---
r nbsp;nbsp;nbsp;rr nbsp;nbsp;nbsp;r’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;rr nbsp;nbsp;nbsp;nbsp;r^
h. log: — 7(Prob. Ixxxv.I.)
ee (putting
An'^
Sea. XII. SERIES. And multiplying by r4-f. | ||||||||||||||||||
| ||||||||||||||||||
And reduced r nb nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nhh |
493-Fig.
143-
Afliime rzr3.7; then g— — .ooiri, and äzz 3.69885, and X —\/aa ^z—a~6.o2’6 ; fubfti-tuce this value of a tor r in the laft equation, and the operation repeated, gives a ftill more exaól.
PROB. CCVIII.
Given the length of a pendulum, and the arch it de-JefibeS', to find the time lojt by defc^ibin^ a STeateT arch.
Let r = length of the pendulum, f=cord of half the arch it defcribes, Cz;any other cord, /=time of falling through %r. P nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Then by
mechanics it is found that the time of i vibration,
is = P X : I 75^ for the cord c.
A J n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;9C*
And _ P : X I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;c. for the cord C.
, n nbsp;nbsp;nbsp;CC—CÎ nbsp;nbsp;nbsp;g _____
• iórr X C4—f4 amp;c. nbsp;=
time loft in one vibration for the cord c. But when
-ocr page 528-P R O B L E M S of B. Il, pjg, when f is O, P is the time of one vibration, which does not fen fi bl y differ from a vibration for the cord c. Therefore fince 86400=: the number of féconds in 24 hours, therefore ~p°~ == number of vibrations for the cord c, in 24 hours. nbsp;There-
_ nbsp;nbsp;86400 „ nbsp;CC-^cc
CC—cc Q nbsp;nbsp;•‘-r----
24 hours i that is, —~ nbsp;x :
....... “
CC—cf 4- nbsp;nbsp;nbsp;nbsp;nbsp;X C-gt;—f Sic. z=. féconds loft in
24 hours Î and nbsp;nbsp;nbsp;nbsp;nbsp;x CC—cc, is nearly =: th«
féconds loft in 24 hours.
If r fwings féconds, then r=:39.2, and the time loft in 24 hours is nearly =: 3.52 X CC.—cc.
Cor. jy f ^r=:o, and Qtzeerd of gci'gt;, ' A pen^ didun» viiratit^ in tbt doulle arch of nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;hfe ■ '
^cgt;min. in 2^ hours time.
.quot;’Aftdlf f=:o, theilrCO find the length of a pendulum vibrating in the arch of C in the lame^ time. Let r =: pendulum vibrating in the very fmall arch, x ~ pendulum vibrating in the arch of C. Then the lengths being as the fquares of the times of‘vibration, we fhall have in the firft cafe for /, and in the fécond y/x for t i whence in the firft cafe P=: -in the
r nbsp;nbsp;nbsp;nbsp;J TÏ
fécond P— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^x. And the times being e-
qual we {hall have P x t or ./r z=. PXj
Ï
-ocr page 529-Seft. XÎI. SERIES. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;49$
CC ibrr
3-UI 6
2
Fig’
or
i6rr^
—I and r—X 4—which reduced is rx—xx:z:|CC gt;nbsp;whence x will be found. And on the contrary x being given, r will be found.
PROB. CCIX.
Giwn the latitude failed from^ the departure, and difference cf longitude j to find the differs:ce of latitude.
Let J—departure, Zzzdiff. longitude, xz: arch of latitude come to, z —its mer. parts, a— the given lat. ffz=:its mer. parrs.
Then by Pdercatorh Sailing -, as diff. lat. (a—x) ; mer. dilf. latitude (zamp;—z): •. d •. I., whence al—Ixzz dm—dzy and dz—Ixzzcdm—al. But Dr. Hallef^ Series for the meridional parts of x , is
* nbsp;nbsp;quot;7quot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Therefore
dx—/x -7- Xi — nbsp;nbsp;nbsp;4. ----,xi amp;c. nbsp;=
dm—al. And by reverfion of feries (Prob. Ixii.) X will be found i then 3438X zz latitude in minutes.
Or thus,
Seek another latitude, by the table of meridional parts, fuch, that the proper difference of latitude divided by the mer. diff, latitude, will be equal to the quotient -j-, which is eafily done by a few trials ; and that is the other latitude.
PROB.
-ocr page 530-'49« nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;PROBLEMS, Üf. B. II.
Fig.
prob. ccx.
^44« curve BMD /j defcribed with a fair cf compaffes ttfontbe furface cf a cylinder•vohich is afterwards ■ßretcbed into a plane i Zo find tbe ordinate PM.
Let e/=:diameter of the cylinder, fl“AB the extent of the compafles, APxzx, PM=:j, cord, whofe arch is ƒ. Then (Geom. II. 21.) aa-^xx—w. But (Trig. I. 12. cor. 2.) v=.y —
When«
2.^dd c^-sdd 6.ydd lay reverfion of ferles ƒ is had.
If the arch was in a given ratio to the chord, the figure would be an ellipfis ; but as this is not fo, the curve will be a mechanical one.
SECT.
-ocr page 531-497
Problems concerning exponential quantities. ,
PROB. CCXI.
Some maids driving a flock of Jheep^ •were ajked^ how many they had ? Ta uohich they anfijoered, that if the flock quot;was equally divided among them, the Jhare of each -would be t-wice as many as there -were maids, And if the terms of this double progrefflon i, 2, 4, 8, be counted, as often as there are maids -, the lofl term -will be the nuniber of fheep.
f J^ET fl±:flieep, fizzirlatds. Then *^±22?, and the term of the progreffion r, 2, 4, 8, amp;c.
(Propor. 25.), therefore 2^~' nbsp;nbsp;nbsp;nbsp;nbsp;, piT
queft. Whence ör=2f^, and 2' :z:2a, and ex-0, 2 z::4ee, or 2 nbsp;nbsp;nbsp;— ee. Therefore
e—2 X2 = 2 or .301031?—.60206 — 2log:e, and .t50515e—gt;log:e — .-^old'^. Then to find e (by Rule 5. Prob, xcii.j, affume e=;6, then •1^505^—log:e—.125, which Ihould be .301, and the error is —,176.
Again, affume e—j, then .1505^—log:e~208,
J k • nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'n X 092
and the error is —.002. Then —7---—i.i ;
.«76.—.092 nbsp;nbsp;nbsp;nbsp;nbsp;’
therefore e — 8.1 nearly.
Suppofe ezzS.i -, then .1505? — log:e—.2\Ci6, and the error == 4- .oog6. And the corredion — 1.04, and e~8.1—1.04127,996 5 and erzS exaft, and 0 = 128.
PROB,
-ocr page 532-498 nbsp;nbsp;nbsp;nbsp;nbsp;EXPONENTIAL ß. II.
Fig.
PROB. CCXII.
ywo ' travellers at 150 miles dißance fet out to meet one another. In the fever al days., A ^0« at this rate, s, 10, 20, 40, tfc. B goes h, lo, 14, 18, ÿf. miles i to find in tvhat time they vaill meet.
Let xrzdays, (by Geom. Prog.) A’s laft day, lt;vin be 5 X ; and his journey 5x2’' — e^. And (Arith. Prog.) B’s laft day is 64-4^—4 or
12 4X—4
4x4-2, and --------XX, or 2x*4- 4^ = B s
Journey. Whence 2 X5—5 -|-'4* 2X‘z:i5O, 4
and 2* -I- — x‘ -4- — x=:i{i. And 2* x: 21 10 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;IO
--- — — XX. And log: az x % log: 2 ztz 10 nbsp;nbsp;nbsp;nbsp;10
8 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 T. • ,
a I ——X--- XX. By trials x will be
found greater than 4; let »=:4, and »4-t?=x, g
h=4, c=:log:2. Then en cv—leg-.ii—^n —
—~nn——nv—w. But the number IO 10 lO 10
JWf®» J, belonging to rw-l-wzxc» x • i4'W^v 4-
, nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;c'nmv*
(Prob. Ixxxv.) whence rti- -rfW»'u4
8 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4 nbsp;nbsp;nbsp;nbsp;nbsp;”8 nbsp;nbsp;nbsp;nbsp;8
ƒ 10 nbsp;nbsp;nbsp;nbsp;10 nbsp;nbsp;nbsp;nbsp;10 io 10
' And.
-ocr page 533-ScÄ. XIII. PROBLEMS. 499
IO nbsp;nbsp;nbsp;nbsp;nbsp;lO
— « —
Which put into numbers, and reverting the feries, (Prob. Ixii.), t; is had “.32 ; then put new n for *■4-2? or 432, and repeat the operation; and at laft 2;=:.3256, and x'=:4.3256.
PROB. CCXIII.
'To find x in this eiiuaticn, =123456789.
Here will be found between 8 and 9. Put «=8, n4-v—Xy nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;f=/o^.-i2345678g ; then
xlog:xz=.log:i2‘^i^c^f)'j^^—c^ or «4-2;
T. r. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M2;
But (Prob. Ixxxiv.) /ö^.-»4''y = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—
M2;’ nbsp;nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
—7 — amp;c. and 3»’
M2;*
2«‘
= 4-
«4-2; X log : «4-2;
«Mv «M2;* » nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2«* nbsp;nbsp;nbsp;’
KM2;’
3^ Mt;’
2»*
M2;* «
nbsp;nbsp;nbsp;nbsp;4-
and tranfpofing and reducing, if nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;v*
4-1 X*!; 4- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2.3«* nbsp;nbsp;3.4»' nbsp;nbsp;4.5«
(■—nb
= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;extraóling the root (Prob, xciil.)
2;=,64002, and x or new «=8.64002 for another operation, which will give *=8.6400268.
PRO B.
-ocr page 534-500 exponential B. IL
Fig.
PROB. CCXIV.
find the 'balue of x in the equation 1000—X X log:i-OQo—X =: x.
Put looo, y=44-igt;, h—a—gi fi—^og: g \ then —V X log:g—And fubftituting the logarithmic feries inftead of logf^^ { Prob.
=0 17, which multiplied and reduced is, gp—-a ______ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1)1}
^p-gt;rï .'y nbsp; ^‘ 7^3 nbsp;nbsp;nbsp; '^^3
See. —Q. Aflume «32836, and extrading the root (Prob, xciii.) ‘1332.05315; and xz3836,O53i5.
PROB. CeXV.
“To find X in the equation
nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I000
log: IQOO--X 32 —--------- -----
* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1000—X X
Put »321000, x=za v, g—n—a., p—log:g‘ Since x is nearly 23860, aflume «22860; then
the equation is “y =
------- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ -y
- : nbsp;nbsp;nbsp;nbsp;nbsp;- p---
o
, - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2
« 'y—ng-{-nv
— — èec. Whence
VV nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;o
--— — Sec.
2.?.? 3^’
-—==— —p---
—’ll nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;S
Which equation reduced gives
agp — 301; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;amp;^c. -o.
—aa — n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;i
”1 lp
-“f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;In
-ocr page 535-Scft. XIII. PROBLEMS.
In numbers,
4626.3 71381; 3.87021,»—.010881,1—0; or i •_543'y .0008361,» — .00000231,1—0* whence, by extrafting the root, 1,-—,64822, and *=859,35178.
PROB. CCXVI.
Having given the equations —y” , —gt;(quot; i to find X and y.
From the firft equation y~x ” , and from the at j, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;«
fécond, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;; therefore x —x And
. nbsp;nbsp;nbsp;nbsp;x y nbsp;nbsp;m
equating the indices —— = nbsp;nbsp;nbsp;nbsp;, and x j,^ =
\/tnn. Whence x nbsp;nbsp;nbsp;zz x ” , Therefore
by the firftequation, x “ zzy
m
and again equating their indices, x x'^ ” z=.^mn. Then x being had y is known from the equa-
« don
To find X put x—v’'_y_ then x ” or x quot;nbsp;~v^”''‘, and V nbsp;nbsp;nbsp;nbsp;—^mn. Knù the root
may be extradied by logarithms.
-ocr page 536-502
Fig.
EXPONENTIAL
B. n.
PROB. CCXVII.
'To find the value of x in this equation, X* Xz=— X hein^ the hyperbolic log: of
Here x is between i and 2, therefore put xzzi t;, then (Prob. Ixxxiv. cor. 1.) X — v—.
-Pt'--V* hence «i/-—— -p— See. 234
~ — cic. = jq;— , and multiplying and
reducing nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;--^c. =1, and by re-
verfion (Prob. Ixii.) î;zz.56, and x—i.ß6.
But becaufe this does not converge faft enough ; put «=1.56, and n v—x, /—.4446858 = hyp. log: «—»» X log: « ; then (Prob. Ixxxiv. cor. 2.) “U v'- V3
X=/ -^--we Ihall have
V nbsp;nbsp;vv ^'' V nbsp;nbsp;vv--
/ ---amp;c. 4-/4- —--: X n4-v z: I-
» nbsp;nbsp;nbsp;2nn nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n nbsp;nbsp;nbsp;inn
And when multiplied and reduced,
---- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;---Ï nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;/4-Ï
74-iX«^ ^ i 4-/X't'4—— w amp;i.c. XI.
In numbers,
’1.0021921 4- 2.5318022V 4- 1.246593^* —I or 2.031V4-WX—.0017586. Whence (Prob. 88.) vx—.0008661, and »4-v or *xi.5591339«
Othervoife thus.
Let 1~,4446858 the h. log: 1.56, or », as before, l~i-sz=.X J then the number (x) belonging to
-ocr page 537-Scft. XIII. , P R O B L E M S. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;50?
I I o to 1-ts or '^—n x : i -f quot;yV
(Prob. Ixxxv.) i whence /4-J nbsp;nbsp;nbsp;nbsp;: X «4-«^
•^nssècc. —I ; and by reduiSlion,
X V ~/ ^/XÄ-f nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zz I.
In numbers,
1.0021921 3.94961 rj4-5.oo85i5w amp;c. z^'t-or .78858j jjr:z—.00043768 ;
And extraóling the root (Prob. Ixxxviii.) szz— X .00055491 and Z j or X :=:'444i3O9gt; and .1928836 the com. log: x -, or elfe ~ = — .0002410, and fince com. log: 1.56=.1931246 » therefore .1931246—.0002410 = .1928836 the common log: x. Whence Jf=i-559i34.
• I
PROB. CCXVIIL t
T’a find X in the equation x‘ = 123456789=^
Put ^=2123456789, and by a few trials you will find X near 2.8, put »=22.8, » vz2:x, /2=log;», i«/22:hyp. log:«.
.Then (Prob. Ixxxv. cor. 6.) x* =z »* X i /»/‘v 2’. Put r zzifiy e — n’ yf,“ mlv “^ » then 2= ^' ^ 1 let this be an. index, then =: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;(by thç
fame cor.) n :Ki-Vmle-\-^-^=b ^er quell. Then reftoring the values of r and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;: 1 mln
K k 4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X
-ocr page 538-504 exponential B. II. F'8- -t— nbsp;nbsp;»%
n ' Put g—mlnyi. nT^’,
then X I £'P4.«’’'—‘-y nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
;=.lgt;y and by reducing,
b—n
T“” '
nquot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;* here n ■=.. 07620000 ,
4266000000—0000^4.
.26466 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' nbsp;nbsp;nbsp;nbsp;,
_^g_7J7jj==-Oo6o54; then ti v or x=:2.806054 nearly ; or put «1^2.806054 for another operation.
This problem is eafily refoved by rule 5, problem xcii. by making feveral fuppofitions for the value of X, and finding the correction every time j and fo you will continually approximate to the true value. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;‘ -•
PROB. CCXIX.
If X be the leg: x, it is required to find x, in the equation x -pX'*’:z: 100.
Let » t=x, /=log:», /-hi^logiw t^.L-log:/.
Then (Prob. Ixxxv.) »- -1^=« «»» Sic. whence
cor. 6. ) 7 »'quot;^'= nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1
And nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-tquot; X i gt;»’L«i quot;.
Therefore
-ocr page 539-Sea. XllT. PROBLEMS. 505 --------- nbsp;nbsp;1» ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;' nT Fig, Therefore »/X i4-2»jZj 4-/ X 14-»j*L«j4--r=ioo*
Or »X2W« lt; X»î*L»j y=ioo—rl—r-=.dgt;
To approach nearly to the value of X, we fhall have Xlogrx or XX =log. and x log: X = log: X* . Therefore num. of XX num. of pi'iog-.Xzzioo. By a few trials X is found between 1.25 and 1.26, but nearer 1.26 j therefore fuppofe /z:i.257, then »=18.072, L=.09933, « =3S'O2, l’‘ — 62,4.i^dzz—.43, 21»/«^=: 220.1, »L/”»gt;*=594-0, nr~^ — 897.4. Whence
J = nbsp;nbsp;nbsp;nbsp;nbsp;= —.000251, and X = i.256749,
and x = i8.o6i3.
Here we have fought the logarithm X, forquot;variety-, but the .number x might have been found, after the manner of the laft problem.
PROB. CeXX.
Given . »* —'x“”* 4- nbsp;nbsp;:=2OO ; to find x.
Take » very near the root, to be found by frequent trials, and put n v—x^ Z=log:», r^n” nquot; nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;2.
p—n , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. t — n ”a—
m'—I quot;nil *
Then
-ocr page 540-5o6 E X P O N E N T I A L, ß. IL ^*8' Then w* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~«’x 14-«//‘p v (Prob.
Ixxxv. cor. 2.) zzr frv.
n J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;r-i-rf-v nbsp;nbsp;—•—r-i-rfu
And r ~x ~» 'y nbsp;nbsp;nbsp;nbsp;“
I z»/r/?; ~
(ib. cor. 6.).
—X I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;T—’V
Alfo X —— — --— — —' —
* nbsp;nbsp;nbsp;nbsp;r-^/rv r
in
I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I nbsp;nbsp;nbsp;...I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;quot;IK
Alfo nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X I —— ~
nn nn
(ib. cor. 6.) —t—afv.
Therefore writing for the fcveral powers of x, their rcfpedive values, we have
—Î
f-Vîgt;î‘v-\-r rflt;!} 4--'--— 4- nbsp;nbsp;’/ö-ü=2oo.
200—f—r—/4--
reduced v =
Pi rf y—ta
It eafily appears that x is greater than 2, and trying 24, it will be found a little too fmall ; therefore aflumc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence there will come
out quot;vz:—.00094.63, and therefore x —2.2690537, which may be put for », for another operation.
SEC T. r..
-ocr page 541-Fig.
SECT. XIV.
Problitm of Maxima and Minima,
PROB. CCXXI.
the fine AE, and the tvao points B, C, given in poftiion-, to find the point P, Jo that ^P-^-PC may be the leafi pojfible.
Take the point p cxtreamlv near P, and draw B/gt;, Cp, and alfo /.D 4- to BP, and to CP. Then /gt;D is the increment of BP ; and PO the decrement of CP, therefore DP=OP, by the nature of the queftion. And fince the hy-pothenufe Pp is common, /»DrzpO. And Z-pPD Z2/)PO, that is BPAzzCPE; whence the triangles BAP, CEP, are fimilar. Put AEzr^, AB=p, CE=:ç, AP=x, EPzz^—x ; then AB (p) ; AP : : CE EP {b—x) therefore qx—pb—px, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and x= and b—x=
P-^i nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;P-Plt;1
PROB. CCXXII.
1'he lines ABC, ««zi CE being given in pofuion, and 146. the points B, being given -, to find the point D in the line CE, -where the angle ADB.n the greatefi pcßible.
About AB defcribe a circle to touch the line CE -, then the point of contaft D is the point required.
For
-ocr page 542-508 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;MAXIMA and B. IL
Fig. For to any other point E, in the line CE, draw 146. AE, BE, anti draw BF. Then the angle AEB is iels than AFB, or its equal ADB (Geotn. IV. 13.)
Let BC”^, AC—d, CD—x. Then (Geoin. IV. 21. cor. 2.) XX—bd, and X—^ybd.
PROB. CCXXIII.
147- ^0 draw ihe ftiorteft line fcjfible, through a given faint P, placed within the right angle ABC.
Let CPA be the fhorteft line. Draw PD parallel to AB, and PF parallel to CB, and let PD— b, PF—r, CD— x, Cc—e an extreamly fmall quantity, PCrrz.
By the fimilar triangles CDP, PFA, x : z : :
f : — rz AP, and by the fimilar triangles CDP, y
xe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;be
rHC, z ; x : : e ; — z= Hr. Alfo z b ■. '.e •. —
zzHC. nbsp;And by the fimilar triangles PCH,
be nbsp;nbsp;nbsp;cz
z : — : : — nbsp;: ——0G. nbsp;And by the fimilar
2: nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a;
triangles CDP, 0GA, x : b : : — ;--zz AG.
° nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zx zxx
But Hf —AG, that is—zz , or xzz —, and z zxx’
3 —— x^zzbbcj whence x—y/bbe.
PROB. CCXXIV.
148. Given the Une EF, and two points A, B ; find the point D, /ô that öxAD-p^xBD, may be the leafi pojfible -, a, b being given numbers.
Take infinitely near D, and draw Ad, 'Rd ;
•n which let fall the perpendiculars Dr, D/. Then will
-ocr page 543-Seft. XIV. ’MINIMA. nbsp;nbsp;nbsp;nbsp;nbsp;509
will axAD ^xBD— flxA^ ^xB^-, and by fub- Fig. , tradion axAD—A^/ = b x nbsp;nbsp;nbsp;BD, or a^dr-
bxdf. But in the triangles lùdr, Hdf, the hypo-thenufe DJ is common ; therefore • af • • S^Dr : S.i/D/: : cof. ADF : cof. ^BDE. Whence « : : : cof. BDE : cof. ADF.
Let AF, BE be perpendicular to EF ; and put AFzzr, BE=J, EF=«, DF=^f, DE=î,. Then
DA (v/ff-pxx) : I : DF (x) : nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;= S.DAF
—cof. ADF ; then : a : : ~ nbsp;nbsp;—= :
^/cc-^-xx
ax
bv cc-^xx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b^cc xx '.V : : I : 'BD) \/aa-ir‘vv ; therefore v —
ax \/dd-rVV nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;------ „
And fquaring,
but vzza—Xf put fzz-bb—aa^ then tgt;bcc-^pxxy.w Z^aaddxx, or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X nn—2nx-Çxx~aaddxx \
reduced, px^—xpnx^ -{-pnnxx—2nbbccx-yh*c^n’-=.o.
■}-bbcc —aadd
PROB. CCXXV.
^hree points A, B, C given-, to find a fourth 140. ƒ01»/ D, fo that öxAD ZxBD fxCD, may be the leafi pofiible-, where a, b, are given numbers.
Let D be the point fought ; with radius CD, defcribe the circle GDH. Take the point d infinitely near D, and draw A«/, B^/ ; on AD, BD, let fall the perpendiculars dr^ df. Then fuppo-
-ocr page 544-gio nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M A X I M A nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;B. II.
Fig- fing CD to be given, ßXAD lt;JxBD will be a J49. minimum. But «xDr is the increment of axAD, and ^xD/ is the decrement of ^xBD, therefore flXDr—bxDf. But in the right angled triangles Dlt;/r.
Dr : D/; ; S.DJr : S.D#; : S.rDC, or ADC : S.wD/ or BDC. Therefore b : a : : S.ADC : S.BDC.
After the fame manner, fuppofing BD given, we (hall have c : a : : S.ADB : S.BDC. Therefore when öxAD-b^xBD-1-fxCD =: minimum i a, b, Cf ire refpedively as the fines of BDC, ADC, ADB ; or of BDw, ADw, BDr, which makes 180°. Therefore if a triangle be made of the 3 lines a, b, c j the angles of this triangle will be equal to the angles at D, viz. that oppofite to örzwDB, to b—niüA.., to c—BDr. Therefore ail the angles about the point D being given ; the diftances AD, BD, CD will be found by Prob, cxxxii.
PROB. CCXXVI.
*5®* Given the triangle ABD, and the circle whofe center is A. -, to find the point F in the circumference CFK, that the angle BFD may be the great-efl poflible.
Through the poihts B, D, defcribe the circle BFD to touch the circle CFK in F, the point required. For to any other point C, in the circle CK, draw DC cutting BFD in S, and draw BS, BC. Then the /.BSD or BFD-LBCD-p CBS i therefore BFD is greater than BCD.
On BD let fall the perpendiculars, AH, FI, GE i G being the center of the circle BFD. Then to find its radius GF ; let BEz:ED=:/gt;, HE=:r,
AHx^ AF=r,GE=:x. Then AG=v//gt;4-x
-ocr page 545-Seft. XIV. .minima. 511
— \^pj) cc-V2'[gt;x^xx , and GF ~ Fig.
pp-i-cc-i-i-PK-^-xx—r, and BG = \/bt)-ifxx nbsp;nbsp;^5°’
XVhence s/pp-j-cc-^ipx 4-xx ~rz=.\/bb-\-xx , and V^?? ‘^^ 2/ä'4-ä'ä' zzr4-\/bb-{-xx, which fquared is cc-\-pp-\-zpx-i-xxzzrr-\-bb-\-xx zr
Put nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—rr—bb then j4-2/gt;x := 2r X
\/bb-\-xx^ and is ^px à^ppxx zz 4-4rr;lt;xj reduced, i^ppxx 4- 4J/gt;x =: ^rrbb.
—4.rr nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;—
Then x being found, it will be EG (x) : rad.
(i) : : BE (Zgt;) ; tang. BGE, or its fuppletnent BFD.
PROB, ccxxvn.
l'a find the great eft area contained under any numlar of *5^* right lines given, and another line unknown.
Let ABODE be the figure ; then fince ABE4-BCDE is a maximum -, it is evident, whatever the figure BCDE is, ABE muft be a right-angled triangle, right-angled at B.
Again, fince ABC4-CDE4-ACE is a maximum ; it is evident whatever ABC and CDE arc, ACE muft be a right-angled triangle, right-angled at C.
Alfo fince ABCD4-ADE is a maximum -, it is plain, whatever the figure ABCD is, ADE muft be a right-angled triangle, right-angled D. And lb on if there were never fo many lines. And therefore all the angles ABE, ACE, ADE, fub-tended by AE, muft be right angles ; and confe-quently the whole figure is inferibed in a femi-circle, whofe diameter is AE, fo that the whole may be a maximum.
Therefore if it be required to find the area, we muft find the diameter AE, and then find
the
-ocr page 546-5ii nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;MAXIMA anà B. IL
Fig. the area of the poligon ABCDE infcribed in a femicircle.
PROB. CCXXVIII.
152. find a line, ‘oahicb with three given lines, will con-‘ tain the greateft area fofiible.
It is plain the line fought is the diameter of the femicircle in which the three given lines are in-feribed.
Let ABCD, be the quadrangle, draw the diagonals AC, BD, on which let fall the perpendiculars CP, BF.
Let AB—BC—f, CD=:J, diameter AD—y. Then BDzzVjj—bb, and KC—y/yy—ad. nbsp;nbsp;But
(Geom. IV. 28.) CP— —, and BF r: -.There- y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;y
- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;cd -------
fore • V yy—bb — 2 area ABCD , and
ic -- cd — -
d -^vyy—dd —2 area = nbsp;nbsp;— \/yy—bb
and by-\-cd x \/yy—bb = dy-\-bc \/yy—dd, and fquaring and multiplying, bbyy 2bcdy'-\-ccddyy— b^yy—ib^cdy—bbccdd—ddy^■J^ibcdy'^ -p bbccy^—d^yy —zbcdy—bbccdd. And reducing
bbyi — b*quot; y ibcd^ —o.
—dd nbsp;nbsp;lt;— bbee — zb'^cd
-P cedd
-P dy
And dividing by bb—dd
y^ —bb y — 2bcd, and y being known, the
—cc
—dd
area is known from the foregoing (feps.
PROB.
-ocr page 547-Sea. XIV,
MINIMA.
5^3 Fig.
PROB. CCXXfX.
SP is perpendicular to PM, and there is given SP, ’53’ SN ; and drawing NL, /o that the angle LDM may be e^ual to SCPj to find CD, a maximum.
Draw NA perpendicular to CD, then CA—AD, and CA is a maximum. Put SNzz^, SP— d^
SC.—y, then CNCPzzVj;—dd. Then by fimilar triangles, 7 : \^yy—dd : b—y : CA =
\^yy~-dd max. — b—y
, y— nbsp;nbsp;yy—dd
= max. and 1?—y X -- = yy
dd -___
— — X v—y • Increaie ƒ by a
very fmall quantity nbsp;nbsp;then b—y—e ~b~y
b—y. Alfo jy e r:33gt; 2jy6 and by divifion '^dde nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■—dd
yy 2ye - yy jy, • Whence b—y —X
^y — —y —2e X b—y — — I—.
---- yy y^
___I
^—y — nbsp;nbsp;nbsp;^—y » and tranfpofing, x b^
_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;1— nbsp;nbsp;nbsp;nbsp;'^^de ---
jn nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J)7 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;dividing
by ze X i^—y^ \ ■=. — x b—y q- —, and multiplying by y\ have y^-ddb—ddyJ^ddy, or y'—bdd^ and y—^l^d.
PROB.
-ocr page 550-514- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M A X I M A. Md B. 11.
Fig-
PROB. CCXXX.
Given tfye fituation of the two places A, E, the rtver BD ; and fuppofe a traveller going from A /o C, ffl« travel 6 miles an hour on this fide the river from A to C ; miles an hour on the other fide from C Zö E ; it is required to know where he muß crofs the river BD, yô that he may go from A to E in the leaft time pofiibl^.
Let AB, ED be perpendicular to BD ; let ö,DE—ht BD—ii, fn — 6t n—^, EC-x. Then CD=lt;/—X, AC4-^—x' mil. h9. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;___________ __
And per queft. »» : 1 : : aa-{-xx ; \/ö(^4-aa;
m . . ' -----------1.
= _unTe in AC, and « : i : : \/dd -i-d—x bh -t- d si
-— nbsp;nbsp;----;= time in CE. Therefore
nbsp;nbsp;nbsp;nbsp;nbsp;= minimum. Or
w nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n
n\/aa-{~xx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;d—x — min. Write x tf
for X ; . then xx=xx q- 2xet and lt;/— x—e = —X— 2e X d—X. Therefore we have «\/öa-hA»fq-2x^ m'^bb-srd^^—ze x d—x — n \/aa-\-xx q- bb q- d—x . But
-—;— nbsp;, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;J
Äflq-*x q- nbsp;nbsp;nbsp;nbsp;nbsp;-?.i—aod
V «« q-**
26 X d—X —
bb d—X
lt;X
-ocr page 551-Scft. XIV. maxima. .__ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5*5
y nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, _.
•- nbsp;nbsp;nbsp;nbsp;___ ^/aa^^x
mey,d—x nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;____
nbsp;nbsp;\/ob-\-d—X-— nbsp;nbsp;nbsp;---__-^:= — «vaa-f-ivx
^bb-Yd~—x
—___
m\/bb -^-d—X . Therefore ■ nbsp;nbsp;—» nbsp;
- valt;j4-*«
—- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;=;o. And multiplying,
bb-^d—X
nxy/bb-ifdd—idx-\-xx — md—mx^/aa-^-xx • and fquaring nnbbxx-{-nnddxx—i nndx* -{-nnxd—mmddaa —immdaax tnmaaxx-}-nimddxx—2mmdx*-}-mmx^. And being reduced is,
nnx^ — 2nndx* 4- nnddxx -{-2mmdaax—ni*d*a?-zzQ,
—mm 2mmd -\-nnbb
—mmdd
•^mmaa
P TS.Q 'Q. CCXXXI.
JVitbin the given angle ACB, to cut off a given area, 155. viitb the /hortefi line AB. ’ ~
Let the area=^ • c—£ine and coC.C 5 CA=x, CBzcjy, then fer queft, and by Trigonometry A^—y/xx-^yy—2cxy quot;=z min.; therefor» b nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b
xx yy—2fx^—mm. but xy~ —, and j = ~ , , r , bb icb nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bb
tncrciorc xx -{• —— nbsp;nbsp;nbsp;nbsp;. - ““min. or nbsp;nbsp;nbsp;nbsp;-4*
^sxx nbsp;nbsp;nbsp;J nbsp;—min. ur
xzmin. Put nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;x, then x f
and - or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Whence
L 1 2
-ocr page 552-M A X I M A and B. 11.
Fig-»55-
W I bb ie nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ib
^a; 2^x - X~~ X - = nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, and
2bbe , bb
_ nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;nbsp;nbsp;b*' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b‘' s s nbsp;nbsp;nbsp;nbsp;nbsp;bb
But — — _ y — — _ bb nbsp;nbsp;a
whence x*——. jj'
gt; therefore
PROB. CCXXXII.
X T'a find the greatefl parallelogram infcribed in a triangle.
Let the parallelogram BDEF be infcribed in the triangle ABC. Put AB=ö, BC=:^, DB=jf, DEzzj. Then by the fimilar triangles ABC, ADE, a—x 'gt;■ y • ■ a •. and ay—ba—bx, and y— —---- ~
T bx nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bxx
--T’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or ---- n,ax. Put e for the finall increment of x, then the increment of is be, and the decrement of xx is ■*' ^ —xx—ixe, and the decrement of —
'2.bx6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Q.X
whence r:---, and i zz — , and “ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;a
Therefore
PROB. CCXXXIII.
^5y. Given the point P within the right angle ACB ; to draw the line APB, fo that AFxPB may be a minimum.
Draw DP, PF parallel to CB, CA -, and put CFz:^, CDxzf, ADziXi Then by fimilar triangles
-ocr page 553-Sea. XIV. Minima. 517 angles x : b : : c :y, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and yz=i
Then AP —\/bbd-Â'Âr, and PBzz\/ff*|-jyjy j and APxPB= v^îî S x7« ^ = iiin. and Ä'Jf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;,
fquaring, bbcc nbsp;nbsp;nbsp;nbsp; ccxx bbcc — min. and
A»* b^cc , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;______
Wl'ence ff xx f 4-
b^'CC nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;b‘'cc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-
—7- » nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or cc X 5(X 2xf X
x4-f
, b^cc nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;'ib‘^cct .
■“ xgt; - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^ff^rf--
_ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’ bgt;‘'
—0» nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;or x^—b^^ and whence jyz:f.
And ACzzx r=^ f» and CBzzZi vzz^ f. Therefore ACzzCB.
ylnd if it be required to have AP4-PB, ^ini-vie. Ihall have \/bbffxx 4- s/^^ yy min. or nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp; Jce ^~~ = min. But
XX
y/bb x-^e — \^bb-Yxx ~ —— - the _______ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;%/ Z’Z'4-xx
increment of nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;And in like manner
—bbcce
*’ J cc-i~
is the increment of
XX
bbce ^x^xx-\~bb *“ decrement. nbsp;nbsp;nbsp;Therefore
__ bbce nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, \^bb^x ~ l^bTÇVx' nbsp;nbsp;nbsp;nbsp;^^-bbe or
x—y/bbe^ as in Prob, ccxxiii. by another method.
PROB
-ocr page 554-5’S nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bl A X I M À and B. IL
Fig-PROB. CCXXXIV.
Given tie fum of the legs cf aright-angled triangle j to find the legs^ fa as to contain the greatefi area ficffible.
Lc^^özzfum of the legs, x— one of them ; then *Xlt;J—‘-x=. 2 area zzmax. thérefo’re x-f-e X a—x—e ÿ^x X fl—that is, «X—xx—xe-{-ae—xj=:ax—► XX, and ae—zxe—o, or zxzza, whence x~{a, and Æ—x:^ia. Therefore the legs are equal. And therefore when the area is given ; the fum of the legs will be the leall, when they are equal.
PROB, cexxxv.
Given the area of a right-angled triangle ; to find the fades, haben the perimeter is the leaft pofaible.
Letflzzarea, xzzfum of the legs, v, jzzthe two legs; then vv jy7 2'ty=xx, but vy=:2fl, and w j)y nbsp;nbsp;nbsp;nbsp;nbsp;2i;_y rzry—4fl, and the hypothenufe
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;^xx—4«; therefore x-^-^/îtx—^a
= perimeter. :±: min. write for x, then 'i. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. '2* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’
= ■\/xx4-2Xf—4« — nbsp;nbsp;XX—4fl
-7^== = » V XX—S^a, and ^4—2==
XX 4ZÏ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;________
~o. And e\/xx—4^——xe, and ewÄ'—4dec~
xxee, and 4flf^r:o, and efr; —, or e—o. And 4^
therefore fince the increment of x is nothfng -, therefore x is a minimum, and wh«i x or the fum
-ocr page 555-Scd. XIV. M I R I M Ä.
futn is a minimum -, then the legs are equal, by Fig. the lall problem ; therefore nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, and
or x:=\/ÿa.
PROB. CCXXXVI.
Given the folidity of^a fquare pyramid DF ; to find 158. the flant fide AB /Zie leaft pojfible.
Let ^=folidity, *=CB the height, j»ï:2AC the breadth, then AB— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;But^ji—
3^
and w ±: — j therefore AB— X
J 3^ nbsp;nbsp;nbsp;nbsp;nbsp;.
minimum, and xx-^^ zs tnin. 4*
4«
Put for
--
4^* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4* nbsp;nbsp;4^ nbsp;nbsp;nbsp;~ 4Jt
J and %xe —- *—
4xX
=:o
3
and 8*’=3^, whence
prob, ccxxxvii.
Gtvèn the folidity of the fquare pyramid DF, to find that which has the leaft furface^ excluding thebafe.
Let ^—folidity, sfzzCB the height, ^zz2AC, or 2AD the breadth. Then ABzz v/ji Af/ and iy x nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zzDBL, and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;~
furface. But nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and jyj= Whence the
furfacc zz:
4* nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;4gt;'x
4 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;zz:m.ixi.
-ocr page 556-520 nbsp;nbsp;nbsp;nbsp;nbsp;maxima nbsp;nbsp;nbsp;nbsp;nbsp;BJ[
And 35.
■ - nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;iUhe
xx 2xe *~ x:v xi ‘ therefore 12^x4-
• tlh nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;- ,,i,,‘)H’ nbsp;nbsp;nbsp;. nbsp;nbsp;,
XX X^ —‘24'A' ^^ J and I2^f—
Mbe _ nbsp;nbsp;nbsp;nbsp;nbsp;, iUb
—Q, or i2^_—, and i2xj = i8^, and
3^ nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;’y2
x’=—, whence V—b.
2
PROB. CCXXXVIII.
^59- nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;greatefi cylinderinfcribed in a given cone.
Let axis ABzza , BC or BFrz^ , c — 3-14*6, DB —^f, DE or DG—j. nbsp;Then by the
fimilar triangles ABC , nbsp;ADE , nbsp;a—x : ƒ : :
« : b^ and ay — ba—bx y or bx — ab — ay^
J nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ab—ay
and X nbsp;=: nbsp;nbsp;——. nbsp;But fyjyxxzmaximum, or
ab—ay nbsp;nbsp;nbsp;abc\y—acy^ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;, nbsp;nbsp;. /tr
—1-- = nbsp;nbsp;nbsp;nbsp;--^=max. that IS -r- x
' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;0 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tf nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;t)
byy—j’’=max. and byy—-^’^max. put for y, then byy becomes Z'p4-2/^«, and _y’ becomes 7’ 37‘^« Wlience byy-\-2bye—■y''—'iy’'^~byy—y^-And 2j^^f—3yye—o , or iby — ^yyi and jy = ’^.
-.X’k nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;I
V hence a — ----2---
3
PROB.
-ocr page 557-Sed. xiv. Minima.
P R o B. CCXXXIX.
5^’ Fjg’
mntînt^the ' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;at refl^ may make C's
motton the ^reateß ^offible,
Let x=weight of B, «^velocity of 1 nbsp;nbsp;nbsp;.
^—velocity of B, acquired by the drok'c.
velocity of C, by the ftroke. ;■
Tven^Af motion of both A and B, after the ftroke, as well as before; and « is the difference of their velocities ; therefore y—a is the velocity of-A after the ftroke. And rince the lum or their motions^remains the fame (Meehan. IO.),therefore xy y—a^fi^-Ka, or xy—ha “lquot;Ay —xy-^Ay~2a.^i and y ~
Again, gt;;j- the motion of both B and C, and y the difference of their velocities, as well after as before the ftroke of B. Therefore v—-y is the velocity of B after its ftriking C. Whence Cti V—y Xx=}y, or Ct;4-,viyzz:2yx. Whence v=: ^a\x
ïyx
——== zz maximum per que-. V V t -4- ¥
ftion ;
or nbsp;nbsp;nbsp;nbsp;nbsp;=— = maximum ; or
A xxC x nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;.
—--- zz minimum, that is,
A-f-C.y
AC
X
— nbsp;nbsp;nbsp;--------- — minimum , or
T
A C
-ocr page 558-$22 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M À X I M A and Ê. IL
A , r , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;. . nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;V r
A L )fz:imnimum} therefore ----F mi-
V AC then — * lt;f
AC *
himum j pot Ä4-^ for * ;
-. ACr. 4 . . ÀC xü ’ therefore
At
Xf and throwing out
ACf
HïT 4' Jé 4-^ = the fuperfiubus quân
^ties, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ànj xxzzAC, whence
*=5/ÀC.
PROB. eeXL:
TÔ find x^ the ^reateft foffible^ finppoßng fi greater than m.
Write «4-c for x, then —X*quot; and x e’' —x” 4-»x”~’e} therefore x-i-e”’ — „ I nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;n , nbsp;nbsp;nbsp;. -m , m—l n
^nx’‘ 'f=zxquot;—x” . And by fubtraélion w* e—nx e—Of or mx —nx
mx ^nx” . And n being greater than rw, wc have »X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and xquot;””” nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;whence
n'
PROB.
-ocr page 559-Sea. XIV. MINIMA. .523 \ Fig.
PROB. CCXLI.
So find the greatfi parallelogram inferred in the given curve AMC.
Let MPBF be the greateft parallelogram. To the point M where it touches the curve, draw the tangent TMD. Then if thè fubtangent PT be equal to the height of thè parallelogram PB, then MPBF is the greateft parallelogram. For ft is plain from Problem ccxxxii, that this parallelogram is the greateft that can be inferibed in thé triangle TDBi and as this is greater than any other that can be inferibed in the triangle, fo* much more, is it greater than any other that can be inferibed in the curve, fince the angle M which is in the curve, will in all other cafes fall fhOrt of the tangent.
Therefore knowing the method of drawing a tangent to the curve ; you muft feek the point P, where the ordinate PM being erefted, and the tangent TM drawn, TP may be equal to PB. Thus if AM be a parabola j put AB=0, APz=x, then by the nature of the curve, AF=x, whence TP=:2X, PB—a—x, therefore 2x—a—x, or
And the fame will hold good, if not in all, yet in moft curves which are convex to the axis. For fince the parallelogram is the greateft for the triangle, it will alfo be greateft for the curve, fince the curve at that place coincides with thé tangent.
Qtherwife thus^
Suppofe the nature of the curve be rx”^ ~y” , tkihere APxx, PM =7, alfo AB=:ö, BC=^.
Then
-ocr page 560-MAXIMA and B. 11.
fig- Then PB — a—x, and x X y — max. But j6o. ’ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;™
jzzr’xquot;, therefore«—xX^’^'' = max. or
Z» «4-»
ax ”—X ” nbsp;— maxim, put x ^zrx-, then
f» m nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tn—n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;ni-}-n
f
~ V « nbsp;4- x” e. Therefore »
tn nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;m—n ttiA-n ‘ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;»» »
— m -- — »; « — nbsp;nbsp;nbsp;— nbsp;
«X ” —ax ” e—X ” nbsp;---X ”e— ax —x ” *
whence —ax ” e--x” e— O', or »
max zz m-i-» X x” ; and dividing by *quot;—n nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;tn—»» »
X ” , ma—m-\-n y. x quot;nbsp;—»2 » xx, whence X— ~q;“. Which is general for all parabolical figures. Thus if m— i, 22:z2, as in the common parabola, then x —j«, and if w —2, 22z:: i, then is x=|«, as in the fame parabola, with its convexity towards the axis. If 222—1, n — i ; then x=:-i«, for the triangle, as was proved before.
PROB. CCXLII.
i6i, Given ihc dißance cf (he point X from the perpendicular plane BC ; to find the pofition of the plane AC, through -which a body Jhall defend in the floortefi time poffible to the plane BC.
Let AB be perpendicular to BC, AD parallel to it, and CD perpendicular to AC. Put AB—/’, BC=x ; then 'Meehan. 31. cor. t.)in the time a body
-ocr page 561-Sect. XIV. MINIMA. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;5^5
body defeends through the inclined plane AC, ano- fig' body will fall perpendicularly through the fpace AD. Therefore as the time in AC mult be a minimum, the time in AD mud be a minimum, and AD itfelf mull be a minimum. By the fi-milar triangles BAC, CAD , it is BC (x) : CA ( ^^h-^-xx ) : ; CA ( y/bb ) : AD — bb-{-xx . , nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;K y
--zz minimum. And —-l-jf=:min.write
, nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bb bb bbe ,
for X, then „ nbsp;nbsp;nbsp;= —--; therefore —
X nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X XX
bbe nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;bb
— nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;7 ^, and —— -b^zzo, or
1= and XX—bb^ ot x—b, therefore
Otheruuife tbue^
Defcribe the circle AGC with the center B, and radius BA; draw AC and any other line AE, and CGF parallel to it. Then (Meehan. 37. cor. I.) the times of a body’s defeending through GC, AC, are equal. And the times of defeending through the equal lines, of equal inclinations, AE, FC are equal. But thç time of defeending through GC is lefs than the time of defeending through FC. Therefore the time of defeending through AC is lefs than the time of defeending through any other line AE.
PROB. CCXLIII.
AB is a horizontal line, BD an inclined plane. It is required to find the fofidon of the plane A D, threngh which a body defeending from A fioall arrive at the plane BD, in the leaf time poffible.
Suppofe AD to be the plane, draw AL perpendicular to AB, and DIT perpendicular to AL, ami
-ocr page 562-5^6 nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;M A X I M A and B. II.
Fig. and DF perpendicular to AD. And put ^=AB, 163, J, f =: fine and cof. B, BDzx*,' AD=gt;. Then by plain Trigonometry nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;-, and
AD (J) z S.B : : BD (x) : '1 - S.BAD or ADH. And rad. (i) : AD f/) ; : $. ADH 'zJ*\
(j) ’ AH=/x. And by fimilar triangles, AH
(jx) : A D 0; : : A D 0; : A F z= — =
bb-^-xx—2cbx sx
But the time of falling through
AF is equal to the tim.c of defending through AD (Meeh. 34. cor. 1.). And this time is a mi-mum, therefore AF is a minimum, that is, bb xx—2cbx nbsp;nbsp;nbsp;. nbsp;nbsp;nbsp;nbsp;. bb xx—2cbx
----—---- = min. and--— min.
JX nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X
or — nbsp;nbsp;—2cb ~ mm. whence--1- x— min.
ƒ nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;X *
as in the laft problem. And therefore x—b, w AD=AB.
Or tbuSi
On A F defcribe a femicircle ADF to touch the line AL in D ; draw AD, which will be the line of Ihorteft time. For the time of defeending through all the cords in the femicircle will be equal (Meehan. 37. cor. i.) to the time in AD. But the time in any chord is {hotter than the time in the fame chord when produced to the line BL, which lies without the circle. And therefore the time in AD is alfo fhorter than in any other line {drawn to BL.
PROB.
-ocr page 563- -ocr page 564- -ocr page 565-Sc6l. XIV. minima;
^27
Fig.
PROB. CCXLIV.
To divide a given line AB, ƒ»/lt;? three parts, x,y,Z‘, fo that xyyz^ may he the grfateß produit pojßible.
Firft, fuppofex j=^ 'a given quantity, to find =amaximum. Then x—b^y, and b—y'^yy QX byy—y^ =:max. putj e forj, then b^y-Yf^ »—_y4-^zzmax. that is, byy-^2bye—y'—^yye—byy ^y\ and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;and 3y=2b, or
and nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;Therefore
’Again, let nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;to find xy^z^ xxmax.
Then by what is gone before, whatever z be, will be =2x. Whence 4X’2? = max. But* _y
•^d—z, or 3^ —d—2, and 4a?’2’ ~ ■“ x d—z
X 2’ =z max. and max. or dz—22=
--- dz de— z4-f —
—max. or d—2Xzx:
max. put dz —zz,
z f for 2, then or dz-{-de—zz— whence 22zzlt;/=;
2.ze^dz—22, or —2zezzo
* j z, and 2—jf
3X or 6x~d, and x-^d, and j= (2x=)'u
and 2= (3.v=) Id. nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;*
Therefore x4-2«
F ! N I s.
-ocr page 566-■• r-''' nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;■■gt;
errata.
■ Page 328. line 8. (from the bottom) read azz—. lt;
-
p. 466. Jine 3. read n X v^â”—1.
-ocr page 567- -ocr page 568- -ocr page 569- -ocr page 570- -ocr page 571- -ocr page 572-